ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.292
Committed: Sat Apr 23 20:13:21 2016 UTC (8 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.291: +6 -3 lines
Log Message:
standardize on slightly better lazy init code for views

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42
43 /**
44 * A hash table supporting full concurrency of retrievals and
45 * high expected concurrency for updates. This class obeys the
46 * same functional specification as {@link java.util.Hashtable}, and
47 * includes versions of methods corresponding to each method of
48 * {@code Hashtable}. However, even though all operations are
49 * thread-safe, retrieval operations do <em>not</em> entail locking,
50 * and there is <em>not</em> any support for locking the entire table
51 * in a way that prevents all access. This class is fully
52 * interoperable with {@code Hashtable} in programs that rely on its
53 * thread safety but not on its synchronization details.
54 *
55 * <p>Retrieval operations (including {@code get}) generally do not
56 * block, so may overlap with update operations (including {@code put}
57 * and {@code remove}). Retrievals reflect the results of the most
58 * recently <em>completed</em> update operations holding upon their
59 * onset. (More formally, an update operation for a given key bears a
60 * <em>happens-before</em> relation with any (non-null) retrieval for
61 * that key reporting the updated value.) For aggregate operations
62 * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 * reflect insertion or removal of only some entries. Similarly,
64 * Iterators, Spliterators and Enumerations return elements reflecting the
65 * state of the hash table at some point at or since the creation of the
66 * iterator/enumeration. They do <em>not</em> throw {@link
67 * java.util.ConcurrentModificationException ConcurrentModificationException}.
68 * However, iterators are designed to be used by only one thread at a time.
69 * Bear in mind that the results of aggregate status methods including
70 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 * useful only when a map is not undergoing concurrent updates in other threads.
72 * Otherwise the results of these methods reflect transient states
73 * that may be adequate for monitoring or estimation purposes, but not
74 * for program control.
75 *
76 * <p>The table is dynamically expanded when there are too many
77 * collisions (i.e., keys that have distinct hash codes but fall into
78 * the same slot modulo the table size), with the expected average
79 * effect of maintaining roughly two bins per mapping (corresponding
80 * to a 0.75 load factor threshold for resizing). There may be much
81 * variance around this average as mappings are added and removed, but
82 * overall, this maintains a commonly accepted time/space tradeoff for
83 * hash tables. However, resizing this or any other kind of hash
84 * table may be a relatively slow operation. When possible, it is a
85 * good idea to provide a size estimate as an optional {@code
86 * initialCapacity} constructor argument. An additional optional
87 * {@code loadFactor} constructor argument provides a further means of
88 * customizing initial table capacity by specifying the table density
89 * to be used in calculating the amount of space to allocate for the
90 * given number of elements. Also, for compatibility with previous
91 * versions of this class, constructors may optionally specify an
92 * expected {@code concurrencyLevel} as an additional hint for
93 * internal sizing. Note that using many keys with exactly the same
94 * {@code hashCode()} is a sure way to slow down performance of any
95 * hash table. To ameliorate impact, when keys are {@link Comparable},
96 * this class may use comparison order among keys to help break ties.
97 *
98 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 * (using {@link #keySet(Object)} when only keys are of interest, and the
101 * mapped values are (perhaps transiently) not used or all take the
102 * same mapping value.
103 *
104 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 * form of histogram or multiset) by using {@link
106 * java.util.concurrent.atomic.LongAdder} values and initializing via
107 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110 *
111 * <p>This class and its views and iterators implement all of the
112 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113 * interfaces.
114 *
115 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 * does <em>not</em> allow {@code null} to be used as a key or value.
117 *
118 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 * operations that, unlike most {@link Stream} methods, are designed
120 * to be safely, and often sensibly, applied even with maps that are
121 * being concurrently updated by other threads; for example, when
122 * computing a snapshot summary of the values in a shared registry.
123 * There are three kinds of operation, each with four forms, accepting
124 * functions with keys, values, entries, and (key, value) pairs as
125 * arguments and/or return values. Because the elements of a
126 * ConcurrentHashMap are not ordered in any particular way, and may be
127 * processed in different orders in different parallel executions, the
128 * correctness of supplied functions should not depend on any
129 * ordering, or on any other objects or values that may transiently
130 * change while computation is in progress; and except for forEach
131 * actions, should ideally be side-effect-free. Bulk operations on
132 * {@link java.util.Map.Entry} objects do not support method {@code
133 * setValue}.
134 *
135 * <ul>
136 * <li>forEach: Performs a given action on each element.
137 * A variant form applies a given transformation on each element
138 * before performing the action.
139 *
140 * <li>search: Returns the first available non-null result of
141 * applying a given function on each element; skipping further
142 * search when a result is found.
143 *
144 * <li>reduce: Accumulates each element. The supplied reduction
145 * function cannot rely on ordering (more formally, it should be
146 * both associative and commutative). There are five variants:
147 *
148 * <ul>
149 *
150 * <li>Plain reductions. (There is not a form of this method for
151 * (key, value) function arguments since there is no corresponding
152 * return type.)
153 *
154 * <li>Mapped reductions that accumulate the results of a given
155 * function applied to each element.
156 *
157 * <li>Reductions to scalar doubles, longs, and ints, using a
158 * given basis value.
159 *
160 * </ul>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (jdk.internal.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectable as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments referring to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static final int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /**
571 * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 * @serialField segments Segment[]
573 * The segments, each of which is a specialized hash table.
574 * @serialField segmentMask int
575 * Mask value for indexing into segments. The upper bits of a
576 * key's hash code are used to choose the segment.
577 * @serialField segmentShift int
578 * Shift value for indexing within segments.
579 */
580 private static final ObjectStreamField[] serialPersistentFields = {
581 new ObjectStreamField("segments", Segment[].class),
582 new ObjectStreamField("segmentMask", Integer.TYPE),
583 new ObjectStreamField("segmentShift", Integer.TYPE),
584 };
585
586 /* ---------------- Nodes -------------- */
587
588 /**
589 * Key-value entry. This class is never exported out as a
590 * user-mutable Map.Entry (i.e., one supporting setValue; see
591 * MapEntry below), but can be used for read-only traversals used
592 * in bulk tasks. Subclasses of Node with a negative hash field
593 * are special, and contain null keys and values (but are never
594 * exported). Otherwise, keys and vals are never null.
595 */
596 static class Node<K,V> implements Map.Entry<K,V> {
597 final int hash;
598 final K key;
599 volatile V val;
600 volatile Node<K,V> next;
601
602 Node(int hash, K key, V val) {
603 this.hash = hash;
604 this.key = key;
605 this.val = val;
606 }
607
608 Node(int hash, K key, V val, Node<K,V> next) {
609 this(hash, key, val);
610 this.next = next;
611 }
612
613 public final K getKey() { return key; }
614 public final V getValue() { return val; }
615 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 public final String toString() {
617 return Helpers.mapEntryToString(key, val);
618 }
619 public final V setValue(V value) {
620 throw new UnsupportedOperationException();
621 }
622
623 public final boolean equals(Object o) {
624 Object k, v, u; Map.Entry<?,?> e;
625 return ((o instanceof Map.Entry) &&
626 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 (v = e.getValue()) != null &&
628 (k == key || k.equals(key)) &&
629 (v == (u = val) || v.equals(u)));
630 }
631
632 /**
633 * Virtualized support for map.get(); overridden in subclasses.
634 */
635 Node<K,V> find(int h, Object k) {
636 Node<K,V> e = this;
637 if (k != null) {
638 do {
639 K ek;
640 if (e.hash == h &&
641 ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 return e;
643 } while ((e = e.next) != null);
644 }
645 return null;
646 }
647 }
648
649 /* ---------------- Static utilities -------------- */
650
651 /**
652 * Spreads (XORs) higher bits of hash to lower and also forces top
653 * bit to 0. Because the table uses power-of-two masking, sets of
654 * hashes that vary only in bits above the current mask will
655 * always collide. (Among known examples are sets of Float keys
656 * holding consecutive whole numbers in small tables.) So we
657 * apply a transform that spreads the impact of higher bits
658 * downward. There is a tradeoff between speed, utility, and
659 * quality of bit-spreading. Because many common sets of hashes
660 * are already reasonably distributed (so don't benefit from
661 * spreading), and because we use trees to handle large sets of
662 * collisions in bins, we just XOR some shifted bits in the
663 * cheapest possible way to reduce systematic lossage, as well as
664 * to incorporate impact of the highest bits that would otherwise
665 * never be used in index calculations because of table bounds.
666 */
667 static final int spread(int h) {
668 return (h ^ (h >>> 16)) & HASH_BITS;
669 }
670
671 /**
672 * Returns a power of two table size for the given desired capacity.
673 * See Hackers Delight, sec 3.2
674 */
675 private static final int tableSizeFor(int c) {
676 int n = c - 1;
677 n |= n >>> 1;
678 n |= n >>> 2;
679 n |= n >>> 4;
680 n |= n >>> 8;
681 n |= n >>> 16;
682 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
683 }
684
685 /**
686 * Returns x's Class if it is of the form "class C implements
687 * Comparable<C>", else null.
688 */
689 static Class<?> comparableClassFor(Object x) {
690 if (x instanceof Comparable) {
691 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
692 if ((c = x.getClass()) == String.class) // bypass checks
693 return c;
694 if ((ts = c.getGenericInterfaces()) != null) {
695 for (int i = 0; i < ts.length; ++i) {
696 if (((t = ts[i]) instanceof ParameterizedType) &&
697 ((p = (ParameterizedType)t).getRawType() ==
698 Comparable.class) &&
699 (as = p.getActualTypeArguments()) != null &&
700 as.length == 1 && as[0] == c) // type arg is c
701 return c;
702 }
703 }
704 }
705 return null;
706 }
707
708 /**
709 * Returns k.compareTo(x) if x matches kc (k's screened comparable
710 * class), else 0.
711 */
712 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
713 static int compareComparables(Class<?> kc, Object k, Object x) {
714 return (x == null || x.getClass() != kc ? 0 :
715 ((Comparable)k).compareTo(x));
716 }
717
718 /* ---------------- Table element access -------------- */
719
720 /*
721 * Volatile access methods are used for table elements as well as
722 * elements of in-progress next table while resizing. All uses of
723 * the tab arguments must be null checked by callers. All callers
724 * also paranoically precheck that tab's length is not zero (or an
725 * equivalent check), thus ensuring that any index argument taking
726 * the form of a hash value anded with (length - 1) is a valid
727 * index. Note that, to be correct wrt arbitrary concurrency
728 * errors by users, these checks must operate on local variables,
729 * which accounts for some odd-looking inline assignments below.
730 * Note that calls to setTabAt always occur within locked regions,
731 * and so in principle require only release ordering, not
732 * full volatile semantics, but are currently coded as volatile
733 * writes to be conservative.
734 */
735
736 @SuppressWarnings("unchecked")
737 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
738 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
739 }
740
741 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
742 Node<K,V> c, Node<K,V> v) {
743 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
744 }
745
746 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
747 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
748 }
749
750 /* ---------------- Fields -------------- */
751
752 /**
753 * The array of bins. Lazily initialized upon first insertion.
754 * Size is always a power of two. Accessed directly by iterators.
755 */
756 transient volatile Node<K,V>[] table;
757
758 /**
759 * The next table to use; non-null only while resizing.
760 */
761 private transient volatile Node<K,V>[] nextTable;
762
763 /**
764 * Base counter value, used mainly when there is no contention,
765 * but also as a fallback during table initialization
766 * races. Updated via CAS.
767 */
768 private transient volatile long baseCount;
769
770 /**
771 * Table initialization and resizing control. When negative, the
772 * table is being initialized or resized: -1 for initialization,
773 * else -(1 + the number of active resizing threads). Otherwise,
774 * when table is null, holds the initial table size to use upon
775 * creation, or 0 for default. After initialization, holds the
776 * next element count value upon which to resize the table.
777 */
778 private transient volatile int sizeCtl;
779
780 /**
781 * The next table index (plus one) to split while resizing.
782 */
783 private transient volatile int transferIndex;
784
785 /**
786 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
787 */
788 private transient volatile int cellsBusy;
789
790 /**
791 * Table of counter cells. When non-null, size is a power of 2.
792 */
793 private transient volatile CounterCell[] counterCells;
794
795 // views
796 private transient KeySetView<K,V> keySet;
797 private transient ValuesView<K,V> values;
798 private transient EntrySetView<K,V> entrySet;
799
800
801 /* ---------------- Public operations -------------- */
802
803 /**
804 * Creates a new, empty map with the default initial table size (16).
805 */
806 public ConcurrentHashMap() {
807 }
808
809 /**
810 * Creates a new, empty map with an initial table size
811 * accommodating the specified number of elements without the need
812 * to dynamically resize.
813 *
814 * @param initialCapacity The implementation performs internal
815 * sizing to accommodate this many elements.
816 * @throws IllegalArgumentException if the initial capacity of
817 * elements is negative
818 */
819 public ConcurrentHashMap(int initialCapacity) {
820 if (initialCapacity < 0)
821 throw new IllegalArgumentException();
822 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
823 MAXIMUM_CAPACITY :
824 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
825 this.sizeCtl = cap;
826 }
827
828 /**
829 * Creates a new map with the same mappings as the given map.
830 *
831 * @param m the map
832 */
833 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
834 this.sizeCtl = DEFAULT_CAPACITY;
835 putAll(m);
836 }
837
838 /**
839 * Creates a new, empty map with an initial table size based on
840 * the given number of elements ({@code initialCapacity}) and
841 * initial table density ({@code loadFactor}).
842 *
843 * @param initialCapacity the initial capacity. The implementation
844 * performs internal sizing to accommodate this many elements,
845 * given the specified load factor.
846 * @param loadFactor the load factor (table density) for
847 * establishing the initial table size
848 * @throws IllegalArgumentException if the initial capacity of
849 * elements is negative or the load factor is nonpositive
850 *
851 * @since 1.6
852 */
853 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
854 this(initialCapacity, loadFactor, 1);
855 }
856
857 /**
858 * Creates a new, empty map with an initial table size based on
859 * the given number of elements ({@code initialCapacity}), table
860 * density ({@code loadFactor}), and number of concurrently
861 * updating threads ({@code concurrencyLevel}).
862 *
863 * @param initialCapacity the initial capacity. The implementation
864 * performs internal sizing to accommodate this many elements,
865 * given the specified load factor.
866 * @param loadFactor the load factor (table density) for
867 * establishing the initial table size
868 * @param concurrencyLevel the estimated number of concurrently
869 * updating threads. The implementation may use this value as
870 * a sizing hint.
871 * @throws IllegalArgumentException if the initial capacity is
872 * negative or the load factor or concurrencyLevel are
873 * nonpositive
874 */
875 public ConcurrentHashMap(int initialCapacity,
876 float loadFactor, int concurrencyLevel) {
877 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
878 throw new IllegalArgumentException();
879 if (initialCapacity < concurrencyLevel) // Use at least as many bins
880 initialCapacity = concurrencyLevel; // as estimated threads
881 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
882 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
883 MAXIMUM_CAPACITY : tableSizeFor((int)size);
884 this.sizeCtl = cap;
885 }
886
887 // Original (since JDK1.2) Map methods
888
889 /**
890 * {@inheritDoc}
891 */
892 public int size() {
893 long n = sumCount();
894 return ((n < 0L) ? 0 :
895 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
896 (int)n);
897 }
898
899 /**
900 * {@inheritDoc}
901 */
902 public boolean isEmpty() {
903 return sumCount() <= 0L; // ignore transient negative values
904 }
905
906 /**
907 * Returns the value to which the specified key is mapped,
908 * or {@code null} if this map contains no mapping for the key.
909 *
910 * <p>More formally, if this map contains a mapping from a key
911 * {@code k} to a value {@code v} such that {@code key.equals(k)},
912 * then this method returns {@code v}; otherwise it returns
913 * {@code null}. (There can be at most one such mapping.)
914 *
915 * @throws NullPointerException if the specified key is null
916 */
917 public V get(Object key) {
918 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
919 int h = spread(key.hashCode());
920 if ((tab = table) != null && (n = tab.length) > 0 &&
921 (e = tabAt(tab, (n - 1) & h)) != null) {
922 if ((eh = e.hash) == h) {
923 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
924 return e.val;
925 }
926 else if (eh < 0)
927 return (p = e.find(h, key)) != null ? p.val : null;
928 while ((e = e.next) != null) {
929 if (e.hash == h &&
930 ((ek = e.key) == key || (ek != null && key.equals(ek))))
931 return e.val;
932 }
933 }
934 return null;
935 }
936
937 /**
938 * Tests if the specified object is a key in this table.
939 *
940 * @param key possible key
941 * @return {@code true} if and only if the specified object
942 * is a key in this table, as determined by the
943 * {@code equals} method; {@code false} otherwise
944 * @throws NullPointerException if the specified key is null
945 */
946 public boolean containsKey(Object key) {
947 return get(key) != null;
948 }
949
950 /**
951 * Returns {@code true} if this map maps one or more keys to the
952 * specified value. Note: This method may require a full traversal
953 * of the map, and is much slower than method {@code containsKey}.
954 *
955 * @param value value whose presence in this map is to be tested
956 * @return {@code true} if this map maps one or more keys to the
957 * specified value
958 * @throws NullPointerException if the specified value is null
959 */
960 public boolean containsValue(Object value) {
961 if (value == null)
962 throw new NullPointerException();
963 Node<K,V>[] t;
964 if ((t = table) != null) {
965 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
966 for (Node<K,V> p; (p = it.advance()) != null; ) {
967 V v;
968 if ((v = p.val) == value || (v != null && value.equals(v)))
969 return true;
970 }
971 }
972 return false;
973 }
974
975 /**
976 * Maps the specified key to the specified value in this table.
977 * Neither the key nor the value can be null.
978 *
979 * <p>The value can be retrieved by calling the {@code get} method
980 * with a key that is equal to the original key.
981 *
982 * @param key key with which the specified value is to be associated
983 * @param value value to be associated with the specified key
984 * @return the previous value associated with {@code key}, or
985 * {@code null} if there was no mapping for {@code key}
986 * @throws NullPointerException if the specified key or value is null
987 */
988 public V put(K key, V value) {
989 return putVal(key, value, false);
990 }
991
992 /** Implementation for put and putIfAbsent */
993 final V putVal(K key, V value, boolean onlyIfAbsent) {
994 if (key == null || value == null) throw new NullPointerException();
995 int hash = spread(key.hashCode());
996 int binCount = 0;
997 for (Node<K,V>[] tab = table;;) {
998 Node<K,V> f; int n, i, fh;
999 if (tab == null || (n = tab.length) == 0)
1000 tab = initTable();
1001 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1002 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1003 break; // no lock when adding to empty bin
1004 }
1005 else if ((fh = f.hash) == MOVED)
1006 tab = helpTransfer(tab, f);
1007 else {
1008 V oldVal = null;
1009 synchronized (f) {
1010 if (tabAt(tab, i) == f) {
1011 if (fh >= 0) {
1012 binCount = 1;
1013 for (Node<K,V> e = f;; ++binCount) {
1014 K ek;
1015 if (e.hash == hash &&
1016 ((ek = e.key) == key ||
1017 (ek != null && key.equals(ek)))) {
1018 oldVal = e.val;
1019 if (!onlyIfAbsent)
1020 e.val = value;
1021 break;
1022 }
1023 Node<K,V> pred = e;
1024 if ((e = e.next) == null) {
1025 pred.next = new Node<K,V>(hash, key, value);
1026 break;
1027 }
1028 }
1029 }
1030 else if (f instanceof TreeBin) {
1031 Node<K,V> p;
1032 binCount = 2;
1033 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1034 value)) != null) {
1035 oldVal = p.val;
1036 if (!onlyIfAbsent)
1037 p.val = value;
1038 }
1039 }
1040 else if (f instanceof ReservationNode)
1041 throw new IllegalStateException("Recursive update");
1042 }
1043 }
1044 if (binCount != 0) {
1045 if (binCount >= TREEIFY_THRESHOLD)
1046 treeifyBin(tab, i);
1047 if (oldVal != null)
1048 return oldVal;
1049 break;
1050 }
1051 }
1052 }
1053 addCount(1L, binCount);
1054 return null;
1055 }
1056
1057 /**
1058 * Copies all of the mappings from the specified map to this one.
1059 * These mappings replace any mappings that this map had for any of the
1060 * keys currently in the specified map.
1061 *
1062 * @param m mappings to be stored in this map
1063 */
1064 public void putAll(Map<? extends K, ? extends V> m) {
1065 tryPresize(m.size());
1066 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1067 putVal(e.getKey(), e.getValue(), false);
1068 }
1069
1070 /**
1071 * Removes the key (and its corresponding value) from this map.
1072 * This method does nothing if the key is not in the map.
1073 *
1074 * @param key the key that needs to be removed
1075 * @return the previous value associated with {@code key}, or
1076 * {@code null} if there was no mapping for {@code key}
1077 * @throws NullPointerException if the specified key is null
1078 */
1079 public V remove(Object key) {
1080 return replaceNode(key, null, null);
1081 }
1082
1083 /**
1084 * Implementation for the four public remove/replace methods:
1085 * Replaces node value with v, conditional upon match of cv if
1086 * non-null. If resulting value is null, delete.
1087 */
1088 final V replaceNode(Object key, V value, Object cv) {
1089 int hash = spread(key.hashCode());
1090 for (Node<K,V>[] tab = table;;) {
1091 Node<K,V> f; int n, i, fh;
1092 if (tab == null || (n = tab.length) == 0 ||
1093 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1094 break;
1095 else if ((fh = f.hash) == MOVED)
1096 tab = helpTransfer(tab, f);
1097 else {
1098 V oldVal = null;
1099 boolean validated = false;
1100 synchronized (f) {
1101 if (tabAt(tab, i) == f) {
1102 if (fh >= 0) {
1103 validated = true;
1104 for (Node<K,V> e = f, pred = null;;) {
1105 K ek;
1106 if (e.hash == hash &&
1107 ((ek = e.key) == key ||
1108 (ek != null && key.equals(ek)))) {
1109 V ev = e.val;
1110 if (cv == null || cv == ev ||
1111 (ev != null && cv.equals(ev))) {
1112 oldVal = ev;
1113 if (value != null)
1114 e.val = value;
1115 else if (pred != null)
1116 pred.next = e.next;
1117 else
1118 setTabAt(tab, i, e.next);
1119 }
1120 break;
1121 }
1122 pred = e;
1123 if ((e = e.next) == null)
1124 break;
1125 }
1126 }
1127 else if (f instanceof TreeBin) {
1128 validated = true;
1129 TreeBin<K,V> t = (TreeBin<K,V>)f;
1130 TreeNode<K,V> r, p;
1131 if ((r = t.root) != null &&
1132 (p = r.findTreeNode(hash, key, null)) != null) {
1133 V pv = p.val;
1134 if (cv == null || cv == pv ||
1135 (pv != null && cv.equals(pv))) {
1136 oldVal = pv;
1137 if (value != null)
1138 p.val = value;
1139 else if (t.removeTreeNode(p))
1140 setTabAt(tab, i, untreeify(t.first));
1141 }
1142 }
1143 }
1144 else if (f instanceof ReservationNode)
1145 throw new IllegalStateException("Recursive update");
1146 }
1147 }
1148 if (validated) {
1149 if (oldVal != null) {
1150 if (value == null)
1151 addCount(-1L, -1);
1152 return oldVal;
1153 }
1154 break;
1155 }
1156 }
1157 }
1158 return null;
1159 }
1160
1161 /**
1162 * Removes all of the mappings from this map.
1163 */
1164 public void clear() {
1165 long delta = 0L; // negative number of deletions
1166 int i = 0;
1167 Node<K,V>[] tab = table;
1168 while (tab != null && i < tab.length) {
1169 int fh;
1170 Node<K,V> f = tabAt(tab, i);
1171 if (f == null)
1172 ++i;
1173 else if ((fh = f.hash) == MOVED) {
1174 tab = helpTransfer(tab, f);
1175 i = 0; // restart
1176 }
1177 else {
1178 synchronized (f) {
1179 if (tabAt(tab, i) == f) {
1180 Node<K,V> p = (fh >= 0 ? f :
1181 (f instanceof TreeBin) ?
1182 ((TreeBin<K,V>)f).first : null);
1183 while (p != null) {
1184 --delta;
1185 p = p.next;
1186 }
1187 setTabAt(tab, i++, null);
1188 }
1189 }
1190 }
1191 }
1192 if (delta != 0L)
1193 addCount(delta, -1);
1194 }
1195
1196 /**
1197 * Returns a {@link Set} view of the keys contained in this map.
