ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.72
Committed: Sat May 28 13:31:22 2005 UTC (19 years ago) by dl
Branch: MAIN
Changes since 1.71: +16 -10 lines
Log Message:
Reduce generics warnings

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as {@link java.util.Hashtable}, and
19 * includes versions of methods corresponding to each method of
20 * <tt>Hashtable</tt>. However, even though all operations are
21 * thread-safe, retrieval operations do <em>not</em> entail locking,
22 * and there is <em>not</em> any support for locking the entire table
23 * in a way that prevents all access. This class is fully
24 * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 * thread safety but not on its synchronization details.
26 *
27 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28 * block, so may overlap with update operations (including
29 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30 * of the most recently <em>completed</em> update operations holding
31 * upon their onset. For aggregate operations such as <tt>putAll</tt>
32 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 * removal of only some entries. Similarly, Iterators and
34 * Enumerations return elements reflecting the state of the hash table
35 * at some point at or since the creation of the iterator/enumeration.
36 * They do <em>not</em> throw {@link ConcurrentModificationException}.
37 * However, iterators are designed to be used by only one thread at a time.
38 *
39 * <p> The allowed concurrency among update operations is guided by
40 * the optional <tt>concurrencyLevel</tt> constructor argument
41 * (default <tt>16</tt>), which is used as a hint for internal sizing. The
42 * table is internally partitioned to try to permit the indicated
43 * number of concurrent updates without contention. Because placement
44 * in hash tables is essentially random, the actual concurrency will
45 * vary. Ideally, you should choose a value to accommodate as many
46 * threads as will ever concurrently modify the table. Using a
47 * significantly higher value than you need can waste space and time,
48 * and a significantly lower value can lead to thread contention. But
49 * overestimates and underestimates within an order of magnitude do
50 * not usually have much noticeable impact. A value of one is
51 * appropriate when it is known that only one thread will modify and
52 * all others will only read. Also, resizing this or any other kind of
53 * hash table is a relatively slow operation, so, when possible, it is
54 * a good idea to provide estimates of expected table sizes in
55 * constructors.
56 *
57 * <p>This class and its views and iterators implement all of the
58 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59 * interfaces.
60 *
61 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62 * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63 *
64 * <p>This class is a member of the
65 * <a href="{@docRoot}/../guide/collections/index.html">
66 * Java Collections Framework</a>.
67 *
68 * @since 1.5
69 * @author Doug Lea
70 * @param <K> the type of keys maintained by this map
71 * @param <V> the type of mapped values
72 */
73 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 implements ConcurrentMap<K, V>, Serializable {
75 private static final long serialVersionUID = 7249069246763182397L;
76
77 /*
78 * The basic strategy is to subdivide the table among Segments,
79 * each of which itself is a concurrently readable hash table.
80 */
81
82 /* ---------------- Constants -------------- */
83
84 /**
85 * The default initial capacity for this table,
86 * used when not otherwise specified in a constructor.
87 */
88 static final int DEFAULT_INITIAL_CAPACITY = 16;
89
90 /**
91 * The default load factor for this table, used when not
92 * otherwise specified in a constructor.
93 */
94 static final float DEFAULT_LOAD_FACTOR = 0.75f;
95
96 /**
97 * The default concurrency level for this table, used when not
98 * otherwise specified in a constructor.
99 */
100 static final int DEFAULT_CONCURRENCY_LEVEL = 16;
101
102 /**
103 * The maximum capacity, used if a higher value is implicitly
104 * specified by either of the constructors with arguments. MUST
105 * be a power of two <= 1<<30 to ensure that entries are indexable
106 * using ints.
107 */
108 static final int MAXIMUM_CAPACITY = 1 << 30;
109
110 /**
111 * The maximum number of segments to allow; used to bound
112 * constructor arguments.
113 */
114 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
115
116 /**
117 * Number of unsynchronized retries in size and containsValue
118 * methods before resorting to locking. This is used to avoid
119 * unbounded retries if tables undergo continuous modification
120 * which would make it impossible to obtain an accurate result.
121 */
122 static final int RETRIES_BEFORE_LOCK = 2;
123
124 /* ---------------- Fields -------------- */
125
126 /**
127 * Mask value for indexing into segments. The upper bits of a
128 * key's hash code are used to choose the segment.
129 */
130 final int segmentMask;
131
132 /**
133 * Shift value for indexing within segments.
134 */
135 final int segmentShift;
136
137 /**
138 * The segments, each of which is a specialized hash table
139 */
140 final Segment<K,V>[] segments;
141
142 transient Set<K> keySet;
143 transient Set<Map.Entry<K,V>> entrySet;
144 transient Collection<V> values;
145
146 /* ---------------- Small Utilities -------------- */
147
148 /**
149 * Returns a hash code for non-null Object x.
150 * Uses the same hash code spreader as most other java.util hash tables.
151 * @param x the object serving as a key
152 * @return the hash code
153 */
154 static int hash(Object x) {
155 int h = x.hashCode();
156 h += ~(h << 9);
157 h ^= (h >>> 14);
158 h += (h << 4);
159 h ^= (h >>> 10);
160 return h;
161 }
162
163 /**
164 * Returns the segment that should be used for key with given hash
165 * @param hash the hash code for the key
166 * @return the segment
167 */
168 final Segment<K,V> segmentFor(int hash) {
169 return segments[(hash >>> segmentShift) & segmentMask];
170 }
171
172 /* ---------------- Inner Classes -------------- */
173
174 /**
175 * ConcurrentHashMap list entry. Note that this is never exported
176 * out as a user-visible Map.Entry.
