ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.85
Committed: Sat Sep 10 20:09:26 2005 UTC (18 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.84: +7 -5 lines
Log Message:
get

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as {@link java.util.Hashtable}, and
19 * includes versions of methods corresponding to each method of
20 * <tt>Hashtable</tt>. However, even though all operations are
21 * thread-safe, retrieval operations do <em>not</em> entail locking,
22 * and there is <em>not</em> any support for locking the entire table
23 * in a way that prevents all access. This class is fully
24 * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 * thread safety but not on its synchronization details.
26 *
27 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28 * block, so may overlap with update operations (including
29 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30 * of the most recently <em>completed</em> update operations holding
31 * upon their onset. For aggregate operations such as <tt>putAll</tt>
32 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 * removal of only some entries. Similarly, Iterators and
34 * Enumerations return elements reflecting the state of the hash table
35 * at some point at or since the creation of the iterator/enumeration.
36 * They do <em>not</em> throw {@link ConcurrentModificationException}.
37 * However, iterators are designed to be used by only one thread at a time.
38 *
39 * <p> The allowed concurrency among update operations is guided by
40 * the optional <tt>concurrencyLevel</tt> constructor argument
41 * (default <tt>16</tt>), which is used as a hint for internal sizing. The
42 * table is internally partitioned to try to permit the indicated
43 * number of concurrent updates without contention. Because placement
44 * in hash tables is essentially random, the actual concurrency will
45 * vary. Ideally, you should choose a value to accommodate as many
46 * threads as will ever concurrently modify the table. Using a
47 * significantly higher value than you need can waste space and time,
48 * and a significantly lower value can lead to thread contention. But
49 * overestimates and underestimates within an order of magnitude do
50 * not usually have much noticeable impact. A value of one is
51 * appropriate when it is known that only one thread will modify and
52 * all others will only read. Also, resizing this or any other kind of
53 * hash table is a relatively slow operation, so, when possible, it is
54 * a good idea to provide estimates of expected table sizes in
55 * constructors.
56 *
57 * <p>This class and its views and iterators implement all of the
58 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59 * interfaces.
60 *
61 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62 * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63 *
64 * <p>This class is a member of the
65 * <a href="{@docRoot}/../guide/collections/index.html">
66 * Java Collections Framework</a>.
67 *
68 * @since 1.5
69 * @author Doug Lea
70 * @param <K> the type of keys maintained by this map
71 * @param <V> the type of mapped values
72 */
73 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 implements ConcurrentMap<K, V>, Serializable {
75 private static final long serialVersionUID = 7249069246763182397L;
76
77 /*
78 * The basic strategy is to subdivide the table among Segments,
79 * each of which itself is a concurrently readable hash table.
80 */
81
82 /* ---------------- Constants -------------- */
83
84 /**
85 * The default initial capacity for this table,
86 * used when not otherwise specified in a constructor.
87 */
88 static final int DEFAULT_INITIAL_CAPACITY = 16;
89
90 /**
91 * The default load factor for this table, used when not
92 * otherwise specified in a constructor.
93 */
94 static final float DEFAULT_LOAD_FACTOR = 0.75f;
95
96 /**
97 * The default concurrency level for this table, used when not
98 * otherwise specified in a constructor.
99 */
100 static final int DEFAULT_CONCURRENCY_LEVEL = 16;
101
102 /**
103 * The maximum capacity, used if a higher value is implicitly
104 * specified by either of the constructors with arguments. MUST
105 * be a power of two <= 1<<30 to ensure that entries are indexable
106 * using ints.
107 */
108 static final int MAXIMUM_CAPACITY = 1 << 30;
109
110 /**
111 * The maximum number of segments to allow; used to bound
112 * constructor arguments.
113 */
114 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
115
116 /**
117 * Number of unsynchronized retries in size and containsValue
118 * methods before resorting to locking. This is used to avoid
119 * unbounded retries if tables undergo continuous modification
120 * which would make it impossible to obtain an accurate result.
121 */
122 static final int RETRIES_BEFORE_LOCK = 2;
123
124 /* ---------------- Fields -------------- */
125
126 /**
127 * Mask value for indexing into segments. The upper bits of a
128 * key's hash code are used to choose the segment.
129 */
130 final int segmentMask;
131
132 /**
133 * Shift value for indexing within segments.
134 */
135 final int segmentShift;
136
137 /**
138 * The segments, each of which is a specialized hash table
139 */
140 final Segment<K,V>[] segments;
141
142 transient Set<K> keySet;
143 transient Set<Map.Entry<K,V>> entrySet;
144 transient Collection<V> values;
145
146 /* ---------------- Small Utilities -------------- */
147
148 /**
149 * Returns a hash code for non-null Object x.
150 * Uses the same hash code spreader as most other java.util hash tables.
151 * @param x the object serving as a key
152 * @return the hash code
153 */
154 static int hash(Object x) {
155 int h = x.hashCode();
156 h += ~(h << 9);
157 h ^= (h >>> 14);
158 h += (h << 4);
159 h ^= (h >>> 10);
160 return h;
161 }
162
163 /**
164 * Returns the segment that should be used for key with given hash
165 * @param hash the hash code for the key
166 * @return the segment
167 */
168 final Segment<K,V> segmentFor(int hash) {
169 return segments[(hash >>> segmentShift) & segmentMask];
170 }
171
172 /* ---------------- Inner Classes -------------- */
173
174 /**
175 * ConcurrentHashMap list entry. Note that this is never exported
176 * out as a user-visible Map.Entry.