1198 * The set is backed by the map, so changes to the map are
1199 * reflected in the set, and vice-versa. The set supports element
1200 * removal, which removes the corresponding mapping from this map,
1201 * via the {@code Iterator.remove}, {@code Set.remove},
1202 * {@code removeAll}, {@code retainAll}, and {@code clear}
1203 * operations. It does not support the {@code add} or
1204 * {@code addAll} operations.
1205 *
1206 * <p>The view's iterators and spliterators are
1207 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1208 *
1209 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1210 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1211 *
1212 * @return the set view
1213 */
1214 public KeySetView<K,V> keySet() {
1215 KeySetView<K,V> ks;
1216 if ((ks = keySet) != null) return ks;
1217 return keySet = new KeySetView<K,V>(this, null);
1218 }
1219
1220 /**
1221 * Returns a {@link Collection} view of the values contained in this map.
1222 * The collection is backed by the map, so changes to the map are
1223 * reflected in the collection, and vice-versa. The collection
1224 * supports element removal, which removes the corresponding
1225 * mapping from this map, via the {@code Iterator.remove},
1226 * {@code Collection.remove}, {@code removeAll},
1227 * {@code retainAll}, and {@code clear} operations. It does not
1228 * support the {@code add} or {@code addAll} operations.
1229 *
1230 * <p>The view's iterators and spliterators are
1231 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1232 *
1233 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1234 * and {@link Spliterator#NONNULL}.
1235 *
1236 * @return the collection view
1237 */
1238 public Collection<V> values() {
1239 ValuesView<K,V> vs;
1240 if ((vs = values) != null) return vs;
1241 return values = new ValuesView<K,V>(this);
1242 }
1243
1244 /**
1245 * Returns a {@link Set} view of the mappings contained in this map.
1246 * The set is backed by the map, so changes to the map are
1247 * reflected in the set, and vice-versa. The set supports element
1248 * removal, which removes the corresponding mapping from the map,
1249 * via the {@code Iterator.remove}, {@code Set.remove},
1250 * {@code removeAll}, {@code retainAll}, and {@code clear}
1251 * operations.
1252 *
1253 * <p>The view's iterators and spliterators are
1254 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1255 *
1256 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1257 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1258 *
1259 * @return the set view
1260 */
1261 public Set<Map.Entry<K,V>> entrySet() {
1262 EntrySetView<K,V> es;
1263 if ((es = entrySet) != null) return es;
1264 return entrySet = new EntrySetView<K,V>(this);
1265 }
1266
1267 /**
1268 * Returns the hash code value for this {@link Map}, i.e.,
1269 * the sum of, for each key-value pair in the map,
1270 * {@code key.hashCode() ^ value.hashCode()}.
1271 *
1272 * @return the hash code value for this map
1273 */
1274 public int hashCode() {
1275 int h = 0;
1276 Node<K,V>[] t;
1277 if ((t = table) != null) {
1278 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1279 for (Node<K,V> p; (p = it.advance()) != null; )
1280 h += p.key.hashCode() ^ p.val.hashCode();
1281 }
1282 return h;
1283 }
1284
1285 /**
1286 * Returns a string representation of this map. The string
1287 * representation consists of a list of key-value mappings (in no
1288 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1289 * mappings are separated by the characters {@code ", "} (comma
1290 * and space). Each key-value mapping is rendered as the key
1291 * followed by an equals sign ("{@code =}") followed by the
1292 * associated value.
1293 *
1294 * @return a string representation of this map
1295 */
1296 public String toString() {
1297 Node<K,V>[] t;
1298 int f = (t = table) == null ? 0 : t.length;
1299 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1300 StringBuilder sb = new StringBuilder();
1301 sb.append('{');
1302 Node<K,V> p;
1303 if ((p = it.advance()) != null) {
1304 for (;;) {
1305 K k = p.key;
1306 V v = p.val;
1307 sb.append(k == this ? "(this Map)" : k);
1308 sb.append('=');
1309 sb.append(v == this ? "(this Map)" : v);
1310 if ((p = it.advance()) == null)
1311 break;
1312 sb.append(',').append(' ');
1313 }
1314 }
1315 return sb.append('}').toString();
1316 }
1317
1318 /**
1319 * Compares the specified object with this map for equality.
1320 * Returns {@code true} if the given object is a map with the same
1321 * mappings as this map. This operation may return misleading
1322 * results if either map is concurrently modified during execution
1323 * of this method.
1324 *
1325 * @param o object to be compared for equality with this map
1326 * @return {@code true} if the specified object is equal to this map
1327 */
1328 public boolean equals(Object o) {
1329 if (o != this) {
1330 if (!(o instanceof Map))
1331 return false;
1332 Map<?,?> m = (Map<?,?>) o;
1333 Node<K,V>[] t;
1334 int f = (t = table) == null ? 0 : t.length;
1335 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1336 for (Node<K,V> p; (p = it.advance()) != null; ) {
1337 V val = p.val;
1338 Object v = m.get(p.key);
1339 if (v == null || (v != val && !v.equals(val)))
1340 return false;
1341 }
1342 for (Map.Entry<?,?> e : m.entrySet()) {
1343 Object mk, mv, v;
1344 if ((mk = e.getKey()) == null ||
1345 (mv = e.getValue()) == null ||
1346 (v = get(mk)) == null ||
1347 (mv != v && !mv.equals(v)))
1348 return false;
1349 }
1350 }
1351 return true;
1352 }
1353
1354 /**
1355 * Stripped-down version of helper class used in previous version,
1356 * declared for the sake of serialization compatibility.
1357 */
1358 static class Segment<K,V> extends ReentrantLock implements Serializable {
1359 private static final long serialVersionUID = 2249069246763182397L;
1360 final float loadFactor;
1361 Segment(float lf) { this.loadFactor = lf; }
1362 }
1363
1364 /**
1365 * Saves the state of the {@code ConcurrentHashMap} instance to a
1366 * stream (i.e., serializes it).
1367 * @param s the stream
1368 * @throws java.io.IOException if an I/O error occurs
1369 * @serialData
1370 * the serialized fields, followed by the key (Object) and value
1371 * (Object) for each key-value mapping, followed by a null pair.
1372 * The key-value mappings are emitted in no particular order.
1373 */
1374 private void writeObject(java.io.ObjectOutputStream s)
1375 throws java.io.IOException {
1376 // For serialization compatibility
1377 // Emulate segment calculation from previous version of this class
1378 int sshift = 0;
1379 int ssize = 1;
1380 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1381 ++sshift;
1382 ssize <<= 1;
1383 }
1384 int segmentShift = 32 - sshift;
1385 int segmentMask = ssize - 1;
1386 @SuppressWarnings("unchecked")
1387 Segment<K,V>[] segments = (Segment<K,V>[])
1388 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1389 for (int i = 0; i < segments.length; ++i)
1390 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1391 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1392 streamFields.put("segments", segments);
1393 streamFields.put("segmentShift", segmentShift);
1394 streamFields.put("segmentMask", segmentMask);
1395 s.writeFields();
1396
1397 Node<K,V>[] t;
1398 if ((t = table) != null) {
1399 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1400 for (Node<K,V> p; (p = it.advance()) != null; ) {
1401 s.writeObject(p.key);
1402 s.writeObject(p.val);
1403 }
1404 }
1405 s.writeObject(null);
1406 s.writeObject(null);
1407 }
1408
1409 /**
1410 * Reconstitutes the instance from a stream (that is, deserializes it).
1411 * @param s the stream
1412 * @throws ClassNotFoundException if the class of a serialized object
1413 * could not be found
1414 * @throws java.io.IOException if an I/O error occurs
1415 */
1416 private void readObject(java.io.ObjectInputStream s)
1417 throws java.io.IOException, ClassNotFoundException {
1418 /*
1419 * To improve performance in typical cases, we create nodes
1420 * while reading, then place in table once size is known.
1421 * However, we must also validate uniqueness and deal with
1422 * overpopulated bins while doing so, which requires
1423 * specialized versions of putVal mechanics.
1424 */
1425 sizeCtl = -1; // force exclusion for table construction
1426 s.defaultReadObject();
1427 long size = 0L;
1428 Node<K,V> p = null;
1429 for (;;) {
1430 @SuppressWarnings("unchecked")
1431 K k = (K) s.readObject();
1432 @SuppressWarnings("unchecked")
1433 V v = (V) s.readObject();
1434 if (k != null && v != null) {
1435 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1436 ++size;
1437 }
1438 else
1439 break;
1440 }
1441 if (size == 0L)
1442 sizeCtl = 0;
1443 else {
1444 int n;
1445 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1446 n = MAXIMUM_CAPACITY;
1447 else {
1448 int sz = (int)size;
1449 n = tableSizeFor(sz + (sz >>> 1) + 1);
1450 }
1451 @SuppressWarnings("unchecked")
1452 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1453 int mask = n - 1;
1454 long added = 0L;
1455 while (p != null) {
1456 boolean insertAtFront;
1457 Node<K,V> next = p.next, first;
1458 int h = p.hash, j = h & mask;
1459 if ((first = tabAt(tab, j)) == null)
1460 insertAtFront = true;
1461 else {
1462 K k = p.key;
1463 if (first.hash < 0) {
1464 TreeBin<K,V> t = (TreeBin<K,V>)first;
1465 if (t.putTreeVal(h, k, p.val) == null)
1466 ++added;
1467 insertAtFront = false;
1468 }
1469 else {
1470 int binCount = 0;
1471 insertAtFront = true;
1472 Node<K,V> q; K qk;
1473 for (q = first; q != null; q = q.next) {
1474 if (q.hash == h &&
1475 ((qk = q.key) == k ||
1476 (qk != null && k.equals(qk)))) {
1477 insertAtFront = false;
1478 break;
1479 }
1480 ++binCount;
1481 }
1482 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1483 insertAtFront = false;
1484 ++added;
1485 p.next = first;
1486 TreeNode<K,V> hd = null, tl = null;
1487 for (q = p; q != null; q = q.next) {
1488 TreeNode<K,V> t = new TreeNode<K,V>
1489 (q.hash, q.key, q.val, null, null);
1490 if ((t.prev = tl) == null)
1491 hd = t;
1492 else
1493 tl.next = t;
1494 tl = t;
1495 }
1496 setTabAt(tab, j, new TreeBin<K,V>(hd));
1497 }
1498 }
1499 }
1500 if (insertAtFront) {
1501 ++added;
1502 p.next = first;
1503 setTabAt(tab, j, p);
1504 }
1505 p = next;
1506 }
1507 table = tab;
1508 sizeCtl = n - (n >>> 2);
1509 baseCount = added;
1510 }
1511 }
1512
1513 // ConcurrentMap methods
1514
1515 /**
1516 * {@inheritDoc}
1517 *
1518 * @return the previous value associated with the specified key,
1519 * or {@code null} if there was no mapping for the key
1520 * @throws NullPointerException if the specified key or value is null
1521 */
1522 public V putIfAbsent(K key, V value) {
1523 return putVal(key, value, true);
1524 }
1525
1526 /**
1527 * {@inheritDoc}
1528 *
1529 * @throws NullPointerException if the specified key is null
1530 */
1531 public boolean remove(Object key, Object value) {
1532 if (key == null)
1533 throw new NullPointerException();
1534 return value != null && replaceNode(key, null, value) != null;
1535 }
1536
1537 /**
1538 * {@inheritDoc}
1539 *
1540 * @throws NullPointerException if any of the arguments are null
1541 */
1542 public boolean replace(K key, V oldValue, V newValue) {
1543 if (key == null || oldValue == null || newValue == null)
1544 throw new NullPointerException();
1545 return replaceNode(key, newValue, oldValue) != null;
1546 }
1547
1548 /**
1549 * {@inheritDoc}
1550 *
1551 * @return the previous value associated with the specified key,
1552 * or {@code null} if there was no mapping for the key
1553 * @throws NullPointerException if the specified key or value is null
1554 */
1555 public V replace(K key, V value) {
1556 if (key == null || value == null)
1557 throw new NullPointerException();
1558 return replaceNode(key, value, null);
1559 }
1560
1561 // Overrides of JDK8+ Map extension method defaults
1562
1563 /**
1564 * Returns the value to which the specified key is mapped, or the
1565 * given default value if this map contains no mapping for the
1566 * key.
1567 *
1568 * @param key the key whose associated value is to be returned
1569 * @param defaultValue the value to return if this map contains
1570 * no mapping for the given key
1571 * @return the mapping for the key, if present; else the default value
1572 * @throws NullPointerException if the specified key is null
1573 */
1574 public V getOrDefault(Object key, V defaultValue) {
1575 V v;
1576 return (v = get(key)) == null ? defaultValue : v;
1577 }
1578
1579 public void forEach(BiConsumer<? super K, ? super V> action) {
1580 if (action == null) throw new NullPointerException();
1581 Node<K,V>[] t;
1582 if ((t = table) != null) {
1583 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 action.accept(p.key, p.val);
1586 }
1587 }
1588 }
1589
1590 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1591 if (function == null) throw new NullPointerException();
1592 Node<K,V>[] t;
1593 if ((t = table) != null) {
1594 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1595 for (Node<K,V> p; (p = it.advance()) != null; ) {
1596 V oldValue = p.val;
1597 for (K key = p.key;;) {
1598 V newValue = function.apply(key, oldValue);
1599 if (newValue == null)
1600 throw new NullPointerException();
1601 if (replaceNode(key, newValue, oldValue) != null ||
1602 (oldValue = get(key)) == null)
1603 break;
1604 }
1605 }
1606 }
1607 }
1608
1609 /**
1610 * Helper method for EntrySetView.removeIf.
1611 */
1612 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1613 if (function == null) throw new NullPointerException();
1614 Node<K,V>[] t;
1615 boolean removed = false;
1616 if ((t = table) != null) {
1617 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1618 for (Node<K,V> p; (p = it.advance()) != null; ) {
1619 K k = p.key;
1620 V v = p.val;
1621 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1622 if (function.test(e) && replaceNode(k, null, v) != null)
1623 removed = true;
1624 }
1625 }
1626 return removed;
1627 }
1628
1629 /**
1630 * Helper method for ValuesView.removeIf.
1631 */
1632 boolean removeValueIf(Predicate<? super V> function) {
1633 if (function == null) throw new NullPointerException();
1634 Node<K,V>[] t;
1635 boolean removed = false;
1636 if ((t = table) != null) {
1637 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1638 for (Node<K,V> p; (p = it.advance()) != null; ) {
1639 K k = p.key;
1640 V v = p.val;
1641 if (function.test(v) && replaceNode(k, null, v) != null)
1642 removed = true;
1643 }
1644 }
1645 return removed;
1646 }
1647
1648 /**
1649 * If the specified key is not already associated with a value,
1650 * attempts to compute its value using the given mapping function
1651 * and enters it into this map unless {@code null}. The entire
1652 * method invocation is performed atomically, so the function is
1653 * applied at most once per key. Some attempted update operations
1654 * on this map by other threads may be blocked while computation
1655 * is in progress, so the computation should be short and simple,
1656 * and must not attempt to update any other mappings of this map.
1657 *
1658 * @param key key with which the specified value is to be associated
1659 * @param mappingFunction the function to compute a value
1660 * @return the current (existing or computed) value associated with
1661 * the specified key, or null if the computed value is null
1662 * @throws NullPointerException if the specified key or mappingFunction
1663 * is null
1664 * @throws IllegalStateException if the computation detectably
1665 * attempts a recursive update to this map that would
1666 * otherwise never complete
1667 * @throws RuntimeException or Error if the mappingFunction does so,
1668 * in which case the mapping is left unestablished
1669 */
1670 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1671 if (key == null || mappingFunction == null)
1672 throw new NullPointerException();
1673 int h = spread(key.hashCode());
1674 V val = null;
1675 int binCount = 0;
1676 for (Node<K,V>[] tab = table;;) {
1677 Node<K,V> f; int n, i, fh;
1678 if (tab == null || (n = tab.length) == 0)
1679 tab = initTable();
1680 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1681 Node<K,V> r = new ReservationNode<K,V>();
1682 synchronized (r) {
1683 if (casTabAt(tab, i, null, r)) {
1684 binCount = 1;
1685 Node<K,V> node = null;
1686 try {
1687 if ((val = mappingFunction.apply(key)) != null)
1688 node = new Node<K,V>(h, key, val);
1689 } finally {
1690 setTabAt(tab, i, node);
1691 }
1692 }
1693 }
1694 if (binCount != 0)
1695 break;
1696 }
1697 else if ((fh = f.hash) == MOVED)
1698 tab = helpTransfer(tab, f);
1699 else {
1700 boolean added = false;
1701 synchronized (f) {
1702 if (tabAt(tab, i) == f) {
1703 if (fh >= 0) {
1704 binCount = 1;
1705 for (Node<K,V> e = f;; ++binCount) {
1706 K ek;
1707 if (e.hash == h &&
1708 ((ek = e.key) == key ||
1709 (ek != null && key.equals(ek)))) {
1710 val = e.val;
1711 break;
1712 }
1713 Node<K,V> pred = e;
1714 if ((e = e.next) == null) {
1715 if ((val = mappingFunction.apply(key)) != null) {
1716 if (pred.next != null)
1717 throw new IllegalStateException("Recursive update");
1718 added = true;
1719 pred.next = new Node<K,V>(h, key, val);
1720 }
1721 break;
1722 }
1723 }
1724 }
1725 else if (f instanceof TreeBin) {
1726 binCount = 2;
1727 TreeBin<K,V> t = (TreeBin<K,V>)f;
1728 TreeNode<K,V> r, p;
1729 if ((r = t.root) != null &&
1730 (p = r.findTreeNode(h, key, null)) != null)
1731 val = p.val;
1732 else if ((val = mappingFunction.apply(key)) != null) {
1733 added = true;
1734 t.putTreeVal(h, key, val);
1735 }
1736 }
1737 else if (f instanceof ReservationNode)
1738 throw new IllegalStateException("Recursive update");
1739 }
1740 }
1741 if (binCount != 0) {
1742 if (binCount >= TREEIFY_THRESHOLD)
1743 treeifyBin(tab, i);
1744 if (!added)
1745 return val;
1746 break;
1747 }
1748 }
1749 }
1750 if (val != null)
1751 addCount(1L, binCount);
1752 return val;
1753 }
1754
1755 /**
1756 * If the value for the specified key is present, attempts to
1757 * compute a new mapping given the key and its current mapped
1758 * value. The entire method invocation is performed atomically.
1759 * Some attempted update operations on this map by other threads
1760 * may be blocked while computation is in progress, so the
1761 * computation should be short and simple, and must not attempt to
1762 * update any other mappings of this map.
1763 *
1764 * @param key key with which a value may be associated
1765 * @param remappingFunction the function to compute a value
1766 * @return the new value associated with the specified key, or null if none
1767 * @throws NullPointerException if the specified key or remappingFunction
1768 * is null
1769 * @throws IllegalStateException if the computation detectably
1770 * attempts a recursive update to this map that would
1771 * otherwise never complete
1772 * @throws RuntimeException or Error if the remappingFunction does so,
1773 * in which case the mapping is unchanged
1774 */
1775 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1776 if (key == null || remappingFunction == null)
1777 throw new NullPointerException();
1778 int h = spread(key.hashCode());
1779 V val = null;
1780 int delta = 0;
1781 int binCount = 0;
1782 for (Node<K,V>[] tab = table;;) {
1783 Node<K,V> f; int n, i, fh;
1784 if (tab == null || (n = tab.length) == 0)
1785 tab = initTable();
1786 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1787 break;
1788 else if ((fh = f.hash) == MOVED)
1789 tab = helpTransfer(tab, f);
1790 else {
1791 synchronized (f) {
1792 if (tabAt(tab, i) == f) {
1793 if (fh >= 0) {
1794 binCount = 1;
1795 for (Node<K,V> e = f, pred = null;; ++binCount) {
1796 K ek;
1797 if (e.hash == h &&
1798 ((ek = e.key) == key ||
1799 (ek != null && key.equals(ek)))) {
1800 val = remappingFunction.apply(key, e.val);
1801 if (val != null)
1802 e.val = val;
1803 else {
1804 delta = -1;
1805 Node<K,V> en = e.next;
1806 if (pred != null)
1807 pred.next = en;
1808 else
1809 setTabAt(tab, i, en);
1810 }
1811 break;
1812 }
1813 pred = e;
1814 if ((e = e.next) == null)
1815 break;
1816 }
1817 }
1818 else if (f instanceof TreeBin) {
1819 binCount = 2;
1820 TreeBin<K,V> t = (TreeBin<K,V>)f;
1821 TreeNode<K,V> r, p;
1822 if ((r = t.root) != null &&
1823 (p = r.findTreeNode(h, key, null)) != null) {
1824 val = remappingFunction.apply(key, p.val);
1825 if (val != null)
1826 p.val = val;
1827 else {
1828 delta = -1;
1829 if (t.removeTreeNode(p))
1830 setTabAt(tab, i, untreeify(t.first));
1831 }
1832 }
1833 }
1834 else if (f instanceof ReservationNode)
1835 throw new IllegalStateException("Recursive update");
1836 }
1837 }
1838 if (binCount != 0)
1839 break;
1840 }
1841 }
1842 if (delta != 0)
1843 addCount((long)delta, binCount);
1844 return val;
1845 }
1846
1847 /**
1848 * Attempts to compute a mapping for the specified key and its
1849 * current mapped value (or {@code null} if there is no current
1850 * mapping). The entire method invocation is performed atomically.
1851 * Some attempted update operations on this map by other threads
1852 * may be blocked while computation is in progress, so the
1853 * computation should be short and simple, and must not attempt to
1854 * update any other mappings of this Map.
1855 *
1856 * @param key key with which the specified value is to be associated
1857 * @param remappingFunction the function to compute a value
1858 * @return the new value associated with the specified key, or null if none
1859 * @throws NullPointerException if the specified key or remappingFunction
1860 * is null
1861 * @throws IllegalStateException if the computation detectably
1862 * attempts a recursive update to this map that would
1863 * otherwise never complete
1864 * @throws RuntimeException or Error if the remappingFunction does so,
1865 * in which case the mapping is unchanged
1866 */
1867 public V compute(K key,
1868 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1869 if (key == null || remappingFunction == null)
1870 throw new NullPointerException();
1871 int h = spread(key.hashCode());
1872 V val = null;
1873 int delta = 0;
1874 int binCount = 0;
1875 for (Node<K,V>[] tab = table;;) {
1876 Node<K,V> f; int n, i, fh;
1877 if (tab == null || (n = tab.length) == 0)
1878 tab = initTable();
1879 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1880 Node<K,V> r = new ReservationNode<K,V>();
1881 synchronized (r) {
1882 if (casTabAt(tab, i, null, r)) {
1883 binCount = 1;
1884 Node<K,V> node = null;
1885 try {
1886 if ((val = remappingFunction.apply(key, null)) != null) {
1887 delta = 1;
1888 node = new Node<K,V>(h, key, val);
1889 }
1890 } finally {
1891 setTabAt(tab, i, node);
1892 }
1893 }
1894 }
1895 if (binCount != 0)
1896 break;
1897 }
1898 else if ((fh = f.hash) == MOVED)
1899 tab = helpTransfer(tab, f);
1900 else {
1901 synchronized (f) {
1902 if (tabAt(tab, i) == f) {
1903 if (fh >= 0) {
1904 binCount = 1;
1905 for (Node<K,V> e = f, pred = null;; ++binCount) {
1906 K ek;
1907 if (e.hash == h &&
1908 ((ek = e.key) == key ||
1909 (ek != null && key.equals(ek)))) {
1910 val = remappingFunction.apply(key, e.val);
1911 if (val != null)
1912 e.val = val;
1913 else {
1914 delta = -1;
1915 Node<K,V> en = e.next;
1916 if (pred != null)
1917 pred.next = en;
1918 else
1919 setTabAt(tab, i, en);
1920 }
1921 break;
1922 }
1923 pred = e;
1924 if ((e = e.next) == null) {
1925 val = remappingFunction.apply(key, null);
1926 if (val != null) {
1927 if (pred.next != null)
1928 throw new IllegalStateException("Recursive update");
1929 delta = 1;
1930 pred.next = new Node<K,V>(h, key, val);
1931 }
1932 break;
1933 }
1934 }
1935 }
1936 else if (f instanceof TreeBin) {
1937 binCount = 1;
1938 TreeBin<K,V> t = (TreeBin<K,V>)f;
1939 TreeNode<K,V> r, p;
1940 if ((r = t.root) != null)
1941 p = r.findTreeNode(h, key, null);
1942 else
1943 p = null;
1944 V pv = (p == null) ? null : p.val;
1945 val = remappingFunction.apply(key, pv);
1946 if (val != null) {
1947 if (p != null)
1948 p.val = val;
1949 else {
1950 delta = 1;
1951 t.putTreeVal(h, key, val);
1952 }
1953 }
1954 else if (p != null) {
1955 delta = -1;
1956 if (t.removeTreeNode(p))
1957 setTabAt(tab, i, untreeify(t.first));
1958 }
1959 }
1960 else if (f instanceof ReservationNode)
1961 throw new IllegalStateException("Recursive update");
1962 }
1963 }
1964 if (binCount != 0) {
1965 if (binCount >= TREEIFY_THRESHOLD)
1966 treeifyBin(tab, i);
1967 break;
1968 }
1969 }
1970 }
1971 if (delta != 0)
1972 addCount((long)delta, binCount);
1973 return val;
1974 }
1975
1976 /**
1977 * If the specified key is not already associated with a
1978 * (non-null) value, associates it with the given value.