177 *
178 * Because the value field is volatile, not final, it is legal wrt
179 * the Java Memory Model for an unsynchronized reader to see null
180 * instead of initial value when read via a data race. Although a
181 * reordering leading to this is not likely to ever actually
182 * occur, the Segment.readValueUnderLock method is used as a
183 * backup in case a null (pre-initialized) value is ever seen in
184 * an unsynchronized access method.
185 */
186 static final class HashEntry<K,V> {
187 final K key;
188 final int hash;
189 volatile V value;
190 final HashEntry<K,V> next;
191
192 HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 this.key = key;
194 this.hash = hash;
195 this.next = next;
196 this.value = value;
197 }
198
199 @SuppressWarnings("unchecked")
200 static final <K,V> HashEntry<K,V>[] newArray(int i) {
201 return new HashEntry[i];
202 }
203 }
204
205 /**
206 * Segments are specialized versions of hash tables. This
207 * subclasses from ReentrantLock opportunistically, just to
208 * simplify some locking and avoid separate construction.
209 */
210 static final class Segment<K,V> extends ReentrantLock implements Serializable {
211 /*
212 * Segments maintain a table of entry lists that are ALWAYS
213 * kept in a consistent state, so can be read without locking.
214 * Next fields of nodes are immutable (final). All list
215 * additions are performed at the front of each bin. This
216 * makes it easy to check changes, and also fast to traverse.
217 * When nodes would otherwise be changed, new nodes are
218 * created to replace them. This works well for hash tables
219 * since the bin lists tend to be short. (The average length
220 * is less than two for the default load factor threshold.)
221 *
222 * Read operations can thus proceed without locking, but rely
223 * on selected uses of volatiles to ensure that completed
224 * write operations performed by other threads are
225 * noticed. For most purposes, the "count" field, tracking the
226 * number of elements, serves as that volatile variable
227 * ensuring visibility. This is convenient because this field
228 * needs to be read in many read operations anyway:
229 *
230 * - All (unsynchronized) read operations must first read the
231 * "count" field, and should not look at table entries if
232 * it is 0.
233 *
234 * - All (synchronized) write operations should write to
235 * the "count" field after structurally changing any bin.
236 * The operations must not take any action that could even
237 * momentarily cause a concurrent read operation to see
238 * inconsistent data. This is made easier by the nature of
239 * the read operations in Map. For example, no operation
240 * can reveal that the table has grown but the threshold
241 * has not yet been updated, so there are no atomicity
242 * requirements for this with respect to reads.
243 *
244 * As a guide, all critical volatile reads and writes to the
245 * count field are marked in code comments.
246 */
247
248 private static final long serialVersionUID = 2249069246763182397L;
249
250 /**
251 * The number of elements in this segment's region.
252 */
253 transient volatile int count;
254
255 /**
256 * Number of updates that alter the size of the table. This is
257 * used during bulk-read methods to make sure they see a
258 * consistent snapshot: If modCounts change during a traversal
259 * of segments computing size or checking containsValue, then
260 * we might have an inconsistent view of state so (usually)
261 * must retry.
262 */
263 transient int modCount;
264
265 /**
266 * The table is rehashed when its size exceeds this threshold.
267 * (The value of this field is always <tt>(int)(capacity *
268 * loadFactor)</tt>.)
269 */
270 transient int threshold;
271
272 /**
273 * The per-segment table. */
274 transient volatile HashEntry<K,V>[] table;
275
276 /**
277 * The load factor for the hash table. Even though this value
278 * is same for all segments, it is replicated to avoid needing
279 * links to outer object.
280 * @serial
281 */
282 final float loadFactor;
283
284 Segment(int initialCapacity, float lf) {
285 loadFactor = lf;
286 setTable(HashEntry.<K,V>newArray(initialCapacity));
287 }
288
289 @SuppressWarnings("unchecked")
290 static final <K,V> Segment<K,V>[] newArray(int i) {
291 return new Segment[i];
292 }
293
294 /**
295 * Sets table to new HashEntry array.
296 * Call only while holding lock or in constructor.
297 */
298 void setTable(HashEntry<K,V>[] newTable) {
299 threshold = (int)(newTable.length * loadFactor);
300 table = newTable;
301 }
302
303 /**
304 * Returns properly casted first entry of bin for given hash.
305 */
306 HashEntry<K,V> getFirst(int hash) {
307 HashEntry<K,V>[] tab = table;
308 return tab[hash & (tab.length - 1)];
309 }
310
311 /**
312 * Reads value field of an entry under lock. Called if value
313 * field ever appears to be null. This is possible only if a
314 * compiler happens to reorder a HashEntry initialization with
315 * its table assignment, which is legal under memory model
316 * but is not known to ever occur.
