ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.110 by jsr166, Wed Apr 27 14:06:30 2011 UTC vs.
Revision 1.152 by jsr166, Sat Dec 15 21:00:15 2012 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 > import java.util.concurrent.ForkJoinPool;
9 > import java.util.concurrent.CountedCompleter;
10 >
11 > import java.util.Comparator;
12 > import java.util.Arrays;
13 > import java.util.Map;
14 > import java.util.Set;
15 > import java.util.Collection;
16 > import java.util.AbstractMap;
17 > import java.util.AbstractSet;
18 > import java.util.AbstractCollection;
19 > import java.util.Hashtable;
20 > import java.util.HashMap;
21 > import java.util.Iterator;
22 > import java.util.Enumeration;
23 > import java.util.ConcurrentModificationException;
24 > import java.util.NoSuchElementException;
25 > import java.util.concurrent.ConcurrentMap;
26 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 > import java.util.concurrent.atomic.AtomicInteger;
28 > import java.util.concurrent.atomic.AtomicReference;
29   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
30  
31   /**
32   * A hash table supporting full concurrency of retrievals and
33 < * adjustable expected concurrency for updates. This class obeys the
33 > * high expected concurrency for updates. This class obeys the
34   * same functional specification as {@link java.util.Hashtable}, and
35   * includes versions of methods corresponding to each method of
36 < * <tt>Hashtable</tt>. However, even though all operations are
36 > * {@code Hashtable}. However, even though all operations are
37   * thread-safe, retrieval operations do <em>not</em> entail locking,
38   * and there is <em>not</em> any support for locking the entire table
39   * in a way that prevents all access.  This class is fully
40 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
40 > * interoperable with {@code Hashtable} in programs that rely on its
41   * thread safety but not on its synchronization details.
42   *
43 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
44 < * block, so may overlap with update operations (including
45 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
46 < * of the most recently <em>completed</em> update operations holding
47 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
48 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
49 < * removal of only some entries.  Similarly, Iterators and
50 < * Enumerations return elements reflecting the state of the hash table
51 < * at some point at or since the creation of the iterator/enumeration.
52 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
53 < * However, iterators are designed to be used by only one thread at a time.
54 < *
55 < * <p> The allowed concurrency among update operations is guided by
56 < * the optional <tt>concurrencyLevel</tt> constructor argument
57 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
58 < * table is internally partitioned to try to permit the indicated
59 < * number of concurrent updates without contention. Because placement
60 < * in hash tables is essentially random, the actual concurrency will
61 < * vary.  Ideally, you should choose a value to accommodate as many
62 < * threads as will ever concurrently modify the table. Using a
63 < * significantly higher value than you need can waste space and time,
64 < * and a significantly lower value can lead to thread contention. But
65 < * overestimates and underestimates within an order of magnitude do
66 < * not usually have much noticeable impact. A value of one is
67 < * appropriate when it is known that only one thread will modify and
68 < * all others will only read. Also, resizing this or any other kind of
69 < * hash table is a relatively slow operation, so, when possible, it is
70 < * a good idea to provide estimates of expected table sizes in
71 < * constructors.
43 > * <p>Retrieval operations (including {@code get}) generally do not
44 > * block, so may overlap with update operations (including {@code put}
45 > * and {@code remove}). Retrievals reflect the results of the most
46 > * recently <em>completed</em> update operations holding upon their
47 > * onset. (More formally, an update operation for a given key bears a
48 > * <em>happens-before</em> relation with any (non-null) retrieval for
49 > * that key reporting the updated value.)  For aggregate operations
50 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
51 > * reflect insertion or removal of only some entries.  Similarly,
52 > * Iterators and Enumerations return elements reflecting the state of
53 > * the hash table at some point at or since the creation of the
54 > * iterator/enumeration.  They do <em>not</em> throw {@link
55 > * ConcurrentModificationException}.  However, iterators are designed
56 > * to be used by only one thread at a time.  Bear in mind that the
57 > * results of aggregate status methods including {@code size}, {@code
58 > * isEmpty}, and {@code containsValue} are typically useful only when
59 > * a map is not undergoing concurrent updates in other threads.
60 > * Otherwise the results of these methods reflect transient states
61 > * that may be adequate for monitoring or estimation purposes, but not
62 > * for program control.
63 > *
64 > * <p>The table is dynamically expanded when there are too many
65 > * collisions (i.e., keys that have distinct hash codes but fall into
66 > * the same slot modulo the table size), with the expected average
67 > * effect of maintaining roughly two bins per mapping (corresponding
68 > * to a 0.75 load factor threshold for resizing). There may be much
69 > * variance around this average as mappings are added and removed, but
70 > * overall, this maintains a commonly accepted time/space tradeoff for
71 > * hash tables.  However, resizing this or any other kind of hash
72 > * table may be a relatively slow operation. When possible, it is a
73 > * good idea to provide a size estimate as an optional {@code
74 > * initialCapacity} constructor argument. An additional optional
75 > * {@code loadFactor} constructor argument provides a further means of
76 > * customizing initial table capacity by specifying the table density
77 > * to be used in calculating the amount of space to allocate for the
78 > * given number of elements.  Also, for compatibility with previous
79 > * versions of this class, constructors may optionally specify an
80 > * expected {@code concurrencyLevel} as an additional hint for
81 > * internal sizing.  Note that using many keys with exactly the same
82 > * {@code hashCode()} is a sure way to slow down performance of any
83 > * hash table.
