ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.305
Committed: Sun Jan 7 21:42:59 2018 UTC (6 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.304: +6 -7 lines
Log Message:
replace for loop with foreach loop

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42 import jdk.internal.misc.Unsafe;
43
44 /**
45 * A hash table supporting full concurrency of retrievals and
46 * high expected concurrency for updates. This class obeys the
47 * same functional specification as {@link java.util.Hashtable}, and
48 * includes versions of methods corresponding to each method of
49 * {@code Hashtable}. However, even though all operations are
50 * thread-safe, retrieval operations do <em>not</em> entail locking,
51 * and there is <em>not</em> any support for locking the entire table
52 * in a way that prevents all access. This class is fully
53 * interoperable with {@code Hashtable} in programs that rely on its
54 * thread safety but not on its synchronization details.
55 *
56 * <p>Retrieval operations (including {@code get}) generally do not
57 * block, so may overlap with update operations (including {@code put}
58 * and {@code remove}). Retrievals reflect the results of the most
59 * recently <em>completed</em> update operations holding upon their
60 * onset. (More formally, an update operation for a given key bears a
61 * <em>happens-before</em> relation with any (non-null) retrieval for
62 * that key reporting the updated value.) For aggregate operations
63 * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 * reflect insertion or removal of only some entries. Similarly,
65 * Iterators, Spliterators and Enumerations return elements reflecting the
66 * state of the hash table at some point at or since the creation of the
67 * iterator/enumeration. They do <em>not</em> throw {@link
68 * java.util.ConcurrentModificationException ConcurrentModificationException}.
69 * However, iterators are designed to be used by only one thread at a time.
70 * Bear in mind that the results of aggregate status methods including
71 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 * useful only when a map is not undergoing concurrent updates in other threads.
73 * Otherwise the results of these methods reflect transient states
74 * that may be adequate for monitoring or estimation purposes, but not
75 * for program control.
76 *
77 * <p>The table is dynamically expanded when there are too many
78 * collisions (i.e., keys that have distinct hash codes but fall into
79 * the same slot modulo the table size), with the expected average
80 * effect of maintaining roughly two bins per mapping (corresponding
81 * to a 0.75 load factor threshold for resizing). There may be much
82 * variance around this average as mappings are added and removed, but
83 * overall, this maintains a commonly accepted time/space tradeoff for
84 * hash tables. However, resizing this or any other kind of hash
85 * table may be a relatively slow operation. When possible, it is a
86 * good idea to provide a size estimate as an optional {@code
87 * initialCapacity} constructor argument. An additional optional
88 * {@code loadFactor} constructor argument provides a further means of
89 * customizing initial table capacity by specifying the table density
90 * to be used in calculating the amount of space to allocate for the
91 * given number of elements. Also, for compatibility with previous
92 * versions of this class, constructors may optionally specify an
93 * expected {@code concurrencyLevel} as an additional hint for
94 * internal sizing. Note that using many keys with exactly the same
95 * {@code hashCode()} is a sure way to slow down performance of any
96 * hash table. To ameliorate impact, when keys are {@link Comparable},
97 * this class may use comparison order among keys to help break ties.
98 *
99 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 * (using {@link #keySet(Object)} when only keys are of interest, and the
102 * mapped values are (perhaps transiently) not used or all take the
103 * same mapping value.
104 *
105 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 * form of histogram or multiset) by using {@link
107 * java.util.concurrent.atomic.LongAdder} values and initializing via
108 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111 *
112 * <p>This class and its views and iterators implement all of the
113 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114 * interfaces.
115 *
116 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 * does <em>not</em> allow {@code null} to be used as a key or value.
118 *
119 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 * operations that, unlike most {@link Stream} methods, are designed
121 * to be safely, and often sensibly, applied even with maps that are
122 * being concurrently updated by other threads; for example, when
123 * computing a snapshot summary of the values in a shared registry.
124 * There are three kinds of operation, each with four forms, accepting
125 * functions with keys, values, entries, and (key, value) pairs as
126 * arguments and/or return values. Because the elements of a
127 * ConcurrentHashMap are not ordered in any particular way, and may be
128 * processed in different orders in different parallel executions, the
129 * correctness of supplied functions should not depend on any
130 * ordering, or on any other objects or values that may transiently
131 * change while computation is in progress; and except for forEach
132 * actions, should ideally be side-effect-free. Bulk operations on
133 * {@link Map.Entry} objects do not support method {@code setValue}.
134 *
135 * <ul>
136 * <li>forEach: Performs a given action on each element.
137 * A variant form applies a given transformation on each element
138 * before performing the action.
139 *
140 * <li>search: Returns the first available non-null result of
141 * applying a given function on each element; skipping further
142 * search when a result is found.
143 *
144 * <li>reduce: Accumulates each element. The supplied reduction
145 * function cannot rely on ordering (more formally, it should be
146 * both associative and commutative). There are five variants:
147 *
148 * <ul>
149 *
150 * <li>Plain reductions. (There is not a form of this method for
151 * (key, value) function arguments since there is no corresponding
152 * return type.)
153 *
154 * <li>Mapped reductions that accumulate the results of a given
155 * function applied to each element.
156 *
157 * <li>Reductions to scalar doubles, longs, and ints, using a
158 * given basis value.
159 *
160 * </ul>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (jdk.internal.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectable as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments referring to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static final int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /**
571 * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 * @serialField segments Segment[]
573 * The segments, each of which is a specialized hash table.
574 * @serialField segmentMask int
575 * Mask value for indexing into segments. The upper bits of a
576 * key's hash code are used to choose the segment.
577 * @serialField segmentShift int
578 * Shift value for indexing within segments.
579 */
580 private static final ObjectStreamField[] serialPersistentFields = {
581 new ObjectStreamField("segments", Segment[].class),
582 new ObjectStreamField("segmentMask", Integer.TYPE),
583 new ObjectStreamField("segmentShift", Integer.TYPE),
584 };
585
586 /* ---------------- Nodes -------------- */
587
588 /**
589 * Key-value entry. This class is never exported out as a
590 * user-mutable Map.Entry (i.e., one supporting setValue; see
591 * MapEntry below), but can be used for read-only traversals used
592 * in bulk tasks. Subclasses of Node with a negative hash field
593 * are special, and contain null keys and values (but are never
594 * exported). Otherwise, keys and vals are never null.
595 */
596 static class Node<K,V> implements Map.Entry<K,V> {
597 final int hash;
598 final K key;
599 volatile V val;
600 volatile Node<K,V> next;
601
602 Node(int hash, K key, V val) {
603 this.hash = hash;
604 this.key = key;
605 this.val = val;
606 }
607
608 Node(int hash, K key, V val, Node<K,V> next) {
609 this(hash, key, val);
610 this.next = next;
611 }
612
613 public final K getKey() { return key; }
614 public final V getValue() { return val; }
615 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 public final String toString() {
617 return Helpers.mapEntryToString(key, val);
618 }
619 public final V setValue(V value) {
620 throw new UnsupportedOperationException();
621 }
622
623 public final boolean equals(Object o) {
624 Object k, v, u; Map.Entry<?,?> e;
625 return ((o instanceof Map.Entry) &&
626 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 (v = e.getValue()) != null &&
628 (k == key || k.equals(key)) &&
629 (v == (u = val) || v.equals(u)));
630 }
631
632 /**
633 * Virtualized support for map.get(); overridden in subclasses.
634 */
635 Node<K,V> find(int h, Object k) {
636 Node<K,V> e = this;
637 if (k != null) {
638 do {
639 K ek;
640 if (e.hash == h &&
641 ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 return e;
643 } while ((e = e.next) != null);
644 }
645 return null;
646 }
647 }
648
649 /* ---------------- Static utilities -------------- */
650
651 /**
652 * Spreads (XORs) higher bits of hash to lower and also forces top
653 * bit to 0. Because the table uses power-of-two masking, sets of
654 * hashes that vary only in bits above the current mask will
655 * always collide. (Among known examples are sets of Float keys
656 * holding consecutive whole numbers in small tables.) So we
657 * apply a transform that spreads the impact of higher bits
658 * downward. There is a tradeoff between speed, utility, and
659 * quality of bit-spreading. Because many common sets of hashes
660 * are already reasonably distributed (so don't benefit from
661 * spreading), and because we use trees to handle large sets of
662 * collisions in bins, we just XOR some shifted bits in the
663 * cheapest possible way to reduce systematic lossage, as well as
664 * to incorporate impact of the highest bits that would otherwise
665 * never be used in index calculations because of table bounds.
666 */
667 static final int spread(int h) {
668 return (h ^ (h >>> 16)) & HASH_BITS;
669 }
670
671 /**
672 * Returns a power of two table size for the given desired capacity.
673 * See Hackers Delight, sec 3.2
674 */
675 private static final int tableSizeFor(int c) {
676 int n = c - 1;
677 n |= n >>> 1;
678 n |= n >>> 2;
679 n |= n >>> 4;
680 n |= n >>> 8;
681 n |= n >>> 16;
682 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
683 }
684
685 /**
686 * Returns x's Class if it is of the form "class C implements
687 * Comparable<C>", else null.
688 */
689 static Class<?> comparableClassFor(Object x) {
690 if (x instanceof Comparable) {
691 Class<?> c; Type[] ts, as; ParameterizedType p;
692 if ((c = x.getClass()) == String.class) // bypass checks
693 return c;
694 if ((ts = c.getGenericInterfaces()) != null) {
695 for (Type t : ts) {
696 if ((t instanceof ParameterizedType) &&
697 ((p = (ParameterizedType)t).getRawType() ==
698 Comparable.class) &&
699 (as = p.getActualTypeArguments()) != null &&
700 as.length == 1 && as[0] == c) // type arg is c
701 return c;
702 }
703 }
704 }
705 return null;
706 }
707
708 /**
709 * Returns k.compareTo(x) if x matches kc (k's screened comparable
710 * class), else 0.
711 */
712 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
713 static int compareComparables(Class<?> kc, Object k, Object x) {
714 return (x == null || x.getClass() != kc ? 0 :
715 ((Comparable)k).compareTo(x));
716 }
717
718 /* ---------------- Table element access -------------- */
719
720 /*
721 * Atomic access methods are used for table elements as well as
722 * elements of in-progress next table while resizing. All uses of
723 * the tab arguments must be null checked by callers. All callers
724 * also paranoically precheck that tab's length is not zero (or an
725 * equivalent check), thus ensuring that any index argument taking
726 * the form of a hash value anded with (length - 1) is a valid
727 * index. Note that, to be correct wrt arbitrary concurrency
728 * errors by users, these checks must operate on local variables,
729 * which accounts for some odd-looking inline assignments below.
730 * Note that calls to setTabAt always occur within locked regions,
731 * and so require only release ordering.
732 */
733
734 @SuppressWarnings("unchecked")
735 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
736 return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
737 }
738
739 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
740 Node<K,V> c, Node<K,V> v) {
741 return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
742 }
743
744 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
745 U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
746 }
747
748 /* ---------------- Fields -------------- */
749
750 /**
751 * The array of bins. Lazily initialized upon first insertion.
752 * Size is always a power of two. Accessed directly by iterators.
753 */
754 transient volatile Node<K,V>[] table;
755
756 /**
757 * The next table to use; non-null only while resizing.
758 */
759 private transient volatile Node<K,V>[] nextTable;
760
761 /**
762 * Base counter value, used mainly when there is no contention,
763 * but also as a fallback during table initialization
764 * races. Updated via CAS.
765 */
766 private transient volatile long baseCount;
767
768 /**
769 * Table initialization and resizing control. When negative, the
770 * table is being initialized or resized: -1 for initialization,
771 * else -(1 + the number of active resizing threads). Otherwise,
772 * when table is null, holds the initial table size to use upon
773 * creation, or 0 for default. After initialization, holds the
774 * next element count value upon which to resize the table.
775 */
776 private transient volatile int sizeCtl;
777
778 /**
779 * The next table index (plus one) to split while resizing.
780 */
781 private transient volatile int transferIndex;
782
783 /**
784 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
785 */
786 private transient volatile int cellsBusy;
787
788 /**
789 * Table of counter cells. When non-null, size is a power of 2.
790 */
791 private transient volatile CounterCell[] counterCells;
792
793 // views
794 private transient KeySetView<K,V> keySet;
795 private transient ValuesView<K,V> values;
796 private transient EntrySetView<K,V> entrySet;
797
798
799 /* ---------------- Public operations -------------- */
800
801 /**
802 * Creates a new, empty map with the default initial table size (16).
803 */
804 public ConcurrentHashMap() {
805 }
806
807 /**
808 * Creates a new, empty map with an initial table size
809 * accommodating the specified number of elements without the need
810 * to dynamically resize.
811 *
812 * @param initialCapacity The implementation performs internal
813 * sizing to accommodate this many elements.
814 * @throws IllegalArgumentException if the initial capacity of
815 * elements is negative
816 */
817 public ConcurrentHashMap(int initialCapacity) {
818 if (initialCapacity < 0)
819 throw new IllegalArgumentException();
820 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
821 MAXIMUM_CAPACITY :
822 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
823 this.sizeCtl = cap;
824 }
825
826 /**
827 * Creates a new map with the same mappings as the given map.
828 *
829 * @param m the map
830 */
831 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
832 this.sizeCtl = DEFAULT_CAPACITY;
833 putAll(m);
834 }
835
836 /**
837 * Creates a new, empty map with an initial table size based on
838 * the given number of elements ({@code initialCapacity}) and
839 * initial table density ({@code loadFactor}).
840 *
841 * @param initialCapacity the initial capacity. The implementation
842 * performs internal sizing to accommodate this many elements,
843 * given the specified load factor.
844 * @param loadFactor the load factor (table density) for
845 * establishing the initial table size
846 * @throws IllegalArgumentException if the initial capacity of
847 * elements is negative or the load factor is nonpositive
848 *
849 * @since 1.6
850 */
851 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
852 this(initialCapacity, loadFactor, 1);
853 }
854
855 /**
856 * Creates a new, empty map with an initial table size based on
857 * the given number of elements ({@code initialCapacity}), table
858 * density ({@code loadFactor}), and number of concurrently
859 * updating threads ({@code concurrencyLevel}).
860 *
861 * @param initialCapacity the initial capacity. The implementation
862 * performs internal sizing to accommodate this many elements,
863 * given the specified load factor.
864 * @param loadFactor the load factor (table density) for
865 * establishing the initial table size
866 * @param concurrencyLevel the estimated number of concurrently
867 * updating threads. The implementation may use this value as
868 * a sizing hint.
869 * @throws IllegalArgumentException if the initial capacity is
870 * negative or the load factor or concurrencyLevel are
871 * nonpositive
872 */
873 public ConcurrentHashMap(int initialCapacity,
874 float loadFactor, int concurrencyLevel) {
875 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
876 throw new IllegalArgumentException();
877 if (initialCapacity < concurrencyLevel) // Use at least as many bins
878 initialCapacity = concurrencyLevel; // as estimated threads
879 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
880 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
881 MAXIMUM_CAPACITY : tableSizeFor((int)size);
882 this.sizeCtl = cap;
883 }
884
885 // Original (since JDK1.2) Map methods
886
887 /**
888 * {@inheritDoc}
889 */
890 public int size() {
891 long n = sumCount();
892 return ((n < 0L) ? 0 :
893 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
894 (int)n);
895 }
896
897 /**
898 * {@inheritDoc}
899 */
900 public boolean isEmpty() {
901 return sumCount() <= 0L; // ignore transient negative values
902 }
903
904 /**
905 * Returns the value to which the specified key is mapped,
906 * or {@code null} if this map contains no mapping for the key.
907 *
908 * <p>More formally, if this map contains a mapping from a key
909 * {@code k} to a value {@code v} such that {@code key.equals(k)},
910 * then this method returns {@code v}; otherwise it returns
911 * {@code null}. (There can be at most one such mapping.)
912 *
913 * @throws NullPointerException if the specified key is null
914 */
915 public V get(Object key) {
916 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
917 int h = spread(key.hashCode());
918 if ((tab = table) != null && (n = tab.length) > 0 &&
919 (e = tabAt(tab, (n - 1) & h)) != null) {
920 if ((eh = e.hash) == h) {
921 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
922 return e.val;
923 }
924 else if (eh < 0)
925 return (p = e.find(h, key)) != null ? p.val : null;
926 while ((e = e.next) != null) {
927 if (e.hash == h &&
928 ((ek = e.key) == key || (ek != null && key.equals(ek))))
929 return e.val;
930 }
931 }
932 return null;
933 }
934
935 /**
936 * Tests if the specified object is a key in this table.
937 *
938 * @param key possible key
939 * @return {@code true} if and only if the specified object
940 * is a key in this table, as determined by the
941 * {@code equals} method; {@code false} otherwise
942 * @throws NullPointerException if the specified key is null
943 */
944 public boolean containsKey(Object key) {
945 return get(key) != null;
946 }
947
948 /**
949 * Returns {@code true} if this map maps one or more keys to the
950 * specified value. Note: This method may require a full traversal
951 * of the map, and is much slower than method {@code containsKey}.
952 *
953 * @param value value whose presence in this map is to be tested
954 * @return {@code true} if this map maps one or more keys to the
955 * specified value
956 * @throws NullPointerException if the specified value is null
957 */
958 public boolean containsValue(Object value) {
959 if (value == null)
960 throw new NullPointerException();
961 Node<K,V>[] t;
962 if ((t = table) != null) {
963 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
964 for (Node<K,V> p; (p = it.advance()) != null; ) {
965 V v;
966 if ((v = p.val) == value || (v != null && value.equals(v)))
967 return true;
968 }
969 }
970 return false;
971 }
972
973 /**
974 * Maps the specified key to the specified value in this table.
975 * Neither the key nor the value can be null.
976 *
977 * <p>The value can be retrieved by calling the {@code get} method
978 * with a key that is equal to the original key.
979 *
980 * @param key key with which the specified value is to be associated
981 * @param value value to be associated with the specified key
982 * @return the previous value associated with {@code key}, or
983 * {@code null} if there was no mapping for {@code key}
984 * @throws NullPointerException if the specified key or value is null
985 */
986 public V put(K key, V value) {
987 return putVal(key, value, false);
988 }
989
990 /** Implementation for put and putIfAbsent */
991 final V putVal(K key, V value, boolean onlyIfAbsent) {
992 if (key == null || value == null) throw new NullPointerException();
993 int hash = spread(key.hashCode());
994 int binCount = 0;
995 for (Node<K,V>[] tab = table;;) {
996 Node<K,V> f; int n, i, fh; K fk; V fv;
997 if (tab == null || (n = tab.length) == 0)
998 tab = initTable();
999 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1000 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1001 break; // no lock when adding to empty bin
1002 }
1003 else if ((fh = f.hash) == MOVED)
1004 tab = helpTransfer(tab, f);
1005 else if (onlyIfAbsent // check first node without acquiring lock
1006 && fh == hash
1007 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1008 && (fv = f.val) != null)
1009 return fv;
1010 else {
1011 V oldVal = null;
1012 synchronized (f) {
1013 if (tabAt(tab, i) == f) {
1014 if (fh >= 0) {
1015 binCount = 1;
1016 for (Node<K,V> e = f;; ++binCount) {
1017 K ek;
1018 if (e.hash == hash &&
1019 ((ek = e.key) == key ||
1020 (ek != null && key.equals(ek)))) {
1021 oldVal = e.val;
1022 if (!onlyIfAbsent)
1023 e.val = value;
1024 break;
1025 }
1026 Node<K,V> pred = e;
1027 if ((e = e.next) == null) {
1028 pred.next = new Node<K,V>(hash, key, value);
1029 break;
1030 }
1031 }
1032 }
1033 else if (f instanceof TreeBin) {
1034 Node<K,V> p;
1035 binCount = 2;
1036 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1037 value)) != null) {
1038 oldVal = p.val;
1039 if (!onlyIfAbsent)
1040 p.val = value;
1041 }
1042 }
1043 else if (f instanceof ReservationNode)
1044 throw new IllegalStateException("Recursive update");
1045 }
1046 }
1047 if (binCount != 0) {
1048 if (binCount >= TREEIFY_THRESHOLD)
1049 treeifyBin(tab, i);
1050 if (oldVal != null)
1051 return oldVal;
1052 break;
1053 }
1054 }
1055 }
1056 addCount(1L, binCount);
1057 return null;
1058 }
1059
1060 /**
1061 * Copies all of the mappings from the specified map to this one.
1062 * These mappings replace any mappings that this map had for any of the
1063 * keys currently in the specified map.
1064 *
1065 * @param m mappings to be stored in this map
1066 */
1067 public void putAll(Map<? extends K, ? extends V> m) {
1068 tryPresize(m.size());
1069 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1070 putVal(e.getKey(), e.getValue(), false);
1071 }
1072
1073 /**
1074 * Removes the key (and its corresponding value) from this map.
1075 * This method does nothing if the key is not in the map.
1076 *
1077 * @param key the key that needs to be removed
1078 * @return the previous value associated with {@code key}, or
1079 * {@code null} if there was no mapping for {@code key}
1080 * @throws NullPointerException if the specified key is null
1081 */
1082 public V remove(Object key) {
1083 return replaceNode(key, null, null);
1084 }
1085
1086 /**
1087 * Implementation for the four public remove/replace methods:
1088 * Replaces node value with v, conditional upon match of cv if
1089 * non-null. If resulting value is null, delete.
1090 */
1091 final V replaceNode(Object key, V value, Object cv) {
1092 int hash = spread(key.hashCode());
1093 for (Node<K,V>[] tab = table;;) {
1094 Node<K,V> f; int n, i, fh;
1095 if (tab == null || (n = tab.length) == 0 ||
1096 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1097 break;
1098 else if ((fh = f.hash) == MOVED)
1099 tab = helpTransfer(tab, f);
1100 else {
1101 V oldVal = null;
1102 boolean validated = false;
1103 synchronized (f) {
1104 if (tabAt(tab, i) == f) {
1105 if (fh >= 0) {
1106 validated = true;
1107 for (Node<K,V> e = f, pred = null;;) {
1108 K ek;
1109 if (e.hash == hash &&
1110 ((ek = e.key) == key ||
1111 (ek != null && key.equals(ek)))) {
1112 V ev = e.val;
1113 if (cv == null || cv == ev ||
1114 (ev != null && cv.equals(ev))) {
1115 oldVal = ev;
1116 if (value != null)
1117 e.val = value;
1118 else if (pred != null)
1119 pred.next = e.next;
1120 else
1121 setTabAt(tab, i, e.next);
1122 }
1123 break;
1124 }
1125 pred = e;
1126 if ((e = e.next) == null)
1127 break;
1128 }
1129 }
1130 else if (f instanceof TreeBin) {
1131 validated = true;
1132 TreeBin<K,V> t = (TreeBin<K,V>)f;
1133 TreeNode<K,V> r, p;
1134 if ((r = t.root) != null &&
1135 (p = r.findTreeNode(hash, key, null)) != null) {
1136 V pv = p.val;
1137 if (cv == null || cv == pv ||
1138 (pv != null && cv.equals(pv))) {
1139 oldVal = pv;
1140 if (value != null)
1141 p.val = value;
1142 else if (t.removeTreeNode(p))
1143 setTabAt(tab, i, untreeify(t.first));
1144 }
1145 }
1146 }
1147 else if (f instanceof ReservationNode)
1148 throw new IllegalStateException("Recursive update");
1149 }
1150 }
1151 if (validated) {
1152 if (oldVal != null) {
1153 if (value == null)
1154 addCount(-1L, -1);
1155 return oldVal;
1156 }
1157 break;
1158 }
1159 }
1160 }
1161 return null;
1162 }
1163
1164 /**
1165 * Removes all of the mappings from this map.
1166 */
1167 public void clear() {
1168 long delta = 0L; // negative number of deletions
1169 int i = 0;
1170 Node<K,V>[] tab = table;
1171 while (tab != null && i < tab.length) {
1172 int fh;
1173 Node<K,V> f = tabAt(tab, i);
1174 if (f == null)
1175 ++i;
1176 else if ((fh = f.hash) == MOVED) {
1177 tab = helpTransfer(tab, f);
1178 i = 0; // restart
1179 }
1180 else {
1181 synchronized (f) {
1182 if (tabAt(tab, i) == f) {
1183 Node<K,V> p = (fh >= 0 ? f :
1184 (f instanceof TreeBin) ?
1185 ((TreeBin<K,V>)f).first : null);
1186 while (p != null) {
1187 --delta;
1188 p = p.next;
1189 }
1190 setTabAt(tab, i++, null);
1191 }
1192 }
1193 }
1194 }
1195 if (delta != 0L)
1196 addCount(delta, -1);
1197 }
1198
1199 /**
1200 * Returns a {@link Set} view of the keys contained in this map.
