ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.34
Committed: Tue Dec 9 21:43:57 2003 UTC (20 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.33: +5 -1 lines
Log Message:
Entry toString shouldn't throw exception

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain. Use, modify, and
4 * redistribute this code in any way without acknowledgement.
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as {@link java.util.Hashtable}, and
19 * includes versions of methods corresponding to each method of
20 * <tt>Hashtable</tt>. However, even though all operations are
21 * thread-safe, retrieval operations do <em>not</em> entail locking,
22 * and there is <em>not</em> any support for locking the entire table
23 * in a way that prevents all access. This class is fully
24 * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 * thread safety but not on its synchronization details.
26 *
27 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28 * block, so may overlap with update operations (including
29 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30 * of the most recently <em>completed</em> update operations holding
31 * upon their onset. For aggregate operations such as <tt>putAll</tt>
32 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 * removal of only some entries. Similarly, Iterators and
34 * Enumerations return elements reflecting the state of the hash table
35 * at some point at or since the creation of the iterator/enumeration.
36 * They do <em>not</em> throw
37 * {@link ConcurrentModificationException}. However, iterators are
38 * designed to be used by only one thread at a time.
39 *
40 * <p> The allowed concurrency among update operations is guided by
41 * the optional <tt>concurrencyLevel</tt> constructor argument
42 * (default 16), which is used as a hint for internal sizing. The
43 * table is internally partitioned to try to permit the indicated
44 * number of concurrent updates without contention. Because placement
45 * in hash tables is essentially random, the actual concurrency will
46 * vary. Ideally, you should choose a value to accommodate as many
47 * threads as will ever concurrently modify the table. Using a
48 * significantly higher value than you need can waste space and time,
49 * and a significantly lower value can lead to thread contention. But
50 * overestimates and underestimates within an order of magnitude do
51 * not usually have much noticeable impact. A value of one is
52 * appropriate when it is known that only one thread will modify
53 * and all others will only read.
54 *
55 * <p>This class implements all of the <em>optional</em> methods
56 * of the {@link Map} and {@link Iterator} interfaces.
57 *
58 * <p> Like {@link java.util.Hashtable} but unlike {@link
59 * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
60 * used as a key or value.
61 *
62 * @since 1.5
63 * @author Doug Lea
64 * @param <K> the type of keys maintained by this map
65 * @param <V> the type of mapped values
66 */
67 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
68 implements ConcurrentMap<K, V>, Cloneable, Serializable {
69 private static final long serialVersionUID = 7249069246763182397L;
70
71 /*
72 * The basic strategy is to subdivide the table among Segments,
73 * each of which itself is a concurrently readable hash table.
74 */
75
76 /* ---------------- Constants -------------- */
77
78 /**
79 * The default initial number of table slots for this table.
80 * Used when not otherwise specified in constructor.
81 */
82 private static int DEFAULT_INITIAL_CAPACITY = 16;
83
84 /**
85 * The maximum capacity, used if a higher value is implicitly
86 * specified by either of the constructors with arguments. MUST
87 * be a power of two <= 1<<30 to ensure that entries are indexible
88 * using ints.
89 */
90 static final int MAXIMUM_CAPACITY = 1 << 30;
91
92 /**
93 * The default load factor for this table. Used when not
94 * otherwise specified in constructor.
95 */
96 static final float DEFAULT_LOAD_FACTOR = 0.75f;
97
98 /**
99 * The default number of concurrency control segments.
100 **/
101 private static final int DEFAULT_SEGMENTS = 16;
102
103 /**
104 * The maximum number of segments to allow; used to bound ctor arguments.
105 */
106 private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
107
108 /* ---------------- Fields -------------- */
109
110 /**
111 * Mask value for indexing into segments. The upper bits of a
112 * key's hash code are used to choose the segment.
113 **/
114 private final int segmentMask;
115
116 /**
117 * Shift value for indexing within segments.
118 **/
119 private final int segmentShift;
120
121 /**
122 * The segments, each of which is a specialized hash table
123 */
124 private final Segment[] segments;
125
126 private transient Set<K> keySet;
127 private transient Set<Map.Entry<K,V>> entrySet;
128 private transient Collection<V> values;
129
130 /* ---------------- Small Utilities -------------- */
131
132 /**
133 * Return a hash code for non-null Object x.
134 * Uses the same hash code spreader as most other j.u hash tables.
135 * @param x the object serving as a key
136 * @return the hash code
137 */
138 private static int hash(Object x) {
139 int h = x.hashCode();
140 h += ~(h << 9);
141 h ^= (h >>> 14);
142 h += (h << 4);
143 h ^= (h >>> 10);
144 return h;
145 }
146
147 /**
148 * Return the segment that should be used for key with given hash
149 */
150 private Segment<K,V> segmentFor(int hash) {
151 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
152 }
153
154 /* ---------------- Inner Classes -------------- */
155
156 /**
157 * Segments are specialized versions of hash tables. This
158 * subclasses from ReentrantLock opportunistically, just to
159 * simplify some locking and avoid separate construction.