317 */
318 V readValueUnderLock(HashEntry<K,V> e) {
319 lock();
320 try {
321 return e.value;
322 } finally {
323 unlock();
324 }
325 }
326
327 /* Specialized implementations of map methods */
328
329 V get(Object key, int hash) {
330 if (count != 0) { // read-volatile
331 HashEntry<K,V> e = getFirst(hash);
332 while (e != null) {
333 if (e.hash == hash && key.equals(e.key)) {
334 V v = e.value;
335 if (v != null)
336 return v;
337 return readValueUnderLock(e); // recheck
338 }
339 e = e.next;
340 }
341 }
342 return null;
343 }
344
345 boolean containsKey(Object key, int hash) {
346 if (count != 0) { // read-volatile
347 HashEntry<K,V> e = getFirst(hash);
348 while (e != null) {
349 if (e.hash == hash && key.equals(e.key))
350 return true;
351 e = e.next;
352 }
353 }
354 return false;
355 }
356
357 boolean containsValue(Object value) {
358 if (count != 0) { // read-volatile
359 HashEntry<K,V>[] tab = table;
360 int len = tab.length;
361 for (int i = 0 ; i < len; i++) {
362 for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
363 V v = e.value;
364 if (v == null) // recheck
365 v = readValueUnderLock(e);
366 if (value.equals(v))
367 return true;
368 }
369 }
370 }
371 return false;
372 }
373
374 boolean replace(K key, int hash, V oldValue, V newValue) {
375 lock();
376 try {
377 HashEntry<K,V> e = getFirst(hash);
378 while (e != null && (e.hash != hash || !key.equals(e.key)))
379 e = e.next;
380
381 boolean replaced = false;
382 if (e != null && oldValue.equals(e.value)) {
383 replaced = true;
384 e.value = newValue;
385 }
386 return replaced;
387 } finally {
388 unlock();
389 }
390 }
391
392 V replace(K key, int hash, V newValue) {
393 lock();
394 try {
395 HashEntry<K,V> e = getFirst(hash);
396 while (e != null && (e.hash != hash || !key.equals(e.key)))
397 e = e.next;
398
399 V oldValue = null;
400 if (e != null) {
401 oldValue = e.value;
402 e.value = newValue;
403 }
404 return oldValue;
405 } finally {
406 unlock();
407 }
408 }
409
410
411 V put(K key, int hash, V value, boolean onlyIfAbsent) {
412 lock();
413 try {
414 int c = count;
415 if (c++ > threshold) // ensure capacity
416 rehash();
417 HashEntry<K,V>[] tab = table;
418 int index = hash & (tab.length - 1);
419 HashEntry<K,V> first = tab[index];
420 HashEntry<K,V> e = first;
421 while (e != null && (e.hash != hash || !key.equals(e.key)))
422 e = e.next;
423
424 V oldValue;
425 if (e != null) {
426 oldValue = e.value;
427 if (!onlyIfAbsent)
428 e.value = value;
429 }
430 else {
431 oldValue = null;
432 ++modCount;
433 tab[index] = new HashEntry<K,V>(key, hash, first, value);
434 count = c; // write-volatile
435 }
436 return oldValue;
437 } finally {
438 unlock();
439 }
440 }
441
442 void rehash() {
443 HashEntry<K,V>[] oldTable = table;
444 int oldCapacity = oldTable.length;
445 if (oldCapacity >= MAXIMUM_CAPACITY)
446 return;
447
448 /*
449 * Reclassify nodes in each list to new Map. Because we are
450 * using power-of-two expansion, the elements from each bin
451 * must either stay at same index, or move with a power of two
452 * offset. We eliminate unnecessary node creation by catching
453 * cases where old nodes can be reused because their next
454 * fields won't change. Statistically, at the default
455 * threshold, only about one-sixth of them need cloning when
456 * a table doubles. The nodes they replace will be garbage
457 * collectable as soon as they are no longer referenced by any
458 * reader thread that may be in the midst of traversing table
459 * right now.
460 */
461
462 HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
463 threshold = (int)(newTable.length * loadFactor);
464 int sizeMask = newTable.length - 1;
465 for (int i = 0; i < oldCapacity ; i++) {
466 // We need to guarantee that any existing reads of old Map can
467 // proceed. So we cannot yet null out each bin.
468 HashEntry<K,V> e = oldTable[i];
469
470 if (e != null) {
471 HashEntry<K,V> next = e.next;
472 int idx = e.hash & sizeMask;
473
474 // Single node on list
475 if (next == null)
476 newTable[idx] = e;
477
478 else {
479 // Reuse trailing consecutive sequence at same slot
480 HashEntry<K,V> lastRun = e;
481 int lastIdx = idx;
482 for (HashEntry<K,V> last = next;
483 last != null;
484 last = last.next) {
485 int k = last.hash & sizeMask;
486 if (k != lastIdx) {
487 lastIdx = k;
488 lastRun = last;
489 }
490 }
491 newTable[lastIdx] = lastRun;
492
493 // Clone all remaining nodes
494 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
495 int k = p.hash & sizeMask;
496 HashEntry<K,V> n = newTable[k];
497 newTable[k] = new HashEntry<K,V>(p.key, p.hash,
498 n, p.value);
499 }
500 }
501 }
502 }
503 table = newTable;
504 }
505
506 /**
507 * Remove; match on key only if value null, else match both.