1979 * Otherwise, replaces the value with the results of the given
1980 * remapping function, or removes if {@code null}. The entire
1981 * method invocation is performed atomically. Some attempted
1982 * update operations on this map by other threads may be blocked
1983 * while computation is in progress, so the computation should be
1984 * short and simple, and must not attempt to update any other
1985 * mappings of this Map.
1986 *
1987 * @param key key with which the specified value is to be associated
1988 * @param value the value to use if absent
1989 * @param remappingFunction the function to recompute a value if present
1990 * @return the new value associated with the specified key, or null if none
1991 * @throws NullPointerException if the specified key or the
1992 * remappingFunction is null
1993 * @throws RuntimeException or Error if the remappingFunction does so,
1994 * in which case the mapping is unchanged
1995 */
1996 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1997 if (key == null || value == null || remappingFunction == null)
1998 throw new NullPointerException();
1999 int h = spread(key.hashCode());
2000 V val = null;
2001 int delta = 0;
2002 int binCount = 0;
2003 for (Node<K,V>[] tab = table;;) {
2004 Node<K,V> f; int n, i, fh;
2005 if (tab == null || (n = tab.length) == 0)
2006 tab = initTable();
2007 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2008 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2009 delta = 1;
2010 val = value;
2011 break;
2012 }
2013 }
2014 else if ((fh = f.hash) == MOVED)
2015 tab = helpTransfer(tab, f);
2016 else {
2017 synchronized (f) {
2018 if (tabAt(tab, i) == f) {
2019 if (fh >= 0) {
2020 binCount = 1;
2021 for (Node<K,V> e = f, pred = null;; ++binCount) {
2022 K ek;
2023 if (e.hash == h &&
2024 ((ek = e.key) == key ||
2025 (ek != null && key.equals(ek)))) {
2026 val = remappingFunction.apply(e.val, value);
2027 if (val != null)
2028 e.val = val;
2029 else {
2030 delta = -1;
2031 Node<K,V> en = e.next;
2032 if (pred != null)
2033 pred.next = en;
2034 else
2035 setTabAt(tab, i, en);
2036 }
2037 break;
2038 }
2039 pred = e;
2040 if ((e = e.next) == null) {
2041 delta = 1;
2042 val = value;
2043 pred.next = new Node<K,V>(h, key, val);
2044 break;
2045 }
2046 }
2047 }
2048 else if (f instanceof TreeBin) {
2049 binCount = 2;
2050 TreeBin<K,V> t = (TreeBin<K,V>)f;
2051 TreeNode<K,V> r = t.root;
2052 TreeNode<K,V> p = (r == null) ? null :
2053 r.findTreeNode(h, key, null);
2054 val = (p == null) ? value :
2055 remappingFunction.apply(p.val, value);
2056 if (val != null) {
2057 if (p != null)
2058 p.val = val;
2059 else {
2060 delta = 1;
2061 t.putTreeVal(h, key, val);
2062 }
2063 }
2064 else if (p != null) {
2065 delta = -1;
2066 if (t.removeTreeNode(p))
2067 setTabAt(tab, i, untreeify(t.first));
2068 }
2069 }
2070 else if (f instanceof ReservationNode)
2071 throw new IllegalStateException("Recursive update");
2072 }
2073 }
2074 if (binCount != 0) {
2075 if (binCount >= TREEIFY_THRESHOLD)
2076 treeifyBin(tab, i);
2077 break;
2078 }
2079 }
2080 }
2081 if (delta != 0)
2082 addCount((long)delta, binCount);
2083 return val;
2084 }
2085
2086 // Hashtable legacy methods
2087
2088 /**
2089 * Tests if some key maps into the specified value in this table.
2090 *
2091 * <p>Note that this method is identical in functionality to
2092 * {@link #containsValue(Object)}, and exists solely to ensure
2093 * full compatibility with class {@link java.util.Hashtable},
2094 * which supported this method prior to introduction of the
2095 * Java Collections Framework.
2096 *
2097 * @param value a value to search for
2098 * @return {@code true} if and only if some key maps to the
2099 * {@code value} argument in this table as
2100 * determined by the {@code equals} method;
2101 * {@code false} otherwise
2102 * @throws NullPointerException if the specified value is null
2103 */
2104 public boolean contains(Object value) {
2105 return containsValue(value);
2106 }
2107
2108 /**
2109 * Returns an enumeration of the keys in this table.
2110 *
2111 * @return an enumeration of the keys in this table
2112 * @see #keySet()
2113 */
2114 public Enumeration<K> keys() {
2115 Node<K,V>[] t;
2116 int f = (t = table) == null ? 0 : t.length;
2117 return new KeyIterator<K,V>(t, f, 0, f, this);
2118 }
2119
2120 /**
2121 * Returns an enumeration of the values in this table.
2122 *
2123 * @return an enumeration of the values in this table
2124 * @see #values()
2125 */
2126 public Enumeration<V> elements() {
2127 Node<K,V>[] t;
2128 int f = (t = table) == null ? 0 : t.length;
2129 return new ValueIterator<K,V>(t, f, 0, f, this);
2130 }
2131
2132 // ConcurrentHashMap-only methods
2133
2134 /**
2135 * Returns the number of mappings. This method should be used
2136 * instead of {@link #size} because a ConcurrentHashMap may
2137 * contain more mappings than can be represented as an int. The
2138 * value returned is an estimate; the actual count may differ if
2139 * there are concurrent insertions or removals.
2140 *
2141 * @return the number of mappings
2142 * @since 1.8
2143 */
2144 public long mappingCount() {
2145 long n = sumCount();
2146 return (n < 0L) ? 0L : n; // ignore transient negative values
2147 }
2148
2149 /**
2150 * Creates a new {@link Set} backed by a ConcurrentHashMap
2151 * from the given type to {@code Boolean.TRUE}.
2152 *
2153 * @param <K> the element type of the returned set
2154 * @return the new set
2155 * @since 1.8
2156 */
2157 public static <K> KeySetView<K,Boolean> newKeySet() {
2158 return new KeySetView<K,Boolean>
2159 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2160 }
2161
2162 /**
2163 * Creates a new {@link Set} backed by a ConcurrentHashMap
2164 * from the given type to {@code Boolean.TRUE}.
2165 *
2166 * @param initialCapacity The implementation performs internal
2167 * sizing to accommodate this many elements.
2168 * @param <K> the element type of the returned set
2169 * @return the new set
2170 * @throws IllegalArgumentException if the initial capacity of
2171 * elements is negative
2172 * @since 1.8
2173 */
2174 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2175 return new KeySetView<K,Boolean>
2176 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2177 }
2178
2179 /**
2180 * Returns a {@link Set} view of the keys in this map, using the
2181 * given common mapped value for any additions (i.e., {@link
2182 * Collection#add} and {@link Collection#addAll(Collection)}).
2183 * This is of course only appropriate if it is acceptable to use
2184 * the same value for all additions from this view.
2185 *
2186 * @param mappedValue the mapped value to use for any additions
2187 * @return the set view
2188 * @throws NullPointerException if the mappedValue is null
2189 */
2190 public KeySetView<K,V> keySet(V mappedValue) {
2191 if (mappedValue == null)
2192 throw new NullPointerException();
2193 return new KeySetView<K,V>(this, mappedValue);
2194 }
2195
2196 /* ---------------- Special Nodes -------------- */
2197
2198 /**
2199 * A node inserted at head of bins during transfer operations.
2200 */
2201 static final class ForwardingNode<K,V> extends Node<K,V> {
2202 final Node<K,V>[] nextTable;
2203 ForwardingNode(Node<K,V>[] tab) {
2204 super(MOVED, null, null);
2205 this.nextTable = tab;
2206 }
2207
2208 Node<K,V> find(int h, Object k) {
2209 // loop to avoid arbitrarily deep recursion on forwarding nodes
2210 outer: for (Node<K,V>[] tab = nextTable;;) {
2211 Node<K,V> e; int n;
2212 if (k == null || tab == null || (n = tab.length) == 0 ||
2213 (e = tabAt(tab, (n - 1) & h)) == null)
2214 return null;
2215 for (;;) {
2216 int eh; K ek;
2217 if ((eh = e.hash) == h &&
2218 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2219 return e;
2220 if (eh < 0) {
2221 if (e instanceof ForwardingNode) {
2222 tab = ((ForwardingNode<K,V>)e).nextTable;
2223 continue outer;
2224 }
2225 else
2226 return e.find(h, k);
2227 }
2228 if ((e = e.next) == null)
2229 return null;
2230 }
2231 }
2232 }
2233 }
2234
2235 /**
2236 * A place-holder node used in computeIfAbsent and compute.
2237 */
2238 static final class ReservationNode<K,V> extends Node<K,V> {
2239 ReservationNode() {
2240 super(RESERVED, null, null);
2241 }
2242
2243 Node<K,V> find(int h, Object k) {
2244 return null;
2245 }
2246 }
2247
2248 /* ---------------- Table Initialization and Resizing -------------- */
2249
2250 /**
2251 * Returns the stamp bits for resizing a table of size n.
2252 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2253 */
2254 static final int resizeStamp(int n) {
2255 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2256 }
2257
2258 /**
2259 * Initializes table, using the size recorded in sizeCtl.
2260 */
2261 private final Node<K,V>[] initTable() {
2262 Node<K,V>[] tab; int sc;
2263 while ((tab = table) == null || tab.length == 0) {
2264 if ((sc = sizeCtl) < 0)
2265 Thread.yield(); // lost initialization race; just spin
2266 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2267 try {
2268 if ((tab = table) == null || tab.length == 0) {
2269 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2270 @SuppressWarnings("unchecked")
2271 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2272 table = tab = nt;
2273 sc = n - (n >>> 2);
2274 }
2275 } finally {
2276 sizeCtl = sc;
2277 }
2278 break;
2279 }
2280 }
2281 return tab;
2282 }
2283
2284 /**
2285 * Adds to count, and if table is too small and not already
2286 * resizing, initiates transfer. If already resizing, helps
2287 * perform transfer if work is available. Rechecks occupancy
2288 * after a transfer to see if another resize is already needed
2289 * because resizings are lagging additions.
2290 *
2291 * @param x the count to add
2292 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2293 */
2294 private final void addCount(long x, int check) {
2295 CounterCell[] as; long b, s;
2296 if ((as = counterCells) != null ||
2297 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2298 CounterCell a; long v; int m;
2299 boolean uncontended = true;
2300 if (as == null || (m = as.length - 1) < 0 ||
2301 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2302 !(uncontended =
2303 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2304 fullAddCount(x, uncontended);
2305 return;
2306 }
2307 if (check <= 1)
2308 return;
2309 s = sumCount();
2310 }
2311 if (check >= 0) {
2312 Node<K,V>[] tab, nt; int n, sc;
2313 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2314 (n = tab.length) < MAXIMUM_CAPACITY) {
2315 int rs = resizeStamp(n);
2316 if (sc < 0) {
2317 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2318 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2319 transferIndex <= 0)
2320 break;
2321 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2322 transfer(tab, nt);
2323 }
2324 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2325 (rs << RESIZE_STAMP_SHIFT) + 2))
2326 transfer(tab, null);
2327 s = sumCount();
2328 }
2329 }
2330 }
2331
2332 /**
2333 * Helps transfer if a resize is in progress.
2334 */
2335 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2336 Node<K,V>[] nextTab; int sc;
2337 if (tab != null && (f instanceof ForwardingNode) &&
2338 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2339 int rs = resizeStamp(tab.length);
2340 while (nextTab == nextTable && table == tab &&
2341 (sc = sizeCtl) < 0) {
2342 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2343 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2344 break;
2345 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2346 transfer(tab, nextTab);
2347 break;
2348 }
2349 }
2350 return nextTab;
2351 }
2352 return table;
2353 }
2354
2355 /**
2356 * Tries to presize table to accommodate the given number of elements.
2357 *
2358 * @param size number of elements (doesn't need to be perfectly accurate)
2359 */
2360 private final void tryPresize(int size) {
2361 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2362 tableSizeFor(size + (size >>> 1) + 1);
2363 int sc;
2364 while ((sc = sizeCtl) >= 0) {
2365 Node<K,V>[] tab = table; int n;
2366 if (tab == null || (n = tab.length) == 0) {
2367 n = (sc > c) ? sc : c;
2368 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2369 try {
2370 if (table == tab) {
2371 @SuppressWarnings("unchecked")
2372 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2373 table = nt;
2374 sc = n - (n >>> 2);
2375 }
2376 } finally {
2377 sizeCtl = sc;
2378 }
2379 }
2380 }
2381 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2382 break;
2383 else if (tab == table) {
2384 int rs = resizeStamp(n);
2385 if (U.compareAndSwapInt(this, SIZECTL, sc,
2386 (rs << RESIZE_STAMP_SHIFT) + 2))
2387 transfer(tab, null);
2388 }
2389 }
2390 }
2391
2392 /**
2393 * Moves and/or copies the nodes in each bin to new table. See
2394 * above for explanation.
2395 */
2396 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2397 int n = tab.length, stride;
2398 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2399 stride = MIN_TRANSFER_STRIDE; // subdivide range
2400 if (nextTab == null) { // initiating
2401 try {
2402 @SuppressWarnings("unchecked")
2403 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2404 nextTab = nt;
2405 } catch (Throwable ex) { // try to cope with OOME
2406 sizeCtl = Integer.MAX_VALUE;
2407 return;
2408 }
2409 nextTable = nextTab;
2410 transferIndex = n;
2411 }
2412 int nextn = nextTab.length;
2413 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2414 boolean advance = true;
2415 boolean finishing = false; // to ensure sweep before committing nextTab
2416 for (int i = 0, bound = 0;;) {
2417 Node<K,V> f; int fh;
2418 while (advance) {
2419 int nextIndex, nextBound;
2420 if (--i >= bound || finishing)
2421 advance = false;
2422 else if ((nextIndex = transferIndex) <= 0) {
2423 i = -1;
2424 advance = false;
2425 }
2426 else if (U.compareAndSwapInt
2427 (this, TRANSFERINDEX, nextIndex,
2428 nextBound = (nextIndex > stride ?
2429 nextIndex - stride : 0))) {
2430 bound = nextBound;
2431 i = nextIndex - 1;
2432 advance = false;
2433 }
2434 }
2435 if (i < 0 || i >= n || i + n >= nextn) {
2436 int sc;
2437 if (finishing) {
2438 nextTable = null;
2439 table = nextTab;
2440 sizeCtl = (n << 1) - (n >>> 1);
2441 return;
2442 }
2443 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2444 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2445 return;
2446 finishing = advance = true;
2447 i = n; // recheck before commit
2448 }
2449 }
2450 else if ((f = tabAt(tab, i)) == null)
2451 advance = casTabAt(tab, i, null, fwd);
2452 else if ((fh = f.hash) == MOVED)
2453 advance = true; // already processed
2454 else {
2455 synchronized (f) {
2456 if (tabAt(tab, i) == f) {
2457 Node<K,V> ln, hn;
2458 if (fh >= 0) {
2459 int runBit = fh & n;
2460 Node<K,V> lastRun = f;
2461 for (Node<K,V> p = f.next; p != null; p = p.next) {
2462 int b = p.hash & n;
2463 if (b != runBit) {
2464 runBit = b;
2465 lastRun = p;
2466 }
2467 }
2468 if (runBit == 0) {
2469 ln = lastRun;
2470 hn = null;
2471 }
2472 else {
2473 hn = lastRun;
2474 ln = null;
2475 }
2476 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2477 int ph = p.hash; K pk = p.key; V pv = p.val;
2478 if ((ph & n) == 0)
2479 ln = new Node<K,V>(ph, pk, pv, ln);
2480 else
2481 hn = new Node<K,V>(ph, pk, pv, hn);
2482 }
2483 setTabAt(nextTab, i, ln);
2484 setTabAt(nextTab, i + n, hn);
2485 setTabAt(tab, i, fwd);
2486 advance = true;
2487 }
2488 else if (f instanceof TreeBin) {
2489 TreeBin<K,V> t = (TreeBin<K,V>)f;
2490 TreeNode<K,V> lo = null, loTail = null;
2491 TreeNode<K,V> hi = null, hiTail = null;
2492 int lc = 0, hc = 0;
2493 for (Node<K,V> e = t.first; e != null; e = e.next) {
2494 int h = e.hash;
2495 TreeNode<K,V> p = new TreeNode<K,V>
2496 (h, e.key, e.val, null, null);
2497 if ((h & n) == 0) {
2498 if ((p.prev = loTail) == null)
2499 lo = p;
2500 else
2501 loTail.next = p;
2502 loTail = p;
2503 ++lc;
2504 }
2505 else {
2506 if ((p.prev = hiTail) == null)
2507 hi = p;
2508 else
2509 hiTail.next = p;
2510 hiTail = p;
2511 ++hc;
2512 }
2513 }
2514 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2515 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2516 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2517 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2518 setTabAt(nextTab, i, ln);
2519 setTabAt(nextTab, i + n, hn);
2520 setTabAt(tab, i, fwd);
2521 advance = true;
2522 }
2523 }
2524 }
2525 }
2526 }
2527 }
2528
2529 /* ---------------- Counter support -------------- */
2530
2531 /**
2532 * A padded cell for distributing counts. Adapted from LongAdder
2533 * and Striped64. See their internal docs for explanation.
2534 */
2535 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2536 volatile long value;
2537 CounterCell(long x) { value = x; }
2538 }
2539
2540 final long sumCount() {
2541 CounterCell[] as = counterCells; CounterCell a;
2542 long sum = baseCount;
2543 if (as != null) {
2544 for (int i = 0; i < as.length; ++i) {
2545 if ((a = as[i]) != null)
2546 sum += a.value;
2547 }
2548 }
2549 return sum;
2550 }
2551
2552 // See LongAdder version for explanation
2553 private final void fullAddCount(long x, boolean wasUncontended) {
2554 int h;
2555 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2556 ThreadLocalRandom.localInit(); // force initialization
2557 h = ThreadLocalRandom.getProbe();
2558 wasUncontended = true;
2559 }
2560 boolean collide = false; // True if last slot nonempty
2561 for (;;) {
2562 CounterCell[] as; CounterCell a; int n; long v;
2563 if ((as = counterCells) != null && (n = as.length) > 0) {
2564 if ((a = as[(n - 1) & h]) == null) {
2565 if (cellsBusy == 0) { // Try to attach new Cell
2566 CounterCell r = new CounterCell(x); // Optimistic create
2567 if (cellsBusy == 0 &&
2568 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2569 boolean created = false;
2570 try { // Recheck under lock
2571 CounterCell[] rs; int m, j;
2572 if ((rs = counterCells) != null &&
2573 (m = rs.length) > 0 &&
2574 rs[j = (m - 1) & h] == null) {
2575 rs[j] = r;
2576 created = true;
2577 }
2578 } finally {
2579 cellsBusy = 0;
2580 }
2581 if (created)
2582 break;
2583 continue; // Slot is now non-empty
2584 }
2585 }
2586 collide = false;
2587 }
2588 else if (!wasUncontended) // CAS already known to fail
2589 wasUncontended = true; // Continue after rehash
2590 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2591 break;
2592 else if (counterCells != as || n >= NCPU)
2593 collide = false; // At max size or stale
2594 else if (!collide)
2595 collide = true;
2596 else if (cellsBusy == 0 &&
2597 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2598 try {
2599 if (counterCells == as) {// Expand table unless stale
2600 CounterCell[] rs = new CounterCell[n << 1];
2601 for (int i = 0; i < n; ++i)
2602 rs[i] = as[i];
2603 counterCells = rs;
2604 }
2605 } finally {
2606 cellsBusy = 0;
2607 }
2608 collide = false;
2609 continue; // Retry with expanded table
2610 }
2611 h = ThreadLocalRandom.advanceProbe(h);
2612 }
2613 else if (cellsBusy == 0 && counterCells == as &&
2614 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2615 boolean init = false;
2616 try { // Initialize table
2617 if (counterCells == as) {
2618 CounterCell[] rs = new CounterCell[2];
2619 rs[h & 1] = new CounterCell(x);
2620 counterCells = rs;
2621 init = true;
2622 }
2623 } finally {
2624 cellsBusy = 0;
2625 }
2626 if (init)
2627 break;
2628 }
2629 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2630 break; // Fall back on using base
2631 }
2632 }
2633
2634 /* ---------------- Conversion from/to TreeBins -------------- */
2635
2636 /**
2637 * Replaces all linked nodes in bin at given index unless table is
2638 * too small, in which case resizes instead.
2639 */
2640 private final void treeifyBin(Node<K,V>[] tab, int index) {
2641 Node<K,V> b; int n;
2642 if (tab != null) {
2643 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2644 tryPresize(n << 1);
2645 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2646 synchronized (b) {
2647 if (tabAt(tab, index) == b) {
2648 TreeNode<K,V> hd = null, tl = null;
2649 for (Node<K,V> e = b; e != null; e = e.next) {
2650 TreeNode<K,V> p =
2651 new TreeNode<K,V>(e.hash, e.key, e.val,
2652 null, null);
2653 if ((p.prev = tl) == null)
2654 hd = p;
2655 else
2656 tl.next = p;
2657 tl = p;
2658 }
2659 setTabAt(tab, index, new TreeBin<K,V>(hd));
2660 }
2661 }
2662 }
2663 }
2664 }
2665
2666 /**
2667 * Returns a list of non-TreeNodes replacing those in given list.
2668 */
2669 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2670 Node<K,V> hd = null, tl = null;
2671 for (Node<K,V> q = b; q != null; q = q.next) {
2672 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2673 if (tl == null)
2674 hd = p;
2675 else
2676 tl.next = p;
2677 tl = p;
2678 }
2679 return hd;
2680 }
2681
2682 /* ---------------- TreeNodes -------------- */
2683
2684 /**
2685 * Nodes for use in TreeBins.
2686 */
2687 static final class TreeNode<K,V> extends Node<K,V> {
2688 TreeNode<K,V> parent; // red-black tree links
2689 TreeNode<K,V> left;
2690 TreeNode<K,V> right;
2691 TreeNode<K,V> prev; // needed to unlink next upon deletion
2692 boolean red;
2693
2694 TreeNode(int hash, K key, V val, Node<K,V> next,
2695 TreeNode<K,V> parent) {
2696 super(hash, key, val, next);
2697 this.parent = parent;
2698 }
2699
2700 Node<K,V> find(int h, Object k) {
2701 return findTreeNode(h, k, null);
2702 }
2703
2704 /**
2705 * Returns the TreeNode (or null if not found) for the given key
2706 * starting at given root.
2707 */
2708 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2709 if (k != null) {
2710 TreeNode<K,V> p = this;
2711 do {
2712 int ph, dir; K pk; TreeNode<K,V> q;
2713 TreeNode<K,V> pl = p.left, pr = p.right;
2714 if ((ph = p.hash) > h)
2715 p = pl;
2716 else if (ph < h)
2717 p = pr;
2718 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2719 return p;
2720 else if (pl == null)
2721 p = pr;
2722 else if (pr == null)
2723 p = pl;
2724 else if ((kc != null ||
2725 (kc = comparableClassFor(k)) != null) &&
2726 (dir = compareComparables(kc, k, pk)) != 0)
2727 p = (dir < 0) ? pl : pr;
2728 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2729 return q;
2730 else
2731 p = pl;
2732 } while (p != null);
2733 }
2734 return null;
2735 }
2736 }
2737
2738 /* ---------------- TreeBins -------------- */
2739
2740 /**
2741 * TreeNodes used at the heads of bins. TreeBins do not hold user
2742 * keys or values, but instead point to list of TreeNodes and
2743 * their root. They also maintain a parasitic read-write lock
2744 * forcing writers (who hold bin lock) to wait for readers (who do
2745 * not) to complete before tree restructuring operations.