1201 * The set is backed by the map, so changes to the map are
1202 * reflected in the set, and vice-versa. The set supports element
1203 * removal, which removes the corresponding mapping from this map,
1204 * via the {@code Iterator.remove}, {@code Set.remove},
1205 * {@code removeAll}, {@code retainAll}, and {@code clear}
1206 * operations. It does not support the {@code add} or
1207 * {@code addAll} operations.
1208 *
1209 * <p>The view's iterators and spliterators are
1210 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1211 *
1212 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1213 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1214 *
1215 * @return the set view
1216 */
1217 public KeySetView<K,V> keySet() {
1218 KeySetView<K,V> ks;
1219 if ((ks = keySet) != null) return ks;
1220 return keySet = new KeySetView<K,V>(this, null);
1221 }
1222
1223 /**
1224 * Returns a {@link Collection} view of the values contained in this map.
1225 * The collection is backed by the map, so changes to the map are
1226 * reflected in the collection, and vice-versa. The collection
1227 * supports element removal, which removes the corresponding
1228 * mapping from this map, via the {@code Iterator.remove},
1229 * {@code Collection.remove}, {@code removeAll},
1230 * {@code retainAll}, and {@code clear} operations. It does not
1231 * support the {@code add} or {@code addAll} operations.
1232 *
1233 * <p>The view's iterators and spliterators are
1234 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1235 *
1236 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1237 * and {@link Spliterator#NONNULL}.
1238 *
1239 * @return the collection view
1240 */
1241 public Collection<V> values() {
1242 ValuesView<K,V> vs;
1243 if ((vs = values) != null) return vs;
1244 return values = new ValuesView<K,V>(this);
1245 }
1246
1247 /**
1248 * Returns a {@link Set} view of the mappings contained in this map.
1249 * The set is backed by the map, so changes to the map are
1250 * reflected in the set, and vice-versa. The set supports element
1251 * removal, which removes the corresponding mapping from the map,
1252 * via the {@code Iterator.remove}, {@code Set.remove},
1253 * {@code removeAll}, {@code retainAll}, and {@code clear}
1254 * operations.
1255 *
1256 * <p>The view's iterators and spliterators are
1257 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1258 *
1259 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1260 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1261 *
1262 * @return the set view
1263 */
1264 public Set<Map.Entry<K,V>> entrySet() {
1265 EntrySetView<K,V> es;
1266 if ((es = entrySet) != null) return es;
1267 return entrySet = new EntrySetView<K,V>(this);
1268 }
1269
1270 /**
1271 * Returns the hash code value for this {@link Map}, i.e.,
1272 * the sum of, for each key-value pair in the map,
1273 * {@code key.hashCode() ^ value.hashCode()}.
1274 *
1275 * @return the hash code value for this map
1276 */
1277 public int hashCode() {
1278 int h = 0;
1279 Node<K,V>[] t;
1280 if ((t = table) != null) {
1281 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1282 for (Node<K,V> p; (p = it.advance()) != null; )
1283 h += p.key.hashCode() ^ p.val.hashCode();
1284 }
1285 return h;
1286 }
1287
1288 /**
1289 * Returns a string representation of this map. The string
1290 * representation consists of a list of key-value mappings (in no
1291 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1292 * mappings are separated by the characters {@code ", "} (comma
1293 * and space). Each key-value mapping is rendered as the key
1294 * followed by an equals sign ("{@code =}") followed by the
1295 * associated value.
1296 *
1297 * @return a string representation of this map
1298 */
1299 public String toString() {
1300 Node<K,V>[] t;
1301 int f = (t = table) == null ? 0 : t.length;
1302 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1303 StringBuilder sb = new StringBuilder();
1304 sb.append('{');
1305 Node<K,V> p;
1306 if ((p = it.advance()) != null) {
1307 for (;;) {
1308 K k = p.key;
1309 V v = p.val;
1310 sb.append(k == this ? "(this Map)" : k);
1311 sb.append('=');
1312 sb.append(v == this ? "(this Map)" : v);
1313 if ((p = it.advance()) == null)
1314 break;
1315 sb.append(',').append(' ');
1316 }
1317 }
1318 return sb.append('}').toString();
1319 }
1320
1321 /**
1322 * Compares the specified object with this map for equality.
1323 * Returns {@code true} if the given object is a map with the same
1324 * mappings as this map. This operation may return misleading
1325 * results if either map is concurrently modified during execution
1326 * of this method.
1327 *
1328 * @param o object to be compared for equality with this map
1329 * @return {@code true} if the specified object is equal to this map
1330 */
1331 public boolean equals(Object o) {
1332 if (o != this) {
1333 if (!(o instanceof Map))
1334 return false;
1335 Map<?,?> m = (Map<?,?>) o;
1336 Node<K,V>[] t;
1337 int f = (t = table) == null ? 0 : t.length;
1338 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1339 for (Node<K,V> p; (p = it.advance()) != null; ) {
1340 V val = p.val;
1341 Object v = m.get(p.key);
1342 if (v == null || (v != val && !v.equals(val)))
1343 return false;
1344 }
1345 for (Map.Entry<?,?> e : m.entrySet()) {
1346 Object mk, mv, v;
1347 if ((mk = e.getKey()) == null ||
1348 (mv = e.getValue()) == null ||
1349 (v = get(mk)) == null ||
1350 (mv != v && !mv.equals(v)))
1351 return false;
1352 }
1353 }
1354 return true;
1355 }
1356
1357 /**
1358 * Stripped-down version of helper class used in previous version,
1359 * declared for the sake of serialization compatibility.
1360 */
1361 static class Segment<K,V> extends ReentrantLock implements Serializable {
1362 private static final long serialVersionUID = 2249069246763182397L;
1363 final float loadFactor;
1364 Segment(float lf) { this.loadFactor = lf; }
1365 }
1366
1367 /**
1368 * Saves this map to a stream (that is, serializes it).
1369 *
1370 * @param s the stream
1371 * @throws java.io.IOException if an I/O error occurs
1372 * @serialData
1373 * the serialized fields, followed by the key (Object) and value
1374 * (Object) for each key-value mapping, followed by a null pair.
1375 * The key-value mappings are emitted in no particular order.
1376 */
1377 private void writeObject(java.io.ObjectOutputStream s)
1378 throws java.io.IOException {
1379 // For serialization compatibility
1380 // Emulate segment calculation from previous version of this class
1381 int sshift = 0;
1382 int ssize = 1;
1383 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1384 ++sshift;
1385 ssize <<= 1;
1386 }
1387 int segmentShift = 32 - sshift;
1388 int segmentMask = ssize - 1;
1389 @SuppressWarnings("unchecked")
1390 Segment<K,V>[] segments = (Segment<K,V>[])
1391 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1392 for (int i = 0; i < segments.length; ++i)
1393 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1394 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1395 streamFields.put("segments", segments);
1396 streamFields.put("segmentShift", segmentShift);
1397 streamFields.put("segmentMask", segmentMask);
1398 s.writeFields();
1399
1400 Node<K,V>[] t;
1401 if ((t = table) != null) {
1402 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1403 for (Node<K,V> p; (p = it.advance()) != null; ) {
1404 s.writeObject(p.key);
1405 s.writeObject(p.val);
1406 }
1407 }
1408 s.writeObject(null);
1409 s.writeObject(null);
1410 }
1411
1412 /**
1413 * Reconstitutes this map from a stream (that is, deserializes it).
1414 * @param s the stream
1415 * @throws ClassNotFoundException if the class of a serialized object
1416 * could not be found
1417 * @throws java.io.IOException if an I/O error occurs
1418 */
1419 private void readObject(java.io.ObjectInputStream s)
1420 throws java.io.IOException, ClassNotFoundException {
1421 /*
1422 * To improve performance in typical cases, we create nodes
1423 * while reading, then place in table once size is known.
1424 * However, we must also validate uniqueness and deal with
1425 * overpopulated bins while doing so, which requires
1426 * specialized versions of putVal mechanics.
1427 */
1428 sizeCtl = -1; // force exclusion for table construction
1429 s.defaultReadObject();
1430 long size = 0L;
1431 Node<K,V> p = null;
1432 for (;;) {
1433 @SuppressWarnings("unchecked")
1434 K k = (K) s.readObject();
1435 @SuppressWarnings("unchecked")
1436 V v = (V) s.readObject();
1437 if (k != null && v != null) {
1438 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1439 ++size;
1440 }
1441 else
1442 break;
1443 }
1444 if (size == 0L)
1445 sizeCtl = 0;
1446 else {
1447 int n;
1448 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1449 n = MAXIMUM_CAPACITY;
1450 else {
1451 int sz = (int)size;
1452 n = tableSizeFor(sz + (sz >>> 1) + 1);
1453 }
1454 @SuppressWarnings("unchecked")
1455 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1456 int mask = n - 1;
1457 long added = 0L;
1458 while (p != null) {
1459 boolean insertAtFront;
1460 Node<K,V> next = p.next, first;
1461 int h = p.hash, j = h & mask;
1462 if ((first = tabAt(tab, j)) == null)
1463 insertAtFront = true;
1464 else {
1465 K k = p.key;
1466 if (first.hash < 0) {
1467 TreeBin<K,V> t = (TreeBin<K,V>)first;
1468 if (t.putTreeVal(h, k, p.val) == null)
1469 ++added;
1470 insertAtFront = false;
1471 }
1472 else {
1473 int binCount = 0;
1474 insertAtFront = true;
1475 Node<K,V> q; K qk;
1476 for (q = first; q != null; q = q.next) {
1477 if (q.hash == h &&
1478 ((qk = q.key) == k ||
1479 (qk != null && k.equals(qk)))) {
1480 insertAtFront = false;
1481 break;
1482 }
1483 ++binCount;
1484 }
1485 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1486 insertAtFront = false;
1487 ++added;
1488 p.next = first;
1489 TreeNode<K,V> hd = null, tl = null;
1490 for (q = p; q != null; q = q.next) {
1491 TreeNode<K,V> t = new TreeNode<K,V>
1492 (q.hash, q.key, q.val, null, null);
1493 if ((t.prev = tl) == null)
1494 hd = t;
1495 else
1496 tl.next = t;
1497 tl = t;
1498 }
1499 setTabAt(tab, j, new TreeBin<K,V>(hd));
1500 }
1501 }
1502 }
1503 if (insertAtFront) {
1504 ++added;
1505 p.next = first;
1506 setTabAt(tab, j, p);
1507 }
1508 p = next;
1509 }
1510 table = tab;
1511 sizeCtl = n - (n >>> 2);
1512 baseCount = added;
1513 }
1514 }
1515
1516 // ConcurrentMap methods
1517
1518 /**
1519 * {@inheritDoc}
1520 *
1521 * @return the previous value associated with the specified key,
1522 * or {@code null} if there was no mapping for the key
1523 * @throws NullPointerException if the specified key or value is null
1524 */
1525 public V putIfAbsent(K key, V value) {
1526 return putVal(key, value, true);
1527 }
1528
1529 /**
1530 * {@inheritDoc}
1531 *
1532 * @throws NullPointerException if the specified key is null
1533 */
1534 public boolean remove(Object key, Object value) {
1535 if (key == null)
1536 throw new NullPointerException();
1537 return value != null && replaceNode(key, null, value) != null;
1538 }
1539
1540 /**
1541 * {@inheritDoc}
1542 *
1543 * @throws NullPointerException if any of the arguments are null
1544 */
1545 public boolean replace(K key, V oldValue, V newValue) {
1546 if (key == null || oldValue == null || newValue == null)
1547 throw new NullPointerException();
1548 return replaceNode(key, newValue, oldValue) != null;
1549 }
1550
1551 /**
1552 * {@inheritDoc}
1553 *
1554 * @return the previous value associated with the specified key,
1555 * or {@code null} if there was no mapping for the key
1556 * @throws NullPointerException if the specified key or value is null
1557 */
1558 public V replace(K key, V value) {
1559 if (key == null || value == null)
1560 throw new NullPointerException();
1561 return replaceNode(key, value, null);
1562 }
1563
1564 // Overrides of JDK8+ Map extension method defaults
1565
1566 /**
1567 * Returns the value to which the specified key is mapped, or the
1568 * given default value if this map contains no mapping for the
1569 * key.
1570 *
1571 * @param key the key whose associated value is to be returned
1572 * @param defaultValue the value to return if this map contains
1573 * no mapping for the given key
1574 * @return the mapping for the key, if present; else the default value
1575 * @throws NullPointerException if the specified key is null
1576 */
1577 public V getOrDefault(Object key, V defaultValue) {
1578 V v;
1579 return (v = get(key)) == null ? defaultValue : v;
1580 }
1581
1582 public void forEach(BiConsumer<? super K, ? super V> action) {
1583 if (action == null) throw new NullPointerException();
1584 Node<K,V>[] t;
1585 if ((t = table) != null) {
1586 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1587 for (Node<K,V> p; (p = it.advance()) != null; ) {
1588 action.accept(p.key, p.val);
1589 }
1590 }
1591 }
1592
1593 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1594 if (function == null) throw new NullPointerException();
1595 Node<K,V>[] t;
1596 if ((t = table) != null) {
1597 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1598 for (Node<K,V> p; (p = it.advance()) != null; ) {
1599 V oldValue = p.val;
1600 for (K key = p.key;;) {
1601 V newValue = function.apply(key, oldValue);
1602 if (newValue == null)
1603 throw new NullPointerException();
1604 if (replaceNode(key, newValue, oldValue) != null ||
1605 (oldValue = get(key)) == null)
1606 break;
1607 }
1608 }
1609 }
1610 }
1611
1612 /**
1613 * Helper method for EntrySetView.removeIf.
1614 */
1615 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1616 if (function == null) throw new NullPointerException();
1617 Node<K,V>[] t;
1618 boolean removed = false;
1619 if ((t = table) != null) {
1620 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1621 for (Node<K,V> p; (p = it.advance()) != null; ) {
1622 K k = p.key;
1623 V v = p.val;
1624 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1625 if (function.test(e) && replaceNode(k, null, v) != null)
1626 removed = true;
1627 }
1628 }
1629 return removed;
1630 }
1631
1632 /**
1633 * Helper method for ValuesView.removeIf.
1634 */
1635 boolean removeValueIf(Predicate<? super V> function) {
1636 if (function == null) throw new NullPointerException();
1637 Node<K,V>[] t;
1638 boolean removed = false;
1639 if ((t = table) != null) {
1640 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1641 for (Node<K,V> p; (p = it.advance()) != null; ) {
1642 K k = p.key;
1643 V v = p.val;
1644 if (function.test(v) && replaceNode(k, null, v) != null)
1645 removed = true;
1646 }
1647 }
1648 return removed;
1649 }
1650
1651 /**
1652 * If the specified key is not already associated with a value,
1653 * attempts to compute its value using the given mapping function
1654 * and enters it into this map unless {@code null}. The entire
1655 * method invocation is performed atomically, so the function is
1656 * applied at most once per key. Some attempted update operations
1657 * on this map by other threads may be blocked while computation
1658 * is in progress, so the computation should be short and simple,
1659 * and must not attempt to update any other mappings of this map.
1660 *
1661 * @param key key with which the specified value is to be associated
1662 * @param mappingFunction the function to compute a value
1663 * @return the current (existing or computed) value associated with
1664 * the specified key, or null if the computed value is null
1665 * @throws NullPointerException if the specified key or mappingFunction
1666 * is null
1667 * @throws IllegalStateException if the computation detectably
1668 * attempts a recursive update to this map that would
1669 * otherwise never complete
1670 * @throws RuntimeException or Error if the mappingFunction does so,
1671 * in which case the mapping is left unestablished
1672 */
1673 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1674 if (key == null || mappingFunction == null)
1675 throw new NullPointerException();
1676 int h = spread(key.hashCode());
1677 V val = null;
1678 int binCount = 0;
1679 for (Node<K,V>[] tab = table;;) {
1680 Node<K,V> f; int n, i, fh; K fk; V fv;
1681 if (tab == null || (n = tab.length) == 0)
1682 tab = initTable();
1683 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1684 Node<K,V> r = new ReservationNode<K,V>();
1685 synchronized (r) {
1686 if (casTabAt(tab, i, null, r)) {
1687 binCount = 1;
1688 Node<K,V> node = null;
1689 try {
1690 if ((val = mappingFunction.apply(key)) != null)
1691 node = new Node<K,V>(h, key, val);
1692 } finally {
1693 setTabAt(tab, i, node);
1694 }
1695 }
1696 }
1697 if (binCount != 0)
1698 break;
1699 }
1700 else if ((fh = f.hash) == MOVED)
1701 tab = helpTransfer(tab, f);
1702 else if (fh == h // check first node without acquiring lock
1703 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1704 && (fv = f.val) != null)
1705 return fv;
1706 else {
1707 boolean added = false;
1708 synchronized (f) {
1709 if (tabAt(tab, i) == f) {
1710 if (fh >= 0) {
1711 binCount = 1;
1712 for (Node<K,V> e = f;; ++binCount) {
1713 K ek;
1714 if (e.hash == h &&
1715 ((ek = e.key) == key ||
1716 (ek != null && key.equals(ek)))) {
1717 val = e.val;
1718 break;
1719 }
1720 Node<K,V> pred = e;
1721 if ((e = e.next) == null) {
1722 if ((val = mappingFunction.apply(key)) != null) {
1723 if (pred.next != null)
1724 throw new IllegalStateException("Recursive update");
1725 added = true;
1726 pred.next = new Node<K,V>(h, key, val);
1727 }
1728 break;
1729 }
1730 }
1731 }
1732 else if (f instanceof TreeBin) {
1733 binCount = 2;
1734 TreeBin<K,V> t = (TreeBin<K,V>)f;
1735 TreeNode<K,V> r, p;
1736 if ((r = t.root) != null &&
1737 (p = r.findTreeNode(h, key, null)) != null)
1738 val = p.val;
1739 else if ((val = mappingFunction.apply(key)) != null) {
1740 added = true;
1741 t.putTreeVal(h, key, val);
1742 }
1743 }
1744 else if (f instanceof ReservationNode)
1745 throw new IllegalStateException("Recursive update");
1746 }
1747 }
1748 if (binCount != 0) {
1749 if (binCount >= TREEIFY_THRESHOLD)
1750 treeifyBin(tab, i);
1751 if (!added)
1752 return val;
1753 break;
1754 }
1755 }
1756 }
1757 if (val != null)
1758 addCount(1L, binCount);
1759 return val;
1760 }
1761
1762 /**
1763 * If the value for the specified key is present, attempts to
1764 * compute a new mapping given the key and its current mapped
1765 * value. The entire method invocation is performed atomically.
1766 * Some attempted update operations on this map by other threads
1767 * may be blocked while computation is in progress, so the
1768 * computation should be short and simple, and must not attempt to
1769 * update any other mappings of this map.
1770 *
1771 * @param key key with which a value may be associated
1772 * @param remappingFunction the function to compute a value
1773 * @return the new value associated with the specified key, or null if none
1774 * @throws NullPointerException if the specified key or remappingFunction
1775 * is null
1776 * @throws IllegalStateException if the computation detectably
1777 * attempts a recursive update to this map that would
1778 * otherwise never complete
1779 * @throws RuntimeException or Error if the remappingFunction does so,
1780 * in which case the mapping is unchanged
1781 */
1782 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1783 if (key == null || remappingFunction == null)
1784 throw new NullPointerException();
1785 int h = spread(key.hashCode());
1786 V val = null;
1787 int delta = 0;
1788 int binCount = 0;
1789 for (Node<K,V>[] tab = table;;) {
1790 Node<K,V> f; int n, i, fh;
1791 if (tab == null || (n = tab.length) == 0)
1792 tab = initTable();
1793 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1794 break;
1795 else if ((fh = f.hash) == MOVED)
1796 tab = helpTransfer(tab, f);
1797 else {
1798 synchronized (f) {
1799 if (tabAt(tab, i) == f) {
1800 if (fh >= 0) {
1801 binCount = 1;
1802 for (Node<K,V> e = f, pred = null;; ++binCount) {
1803 K ek;
1804 if (e.hash == h &&
1805 ((ek = e.key) == key ||
1806 (ek != null && key.equals(ek)))) {
1807 val = remappingFunction.apply(key, e.val);
1808 if (val != null)
1809 e.val = val;
1810 else {
1811 delta = -1;
1812 Node<K,V> en = e.next;
1813 if (pred != null)
1814 pred.next = en;
1815 else
1816 setTabAt(tab, i, en);
1817 }
1818 break;
1819 }
1820 pred = e;
1821 if ((e = e.next) == null)
1822 break;
1823 }
1824 }
1825 else if (f instanceof TreeBin) {
1826 binCount = 2;
1827 TreeBin<K,V> t = (TreeBin<K,V>)f;
1828 TreeNode<K,V> r, p;
1829 if ((r = t.root) != null &&
1830 (p = r.findTreeNode(h, key, null)) != null) {
1831 val = remappingFunction.apply(key, p.val);
1832 if (val != null)
1833 p.val = val;
1834 else {
1835 delta = -1;
1836 if (t.removeTreeNode(p))
1837 setTabAt(tab, i, untreeify(t.first));
1838 }
1839 }
1840 }
1841 else if (f instanceof ReservationNode)
1842 throw new IllegalStateException("Recursive update");
1843 }
1844 }
1845 if (binCount != 0)
1846 break;
1847 }
1848 }
1849 if (delta != 0)
1850 addCount((long)delta, binCount);
1851 return val;
1852 }
1853
1854 /**
1855 * Attempts to compute a mapping for the specified key and its
1856 * current mapped value (or {@code null} if there is no current
1857 * mapping). The entire method invocation is performed atomically.
1858 * Some attempted update operations on this map by other threads
1859 * may be blocked while computation is in progress, so the
1860 * computation should be short and simple, and must not attempt to
1861 * update any other mappings of this Map.
1862 *
1863 * @param key key with which the specified value is to be associated
1864 * @param remappingFunction the function to compute a value
1865 * @return the new value associated with the specified key, or null if none
1866 * @throws NullPointerException if the specified key or remappingFunction
1867 * is null
1868 * @throws IllegalStateException if the computation detectably
1869 * attempts a recursive update to this map that would
1870 * otherwise never complete
1871 * @throws RuntimeException or Error if the remappingFunction does so,
1872 * in which case the mapping is unchanged
1873 */
1874 public V compute(K key,
1875 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1876 if (key == null || remappingFunction == null)
1877 throw new NullPointerException();
1878 int h = spread(key.hashCode());
1879 V val = null;
1880 int delta = 0;
1881 int binCount = 0;
1882 for (Node<K,V>[] tab = table;;) {
1883 Node<K,V> f; int n, i, fh;
1884 if (tab == null || (n = tab.length) == 0)
1885 tab = initTable();
1886 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1887 Node<K,V> r = new ReservationNode<K,V>();
1888 synchronized (r) {
1889 if (casTabAt(tab, i, null, r)) {
1890 binCount = 1;
1891 Node<K,V> node = null;
1892 try {
1893 if ((val = remappingFunction.apply(key, null)) != null) {
1894 delta = 1;
1895 node = new Node<K,V>(h, key, val);
1896 }
1897 } finally {
1898 setTabAt(tab, i, node);
1899 }
1900 }
1901 }
1902 if (binCount != 0)
1903 break;
1904 }
1905 else if ((fh = f.hash) == MOVED)
1906 tab = helpTransfer(tab, f);
1907 else {
1908 synchronized (f) {
1909 if (tabAt(tab, i) == f) {
1910 if (fh >= 0) {
1911 binCount = 1;
1912 for (Node<K,V> e = f, pred = null;; ++binCount) {
1913 K ek;
1914 if (e.hash == h &&
1915 ((ek = e.key) == key ||
1916 (ek != null && key.equals(ek)))) {
1917 val = remappingFunction.apply(key, e.val);
1918 if (val != null)
1919 e.val = val;
1920 else {
1921 delta = -1;
1922 Node<K,V> en = e.next;
1923 if (pred != null)
1924 pred.next = en;
1925 else
1926 setTabAt(tab, i, en);
1927 }
1928 break;
1929 }
1930 pred = e;
1931 if ((e = e.next) == null) {
1932 val = remappingFunction.apply(key, null);
1933 if (val != null) {
1934 if (pred.next != null)
1935 throw new IllegalStateException("Recursive update");
1936 delta = 1;
1937 pred.next = new Node<K,V>(h, key, val);
1938 }
1939 break;
1940 }
1941 }
1942 }
1943 else if (f instanceof TreeBin) {
1944 binCount = 1;
1945 TreeBin<K,V> t = (TreeBin<K,V>)f;
1946 TreeNode<K,V> r, p;
1947 if ((r = t.root) != null)
1948 p = r.findTreeNode(h, key, null);
1949 else
1950 p = null;
1951 V pv = (p == null) ? null : p.val;
1952 val = remappingFunction.apply(key, pv);
1953 if (val != null) {
1954 if (p != null)
1955 p.val = val;
1956 else {
1957 delta = 1;
1958 t.putTreeVal(h, key, val);
1959 }
1960 }
1961 else if (p != null) {
1962 delta = -1;
1963 if (t.removeTreeNode(p))
1964 setTabAt(tab, i, untreeify(t.first));
1965 }
1966 }
1967 else if (f instanceof ReservationNode)
1968 throw new IllegalStateException("Recursive update");
1969 }
1970 }
1971 if (binCount != 0) {
1972 if (binCount >= TREEIFY_THRESHOLD)
1973 treeifyBin(tab, i);
1974 break;
1975 }
1976 }
1977 }
1978 if (delta != 0)
1979 addCount((long)delta, binCount);
1980 return val;
1981 }
1982
1983 /**
1984 * If the specified key is not already associated with a
1985 * (non-null) value, associates it with the given value.