84 > *
85 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
86 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
87 > * (using {@link #keySet(Object)} when only keys are of interest, and the
88 > * mapped values are (perhaps transiently) not used or all take the
89 > * same mapping value.
90 > *
91 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
92 > * form of histogram or multiset) by using {@link LongAdder} values
93 > * and initializing via {@link #computeIfAbsent}. For example, to add
94 > * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
95 > * can use {@code freqs.computeIfAbsent(k -> new
96 > * LongAdder()).increment();}
97   *
98   * <p>This class and its views and iterators implement all of the
99   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
100   * interfaces.
101   *
102 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
103 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
102 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
103 > * does <em>not</em> allow {@code null} to be used as a key or value.
104 > *
105 > * <p>ConcurrentHashMaps support sequential and parallel operations
106 > * bulk operations. (Parallel forms use the {@link
107 > * ForkJoinPool#commonPool()}). Tasks that may be used in other
108 > * contexts are available in class {@link ForkJoinTasks}. These
109 > * operations are designed to be safely, and often sensibly, applied
110 > * even with maps that are being concurrently updated by other
111 > * threads; for example, when computing a snapshot summary of the
112 > * values in a shared registry.  There are three kinds of operation,
113 > * each with four forms, accepting functions with Keys, Values,
114 > * Entries, and (Key, Value) arguments and/or return values. Because
115 > * the elements of a ConcurrentHashMap are not ordered in any
116 > * particular way, and may be processed in different orders in
117 > * different parallel executions, the correctness of supplied
118 > * functions should not depend on any ordering, or on any other
119 > * objects or values that may transiently change while computation is
120 > * in progress; and except for forEach actions, should ideally be
121 > * side-effect-free.
122 > *
123 > * <ul>
124 > * <li> forEach: Perform a given action on each element.
125 > * A variant form applies a given transformation on each element
126 > * before performing the action.</li>
127 > *
128 > * <li> search: Return the first available non-null result of
129 > * applying a given function on each element; skipping further
130 > * search when a result is found.</li>
131 > *
132 > * <li> reduce: Accumulate each element.  The supplied reduction
133 > * function cannot rely on ordering (more formally, it should be
134 > * both associative and commutative).  There are five variants:
135 > *
136 > * <ul>
137 > *
138 > * <li> Plain reductions. (There is not a form of this method for
139 > * (key, value) function arguments since there is no corresponding
140 > * return type.)</li>
141 > *
142 > * <li> Mapped reductions that accumulate the results of a given
143 > * function applied to each element.</li>
144 > *
145 > * <li> Reductions to scalar doubles, longs, and ints, using a
146 > * given basis value.</li>
147 > *
148 > * </li>
149 > * </ul>
150 > * </ul>
151 > *
152 > * <p>The concurrency properties of bulk operations follow
153 > * from those of ConcurrentHashMap: Any non-null result returned
154 > * from {@code get(key)} and related access methods bears a
155 > * happens-before relation with the associated insertion or
156 > * update.  The result of any bulk operation reflects the
157 > * composition of these per-element relations (but is not
158 > * necessarily atomic with respect to the map as a whole unless it
159 > * is somehow known to be quiescent).  Conversely, because keys
160 > * and values in the map are never null, null serves as a reliable
161 > * atomic indicator of the current lack of any result.  To
162 > * maintain this property, null serves as an implicit basis for
163 > * all non-scalar reduction operations. For the double, long, and
164 > * int versions, the basis should be one that, when combined with
165 > * any other value, returns that other value (more formally, it
166 > * should be the identity element for the reduction). Most common
167 > * reductions have these properties; for example, computing a sum
168 > * with basis 0 or a minimum with basis MAX_VALUE.
169 > *
170 > * <p>Search and transformation functions provided as arguments
171 > * should similarly return null to indicate the lack of any result
172 > * (in which case it is not used). In the case of mapped
173 > * reductions, this also enables transformations to serve as
174 > * filters, returning null (or, in the case of primitive
175 > * specializations, the identity basis) if the element should not
176 > * be combined. You can create compound transformations and
177 > * filterings by composing them yourself under this "null means
178 > * there is nothing there now" rule before using them in search or
179 > * reduce operations.
180 > *
181 > * <p>Methods accepting and/or returning Entry arguments maintain
182 > * key-value associations. They may be useful for example when
183 > * finding the key for the greatest value. Note that "plain" Entry
184 > * arguments can be supplied using {@code new
185 > * AbstractMap.SimpleEntry(k,v)}.
186 > *
187 > * <p>Bulk operations may complete abruptly, throwing an
188 > * exception encountered in the application of a supplied
189 > * function. Bear in mind when handling such exceptions that other
190 > * concurrently executing functions could also have thrown
191 > * exceptions, or would have done so if the first exception had
192 > * not occurred.
193 > *
194 > * <p>Speedups for parallel compared to sequential forms are common
195 > * but not guaranteed.  Parallel operations involving brief functions
196 > * on small maps may execute more slowly than sequential forms if the
197 > * underlying work to parallelize the computation is more expensive
198 > * than the computation itself.  Similarly, parallelization may not
199 > * lead to much actual parallelism if all processors are busy
200 > * performing unrelated tasks.