177 *
178 * Because the value field is volatile, not final, it is legal wrt
179 * the Java Memory Model for an unsynchronized reader to see null
180 * instead of initial value when read via a data race. Although a
181 * reordering leading to this is not likely to ever actually
182 * occur, the Segment.readValueUnderLock method is used as a
183 * backup in case a null (pre-initialized) value is ever seen in
184 * an unsynchronized access method.
185 */
186 static final class HashEntry<K,V> {
187 final K key;
188 final int hash;
189 volatile V value;
190 final HashEntry<K,V> next;
191
192 HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 this.key = key;
194 this.hash = hash;
195 this.next = next;
196 this.value = value;
197 }
198
199 @SuppressWarnings("unchecked")
200 static final <K,V> HashEntry<K,V>[] newArray(int i) {
201 return new HashEntry[i];
202 }
203 }
204
205 /**
206 * Segments are specialized versions of hash tables. This
207 * subclasses from ReentrantLock opportunistically, just to
208 * simplify some locking and avoid separate construction.
209 */
210 static final class Segment<K,V> extends ReentrantLock implements Serializable {
211 /*
212 * Segments maintain a table of entry lists that are ALWAYS
213 * kept in a consistent state, so can be read without locking.
214 * Next fields of nodes are immutable (final). All list
215 * additions are performed at the front of each bin. This
216 * makes it easy to check changes, and also fast to traverse.
217 * When nodes would otherwise be changed, new nodes are
218 * created to replace them. This works well for hash tables
219 * since the bin lists tend to be short. (The average length
220 * is less than two for the default load factor threshold.)
221 *
222 * Read operations can thus proceed without locking, but rely
223 * on selected uses of volatiles to ensure that completed
224 * write operations performed by other threads are
225 * noticed. For most purposes, the "count" field, tracking the
226 * number of elements, serves as that volatile variable
227 * ensuring visibility. This is convenient because this field
228 * needs to be read in many read operations anyway:
229 *
230 * - All (unsynchronized) read operations must first read the
231 * "count" field, and should not look at table entries if
232 * it is 0.
233 *
234 * - All (synchronized) write operations should write to
235 * the "count" field after structurally changing any bin.
236 * The operations must not take any action that could even
237 * momentarily cause a concurrent read operation to see
238 * inconsistent data. This is made easier by the nature of
239 * the read operations in Map. For example, no operation
240 * can reveal that the table has grown but the threshold
241 * has not yet been updated, so there are no atomicity
242 * requirements for this with respect to reads.
243 *
244 * As a guide, all critical volatile reads and writes to the
245 * count field are marked in code comments.
246 */
247
248 private static final long serialVersionUID = 2249069246763182397L;
249
250 /**
251 * The number of elements in this segment's region.
252 */
253 transient volatile int count;
254
255 /**
256 * Number of updates that alter the size of the table. This is
257 * used during bulk-read methods to make sure they see a
258 * consistent snapshot: If modCounts change during a traversal
259 * of segments computing size or checking containsValue, then
260 * we might have an inconsistent view of state so (usually)
261 * must retry.
262 */
263 transient int modCount;
264
265 /**
266 * The table is rehashed when its size exceeds this threshold.
267 * (The value of this field is always <tt>(int)(capacity *
268 * loadFactor)</tt>.)
269 */
270 transient int threshold;
271
272 /**
273 * The per-segment table.
274 */
275 transient volatile HashEntry<K,V>[] table;
276
277 /**
278 * The load factor for the hash table. Even though this value
279 * is same for all segments, it is replicated to avoid needing
280 * links to outer object.
281 * @serial
282 */
283 final float loadFactor;
284
285 Segment(int initialCapacity, float lf) {
286 loadFactor = lf;
287 setTable(HashEntry.<K,V>newArray(initialCapacity));
288 }
289
290 @SuppressWarnings("unchecked")
291 static final <K,V> Segment<K,V>[] newArray(int i) {
292 return new Segment[i];
293 }
294
295 /**
296 * Sets table to new HashEntry array.
297 * Call only while holding lock or in constructor.
298 */
299 void setTable(HashEntry<K,V>[] newTable) {
300 threshold = (int)(newTable.length * loadFactor);
301 table = newTable;
302 }
303
304 /**
305 * Returns properly casted first entry of bin for given hash.
306 */
307 HashEntry<K,V> getFirst(int hash) {
308 HashEntry<K,V>[] tab = table;
309 return tab[hash & (tab.length - 1)];
310 }
311
312 /**
313 * Reads value field of an entry under lock. Called if value
314 * field ever appears to be null. This is possible only if a
315 * compiler happens to reorder a HashEntry initialization with
316 * its table assignment, which is legal under memory model
317 * but is not known to ever occur.