2746 */
2747 static final class TreeBin<K,V> extends Node<K,V> {
2748 TreeNode<K,V> root;
2749 volatile TreeNode<K,V> first;
2750 volatile Thread waiter;
2751 volatile int lockState;
2752 // values for lockState
2753 static final int WRITER = 1; // set while holding write lock
2754 static final int WAITER = 2; // set when waiting for write lock
2755 static final int READER = 4; // increment value for setting read lock
2756
2757 /**
2758 * Tie-breaking utility for ordering insertions when equal
2759 * hashCodes and non-comparable. We don't require a total
2760 * order, just a consistent insertion rule to maintain
2761 * equivalence across rebalancings. Tie-breaking further than
2762 * necessary simplifies testing a bit.
2763 */
2764 static int tieBreakOrder(Object a, Object b) {
2765 int d;
2766 if (a == null || b == null ||
2767 (d = a.getClass().getName().
2768 compareTo(b.getClass().getName())) == 0)
2769 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2770 -1 : 1);
2771 return d;
2772 }
2773
2774 /**
2775 * Creates bin with initial set of nodes headed by b.
2776 */
2777 TreeBin(TreeNode<K,V> b) {
2778 super(TREEBIN, null, null);
2779 this.first = b;
2780 TreeNode<K,V> r = null;
2781 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2782 next = (TreeNode<K,V>)x.next;
2783 x.left = x.right = null;
2784 if (r == null) {
2785 x.parent = null;
2786 x.red = false;
2787 r = x;
2788 }
2789 else {
2790 K k = x.key;
2791 int h = x.hash;
2792 Class<?> kc = null;
2793 for (TreeNode<K,V> p = r;;) {
2794 int dir, ph;
2795 K pk = p.key;
2796 if ((ph = p.hash) > h)
2797 dir = -1;
2798 else if (ph < h)
2799 dir = 1;
2800 else if ((kc == null &&
2801 (kc = comparableClassFor(k)) == null) ||
2802 (dir = compareComparables(kc, k, pk)) == 0)
2803 dir = tieBreakOrder(k, pk);
2804 TreeNode<K,V> xp = p;
2805 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2806 x.parent = xp;
2807 if (dir <= 0)
2808 xp.left = x;
2809 else
2810 xp.right = x;
2811 r = balanceInsertion(r, x);
2812 break;
2813 }
2814 }
2815 }
2816 }
2817 this.root = r;
2818 assert checkInvariants(root);
2819 }
2820
2821 /**
2822 * Acquires write lock for tree restructuring.
2823 */
2824 private final void lockRoot() {
2825 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2826 contendedLock(); // offload to separate method
2827 }
2828
2829 /**
2830 * Releases write lock for tree restructuring.
2831 */
2832 private final void unlockRoot() {
2833 lockState = 0;
2834 }
2835
2836 /**
2837 * Possibly blocks awaiting root lock.
2838 */
2839 private final void contendedLock() {
2840 boolean waiting = false;
2841 for (int s;;) {
2842 if (((s = lockState) & ~WAITER) == 0) {
2843 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2844 if (waiting)
2845 waiter = null;
2846 return;
2847 }
2848 }
2849 else if ((s & WAITER) == 0) {
2850 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2851 waiting = true;
2852 waiter = Thread.currentThread();
2853 }
2854 }
2855 else if (waiting)
2856 LockSupport.park(this);
2857 }
2858 }
2859
2860 /**
2861 * Returns matching node or null if none. Tries to search
2862 * using tree comparisons from root, but continues linear
2863 * search when lock not available.
2864 */
2865 final Node<K,V> find(int h, Object k) {
2866 if (k != null) {
2867 for (Node<K,V> e = first; e != null; ) {
2868 int s; K ek;
2869 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2870 if (e.hash == h &&
2871 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2872 return e;
2873 e = e.next;
2874 }
2875 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2876 s + READER)) {
2877 TreeNode<K,V> r, p;
2878 try {
2879 p = ((r = root) == null ? null :
2880 r.findTreeNode(h, k, null));
2881 } finally {
2882 Thread w;
2883 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2884 (READER|WAITER) && (w = waiter) != null)
2885 LockSupport.unpark(w);
2886 }
2887 return p;
2888 }
2889 }
2890 }
2891 return null;
2892 }
2893
2894 /**
2895 * Finds or adds a node.
2896 * @return null if added
2897 */
2898 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2899 Class<?> kc = null;
2900 boolean searched = false;
2901 for (TreeNode<K,V> p = root;;) {
2902 int dir, ph; K pk;
2903 if (p == null) {
2904 first = root = new TreeNode<K,V>(h, k, v, null, null);
2905 break;
2906 }
2907 else if ((ph = p.hash) > h)
2908 dir = -1;
2909 else if (ph < h)
2910 dir = 1;
2911 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2912 return p;
2913 else if ((kc == null &&
2914 (kc = comparableClassFor(k)) == null) ||
2915 (dir = compareComparables(kc, k, pk)) == 0) {
2916 if (!searched) {
2917 TreeNode<K,V> q, ch;
2918 searched = true;
2919 if (((ch = p.left) != null &&
2920 (q = ch.findTreeNode(h, k, kc)) != null) ||
2921 ((ch = p.right) != null &&
2922 (q = ch.findTreeNode(h, k, kc)) != null))
2923 return q;
2924 }
2925 dir = tieBreakOrder(k, pk);
2926 }
2927
2928 TreeNode<K,V> xp = p;
2929 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2930 TreeNode<K,V> x, f = first;
2931 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2932 if (f != null)
2933 f.prev = x;
2934 if (dir <= 0)
2935 xp.left = x;
2936 else
2937 xp.right = x;
2938 if (!xp.red)
2939 x.red = true;
2940 else {
2941 lockRoot();
2942 try {
2943 root = balanceInsertion(root, x);
2944 } finally {
2945 unlockRoot();
2946 }
2947 }
2948 break;
2949 }
2950 }
2951 assert checkInvariants(root);
2952 return null;
2953 }
2954
2955 /**
2956 * Removes the given node, that must be present before this
2957 * call. This is messier than typical red-black deletion code
2958 * because we cannot swap the contents of an interior node
2959 * with a leaf successor that is pinned by "next" pointers
2960 * that are accessible independently of lock. So instead we
2961 * swap the tree linkages.
2962 *
2963 * @return true if now too small, so should be untreeified
2964 */
2965 final boolean removeTreeNode(TreeNode<K,V> p) {
2966 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2967 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2968 TreeNode<K,V> r, rl;
2969 if (pred == null)
2970 first = next;
2971 else
2972 pred.next = next;
2973 if (next != null)
2974 next.prev = pred;
2975 if (first == null) {
2976 root = null;
2977 return true;
2978 }
2979 if ((r = root) == null || r.right == null || // too small
2980 (rl = r.left) == null || rl.left == null)
2981 return true;
2982 lockRoot();
2983 try {
2984 TreeNode<K,V> replacement;
2985 TreeNode<K,V> pl = p.left;
2986 TreeNode<K,V> pr = p.right;
2987 if (pl != null && pr != null) {
2988 TreeNode<K,V> s = pr, sl;
2989 while ((sl = s.left) != null) // find successor
2990 s = sl;
2991 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2992 TreeNode<K,V> sr = s.right;
2993 TreeNode<K,V> pp = p.parent;
2994 if (s == pr) { // p was s's direct parent
2995 p.parent = s;
2996 s.right = p;
2997 }
2998 else {
2999 TreeNode<K,V> sp = s.parent;
3000 if ((p.parent = sp) != null) {
3001 if (s == sp.left)
3002 sp.left = p;
3003 else
3004 sp.right = p;
3005 }
3006 if ((s.right = pr) != null)
3007 pr.parent = s;
3008 }
3009 p.left = null;
3010 if ((p.right = sr) != null)
3011 sr.parent = p;
3012 if ((s.left = pl) != null)
3013 pl.parent = s;
3014 if ((s.parent = pp) == null)
3015 r = s;
3016 else if (p == pp.left)
3017 pp.left = s;
3018 else
3019 pp.right = s;
3020 if (sr != null)
3021 replacement = sr;
3022 else
3023 replacement = p;
3024 }
3025 else if (pl != null)
3026 replacement = pl;
3027 else if (pr != null)
3028 replacement = pr;
3029 else
3030 replacement = p;
3031 if (replacement != p) {
3032 TreeNode<K,V> pp = replacement.parent = p.parent;
3033 if (pp == null)
3034 r = replacement;
3035 else if (p == pp.left)
3036 pp.left = replacement;
3037 else
3038 pp.right = replacement;
3039 p.left = p.right = p.parent = null;
3040 }
3041
3042 root = (p.red) ? r : balanceDeletion(r, replacement);
3043
3044 if (p == replacement) { // detach pointers
3045 TreeNode<K,V> pp;
3046 if ((pp = p.parent) != null) {
3047 if (p == pp.left)
3048 pp.left = null;
3049 else if (p == pp.right)
3050 pp.right = null;
3051 p.parent = null;
3052 }
3053 }
3054 } finally {
3055 unlockRoot();
3056 }
3057 assert checkInvariants(root);
3058 return false;
3059 }
3060
3061 /* ------------------------------------------------------------ */
3062 // Red-black tree methods, all adapted from CLR
3063
3064 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3065 TreeNode<K,V> p) {
3066 TreeNode<K,V> r, pp, rl;
3067 if (p != null && (r = p.right) != null) {
3068 if ((rl = p.right = r.left) != null)
3069 rl.parent = p;
3070 if ((pp = r.parent = p.parent) == null)
3071 (root = r).red = false;
3072 else if (pp.left == p)
3073 pp.left = r;
3074 else
3075 pp.right = r;
3076 r.left = p;
3077 p.parent = r;
3078 }
3079 return root;
3080 }
3081
3082 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3083 TreeNode<K,V> p) {
3084 TreeNode<K,V> l, pp, lr;
3085 if (p != null && (l = p.left) != null) {
3086 if ((lr = p.left = l.right) != null)
3087 lr.parent = p;
3088 if ((pp = l.parent = p.parent) == null)
3089 (root = l).red = false;
3090 else if (pp.right == p)
3091 pp.right = l;
3092 else
3093 pp.left = l;
3094 l.right = p;
3095 p.parent = l;
3096 }
3097 return root;
3098 }
3099
3100 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3101 TreeNode<K,V> x) {
3102 x.red = true;
3103 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3104 if ((xp = x.parent) == null) {
3105 x.red = false;
3106 return x;
3107 }
3108 else if (!xp.red || (xpp = xp.parent) == null)
3109 return root;
3110 if (xp == (xppl = xpp.left)) {
3111 if ((xppr = xpp.right) != null && xppr.red) {
3112 xppr.red = false;
3113 xp.red = false;
3114 xpp.red = true;
3115 x = xpp;
3116 }
3117 else {
3118 if (x == xp.right) {
3119 root = rotateLeft(root, x = xp);
3120 xpp = (xp = x.parent) == null ? null : xp.parent;
3121 }
3122 if (xp != null) {
3123 xp.red = false;
3124 if (xpp != null) {
3125 xpp.red = true;
3126 root = rotateRight(root, xpp);
3127 }
3128 }
3129 }
3130 }
3131 else {
3132 if (xppl != null && xppl.red) {
3133 xppl.red = false;
3134 xp.red = false;
3135 xpp.red = true;
3136 x = xpp;
3137 }
3138 else {
3139 if (x == xp.left) {
3140 root = rotateRight(root, x = xp);
3141 xpp = (xp = x.parent) == null ? null : xp.parent;
3142 }
3143 if (xp != null) {
3144 xp.red = false;
3145 if (xpp != null) {
3146 xpp.red = true;
3147 root = rotateLeft(root, xpp);
3148 }
3149 }
3150 }
3151 }
3152 }
3153 }
3154
3155 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3156 TreeNode<K,V> x) {
3157 for (TreeNode<K,V> xp, xpl, xpr;;) {
3158 if (x == null || x == root)
3159 return root;
3160 else if ((xp = x.parent) == null) {
3161 x.red = false;
3162 return x;
3163 }
3164 else if (x.red) {
3165 x.red = false;
3166 return root;
3167 }
3168 else if ((xpl = xp.left) == x) {
3169 if ((xpr = xp.right) != null && xpr.red) {
3170 xpr.red = false;
3171 xp.red = true;
3172 root = rotateLeft(root, xp);
3173 xpr = (xp = x.parent) == null ? null : xp.right;
3174 }
3175 if (xpr == null)
3176 x = xp;
3177 else {
3178 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3179 if ((sr == null || !sr.red) &&
3180 (sl == null || !sl.red)) {
3181 xpr.red = true;
3182 x = xp;
3183 }
3184 else {
3185 if (sr == null || !sr.red) {
3186 if (sl != null)
3187 sl.red = false;
3188 xpr.red = true;
3189 root = rotateRight(root, xpr);
3190 xpr = (xp = x.parent) == null ?
3191 null : xp.right;
3192 }
3193 if (xpr != null) {
3194 xpr.red = (xp == null) ? false : xp.red;
3195 if ((sr = xpr.right) != null)
3196 sr.red = false;
3197 }
3198 if (xp != null) {
3199 xp.red = false;
3200 root = rotateLeft(root, xp);
3201 }
3202 x = root;
3203 }
3204 }
3205 }
3206 else { // symmetric
3207 if (xpl != null && xpl.red) {
3208 xpl.red = false;
3209 xp.red = true;
3210 root = rotateRight(root, xp);
3211 xpl = (xp = x.parent) == null ? null : xp.left;
3212 }
3213 if (xpl == null)
3214 x = xp;
3215 else {
3216 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3217 if ((sl == null || !sl.red) &&
3218 (sr == null || !sr.red)) {
3219 xpl.red = true;
3220 x = xp;
3221 }
3222 else {
3223 if (sl == null || !sl.red) {
3224 if (sr != null)
3225 sr.red = false;
3226 xpl.red = true;
3227 root = rotateLeft(root, xpl);
3228 xpl = (xp = x.parent) == null ?
3229 null : xp.left;
3230 }
3231 if (xpl != null) {
3232 xpl.red = (xp == null) ? false : xp.red;
3233 if ((sl = xpl.left) != null)
3234 sl.red = false;
3235 }
3236 if (xp != null) {
3237 xp.red = false;
3238 root = rotateRight(root, xp);
3239 }
3240 x = root;
3241 }
3242 }
3243 }
3244 }
3245 }
3246
3247 /**
3248 * Checks invariants recursively for the tree of Nodes rooted at t.
3249 */
3250 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3251 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3252 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3253 if (tb != null && tb.next != t)
3254 return false;
3255 if (tn != null && tn.prev != t)
3256 return false;
3257 if (tp != null && t != tp.left && t != tp.right)
3258 return false;
3259 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3260 return false;
3261 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3262 return false;
3263 if (t.red && tl != null && tl.red && tr != null && tr.red)
3264 return false;
3265 if (tl != null && !checkInvariants(tl))
3266 return false;
3267 if (tr != null && !checkInvariants(tr))
3268 return false;
3269 return true;
3270 }
3271
3272 private static final jdk.internal.misc.Unsafe U = jdk.internal.misc.Unsafe.getUnsafe();
3273 private static final long LOCKSTATE;
3274 static {
3275 try {
3276 LOCKSTATE = U.objectFieldOffset
3277 (TreeBin.class.getDeclaredField("lockState"));
3278 } catch (ReflectiveOperationException e) {
3279 throw new Error(e);
3280 }
3281 }
3282 }
3283
3284 /* ----------------Table Traversal -------------- */
3285
3286 /**
3287 * Records the table, its length, and current traversal index for a
3288 * traverser that must process a region of a forwarded table before
3289 * proceeding with current table.
3290 */
3291 static final class TableStack<K,V> {
3292 int length;
3293 int index;
3294 Node<K,V>[] tab;
3295 TableStack<K,V> next;
3296 }
3297
3298 /**
3299 * Encapsulates traversal for methods such as containsValue; also
3300 * serves as a base class for other iterators and spliterators.
3301 *
3302 * Method advance visits once each still-valid node that was
3303 * reachable upon iterator construction. It might miss some that
3304 * were added to a bin after the bin was visited, which is OK wrt
3305 * consistency guarantees. Maintaining this property in the face
3306 * of possible ongoing resizes requires a fair amount of
3307 * bookkeeping state that is difficult to optimize away amidst
3308 * volatile accesses. Even so, traversal maintains reasonable
3309 * throughput.
3310 *
3311 * Normally, iteration proceeds bin-by-bin traversing lists.
3312 * However, if the table has been resized, then all future steps
3313 * must traverse both the bin at the current index as well as at
3314 * (index + baseSize); and so on for further resizings. To
3315 * paranoically cope with potential sharing by users of iterators
3316 * across threads, iteration terminates if a bounds checks fails
3317 * for a table read.
3318 */
3319 static class Traverser<K,V> {
3320 Node<K,V>[] tab; // current table; updated if resized
3321 Node<K,V> next; // the next entry to use
3322 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3323 int index; // index of bin to use next
3324 int baseIndex; // current index of initial table
3325 int baseLimit; // index bound for initial table
3326 final int baseSize; // initial table size
3327
3328 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3329 this.tab = tab;
3330 this.baseSize = size;
3331 this.baseIndex = this.index = index;
3332 this.baseLimit = limit;
3333 this.next = null;
3334 }
3335
3336 /**
3337 * Advances if possible, returning next valid node, or null if none.
3338 */
3339 final Node<K,V> advance() {
3340 Node<K,V> e;
3341 if ((e = next) != null)
3342 e = e.next;
3343 for (;;) {
3344 Node<K,V>[] t; int i, n; // must use locals in checks
3345 if (e != null)
3346 return next = e;
3347 if (baseIndex >= baseLimit || (t = tab) == null ||
3348 (n = t.length) <= (i = index) || i < 0)
3349 return next = null;
3350 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3351 if (e instanceof ForwardingNode) {
3352 tab = ((ForwardingNode<K,V>)e).nextTable;
3353 e = null;
3354 pushState(t, i, n);
3355 continue;
3356 }
3357 else if (e instanceof TreeBin)
3358 e = ((TreeBin<K,V>)e).first;
3359 else
3360 e = null;
3361 }
3362 if (stack != null)
3363 recoverState(n);
3364 else if ((index = i + baseSize) >= n)
3365 index = ++baseIndex; // visit upper slots if present
3366 }
3367 }
3368
3369 /**
3370 * Saves traversal state upon encountering a forwarding node.
3371 */
3372 private void pushState(Node<K,V>[] t, int i, int n) {
3373 TableStack<K,V> s = spare; // reuse if possible
3374 if (s != null)
3375 spare = s.next;
3376 else
3377 s = new TableStack<K,V>();
3378 s.tab = t;
3379 s.length = n;
3380 s.index = i;
3381 s.next = stack;
3382 stack = s;
3383 }
3384
3385 /**
3386 * Possibly pops traversal state.
3387 *
3388 * @param n length of current table
3389 */
3390 private void recoverState(int n) {
3391 TableStack<K,V> s; int len;
3392 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3393 n = len;
3394 index = s.index;
3395 tab = s.tab;
3396 s.tab = null;
3397 TableStack<K,V> next = s.next;
3398 s.next = spare; // save for reuse
3399 stack = next;
3400 spare = s;
3401 }
3402 if (s == null && (index += baseSize) >= n)
3403 index = ++baseIndex;
3404 }
3405 }
3406
3407 /**
3408 * Base of key, value, and entry Iterators. Adds fields to
3409 * Traverser to support iterator.remove.
3410 */
3411 static class BaseIterator<K,V> extends Traverser<K,V> {
3412 final ConcurrentHashMap<K,V> map;
3413 Node<K,V> lastReturned;
3414 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3415 ConcurrentHashMap<K,V> map) {
3416 super(tab, size, index, limit);
3417 this.map = map;
3418 advance();
3419 }
3420
3421 public final boolean hasNext() { return next != null; }
3422 public final boolean hasMoreElements() { return next != null; }
3423
3424 public final void remove() {
3425 Node<K,V> p;
3426 if ((p = lastReturned) == null)
3427 throw new IllegalStateException();
3428 lastReturned = null;
3429 map.replaceNode(p.key, null, null);
3430 }
3431 }
3432
3433 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3434 implements Iterator<K>, Enumeration<K> {
3435 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3436 ConcurrentHashMap<K,V> map) {
3437 super(tab, index, size, limit, map);
3438 }
3439
3440 public final K next() {
3441 Node<K,V> p;
3442 if ((p = next) == null)
3443 throw new NoSuchElementException();
3444 K k = p.key;
3445 lastReturned = p;
3446 advance();
3447 return k;
3448 }
3449
3450 public final K nextElement() { return next(); }
3451 }
3452
3453 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3454 implements Iterator<V>, Enumeration<V> {
3455 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3456 ConcurrentHashMap<K,V> map) {
3457 super(tab, index, size, limit, map);
3458 }
3459
3460 public final V next() {
3461 Node<K,V> p;
3462 if ((p = next) == null)
3463 throw new NoSuchElementException();
3464 V v = p.val;
3465 lastReturned = p;
3466 advance();
3467 return v;
3468 }
3469
3470 public final V nextElement() { return next(); }
3471 }
3472
3473 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3474 implements Iterator<Map.Entry<K,V>> {
3475 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3476 ConcurrentHashMap<K,V> map) {
3477 super(tab, index, size, limit, map);
3478 }
3479
3480 public final Map.Entry<K,V> next() {
3481 Node<K,V> p;
3482 if ((p = next) == null)
3483 throw new NoSuchElementException();
3484 K k = p.key;
3485 V v = p.val;
3486 lastReturned = p;
3487 advance();
3488 return new MapEntry<K,V>(k, v, map);
3489 }
3490 }
3491
3492 /**
3493 * Exported Entry for EntryIterator.
3494 */
3495 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3496 final K key; // non-null
3497 V val; // non-null
3498 final ConcurrentHashMap<K,V> map;
3499 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3500 this.key = key;
3501 this.val = val;
3502 this.map = map;
3503 }
3504 public K getKey() { return key; }
3505 public V getValue() { return val; }
3506 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3507 public String toString() {
3508 return Helpers.mapEntryToString(key, val);
3509 }
3510
3511 public boolean equals(Object o) {
3512 Object k, v; Map.Entry<?,?> e;
3513 return ((o instanceof Map.Entry) &&
3514 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3515 (v = e.getValue()) != null &&
3516 (k == key || k.equals(key)) &&
3517 (v == val || v.equals(val)));
3518 }
3519
3520 /**
3521 * Sets our entry's value and writes through to the map. The
3522 * value to return is somewhat arbitrary here. Since we do not
3523 * necessarily track asynchronous changes, the most recent
3524 * "previous" value could be different from what we return (or
3525 * could even have been removed, in which case the put will
3526 * re-establish). We do not and cannot guarantee more.
3527 */
3528 public V setValue(V value) {
3529 if (value == null) throw new NullPointerException();
3530 V v = val;
3531 val = value;
3532 map.put(key, value);
3533 return v;
3534 }
3535 }
3536
3537 static final class KeySpliterator<K,V> extends Traverser<K,V>
3538 implements Spliterator<K> {
3539 long est; // size estimate
3540 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3541 long est) {
3542 super(tab, size, index, limit);
3543 this.est = est;
3544 }
3545
3546 public KeySpliterator<K,V> trySplit() {
3547 int i, f, h;
3548 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3549 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3550 f, est >>>= 1);
3551 }
3552
3553 public void forEachRemaining(Consumer<? super K> action) {
3554 if (action == null) throw new NullPointerException();
3555 for (Node<K,V> p; (p = advance()) != null;)
3556 action.accept(p.key);
3557 }
3558
3559 public boolean tryAdvance(Consumer<? super K> action) {
3560 if (action == null) throw new NullPointerException();
3561 Node<K,V> p;
3562 if ((p = advance()) == null)
3563 return false;
3564 action.accept(p.key);
3565 return true;
3566 }
3567
3568 public long estimateSize() { return est; }
3569
3570 public int characteristics() {
3571 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3572 Spliterator.NONNULL;
3573 }
3574 }
3575
3576 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3577 implements Spliterator<V> {
3578 long est; // size estimate
3579 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3580 long est) {
3581 super(tab, size, index, limit);
3582 this.est = est;
3583 }
3584
3585 public ValueSpliterator<K,V> trySplit() {
3586 int i, f, h;
3587 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3588 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3589 f, est >>>= 1);
3590 }
3591
3592 public void forEachRemaining(Consumer<? super V> action) {
3593 if (action == null) throw new NullPointerException();
3594 for (Node<K,V> p; (p = advance()) != null;)
3595 action.accept(p.val);
3596 }
3597
3598 public boolean tryAdvance(Consumer<? super V> action) {
3599 if (action == null) throw new NullPointerException();
3600 Node<K,V> p;
3601 if ((p = advance()) == null)
3602 return false;
3603 action.accept(p.val);
3604 return true;
3605 }
3606
3607 public long estimateSize() { return est; }
3608
3609 public int characteristics() {
3610 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3611 }
3612 }
3613
3614 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3615 implements Spliterator<Map.Entry<K,V>> {
3616 final ConcurrentHashMap<K,V> map; // To export MapEntry
3617 long est; // size estimate
3618 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3619 long est, ConcurrentHashMap<K,V> map) {
3620 super(tab, size, index, limit);
3621 this.map = map;
3622 this.est = est;
3623 }
3624
3625 public EntrySpliterator<K,V> trySplit() {
3626 int i, f, h;
3627 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3628 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3629 f, est >>>= 1, map);
3630 }
3631
3632 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3633 if (action == null) throw new NullPointerException();
3634 for (Node<K,V> p; (p = advance()) != null; )
3635 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3636 }
3637
3638 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3639 if (action == null) throw new NullPointerException();
3640 Node<K,V> p;
3641 if ((p = advance()) == null)
3642 return false;
3643 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3644 return true;
3645 }
3646
3647 public long estimateSize() { return est; }
3648
3649 public int characteristics() {
3650 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3651 Spliterator.NONNULL;
3652 }
3653 }
3654
3655 // Parallel bulk operations
3656
3657 /**
3658 * Computes initial batch value for bulk tasks. The returned value
3659 * is approximately exp2 of the number of times (minus one) to
3660 * split task by two before executing leaf action. This value is
3661 * faster to compute and more convenient to use as a guide to
3662 * splitting than is the depth, since it is used while dividing by
3663 * two anyway.