160 **/
161 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
162 /*
163 * Segments maintain a table of entry lists that are ALWAYS
164 * kept in a consistent state, so can be read without locking.
165 * Next fields of nodes are immutable (final). All list
166 * additions are performed at the front of each bin. This
167 * makes it easy to check changes, and also fast to traverse.
168 * When nodes would otherwise be changed, new nodes are
169 * created to replace them. This works well for hash tables
170 * since the bin lists tend to be short. (The average length
171 * is less than two for the default load factor threshold.)
172 *
173 * Read operations can thus proceed without locking, but rely
174 * on a memory barrier to ensure that completed write
175 * operations performed by other threads are
176 * noticed. Conveniently, the "count" field, tracking the
177 * number of elements, can also serve as the volatile variable
178 * providing proper read/write barriers. This is convenient
179 * because this field needs to be read in many read operations
180 * anyway.
181 *
182 * Implementors note. The basic rules for all this are:
183 *
184 * - All unsynchronized read operations must first read the
185 * "count" field, and should not look at table entries if
186 * it is 0.
187 *
188 * - All synchronized write operations should write to
189 * the "count" field after updating. The operations must not
190 * take any action that could even momentarily cause
191 * a concurrent read operation to see inconsistent
192 * data. This is made easier by the nature of the read
193 * operations in Map. For example, no operation
194 * can reveal that the table has grown but the threshold
195 * has not yet been updated, so there are no atomicity
196 * requirements for this with respect to reads.
197 *
198 * As a guide, all critical volatile reads and writes are marked
199 * in code comments.
200 */
201
202 private static final long serialVersionUID = 2249069246763182397L;
203
204 /**
205 * The number of elements in this segment's region.
206 **/
207 transient volatile int count;
208
209 /**
210 * Number of updates; used for checking lack of modifications
211 * in bulk-read methods.
212 */
213 transient int modCount;
214
215 /**
216 * The table is rehashed when its size exceeds this threshold.
217 * (The value of this field is always (int)(capacity *
218 * loadFactor).)
219 */
220 private transient int threshold;
221
222 /**
223 * The per-segment table
224 */
225 transient HashEntry[] table;
226
227 /**
228 * The load factor for the hash table. Even though this value
229 * is same for all segments, it is replicated to avoid needing
230 * links to outer object.
231 * @serial
232 */
233 private final float loadFactor;
234
235 Segment(int initialCapacity, float lf) {
236 loadFactor = lf;
237 setTable(new HashEntry[initialCapacity]);
238 }
239
240 /**
241 * Set table to new HashEntry array.
242 * Call only while holding lock or in constructor.
243 **/
244 private void setTable(HashEntry[] newTable) {
245 table = newTable;
246 threshold = (int)(newTable.length * loadFactor);
247 count = count; // write-volatile
248 }
249
250 /* Specialized implementations of map methods */
251
252 V get(Object key, int hash) {
253 if (count != 0) { // read-volatile
254 HashEntry[] tab = table;
255 int index = hash & (tab.length - 1);
256 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
257 while (e != null) {
258 if (e.hash == hash && key.equals(e.key))
259 return e.value;
260 e = e.next;
261 }
262 }
263 return null;
264 }
265
266 boolean containsKey(Object key, int hash) {
267 if (count != 0) { // read-volatile
268 HashEntry[] tab = table;
269 int index = hash & (tab.length - 1);
270 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
271 while (e != null) {
272 if (e.hash == hash && key.equals(e.key))
273 return true;
274 e = e.next;
275 }
276 }
277 return false;
278 }
279
280 boolean containsValue(Object value) {
281 if (count != 0) { // read-volatile
282 HashEntry[] tab = table;
283 int len = tab.length;
284 for (int i = 0 ; i < len; i++)
285 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
286 if (value.equals(e.value))
287 return true;
288 }
289 return false;
290 }
291
292 boolean replace(K key, int hash, V oldValue, V newValue) {
293 lock();
294 try {
295 int c = count;
296 HashEntry[] tab = table;
297 int index = hash & (tab.length - 1);
298 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
299 HashEntry<K,V> e = first;
300 for (;;) {
301 if (e == null)
302 return false;
303 if (e.hash == hash && key.equals(e.key))
304 break;
305 e = e.next;
306 }
307
308 V v = e.value;
309 if (v == null || !oldValue.equals(v))
310 return false;
311
312 e.value = newValue;
313 count = c; // write-volatile
314 return true;
315
316 } finally {
317 unlock();
318 }
319 }
320
321 V replace(K key, int hash, V newValue) {
322 lock();
323 try {
324 int c = count;
325 HashEntry[] tab = table;
326 int index = hash & (tab.length - 1);
327 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