318 */
319 V readValueUnderLock(HashEntry<K,V> e) {
320 lock();
321 try {
322 return e.value;
323 } finally {
324 unlock();
325 }
326 }
327
328 /* Specialized implementations of map methods */
329
330 V get(Object key, int hash) {
331 if (count != 0) { // read-volatile
332 HashEntry<K,V> e = getFirst(hash);
333 while (e != null) {
334 if (e.hash == hash && key.equals(e.key)) {
335 V v = e.value;
336 if (v != null)
337 return v;
338 return readValueUnderLock(e); // recheck
339 }
340 e = e.next;
341 }
342 }
343 return null;
344 }
345
346 boolean containsKey(Object key, int hash) {
347 if (count != 0) { // read-volatile
348 HashEntry<K,V> e = getFirst(hash);
349 while (e != null) {
350 if (e.hash == hash && key.equals(e.key))
351 return true;
352 e = e.next;
353 }
354 }
355 return false;
356 }
357
358 boolean containsValue(Object value) {
359 if (count != 0) { // read-volatile
360 HashEntry<K,V>[] tab = table;
361 int len = tab.length;
362 for (int i = 0 ; i < len; i++) {
363 for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
364 V v = e.value;
365 if (v == null) // recheck
366 v = readValueUnderLock(e);
367 if (value.equals(v))
368 return true;
369 }
370 }
371 }
372 return false;
373 }
374
375 boolean replace(K key, int hash, V oldValue, V newValue) {
376 lock();
377 try {
378 HashEntry<K,V> e = getFirst(hash);
379 while (e != null && (e.hash != hash || !key.equals(e.key)))
380 e = e.next;
381
382 boolean replaced = false;
383 if (e != null && oldValue.equals(e.value)) {
384 replaced = true;
385 e.value = newValue;
386 }
387 return replaced;
388 } finally {
389 unlock();
390 }
391 }
392
393 V replace(K key, int hash, V newValue) {
394 lock();
395 try {
396 HashEntry<K,V> e = getFirst(hash);
397 while (e != null && (e.hash != hash || !key.equals(e.key)))
398 e = e.next;
399
400 V oldValue = null;
401 if (e != null) {
402 oldValue = e.value;
403 e.value = newValue;
404 }
405 return oldValue;
406 } finally {
407 unlock();
408 }
409 }
410
411
412 V put(K key, int hash, V value, boolean onlyIfAbsent) {
413 lock();
414 try {
415 int c = count;
416 if (c++ > threshold) // ensure capacity
417 rehash();
418 HashEntry<K,V>[] tab = table;
419 int index = hash & (tab.length - 1);
420 HashEntry<K,V> first = tab[index];
421 HashEntry<K,V> e = first;
422 while (e != null && (e.hash != hash || !key.equals(e.key)))
423 e = e.next;
424
425 V oldValue;
426 if (e != null) {
427 oldValue = e.value;
428 if (!onlyIfAbsent)
429 e.value = value;
430 }
431 else {
432 oldValue = null;
433 ++modCount;
434 tab[index] = new HashEntry<K,V>(key, hash, first, value);
435 count = c; // write-volatile
436 }
437 return oldValue;
438 } finally {
439 unlock();
440 }
441 }
442
443 void rehash() {
444 HashEntry<K,V>[] oldTable = table;
445 int oldCapacity = oldTable.length;
446 if (oldCapacity >= MAXIMUM_CAPACITY)
447 return;
448
449 /*
450 * Reclassify nodes in each list to new Map. Because we are
451 * using power-of-two expansion, the elements from each bin
452 * must either stay at same index, or move with a power of two
453 * offset. We eliminate unnecessary node creation by catching
454 * cases where old nodes can be reused because their next
455 * fields won't change. Statistically, at the default
456 * threshold, only about one-sixth of them need cloning when
457 * a table doubles. The nodes they replace will be garbage
458 * collectable as soon as they are no longer referenced by any
459 * reader thread that may be in the midst of traversing table
460 * right now.
461 */
462
463 HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
464 threshold = (int)(newTable.length * loadFactor);
465 int sizeMask = newTable.length - 1;
466 for (int i = 0; i < oldCapacity ; i++) {
467 // We need to guarantee that any existing reads of old Map can
468 // proceed. So we cannot yet null out each bin.
469 HashEntry<K,V> e = oldTable[i];
470
471 if (e != null) {
472 HashEntry<K,V> next = e.next;
473 int idx = e.hash & sizeMask;
474
475 // Single node on list
476 if (next == null)
477 newTable[idx] = e;
478
479 else {
480 // Reuse trailing consecutive sequence at same slot
481 HashEntry<K,V> lastRun = e;
482 int lastIdx = idx;
483 for (HashEntry<K,V> last = next;
484 last != null;
485 last = last.next) {
486 int k = last.hash & sizeMask;
487 if (k != lastIdx) {
488 lastIdx = k;
489 lastRun = last;
490 }
491 }
492 newTable[lastIdx] = lastRun;
493
494 // Clone all remaining nodes
495 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
496 int k = p.hash & sizeMask;
497 HashEntry<K,V> n = newTable[k];
498 newTable[k] = new HashEntry<K,V>(p.key, p.hash,
499 n, p.value);
500 }
501 }
502 }
503 }
504 table = newTable;
505 }
506
507 /**
508 * Remove; match on key only if value null, else match both.