201 > *
202 > * <p>All arguments to all task methods must be non-null.
203 > *
204 > * <p><em>jsr166e note: During transition, this class
205 > * uses nested functional interfaces with different names but the
206 > * same forms as those expected for JDK8.</em>
207   *
208   * <p>This class is a member of the
209   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 214 | import java.io.ObjectOutputStream;
214   * @param <K> the type of keys maintained by this map
215   * @param <V> the type of mapped values
216   */
217 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
218 <        implements ConcurrentMap<K, V>, Serializable {
217 > public class ConcurrentHashMap<K, V>
218 >    implements ConcurrentMap<K, V>, Serializable {
219      private static final long serialVersionUID = 7249069246763182397L;
220  
221 +    /**
222 +     * A partitionable iterator. A Spliterator can be traversed
223 +     * directly, but can also be partitioned (before traversal) by
224 +     * creating another Spliterator that covers a non-overlapping
225 +     * portion of the elements, and so may be amenable to parallel
226 +     * execution.
227 +     *
228 +     * <p>This interface exports a subset of expected JDK8
229 +     * functionality.
230 +     *
231 +     * <p>Sample usage: Here is one (of the several) ways to compute
232 +     * the sum of the values held in a map using the ForkJoin
233 +     * framework. As illustrated here, Spliterators are well suited to
234 +     * designs in which a task repeatedly splits off half its work
235 +     * into forked subtasks until small enough to process directly,
236 +     * and then joins these subtasks. Variants of this style can also
237 +     * be used in completion-based designs.
238 +     *
239 +     * <pre>
240 +     * {@code ConcurrentHashMap<String, Long> m = ...
241 +     * // split as if have 8 * parallelism, for load balance
242 +     * int n = m.size();
243 +     * int p = aForkJoinPool.getParallelism() * 8;
244 +     * int split = (n < p)? n : p;
245 +     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
246 +     * // ...
247 +     * static class SumValues extends RecursiveTask<Long> {
248 +     *   final Spliterator<Long> s;
249 +     *   final int split;             // split while > 1
250 +     *   final SumValues nextJoin;    // records forked subtasks to join
251 +     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
252 +     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
253 +     *   }
254 +     *   public Long compute() {
255 +     *     long sum = 0;
256 +     *     SumValues subtasks = null; // fork subtasks
257 +     *     for (int s = split >>> 1; s > 0; s >>>= 1)
258 +     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
259 +     *     while (s.hasNext())        // directly process remaining elements
260 +     *       sum += s.next();
261 +     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
262 +     *       sum += t.join();         // collect subtask results
263 +     *     return sum;
264 +     *   }
265 +     * }
266 +     * }</pre>
267 +     */
268 +    public static interface Spliterator<T> extends Iterator<T> {
269 +        /**
270 +         * Returns a Spliterator covering approximately half of the
271 +         * elements, guaranteed not to overlap with those subsequently
272 +         * returned by this Spliterator.  After invoking this method,
273 +         * the current Spliterator will <em>not</em> produce any of
274 +         * the elements of the returned Spliterator, but the two
275 +         * Spliterators together will produce all of the elements that
276 +         * would have been produced by this Spliterator had this
277 +         * method not been called. The exact number of elements
278 +         * produced by the returned Spliterator is not guaranteed, and
279 +         * may be zero (i.e., with {@code hasNext()} reporting {@code
280 +         * false}) if this Spliterator cannot be further split.
281 +         *
282 +         * @return a Spliterator covering approximately half of the
283 +         * elements
284 +         * @throws IllegalStateException if this Spliterator has
285 +         * already commenced traversing elements
286 +         */
287 +        Spliterator<T> split();
288 +    }
289 +
290      /*
291 <     * The basic strategy is to subdivide the table among Segments,
292 <     * each of which itself is a concurrently readable hash table.  To
293 <     * reduce footprint, all but one segments are constructed only
294 <     * when first needed (see ensureSegment). To maintain visibility
295 <     * in the presence of lazy construction, accesses to segments as
296 <     * well as elements of segment's table must use volatile access,
297 <     * which is done via Unsafe within methods segmentAt etc
298 <     * below. These provide the functionality of AtomicReferenceArrays
299 <     * but reduce the levels of indirection. Additionally,
300 <     * volatile-writes of table elements and entry "next" fields
301 <     * within locked operations use the cheaper "lazySet" forms of
302 <     * writes (via putOrderedObject) because these writes are always
303 <     * followed by lock releases that maintain sequential consistency
304 <     * of table updates.
305 <     *
306 <     * Historical note: The previous version of this class relied
307 <     * heavily on "final" fields, which avoided some volatile reads at
308 <     * the expense of a large initial footprint.  Some remnants of
309 <     * that design (including forced construction of segment 0) exist
310 <     * to ensure serialization compatibility.
291 >     * Overview:
292 >     *
293 >     * The primary design goal of this hash table is to maintain
294 >     * concurrent readability (typically method get(), but also
295 >     * iterators and related methods) while minimizing update
296 >     * contention. Secondary goals are to keep space consumption about
297 >     * the same or better than java.util.HashMap, and to support high
298 >     * initial insertion rates on an empty table by many threads.