328 HashEntry<K,V> e = first;
329 for (;;) {
330 if (e == null)
331 return null;
332 if (e.hash == hash && key.equals(e.key))
333 break;
334 e = e.next;
335 }
336
337 V v = e.value;
338 e.value = newValue;
339 count = c; // write-volatile
340 return v;
341
342 } finally {
343 unlock();
344 }
345 }
346
347
348 V put(K key, int hash, V value, boolean onlyIfAbsent) {
349 lock();
350 try {
351 int c = count;
352 HashEntry[] tab = table;
353 int index = hash & (tab.length - 1);
354 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
355
356 for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
357 if (e.hash == hash && key.equals(e.key)) {
358 V oldValue = e.value;
359 if (!onlyIfAbsent)
360 e.value = value;
361 ++modCount;
362 count = c; // write-volatile
363 return oldValue;
364 }
365 }
366
367 tab[index] = new HashEntry<K,V>(hash, key, value, first);
368 ++modCount;
369 ++c;
370 count = c; // write-volatile
371 if (c > threshold)
372 setTable(rehash(tab));
373 return null;
374 } finally {
375 unlock();
376 }
377 }
378
379 private HashEntry[] rehash(HashEntry[] oldTable) {
380 int oldCapacity = oldTable.length;
381 if (oldCapacity >= MAXIMUM_CAPACITY)
382 return oldTable;
383
384 /*
385 * Reclassify nodes in each list to new Map. Because we are
386 * using power-of-two expansion, the elements from each bin
387 * must either stay at same index, or move with a power of two
388 * offset. We eliminate unnecessary node creation by catching
389 * cases where old nodes can be reused because their next
390 * fields won't change. Statistically, at the default
391 * threshold, only about one-sixth of them need cloning when
392 * a table doubles. The nodes they replace will be garbage
393 * collectable as soon as they are no longer referenced by any
394 * reader thread that may be in the midst of traversing table
395 * right now.
396 */
397
398 HashEntry[] newTable = new HashEntry[oldCapacity << 1];
399 int sizeMask = newTable.length - 1;
400 for (int i = 0; i < oldCapacity ; i++) {
401 // We need to guarantee that any existing reads of old Map can
402 // proceed. So we cannot yet null out each bin.
403 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
404
405 if (e != null) {
406 HashEntry<K,V> next = e.next;
407 int idx = e.hash & sizeMask;
408
409 // Single node on list
410 if (next == null)
411 newTable[idx] = e;
412
413 else {
414 // Reuse trailing consecutive sequence at same slot
415 HashEntry<K,V> lastRun = e;
416 int lastIdx = idx;
417 for (HashEntry<K,V> last = next;
418 last != null;
419 last = last.next) {
420 int k = last.hash & sizeMask;
421 if (k != lastIdx) {
422 lastIdx = k;
423 lastRun = last;
424 }
425 }
426 newTable[lastIdx] = lastRun;
427
428 // Clone all remaining nodes
429 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
430 int k = p.hash & sizeMask;
431 newTable[k] = new HashEntry<K,V>(p.hash,
432 p.key,
433 p.value,
434 (HashEntry<K,V>) newTable[k]);
435 }
436 }
437 }
438 }
439 return newTable;
440 }
441
442 /**
443 * Remove; match on key only if value null, else match both.
444 */
445 V remove(Object key, int hash, Object value) {
446 lock();
447 try {
448 int c = count;
449 HashEntry[] tab = table;
450 int index = hash & (tab.length - 1);
451 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
452
453 HashEntry<K,V> e = first;
454 for (;;) {
455 if (e == null)
456 return null;
457 if (e.hash == hash && key.equals(e.key))
458 break;
459 e = e.next;
460 }
461
462 V oldValue = e.value;
463 if (value != null && !value.equals(oldValue))
464 return null;
465
466 // All entries following removed node can stay in list, but
467 // all preceding ones need to be cloned.
468 HashEntry<K,V> newFirst = e.next;
469 for (HashEntry<K,V> p = first; p != e; p = p.next)
470 newFirst = new HashEntry<K,V>(p.hash, p.key,
471 p.value, newFirst);
472 tab[index] = newFirst;
473 ++modCount;
474 count = c-1; // write-volatile
475 return oldValue;
476 } finally {
477 unlock();
478 }
479 }
480
481 void clear() {
482 lock();
483 try {
484 HashEntry[] tab = table;
485 for (int i = 0; i < tab.length ; i++)
486 tab[i] = null;
487 ++modCount;
488 count = 0; // write-volatile
489 } finally {
490 unlock();
491 }
492 }
493 }
494
495 /**
496 * ConcurrentHashMap list entry. Note that this is never exported
497 * out as a user-visible Map.Entry
498 */
499 private static class HashEntry<K,V> {
500 private final K key;
501 private V value;
502 private final int hash;
503 private final HashEntry<K,V> next;
504
505 HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
506 this.value = value;
507 this.hash = hash;
508 this.key = key;
509 this.next = next;
510 }
511 }
512
513
514 /* ---------------- Public operations -------------- */
515
516 /**
517 * Constructs a new, empty map with the specified initial
518 * capacity and the specified load factor.
519 *
520 * @param initialCapacity the initial capacity. The implementation
521 * performs internal sizing to accommodate this many elements.
522 * @param loadFactor the load factor threshold, used to control resizing.
