ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.310
Committed: Wed May 23 06:11:41 2018 UTC (6 years ago) by jsr166
Branch: MAIN
Changes since 1.309: +1 -6 lines
Log Message:
tableSizeFor: optimize and add whitebox tests

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42 import jdk.internal.misc.Unsafe;
43
44 /**
45 * A hash table supporting full concurrency of retrievals and
46 * high expected concurrency for updates. This class obeys the
47 * same functional specification as {@link java.util.Hashtable}, and
48 * includes versions of methods corresponding to each method of
49 * {@code Hashtable}. However, even though all operations are
50 * thread-safe, retrieval operations do <em>not</em> entail locking,
51 * and there is <em>not</em> any support for locking the entire table
52 * in a way that prevents all access. This class is fully
53 * interoperable with {@code Hashtable} in programs that rely on its
54 * thread safety but not on its synchronization details.
55 *
56 * <p>Retrieval operations (including {@code get}) generally do not
57 * block, so may overlap with update operations (including {@code put}
58 * and {@code remove}). Retrievals reflect the results of the most
59 * recently <em>completed</em> update operations holding upon their
60 * onset. (More formally, an update operation for a given key bears a
61 * <em>happens-before</em> relation with any (non-null) retrieval for
62 * that key reporting the updated value.) For aggregate operations
63 * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 * reflect insertion or removal of only some entries. Similarly,
65 * Iterators, Spliterators and Enumerations return elements reflecting the
66 * state of the hash table at some point at or since the creation of the
67 * iterator/enumeration. They do <em>not</em> throw {@link
68 * java.util.ConcurrentModificationException ConcurrentModificationException}.
69 * However, iterators are designed to be used by only one thread at a time.
70 * Bear in mind that the results of aggregate status methods including
71 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 * useful only when a map is not undergoing concurrent updates in other threads.
73 * Otherwise the results of these methods reflect transient states
74 * that may be adequate for monitoring or estimation purposes, but not
75 * for program control.
76 *
77 * <p>The table is dynamically expanded when there are too many
78 * collisions (i.e., keys that have distinct hash codes but fall into
79 * the same slot modulo the table size), with the expected average
80 * effect of maintaining roughly two bins per mapping (corresponding
81 * to a 0.75 load factor threshold for resizing). There may be much
82 * variance around this average as mappings are added and removed, but
83 * overall, this maintains a commonly accepted time/space tradeoff for
84 * hash tables. However, resizing this or any other kind of hash
85 * table may be a relatively slow operation. When possible, it is a
86 * good idea to provide a size estimate as an optional {@code
87 * initialCapacity} constructor argument. An additional optional
88 * {@code loadFactor} constructor argument provides a further means of
89 * customizing initial table capacity by specifying the table density
90 * to be used in calculating the amount of space to allocate for the
91 * given number of elements. Also, for compatibility with previous
92 * versions of this class, constructors may optionally specify an
93 * expected {@code concurrencyLevel} as an additional hint for
94 * internal sizing. Note that using many keys with exactly the same
95 * {@code hashCode()} is a sure way to slow down performance of any
96 * hash table. To ameliorate impact, when keys are {@link Comparable},
97 * this class may use comparison order among keys to help break ties.
98 *
99 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 * (using {@link #keySet(Object)} when only keys are of interest, and the
102 * mapped values are (perhaps transiently) not used or all take the
103 * same mapping value.
104 *
105 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 * form of histogram or multiset) by using {@link
107 * java.util.concurrent.atomic.LongAdder} values and initializing via
108 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111 *
112 * <p>This class and its views and iterators implement all of the
113 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114 * interfaces.
115 *
116 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 * does <em>not</em> allow {@code null} to be used as a key or value.
118 *
119 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 * operations that, unlike most {@link Stream} methods, are designed
121 * to be safely, and often sensibly, applied even with maps that are
122 * being concurrently updated by other threads; for example, when
123 * computing a snapshot summary of the values in a shared registry.
124 * There are three kinds of operation, each with four forms, accepting
125 * functions with keys, values, entries, and (key, value) pairs as
126 * arguments and/or return values. Because the elements of a
127 * ConcurrentHashMap are not ordered in any particular way, and may be
128 * processed in different orders in different parallel executions, the
129 * correctness of supplied functions should not depend on any
130 * ordering, or on any other objects or values that may transiently
131 * change while computation is in progress; and except for forEach
132 * actions, should ideally be side-effect-free. Bulk operations on
133 * {@link Map.Entry} objects do not support method {@code setValue}.
134 *
135 * <ul>
136 * <li>forEach: Performs a given action on each element.
137 * A variant form applies a given transformation on each element
138 * before performing the action.
139 *
140 * <li>search: Returns the first available non-null result of
141 * applying a given function on each element; skipping further
142 * search when a result is found.
143 *
144 * <li>reduce: Accumulates each element. The supplied reduction
145 * function cannot rely on ordering (more formally, it should be
146 * both associative and commutative). There are five variants:
147 *
148 * <ul>
149 *
150 * <li>Plain reductions. (There is not a form of this method for
151 * (key, value) function arguments since there is no corresponding
152 * return type.)
153 *
154 * <li>Mapped reductions that accumulate the results of a given
155 * function applied to each element.
156 *
157 * <li>Reductions to scalar doubles, longs, and ints, using a
158 * given basis value.
159 *
160 * </ul>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (jdk.internal.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectable as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments referring to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static final int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /**
571 * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 * @serialField segments Segment[]
573 * The segments, each of which is a specialized hash table.
574 * @serialField segmentMask int
575 * Mask value for indexing into segments. The upper bits of a
576 * key's hash code are used to choose the segment.
577 * @serialField segmentShift int
578 * Shift value for indexing within segments.
579 */
580 private static final ObjectStreamField[] serialPersistentFields = {
581 new ObjectStreamField("segments", Segment[].class),
582 new ObjectStreamField("segmentMask", Integer.TYPE),
583 new ObjectStreamField("segmentShift", Integer.TYPE),
584 };
585
586 /* ---------------- Nodes -------------- */
587
588 /**
589 * Key-value entry. This class is never exported out as a
590 * user-mutable Map.Entry (i.e., one supporting setValue; see
591 * MapEntry below), but can be used for read-only traversals used
592 * in bulk tasks. Subclasses of Node with a negative hash field
593 * are special, and contain null keys and values (but are never
594 * exported). Otherwise, keys and vals are never null.
595 */
596 static class Node<K,V> implements Map.Entry<K,V> {
597 final int hash;
598 final K key;
599 volatile V val;
600 volatile Node<K,V> next;
601
602 Node(int hash, K key, V val) {
603 this.hash = hash;
604 this.key = key;
605 this.val = val;
606 }
607
608 Node(int hash, K key, V val, Node<K,V> next) {
609 this(hash, key, val);
610 this.next = next;
611 }
612
613 public final K getKey() { return key; }
614 public final V getValue() { return val; }
615 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 public final String toString() {
617 return Helpers.mapEntryToString(key, val);
618 }
619 public final V setValue(V value) {
620 throw new UnsupportedOperationException();
621 }
622
623 public final boolean equals(Object o) {
624 Object k, v, u; Map.Entry<?,?> e;
625 return ((o instanceof Map.Entry) &&
626 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 (v = e.getValue()) != null &&
628 (k == key || k.equals(key)) &&
629 (v == (u = val) || v.equals(u)));
630 }
631
632 /**
633 * Virtualized support for map.get(); overridden in subclasses.
634 */
635 Node<K,V> find(int h, Object k) {
636 Node<K,V> e = this;
637 if (k != null) {
638 do {
639 K ek;
640 if (e.hash == h &&
641 ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 return e;
643 } while ((e = e.next) != null);
644 }
645 return null;
646 }
647 }
648
649 /* ---------------- Static utilities -------------- */
650
651 /**
652 * Spreads (XORs) higher bits of hash to lower and also forces top
653 * bit to 0. Because the table uses power-of-two masking, sets of
654 * hashes that vary only in bits above the current mask will
655 * always collide. (Among known examples are sets of Float keys
656 * holding consecutive whole numbers in small tables.) So we
657 * apply a transform that spreads the impact of higher bits
658 * downward. There is a tradeoff between speed, utility, and
659 * quality of bit-spreading. Because many common sets of hashes
660 * are already reasonably distributed (so don't benefit from
661 * spreading), and because we use trees to handle large sets of
662 * collisions in bins, we just XOR some shifted bits in the
663 * cheapest possible way to reduce systematic lossage, as well as
664 * to incorporate impact of the highest bits that would otherwise
665 * never be used in index calculations because of table bounds.
666 */
667 static final int spread(int h) {
668 return (h ^ (h >>> 16)) & HASH_BITS;
669 }
670
671 /**
672 * Returns a power of two table size for the given desired capacity.
673 * See Hackers Delight, sec 3.2
674 */
675 private static final int tableSizeFor(int c) {
676 int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678 }
679
680 /**
681 * Returns x's Class if it is of the form "class C implements
682 * Comparable<C>", else null.
683 */
684 static Class<?> comparableClassFor(Object x) {
685 if (x instanceof Comparable) {
686 Class<?> c; Type[] ts, as; ParameterizedType p;
687 if ((c = x.getClass()) == String.class) // bypass checks
688 return c;
689 if ((ts = c.getGenericInterfaces()) != null) {
690 for (Type t : ts) {
691 if ((t instanceof ParameterizedType) &&
692 ((p = (ParameterizedType)t).getRawType() ==
693 Comparable.class) &&
694 (as = p.getActualTypeArguments()) != null &&
695 as.length == 1 && as[0] == c) // type arg is c
696 return c;
697 }
698 }
699 }
700 return null;
701 }
702
703 /**
704 * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 * class), else 0.
706 */
707 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 static int compareComparables(Class<?> kc, Object k, Object x) {
709 return (x == null || x.getClass() != kc ? 0 :
710 ((Comparable)k).compareTo(x));
711 }
712
713 /* ---------------- Table element access -------------- */
714
715 /*
716 * Atomic access methods are used for table elements as well as
717 * elements of in-progress next table while resizing. All uses of
718 * the tab arguments must be null checked by callers. All callers
719 * also paranoically precheck that tab's length is not zero (or an
720 * equivalent check), thus ensuring that any index argument taking
721 * the form of a hash value anded with (length - 1) is a valid
722 * index. Note that, to be correct wrt arbitrary concurrency
723 * errors by users, these checks must operate on local variables,
724 * which accounts for some odd-looking inline assignments below.
725 * Note that calls to setTabAt always occur within locked regions,
726 * and so require only release ordering.
727 */
728
729 @SuppressWarnings("unchecked")
730 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 }
733
734 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 Node<K,V> c, Node<K,V> v) {
736 return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 }
738
739 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741 }
742
743 /* ---------------- Fields -------------- */
744
745 /**
746 * The array of bins. Lazily initialized upon first insertion.
747 * Size is always a power of two. Accessed directly by iterators.
748 */
749 transient volatile Node<K,V>[] table;
750
751 /**
752 * The next table to use; non-null only while resizing.
753 */
754 private transient volatile Node<K,V>[] nextTable;
755
756 /**
757 * Base counter value, used mainly when there is no contention,
758 * but also as a fallback during table initialization
759 * races. Updated via CAS.
760 */
761 private transient volatile long baseCount;
762
763 /**
764 * Table initialization and resizing control. When negative, the
765 * table is being initialized or resized: -1 for initialization,
766 * else -(1 + the number of active resizing threads). Otherwise,
767 * when table is null, holds the initial table size to use upon
768 * creation, or 0 for default. After initialization, holds the
769 * next element count value upon which to resize the table.
770 */
771 private transient volatile int sizeCtl;
772
773 /**
774 * The next table index (plus one) to split while resizing.
775 */
776 private transient volatile int transferIndex;
777
778 /**
779 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 */
781 private transient volatile int cellsBusy;
782
783 /**
784 * Table of counter cells. When non-null, size is a power of 2.
785 */
786 private transient volatile CounterCell[] counterCells;
787
788 // views
789 private transient KeySetView<K,V> keySet;
790 private transient ValuesView<K,V> values;
791 private transient EntrySetView<K,V> entrySet;
792
793
794 /* ---------------- Public operations -------------- */
795
796 /**
797 * Creates a new, empty map with the default initial table size (16).
798 */
799 public ConcurrentHashMap() {
800 }
801
802 /**
803 * Creates a new, empty map with an initial table size
804 * accommodating the specified number of elements without the need
805 * to dynamically resize.
806 *
807 * @param initialCapacity The implementation performs internal
808 * sizing to accommodate this many elements.
809 * @throws IllegalArgumentException if the initial capacity of
810 * elements is negative
811 */
812 public ConcurrentHashMap(int initialCapacity) {
813 if (initialCapacity < 0)
814 throw new IllegalArgumentException();
815 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
816 MAXIMUM_CAPACITY :
817 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
818 this.sizeCtl = cap;
819 }
820
821 /**
822 * Creates a new map with the same mappings as the given map.
823 *
824 * @param m the map
825 */
826 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
827 this.sizeCtl = DEFAULT_CAPACITY;
828 putAll(m);
829 }
830
831 /**
832 * Creates a new, empty map with an initial table size based on
833 * the given number of elements ({@code initialCapacity}) and
834 * initial table density ({@code loadFactor}).
835 *
836 * @param initialCapacity the initial capacity. The implementation
837 * performs internal sizing to accommodate this many elements,
838 * given the specified load factor.
839 * @param loadFactor the load factor (table density) for
840 * establishing the initial table size
841 * @throws IllegalArgumentException if the initial capacity of
842 * elements is negative or the load factor is nonpositive
843 *
844 * @since 1.6
845 */
846 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
847 this(initialCapacity, loadFactor, 1);
848 }
849
850 /**
851 * Creates a new, empty map with an initial table size based on
852 * the given number of elements ({@code initialCapacity}), table
853 * density ({@code loadFactor}), and number of concurrently
854 * updating threads ({@code concurrencyLevel}).
855 *
856 * @param initialCapacity the initial capacity. The implementation
857 * performs internal sizing to accommodate this many elements,
858 * given the specified load factor.
859 * @param loadFactor the load factor (table density) for
860 * establishing the initial table size
861 * @param concurrencyLevel the estimated number of concurrently
862 * updating threads. The implementation may use this value as
863 * a sizing hint.
864 * @throws IllegalArgumentException if the initial capacity is
865 * negative or the load factor or concurrencyLevel are
866 * nonpositive
867 */
868 public ConcurrentHashMap(int initialCapacity,
869 float loadFactor, int concurrencyLevel) {
870 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
871 throw new IllegalArgumentException();
872 if (initialCapacity < concurrencyLevel) // Use at least as many bins
873 initialCapacity = concurrencyLevel; // as estimated threads
874 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
875 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
876 MAXIMUM_CAPACITY : tableSizeFor((int)size);
877 this.sizeCtl = cap;
878 }
879
880 // Original (since JDK1.2) Map methods
881
882 /**
883 * {@inheritDoc}
884 */
885 public int size() {
886 long n = sumCount();
887 return ((n < 0L) ? 0 :
888 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
889 (int)n);
890 }
891
892 /**
893 * {@inheritDoc}
894 */
895 public boolean isEmpty() {
896 return sumCount() <= 0L; // ignore transient negative values
897 }
898
899 /**
900 * Returns the value to which the specified key is mapped,
901 * or {@code null} if this map contains no mapping for the key.
902 *
903 * <p>More formally, if this map contains a mapping from a key
904 * {@code k} to a value {@code v} such that {@code key.equals(k)},
905 * then this method returns {@code v}; otherwise it returns
906 * {@code null}. (There can be at most one such mapping.)
907 *
908 * @throws NullPointerException if the specified key is null
909 */
910 public V get(Object key) {
911 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
912 int h = spread(key.hashCode());
913 if ((tab = table) != null && (n = tab.length) > 0 &&
914 (e = tabAt(tab, (n - 1) & h)) != null) {
915 if ((eh = e.hash) == h) {
916 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
917 return e.val;
918 }
919 else if (eh < 0)
920 return (p = e.find(h, key)) != null ? p.val : null;
921 while ((e = e.next) != null) {
922 if (e.hash == h &&
923 ((ek = e.key) == key || (ek != null && key.equals(ek))))
924 return e.val;
925 }
926 }
927 return null;
928 }
929
930 /**
931 * Tests if the specified object is a key in this table.
932 *
933 * @param key possible key
934 * @return {@code true} if and only if the specified object
935 * is a key in this table, as determined by the
936 * {@code equals} method; {@code false} otherwise
937 * @throws NullPointerException if the specified key is null
938 */
939 public boolean containsKey(Object key) {
940 return get(key) != null;
941 }
942
943 /**
944 * Returns {@code true} if this map maps one or more keys to the
945 * specified value. Note: This method may require a full traversal
946 * of the map, and is much slower than method {@code containsKey}.
947 *
948 * @param value value whose presence in this map is to be tested
949 * @return {@code true} if this map maps one or more keys to the
950 * specified value
951 * @throws NullPointerException if the specified value is null
952 */
953 public boolean containsValue(Object value) {
954 if (value == null)
955 throw new NullPointerException();
956 Node<K,V>[] t;
957 if ((t = table) != null) {
958 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
959 for (Node<K,V> p; (p = it.advance()) != null; ) {
960 V v;
961 if ((v = p.val) == value || (v != null && value.equals(v)))
962 return true;
963 }
964 }
965 return false;
966 }
967
968 /**
969 * Maps the specified key to the specified value in this table.
970 * Neither the key nor the value can be null.
971 *
972 * <p>The value can be retrieved by calling the {@code get} method
973 * with a key that is equal to the original key.
974 *
975 * @param key key with which the specified value is to be associated
976 * @param value value to be associated with the specified key
977 * @return the previous value associated with {@code key}, or
978 * {@code null} if there was no mapping for {@code key}
979 * @throws NullPointerException if the specified key or value is null
980 */
981 public V put(K key, V value) {
982 return putVal(key, value, false);
983 }
984
985 /** Implementation for put and putIfAbsent */
986 final V putVal(K key, V value, boolean onlyIfAbsent) {
987 if (key == null || value == null) throw new NullPointerException();
988 int hash = spread(key.hashCode());
989 int binCount = 0;
990 for (Node<K,V>[] tab = table;;) {
991 Node<K,V> f; int n, i, fh; K fk; V fv;
992 if (tab == null || (n = tab.length) == 0)
993 tab = initTable();
994 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
995 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
996 break; // no lock when adding to empty bin
997 }
998 else if ((fh = f.hash) == MOVED)
999 tab = helpTransfer(tab, f);
1000 else if (onlyIfAbsent // check first node without acquiring lock
1001 && fh == hash
1002 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1003 && (fv = f.val) != null)
1004 return fv;
1005 else {
1006 V oldVal = null;
1007 synchronized (f) {
1008 if (tabAt(tab, i) == f) {
1009 if (fh >= 0) {
1010 binCount = 1;
1011 for (Node<K,V> e = f;; ++binCount) {
1012 K ek;
1013 if (e.hash == hash &&
1014 ((ek = e.key) == key ||
1015 (ek != null && key.equals(ek)))) {
1016 oldVal = e.val;
1017 if (!onlyIfAbsent)
1018 e.val = value;
1019 break;
1020 }
1021 Node<K,V> pred = e;
1022 if ((e = e.next) == null) {
1023 pred.next = new Node<K,V>(hash, key, value);
1024 break;
1025 }
1026 }
1027 }
1028 else if (f instanceof TreeBin) {
1029 Node<K,V> p;
1030 binCount = 2;
1031 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1032 value)) != null) {
1033 oldVal = p.val;
1034 if (!onlyIfAbsent)
1035 p.val = value;
1036 }
1037 }
1038 else if (f instanceof ReservationNode)
1039 throw new IllegalStateException("Recursive update");
1040 }
1041 }
1042 if (binCount != 0) {
1043 if (binCount >= TREEIFY_THRESHOLD)
1044 treeifyBin(tab, i);
1045 if (oldVal != null)
1046 return oldVal;
1047 break;
1048 }
1049 }
1050 }
1051 addCount(1L, binCount);
1052 return null;
1053 }
1054
1055 /**
1056 * Copies all of the mappings from the specified map to this one.
1057 * These mappings replace any mappings that this map had for any of the
1058 * keys currently in the specified map.
1059 *
1060 * @param m mappings to be stored in this map
1061 */
1062 public void putAll(Map<? extends K, ? extends V> m) {
1063 tryPresize(m.size());
1064 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1065 putVal(e.getKey(), e.getValue(), false);
1066 }
1067
1068 /**
1069 * Removes the key (and its corresponding value) from this map.
1070 * This method does nothing if the key is not in the map.
1071 *
1072 * @param key the key that needs to be removed
1073 * @return the previous value associated with {@code key}, or
1074 * {@code null} if there was no mapping for {@code key}
1075 * @throws NullPointerException if the specified key is null
1076 */
1077 public V remove(Object key) {
1078 return replaceNode(key, null, null);
1079 }
1080
1081 /**
1082 * Implementation for the four public remove/replace methods:
1083 * Replaces node value with v, conditional upon match of cv if
1084 * non-null. If resulting value is null, delete.
1085 */
1086 final V replaceNode(Object key, V value, Object cv) {
1087 int hash = spread(key.hashCode());
1088 for (Node<K,V>[] tab = table;;) {
1089 Node<K,V> f; int n, i, fh;
1090 if (tab == null || (n = tab.length) == 0 ||
1091 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1092 break;
1093 else if ((fh = f.hash) == MOVED)
1094 tab = helpTransfer(tab, f);
1095 else {
1096 V oldVal = null;
1097 boolean validated = false;
1098 synchronized (f) {
1099 if (tabAt(tab, i) == f) {
1100 if (fh >= 0) {
1101 validated = true;
1102 for (Node<K,V> e = f, pred = null;;) {
1103 K ek;
1104 if (e.hash == hash &&
1105 ((ek = e.key) == key ||
1106 (ek != null && key.equals(ek)))) {
1107 V ev = e.val;
1108 if (cv == null || cv == ev ||
1109 (ev != null && cv.equals(ev))) {
1110 oldVal = ev;
1111 if (value != null)
1112 e.val = value;
1113 else if (pred != null)
1114 pred.next = e.next;
1115 else
1116 setTabAt(tab, i, e.next);
1117 }
1118 break;
1119 }
1120 pred = e;
1121 if ((e = e.next) == null)
1122 break;
1123 }
1124 }
1125 else if (f instanceof TreeBin) {
1126 validated = true;
1127 TreeBin<K,V> t = (TreeBin<K,V>)f;
1128 TreeNode<K,V> r, p;
1129 if ((r = t.root) != null &&
1130 (p = r.findTreeNode(hash, key, null)) != null) {
1131 V pv = p.val;
1132 if (cv == null || cv == pv ||
1133 (pv != null && cv.equals(pv))) {
1134 oldVal = pv;
1135 if (value != null)
1136 p.val = value;
1137 else if (t.removeTreeNode(p))
1138 setTabAt(tab, i, untreeify(t.first));
1139 }
1140 }
1141 }
1142 else if (f instanceof ReservationNode)
1143 throw new IllegalStateException("Recursive update");
1144 }
1145 }
1146 if (validated) {
1147 if (oldVal != null) {
1148 if (value == null)
1149 addCount(-1L, -1);
1150 return oldVal;
1151 }
1152 break;
1153 }
1154 }
1155 }
1156 return null;
1157 }
1158
1159 /**
1160 * Removes all of the mappings from this map.
1161 */
1162 public void clear() {
1163 long delta = 0L; // negative number of deletions
1164 int i = 0;
1165 Node<K,V>[] tab = table;
1166 while (tab != null && i < tab.length) {
1167 int fh;
1168 Node<K,V> f = tabAt(tab, i);
1169 if (f == null)
1170 ++i;
1171 else if ((fh = f.hash) == MOVED) {
1172 tab = helpTransfer(tab, f);
1173 i = 0; // restart
1174 }
1175 else {
1176 synchronized (f) {
1177 if (tabAt(tab, i) == f) {
1178 Node<K,V> p = (fh >= 0 ? f :
1179 (f instanceof TreeBin) ?
1180 ((TreeBin<K,V>)f).first : null);
1181 while (p != null) {
1182 --delta;
1183 p = p.next;
1184 }
1185 setTabAt(tab, i++, null);
1186 }
1187 }
1188 }
1189 }
1190 if (delta != 0L)
1191 addCount(delta, -1);
1192 }
1193
1194 /**
1195 * Returns a {@link Set} view of the keys contained in this map.
1196 * The set is backed by the map, so changes to the map are
1197 * reflected in the set, and vice-versa. The set supports element
1198 * removal, which removes the corresponding mapping from this map,
1199 * via the {@code Iterator.remove}, {@code Set.remove},
1200 * {@code removeAll}, {@code retainAll}, and {@code clear}
1201 * operations. It does not support the {@code add} or
1202 * {@code addAll} operations.