1986 * Otherwise, replaces the value with the results of the given
1987 * remapping function, or removes if {@code null}. The entire
1988 * method invocation is performed atomically. Some attempted
1989 * update operations on this map by other threads may be blocked
1990 * while computation is in progress, so the computation should be
1991 * short and simple, and must not attempt to update any other
1992 * mappings of this Map.
1993 *
1994 * @param key key with which the specified value is to be associated
1995 * @param value the value to use if absent
1996 * @param remappingFunction the function to recompute a value if present
1997 * @return the new value associated with the specified key, or null if none
1998 * @throws NullPointerException if the specified key or the
1999 * remappingFunction is null
2000 * @throws RuntimeException or Error if the remappingFunction does so,
2001 * in which case the mapping is unchanged
2002 */
2003 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2004 if (key == null || value == null || remappingFunction == null)
2005 throw new NullPointerException();
2006 int h = spread(key.hashCode());
2007 V val = null;
2008 int delta = 0;
2009 int binCount = 0;
2010 for (Node<K,V>[] tab = table;;) {
2011 Node<K,V> f; int n, i, fh;
2012 if (tab == null || (n = tab.length) == 0)
2013 tab = initTable();
2014 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2015 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2016 delta = 1;
2017 val = value;
2018 break;
2019 }
2020 }
2021 else if ((fh = f.hash) == MOVED)
2022 tab = helpTransfer(tab, f);
2023 else {
2024 synchronized (f) {
2025 if (tabAt(tab, i) == f) {
2026 if (fh >= 0) {
2027 binCount = 1;
2028 for (Node<K,V> e = f, pred = null;; ++binCount) {
2029 K ek;
2030 if (e.hash == h &&
2031 ((ek = e.key) == key ||
2032 (ek != null && key.equals(ek)))) {
2033 val = remappingFunction.apply(e.val, value);
2034 if (val != null)
2035 e.val = val;
2036 else {
2037 delta = -1;
2038 Node<K,V> en = e.next;
2039 if (pred != null)
2040 pred.next = en;
2041 else
2042 setTabAt(tab, i, en);
2043 }
2044 break;
2045 }
2046 pred = e;
2047 if ((e = e.next) == null) {
2048 delta = 1;
2049 val = value;
2050 pred.next = new Node<K,V>(h, key, val);
2051 break;
2052 }
2053 }
2054 }
2055 else if (f instanceof TreeBin) {
2056 binCount = 2;
2057 TreeBin<K,V> t = (TreeBin<K,V>)f;
2058 TreeNode<K,V> r = t.root;
2059 TreeNode<K,V> p = (r == null) ? null :
2060 r.findTreeNode(h, key, null);
2061 val = (p == null) ? value :
2062 remappingFunction.apply(p.val, value);
2063 if (val != null) {
2064 if (p != null)
2065 p.val = val;
2066 else {
2067 delta = 1;
2068 t.putTreeVal(h, key, val);
2069 }
2070 }
2071 else if (p != null) {
2072 delta = -1;
2073 if (t.removeTreeNode(p))
2074 setTabAt(tab, i, untreeify(t.first));
2075 }
2076 }
2077 else if (f instanceof ReservationNode)
2078 throw new IllegalStateException("Recursive update");
2079 }
2080 }
2081 if (binCount != 0) {
2082 if (binCount >= TREEIFY_THRESHOLD)
2083 treeifyBin(tab, i);
2084 break;
2085 }
2086 }
2087 }
2088 if (delta != 0)
2089 addCount((long)delta, binCount);
2090 return val;
2091 }
2092
2093 // Hashtable legacy methods
2094
2095 /**
2096 * Tests if some key maps into the specified value in this table.
2097 *
2098 * <p>Note that this method is identical in functionality to
2099 * {@link #containsValue(Object)}, and exists solely to ensure
2100 * full compatibility with class {@link java.util.Hashtable},
2101 * which supported this method prior to introduction of the
2102 * Java Collections Framework.
2103 *
2104 * @param value a value to search for
2105 * @return {@code true} if and only if some key maps to the
2106 * {@code value} argument in this table as
2107 * determined by the {@code equals} method;
2108 * {@code false} otherwise
2109 * @throws NullPointerException if the specified value is null
2110 */
2111 public boolean contains(Object value) {
2112 return containsValue(value);
2113 }
2114
2115 /**
2116 * Returns an enumeration of the keys in this table.
2117 *
2118 * @return an enumeration of the keys in this table
2119 * @see #keySet()
2120 */
2121 public Enumeration<K> keys() {
2122 Node<K,V>[] t;
2123 int f = (t = table) == null ? 0 : t.length;
2124 return new KeyIterator<K,V>(t, f, 0, f, this);
2125 }
2126
2127 /**
2128 * Returns an enumeration of the values in this table.
2129 *
2130 * @return an enumeration of the values in this table
2131 * @see #values()
2132 */
2133 public Enumeration<V> elements() {
2134 Node<K,V>[] t;
2135 int f = (t = table) == null ? 0 : t.length;
2136 return new ValueIterator<K,V>(t, f, 0, f, this);
2137 }
2138
2139 // ConcurrentHashMap-only methods
2140
2141 /**
2142 * Returns the number of mappings. This method should be used
2143 * instead of {@link #size} because a ConcurrentHashMap may
2144 * contain more mappings than can be represented as an int. The
2145 * value returned is an estimate; the actual count may differ if
2146 * there are concurrent insertions or removals.
2147 *
2148 * @return the number of mappings
2149 * @since 1.8
2150 */
2151 public long mappingCount() {
2152 long n = sumCount();
2153 return (n < 0L) ? 0L : n; // ignore transient negative values
2154 }
2155
2156 /**
2157 * Creates a new {@link Set} backed by a ConcurrentHashMap
2158 * from the given type to {@code Boolean.TRUE}.
2159 *
2160 * @param <K> the element type of the returned set
2161 * @return the new set
2162 * @since 1.8
2163 */
2164 public static <K> KeySetView<K,Boolean> newKeySet() {
2165 return new KeySetView<K,Boolean>
2166 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2167 }
2168
2169 /**
2170 * Creates a new {@link Set} backed by a ConcurrentHashMap
2171 * from the given type to {@code Boolean.TRUE}.
2172 *
2173 * @param initialCapacity The implementation performs internal
2174 * sizing to accommodate this many elements.
2175 * @param <K> the element type of the returned set
2176 * @return the new set
2177 * @throws IllegalArgumentException if the initial capacity of
2178 * elements is negative
2179 * @since 1.8
2180 */
2181 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2182 return new KeySetView<K,Boolean>
2183 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2184 }
2185
2186 /**
2187 * Returns a {@link Set} view of the keys in this map, using the
2188 * given common mapped value for any additions (i.e., {@link
2189 * Collection#add} and {@link Collection#addAll(Collection)}).
2190 * This is of course only appropriate if it is acceptable to use
2191 * the same value for all additions from this view.
2192 *
2193 * @param mappedValue the mapped value to use for any additions
2194 * @return the set view
2195 * @throws NullPointerException if the mappedValue is null
2196 */
2197 public KeySetView<K,V> keySet(V mappedValue) {
2198 if (mappedValue == null)
2199 throw new NullPointerException();
2200 return new KeySetView<K,V>(this, mappedValue);
2201 }
2202
2203 /* ---------------- Special Nodes -------------- */
2204
2205 /**
2206 * A node inserted at head of bins during transfer operations.
2207 */
2208 static final class ForwardingNode<K,V> extends Node<K,V> {
2209 final Node<K,V>[] nextTable;
2210 ForwardingNode(Node<K,V>[] tab) {
2211 super(MOVED, null, null);
2212 this.nextTable = tab;
2213 }
2214
2215 Node<K,V> find(int h, Object k) {
2216 // loop to avoid arbitrarily deep recursion on forwarding nodes
2217 outer: for (Node<K,V>[] tab = nextTable;;) {
2218 Node<K,V> e; int n;
2219 if (k == null || tab == null || (n = tab.length) == 0 ||
2220 (e = tabAt(tab, (n - 1) & h)) == null)
2221 return null;
2222 for (;;) {
2223 int eh; K ek;
2224 if ((eh = e.hash) == h &&
2225 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2226 return e;
2227 if (eh < 0) {
2228 if (e instanceof ForwardingNode) {
2229 tab = ((ForwardingNode<K,V>)e).nextTable;
2230 continue outer;
2231 }
2232 else
2233 return e.find(h, k);
2234 }
2235 if ((e = e.next) == null)
2236 return null;
2237 }
2238 }
2239 }
2240 }
2241
2242 /**
2243 * A place-holder node used in computeIfAbsent and compute.
2244 */
2245 static final class ReservationNode<K,V> extends Node<K,V> {
2246 ReservationNode() {
2247 super(RESERVED, null, null);
2248 }
2249
2250 Node<K,V> find(int h, Object k) {
2251 return null;
2252 }
2253 }
2254
2255 /* ---------------- Table Initialization and Resizing -------------- */
2256
2257 /**
2258 * Returns the stamp bits for resizing a table of size n.
2259 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2260 */
2261 static final int resizeStamp(int n) {
2262 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2263 }
2264
2265 /**
2266 * Initializes table, using the size recorded in sizeCtl.
2267 */
2268 private final Node<K,V>[] initTable() {
2269 Node<K,V>[] tab; int sc;
2270 while ((tab = table) == null || tab.length == 0) {
2271 if ((sc = sizeCtl) < 0)
2272 Thread.yield(); // lost initialization race; just spin
2273 else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2274 try {
2275 if ((tab = table) == null || tab.length == 0) {
2276 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2277 @SuppressWarnings("unchecked")
2278 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2279 table = tab = nt;
2280 sc = n - (n >>> 2);
2281 }
2282 } finally {
2283 sizeCtl = sc;
2284 }
2285 break;
2286 }
2287 }
2288 return tab;
2289 }
2290
2291 /**
2292 * Adds to count, and if table is too small and not already
2293 * resizing, initiates transfer. If already resizing, helps
2294 * perform transfer if work is available. Rechecks occupancy
2295 * after a transfer to see if another resize is already needed
2296 * because resizings are lagging additions.
2297 *
2298 * @param x the count to add
2299 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2300 */
2301 private final void addCount(long x, int check) {
2302 CounterCell[] as; long b, s;
2303 if ((as = counterCells) != null ||
2304 !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2305 CounterCell a; long v; int m;
2306 boolean uncontended = true;
2307 if (as == null || (m = as.length - 1) < 0 ||
2308 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2309 !(uncontended =
2310 U.compareAndSetLong(a, CELLVALUE, v = a.value, v + x))) {
2311 fullAddCount(x, uncontended);
2312 return;
2313 }
2314 if (check <= 1)
2315 return;
2316 s = sumCount();
2317 }
2318 if (check >= 0) {
2319 Node<K,V>[] tab, nt; int n, sc;
2320 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2321 (n = tab.length) < MAXIMUM_CAPACITY) {
2322 int rs = resizeStamp(n);
2323 if (sc < 0) {
2324 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2325 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2326 transferIndex <= 0)
2327 break;
2328 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2329 transfer(tab, nt);
2330 }
2331 else if (U.compareAndSetInt(this, SIZECTL, sc,
2332 (rs << RESIZE_STAMP_SHIFT) + 2))
2333 transfer(tab, null);
2334 s = sumCount();
2335 }
2336 }
2337 }
2338
2339 /**
2340 * Helps transfer if a resize is in progress.
2341 */
2342 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2343 Node<K,V>[] nextTab; int sc;
2344 if (tab != null && (f instanceof ForwardingNode) &&
2345 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2346 int rs = resizeStamp(tab.length);
2347 while (nextTab == nextTable && table == tab &&
2348 (sc = sizeCtl) < 0) {
2349 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2350 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2351 break;
2352 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2353 transfer(tab, nextTab);
2354 break;
2355 }
2356 }
2357 return nextTab;
2358 }
2359 return table;
2360 }
2361
2362 /**
2363 * Tries to presize table to accommodate the given number of elements.
2364 *
2365 * @param size number of elements (doesn't need to be perfectly accurate)
2366 */
2367 private final void tryPresize(int size) {
2368 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2369 tableSizeFor(size + (size >>> 1) + 1);
2370 int sc;
2371 while ((sc = sizeCtl) >= 0) {
2372 Node<K,V>[] tab = table; int n;
2373 if (tab == null || (n = tab.length) == 0) {
2374 n = (sc > c) ? sc : c;
2375 if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2376 try {
2377 if (table == tab) {
2378 @SuppressWarnings("unchecked")
2379 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2380 table = nt;
2381 sc = n - (n >>> 2);
2382 }
2383 } finally {
2384 sizeCtl = sc;
2385 }
2386 }
2387 }
2388 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2389 break;
2390 else if (tab == table) {
2391 int rs = resizeStamp(n);
2392 if (U.compareAndSetInt(this, SIZECTL, sc,
2393 (rs << RESIZE_STAMP_SHIFT) + 2))
2394 transfer(tab, null);
2395 }
2396 }
2397 }
2398
2399 /**
2400 * Moves and/or copies the nodes in each bin to new table. See
2401 * above for explanation.
2402 */
2403 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2404 int n = tab.length, stride;
2405 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2406 stride = MIN_TRANSFER_STRIDE; // subdivide range
2407 if (nextTab == null) { // initiating
2408 try {
2409 @SuppressWarnings("unchecked")
2410 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2411 nextTab = nt;
2412 } catch (Throwable ex) { // try to cope with OOME
2413 sizeCtl = Integer.MAX_VALUE;
2414 return;
2415 }
2416 nextTable = nextTab;
2417 transferIndex = n;
2418 }
2419 int nextn = nextTab.length;
2420 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2421 boolean advance = true;
2422 boolean finishing = false; // to ensure sweep before committing nextTab
2423 for (int i = 0, bound = 0;;) {
2424 Node<K,V> f; int fh;
2425 while (advance) {
2426 int nextIndex, nextBound;
2427 if (--i >= bound || finishing)
2428 advance = false;
2429 else if ((nextIndex = transferIndex) <= 0) {
2430 i = -1;
2431 advance = false;
2432 }
2433 else if (U.compareAndSetInt
2434 (this, TRANSFERINDEX, nextIndex,
2435 nextBound = (nextIndex > stride ?
2436 nextIndex - stride : 0))) {
2437 bound = nextBound;
2438 i = nextIndex - 1;
2439 advance = false;
2440 }
2441 }
2442 if (i < 0 || i >= n || i + n >= nextn) {
2443 int sc;
2444 if (finishing) {
2445 nextTable = null;
2446 table = nextTab;
2447 sizeCtl = (n << 1) - (n >>> 1);
2448 return;
2449 }
2450 if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2451 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2452 return;
2453 finishing = advance = true;
2454 i = n; // recheck before commit
2455 }
2456 }
2457 else if ((f = tabAt(tab, i)) == null)
2458 advance = casTabAt(tab, i, null, fwd);
2459 else if ((fh = f.hash) == MOVED)
2460 advance = true; // already processed
2461 else {
2462 synchronized (f) {
2463 if (tabAt(tab, i) == f) {
2464 Node<K,V> ln, hn;
2465 if (fh >= 0) {
2466 int runBit = fh & n;
2467 Node<K,V> lastRun = f;
2468 for (Node<K,V> p = f.next; p != null; p = p.next) {
2469 int b = p.hash & n;
2470 if (b != runBit) {
2471 runBit = b;
2472 lastRun = p;
2473 }
2474 }
2475 if (runBit == 0) {
2476 ln = lastRun;
2477 hn = null;
2478 }
2479 else {
2480 hn = lastRun;
2481 ln = null;
2482 }
2483 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2484 int ph = p.hash; K pk = p.key; V pv = p.val;
2485 if ((ph & n) == 0)
2486 ln = new Node<K,V>(ph, pk, pv, ln);
2487 else
2488 hn = new Node<K,V>(ph, pk, pv, hn);
2489 }
2490 setTabAt(nextTab, i, ln);
2491 setTabAt(nextTab, i + n, hn);
2492 setTabAt(tab, i, fwd);
2493 advance = true;
2494 }
2495 else if (f instanceof TreeBin) {
2496 TreeBin<K,V> t = (TreeBin<K,V>)f;
2497 TreeNode<K,V> lo = null, loTail = null;
2498 TreeNode<K,V> hi = null, hiTail = null;
2499 int lc = 0, hc = 0;
2500 for (Node<K,V> e = t.first; e != null; e = e.next) {
2501 int h = e.hash;
2502 TreeNode<K,V> p = new TreeNode<K,V>
2503 (h, e.key, e.val, null, null);
2504 if ((h & n) == 0) {
2505 if ((p.prev = loTail) == null)
2506 lo = p;
2507 else
2508 loTail.next = p;
2509 loTail = p;
2510 ++lc;
2511 }
2512 else {
2513 if ((p.prev = hiTail) == null)
2514 hi = p;
2515 else
2516 hiTail.next = p;
2517 hiTail = p;
2518 ++hc;
2519 }
2520 }
2521 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2522 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2523 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2524 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2525 setTabAt(nextTab, i, ln);
2526 setTabAt(nextTab, i + n, hn);
2527 setTabAt(tab, i, fwd);
2528 advance = true;
2529 }
2530 }
2531 }
2532 }
2533 }
2534 }
2535
2536 /* ---------------- Counter support -------------- */
2537
2538 /**
2539 * A padded cell for distributing counts. Adapted from LongAdder
2540 * and Striped64. See their internal docs for explanation.
2541 */
2542 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2543 volatile long value;
2544 CounterCell(long x) { value = x; }
2545 }
2546
2547 final long sumCount() {
2548 CounterCell[] as = counterCells;
2549 long sum = baseCount;
2550 if (as != null) {
2551 for (CounterCell a : as)
2552 if (a != null)
2553 sum += a.value;
2554 }
2555 return sum;
2556 }
2557
2558 // See LongAdder version for explanation
2559 private final void fullAddCount(long x, boolean wasUncontended) {
2560 int h;
2561 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2562 ThreadLocalRandom.localInit(); // force initialization
2563 h = ThreadLocalRandom.getProbe();
2564 wasUncontended = true;
2565 }
2566 boolean collide = false; // True if last slot nonempty
2567 for (;;) {
2568 CounterCell[] as; CounterCell a; int n; long v;
2569 if ((as = counterCells) != null && (n = as.length) > 0) {
2570 if ((a = as[(n - 1) & h]) == null) {
2571 if (cellsBusy == 0) { // Try to attach new Cell
2572 CounterCell r = new CounterCell(x); // Optimistic create
2573 if (cellsBusy == 0 &&
2574 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2575 boolean created = false;
2576 try { // Recheck under lock
2577 CounterCell[] rs; int m, j;
2578 if ((rs = counterCells) != null &&
2579 (m = rs.length) > 0 &&
2580 rs[j = (m - 1) & h] == null) {
2581 rs[j] = r;
2582 created = true;
2583 }
2584 } finally {
2585 cellsBusy = 0;
2586 }
2587 if (created)
2588 break;
2589 continue; // Slot is now non-empty
2590 }
2591 }
2592 collide = false;
2593 }
2594 else if (!wasUncontended) // CAS already known to fail
2595 wasUncontended = true; // Continue after rehash
2596 else if (U.compareAndSetLong(a, CELLVALUE, v = a.value, v + x))
2597 break;
2598 else if (counterCells != as || n >= NCPU)
2599 collide = false; // At max size or stale
2600 else if (!collide)
2601 collide = true;
2602 else if (cellsBusy == 0 &&
2603 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2604 try {
2605 if (counterCells == as) // Expand table unless stale
2606 counterCells = Arrays.copyOf(as, n << 1);
2607 } finally {
2608 cellsBusy = 0;
2609 }
2610 collide = false;
2611 continue; // Retry with expanded table
2612 }
2613 h = ThreadLocalRandom.advanceProbe(h);
2614 }
2615 else if (cellsBusy == 0 && counterCells == as &&
2616 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2617 boolean init = false;
2618 try { // Initialize table
2619 if (counterCells == as) {
2620 CounterCell[] rs = new CounterCell[2];
2621 rs[h & 1] = new CounterCell(x);
2622 counterCells = rs;
2623 init = true;
2624 }
2625 } finally {
2626 cellsBusy = 0;
2627 }
2628 if (init)
2629 break;
2630 }
2631 else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2632 break; // Fall back on using base
2633 }
2634 }
2635
2636 /* ---------------- Conversion from/to TreeBins -------------- */
2637
2638 /**
2639 * Replaces all linked nodes in bin at given index unless table is
2640 * too small, in which case resizes instead.
2641 */
2642 private final void treeifyBin(Node<K,V>[] tab, int index) {
2643 Node<K,V> b; int n;
2644 if (tab != null) {
2645 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2646 tryPresize(n << 1);
2647 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2648 synchronized (b) {
2649 if (tabAt(tab, index) == b) {
2650 TreeNode<K,V> hd = null, tl = null;
2651 for (Node<K,V> e = b; e != null; e = e.next) {
2652 TreeNode<K,V> p =
2653 new TreeNode<K,V>(e.hash, e.key, e.val,
2654 null, null);
2655 if ((p.prev = tl) == null)
2656 hd = p;
2657 else
2658 tl.next = p;
2659 tl = p;
2660 }
2661 setTabAt(tab, index, new TreeBin<K,V>(hd));
2662 }
2663 }
2664 }
2665 }
2666 }
2667
2668 /**
2669 * Returns a list of non-TreeNodes replacing those in given list.
2670 */
2671 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2672 Node<K,V> hd = null, tl = null;
2673 for (Node<K,V> q = b; q != null; q = q.next) {
2674 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2675 if (tl == null)
2676 hd = p;
2677 else
2678 tl.next = p;
2679 tl = p;
2680 }
2681 return hd;
2682 }
2683
2684 /* ---------------- TreeNodes -------------- */
2685
2686 /**
2687 * Nodes for use in TreeBins.
2688 */
2689 static final class TreeNode<K,V> extends Node<K,V> {
2690 TreeNode<K,V> parent; // red-black tree links
2691 TreeNode<K,V> left;
2692 TreeNode<K,V> right;
2693 TreeNode<K,V> prev; // needed to unlink next upon deletion
2694 boolean red;
2695
2696 TreeNode(int hash, K key, V val, Node<K,V> next,
2697 TreeNode<K,V> parent) {
2698 super(hash, key, val, next);
2699 this.parent = parent;
2700 }
2701
2702 Node<K,V> find(int h, Object k) {
2703 return findTreeNode(h, k, null);
2704 }
2705
2706 /**
2707 * Returns the TreeNode (or null if not found) for the given key
2708 * starting at given root.
2709 */
2710 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2711 if (k != null) {
2712 TreeNode<K,V> p = this;
2713 do {
2714 int ph, dir; K pk; TreeNode<K,V> q;
2715 TreeNode<K,V> pl = p.left, pr = p.right;
2716 if ((ph = p.hash) > h)
2717 p = pl;
2718 else if (ph < h)
2719 p = pr;
2720 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2721 return p;
2722 else if (pl == null)
2723 p = pr;
2724 else if (pr == null)
2725 p = pl;
2726 else if ((kc != null ||
2727 (kc = comparableClassFor(k)) != null) &&
2728 (dir = compareComparables(kc, k, pk)) != 0)
2729 p = (dir < 0) ? pl : pr;
2730 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2731 return q;
2732 else
2733 p = pl;
2734 } while (p != null);
2735 }
2736 return null;
2737 }
2738 }
2739
2740 /* ---------------- TreeBins -------------- */
2741
2742 /**
2743 * TreeNodes used at the heads of bins. TreeBins do not hold user
2744 * keys or values, but instead point to list of TreeNodes and
2745 * their root. They also maintain a parasitic read-write lock
2746 * forcing writers (who hold bin lock) to wait for readers (who do
2747 * not) to complete before tree restructuring operations.