299 >     *
300 >     * Each key-value mapping is held in a Node.  Because Node key
301 >     * fields can contain special values, they are defined using plain
302 >     * Object types (not type "K"). This leads to a lot of explicit
303 >     * casting (and many explicit warning suppressions to tell
304 >     * compilers not to complain about it). It also allows some of the
305 >     * public methods to be factored into a smaller number of internal
306 >     * methods (although sadly not so for the five variants of
307 >     * put-related operations). The validation-based approach
308 >     * explained below leads to a lot of code sprawl because
309 >     * retry-control precludes factoring into smaller methods.
310 >     *
311 >     * The table is lazily initialized to a power-of-two size upon the
312 >     * first insertion.  Each bin in the table normally contains a
313 >     * list of Nodes (most often, the list has only zero or one Node).
314 >     * Table accesses require volatile/atomic reads, writes, and
315 >     * CASes.  Because there is no other way to arrange this without
316 >     * adding further indirections, we use intrinsics
317 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
318 >     * are always accurately traversable under volatile reads, so long
319 >     * as lookups check hash code and non-nullness of value before
320 >     * checking key equality.
321 >     *
322 >     * We use the top (sign) bit of Node hash fields for control
323 >     * purposes -- it is available anyway because of addressing
324 >     * constraints.  Nodes with negative hash fields are forwarding
325 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
326 >     * of each normal Node's hash field contain a transformation of
327 >     * the key's hash code.
328 >     *
329 >     * Insertion (via put or its variants) of the first node in an
330 >     * empty bin is performed by just CASing it to the bin.  This is
331 >     * by far the most common case for put operations under most
332 >     * key/hash distributions.  Other update operations (insert,
333 >     * delete, and replace) require locks.  We do not want to waste
334 >     * the space required to associate a distinct lock object with
335 >     * each bin, so instead use the first node of a bin list itself as
336 >     * a lock. Locking support for these locks relies on builtin
337 >     * "synchronized" monitors.
338 >     *
339 >     * Using the first node of a list as a lock does not by itself
340 >     * suffice though: When a node is locked, any update must first
341 >     * validate that it is still the first node after locking it, and
342 >     * retry if not. Because new nodes are always appended to lists,
343 >     * once a node is first in a bin, it remains first until deleted
344 >     * or the bin becomes invalidated (upon resizing).  However,
345 >     * operations that only conditionally update may inspect nodes
346 >     * until the point of update. This is a converse of sorts to the
347 >     * lazy locking technique described by Herlihy & Shavit.
348 >     *
349 >     * The main disadvantage of per-bin locks is that other update
350 >     * operations on other nodes in a bin list protected by the same
351 >     * lock can stall, for example when user equals() or mapping
352 >     * functions take a long time.  However, statistically, under
353 >     * random hash codes, this is not a common problem.  Ideally, the
354 >     * frequency of nodes in bins follows a Poisson distribution
355 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
356 >     * parameter of about 0.5 on average, given the resizing threshold
357 >     * of 0.75, although with a large variance because of resizing
358 >     * granularity. Ignoring variance, the expected occurrences of
359 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
360 >     * first values are:
361 >     *
362 >     * 0:    0.60653066
363 >     * 1:    0.30326533
364 >     * 2:    0.07581633
365 >     * 3:    0.01263606
366 >     * 4:    0.00157952
367 >     * 5:    0.00015795
368 >     * 6:    0.00001316
369 >     * 7:    0.00000094
370 >     * 8:    0.00000006
371 >     * more: less than 1 in ten million
372 >     *
373 >     * Lock contention probability for two threads accessing distinct
374 >     * elements is roughly 1 / (8 * #elements) under random hashes.
375 >     *
376 >     * Actual hash code distributions encountered in practice
377 >     * sometimes deviate significantly from uniform randomness.  This
378 >     * includes the case when N > (1<<30), so some keys MUST collide.
379 >     * Similarly for dumb or hostile usages in which multiple keys are
380 >     * designed to have identical hash codes. Also, although we guard
381 >     * against the worst effects of this (see method spread), sets of
382 >     * hashes may differ only in bits that do not impact their bin
383 >     * index for a given power-of-two mask.  So we use a secondary
384 >     * strategy that applies when the number of nodes in a bin exceeds
385 >     * a threshold, and at least one of the keys implements
386 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
387 >     * (a specialized form of red-black trees), bounding search time
388 >     * to O(log N).  Each search step in a TreeBin is around twice as
389 >     * slow as in a regular list, but given that N cannot exceed
390 >     * (1<<64) (before running out of addresses) this bounds search
391 >     * steps, lock hold times, etc, to reasonable constants (roughly
392 >     * 100 nodes inspected per operation worst case) so long as keys
393 >     * are Comparable (which is very common -- String, Long, etc).
394 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
395 >     * traversal pointers as regular nodes, so can be traversed in
396 >     * iterators in the same way.