509 */
510 V remove(Object key, int hash, Object value) {
511 lock();
512 try {
513 int c = count - 1;
514 HashEntry<K,V>[] tab = table;
515 int index = hash & (tab.length - 1);
516 HashEntry<K,V> first = tab[index];
517 HashEntry<K,V> e = first;
518 while (e != null && (e.hash != hash || !key.equals(e.key)))
519 e = e.next;
520
521 V oldValue = null;
522 if (e != null) {
523 V v = e.value;
524 if (value == null || value.equals(v)) {
525 oldValue = v;
526 // All entries following removed node can stay
527 // in list, but all preceding ones need to be
528 // cloned.
529 ++modCount;
530 HashEntry<K,V> newFirst = e.next;
531 for (HashEntry<K,V> p = first; p != e; p = p.next)
532 newFirst = new HashEntry<K,V>(p.key, p.hash,
533 newFirst, p.value);
534 tab[index] = newFirst;
535 count = c; // write-volatile
536 }
537 }
538 return oldValue;
539 } finally {
540 unlock();
541 }
542 }
543
544 void clear() {
545 if (count != 0) {
546 lock();
547 try {
548 HashEntry<K,V>[] tab = table;
549 for (int i = 0; i < tab.length ; i++)
550 tab[i] = null;
551 ++modCount;
552 count = 0; // write-volatile
553 } finally {
554 unlock();
555 }
556 }
557 }
558 }
559
560
561
562 /* ---------------- Public operations -------------- */
563
564 /**
565 * Creates a new, empty map with the specified initial
566 * capacity, load factor and concurrency level.
567 *
568 * @param initialCapacity the initial capacity. The implementation
569 * performs internal sizing to accommodate this many elements.
570 * @param loadFactor the load factor threshold, used to control resizing.
571 * Resizing may be performed when the average number of elements per
572 * bin exceeds this threshold.
573 * @param concurrencyLevel the estimated number of concurrently
574 * updating threads. The implementation performs internal sizing
575 * to try to accommodate this many threads.
576 * @throws IllegalArgumentException if the initial capacity is
577 * negative or the load factor or concurrencyLevel are
578 * nonpositive.
579 */
580 public ConcurrentHashMap(int initialCapacity,
581 float loadFactor, int concurrencyLevel) {
582 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
583 throw new IllegalArgumentException();
584
585 if (concurrencyLevel > MAX_SEGMENTS)
586 concurrencyLevel = MAX_SEGMENTS;
587
588 // Find power-of-two sizes best matching arguments
589 int sshift = 0;
590 int ssize = 1;
591 while (ssize < concurrencyLevel) {
592 ++sshift;
593 ssize <<= 1;
594 }
595 segmentShift = 32 - sshift;
596 segmentMask = ssize - 1;
597 this.segments = Segment.newArray(ssize);
598
599 if (initialCapacity > MAXIMUM_CAPACITY)
600 initialCapacity = MAXIMUM_CAPACITY;
601 int c = initialCapacity / ssize;
602 if (c * ssize < initialCapacity)
603 ++c;
604 int cap = 1;
605 while (cap < c)
606 cap <<= 1;
607
608 for (int i = 0; i < this.segments.length; ++i)
609 this.segments[i] = new Segment<K,V>(cap, loadFactor);
610 }
611
612 /**
613 * Creates a new, empty map with the specified initial capacity
614 * and load factor and with the default concurrencyLevel (16).
615 *
616 * @param initialCapacity The implementation performs internal
617 * sizing to accommodate this many elements.
618 * @param loadFactor the load factor threshold, used to control resizing.
619 * Resizing may be performed when the average number of elements per
620 * bin exceeds this threshold.
621 * @throws IllegalArgumentException if the initial capacity of
622 * elements is negative or the load factor is nonpositive
623 *
624 * @since 1.6
625 */
626 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
627 this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
628 }
629
630 /**
631 * Creates a new, empty map with the specified initial capacity,
632 * and with default load factor (0.75) and concurrencyLevel (16).
633 *
634 * @param initialCapacity the initial capacity. The implementation
635 * performs internal sizing to accommodate this many elements.
636 * @throws IllegalArgumentException if the initial capacity of
637 * elements is negative.
638 */
639 public ConcurrentHashMap(int initialCapacity) {
640 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
641 }
642
643 /**
644 * Creates a new, empty map with a default initial capacity (16),
645 * load factor (0.75) and concurrencyLevel (16).
646 */
647 public ConcurrentHashMap() {
648 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
649 }
650
651 /**
652 * Creates a new map with the same mappings as the given map.
653 * The map is created with a capacity of 1.5 times the number
654 * of mappings in the given map or 16 (whichever is greater),
655 * and a default load factor (0.75) and concurrencyLevel (16).
656 *
657 * @param m the map
658 */
659 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
660 this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
661 DEFAULT_INITIAL_CAPACITY),
662 DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
663 putAll(m);
664 }
665
666 /**
667 * Returns <tt>true</tt> if this map contains no key-value mappings.