2748 */
2749 static final class TreeBin<K,V> extends Node<K,V> {
2750 TreeNode<K,V> root;
2751 volatile TreeNode<K,V> first;
2752 volatile Thread waiter;
2753 volatile int lockState;
2754 // values for lockState
2755 static final int WRITER = 1; // set while holding write lock
2756 static final int WAITER = 2; // set when waiting for write lock
2757 static final int READER = 4; // increment value for setting read lock
2758
2759 /**
2760 * Tie-breaking utility for ordering insertions when equal
2761 * hashCodes and non-comparable. We don't require a total
2762 * order, just a consistent insertion rule to maintain
2763 * equivalence across rebalancings. Tie-breaking further than
2764 * necessary simplifies testing a bit.
2765 */
2766 static int tieBreakOrder(Object a, Object b) {
2767 int d;
2768 if (a == null || b == null ||
2769 (d = a.getClass().getName().
2770 compareTo(b.getClass().getName())) == 0)
2771 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2772 -1 : 1);
2773 return d;
2774 }
2775
2776 /**
2777 * Creates bin with initial set of nodes headed by b.
2778 */
2779 TreeBin(TreeNode<K,V> b) {
2780 super(TREEBIN, null, null);
2781 this.first = b;
2782 TreeNode<K,V> r = null;
2783 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2784 next = (TreeNode<K,V>)x.next;
2785 x.left = x.right = null;
2786 if (r == null) {
2787 x.parent = null;
2788 x.red = false;
2789 r = x;
2790 }
2791 else {
2792 K k = x.key;
2793 int h = x.hash;
2794 Class<?> kc = null;
2795 for (TreeNode<K,V> p = r;;) {
2796 int dir, ph;
2797 K pk = p.key;
2798 if ((ph = p.hash) > h)
2799 dir = -1;
2800 else if (ph < h)
2801 dir = 1;
2802 else if ((kc == null &&
2803 (kc = comparableClassFor(k)) == null) ||
2804 (dir = compareComparables(kc, k, pk)) == 0)
2805 dir = tieBreakOrder(k, pk);
2806 TreeNode<K,V> xp = p;
2807 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2808 x.parent = xp;
2809 if (dir <= 0)
2810 xp.left = x;
2811 else
2812 xp.right = x;
2813 r = balanceInsertion(r, x);
2814 break;
2815 }
2816 }
2817 }
2818 }
2819 this.root = r;
2820 assert checkInvariants(root);
2821 }
2822
2823 /**
2824 * Acquires write lock for tree restructuring.
2825 */
2826 private final void lockRoot() {
2827 if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2828 contendedLock(); // offload to separate method
2829 }
2830
2831 /**
2832 * Releases write lock for tree restructuring.
2833 */
2834 private final void unlockRoot() {
2835 lockState = 0;
2836 }
2837
2838 /**
2839 * Possibly blocks awaiting root lock.
2840 */
2841 private final void contendedLock() {
2842 boolean waiting = false;
2843 for (int s;;) {
2844 if (((s = lockState) & ~WAITER) == 0) {
2845 if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2846 if (waiting)
2847 waiter = null;
2848 return;
2849 }
2850 }
2851 else if ((s & WAITER) == 0) {
2852 if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2853 waiting = true;
2854 waiter = Thread.currentThread();
2855 }
2856 }
2857 else if (waiting)
2858 LockSupport.park(this);
2859 }
2860 }
2861
2862 /**
2863 * Returns matching node or null if none. Tries to search
2864 * using tree comparisons from root, but continues linear
2865 * search when lock not available.
2866 */
2867 final Node<K,V> find(int h, Object k) {
2868 if (k != null) {
2869 for (Node<K,V> e = first; e != null; ) {
2870 int s; K ek;
2871 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2872 if (e.hash == h &&
2873 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2874 return e;
2875 e = e.next;
2876 }
2877 else if (U.compareAndSetInt(this, LOCKSTATE, s,
2878 s + READER)) {
2879 TreeNode<K,V> r, p;
2880 try {
2881 p = ((r = root) == null ? null :
2882 r.findTreeNode(h, k, null));
2883 } finally {
2884 Thread w;
2885 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2886 (READER|WAITER) && (w = waiter) != null)
2887 LockSupport.unpark(w);
2888 }
2889 return p;
2890 }
2891 }
2892 }
2893 return null;
2894 }
2895
2896 /**
2897 * Finds or adds a node.
2898 * @return null if added
2899 */
2900 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2901 Class<?> kc = null;
2902 boolean searched = false;
2903 for (TreeNode<K,V> p = root;;) {
2904 int dir, ph; K pk;
2905 if (p == null) {
2906 first = root = new TreeNode<K,V>(h, k, v, null, null);
2907 break;
2908 }
2909 else if ((ph = p.hash) > h)
2910 dir = -1;
2911 else if (ph < h)
2912 dir = 1;
2913 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2914 return p;
2915 else if ((kc == null &&
2916 (kc = comparableClassFor(k)) == null) ||
2917 (dir = compareComparables(kc, k, pk)) == 0) {
2918 if (!searched) {
2919 TreeNode<K,V> q, ch;
2920 searched = true;
2921 if (((ch = p.left) != null &&
2922 (q = ch.findTreeNode(h, k, kc)) != null) ||
2923 ((ch = p.right) != null &&
2924 (q = ch.findTreeNode(h, k, kc)) != null))
2925 return q;
2926 }
2927 dir = tieBreakOrder(k, pk);
2928 }
2929
2930 TreeNode<K,V> xp = p;
2931 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2932 TreeNode<K,V> x, f = first;
2933 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2934 if (f != null)
2935 f.prev = x;
2936 if (dir <= 0)
2937 xp.left = x;
2938 else
2939 xp.right = x;
2940 if (!xp.red)
2941 x.red = true;
2942 else {
2943 lockRoot();
2944 try {
2945 root = balanceInsertion(root, x);
2946 } finally {
2947 unlockRoot();
2948 }
2949 }
2950 break;
2951 }
2952 }
2953 assert checkInvariants(root);
2954 return null;
2955 }
2956
2957 /**
2958 * Removes the given node, that must be present before this
2959 * call. This is messier than typical red-black deletion code
2960 * because we cannot swap the contents of an interior node
2961 * with a leaf successor that is pinned by "next" pointers
2962 * that are accessible independently of lock. So instead we
2963 * swap the tree linkages.
2964 *
2965 * @return true if now too small, so should be untreeified
2966 */
2967 final boolean removeTreeNode(TreeNode<K,V> p) {
2968 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2969 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2970 TreeNode<K,V> r, rl;
2971 if (pred == null)
2972 first = next;
2973 else
2974 pred.next = next;
2975 if (next != null)
2976 next.prev = pred;
2977 if (first == null) {
2978 root = null;
2979 return true;
2980 }
2981 if ((r = root) == null || r.right == null || // too small
2982 (rl = r.left) == null || rl.left == null)
2983 return true;
2984 lockRoot();
2985 try {
2986 TreeNode<K,V> replacement;
2987 TreeNode<K,V> pl = p.left;
2988 TreeNode<K,V> pr = p.right;
2989 if (pl != null && pr != null) {
2990 TreeNode<K,V> s = pr, sl;
2991 while ((sl = s.left) != null) // find successor
2992 s = sl;
2993 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2994 TreeNode<K,V> sr = s.right;
2995 TreeNode<K,V> pp = p.parent;
2996 if (s == pr) { // p was s's direct parent
2997 p.parent = s;
2998 s.right = p;
2999 }
3000 else {
3001 TreeNode<K,V> sp = s.parent;
3002 if ((p.parent = sp) != null) {
3003 if (s == sp.left)
3004 sp.left = p;
3005 else
3006 sp.right = p;
3007 }
3008 if ((s.right = pr) != null)
3009 pr.parent = s;
3010 }
3011 p.left = null;
3012 if ((p.right = sr) != null)
3013 sr.parent = p;
3014 if ((s.left = pl) != null)
3015 pl.parent = s;
3016 if ((s.parent = pp) == null)
3017 r = s;
3018 else if (p == pp.left)
3019 pp.left = s;
3020 else
3021 pp.right = s;
3022 if (sr != null)
3023 replacement = sr;
3024 else
3025 replacement = p;
3026 }
3027 else if (pl != null)
3028 replacement = pl;
3029 else if (pr != null)
3030 replacement = pr;
3031 else
3032 replacement = p;
3033 if (replacement != p) {
3034 TreeNode<K,V> pp = replacement.parent = p.parent;
3035 if (pp == null)
3036 r = replacement;
3037 else if (p == pp.left)
3038 pp.left = replacement;
3039 else
3040 pp.right = replacement;
3041 p.left = p.right = p.parent = null;
3042 }
3043
3044 root = (p.red) ? r : balanceDeletion(r, replacement);
3045
3046 if (p == replacement) { // detach pointers
3047 TreeNode<K,V> pp;
3048 if ((pp = p.parent) != null) {
3049 if (p == pp.left)
3050 pp.left = null;
3051 else if (p == pp.right)
3052 pp.right = null;
3053 p.parent = null;
3054 }
3055 }
3056 } finally {
3057 unlockRoot();
3058 }
3059 assert checkInvariants(root);
3060 return false;
3061 }
3062
3063 /* ------------------------------------------------------------ */
3064 // Red-black tree methods, all adapted from CLR
3065
3066 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3067 TreeNode<K,V> p) {
3068 TreeNode<K,V> r, pp, rl;
3069 if (p != null && (r = p.right) != null) {
3070 if ((rl = p.right = r.left) != null)
3071 rl.parent = p;
3072 if ((pp = r.parent = p.parent) == null)
3073 (root = r).red = false;
3074 else if (pp.left == p)
3075 pp.left = r;
3076 else
3077 pp.right = r;
3078 r.left = p;
3079 p.parent = r;
3080 }
3081 return root;
3082 }
3083
3084 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3085 TreeNode<K,V> p) {
3086 TreeNode<K,V> l, pp, lr;
3087 if (p != null && (l = p.left) != null) {
3088 if ((lr = p.left = l.right) != null)
3089 lr.parent = p;
3090 if ((pp = l.parent = p.parent) == null)
3091 (root = l).red = false;
3092 else if (pp.right == p)
3093 pp.right = l;
3094 else
3095 pp.left = l;
3096 l.right = p;
3097 p.parent = l;
3098 }
3099 return root;
3100 }
3101
3102 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3103 TreeNode<K,V> x) {
3104 x.red = true;
3105 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3106 if ((xp = x.parent) == null) {
3107 x.red = false;
3108 return x;
3109 }
3110 else if (!xp.red || (xpp = xp.parent) == null)
3111 return root;
3112 if (xp == (xppl = xpp.left)) {
3113 if ((xppr = xpp.right) != null && xppr.red) {
3114 xppr.red = false;
3115 xp.red = false;
3116 xpp.red = true;
3117 x = xpp;
3118 }
3119 else {
3120 if (x == xp.right) {
3121 root = rotateLeft(root, x = xp);
3122 xpp = (xp = x.parent) == null ? null : xp.parent;
3123 }
3124 if (xp != null) {
3125 xp.red = false;
3126 if (xpp != null) {
3127 xpp.red = true;
3128 root = rotateRight(root, xpp);
3129 }
3130 }
3131 }
3132 }
3133 else {
3134 if (xppl != null && xppl.red) {
3135 xppl.red = false;
3136 xp.red = false;
3137 xpp.red = true;
3138 x = xpp;
3139 }
3140 else {
3141 if (x == xp.left) {
3142 root = rotateRight(root, x = xp);
3143 xpp = (xp = x.parent) == null ? null : xp.parent;
3144 }
3145 if (xp != null) {
3146 xp.red = false;
3147 if (xpp != null) {
3148 xpp.red = true;
3149 root = rotateLeft(root, xpp);
3150 }
3151 }
3152 }
3153 }
3154 }
3155 }
3156
3157 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3158 TreeNode<K,V> x) {
3159 for (TreeNode<K,V> xp, xpl, xpr;;) {
3160 if (x == null || x == root)
3161 return root;
3162 else if ((xp = x.parent) == null) {
3163 x.red = false;
3164 return x;
3165 }
3166 else if (x.red) {
3167 x.red = false;
3168 return root;
3169 }
3170 else if ((xpl = xp.left) == x) {
3171 if ((xpr = xp.right) != null && xpr.red) {
3172 xpr.red = false;
3173 xp.red = true;
3174 root = rotateLeft(root, xp);
3175 xpr = (xp = x.parent) == null ? null : xp.right;
3176 }
3177 if (xpr == null)
3178 x = xp;
3179 else {
3180 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3181 if ((sr == null || !sr.red) &&
3182 (sl == null || !sl.red)) {
3183 xpr.red = true;
3184 x = xp;
3185 }
3186 else {
3187 if (sr == null || !sr.red) {
3188 if (sl != null)
3189 sl.red = false;
3190 xpr.red = true;
3191 root = rotateRight(root, xpr);
3192 xpr = (xp = x.parent) == null ?
3193 null : xp.right;
3194 }
3195 if (xpr != null) {
3196 xpr.red = (xp == null) ? false : xp.red;
3197 if ((sr = xpr.right) != null)
3198 sr.red = false;
3199 }
3200 if (xp != null) {
3201 xp.red = false;
3202 root = rotateLeft(root, xp);
3203 }
3204 x = root;
3205 }
3206 }
3207 }
3208 else { // symmetric
3209 if (xpl != null && xpl.red) {
3210 xpl.red = false;
3211 xp.red = true;
3212 root = rotateRight(root, xp);
3213 xpl = (xp = x.parent) == null ? null : xp.left;
3214 }
3215 if (xpl == null)
3216 x = xp;
3217 else {
3218 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3219 if ((sl == null || !sl.red) &&
3220 (sr == null || !sr.red)) {
3221 xpl.red = true;
3222 x = xp;
3223 }
3224 else {
3225 if (sl == null || !sl.red) {
3226 if (sr != null)
3227 sr.red = false;
3228 xpl.red = true;
3229 root = rotateLeft(root, xpl);
3230 xpl = (xp = x.parent) == null ?
3231 null : xp.left;
3232 }
3233 if (xpl != null) {
3234 xpl.red = (xp == null) ? false : xp.red;
3235 if ((sl = xpl.left) != null)
3236 sl.red = false;
3237 }
3238 if (xp != null) {
3239 xp.red = false;
3240 root = rotateRight(root, xp);
3241 }
3242 x = root;
3243 }
3244 }
3245 }
3246 }
3247 }
3248
3249 /**
3250 * Checks invariants recursively for the tree of Nodes rooted at t.
3251 */
3252 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3253 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3254 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3255 if (tb != null && tb.next != t)
3256 return false;
3257 if (tn != null && tn.prev != t)
3258 return false;
3259 if (tp != null && t != tp.left && t != tp.right)
3260 return false;
3261 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3262 return false;
3263 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3264 return false;
3265 if (t.red && tl != null && tl.red && tr != null && tr.red)
3266 return false;
3267 if (tl != null && !checkInvariants(tl))
3268 return false;
3269 if (tr != null && !checkInvariants(tr))
3270 return false;
3271 return true;
3272 }
3273
3274 private static final Unsafe U = Unsafe.getUnsafe();
3275 private static final long LOCKSTATE;
3276 static {
3277 try {
3278 LOCKSTATE = U.objectFieldOffset
3279 (TreeBin.class.getDeclaredField("lockState"));
3280 } catch (ReflectiveOperationException e) {
3281 throw new Error(e);
3282 }
3283 }
3284 }
3285
3286 /* ----------------Table Traversal -------------- */
3287
3288 /**
3289 * Records the table, its length, and current traversal index for a
3290 * traverser that must process a region of a forwarded table before
3291 * proceeding with current table.
3292 */
3293 static final class TableStack<K,V> {
3294 int length;
3295 int index;
3296 Node<K,V>[] tab;
3297 TableStack<K,V> next;
3298 }
3299
3300 /**
3301 * Encapsulates traversal for methods such as containsValue; also
3302 * serves as a base class for other iterators and spliterators.
3303 *
3304 * Method advance visits once each still-valid node that was
3305 * reachable upon iterator construction. It might miss some that
3306 * were added to a bin after the bin was visited, which is OK wrt
3307 * consistency guarantees. Maintaining this property in the face
3308 * of possible ongoing resizes requires a fair amount of
3309 * bookkeeping state that is difficult to optimize away amidst
3310 * volatile accesses. Even so, traversal maintains reasonable
3311 * throughput.
3312 *
3313 * Normally, iteration proceeds bin-by-bin traversing lists.
3314 * However, if the table has been resized, then all future steps
3315 * must traverse both the bin at the current index as well as at
3316 * (index + baseSize); and so on for further resizings. To
3317 * paranoically cope with potential sharing by users of iterators
3318 * across threads, iteration terminates if a bounds checks fails
3319 * for a table read.
3320 */
3321 static class Traverser<K,V> {
3322 Node<K,V>[] tab; // current table; updated if resized
3323 Node<K,V> next; // the next entry to use
3324 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3325 int index; // index of bin to use next
3326 int baseIndex; // current index of initial table
3327 int baseLimit; // index bound for initial table
3328 final int baseSize; // initial table size
3329
3330 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3331 this.tab = tab;
3332 this.baseSize = size;
3333 this.baseIndex = this.index = index;
3334 this.baseLimit = limit;
3335 this.next = null;
3336 }
3337
3338 /**
3339 * Advances if possible, returning next valid node, or null if none.
3340 */
3341 final Node<K,V> advance() {
3342 Node<K,V> e;
3343 if ((e = next) != null)
3344 e = e.next;
3345 for (;;) {
3346 Node<K,V>[] t; int i, n; // must use locals in checks
3347 if (e != null)
3348 return next = e;
3349 if (baseIndex >= baseLimit || (t = tab) == null ||
3350 (n = t.length) <= (i = index) || i < 0)
3351 return next = null;
3352 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3353 if (e instanceof ForwardingNode) {
3354 tab = ((ForwardingNode<K,V>)e).nextTable;
3355 e = null;
3356 pushState(t, i, n);
3357 continue;
3358 }
3359 else if (e instanceof TreeBin)
3360 e = ((TreeBin<K,V>)e).first;
3361 else
3362 e = null;
3363 }
3364 if (stack != null)
3365 recoverState(n);
3366 else if ((index = i + baseSize) >= n)
3367 index = ++baseIndex; // visit upper slots if present
3368 }
3369 }
3370
3371 /**
3372 * Saves traversal state upon encountering a forwarding node.
3373 */
3374 private void pushState(Node<K,V>[] t, int i, int n) {
3375 TableStack<K,V> s = spare; // reuse if possible
3376 if (s != null)
3377 spare = s.next;
3378 else
3379 s = new TableStack<K,V>();
3380 s.tab = t;
3381 s.length = n;
3382 s.index = i;
3383 s.next = stack;
3384 stack = s;
3385 }
3386
3387 /**
3388 * Possibly pops traversal state.
3389 *
3390 * @param n length of current table
3391 */
3392 private void recoverState(int n) {
3393 TableStack<K,V> s; int len;
3394 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3395 n = len;
3396 index = s.index;
3397 tab = s.tab;
3398 s.tab = null;
3399 TableStack<K,V> next = s.next;
3400 s.next = spare; // save for reuse
3401 stack = next;
3402 spare = s;
3403 }
3404 if (s == null && (index += baseSize) >= n)
3405 index = ++baseIndex;
3406 }
3407 }
3408
3409 /**
3410 * Base of key, value, and entry Iterators. Adds fields to
3411 * Traverser to support iterator.remove.
3412 */
3413 static class BaseIterator<K,V> extends Traverser<K,V> {
3414 final ConcurrentHashMap<K,V> map;
3415 Node<K,V> lastReturned;
3416 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3417 ConcurrentHashMap<K,V> map) {
3418 super(tab, size, index, limit);
3419 this.map = map;
3420 advance();
3421 }
3422
3423 public final boolean hasNext() { return next != null; }
3424 public final boolean hasMoreElements() { return next != null; }
3425
3426 public final void remove() {
3427 Node<K,V> p;
3428 if ((p = lastReturned) == null)
3429 throw new IllegalStateException();
3430 lastReturned = null;
3431 map.replaceNode(p.key, null, null);
3432 }
3433 }
3434
3435 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3436 implements Iterator<K>, Enumeration<K> {
3437 KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3438 ConcurrentHashMap<K,V> map) {
3439 super(tab, size, index, limit, map);
3440 }
3441
3442 public final K next() {
3443 Node<K,V> p;
3444 if ((p = next) == null)
3445 throw new NoSuchElementException();
3446 K k = p.key;
3447 lastReturned = p;
3448 advance();
3449 return k;
3450 }
3451
3452 public final K nextElement() { return next(); }
3453 }
3454
3455 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3456 implements Iterator<V>, Enumeration<V> {
3457 ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3458 ConcurrentHashMap<K,V> map) {
3459 super(tab, size, index, limit, map);
3460 }
3461
3462 public final V next() {
3463 Node<K,V> p;
3464 if ((p = next) == null)
3465 throw new NoSuchElementException();
3466 V v = p.val;
3467 lastReturned = p;
3468 advance();
3469 return v;
3470 }
3471
3472 public final V nextElement() { return next(); }
3473 }
3474
3475 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3476 implements Iterator<Map.Entry<K,V>> {
3477 EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3478 ConcurrentHashMap<K,V> map) {
3479 super(tab, size, index, limit, map);
3480 }
3481
3482 public final Map.Entry<K,V> next() {
3483 Node<K,V> p;
3484 if ((p = next) == null)
3485 throw new NoSuchElementException();
3486 K k = p.key;
3487 V v = p.val;
3488 lastReturned = p;
3489 advance();
3490 return new MapEntry<K,V>(k, v, map);
3491 }
3492 }
3493
3494 /**
3495 * Exported Entry for EntryIterator.
3496 */
3497 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3498 final K key; // non-null
3499 V val; // non-null
3500 final ConcurrentHashMap<K,V> map;
3501 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3502 this.key = key;
3503 this.val = val;
3504 this.map = map;
3505 }
3506 public K getKey() { return key; }
3507 public V getValue() { return val; }
3508 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3509 public String toString() {
3510 return Helpers.mapEntryToString(key, val);
3511 }
3512
3513 public boolean equals(Object o) {
3514 Object k, v; Map.Entry<?,?> e;
3515 return ((o instanceof Map.Entry) &&
3516 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3517 (v = e.getValue()) != null &&
3518 (k == key || k.equals(key)) &&
3519 (v == val || v.equals(val)));
3520 }
3521
3522 /**
3523 * Sets our entry's value and writes through to the map. The
3524 * value to return is somewhat arbitrary here. Since we do not
3525 * necessarily track asynchronous changes, the most recent
3526 * "previous" value could be different from what we return (or
3527 * could even have been removed, in which case the put will
3528 * re-establish). We do not and cannot guarantee more.
3529 */
3530 public V setValue(V value) {
3531 if (value == null) throw new NullPointerException();
3532 V v = val;
3533 val = value;
3534 map.put(key, value);
3535 return v;
3536 }
3537 }
3538
3539 static final class KeySpliterator<K,V> extends Traverser<K,V>
3540 implements Spliterator<K> {
3541 long est; // size estimate
3542 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3543 long est) {
3544 super(tab, size, index, limit);
3545 this.est = est;
3546 }
3547
3548 public KeySpliterator<K,V> trySplit() {
3549 int i, f, h;
3550 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3551 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3552 f, est >>>= 1);
3553 }
3554
3555 public void forEachRemaining(Consumer<? super K> action) {
3556 if (action == null) throw new NullPointerException();
3557 for (Node<K,V> p; (p = advance()) != null;)
3558 action.accept(p.key);
3559 }
3560
3561 public boolean tryAdvance(Consumer<? super K> action) {
3562 if (action == null) throw new NullPointerException();
3563 Node<K,V> p;
3564 if ((p = advance()) == null)
3565 return false;
3566 action.accept(p.key);
3567 return true;
3568 }
3569
3570 public long estimateSize() { return est; }
3571
3572 public int characteristics() {
3573 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3574 Spliterator.NONNULL;
3575 }
3576 }
3577
3578 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3579 implements Spliterator<V> {
3580 long est; // size estimate
3581 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3582 long est) {
3583 super(tab, size, index, limit);
3584 this.est = est;
3585 }
3586
3587 public ValueSpliterator<K,V> trySplit() {
3588 int i, f, h;
3589 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3590 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3591 f, est >>>= 1);
3592 }
3593
3594 public void forEachRemaining(Consumer<? super V> action) {
3595 if (action == null) throw new NullPointerException();
3596 for (Node<K,V> p; (p = advance()) != null;)
3597 action.accept(p.val);
3598 }
3599
3600 public boolean tryAdvance(Consumer<? super V> action) {
3601 if (action == null) throw new NullPointerException();
3602 Node<K,V> p;
3603 if ((p = advance()) == null)
3604 return false;
3605 action.accept(p.val);
3606 return true;
3607 }
3608
3609 public long estimateSize() { return est; }
3610
3611 public int characteristics() {
3612 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3613 }
3614 }
3615
3616 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3617 implements Spliterator<Map.Entry<K,V>> {
3618 final ConcurrentHashMap<K,V> map; // To export MapEntry
3619 long est; // size estimate
3620 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3621 long est, ConcurrentHashMap<K,V> map) {
3622 super(tab, size, index, limit);
3623 this.map = map;
3624 this.est = est;
3625 }
3626
3627 public EntrySpliterator<K,V> trySplit() {
3628 int i, f, h;
3629 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3630 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3631 f, est >>>= 1, map);
3632 }
3633
3634 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3635 if (action == null) throw new NullPointerException();
3636 for (Node<K,V> p; (p = advance()) != null; )
3637 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3638 }
3639
3640 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3641 if (action == null) throw new NullPointerException();
3642 Node<K,V> p;
3643 if ((p = advance()) == null)
3644 return false;
3645 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3646 return true;
3647 }
3648
3649 public long estimateSize() { return est; }
3650
3651 public int characteristics() {
3652 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3653 Spliterator.NONNULL;
3654 }
3655 }
3656
3657 // Parallel bulk operations
3658
3659 /**
3660 * Computes initial batch value for bulk tasks. The returned value
3661 * is approximately exp2 of the number of times (minus one) to
3662 * split task by two before executing leaf action. This value is
3663 * faster to compute and more convenient to use as a guide to
3664 * splitting than is the depth, since it is used while dividing by
3665 * two anyway.