397 >     *
398 >     * The table is resized when occupancy exceeds a percentage
399 >     * threshold (nominally, 0.75, but see below).  Any thread
400 >     * noticing an overfull bin may assist in resizing after the
401 >     * initiating thread allocates and sets up the replacement
402 >     * array. However, rather than stalling, these other threads may
403 >     * proceed with insertions etc.  The use of TreeBins shields us
404 >     * from the worst case effects of overfilling while resizes are in
405 >     * progress.  Resizing proceeds by transferring bins, one by one,
406 >     * from the table to the next table. To enable concurrency, the
407 >     * next table must be (incrementally) prefilled with place-holders
408 >     * serving as reverse forwarders to the old table.  Because we are
409 >     * using power-of-two expansion, the elements from each bin must
410 >     * either stay at same index, or move with a power of two
411 >     * offset. We eliminate unnecessary node creation by catching
412 >     * cases where old nodes can be reused because their next fields
413 >     * won't change.  On average, only about one-sixth of them need
414 >     * cloning when a table doubles. The nodes they replace will be
415 >     * garbage collectable as soon as they are no longer referenced by
416 >     * any reader thread that may be in the midst of concurrently
417 >     * traversing table.  Upon transfer, the old table bin contains
418 >     * only a special forwarding node (with hash field "MOVED") that
419 >     * contains the next table as its key. On encountering a
420 >     * forwarding node, access and update operations restart, using
421 >     * the new table.
422 >     *
423 >     * Each bin transfer requires its bin lock, which can stall
424 >     * waiting for locks while resizing. However, because other
425 >     * threads can join in and help resize rather than contend for
426 >     * locks, average aggregate waits become shorter as resizing
427 >     * progresses.  The transfer operation must also ensure that all
428 >     * accessible bins in both the old and new table are usable by any
429 >     * traversal.  This is arranged by proceeding from the last bin
430 >     * (table.length - 1) up towards the first.  Upon seeing a
431 >     * forwarding node, traversals (see class Traverser) arrange to
432 >     * move to the new table without revisiting nodes.  However, to
433 >     * ensure that no intervening nodes are skipped, bin splitting can
434 >     * only begin after the associated reverse-forwarders are in
435 >     * place.
436 >     *
437 >     * The traversal scheme also applies to partial traversals of
438 >     * ranges of bins (via an alternate Traverser constructor)
439 >     * to support partitioned aggregate operations.  Also, read-only
440 >     * operations give up if ever forwarded to a null table, which
441 >     * provides support for shutdown-style clearing, which is also not
442 >     * currently implemented.
443 >     *
444 >     * Lazy table initialization minimizes footprint until first use,
445 >     * and also avoids resizings when the first operation is from a
446 >     * putAll, constructor with map argument, or deserialization.
447 >     * These cases attempt to override the initial capacity settings,
448 >     * but harmlessly fail to take effect in cases of races.
449 >     *
450 >     * The element count is maintained using a specialization of
451 >     * LongAdder. We need to incorporate a specialization rather than
452 >     * just use a LongAdder in order to access implicit
453 >     * contention-sensing that leads to creation of multiple
454 >     * CounterCells.  The counter mechanics avoid contention on
455 >     * updates but can encounter cache thrashing if read too
456 >     * frequently during concurrent access. To avoid reading so often,
457 >     * resizing under contention is attempted only upon adding to a
458 >     * bin already holding two or more nodes. Under uniform hash
459 >     * distributions, the probability of this occurring at threshold
460 >     * is around 13%, meaning that only about 1 in 8 puts check
461 >     * threshold (and after resizing, many fewer do so). The bulk
462 >     * putAll operation further reduces contention by only committing
463 >     * count updates upon these size checks.
464 >     *
465 >     * Maintaining API and serialization compatibility with previous
466 >     * versions of this class introduces several oddities. Mainly: We
467 >     * leave untouched but unused constructor arguments refering to
468 >     * concurrencyLevel. We accept a loadFactor constructor argument,
469 >     * but apply it only to initial table capacity (which is the only
470 >     * time that we can guarantee to honor it.) We also declare an
471 >     * unused "Segment" class that is instantiated in minimal form
472 >     * only when serializing.
473       */
474  
475      /* ---------------- Constants -------------- */
476  
477      /**
478 <     * The default initial capacity for this table,
479 <     * used when not otherwise specified in a constructor.
478 >     * The largest possible table capacity.  This value must be
479 >     * exactly 1<<30 to stay within Java array allocation and indexing
480 >     * bounds for power of two table sizes, and is further required
481 >     * because the top two bits of 32bit hash fields are used for
482 >     * control purposes.
483       */
484 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
484 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
485  
486      /**
487 <     * The default load factor for this table, used when not
488 <     * otherwise specified in a constructor.
487 >     * The default initial table capacity.  Must be a power of 2
488 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
489       */
490 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
490 >    private static final int DEFAULT_CAPACITY = 16;
491  
492      /**
493 <     * The default concurrency level for this table, used when not
494 <     * otherwise specified in a constructor.
493 >     * The largest possible (non-power of two) array size.
494 >     * Needed by toArray and related methods.
495       */
496 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
496 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
497  
498      /**
499 <     * The maximum capacity, used if a higher value is implicitly
500 <     * specified by either of the constructors with arguments.  MUST
123 <     * be a power of two <= 1<<30 to ensure that entries are indexable
124 <     * using ints.
499 >     * The default concurrency level for this table. Unused but
500 >     * defined for compatibility with previous versions of this class.
501       */
502 <    static final int MAXIMUM_CAPACITY = 1 << 30;
502 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
503  
504      /**
505 <     * The minimum capacity for per-segment tables.  Must be a power
506 <     * of two, at least two to avoid immediate resizing on next use
507 <     * after lazy construction.