668 *
669 * @return <tt>true</tt> if this map contains no key-value mappings
670 */
671 public boolean isEmpty() {
672 final Segment<K,V>[] segments = this.segments;
673 /*
674 * We keep track of per-segment modCounts to avoid ABA
675 * problems in which an element in one segment was added and
676 * in another removed during traversal, in which case the
677 * table was never actually empty at any point. Note the
678 * similar use of modCounts in the size() and containsValue()
679 * methods, which are the only other methods also susceptible
680 * to ABA problems.
681 */
682 int[] mc = new int[segments.length];
683 int mcsum = 0;
684 for (int i = 0; i < segments.length; ++i) {
685 if (segments[i].count != 0)
686 return false;
687 else
688 mcsum += mc[i] = segments[i].modCount;
689 }
690 // If mcsum happens to be zero, then we know we got a snapshot
691 // before any modifications at all were made. This is
692 // probably common enough to bother tracking.
693 if (mcsum != 0) {
694 for (int i = 0; i < segments.length; ++i) {
695 if (segments[i].count != 0 ||
696 mc[i] != segments[i].modCount)
697 return false;
698 }
699 }
700 return true;
701 }
702
703 /**
704 * Returns the number of key-value mappings in this map. If the
705 * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
706 * <tt>Integer.MAX_VALUE</tt>.
707 *
708 * @return the number of key-value mappings in this map
709 */
710 public int size() {
711 final Segment<K,V>[] segments = this.segments;
712 long sum = 0;
713 long check = 0;
714 int[] mc = new int[segments.length];
715 // Try a few times to get accurate count. On failure due to
716 // continuous async changes in table, resort to locking.
717 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
718 check = 0;
719 sum = 0;
720 int mcsum = 0;
721 for (int i = 0; i < segments.length; ++i) {
722 sum += segments[i].count;
723 mcsum += mc[i] = segments[i].modCount;
724 }
725 if (mcsum != 0) {
726 for (int i = 0; i < segments.length; ++i) {
727 check += segments[i].count;
728 if (mc[i] != segments[i].modCount) {
729 check = -1; // force retry
730 break;
731 }
732 }
733 }
734 if (check == sum)
735 break;
736 }
737 if (check != sum) { // Resort to locking all segments
738 sum = 0;
739 for (int i = 0; i < segments.length; ++i)
740 segments[i].lock();
741 for (int i = 0; i < segments.length; ++i)
742 sum += segments[i].count;
743 for (int i = 0; i < segments.length; ++i)
744 segments[i].unlock();
745 }
746 if (sum > Integer.MAX_VALUE)
747 return Integer.MAX_VALUE;
748 else
749 return (int)sum;
750 }
751
752 /**
753 * Returns the value to which the specified key is mapped,
754 * or {@code null} if this map contains no mapping for the key.
755 *
756 * <p>More formally, if this map contains a mapping from a key
757 * {@code k} to a value {@code v} such that {@code key.equals(k)},
758 * then this method returns {@code v}; otherwise it returns
759 * {@code null}. (There can be at most one such mapping.)
760 *
761 * @throws NullPointerException if the specified key is null
762 */
763 public V get(Object key) {
764 int hash = hash(key); // throws NullPointerException if key null
765 return segmentFor(hash).get(key, hash);
766 }
767
768 /**
769 * Tests if the specified object is a key in this table.
770 *
771 * @param key possible key
772 * @return <tt>true</tt> if and only if the specified object
773 * is a key in this table, as determined by the
774 * <tt>equals</tt> method; <tt>false</tt> otherwise.
775 * @throws NullPointerException if the specified key is null
776 */
777 public boolean containsKey(Object key) {
778 int hash = hash(key); // throws NullPointerException if key null
779 return segmentFor(hash).containsKey(key, hash);
780 }
781
782 /**
783 * Returns <tt>true</tt> if this map maps one or more keys to the
784 * specified value. Note: This method requires a full internal
785 * traversal of the hash table, and so is much slower than
786 * method <tt>containsKey</tt>.
787 *
788 * @param value value whose presence in this map is to be tested
789 * @return <tt>true</tt> if this map maps one or more keys to the
790 * specified value
791 * @throws NullPointerException if the specified value is null
792 */
793 public boolean containsValue(Object value) {
794 if (value == null)
795 throw new NullPointerException();
796
797 // See explanation of modCount use above
798
799 final Segment<K,V>[] segments = this.segments;
800 int[] mc = new int[segments.length];
801
802 // Try a few times without locking
803 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
804 int sum = 0;
805 int mcsum = 0;
806 for (int i = 0; i < segments.length; ++i) {
807 int c = segments[i].count;
808 mcsum += mc[i] = segments[i].modCount;
809 if (segments[i].containsValue(value))
810 return true;
811 }
812 boolean cleanSweep = true;
813 if (mcsum != 0) {
814 for (int i = 0; i < segments.length; ++i) {
815 int c = segments[i].count;
816 if (mc[i] != segments[i].modCount) {
817 cleanSweep = false;
818 break;
819 }
820 }
821 }
822 if (cleanSweep)
823 return false;
824 }
825 // Resort to locking all segments
826 for (int i = 0; i < segments.length; ++i)
827 segments[i].lock();
828 boolean found = false;
829 try {
830 for (int i = 0; i < segments.length; ++i) {
831 if (segments[i].containsValue(value)) {
832 found = true;
833 break;
834 }
835 }
836 } finally {
837 for (int i = 0; i < segments.length; ++i)
838 segments[i].unlock();
839 }
840 return found;
841 }
842
843 /**
844 * Legacy method testing if some key maps into the specified value
845 * in this table. This method is identical in functionality to
846 * {@link #containsValue}, and exists solely to ensure
847 * full compatibility with class {@link java.util.Hashtable},
848 * which supported this method prior to introduction of the
849 * Java Collections framework.