1203 *
1204 * <p>The view's iterators and spliterators are
1205 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1206 *
1207 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1208 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1209 *
1210 * @return the set view
1211 */
1212 public KeySetView<K,V> keySet() {
1213 KeySetView<K,V> ks;
1214 if ((ks = keySet) != null) return ks;
1215 return keySet = new KeySetView<K,V>(this, null);
1216 }
1217
1218 /**
1219 * Returns a {@link Collection} view of the values contained in this map.
1220 * The collection is backed by the map, so changes to the map are
1221 * reflected in the collection, and vice-versa. The collection
1222 * supports element removal, which removes the corresponding
1223 * mapping from this map, via the {@code Iterator.remove},
1224 * {@code Collection.remove}, {@code removeAll},
1225 * {@code retainAll}, and {@code clear} operations. It does not
1226 * support the {@code add} or {@code addAll} operations.
1227 *
1228 * <p>The view's iterators and spliterators are
1229 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1230 *
1231 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1232 * and {@link Spliterator#NONNULL}.
1233 *
1234 * @return the collection view
1235 */
1236 public Collection<V> values() {
1237 ValuesView<K,V> vs;
1238 if ((vs = values) != null) return vs;
1239 return values = new ValuesView<K,V>(this);
1240 }
1241
1242 /**
1243 * Returns a {@link Set} view of the mappings contained in this map.
1244 * The set is backed by the map, so changes to the map are
1245 * reflected in the set, and vice-versa. The set supports element
1246 * removal, which removes the corresponding mapping from the map,
1247 * via the {@code Iterator.remove}, {@code Set.remove},
1248 * {@code removeAll}, {@code retainAll}, and {@code clear}
1249 * operations.
1250 *
1251 * <p>The view's iterators and spliterators are
1252 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1253 *
1254 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1255 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1256 *
1257 * @return the set view
1258 */
1259 public Set<Map.Entry<K,V>> entrySet() {
1260 EntrySetView<K,V> es;
1261 if ((es = entrySet) != null) return es;
1262 return entrySet = new EntrySetView<K,V>(this);
1263 }
1264
1265 /**
1266 * Returns the hash code value for this {@link Map}, i.e.,
1267 * the sum of, for each key-value pair in the map,
1268 * {@code key.hashCode() ^ value.hashCode()}.
1269 *
1270 * @return the hash code value for this map
1271 */
1272 public int hashCode() {
1273 int h = 0;
1274 Node<K,V>[] t;
1275 if ((t = table) != null) {
1276 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1277 for (Node<K,V> p; (p = it.advance()) != null; )
1278 h += p.key.hashCode() ^ p.val.hashCode();
1279 }
1280 return h;
1281 }
1282
1283 /**
1284 * Returns a string representation of this map. The string
1285 * representation consists of a list of key-value mappings (in no
1286 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1287 * mappings are separated by the characters {@code ", "} (comma
1288 * and space). Each key-value mapping is rendered as the key
1289 * followed by an equals sign ("{@code =}") followed by the
1290 * associated value.
1291 *
1292 * @return a string representation of this map
1293 */
1294 public String toString() {
1295 Node<K,V>[] t;
1296 int f = (t = table) == null ? 0 : t.length;
1297 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1298 StringBuilder sb = new StringBuilder();
1299 sb.append('{');
1300 Node<K,V> p;
1301 if ((p = it.advance()) != null) {
1302 for (;;) {
1303 K k = p.key;
1304 V v = p.val;
1305 sb.append(k == this ? "(this Map)" : k);
1306 sb.append('=');
1307 sb.append(v == this ? "(this Map)" : v);
1308 if ((p = it.advance()) == null)
1309 break;
1310 sb.append(',').append(' ');
1311 }
1312 }
1313 return sb.append('}').toString();
1314 }
1315
1316 /**
1317 * Compares the specified object with this map for equality.
1318 * Returns {@code true} if the given object is a map with the same
1319 * mappings as this map. This operation may return misleading
1320 * results if either map is concurrently modified during execution
1321 * of this method.
1322 *
1323 * @param o object to be compared for equality with this map
1324 * @return {@code true} if the specified object is equal to this map
1325 */
1326 public boolean equals(Object o) {
1327 if (o != this) {
1328 if (!(o instanceof Map))
1329 return false;
1330 Map<?,?> m = (Map<?,?>) o;
1331 Node<K,V>[] t;
1332 int f = (t = table) == null ? 0 : t.length;
1333 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1334 for (Node<K,V> p; (p = it.advance()) != null; ) {
1335 V val = p.val;
1336 Object v = m.get(p.key);
1337 if (v == null || (v != val && !v.equals(val)))
1338 return false;
1339 }
1340 for (Map.Entry<?,?> e : m.entrySet()) {
1341 Object mk, mv, v;
1342 if ((mk = e.getKey()) == null ||
1343 (mv = e.getValue()) == null ||
1344 (v = get(mk)) == null ||
1345 (mv != v && !mv.equals(v)))
1346 return false;
1347 }
1348 }
1349 return true;
1350 }
1351
1352 /**
1353 * Stripped-down version of helper class used in previous version,
1354 * declared for the sake of serialization compatibility.
1355 */
1356 static class Segment<K,V> extends ReentrantLock implements Serializable {
1357 private static final long serialVersionUID = 2249069246763182397L;
1358 final float loadFactor;
1359 Segment(float lf) { this.loadFactor = lf; }
1360 }
1361
1362 /**
1363 * Saves this map to a stream (that is, serializes it).
1364 *
1365 * @param s the stream
1366 * @throws java.io.IOException if an I/O error occurs
1367 * @serialData
1368 * the serialized fields, followed by the key (Object) and value
1369 * (Object) for each key-value mapping, followed by a null pair.
1370 * The key-value mappings are emitted in no particular order.
1371 */
1372 private void writeObject(java.io.ObjectOutputStream s)
1373 throws java.io.IOException {
1374 // For serialization compatibility
1375 // Emulate segment calculation from previous version of this class
1376 int sshift = 0;
1377 int ssize = 1;
1378 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1379 ++sshift;
1380 ssize <<= 1;
1381 }
1382 int segmentShift = 32 - sshift;
1383 int segmentMask = ssize - 1;
1384 @SuppressWarnings("unchecked")
1385 Segment<K,V>[] segments = (Segment<K,V>[])
1386 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1387 for (int i = 0; i < segments.length; ++i)
1388 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1389 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1390 streamFields.put("segments", segments);
1391 streamFields.put("segmentShift", segmentShift);
1392 streamFields.put("segmentMask", segmentMask);
1393 s.writeFields();
1394
1395 Node<K,V>[] t;
1396 if ((t = table) != null) {
1397 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1398 for (Node<K,V> p; (p = it.advance()) != null; ) {
1399 s.writeObject(p.key);
1400 s.writeObject(p.val);
1401 }
1402 }
1403 s.writeObject(null);
1404 s.writeObject(null);
1405 }
1406
1407 /**
1408 * Reconstitutes this map from a stream (that is, deserializes it).
1409 * @param s the stream
1410 * @throws ClassNotFoundException if the class of a serialized object
1411 * could not be found
1412 * @throws java.io.IOException if an I/O error occurs
1413 */
1414 private void readObject(java.io.ObjectInputStream s)
1415 throws java.io.IOException, ClassNotFoundException {
1416 /*
1417 * To improve performance in typical cases, we create nodes
1418 * while reading, then place in table once size is known.
1419 * However, we must also validate uniqueness and deal with
1420 * overpopulated bins while doing so, which requires
1421 * specialized versions of putVal mechanics.
1422 */
1423 sizeCtl = -1; // force exclusion for table construction
1424 s.defaultReadObject();
1425 long size = 0L;
1426 Node<K,V> p = null;
1427 for (;;) {
1428 @SuppressWarnings("unchecked")
1429 K k = (K) s.readObject();
1430 @SuppressWarnings("unchecked")
1431 V v = (V) s.readObject();
1432 if (k != null && v != null) {
1433 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1434 ++size;
1435 }
1436 else
1437 break;
1438 }
1439 if (size == 0L)
1440 sizeCtl = 0;
1441 else {
1442 int n;
1443 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1444 n = MAXIMUM_CAPACITY;
1445 else {
1446 int sz = (int)size;
1447 n = tableSizeFor(sz + (sz >>> 1) + 1);
1448 }
1449 @SuppressWarnings("unchecked")
1450 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1451 int mask = n - 1;
1452 long added = 0L;
1453 while (p != null) {
1454 boolean insertAtFront;
1455 Node<K,V> next = p.next, first;
1456 int h = p.hash, j = h & mask;
1457 if ((first = tabAt(tab, j)) == null)
1458 insertAtFront = true;
1459 else {
1460 K k = p.key;
1461 if (first.hash < 0) {
1462 TreeBin<K,V> t = (TreeBin<K,V>)first;
1463 if (t.putTreeVal(h, k, p.val) == null)
1464 ++added;
1465 insertAtFront = false;
1466 }
1467 else {
1468 int binCount = 0;
1469 insertAtFront = true;
1470 Node<K,V> q; K qk;
1471 for (q = first; q != null; q = q.next) {
1472 if (q.hash == h &&
1473 ((qk = q.key) == k ||
1474 (qk != null && k.equals(qk)))) {
1475 insertAtFront = false;
1476 break;
1477 }
1478 ++binCount;
1479 }
1480 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1481 insertAtFront = false;
1482 ++added;
1483 p.next = first;
1484 TreeNode<K,V> hd = null, tl = null;
1485 for (q = p; q != null; q = q.next) {
1486 TreeNode<K,V> t = new TreeNode<K,V>
1487 (q.hash, q.key, q.val, null, null);
1488 if ((t.prev = tl) == null)
1489 hd = t;
1490 else
1491 tl.next = t;
1492 tl = t;
1493 }
1494 setTabAt(tab, j, new TreeBin<K,V>(hd));
1495 }
1496 }
1497 }
1498 if (insertAtFront) {
1499 ++added;
1500 p.next = first;
1501 setTabAt(tab, j, p);
1502 }
1503 p = next;
1504 }
1505 table = tab;
1506 sizeCtl = n - (n >>> 2);
1507 baseCount = added;
1508 }
1509 }
1510
1511 // ConcurrentMap methods
1512
1513 /**
1514 * {@inheritDoc}
1515 *
1516 * @return the previous value associated with the specified key,
1517 * or {@code null} if there was no mapping for the key
1518 * @throws NullPointerException if the specified key or value is null
1519 */
1520 public V putIfAbsent(K key, V value) {
1521 return putVal(key, value, true);
1522 }
1523
1524 /**
1525 * {@inheritDoc}
1526 *
1527 * @throws NullPointerException if the specified key is null
1528 */
1529 public boolean remove(Object key, Object value) {
1530 if (key == null)
1531 throw new NullPointerException();
1532 return value != null && replaceNode(key, null, value) != null;
1533 }
1534
1535 /**
1536 * {@inheritDoc}
1537 *
1538 * @throws NullPointerException if any of the arguments are null
1539 */
1540 public boolean replace(K key, V oldValue, V newValue) {
1541 if (key == null || oldValue == null || newValue == null)
1542 throw new NullPointerException();
1543 return replaceNode(key, newValue, oldValue) != null;
1544 }
1545
1546 /**
1547 * {@inheritDoc}
1548 *
1549 * @return the previous value associated with the specified key,
1550 * or {@code null} if there was no mapping for the key
1551 * @throws NullPointerException if the specified key or value is null
1552 */
1553 public V replace(K key, V value) {
1554 if (key == null || value == null)
1555 throw new NullPointerException();
1556 return replaceNode(key, value, null);
1557 }
1558
1559 // Overrides of JDK8+ Map extension method defaults
1560
1561 /**
1562 * Returns the value to which the specified key is mapped, or the
1563 * given default value if this map contains no mapping for the
1564 * key.
1565 *
1566 * @param key the key whose associated value is to be returned
1567 * @param defaultValue the value to return if this map contains
1568 * no mapping for the given key
1569 * @return the mapping for the key, if present; else the default value
1570 * @throws NullPointerException if the specified key is null
1571 */
1572 public V getOrDefault(Object key, V defaultValue) {
1573 V v;
1574 return (v = get(key)) == null ? defaultValue : v;
1575 }
1576
1577 public void forEach(BiConsumer<? super K, ? super V> action) {
1578 if (action == null) throw new NullPointerException();
1579 Node<K,V>[] t;
1580 if ((t = table) != null) {
1581 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 action.accept(p.key, p.val);
1584 }
1585 }
1586 }
1587
1588 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1589 if (function == null) throw new NullPointerException();
1590 Node<K,V>[] t;
1591 if ((t = table) != null) {
1592 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1593 for (Node<K,V> p; (p = it.advance()) != null; ) {
1594 V oldValue = p.val;
1595 for (K key = p.key;;) {
1596 V newValue = function.apply(key, oldValue);
1597 if (newValue == null)
1598 throw new NullPointerException();
1599 if (replaceNode(key, newValue, oldValue) != null ||
1600 (oldValue = get(key)) == null)
1601 break;
1602 }
1603 }
1604 }
1605 }
1606
1607 /**
1608 * Helper method for EntrySetView.removeIf.
1609 */
1610 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1611 if (function == null) throw new NullPointerException();
1612 Node<K,V>[] t;
1613 boolean removed = false;
1614 if ((t = table) != null) {
1615 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1616 for (Node<K,V> p; (p = it.advance()) != null; ) {
1617 K k = p.key;
1618 V v = p.val;
1619 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1620 if (function.test(e) && replaceNode(k, null, v) != null)
1621 removed = true;
1622 }
1623 }
1624 return removed;
1625 }
1626
1627 /**
1628 * Helper method for ValuesView.removeIf.
1629 */
1630 boolean removeValueIf(Predicate<? super V> function) {
1631 if (function == null) throw new NullPointerException();
1632 Node<K,V>[] t;
1633 boolean removed = false;
1634 if ((t = table) != null) {
1635 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1636 for (Node<K,V> p; (p = it.advance()) != null; ) {
1637 K k = p.key;
1638 V v = p.val;
1639 if (function.test(v) && replaceNode(k, null, v) != null)
1640 removed = true;
1641 }
1642 }
1643 return removed;
1644 }
1645
1646 /**
1647 * If the specified key is not already associated with a value,
1648 * attempts to compute its value using the given mapping function
1649 * and enters it into this map unless {@code null}. The entire
1650 * method invocation is performed atomically, so the function is
1651 * applied at most once per key. Some attempted update operations
1652 * on this map by other threads may be blocked while computation
1653 * is in progress, so the computation should be short and simple,
1654 * and must not attempt to update any other mappings of this map.
1655 *
1656 * @param key key with which the specified value is to be associated
1657 * @param mappingFunction the function to compute a value
1658 * @return the current (existing or computed) value associated with
1659 * the specified key, or null if the computed value is null
1660 * @throws NullPointerException if the specified key or mappingFunction
1661 * is null
1662 * @throws IllegalStateException if the computation detectably
1663 * attempts a recursive update to this map that would
1664 * otherwise never complete
1665 * @throws RuntimeException or Error if the mappingFunction does so,
1666 * in which case the mapping is left unestablished
1667 */
1668 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1669 if (key == null || mappingFunction == null)
1670 throw new NullPointerException();
1671 int h = spread(key.hashCode());
1672 V val = null;
1673 int binCount = 0;
1674 for (Node<K,V>[] tab = table;;) {
1675 Node<K,V> f; int n, i, fh; K fk; V fv;
1676 if (tab == null || (n = tab.length) == 0)
1677 tab = initTable();
1678 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1679 Node<K,V> r = new ReservationNode<K,V>();
1680 synchronized (r) {
1681 if (casTabAt(tab, i, null, r)) {
1682 binCount = 1;
1683 Node<K,V> node = null;
1684 try {
1685 if ((val = mappingFunction.apply(key)) != null)
1686 node = new Node<K,V>(h, key, val);
1687 } finally {
1688 setTabAt(tab, i, node);
1689 }
1690 }
1691 }
1692 if (binCount != 0)
1693 break;
1694 }
1695 else if ((fh = f.hash) == MOVED)
1696 tab = helpTransfer(tab, f);
1697 else if (fh == h // check first node without acquiring lock
1698 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1699 && (fv = f.val) != null)
1700 return fv;
1701 else {
1702 boolean added = false;
1703 synchronized (f) {
1704 if (tabAt(tab, i) == f) {
1705 if (fh >= 0) {
1706 binCount = 1;
1707 for (Node<K,V> e = f;; ++binCount) {
1708 K ek;
1709 if (e.hash == h &&
1710 ((ek = e.key) == key ||
1711 (ek != null && key.equals(ek)))) {
1712 val = e.val;
1713 break;
1714 }
1715 Node<K,V> pred = e;
1716 if ((e = e.next) == null) {
1717 if ((val = mappingFunction.apply(key)) != null) {
1718 if (pred.next != null)
1719 throw new IllegalStateException("Recursive update");
1720 added = true;
1721 pred.next = new Node<K,V>(h, key, val);
1722 }
1723 break;
1724 }
1725 }
1726 }
1727 else if (f instanceof TreeBin) {
1728 binCount = 2;
1729 TreeBin<K,V> t = (TreeBin<K,V>)f;
1730 TreeNode<K,V> r, p;
1731 if ((r = t.root) != null &&
1732 (p = r.findTreeNode(h, key, null)) != null)
1733 val = p.val;
1734 else if ((val = mappingFunction.apply(key)) != null) {
1735 added = true;
1736 t.putTreeVal(h, key, val);
1737 }
1738 }
1739 else if (f instanceof ReservationNode)
1740 throw new IllegalStateException("Recursive update");
1741 }
1742 }
1743 if (binCount != 0) {
1744 if (binCount >= TREEIFY_THRESHOLD)
1745 treeifyBin(tab, i);
1746 if (!added)
1747 return val;
1748 break;
1749 }
1750 }
1751 }
1752 if (val != null)
1753 addCount(1L, binCount);
1754 return val;
1755 }
1756
1757 /**
1758 * If the value for the specified key is present, attempts to
1759 * compute a new mapping given the key and its current mapped
1760 * value. The entire method invocation is performed atomically.
1761 * Some attempted update operations on this map by other threads
1762 * may be blocked while computation is in progress, so the
1763 * computation should be short and simple, and must not attempt to
1764 * update any other mappings of this map.
1765 *
1766 * @param key key with which a value may be associated
1767 * @param remappingFunction the function to compute a value
1768 * @return the new value associated with the specified key, or null if none
1769 * @throws NullPointerException if the specified key or remappingFunction
1770 * is null
1771 * @throws IllegalStateException if the computation detectably
1772 * attempts a recursive update to this map that would
1773 * otherwise never complete
1774 * @throws RuntimeException or Error if the remappingFunction does so,
1775 * in which case the mapping is unchanged
1776 */
1777 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1778 if (key == null || remappingFunction == null)
1779 throw new NullPointerException();
1780 int h = spread(key.hashCode());
1781 V val = null;
1782 int delta = 0;
1783 int binCount = 0;
1784 for (Node<K,V>[] tab = table;;) {
1785 Node<K,V> f; int n, i, fh;
1786 if (tab == null || (n = tab.length) == 0)
1787 tab = initTable();
1788 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1789 break;
1790 else if ((fh = f.hash) == MOVED)
1791 tab = helpTransfer(tab, f);
1792 else {
1793 synchronized (f) {
1794 if (tabAt(tab, i) == f) {
1795 if (fh >= 0) {
1796 binCount = 1;
1797 for (Node<K,V> e = f, pred = null;; ++binCount) {
1798 K ek;
1799 if (e.hash == h &&
1800 ((ek = e.key) == key ||
1801 (ek != null && key.equals(ek)))) {
1802 val = remappingFunction.apply(key, e.val);
1803 if (val != null)
1804 e.val = val;
1805 else {
1806 delta = -1;
1807 Node<K,V> en = e.next;
1808 if (pred != null)
1809 pred.next = en;
1810 else
1811 setTabAt(tab, i, en);
1812 }
1813 break;
1814 }
1815 pred = e;
1816 if ((e = e.next) == null)
1817 break;
1818 }
1819 }
1820 else if (f instanceof TreeBin) {
1821 binCount = 2;
1822 TreeBin<K,V> t = (TreeBin<K,V>)f;
1823 TreeNode<K,V> r, p;
1824 if ((r = t.root) != null &&
1825 (p = r.findTreeNode(h, key, null)) != null) {
1826 val = remappingFunction.apply(key, p.val);
1827 if (val != null)
1828 p.val = val;
1829 else {
1830 delta = -1;
1831 if (t.removeTreeNode(p))
1832 setTabAt(tab, i, untreeify(t.first));
1833 }
1834 }
1835 }
1836 else if (f instanceof ReservationNode)
1837 throw new IllegalStateException("Recursive update");
1838 }
1839 }
1840 if (binCount != 0)
1841 break;
1842 }
1843 }
1844 if (delta != 0)
1845 addCount((long)delta, binCount);
1846 return val;
1847 }
1848
1849 /**
1850 * Attempts to compute a mapping for the specified key and its
1851 * current mapped value (or {@code null} if there is no current
1852 * mapping). The entire method invocation is performed atomically.
1853 * Some attempted update operations on this map by other threads
1854 * may be blocked while computation is in progress, so the
1855 * computation should be short and simple, and must not attempt to
1856 * update any other mappings of this Map.
1857 *
1858 * @param key key with which the specified value is to be associated
1859 * @param remappingFunction the function to compute a value
1860 * @return the new value associated with the specified key, or null if none
1861 * @throws NullPointerException if the specified key or remappingFunction
1862 * is null
1863 * @throws IllegalStateException if the computation detectably
1864 * attempts a recursive update to this map that would
1865 * otherwise never complete
1866 * @throws RuntimeException or Error if the remappingFunction does so,
1867 * in which case the mapping is unchanged
1868 */
1869 public V compute(K key,
1870 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1871 if (key == null || remappingFunction == null)
1872 throw new NullPointerException();
1873 int h = spread(key.hashCode());
1874 V val = null;
1875 int delta = 0;
1876 int binCount = 0;
1877 for (Node<K,V>[] tab = table;;) {
1878 Node<K,V> f; int n, i, fh;
1879 if (tab == null || (n = tab.length) == 0)
1880 tab = initTable();
1881 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1882 Node<K,V> r = new ReservationNode<K,V>();
1883 synchronized (r) {
1884 if (casTabAt(tab, i, null, r)) {
1885 binCount = 1;
1886 Node<K,V> node = null;
1887 try {
1888 if ((val = remappingFunction.apply(key, null)) != null) {
1889 delta = 1;
1890 node = new Node<K,V>(h, key, val);
1891 }
1892 } finally {
1893 setTabAt(tab, i, node);
1894 }
1895 }
1896 }
1897 if (binCount != 0)
1898 break;
1899 }
1900 else if ((fh = f.hash) == MOVED)
1901 tab = helpTransfer(tab, f);
1902 else {
1903 synchronized (f) {
1904 if (tabAt(tab, i) == f) {
1905 if (fh >= 0) {
1906 binCount = 1;
1907 for (Node<K,V> e = f, pred = null;; ++binCount) {
1908 K ek;
1909 if (e.hash == h &&
1910 ((ek = e.key) == key ||
1911 (ek != null && key.equals(ek)))) {
1912 val = remappingFunction.apply(key, e.val);
1913 if (val != null)
1914 e.val = val;
1915 else {
1916 delta = -1;
1917 Node<K,V> en = e.next;
1918 if (pred != null)
1919 pred.next = en;
1920 else
1921 setTabAt(tab, i, en);
1922 }
1923 break;
1924 }
1925 pred = e;
1926 if ((e = e.next) == null) {
1927 val = remappingFunction.apply(key, null);
1928 if (val != null) {
1929 if (pred.next != null)
1930 throw new IllegalStateException("Recursive update");
1931 delta = 1;
1932 pred.next = new Node<K,V>(h, key, val);
1933 }
1934 break;
1935 }
1936 }
1937 }
1938 else if (f instanceof TreeBin) {
1939 binCount = 1;
1940 TreeBin<K,V> t = (TreeBin<K,V>)f;
1941 TreeNode<K,V> r, p;
1942 if ((r = t.root) != null)
1943 p = r.findTreeNode(h, key, null);
1944 else
1945 p = null;
1946 V pv = (p == null) ? null : p.val;
1947 val = remappingFunction.apply(key, pv);
1948 if (val != null) {
1949 if (p != null)
1950 p.val = val;
1951 else {
1952 delta = 1;
1953 t.putTreeVal(h, key, val);
1954 }
1955 }
1956 else if (p != null) {
1957 delta = -1;
1958 if (t.removeTreeNode(p))
1959 setTabAt(tab, i, untreeify(t.first));
1960 }
1961 }
1962 else if (f instanceof ReservationNode)
1963 throw new IllegalStateException("Recursive update");
1964 }
1965 }
1966 if (binCount != 0) {
1967 if (binCount >= TREEIFY_THRESHOLD)
1968 treeifyBin(tab, i);
1969 break;
1970 }
1971 }
1972 }
1973 if (delta != 0)
1974 addCount((long)delta, binCount);
1975 return val;
1976 }
1977
1978 /**
1979 * If the specified key is not already associated with a
1980 * (non-null) value, associates it with the given value.