508 */
509 V remove(Object key, int hash, Object value) {
510 lock();
511 try {
512 int c = count - 1;
513 HashEntry<K,V>[] tab = table;
514 int index = hash & (tab.length - 1);
515 HashEntry<K,V> first = tab[index];
516 HashEntry<K,V> e = first;
517 while (e != null && (e.hash != hash || !key.equals(e.key)))
518 e = e.next;
519
520 V oldValue = null;
521 if (e != null) {
522 V v = e.value;
523 if (value == null || value.equals(v)) {
524 oldValue = v;
525 // All entries following removed node can stay
526 // in list, but all preceding ones need to be
527 // cloned.
528 ++modCount;
529 HashEntry<K,V> newFirst = e.next;
530 for (HashEntry<K,V> p = first; p != e; p = p.next)
531 newFirst = new HashEntry<K,V>(p.key, p.hash,
532 newFirst, p.value);
533 tab[index] = newFirst;
534 count = c; // write-volatile
535 }
536 }
537 return oldValue;
538 } finally {
539 unlock();
540 }
541 }
542
543 void clear() {
544 if (count != 0) {
545 lock();
546 try {
547 HashEntry<K,V>[] tab = table;
548 for (int i = 0; i < tab.length ; i++)
549 tab[i] = null;
550 ++modCount;
551 count = 0; // write-volatile
552 } finally {
553 unlock();
554 }
555 }
556 }
557 }
558
559
560
561 /* ---------------- Public operations -------------- */
562
563 /**
564 * Creates a new, empty map with the specified initial
565 * capacity, load factor and concurrency level.
566 *
567 * @param initialCapacity the initial capacity. The implementation
568 * performs internal sizing to accommodate this many elements.
569 * @param loadFactor the load factor threshold, used to control resizing.
570 * Resizing may be performed when the average number of elements per
571 * bin exceeds this threshold.
572 * @param concurrencyLevel the estimated number of concurrently
573 * updating threads. The implementation performs internal sizing
574 * to try to accommodate this many threads.
575 * @throws IllegalArgumentException if the initial capacity is
576 * negative or the load factor or concurrencyLevel are
577 * nonpositive.
578 */
579 public ConcurrentHashMap(int initialCapacity,
580 float loadFactor, int concurrencyLevel) {
581 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
582 throw new IllegalArgumentException();
583
584 if (concurrencyLevel > MAX_SEGMENTS)
585 concurrencyLevel = MAX_SEGMENTS;
586
587 // Find power-of-two sizes best matching arguments
588 int sshift = 0;
589 int ssize = 1;
590 while (ssize < concurrencyLevel) {
591 ++sshift;
592 ssize <<= 1;
593 }
594 segmentShift = 32 - sshift;
595 segmentMask = ssize - 1;
596 this.segments = Segment.newArray(ssize);
597
598 if (initialCapacity > MAXIMUM_CAPACITY)
599 initialCapacity = MAXIMUM_CAPACITY;
600 int c = initialCapacity / ssize;
601 if (c * ssize < initialCapacity)
602 ++c;
603 int cap = 1;
604 while (cap < c)
605 cap <<= 1;
606
607 for (int i = 0; i < this.segments.length; ++i)
608 this.segments[i] = new Segment<K,V>(cap, loadFactor);
609 }
610
611 /**
612 * Creates a new, empty map with the specified initial capacity
613 * and load factor and with the default concurrencyLevel
614 * (<tt>16</tt>).
615 *
616 * @param initialCapacity The implementation performs internal
617 * sizing to accommodate this many elements.
618 * @param loadFactor the load factor threshold, used to control resizing.
619 * Resizing may be performed when the average number of elements per
620 * bin exceeds this threshold.
621 * @throws IllegalArgumentException if the initial capacity of
622 * elements is negative or the load factor is nonpositive
623 */
624 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
625 this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
626 }
627
628 /**
629 * Creates a new, empty map with the specified initial capacity,
630 * and with default load factor (<tt>0.75f</tt>)
631 * and concurrencyLevel (<tt>16</tt>).
632 *
633 * @param initialCapacity the initial capacity. The implementation
634 * performs internal sizing to accommodate this many elements.
635 * @throws IllegalArgumentException if the initial capacity of
636 * elements is negative.
637 */
638 public ConcurrentHashMap(int initialCapacity) {
639 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
640 }
641
642 /**
643 * Creates a new, empty map with a default initial capacity
644 * (<tt>16</tt>), load factor
645 * (<tt>0.75f</tt>), and concurrencyLevel
646 * (<tt>16</tt>).
647 */
648 public ConcurrentHashMap() {
649 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
650 }
651
652 /**
653 * Creates a new map with the same mappings as the given map. The
654 * map is created with a capacity of 1.5 times the number of
655 * mappings in the given map or <tt>16</tt>
656 * (whichever is greater), and a default load factor
657 * (<tt>0.75f</tt>) and concurrencyLevel
658 * (<tt>16</tt>).
659 * @param m the map
660 */
661 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
662 this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
663 DEFAULT_INITIAL_CAPACITY),
664 DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
665 putAll(m);
666 }
667
668 /**
669 * Returns <tt>true</tt> if this map contains no key-value mappings.
670 *
671 * @return <tt>true</tt> if this map contains no key-value mappings
672 */
673 public boolean isEmpty() {
674 final Segment<K,V>[] segments = this.segments;
675 /*
676 * We keep track of per-segment modCounts to avoid ABA
677 * problems in which an element in one segment was added and
678 * in another removed during traversal, in which case the
679 * table was never actually empty at any point. Note the
680 * similar use of modCounts in the size() and containsValue()
681 * methods, which are the only other methods also susceptible
682 * to ABA problems.