850
851 * @param value a value to search for
852 * @return <tt>true</tt> if and only if some key maps to the
853 * <tt>value</tt> argument in this table as
854 * determined by the <tt>equals</tt> method;
855 * <tt>false</tt> otherwise
856 * @throws NullPointerException if the specified value is null
857 */
858 public boolean contains(Object value) {
859 return containsValue(value);
860 }
861
862 /**
863 * Maps the specified key to the specified value in this table.
864 * Neither the key nor the value can be null.
865 *
866 * <p> The value can be retrieved by calling the <tt>get</tt> method
867 * with a key that is equal to the original key.
868 *
869 * @param key key with which the specified value is to be associated
870 * @param value value to be associated with the specified key
871 * @return the previous value associated with <tt>key</tt>, or
872 * <tt>null</tt> if there was no mapping for <tt>key</tt>
873 * @throws NullPointerException if the specified key or value is null
874 */
875 public V put(K key, V value) {
876 if (value == null)
877 throw new NullPointerException();
878 int hash = hash(key);
879 return segmentFor(hash).put(key, hash, value, false);
880 }
881
882 /**
883 * {@inheritDoc}
884 *
885 * @return the previous value associated with the specified key,
886 * or <tt>null</tt> if there was no mapping for the key
887 * @throws NullPointerException if the specified key or value is null
888 */
889 public V putIfAbsent(K key, V value) {
890 if (value == null)
891 throw new NullPointerException();
892 int hash = hash(key);
893 return segmentFor(hash).put(key, hash, value, true);
894 }
895
896 /**
897 * Copies all of the mappings from the specified map to this one.
898 * These mappings replace any mappings that this map had for any of the
899 * keys currently in the specified map.
900 *
901 * @param m mappings to be stored in this map
902 */
903 public void putAll(Map<? extends K, ? extends V> m) {
904 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
905 put(e.getKey(), e.getValue());
906 }
907
908 /**
909 * Removes the key (and its corresponding value) from this map.
910 * This method does nothing if the key is not in the map.
911 *
912 * @param key the key that needs to be removed
913 * @return the previous value associated with <tt>key</tt>, or
914 * <tt>null</tt> if there was no mapping for <tt>key</tt>
915 * @throws NullPointerException if the specified key is null
916 */
917 public V remove(Object key) {
918 int hash = hash(key);
919 return segmentFor(hash).remove(key, hash, null);
920 }
921
922 /**
923 * {@inheritDoc}
924 *
925 * @throws NullPointerException if the specified key is null
926 */
927 public boolean remove(Object key, Object value) {
928 if (value == null)
929 return false;
930 int hash = hash(key);
931 return segmentFor(hash).remove(key, hash, value) != null;
932 }
933
934 /**
935 * {@inheritDoc}
936 *
937 * @throws NullPointerException if any of the arguments are null
938 */
939 public boolean replace(K key, V oldValue, V newValue) {
940 if (oldValue == null || newValue == null)
941 throw new NullPointerException();
942 int hash = hash(key);
943 return segmentFor(hash).replace(key, hash, oldValue, newValue);
944 }
945
946 /**
947 * {@inheritDoc}
948 *
949 * @return the previous value associated with the specified key,
950 * or <tt>null</tt> if there was no mapping for the key
951 * @throws NullPointerException if the specified key or value is null
952 */
953 public V replace(K key, V value) {
954 if (value == null)
955 throw new NullPointerException();
956 int hash = hash(key);
957 return segmentFor(hash).replace(key, hash, value);
958 }
959
960 /**
961 * Removes all of the mappings from this map.
962 */
963 public void clear() {
964 for (int i = 0; i < segments.length; ++i)
965 segments[i].clear();
966 }
967
968 /**
969 * Returns a {@link Set} view of the keys contained in this map.
970 * The set is backed by the map, so changes to the map are
971 * reflected in the set, and vice-versa. The set supports element
972 * removal, which removes the corresponding mapping from this map,
973 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
974 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
975 * operations. It does not support the <tt>add</tt> or
976 * <tt>addAll</tt> operations.
977 *
978 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
979 * that will never throw {@link ConcurrentModificationException},
980 * and guarantees to traverse elements as they existed upon
981 * construction of the iterator, and may (but is not guaranteed to)
982 * reflect any modifications subsequent to construction.