1981 * Otherwise, replaces the value with the results of the given
1982 * remapping function, or removes if {@code null}. The entire
1983 * method invocation is performed atomically. Some attempted
1984 * update operations on this map by other threads may be blocked
1985 * while computation is in progress, so the computation should be
1986 * short and simple, and must not attempt to update any other
1987 * mappings of this Map.
1988 *
1989 * @param key key with which the specified value is to be associated
1990 * @param value the value to use if absent
1991 * @param remappingFunction the function to recompute a value if present
1992 * @return the new value associated with the specified key, or null if none
1993 * @throws NullPointerException if the specified key or the
1994 * remappingFunction is null
1995 * @throws RuntimeException or Error if the remappingFunction does so,
1996 * in which case the mapping is unchanged
1997 */
1998 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1999 if (key == null || value == null || remappingFunction == null)
2000 throw new NullPointerException();
2001 int h = spread(key.hashCode());
2002 V val = null;
2003 int delta = 0;
2004 int binCount = 0;
2005 for (Node<K,V>[] tab = table;;) {
2006 Node<K,V> f; int n, i, fh;
2007 if (tab == null || (n = tab.length) == 0)
2008 tab = initTable();
2009 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2010 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2011 delta = 1;
2012 val = value;
2013 break;
2014 }
2015 }
2016 else if ((fh = f.hash) == MOVED)
2017 tab = helpTransfer(tab, f);
2018 else {
2019 synchronized (f) {
2020 if (tabAt(tab, i) == f) {
2021 if (fh >= 0) {
2022 binCount = 1;
2023 for (Node<K,V> e = f, pred = null;; ++binCount) {
2024 K ek;
2025 if (e.hash == h &&
2026 ((ek = e.key) == key ||
2027 (ek != null && key.equals(ek)))) {
2028 val = remappingFunction.apply(e.val, value);
2029 if (val != null)
2030 e.val = val;
2031 else {
2032 delta = -1;
2033 Node<K,V> en = e.next;
2034 if (pred != null)
2035 pred.next = en;
2036 else
2037 setTabAt(tab, i, en);
2038 }
2039 break;
2040 }
2041 pred = e;
2042 if ((e = e.next) == null) {
2043 delta = 1;
2044 val = value;
2045 pred.next = new Node<K,V>(h, key, val);
2046 break;
2047 }
2048 }
2049 }
2050 else if (f instanceof TreeBin) {
2051 binCount = 2;
2052 TreeBin<K,V> t = (TreeBin<K,V>)f;
2053 TreeNode<K,V> r = t.root;
2054 TreeNode<K,V> p = (r == null) ? null :
2055 r.findTreeNode(h, key, null);
2056 val = (p == null) ? value :
2057 remappingFunction.apply(p.val, value);
2058 if (val != null) {
2059 if (p != null)
2060 p.val = val;
2061 else {
2062 delta = 1;
2063 t.putTreeVal(h, key, val);
2064 }
2065 }
2066 else if (p != null) {
2067 delta = -1;
2068 if (t.removeTreeNode(p))
2069 setTabAt(tab, i, untreeify(t.first));
2070 }
2071 }
2072 else if (f instanceof ReservationNode)
2073 throw new IllegalStateException("Recursive update");
2074 }
2075 }
2076 if (binCount != 0) {
2077 if (binCount >= TREEIFY_THRESHOLD)
2078 treeifyBin(tab, i);
2079 break;
2080 }
2081 }
2082 }
2083 if (delta != 0)
2084 addCount((long)delta, binCount);
2085 return val;
2086 }
2087
2088 // Hashtable legacy methods
2089
2090 /**
2091 * Tests if some key maps into the specified value in this table.
2092 *
2093 * <p>Note that this method is identical in functionality to
2094 * {@link #containsValue(Object)}, and exists solely to ensure
2095 * full compatibility with class {@link java.util.Hashtable},
2096 * which supported this method prior to introduction of the
2097 * Java Collections Framework.
2098 *
2099 * @param value a value to search for
2100 * @return {@code true} if and only if some key maps to the
2101 * {@code value} argument in this table as
2102 * determined by the {@code equals} method;
2103 * {@code false} otherwise
2104 * @throws NullPointerException if the specified value is null
2105 */
2106 public boolean contains(Object value) {
2107 return containsValue(value);
2108 }
2109
2110 /**
2111 * Returns an enumeration of the keys in this table.
2112 *
2113 * @return an enumeration of the keys in this table
2114 * @see #keySet()
2115 */
2116 public Enumeration<K> keys() {
2117 Node<K,V>[] t;
2118 int f = (t = table) == null ? 0 : t.length;
2119 return new KeyIterator<K,V>(t, f, 0, f, this);
2120 }
2121
2122 /**
2123 * Returns an enumeration of the values in this table.
2124 *
2125 * @return an enumeration of the values in this table
2126 * @see #values()
2127 */
2128 public Enumeration<V> elements() {
2129 Node<K,V>[] t;
2130 int f = (t = table) == null ? 0 : t.length;
2131 return new ValueIterator<K,V>(t, f, 0, f, this);
2132 }
2133
2134 // ConcurrentHashMap-only methods
2135
2136 /**
2137 * Returns the number of mappings. This method should be used
2138 * instead of {@link #size} because a ConcurrentHashMap may
2139 * contain more mappings than can be represented as an int. The
2140 * value returned is an estimate; the actual count may differ if
2141 * there are concurrent insertions or removals.
2142 *
2143 * @return the number of mappings
2144 * @since 1.8
2145 */
2146 public long mappingCount() {
2147 long n = sumCount();
2148 return (n < 0L) ? 0L : n; // ignore transient negative values
2149 }
2150
2151 /**
2152 * Creates a new {@link Set} backed by a ConcurrentHashMap
2153 * from the given type to {@code Boolean.TRUE}.
2154 *
2155 * @param <K> the element type of the returned set
2156 * @return the new set
2157 * @since 1.8
2158 */
2159 public static <K> KeySetView<K,Boolean> newKeySet() {
2160 return new KeySetView<K,Boolean>
2161 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2162 }
2163
2164 /**
2165 * Creates a new {@link Set} backed by a ConcurrentHashMap
2166 * from the given type to {@code Boolean.TRUE}.
2167 *
2168 * @param initialCapacity The implementation performs internal
2169 * sizing to accommodate this many elements.
2170 * @param <K> the element type of the returned set
2171 * @return the new set
2172 * @throws IllegalArgumentException if the initial capacity of
2173 * elements is negative
2174 * @since 1.8
2175 */
2176 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2177 return new KeySetView<K,Boolean>
2178 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2179 }
2180
2181 /**
2182 * Returns a {@link Set} view of the keys in this map, using the
2183 * given common mapped value for any additions (i.e., {@link
2184 * Collection#add} and {@link Collection#addAll(Collection)}).
2185 * This is of course only appropriate if it is acceptable to use
2186 * the same value for all additions from this view.
2187 *
2188 * @param mappedValue the mapped value to use for any additions
2189 * @return the set view
2190 * @throws NullPointerException if the mappedValue is null
2191 */
2192 public KeySetView<K,V> keySet(V mappedValue) {
2193 if (mappedValue == null)
2194 throw new NullPointerException();
2195 return new KeySetView<K,V>(this, mappedValue);
2196 }
2197
2198 /* ---------------- Special Nodes -------------- */
2199
2200 /**
2201 * A node inserted at head of bins during transfer operations.
2202 */
2203 static final class ForwardingNode<K,V> extends Node<K,V> {
2204 final Node<K,V>[] nextTable;
2205 ForwardingNode(Node<K,V>[] tab) {
2206 super(MOVED, null, null);
2207 this.nextTable = tab;
2208 }
2209
2210 Node<K,V> find(int h, Object k) {
2211 // loop to avoid arbitrarily deep recursion on forwarding nodes
2212 outer: for (Node<K,V>[] tab = nextTable;;) {
2213 Node<K,V> e; int n;
2214 if (k == null || tab == null || (n = tab.length) == 0 ||
2215 (e = tabAt(tab, (n - 1) & h)) == null)
2216 return null;
2217 for (;;) {
2218 int eh; K ek;
2219 if ((eh = e.hash) == h &&
2220 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2221 return e;
2222 if (eh < 0) {
2223 if (e instanceof ForwardingNode) {
2224 tab = ((ForwardingNode<K,V>)e).nextTable;
2225 continue outer;
2226 }
2227 else
2228 return e.find(h, k);
2229 }
2230 if ((e = e.next) == null)
2231 return null;
2232 }
2233 }
2234 }
2235 }
2236
2237 /**
2238 * A place-holder node used in computeIfAbsent and compute.
2239 */
2240 static final class ReservationNode<K,V> extends Node<K,V> {
2241 ReservationNode() {
2242 super(RESERVED, null, null);
2243 }
2244
2245 Node<K,V> find(int h, Object k) {
2246 return null;
2247 }
2248 }
2249
2250 /* ---------------- Table Initialization and Resizing -------------- */
2251
2252 /**
2253 * Returns the stamp bits for resizing a table of size n.
2254 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2255 */
2256 static final int resizeStamp(int n) {
2257 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2258 }
2259
2260 /**
2261 * Initializes table, using the size recorded in sizeCtl.
2262 */
2263 private final Node<K,V>[] initTable() {
2264 Node<K,V>[] tab; int sc;
2265 while ((tab = table) == null || tab.length == 0) {
2266 if ((sc = sizeCtl) < 0)
2267 Thread.yield(); // lost initialization race; just spin
2268 else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2269 try {
2270 if ((tab = table) == null || tab.length == 0) {
2271 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2272 @SuppressWarnings("unchecked")
2273 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2274 table = tab = nt;
2275 sc = n - (n >>> 2);
2276 }
2277 } finally {
2278 sizeCtl = sc;
2279 }
2280 break;
2281 }
2282 }
2283 return tab;
2284 }
2285
2286 /**
2287 * Adds to count, and if table is too small and not already
2288 * resizing, initiates transfer. If already resizing, helps
2289 * perform transfer if work is available. Rechecks occupancy
2290 * after a transfer to see if another resize is already needed
2291 * because resizings are lagging additions.
2292 *
2293 * @param x the count to add
2294 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2295 */
2296 private final void addCount(long x, int check) {
2297 CounterCell[] cs; long b, s;
2298 if ((cs = counterCells) != null ||
2299 !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2300 CounterCell c; long v; int m;
2301 boolean uncontended = true;
2302 if (cs == null || (m = cs.length - 1) < 0 ||
2303 (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2304 !(uncontended =
2305 U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2306 fullAddCount(x, uncontended);
2307 return;
2308 }
2309 if (check <= 1)
2310 return;
2311 s = sumCount();
2312 }
2313 if (check >= 0) {
2314 Node<K,V>[] tab, nt; int n, sc;
2315 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2316 (n = tab.length) < MAXIMUM_CAPACITY) {
2317 int rs = resizeStamp(n);
2318 if (sc < 0) {
2319 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2320 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2321 transferIndex <= 0)
2322 break;
2323 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2324 transfer(tab, nt);
2325 }
2326 else if (U.compareAndSetInt(this, SIZECTL, sc,
2327 (rs << RESIZE_STAMP_SHIFT) + 2))
2328 transfer(tab, null);
2329 s = sumCount();
2330 }
2331 }
2332 }
2333
2334 /**
2335 * Helps transfer if a resize is in progress.
2336 */
2337 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2338 Node<K,V>[] nextTab; int sc;
2339 if (tab != null && (f instanceof ForwardingNode) &&
2340 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2341 int rs = resizeStamp(tab.length);
2342 while (nextTab == nextTable && table == tab &&
2343 (sc = sizeCtl) < 0) {
2344 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2345 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2346 break;
2347 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2348 transfer(tab, nextTab);
2349 break;
2350 }
2351 }
2352 return nextTab;
2353 }
2354 return table;
2355 }
2356
2357 /**
2358 * Tries to presize table to accommodate the given number of elements.
2359 *
2360 * @param size number of elements (doesn't need to be perfectly accurate)
2361 */
2362 private final void tryPresize(int size) {
2363 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2364 tableSizeFor(size + (size >>> 1) + 1);
2365 int sc;
2366 while ((sc = sizeCtl) >= 0) {
2367 Node<K,V>[] tab = table; int n;
2368 if (tab == null || (n = tab.length) == 0) {
2369 n = (sc > c) ? sc : c;
2370 if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2371 try {
2372 if (table == tab) {
2373 @SuppressWarnings("unchecked")
2374 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2375 table = nt;
2376 sc = n - (n >>> 2);
2377 }
2378 } finally {
2379 sizeCtl = sc;
2380 }
2381 }
2382 }
2383 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2384 break;
2385 else if (tab == table) {
2386 int rs = resizeStamp(n);
2387 if (U.compareAndSetInt(this, SIZECTL, sc,
2388 (rs << RESIZE_STAMP_SHIFT) + 2))
2389 transfer(tab, null);
2390 }
2391 }
2392 }
2393
2394 /**
2395 * Moves and/or copies the nodes in each bin to new table. See
2396 * above for explanation.
2397 */
2398 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2399 int n = tab.length, stride;
2400 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2401 stride = MIN_TRANSFER_STRIDE; // subdivide range
2402 if (nextTab == null) { // initiating
2403 try {
2404 @SuppressWarnings("unchecked")
2405 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2406 nextTab = nt;
2407 } catch (Throwable ex) { // try to cope with OOME
2408 sizeCtl = Integer.MAX_VALUE;
2409 return;
2410 }
2411 nextTable = nextTab;
2412 transferIndex = n;
2413 }
2414 int nextn = nextTab.length;
2415 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2416 boolean advance = true;
2417 boolean finishing = false; // to ensure sweep before committing nextTab
2418 for (int i = 0, bound = 0;;) {
2419 Node<K,V> f; int fh;
2420 while (advance) {
2421 int nextIndex, nextBound;
2422 if (--i >= bound || finishing)
2423 advance = false;
2424 else if ((nextIndex = transferIndex) <= 0) {
2425 i = -1;
2426 advance = false;
2427 }
2428 else if (U.compareAndSetInt
2429 (this, TRANSFERINDEX, nextIndex,
2430 nextBound = (nextIndex > stride ?
2431 nextIndex - stride : 0))) {
2432 bound = nextBound;
2433 i = nextIndex - 1;
2434 advance = false;
2435 }
2436 }
2437 if (i < 0 || i >= n || i + n >= nextn) {
2438 int sc;
2439 if (finishing) {
2440 nextTable = null;
2441 table = nextTab;
2442 sizeCtl = (n << 1) - (n >>> 1);
2443 return;
2444 }
2445 if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2446 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2447 return;
2448 finishing = advance = true;
2449 i = n; // recheck before commit
2450 }
2451 }
2452 else if ((f = tabAt(tab, i)) == null)
2453 advance = casTabAt(tab, i, null, fwd);
2454 else if ((fh = f.hash) == MOVED)
2455 advance = true; // already processed
2456 else {
2457 synchronized (f) {
2458 if (tabAt(tab, i) == f) {
2459 Node<K,V> ln, hn;
2460 if (fh >= 0) {
2461 int runBit = fh & n;
2462 Node<K,V> lastRun = f;
2463 for (Node<K,V> p = f.next; p != null; p = p.next) {
2464 int b = p.hash & n;
2465 if (b != runBit) {
2466 runBit = b;
2467 lastRun = p;
2468 }
2469 }
2470 if (runBit == 0) {
2471 ln = lastRun;
2472 hn = null;
2473 }
2474 else {
2475 hn = lastRun;
2476 ln = null;
2477 }
2478 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2479 int ph = p.hash; K pk = p.key; V pv = p.val;
2480 if ((ph & n) == 0)
2481 ln = new Node<K,V>(ph, pk, pv, ln);
2482 else
2483 hn = new Node<K,V>(ph, pk, pv, hn);
2484 }
2485 setTabAt(nextTab, i, ln);
2486 setTabAt(nextTab, i + n, hn);
2487 setTabAt(tab, i, fwd);
2488 advance = true;
2489 }
2490 else if (f instanceof TreeBin) {
2491 TreeBin<K,V> t = (TreeBin<K,V>)f;
2492 TreeNode<K,V> lo = null, loTail = null;
2493 TreeNode<K,V> hi = null, hiTail = null;
2494 int lc = 0, hc = 0;
2495 for (Node<K,V> e = t.first; e != null; e = e.next) {
2496 int h = e.hash;
2497 TreeNode<K,V> p = new TreeNode<K,V>
2498 (h, e.key, e.val, null, null);
2499 if ((h & n) == 0) {
2500 if ((p.prev = loTail) == null)
2501 lo = p;
2502 else
2503 loTail.next = p;
2504 loTail = p;
2505 ++lc;
2506 }
2507 else {
2508 if ((p.prev = hiTail) == null)
2509 hi = p;
2510 else
2511 hiTail.next = p;
2512 hiTail = p;
2513 ++hc;
2514 }
2515 }
2516 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2517 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2518 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2519 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2520 setTabAt(nextTab, i, ln);
2521 setTabAt(nextTab, i + n, hn);
2522 setTabAt(tab, i, fwd);
2523 advance = true;
2524 }
2525 }
2526 }
2527 }
2528 }
2529 }
2530
2531 /* ---------------- Counter support -------------- */
2532
2533 /**
2534 * A padded cell for distributing counts. Adapted from LongAdder
2535 * and Striped64. See their internal docs for explanation.
2536 */
2537 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2538 volatile long value;
2539 CounterCell(long x) { value = x; }
2540 }
2541
2542 final long sumCount() {
2543 CounterCell[] cs = counterCells;
2544 long sum = baseCount;
2545 if (cs != null) {
2546 for (CounterCell c : cs)
2547 if (c != null)
2548 sum += c.value;
2549 }
2550 return sum;
2551 }
2552
2553 // See LongAdder version for explanation
2554 private final void fullAddCount(long x, boolean wasUncontended) {
2555 int h;
2556 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2557 ThreadLocalRandom.localInit(); // force initialization
2558 h = ThreadLocalRandom.getProbe();
2559 wasUncontended = true;
2560 }
2561 boolean collide = false; // True if last slot nonempty
2562 for (;;) {
2563 CounterCell[] cs; CounterCell c; int n; long v;
2564 if ((cs = counterCells) != null && (n = cs.length) > 0) {
2565 if ((c = cs[(n - 1) & h]) == null) {
2566 if (cellsBusy == 0) { // Try to attach new Cell
2567 CounterCell r = new CounterCell(x); // Optimistic create
2568 if (cellsBusy == 0 &&
2569 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2570 boolean created = false;
2571 try { // Recheck under lock
2572 CounterCell[] rs; int m, j;
2573 if ((rs = counterCells) != null &&
2574 (m = rs.length) > 0 &&
2575 rs[j = (m - 1) & h] == null) {
2576 rs[j] = r;
2577 created = true;
2578 }
2579 } finally {
2580 cellsBusy = 0;
2581 }
2582 if (created)
2583 break;
2584 continue; // Slot is now non-empty
2585 }
2586 }
2587 collide = false;
2588 }
2589 else if (!wasUncontended) // CAS already known to fail
2590 wasUncontended = true; // Continue after rehash
2591 else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2592 break;
2593 else if (counterCells != cs || n >= NCPU)
2594 collide = false; // At max size or stale
2595 else if (!collide)
2596 collide = true;
2597 else if (cellsBusy == 0 &&
2598 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2599 try {
2600 if (counterCells == cs) // Expand table unless stale
2601 counterCells = Arrays.copyOf(cs, n << 1);
2602 } finally {
2603 cellsBusy = 0;
2604 }
2605 collide = false;
2606 continue; // Retry with expanded table
2607 }
2608 h = ThreadLocalRandom.advanceProbe(h);
2609 }
2610 else if (cellsBusy == 0 && counterCells == cs &&
2611 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2612 boolean init = false;
2613 try { // Initialize table
2614 if (counterCells == cs) {
2615 CounterCell[] rs = new CounterCell[2];
2616 rs[h & 1] = new CounterCell(x);
2617 counterCells = rs;
2618 init = true;
2619 }
2620 } finally {
2621 cellsBusy = 0;
2622 }
2623 if (init)
2624 break;
2625 }
2626 else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2627 break; // Fall back on using base
2628 }
2629 }
2630
2631 /* ---------------- Conversion from/to TreeBins -------------- */
2632
2633 /**
2634 * Replaces all linked nodes in bin at given index unless table is
2635 * too small, in which case resizes instead.
2636 */
2637 private final void treeifyBin(Node<K,V>[] tab, int index) {
2638 Node<K,V> b; int n;
2639 if (tab != null) {
2640 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2641 tryPresize(n << 1);
2642 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2643 synchronized (b) {
2644 if (tabAt(tab, index) == b) {
2645 TreeNode<K,V> hd = null, tl = null;
2646 for (Node<K,V> e = b; e != null; e = e.next) {
2647 TreeNode<K,V> p =
2648 new TreeNode<K,V>(e.hash, e.key, e.val,
2649 null, null);
2650 if ((p.prev = tl) == null)
2651 hd = p;
2652 else
2653 tl.next = p;
2654 tl = p;
2655 }
2656 setTabAt(tab, index, new TreeBin<K,V>(hd));
2657 }
2658 }
2659 }
2660 }
2661 }
2662
2663 /**
2664 * Returns a list of non-TreeNodes replacing those in given list.
2665 */
2666 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2667 Node<K,V> hd = null, tl = null;
2668 for (Node<K,V> q = b; q != null; q = q.next) {
2669 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2670 if (tl == null)
2671 hd = p;
2672 else
2673 tl.next = p;
2674 tl = p;
2675 }
2676 return hd;
2677 }
2678
2679 /* ---------------- TreeNodes -------------- */
2680
2681 /**
2682 * Nodes for use in TreeBins.
2683 */
2684 static final class TreeNode<K,V> extends Node<K,V> {
2685 TreeNode<K,V> parent; // red-black tree links
2686 TreeNode<K,V> left;
2687 TreeNode<K,V> right;
2688 TreeNode<K,V> prev; // needed to unlink next upon deletion
2689 boolean red;
2690
2691 TreeNode(int hash, K key, V val, Node<K,V> next,
2692 TreeNode<K,V> parent) {
2693 super(hash, key, val, next);
2694 this.parent = parent;
2695 }
2696
2697 Node<K,V> find(int h, Object k) {
2698 return findTreeNode(h, k, null);
2699 }
2700
2701 /**
2702 * Returns the TreeNode (or null if not found) for the given key
2703 * starting at given root.
2704 */
2705 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2706 if (k != null) {
2707 TreeNode<K,V> p = this;
2708 do {
2709 int ph, dir; K pk; TreeNode<K,V> q;
2710 TreeNode<K,V> pl = p.left, pr = p.right;
2711 if ((ph = p.hash) > h)
2712 p = pl;
2713 else if (ph < h)
2714 p = pr;
2715 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2716 return p;
2717 else if (pl == null)
2718 p = pr;
2719 else if (pr == null)
2720 p = pl;
2721 else if ((kc != null ||
2722 (kc = comparableClassFor(k)) != null) &&
2723 (dir = compareComparables(kc, k, pk)) != 0)
2724 p = (dir < 0) ? pl : pr;
2725 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2726 return q;
2727 else
2728 p = pl;
2729 } while (p != null);
2730 }
2731 return null;
2732 }
2733 }
2734
2735 /* ---------------- TreeBins -------------- */
2736
2737 /**
2738 * TreeNodes used at the heads of bins. TreeBins do not hold user
2739 * keys or values, but instead point to list of TreeNodes and
2740 * their root. They also maintain a parasitic read-write lock
2741 * forcing writers (who hold bin lock) to wait for readers (who do
2742 * not) to complete before tree restructuring operations.
2743 */
2744 static final class TreeBin<K,V> extends Node<K,V> {
2745 TreeNode<K,V> root;
2746 volatile TreeNode<K,V> first;
2747 volatile Thread waiter;
2748 volatile int lockState;
2749 // values for lockState
2750 static final int WRITER = 1; // set while holding write lock
2751 static final int WAITER = 2; // set when waiting for write lock
2752 static final int READER = 4; // increment value for setting read lock
2753
2754 /**
2755 * Tie-breaking utility for ordering insertions when equal
2756 * hashCodes and non-comparable. We don't require a total
2757 * order, just a consistent insertion rule to maintain
2758 * equivalence across rebalancings. Tie-breaking further than
2759 * necessary simplifies testing a bit.