683 */
684 int[] mc = new int[segments.length];
685 int mcsum = 0;
686 for (int i = 0; i < segments.length; ++i) {
687 if (segments[i].count != 0)
688 return false;
689 else
690 mcsum += mc[i] = segments[i].modCount;
691 }
692 // If mcsum happens to be zero, then we know we got a snapshot
693 // before any modifications at all were made. This is
694 // probably common enough to bother tracking.
695 if (mcsum != 0) {
696 for (int i = 0; i < segments.length; ++i) {
697 if (segments[i].count != 0 ||
698 mc[i] != segments[i].modCount)
699 return false;
700 }
701 }
702 return true;
703 }
704
705 /**
706 * Returns the number of key-value mappings in this map. If the
707 * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
708 * <tt>Integer.MAX_VALUE</tt>.
709 *
710 * @return the number of key-value mappings in this map
711 */
712 public int size() {
713 final Segment<K,V>[] segments = this.segments;
714 long sum = 0;
715 long check = 0;
716 int[] mc = new int[segments.length];
717 // Try a few times to get accurate count. On failure due to
718 // continuous async changes in table, resort to locking.
719 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
720 check = 0;
721 sum = 0;
722 int mcsum = 0;
723 for (int i = 0; i < segments.length; ++i) {
724 sum += segments[i].count;
725 mcsum += mc[i] = segments[i].modCount;
726 }
727 if (mcsum != 0) {
728 for (int i = 0; i < segments.length; ++i) {
729 check += segments[i].count;
730 if (mc[i] != segments[i].modCount) {
731 check = -1; // force retry
732 break;
733 }
734 }
735 }
736 if (check == sum)
737 break;
738 }
739 if (check != sum) { // Resort to locking all segments
740 sum = 0;
741 for (int i = 0; i < segments.length; ++i)
742 segments[i].lock();
743 for (int i = 0; i < segments.length; ++i)
744 sum += segments[i].count;
745 for (int i = 0; i < segments.length; ++i)
746 segments[i].unlock();
747 }
748 if (sum > Integer.MAX_VALUE)
749 return Integer.MAX_VALUE;
750 else
751 return (int)sum;
752 }
753
754 /**
755 * Returns the value to which this map maps the specified key, or
756 * <tt>null</tt> if the map contains no mapping for the key.
757 *
758 * @param key key whose associated value is to be returned
759 * @return the value associated with <tt>key</tt> in this map, or
760 * <tt>null</tt> if there is no mapping for <tt>key</tt>
761 * @throws NullPointerException if the specified key is null
762 */
763 public V get(Object key) {
764 int hash = hash(key); // throws NullPointerException if key null
765 return segmentFor(hash).get(key, hash);
766 }
767
768 /**
769 * Tests if the specified object is a key in this table.
770 *
771 * @param key possible key
772 * @return <tt>true</tt> if and only if the specified object
773 * is a key in this table, as determined by the
774 * <tt>equals</tt> method; <tt>false</tt> otherwise.
775 * @throws NullPointerException if the specified key is null
776 */
777 public boolean containsKey(Object key) {
778 int hash = hash(key); // throws NullPointerException if key null
779 return segmentFor(hash).containsKey(key, hash);
780 }
781
782 /**
783 * Returns <tt>true</tt> if this map maps one or more keys to the
784 * specified value. Note: This method requires a full internal
785 * traversal of the hash table, and so is much slower than
786 * method <tt>containsKey</tt>.
787 *
788 * @param value value whose presence in this map is to be tested
789 * @return <tt>true</tt> if this map maps one or more keys to the
790 * specified value
791 * @throws NullPointerException if the specified value is null
792 */
793 public boolean containsValue(Object value) {
794 if (value == null)
795 throw new NullPointerException();
796
797 // See explanation of modCount use above
798
799 final Segment<K,V>[] segments = this.segments;
800 int[] mc = new int[segments.length];
801
802 // Try a few times without locking
803 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
804 int sum = 0;
805 int mcsum = 0;
806 for (int i = 0; i < segments.length; ++i) {
807 int c = segments[i].count;
808 mcsum += mc[i] = segments[i].modCount;
809 if (segments[i].containsValue(value))
810 return true;
811 }
812 boolean cleanSweep = true;
813 if (mcsum != 0) {
814 for (int i = 0; i < segments.length; ++i) {
815 int c = segments[i].count;
816 if (mc[i] != segments[i].modCount) {
817 cleanSweep = false;
818 break;
819 }
820 }
821 }
822 if (cleanSweep)
823 return false;
824 }
825 // Resort to locking all segments
826 for (int i = 0; i < segments.length; ++i)
827 segments[i].lock();
828 boolean found = false;
829 try {
830 for (int i = 0; i < segments.length; ++i) {
831 if (segments[i].containsValue(value)) {
832 found = true;
833 break;
834 }
835 }
836 } finally {
837 for (int i = 0; i < segments.length; ++i)
838 segments[i].unlock();
839 }
840 return found;
841 }
842
843 /**
844 * Legacy method testing if some key maps into the specified value
845 * in this table. This method is identical in functionality to
846 * {@link #containsValue}, and exists solely to ensure
847 * full compatibility with class {@link java.util.Hashtable},
848 * which supported this method prior to introduction of the
849 * Java Collections framework.