983 */
984 public Set<K> keySet() {
985 Set<K> ks = keySet;
986 return (ks != null) ? ks : (keySet = new KeySet());
987 }
988
989 /**
990 * Returns a {@link Collection} view of the values contained in this map.
991 * The collection is backed by the map, so changes to the map are
992 * reflected in the collection, and vice-versa. The collection
993 * supports element removal, which removes the corresponding
994 * mapping from this map, via the <tt>Iterator.remove</tt>,
995 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
996 * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not
997 * support the <tt>add</tt> or <tt>addAll</tt> operations.
998 *
999 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1000 * that will never throw {@link ConcurrentModificationException},
1001 * and guarantees to traverse elements as they existed upon
1002 * construction of the iterator, and may (but is not guaranteed to)
1003 * reflect any modifications subsequent to construction.
1004 */
1005 public Collection<V> values() {
1006 Collection<V> vs = values;
1007 return (vs != null) ? vs : (values = new Values());
1008 }
1009
1010 /**
1011 * Returns a {@link Set} view of the mappings contained in this map.
1012 * The set is backed by the map, so changes to the map are
1013 * reflected in the set, and vice-versa. The set supports element
1014 * removal, which removes the corresponding mapping from the map,
1015 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1016 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1017 * operations. It does not support the <tt>add</tt> or
1018 * <tt>addAll</tt> operations.
1019 *
1020 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1021 * that will never throw {@link ConcurrentModificationException},
1022 * and guarantees to traverse elements as they existed upon
1023 * construction of the iterator, and may (but is not guaranteed to)
1024 * reflect any modifications subsequent to construction.
1025 */
1026 public Set<Map.Entry<K,V>> entrySet() {
1027 Set<Map.Entry<K,V>> es = entrySet;
1028 return (es != null) ? es : (entrySet = new EntrySet());
1029 }
1030
1031 /**
1032 * Returns an enumeration of the keys in this table.
1033 *
1034 * @return an enumeration of the keys in this table
1035 * @see #keySet
1036 */
1037 public Enumeration<K> keys() {
1038 return new KeyIterator();
1039 }
1040
1041 /**
1042 * Returns an enumeration of the values in this table.
1043 *
1044 * @return an enumeration of the values in this table
1045 * @see #values
1046 */
1047 public Enumeration<V> elements() {
1048 return new ValueIterator();
1049 }
1050
1051 /* ---------------- Iterator Support -------------- */
1052
1053 abstract class HashIterator {
1054 int nextSegmentIndex;
1055 int nextTableIndex;
1056 HashEntry<K,V>[] currentTable;
1057 HashEntry<K, V> nextEntry;
1058 HashEntry<K, V> lastReturned;
1059
1060 HashIterator() {
1061 nextSegmentIndex = segments.length - 1;
1062 nextTableIndex = -1;
1063 advance();
1064 }
1065
1066 public boolean hasMoreElements() { return hasNext(); }
1067
1068 final void advance() {
1069 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1070 return;
1071
1072 while (nextTableIndex >= 0) {
1073 if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1074 return;
1075 }
1076
1077 while (nextSegmentIndex >= 0) {
1078 Segment<K,V> seg = segments[nextSegmentIndex--];
1079 if (seg.count != 0) {
1080 currentTable = seg.table;
1081 for (int j = currentTable.length - 1; j >= 0; --j) {
1082 if ( (nextEntry = currentTable[j]) != null) {
1083 nextTableIndex = j - 1;
1084 return;
1085 }
1086 }
1087 }
1088 }
1089 }
1090
1091 public boolean hasNext() { return nextEntry != null; }
1092
1093 HashEntry<K,V> nextEntry() {
1094 if (nextEntry == null)
1095 throw new NoSuchElementException();
1096 lastReturned = nextEntry;
1097 advance();
1098 return lastReturned;
1099 }
1100
1101 public void remove() {
1102 if (lastReturned == null)
1103 throw new IllegalStateException();
1104 ConcurrentHashMap.this.remove(lastReturned.key);
1105 lastReturned = null;
1106 }
1107 }
1108
1109 final class KeyIterator
1110 extends HashIterator
1111 implements Iterator<K>, Enumeration<K>
1112 {
1113 public K next() { return super.nextEntry().key; }
1114 public K nextElement() { return super.nextEntry().key; }
1115 }
1116
1117 final class ValueIterator
1118 extends HashIterator
1119 implements Iterator<V>, Enumeration<V>
1120 {
1121 public V next() { return super.nextEntry().value; }
1122 public V nextElement() { return super.nextEntry().value; }
1123 }
1124
1125 /**
1126 * Custom Entry class used by EntryIterator.next(), that relays
1127 * setValue changes to the underlying map.
1128 */
1129 final class WriteThroughEntry
1130 extends AbstractMap.SimpleEntry<K,V>
1131 {
1132 WriteThroughEntry(K k, V v) {
1133 super(k,v);
1134 }
1135
1136 /**
1137 * Set our entry's value and write through to the map. The
1138 * value to return is somewhat arbitrary here. Since a
1139 * WriteThroughEntry does not necessarily track asynchronous
1140 * changes, the most recent "previous" value could be
1141 * different from what we return (or could even have been
1142 * removed in which case the put will re-establish). We do not
1143 * and cannot guarantee more.