3666 */
3667 final int batchFor(long b) {
3668 long n;
3669 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3670 return 0;
3671 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3672 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3673 }
3674
3675 /**
3676 * Performs the given action for each (key, value).
3677 *
3678 * @param parallelismThreshold the (estimated) number of elements
3679 * needed for this operation to be executed in parallel
3680 * @param action the action
3681 * @since 1.8
3682 */
3683 public void forEach(long parallelismThreshold,
3684 BiConsumer<? super K,? super V> action) {
3685 if (action == null) throw new NullPointerException();
3686 new ForEachMappingTask<K,V>
3687 (null, batchFor(parallelismThreshold), 0, 0, table,
3688 action).invoke();
3689 }
3690
3691 /**
3692 * Performs the given action for each non-null transformation
3693 * of each (key, value).
3694 *
3695 * @param parallelismThreshold the (estimated) number of elements
3696 * needed for this operation to be executed in parallel
3697 * @param transformer a function returning the transformation
3698 * for an element, or null if there is no transformation (in
3699 * which case the action is not applied)
3700 * @param action the action
3701 * @param <U> the return type of the transformer
3702 * @since 1.8
3703 */
3704 public <U> void forEach(long parallelismThreshold,
3705 BiFunction<? super K, ? super V, ? extends U> transformer,
3706 Consumer<? super U> action) {
3707 if (transformer == null || action == null)
3708 throw new NullPointerException();
3709 new ForEachTransformedMappingTask<K,V,U>
3710 (null, batchFor(parallelismThreshold), 0, 0, table,
3711 transformer, action).invoke();
3712 }
3713
3714 /**
3715 * Returns a non-null result from applying the given search
3716 * function on each (key, value), or null if none. Upon
3717 * success, further element processing is suppressed and the
3718 * results of any other parallel invocations of the search
3719 * function are ignored.
3720 *
3721 * @param parallelismThreshold the (estimated) number of elements
3722 * needed for this operation to be executed in parallel
3723 * @param searchFunction a function returning a non-null
3724 * result on success, else null
3725 * @param <U> the return type of the search function
3726 * @return a non-null result from applying the given search
3727 * function on each (key, value), or null if none
3728 * @since 1.8
3729 */
3730 public <U> U search(long parallelismThreshold,
3731 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3732 if (searchFunction == null) throw new NullPointerException();
3733 return new SearchMappingsTask<K,V,U>
3734 (null, batchFor(parallelismThreshold), 0, 0, table,
3735 searchFunction, new AtomicReference<U>()).invoke();
3736 }
3737
3738 /**
3739 * Returns the result of accumulating the given transformation
3740 * of all (key, value) pairs using the given reducer to
3741 * combine values, or null if none.
3742 *
3743 * @param parallelismThreshold the (estimated) number of elements
3744 * needed for this operation to be executed in parallel
3745 * @param transformer a function returning the transformation
3746 * for an element, or null if there is no transformation (in
3747 * which case it is not combined)
3748 * @param reducer a commutative associative combining function
3749 * @param <U> the return type of the transformer
3750 * @return the result of accumulating the given transformation
3751 * of all (key, value) pairs
3752 * @since 1.8
3753 */
3754 public <U> U reduce(long parallelismThreshold,
3755 BiFunction<? super K, ? super V, ? extends U> transformer,
3756 BiFunction<? super U, ? super U, ? extends U> reducer) {
3757 if (transformer == null || reducer == null)
3758 throw new NullPointerException();
3759 return new MapReduceMappingsTask<K,V,U>
3760 (null, batchFor(parallelismThreshold), 0, 0, table,
3761 null, transformer, reducer).invoke();
3762 }
3763
3764 /**
3765 * Returns the result of accumulating the given transformation
3766 * of all (key, value) pairs using the given reducer to
3767 * combine values, and the given basis as an identity value.
3768 *
3769 * @param parallelismThreshold the (estimated) number of elements
3770 * needed for this operation to be executed in parallel
3771 * @param transformer a function returning the transformation
3772 * for an element
3773 * @param basis the identity (initial default value) for the reduction
3774 * @param reducer a commutative associative combining function
3775 * @return the result of accumulating the given transformation
3776 * of all (key, value) pairs
3777 * @since 1.8
3778 */
3779 public double reduceToDouble(long parallelismThreshold,
3780 ToDoubleBiFunction<? super K, ? super V> transformer,
3781 double basis,
3782 DoubleBinaryOperator reducer) {
3783 if (transformer == null || reducer == null)
3784 throw new NullPointerException();
3785 return new MapReduceMappingsToDoubleTask<K,V>
3786 (null, batchFor(parallelismThreshold), 0, 0, table,
3787 null, transformer, basis, reducer).invoke();
3788 }
3789
3790 /**
3791 * Returns the result of accumulating the given transformation
3792 * of all (key, value) pairs using the given reducer to
3793 * combine values, and the given basis as an identity value.
3794 *
3795 * @param parallelismThreshold the (estimated) number of elements
3796 * needed for this operation to be executed in parallel
3797 * @param transformer a function returning the transformation
3798 * for an element
3799 * @param basis the identity (initial default value) for the reduction
3800 * @param reducer a commutative associative combining function
3801 * @return the result of accumulating the given transformation
3802 * of all (key, value) pairs
3803 * @since 1.8
3804 */
3805 public long reduceToLong(long parallelismThreshold,
3806 ToLongBiFunction<? super K, ? super V> transformer,
3807 long basis,
3808 LongBinaryOperator reducer) {
3809 if (transformer == null || reducer == null)
3810 throw new NullPointerException();
3811 return new MapReduceMappingsToLongTask<K,V>
3812 (null, batchFor(parallelismThreshold), 0, 0, table,
3813 null, transformer, basis, reducer).invoke();
3814 }
3815
3816 /**
3817 * Returns the result of accumulating the given transformation
3818 * of all (key, value) pairs using the given reducer to
3819 * combine values, and the given basis as an identity value.
3820 *
3821 * @param parallelismThreshold the (estimated) number of elements
3822 * needed for this operation to be executed in parallel
3823 * @param transformer a function returning the transformation
3824 * for an element
3825 * @param basis the identity (initial default value) for the reduction
3826 * @param reducer a commutative associative combining function
3827 * @return the result of accumulating the given transformation
3828 * of all (key, value) pairs
3829 * @since 1.8
3830 */
3831 public int reduceToInt(long parallelismThreshold,
3832 ToIntBiFunction<? super K, ? super V> transformer,
3833 int basis,
3834 IntBinaryOperator reducer) {
3835 if (transformer == null || reducer == null)
3836 throw new NullPointerException();
3837 return new MapReduceMappingsToIntTask<K,V>
3838 (null, batchFor(parallelismThreshold), 0, 0, table,
3839 null, transformer, basis, reducer).invoke();
3840 }
3841
3842 /**
3843 * Performs the given action for each key.
3844 *
3845 * @param parallelismThreshold the (estimated) number of elements
3846 * needed for this operation to be executed in parallel
3847 * @param action the action
3848 * @since 1.8
3849 */
3850 public void forEachKey(long parallelismThreshold,
3851 Consumer<? super K> action) {
3852 if (action == null) throw new NullPointerException();
3853 new ForEachKeyTask<K,V>
3854 (null, batchFor(parallelismThreshold), 0, 0, table,
3855 action).invoke();
3856 }
3857
3858 /**
3859 * Performs the given action for each non-null transformation
3860 * of each key.
3861 *
3862 * @param parallelismThreshold the (estimated) number of elements
3863 * needed for this operation to be executed in parallel
3864 * @param transformer a function returning the transformation
3865 * for an element, or null if there is no transformation (in
3866 * which case the action is not applied)
3867 * @param action the action
3868 * @param <U> the return type of the transformer
3869 * @since 1.8
3870 */
3871 public <U> void forEachKey(long parallelismThreshold,
3872 Function<? super K, ? extends U> transformer,
3873 Consumer<? super U> action) {
3874 if (transformer == null || action == null)
3875 throw new NullPointerException();
3876 new ForEachTransformedKeyTask<K,V,U>
3877 (null, batchFor(parallelismThreshold), 0, 0, table,
3878 transformer, action).invoke();
3879 }
3880
3881 /**
3882 * Returns a non-null result from applying the given search
3883 * function on each key, or null if none. Upon success,
3884 * further element processing is suppressed and the results of
3885 * any other parallel invocations of the search function are
3886 * ignored.
3887 *
3888 * @param parallelismThreshold the (estimated) number of elements
3889 * needed for this operation to be executed in parallel
3890 * @param searchFunction a function returning a non-null
3891 * result on success, else null
3892 * @param <U> the return type of the search function
3893 * @return a non-null result from applying the given search
3894 * function on each key, or null if none
3895 * @since 1.8
3896 */
3897 public <U> U searchKeys(long parallelismThreshold,
3898 Function<? super K, ? extends U> searchFunction) {
3899 if (searchFunction == null) throw new NullPointerException();
3900 return new SearchKeysTask<K,V,U>
3901 (null, batchFor(parallelismThreshold), 0, 0, table,
3902 searchFunction, new AtomicReference<U>()).invoke();
3903 }
3904
3905 /**
3906 * Returns the result of accumulating all keys using the given
3907 * reducer to combine values, or null if none.
3908 *
3909 * @param parallelismThreshold the (estimated) number of elements
3910 * needed for this operation to be executed in parallel
3911 * @param reducer a commutative associative combining function
3912 * @return the result of accumulating all keys using the given
3913 * reducer to combine values, or null if none
3914 * @since 1.8
3915 */
3916 public K reduceKeys(long parallelismThreshold,
3917 BiFunction<? super K, ? super K, ? extends K> reducer) {
3918 if (reducer == null) throw new NullPointerException();
3919 return new ReduceKeysTask<K,V>
3920 (null, batchFor(parallelismThreshold), 0, 0, table,
3921 null, reducer).invoke();
3922 }
3923
3924 /**
3925 * Returns the result of accumulating the given transformation
3926 * of all keys using the given reducer to combine values, or
3927 * null if none.
3928 *
3929 * @param parallelismThreshold the (estimated) number of elements
3930 * needed for this operation to be executed in parallel
3931 * @param transformer a function returning the transformation
3932 * for an element, or null if there is no transformation (in
3933 * which case it is not combined)
3934 * @param reducer a commutative associative combining function
3935 * @param <U> the return type of the transformer
3936 * @return the result of accumulating the given transformation
3937 * of all keys
3938 * @since 1.8
3939 */
3940 public <U> U reduceKeys(long parallelismThreshold,
3941 Function<? super K, ? extends U> transformer,
3942 BiFunction<? super U, ? super U, ? extends U> reducer) {
3943 if (transformer == null || reducer == null)
3944 throw new NullPointerException();
3945 return new MapReduceKeysTask<K,V,U>
3946 (null, batchFor(parallelismThreshold), 0, 0, table,
3947 null, transformer, reducer).invoke();
3948 }
3949
3950 /**
3951 * Returns the result of accumulating the given transformation
3952 * of all keys using the given reducer to combine values, and
3953 * the given basis as an identity value.
3954 *
3955 * @param parallelismThreshold the (estimated) number of elements
3956 * needed for this operation to be executed in parallel
3957 * @param transformer a function returning the transformation
3958 * for an element
3959 * @param basis the identity (initial default value) for the reduction
3960 * @param reducer a commutative associative combining function
3961 * @return the result of accumulating the given transformation
3962 * of all keys
3963 * @since 1.8
3964 */
3965 public double reduceKeysToDouble(long parallelismThreshold,
3966 ToDoubleFunction<? super K> transformer,
3967 double basis,
3968 DoubleBinaryOperator reducer) {
3969 if (transformer == null || reducer == null)
3970 throw new NullPointerException();
3971 return new MapReduceKeysToDoubleTask<K,V>
3972 (null, batchFor(parallelismThreshold), 0, 0, table,
3973 null, transformer, basis, reducer).invoke();
3974 }
3975
3976 /**
3977 * Returns the result of accumulating the given transformation
3978 * of all keys using the given reducer to combine values, and
3979 * the given basis as an identity value.
3980 *
3981 * @param parallelismThreshold the (estimated) number of elements
3982 * needed for this operation to be executed in parallel
3983 * @param transformer a function returning the transformation
3984 * for an element
3985 * @param basis the identity (initial default value) for the reduction
3986 * @param reducer a commutative associative combining function
3987 * @return the result of accumulating the given transformation
3988 * of all keys
3989 * @since 1.8
3990 */
3991 public long reduceKeysToLong(long parallelismThreshold,
3992 ToLongFunction<? super K> transformer,
3993 long basis,
3994 LongBinaryOperator reducer) {
3995 if (transformer == null || reducer == null)
3996 throw new NullPointerException();
3997 return new MapReduceKeysToLongTask<K,V>
3998 (null, batchFor(parallelismThreshold), 0, 0, table,
3999 null, transformer, basis, reducer).invoke();
4000 }
4001
4002 /**
4003 * Returns the result of accumulating the given transformation
4004 * of all keys using the given reducer to combine values, and
4005 * the given basis as an identity value.
4006 *
4007 * @param parallelismThreshold the (estimated) number of elements
4008 * needed for this operation to be executed in parallel
4009 * @param transformer a function returning the transformation
4010 * for an element
4011 * @param basis the identity (initial default value) for the reduction
4012 * @param reducer a commutative associative combining function
4013 * @return the result of accumulating the given transformation
4014 * of all keys
4015 * @since 1.8
4016 */
4017 public int reduceKeysToInt(long parallelismThreshold,
4018 ToIntFunction<? super K> transformer,
4019 int basis,
4020 IntBinaryOperator reducer) {
4021 if (transformer == null || reducer == null)
4022 throw new NullPointerException();
4023 return new MapReduceKeysToIntTask<K,V>
4024 (null, batchFor(parallelismThreshold), 0, 0, table,
4025 null, transformer, basis, reducer).invoke();
4026 }
4027
4028 /**
4029 * Performs the given action for each value.
4030 *
4031 * @param parallelismThreshold the (estimated) number of elements
4032 * needed for this operation to be executed in parallel
4033 * @param action the action
4034 * @since 1.8
4035 */
4036 public void forEachValue(long parallelismThreshold,
4037 Consumer<? super V> action) {
4038 if (action == null)
4039 throw new NullPointerException();
4040 new ForEachValueTask<K,V>
4041 (null, batchFor(parallelismThreshold), 0, 0, table,
4042 action).invoke();
4043 }
4044
4045 /**
4046 * Performs the given action for each non-null transformation
4047 * of each value.
4048 *
4049 * @param parallelismThreshold the (estimated) number of elements
4050 * needed for this operation to be executed in parallel
4051 * @param transformer a function returning the transformation
4052 * for an element, or null if there is no transformation (in
4053 * which case the action is not applied)
4054 * @param action the action
4055 * @param <U> the return type of the transformer
4056 * @since 1.8
4057 */
4058 public <U> void forEachValue(long parallelismThreshold,
4059 Function<? super V, ? extends U> transformer,
4060 Consumer<? super U> action) {
4061 if (transformer == null || action == null)
4062 throw new NullPointerException();
4063 new ForEachTransformedValueTask<K,V,U>
4064 (null, batchFor(parallelismThreshold), 0, 0, table,
4065 transformer, action).invoke();
4066 }
4067
4068 /**
4069 * Returns a non-null result from applying the given search
4070 * function on each value, or null if none. Upon success,
4071 * further element processing is suppressed and the results of
4072 * any other parallel invocations of the search function are
4073 * ignored.
4074 *
4075 * @param parallelismThreshold the (estimated) number of elements
4076 * needed for this operation to be executed in parallel
4077 * @param searchFunction a function returning a non-null
4078 * result on success, else null
4079 * @param <U> the return type of the search function
4080 * @return a non-null result from applying the given search
4081 * function on each value, or null if none
4082 * @since 1.8
4083 */
4084 public <U> U searchValues(long parallelismThreshold,
4085 Function<? super V, ? extends U> searchFunction) {
4086 if (searchFunction == null) throw new NullPointerException();
4087 return new SearchValuesTask<K,V,U>
4088 (null, batchFor(parallelismThreshold), 0, 0, table,
4089 searchFunction, new AtomicReference<U>()).invoke();
4090 }
4091
4092 /**
4093 * Returns the result of accumulating all values using the
4094 * given reducer to combine values, or null if none.
4095 *
4096 * @param parallelismThreshold the (estimated) number of elements
4097 * needed for this operation to be executed in parallel
4098 * @param reducer a commutative associative combining function
4099 * @return the result of accumulating all values
4100 * @since 1.8
4101 */
4102 public V reduceValues(long parallelismThreshold,
4103 BiFunction<? super V, ? super V, ? extends V> reducer) {
4104 if (reducer == null) throw new NullPointerException();
4105 return new ReduceValuesTask<K,V>
4106 (null, batchFor(parallelismThreshold), 0, 0, table,
4107 null, reducer).invoke();
4108 }
4109
4110 /**
4111 * Returns the result of accumulating the given transformation
4112 * of all values using the given reducer to combine values, or
4113 * null if none.
4114 *
4115 * @param parallelismThreshold the (estimated) number of elements
4116 * needed for this operation to be executed in parallel
4117 * @param transformer a function returning the transformation
4118 * for an element, or null if there is no transformation (in
4119 * which case it is not combined)
4120 * @param reducer a commutative associative combining function
4121 * @param <U> the return type of the transformer
4122 * @return the result of accumulating the given transformation
4123 * of all values
4124 * @since 1.8
4125 */
4126 public <U> U reduceValues(long parallelismThreshold,
4127 Function<? super V, ? extends U> transformer,
4128 BiFunction<? super U, ? super U, ? extends U> reducer) {
4129 if (transformer == null || reducer == null)
4130 throw new NullPointerException();
4131 return new MapReduceValuesTask<K,V,U>
4132 (null, batchFor(parallelismThreshold), 0, 0, table,
4133 null, transformer, reducer).invoke();
4134 }
4135
4136 /**
4137 * Returns the result of accumulating the given transformation
4138 * of all values using the given reducer to combine values,
4139 * and the given basis as an identity value.
4140 *
4141 * @param parallelismThreshold the (estimated) number of elements
4142 * needed for this operation to be executed in parallel
4143 * @param transformer a function returning the transformation
4144 * for an element
4145 * @param basis the identity (initial default value) for the reduction
4146 * @param reducer a commutative associative combining function
4147 * @return the result of accumulating the given transformation
4148 * of all values
4149 * @since 1.8
4150 */
4151 public double reduceValuesToDouble(long parallelismThreshold,
4152 ToDoubleFunction<? super V> transformer,
4153 double basis,
4154 DoubleBinaryOperator reducer) {
4155 if (transformer == null || reducer == null)
4156 throw new NullPointerException();
4157 return new MapReduceValuesToDoubleTask<K,V>
4158 (null, batchFor(parallelismThreshold), 0, 0, table,
4159 null, transformer, basis, reducer).invoke();
4160 }
4161
4162 /**
4163 * Returns the result of accumulating the given transformation
4164 * of all values using the given reducer to combine values,
4165 * and the given basis as an identity value.
4166 *
4167 * @param parallelismThreshold the (estimated) number of elements
4168 * needed for this operation to be executed in parallel
4169 * @param transformer a function returning the transformation
4170 * for an element
4171 * @param basis the identity (initial default value) for the reduction
4172 * @param reducer a commutative associative combining function
4173 * @return the result of accumulating the given transformation
4174 * of all values
4175 * @since 1.8
4176 */
4177 public long reduceValuesToLong(long parallelismThreshold,
4178 ToLongFunction<? super V> transformer,
4179 long basis,
4180 LongBinaryOperator reducer) {
4181 if (transformer == null || reducer == null)
4182 throw new NullPointerException();
4183 return new MapReduceValuesToLongTask<K,V>
4184 (null, batchFor(parallelismThreshold), 0, 0, table,
4185 null, transformer, basis, reducer).invoke();
4186 }
4187
4188 /**
4189 * Returns the result of accumulating the given transformation
4190 * of all values using the given reducer to combine values,
4191 * and the given basis as an identity value.
4192 *
4193 * @param parallelismThreshold the (estimated) number of elements
4194 * needed for this operation to be executed in parallel
4195 * @param transformer a function returning the transformation
4196 * for an element
4197 * @param basis the identity (initial default value) for the reduction
4198 * @param reducer a commutative associative combining function
4199 * @return the result of accumulating the given transformation
4200 * of all values
4201 * @since 1.8
4202 */
4203 public int reduceValuesToInt(long parallelismThreshold,
4204 ToIntFunction<? super V> transformer,
4205 int basis,
4206 IntBinaryOperator reducer) {
4207 if (transformer == null || reducer == null)
4208 throw new NullPointerException();
4209 return new MapReduceValuesToIntTask<K,V>
4210 (null, batchFor(parallelismThreshold), 0, 0, table,
4211 null, transformer, basis, reducer).invoke();
4212 }
4213
4214 /**
4215 * Performs the given action for each entry.
4216 *
4217 * @param parallelismThreshold the (estimated) number of elements
4218 * needed for this operation to be executed in parallel
4219 * @param action the action
4220 * @since 1.8
4221 */
4222 public void forEachEntry(long parallelismThreshold,
4223 Consumer<? super Map.Entry<K,V>> action) {
4224 if (action == null) throw new NullPointerException();
4225 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4226 action).invoke();
4227 }
4228
4229 /**
4230 * Performs the given action for each non-null transformation
4231 * of each entry.
4232 *
4233 * @param parallelismThreshold the (estimated) number of elements
4234 * needed for this operation to be executed in parallel
4235 * @param transformer a function returning the transformation
4236 * for an element, or null if there is no transformation (in
4237 * which case the action is not applied)
4238 * @param action the action
4239 * @param <U> the return type of the transformer
4240 * @since 1.8
4241 */
4242 public <U> void forEachEntry(long parallelismThreshold,
4243 Function<Map.Entry<K,V>, ? extends U> transformer,
4244 Consumer<? super U> action) {
4245 if (transformer == null || action == null)
4246 throw new NullPointerException();
4247 new ForEachTransformedEntryTask<K,V,U>
4248 (null, batchFor(parallelismThreshold), 0, 0, table,
4249 transformer, action).invoke();
4250 }
4251
4252 /**
4253 * Returns a non-null result from applying the given search
4254 * function on each entry, or null if none. Upon success,
4255 * further element processing is suppressed and the results of
4256 * any other parallel invocations of the search function are
4257 * ignored.
4258 *
4259 * @param parallelismThreshold the (estimated) number of elements
4260 * needed for this operation to be executed in parallel
4261 * @param searchFunction a function returning a non-null
4262 * result on success, else null
4263 * @param <U> the return type of the search function
4264 * @return a non-null result from applying the given search
4265 * function on each entry, or null if none
4266 * @since 1.8
4267 */
4268 public <U> U searchEntries(long parallelismThreshold,
4269 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4270 if (searchFunction == null) throw new NullPointerException();
4271 return new SearchEntriesTask<K,V,U>
4272 (null, batchFor(parallelismThreshold), 0, 0, table,
4273 searchFunction, new AtomicReference<U>()).invoke();
4274 }
4275
4276 /**
4277 * Returns the result of accumulating all entries using the
4278 * given reducer to combine values, or null if none.