850
851 * @param value a value to search for
852 * @return <tt>true</tt> if and only if some key maps to the
853 * <tt>value</tt> argument in this table as
854 * determined by the <tt>equals</tt> method;
855 * <tt>false</tt> otherwise
856 * @throws NullPointerException if the specified value is null
857 */
858 public boolean contains(Object value) {
859 return containsValue(value);
860 }
861
862 /**
863 * Maps the specified <tt>key</tt> to the specified
864 * <tt>value</tt> in this table. Neither the key nor the
865 * value can be <tt>null</tt>.
866 *
867 * <p> The value can be retrieved by calling the <tt>get</tt> method
868 * with a key that is equal to the original key.
869 *
870 * @param key key with which the specified value is to be associated
871 * @param value value to be associated with the specified key
872 * @return the previous value associated with <tt>key</tt>, or
873 * <tt>null</tt> if there was no mapping for <tt>key</tt>
874 * @throws NullPointerException if the specified key or value is null
875 */
876 public V put(K key, V value) {
877 if (value == null)
878 throw new NullPointerException();
879 int hash = hash(key);
880 return segmentFor(hash).put(key, hash, value, false);
881 }
882
883 /**
884 * {@inheritDoc}
885 *
886 * @return the previous value associated with the specified key,
887 * or <tt>null</tt> if there was no mapping for the key
888 * @throws NullPointerException if the specified key or value is null
889 */
890 public V putIfAbsent(K key, V value) {
891 if (value == null)
892 throw new NullPointerException();
893 int hash = hash(key);
894 return segmentFor(hash).put(key, hash, value, true);
895 }
896
897 /**
898 * Copies all of the mappings from the specified map to this one.
899 * These mappings replace any mappings that this map had for any of the
900 * keys currently in the specified map.
901 *
902 * @param m mappings to be stored in this map
903 */
904 public void putAll(Map<? extends K, ? extends V> m) {
905 for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) m.entrySet().iterator(); it.hasNext(); ) {
906 Entry<? extends K, ? extends V> e = it.next();
907 put(e.getKey(), e.getValue());
908 }
909 }
910
911 /**
912 * Removes the key (and its corresponding value) from this map.
913 * This method does nothing if the key is not in the map.
914 *
915 * @param key the key that needs to be removed
916 * @return the previous value associated with <tt>key</tt>, or
917 * <tt>null</tt> if there was no mapping for <tt>key</tt>.
918 * @throws NullPointerException if the specified key is null
919 */
920 public V remove(Object key) {
921 int hash = hash(key);
922 return segmentFor(hash).remove(key, hash, null);
923 }
924
925 /**
926 * {@inheritDoc}
927 *
928 * @throws NullPointerException if the specified key is null
929 */
930 public boolean remove(Object key, Object value) {
931 if (value == null)
932 return false;
933 int hash = hash(key);
934 return segmentFor(hash).remove(key, hash, value) != null;
935 }
936
937 /**
938 * {@inheritDoc}
939 *
940 * @throws NullPointerException if any of the arguments are null
941 */
942 public boolean replace(K key, V oldValue, V newValue) {
943 if (oldValue == null || newValue == null)
944 throw new NullPointerException();
945 int hash = hash(key);
946 return segmentFor(hash).replace(key, hash, oldValue, newValue);
947 }
948
949 /**
950 * {@inheritDoc}
951 *
952 * @return the previous value associated with the specified key,
953 * or <tt>null</tt> if there was no mapping for the key
954 * @throws NullPointerException if the specified key or value is null
955 */
956 public V replace(K key, V value) {
957 if (value == null)
958 throw new NullPointerException();
959 int hash = hash(key);
960 return segmentFor(hash).replace(key, hash, value);
961 }
962
963 /**
964 * Removes all of the mappings from this map.
965 */
966 public void clear() {
967 for (int i = 0; i < segments.length; ++i)
968 segments[i].clear();
969 }
970
971 /**
972 * Returns a {@link Set} view of the keys contained in this map.
973 * The set is backed by the map, so changes to the map are
974 * reflected in the set, and vice-versa. The set supports element
975 * removal, which removes the corresponding mapping from this map,
976 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
977 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
978 * operations. It does not support the <tt>add</tt> or
979 * <tt>addAll</tt> operations.
980 *
981 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
982 * that will never throw {@link ConcurrentModificationException},
983 * and guarantees to traverse elements as they existed upon
984 * construction of the iterator, and may (but is not guaranteed to)
985 * reflect any modifications subsequent to construction.
986 */
987 public Set<K> keySet() {
988 Set<K> ks = keySet;
989 return (ks != null) ? ks : (keySet = new KeySet());
990 }
991
992 /**
993 * Returns a {@link Collection} view of the values contained in this map.
994 * The collection is backed by the map, so changes to the map are
995 * reflected in the collection, and vice-versa. The collection
996 * supports element removal, which removes the corresponding
997 * mapping from this map, via the <tt>Iterator.remove</tt>,
998 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
999 * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not
1000 * support the <tt>add</tt> or <tt>addAll</tt> operations.