3664 */
3665 final int batchFor(long b) {
3666 long n;
3667 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3668 return 0;
3669 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3670 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3671 }
3672
3673 /**
3674 * Performs the given action for each (key, value).
3675 *
3676 * @param parallelismThreshold the (estimated) number of elements
3677 * needed for this operation to be executed in parallel
3678 * @param action the action
3679 * @since 1.8
3680 */
3681 public void forEach(long parallelismThreshold,
3682 BiConsumer<? super K,? super V> action) {
3683 if (action == null) throw new NullPointerException();
3684 new ForEachMappingTask<K,V>
3685 (null, batchFor(parallelismThreshold), 0, 0, table,
3686 action).invoke();
3687 }
3688
3689 /**
3690 * Performs the given action for each non-null transformation
3691 * of each (key, value).
3692 *
3693 * @param parallelismThreshold the (estimated) number of elements
3694 * needed for this operation to be executed in parallel
3695 * @param transformer a function returning the transformation
3696 * for an element, or null if there is no transformation (in
3697 * which case the action is not applied)
3698 * @param action the action
3699 * @param <U> the return type of the transformer
3700 * @since 1.8
3701 */
3702 public <U> void forEach(long parallelismThreshold,
3703 BiFunction<? super K, ? super V, ? extends U> transformer,
3704 Consumer<? super U> action) {
3705 if (transformer == null || action == null)
3706 throw new NullPointerException();
3707 new ForEachTransformedMappingTask<K,V,U>
3708 (null, batchFor(parallelismThreshold), 0, 0, table,
3709 transformer, action).invoke();
3710 }
3711
3712 /**
3713 * Returns a non-null result from applying the given search
3714 * function on each (key, value), or null if none. Upon
3715 * success, further element processing is suppressed and the
3716 * results of any other parallel invocations of the search
3717 * function are ignored.
3718 *
3719 * @param parallelismThreshold the (estimated) number of elements
3720 * needed for this operation to be executed in parallel
3721 * @param searchFunction a function returning a non-null
3722 * result on success, else null
3723 * @param <U> the return type of the search function
3724 * @return a non-null result from applying the given search
3725 * function on each (key, value), or null if none
3726 * @since 1.8
3727 */
3728 public <U> U search(long parallelismThreshold,
3729 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3730 if (searchFunction == null) throw new NullPointerException();
3731 return new SearchMappingsTask<K,V,U>
3732 (null, batchFor(parallelismThreshold), 0, 0, table,
3733 searchFunction, new AtomicReference<U>()).invoke();
3734 }
3735
3736 /**
3737 * Returns the result of accumulating the given transformation
3738 * of all (key, value) pairs using the given reducer to
3739 * combine values, or null if none.
3740 *
3741 * @param parallelismThreshold the (estimated) number of elements
3742 * needed for this operation to be executed in parallel
3743 * @param transformer a function returning the transformation
3744 * for an element, or null if there is no transformation (in
3745 * which case it is not combined)
3746 * @param reducer a commutative associative combining function
3747 * @param <U> the return type of the transformer
3748 * @return the result of accumulating the given transformation
3749 * of all (key, value) pairs
3750 * @since 1.8
3751 */
3752 public <U> U reduce(long parallelismThreshold,
3753 BiFunction<? super K, ? super V, ? extends U> transformer,
3754 BiFunction<? super U, ? super U, ? extends U> reducer) {
3755 if (transformer == null || reducer == null)
3756 throw new NullPointerException();
3757 return new MapReduceMappingsTask<K,V,U>
3758 (null, batchFor(parallelismThreshold), 0, 0, table,
3759 null, transformer, reducer).invoke();
3760 }
3761
3762 /**
3763 * Returns the result of accumulating the given transformation
3764 * of all (key, value) pairs using the given reducer to
3765 * combine values, and the given basis as an identity value.
3766 *
3767 * @param parallelismThreshold the (estimated) number of elements
3768 * needed for this operation to be executed in parallel
3769 * @param transformer a function returning the transformation
3770 * for an element
3771 * @param basis the identity (initial default value) for the reduction
3772 * @param reducer a commutative associative combining function
3773 * @return the result of accumulating the given transformation
3774 * of all (key, value) pairs
3775 * @since 1.8
3776 */
3777 public double reduceToDouble(long parallelismThreshold,
3778 ToDoubleBiFunction<? super K, ? super V> transformer,
3779 double basis,
3780 DoubleBinaryOperator reducer) {
3781 if (transformer == null || reducer == null)
3782 throw new NullPointerException();
3783 return new MapReduceMappingsToDoubleTask<K,V>
3784 (null, batchFor(parallelismThreshold), 0, 0, table,
3785 null, transformer, basis, reducer).invoke();
3786 }
3787
3788 /**
3789 * Returns the result of accumulating the given transformation
3790 * of all (key, value) pairs using the given reducer to
3791 * combine values, and the given basis as an identity value.
3792 *
3793 * @param parallelismThreshold the (estimated) number of elements
3794 * needed for this operation to be executed in parallel
3795 * @param transformer a function returning the transformation
3796 * for an element
3797 * @param basis the identity (initial default value) for the reduction
3798 * @param reducer a commutative associative combining function
3799 * @return the result of accumulating the given transformation
3800 * of all (key, value) pairs
3801 * @since 1.8
3802 */
3803 public long reduceToLong(long parallelismThreshold,
3804 ToLongBiFunction<? super K, ? super V> transformer,
3805 long basis,
3806 LongBinaryOperator reducer) {
3807 if (transformer == null || reducer == null)
3808 throw new NullPointerException();
3809 return new MapReduceMappingsToLongTask<K,V>
3810 (null, batchFor(parallelismThreshold), 0, 0, table,
3811 null, transformer, basis, reducer).invoke();
3812 }
3813
3814 /**
3815 * Returns the result of accumulating the given transformation
3816 * of all (key, value) pairs using the given reducer to
3817 * combine values, and the given basis as an identity value.
3818 *
3819 * @param parallelismThreshold the (estimated) number of elements
3820 * needed for this operation to be executed in parallel
3821 * @param transformer a function returning the transformation
3822 * for an element
3823 * @param basis the identity (initial default value) for the reduction
3824 * @param reducer a commutative associative combining function
3825 * @return the result of accumulating the given transformation
3826 * of all (key, value) pairs
3827 * @since 1.8
3828 */
3829 public int reduceToInt(long parallelismThreshold,
3830 ToIntBiFunction<? super K, ? super V> transformer,
3831 int basis,
3832 IntBinaryOperator reducer) {
3833 if (transformer == null || reducer == null)
3834 throw new NullPointerException();
3835 return new MapReduceMappingsToIntTask<K,V>
3836 (null, batchFor(parallelismThreshold), 0, 0, table,
3837 null, transformer, basis, reducer).invoke();
3838 }
3839
3840 /**
3841 * Performs the given action for each key.
3842 *
3843 * @param parallelismThreshold the (estimated) number of elements
3844 * needed for this operation to be executed in parallel
3845 * @param action the action
3846 * @since 1.8
3847 */
3848 public void forEachKey(long parallelismThreshold,
3849 Consumer<? super K> action) {
3850 if (action == null) throw new NullPointerException();
3851 new ForEachKeyTask<K,V>
3852 (null, batchFor(parallelismThreshold), 0, 0, table,
3853 action).invoke();
3854 }
3855
3856 /**
3857 * Performs the given action for each non-null transformation
3858 * of each key.
3859 *
3860 * @param parallelismThreshold the (estimated) number of elements
3861 * needed for this operation to be executed in parallel
3862 * @param transformer a function returning the transformation
3863 * for an element, or null if there is no transformation (in
3864 * which case the action is not applied)
3865 * @param action the action
3866 * @param <U> the return type of the transformer
3867 * @since 1.8
3868 */
3869 public <U> void forEachKey(long parallelismThreshold,
3870 Function<? super K, ? extends U> transformer,
3871 Consumer<? super U> action) {
3872 if (transformer == null || action == null)
3873 throw new NullPointerException();
3874 new ForEachTransformedKeyTask<K,V,U>
3875 (null, batchFor(parallelismThreshold), 0, 0, table,
3876 transformer, action).invoke();
3877 }
3878
3879 /**
3880 * Returns a non-null result from applying the given search
3881 * function on each key, or null if none. Upon success,
3882 * further element processing is suppressed and the results of
3883 * any other parallel invocations of the search function are
3884 * ignored.
3885 *
3886 * @param parallelismThreshold the (estimated) number of elements
3887 * needed for this operation to be executed in parallel
3888 * @param searchFunction a function returning a non-null
3889 * result on success, else null
3890 * @param <U> the return type of the search function
3891 * @return a non-null result from applying the given search
3892 * function on each key, or null if none
3893 * @since 1.8
3894 */
3895 public <U> U searchKeys(long parallelismThreshold,
3896 Function<? super K, ? extends U> searchFunction) {
3897 if (searchFunction == null) throw new NullPointerException();
3898 return new SearchKeysTask<K,V,U>
3899 (null, batchFor(parallelismThreshold), 0, 0, table,
3900 searchFunction, new AtomicReference<U>()).invoke();
3901 }
3902
3903 /**
3904 * Returns the result of accumulating all keys using the given
3905 * reducer to combine values, or null if none.
3906 *
3907 * @param parallelismThreshold the (estimated) number of elements
3908 * needed for this operation to be executed in parallel
3909 * @param reducer a commutative associative combining function
3910 * @return the result of accumulating all keys using the given
3911 * reducer to combine values, or null if none
3912 * @since 1.8
3913 */
3914 public K reduceKeys(long parallelismThreshold,
3915 BiFunction<? super K, ? super K, ? extends K> reducer) {
3916 if (reducer == null) throw new NullPointerException();
3917 return new ReduceKeysTask<K,V>
3918 (null, batchFor(parallelismThreshold), 0, 0, table,
3919 null, reducer).invoke();
3920 }
3921
3922 /**
3923 * Returns the result of accumulating the given transformation
3924 * of all keys using the given reducer to combine values, or
3925 * null if none.
3926 *
3927 * @param parallelismThreshold the (estimated) number of elements
3928 * needed for this operation to be executed in parallel
3929 * @param transformer a function returning the transformation
3930 * for an element, or null if there is no transformation (in
3931 * which case it is not combined)
3932 * @param reducer a commutative associative combining function
3933 * @param <U> the return type of the transformer
3934 * @return the result of accumulating the given transformation
3935 * of all keys
3936 * @since 1.8
3937 */
3938 public <U> U reduceKeys(long parallelismThreshold,
3939 Function<? super K, ? extends U> transformer,
3940 BiFunction<? super U, ? super U, ? extends U> reducer) {
3941 if (transformer == null || reducer == null)
3942 throw new NullPointerException();
3943 return new MapReduceKeysTask<K,V,U>
3944 (null, batchFor(parallelismThreshold), 0, 0, table,
3945 null, transformer, reducer).invoke();
3946 }
3947
3948 /**
3949 * Returns the result of accumulating the given transformation
3950 * of all keys using the given reducer to combine values, and
3951 * the given basis as an identity value.
3952 *
3953 * @param parallelismThreshold the (estimated) number of elements
3954 * needed for this operation to be executed in parallel
3955 * @param transformer a function returning the transformation
3956 * for an element
3957 * @param basis the identity (initial default value) for the reduction
3958 * @param reducer a commutative associative combining function
3959 * @return the result of accumulating the given transformation
3960 * of all keys
3961 * @since 1.8
3962 */
3963 public double reduceKeysToDouble(long parallelismThreshold,
3964 ToDoubleFunction<? super K> transformer,
3965 double basis,
3966 DoubleBinaryOperator reducer) {
3967 if (transformer == null || reducer == null)
3968 throw new NullPointerException();
3969 return new MapReduceKeysToDoubleTask<K,V>
3970 (null, batchFor(parallelismThreshold), 0, 0, table,
3971 null, transformer, basis, reducer).invoke();
3972 }
3973
3974 /**
3975 * Returns the result of accumulating the given transformation
3976 * of all keys using the given reducer to combine values, and
3977 * the given basis as an identity value.
3978 *
3979 * @param parallelismThreshold the (estimated) number of elements
3980 * needed for this operation to be executed in parallel
3981 * @param transformer a function returning the transformation
3982 * for an element
3983 * @param basis the identity (initial default value) for the reduction
3984 * @param reducer a commutative associative combining function
3985 * @return the result of accumulating the given transformation
3986 * of all keys
3987 * @since 1.8
3988 */
3989 public long reduceKeysToLong(long parallelismThreshold,
3990 ToLongFunction<? super K> transformer,
3991 long basis,
3992 LongBinaryOperator reducer) {
3993 if (transformer == null || reducer == null)
3994 throw new NullPointerException();
3995 return new MapReduceKeysToLongTask<K,V>
3996 (null, batchFor(parallelismThreshold), 0, 0, table,
3997 null, transformer, basis, reducer).invoke();
3998 }
3999
4000 /**
4001 * Returns the result of accumulating the given transformation
4002 * of all keys using the given reducer to combine values, and
4003 * the given basis as an identity value.
4004 *
4005 * @param parallelismThreshold the (estimated) number of elements
4006 * needed for this operation to be executed in parallel
4007 * @param transformer a function returning the transformation
4008 * for an element
4009 * @param basis the identity (initial default value) for the reduction
4010 * @param reducer a commutative associative combining function
4011 * @return the result of accumulating the given transformation
4012 * of all keys
4013 * @since 1.8
4014 */
4015 public int reduceKeysToInt(long parallelismThreshold,
4016 ToIntFunction<? super K> transformer,
4017 int basis,
4018 IntBinaryOperator reducer) {
4019 if (transformer == null || reducer == null)
4020 throw new NullPointerException();
4021 return new MapReduceKeysToIntTask<K,V>
4022 (null, batchFor(parallelismThreshold), 0, 0, table,
4023 null, transformer, basis, reducer).invoke();
4024 }
4025
4026 /**
4027 * Performs the given action for each value.
4028 *
4029 * @param parallelismThreshold the (estimated) number of elements
4030 * needed for this operation to be executed in parallel
4031 * @param action the action
4032 * @since 1.8
4033 */
4034 public void forEachValue(long parallelismThreshold,
4035 Consumer<? super V> action) {
4036 if (action == null)
4037 throw new NullPointerException();
4038 new ForEachValueTask<K,V>
4039 (null, batchFor(parallelismThreshold), 0, 0, table,
4040 action).invoke();
4041 }
4042
4043 /**
4044 * Performs the given action for each non-null transformation
4045 * of each value.
4046 *
4047 * @param parallelismThreshold the (estimated) number of elements
4048 * needed for this operation to be executed in parallel
4049 * @param transformer a function returning the transformation
4050 * for an element, or null if there is no transformation (in
4051 * which case the action is not applied)
4052 * @param action the action
4053 * @param <U> the return type of the transformer
4054 * @since 1.8
4055 */
4056 public <U> void forEachValue(long parallelismThreshold,
4057 Function<? super V, ? extends U> transformer,
4058 Consumer<? super U> action) {
4059 if (transformer == null || action == null)
4060 throw new NullPointerException();
4061 new ForEachTransformedValueTask<K,V,U>
4062 (null, batchFor(parallelismThreshold), 0, 0, table,
4063 transformer, action).invoke();
4064 }
4065
4066 /**
4067 * Returns a non-null result from applying the given search
4068 * function on each value, or null if none. Upon success,
4069 * further element processing is suppressed and the results of
4070 * any other parallel invocations of the search function are
4071 * ignored.
4072 *
4073 * @param parallelismThreshold the (estimated) number of elements
4074 * needed for this operation to be executed in parallel
4075 * @param searchFunction a function returning a non-null
4076 * result on success, else null
4077 * @param <U> the return type of the search function
4078 * @return a non-null result from applying the given search
4079 * function on each value, or null if none
4080 * @since 1.8
4081 */
4082 public <U> U searchValues(long parallelismThreshold,
4083 Function<? super V, ? extends U> searchFunction) {
4084 if (searchFunction == null) throw new NullPointerException();
4085 return new SearchValuesTask<K,V,U>
4086 (null, batchFor(parallelismThreshold), 0, 0, table,
4087 searchFunction, new AtomicReference<U>()).invoke();
4088 }
4089
4090 /**
4091 * Returns the result of accumulating all values using the
4092 * given reducer to combine values, or null if none.
4093 *
4094 * @param parallelismThreshold the (estimated) number of elements
4095 * needed for this operation to be executed in parallel
4096 * @param reducer a commutative associative combining function
4097 * @return the result of accumulating all values
4098 * @since 1.8
4099 */
4100 public V reduceValues(long parallelismThreshold,
4101 BiFunction<? super V, ? super V, ? extends V> reducer) {
4102 if (reducer == null) throw new NullPointerException();
4103 return new ReduceValuesTask<K,V>
4104 (null, batchFor(parallelismThreshold), 0, 0, table,
4105 null, reducer).invoke();
4106 }
4107
4108 /**
4109 * Returns the result of accumulating the given transformation
4110 * of all values using the given reducer to combine values, or
4111 * null if none.
4112 *
4113 * @param parallelismThreshold the (estimated) number of elements
4114 * needed for this operation to be executed in parallel
4115 * @param transformer a function returning the transformation
4116 * for an element, or null if there is no transformation (in
4117 * which case it is not combined)
4118 * @param reducer a commutative associative combining function
4119 * @param <U> the return type of the transformer
4120 * @return the result of accumulating the given transformation
4121 * of all values
4122 * @since 1.8
4123 */
4124 public <U> U reduceValues(long parallelismThreshold,
4125 Function<? super V, ? extends U> transformer,
4126 BiFunction<? super U, ? super U, ? extends U> reducer) {
4127 if (transformer == null || reducer == null)
4128 throw new NullPointerException();
4129 return new MapReduceValuesTask<K,V,U>
4130 (null, batchFor(parallelismThreshold), 0, 0, table,
4131 null, transformer, reducer).invoke();
4132 }
4133
4134 /**
4135 * Returns the result of accumulating the given transformation
4136 * of all values using the given reducer to combine values,
4137 * and the given basis as an identity value.
4138 *
4139 * @param parallelismThreshold the (estimated) number of elements
4140 * needed for this operation to be executed in parallel
4141 * @param transformer a function returning the transformation
4142 * for an element
4143 * @param basis the identity (initial default value) for the reduction
4144 * @param reducer a commutative associative combining function
4145 * @return the result of accumulating the given transformation
4146 * of all values
4147 * @since 1.8
4148 */
4149 public double reduceValuesToDouble(long parallelismThreshold,
4150 ToDoubleFunction<? super V> transformer,
4151 double basis,
4152 DoubleBinaryOperator reducer) {
4153 if (transformer == null || reducer == null)
4154 throw new NullPointerException();
4155 return new MapReduceValuesToDoubleTask<K,V>
4156 (null, batchFor(parallelismThreshold), 0, 0, table,
4157 null, transformer, basis, reducer).invoke();
4158 }
4159
4160 /**
4161 * Returns the result of accumulating the given transformation
4162 * of all values using the given reducer to combine values,
4163 * and the given basis as an identity value.
4164 *
4165 * @param parallelismThreshold the (estimated) number of elements
4166 * needed for this operation to be executed in parallel
4167 * @param transformer a function returning the transformation
4168 * for an element
4169 * @param basis the identity (initial default value) for the reduction
4170 * @param reducer a commutative associative combining function
4171 * @return the result of accumulating the given transformation
4172 * of all values
4173 * @since 1.8
4174 */
4175 public long reduceValuesToLong(long parallelismThreshold,
4176 ToLongFunction<? super V> transformer,
4177 long basis,
4178 LongBinaryOperator reducer) {
4179 if (transformer == null || reducer == null)
4180 throw new NullPointerException();
4181 return new MapReduceValuesToLongTask<K,V>
4182 (null, batchFor(parallelismThreshold), 0, 0, table,
4183 null, transformer, basis, reducer).invoke();
4184 }
4185
4186 /**
4187 * Returns the result of accumulating the given transformation
4188 * of all values using the given reducer to combine values,
4189 * and the given basis as an identity value.
4190 *
4191 * @param parallelismThreshold the (estimated) number of elements
4192 * needed for this operation to be executed in parallel
4193 * @param transformer a function returning the transformation
4194 * for an element
4195 * @param basis the identity (initial default value) for the reduction
4196 * @param reducer a commutative associative combining function
4197 * @return the result of accumulating the given transformation
4198 * of all values
4199 * @since 1.8
4200 */
4201 public int reduceValuesToInt(long parallelismThreshold,
4202 ToIntFunction<? super V> transformer,
4203 int basis,
4204 IntBinaryOperator reducer) {
4205 if (transformer == null || reducer == null)
4206 throw new NullPointerException();
4207 return new MapReduceValuesToIntTask<K,V>
4208 (null, batchFor(parallelismThreshold), 0, 0, table,
4209 null, transformer, basis, reducer).invoke();
4210 }
4211
4212 /**
4213 * Performs the given action for each entry.
4214 *
4215 * @param parallelismThreshold the (estimated) number of elements
4216 * needed for this operation to be executed in parallel
4217 * @param action the action
4218 * @since 1.8
4219 */
4220 public void forEachEntry(long parallelismThreshold,
4221 Consumer<? super Map.Entry<K,V>> action) {
4222 if (action == null) throw new NullPointerException();
4223 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4224 action).invoke();
4225 }
4226
4227 /**
4228 * Performs the given action for each non-null transformation
4229 * of each entry.
4230 *
4231 * @param parallelismThreshold the (estimated) number of elements
4232 * needed for this operation to be executed in parallel
4233 * @param transformer a function returning the transformation
4234 * for an element, or null if there is no transformation (in
4235 * which case the action is not applied)
4236 * @param action the action
4237 * @param <U> the return type of the transformer
4238 * @since 1.8
4239 */
4240 public <U> void forEachEntry(long parallelismThreshold,
4241 Function<Map.Entry<K,V>, ? extends U> transformer,
4242 Consumer<? super U> action) {
4243 if (transformer == null || action == null)
4244 throw new NullPointerException();
4245 new ForEachTransformedEntryTask<K,V,U>
4246 (null, batchFor(parallelismThreshold), 0, 0, table,
4247 transformer, action).invoke();
4248 }
4249
4250 /**
4251 * Returns a non-null result from applying the given search
4252 * function on each entry, or null if none. Upon success,
4253 * further element processing is suppressed and the results of
4254 * any other parallel invocations of the search function are
4255 * ignored.
4256 *
4257 * @param parallelismThreshold the (estimated) number of elements
4258 * needed for this operation to be executed in parallel
4259 * @param searchFunction a function returning a non-null
4260 * result on success, else null
4261 * @param <U> the return type of the search function
4262 * @return a non-null result from applying the given search
4263 * function on each entry, or null if none
4264 * @since 1.8
4265 */
4266 public <U> U searchEntries(long parallelismThreshold,
4267 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4268 if (searchFunction == null) throw new NullPointerException();
4269 return new SearchEntriesTask<K,V,U>
4270 (null, batchFor(parallelismThreshold), 0, 0, table,
4271 searchFunction, new AtomicReference<U>()).invoke();
4272 }
4273
4274 /**
4275 * Returns the result of accumulating all entries using the
4276 * given reducer to combine values, or null if none.