2760 */
2761 static int tieBreakOrder(Object a, Object b) {
2762 int d;
2763 if (a == null || b == null ||
2764 (d = a.getClass().getName().
2765 compareTo(b.getClass().getName())) == 0)
2766 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2767 -1 : 1);
2768 return d;
2769 }
2770
2771 /**
2772 * Creates bin with initial set of nodes headed by b.
2773 */
2774 TreeBin(TreeNode<K,V> b) {
2775 super(TREEBIN, null, null);
2776 this.first = b;
2777 TreeNode<K,V> r = null;
2778 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2779 next = (TreeNode<K,V>)x.next;
2780 x.left = x.right = null;
2781 if (r == null) {
2782 x.parent = null;
2783 x.red = false;
2784 r = x;
2785 }
2786 else {
2787 K k = x.key;
2788 int h = x.hash;
2789 Class<?> kc = null;
2790 for (TreeNode<K,V> p = r;;) {
2791 int dir, ph;
2792 K pk = p.key;
2793 if ((ph = p.hash) > h)
2794 dir = -1;
2795 else if (ph < h)
2796 dir = 1;
2797 else if ((kc == null &&
2798 (kc = comparableClassFor(k)) == null) ||
2799 (dir = compareComparables(kc, k, pk)) == 0)
2800 dir = tieBreakOrder(k, pk);
2801 TreeNode<K,V> xp = p;
2802 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2803 x.parent = xp;
2804 if (dir <= 0)
2805 xp.left = x;
2806 else
2807 xp.right = x;
2808 r = balanceInsertion(r, x);
2809 break;
2810 }
2811 }
2812 }
2813 }
2814 this.root = r;
2815 assert checkInvariants(root);
2816 }
2817
2818 /**
2819 * Acquires write lock for tree restructuring.
2820 */
2821 private final void lockRoot() {
2822 if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2823 contendedLock(); // offload to separate method
2824 }
2825
2826 /**
2827 * Releases write lock for tree restructuring.
2828 */
2829 private final void unlockRoot() {
2830 lockState = 0;
2831 }
2832
2833 /**
2834 * Possibly blocks awaiting root lock.
2835 */
2836 private final void contendedLock() {
2837 boolean waiting = false;
2838 for (int s;;) {
2839 if (((s = lockState) & ~WAITER) == 0) {
2840 if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2841 if (waiting)
2842 waiter = null;
2843 return;
2844 }
2845 }
2846 else if ((s & WAITER) == 0) {
2847 if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2848 waiting = true;
2849 waiter = Thread.currentThread();
2850 }
2851 }
2852 else if (waiting)
2853 LockSupport.park(this);
2854 }
2855 }
2856
2857 /**
2858 * Returns matching node or null if none. Tries to search
2859 * using tree comparisons from root, but continues linear
2860 * search when lock not available.
2861 */
2862 final Node<K,V> find(int h, Object k) {
2863 if (k != null) {
2864 for (Node<K,V> e = first; e != null; ) {
2865 int s; K ek;
2866 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2867 if (e.hash == h &&
2868 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2869 return e;
2870 e = e.next;
2871 }
2872 else if (U.compareAndSetInt(this, LOCKSTATE, s,
2873 s + READER)) {
2874 TreeNode<K,V> r, p;
2875 try {
2876 p = ((r = root) == null ? null :
2877 r.findTreeNode(h, k, null));
2878 } finally {
2879 Thread w;
2880 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2881 (READER|WAITER) && (w = waiter) != null)
2882 LockSupport.unpark(w);
2883 }
2884 return p;
2885 }
2886 }
2887 }
2888 return null;
2889 }
2890
2891 /**
2892 * Finds or adds a node.
2893 * @return null if added
2894 */
2895 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2896 Class<?> kc = null;
2897 boolean searched = false;
2898 for (TreeNode<K,V> p = root;;) {
2899 int dir, ph; K pk;
2900 if (p == null) {
2901 first = root = new TreeNode<K,V>(h, k, v, null, null);
2902 break;
2903 }
2904 else if ((ph = p.hash) > h)
2905 dir = -1;
2906 else if (ph < h)
2907 dir = 1;
2908 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2909 return p;
2910 else if ((kc == null &&
2911 (kc = comparableClassFor(k)) == null) ||
2912 (dir = compareComparables(kc, k, pk)) == 0) {
2913 if (!searched) {
2914 TreeNode<K,V> q, ch;
2915 searched = true;
2916 if (((ch = p.left) != null &&
2917 (q = ch.findTreeNode(h, k, kc)) != null) ||
2918 ((ch = p.right) != null &&
2919 (q = ch.findTreeNode(h, k, kc)) != null))
2920 return q;
2921 }
2922 dir = tieBreakOrder(k, pk);
2923 }
2924
2925 TreeNode<K,V> xp = p;
2926 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2927 TreeNode<K,V> x, f = first;
2928 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2929 if (f != null)
2930 f.prev = x;
2931 if (dir <= 0)
2932 xp.left = x;
2933 else
2934 xp.right = x;
2935 if (!xp.red)
2936 x.red = true;
2937 else {
2938 lockRoot();
2939 try {
2940 root = balanceInsertion(root, x);
2941 } finally {
2942 unlockRoot();
2943 }
2944 }
2945 break;
2946 }
2947 }
2948 assert checkInvariants(root);
2949 return null;
2950 }
2951
2952 /**
2953 * Removes the given node, that must be present before this
2954 * call. This is messier than typical red-black deletion code
2955 * because we cannot swap the contents of an interior node
2956 * with a leaf successor that is pinned by "next" pointers
2957 * that are accessible independently of lock. So instead we
2958 * swap the tree linkages.
2959 *
2960 * @return true if now too small, so should be untreeified
2961 */
2962 final boolean removeTreeNode(TreeNode<K,V> p) {
2963 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2964 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2965 TreeNode<K,V> r, rl;
2966 if (pred == null)
2967 first = next;
2968 else
2969 pred.next = next;
2970 if (next != null)
2971 next.prev = pred;
2972 if (first == null) {
2973 root = null;
2974 return true;
2975 }
2976 if ((r = root) == null || r.right == null || // too small
2977 (rl = r.left) == null || rl.left == null)
2978 return true;
2979 lockRoot();
2980 try {
2981 TreeNode<K,V> replacement;
2982 TreeNode<K,V> pl = p.left;
2983 TreeNode<K,V> pr = p.right;
2984 if (pl != null && pr != null) {
2985 TreeNode<K,V> s = pr, sl;
2986 while ((sl = s.left) != null) // find successor
2987 s = sl;
2988 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2989 TreeNode<K,V> sr = s.right;
2990 TreeNode<K,V> pp = p.parent;
2991 if (s == pr) { // p was s's direct parent
2992 p.parent = s;
2993 s.right = p;
2994 }
2995 else {
2996 TreeNode<K,V> sp = s.parent;
2997 if ((p.parent = sp) != null) {
2998 if (s == sp.left)
2999 sp.left = p;
3000 else
3001 sp.right = p;
3002 }
3003 if ((s.right = pr) != null)
3004 pr.parent = s;
3005 }
3006 p.left = null;
3007 if ((p.right = sr) != null)
3008 sr.parent = p;
3009 if ((s.left = pl) != null)
3010 pl.parent = s;
3011 if ((s.parent = pp) == null)
3012 r = s;
3013 else if (p == pp.left)
3014 pp.left = s;
3015 else
3016 pp.right = s;
3017 if (sr != null)
3018 replacement = sr;
3019 else
3020 replacement = p;
3021 }
3022 else if (pl != null)
3023 replacement = pl;
3024 else if (pr != null)
3025 replacement = pr;
3026 else
3027 replacement = p;
3028 if (replacement != p) {
3029 TreeNode<K,V> pp = replacement.parent = p.parent;
3030 if (pp == null)
3031 r = replacement;
3032 else if (p == pp.left)
3033 pp.left = replacement;
3034 else
3035 pp.right = replacement;
3036 p.left = p.right = p.parent = null;
3037 }
3038
3039 root = (p.red) ? r : balanceDeletion(r, replacement);
3040
3041 if (p == replacement) { // detach pointers
3042 TreeNode<K,V> pp;
3043 if ((pp = p.parent) != null) {
3044 if (p == pp.left)
3045 pp.left = null;
3046 else if (p == pp.right)
3047 pp.right = null;
3048 p.parent = null;
3049 }
3050 }
3051 } finally {
3052 unlockRoot();
3053 }
3054 assert checkInvariants(root);
3055 return false;
3056 }
3057
3058 /* ------------------------------------------------------------ */
3059 // Red-black tree methods, all adapted from CLR
3060
3061 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3062 TreeNode<K,V> p) {
3063 TreeNode<K,V> r, pp, rl;
3064 if (p != null && (r = p.right) != null) {
3065 if ((rl = p.right = r.left) != null)
3066 rl.parent = p;
3067 if ((pp = r.parent = p.parent) == null)
3068 (root = r).red = false;
3069 else if (pp.left == p)
3070 pp.left = r;
3071 else
3072 pp.right = r;
3073 r.left = p;
3074 p.parent = r;
3075 }
3076 return root;
3077 }
3078
3079 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3080 TreeNode<K,V> p) {
3081 TreeNode<K,V> l, pp, lr;
3082 if (p != null && (l = p.left) != null) {
3083 if ((lr = p.left = l.right) != null)
3084 lr.parent = p;
3085 if ((pp = l.parent = p.parent) == null)
3086 (root = l).red = false;
3087 else if (pp.right == p)
3088 pp.right = l;
3089 else
3090 pp.left = l;
3091 l.right = p;
3092 p.parent = l;
3093 }
3094 return root;
3095 }
3096
3097 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3098 TreeNode<K,V> x) {
3099 x.red = true;
3100 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3101 if ((xp = x.parent) == null) {
3102 x.red = false;
3103 return x;
3104 }
3105 else if (!xp.red || (xpp = xp.parent) == null)
3106 return root;
3107 if (xp == (xppl = xpp.left)) {
3108 if ((xppr = xpp.right) != null && xppr.red) {
3109 xppr.red = false;
3110 xp.red = false;
3111 xpp.red = true;
3112 x = xpp;
3113 }
3114 else {
3115 if (x == xp.right) {
3116 root = rotateLeft(root, x = xp);
3117 xpp = (xp = x.parent) == null ? null : xp.parent;
3118 }
3119 if (xp != null) {
3120 xp.red = false;
3121 if (xpp != null) {
3122 xpp.red = true;
3123 root = rotateRight(root, xpp);
3124 }
3125 }
3126 }
3127 }
3128 else {
3129 if (xppl != null && xppl.red) {
3130 xppl.red = false;
3131 xp.red = false;
3132 xpp.red = true;
3133 x = xpp;
3134 }
3135 else {
3136 if (x == xp.left) {
3137 root = rotateRight(root, x = xp);
3138 xpp = (xp = x.parent) == null ? null : xp.parent;
3139 }
3140 if (xp != null) {
3141 xp.red = false;
3142 if (xpp != null) {
3143 xpp.red = true;
3144 root = rotateLeft(root, xpp);
3145 }
3146 }
3147 }
3148 }
3149 }
3150 }
3151
3152 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3153 TreeNode<K,V> x) {
3154 for (TreeNode<K,V> xp, xpl, xpr;;) {
3155 if (x == null || x == root)
3156 return root;
3157 else if ((xp = x.parent) == null) {
3158 x.red = false;
3159 return x;
3160 }
3161 else if (x.red) {
3162 x.red = false;
3163 return root;
3164 }
3165 else if ((xpl = xp.left) == x) {
3166 if ((xpr = xp.right) != null && xpr.red) {
3167 xpr.red = false;
3168 xp.red = true;
3169 root = rotateLeft(root, xp);
3170 xpr = (xp = x.parent) == null ? null : xp.right;
3171 }
3172 if (xpr == null)
3173 x = xp;
3174 else {
3175 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3176 if ((sr == null || !sr.red) &&
3177 (sl == null || !sl.red)) {
3178 xpr.red = true;
3179 x = xp;
3180 }
3181 else {
3182 if (sr == null || !sr.red) {
3183 if (sl != null)
3184 sl.red = false;
3185 xpr.red = true;
3186 root = rotateRight(root, xpr);
3187 xpr = (xp = x.parent) == null ?
3188 null : xp.right;
3189 }
3190 if (xpr != null) {
3191 xpr.red = (xp == null) ? false : xp.red;
3192 if ((sr = xpr.right) != null)
3193 sr.red = false;
3194 }
3195 if (xp != null) {
3196 xp.red = false;
3197 root = rotateLeft(root, xp);
3198 }
3199 x = root;
3200 }
3201 }
3202 }
3203 else { // symmetric
3204 if (xpl != null && xpl.red) {
3205 xpl.red = false;
3206 xp.red = true;
3207 root = rotateRight(root, xp);
3208 xpl = (xp = x.parent) == null ? null : xp.left;
3209 }
3210 if (xpl == null)
3211 x = xp;
3212 else {
3213 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3214 if ((sl == null || !sl.red) &&
3215 (sr == null || !sr.red)) {
3216 xpl.red = true;
3217 x = xp;
3218 }
3219 else {
3220 if (sl == null || !sl.red) {
3221 if (sr != null)
3222 sr.red = false;
3223 xpl.red = true;
3224 root = rotateLeft(root, xpl);
3225 xpl = (xp = x.parent) == null ?
3226 null : xp.left;
3227 }
3228 if (xpl != null) {
3229 xpl.red = (xp == null) ? false : xp.red;
3230 if ((sl = xpl.left) != null)
3231 sl.red = false;
3232 }
3233 if (xp != null) {
3234 xp.red = false;
3235 root = rotateRight(root, xp);
3236 }
3237 x = root;
3238 }
3239 }
3240 }
3241 }
3242 }
3243
3244 /**
3245 * Checks invariants recursively for the tree of Nodes rooted at t.
3246 */
3247 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3248 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3249 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3250 if (tb != null && tb.next != t)
3251 return false;
3252 if (tn != null && tn.prev != t)
3253 return false;
3254 if (tp != null && t != tp.left && t != tp.right)
3255 return false;
3256 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3257 return false;
3258 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3259 return false;
3260 if (t.red && tl != null && tl.red && tr != null && tr.red)
3261 return false;
3262 if (tl != null && !checkInvariants(tl))
3263 return false;
3264 if (tr != null && !checkInvariants(tr))
3265 return false;
3266 return true;
3267 }
3268
3269 private static final Unsafe U = Unsafe.getUnsafe();
3270 private static final long LOCKSTATE;
3271 static {
3272 try {
3273 LOCKSTATE = U.objectFieldOffset
3274 (TreeBin.class.getDeclaredField("lockState"));
3275 } catch (ReflectiveOperationException e) {
3276 throw new ExceptionInInitializerError(e);
3277 }
3278 }
3279 }
3280
3281 /* ----------------Table Traversal -------------- */
3282
3283 /**
3284 * Records the table, its length, and current traversal index for a
3285 * traverser that must process a region of a forwarded table before
3286 * proceeding with current table.
3287 */
3288 static final class TableStack<K,V> {
3289 int length;
3290 int index;
3291 Node<K,V>[] tab;
3292 TableStack<K,V> next;
3293 }
3294
3295 /**
3296 * Encapsulates traversal for methods such as containsValue; also
3297 * serves as a base class for other iterators and spliterators.
3298 *
3299 * Method advance visits once each still-valid node that was
3300 * reachable upon iterator construction. It might miss some that
3301 * were added to a bin after the bin was visited, which is OK wrt
3302 * consistency guarantees. Maintaining this property in the face
3303 * of possible ongoing resizes requires a fair amount of
3304 * bookkeeping state that is difficult to optimize away amidst
3305 * volatile accesses. Even so, traversal maintains reasonable
3306 * throughput.
3307 *
3308 * Normally, iteration proceeds bin-by-bin traversing lists.
3309 * However, if the table has been resized, then all future steps
3310 * must traverse both the bin at the current index as well as at
3311 * (index + baseSize); and so on for further resizings. To
3312 * paranoically cope with potential sharing by users of iterators
3313 * across threads, iteration terminates if a bounds checks fails
3314 * for a table read.
3315 */
3316 static class Traverser<K,V> {
3317 Node<K,V>[] tab; // current table; updated if resized
3318 Node<K,V> next; // the next entry to use
3319 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3320 int index; // index of bin to use next
3321 int baseIndex; // current index of initial table
3322 int baseLimit; // index bound for initial table
3323 final int baseSize; // initial table size
3324
3325 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3326 this.tab = tab;
3327 this.baseSize = size;
3328 this.baseIndex = this.index = index;
3329 this.baseLimit = limit;
3330 this.next = null;
3331 }
3332
3333 /**
3334 * Advances if possible, returning next valid node, or null if none.
3335 */
3336 final Node<K,V> advance() {
3337 Node<K,V> e;
3338 if ((e = next) != null)
3339 e = e.next;
3340 for (;;) {
3341 Node<K,V>[] t; int i, n; // must use locals in checks
3342 if (e != null)
3343 return next = e;
3344 if (baseIndex >= baseLimit || (t = tab) == null ||
3345 (n = t.length) <= (i = index) || i < 0)
3346 return next = null;
3347 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3348 if (e instanceof ForwardingNode) {
3349 tab = ((ForwardingNode<K,V>)e).nextTable;
3350 e = null;
3351 pushState(t, i, n);
3352 continue;
3353 }
3354 else if (e instanceof TreeBin)
3355 e = ((TreeBin<K,V>)e).first;
3356 else
3357 e = null;
3358 }
3359 if (stack != null)
3360 recoverState(n);
3361 else if ((index = i + baseSize) >= n)
3362 index = ++baseIndex; // visit upper slots if present
3363 }
3364 }
3365
3366 /**
3367 * Saves traversal state upon encountering a forwarding node.
3368 */
3369 private void pushState(Node<K,V>[] t, int i, int n) {
3370 TableStack<K,V> s = spare; // reuse if possible
3371 if (s != null)
3372 spare = s.next;
3373 else
3374 s = new TableStack<K,V>();
3375 s.tab = t;
3376 s.length = n;
3377 s.index = i;
3378 s.next = stack;
3379 stack = s;
3380 }
3381
3382 /**
3383 * Possibly pops traversal state.
3384 *
3385 * @param n length of current table
3386 */
3387 private void recoverState(int n) {
3388 TableStack<K,V> s; int len;
3389 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3390 n = len;
3391 index = s.index;
3392 tab = s.tab;
3393 s.tab = null;
3394 TableStack<K,V> next = s.next;
3395 s.next = spare; // save for reuse
3396 stack = next;
3397 spare = s;
3398 }
3399 if (s == null && (index += baseSize) >= n)
3400 index = ++baseIndex;
3401 }
3402 }
3403
3404 /**
3405 * Base of key, value, and entry Iterators. Adds fields to
3406 * Traverser to support iterator.remove.
3407 */
3408 static class BaseIterator<K,V> extends Traverser<K,V> {
3409 final ConcurrentHashMap<K,V> map;
3410 Node<K,V> lastReturned;
3411 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3412 ConcurrentHashMap<K,V> map) {
3413 super(tab, size, index, limit);
3414 this.map = map;
3415 advance();
3416 }
3417
3418 public final boolean hasNext() { return next != null; }
3419 public final boolean hasMoreElements() { return next != null; }
3420
3421 public final void remove() {
3422 Node<K,V> p;
3423 if ((p = lastReturned) == null)
3424 throw new IllegalStateException();
3425 lastReturned = null;
3426 map.replaceNode(p.key, null, null);
3427 }
3428 }
3429
3430 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3431 implements Iterator<K>, Enumeration<K> {
3432 KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3433 ConcurrentHashMap<K,V> map) {
3434 super(tab, size, index, limit, map);
3435 }
3436
3437 public final K next() {
3438 Node<K,V> p;
3439 if ((p = next) == null)
3440 throw new NoSuchElementException();
3441 K k = p.key;
3442 lastReturned = p;
3443 advance();
3444 return k;
3445 }
3446
3447 public final K nextElement() { return next(); }
3448 }
3449
3450 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3451 implements Iterator<V>, Enumeration<V> {
3452 ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3453 ConcurrentHashMap<K,V> map) {
3454 super(tab, size, index, limit, map);
3455 }
3456
3457 public final V next() {
3458 Node<K,V> p;
3459 if ((p = next) == null)
3460 throw new NoSuchElementException();
3461 V v = p.val;
3462 lastReturned = p;
3463 advance();
3464 return v;
3465 }
3466
3467 public final V nextElement() { return next(); }
3468 }
3469
3470 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3471 implements Iterator<Map.Entry<K,V>> {
3472 EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3473 ConcurrentHashMap<K,V> map) {
3474 super(tab, size, index, limit, map);
3475 }
3476
3477 public final Map.Entry<K,V> next() {
3478 Node<K,V> p;
3479 if ((p = next) == null)
3480 throw new NoSuchElementException();
3481 K k = p.key;
3482 V v = p.val;
3483 lastReturned = p;
3484 advance();
3485 return new MapEntry<K,V>(k, v, map);
3486 }
3487 }
3488
3489 /**
3490 * Exported Entry for EntryIterator.
3491 */
3492 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3493 final K key; // non-null
3494 V val; // non-null
3495 final ConcurrentHashMap<K,V> map;
3496 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3497 this.key = key;
3498 this.val = val;
3499 this.map = map;
3500 }
3501 public K getKey() { return key; }
3502 public V getValue() { return val; }
3503 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3504 public String toString() {
3505 return Helpers.mapEntryToString(key, val);
3506 }
3507
3508 public boolean equals(Object o) {
3509 Object k, v; Map.Entry<?,?> e;
3510 return ((o instanceof Map.Entry) &&
3511 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3512 (v = e.getValue()) != null &&
3513 (k == key || k.equals(key)) &&
3514 (v == val || v.equals(val)));
3515 }
3516
3517 /**
3518 * Sets our entry's value and writes through to the map. The
3519 * value to return is somewhat arbitrary here. Since we do not
3520 * necessarily track asynchronous changes, the most recent
3521 * "previous" value could be different from what we return (or
3522 * could even have been removed, in which case the put will
3523 * re-establish). We do not and cannot guarantee more.
3524 */
3525 public V setValue(V value) {
3526 if (value == null) throw new NullPointerException();
3527 V v = val;
3528 val = value;
3529 map.put(key, value);
3530 return v;
3531 }
3532 }
3533
3534 static final class KeySpliterator<K,V> extends Traverser<K,V>
3535 implements Spliterator<K> {
3536 long est; // size estimate
3537 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3538 long est) {
3539 super(tab, size, index, limit);
3540 this.est = est;
3541 }
3542
3543 public KeySpliterator<K,V> trySplit() {
3544 int i, f, h;
3545 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3546 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3547 f, est >>>= 1);
3548 }
3549
3550 public void forEachRemaining(Consumer<? super K> action) {
3551 if (action == null) throw new NullPointerException();
3552 for (Node<K,V> p; (p = advance()) != null;)
3553 action.accept(p.key);
3554 }
3555
3556 public boolean tryAdvance(Consumer<? super K> action) {
3557 if (action == null) throw new NullPointerException();
3558 Node<K,V> p;
3559 if ((p = advance()) == null)
3560 return false;
3561 action.accept(p.key);
3562 return true;
3563 }
3564
3565 public long estimateSize() { return est; }
3566
3567 public int characteristics() {
3568 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3569 Spliterator.NONNULL;
3570 }
3571 }
3572
3573 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3574 implements Spliterator<V> {
3575 long est; // size estimate
3576 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3577 long est) {
3578 super(tab, size, index, limit);
3579 this.est = est;
3580 }
3581
3582 public ValueSpliterator<K,V> trySplit() {
3583 int i, f, h;
3584 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3585 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3586 f, est >>>= 1);
3587 }
3588
3589 public void forEachRemaining(Consumer<? super V> action) {
3590 if (action == null) throw new NullPointerException();
3591 for (Node<K,V> p; (p = advance()) != null;)
3592 action.accept(p.val);
3593 }
3594
3595 public boolean tryAdvance(Consumer<? super V> action) {
3596 if (action == null) throw new NullPointerException();
3597 Node<K,V> p;
3598 if ((p = advance()) == null)
3599 return false;
3600 action.accept(p.val);
3601 return true;
3602 }
3603
3604 public long estimateSize() { return est; }
3605
3606 public int characteristics() {
3607 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3608 }
3609 }
3610
3611 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3612 implements Spliterator<Map.Entry<K,V>> {
3613 final ConcurrentHashMap<K,V> map; // To export MapEntry
3614 long est; // size estimate
3615 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3616 long est, ConcurrentHashMap<K,V> map) {
3617 super(tab, size, index, limit);
3618 this.map = map;
3619 this.est = est;
3620 }
3621
3622 public EntrySpliterator<K,V> trySplit() {
3623 int i, f, h;
3624 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3625 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3626 f, est >>>= 1, map);
3627 }
3628
3629 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3630 if (action == null) throw new NullPointerException();
3631 for (Node<K,V> p; (p = advance()) != null; )
3632 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3633 }
3634
3635 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3636 if (action == null) throw new NullPointerException();
3637 Node<K,V> p;
3638 if ((p = advance()) == null)
3639 return false;
3640 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3641 return true;
3642 }
3643
3644 public long estimateSize() { return est; }
3645
3646 public int characteristics() {
3647 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3648 Spliterator.NONNULL;
3649 }
3650 }
3651
3652 // Parallel bulk operations
3653
3654 /**
3655 * Computes initial batch value for bulk tasks. The returned value
3656 * is approximately exp2 of the number of times (minus one) to
3657 * split task by two before executing leaf action. This value is
3658 * faster to compute and more convenient to use as a guide to
3659 * splitting than is the depth, since it is used while dividing by
3660 * two anyway.