1001 *
1002 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1003 * that will never throw {@link ConcurrentModificationException},
1004 * and guarantees to traverse elements as they existed upon
1005 * construction of the iterator, and may (but is not guaranteed to)
1006 * reflect any modifications subsequent to construction.
1007 */
1008 public Collection<V> values() {
1009 Collection<V> vs = values;
1010 return (vs != null) ? vs : (values = new Values());
1011 }
1012
1013 /**
1014 * Returns a {@link Set} view of the mappings contained in this map.
1015 * The set is backed by the map, so changes to the map are
1016 * reflected in the set, and vice-versa. The set supports element
1017 * removal, which removes the corresponding mapping from the map,
1018 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1019 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1020 * operations. It does not support the <tt>add</tt> or
1021 * <tt>addAll</tt> operations.
1022 *
1023 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1024 * that will never throw {@link ConcurrentModificationException},
1025 * and guarantees to traverse elements as they existed upon
1026 * construction of the iterator, and may (but is not guaranteed to)
1027 * reflect any modifications subsequent to construction.
1028 */
1029 public Set<Map.Entry<K,V>> entrySet() {
1030 Set<Map.Entry<K,V>> es = entrySet;
1031 return (es != null) ? es : (entrySet = new EntrySet());
1032 }
1033
1034 /**
1035 * Returns an enumeration of the keys in this table.
1036 *
1037 * @return an enumeration of the keys in this table
1038 * @see #keySet
1039 */
1040 public Enumeration<K> keys() {
1041 return new KeyIterator();
1042 }
1043
1044 /**
1045 * Returns an enumeration of the values in this table.
1046 *
1047 * @return an enumeration of the values in this table
1048 * @see #values
1049 */
1050 public Enumeration<V> elements() {
1051 return new ValueIterator();
1052 }
1053
1054 /* ---------------- Iterator Support -------------- */
1055
1056 abstract class HashIterator {
1057 int nextSegmentIndex;
1058 int nextTableIndex;
1059 HashEntry<K,V>[] currentTable;
1060 HashEntry<K, V> nextEntry;
1061 HashEntry<K, V> lastReturned;
1062
1063 HashIterator() {
1064 nextSegmentIndex = segments.length - 1;
1065 nextTableIndex = -1;
1066 advance();
1067 }
1068
1069 public boolean hasMoreElements() { return hasNext(); }
1070
1071 final void advance() {
1072 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1073 return;
1074
1075 while (nextTableIndex >= 0) {
1076 if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1077 return;
1078 }
1079
1080 while (nextSegmentIndex >= 0) {
1081 Segment<K,V> seg = segments[nextSegmentIndex--];
1082 if (seg.count != 0) {
1083 currentTable = seg.table;
1084 for (int j = currentTable.length - 1; j >= 0; --j) {
1085 if ( (nextEntry = currentTable[j]) != null) {
1086 nextTableIndex = j - 1;
1087 return;
1088 }
1089 }
1090 }
1091 }
1092 }
1093
1094 public boolean hasNext() { return nextEntry != null; }
1095
1096 HashEntry<K,V> nextEntry() {
1097 if (nextEntry == null)
1098 throw new NoSuchElementException();
1099 lastReturned = nextEntry;
1100 advance();
1101 return lastReturned;
1102 }
1103
1104 public void remove() {
1105 if (lastReturned == null)
1106 throw new IllegalStateException();
1107 ConcurrentHashMap.this.remove(lastReturned.key);
1108 lastReturned = null;
1109 }
1110 }
1111
1112 final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1113 public K next() { return super.nextEntry().key; }
1114 public K nextElement() { return super.nextEntry().key; }
1115 }
1116
1117 final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1118 public V next() { return super.nextEntry().value; }
1119 public V nextElement() { return super.nextEntry().value; }
1120 }
1121
1122
1123
1124 /**
1125 * Entry iterator. Exported Entry objects must write-through
1126 * changes in setValue, even if the nodes have been cloned. So we
1127 * cannot return internal HashEntry objects. Instead, the iterator
1128 * itself acts as a forwarding pseudo-entry.
1129 */
1130 final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1131 public Map.Entry<K,V> next() {
1132 nextEntry();
1133 return this;
1134 }
1135
1136 public K getKey() {
1137 if (lastReturned == null)
1138 throw new IllegalStateException("Entry was removed");
1139 return lastReturned.key;
1140 }
1141
1142 public V getValue() {
1143 if (lastReturned == null)
1144 throw new IllegalStateException("Entry was removed");
1145 return ConcurrentHashMap.this.get(lastReturned.key);
1146 }
1147
1148 public V setValue(V value) {
1149 if (lastReturned == null)
1150 throw new IllegalStateException("Entry was removed");
1151 return ConcurrentHashMap.this.put(lastReturned.key, value);
1152 }
1153
1154 public boolean equals(Object o) {
1155 // If not acting as entry, just use default.
1156 if (lastReturned == null)
1157 return super.equals(o);
1158 if (!(o instanceof Map.Entry))
1159 return false;
1160 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1161 return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1162 }
1163
1164 public int hashCode() {
1165 // If not acting as entry, just use default.