523 * @param concurrencyLevel the estimated number of concurrently
524 * updating threads. The implementation performs internal sizing
525 * to try to accommodate this many threads.
526 * @throws IllegalArgumentException if the initial capacity is
527 * negative or the load factor or concurrencyLevel are
528 * nonpositive.
529 */
530 public ConcurrentHashMap(int initialCapacity,
531 float loadFactor, int concurrencyLevel) {
532 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
533 throw new IllegalArgumentException();
534
535 if (concurrencyLevel > MAX_SEGMENTS)
536 concurrencyLevel = MAX_SEGMENTS;
537
538 // Find power-of-two sizes best matching arguments
539 int sshift = 0;
540 int ssize = 1;
541 while (ssize < concurrencyLevel) {
542 ++sshift;
543 ssize <<= 1;
544 }
545 segmentShift = 32 - sshift;
546 segmentMask = ssize - 1;
547 this.segments = new Segment[ssize];
548
549 if (initialCapacity > MAXIMUM_CAPACITY)
550 initialCapacity = MAXIMUM_CAPACITY;
551 int c = initialCapacity / ssize;
552 if (c * ssize < initialCapacity)
553 ++c;
554 int cap = 1;
555 while (cap < c)
556 cap <<= 1;
557
558 for (int i = 0; i < this.segments.length; ++i)
559 this.segments[i] = new Segment<K,V>(cap, loadFactor);
560 }
561
562 /**
563 * Constructs a new, empty map with the specified initial
564 * capacity, and with default load factor and concurrencyLevel.
565 *
566 * @param initialCapacity The implementation performs internal
567 * sizing to accommodate this many elements.
568 * @throws IllegalArgumentException if the initial capacity of
569 * elements is negative.
570 */
571 public ConcurrentHashMap(int initialCapacity) {
572 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
573 }
574
575 /**
576 * Constructs a new, empty map with a default initial capacity,
577 * load factor, and concurrencyLevel.
578 */
579 public ConcurrentHashMap() {
580 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
581 }
582
583 /**
584 * Constructs a new map with the same mappings as the given map. The
585 * map is created with a capacity of twice the number of mappings in
586 * the given map or 11 (whichever is greater), and a default load factor.
587 */
588 public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
589 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
590 11),
591 DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
592 putAll(t);
593 }
594
595 // inherit Map javadoc
596 public boolean isEmpty() {
597 /*
598 * We need to keep track of per-segment modCounts to avoid ABA
599 * problems in which an element in one segment was added and
600 * in another removed during traversal, in which case the
601 * table was never actually empty at any point. Note the
602 * similar use of modCounts in the size() and containsValue()
603 * methods, which are the only other methods also susceptible
604 * to ABA problems.
605 */
606 int[] mc = new int[segments.length];
607 int mcsum = 0;
608 for (int i = 0; i < segments.length; ++i) {
609 if (segments[i].count != 0)
610 return false;
611 else
612 mcsum += mc[i] = segments[i].modCount;
613 }
614 // If mcsum happens to be zero, then we know we got a snapshot
615 // before any modifications at all were made. This is
616 // probably common enough to bother tracking.
617 if (mcsum != 0) {
618 for (int i = 0; i < segments.length; ++i) {
619 if (segments[i].count != 0 ||
620 mc[i] != segments[i].modCount)
621 return false;
622 }
623 }
624 return true;
625 }
626
627 // inherit Map javadoc
628 public int size() {
629 int[] mc = new int[segments.length];
630 for (;;) {
631 long sum = 0;
632 int mcsum = 0;
633 for (int i = 0; i < segments.length; ++i) {
634 sum += segments[i].count;
635 mcsum += mc[i] = segments[i].modCount;
636 }
637 int check = 0;
638 if (mcsum != 0) {
639 for (int i = 0; i < segments.length; ++i) {
640 check += segments[i].count;
641 if (mc[i] != segments[i].modCount) {
642 check = -1; // force retry
643 break;
644 }
645 }
646 }
647 if (check == sum) {
648 if (sum > Integer.MAX_VALUE)
649 return Integer.MAX_VALUE;
650 else
651 return (int)sum;
652 }
653 }
654 }
655
656
657 /**
658 * Returns the value to which the specified key is mapped in this table.
659 *
660 * @param key a key in the table.
661 * @return the value to which the key is mapped in this table;
662 * <tt>null</tt> if the key is not mapped to any value in
663 * this table.
664 * @throws NullPointerException if the key is
665 * <tt>null</tt>.
666 */
667 public V get(Object key) {
668 int hash = hash(key); // throws NullPointerException if key null
669 return segmentFor(hash).get(key, hash);
670 }
671
672 /**
673 * Tests if the specified object is a key in this table.
674 *
675 * @param key possible key.
676 * @return <tt>true</tt> if and only if the specified object
677 * is a key in this table, as determined by the
678 * <tt>equals</tt> method; <tt>false</tt> otherwise.
679 * @throws NullPointerException if the key is
680 * <tt>null</tt>.