3661 */
3662 final int batchFor(long b) {
3663 long n;
3664 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3665 return 0;
3666 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3667 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3668 }
3669
3670 /**
3671 * Performs the given action for each (key, value).
3672 *
3673 * @param parallelismThreshold the (estimated) number of elements
3674 * needed for this operation to be executed in parallel
3675 * @param action the action
3676 * @since 1.8
3677 */
3678 public void forEach(long parallelismThreshold,
3679 BiConsumer<? super K,? super V> action) {
3680 if (action == null) throw new NullPointerException();
3681 new ForEachMappingTask<K,V>
3682 (null, batchFor(parallelismThreshold), 0, 0, table,
3683 action).invoke();
3684 }
3685
3686 /**
3687 * Performs the given action for each non-null transformation
3688 * of each (key, value).
3689 *
3690 * @param parallelismThreshold the (estimated) number of elements
3691 * needed for this operation to be executed in parallel
3692 * @param transformer a function returning the transformation
3693 * for an element, or null if there is no transformation (in
3694 * which case the action is not applied)
3695 * @param action the action
3696 * @param <U> the return type of the transformer
3697 * @since 1.8
3698 */
3699 public <U> void forEach(long parallelismThreshold,
3700 BiFunction<? super K, ? super V, ? extends U> transformer,
3701 Consumer<? super U> action) {
3702 if (transformer == null || action == null)
3703 throw new NullPointerException();
3704 new ForEachTransformedMappingTask<K,V,U>
3705 (null, batchFor(parallelismThreshold), 0, 0, table,
3706 transformer, action).invoke();
3707 }
3708
3709 /**
3710 * Returns a non-null result from applying the given search
3711 * function on each (key, value), or null if none. Upon
3712 * success, further element processing is suppressed and the
3713 * results of any other parallel invocations of the search
3714 * function are ignored.
3715 *
3716 * @param parallelismThreshold the (estimated) number of elements
3717 * needed for this operation to be executed in parallel
3718 * @param searchFunction a function returning a non-null
3719 * result on success, else null
3720 * @param <U> the return type of the search function
3721 * @return a non-null result from applying the given search
3722 * function on each (key, value), or null if none
3723 * @since 1.8
3724 */
3725 public <U> U search(long parallelismThreshold,
3726 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3727 if (searchFunction == null) throw new NullPointerException();
3728 return new SearchMappingsTask<K,V,U>
3729 (null, batchFor(parallelismThreshold), 0, 0, table,
3730 searchFunction, new AtomicReference<U>()).invoke();
3731 }
3732
3733 /**
3734 * Returns the result of accumulating the given transformation
3735 * of all (key, value) pairs using the given reducer to
3736 * combine values, or null if none.
3737 *
3738 * @param parallelismThreshold the (estimated) number of elements
3739 * needed for this operation to be executed in parallel
3740 * @param transformer a function returning the transformation
3741 * for an element, or null if there is no transformation (in
3742 * which case it is not combined)
3743 * @param reducer a commutative associative combining function
3744 * @param <U> the return type of the transformer
3745 * @return the result of accumulating the given transformation
3746 * of all (key, value) pairs
3747 * @since 1.8
3748 */
3749 public <U> U reduce(long parallelismThreshold,
3750 BiFunction<? super K, ? super V, ? extends U> transformer,
3751 BiFunction<? super U, ? super U, ? extends U> reducer) {
3752 if (transformer == null || reducer == null)
3753 throw new NullPointerException();
3754 return new MapReduceMappingsTask<K,V,U>
3755 (null, batchFor(parallelismThreshold), 0, 0, table,
3756 null, transformer, reducer).invoke();
3757 }
3758
3759 /**
3760 * Returns the result of accumulating the given transformation
3761 * of all (key, value) pairs using the given reducer to
3762 * combine values, and the given basis as an identity value.
3763 *
3764 * @param parallelismThreshold the (estimated) number of elements
3765 * needed for this operation to be executed in parallel
3766 * @param transformer a function returning the transformation
3767 * for an element
3768 * @param basis the identity (initial default value) for the reduction
3769 * @param reducer a commutative associative combining function
3770 * @return the result of accumulating the given transformation
3771 * of all (key, value) pairs
3772 * @since 1.8
3773 */
3774 public double reduceToDouble(long parallelismThreshold,
3775 ToDoubleBiFunction<? super K, ? super V> transformer,
3776 double basis,
3777 DoubleBinaryOperator reducer) {
3778 if (transformer == null || reducer == null)
3779 throw new NullPointerException();
3780 return new MapReduceMappingsToDoubleTask<K,V>
3781 (null, batchFor(parallelismThreshold), 0, 0, table,
3782 null, transformer, basis, reducer).invoke();
3783 }
3784
3785 /**
3786 * Returns the result of accumulating the given transformation
3787 * of all (key, value) pairs using the given reducer to
3788 * combine values, and the given basis as an identity value.
3789 *
3790 * @param parallelismThreshold the (estimated) number of elements
3791 * needed for this operation to be executed in parallel
3792 * @param transformer a function returning the transformation
3793 * for an element
3794 * @param basis the identity (initial default value) for the reduction
3795 * @param reducer a commutative associative combining function
3796 * @return the result of accumulating the given transformation
3797 * of all (key, value) pairs
3798 * @since 1.8
3799 */
3800 public long reduceToLong(long parallelismThreshold,
3801 ToLongBiFunction<? super K, ? super V> transformer,
3802 long basis,
3803 LongBinaryOperator reducer) {
3804 if (transformer == null || reducer == null)
3805 throw new NullPointerException();
3806 return new MapReduceMappingsToLongTask<K,V>
3807 (null, batchFor(parallelismThreshold), 0, 0, table,
3808 null, transformer, basis, reducer).invoke();
3809 }
3810
3811 /**
3812 * Returns the result of accumulating the given transformation
3813 * of all (key, value) pairs using the given reducer to
3814 * combine values, and the given basis as an identity value.
3815 *
3816 * @param parallelismThreshold the (estimated) number of elements
3817 * needed for this operation to be executed in parallel
3818 * @param transformer a function returning the transformation
3819 * for an element
3820 * @param basis the identity (initial default value) for the reduction
3821 * @param reducer a commutative associative combining function
3822 * @return the result of accumulating the given transformation
3823 * of all (key, value) pairs
3824 * @since 1.8
3825 */
3826 public int reduceToInt(long parallelismThreshold,
3827 ToIntBiFunction<? super K, ? super V> transformer,
3828 int basis,
3829 IntBinaryOperator reducer) {
3830 if (transformer == null || reducer == null)
3831 throw new NullPointerException();
3832 return new MapReduceMappingsToIntTask<K,V>
3833 (null, batchFor(parallelismThreshold), 0, 0, table,
3834 null, transformer, basis, reducer).invoke();
3835 }
3836
3837 /**
3838 * Performs the given action for each key.
3839 *
3840 * @param parallelismThreshold the (estimated) number of elements
3841 * needed for this operation to be executed in parallel
3842 * @param action the action
3843 * @since 1.8
3844 */
3845 public void forEachKey(long parallelismThreshold,
3846 Consumer<? super K> action) {
3847 if (action == null) throw new NullPointerException();
3848 new ForEachKeyTask<K,V>
3849 (null, batchFor(parallelismThreshold), 0, 0, table,
3850 action).invoke();
3851 }
3852
3853 /**
3854 * Performs the given action for each non-null transformation
3855 * of each key.
3856 *
3857 * @param parallelismThreshold the (estimated) number of elements
3858 * needed for this operation to be executed in parallel
3859 * @param transformer a function returning the transformation
3860 * for an element, or null if there is no transformation (in
3861 * which case the action is not applied)
3862 * @param action the action
3863 * @param <U> the return type of the transformer
3864 * @since 1.8
3865 */
3866 public <U> void forEachKey(long parallelismThreshold,
3867 Function<? super K, ? extends U> transformer,
3868 Consumer<? super U> action) {
3869 if (transformer == null || action == null)
3870 throw new NullPointerException();
3871 new ForEachTransformedKeyTask<K,V,U>
3872 (null, batchFor(parallelismThreshold), 0, 0, table,
3873 transformer, action).invoke();
3874 }
3875
3876 /**
3877 * Returns a non-null result from applying the given search
3878 * function on each key, or null if none. Upon success,
3879 * further element processing is suppressed and the results of
3880 * any other parallel invocations of the search function are
3881 * ignored.
3882 *
3883 * @param parallelismThreshold the (estimated) number of elements
3884 * needed for this operation to be executed in parallel
3885 * @param searchFunction a function returning a non-null
3886 * result on success, else null
3887 * @param <U> the return type of the search function
3888 * @return a non-null result from applying the given search
3889 * function on each key, or null if none
3890 * @since 1.8
3891 */
3892 public <U> U searchKeys(long parallelismThreshold,
3893 Function<? super K, ? extends U> searchFunction) {
3894 if (searchFunction == null) throw new NullPointerException();
3895 return new SearchKeysTask<K,V,U>
3896 (null, batchFor(parallelismThreshold), 0, 0, table,
3897 searchFunction, new AtomicReference<U>()).invoke();
3898 }
3899
3900 /**
3901 * Returns the result of accumulating all keys using the given
3902 * reducer to combine values, or null if none.
3903 *
3904 * @param parallelismThreshold the (estimated) number of elements
3905 * needed for this operation to be executed in parallel
3906 * @param reducer a commutative associative combining function
3907 * @return the result of accumulating all keys using the given
3908 * reducer to combine values, or null if none
3909 * @since 1.8
3910 */
3911 public K reduceKeys(long parallelismThreshold,
3912 BiFunction<? super K, ? super K, ? extends K> reducer) {
3913 if (reducer == null) throw new NullPointerException();
3914 return new ReduceKeysTask<K,V>
3915 (null, batchFor(parallelismThreshold), 0, 0, table,
3916 null, reducer).invoke();
3917 }
3918
3919 /**
3920 * Returns the result of accumulating the given transformation
3921 * of all keys using the given reducer to combine values, or
3922 * null if none.
3923 *
3924 * @param parallelismThreshold the (estimated) number of elements
3925 * needed for this operation to be executed in parallel
3926 * @param transformer a function returning the transformation
3927 * for an element, or null if there is no transformation (in
3928 * which case it is not combined)
3929 * @param reducer a commutative associative combining function
3930 * @param <U> the return type of the transformer
3931 * @return the result of accumulating the given transformation
3932 * of all keys
3933 * @since 1.8
3934 */
3935 public <U> U reduceKeys(long parallelismThreshold,
3936 Function<? super K, ? extends U> transformer,
3937 BiFunction<? super U, ? super U, ? extends U> reducer) {
3938 if (transformer == null || reducer == null)
3939 throw new NullPointerException();
3940 return new MapReduceKeysTask<K,V,U>
3941 (null, batchFor(parallelismThreshold), 0, 0, table,
3942 null, transformer, reducer).invoke();
3943 }
3944
3945 /**
3946 * Returns the result of accumulating the given transformation
3947 * of all keys using the given reducer to combine values, and
3948 * the given basis as an identity value.
3949 *
3950 * @param parallelismThreshold the (estimated) number of elements
3951 * needed for this operation to be executed in parallel
3952 * @param transformer a function returning the transformation
3953 * for an element
3954 * @param basis the identity (initial default value) for the reduction
3955 * @param reducer a commutative associative combining function
3956 * @return the result of accumulating the given transformation
3957 * of all keys
3958 * @since 1.8
3959 */
3960 public double reduceKeysToDouble(long parallelismThreshold,
3961 ToDoubleFunction<? super K> transformer,
3962 double basis,
3963 DoubleBinaryOperator reducer) {
3964 if (transformer == null || reducer == null)
3965 throw new NullPointerException();
3966 return new MapReduceKeysToDoubleTask<K,V>
3967 (null, batchFor(parallelismThreshold), 0, 0, table,
3968 null, transformer, basis, reducer).invoke();
3969 }
3970
3971 /**
3972 * Returns the result of accumulating the given transformation
3973 * of all keys using the given reducer to combine values, and
3974 * the given basis as an identity value.
3975 *
3976 * @param parallelismThreshold the (estimated) number of elements
3977 * needed for this operation to be executed in parallel
3978 * @param transformer a function returning the transformation
3979 * for an element
3980 * @param basis the identity (initial default value) for the reduction
3981 * @param reducer a commutative associative combining function
3982 * @return the result of accumulating the given transformation
3983 * of all keys
3984 * @since 1.8
3985 */
3986 public long reduceKeysToLong(long parallelismThreshold,
3987 ToLongFunction<? super K> transformer,
3988 long basis,
3989 LongBinaryOperator reducer) {
3990 if (transformer == null || reducer == null)
3991 throw new NullPointerException();
3992 return new MapReduceKeysToLongTask<K,V>
3993 (null, batchFor(parallelismThreshold), 0, 0, table,
3994 null, transformer, basis, reducer).invoke();
3995 }
3996
3997 /**
3998 * Returns the result of accumulating the given transformation
3999 * of all keys using the given reducer to combine values, and
4000 * the given basis as an identity value.
4001 *
4002 * @param parallelismThreshold the (estimated) number of elements
4003 * needed for this operation to be executed in parallel
4004 * @param transformer a function returning the transformation
4005 * for an element
4006 * @param basis the identity (initial default value) for the reduction
4007 * @param reducer a commutative associative combining function
4008 * @return the result of accumulating the given transformation
4009 * of all keys
4010 * @since 1.8
4011 */
4012 public int reduceKeysToInt(long parallelismThreshold,
4013 ToIntFunction<? super K> transformer,
4014 int basis,
4015 IntBinaryOperator reducer) {
4016 if (transformer == null || reducer == null)
4017 throw new NullPointerException();
4018 return new MapReduceKeysToIntTask<K,V>
4019 (null, batchFor(parallelismThreshold), 0, 0, table,
4020 null, transformer, basis, reducer).invoke();
4021 }
4022
4023 /**
4024 * Performs the given action for each value.
4025 *
4026 * @param parallelismThreshold the (estimated) number of elements
4027 * needed for this operation to be executed in parallel
4028 * @param action the action
4029 * @since 1.8
4030 */
4031 public void forEachValue(long parallelismThreshold,
4032 Consumer<? super V> action) {
4033 if (action == null)
4034 throw new NullPointerException();
4035 new ForEachValueTask<K,V>
4036 (null, batchFor(parallelismThreshold), 0, 0, table,
4037 action).invoke();
4038 }
4039
4040 /**
4041 * Performs the given action for each non-null transformation
4042 * of each value.
4043 *
4044 * @param parallelismThreshold the (estimated) number of elements
4045 * needed for this operation to be executed in parallel
4046 * @param transformer a function returning the transformation
4047 * for an element, or null if there is no transformation (in
4048 * which case the action is not applied)
4049 * @param action the action
4050 * @param <U> the return type of the transformer
4051 * @since 1.8
4052 */
4053 public <U> void forEachValue(long parallelismThreshold,
4054 Function<? super V, ? extends U> transformer,
4055 Consumer<? super U> action) {
4056 if (transformer == null || action == null)
4057 throw new NullPointerException();
4058 new ForEachTransformedValueTask<K,V,U>
4059 (null, batchFor(parallelismThreshold), 0, 0, table,
4060 transformer, action).invoke();
4061 }
4062
4063 /**
4064 * Returns a non-null result from applying the given search
4065 * function on each value, or null if none. Upon success,
4066 * further element processing is suppressed and the results of
4067 * any other parallel invocations of the search function are
4068 * ignored.
4069 *
4070 * @param parallelismThreshold the (estimated) number of elements
4071 * needed for this operation to be executed in parallel
4072 * @param searchFunction a function returning a non-null
4073 * result on success, else null
4074 * @param <U> the return type of the search function
4075 * @return a non-null result from applying the given search
4076 * function on each value, or null if none
4077 * @since 1.8
4078 */
4079 public <U> U searchValues(long parallelismThreshold,
4080 Function<? super V, ? extends U> searchFunction) {
4081 if (searchFunction == null) throw new NullPointerException();
4082 return new SearchValuesTask<K,V,U>
4083 (null, batchFor(parallelismThreshold), 0, 0, table,
4084 searchFunction, new AtomicReference<U>()).invoke();
4085 }
4086
4087 /**
4088 * Returns the result of accumulating all values using the
4089 * given reducer to combine values, or null if none.
4090 *
4091 * @param parallelismThreshold the (estimated) number of elements
4092 * needed for this operation to be executed in parallel
4093 * @param reducer a commutative associative combining function
4094 * @return the result of accumulating all values
4095 * @since 1.8
4096 */
4097 public V reduceValues(long parallelismThreshold,
4098 BiFunction<? super V, ? super V, ? extends V> reducer) {
4099 if (reducer == null) throw new NullPointerException();
4100 return new ReduceValuesTask<K,V>
4101 (null, batchFor(parallelismThreshold), 0, 0, table,
4102 null, reducer).invoke();
4103 }
4104
4105 /**
4106 * Returns the result of accumulating the given transformation
4107 * of all values using the given reducer to combine values, or
4108 * null if none.
4109 *
4110 * @param parallelismThreshold the (estimated) number of elements
4111 * needed for this operation to be executed in parallel
4112 * @param transformer a function returning the transformation
4113 * for an element, or null if there is no transformation (in
4114 * which case it is not combined)
4115 * @param reducer a commutative associative combining function
4116 * @param <U> the return type of the transformer
4117 * @return the result of accumulating the given transformation
4118 * of all values
4119 * @since 1.8
4120 */
4121 public <U> U reduceValues(long parallelismThreshold,
4122 Function<? super V, ? extends U> transformer,
4123 BiFunction<? super U, ? super U, ? extends U> reducer) {
4124 if (transformer == null || reducer == null)
4125 throw new NullPointerException();
4126 return new MapReduceValuesTask<K,V,U>
4127 (null, batchFor(parallelismThreshold), 0, 0, table,
4128 null, transformer, reducer).invoke();
4129 }
4130
4131 /**
4132 * Returns the result of accumulating the given transformation
4133 * of all values using the given reducer to combine values,
4134 * and the given basis as an identity value.
4135 *
4136 * @param parallelismThreshold the (estimated) number of elements
4137 * needed for this operation to be executed in parallel
4138 * @param transformer a function returning the transformation
4139 * for an element
4140 * @param basis the identity (initial default value) for the reduction
4141 * @param reducer a commutative associative combining function
4142 * @return the result of accumulating the given transformation
4143 * of all values
4144 * @since 1.8
4145 */
4146 public double reduceValuesToDouble(long parallelismThreshold,
4147 ToDoubleFunction<? super V> transformer,
4148 double basis,
4149 DoubleBinaryOperator reducer) {
4150 if (transformer == null || reducer == null)
4151 throw new NullPointerException();
4152 return new MapReduceValuesToDoubleTask<K,V>
4153 (null, batchFor(parallelismThreshold), 0, 0, table,
4154 null, transformer, basis, reducer).invoke();
4155 }
4156
4157 /**
4158 * Returns the result of accumulating the given transformation
4159 * of all values using the given reducer to combine values,
4160 * and the given basis as an identity value.
4161 *
4162 * @param parallelismThreshold the (estimated) number of elements
4163 * needed for this operation to be executed in parallel
4164 * @param transformer a function returning the transformation
4165 * for an element
4166 * @param basis the identity (initial default value) for the reduction
4167 * @param reducer a commutative associative combining function
4168 * @return the result of accumulating the given transformation
4169 * of all values
4170 * @since 1.8
4171 */
4172 public long reduceValuesToLong(long parallelismThreshold,
4173 ToLongFunction<? super V> transformer,
4174 long basis,
4175 LongBinaryOperator reducer) {
4176 if (transformer == null || reducer == null)
4177 throw new NullPointerException();
4178 return new MapReduceValuesToLongTask<K,V>
4179 (null, batchFor(parallelismThreshold), 0, 0, table,
4180 null, transformer, basis, reducer).invoke();
4181 }
4182
4183 /**
4184 * Returns the result of accumulating the given transformation
4185 * of all values using the given reducer to combine values,
4186 * and the given basis as an identity value.
4187 *
4188 * @param parallelismThreshold the (estimated) number of elements
4189 * needed for this operation to be executed in parallel
4190 * @param transformer a function returning the transformation
4191 * for an element
4192 * @param basis the identity (initial default value) for the reduction
4193 * @param reducer a commutative associative combining function
4194 * @return the result of accumulating the given transformation
4195 * of all values
4196 * @since 1.8
4197 */
4198 public int reduceValuesToInt(long parallelismThreshold,
4199 ToIntFunction<? super V> transformer,
4200 int basis,
4201 IntBinaryOperator reducer) {
4202 if (transformer == null || reducer == null)
4203 throw new NullPointerException();
4204 return new MapReduceValuesToIntTask<K,V>
4205 (null, batchFor(parallelismThreshold), 0, 0, table,
4206 null, transformer, basis, reducer).invoke();
4207 }
4208
4209 /**
4210 * Performs the given action for each entry.
4211 *
4212 * @param parallelismThreshold the (estimated) number of elements
4213 * needed for this operation to be executed in parallel
4214 * @param action the action
4215 * @since 1.8
4216 */
4217 public void forEachEntry(long parallelismThreshold,
4218 Consumer<? super Map.Entry<K,V>> action) {
4219 if (action == null) throw new NullPointerException();
4220 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4221 action).invoke();
4222 }
4223
4224 /**
4225 * Performs the given action for each non-null transformation
4226 * of each entry.
4227 *
4228 * @param parallelismThreshold the (estimated) number of elements
4229 * needed for this operation to be executed in parallel
4230 * @param transformer a function returning the transformation
4231 * for an element, or null if there is no transformation (in
4232 * which case the action is not applied)
4233 * @param action the action
4234 * @param <U> the return type of the transformer
4235 * @since 1.8
4236 */
4237 public <U> void forEachEntry(long parallelismThreshold,
4238 Function<Map.Entry<K,V>, ? extends U> transformer,
4239 Consumer<? super U> action) {
4240 if (transformer == null || action == null)
4241 throw new NullPointerException();
4242 new ForEachTransformedEntryTask<K,V,U>
4243 (null, batchFor(parallelismThreshold), 0, 0, table,
4244 transformer, action).invoke();
4245 }
4246
4247 /**
4248 * Returns a non-null result from applying the given search
4249 * function on each entry, or null if none. Upon success,
4250 * further element processing is suppressed and the results of
4251 * any other parallel invocations of the search function are
4252 * ignored.
4253 *
4254 * @param parallelismThreshold the (estimated) number of elements
4255 * needed for this operation to be executed in parallel
4256 * @param searchFunction a function returning a non-null
4257 * result on success, else null
4258 * @param <U> the return type of the search function
4259 * @return a non-null result from applying the given search
4260 * function on each entry, or null if none
4261 * @since 1.8
4262 */
4263 public <U> U searchEntries(long parallelismThreshold,
4264 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4265 if (searchFunction == null) throw new NullPointerException();
4266 return new SearchEntriesTask<K,V,U>
4267 (null, batchFor(parallelismThreshold), 0, 0, table,
4268 searchFunction, new AtomicReference<U>()).invoke();
4269 }
4270
4271 /**
4272 * Returns the result of accumulating all entries using the
4273 * given reducer to combine values, or null if none.