505 >     * The load factor for this table. Overrides of this value in
506 >     * constructors affect only the initial table capacity.  The
507 >     * actual floating point value isn't normally used -- it is
508 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
509 >     * the associated resizing threshold.
510       */
511 <    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
511 >    private static final float LOAD_FACTOR = 0.75f;
512  
513      /**
514 <     * The maximum number of segments to allow; used to bound
515 <     * constructor arguments. Must be power of two less than 1 << 24.
514 >     * The bin count threshold for using a tree rather than list for a
515 >     * bin.  The value reflects the approximate break-even point for
516 >     * using tree-based operations.
517       */
518 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
518 >    private static final int TREE_THRESHOLD = 8;
519  
520      /**
521 <     * Number of unsynchronized retries in size and containsValue
522 <     * methods before resorting to locking. This is used to avoid
523 <     * unbounded retries if tables undergo continuous modification
524 <     * which would make it impossible to obtain an accurate result.
521 >     * Minimum number of rebinnings per transfer step. Ranges are
522 >     * subdivided to allow multiple resizer threads.  This value
523 >     * serves as a lower bound to avoid resizers encountering
524 >     * excessive memory contention.  The value should be at least
525 >     * DEFAULT_CAPACITY.
526       */
527 <    static final int RETRIES_BEFORE_LOCK = 2;
527 >    private static final int MIN_TRANSFER_STRIDE = 16;
528 >
529 >    /*
530 >     * Encodings for Node hash fields. See above for explanation.
531 >     */
532 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
533 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
534 >
535 >    /** Number of CPUS, to place bounds on some sizings */
536 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
537 >
538 >    /* ---------------- Counters -------------- */
539 >
540 >    // Adapted from LongAdder and Striped64.
541 >    // See their internal docs for explanation.
542 >
543 >    // A padded cell for distributing counts
544 >    static final class CounterCell {
545 >        volatile long p0, p1, p2, p3, p4, p5, p6;
546 >        volatile long value;
547 >        volatile long q0, q1, q2, q3, q4, q5, q6;
548 >        CounterCell(long x) { value = x; }
549 >    }
550 >
551 >    /**
552 >     * Holder for the thread-local hash code determining which
553 >     * CounterCell to use. The code is initialized via the
554 >     * counterHashCodeGenerator, but may be moved upon collisions.
555 >     */
556 >    static final class CounterHashCode {
557 >        int code;
558 >    }
559 >
560 >    /**
561 >     * Generates initial value for per-thread CounterHashCodes
562 >     */
563 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
564 >
565 >    /**
566 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
567 >     * for explanation.
568 >     */
569 >    static final int SEED_INCREMENT = 0x61c88647;
570 >
571 >    /**
572 >     * Per-thread counter hash codes. Shared across all instances
573 >     */
574 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
575 >        new ThreadLocal<CounterHashCode>();
576  
577      /* ---------------- Fields -------------- */
578  
579      /**
580 <     * Mask value for indexing into segments. The upper bits of a
581 <     * key's hash code are used to choose the segment.
580 >     * The array of bins. Lazily initialized upon first insertion.
581 >     * Size is always a power of two. Accessed directly by iterators.
582       */
583 <    final int segmentMask;
583 >    transient volatile Node<V>[] table;
584  
585      /**
586 <     * Shift value for indexing within segments.
586 >     * The next table to use; non-null only while resizing.
587       */
588 <    final int segmentShift;
588 >    private transient volatile Node<V>[] nextTable;
589  
590      /**
591 <     * The segments, each of which is a specialized hash table.
591 >     * Base counter value, used mainly when there is no contention,
592 >     * but also as a fallback during table initialization
593 >     * races. Updated via CAS.
594       */
595 <    final Segment<K,V>[] segments;
595 >    private transient volatile long baseCount;
596 >
597 >    /**
598 >     * Table initialization and resizing control.  When negative, the
599 >     * table is being initialized or resized: -1 for initialization,
600 >     * else -(1 + the number of active resizing threads).  Otherwise,
601 >     * when table is null, holds the initial table size to use upon
602 >     * creation, or 0 for default. After initialization, holds the
603 >     * next element count value upon which to resize the table.
604 >     */
605 >    private transient volatile int sizeCtl;
606 >
607 >    /**
608 >     * The next table index (plus one) to split while resizing.
609 >     */
610 >    private transient volatile int transferIndex;
611 >
612 >    /**
613 >     * The least available table index to split while resizing.
614 >     */
615 >    private transient volatile int transferOrigin;
616 >
617 >    /**
618 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
619 >     */
620 >    private transient volatile int counterBusy;
621 >
622 >    /**
623 >     * Table of counter cells. When non-null, size is a power of 2.
624 >     */
625 >    private transient volatile CounterCell[] counterCells;
626 >
627 >    // views
628 >    private transient KeySetView<K,V> keySet;
629 >    private transient ValuesView<K,V> values;
630 >    private transient EntrySetView<K,V> entrySet;
631 >
632 >    /** For serialization compatibility. Null unless serialized; see below */
633 >    private Segment<K,V>[] segments;
634 >
635 >    /* ---------------- Table element access -------------- */
636 >
637 >    /*
638 >     * Volatile access methods are used for table elements as well as
639 >     * elements of in-progress next table while resizing.  Uses are
640 >     * null checked by callers, and implicitly bounds-checked, relying
641 >     * on the invariants that tab arrays have non-zero size, and all
642 >     * indices are masked with (tab.length - 1) which is never
643 >     * negative and always less than length. Note that, to be correct
644 >     * wrt arbitrary concurrency errors by users, bounds checks must
645 >     * operate on local variables, which accounts for some odd-looking
646 >     * inline assignments below.