681 */
682 public boolean containsKey(Object key) {
683 int hash = hash(key); // throws NullPointerException if key null
684 return segmentFor(hash).containsKey(key, hash);
685 }
686
687 /**
688 * Returns <tt>true</tt> if this map maps one or more keys to the
689 * specified value. Note: This method requires a full internal
690 * traversal of the hash table, and so is much slower than
691 * method <tt>containsKey</tt>.
692 *
693 * @param value value whose presence in this map is to be tested.
694 * @return <tt>true</tt> if this map maps one or more keys to the
695 * specified value.
696 * @throws NullPointerException if the value is <tt>null</tt>.
697 */
698 public boolean containsValue(Object value) {
699 if (value == null)
700 throw new NullPointerException();
701
702 int[] mc = new int[segments.length];
703 for (;;) {
704 int sum = 0;
705 int mcsum = 0;
706 for (int i = 0; i < segments.length; ++i) {
707 int c = segments[i].count;
708 mcsum += mc[i] = segments[i].modCount;
709 if (segments[i].containsValue(value))
710 return true;
711 }
712 boolean cleanSweep = true;
713 if (mcsum != 0) {
714 for (int i = 0; i < segments.length; ++i) {
715 int c = segments[i].count;
716 if (mc[i] != segments[i].modCount) {
717 cleanSweep = false;
718 break;
719 }
720 }
721 }
722 if (cleanSweep)
723 return false;
724 }
725 }
726
727 /**
728 * Legacy method testing if some key maps into the specified value
729 * in this table. This method is identical in functionality to
730 * {@link #containsValue}, and exists solely to ensure
731 * full compatibility with class {@link java.util.Hashtable},
732 * which supported this method prior to introduction of the
733 * Java Collections framework.
734
735 * @param value a value to search for.
736 * @return <tt>true</tt> if and only if some key maps to the
737 * <tt>value</tt> argument in this table as
738 * determined by the <tt>equals</tt> method;
739 * <tt>false</tt> otherwise.
740 * @throws NullPointerException if the value is <tt>null</tt>.
741 */
742 public boolean contains(Object value) {
743 return containsValue(value);
744 }
745
746 /**
747 * Maps the specified <tt>key</tt> to the specified
748 * <tt>value</tt> in this table. Neither the key nor the
749 * value can be <tt>null</tt>. <p>
750 *
751 * The value can be retrieved by calling the <tt>get</tt> method
752 * with a key that is equal to the original key.
753 *
754 * @param key the table key.
755 * @param value the value.
756 * @return the previous value of the specified key in this table,
757 * or <tt>null</tt> if it did not have one.
758 * @throws NullPointerException if the key or value is
759 * <tt>null</tt>.
760 */
761 public V put(K key, V value) {
762 if (value == null)
763 throw new NullPointerException();
764 int hash = hash(key);
765 return segmentFor(hash).put(key, hash, value, false);
766 }
767
768 /**
769 * If the specified key is not already associated
770 * with a value, associate it with the given value.
771 * This is equivalent to
772 * <pre>
773 * if (!map.containsKey(key))
774 * return map.put(key, value);
775 * else
776 * return map.get(key);
777 * </pre>
778 * Except that the action is performed atomically.
779 * @param key key with which the specified value is to be associated.
780 * @param value value to be associated with the specified key.
781 * @return previous value associated with specified key, or <tt>null</tt>
782 * if there was no mapping for key. A <tt>null</tt> return can
783 * also indicate that the map previously associated <tt>null</tt>
784 * with the specified key, if the implementation supports
785 * <tt>null</tt> values.
786 *
787 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
788 * not supported by this map.
789 * @throws ClassCastException if the class of the specified key or value
790 * prevents it from being stored in this map.
791 * @throws NullPointerException if the specified key or value is
792 * <tt>null</tt>.
793 *
794 **/
795 public V putIfAbsent(K key, V value) {
796 if (value == null)
797 throw new NullPointerException();
798 int hash = hash(key);
799 return segmentFor(hash).put(key, hash, value, true);
800 }
801
802
803 /**
804 * Copies all of the mappings from the specified map to this one.
805 *
806 * These mappings replace any mappings that this map had for any of the
807 * keys currently in the specified Map.
808 *
809 * @param t Mappings to be stored in this map.
810 */
811 public void putAll(Map<? extends K, ? extends V> t) {
812 for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
813 Entry<? extends K, ? extends V> e = it.next();
814 put(e.getKey(), e.getValue());
815 }
816 }
817
818 /**
819 * Removes the key (and its corresponding value) from this
820 * table. This method does nothing if the key is not in the table.
821 *
822 * @param key the key that needs to be removed.
823 * @return the value to which the key had been mapped in this table,
824 * or <tt>null</tt> if the key did not have a mapping.
825 * @throws NullPointerException if the key is
826 * <tt>null</tt>.
827 */
828 public V remove(Object key) {
829 int hash = hash(key);
830 return segmentFor(hash).remove(key, hash, null);
831 }
832
833 /**
834 * Remove entry for key only if currently mapped to given value.