4274 *
4275 * @param parallelismThreshold the (estimated) number of elements
4276 * needed for this operation to be executed in parallel
4277 * @param reducer a commutative associative combining function
4278 * @return the result of accumulating all entries
4279 * @since 1.8
4280 */
4281 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4282 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4283 if (reducer == null) throw new NullPointerException();
4284 return new ReduceEntriesTask<K,V>
4285 (null, batchFor(parallelismThreshold), 0, 0, table,
4286 null, reducer).invoke();
4287 }
4288
4289 /**
4290 * Returns the result of accumulating the given transformation
4291 * of all entries using the given reducer to combine values,
4292 * or null if none.
4293 *
4294 * @param parallelismThreshold the (estimated) number of elements
4295 * needed for this operation to be executed in parallel
4296 * @param transformer a function returning the transformation
4297 * for an element, or null if there is no transformation (in
4298 * which case it is not combined)
4299 * @param reducer a commutative associative combining function
4300 * @param <U> the return type of the transformer
4301 * @return the result of accumulating the given transformation
4302 * of all entries
4303 * @since 1.8
4304 */
4305 public <U> U reduceEntries(long parallelismThreshold,
4306 Function<Map.Entry<K,V>, ? extends U> transformer,
4307 BiFunction<? super U, ? super U, ? extends U> reducer) {
4308 if (transformer == null || reducer == null)
4309 throw new NullPointerException();
4310 return new MapReduceEntriesTask<K,V,U>
4311 (null, batchFor(parallelismThreshold), 0, 0, table,
4312 null, transformer, reducer).invoke();
4313 }
4314
4315 /**
4316 * Returns the result of accumulating the given transformation
4317 * of all entries using the given reducer to combine values,
4318 * and the given basis as an identity value.
4319 *
4320 * @param parallelismThreshold the (estimated) number of elements
4321 * needed for this operation to be executed in parallel
4322 * @param transformer a function returning the transformation
4323 * for an element
4324 * @param basis the identity (initial default value) for the reduction
4325 * @param reducer a commutative associative combining function
4326 * @return the result of accumulating the given transformation
4327 * of all entries
4328 * @since 1.8
4329 */
4330 public double reduceEntriesToDouble(long parallelismThreshold,
4331 ToDoubleFunction<Map.Entry<K,V>> transformer,
4332 double basis,
4333 DoubleBinaryOperator reducer) {
4334 if (transformer == null || reducer == null)
4335 throw new NullPointerException();
4336 return new MapReduceEntriesToDoubleTask<K,V>
4337 (null, batchFor(parallelismThreshold), 0, 0, table,
4338 null, transformer, basis, reducer).invoke();
4339 }
4340
4341 /**
4342 * Returns the result of accumulating the given transformation
4343 * of all entries using the given reducer to combine values,
4344 * and the given basis as an identity value.
4345 *
4346 * @param parallelismThreshold the (estimated) number of elements
4347 * needed for this operation to be executed in parallel
4348 * @param transformer a function returning the transformation
4349 * for an element
4350 * @param basis the identity (initial default value) for the reduction
4351 * @param reducer a commutative associative combining function
4352 * @return the result of accumulating the given transformation
4353 * of all entries
4354 * @since 1.8
4355 */
4356 public long reduceEntriesToLong(long parallelismThreshold,
4357 ToLongFunction<Map.Entry<K,V>> transformer,
4358 long basis,
4359 LongBinaryOperator reducer) {
4360 if (transformer == null || reducer == null)
4361 throw new NullPointerException();
4362 return new MapReduceEntriesToLongTask<K,V>
4363 (null, batchFor(parallelismThreshold), 0, 0, table,
4364 null, transformer, basis, reducer).invoke();
4365 }
4366
4367 /**
4368 * Returns the result of accumulating the given transformation
4369 * of all entries using the given reducer to combine values,
4370 * and the given basis as an identity value.
4371 *
4372 * @param parallelismThreshold the (estimated) number of elements
4373 * needed for this operation to be executed in parallel
4374 * @param transformer a function returning the transformation
4375 * for an element
4376 * @param basis the identity (initial default value) for the reduction
4377 * @param reducer a commutative associative combining function
4378 * @return the result of accumulating the given transformation
4379 * of all entries
4380 * @since 1.8
4381 */
4382 public int reduceEntriesToInt(long parallelismThreshold,
4383 ToIntFunction<Map.Entry<K,V>> transformer,
4384 int basis,
4385 IntBinaryOperator reducer) {
4386 if (transformer == null || reducer == null)
4387 throw new NullPointerException();
4388 return new MapReduceEntriesToIntTask<K,V>
4389 (null, batchFor(parallelismThreshold), 0, 0, table,
4390 null, transformer, basis, reducer).invoke();
4391 }
4392
4393
4394 /* ----------------Views -------------- */
4395
4396 /**
4397 * Base class for views.
4398 */
4399 abstract static class CollectionView<K,V,E>
4400 implements Collection<E>, java.io.Serializable {
4401 private static final long serialVersionUID = 7249069246763182397L;
4402 final ConcurrentHashMap<K,V> map;
4403 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4404
4405 /**
4406 * Returns the map backing this view.
4407 *
4408 * @return the map backing this view
4409 */
4410 public ConcurrentHashMap<K,V> getMap() { return map; }
4411
4412 /**
4413 * Removes all of the elements from this view, by removing all
4414 * the mappings from the map backing this view.
4415 */
4416 public final void clear() { map.clear(); }
4417 public final int size() { return map.size(); }
4418 public final boolean isEmpty() { return map.isEmpty(); }
4419
4420 // implementations below rely on concrete classes supplying these
4421 // abstract methods
4422 /**
4423 * Returns an iterator over the elements in this collection.
4424 *
4425 * <p>The returned iterator is
4426 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4427 *
4428 * @return an iterator over the elements in this collection
4429 */
4430 public abstract Iterator<E> iterator();
4431 public abstract boolean contains(Object o);
4432 public abstract boolean remove(Object o);
4433
4434 private static final String OOME_MSG = "Required array size too large";
4435
4436 public final Object[] toArray() {
4437 long sz = map.mappingCount();
4438 if (sz > MAX_ARRAY_SIZE)
4439 throw new OutOfMemoryError(OOME_MSG);
4440 int n = (int)sz;
4441 Object[] r = new Object[n];
4442 int i = 0;
4443 for (E e : this) {
4444 if (i == n) {
4445 if (n >= MAX_ARRAY_SIZE)
4446 throw new OutOfMemoryError(OOME_MSG);
4447 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4448 n = MAX_ARRAY_SIZE;
4449 else
4450 n += (n >>> 1) + 1;
4451 r = Arrays.copyOf(r, n);
4452 }
4453 r[i++] = e;
4454 }
4455 return (i == n) ? r : Arrays.copyOf(r, i);
4456 }
4457
4458 @SuppressWarnings("unchecked")
4459 public final <T> T[] toArray(T[] a) {
4460 long sz = map.mappingCount();
4461 if (sz > MAX_ARRAY_SIZE)
4462 throw new OutOfMemoryError(OOME_MSG);
4463 int m = (int)sz;
4464 T[] r = (a.length >= m) ? a :
4465 (T[])java.lang.reflect.Array
4466 .newInstance(a.getClass().getComponentType(), m);
4467 int n = r.length;
4468 int i = 0;
4469 for (E e : this) {
4470 if (i == n) {
4471 if (n >= MAX_ARRAY_SIZE)
4472 throw new OutOfMemoryError(OOME_MSG);
4473 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4474 n = MAX_ARRAY_SIZE;
4475 else
4476 n += (n >>> 1) + 1;
4477 r = Arrays.copyOf(r, n);
4478 }
4479 r[i++] = (T)e;
4480 }
4481 if (a == r && i < n) {
4482 r[i] = null; // null-terminate
4483 return r;
4484 }
4485 return (i == n) ? r : Arrays.copyOf(r, i);
4486 }
4487
4488 /**
4489 * Returns a string representation of this collection.
4490 * The string representation consists of the string representations
4491 * of the collection's elements in the order they are returned by
4492 * its iterator, enclosed in square brackets ({@code "[]"}).
4493 * Adjacent elements are separated by the characters {@code ", "}
4494 * (comma and space). Elements are converted to strings as by
4495 * {@link String#valueOf(Object)}.
4496 *
4497 * @return a string representation of this collection
4498 */
4499 public final String toString() {
4500 StringBuilder sb = new StringBuilder();
4501 sb.append('[');
4502 Iterator<E> it = iterator();
4503 if (it.hasNext()) {
4504 for (;;) {
4505 Object e = it.next();
4506 sb.append(e == this ? "(this Collection)" : e);
4507 if (!it.hasNext())
4508 break;
4509 sb.append(',').append(' ');
4510 }
4511 }
4512 return sb.append(']').toString();
4513 }
4514
4515 public final boolean containsAll(Collection<?> c) {
4516 if (c != this) {
4517 for (Object e : c) {
4518 if (e == null || !contains(e))
4519 return false;
4520 }
4521 }
4522 return true;
4523 }
4524
4525 public boolean removeAll(Collection<?> c) {
4526 if (c == null) throw new NullPointerException();
4527 boolean modified = false;
4528 // Use (c instanceof Set) as a hint that lookup in c is as
4529 // efficient as this view
4530 Node<K,V>[] t;
4531 if ((t = map.table) == null) {
4532 return false;
4533 } else if (c instanceof Set<?> && c.size() > t.length) {
4534 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4535 if (c.contains(it.next())) {
4536 it.remove();
4537 modified = true;
4538 }
4539 }
4540 } else {
4541 for (Object e : c)
4542 modified |= remove(e);
4543 }
4544 return modified;
4545 }
4546
4547 public final boolean retainAll(Collection<?> c) {
4548 if (c == null) throw new NullPointerException();
4549 boolean modified = false;
4550 for (Iterator<E> it = iterator(); it.hasNext();) {
4551 if (!c.contains(it.next())) {
4552 it.remove();
4553 modified = true;
4554 }
4555 }
4556 return modified;
4557 }
4558
4559 }
4560
4561 /**
4562 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4563 * which additions may optionally be enabled by mapping to a
4564 * common value. This class cannot be directly instantiated.
4565 * See {@link #keySet() keySet()},
4566 * {@link #keySet(Object) keySet(V)},
4567 * {@link #newKeySet() newKeySet()},
4568 * {@link #newKeySet(int) newKeySet(int)}.
4569 *
4570 * @since 1.8
4571 */
4572 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4573 implements Set<K>, java.io.Serializable {
4574 private static final long serialVersionUID = 7249069246763182397L;
4575 private final V value;
4576 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4577 super(map);
4578 this.value = value;
4579 }
4580
4581 /**
4582 * Returns the default mapped value for additions,
4583 * or {@code null} if additions are not supported.
4584 *
4585 * @return the default mapped value for additions, or {@code null}
4586 * if not supported
4587 */
4588 public V getMappedValue() { return value; }
4589
4590 /**
4591 * {@inheritDoc}
4592 * @throws NullPointerException if the specified key is null
4593 */
4594 public boolean contains(Object o) { return map.containsKey(o); }
4595
4596 /**
4597 * Removes the key from this map view, by removing the key (and its
4598 * corresponding value) from the backing map. This method does
4599 * nothing if the key is not in the map.
4600 *
4601 * @param o the key to be removed from the backing map
4602 * @return {@code true} if the backing map contained the specified key
4603 * @throws NullPointerException if the specified key is null
4604 */
4605 public boolean remove(Object o) { return map.remove(o) != null; }
4606
4607 /**
4608 * @return an iterator over the keys of the backing map
4609 */
4610 public Iterator<K> iterator() {
4611 Node<K,V>[] t;
4612 ConcurrentHashMap<K,V> m = map;
4613 int f = (t = m.table) == null ? 0 : t.length;
4614 return new KeyIterator<K,V>(t, f, 0, f, m);
4615 }
4616
4617 /**
4618 * Adds the specified key to this set view by mapping the key to
4619 * the default mapped value in the backing map, if defined.
4620 *
4621 * @param e key to be added
4622 * @return {@code true} if this set changed as a result of the call
4623 * @throws NullPointerException if the specified key is null
4624 * @throws UnsupportedOperationException if no default mapped value
4625 * for additions was provided
4626 */
4627 public boolean add(K e) {
4628 V v;
4629 if ((v = value) == null)
4630 throw new UnsupportedOperationException();
4631 return map.putVal(e, v, true) == null;
4632 }
4633
4634 /**
4635 * Adds all of the elements in the specified collection to this set,
4636 * as if by calling {@link #add} on each one.
4637 *
4638 * @param c the elements to be inserted into this set
4639 * @return {@code true} if this set changed as a result of the call
4640 * @throws NullPointerException if the collection or any of its
4641 * elements are {@code null}
4642 * @throws UnsupportedOperationException if no default mapped value
4643 * for additions was provided
4644 */
4645 public boolean addAll(Collection<? extends K> c) {
4646 boolean added = false;
4647 V v;
4648 if ((v = value) == null)
4649 throw new UnsupportedOperationException();
4650 for (K e : c) {
4651 if (map.putVal(e, v, true) == null)
4652 added = true;
4653 }
4654 return added;
4655 }
4656
4657 public int hashCode() {
4658 int h = 0;
4659 for (K e : this)
4660 h += e.hashCode();
4661 return h;
4662 }
4663
4664 public boolean equals(Object o) {
4665 Set<?> c;
4666 return ((o instanceof Set) &&
4667 ((c = (Set<?>)o) == this ||
4668 (containsAll(c) && c.containsAll(this))));
4669 }
4670
4671 public Spliterator<K> spliterator() {
4672 Node<K,V>[] t;
4673 ConcurrentHashMap<K,V> m = map;
4674 long n = m.sumCount();
4675 int f = (t = m.table) == null ? 0 : t.length;
4676 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4677 }
4678
4679 public void forEach(Consumer<? super K> action) {
4680 if (action == null) throw new NullPointerException();
4681 Node<K,V>[] t;
4682 if ((t = map.table) != null) {
4683 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4684 for (Node<K,V> p; (p = it.advance()) != null; )
4685 action.accept(p.key);
4686 }
4687 }
4688 }
4689
4690 /**
4691 * A view of a ConcurrentHashMap as a {@link Collection} of
4692 * values, in which additions are disabled. This class cannot be
4693 * directly instantiated. See {@link #values()}.
4694 */
4695 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4696 implements Collection<V>, java.io.Serializable {
4697 private static final long serialVersionUID = 2249069246763182397L;
4698 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4699 public final boolean contains(Object o) {
4700 return map.containsValue(o);
4701 }
4702
4703 public final boolean remove(Object o) {
4704 if (o != null) {
4705 for (Iterator<V> it = iterator(); it.hasNext();) {
4706 if (o.equals(it.next())) {
4707 it.remove();
4708 return true;
4709 }
4710 }
4711 }
4712 return false;
4713 }
4714
4715 public final Iterator<V> iterator() {
4716 ConcurrentHashMap<K,V> m = map;
4717 Node<K,V>[] t;
4718 int f = (t = m.table) == null ? 0 : t.length;
4719 return new ValueIterator<K,V>(t, f, 0, f, m);
4720 }
4721
4722 public final boolean add(V e) {
4723 throw new UnsupportedOperationException();
4724 }
4725 public final boolean addAll(Collection<? extends V> c) {
4726 throw new UnsupportedOperationException();
4727 }
4728
4729 @Override public boolean removeAll(Collection<?> c) {
4730 if (c == null) throw new NullPointerException();
4731 boolean modified = false;
4732 for (Iterator<V> it = iterator(); it.hasNext();) {
4733 if (c.contains(it.next())) {
4734 it.remove();
4735 modified = true;
4736 }
4737 }
4738 return modified;
4739 }
4740
4741 public boolean removeIf(Predicate<? super V> filter) {
4742 return map.removeValueIf(filter);
4743 }
4744
4745 public Spliterator<V> spliterator() {
4746 Node<K,V>[] t;
4747 ConcurrentHashMap<K,V> m = map;
4748 long n = m.sumCount();
4749 int f = (t = m.table) == null ? 0 : t.length;
4750 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4751 }
4752
4753 public void forEach(Consumer<? super V> action) {
4754 if (action == null) throw new NullPointerException();
4755 Node<K,V>[] t;
4756 if ((t = map.table) != null) {
4757 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4758 for (Node<K,V> p; (p = it.advance()) != null; )
4759 action.accept(p.val);
4760 }
4761 }
4762 }
4763
4764 /**
4765 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4766 * entries. This class cannot be directly instantiated. See
4767 * {@link #entrySet()}.
4768 */
4769 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4770 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4771 private static final long serialVersionUID = 2249069246763182397L;
4772 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4773
4774 public boolean contains(Object o) {
4775 Object k, v, r; Map.Entry<?,?> e;
4776 return ((o instanceof Map.Entry) &&
4777 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4778 (r = map.get(k)) != null &&
4779 (v = e.getValue()) != null &&
4780 (v == r || v.equals(r)));
4781 }
4782
4783 public boolean remove(Object o) {
4784 Object k, v; Map.Entry<?,?> e;
4785 return ((o instanceof Map.Entry) &&
4786 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4787 (v = e.getValue()) != null &&
4788 map.remove(k, v));
4789 }
4790
4791 /**
4792 * @return an iterator over the entries of the backing map
4793 */
4794 public Iterator<Map.Entry<K,V>> iterator() {
4795 ConcurrentHashMap<K,V> m = map;
4796 Node<K,V>[] t;
4797 int f = (t = m.table) == null ? 0 : t.length;
4798 return new EntryIterator<K,V>(t, f, 0, f, m);
4799 }
4800
4801 public boolean add(Entry<K,V> e) {
4802 return map.putVal(e.getKey(), e.getValue(), false) == null;
4803 }
4804
4805 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4806 boolean added = false;
4807 for (Entry<K,V> e : c) {
4808 if (add(e))
4809 added = true;
4810 }
4811 return added;
4812 }
4813
4814 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4815 return map.removeEntryIf(filter);
4816 }
4817
4818 public final int hashCode() {
4819 int h = 0;
4820 Node<K,V>[] t;
4821 if ((t = map.table) != null) {
4822 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4823 for (Node<K,V> p; (p = it.advance()) != null; ) {
4824 h += p.hashCode();
4825 }
4826 }
4827 return h;
4828 }
4829
4830 public final boolean equals(Object o) {
4831 Set<?> c;
4832 return ((o instanceof Set) &&
4833 ((c = (Set<?>)o) == this ||
4834 (containsAll(c) && c.containsAll(this))));
4835 }
4836
4837 public Spliterator<Map.Entry<K,V>> spliterator() {
4838 Node<K,V>[] t;
4839 ConcurrentHashMap<K,V> m = map;
4840 long n = m.sumCount();
4841 int f = (t = m.table) == null ? 0 : t.length;
4842 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4843 }
4844
4845 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4846 if (action == null) throw new NullPointerException();
4847 Node<K,V>[] t;
4848 if ((t = map.table) != null) {
4849 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4850 for (Node<K,V> p; (p = it.advance()) != null; )
4851 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4852 }
4853 }
4854
4855 }
4856
4857 // -------------------------------------------------------
4858
4859 /**
4860 * Base class for bulk tasks. Repeats some fields and code from
4861 * class Traverser, because we need to subclass CountedCompleter.
4862 */
4863 @SuppressWarnings("serial")
4864 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4865 Node<K,V>[] tab; // same as Traverser
4866 Node<K,V> next;
4867 TableStack<K,V> stack, spare;
4868 int index;
4869 int baseIndex;
4870 int baseLimit;
4871 final int baseSize;
4872 int batch; // split control
4873
4874 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4875 super(par);
4876 this.batch = b;
4877 this.index = this.baseIndex = i;
4878 if ((this.tab = t) == null)
4879 this.baseSize = this.baseLimit = 0;
4880 else if (par == null)
4881 this.baseSize = this.baseLimit = t.length;
4882 else {
4883 this.baseLimit = f;
4884 this.baseSize = par.baseSize;
4885 }
4886 }
4887
4888 /**
4889 * Same as Traverser version.
4890 */
4891 final Node<K,V> advance() {
4892 Node<K,V> e;
4893 if ((e = next) != null)
4894 e = e.next;
4895 for (;;) {
4896 Node<K,V>[] t; int i, n;
4897 if (e != null)
4898 return next = e;
4899 if (baseIndex >= baseLimit || (t = tab) == null ||
4900 (n = t.length) <= (i = index) || i < 0)
4901 return next = null;
4902 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4903 if (e instanceof ForwardingNode) {
4904 tab = ((ForwardingNode<K,V>)e).nextTable;
4905 e = null;
4906 pushState(t, i, n);
4907 continue;
4908 }
4909 else if (e instanceof TreeBin)
4910 e = ((TreeBin<K,V>)e).first;
4911 else
4912 e = null;
4913 }
4914 if (stack != null)
4915 recoverState(n);
4916 else if ((index = i + baseSize) >= n)
4917 index = ++baseIndex;
4918 }
4919 }
4920
4921 private void pushState(Node<K,V>[] t, int i, int n) {
4922 TableStack<K,V> s = spare;
4923 if (s != null)
4924 spare = s.next;
4925 else
4926 s = new TableStack<K,V>();
4927 s.tab = t;
4928 s.length = n;
4929 s.index = i;
4930 s.next = stack;
4931 stack = s;
4932 }
4933
4934 private void recoverState(int n) {
4935 TableStack<K,V> s; int len;
4936 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4937 n = len;
4938 index = s.index;
4939 tab = s.tab;
4940 s.tab = null;
4941 TableStack<K,V> next = s.next;
4942 s.next = spare; // save for reuse
4943 stack = next;
4944 spare = s;
4945 }
4946 if (s == null && (index += baseSize) >= n)
4947 index = ++baseIndex;
4948 }
4949 }
4950
4951 /*
4952 * Task classes. Coded in a regular but ugly format/style to
4953 * simplify checks that each variant differs in the right way from
4954 * others. The null screenings exist because compilers cannot tell
4955 * that we've already null-checked task arguments, so we force
4956 * simplest hoisted bypass to help avoid convoluted traps.