647 >     */
648 >
649 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
650 >        (Node<V>[] tab, int i) { // used by Traverser
651 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
652 >    }
653 >
654 >    private static final <V> boolean casTabAt
655 >        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
656 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
657 >    }
658 >
659 >    private static final <V> void setTabAt
660 >        (Node<V>[] tab, int i, Node<V> v) {
661 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
662 >    }
663  
664 <    transient Set<K> keySet;
168 <    transient Set<Map.Entry<K,V>> entrySet;
169 <    transient Collection<V> values;
664 >    /* ---------------- Nodes -------------- */
665  
666      /**
667 <     * ConcurrentHashMap list entry. Note that this is never exported
668 <     * out as a user-visible Map.Entry.
667 >     * Key-value entry. Note that this is never exported out as a
668 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
669 >     * field of MOVED are special, and do not contain user keys or
670 >     * values.  Otherwise, keys are never null, and null val fields
671 >     * indicate that a node is in the process of being deleted or
672 >     * created. For purposes of read-only access, a key may be read
673 >     * before a val, but can only be used after checking val to be
674 >     * non-null.
675       */
676 <    static final class HashEntry<K,V> {
676 >    static class Node<V> {
677          final int hash;
678 <        final K key;
679 <        volatile V value;
680 <        volatile HashEntry<K,V> next;
678 >        final Object key;
679 >        volatile V val;
680 >        volatile Node<V> next;
681  
682 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
682 >        Node(int hash, Object key, V val, Node<V> next) {
683              this.hash = hash;
684              this.key = key;
685 <            this.value = value;
685 >            this.val = val;
686              this.next = next;
687          }
688 +    }
689  
690 <        /**
189 <         * Sets next field with volatile write semantics.  (See above
190 <         * about use of putOrderedObject.)
191 <         */
192 <        final void setNext(HashEntry<K,V> n) {
193 <            UNSAFE.putOrderedObject(this, nextOffset, n);
194 <        }
690 >    /* ---------------- TreeBins -------------- */
691  
692 <        // Unsafe mechanics
693 <        static final sun.misc.Unsafe UNSAFE;
694 <        static final long nextOffset;
695 <        static {
696 <            try {
697 <                UNSAFE = sun.misc.Unsafe.getUnsafe();
698 <                Class k = HashEntry.class;
699 <                nextOffset = UNSAFE.objectFieldOffset
700 <                    (k.getDeclaredField("next"));
701 <            } catch (Exception e) {
702 <                throw new Error(e);
703 <            }
692 >    /**
693 >     * Nodes for use in TreeBins
694 >     */
695 >    static final class TreeNode<V> extends Node<V> {
696 >        TreeNode<V> parent;  // red-black tree links
697 >        TreeNode<V> left;
698 >        TreeNode<V> right;
699 >        TreeNode<V> prev;    // needed to unlink next upon deletion
700 >        boolean red;
701 >
702 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
703 >            super(hash, key, val, next);
704 >            this.parent = parent;
705          }
706      }
707  
708      /**
709 <     * Gets the ith element of given table (if nonnull) with volatile
710 <     * read semantics. Note: This is manually integrated into a few
711 <     * performance-sensitive methods to reduce call overhead.
712 <     */
713 <    @SuppressWarnings("unchecked")
714 <    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
715 <        return (tab == null) ? null :
716 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
717 <            (tab, ((long)i << TSHIFT) + TBASE);
718 <    }
719 <
720 <    /**
721 <     * Sets the ith element of given table, with volatile write
722 <     * semantics. (See above about use of putOrderedObject.)
723 <     */
724 <    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
725 <                                       HashEntry<K,V> e) {
726 <        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
727 <    }
728 <
729 <    /**
730 <     * Applies a supplemental hash function to a given hashCode, which
731 <     * defends against poor quality hash functions.  This is critical
732 <     * because ConcurrentHashMap uses power-of-two length hash tables,
733 <     * that otherwise encounter collisions for hashCodes that do not
734 <     * differ in lower or upper bits.
735 <     */
736 <    private static int hash(int h) {
737 <        // Spread bits to regularize both segment and index locations,
738 <        // using variant of single-word Wang/Jenkins hash.
739 <        h += (h <<  15) ^ 0xffffcd7d;
740 <        h ^= (h >>> 10);
741 <        h += (h <<   3);
742 <        h ^= (h >>>  6);
743 <        h += (h <<   2) + (h << 14);
744 <        return h ^ (h >>> 16);
745 <    }
746 <
747 <    /**
748 <     * Segments are specialized versions of hash tables.  This
749 <     * subclasses from ReentrantLock opportunistically, just to
750 <     * simplify some locking and avoid separate construction.
751 <     */
255 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
256 <        /*
257 <         * Segments maintain a table of entry lists that are always
258 <         * kept in a consistent state, so can be read (via volatile
259 <         * reads of segments and tables) without locking.  This
260 <         * requires replicating nodes when necessary during table
261 <         * resizing, so the old lists can be traversed by readers
262 <         * still using old version of table.