835 * Acts as
836 * <pre>
837 * if (map.get(key).equals(value)) {
838 * map.remove(key);
839 * return true;
840 * } else return false;
841 * </pre>
842 * except that the action is performed atomically.
843 * @param key key with which the specified value is associated.
844 * @param value value associated with the specified key.
845 * @return true if the value was removed
846 * @throws NullPointerException if the specified key is
847 * <tt>null</tt>.
848 */
849 public boolean remove(Object key, Object value) {
850 int hash = hash(key);
851 return segmentFor(hash).remove(key, hash, value) != null;
852 }
853
854
855 /**
856 * Replace entry for key only if currently mapped to given value.
857 * Acts as
858 * <pre>
859 * if (map.get(key).equals(oldValue)) {
860 * map.put(key, newValue);
861 * return true;
862 * } else return false;
863 * </pre>
864 * except that the action is performed atomically.
865 * @param key key with which the specified value is associated.
866 * @param oldValue value expected to be associated with the specified key.
867 * @param newValue value to be associated with the specified key.
868 * @return true if the value was replaced
869 * @throws NullPointerException if the specified key or values are
870 * <tt>null</tt>.
871 */
872 public boolean replace(K key, V oldValue, V newValue) {
873 if (oldValue == null || newValue == null)
874 throw new NullPointerException();
875 int hash = hash(key);
876 return segmentFor(hash).replace(key, hash, oldValue, newValue);
877 }
878
879 /**
880 * Replace entry for key only if currently mapped to some value.
881 * Acts as
882 * <pre>
883 * if ((map.containsKey(key)) {
884 * return map.put(key, value);
885 * } else return null;
886 * </pre>
887 * except that the action is performed atomically.
888 * @param key key with which the specified value is associated.
889 * @param value value to be associated with the specified key.
890 * @return previous value associated with specified key, or <tt>null</tt>
891 * if there was no mapping for key.
892 * @throws NullPointerException if the specified key or value is
893 * <tt>null</tt>.
894 */
895 public V replace(K key, V value) {
896 if (value == null)
897 throw new NullPointerException();
898 int hash = hash(key);
899 return segmentFor(hash).replace(key, hash, value);
900 }
901
902
903 /**
904 * Removes all mappings from this map.
905 */
906 public void clear() {
907 for (int i = 0; i < segments.length; ++i)
908 segments[i].clear();
909 }
910
911
912 /**
913 * Returns a shallow copy of this
914 * <tt>ConcurrentHashMap</tt> instance: the keys and
915 * values themselves are not cloned.
916 *
917 * @return a shallow copy of this map.
918 */
919 public Object clone() {
920 // We cannot call super.clone, since it would share final
921 // segments array, and there's no way to reassign finals.
922
923 float lf = segments[0].loadFactor;
924 int segs = segments.length;
925 int cap = (int)(size() / lf);
926 if (cap < segs) cap = segs;
927 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
928 t.putAll(this);
929 return t;
930 }
931
932 /**
933 * Returns a set view of the keys contained in this map. The set is
934 * backed by the map, so changes to the map are reflected in the set, and
935 * vice-versa. The set supports element removal, which removes the
936 * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
937 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
938 * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
939 * <tt>addAll</tt> operations.
940 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
941 * will never throw {@link java.util.ConcurrentModificationException},
942 * and guarantees to traverse elements as they existed upon
943 * construction of the iterator, and may (but is not guaranteed to)
944 * reflect any modifications subsequent to construction.
945 *
946 * @return a set view of the keys contained in this map.
947 */
948 public Set<K> keySet() {
949 Set<K> ks = keySet;
950 return (ks != null) ? ks : (keySet = new KeySet());
951 }
952
953
954 /**
955 * Returns a collection view of the values contained in this map. The
956 * collection is backed by the map, so changes to the map are reflected in
957 * the collection, and vice-versa. The collection supports element
958 * removal, which removes the corresponding mapping from this map, via the
959 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
960 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
961 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
962 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
963 * will never throw {@link java.util.ConcurrentModificationException},
964 * and guarantees to traverse elements as they existed upon
965 * construction of the iterator, and may (but is not guaranteed to)
966 * reflect any modifications subsequent to construction.
967 *
968 * @return a collection view of the values contained in this map.
969 */
970 public Collection<V> values() {
971 Collection<V> vs = values;
972 return (vs != null) ? vs : (values = new Values());
973 }
974
975
976 /**
977 * Returns a collection view of the mappings contained in this map. Each
978 * element in the returned collection is a <tt>Map.Entry</tt>. The
979 * collection is backed by the map, so changes to the map are reflected in
980 * the collection, and vice-versa. The collection supports element
981 * removal, which removes the corresponding mapping from the map, via the
982 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
983 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
984 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
985 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
986 * will never throw {@link java.util.ConcurrentModificationException},
987 * and guarantees to traverse elements as they existed upon
988 * construction of the iterator, and may (but is not guaranteed to)
989 * reflect any modifications subsequent to construction.