4277 *
4278 * @param parallelismThreshold the (estimated) number of elements
4279 * needed for this operation to be executed in parallel
4280 * @param reducer a commutative associative combining function
4281 * @return the result of accumulating all entries
4282 * @since 1.8
4283 */
4284 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4285 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4286 if (reducer == null) throw new NullPointerException();
4287 return new ReduceEntriesTask<K,V>
4288 (null, batchFor(parallelismThreshold), 0, 0, table,
4289 null, reducer).invoke();
4290 }
4291
4292 /**
4293 * Returns the result of accumulating the given transformation
4294 * of all entries using the given reducer to combine values,
4295 * or null if none.
4296 *
4297 * @param parallelismThreshold the (estimated) number of elements
4298 * needed for this operation to be executed in parallel
4299 * @param transformer a function returning the transformation
4300 * for an element, or null if there is no transformation (in
4301 * which case it is not combined)
4302 * @param reducer a commutative associative combining function
4303 * @param <U> the return type of the transformer
4304 * @return the result of accumulating the given transformation
4305 * of all entries
4306 * @since 1.8
4307 */
4308 public <U> U reduceEntries(long parallelismThreshold,
4309 Function<Map.Entry<K,V>, ? extends U> transformer,
4310 BiFunction<? super U, ? super U, ? extends U> reducer) {
4311 if (transformer == null || reducer == null)
4312 throw new NullPointerException();
4313 return new MapReduceEntriesTask<K,V,U>
4314 (null, batchFor(parallelismThreshold), 0, 0, table,
4315 null, transformer, reducer).invoke();
4316 }
4317
4318 /**
4319 * Returns the result of accumulating the given transformation
4320 * of all entries using the given reducer to combine values,
4321 * and the given basis as an identity value.
4322 *
4323 * @param parallelismThreshold the (estimated) number of elements
4324 * needed for this operation to be executed in parallel
4325 * @param transformer a function returning the transformation
4326 * for an element
4327 * @param basis the identity (initial default value) for the reduction
4328 * @param reducer a commutative associative combining function
4329 * @return the result of accumulating the given transformation
4330 * of all entries
4331 * @since 1.8
4332 */
4333 public double reduceEntriesToDouble(long parallelismThreshold,
4334 ToDoubleFunction<Map.Entry<K,V>> transformer,
4335 double basis,
4336 DoubleBinaryOperator reducer) {
4337 if (transformer == null || reducer == null)
4338 throw new NullPointerException();
4339 return new MapReduceEntriesToDoubleTask<K,V>
4340 (null, batchFor(parallelismThreshold), 0, 0, table,
4341 null, transformer, basis, reducer).invoke();
4342 }
4343
4344 /**
4345 * Returns the result of accumulating the given transformation
4346 * of all entries using the given reducer to combine values,
4347 * and the given basis as an identity value.
4348 *
4349 * @param parallelismThreshold the (estimated) number of elements
4350 * needed for this operation to be executed in parallel
4351 * @param transformer a function returning the transformation
4352 * for an element
4353 * @param basis the identity (initial default value) for the reduction
4354 * @param reducer a commutative associative combining function
4355 * @return the result of accumulating the given transformation
4356 * of all entries
4357 * @since 1.8
4358 */
4359 public long reduceEntriesToLong(long parallelismThreshold,
4360 ToLongFunction<Map.Entry<K,V>> transformer,
4361 long basis,
4362 LongBinaryOperator reducer) {
4363 if (transformer == null || reducer == null)
4364 throw new NullPointerException();
4365 return new MapReduceEntriesToLongTask<K,V>
4366 (null, batchFor(parallelismThreshold), 0, 0, table,
4367 null, transformer, basis, reducer).invoke();
4368 }
4369
4370 /**
4371 * Returns the result of accumulating the given transformation
4372 * of all entries using the given reducer to combine values,
4373 * and the given basis as an identity value.
4374 *
4375 * @param parallelismThreshold the (estimated) number of elements
4376 * needed for this operation to be executed in parallel
4377 * @param transformer a function returning the transformation
4378 * for an element
4379 * @param basis the identity (initial default value) for the reduction
4380 * @param reducer a commutative associative combining function
4381 * @return the result of accumulating the given transformation
4382 * of all entries
4383 * @since 1.8
4384 */
4385 public int reduceEntriesToInt(long parallelismThreshold,
4386 ToIntFunction<Map.Entry<K,V>> transformer,
4387 int basis,
4388 IntBinaryOperator reducer) {
4389 if (transformer == null || reducer == null)
4390 throw new NullPointerException();
4391 return new MapReduceEntriesToIntTask<K,V>
4392 (null, batchFor(parallelismThreshold), 0, 0, table,
4393 null, transformer, basis, reducer).invoke();
4394 }
4395
4396
4397 /* ----------------Views -------------- */
4398
4399 /**
4400 * Base class for views.
4401 */
4402 abstract static class CollectionView<K,V,E>
4403 implements Collection<E>, java.io.Serializable {
4404 private static final long serialVersionUID = 7249069246763182397L;
4405 final ConcurrentHashMap<K,V> map;
4406 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4407
4408 /**
4409 * Returns the map backing this view.
4410 *
4411 * @return the map backing this view
4412 */
4413 public ConcurrentHashMap<K,V> getMap() { return map; }
4414
4415 /**
4416 * Removes all of the elements from this view, by removing all
4417 * the mappings from the map backing this view.
4418 */
4419 public final void clear() { map.clear(); }
4420 public final int size() { return map.size(); }
4421 public final boolean isEmpty() { return map.isEmpty(); }
4422
4423 // implementations below rely on concrete classes supplying these
4424 // abstract methods
4425 /**
4426 * Returns an iterator over the elements in this collection.
4427 *
4428 * <p>The returned iterator is
4429 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4430 *
4431 * @return an iterator over the elements in this collection
4432 */
4433 public abstract Iterator<E> iterator();
4434 public abstract boolean contains(Object o);
4435 public abstract boolean remove(Object o);
4436
4437 private static final String OOME_MSG = "Required array size too large";
4438
4439 public final Object[] toArray() {
4440 long sz = map.mappingCount();
4441 if (sz > MAX_ARRAY_SIZE)
4442 throw new OutOfMemoryError(OOME_MSG);
4443 int n = (int)sz;
4444 Object[] r = new Object[n];
4445 int i = 0;
4446 for (E e : this) {
4447 if (i == n) {
4448 if (n >= MAX_ARRAY_SIZE)
4449 throw new OutOfMemoryError(OOME_MSG);
4450 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4451 n = MAX_ARRAY_SIZE;
4452 else
4453 n += (n >>> 1) + 1;
4454 r = Arrays.copyOf(r, n);
4455 }
4456 r[i++] = e;
4457 }
4458 return (i == n) ? r : Arrays.copyOf(r, i);
4459 }
4460
4461 @SuppressWarnings("unchecked")
4462 public final <T> T[] toArray(T[] a) {
4463 long sz = map.mappingCount();
4464 if (sz > MAX_ARRAY_SIZE)
4465 throw new OutOfMemoryError(OOME_MSG);
4466 int m = (int)sz;
4467 T[] r = (a.length >= m) ? a :
4468 (T[])java.lang.reflect.Array
4469 .newInstance(a.getClass().getComponentType(), m);
4470 int n = r.length;
4471 int i = 0;
4472 for (E e : this) {
4473 if (i == n) {
4474 if (n >= MAX_ARRAY_SIZE)
4475 throw new OutOfMemoryError(OOME_MSG);
4476 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4477 n = MAX_ARRAY_SIZE;
4478 else
4479 n += (n >>> 1) + 1;
4480 r = Arrays.copyOf(r, n);
4481 }
4482 r[i++] = (T)e;
4483 }
4484 if (a == r && i < n) {
4485 r[i] = null; // null-terminate
4486 return r;
4487 }
4488 return (i == n) ? r : Arrays.copyOf(r, i);
4489 }
4490
4491 /**
4492 * Returns a string representation of this collection.
4493 * The string representation consists of the string representations
4494 * of the collection's elements in the order they are returned by
4495 * its iterator, enclosed in square brackets ({@code "[]"}).
4496 * Adjacent elements are separated by the characters {@code ", "}
4497 * (comma and space). Elements are converted to strings as by
4498 * {@link String#valueOf(Object)}.
4499 *
4500 * @return a string representation of this collection
4501 */
4502 public final String toString() {
4503 StringBuilder sb = new StringBuilder();
4504 sb.append('[');
4505 Iterator<E> it = iterator();
4506 if (it.hasNext()) {
4507 for (;;) {
4508 Object e = it.next();
4509 sb.append(e == this ? "(this Collection)" : e);
4510 if (!it.hasNext())
4511 break;
4512 sb.append(',').append(' ');
4513 }
4514 }
4515 return sb.append(']').toString();
4516 }
4517
4518 public final boolean containsAll(Collection<?> c) {
4519 if (c != this) {
4520 for (Object e : c) {
4521 if (e == null || !contains(e))
4522 return false;
4523 }
4524 }
4525 return true;
4526 }
4527
4528 public final boolean removeAll(Collection<?> c) {
4529 if (c == null) throw new NullPointerException();
4530 boolean modified = false;
4531 for (Iterator<E> it = iterator(); it.hasNext();) {
4532 if (c.contains(it.next())) {
4533 it.remove();
4534 modified = true;
4535 }
4536 }
4537 return modified;
4538 }
4539
4540 public final boolean retainAll(Collection<?> c) {
4541 if (c == null) throw new NullPointerException();
4542 boolean modified = false;
4543 for (Iterator<E> it = iterator(); it.hasNext();) {
4544 if (!c.contains(it.next())) {
4545 it.remove();
4546 modified = true;
4547 }
4548 }
4549 return modified;
4550 }
4551
4552 }
4553
4554 /**
4555 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4556 * which additions may optionally be enabled by mapping to a
4557 * common value. This class cannot be directly instantiated.
4558 * See {@link #keySet() keySet()},
4559 * {@link #keySet(Object) keySet(V)},
4560 * {@link #newKeySet() newKeySet()},
4561 * {@link #newKeySet(int) newKeySet(int)}.
4562 *
4563 * @since 1.8
4564 */
4565 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4566 implements Set<K>, java.io.Serializable {
4567 private static final long serialVersionUID = 7249069246763182397L;
4568 private final V value;
4569 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4570 super(map);
4571 this.value = value;
4572 }
4573
4574 /**
4575 * Returns the default mapped value for additions,
4576 * or {@code null} if additions are not supported.
4577 *
4578 * @return the default mapped value for additions, or {@code null}
4579 * if not supported
4580 */
4581 public V getMappedValue() { return value; }
4582
4583 /**
4584 * {@inheritDoc}
4585 * @throws NullPointerException if the specified key is null
4586 */
4587 public boolean contains(Object o) { return map.containsKey(o); }
4588
4589 /**
4590 * Removes the key from this map view, by removing the key (and its
4591 * corresponding value) from the backing map. This method does
4592 * nothing if the key is not in the map.
4593 *
4594 * @param o the key to be removed from the backing map
4595 * @return {@code true} if the backing map contained the specified key
4596 * @throws NullPointerException if the specified key is null
4597 */
4598 public boolean remove(Object o) { return map.remove(o) != null; }
4599
4600 /**
4601 * @return an iterator over the keys of the backing map
4602 */
4603 public Iterator<K> iterator() {
4604 Node<K,V>[] t;
4605 ConcurrentHashMap<K,V> m = map;
4606 int f = (t = m.table) == null ? 0 : t.length;
4607 return new KeyIterator<K,V>(t, f, 0, f, m);
4608 }
4609
4610 /**
4611 * Adds the specified key to this set view by mapping the key to
4612 * the default mapped value in the backing map, if defined.
4613 *
4614 * @param e key to be added
4615 * @return {@code true} if this set changed as a result of the call
4616 * @throws NullPointerException if the specified key is null
4617 * @throws UnsupportedOperationException if no default mapped value
4618 * for additions was provided
4619 */
4620 public boolean add(K e) {
4621 V v;
4622 if ((v = value) == null)
4623 throw new UnsupportedOperationException();
4624 return map.putVal(e, v, true) == null;
4625 }
4626
4627 /**
4628 * Adds all of the elements in the specified collection to this set,
4629 * as if by calling {@link #add} on each one.
4630 *
4631 * @param c the elements to be inserted into this set
4632 * @return {@code true} if this set changed as a result of the call
4633 * @throws NullPointerException if the collection or any of its
4634 * elements are {@code null}
4635 * @throws UnsupportedOperationException if no default mapped value
4636 * for additions was provided
4637 */
4638 public boolean addAll(Collection<? extends K> c) {
4639 boolean added = false;
4640 V v;
4641 if ((v = value) == null)
4642 throw new UnsupportedOperationException();
4643 for (K e : c) {
4644 if (map.putVal(e, v, true) == null)
4645 added = true;
4646 }
4647 return added;
4648 }
4649
4650 public int hashCode() {
4651 int h = 0;
4652 for (K e : this)
4653 h += e.hashCode();
4654 return h;
4655 }
4656
4657 public boolean equals(Object o) {
4658 Set<?> c;
4659 return ((o instanceof Set) &&
4660 ((c = (Set<?>)o) == this ||
4661 (containsAll(c) && c.containsAll(this))));
4662 }
4663
4664 public Spliterator<K> spliterator() {
4665 Node<K,V>[] t;
4666 ConcurrentHashMap<K,V> m = map;
4667 long n = m.sumCount();
4668 int f = (t = m.table) == null ? 0 : t.length;
4669 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4670 }
4671
4672 public void forEach(Consumer<? super K> action) {
4673 if (action == null) throw new NullPointerException();
4674 Node<K,V>[] t;
4675 if ((t = map.table) != null) {
4676 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4677 for (Node<K,V> p; (p = it.advance()) != null; )
4678 action.accept(p.key);
4679 }
4680 }
4681 }
4682
4683 /**
4684 * A view of a ConcurrentHashMap as a {@link Collection} of
4685 * values, in which additions are disabled. This class cannot be
4686 * directly instantiated. See {@link #values()}.
4687 */
4688 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4689 implements Collection<V>, java.io.Serializable {
4690 private static final long serialVersionUID = 2249069246763182397L;
4691 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4692 public final boolean contains(Object o) {
4693 return map.containsValue(o);
4694 }
4695
4696 public final boolean remove(Object o) {
4697 if (o != null) {
4698 for (Iterator<V> it = iterator(); it.hasNext();) {
4699 if (o.equals(it.next())) {
4700 it.remove();
4701 return true;
4702 }
4703 }
4704 }
4705 return false;
4706 }
4707
4708 public final Iterator<V> iterator() {
4709 ConcurrentHashMap<K,V> m = map;
4710 Node<K,V>[] t;
4711 int f = (t = m.table) == null ? 0 : t.length;
4712 return new ValueIterator<K,V>(t, f, 0, f, m);
4713 }
4714
4715 public final boolean add(V e) {
4716 throw new UnsupportedOperationException();
4717 }
4718 public final boolean addAll(Collection<? extends V> c) {
4719 throw new UnsupportedOperationException();
4720 }
4721
4722 public boolean removeIf(Predicate<? super V> filter) {
4723 return map.removeValueIf(filter);
4724 }
4725
4726 public Spliterator<V> spliterator() {
4727 Node<K,V>[] t;
4728 ConcurrentHashMap<K,V> m = map;
4729 long n = m.sumCount();
4730 int f = (t = m.table) == null ? 0 : t.length;
4731 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4732 }
4733
4734 public void forEach(Consumer<? super V> action) {
4735 if (action == null) throw new NullPointerException();
4736 Node<K,V>[] t;
4737 if ((t = map.table) != null) {
4738 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4739 for (Node<K,V> p; (p = it.advance()) != null; )
4740 action.accept(p.val);
4741 }
4742 }
4743 }
4744
4745 /**
4746 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4747 * entries. This class cannot be directly instantiated. See
4748 * {@link #entrySet()}.
4749 */
4750 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4751 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4752 private static final long serialVersionUID = 2249069246763182397L;
4753 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4754
4755 public boolean contains(Object o) {
4756 Object k, v, r; Map.Entry<?,?> e;
4757 return ((o instanceof Map.Entry) &&
4758 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4759 (r = map.get(k)) != null &&
4760 (v = e.getValue()) != null &&
4761 (v == r || v.equals(r)));
4762 }
4763
4764 public boolean remove(Object o) {
4765 Object k, v; Map.Entry<?,?> e;
4766 return ((o instanceof Map.Entry) &&
4767 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4768 (v = e.getValue()) != null &&
4769 map.remove(k, v));
4770 }
4771
4772 /**
4773 * @return an iterator over the entries of the backing map
4774 */
4775 public Iterator<Map.Entry<K,V>> iterator() {
4776 ConcurrentHashMap<K,V> m = map;
4777 Node<K,V>[] t;
4778 int f = (t = m.table) == null ? 0 : t.length;
4779 return new EntryIterator<K,V>(t, f, 0, f, m);
4780 }
4781
4782 public boolean add(Entry<K,V> e) {
4783 return map.putVal(e.getKey(), e.getValue(), false) == null;
4784 }
4785
4786 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4787 boolean added = false;
4788 for (Entry<K,V> e : c) {
4789 if (add(e))
4790 added = true;
4791 }
4792 return added;
4793 }
4794
4795 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4796 return map.removeEntryIf(filter);
4797 }
4798
4799 public final int hashCode() {
4800 int h = 0;
4801 Node<K,V>[] t;
4802 if ((t = map.table) != null) {
4803 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4804 for (Node<K,V> p; (p = it.advance()) != null; ) {
4805 h += p.hashCode();
4806 }
4807 }
4808 return h;
4809 }
4810
4811 public final boolean equals(Object o) {
4812 Set<?> c;
4813 return ((o instanceof Set) &&
4814 ((c = (Set<?>)o) == this ||
4815 (containsAll(c) && c.containsAll(this))));
4816 }
4817
4818 public Spliterator<Map.Entry<K,V>> spliterator() {
4819 Node<K,V>[] t;
4820 ConcurrentHashMap<K,V> m = map;
4821 long n = m.sumCount();
4822 int f = (t = m.table) == null ? 0 : t.length;
4823 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4824 }
4825
4826 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4827 if (action == null) throw new NullPointerException();
4828 Node<K,V>[] t;
4829 if ((t = map.table) != null) {
4830 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4831 for (Node<K,V> p; (p = it.advance()) != null; )
4832 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4833 }
4834 }
4835
4836 }
4837
4838 // -------------------------------------------------------
4839
4840 /**
4841 * Base class for bulk tasks. Repeats some fields and code from
4842 * class Traverser, because we need to subclass CountedCompleter.
4843 */
4844 @SuppressWarnings("serial")
4845 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4846 Node<K,V>[] tab; // same as Traverser
4847 Node<K,V> next;
4848 TableStack<K,V> stack, spare;
4849 int index;
4850 int baseIndex;
4851 int baseLimit;
4852 final int baseSize;
4853 int batch; // split control
4854
4855 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4856 super(par);
4857 this.batch = b;
4858 this.index = this.baseIndex = i;
4859 if ((this.tab = t) == null)
4860 this.baseSize = this.baseLimit = 0;
4861 else if (par == null)
4862 this.baseSize = this.baseLimit = t.length;
4863 else {
4864 this.baseLimit = f;
4865 this.baseSize = par.baseSize;
4866 }
4867 }
4868
4869 /**
4870 * Same as Traverser version.
4871 */
4872 final Node<K,V> advance() {
4873 Node<K,V> e;
4874 if ((e = next) != null)
4875 e = e.next;
4876 for (;;) {
4877 Node<K,V>[] t; int i, n;
4878 if (e != null)
4879 return next = e;
4880 if (baseIndex >= baseLimit || (t = tab) == null ||
4881 (n = t.length) <= (i = index) || i < 0)
4882 return next = null;
4883 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4884 if (e instanceof ForwardingNode) {
4885 tab = ((ForwardingNode<K,V>)e).nextTable;
4886 e = null;
4887 pushState(t, i, n);
4888 continue;
4889 }
4890 else if (e instanceof TreeBin)
4891 e = ((TreeBin<K,V>)e).first;
4892 else
4893 e = null;
4894 }
4895 if (stack != null)
4896 recoverState(n);
4897 else if ((index = i + baseSize) >= n)
4898 index = ++baseIndex;
4899 }
4900 }
4901
4902 private void pushState(Node<K,V>[] t, int i, int n) {
4903 TableStack<K,V> s = spare;
4904 if (s != null)
4905 spare = s.next;
4906 else
4907 s = new TableStack<K,V>();
4908 s.tab = t;
4909 s.length = n;
4910 s.index = i;
4911 s.next = stack;
4912 stack = s;
4913 }
4914
4915 private void recoverState(int n) {
4916 TableStack<K,V> s; int len;
4917 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4918 n = len;
4919 index = s.index;
4920 tab = s.tab;
4921 s.tab = null;
4922 TableStack<K,V> next = s.next;
4923 s.next = spare; // save for reuse
4924 stack = next;
4925 spare = s;
4926 }
4927 if (s == null && (index += baseSize) >= n)
4928 index = ++baseIndex;
4929 }
4930 }
4931
4932 /*
4933 * Task classes. Coded in a regular but ugly format/style to
4934 * simplify checks that each variant differs in the right way from
4935 * others. The null screenings exist because compilers cannot tell
4936 * that we've already null-checked task arguments, so we force
4937 * simplest hoisted bypass to help avoid convoluted traps.