4957 */
4958 @SuppressWarnings("serial")
4959 static final class ForEachKeyTask<K,V>
4960 extends BulkTask<K,V,Void> {
4961 final Consumer<? super K> action;
4962 ForEachKeyTask
4963 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4964 Consumer<? super K> action) {
4965 super(p, b, i, f, t);
4966 this.action = action;
4967 }
4968 public final void compute() {
4969 final Consumer<? super K> action;
4970 if ((action = this.action) != null) {
4971 for (int i = baseIndex, f, h; batch > 0 &&
4972 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4973 addToPendingCount(1);
4974 new ForEachKeyTask<K,V>
4975 (this, batch >>>= 1, baseLimit = h, f, tab,
4976 action).fork();
4977 }
4978 for (Node<K,V> p; (p = advance()) != null;)
4979 action.accept(p.key);
4980 propagateCompletion();
4981 }
4982 }
4983 }
4984
4985 @SuppressWarnings("serial")
4986 static final class ForEachValueTask<K,V>
4987 extends BulkTask<K,V,Void> {
4988 final Consumer<? super V> action;
4989 ForEachValueTask
4990 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4991 Consumer<? super V> action) {
4992 super(p, b, i, f, t);
4993 this.action = action;
4994 }
4995 public final void compute() {
4996 final Consumer<? super V> action;
4997 if ((action = this.action) != null) {
4998 for (int i = baseIndex, f, h; batch > 0 &&
4999 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5000 addToPendingCount(1);
5001 new ForEachValueTask<K,V>
5002 (this, batch >>>= 1, baseLimit = h, f, tab,
5003 action).fork();
5004 }
5005 for (Node<K,V> p; (p = advance()) != null;)
5006 action.accept(p.val);
5007 propagateCompletion();
5008 }
5009 }
5010 }
5011
5012 @SuppressWarnings("serial")
5013 static final class ForEachEntryTask<K,V>
5014 extends BulkTask<K,V,Void> {
5015 final Consumer<? super Entry<K,V>> action;
5016 ForEachEntryTask
5017 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5018 Consumer<? super Entry<K,V>> action) {
5019 super(p, b, i, f, t);
5020 this.action = action;
5021 }
5022 public final void compute() {
5023 final Consumer<? super Entry<K,V>> action;
5024 if ((action = this.action) != null) {
5025 for (int i = baseIndex, f, h; batch > 0 &&
5026 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5027 addToPendingCount(1);
5028 new ForEachEntryTask<K,V>
5029 (this, batch >>>= 1, baseLimit = h, f, tab,
5030 action).fork();
5031 }
5032 for (Node<K,V> p; (p = advance()) != null; )
5033 action.accept(p);
5034 propagateCompletion();
5035 }
5036 }
5037 }
5038
5039 @SuppressWarnings("serial")
5040 static final class ForEachMappingTask<K,V>
5041 extends BulkTask<K,V,Void> {
5042 final BiConsumer<? super K, ? super V> action;
5043 ForEachMappingTask
5044 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5045 BiConsumer<? super K,? super V> action) {
5046 super(p, b, i, f, t);
5047 this.action = action;
5048 }
5049 public final void compute() {
5050 final BiConsumer<? super K, ? super V> action;
5051 if ((action = this.action) != null) {
5052 for (int i = baseIndex, f, h; batch > 0 &&
5053 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5054 addToPendingCount(1);
5055 new ForEachMappingTask<K,V>
5056 (this, batch >>>= 1, baseLimit = h, f, tab,
5057 action).fork();
5058 }
5059 for (Node<K,V> p; (p = advance()) != null; )
5060 action.accept(p.key, p.val);
5061 propagateCompletion();
5062 }
5063 }
5064 }
5065
5066 @SuppressWarnings("serial")
5067 static final class ForEachTransformedKeyTask<K,V,U>
5068 extends BulkTask<K,V,Void> {
5069 final Function<? super K, ? extends U> transformer;
5070 final Consumer<? super U> action;
5071 ForEachTransformedKeyTask
5072 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5073 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5074 super(p, b, i, f, t);
5075 this.transformer = transformer; this.action = action;
5076 }
5077 public final void compute() {
5078 final Function<? super K, ? extends U> transformer;
5079 final Consumer<? super U> action;
5080 if ((transformer = this.transformer) != null &&
5081 (action = this.action) != null) {
5082 for (int i = baseIndex, f, h; batch > 0 &&
5083 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5084 addToPendingCount(1);
5085 new ForEachTransformedKeyTask<K,V,U>
5086 (this, batch >>>= 1, baseLimit = h, f, tab,
5087 transformer, action).fork();
5088 }
5089 for (Node<K,V> p; (p = advance()) != null; ) {
5090 U u;
5091 if ((u = transformer.apply(p.key)) != null)
5092 action.accept(u);
5093 }
5094 propagateCompletion();
5095 }
5096 }
5097 }
5098
5099 @SuppressWarnings("serial")
5100 static final class ForEachTransformedValueTask<K,V,U>
5101 extends BulkTask<K,V,Void> {
5102 final Function<? super V, ? extends U> transformer;
5103 final Consumer<? super U> action;
5104 ForEachTransformedValueTask
5105 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5106 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5107 super(p, b, i, f, t);
5108 this.transformer = transformer; this.action = action;
5109 }
5110 public final void compute() {
5111 final Function<? super V, ? extends U> transformer;
5112 final Consumer<? super U> action;
5113 if ((transformer = this.transformer) != null &&
5114 (action = this.action) != null) {
5115 for (int i = baseIndex, f, h; batch > 0 &&
5116 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5117 addToPendingCount(1);
5118 new ForEachTransformedValueTask<K,V,U>
5119 (this, batch >>>= 1, baseLimit = h, f, tab,
5120 transformer, action).fork();
5121 }
5122 for (Node<K,V> p; (p = advance()) != null; ) {
5123 U u;
5124 if ((u = transformer.apply(p.val)) != null)
5125 action.accept(u);
5126 }
5127 propagateCompletion();
5128 }
5129 }
5130 }
5131
5132 @SuppressWarnings("serial")
5133 static final class ForEachTransformedEntryTask<K,V,U>
5134 extends BulkTask<K,V,Void> {
5135 final Function<Map.Entry<K,V>, ? extends U> transformer;
5136 final Consumer<? super U> action;
5137 ForEachTransformedEntryTask
5138 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5139 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5140 super(p, b, i, f, t);
5141 this.transformer = transformer; this.action = action;
5142 }
5143 public final void compute() {
5144 final Function<Map.Entry<K,V>, ? extends U> transformer;
5145 final Consumer<? super U> action;
5146 if ((transformer = this.transformer) != null &&
5147 (action = this.action) != null) {
5148 for (int i = baseIndex, f, h; batch > 0 &&
5149 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5150 addToPendingCount(1);
5151 new ForEachTransformedEntryTask<K,V,U>
5152 (this, batch >>>= 1, baseLimit = h, f, tab,
5153 transformer, action).fork();
5154 }
5155 for (Node<K,V> p; (p = advance()) != null; ) {
5156 U u;
5157 if ((u = transformer.apply(p)) != null)
5158 action.accept(u);
5159 }
5160 propagateCompletion();
5161 }
5162 }
5163 }
5164
5165 @SuppressWarnings("serial")
5166 static final class ForEachTransformedMappingTask<K,V,U>
5167 extends BulkTask<K,V,Void> {
5168 final BiFunction<? super K, ? super V, ? extends U> transformer;
5169 final Consumer<? super U> action;
5170 ForEachTransformedMappingTask
5171 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5172 BiFunction<? super K, ? super V, ? extends U> transformer,
5173 Consumer<? super U> action) {
5174 super(p, b, i, f, t);
5175 this.transformer = transformer; this.action = action;
5176 }
5177 public final void compute() {
5178 final BiFunction<? super K, ? super V, ? extends U> transformer;
5179 final Consumer<? super U> action;
5180 if ((transformer = this.transformer) != null &&
5181 (action = this.action) != null) {
5182 for (int i = baseIndex, f, h; batch > 0 &&
5183 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5184 addToPendingCount(1);
5185 new ForEachTransformedMappingTask<K,V,U>
5186 (this, batch >>>= 1, baseLimit = h, f, tab,
5187 transformer, action).fork();
5188 }
5189 for (Node<K,V> p; (p = advance()) != null; ) {
5190 U u;
5191 if ((u = transformer.apply(p.key, p.val)) != null)
5192 action.accept(u);
5193 }
5194 propagateCompletion();
5195 }
5196 }
5197 }
5198
5199 @SuppressWarnings("serial")
5200 static final class SearchKeysTask<K,V,U>
5201 extends BulkTask<K,V,U> {
5202 final Function<? super K, ? extends U> searchFunction;
5203 final AtomicReference<U> result;
5204 SearchKeysTask
5205 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5206 Function<? super K, ? extends U> searchFunction,
5207 AtomicReference<U> result) {
5208 super(p, b, i, f, t);
5209 this.searchFunction = searchFunction; this.result = result;
5210 }
5211 public final U getRawResult() { return result.get(); }
5212 public final void compute() {
5213 final Function<? super K, ? extends U> searchFunction;
5214 final AtomicReference<U> result;
5215 if ((searchFunction = this.searchFunction) != null &&
5216 (result = this.result) != null) {
5217 for (int i = baseIndex, f, h; batch > 0 &&
5218 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5219 if (result.get() != null)
5220 return;
5221 addToPendingCount(1);
5222 new SearchKeysTask<K,V,U>
5223 (this, batch >>>= 1, baseLimit = h, f, tab,
5224 searchFunction, result).fork();
5225 }
5226 while (result.get() == null) {
5227 U u;
5228 Node<K,V> p;
5229 if ((p = advance()) == null) {
5230 propagateCompletion();
5231 break;
5232 }
5233 if ((u = searchFunction.apply(p.key)) != null) {
5234 if (result.compareAndSet(null, u))
5235 quietlyCompleteRoot();
5236 break;
5237 }
5238 }
5239 }
5240 }
5241 }
5242
5243 @SuppressWarnings("serial")
5244 static final class SearchValuesTask<K,V,U>
5245 extends BulkTask<K,V,U> {
5246 final Function<? super V, ? extends U> searchFunction;
5247 final AtomicReference<U> result;
5248 SearchValuesTask
5249 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5250 Function<? super V, ? extends U> searchFunction,
5251 AtomicReference<U> result) {
5252 super(p, b, i, f, t);
5253 this.searchFunction = searchFunction; this.result = result;
5254 }
5255 public final U getRawResult() { return result.get(); }
5256 public final void compute() {
5257 final Function<? super V, ? extends U> searchFunction;
5258 final AtomicReference<U> result;
5259 if ((searchFunction = this.searchFunction) != null &&
5260 (result = this.result) != null) {
5261 for (int i = baseIndex, f, h; batch > 0 &&
5262 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5263 if (result.get() != null)
5264 return;
5265 addToPendingCount(1);
5266 new SearchValuesTask<K,V,U>
5267 (this, batch >>>= 1, baseLimit = h, f, tab,
5268 searchFunction, result).fork();
5269 }
5270 while (result.get() == null) {
5271 U u;
5272 Node<K,V> p;
5273 if ((p = advance()) == null) {
5274 propagateCompletion();
5275 break;
5276 }
5277 if ((u = searchFunction.apply(p.val)) != null) {
5278 if (result.compareAndSet(null, u))
5279 quietlyCompleteRoot();
5280 break;
5281 }
5282 }
5283 }
5284 }
5285 }
5286
5287 @SuppressWarnings("serial")
5288 static final class SearchEntriesTask<K,V,U>
5289 extends BulkTask<K,V,U> {
5290 final Function<Entry<K,V>, ? extends U> searchFunction;
5291 final AtomicReference<U> result;
5292 SearchEntriesTask
5293 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5294 Function<Entry<K,V>, ? extends U> searchFunction,
5295 AtomicReference<U> result) {
5296 super(p, b, i, f, t);
5297 this.searchFunction = searchFunction; this.result = result;
5298 }
5299 public final U getRawResult() { return result.get(); }
5300 public final void compute() {
5301 final Function<Entry<K,V>, ? extends U> searchFunction;
5302 final AtomicReference<U> result;
5303 if ((searchFunction = this.searchFunction) != null &&
5304 (result = this.result) != null) {
5305 for (int i = baseIndex, f, h; batch > 0 &&
5306 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5307 if (result.get() != null)
5308 return;
5309 addToPendingCount(1);
5310 new SearchEntriesTask<K,V,U>
5311 (this, batch >>>= 1, baseLimit = h, f, tab,
5312 searchFunction, result).fork();
5313 }
5314 while (result.get() == null) {
5315 U u;
5316 Node<K,V> p;
5317 if ((p = advance()) == null) {
5318 propagateCompletion();
5319 break;
5320 }
5321 if ((u = searchFunction.apply(p)) != null) {
5322 if (result.compareAndSet(null, u))
5323 quietlyCompleteRoot();
5324 return;
5325 }
5326 }
5327 }
5328 }
5329 }
5330
5331 @SuppressWarnings("serial")
5332 static final class SearchMappingsTask<K,V,U>
5333 extends BulkTask<K,V,U> {
5334 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5335 final AtomicReference<U> result;
5336 SearchMappingsTask
5337 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5338 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5339 AtomicReference<U> result) {
5340 super(p, b, i, f, t);
5341 this.searchFunction = searchFunction; this.result = result;
5342 }
5343 public final U getRawResult() { return result.get(); }
5344 public final void compute() {
5345 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5346 final AtomicReference<U> result;
5347 if ((searchFunction = this.searchFunction) != null &&
5348 (result = this.result) != null) {
5349 for (int i = baseIndex, f, h; batch > 0 &&
5350 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5351 if (result.get() != null)
5352 return;
5353 addToPendingCount(1);
5354 new SearchMappingsTask<K,V,U>
5355 (this, batch >>>= 1, baseLimit = h, f, tab,
5356 searchFunction, result).fork();
5357 }
5358 while (result.get() == null) {
5359 U u;
5360 Node<K,V> p;
5361 if ((p = advance()) == null) {
5362 propagateCompletion();
5363 break;
5364 }
5365 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5366 if (result.compareAndSet(null, u))
5367 quietlyCompleteRoot();
5368 break;
5369 }
5370 }
5371 }
5372 }
5373 }
5374
5375 @SuppressWarnings("serial")
5376 static final class ReduceKeysTask<K,V>
5377 extends BulkTask<K,V,K> {
5378 final BiFunction<? super K, ? super K, ? extends K> reducer;
5379 K result;
5380 ReduceKeysTask<K,V> rights, nextRight;
5381 ReduceKeysTask
5382 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5383 ReduceKeysTask<K,V> nextRight,
5384 BiFunction<? super K, ? super K, ? extends K> reducer) {
5385 super(p, b, i, f, t); this.nextRight = nextRight;
5386 this.reducer = reducer;
5387 }
5388 public final K getRawResult() { return result; }
5389 public final void compute() {
5390 final BiFunction<? super K, ? super K, ? extends K> reducer;
5391 if ((reducer = this.reducer) != null) {
5392 for (int i = baseIndex, f, h; batch > 0 &&
5393 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5394 addToPendingCount(1);
5395 (rights = new ReduceKeysTask<K,V>
5396 (this, batch >>>= 1, baseLimit = h, f, tab,
5397 rights, reducer)).fork();
5398 }
5399 K r = null;
5400 for (Node<K,V> p; (p = advance()) != null; ) {
5401 K u = p.key;
5402 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5403 }
5404 result = r;
5405 CountedCompleter<?> c;
5406 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5407 @SuppressWarnings("unchecked")
5408 ReduceKeysTask<K,V>
5409 t = (ReduceKeysTask<K,V>)c,
5410 s = t.rights;
5411 while (s != null) {
5412 K tr, sr;
5413 if ((sr = s.result) != null)
5414 t.result = (((tr = t.result) == null) ? sr :
5415 reducer.apply(tr, sr));
5416 s = t.rights = s.nextRight;
5417 }
5418 }
5419 }
5420 }
5421 }
5422
5423 @SuppressWarnings("serial")
5424 static final class ReduceValuesTask<K,V>
5425 extends BulkTask<K,V,V> {
5426 final BiFunction<? super V, ? super V, ? extends V> reducer;
5427 V result;
5428 ReduceValuesTask<K,V> rights, nextRight;
5429 ReduceValuesTask
5430 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5431 ReduceValuesTask<K,V> nextRight,
5432 BiFunction<? super V, ? super V, ? extends V> reducer) {
5433 super(p, b, i, f, t); this.nextRight = nextRight;
5434 this.reducer = reducer;
5435 }
5436 public final V getRawResult() { return result; }
5437 public final void compute() {
5438 final BiFunction<? super V, ? super V, ? extends V> reducer;
5439 if ((reducer = this.reducer) != null) {
5440 for (int i = baseIndex, f, h; batch > 0 &&
5441 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5442 addToPendingCount(1);
5443 (rights = new ReduceValuesTask<K,V>
5444 (this, batch >>>= 1, baseLimit = h, f, tab,
5445 rights, reducer)).fork();
5446 }
5447 V r = null;
5448 for (Node<K,V> p; (p = advance()) != null; ) {
5449 V v = p.val;
5450 r = (r == null) ? v : reducer.apply(r, v);
5451 }
5452 result = r;
5453 CountedCompleter<?> c;
5454 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5455 @SuppressWarnings("unchecked")
5456 ReduceValuesTask<K,V>
5457 t = (ReduceValuesTask<K,V>)c,
5458 s = t.rights;
5459 while (s != null) {
5460 V tr, sr;
5461 if ((sr = s.result) != null)
5462 t.result = (((tr = t.result) == null) ? sr :
5463 reducer.apply(tr, sr));
5464 s = t.rights = s.nextRight;
5465 }
5466 }
5467 }
5468 }
5469 }
5470
5471 @SuppressWarnings("serial")
5472 static final class ReduceEntriesTask<K,V>
5473 extends BulkTask<K,V,Map.Entry<K,V>> {
5474 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5475 Map.Entry<K,V> result;
5476 ReduceEntriesTask<K,V> rights, nextRight;
5477 ReduceEntriesTask
5478 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5479 ReduceEntriesTask<K,V> nextRight,
5480 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5481 super(p, b, i, f, t); this.nextRight = nextRight;
5482 this.reducer = reducer;
5483 }
5484 public final Map.Entry<K,V> getRawResult() { return result; }
5485 public final void compute() {
5486 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5487 if ((reducer = this.reducer) != null) {
5488 for (int i = baseIndex, f, h; batch > 0 &&
5489 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5490 addToPendingCount(1);
5491 (rights = new ReduceEntriesTask<K,V>
5492 (this, batch >>>= 1, baseLimit = h, f, tab,
5493 rights, reducer)).fork();
5494 }
5495 Map.Entry<K,V> r = null;
5496 for (Node<K,V> p; (p = advance()) != null; )
5497 r = (r == null) ? p : reducer.apply(r, p);
5498 result = r;
5499 CountedCompleter<?> c;
5500 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5501 @SuppressWarnings("unchecked")
5502 ReduceEntriesTask<K,V>
5503 t = (ReduceEntriesTask<K,V>)c,
5504 s = t.rights;
5505 while (s != null) {
5506 Map.Entry<K,V> tr, sr;
5507 if ((sr = s.result) != null)
5508 t.result = (((tr = t.result) == null) ? sr :
5509 reducer.apply(tr, sr));
5510 s = t.rights = s.nextRight;
5511 }
5512 }
5513 }
5514 }
5515 }
5516
5517 @SuppressWarnings("serial")
5518 static final class MapReduceKeysTask<K,V,U>
5519 extends BulkTask<K,V,U> {
5520 final Function<? super K, ? extends U> transformer;
5521 final BiFunction<? super U, ? super U, ? extends U> reducer;
5522 U result;
5523 MapReduceKeysTask<K,V,U> rights, nextRight;
5524 MapReduceKeysTask
5525 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5526 MapReduceKeysTask<K,V,U> nextRight,
5527 Function<? super K, ? extends U> transformer,
5528 BiFunction<? super U, ? super U, ? extends U> reducer) {
5529 super(p, b, i, f, t); this.nextRight = nextRight;
5530 this.transformer = transformer;
5531 this.reducer = reducer;
5532 }
5533 public final U getRawResult() { return result; }
5534 public final void compute() {
5535 final Function<? super K, ? extends U> transformer;
5536 final BiFunction<? super U, ? super U, ? extends U> reducer;
5537 if ((transformer = this.transformer) != null &&
5538 (reducer = this.reducer) != null) {
5539 for (int i = baseIndex, f, h; batch > 0 &&
5540 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5541 addToPendingCount(1);
5542 (rights = new MapReduceKeysTask<K,V,U>
5543 (this, batch >>>= 1, baseLimit = h, f, tab,
5544 rights, transformer, reducer)).fork();
5545 }
5546 U r = null;
5547 for (Node<K,V> p; (p = advance()) != null; ) {
5548 U u;
5549 if ((u = transformer.apply(p.key)) != null)
5550 r = (r == null) ? u : reducer.apply(r, u);
5551 }
5552 result = r;
5553 CountedCompleter<?> c;
5554 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5555 @SuppressWarnings("unchecked")
5556 MapReduceKeysTask<K,V,U>
5557 t = (MapReduceKeysTask<K,V,U>)c,
5558 s = t.rights;
5559 while (s != null) {
5560 U tr, sr;
5561 if ((sr = s.result) != null)
5562 t.result = (((tr = t.result) == null) ? sr :
5563 reducer.apply(tr, sr));
5564 s = t.rights = s.nextRight;
5565 }
5566 }
5567 }
5568 }
5569 }
5570
5571 @SuppressWarnings("serial")
5572 static final class MapReduceValuesTask<K,V,U>
5573 extends BulkTask<K,V,U> {
5574 final Function<? super V, ? extends U> transformer;
5575 final BiFunction<? super U, ? super U, ? extends U> reducer;
5576 U result;
5577 MapReduceValuesTask<K,V,U> rights, nextRight;
5578 MapReduceValuesTask
5579 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5580 MapReduceValuesTask<K,V,U> nextRight,
5581 Function<? super V, ? extends U> transformer,
5582 BiFunction<? super U, ? super U, ? extends U> reducer) {
5583 super(p, b, i, f, t); this.nextRight = nextRight;
5584 this.transformer = transformer;
5585 this.reducer = reducer;
5586 }
5587 public final U getRawResult() { return result; }
5588 public final void compute() {
5589 final Function<? super V, ? extends U> transformer;
5590 final BiFunction<? super U, ? super U, ? extends U> reducer;
5591 if ((transformer = this.transformer) != null &&
5592 (reducer = this.reducer) != null) {
5593 for (int i = baseIndex, f, h; batch > 0 &&
5594 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5595 addToPendingCount(1);
5596 (rights = new MapReduceValuesTask<K,V,U>
5597 (this, batch >>>= 1, baseLimit = h, f, tab,
5598 rights, transformer, reducer)).fork();
5599 }
5600 U r = null;
5601 for (Node<K,V> p; (p = advance()) != null; ) {
5602 U u;
5603 if ((u = transformer.apply(p.val)) != null)
5604 r = (r == null) ? u : reducer.apply(r, u);
5605 }
5606 result = r;
5607 CountedCompleter<?> c;
5608 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5609 @SuppressWarnings("unchecked")
5610 MapReduceValuesTask<K,V,U>
5611 t = (MapReduceValuesTask<K,V,U>)c,
5612 s = t.rights;
5613 while (s != null) {
5614 U tr, sr;
5615 if ((sr = s.result) != null)
5616 t.result = (((tr = t.result) == null) ? sr :
5617 reducer.apply(tr, sr));
5618 s = t.rights = s.nextRight;
5619 }
5620 }
5621 }
5622 }
5623 }
5624
5625 @SuppressWarnings("serial")
5626 static final class MapReduceEntriesTask<K,V,U>
5627 extends BulkTask<K,V,U> {
5628 final Function<Map.Entry<K,V>, ? extends U> transformer;
5629 final BiFunction<? super U, ? super U, ? extends U> reducer;
5630 U result;
5631 MapReduceEntriesTask<K,V,U> rights, nextRight;
5632 MapReduceEntriesTask
5633 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5634 MapReduceEntriesTask<K,V,U> nextRight,
5635 Function<Map.Entry<K,V>, ? extends U> transformer,
5636 BiFunction<? super U, ? super U, ? extends U> reducer) {
5637 super(p, b, i, f, t); this.nextRight = nextRight;
5638 this.transformer = transformer;
5639 this.reducer = reducer;
5640 }
5641 public final U getRawResult() { return result; }
5642 public final void compute() {
5643 final Function<Map.Entry<K,V>, ? extends U> transformer;
5644 final BiFunction<? super U, ? super U, ? extends U> reducer;
5645 if ((transformer = this.transformer) != null &&
5646 (reducer = this.reducer) != null) {
5647 for (int i = baseIndex, f, h; batch > 0 &&
5648 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5649 addToPendingCount(1);
5650 (rights = new MapReduceEntriesTask<K,V,U>
5651 (this, batch >>>= 1, baseLimit = h, f, tab,
5652 rights, transformer, reducer)).fork();
5653 }
5654 U r = null;
5655 for (Node<K,V> p; (p = advance()) != null; ) {
5656 U u;
5657 if ((u = transformer.apply(p)) != null)
5658 r = (r == null) ? u : reducer.apply(r, u);
5659 }
5660 result = r;
5661 CountedCompleter<?> c;
5662 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5663 @SuppressWarnings("unchecked")
5664 MapReduceEntriesTask<K,V,U>
5665 t = (MapReduceEntriesTask<K,V,U>)c,
5666 s = t.rights;
5667 while (s != null) {
5668 U tr, sr;
5669 if ((sr = s.result) != null)
5670 t.result = (((tr = t.result) == null) ? sr :
5671 reducer.apply(tr, sr));
5672 s = t.rights = s.nextRight;
5673 }
5674 }
5675 }
5676 }
5677 }
5678
5679 @SuppressWarnings("serial")
5680 static final class MapReduceMappingsTask<K,V,U>
5681 extends BulkTask<K,V,U> {
5682 final BiFunction<? super K, ? super V, ? extends U> transformer;
5683 final BiFunction<? super U, ? super U, ? extends U> reducer;
5684 U result;
5685 MapReduceMappingsTask<K,V,U> rights, nextRight;
5686 MapReduceMappingsTask
5687 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5688 MapReduceMappingsTask<K,V,U> nextRight,
5689 BiFunction<? super K, ? super V, ? extends U> transformer,
5690 BiFunction<? super U, ? super U, ? extends U> reducer) {