990 *
991 * @return a collection view of the mappings contained in this map.
992 */
993 public Set<Map.Entry<K,V>> entrySet() {
994 Set<Map.Entry<K,V>> es = entrySet;
995 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
996 }
997
998
999 /**
1000 * Returns an enumeration of the keys in this table.
1001 *
1002 * @return an enumeration of the keys in this table.
1003 * @see #keySet
1004 */
1005 public Enumeration<K> keys() {
1006 return new KeyIterator();
1007 }
1008
1009 /**
1010 * Returns an enumeration of the values in this table.
1011 * Use the Enumeration methods on the returned object to fetch the elements
1012 * sequentially.
1013 *
1014 * @return an enumeration of the values in this table.
1015 * @see #values
1016 */
1017 public Enumeration<V> elements() {
1018 return new ValueIterator();
1019 }
1020
1021 /* ---------------- Iterator Support -------------- */
1022
1023 private abstract class HashIterator {
1024 private int nextSegmentIndex;
1025 private int nextTableIndex;
1026 private HashEntry[] currentTable;
1027 private HashEntry<K, V> nextEntry;
1028 HashEntry<K, V> lastReturned;
1029
1030 private HashIterator() {
1031 nextSegmentIndex = segments.length - 1;
1032 nextTableIndex = -1;
1033 advance();
1034 }
1035
1036 public boolean hasMoreElements() { return hasNext(); }
1037
1038 private void advance() {
1039 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1040 return;
1041
1042 while (nextTableIndex >= 0) {
1043 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
1044 return;
1045 }
1046
1047 while (nextSegmentIndex >= 0) {
1048 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
1049 if (seg.count != 0) {
1050 currentTable = seg.table;
1051 for (int j = currentTable.length - 1; j >= 0; --j) {
1052 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
1053 nextTableIndex = j - 1;
1054 return;
1055 }
1056 }
1057 }
1058 }
1059 }
1060
1061 public boolean hasNext() { return nextEntry != null; }
1062
1063 HashEntry<K,V> nextEntry() {
1064 if (nextEntry == null)
1065 throw new NoSuchElementException();
1066 lastReturned = nextEntry;
1067 advance();
1068 return lastReturned;
1069 }
1070
1071 public void remove() {
1072 if (lastReturned == null)
1073 throw new IllegalStateException();
1074 ConcurrentHashMap.this.remove(lastReturned.key);
1075 lastReturned = null;
1076 }
1077 }
1078
1079 private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1080 public K next() { return super.nextEntry().key; }
1081 public K nextElement() { return super.nextEntry().key; }
1082 }
1083
1084 private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1085 public V next() { return super.nextEntry().value; }
1086 public V nextElement() { return super.nextEntry().value; }
1087 }
1088
1089
1090
1091 /**
1092 * Exported Entry objects must write-through changes in setValue,
1093 * even if the nodes have been cloned. So we cannot return
1094 * internal HashEntry objects. Instead, the iterator itself acts
1095 * as a forwarding pseudo-entry.
1096 */
1097 private class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1098 public Map.Entry<K,V> next() {
1099 nextEntry();
1100 return this;
1101 }
1102
1103 public K getKey() {
1104 if (lastReturned == null)
1105 throw new IllegalStateException("Entry was removed");
1106 return lastReturned.key;
1107 }
1108
1109 public V getValue() {
1110 if (lastReturned == null)
1111 throw new IllegalStateException("Entry was removed");
1112 return ConcurrentHashMap.this.get(lastReturned.key);
1113 }
1114
1115 public V setValue(V value) {
1116 if (lastReturned == null)
1117 throw new IllegalStateException("Entry was removed");
1118 return ConcurrentHashMap.this.put(lastReturned.key, value);
1119 }
1120
1121 public boolean equals(Object o) {
1122 if (!(o instanceof Map.Entry))
1123 return false;
1124 Map.Entry e = (Map.Entry)o;
1125 return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1126 }
1127
1128 public int hashCode() {
1129 Object k = getKey();
1130 Object v = getValue();
1131 return ((k == null) ? 0 : k.hashCode()) ^
1132 ((v == null) ? 0 : v.hashCode());
1133 }
1134
1135 public String toString() {
1136 // If not acting as entry, just use default toString.