4938 */
4939 @SuppressWarnings("serial")
4940 static final class ForEachKeyTask<K,V>
4941 extends BulkTask<K,V,Void> {
4942 final Consumer<? super K> action;
4943 ForEachKeyTask
4944 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4945 Consumer<? super K> action) {
4946 super(p, b, i, f, t);
4947 this.action = action;
4948 }
4949 public final void compute() {
4950 final Consumer<? super K> action;
4951 if ((action = this.action) != null) {
4952 for (int i = baseIndex, f, h; batch > 0 &&
4953 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4954 addToPendingCount(1);
4955 new ForEachKeyTask<K,V>
4956 (this, batch >>>= 1, baseLimit = h, f, tab,
4957 action).fork();
4958 }
4959 for (Node<K,V> p; (p = advance()) != null;)
4960 action.accept(p.key);
4961 propagateCompletion();
4962 }
4963 }
4964 }
4965
4966 @SuppressWarnings("serial")
4967 static final class ForEachValueTask<K,V>
4968 extends BulkTask<K,V,Void> {
4969 final Consumer<? super V> action;
4970 ForEachValueTask
4971 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4972 Consumer<? super V> action) {
4973 super(p, b, i, f, t);
4974 this.action = action;
4975 }
4976 public final void compute() {
4977 final Consumer<? super V> action;
4978 if ((action = this.action) != null) {
4979 for (int i = baseIndex, f, h; batch > 0 &&
4980 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4981 addToPendingCount(1);
4982 new ForEachValueTask<K,V>
4983 (this, batch >>>= 1, baseLimit = h, f, tab,
4984 action).fork();
4985 }
4986 for (Node<K,V> p; (p = advance()) != null;)
4987 action.accept(p.val);
4988 propagateCompletion();
4989 }
4990 }
4991 }
4992
4993 @SuppressWarnings("serial")
4994 static final class ForEachEntryTask<K,V>
4995 extends BulkTask<K,V,Void> {
4996 final Consumer<? super Entry<K,V>> action;
4997 ForEachEntryTask
4998 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4999 Consumer<? super Entry<K,V>> action) {
5000 super(p, b, i, f, t);
5001 this.action = action;
5002 }
5003 public final void compute() {
5004 final Consumer<? super Entry<K,V>> action;
5005 if ((action = this.action) != null) {
5006 for (int i = baseIndex, f, h; batch > 0 &&
5007 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5008 addToPendingCount(1);
5009 new ForEachEntryTask<K,V>
5010 (this, batch >>>= 1, baseLimit = h, f, tab,
5011 action).fork();
5012 }
5013 for (Node<K,V> p; (p = advance()) != null; )
5014 action.accept(p);
5015 propagateCompletion();
5016 }
5017 }
5018 }
5019
5020 @SuppressWarnings("serial")
5021 static final class ForEachMappingTask<K,V>
5022 extends BulkTask<K,V,Void> {
5023 final BiConsumer<? super K, ? super V> action;
5024 ForEachMappingTask
5025 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5026 BiConsumer<? super K,? super V> action) {
5027 super(p, b, i, f, t);
5028 this.action = action;
5029 }
5030 public final void compute() {
5031 final BiConsumer<? super K, ? super V> action;
5032 if ((action = this.action) != null) {
5033 for (int i = baseIndex, f, h; batch > 0 &&
5034 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5035 addToPendingCount(1);
5036 new ForEachMappingTask<K,V>
5037 (this, batch >>>= 1, baseLimit = h, f, tab,
5038 action).fork();
5039 }
5040 for (Node<K,V> p; (p = advance()) != null; )
5041 action.accept(p.key, p.val);
5042 propagateCompletion();
5043 }
5044 }
5045 }
5046
5047 @SuppressWarnings("serial")
5048 static final class ForEachTransformedKeyTask<K,V,U>
5049 extends BulkTask<K,V,Void> {
5050 final Function<? super K, ? extends U> transformer;
5051 final Consumer<? super U> action;
5052 ForEachTransformedKeyTask
5053 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5054 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5055 super(p, b, i, f, t);
5056 this.transformer = transformer; this.action = action;
5057 }
5058 public final void compute() {
5059 final Function<? super K, ? extends U> transformer;
5060 final Consumer<? super U> action;
5061 if ((transformer = this.transformer) != null &&
5062 (action = this.action) != null) {
5063 for (int i = baseIndex, f, h; batch > 0 &&
5064 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5065 addToPendingCount(1);
5066 new ForEachTransformedKeyTask<K,V,U>
5067 (this, batch >>>= 1, baseLimit = h, f, tab,
5068 transformer, action).fork();
5069 }
5070 for (Node<K,V> p; (p = advance()) != null; ) {
5071 U u;
5072 if ((u = transformer.apply(p.key)) != null)
5073 action.accept(u);
5074 }
5075 propagateCompletion();
5076 }
5077 }
5078 }
5079
5080 @SuppressWarnings("serial")
5081 static final class ForEachTransformedValueTask<K,V,U>
5082 extends BulkTask<K,V,Void> {
5083 final Function<? super V, ? extends U> transformer;
5084 final Consumer<? super U> action;
5085 ForEachTransformedValueTask
5086 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5087 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5088 super(p, b, i, f, t);
5089 this.transformer = transformer; this.action = action;
5090 }
5091 public final void compute() {
5092 final Function<? super V, ? extends U> transformer;
5093 final Consumer<? super U> action;
5094 if ((transformer = this.transformer) != null &&
5095 (action = this.action) != null) {
5096 for (int i = baseIndex, f, h; batch > 0 &&
5097 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5098 addToPendingCount(1);
5099 new ForEachTransformedValueTask<K,V,U>
5100 (this, batch >>>= 1, baseLimit = h, f, tab,
5101 transformer, action).fork();
5102 }
5103 for (Node<K,V> p; (p = advance()) != null; ) {
5104 U u;
5105 if ((u = transformer.apply(p.val)) != null)
5106 action.accept(u);
5107 }
5108 propagateCompletion();
5109 }
5110 }
5111 }
5112
5113 @SuppressWarnings("serial")
5114 static final class ForEachTransformedEntryTask<K,V,U>
5115 extends BulkTask<K,V,Void> {
5116 final Function<Map.Entry<K,V>, ? extends U> transformer;
5117 final Consumer<? super U> action;
5118 ForEachTransformedEntryTask
5119 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5120 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5121 super(p, b, i, f, t);
5122 this.transformer = transformer; this.action = action;
5123 }
5124 public final void compute() {
5125 final Function<Map.Entry<K,V>, ? extends U> transformer;
5126 final Consumer<? super U> action;
5127 if ((transformer = this.transformer) != null &&
5128 (action = this.action) != null) {
5129 for (int i = baseIndex, f, h; batch > 0 &&
5130 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5131 addToPendingCount(1);
5132 new ForEachTransformedEntryTask<K,V,U>
5133 (this, batch >>>= 1, baseLimit = h, f, tab,
5134 transformer, action).fork();
5135 }
5136 for (Node<K,V> p; (p = advance()) != null; ) {
5137 U u;
5138 if ((u = transformer.apply(p)) != null)
5139 action.accept(u);
5140 }
5141 propagateCompletion();
5142 }
5143 }
5144 }
5145
5146 @SuppressWarnings("serial")
5147 static final class ForEachTransformedMappingTask<K,V,U>
5148 extends BulkTask<K,V,Void> {
5149 final BiFunction<? super K, ? super V, ? extends U> transformer;
5150 final Consumer<? super U> action;
5151 ForEachTransformedMappingTask
5152 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5153 BiFunction<? super K, ? super V, ? extends U> transformer,
5154 Consumer<? super U> action) {
5155 super(p, b, i, f, t);
5156 this.transformer = transformer; this.action = action;
5157 }
5158 public final void compute() {
5159 final BiFunction<? super K, ? super V, ? extends U> transformer;
5160 final Consumer<? super U> action;
5161 if ((transformer = this.transformer) != null &&
5162 (action = this.action) != null) {
5163 for (int i = baseIndex, f, h; batch > 0 &&
5164 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5165 addToPendingCount(1);
5166 new ForEachTransformedMappingTask<K,V,U>
5167 (this, batch >>>= 1, baseLimit = h, f, tab,
5168 transformer, action).fork();
5169 }
5170 for (Node<K,V> p; (p = advance()) != null; ) {
5171 U u;
5172 if ((u = transformer.apply(p.key, p.val)) != null)
5173 action.accept(u);
5174 }
5175 propagateCompletion();
5176 }
5177 }
5178 }
5179
5180 @SuppressWarnings("serial")
5181 static final class SearchKeysTask<K,V,U>
5182 extends BulkTask<K,V,U> {
5183 final Function<? super K, ? extends U> searchFunction;
5184 final AtomicReference<U> result;
5185 SearchKeysTask
5186 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5187 Function<? super K, ? extends U> searchFunction,
5188 AtomicReference<U> result) {
5189 super(p, b, i, f, t);
5190 this.searchFunction = searchFunction; this.result = result;
5191 }
5192 public final U getRawResult() { return result.get(); }
5193 public final void compute() {
5194 final Function<? super K, ? extends U> searchFunction;
5195 final AtomicReference<U> result;
5196 if ((searchFunction = this.searchFunction) != null &&
5197 (result = this.result) != null) {
5198 for (int i = baseIndex, f, h; batch > 0 &&
5199 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5200 if (result.get() != null)
5201 return;
5202 addToPendingCount(1);
5203 new SearchKeysTask<K,V,U>
5204 (this, batch >>>= 1, baseLimit = h, f, tab,
5205 searchFunction, result).fork();
5206 }
5207 while (result.get() == null) {
5208 U u;
5209 Node<K,V> p;
5210 if ((p = advance()) == null) {
5211 propagateCompletion();
5212 break;
5213 }
5214 if ((u = searchFunction.apply(p.key)) != null) {
5215 if (result.compareAndSet(null, u))
5216 quietlyCompleteRoot();
5217 break;
5218 }
5219 }
5220 }
5221 }
5222 }
5223
5224 @SuppressWarnings("serial")
5225 static final class SearchValuesTask<K,V,U>
5226 extends BulkTask<K,V,U> {
5227 final Function<? super V, ? extends U> searchFunction;
5228 final AtomicReference<U> result;
5229 SearchValuesTask
5230 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5231 Function<? super V, ? extends U> searchFunction,
5232 AtomicReference<U> result) {
5233 super(p, b, i, f, t);
5234 this.searchFunction = searchFunction; this.result = result;
5235 }
5236 public final U getRawResult() { return result.get(); }
5237 public final void compute() {
5238 final Function<? super V, ? extends U> searchFunction;
5239 final AtomicReference<U> result;
5240 if ((searchFunction = this.searchFunction) != null &&
5241 (result = this.result) != null) {
5242 for (int i = baseIndex, f, h; batch > 0 &&
5243 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5244 if (result.get() != null)
5245 return;
5246 addToPendingCount(1);
5247 new SearchValuesTask<K,V,U>
5248 (this, batch >>>= 1, baseLimit = h, f, tab,
5249 searchFunction, result).fork();
5250 }
5251 while (result.get() == null) {
5252 U u;
5253 Node<K,V> p;
5254 if ((p = advance()) == null) {
5255 propagateCompletion();
5256 break;
5257 }
5258 if ((u = searchFunction.apply(p.val)) != null) {
5259 if (result.compareAndSet(null, u))
5260 quietlyCompleteRoot();
5261 break;
5262 }
5263 }
5264 }
5265 }
5266 }
5267
5268 @SuppressWarnings("serial")
5269 static final class SearchEntriesTask<K,V,U>
5270 extends BulkTask<K,V,U> {
5271 final Function<Entry<K,V>, ? extends U> searchFunction;
5272 final AtomicReference<U> result;
5273 SearchEntriesTask
5274 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5275 Function<Entry<K,V>, ? extends U> searchFunction,
5276 AtomicReference<U> result) {
5277 super(p, b, i, f, t);
5278 this.searchFunction = searchFunction; this.result = result;
5279 }
5280 public final U getRawResult() { return result.get(); }
5281 public final void compute() {
5282 final Function<Entry<K,V>, ? extends U> searchFunction;
5283 final AtomicReference<U> result;
5284 if ((searchFunction = this.searchFunction) != null &&
5285 (result = this.result) != null) {
5286 for (int i = baseIndex, f, h; batch > 0 &&
5287 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5288 if (result.get() != null)
5289 return;
5290 addToPendingCount(1);
5291 new SearchEntriesTask<K,V,U>
5292 (this, batch >>>= 1, baseLimit = h, f, tab,
5293 searchFunction, result).fork();
5294 }
5295 while (result.get() == null) {
5296 U u;
5297 Node<K,V> p;
5298 if ((p = advance()) == null) {
5299 propagateCompletion();
5300 break;
5301 }
5302 if ((u = searchFunction.apply(p)) != null) {
5303 if (result.compareAndSet(null, u))
5304 quietlyCompleteRoot();
5305 return;
5306 }
5307 }
5308 }
5309 }
5310 }
5311
5312 @SuppressWarnings("serial")
5313 static final class SearchMappingsTask<K,V,U>
5314 extends BulkTask<K,V,U> {
5315 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5316 final AtomicReference<U> result;
5317 SearchMappingsTask
5318 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5319 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5320 AtomicReference<U> result) {
5321 super(p, b, i, f, t);
5322 this.searchFunction = searchFunction; this.result = result;
5323 }
5324 public final U getRawResult() { return result.get(); }
5325 public final void compute() {
5326 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5327 final AtomicReference<U> result;
5328 if ((searchFunction = this.searchFunction) != null &&
5329 (result = this.result) != null) {
5330 for (int i = baseIndex, f, h; batch > 0 &&
5331 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5332 if (result.get() != null)
5333 return;
5334 addToPendingCount(1);
5335 new SearchMappingsTask<K,V,U>
5336 (this, batch >>>= 1, baseLimit = h, f, tab,
5337 searchFunction, result).fork();
5338 }
5339 while (result.get() == null) {
5340 U u;
5341 Node<K,V> p;
5342 if ((p = advance()) == null) {
5343 propagateCompletion();
5344 break;
5345 }
5346 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5347 if (result.compareAndSet(null, u))
5348 quietlyCompleteRoot();
5349 break;
5350 }
5351 }
5352 }
5353 }
5354 }
5355
5356 @SuppressWarnings("serial")
5357 static final class ReduceKeysTask<K,V>
5358 extends BulkTask<K,V,K> {
5359 final BiFunction<? super K, ? super K, ? extends K> reducer;
5360 K result;
5361 ReduceKeysTask<K,V> rights, nextRight;
5362 ReduceKeysTask
5363 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5364 ReduceKeysTask<K,V> nextRight,
5365 BiFunction<? super K, ? super K, ? extends K> reducer) {
5366 super(p, b, i, f, t); this.nextRight = nextRight;
5367 this.reducer = reducer;
5368 }
5369 public final K getRawResult() { return result; }
5370 public final void compute() {
5371 final BiFunction<? super K, ? super K, ? extends K> reducer;
5372 if ((reducer = this.reducer) != null) {
5373 for (int i = baseIndex, f, h; batch > 0 &&
5374 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5375 addToPendingCount(1);
5376 (rights = new ReduceKeysTask<K,V>
5377 (this, batch >>>= 1, baseLimit = h, f, tab,
5378 rights, reducer)).fork();
5379 }
5380 K r = null;
5381 for (Node<K,V> p; (p = advance()) != null; ) {
5382 K u = p.key;
5383 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5384 }
5385 result = r;
5386 CountedCompleter<?> c;
5387 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5388 @SuppressWarnings("unchecked")
5389 ReduceKeysTask<K,V>
5390 t = (ReduceKeysTask<K,V>)c,
5391 s = t.rights;
5392 while (s != null) {
5393 K tr, sr;
5394 if ((sr = s.result) != null)
5395 t.result = (((tr = t.result) == null) ? sr :
5396 reducer.apply(tr, sr));
5397 s = t.rights = s.nextRight;
5398 }
5399 }
5400 }
5401 }
5402 }
5403
5404 @SuppressWarnings("serial")
5405 static final class ReduceValuesTask<K,V>
5406 extends BulkTask<K,V,V> {
5407 final BiFunction<? super V, ? super V, ? extends V> reducer;
5408 V result;
5409 ReduceValuesTask<K,V> rights, nextRight;
5410 ReduceValuesTask
5411 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5412 ReduceValuesTask<K,V> nextRight,
5413 BiFunction<? super V, ? super V, ? extends V> reducer) {
5414 super(p, b, i, f, t); this.nextRight = nextRight;
5415 this.reducer = reducer;
5416 }
5417 public final V getRawResult() { return result; }
5418 public final void compute() {
5419 final BiFunction<? super V, ? super V, ? extends V> reducer;
5420 if ((reducer = this.reducer) != null) {
5421 for (int i = baseIndex, f, h; batch > 0 &&
5422 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5423 addToPendingCount(1);
5424 (rights = new ReduceValuesTask<K,V>
5425 (this, batch >>>= 1, baseLimit = h, f, tab,
5426 rights, reducer)).fork();
5427 }
5428 V r = null;
5429 for (Node<K,V> p; (p = advance()) != null; ) {
5430 V v = p.val;
5431 r = (r == null) ? v : reducer.apply(r, v);
5432 }
5433 result = r;
5434 CountedCompleter<?> c;
5435 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5436 @SuppressWarnings("unchecked")
5437 ReduceValuesTask<K,V>
5438 t = (ReduceValuesTask<K,V>)c,
5439 s = t.rights;
5440 while (s != null) {
5441 V tr, sr;
5442 if ((sr = s.result) != null)
5443 t.result = (((tr = t.result) == null) ? sr :
5444 reducer.apply(tr, sr));
5445 s = t.rights = s.nextRight;
5446 }
5447 }
5448 }
5449 }
5450 }
5451
5452 @SuppressWarnings("serial")
5453 static final class ReduceEntriesTask<K,V>
5454 extends BulkTask<K,V,Map.Entry<K,V>> {
5455 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5456 Map.Entry<K,V> result;
5457 ReduceEntriesTask<K,V> rights, nextRight;
5458 ReduceEntriesTask
5459 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5460 ReduceEntriesTask<K,V> nextRight,
5461 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5462 super(p, b, i, f, t); this.nextRight = nextRight;
5463 this.reducer = reducer;
5464 }
5465 public final Map.Entry<K,V> getRawResult() { return result; }
5466 public final void compute() {
5467 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5468 if ((reducer = this.reducer) != null) {
5469 for (int i = baseIndex, f, h; batch > 0 &&
5470 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5471 addToPendingCount(1);
5472 (rights = new ReduceEntriesTask<K,V>
5473 (this, batch >>>= 1, baseLimit = h, f, tab,
5474 rights, reducer)).fork();
5475 }
5476 Map.Entry<K,V> r = null;
5477 for (Node<K,V> p; (p = advance()) != null; )
5478 r = (r == null) ? p : reducer.apply(r, p);
5479 result = r;
5480 CountedCompleter<?> c;
5481 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5482 @SuppressWarnings("unchecked")
5483 ReduceEntriesTask<K,V>
5484 t = (ReduceEntriesTask<K,V>)c,
5485 s = t.rights;
5486 while (s != null) {
5487 Map.Entry<K,V> tr, sr;
5488 if ((sr = s.result) != null)
5489 t.result = (((tr = t.result) == null) ? sr :
5490 reducer.apply(tr, sr));
5491 s = t.rights = s.nextRight;
5492 }
5493 }
5494 }
5495 }
5496 }
5497
5498 @SuppressWarnings("serial")
5499 static final class MapReduceKeysTask<K,V,U>
5500 extends BulkTask<K,V,U> {
5501 final Function<? super K, ? extends U> transformer;
5502 final BiFunction<? super U, ? super U, ? extends U> reducer;
5503 U result;
5504 MapReduceKeysTask<K,V,U> rights, nextRight;
5505 MapReduceKeysTask
5506 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5507 MapReduceKeysTask<K,V,U> nextRight,
5508 Function<? super K, ? extends U> transformer,
5509 BiFunction<? super U, ? super U, ? extends U> reducer) {
5510 super(p, b, i, f, t); this.nextRight = nextRight;
5511 this.transformer = transformer;
5512 this.reducer = reducer;
5513 }
5514 public final U getRawResult() { return result; }
5515 public final void compute() {
5516 final Function<? super K, ? extends U> transformer;
5517 final BiFunction<? super U, ? super U, ? extends U> reducer;
5518 if ((transformer = this.transformer) != null &&
5519 (reducer = this.reducer) != null) {
5520 for (int i = baseIndex, f, h; batch > 0 &&
5521 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5522 addToPendingCount(1);
5523 (rights = new MapReduceKeysTask<K,V,U>
5524 (this, batch >>>= 1, baseLimit = h, f, tab,
5525 rights, transformer, reducer)).fork();
5526 }
5527 U r = null;
5528 for (Node<K,V> p; (p = advance()) != null; ) {
5529 U u;
5530 if ((u = transformer.apply(p.key)) != null)
5531 r = (r == null) ? u : reducer.apply(r, u);
5532 }
5533 result = r;
5534 CountedCompleter<?> c;
5535 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5536 @SuppressWarnings("unchecked")
5537 MapReduceKeysTask<K,V,U>
5538 t = (MapReduceKeysTask<K,V,U>)c,
5539 s = t.rights;
5540 while (s != null) {
5541 U tr, sr;
5542 if ((sr = s.result) != null)
5543 t.result = (((tr = t.result) == null) ? sr :
5544 reducer.apply(tr, sr));
5545 s = t.rights = s.nextRight;
5546 }
5547 }
5548 }
5549 }
5550 }
5551
5552 @SuppressWarnings("serial")
5553 static final class MapReduceValuesTask<K,V,U>
5554 extends BulkTask<K,V,U> {
5555 final Function<? super V, ? extends U> transformer;
5556 final BiFunction<? super U, ? super U, ? extends U> reducer;
5557 U result;
5558 MapReduceValuesTask<K,V,U> rights, nextRight;
5559 MapReduceValuesTask
5560 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5561 MapReduceValuesTask<K,V,U> nextRight,
5562 Function<? super V, ? extends U> transformer,
5563 BiFunction<? super U, ? super U, ? extends U> reducer) {
5564 super(p, b, i, f, t); this.nextRight = nextRight;
5565 this.transformer = transformer;
5566 this.reducer = reducer;
5567 }
5568 public final U getRawResult() { return result; }
5569 public final void compute() {
5570 final Function<? super V, ? extends U> transformer;
5571 final BiFunction<? super U, ? super U, ? extends U> reducer;
5572 if ((transformer = this.transformer) != null &&
5573 (reducer = this.reducer) != null) {
5574 for (int i = baseIndex, f, h; batch > 0 &&
5575 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5576 addToPendingCount(1);
5577 (rights = new MapReduceValuesTask<K,V,U>
5578 (this, batch >>>= 1, baseLimit = h, f, tab,
5579 rights, transformer, reducer)).fork();
5580 }
5581 U r = null;
5582 for (Node<K,V> p; (p = advance()) != null; ) {
5583 U u;
5584 if ((u = transformer.apply(p.val)) != null)
5585 r = (r == null) ? u : reducer.apply(r, u);
5586 }
5587 result = r;
5588 CountedCompleter<?> c;
5589 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5590 @SuppressWarnings("unchecked")
5591 MapReduceValuesTask<K,V,U>
5592 t = (MapReduceValuesTask<K,V,U>)c,
5593 s = t.rights;
5594 while (s != null) {
5595 U tr, sr;
5596 if ((sr = s.result) != null)
5597 t.result = (((tr = t.result) == null) ? sr :
5598 reducer.apply(tr, sr));
5599 s = t.rights = s.nextRight;
5600 }
5601 }
5602 }
5603 }
5604 }
5605
5606 @SuppressWarnings("serial")
5607 static final class MapReduceEntriesTask<K,V,U>
5608 extends BulkTask<K,V,U> {
5609 final Function<Map.Entry<K,V>, ? extends U> transformer;
5610 final BiFunction<? super U, ? super U, ? extends U> reducer;
5611 U result;
5612 MapReduceEntriesTask<K,V,U> rights, nextRight;
5613 MapReduceEntriesTask
5614 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5615 MapReduceEntriesTask<K,V,U> nextRight,
5616 Function<Map.Entry<K,V>, ? extends U> transformer,
5617 BiFunction<? super U, ? super U, ? extends U> reducer) {
5618 super(p, b, i, f, t); this.nextRight = nextRight;
5619 this.transformer = transformer;
5620 this.reducer = reducer;
5621 }
5622 public final U getRawResult() { return result; }
5623 public final void compute() {
5624 final Function<Map.Entry<K,V>, ? extends U> transformer;
5625 final BiFunction<? super U, ? super U, ? extends U> reducer;
5626 if ((transformer = this.transformer) != null &&
5627 (reducer = this.reducer) != null) {
5628 for (int i = baseIndex, f, h; batch > 0 &&
5629 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5630 addToPendingCount(1);
5631 (rights = new MapReduceEntriesTask<K,V,U>
5632 (this, batch >>>= 1, baseLimit = h, f, tab,
5633 rights, transformer, reducer)).fork();
5634 }
5635 U r = null;
5636 for (Node<K,V> p; (p = advance()) != null; ) {
5637 U u;
5638 if ((u = transformer.apply(p)) != null)
5639 r = (r == null) ? u : reducer.apply(r, u);
5640 }
5641 result = r;
5642 CountedCompleter<?> c;
5643 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5644 @SuppressWarnings("unchecked")
5645 MapReduceEntriesTask<K,V,U>
5646 t = (MapReduceEntriesTask<K,V,U>)c,
5647 s = t.rights;
5648 while (s != null) {
5649 U tr, sr;
5650 if ((sr = s.result) != null)
5651 t.result = (((tr = t.result) == null) ? sr :
5652 reducer.apply(tr, sr));
5653 s = t.rights = s.nextRight;
5654 }
5655 }
5656 }
5657 }
5658 }
5659
5660 @SuppressWarnings("serial")
5661 static final class MapReduceMappingsTask<K,V,U>
5662 extends BulkTask<K,V,U> {
5663 final BiFunction<? super K, ? super V, ? extends U> transformer;
5664 final BiFunction<? super U, ? super U, ? extends U> reducer;
5665 U result;
5666 MapReduceMappingsTask<K,V,U> rights, nextRight;
5667 MapReduceMappingsTask
5668 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5669 MapReduceMappingsTask<K,V,U> nextRight,
5670 BiFunction<? super K, ? super V, ? extends U> transformer,