1144 */
1145 public V setValue(V value) {
1146 if (value == null) throw new NullPointerException();
1147 V v = super.setValue(value);
1148 ConcurrentHashMap.this.put(getKey(), value);
1149 return v;
1150 }
1151 }
1152
1153 final class EntryIterator
1154 extends HashIterator
1155 implements Iterator<Entry<K,V>>
1156 {
1157 public Map.Entry<K,V> next() {
1158 HashEntry<K,V> e = super.nextEntry();
1159 return new WriteThroughEntry(e.key, e.value);
1160 }
1161 }
1162
1163 final class KeySet extends AbstractSet<K> {
1164 public Iterator<K> iterator() {
1165 return new KeyIterator();
1166 }
1167 public int size() {
1168 return ConcurrentHashMap.this.size();
1169 }
1170 public boolean contains(Object o) {
1171 return ConcurrentHashMap.this.containsKey(o);
1172 }
1173 public boolean remove(Object o) {
1174 return ConcurrentHashMap.this.remove(o) != null;
1175 }
1176 public void clear() {
1177 ConcurrentHashMap.this.clear();
1178 }
1179 public Object[] toArray() {
1180 Collection<K> c = new ArrayList<K>(size());
1181 for (K k : this)
1182 c.add(k);
1183 return c.toArray();
1184 }
1185 public <T> T[] toArray(T[] a) {
1186 Collection<K> c = new ArrayList<K>();
1187 for (K k : this)
1188 c.add(k);
1189 return c.toArray(a);
1190 }
1191 }
1192
1193 final class Values extends AbstractCollection<V> {
1194 public Iterator<V> iterator() {
1195 return new ValueIterator();
1196 }
1197 public int size() {
1198 return ConcurrentHashMap.this.size();
1199 }
1200 public boolean contains(Object o) {
1201 return ConcurrentHashMap.this.containsValue(o);
1202 }
1203 public void clear() {
1204 ConcurrentHashMap.this.clear();
1205 }
1206 public Object[] toArray() {
1207 Collection<V> c = new ArrayList<V>(size());
1208 for (V v : this)
1209 c.add(v);
1210 return c.toArray();
1211 }
1212 public <T> T[] toArray(T[] a) {
1213 Collection<V> c = new ArrayList<V>(size());
1214 for (V v : this)
1215 c.add(v);
1216 return c.toArray(a);
1217 }
1218 }
1219
1220 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1221 public Iterator<Map.Entry<K,V>> iterator() {
1222 return new EntryIterator();
1223 }
1224 public boolean contains(Object o) {
1225 if (!(o instanceof Map.Entry))
1226 return false;
1227 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1228 V v = ConcurrentHashMap.this.get(e.getKey());
1229 return v != null && v.equals(e.getValue());
1230 }
1231 public boolean remove(Object o) {
1232 if (!(o instanceof Map.Entry))
1233 return false;
1234 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1235 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1236 }
1237 public int size() {
1238 return ConcurrentHashMap.this.size();
1239 }
1240 public void clear() {
1241 ConcurrentHashMap.this.clear();
1242 }
1243 public Object[] toArray() {
1244 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1245 for (Map.Entry<K,V> e : this)
1246 c.add(e);
1247 return c.toArray();
1248 }
1249 public <T> T[] toArray(T[] a) {
1250 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1251 for (Map.Entry<K,V> e : this)
1252 c.add(e);
1253 return c.toArray(a);
1254 }
1255
1256 }
1257
1258 /* ---------------- Serialization Support -------------- */
1259
1260 /**
1261 * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1262 * stream (i.e., serialize it).
1263 * @param s the stream
1264 * @serialData
1265 * the key (Object) and value (Object)
1266 * for each key-value mapping, followed by a null pair.
1267 * The key-value mappings are emitted in no particular order.
1268 */
1269 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1270 s.defaultWriteObject();
1271
1272 for (int k = 0; k < segments.length; ++k) {
1273 Segment<K,V> seg = segments[k];
1274 seg.lock();
1275 try {
1276 HashEntry<K,V>[] tab = seg.table;
1277 for (int i = 0; i < tab.length; ++i) {
1278 for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1279 s.writeObject(e.key);
1280 s.writeObject(e.value);
1281 }
1282 }
1283 } finally {
1284 seg.unlock();
1285 }
1286 }
1287 s.writeObject(null);
1288 s.writeObject(null);
1289 }
1290
1291 /**
1292 * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1293 * stream (i.e., deserialize it).
1294 * @param s the stream
1295 */
1296 private void readObject(java.io.ObjectInputStream s)
1297 throws IOException, ClassNotFoundException {
1298 s.defaultReadObject();
1299
1300 // Initialize each segment to be minimally sized, and let grow.
1301 for (int i = 0; i < segments.length; ++i) {
1302 segments[i].setTable(new HashEntry[1]);
1303 }
1304
1305 // Read the keys and values, and put the mappings in the table
1306 for (;;) {
1307 K key = (K) s.readObject();
1308 V value = (V) s.readObject();
1309 if (key == null)
1310 break;
1311 put(key, value);
1312 }
1313 }
1314 }