1137 if (lastReturned == null)
1138 return super.toString();
1139 else
1140 return getKey() + "=" + getValue();
1141 }
1142
1143 private boolean eq(Object o1, Object o2) {
1144 return (o1 == null ? o2 == null : o1.equals(o2));
1145 }
1146
1147 }
1148
1149 private class KeySet extends AbstractSet<K> {
1150 public Iterator<K> iterator() {
1151 return new KeyIterator();
1152 }
1153 public int size() {
1154 return ConcurrentHashMap.this.size();
1155 }
1156 public boolean contains(Object o) {
1157 return ConcurrentHashMap.this.containsKey(o);
1158 }
1159 public boolean remove(Object o) {
1160 return ConcurrentHashMap.this.remove(o) != null;
1161 }
1162 public void clear() {
1163 ConcurrentHashMap.this.clear();
1164 }
1165 }
1166
1167 private class Values extends AbstractCollection<V> {
1168 public Iterator<V> iterator() {
1169 return new ValueIterator();
1170 }
1171 public int size() {
1172 return ConcurrentHashMap.this.size();
1173 }
1174 public boolean contains(Object o) {
1175 return ConcurrentHashMap.this.containsValue(o);
1176 }
1177 public void clear() {
1178 ConcurrentHashMap.this.clear();
1179 }
1180 }
1181
1182 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1183 public Iterator<Map.Entry<K,V>> iterator() {
1184 return new EntryIterator();
1185 }
1186 public boolean contains(Object o) {
1187 if (!(o instanceof Map.Entry))
1188 return false;
1189 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1190 V v = ConcurrentHashMap.this.get(e.getKey());
1191 return v != null && v.equals(e.getValue());
1192 }
1193 public boolean remove(Object o) {
1194 if (!(o instanceof Map.Entry))
1195 return false;
1196 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1197 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1198 }
1199 public int size() {
1200 return ConcurrentHashMap.this.size();
1201 }
1202 public void clear() {
1203 ConcurrentHashMap.this.clear();
1204 }
1205 public Object[] toArray() {
1206 // Since we don't ordinarily have distinct Entry objects, we
1207 // must pack elements using exportable SimpleEntry
1208 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1209 for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1210 c.add(new SimpleEntry<K,V>(i.next()));
1211 return c.toArray();
1212 }
1213 public <T> T[] toArray(T[] a) {
1214 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1215 for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1216 c.add(new SimpleEntry<K,V>(i.next()));
1217 return c.toArray(a);
1218 }
1219
1220 }
1221
1222 /**
1223 * This duplicates java.util.AbstractMap.SimpleEntry until this class
1224 * is made accessible.
1225 */
1226 static class SimpleEntry<K,V> implements Entry<K,V> {
1227 K key;
1228 V value;
1229
1230 public SimpleEntry(K key, V value) {
1231 this.key = key;
1232 this.value = value;
1233 }
1234
1235 public SimpleEntry(Entry<K,V> e) {
1236 this.key = e.getKey();
1237 this.value = e.getValue();
1238 }
1239
1240 public K getKey() {
1241 return key;
1242 }
1243
1244 public V getValue() {
1245 return value;
1246 }
1247
1248 public V setValue(V value) {
1249 V oldValue = this.value;
1250 this.value = value;
1251 return oldValue;
1252 }
1253
1254 public boolean equals(Object o) {
1255 if (!(o instanceof Map.Entry))
1256 return false;
1257 Map.Entry e = (Map.Entry)o;
1258 return eq(key, e.getKey()) && eq(value, e.getValue());
1259 }
1260
1261 public int hashCode() {
1262 return ((key == null) ? 0 : key.hashCode()) ^
1263 ((value == null) ? 0 : value.hashCode());
1264 }
1265
1266 public String toString() {
1267 return key + "=" + value;
1268 }
1269
1270 private static boolean eq(Object o1, Object o2) {
1271 return (o1 == null ? o2 == null : o1.equals(o2));
1272 }
1273 }
1274
1275 /* ---------------- Serialization Support -------------- */
1276
1277 /**
1278 * Save the state of the <tt>ConcurrentHashMap</tt>
1279 * instance to a stream (i.e.,
1280 * serialize it).
1281 * @param s the stream
1282 * @serialData
1283 * the key (Object) and value (Object)
1284 * for each key-value mapping, followed by a null pair.
1285 * The key-value mappings are emitted in no particular order.
1286 */
1287 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1288 s.defaultWriteObject();
1289
1290 for (int k = 0; k < segments.length; ++k) {
1291 Segment<K,V> seg = (Segment<K,V>)segments[k];
1292 seg.lock();
1293 try {
1294 HashEntry[] tab = seg.table;
1295 for (int i = 0; i < tab.length; ++i) {
1296 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1297 s.writeObject(e.key);
1298 s.writeObject(e.value);
1299 }
1300 }
1301 } finally {
1302 seg.unlock();
1303 }
1304 }
1305 s.writeObject(null);
1306 s.writeObject(null);
1307 }
1308
1309 /**
1310 * Reconstitute the <tt>ConcurrentHashMap</tt>
1311 * instance from a stream (i.e.,
1312 * deserialize it).
1313 * @param s the stream
1314 */
1315 private void readObject(java.io.ObjectInputStream s)
1316 throws IOException, ClassNotFoundException {
1317 s.defaultReadObject();
1318
1319 // Initialize each segment to be minimally sized, and let grow.
1320 for (int i = 0; i < segments.length; ++i) {
1321 segments[i].setTable(new HashEntry[1]);
1322 }
1323
1324 // Read the keys and values, and put the mappings in the table
1325 for (;;) {
1326 K key = (K) s.readObject();
1327 V value = (V) s.readObject();
1328 if (key == null)
1329 break;
1330 put(key, value);
1331 }
1332 }
1333 }
1334