1166 if (lastReturned == null)
1167 return super.hashCode();
1168
1169 Object k = getKey();
1170 Object v = getValue();
1171 return ((k == null) ? 0 : k.hashCode()) ^
1172 ((v == null) ? 0 : v.hashCode());
1173 }
1174
1175 public String toString() {
1176 // If not acting as entry, just use default.
1177 if (lastReturned == null)
1178 return super.toString();
1179 else
1180 return getKey() + "=" + getValue();
1181 }
1182
1183 boolean eq(Object o1, Object o2) {
1184 return (o1 == null ? o2 == null : o1.equals(o2));
1185 }
1186
1187 }
1188
1189 final class KeySet extends AbstractSet<K> {
1190 public Iterator<K> iterator() {
1191 return new KeyIterator();
1192 }
1193 public int size() {
1194 return ConcurrentHashMap.this.size();
1195 }
1196 public boolean contains(Object o) {
1197 return ConcurrentHashMap.this.containsKey(o);
1198 }
1199 public boolean remove(Object o) {
1200 return ConcurrentHashMap.this.remove(o) != null;
1201 }
1202 public void clear() {
1203 ConcurrentHashMap.this.clear();
1204 }
1205 public Object[] toArray() {
1206 Collection<K> c = new ArrayList<K>();
1207 for (Iterator<K> i = iterator(); i.hasNext(); )
1208 c.add(i.next());
1209 return c.toArray();
1210 }
1211 public <T> T[] toArray(T[] a) {
1212 Collection<K> c = new ArrayList<K>();
1213 for (Iterator<K> i = iterator(); i.hasNext(); )
1214 c.add(i.next());
1215 return c.toArray(a);
1216 }
1217 }
1218
1219 final class Values extends AbstractCollection<V> {
1220 public Iterator<V> iterator() {
1221 return new ValueIterator();
1222 }
1223 public int size() {
1224 return ConcurrentHashMap.this.size();
1225 }
1226 public boolean contains(Object o) {
1227 return ConcurrentHashMap.this.containsValue(o);
1228 }
1229 public void clear() {
1230 ConcurrentHashMap.this.clear();
1231 }
1232 public Object[] toArray() {
1233 Collection<V> c = new ArrayList<V>();
1234 for (Iterator<V> i = iterator(); i.hasNext(); )
1235 c.add(i.next());
1236 return c.toArray();
1237 }
1238 public <T> T[] toArray(T[] a) {
1239 Collection<V> c = new ArrayList<V>();
1240 for (Iterator<V> i = iterator(); i.hasNext(); )
1241 c.add(i.next());
1242 return c.toArray(a);
1243 }
1244 }
1245
1246 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1247 public Iterator<Map.Entry<K,V>> iterator() {
1248 return new EntryIterator();
1249 }
1250 public boolean contains(Object o) {
1251 if (!(o instanceof Map.Entry))
1252 return false;
1253 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1254 V v = ConcurrentHashMap.this.get(e.getKey());
1255 return v != null && v.equals(e.getValue());
1256 }
1257 public boolean remove(Object o) {
1258 if (!(o instanceof Map.Entry))
1259 return false;
1260 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1261 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1262 }
1263 public int size() {
1264 return ConcurrentHashMap.this.size();
1265 }
1266 public void clear() {
1267 ConcurrentHashMap.this.clear();
1268 }
1269 public Object[] toArray() {
1270 // Since we don't ordinarily have distinct Entry objects, we
1271 // must pack elements using exportable SimpleEntry
1272 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1273 for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1274 c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1275 return c.toArray();
1276 }
1277 public <T> T[] toArray(T[] a) {
1278 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1279 for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1280 c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1281 return c.toArray(a);
1282 }
1283
1284 }
1285
1286 /* ---------------- Serialization Support -------------- */
1287
1288 /**
1289 * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1290 * stream (i.e., serialize it).
1291 * @param s the stream
1292 * @serialData
1293 * the key (Object) and value (Object)
1294 * for each key-value mapping, followed by a null pair.
1295 * The key-value mappings are emitted in no particular order.
1296 */
1297 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1298 s.defaultWriteObject();
1299
1300 for (int k = 0; k < segments.length; ++k) {
1301 Segment<K,V> seg = segments[k];
1302 seg.lock();
1303 try {
1304 HashEntry<K,V>[] tab = seg.table;
1305 for (int i = 0; i < tab.length; ++i) {
1306 for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1307 s.writeObject(e.key);
1308 s.writeObject(e.value);
1309 }
1310 }
1311 } finally {
1312 seg.unlock();
1313 }
1314 }
1315 s.writeObject(null);
1316 s.writeObject(null);
1317 }
1318
1319 /**
1320 * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1321 * stream (i.e., deserialize it).
1322 * @param s the stream
1323 */
1324 private void readObject(java.io.ObjectInputStream s)
1325 throws IOException, ClassNotFoundException {
1326 s.defaultReadObject();
1327
1328 // Initialize each segment to be minimally sized, and let grow.
1329 for (int i = 0; i < segments.length; ++i) {
1330 segments[i].setTable((HashEntry<K,V>[])HashEntry.newArray(1));
1331 }
1332
1333 // Read the keys and values, and put the mappings in the table
1334 for (;;) {
1335 K key = (K) s.readObject();
1336 V value = (V) s.readObject();
1337 if (key == null)
1338 break;
1339 put(key, value);
1340 }
1341 }
1342 }