4279 *
4280 * @param parallelismThreshold the (estimated) number of elements
4281 * needed for this operation to be executed in parallel
4282 * @param reducer a commutative associative combining function
4283 * @return the result of accumulating all entries
4284 * @since 1.8
4285 */
4286 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4287 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4288 if (reducer == null) throw new NullPointerException();
4289 return new ReduceEntriesTask<K,V>
4290 (null, batchFor(parallelismThreshold), 0, 0, table,
4291 null, reducer).invoke();
4292 }
4293
4294 /**
4295 * Returns the result of accumulating the given transformation
4296 * of all entries using the given reducer to combine values,
4297 * or null if none.
4298 *
4299 * @param parallelismThreshold the (estimated) number of elements
4300 * needed for this operation to be executed in parallel
4301 * @param transformer a function returning the transformation
4302 * for an element, or null if there is no transformation (in
4303 * which case it is not combined)
4304 * @param reducer a commutative associative combining function
4305 * @param <U> the return type of the transformer
4306 * @return the result of accumulating the given transformation
4307 * of all entries
4308 * @since 1.8
4309 */
4310 public <U> U reduceEntries(long parallelismThreshold,
4311 Function<Map.Entry<K,V>, ? extends U> transformer,
4312 BiFunction<? super U, ? super U, ? extends U> reducer) {
4313 if (transformer == null || reducer == null)
4314 throw new NullPointerException();
4315 return new MapReduceEntriesTask<K,V,U>
4316 (null, batchFor(parallelismThreshold), 0, 0, table,
4317 null, transformer, reducer).invoke();
4318 }
4319
4320 /**
4321 * Returns the result of accumulating the given transformation
4322 * of all entries using the given reducer to combine values,
4323 * and the given basis as an identity value.
4324 *
4325 * @param parallelismThreshold the (estimated) number of elements
4326 * needed for this operation to be executed in parallel
4327 * @param transformer a function returning the transformation
4328 * for an element
4329 * @param basis the identity (initial default value) for the reduction
4330 * @param reducer a commutative associative combining function
4331 * @return the result of accumulating the given transformation
4332 * of all entries
4333 * @since 1.8
4334 */
4335 public double reduceEntriesToDouble(long parallelismThreshold,
4336 ToDoubleFunction<Map.Entry<K,V>> transformer,
4337 double basis,
4338 DoubleBinaryOperator reducer) {
4339 if (transformer == null || reducer == null)
4340 throw new NullPointerException();
4341 return new MapReduceEntriesToDoubleTask<K,V>
4342 (null, batchFor(parallelismThreshold), 0, 0, table,
4343 null, transformer, basis, reducer).invoke();
4344 }
4345
4346 /**
4347 * Returns the result of accumulating the given transformation
4348 * of all entries using the given reducer to combine values,
4349 * and the given basis as an identity value.
4350 *
4351 * @param parallelismThreshold the (estimated) number of elements
4352 * needed for this operation to be executed in parallel
4353 * @param transformer a function returning the transformation
4354 * for an element
4355 * @param basis the identity (initial default value) for the reduction
4356 * @param reducer a commutative associative combining function
4357 * @return the result of accumulating the given transformation
4358 * of all entries
4359 * @since 1.8
4360 */
4361 public long reduceEntriesToLong(long parallelismThreshold,
4362 ToLongFunction<Map.Entry<K,V>> transformer,
4363 long basis,
4364 LongBinaryOperator reducer) {
4365 if (transformer == null || reducer == null)
4366 throw new NullPointerException();
4367 return new MapReduceEntriesToLongTask<K,V>
4368 (null, batchFor(parallelismThreshold), 0, 0, table,
4369 null, transformer, basis, reducer).invoke();
4370 }
4371
4372 /**
4373 * Returns the result of accumulating the given transformation
4374 * of all entries using the given reducer to combine values,
4375 * and the given basis as an identity value.
4376 *
4377 * @param parallelismThreshold the (estimated) number of elements
4378 * needed for this operation to be executed in parallel
4379 * @param transformer a function returning the transformation
4380 * for an element
4381 * @param basis the identity (initial default value) for the reduction
4382 * @param reducer a commutative associative combining function
4383 * @return the result of accumulating the given transformation
4384 * of all entries
4385 * @since 1.8
4386 */
4387 public int reduceEntriesToInt(long parallelismThreshold,
4388 ToIntFunction<Map.Entry<K,V>> transformer,
4389 int basis,
4390 IntBinaryOperator reducer) {
4391 if (transformer == null || reducer == null)
4392 throw new NullPointerException();
4393 return new MapReduceEntriesToIntTask<K,V>
4394 (null, batchFor(parallelismThreshold), 0, 0, table,
4395 null, transformer, basis, reducer).invoke();
4396 }
4397
4398
4399 /* ----------------Views -------------- */
4400
4401 /**
4402 * Base class for views.
4403 */
4404 abstract static class CollectionView<K,V,E>
4405 implements Collection<E>, java.io.Serializable {
4406 private static final long serialVersionUID = 7249069246763182397L;
4407 final ConcurrentHashMap<K,V> map;
4408 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4409
4410 /**
4411 * Returns the map backing this view.
4412 *
4413 * @return the map backing this view
4414 */
4415 public ConcurrentHashMap<K,V> getMap() { return map; }
4416
4417 /**
4418 * Removes all of the elements from this view, by removing all
4419 * the mappings from the map backing this view.
4420 */
4421 public final void clear() { map.clear(); }
4422 public final int size() { return map.size(); }
4423 public final boolean isEmpty() { return map.isEmpty(); }
4424
4425 // implementations below rely on concrete classes supplying these
4426 // abstract methods
4427 /**
4428 * Returns an iterator over the elements in this collection.
4429 *
4430 * <p>The returned iterator is
4431 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4432 *
4433 * @return an iterator over the elements in this collection
4434 */
4435 public abstract Iterator<E> iterator();
4436 public abstract boolean contains(Object o);
4437 public abstract boolean remove(Object o);
4438
4439 private static final String OOME_MSG = "Required array size too large";
4440
4441 public final Object[] toArray() {
4442 long sz = map.mappingCount();
4443 if (sz > MAX_ARRAY_SIZE)
4444 throw new OutOfMemoryError(OOME_MSG);
4445 int n = (int)sz;
4446 Object[] r = new Object[n];
4447 int i = 0;
4448 for (E e : this) {
4449 if (i == n) {
4450 if (n >= MAX_ARRAY_SIZE)
4451 throw new OutOfMemoryError(OOME_MSG);
4452 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4453 n = MAX_ARRAY_SIZE;
4454 else
4455 n += (n >>> 1) + 1;
4456 r = Arrays.copyOf(r, n);
4457 }
4458 r[i++] = e;
4459 }
4460 return (i == n) ? r : Arrays.copyOf(r, i);
4461 }
4462
4463 @SuppressWarnings("unchecked")
4464 public final <T> T[] toArray(T[] a) {
4465 long sz = map.mappingCount();
4466 if (sz > MAX_ARRAY_SIZE)
4467 throw new OutOfMemoryError(OOME_MSG);
4468 int m = (int)sz;
4469 T[] r = (a.length >= m) ? a :
4470 (T[])java.lang.reflect.Array
4471 .newInstance(a.getClass().getComponentType(), m);
4472 int n = r.length;
4473 int i = 0;
4474 for (E e : this) {
4475 if (i == n) {
4476 if (n >= MAX_ARRAY_SIZE)
4477 throw new OutOfMemoryError(OOME_MSG);
4478 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4479 n = MAX_ARRAY_SIZE;
4480 else
4481 n += (n >>> 1) + 1;
4482 r = Arrays.copyOf(r, n);
4483 }
4484 r[i++] = (T)e;
4485 }
4486 if (a == r && i < n) {
4487 r[i] = null; // null-terminate
4488 return r;
4489 }
4490 return (i == n) ? r : Arrays.copyOf(r, i);
4491 }
4492
4493 /**
4494 * Returns a string representation of this collection.
4495 * The string representation consists of the string representations
4496 * of the collection's elements in the order they are returned by
4497 * its iterator, enclosed in square brackets ({@code "[]"}).
4498 * Adjacent elements are separated by the characters {@code ", "}
4499 * (comma and space). Elements are converted to strings as by
4500 * {@link String#valueOf(Object)}.
4501 *
4502 * @return a string representation of this collection
4503 */
4504 public final String toString() {
4505 StringBuilder sb = new StringBuilder();
4506 sb.append('[');
4507 Iterator<E> it = iterator();
4508 if (it.hasNext()) {
4509 for (;;) {
4510 Object e = it.next();
4511 sb.append(e == this ? "(this Collection)" : e);
4512 if (!it.hasNext())
4513 break;
4514 sb.append(',').append(' ');
4515 }
4516 }
4517 return sb.append(']').toString();
4518 }
4519
4520 public final boolean containsAll(Collection<?> c) {
4521 if (c != this) {
4522 for (Object e : c) {
4523 if (e == null || !contains(e))
4524 return false;
4525 }
4526 }
4527 return true;
4528 }
4529
4530 public boolean removeAll(Collection<?> c) {
4531 if (c == null) throw new NullPointerException();
4532 boolean modified = false;
4533 // Use (c instanceof Set) as a hint that lookup in c is as
4534 // efficient as this view
4535 Node<K,V>[] t;
4536 if ((t = map.table) == null) {
4537 return false;
4538 } else if (c instanceof Set<?> && c.size() > t.length) {
4539 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4540 if (c.contains(it.next())) {
4541 it.remove();
4542 modified = true;
4543 }
4544 }
4545 } else {
4546 for (Object e : c)
4547 modified |= remove(e);
4548 }
4549 return modified;
4550 }
4551
4552 public final boolean retainAll(Collection<?> c) {
4553 if (c == null) throw new NullPointerException();
4554 boolean modified = false;
4555 for (Iterator<E> it = iterator(); it.hasNext();) {
4556 if (!c.contains(it.next())) {
4557 it.remove();
4558 modified = true;
4559 }
4560 }
4561 return modified;
4562 }
4563
4564 }
4565
4566 /**
4567 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4568 * which additions may optionally be enabled by mapping to a
4569 * common value. This class cannot be directly instantiated.
4570 * See {@link #keySet() keySet()},
4571 * {@link #keySet(Object) keySet(V)},
4572 * {@link #newKeySet() newKeySet()},
4573 * {@link #newKeySet(int) newKeySet(int)}.
4574 *
4575 * @since 1.8
4576 */
4577 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4578 implements Set<K>, java.io.Serializable {
4579 private static final long serialVersionUID = 7249069246763182397L;
4580 private final V value;
4581 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4582 super(map);
4583 this.value = value;
4584 }
4585
4586 /**
4587 * Returns the default mapped value for additions,
4588 * or {@code null} if additions are not supported.
4589 *
4590 * @return the default mapped value for additions, or {@code null}
4591 * if not supported
4592 */
4593 public V getMappedValue() { return value; }
4594
4595 /**
4596 * {@inheritDoc}
4597 * @throws NullPointerException if the specified key is null
4598 */
4599 public boolean contains(Object o) { return map.containsKey(o); }
4600
4601 /**
4602 * Removes the key from this map view, by removing the key (and its
4603 * corresponding value) from the backing map. This method does
4604 * nothing if the key is not in the map.
4605 *
4606 * @param o the key to be removed from the backing map
4607 * @return {@code true} if the backing map contained the specified key
4608 * @throws NullPointerException if the specified key is null
4609 */
4610 public boolean remove(Object o) { return map.remove(o) != null; }
4611
4612 /**
4613 * @return an iterator over the keys of the backing map
4614 */
4615 public Iterator<K> iterator() {
4616 Node<K,V>[] t;
4617 ConcurrentHashMap<K,V> m = map;
4618 int f = (t = m.table) == null ? 0 : t.length;
4619 return new KeyIterator<K,V>(t, f, 0, f, m);
4620 }
4621
4622 /**
4623 * Adds the specified key to this set view by mapping the key to
4624 * the default mapped value in the backing map, if defined.
4625 *
4626 * @param e key to be added
4627 * @return {@code true} if this set changed as a result of the call
4628 * @throws NullPointerException if the specified key is null
4629 * @throws UnsupportedOperationException if no default mapped value
4630 * for additions was provided
4631 */
4632 public boolean add(K e) {
4633 V v;
4634 if ((v = value) == null)
4635 throw new UnsupportedOperationException();
4636 return map.putVal(e, v, true) == null;
4637 }
4638
4639 /**
4640 * Adds all of the elements in the specified collection to this set,
4641 * as if by calling {@link #add} on each one.
4642 *
4643 * @param c the elements to be inserted into this set
4644 * @return {@code true} if this set changed as a result of the call
4645 * @throws NullPointerException if the collection or any of its
4646 * elements are {@code null}
4647 * @throws UnsupportedOperationException if no default mapped value
4648 * for additions was provided
4649 */
4650 public boolean addAll(Collection<? extends K> c) {
4651 boolean added = false;
4652 V v;
4653 if ((v = value) == null)
4654 throw new UnsupportedOperationException();
4655 for (K e : c) {
4656 if (map.putVal(e, v, true) == null)
4657 added = true;
4658 }
4659 return added;
4660 }
4661
4662 public int hashCode() {
4663 int h = 0;
4664 for (K e : this)
4665 h += e.hashCode();
4666 return h;
4667 }
4668
4669 public boolean equals(Object o) {
4670 Set<?> c;
4671 return ((o instanceof Set) &&
4672 ((c = (Set<?>)o) == this ||
4673 (containsAll(c) && c.containsAll(this))));
4674 }
4675
4676 public Spliterator<K> spliterator() {
4677 Node<K,V>[] t;
4678 ConcurrentHashMap<K,V> m = map;
4679 long n = m.sumCount();
4680 int f = (t = m.table) == null ? 0 : t.length;
4681 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4682 }
4683
4684 public void forEach(Consumer<? super K> action) {
4685 if (action == null) throw new NullPointerException();
4686 Node<K,V>[] t;
4687 if ((t = map.table) != null) {
4688 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4689 for (Node<K,V> p; (p = it.advance()) != null; )
4690 action.accept(p.key);
4691 }
4692 }
4693 }
4694
4695 /**
4696 * A view of a ConcurrentHashMap as a {@link Collection} of
4697 * values, in which additions are disabled. This class cannot be
4698 * directly instantiated. See {@link #values()}.
4699 */
4700 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4701 implements Collection<V>, java.io.Serializable {
4702 private static final long serialVersionUID = 2249069246763182397L;
4703 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4704 public final boolean contains(Object o) {
4705 return map.containsValue(o);
4706 }
4707
4708 public final boolean remove(Object o) {
4709 if (o != null) {
4710 for (Iterator<V> it = iterator(); it.hasNext();) {
4711 if (o.equals(it.next())) {
4712 it.remove();
4713 return true;
4714 }
4715 }
4716 }
4717 return false;
4718 }
4719
4720 public final Iterator<V> iterator() {
4721 ConcurrentHashMap<K,V> m = map;
4722 Node<K,V>[] t;
4723 int f = (t = m.table) == null ? 0 : t.length;
4724 return new ValueIterator<K,V>(t, f, 0, f, m);
4725 }
4726
4727 public final boolean add(V e) {
4728 throw new UnsupportedOperationException();
4729 }
4730 public final boolean addAll(Collection<? extends V> c) {
4731 throw new UnsupportedOperationException();
4732 }
4733
4734 @Override public boolean removeAll(Collection<?> c) {
4735 if (c == null) throw new NullPointerException();
4736 boolean modified = false;
4737 for (Iterator<V> it = iterator(); it.hasNext();) {
4738 if (c.contains(it.next())) {
4739 it.remove();
4740 modified = true;
4741 }
4742 }
4743 return modified;
4744 }
4745
4746 public boolean removeIf(Predicate<? super V> filter) {
4747 return map.removeValueIf(filter);
4748 }
4749
4750 public Spliterator<V> spliterator() {
4751 Node<K,V>[] t;
4752 ConcurrentHashMap<K,V> m = map;
4753 long n = m.sumCount();
4754 int f = (t = m.table) == null ? 0 : t.length;
4755 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4756 }
4757
4758 public void forEach(Consumer<? super V> action) {
4759 if (action == null) throw new NullPointerException();
4760 Node<K,V>[] t;
4761 if ((t = map.table) != null) {
4762 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4763 for (Node<K,V> p; (p = it.advance()) != null; )
4764 action.accept(p.val);
4765 }
4766 }
4767 }
4768
4769 /**
4770 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4771 * entries. This class cannot be directly instantiated. See
4772 * {@link #entrySet()}.
4773 */
4774 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4775 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4776 private static final long serialVersionUID = 2249069246763182397L;
4777 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4778
4779 public boolean contains(Object o) {
4780 Object k, v, r; Map.Entry<?,?> e;
4781 return ((o instanceof Map.Entry) &&
4782 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4783 (r = map.get(k)) != null &&
4784 (v = e.getValue()) != null &&
4785 (v == r || v.equals(r)));
4786 }
4787
4788 public boolean remove(Object o) {
4789 Object k, v; Map.Entry<?,?> e;
4790 return ((o instanceof Map.Entry) &&
4791 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4792 (v = e.getValue()) != null &&
4793 map.remove(k, v));
4794 }
4795
4796 /**
4797 * @return an iterator over the entries of the backing map
4798 */
4799 public Iterator<Map.Entry<K,V>> iterator() {
4800 ConcurrentHashMap<K,V> m = map;
4801 Node<K,V>[] t;
4802 int f = (t = m.table) == null ? 0 : t.length;
4803 return new EntryIterator<K,V>(t, f, 0, f, m);
4804 }
4805
4806 public boolean add(Entry<K,V> e) {
4807 return map.putVal(e.getKey(), e.getValue(), false) == null;
4808 }
4809
4810 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4811 boolean added = false;
4812 for (Entry<K,V> e : c) {
4813 if (add(e))
4814 added = true;
4815 }
4816 return added;
4817 }
4818
4819 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4820 return map.removeEntryIf(filter);
4821 }
4822
4823 public final int hashCode() {
4824 int h = 0;
4825 Node<K,V>[] t;
4826 if ((t = map.table) != null) {
4827 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4828 for (Node<K,V> p; (p = it.advance()) != null; ) {
4829 h += p.hashCode();
4830 }
4831 }
4832 return h;
4833 }
4834
4835 public final boolean equals(Object o) {
4836 Set<?> c;
4837 return ((o instanceof Set) &&
4838 ((c = (Set<?>)o) == this ||
4839 (containsAll(c) && c.containsAll(this))));
4840 }
4841
4842 public Spliterator<Map.Entry<K,V>> spliterator() {
4843 Node<K,V>[] t;
4844 ConcurrentHashMap<K,V> m = map;
4845 long n = m.sumCount();
4846 int f = (t = m.table) == null ? 0 : t.length;
4847 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4848 }
4849
4850 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4851 if (action == null) throw new NullPointerException();
4852 Node<K,V>[] t;
4853 if ((t = map.table) != null) {
4854 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4855 for (Node<K,V> p; (p = it.advance()) != null; )
4856 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4857 }
4858 }
4859
4860 }
4861
4862 // -------------------------------------------------------
4863
4864 /**
4865 * Base class for bulk tasks. Repeats some fields and code from
4866 * class Traverser, because we need to subclass CountedCompleter.
4867 */
4868 @SuppressWarnings("serial")
4869 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4870 Node<K,V>[] tab; // same as Traverser
4871 Node<K,V> next;
4872 TableStack<K,V> stack, spare;
4873 int index;
4874 int baseIndex;
4875 int baseLimit;
4876 final int baseSize;
4877 int batch; // split control
4878
4879 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4880 super(par);
4881 this.batch = b;
4882 this.index = this.baseIndex = i;
4883 if ((this.tab = t) == null)
4884 this.baseSize = this.baseLimit = 0;
4885 else if (par == null)
4886 this.baseSize = this.baseLimit = t.length;
4887 else {
4888 this.baseLimit = f;
4889 this.baseSize = par.baseSize;
4890 }
4891 }
4892
4893 /**
4894 * Same as Traverser version.
4895 */
4896 final Node<K,V> advance() {
4897 Node<K,V> e;
4898 if ((e = next) != null)
4899 e = e.next;
4900 for (;;) {
4901 Node<K,V>[] t; int i, n;
4902 if (e != null)
4903 return next = e;
4904 if (baseIndex >= baseLimit || (t = tab) == null ||
4905 (n = t.length) <= (i = index) || i < 0)
4906 return next = null;
4907 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4908 if (e instanceof ForwardingNode) {
4909 tab = ((ForwardingNode<K,V>)e).nextTable;
4910 e = null;
4911 pushState(t, i, n);
4912 continue;
4913 }
4914 else if (e instanceof TreeBin)
4915 e = ((TreeBin<K,V>)e).first;
4916 else
4917 e = null;
4918 }
4919 if (stack != null)
4920 recoverState(n);
4921 else if ((index = i + baseSize) >= n)
4922 index = ++baseIndex;
4923 }
4924 }
4925
4926 private void pushState(Node<K,V>[] t, int i, int n) {
4927 TableStack<K,V> s = spare;
4928 if (s != null)
4929 spare = s.next;
4930 else
4931 s = new TableStack<K,V>();
4932 s.tab = t;
4933 s.length = n;
4934 s.index = i;
4935 s.next = stack;
4936 stack = s;
4937 }
4938
4939 private void recoverState(int n) {
4940 TableStack<K,V> s; int len;
4941 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4942 n = len;
4943 index = s.index;
4944 tab = s.tab;
4945 s.tab = null;
4946 TableStack<K,V> next = s.next;
4947 s.next = spare; // save for reuse
4948 stack = next;
4949 spare = s;
4950 }
4951 if (s == null && (index += baseSize) >= n)
4952 index = ++baseIndex;
4953 }
4954 }
4955
4956 /*
4957 * Task classes. Coded in a regular but ugly format/style to
4958 * simplify checks that each variant differs in the right way from
4959 * others. The null screenings exist because compilers cannot tell
4960 * that we've already null-checked task arguments, so we force
4961 * simplest hoisted bypass to help avoid convoluted traps.