5691 super(p, b, i, f, t); this.nextRight = nextRight;
5692 this.transformer = transformer;
5693 this.reducer = reducer;
5694 }
5695 public final U getRawResult() { return result; }
5696 public final void compute() {
5697 final BiFunction<? super K, ? super V, ? extends U> transformer;
5698 final BiFunction<? super U, ? super U, ? extends U> reducer;
5699 if ((transformer = this.transformer) != null &&
5700 (reducer = this.reducer) != null) {
5701 for (int i = baseIndex, f, h; batch > 0 &&
5702 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5703 addToPendingCount(1);
5704 (rights = new MapReduceMappingsTask<K,V,U>
5705 (this, batch >>>= 1, baseLimit = h, f, tab,
5706 rights, transformer, reducer)).fork();
5707 }
5708 U r = null;
5709 for (Node<K,V> p; (p = advance()) != null; ) {
5710 U u;
5711 if ((u = transformer.apply(p.key, p.val)) != null)
5712 r = (r == null) ? u : reducer.apply(r, u);
5713 }
5714 result = r;
5715 CountedCompleter<?> c;
5716 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5717 @SuppressWarnings("unchecked")
5718 MapReduceMappingsTask<K,V,U>
5719 t = (MapReduceMappingsTask<K,V,U>)c,
5720 s = t.rights;
5721 while (s != null) {
5722 U tr, sr;
5723 if ((sr = s.result) != null)
5724 t.result = (((tr = t.result) == null) ? sr :
5725 reducer.apply(tr, sr));
5726 s = t.rights = s.nextRight;
5727 }
5728 }
5729 }
5730 }
5731 }
5732
5733 @SuppressWarnings("serial")
5734 static final class MapReduceKeysToDoubleTask<K,V>
5735 extends BulkTask<K,V,Double> {
5736 final ToDoubleFunction<? super K> transformer;
5737 final DoubleBinaryOperator reducer;
5738 final double basis;
5739 double result;
5740 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5741 MapReduceKeysToDoubleTask
5742 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5743 MapReduceKeysToDoubleTask<K,V> nextRight,
5744 ToDoubleFunction<? super K> transformer,
5745 double basis,
5746 DoubleBinaryOperator reducer) {
5747 super(p, b, i, f, t); this.nextRight = nextRight;
5748 this.transformer = transformer;
5749 this.basis = basis; this.reducer = reducer;
5750 }
5751 public final Double getRawResult() { return result; }
5752 public final void compute() {
5753 final ToDoubleFunction<? super K> transformer;
5754 final DoubleBinaryOperator reducer;
5755 if ((transformer = this.transformer) != null &&
5756 (reducer = this.reducer) != null) {
5757 double r = this.basis;
5758 for (int i = baseIndex, f, h; batch > 0 &&
5759 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5760 addToPendingCount(1);
5761 (rights = new MapReduceKeysToDoubleTask<K,V>
5762 (this, batch >>>= 1, baseLimit = h, f, tab,
5763 rights, transformer, r, reducer)).fork();
5764 }
5765 for (Node<K,V> p; (p = advance()) != null; )
5766 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5767 result = r;
5768 CountedCompleter<?> c;
5769 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5770 @SuppressWarnings("unchecked")
5771 MapReduceKeysToDoubleTask<K,V>
5772 t = (MapReduceKeysToDoubleTask<K,V>)c,
5773 s = t.rights;
5774 while (s != null) {
5775 t.result = reducer.applyAsDouble(t.result, s.result);
5776 s = t.rights = s.nextRight;
5777 }
5778 }
5779 }
5780 }
5781 }
5782
5783 @SuppressWarnings("serial")
5784 static final class MapReduceValuesToDoubleTask<K,V>
5785 extends BulkTask<K,V,Double> {
5786 final ToDoubleFunction<? super V> transformer;
5787 final DoubleBinaryOperator reducer;
5788 final double basis;
5789 double result;
5790 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5791 MapReduceValuesToDoubleTask
5792 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5793 MapReduceValuesToDoubleTask<K,V> nextRight,
5794 ToDoubleFunction<? super V> transformer,
5795 double basis,
5796 DoubleBinaryOperator reducer) {
5797 super(p, b, i, f, t); this.nextRight = nextRight;
5798 this.transformer = transformer;
5799 this.basis = basis; this.reducer = reducer;
5800 }
5801 public final Double getRawResult() { return result; }
5802 public final void compute() {
5803 final ToDoubleFunction<? super V> transformer;
5804 final DoubleBinaryOperator reducer;
5805 if ((transformer = this.transformer) != null &&
5806 (reducer = this.reducer) != null) {
5807 double r = this.basis;
5808 for (int i = baseIndex, f, h; batch > 0 &&
5809 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5810 addToPendingCount(1);
5811 (rights = new MapReduceValuesToDoubleTask<K,V>
5812 (this, batch >>>= 1, baseLimit = h, f, tab,
5813 rights, transformer, r, reducer)).fork();
5814 }
5815 for (Node<K,V> p; (p = advance()) != null; )
5816 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5817 result = r;
5818 CountedCompleter<?> c;
5819 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5820 @SuppressWarnings("unchecked")
5821 MapReduceValuesToDoubleTask<K,V>
5822 t = (MapReduceValuesToDoubleTask<K,V>)c,
5823 s = t.rights;
5824 while (s != null) {
5825 t.result = reducer.applyAsDouble(t.result, s.result);
5826 s = t.rights = s.nextRight;
5827 }
5828 }
5829 }
5830 }
5831 }
5832
5833 @SuppressWarnings("serial")
5834 static final class MapReduceEntriesToDoubleTask<K,V>
5835 extends BulkTask<K,V,Double> {
5836 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5837 final DoubleBinaryOperator reducer;
5838 final double basis;
5839 double result;
5840 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5841 MapReduceEntriesToDoubleTask
5842 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5843 MapReduceEntriesToDoubleTask<K,V> nextRight,
5844 ToDoubleFunction<Map.Entry<K,V>> transformer,
5845 double basis,
5846 DoubleBinaryOperator reducer) {
5847 super(p, b, i, f, t); this.nextRight = nextRight;
5848 this.transformer = transformer;
5849 this.basis = basis; this.reducer = reducer;
5850 }
5851 public final Double getRawResult() { return result; }
5852 public final void compute() {
5853 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5854 final DoubleBinaryOperator reducer;
5855 if ((transformer = this.transformer) != null &&
5856 (reducer = this.reducer) != null) {
5857 double r = this.basis;
5858 for (int i = baseIndex, f, h; batch > 0 &&
5859 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5860 addToPendingCount(1);
5861 (rights = new MapReduceEntriesToDoubleTask<K,V>
5862 (this, batch >>>= 1, baseLimit = h, f, tab,
5863 rights, transformer, r, reducer)).fork();
5864 }
5865 for (Node<K,V> p; (p = advance()) != null; )
5866 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5867 result = r;
5868 CountedCompleter<?> c;
5869 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5870 @SuppressWarnings("unchecked")
5871 MapReduceEntriesToDoubleTask<K,V>
5872 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5873 s = t.rights;
5874 while (s != null) {
5875 t.result = reducer.applyAsDouble(t.result, s.result);
5876 s = t.rights = s.nextRight;
5877 }
5878 }
5879 }
5880 }
5881 }
5882
5883 @SuppressWarnings("serial")
5884 static final class MapReduceMappingsToDoubleTask<K,V>
5885 extends BulkTask<K,V,Double> {
5886 final ToDoubleBiFunction<? super K, ? super V> transformer;
5887 final DoubleBinaryOperator reducer;
5888 final double basis;
5889 double result;
5890 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5891 MapReduceMappingsToDoubleTask
5892 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5893 MapReduceMappingsToDoubleTask<K,V> nextRight,
5894 ToDoubleBiFunction<? super K, ? super V> transformer,
5895 double basis,
5896 DoubleBinaryOperator reducer) {
5897 super(p, b, i, f, t); this.nextRight = nextRight;
5898 this.transformer = transformer;
5899 this.basis = basis; this.reducer = reducer;
5900 }
5901 public final Double getRawResult() { return result; }
5902 public final void compute() {
5903 final ToDoubleBiFunction<? super K, ? super V> transformer;
5904 final DoubleBinaryOperator reducer;
5905 if ((transformer = this.transformer) != null &&
5906 (reducer = this.reducer) != null) {
5907 double r = this.basis;
5908 for (int i = baseIndex, f, h; batch > 0 &&
5909 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5910 addToPendingCount(1);
5911 (rights = new MapReduceMappingsToDoubleTask<K,V>
5912 (this, batch >>>= 1, baseLimit = h, f, tab,
5913 rights, transformer, r, reducer)).fork();
5914 }
5915 for (Node<K,V> p; (p = advance()) != null; )
5916 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5917 result = r;
5918 CountedCompleter<?> c;
5919 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5920 @SuppressWarnings("unchecked")
5921 MapReduceMappingsToDoubleTask<K,V>
5922 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5923 s = t.rights;
5924 while (s != null) {
5925 t.result = reducer.applyAsDouble(t.result, s.result);
5926 s = t.rights = s.nextRight;
5927 }
5928 }
5929 }
5930 }
5931 }
5932
5933 @SuppressWarnings("serial")
5934 static final class MapReduceKeysToLongTask<K,V>
5935 extends BulkTask<K,V,Long> {
5936 final ToLongFunction<? super K> transformer;
5937 final LongBinaryOperator reducer;
5938 final long basis;
5939 long result;
5940 MapReduceKeysToLongTask<K,V> rights, nextRight;
5941 MapReduceKeysToLongTask
5942 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5943 MapReduceKeysToLongTask<K,V> nextRight,
5944 ToLongFunction<? super K> transformer,
5945 long basis,
5946 LongBinaryOperator reducer) {
5947 super(p, b, i, f, t); this.nextRight = nextRight;
5948 this.transformer = transformer;
5949 this.basis = basis; this.reducer = reducer;
5950 }
5951 public final Long getRawResult() { return result; }
5952 public final void compute() {
5953 final ToLongFunction<? super K> transformer;
5954 final LongBinaryOperator reducer;
5955 if ((transformer = this.transformer) != null &&
5956 (reducer = this.reducer) != null) {
5957 long r = this.basis;
5958 for (int i = baseIndex, f, h; batch > 0 &&
5959 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5960 addToPendingCount(1);
5961 (rights = new MapReduceKeysToLongTask<K,V>
5962 (this, batch >>>= 1, baseLimit = h, f, tab,
5963 rights, transformer, r, reducer)).fork();
5964 }
5965 for (Node<K,V> p; (p = advance()) != null; )
5966 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5967 result = r;
5968 CountedCompleter<?> c;
5969 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5970 @SuppressWarnings("unchecked")
5971 MapReduceKeysToLongTask<K,V>
5972 t = (MapReduceKeysToLongTask<K,V>)c,
5973 s = t.rights;
5974 while (s != null) {
5975 t.result = reducer.applyAsLong(t.result, s.result);
5976 s = t.rights = s.nextRight;
5977 }
5978 }
5979 }
5980 }
5981 }
5982
5983 @SuppressWarnings("serial")
5984 static final class MapReduceValuesToLongTask<K,V>
5985 extends BulkTask<K,V,Long> {
5986 final ToLongFunction<? super V> transformer;
5987 final LongBinaryOperator reducer;
5988 final long basis;
5989 long result;
5990 MapReduceValuesToLongTask<K,V> rights, nextRight;
5991 MapReduceValuesToLongTask
5992 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5993 MapReduceValuesToLongTask<K,V> nextRight,
5994 ToLongFunction<? super V> transformer,
5995 long basis,
5996 LongBinaryOperator reducer) {
5997 super(p, b, i, f, t); this.nextRight = nextRight;
5998 this.transformer = transformer;
5999 this.basis = basis; this.reducer = reducer;
6000 }
6001 public final Long getRawResult() { return result; }
6002 public final void compute() {
6003 final ToLongFunction<? super V> transformer;
6004 final LongBinaryOperator reducer;
6005 if ((transformer = this.transformer) != null &&
6006 (reducer = this.reducer) != null) {
6007 long r = this.basis;
6008 for (int i = baseIndex, f, h; batch > 0 &&
6009 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6010 addToPendingCount(1);
6011 (rights = new MapReduceValuesToLongTask<K,V>
6012 (this, batch >>>= 1, baseLimit = h, f, tab,
6013 rights, transformer, r, reducer)).fork();
6014 }
6015 for (Node<K,V> p; (p = advance()) != null; )
6016 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6017 result = r;
6018 CountedCompleter<?> c;
6019 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6020 @SuppressWarnings("unchecked")
6021 MapReduceValuesToLongTask<K,V>
6022 t = (MapReduceValuesToLongTask<K,V>)c,
6023 s = t.rights;
6024 while (s != null) {
6025 t.result = reducer.applyAsLong(t.result, s.result);
6026 s = t.rights = s.nextRight;
6027 }
6028 }
6029 }
6030 }
6031 }
6032
6033 @SuppressWarnings("serial")
6034 static final class MapReduceEntriesToLongTask<K,V>
6035 extends BulkTask<K,V,Long> {
6036 final ToLongFunction<Map.Entry<K,V>> transformer;
6037 final LongBinaryOperator reducer;
6038 final long basis;
6039 long result;
6040 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6041 MapReduceEntriesToLongTask
6042 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6043 MapReduceEntriesToLongTask<K,V> nextRight,
6044 ToLongFunction<Map.Entry<K,V>> transformer,
6045 long basis,
6046 LongBinaryOperator reducer) {
6047 super(p, b, i, f, t); this.nextRight = nextRight;
6048 this.transformer = transformer;
6049 this.basis = basis; this.reducer = reducer;
6050 }
6051 public final Long getRawResult() { return result; }
6052 public final void compute() {
6053 final ToLongFunction<Map.Entry<K,V>> transformer;
6054 final LongBinaryOperator reducer;
6055 if ((transformer = this.transformer) != null &&
6056 (reducer = this.reducer) != null) {
6057 long r = this.basis;
6058 for (int i = baseIndex, f, h; batch > 0 &&
6059 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6060 addToPendingCount(1);
6061 (rights = new MapReduceEntriesToLongTask<K,V>
6062 (this, batch >>>= 1, baseLimit = h, f, tab,
6063 rights, transformer, r, reducer)).fork();
6064 }
6065 for (Node<K,V> p; (p = advance()) != null; )
6066 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6067 result = r;
6068 CountedCompleter<?> c;
6069 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6070 @SuppressWarnings("unchecked")
6071 MapReduceEntriesToLongTask<K,V>
6072 t = (MapReduceEntriesToLongTask<K,V>)c,
6073 s = t.rights;
6074 while (s != null) {
6075 t.result = reducer.applyAsLong(t.result, s.result);
6076 s = t.rights = s.nextRight;
6077 }
6078 }
6079 }
6080 }
6081 }
6082
6083 @SuppressWarnings("serial")
6084 static final class MapReduceMappingsToLongTask<K,V>
6085 extends BulkTask<K,V,Long> {
6086 final ToLongBiFunction<? super K, ? super V> transformer;
6087 final LongBinaryOperator reducer;
6088 final long basis;
6089 long result;
6090 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6091 MapReduceMappingsToLongTask
6092 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6093 MapReduceMappingsToLongTask<K,V> nextRight,
6094 ToLongBiFunction<? super K, ? super V> transformer,
6095 long basis,
6096 LongBinaryOperator reducer) {
6097 super(p, b, i, f, t); this.nextRight = nextRight;
6098 this.transformer = transformer;
6099 this.basis = basis; this.reducer = reducer;
6100 }
6101 public final Long getRawResult() { return result; }
6102 public final void compute() {
6103 final ToLongBiFunction<? super K, ? super V> transformer;
6104 final LongBinaryOperator reducer;
6105 if ((transformer = this.transformer) != null &&
6106 (reducer = this.reducer) != null) {
6107 long r = this.basis;
6108 for (int i = baseIndex, f, h; batch > 0 &&
6109 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6110 addToPendingCount(1);
6111 (rights = new MapReduceMappingsToLongTask<K,V>
6112 (this, batch >>>= 1, baseLimit = h, f, tab,
6113 rights, transformer, r, reducer)).fork();
6114 }
6115 for (Node<K,V> p; (p = advance()) != null; )
6116 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6117 result = r;
6118 CountedCompleter<?> c;
6119 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6120 @SuppressWarnings("unchecked")
6121 MapReduceMappingsToLongTask<K,V>
6122 t = (MapReduceMappingsToLongTask<K,V>)c,
6123 s = t.rights;
6124 while (s != null) {
6125 t.result = reducer.applyAsLong(t.result, s.result);
6126 s = t.rights = s.nextRight;
6127 }
6128 }
6129 }
6130 }
6131 }
6132
6133 @SuppressWarnings("serial")
6134 static final class MapReduceKeysToIntTask<K,V>
6135 extends BulkTask<K,V,Integer> {
6136 final ToIntFunction<? super K> transformer;
6137 final IntBinaryOperator reducer;
6138 final int basis;
6139 int result;
6140 MapReduceKeysToIntTask<K,V> rights, nextRight;
6141 MapReduceKeysToIntTask
6142 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6143 MapReduceKeysToIntTask<K,V> nextRight,
6144 ToIntFunction<? super K> transformer,
6145 int basis,
6146 IntBinaryOperator reducer) {
6147 super(p, b, i, f, t); this.nextRight = nextRight;
6148 this.transformer = transformer;
6149 this.basis = basis; this.reducer = reducer;
6150 }
6151 public final Integer getRawResult() { return result; }
6152 public final void compute() {
6153 final ToIntFunction<? super K> transformer;
6154 final IntBinaryOperator reducer;
6155 if ((transformer = this.transformer) != null &&
6156 (reducer = this.reducer) != null) {
6157 int r = this.basis;
6158 for (int i = baseIndex, f, h; batch > 0 &&
6159 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6160 addToPendingCount(1);
6161 (rights = new MapReduceKeysToIntTask<K,V>
6162 (this, batch >>>= 1, baseLimit = h, f, tab,
6163 rights, transformer, r, reducer)).fork();
6164 }
6165 for (Node<K,V> p; (p = advance()) != null; )
6166 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6167 result = r;
6168 CountedCompleter<?> c;
6169 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6170 @SuppressWarnings("unchecked")
6171 MapReduceKeysToIntTask<K,V>
6172 t = (MapReduceKeysToIntTask<K,V>)c,
6173 s = t.rights;
6174 while (s != null) {
6175 t.result = reducer.applyAsInt(t.result, s.result);
6176 s = t.rights = s.nextRight;
6177 }
6178 }
6179 }
6180 }
6181 }
6182
6183 @SuppressWarnings("serial")
6184 static final class MapReduceValuesToIntTask<K,V>
6185 extends BulkTask<K,V,Integer> {
6186 final ToIntFunction<? super V> transformer;
6187 final IntBinaryOperator reducer;
6188 final int basis;
6189 int result;
6190 MapReduceValuesToIntTask<K,V> rights, nextRight;
6191 MapReduceValuesToIntTask
6192 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6193 MapReduceValuesToIntTask<K,V> nextRight,
6194 ToIntFunction<? super V> transformer,
6195 int basis,
6196 IntBinaryOperator reducer) {
6197 super(p, b, i, f, t); this.nextRight = nextRight;
6198 this.transformer = transformer;
6199 this.basis = basis; this.reducer = reducer;
6200 }
6201 public final Integer getRawResult() { return result; }
6202 public final void compute() {
6203 final ToIntFunction<? super V> transformer;
6204 final IntBinaryOperator reducer;
6205 if ((transformer = this.transformer) != null &&
6206 (reducer = this.reducer) != null) {
6207 int r = this.basis;
6208 for (int i = baseIndex, f, h; batch > 0 &&
6209 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6210 addToPendingCount(1);
6211 (rights = new MapReduceValuesToIntTask<K,V>
6212 (this, batch >>>= 1, baseLimit = h, f, tab,
6213 rights, transformer, r, reducer)).fork();
6214 }
6215 for (Node<K,V> p; (p = advance()) != null; )
6216 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6217 result = r;
6218 CountedCompleter<?> c;
6219 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6220 @SuppressWarnings("unchecked")
6221 MapReduceValuesToIntTask<K,V>
6222 t = (MapReduceValuesToIntTask<K,V>)c,
6223 s = t.rights;
6224 while (s != null) {
6225 t.result = reducer.applyAsInt(t.result, s.result);
6226 s = t.rights = s.nextRight;
6227 }
6228 }
6229 }
6230 }
6231 }
6232
6233 @SuppressWarnings("serial")
6234 static final class MapReduceEntriesToIntTask<K,V>
6235 extends BulkTask<K,V,Integer> {
6236 final ToIntFunction<Map.Entry<K,V>> transformer;
6237 final IntBinaryOperator reducer;
6238 final int basis;
6239 int result;
6240 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6241 MapReduceEntriesToIntTask
6242 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6243 MapReduceEntriesToIntTask<K,V> nextRight,
6244 ToIntFunction<Map.Entry<K,V>> transformer,
6245 int basis,
6246 IntBinaryOperator reducer) {
6247 super(p, b, i, f, t); this.nextRight = nextRight;
6248 this.transformer = transformer;
6249 this.basis = basis; this.reducer = reducer;
6250 }
6251 public final Integer getRawResult() { return result; }
6252 public final void compute() {
6253 final ToIntFunction<Map.Entry<K,V>> transformer;
6254 final IntBinaryOperator reducer;
6255 if ((transformer = this.transformer) != null &&
6256 (reducer = this.reducer) != null) {
6257 int r = this.basis;
6258 for (int i = baseIndex, f, h; batch > 0 &&
6259 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6260 addToPendingCount(1);
6261 (rights = new MapReduceEntriesToIntTask<K,V>
6262 (this, batch >>>= 1, baseLimit = h, f, tab,
6263 rights, transformer, r, reducer)).fork();
6264 }
6265 for (Node<K,V> p; (p = advance()) != null; )
6266 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6267 result = r;
6268 CountedCompleter<?> c;
6269 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6270 @SuppressWarnings("unchecked")
6271 MapReduceEntriesToIntTask<K,V>
6272 t = (MapReduceEntriesToIntTask<K,V>)c,
6273 s = t.rights;
6274 while (s != null) {
6275 t.result = reducer.applyAsInt(t.result, s.result);
6276 s = t.rights = s.nextRight;
6277 }
6278 }
6279 }
6280 }
6281 }
6282
6283 @SuppressWarnings("serial")
6284 static final class MapReduceMappingsToIntTask<K,V>
6285 extends BulkTask<K,V,Integer> {
6286 final ToIntBiFunction<? super K, ? super V> transformer;
6287 final IntBinaryOperator reducer;
6288 final int basis;
6289 int result;
6290 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6291 MapReduceMappingsToIntTask
6292 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6293 MapReduceMappingsToIntTask<K,V> nextRight,
6294 ToIntBiFunction<? super K, ? super V> transformer,
6295 int basis,
6296 IntBinaryOperator reducer) {
6297 super(p, b, i, f, t); this.nextRight = nextRight;
6298 this.transformer = transformer;
6299 this.basis = basis; this.reducer = reducer;
6300 }
6301 public final Integer getRawResult() { return result; }
6302 public final void compute() {
6303 final ToIntBiFunction<? super K, ? super V> transformer;
6304 final IntBinaryOperator reducer;
6305 if ((transformer = this.transformer) != null &&
6306 (reducer = this.reducer) != null) {
6307 int r = this.basis;
6308 for (int i = baseIndex, f, h; batch > 0 &&
6309 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6310 addToPendingCount(1);
6311 (rights = new MapReduceMappingsToIntTask<K,V>
6312 (this, batch >>>= 1, baseLimit = h, f, tab,
6313 rights, transformer, r, reducer)).fork();
6314 }
6315 for (Node<K,V> p; (p = advance()) != null; )
6316 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6317 result = r;
6318 CountedCompleter<?> c;
6319 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6320 @SuppressWarnings("unchecked")
6321 MapReduceMappingsToIntTask<K,V>
6322 t = (MapReduceMappingsToIntTask<K,V>)c,
6323 s = t.rights;
6324 while (s != null) {
6325 t.result = reducer.applyAsInt(t.result, s.result);
6326 s = t.rights = s.nextRight;
6327 }
6328 }
6329 }
6330 }
6331 }
6332
6333 // Unsafe mechanics
6334 private static final Unsafe U = Unsafe.getUnsafe();
6335 private static final long SIZECTL;
6336 private static final long TRANSFERINDEX;
6337 private static final long BASECOUNT;
6338 private static final long CELLSBUSY;
6339 private static final long CELLVALUE;
6340 private static final int ABASE;
6341 private static final int ASHIFT;
6342
6343 static {
6344 try {
6345 SIZECTL = U.objectFieldOffset
6346 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6347 TRANSFERINDEX = U.objectFieldOffset
6348 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6349 BASECOUNT = U.objectFieldOffset
6350 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6351 CELLSBUSY = U.objectFieldOffset
6352 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6353
6354 CELLVALUE = U.objectFieldOffset
6355 (CounterCell.class.getDeclaredField("value"));
6356
6357 ABASE = U.arrayBaseOffset(Node[].class);
6358 int scale = U.arrayIndexScale(Node[].class);
6359 if ((scale & (scale - 1)) != 0)
6360 throw new ExceptionInInitializerError("array index scale not a power of two");
6361 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6362 } catch (ReflectiveOperationException e) {
6363 throw new ExceptionInInitializerError(e);
6364 }
6365
6366 // Reduce the risk of rare disastrous classloading in first call to
6367 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6368 Class<?> ensureLoaded = LockSupport.class;
6369
6370 // Eager class load observed to help JIT during startup
6371 ensureLoaded = ReservationNode.class;
6372 }
6373 }