5671 BiFunction<? super U, ? super U, ? extends U> reducer) {
5672 super(p, b, i, f, t); this.nextRight = nextRight;
5673 this.transformer = transformer;
5674 this.reducer = reducer;
5675 }
5676 public final U getRawResult() { return result; }
5677 public final void compute() {
5678 final BiFunction<? super K, ? super V, ? extends U> transformer;
5679 final BiFunction<? super U, ? super U, ? extends U> reducer;
5680 if ((transformer = this.transformer) != null &&
5681 (reducer = this.reducer) != null) {
5682 for (int i = baseIndex, f, h; batch > 0 &&
5683 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5684 addToPendingCount(1);
5685 (rights = new MapReduceMappingsTask<K,V,U>
5686 (this, batch >>>= 1, baseLimit = h, f, tab,
5687 rights, transformer, reducer)).fork();
5688 }
5689 U r = null;
5690 for (Node<K,V> p; (p = advance()) != null; ) {
5691 U u;
5692 if ((u = transformer.apply(p.key, p.val)) != null)
5693 r = (r == null) ? u : reducer.apply(r, u);
5694 }
5695 result = r;
5696 CountedCompleter<?> c;
5697 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5698 @SuppressWarnings("unchecked")
5699 MapReduceMappingsTask<K,V,U>
5700 t = (MapReduceMappingsTask<K,V,U>)c,
5701 s = t.rights;
5702 while (s != null) {
5703 U tr, sr;
5704 if ((sr = s.result) != null)
5705 t.result = (((tr = t.result) == null) ? sr :
5706 reducer.apply(tr, sr));
5707 s = t.rights = s.nextRight;
5708 }
5709 }
5710 }
5711 }
5712 }
5713
5714 @SuppressWarnings("serial")
5715 static final class MapReduceKeysToDoubleTask<K,V>
5716 extends BulkTask<K,V,Double> {
5717 final ToDoubleFunction<? super K> transformer;
5718 final DoubleBinaryOperator reducer;
5719 final double basis;
5720 double result;
5721 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5722 MapReduceKeysToDoubleTask
5723 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5724 MapReduceKeysToDoubleTask<K,V> nextRight,
5725 ToDoubleFunction<? super K> transformer,
5726 double basis,
5727 DoubleBinaryOperator reducer) {
5728 super(p, b, i, f, t); this.nextRight = nextRight;
5729 this.transformer = transformer;
5730 this.basis = basis; this.reducer = reducer;
5731 }
5732 public final Double getRawResult() { return result; }
5733 public final void compute() {
5734 final ToDoubleFunction<? super K> transformer;
5735 final DoubleBinaryOperator reducer;
5736 if ((transformer = this.transformer) != null &&
5737 (reducer = this.reducer) != null) {
5738 double r = this.basis;
5739 for (int i = baseIndex, f, h; batch > 0 &&
5740 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5741 addToPendingCount(1);
5742 (rights = new MapReduceKeysToDoubleTask<K,V>
5743 (this, batch >>>= 1, baseLimit = h, f, tab,
5744 rights, transformer, r, reducer)).fork();
5745 }
5746 for (Node<K,V> p; (p = advance()) != null; )
5747 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5748 result = r;
5749 CountedCompleter<?> c;
5750 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5751 @SuppressWarnings("unchecked")
5752 MapReduceKeysToDoubleTask<K,V>
5753 t = (MapReduceKeysToDoubleTask<K,V>)c,
5754 s = t.rights;
5755 while (s != null) {
5756 t.result = reducer.applyAsDouble(t.result, s.result);
5757 s = t.rights = s.nextRight;
5758 }
5759 }
5760 }
5761 }
5762 }
5763
5764 @SuppressWarnings("serial")
5765 static final class MapReduceValuesToDoubleTask<K,V>
5766 extends BulkTask<K,V,Double> {
5767 final ToDoubleFunction<? super V> transformer;
5768 final DoubleBinaryOperator reducer;
5769 final double basis;
5770 double result;
5771 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5772 MapReduceValuesToDoubleTask
5773 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5774 MapReduceValuesToDoubleTask<K,V> nextRight,
5775 ToDoubleFunction<? super V> transformer,
5776 double basis,
5777 DoubleBinaryOperator reducer) {
5778 super(p, b, i, f, t); this.nextRight = nextRight;
5779 this.transformer = transformer;
5780 this.basis = basis; this.reducer = reducer;
5781 }
5782 public final Double getRawResult() { return result; }
5783 public final void compute() {
5784 final ToDoubleFunction<? super V> transformer;
5785 final DoubleBinaryOperator reducer;
5786 if ((transformer = this.transformer) != null &&
5787 (reducer = this.reducer) != null) {
5788 double r = this.basis;
5789 for (int i = baseIndex, f, h; batch > 0 &&
5790 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5791 addToPendingCount(1);
5792 (rights = new MapReduceValuesToDoubleTask<K,V>
5793 (this, batch >>>= 1, baseLimit = h, f, tab,
5794 rights, transformer, r, reducer)).fork();
5795 }
5796 for (Node<K,V> p; (p = advance()) != null; )
5797 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5798 result = r;
5799 CountedCompleter<?> c;
5800 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5801 @SuppressWarnings("unchecked")
5802 MapReduceValuesToDoubleTask<K,V>
5803 t = (MapReduceValuesToDoubleTask<K,V>)c,
5804 s = t.rights;
5805 while (s != null) {
5806 t.result = reducer.applyAsDouble(t.result, s.result);
5807 s = t.rights = s.nextRight;
5808 }
5809 }
5810 }
5811 }
5812 }
5813
5814 @SuppressWarnings("serial")
5815 static final class MapReduceEntriesToDoubleTask<K,V>
5816 extends BulkTask<K,V,Double> {
5817 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5818 final DoubleBinaryOperator reducer;
5819 final double basis;
5820 double result;
5821 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5822 MapReduceEntriesToDoubleTask
5823 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5824 MapReduceEntriesToDoubleTask<K,V> nextRight,
5825 ToDoubleFunction<Map.Entry<K,V>> transformer,
5826 double basis,
5827 DoubleBinaryOperator reducer) {
5828 super(p, b, i, f, t); this.nextRight = nextRight;
5829 this.transformer = transformer;
5830 this.basis = basis; this.reducer = reducer;
5831 }
5832 public final Double getRawResult() { return result; }
5833 public final void compute() {
5834 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5835 final DoubleBinaryOperator reducer;
5836 if ((transformer = this.transformer) != null &&
5837 (reducer = this.reducer) != null) {
5838 double r = this.basis;
5839 for (int i = baseIndex, f, h; batch > 0 &&
5840 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5841 addToPendingCount(1);
5842 (rights = new MapReduceEntriesToDoubleTask<K,V>
5843 (this, batch >>>= 1, baseLimit = h, f, tab,
5844 rights, transformer, r, reducer)).fork();
5845 }
5846 for (Node<K,V> p; (p = advance()) != null; )
5847 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5848 result = r;
5849 CountedCompleter<?> c;
5850 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5851 @SuppressWarnings("unchecked")
5852 MapReduceEntriesToDoubleTask<K,V>
5853 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5854 s = t.rights;
5855 while (s != null) {
5856 t.result = reducer.applyAsDouble(t.result, s.result);
5857 s = t.rights = s.nextRight;
5858 }
5859 }
5860 }
5861 }
5862 }
5863
5864 @SuppressWarnings("serial")
5865 static final class MapReduceMappingsToDoubleTask<K,V>
5866 extends BulkTask<K,V,Double> {
5867 final ToDoubleBiFunction<? super K, ? super V> transformer;
5868 final DoubleBinaryOperator reducer;
5869 final double basis;
5870 double result;
5871 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5872 MapReduceMappingsToDoubleTask
5873 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5874 MapReduceMappingsToDoubleTask<K,V> nextRight,
5875 ToDoubleBiFunction<? super K, ? super V> transformer,
5876 double basis,
5877 DoubleBinaryOperator reducer) {
5878 super(p, b, i, f, t); this.nextRight = nextRight;
5879 this.transformer = transformer;
5880 this.basis = basis; this.reducer = reducer;
5881 }
5882 public final Double getRawResult() { return result; }
5883 public final void compute() {
5884 final ToDoubleBiFunction<? super K, ? super V> transformer;
5885 final DoubleBinaryOperator reducer;
5886 if ((transformer = this.transformer) != null &&
5887 (reducer = this.reducer) != null) {
5888 double r = this.basis;
5889 for (int i = baseIndex, f, h; batch > 0 &&
5890 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5891 addToPendingCount(1);
5892 (rights = new MapReduceMappingsToDoubleTask<K,V>
5893 (this, batch >>>= 1, baseLimit = h, f, tab,
5894 rights, transformer, r, reducer)).fork();
5895 }
5896 for (Node<K,V> p; (p = advance()) != null; )
5897 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5898 result = r;
5899 CountedCompleter<?> c;
5900 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5901 @SuppressWarnings("unchecked")
5902 MapReduceMappingsToDoubleTask<K,V>
5903 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5904 s = t.rights;
5905 while (s != null) {
5906 t.result = reducer.applyAsDouble(t.result, s.result);
5907 s = t.rights = s.nextRight;
5908 }
5909 }
5910 }
5911 }
5912 }
5913
5914 @SuppressWarnings("serial")
5915 static final class MapReduceKeysToLongTask<K,V>
5916 extends BulkTask<K,V,Long> {
5917 final ToLongFunction<? super K> transformer;
5918 final LongBinaryOperator reducer;
5919 final long basis;
5920 long result;
5921 MapReduceKeysToLongTask<K,V> rights, nextRight;
5922 MapReduceKeysToLongTask
5923 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5924 MapReduceKeysToLongTask<K,V> nextRight,
5925 ToLongFunction<? super K> transformer,
5926 long basis,
5927 LongBinaryOperator reducer) {
5928 super(p, b, i, f, t); this.nextRight = nextRight;
5929 this.transformer = transformer;
5930 this.basis = basis; this.reducer = reducer;
5931 }
5932 public final Long getRawResult() { return result; }
5933 public final void compute() {
5934 final ToLongFunction<? super K> transformer;
5935 final LongBinaryOperator reducer;
5936 if ((transformer = this.transformer) != null &&
5937 (reducer = this.reducer) != null) {
5938 long r = this.basis;
5939 for (int i = baseIndex, f, h; batch > 0 &&
5940 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5941 addToPendingCount(1);
5942 (rights = new MapReduceKeysToLongTask<K,V>
5943 (this, batch >>>= 1, baseLimit = h, f, tab,
5944 rights, transformer, r, reducer)).fork();
5945 }
5946 for (Node<K,V> p; (p = advance()) != null; )
5947 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5948 result = r;
5949 CountedCompleter<?> c;
5950 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5951 @SuppressWarnings("unchecked")
5952 MapReduceKeysToLongTask<K,V>
5953 t = (MapReduceKeysToLongTask<K,V>)c,
5954 s = t.rights;
5955 while (s != null) {
5956 t.result = reducer.applyAsLong(t.result, s.result);
5957 s = t.rights = s.nextRight;
5958 }
5959 }
5960 }
5961 }
5962 }
5963
5964 @SuppressWarnings("serial")
5965 static final class MapReduceValuesToLongTask<K,V>
5966 extends BulkTask<K,V,Long> {
5967 final ToLongFunction<? super V> transformer;
5968 final LongBinaryOperator reducer;
5969 final long basis;
5970 long result;
5971 MapReduceValuesToLongTask<K,V> rights, nextRight;
5972 MapReduceValuesToLongTask
5973 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5974 MapReduceValuesToLongTask<K,V> nextRight,
5975 ToLongFunction<? super V> transformer,
5976 long basis,
5977 LongBinaryOperator reducer) {
5978 super(p, b, i, f, t); this.nextRight = nextRight;
5979 this.transformer = transformer;
5980 this.basis = basis; this.reducer = reducer;
5981 }
5982 public final Long getRawResult() { return result; }
5983 public final void compute() {
5984 final ToLongFunction<? super V> transformer;
5985 final LongBinaryOperator reducer;
5986 if ((transformer = this.transformer) != null &&
5987 (reducer = this.reducer) != null) {
5988 long r = this.basis;
5989 for (int i = baseIndex, f, h; batch > 0 &&
5990 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5991 addToPendingCount(1);
5992 (rights = new MapReduceValuesToLongTask<K,V>
5993 (this, batch >>>= 1, baseLimit = h, f, tab,
5994 rights, transformer, r, reducer)).fork();
5995 }
5996 for (Node<K,V> p; (p = advance()) != null; )
5997 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5998 result = r;
5999 CountedCompleter<?> c;
6000 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6001 @SuppressWarnings("unchecked")
6002 MapReduceValuesToLongTask<K,V>
6003 t = (MapReduceValuesToLongTask<K,V>)c,
6004 s = t.rights;
6005 while (s != null) {
6006 t.result = reducer.applyAsLong(t.result, s.result);
6007 s = t.rights = s.nextRight;
6008 }
6009 }
6010 }
6011 }
6012 }
6013
6014 @SuppressWarnings("serial")
6015 static final class MapReduceEntriesToLongTask<K,V>
6016 extends BulkTask<K,V,Long> {
6017 final ToLongFunction<Map.Entry<K,V>> transformer;
6018 final LongBinaryOperator reducer;
6019 final long basis;
6020 long result;
6021 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6022 MapReduceEntriesToLongTask
6023 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6024 MapReduceEntriesToLongTask<K,V> nextRight,
6025 ToLongFunction<Map.Entry<K,V>> transformer,
6026 long basis,
6027 LongBinaryOperator reducer) {
6028 super(p, b, i, f, t); this.nextRight = nextRight;
6029 this.transformer = transformer;
6030 this.basis = basis; this.reducer = reducer;
6031 }
6032 public final Long getRawResult() { return result; }
6033 public final void compute() {
6034 final ToLongFunction<Map.Entry<K,V>> transformer;
6035 final LongBinaryOperator reducer;
6036 if ((transformer = this.transformer) != null &&
6037 (reducer = this.reducer) != null) {
6038 long r = this.basis;
6039 for (int i = baseIndex, f, h; batch > 0 &&
6040 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6041 addToPendingCount(1);
6042 (rights = new MapReduceEntriesToLongTask<K,V>
6043 (this, batch >>>= 1, baseLimit = h, f, tab,
6044 rights, transformer, r, reducer)).fork();
6045 }
6046 for (Node<K,V> p; (p = advance()) != null; )
6047 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6048 result = r;
6049 CountedCompleter<?> c;
6050 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6051 @SuppressWarnings("unchecked")
6052 MapReduceEntriesToLongTask<K,V>
6053 t = (MapReduceEntriesToLongTask<K,V>)c,
6054 s = t.rights;
6055 while (s != null) {
6056 t.result = reducer.applyAsLong(t.result, s.result);
6057 s = t.rights = s.nextRight;
6058 }
6059 }
6060 }
6061 }
6062 }
6063
6064 @SuppressWarnings("serial")
6065 static final class MapReduceMappingsToLongTask<K,V>
6066 extends BulkTask<K,V,Long> {
6067 final ToLongBiFunction<? super K, ? super V> transformer;
6068 final LongBinaryOperator reducer;
6069 final long basis;
6070 long result;
6071 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6072 MapReduceMappingsToLongTask
6073 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6074 MapReduceMappingsToLongTask<K,V> nextRight,
6075 ToLongBiFunction<? super K, ? super V> transformer,
6076 long basis,
6077 LongBinaryOperator reducer) {
6078 super(p, b, i, f, t); this.nextRight = nextRight;
6079 this.transformer = transformer;
6080 this.basis = basis; this.reducer = reducer;
6081 }
6082 public final Long getRawResult() { return result; }
6083 public final void compute() {
6084 final ToLongBiFunction<? super K, ? super V> transformer;
6085 final LongBinaryOperator reducer;
6086 if ((transformer = this.transformer) != null &&
6087 (reducer = this.reducer) != null) {
6088 long r = this.basis;
6089 for (int i = baseIndex, f, h; batch > 0 &&
6090 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6091 addToPendingCount(1);
6092 (rights = new MapReduceMappingsToLongTask<K,V>
6093 (this, batch >>>= 1, baseLimit = h, f, tab,
6094 rights, transformer, r, reducer)).fork();
6095 }
6096 for (Node<K,V> p; (p = advance()) != null; )
6097 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6098 result = r;
6099 CountedCompleter<?> c;
6100 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6101 @SuppressWarnings("unchecked")
6102 MapReduceMappingsToLongTask<K,V>
6103 t = (MapReduceMappingsToLongTask<K,V>)c,
6104 s = t.rights;
6105 while (s != null) {
6106 t.result = reducer.applyAsLong(t.result, s.result);
6107 s = t.rights = s.nextRight;
6108 }
6109 }
6110 }
6111 }
6112 }
6113
6114 @SuppressWarnings("serial")
6115 static final class MapReduceKeysToIntTask<K,V>
6116 extends BulkTask<K,V,Integer> {
6117 final ToIntFunction<? super K> transformer;
6118 final IntBinaryOperator reducer;
6119 final int basis;
6120 int result;
6121 MapReduceKeysToIntTask<K,V> rights, nextRight;
6122 MapReduceKeysToIntTask
6123 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6124 MapReduceKeysToIntTask<K,V> nextRight,
6125 ToIntFunction<? super K> transformer,
6126 int basis,
6127 IntBinaryOperator reducer) {
6128 super(p, b, i, f, t); this.nextRight = nextRight;
6129 this.transformer = transformer;
6130 this.basis = basis; this.reducer = reducer;
6131 }
6132 public final Integer getRawResult() { return result; }
6133 public final void compute() {
6134 final ToIntFunction<? super K> transformer;
6135 final IntBinaryOperator reducer;
6136 if ((transformer = this.transformer) != null &&
6137 (reducer = this.reducer) != null) {
6138 int r = this.basis;
6139 for (int i = baseIndex, f, h; batch > 0 &&
6140 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6141 addToPendingCount(1);
6142 (rights = new MapReduceKeysToIntTask<K,V>
6143 (this, batch >>>= 1, baseLimit = h, f, tab,
6144 rights, transformer, r, reducer)).fork();
6145 }
6146 for (Node<K,V> p; (p = advance()) != null; )
6147 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6148 result = r;
6149 CountedCompleter<?> c;
6150 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6151 @SuppressWarnings("unchecked")
6152 MapReduceKeysToIntTask<K,V>
6153 t = (MapReduceKeysToIntTask<K,V>)c,
6154 s = t.rights;
6155 while (s != null) {
6156 t.result = reducer.applyAsInt(t.result, s.result);
6157 s = t.rights = s.nextRight;
6158 }
6159 }
6160 }
6161 }
6162 }
6163
6164 @SuppressWarnings("serial")
6165 static final class MapReduceValuesToIntTask<K,V>
6166 extends BulkTask<K,V,Integer> {
6167 final ToIntFunction<? super V> transformer;
6168 final IntBinaryOperator reducer;
6169 final int basis;
6170 int result;
6171 MapReduceValuesToIntTask<K,V> rights, nextRight;
6172 MapReduceValuesToIntTask
6173 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6174 MapReduceValuesToIntTask<K,V> nextRight,
6175 ToIntFunction<? super V> transformer,
6176 int basis,
6177 IntBinaryOperator reducer) {
6178 super(p, b, i, f, t); this.nextRight = nextRight;
6179 this.transformer = transformer;
6180 this.basis = basis; this.reducer = reducer;
6181 }
6182 public final Integer getRawResult() { return result; }
6183 public final void compute() {
6184 final ToIntFunction<? super V> transformer;
6185 final IntBinaryOperator reducer;
6186 if ((transformer = this.transformer) != null &&
6187 (reducer = this.reducer) != null) {
6188 int r = this.basis;
6189 for (int i = baseIndex, f, h; batch > 0 &&
6190 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6191 addToPendingCount(1);
6192 (rights = new MapReduceValuesToIntTask<K,V>
6193 (this, batch >>>= 1, baseLimit = h, f, tab,
6194 rights, transformer, r, reducer)).fork();
6195 }
6196 for (Node<K,V> p; (p = advance()) != null; )
6197 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6198 result = r;
6199 CountedCompleter<?> c;
6200 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6201 @SuppressWarnings("unchecked")
6202 MapReduceValuesToIntTask<K,V>
6203 t = (MapReduceValuesToIntTask<K,V>)c,
6204 s = t.rights;
6205 while (s != null) {
6206 t.result = reducer.applyAsInt(t.result, s.result);
6207 s = t.rights = s.nextRight;
6208 }
6209 }
6210 }
6211 }
6212 }
6213
6214 @SuppressWarnings("serial")
6215 static final class MapReduceEntriesToIntTask<K,V>
6216 extends BulkTask<K,V,Integer> {
6217 final ToIntFunction<Map.Entry<K,V>> transformer;
6218 final IntBinaryOperator reducer;
6219 final int basis;
6220 int result;
6221 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6222 MapReduceEntriesToIntTask
6223 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6224 MapReduceEntriesToIntTask<K,V> nextRight,
6225 ToIntFunction<Map.Entry<K,V>> transformer,
6226 int basis,
6227 IntBinaryOperator reducer) {
6228 super(p, b, i, f, t); this.nextRight = nextRight;
6229 this.transformer = transformer;
6230 this.basis = basis; this.reducer = reducer;
6231 }
6232 public final Integer getRawResult() { return result; }
6233 public final void compute() {
6234 final ToIntFunction<Map.Entry<K,V>> transformer;
6235 final IntBinaryOperator reducer;
6236 if ((transformer = this.transformer) != null &&
6237 (reducer = this.reducer) != null) {
6238 int r = this.basis;
6239 for (int i = baseIndex, f, h; batch > 0 &&
6240 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6241 addToPendingCount(1);
6242 (rights = new MapReduceEntriesToIntTask<K,V>
6243 (this, batch >>>= 1, baseLimit = h, f, tab,
6244 rights, transformer, r, reducer)).fork();
6245 }
6246 for (Node<K,V> p; (p = advance()) != null; )
6247 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6248 result = r;
6249 CountedCompleter<?> c;
6250 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6251 @SuppressWarnings("unchecked")
6252 MapReduceEntriesToIntTask<K,V>
6253 t = (MapReduceEntriesToIntTask<K,V>)c,
6254 s = t.rights;
6255 while (s != null) {
6256 t.result = reducer.applyAsInt(t.result, s.result);
6257 s = t.rights = s.nextRight;
6258 }
6259 }
6260 }
6261 }
6262 }
6263
6264 @SuppressWarnings("serial")
6265 static final class MapReduceMappingsToIntTask<K,V>
6266 extends BulkTask<K,V,Integer> {
6267 final ToIntBiFunction<? super K, ? super V> transformer;
6268 final IntBinaryOperator reducer;
6269 final int basis;
6270 int result;
6271 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6272 MapReduceMappingsToIntTask
6273 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6274 MapReduceMappingsToIntTask<K,V> nextRight,
6275 ToIntBiFunction<? super K, ? super V> transformer,
6276 int basis,
6277 IntBinaryOperator reducer) {
6278 super(p, b, i, f, t); this.nextRight = nextRight;
6279 this.transformer = transformer;
6280 this.basis = basis; this.reducer = reducer;
6281 }
6282 public final Integer getRawResult() { return result; }
6283 public final void compute() {
6284 final ToIntBiFunction<? super K, ? super V> transformer;
6285 final IntBinaryOperator reducer;
6286 if ((transformer = this.transformer) != null &&
6287 (reducer = this.reducer) != null) {
6288 int r = this.basis;
6289 for (int i = baseIndex, f, h; batch > 0 &&
6290 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6291 addToPendingCount(1);
6292 (rights = new MapReduceMappingsToIntTask<K,V>
6293 (this, batch >>>= 1, baseLimit = h, f, tab,
6294 rights, transformer, r, reducer)).fork();
6295 }
6296 for (Node<K,V> p; (p = advance()) != null; )
6297 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6298 result = r;
6299 CountedCompleter<?> c;
6300 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6301 @SuppressWarnings("unchecked")
6302 MapReduceMappingsToIntTask<K,V>
6303 t = (MapReduceMappingsToIntTask<K,V>)c,
6304 s = t.rights;
6305 while (s != null) {
6306 t.result = reducer.applyAsInt(t.result, s.result);
6307 s = t.rights = s.nextRight;
6308 }
6309 }
6310 }
6311 }
6312 }
6313
6314 // Unsafe mechanics
6315 private static final jdk.internal.misc.Unsafe U = jdk.internal.misc.Unsafe.getUnsafe();
6316 private static final long SIZECTL;
6317 private static final long TRANSFERINDEX;
6318 private static final long BASECOUNT;
6319 private static final long CELLSBUSY;
6320 private static final long CELLVALUE;
6321 private static final int ABASE;
6322 private static final int ASHIFT;
6323
6324 static {
6325 try {
6326 SIZECTL = U.objectFieldOffset
6327 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6328 TRANSFERINDEX = U.objectFieldOffset
6329 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6330 BASECOUNT = U.objectFieldOffset
6331 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6332 CELLSBUSY = U.objectFieldOffset
6333 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6334
6335 CELLVALUE = U.objectFieldOffset
6336 (CounterCell.class.getDeclaredField("value"));
6337
6338 ABASE = U.arrayBaseOffset(Node[].class);
6339 int scale = U.arrayIndexScale(Node[].class);
6340 if ((scale & (scale - 1)) != 0)
6341 throw new Error("array index scale not a power of two");
6342 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6343 } catch (ReflectiveOperationException e) {
6344 throw new Error(e);
6345 }
6346
6347 // Reduce the risk of rare disastrous classloading in first call to
6348 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6349 Class<?> ensureLoaded = LockSupport.class;
6350 }
6351 }