4962 */
4963 @SuppressWarnings("serial")
4964 static final class ForEachKeyTask<K,V>
4965 extends BulkTask<K,V,Void> {
4966 final Consumer<? super K> action;
4967 ForEachKeyTask
4968 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4969 Consumer<? super K> action) {
4970 super(p, b, i, f, t);
4971 this.action = action;
4972 }
4973 public final void compute() {
4974 final Consumer<? super K> action;
4975 if ((action = this.action) != null) {
4976 for (int i = baseIndex, f, h; batch > 0 &&
4977 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4978 addToPendingCount(1);
4979 new ForEachKeyTask<K,V>
4980 (this, batch >>>= 1, baseLimit = h, f, tab,
4981 action).fork();
4982 }
4983 for (Node<K,V> p; (p = advance()) != null;)
4984 action.accept(p.key);
4985 propagateCompletion();
4986 }
4987 }
4988 }
4989
4990 @SuppressWarnings("serial")
4991 static final class ForEachValueTask<K,V>
4992 extends BulkTask<K,V,Void> {
4993 final Consumer<? super V> action;
4994 ForEachValueTask
4995 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4996 Consumer<? super V> action) {
4997 super(p, b, i, f, t);
4998 this.action = action;
4999 }
5000 public final void compute() {
5001 final Consumer<? super V> action;
5002 if ((action = this.action) != null) {
5003 for (int i = baseIndex, f, h; batch > 0 &&
5004 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5005 addToPendingCount(1);
5006 new ForEachValueTask<K,V>
5007 (this, batch >>>= 1, baseLimit = h, f, tab,
5008 action).fork();
5009 }
5010 for (Node<K,V> p; (p = advance()) != null;)
5011 action.accept(p.val);
5012 propagateCompletion();
5013 }
5014 }
5015 }
5016
5017 @SuppressWarnings("serial")
5018 static final class ForEachEntryTask<K,V>
5019 extends BulkTask<K,V,Void> {
5020 final Consumer<? super Entry<K,V>> action;
5021 ForEachEntryTask
5022 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5023 Consumer<? super Entry<K,V>> action) {
5024 super(p, b, i, f, t);
5025 this.action = action;
5026 }
5027 public final void compute() {
5028 final Consumer<? super Entry<K,V>> action;
5029 if ((action = this.action) != null) {
5030 for (int i = baseIndex, f, h; batch > 0 &&
5031 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5032 addToPendingCount(1);
5033 new ForEachEntryTask<K,V>
5034 (this, batch >>>= 1, baseLimit = h, f, tab,
5035 action).fork();
5036 }
5037 for (Node<K,V> p; (p = advance()) != null; )
5038 action.accept(p);
5039 propagateCompletion();
5040 }
5041 }
5042 }
5043
5044 @SuppressWarnings("serial")
5045 static final class ForEachMappingTask<K,V>
5046 extends BulkTask<K,V,Void> {
5047 final BiConsumer<? super K, ? super V> action;
5048 ForEachMappingTask
5049 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5050 BiConsumer<? super K,? super V> action) {
5051 super(p, b, i, f, t);
5052 this.action = action;
5053 }
5054 public final void compute() {
5055 final BiConsumer<? super K, ? super V> action;
5056 if ((action = this.action) != null) {
5057 for (int i = baseIndex, f, h; batch > 0 &&
5058 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5059 addToPendingCount(1);
5060 new ForEachMappingTask<K,V>
5061 (this, batch >>>= 1, baseLimit = h, f, tab,
5062 action).fork();
5063 }
5064 for (Node<K,V> p; (p = advance()) != null; )
5065 action.accept(p.key, p.val);
5066 propagateCompletion();
5067 }
5068 }
5069 }
5070
5071 @SuppressWarnings("serial")
5072 static final class ForEachTransformedKeyTask<K,V,U>
5073 extends BulkTask<K,V,Void> {
5074 final Function<? super K, ? extends U> transformer;
5075 final Consumer<? super U> action;
5076 ForEachTransformedKeyTask
5077 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5078 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5079 super(p, b, i, f, t);
5080 this.transformer = transformer; this.action = action;
5081 }
5082 public final void compute() {
5083 final Function<? super K, ? extends U> transformer;
5084 final Consumer<? super U> action;
5085 if ((transformer = this.transformer) != null &&
5086 (action = this.action) != null) {
5087 for (int i = baseIndex, f, h; batch > 0 &&
5088 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5089 addToPendingCount(1);
5090 new ForEachTransformedKeyTask<K,V,U>
5091 (this, batch >>>= 1, baseLimit = h, f, tab,
5092 transformer, action).fork();
5093 }
5094 for (Node<K,V> p; (p = advance()) != null; ) {
5095 U u;
5096 if ((u = transformer.apply(p.key)) != null)
5097 action.accept(u);
5098 }
5099 propagateCompletion();
5100 }
5101 }
5102 }
5103
5104 @SuppressWarnings("serial")
5105 static final class ForEachTransformedValueTask<K,V,U>
5106 extends BulkTask<K,V,Void> {
5107 final Function<? super V, ? extends U> transformer;
5108 final Consumer<? super U> action;
5109 ForEachTransformedValueTask
5110 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5111 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5112 super(p, b, i, f, t);
5113 this.transformer = transformer; this.action = action;
5114 }
5115 public final void compute() {
5116 final Function<? super V, ? extends U> transformer;
5117 final Consumer<? super U> action;
5118 if ((transformer = this.transformer) != null &&
5119 (action = this.action) != null) {
5120 for (int i = baseIndex, f, h; batch > 0 &&
5121 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5122 addToPendingCount(1);
5123 new ForEachTransformedValueTask<K,V,U>
5124 (this, batch >>>= 1, baseLimit = h, f, tab,
5125 transformer, action).fork();
5126 }
5127 for (Node<K,V> p; (p = advance()) != null; ) {
5128 U u;
5129 if ((u = transformer.apply(p.val)) != null)
5130 action.accept(u);
5131 }
5132 propagateCompletion();
5133 }
5134 }
5135 }
5136
5137 @SuppressWarnings("serial")
5138 static final class ForEachTransformedEntryTask<K,V,U>
5139 extends BulkTask<K,V,Void> {
5140 final Function<Map.Entry<K,V>, ? extends U> transformer;
5141 final Consumer<? super U> action;
5142 ForEachTransformedEntryTask
5143 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5144 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5145 super(p, b, i, f, t);
5146 this.transformer = transformer; this.action = action;
5147 }
5148 public final void compute() {
5149 final Function<Map.Entry<K,V>, ? extends U> transformer;
5150 final Consumer<? super U> action;
5151 if ((transformer = this.transformer) != null &&
5152 (action = this.action) != null) {
5153 for (int i = baseIndex, f, h; batch > 0 &&
5154 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5155 addToPendingCount(1);
5156 new ForEachTransformedEntryTask<K,V,U>
5157 (this, batch >>>= 1, baseLimit = h, f, tab,
5158 transformer, action).fork();
5159 }
5160 for (Node<K,V> p; (p = advance()) != null; ) {
5161 U u;
5162 if ((u = transformer.apply(p)) != null)
5163 action.accept(u);
5164 }
5165 propagateCompletion();
5166 }
5167 }
5168 }
5169
5170 @SuppressWarnings("serial")
5171 static final class ForEachTransformedMappingTask<K,V,U>
5172 extends BulkTask<K,V,Void> {
5173 final BiFunction<? super K, ? super V, ? extends U> transformer;
5174 final Consumer<? super U> action;
5175 ForEachTransformedMappingTask
5176 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5177 BiFunction<? super K, ? super V, ? extends U> transformer,
5178 Consumer<? super U> action) {
5179 super(p, b, i, f, t);
5180 this.transformer = transformer; this.action = action;
5181 }
5182 public final void compute() {
5183 final BiFunction<? super K, ? super V, ? extends U> transformer;
5184 final Consumer<? super U> action;
5185 if ((transformer = this.transformer) != null &&
5186 (action = this.action) != null) {
5187 for (int i = baseIndex, f, h; batch > 0 &&
5188 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5189 addToPendingCount(1);
5190 new ForEachTransformedMappingTask<K,V,U>
5191 (this, batch >>>= 1, baseLimit = h, f, tab,
5192 transformer, action).fork();
5193 }
5194 for (Node<K,V> p; (p = advance()) != null; ) {
5195 U u;
5196 if ((u = transformer.apply(p.key, p.val)) != null)
5197 action.accept(u);
5198 }
5199 propagateCompletion();
5200 }
5201 }
5202 }
5203
5204 @SuppressWarnings("serial")
5205 static final class SearchKeysTask<K,V,U>
5206 extends BulkTask<K,V,U> {
5207 final Function<? super K, ? extends U> searchFunction;
5208 final AtomicReference<U> result;
5209 SearchKeysTask
5210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5211 Function<? super K, ? extends U> searchFunction,
5212 AtomicReference<U> result) {
5213 super(p, b, i, f, t);
5214 this.searchFunction = searchFunction; this.result = result;
5215 }
5216 public final U getRawResult() { return result.get(); }
5217 public final void compute() {
5218 final Function<? super K, ? extends U> searchFunction;
5219 final AtomicReference<U> result;
5220 if ((searchFunction = this.searchFunction) != null &&
5221 (result = this.result) != null) {
5222 for (int i = baseIndex, f, h; batch > 0 &&
5223 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5224 if (result.get() != null)
5225 return;
5226 addToPendingCount(1);
5227 new SearchKeysTask<K,V,U>
5228 (this, batch >>>= 1, baseLimit = h, f, tab,
5229 searchFunction, result).fork();
5230 }
5231 while (result.get() == null) {
5232 U u;
5233 Node<K,V> p;
5234 if ((p = advance()) == null) {
5235 propagateCompletion();
5236 break;
5237 }
5238 if ((u = searchFunction.apply(p.key)) != null) {
5239 if (result.compareAndSet(null, u))
5240 quietlyCompleteRoot();
5241 break;
5242 }
5243 }
5244 }
5245 }
5246 }
5247
5248 @SuppressWarnings("serial")
5249 static final class SearchValuesTask<K,V,U>
5250 extends BulkTask<K,V,U> {
5251 final Function<? super V, ? extends U> searchFunction;
5252 final AtomicReference<U> result;
5253 SearchValuesTask
5254 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5255 Function<? super V, ? extends U> searchFunction,
5256 AtomicReference<U> result) {
5257 super(p, b, i, f, t);
5258 this.searchFunction = searchFunction; this.result = result;
5259 }
5260 public final U getRawResult() { return result.get(); }
5261 public final void compute() {
5262 final Function<? super V, ? extends U> searchFunction;
5263 final AtomicReference<U> result;
5264 if ((searchFunction = this.searchFunction) != null &&
5265 (result = this.result) != null) {
5266 for (int i = baseIndex, f, h; batch > 0 &&
5267 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5268 if (result.get() != null)
5269 return;
5270 addToPendingCount(1);
5271 new SearchValuesTask<K,V,U>
5272 (this, batch >>>= 1, baseLimit = h, f, tab,
5273 searchFunction, result).fork();
5274 }
5275 while (result.get() == null) {
5276 U u;
5277 Node<K,V> p;
5278 if ((p = advance()) == null) {
5279 propagateCompletion();
5280 break;
5281 }
5282 if ((u = searchFunction.apply(p.val)) != null) {
5283 if (result.compareAndSet(null, u))
5284 quietlyCompleteRoot();
5285 break;
5286 }
5287 }
5288 }
5289 }
5290 }
5291
5292 @SuppressWarnings("serial")
5293 static final class SearchEntriesTask<K,V,U>
5294 extends BulkTask<K,V,U> {
5295 final Function<Entry<K,V>, ? extends U> searchFunction;
5296 final AtomicReference<U> result;
5297 SearchEntriesTask
5298 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5299 Function<Entry<K,V>, ? extends U> searchFunction,
5300 AtomicReference<U> result) {
5301 super(p, b, i, f, t);
5302 this.searchFunction = searchFunction; this.result = result;
5303 }
5304 public final U getRawResult() { return result.get(); }
5305 public final void compute() {
5306 final Function<Entry<K,V>, ? extends U> searchFunction;
5307 final AtomicReference<U> result;
5308 if ((searchFunction = this.searchFunction) != null &&
5309 (result = this.result) != null) {
5310 for (int i = baseIndex, f, h; batch > 0 &&
5311 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5312 if (result.get() != null)
5313 return;
5314 addToPendingCount(1);
5315 new SearchEntriesTask<K,V,U>
5316 (this, batch >>>= 1, baseLimit = h, f, tab,
5317 searchFunction, result).fork();
5318 }
5319 while (result.get() == null) {
5320 U u;
5321 Node<K,V> p;
5322 if ((p = advance()) == null) {
5323 propagateCompletion();
5324 break;
5325 }
5326 if ((u = searchFunction.apply(p)) != null) {
5327 if (result.compareAndSet(null, u))
5328 quietlyCompleteRoot();
5329 return;
5330 }
5331 }
5332 }
5333 }
5334 }
5335
5336 @SuppressWarnings("serial")
5337 static final class SearchMappingsTask<K,V,U>
5338 extends BulkTask<K,V,U> {
5339 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5340 final AtomicReference<U> result;
5341 SearchMappingsTask
5342 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5343 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5344 AtomicReference<U> result) {
5345 super(p, b, i, f, t);
5346 this.searchFunction = searchFunction; this.result = result;
5347 }
5348 public final U getRawResult() { return result.get(); }
5349 public final void compute() {
5350 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5351 final AtomicReference<U> result;
5352 if ((searchFunction = this.searchFunction) != null &&
5353 (result = this.result) != null) {
5354 for (int i = baseIndex, f, h; batch > 0 &&
5355 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5356 if (result.get() != null)
5357 return;
5358 addToPendingCount(1);
5359 new SearchMappingsTask<K,V,U>
5360 (this, batch >>>= 1, baseLimit = h, f, tab,
5361 searchFunction, result).fork();
5362 }
5363 while (result.get() == null) {
5364 U u;
5365 Node<K,V> p;
5366 if ((p = advance()) == null) {
5367 propagateCompletion();
5368 break;
5369 }
5370 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5371 if (result.compareAndSet(null, u))
5372 quietlyCompleteRoot();
5373 break;
5374 }
5375 }
5376 }
5377 }
5378 }
5379
5380 @SuppressWarnings("serial")
5381 static final class ReduceKeysTask<K,V>
5382 extends BulkTask<K,V,K> {
5383 final BiFunction<? super K, ? super K, ? extends K> reducer;
5384 K result;
5385 ReduceKeysTask<K,V> rights, nextRight;
5386 ReduceKeysTask
5387 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5388 ReduceKeysTask<K,V> nextRight,
5389 BiFunction<? super K, ? super K, ? extends K> reducer) {
5390 super(p, b, i, f, t); this.nextRight = nextRight;
5391 this.reducer = reducer;
5392 }
5393 public final K getRawResult() { return result; }
5394 public final void compute() {
5395 final BiFunction<? super K, ? super K, ? extends K> reducer;
5396 if ((reducer = this.reducer) != null) {
5397 for (int i = baseIndex, f, h; batch > 0 &&
5398 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5399 addToPendingCount(1);
5400 (rights = new ReduceKeysTask<K,V>
5401 (this, batch >>>= 1, baseLimit = h, f, tab,
5402 rights, reducer)).fork();
5403 }
5404 K r = null;
5405 for (Node<K,V> p; (p = advance()) != null; ) {
5406 K u = p.key;
5407 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5408 }
5409 result = r;
5410 CountedCompleter<?> c;
5411 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5412 @SuppressWarnings("unchecked")
5413 ReduceKeysTask<K,V>
5414 t = (ReduceKeysTask<K,V>)c,
5415 s = t.rights;
5416 while (s != null) {
5417 K tr, sr;
5418 if ((sr = s.result) != null)
5419 t.result = (((tr = t.result) == null) ? sr :
5420 reducer.apply(tr, sr));
5421 s = t.rights = s.nextRight;
5422 }
5423 }
5424 }
5425 }
5426 }
5427
5428 @SuppressWarnings("serial")
5429 static final class ReduceValuesTask<K,V>
5430 extends BulkTask<K,V,V> {
5431 final BiFunction<? super V, ? super V, ? extends V> reducer;
5432 V result;
5433 ReduceValuesTask<K,V> rights, nextRight;
5434 ReduceValuesTask
5435 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5436 ReduceValuesTask<K,V> nextRight,
5437 BiFunction<? super V, ? super V, ? extends V> reducer) {
5438 super(p, b, i, f, t); this.nextRight = nextRight;
5439 this.reducer = reducer;
5440 }
5441 public final V getRawResult() { return result; }
5442 public final void compute() {
5443 final BiFunction<? super V, ? super V, ? extends V> reducer;
5444 if ((reducer = this.reducer) != null) {
5445 for (int i = baseIndex, f, h; batch > 0 &&
5446 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5447 addToPendingCount(1);
5448 (rights = new ReduceValuesTask<K,V>
5449 (this, batch >>>= 1, baseLimit = h, f, tab,
5450 rights, reducer)).fork();
5451 }
5452 V r = null;
5453 for (Node<K,V> p; (p = advance()) != null; ) {
5454 V v = p.val;
5455 r = (r == null) ? v : reducer.apply(r, v);
5456 }
5457 result = r;
5458 CountedCompleter<?> c;
5459 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5460 @SuppressWarnings("unchecked")
5461 ReduceValuesTask<K,V>
5462 t = (ReduceValuesTask<K,V>)c,
5463 s = t.rights;
5464 while (s != null) {
5465 V tr, sr;
5466 if ((sr = s.result) != null)
5467 t.result = (((tr = t.result) == null) ? sr :
5468 reducer.apply(tr, sr));
5469 s = t.rights = s.nextRight;
5470 }
5471 }
5472 }
5473 }
5474 }
5475
5476 @SuppressWarnings("serial")
5477 static final class ReduceEntriesTask<K,V>
5478 extends BulkTask<K,V,Map.Entry<K,V>> {
5479 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5480 Map.Entry<K,V> result;
5481 ReduceEntriesTask<K,V> rights, nextRight;
5482 ReduceEntriesTask
5483 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5484 ReduceEntriesTask<K,V> nextRight,
5485 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5486 super(p, b, i, f, t); this.nextRight = nextRight;
5487 this.reducer = reducer;
5488 }
5489 public final Map.Entry<K,V> getRawResult() { return result; }
5490 public final void compute() {
5491 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5492 if ((reducer = this.reducer) != null) {
5493 for (int i = baseIndex, f, h; batch > 0 &&
5494 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5495 addToPendingCount(1);
5496 (rights = new ReduceEntriesTask<K,V>
5497 (this, batch >>>= 1, baseLimit = h, f, tab,
5498 rights, reducer)).fork();
5499 }
5500 Map.Entry<K,V> r = null;
5501 for (Node<K,V> p; (p = advance()) != null; )
5502 r = (r == null) ? p : reducer.apply(r, p);
5503 result = r;
5504 CountedCompleter<?> c;
5505 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5506 @SuppressWarnings("unchecked")
5507 ReduceEntriesTask<K,V>
5508 t = (ReduceEntriesTask<K,V>)c,
5509 s = t.rights;
5510 while (s != null) {
5511 Map.Entry<K,V> tr, sr;
5512 if ((sr = s.result) != null)
5513 t.result = (((tr = t.result) == null) ? sr :
5514 reducer.apply(tr, sr));
5515 s = t.rights = s.nextRight;
5516 }
5517 }
5518 }
5519 }
5520 }
5521
5522 @SuppressWarnings("serial")
5523 static final class MapReduceKeysTask<K,V,U>
5524 extends BulkTask<K,V,U> {
5525 final Function<? super K, ? extends U> transformer;
5526 final BiFunction<? super U, ? super U, ? extends U> reducer;
5527 U result;
5528 MapReduceKeysTask<K,V,U> rights, nextRight;
5529 MapReduceKeysTask
5530 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5531 MapReduceKeysTask<K,V,U> nextRight,
5532 Function<? super K, ? extends U> transformer,
5533 BiFunction<? super U, ? super U, ? extends U> reducer) {
5534 super(p, b, i, f, t); this.nextRight = nextRight;
5535 this.transformer = transformer;
5536 this.reducer = reducer;
5537 }
5538 public final U getRawResult() { return result; }
5539 public final void compute() {
5540 final Function<? super K, ? extends U> transformer;
5541 final BiFunction<? super U, ? super U, ? extends U> reducer;
5542 if ((transformer = this.transformer) != null &&
5543 (reducer = this.reducer) != null) {
5544 for (int i = baseIndex, f, h; batch > 0 &&
5545 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5546 addToPendingCount(1);
5547 (rights = new MapReduceKeysTask<K,V,U>
5548 (this, batch >>>= 1, baseLimit = h, f, tab,
5549 rights, transformer, reducer)).fork();
5550 }
5551 U r = null;
5552 for (Node<K,V> p; (p = advance()) != null; ) {
5553 U u;
5554 if ((u = transformer.apply(p.key)) != null)
5555 r = (r == null) ? u : reducer.apply(r, u);
5556 }
5557 result = r;
5558 CountedCompleter<?> c;
5559 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5560 @SuppressWarnings("unchecked")
5561 MapReduceKeysTask<K,V,U>
5562 t = (MapReduceKeysTask<K,V,U>)c,
5563 s = t.rights;
5564 while (s != null) {
5565 U tr, sr;
5566 if ((sr = s.result) != null)
5567 t.result = (((tr = t.result) == null) ? sr :
5568 reducer.apply(tr, sr));
5569 s = t.rights = s.nextRight;
5570 }
5571 }
5572 }
5573 }
5574 }
5575
5576 @SuppressWarnings("serial")
5577 static final class MapReduceValuesTask<K,V,U>
5578 extends BulkTask<K,V,U> {
5579 final Function<? super V, ? extends U> transformer;
5580 final BiFunction<? super U, ? super U, ? extends U> reducer;
5581 U result;
5582 MapReduceValuesTask<K,V,U> rights, nextRight;
5583 MapReduceValuesTask
5584 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5585 MapReduceValuesTask<K,V,U> nextRight,
5586 Function<? super V, ? extends U> transformer,
5587 BiFunction<? super U, ? super U, ? extends U> reducer) {
5588 super(p, b, i, f, t); this.nextRight = nextRight;
5589 this.transformer = transformer;
5590 this.reducer = reducer;
5591 }
5592 public final U getRawResult() { return result; }
5593 public final void compute() {
5594 final Function<? super V, ? extends U> transformer;
5595 final BiFunction<? super U, ? super U, ? extends U> reducer;
5596 if ((transformer = this.transformer) != null &&
5597 (reducer = this.reducer) != null) {
5598 for (int i = baseIndex, f, h; batch > 0 &&
5599 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5600 addToPendingCount(1);
5601 (rights = new MapReduceValuesTask<K,V,U>
5602 (this, batch >>>= 1, baseLimit = h, f, tab,
5603 rights, transformer, reducer)).fork();
5604 }
5605 U r = null;
5606 for (Node<K,V> p; (p = advance()) != null; ) {
5607 U u;
5608 if ((u = transformer.apply(p.val)) != null)
5609 r = (r == null) ? u : reducer.apply(r, u);
5610 }
5611 result = r;
5612 CountedCompleter<?> c;
5613 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5614 @SuppressWarnings("unchecked")
5615 MapReduceValuesTask<K,V,U>
5616 t = (MapReduceValuesTask<K,V,U>)c,
5617 s = t.rights;
5618 while (s != null) {
5619 U tr, sr;
5620 if ((sr = s.result) != null)
5621 t.result = (((tr = t.result) == null) ? sr :
5622 reducer.apply(tr, sr));
5623 s = t.rights = s.nextRight;
5624 }
5625 }
5626 }
5627 }
5628 }
5629
5630 @SuppressWarnings("serial")
5631 static final class MapReduceEntriesTask<K,V,U>
5632 extends BulkTask<K,V,U> {
5633 final Function<Map.Entry<K,V>, ? extends U> transformer;
5634 final BiFunction<? super U, ? super U, ? extends U> reducer;
5635 U result;
5636 MapReduceEntriesTask<K,V,U> rights, nextRight;
5637 MapReduceEntriesTask
5638 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5639 MapReduceEntriesTask<K,V,U> nextRight,
5640 Function<Map.Entry<K,V>, ? extends U> transformer,
5641 BiFunction<? super U, ? super U, ? extends U> reducer) {
5642 super(p, b, i, f, t); this.nextRight = nextRight;
5643 this.transformer = transformer;
5644 this.reducer = reducer;
5645 }
5646 public final U getRawResult() { return result; }
5647 public final void compute() {
5648 final Function<Map.Entry<K,V>, ? extends U> transformer;
5649 final BiFunction<? super U, ? super U, ? extends U> reducer;
5650 if ((transformer = this.transformer) != null &&
5651 (reducer = this.reducer) != null) {
5652 for (int i = baseIndex, f, h; batch > 0 &&
5653 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5654 addToPendingCount(1);
5655 (rights = new MapReduceEntriesTask<K,V,U>
5656 (this, batch >>>= 1, baseLimit = h, f, tab,
5657 rights, transformer, reducer)).fork();
5658 }
5659 U r = null;
5660 for (Node<K,V> p; (p = advance()) != null; ) {
5661 U u;
5662 if ((u = transformer.apply(p)) != null)
5663 r = (r == null) ? u : reducer.apply(r, u);
5664 }
5665 result = r;
5666 CountedCompleter<?> c;
5667 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5668 @SuppressWarnings("unchecked")
5669 MapReduceEntriesTask<K,V,U>
5670 t = (MapReduceEntriesTask<K,V,U>)c,
5671 s = t.rights;
5672 while (s != null) {
5673 U tr, sr;
5674 if ((sr = s.result) != null)
5675 t.result = (((tr = t.result) == null) ? sr :
5676 reducer.apply(tr, sr));
5677 s = t.rights = s.nextRight;
5678 }
5679 }
5680 }
5681 }
5682 }
5683
5684 @SuppressWarnings("serial")
5685 static final class MapReduceMappingsTask<K,V,U>
5686 extends BulkTask<K,V,U> {
5687 final BiFunction<? super K, ? super V, ? extends U> transformer;
5688 final BiFunction<? super U, ? super U, ? extends U> reducer;
5689 U result;
5690 MapReduceMappingsTask<K,V,U> rights, nextRight;
5691 MapReduceMappingsTask
5692 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5693 MapReduceMappingsTask<K,V,U> nextRight,
5694 BiFunction<? super K, ? super V, ? extends U> transformer,
5695 BiFunction<? super U, ? super U, ? extends U> reducer) {
5696 super(p, b, i, f, t); this.nextRight = nextRight;
5697 this.transformer = transformer;
5698 this.reducer = reducer;
5699 }
5700 public final U getRawResult() { return result; }
5701 public final void compute() {
5702 final BiFunction<? super K, ? super V, ? extends U> transformer;
5703 final BiFunction<? super U, ? super U, ? extends U> reducer;
5704 if ((transformer = this.transformer) != null &&
5705 (reducer = this.reducer) != null) {
5706 for (int i = baseIndex, f, h; batch > 0 &&
5707 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5708 addToPendingCount(1);
5709 (rights = new MapReduceMappingsTask<K,V,U>
5710 (this, batch >>>= 1, baseLimit = h, f, tab,
5711 rights, transformer, reducer)).fork();
5712 }
5713 U r = null;
5714 for (Node<K,V> p; (p = advance()) != null; ) {
5715 U u;
5716 if ((u = transformer.apply(p.key, p.val)) != null)
5717 r = (r == null) ? u : reducer.apply(r, u);
5718 }
5719 result = r;
5720 CountedCompleter<?> c;
5721 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5722 @SuppressWarnings("unchecked")
5723 MapReduceMappingsTask<K,V,U>
5724 t = (MapReduceMappingsTask<K,V,U>)c,
5725 s = t.rights;
5726 while (s != null) {
5727 U tr, sr;
5728 if ((sr = s.result) != null)
5729 t.result = (((tr = t.result) == null) ? sr :
5730 reducer.apply(tr, sr));
5731 s = t.rights = s.nextRight;
5732 }
5733 }
5734 }
5735 }
5736 }
5737
5738 @SuppressWarnings("serial")
5739 static final class MapReduceKeysToDoubleTask<K,V>
5740 extends BulkTask<K,V,Double> {
5741 final ToDoubleFunction<? super K> transformer;
5742 final DoubleBinaryOperator reducer;
5743 final double basis;
5744 double result;
5745 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5746 MapReduceKeysToDoubleTask
5747 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5748 MapReduceKeysToDoubleTask<K,V> nextRight,
5749 ToDoubleFunction<? super K> transformer,
5750 double basis,
5751 DoubleBinaryOperator reducer) {
5752 super(p, b, i, f, t); this.nextRight = nextRight;
5753 this.transformer = transformer;
5754 this.basis = basis; this.reducer = reducer;
5755 }
5756 public final Double getRawResult() { return result; }
5757 public final void compute() {
5758 final ToDoubleFunction<? super K> transformer;
5759 final DoubleBinaryOperator reducer;
5760 if ((transformer = this.transformer) != null &&
5761 (reducer = this.reducer) != null) {
5762 double r = this.basis;
5763 for (int i = baseIndex, f, h; batch > 0 &&
5764 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5765 addToPendingCount(1);
5766 (rights = new MapReduceKeysToDoubleTask<K,V>
5767 (this, batch >>>= 1, baseLimit = h, f, tab,
5768 rights, transformer, r, reducer)).fork();
5769 }
5770 for (Node<K,V> p; (p = advance()) != null; )
5771 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5772 result = r;
5773 CountedCompleter<?> c;
5774 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5775 @SuppressWarnings("unchecked")
5776 MapReduceKeysToDoubleTask<K,V>
5777 t = (MapReduceKeysToDoubleTask<K,V>)c,
5778 s = t.rights;
5779 while (s != null) {
5780 t.result = reducer.applyAsDouble(t.result, s.result);
5781 s = t.rights = s.nextRight;
5782 }
5783 }
5784 }
5785 }
5786 }
5787
5788 @SuppressWarnings("serial")
5789 static final class MapReduceValuesToDoubleTask<K,V>
5790 extends BulkTask<K,V,Double> {
5791 final ToDoubleFunction<? super V> transformer;
5792 final DoubleBinaryOperator reducer;
5793 final double basis;
5794 double result;
5795 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5796 MapReduceValuesToDoubleTask
5797 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5798 MapReduceValuesToDoubleTask<K,V> nextRight,
5799 ToDoubleFunction<? super V> transformer,
5800 double basis,
5801 DoubleBinaryOperator reducer) {
5802 super(p, b, i, f, t); this.nextRight = nextRight;
5803 this.transformer = transformer;
5804 this.basis = basis; this.reducer = reducer;
5805 }
5806 public final Double getRawResult() { return result; }
5807 public final void compute() {
5808 final ToDoubleFunction<? super V> transformer;
5809 final DoubleBinaryOperator reducer;
5810 if ((transformer = this.transformer) != null &&
5811 (reducer = this.reducer) != null) {
5812 double r = this.basis;
5813 for (int i = baseIndex, f, h; batch > 0 &&
5814 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5815 addToPendingCount(1);
5816 (rights = new MapReduceValuesToDoubleTask<K,V>
5817 (this, batch >>>= 1, baseLimit = h, f, tab,
5818 rights, transformer, r, reducer)).fork();
5819 }
5820 for (Node<K,V> p; (p = advance()) != null; )
5821 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5822 result = r;
5823 CountedCompleter<?> c;
5824 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5825 @SuppressWarnings("unchecked")
5826 MapReduceValuesToDoubleTask<K,V>
5827 t = (MapReduceValuesToDoubleTask<K,V>)c,
5828 s = t.rights;
5829 while (s != null) {
5830 t.result = reducer.applyAsDouble(t.result, s.result);
5831 s = t.rights = s.nextRight;
5832 }
5833 }
5834 }
5835 }
5836 }
5837
5838 @SuppressWarnings("serial")
5839 static final class MapReduceEntriesToDoubleTask<K,V>
5840 extends BulkTask<K,V,Double> {
5841 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5842 final DoubleBinaryOperator reducer;
5843 final double basis;
5844 double result;
5845 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5846 MapReduceEntriesToDoubleTask
5847 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5848 MapReduceEntriesToDoubleTask<K,V> nextRight,
5849 ToDoubleFunction<Map.Entry<K,V>> transformer,
5850 double basis,
5851 DoubleBinaryOperator reducer) {
5852 super(p, b, i, f, t); this.nextRight = nextRight;
5853 this.transformer = transformer;
5854 this.basis = basis; this.reducer = reducer;
5855 }
5856 public final Double getRawResult() { return result; }
5857 public final void compute() {
5858 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5859 final DoubleBinaryOperator reducer;
5860 if ((transformer = this.transformer) != null &&
5861 (reducer = this.reducer) != null) {
5862 double r = this.basis;
5863 for (int i = baseIndex, f, h; batch > 0 &&
5864 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5865 addToPendingCount(1);
5866 (rights = new MapReduceEntriesToDoubleTask<K,V>
5867 (this, batch >>>= 1, baseLimit = h, f, tab,
5868 rights, transformer, r, reducer)).fork();
5869 }
5870 for (Node<K,V> p; (p = advance()) != null; )
5871 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5872 result = r;
5873 CountedCompleter<?> c;
5874 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5875 @SuppressWarnings("unchecked")
5876 MapReduceEntriesToDoubleTask<K,V>
5877 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5878 s = t.rights;
5879 while (s != null) {
5880 t.result = reducer.applyAsDouble(t.result, s.result);
5881 s = t.rights = s.nextRight;
5882 }
5883 }
5884 }
5885 }
5886 }
5887
5888 @SuppressWarnings("serial")
5889 static final class MapReduceMappingsToDoubleTask<K,V>
5890 extends BulkTask<K,V,Double> {
5891 final ToDoubleBiFunction<? super K, ? super V> transformer;
5892 final DoubleBinaryOperator reducer;
5893 final double basis;
5894 double result;
5895 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5896 MapReduceMappingsToDoubleTask
5897 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5898 MapReduceMappingsToDoubleTask<K,V> nextRight,
5899 ToDoubleBiFunction<? super K, ? super V> transformer,
5900 double basis,
5901 DoubleBinaryOperator reducer) {
5902 super(p, b, i, f, t); this.nextRight = nextRight;
5903 this.transformer = transformer;
5904 this.basis = basis; this.reducer = reducer;
5905 }
5906 public final Double getRawResult() { return result; }
5907 public final void compute() {
5908 final ToDoubleBiFunction<? super K, ? super V> transformer;
5909 final DoubleBinaryOperator reducer;
5910 if ((transformer = this.transformer) != null &&
5911 (reducer = this.reducer) != null) {
5912 double r = this.basis;
5913 for (int i = baseIndex, f, h; batch > 0 &&
5914 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5915 addToPendingCount(1);
5916 (rights = new MapReduceMappingsToDoubleTask<K,V>
5917 (this, batch >>>= 1, baseLimit = h, f, tab,
5918 rights, transformer, r, reducer)).fork();
5919 }
5920 for (Node<K,V> p; (p = advance()) != null; )
5921 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5922 result = r;
5923 CountedCompleter<?> c;
5924 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5925 @SuppressWarnings("unchecked")
5926 MapReduceMappingsToDoubleTask<K,V>
5927 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5928 s = t.rights;
5929 while (s != null) {
5930 t.result = reducer.applyAsDouble(t.result, s.result);
5931 s = t.rights = s.nextRight;
5932 }
5933 }
5934 }
5935 }
5936 }
5937
5938 @SuppressWarnings("serial")
5939 static final class MapReduceKeysToLongTask<K,V>
5940 extends BulkTask<K,V,Long> {
5941 final ToLongFunction<? super K> transformer;
5942 final LongBinaryOperator reducer;
5943 final long basis;
5944 long result;
5945 MapReduceKeysToLongTask<K,V> rights, nextRight;
5946 MapReduceKeysToLongTask
5947 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5948 MapReduceKeysToLongTask<K,V> nextRight,
5949 ToLongFunction<? super K> transformer,
5950 long basis,
5951 LongBinaryOperator reducer) {
5952 super(p, b, i, f, t); this.nextRight = nextRight;
5953 this.transformer = transformer;
5954 this.basis = basis; this.reducer = reducer;
5955 }
5956 public final Long getRawResult() { return result; }
5957 public final void compute() {
5958 final ToLongFunction<? super K> transformer;
5959 final LongBinaryOperator reducer;
5960 if ((transformer = this.transformer) != null &&
5961 (reducer = this.reducer) != null) {
5962 long r = this.basis;
5963 for (int i = baseIndex, f, h; batch > 0 &&
5964 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5965 addToPendingCount(1);
5966 (rights = new MapReduceKeysToLongTask<K,V>
5967 (this, batch >>>= 1, baseLimit = h, f, tab,
5968 rights, transformer, r, reducer)).fork();
5969 }
5970 for (Node<K,V> p; (p = advance()) != null; )
5971 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5972 result = r;
5973 CountedCompleter<?> c;
5974 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5975 @SuppressWarnings("unchecked")
5976 MapReduceKeysToLongTask<K,V>
5977 t = (MapReduceKeysToLongTask<K,V>)c,
5978 s = t.rights;
5979 while (s != null) {
5980 t.result = reducer.applyAsLong(t.result, s.result);
5981 s = t.rights = s.nextRight;
5982 }
5983 }
5984 }
5985 }
5986 }
5987
5988 @SuppressWarnings("serial")
5989 static final class MapReduceValuesToLongTask<K,V>
5990 extends BulkTask<K,V,Long> {
5991 final ToLongFunction<? super V> transformer;
5992 final LongBinaryOperator reducer;
5993 final long basis;
5994 long result;
5995 MapReduceValuesToLongTask<K,V> rights, nextRight;
5996 MapReduceValuesToLongTask
5997 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5998 MapReduceValuesToLongTask<K,V> nextRight,
5999 ToLongFunction<? super V> transformer,
6000 long basis,
6001 LongBinaryOperator reducer) {
6002 super(p, b, i, f, t); this.nextRight = nextRight;
6003 this.transformer = transformer;
6004 this.basis = basis; this.reducer = reducer;
6005 }
6006 public final Long getRawResult() { return result; }
6007 public final void compute() {
6008 final ToLongFunction<? super V> transformer;
6009 final LongBinaryOperator reducer;
6010 if ((transformer = this.transformer) != null &&
6011 (reducer = this.reducer) != null) {
6012 long r = this.basis;
6013 for (int i = baseIndex, f, h; batch > 0 &&
6014 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6015 addToPendingCount(1);
6016 (rights = new MapReduceValuesToLongTask<K,V>
6017 (this, batch >>>= 1, baseLimit = h, f, tab,
6018 rights, transformer, r, reducer)).fork();
6019 }
6020 for (Node<K,V> p; (p = advance()) != null; )
6021 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6022 result = r;
6023 CountedCompleter<?> c;
6024 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6025 @SuppressWarnings("unchecked")
6026 MapReduceValuesToLongTask<K,V>
6027 t = (MapReduceValuesToLongTask<K,V>)c,
6028 s = t.rights;
6029 while (s != null) {
6030 t.result = reducer.applyAsLong(t.result, s.result);
6031 s = t.rights = s.nextRight;
6032 }
6033 }
6034 }
6035 }
6036 }
6037
6038 @SuppressWarnings("serial")
6039 static final class MapReduceEntriesToLongTask<K,V>
6040 extends BulkTask<K,V,Long> {
6041 final ToLongFunction<Map.Entry<K,V>> transformer;
6042 final LongBinaryOperator reducer;
6043 final long basis;
6044 long result;
6045 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6046 MapReduceEntriesToLongTask
6047 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6048 MapReduceEntriesToLongTask<K,V> nextRight,
6049 ToLongFunction<Map.Entry<K,V>> transformer,
6050 long basis,
6051 LongBinaryOperator reducer) {
6052 super(p, b, i, f, t); this.nextRight = nextRight;
6053 this.transformer = transformer;
6054 this.basis = basis; this.reducer = reducer;
6055 }
6056 public final Long getRawResult() { return result; }
6057 public final void compute() {
6058 final ToLongFunction<Map.Entry<K,V>> transformer;
6059 final LongBinaryOperator reducer;
6060 if ((transformer = this.transformer) != null &&
6061 (reducer = this.reducer) != null) {
6062 long r = this.basis;
6063 for (int i = baseIndex, f, h; batch > 0 &&
6064 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6065 addToPendingCount(1);
6066 (rights = new MapReduceEntriesToLongTask<K,V>
6067 (this, batch >>>= 1, baseLimit = h, f, tab,
6068 rights, transformer, r, reducer)).fork();
6069 }
6070 for (Node<K,V> p; (p = advance()) != null; )
6071 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6072 result = r;
6073 CountedCompleter<?> c;
6074 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6075 @SuppressWarnings("unchecked")
6076 MapReduceEntriesToLongTask<K,V>
6077 t = (MapReduceEntriesToLongTask<K,V>)c,
6078 s = t.rights;
6079 while (s != null) {
6080 t.result = reducer.applyAsLong(t.result, s.result);
6081 s = t.rights = s.nextRight;
6082 }
6083 }
6084 }
6085 }
6086 }
6087
6088 @SuppressWarnings("serial")
6089 static final class MapReduceMappingsToLongTask<K,V>
6090 extends BulkTask<K,V,Long> {
6091 final ToLongBiFunction<? super K, ? super V> transformer;
6092 final LongBinaryOperator reducer;
6093 final long basis;
6094 long result;
6095 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6096 MapReduceMappingsToLongTask
6097 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6098 MapReduceMappingsToLongTask<K,V> nextRight,
6099 ToLongBiFunction<? super K, ? super V> transformer,
6100 long basis,
6101 LongBinaryOperator reducer) {
6102 super(p, b, i, f, t); this.nextRight = nextRight;
6103 this.transformer = transformer;
6104 this.basis = basis; this.reducer = reducer;
6105 }
6106 public final Long getRawResult() { return result; }
6107 public final void compute() {
6108 final ToLongBiFunction<? super K, ? super V> transformer;
6109 final LongBinaryOperator reducer;
6110 if ((transformer = this.transformer) != null &&
6111 (reducer = this.reducer) != null) {
6112 long r = this.basis;
6113 for (int i = baseIndex, f, h; batch > 0 &&
6114 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6115 addToPendingCount(1);
6116 (rights = new MapReduceMappingsToLongTask<K,V>
6117 (this, batch >>>= 1, baseLimit = h, f, tab,
6118 rights, transformer, r, reducer)).fork();
6119 }
6120 for (Node<K,V> p; (p = advance()) != null; )
6121 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6122 result = r;
6123 CountedCompleter<?> c;
6124 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6125 @SuppressWarnings("unchecked")
6126 MapReduceMappingsToLongTask<K,V>
6127 t = (MapReduceMappingsToLongTask<K,V>)c,
6128 s = t.rights;
6129 while (s != null) {
6130 t.result = reducer.applyAsLong(t.result, s.result);
6131 s = t.rights = s.nextRight;
6132 }
6133 }
6134 }
6135 }
6136 }
6137
6138 @SuppressWarnings("serial")
6139 static final class MapReduceKeysToIntTask<K,V>
6140 extends BulkTask<K,V,Integer> {
6141 final ToIntFunction<? super K> transformer;
6142 final IntBinaryOperator reducer;
6143 final int basis;
6144 int result;
6145 MapReduceKeysToIntTask<K,V> rights, nextRight;
6146 MapReduceKeysToIntTask
6147 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6148 MapReduceKeysToIntTask<K,V> nextRight,
6149 ToIntFunction<? super K> transformer,
6150 int basis,
6151 IntBinaryOperator reducer) {
6152 super(p, b, i, f, t); this.nextRight = nextRight;
6153 this.transformer = transformer;
6154 this.basis = basis; this.reducer = reducer;
6155 }
6156 public final Integer getRawResult() { return result; }
6157 public final void compute() {
6158 final ToIntFunction<? super K> transformer;
6159 final IntBinaryOperator reducer;
6160 if ((transformer = this.transformer) != null &&
6161 (reducer = this.reducer) != null) {
6162 int r = this.basis;
6163 for (int i = baseIndex, f, h; batch > 0 &&
6164 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6165 addToPendingCount(1);
6166 (rights = new MapReduceKeysToIntTask<K,V>
6167 (this, batch >>>= 1, baseLimit = h, f, tab,
6168 rights, transformer, r, reducer)).fork();
6169 }
6170 for (Node<K,V> p; (p = advance()) != null; )
6171 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6172 result = r;
6173 CountedCompleter<?> c;
6174 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6175 @SuppressWarnings("unchecked")
6176 MapReduceKeysToIntTask<K,V>
6177 t = (MapReduceKeysToIntTask<K,V>)c,
6178 s = t.rights;
6179 while (s != null) {
6180 t.result = reducer.applyAsInt(t.result, s.result);
6181 s = t.rights = s.nextRight;
6182 }
6183 }
6184 }
6185 }
6186 }
6187
6188 @SuppressWarnings("serial")
6189 static final class MapReduceValuesToIntTask<K,V>
6190 extends BulkTask<K,V,Integer> {
6191 final ToIntFunction<? super V> transformer;
6192 final IntBinaryOperator reducer;
6193 final int basis;
6194 int result;
6195 MapReduceValuesToIntTask<K,V> rights, nextRight;
6196 MapReduceValuesToIntTask
6197 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6198 MapReduceValuesToIntTask<K,V> nextRight,
6199 ToIntFunction<? super V> transformer,
6200 int basis,
6201 IntBinaryOperator reducer) {
6202 super(p, b, i, f, t); this.nextRight = nextRight;
6203 this.transformer = transformer;
6204 this.basis = basis; this.reducer = reducer;
6205 }
6206 public final Integer getRawResult() { return result; }
6207 public final void compute() {
6208 final ToIntFunction<? super V> transformer;
6209 final IntBinaryOperator reducer;
6210 if ((transformer = this.transformer) != null &&
6211 (reducer = this.reducer) != null) {
6212 int r = this.basis;
6213 for (int i = baseIndex, f, h; batch > 0 &&
6214 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6215 addToPendingCount(1);
6216 (rights = new MapReduceValuesToIntTask<K,V>
6217 (this, batch >>>= 1, baseLimit = h, f, tab,
6218 rights, transformer, r, reducer)).fork();
6219 }
6220 for (Node<K,V> p; (p = advance()) != null; )
6221 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6222 result = r;
6223 CountedCompleter<?> c;
6224 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6225 @SuppressWarnings("unchecked")
6226 MapReduceValuesToIntTask<K,V>
6227 t = (MapReduceValuesToIntTask<K,V>)c,
6228 s = t.rights;
6229 while (s != null) {
6230 t.result = reducer.applyAsInt(t.result, s.result);
6231 s = t.rights = s.nextRight;
6232 }
6233 }
6234 }
6235 }
6236 }
6237
6238 @SuppressWarnings("serial")
6239 static final class MapReduceEntriesToIntTask<K,V>
6240 extends BulkTask<K,V,Integer> {
6241 final ToIntFunction<Map.Entry<K,V>> transformer;
6242 final IntBinaryOperator reducer;
6243 final int basis;
6244 int result;
6245 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6246 MapReduceEntriesToIntTask
6247 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6248 MapReduceEntriesToIntTask<K,V> nextRight,
6249 ToIntFunction<Map.Entry<K,V>> transformer,
6250 int basis,
6251 IntBinaryOperator reducer) {
6252 super(p, b, i, f, t); this.nextRight = nextRight;
6253 this.transformer = transformer;
6254 this.basis = basis; this.reducer = reducer;
6255 }
6256 public final Integer getRawResult() { return result; }
6257 public final void compute() {
6258 final ToIntFunction<Map.Entry<K,V>> transformer;
6259 final IntBinaryOperator reducer;
6260 if ((transformer = this.transformer) != null &&
6261 (reducer = this.reducer) != null) {
6262 int r = this.basis;
6263 for (int i = baseIndex, f, h; batch > 0 &&
6264 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6265 addToPendingCount(1);
6266 (rights = new MapReduceEntriesToIntTask<K,V>
6267 (this, batch >>>= 1, baseLimit = h, f, tab,
6268 rights, transformer, r, reducer)).fork();
6269 }
6270 for (Node<K,V> p; (p = advance()) != null; )
6271 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6272 result = r;
6273 CountedCompleter<?> c;
6274 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6275 @SuppressWarnings("unchecked")
6276 MapReduceEntriesToIntTask<K,V>
6277 t = (MapReduceEntriesToIntTask<K,V>)c,
6278 s = t.rights;
6279 while (s != null) {
6280 t.result = reducer.applyAsInt(t.result, s.result);
6281 s = t.rights = s.nextRight;
6282 }
6283 }
6284 }
6285 }
6286 }
6287
6288 @SuppressWarnings("serial")
6289 static final class MapReduceMappingsToIntTask<K,V>
6290 extends BulkTask<K,V,Integer> {
6291 final ToIntBiFunction<? super K, ? super V> transformer;
6292 final IntBinaryOperator reducer;
6293 final int basis;
6294 int result;
6295 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6296 MapReduceMappingsToIntTask
6297 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6298 MapReduceMappingsToIntTask<K,V> nextRight,
6299 ToIntBiFunction<? super K, ? super V> transformer,
6300 int basis,
6301 IntBinaryOperator reducer) {
6302 super(p, b, i, f, t); this.nextRight = nextRight;
6303 this.transformer = transformer;
6304 this.basis = basis; this.reducer = reducer;
6305 }
6306 public final Integer getRawResult() { return result; }
6307 public final void compute() {
6308 final ToIntBiFunction<? super K, ? super V> transformer;
6309 final IntBinaryOperator reducer;
6310 if ((transformer = this.transformer) != null &&
6311 (reducer = this.reducer) != null) {
6312 int r = this.basis;
6313 for (int i = baseIndex, f, h; batch > 0 &&
6314 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6315 addToPendingCount(1);
6316 (rights = new MapReduceMappingsToIntTask<K,V>
6317 (this, batch >>>= 1, baseLimit = h, f, tab,
6318 rights, transformer, r, reducer)).fork();
6319 }
6320 for (Node<K,V> p; (p = advance()) != null; )
6321 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6322 result = r;
6323 CountedCompleter<?> c;
6324 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6325 @SuppressWarnings("unchecked")
6326 MapReduceMappingsToIntTask<K,V>
6327 t = (MapReduceMappingsToIntTask<K,V>)c,
6328 s = t.rights;
6329 while (s != null) {
6330 t.result = reducer.applyAsInt(t.result, s.result);
6331 s = t.rights = s.nextRight;
6332 }
6333 }
6334 }
6335 }
6336 }
6337
6338 // Unsafe mechanics
6339 private static final Unsafe U = Unsafe.getUnsafe();
6340 private static final long SIZECTL;
6341 private static final long TRANSFERINDEX;
6342 private static final long BASECOUNT;
6343 private static final long CELLSBUSY;
6344 private static final long CELLVALUE;
6345 private static final int ABASE;
6346 private static final int ASHIFT;
6347
6348 static {
6349 try {
6350 SIZECTL = U.objectFieldOffset
6351 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6352 TRANSFERINDEX = U.objectFieldOffset
6353 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6354 BASECOUNT = U.objectFieldOffset
6355 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6356 CELLSBUSY = U.objectFieldOffset
6357 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6358
6359 CELLVALUE = U.objectFieldOffset
6360 (CounterCell.class.getDeclaredField("value"));
6361
6362 ABASE = U.arrayBaseOffset(Node[].class);
6363 int scale = U.arrayIndexScale(Node[].class);
6364 if ((scale & (scale - 1)) != 0)
6365 throw new Error("array index scale not a power of two");
6366 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6367 } catch (ReflectiveOperationException e) {
6368 throw new Error(e);
6369 }
6370
6371 // Reduce the risk of rare disastrous classloading in first call to
6372 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6373 Class<?> ensureLoaded = LockSupport.class;
6374 }
6375 }