263 <         *
264 <         * This class defines only mutative methods requiring locking.
265 <         * Except as noted, the methods of this class perform the
266 <         * per-segment versions of ConcurrentHashMap methods.  (Other
267 <         * methods are integrated directly into ConcurrentHashMap
268 <         * methods.) These mutative methods use a form of controlled
269 <         * spinning on contention via methods scanAndLock and
270 <         * scanAndLockForPut. These intersperse tryLocks with
271 <         * traversals to locate nodes.  The main benefit is to absorb
272 <         * cache misses (which are very common for hash tables) while
273 <         * obtaining locks so that traversal is faster once
274 <         * acquired. We do not actually use the found nodes since they
275 <         * must be re-acquired under lock anyway to ensure sequential
276 <         * consistency of updates (and in any case may be undetectably
277 <         * stale), but they will normally be much faster to re-locate.
278 <         * Also, scanAndLockForPut speculatively creates a fresh node
279 <         * to use in put if no node is found.
280 <         */
281 <
709 >     * A specialized form of red-black tree for use in bins
710 >     * whose size exceeds a threshold.
711 >     *
712 >     * TreeBins use a special form of comparison for search and
713 >     * related operations (which is the main reason we cannot use
714 >     * existing collections such as TreeMaps). TreeBins contain
715 >     * Comparable elements, but may contain others, as well as
716 >     * elements that are Comparable but not necessarily Comparable<T>
717 >     * for the same T, so we cannot invoke compareTo among them. To
718 >     * handle this, the tree is ordered primarily by hash value, then
719 >     * by getClass().getName() order, and then by Comparator order
720 >     * among elements of the same class.  On lookup at a node, if
721 >     * elements are not comparable or compare as 0, both left and
722 >     * right children may need to be searched in the case of tied hash
723 >     * values. (This corresponds to the full list search that would be
724 >     * necessary if all elements were non-Comparable and had tied
725 >     * hashes.)  The red-black balancing code is updated from
726 >     * pre-jdk-collections
727 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
728 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
729 >     * Algorithms" (CLR).
730 >     *
731 >     * TreeBins also maintain a separate locking discipline than
732 >     * regular bins. Because they are forwarded via special MOVED
733 >     * nodes at bin heads (which can never change once established),
734 >     * we cannot use those nodes as locks. Instead, TreeBin
735 >     * extends AbstractQueuedSynchronizer to support a simple form of
736 >     * read-write lock. For update operations and table validation,
737 >     * the exclusive form of lock behaves in the same way as bin-head
738 >     * locks. However, lookups use shared read-lock mechanics to allow
739 >     * multiple readers in the absence of writers.  Additionally,
740 >     * these lookups do not ever block: While the lock is not
741 >     * available, they proceed along the slow traversal path (via
742 >     * next-pointers) until the lock becomes available or the list is
743 >     * exhausted, whichever comes first. (These cases are not fast,
744 >     * but maximize aggregate expected throughput.)  The AQS mechanics
745 >     * for doing this are straightforward.  The lock state is held as
746 >     * AQS getState().  Read counts are negative; the write count (1)
747 >     * is positive.  There are no signalling preferences among readers
748 >     * and writers. Since we don't need to export full Lock API, we
749 >     * just override the minimal AQS methods and use them directly.
750 >     */
751 >    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
752          private static final long serialVersionUID = 2249069246763182397L;
753 +        transient TreeNode<V> root;  // root of tree
754 +        transient TreeNode<V> first; // head of next-pointer list
755  
756 <        /**
757 <         * The maximum number of times to tryLock in a prescan before
758 <         * possibly blocking on acquire in preparation for a locked
759 <         * segment operation. On multiprocessors, using a bounded
760 <         * number of retries maintains cache acquired while locating
761 <         * nodes.
762 <         */
763 <        static final int MAX_SCAN_RETRIES =
764 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
756 >        /* AQS overrides */
757 >        public final boolean isHeldExclusively() { return getState() > 0; }
758 >        public final boolean tryAcquire(int ignore) {
759 >            if (compareAndSetState(0, 1)) {
760 >                setExclusiveOwnerThread(Thread.currentThread());
761 >                return true;
762 >            }
763 >            return false;
764 >        }
765 >        public final boolean tryRelease(int ignore) {
766 >            setExclusiveOwnerThread(null);
767 >            setState(0);
768 >            return true;
769 >        }
770 >        public final int tryAcquireShared(int ignore) {
771 >            for (int c;;) {
772 >                if ((c = getState()) > 0)
773 >                    return -1;
774 >                if (compareAndSetState(c, c -1))
775 >                    return 1;
776 >            }
777 >        }
778 >        public final boolean tryReleaseShared(int ignore) {
779 >            int c;
780 >            do {} while (!compareAndSetState(c = getState(), c + 1));
781 >            return c == -1;
782 >        }
783 >
784 >        /** From CLR */
785 >        private void rotateLeft(TreeNode<V> p) {
786 >            if (p != null) {
787 >                TreeNode<V> r = p.right, pp, rl;
788 >                if ((rl = p.right = r.left) != null)
789 >                    rl.parent = p;
790 >                if ((pp = r.parent = p.parent) == null)
791 >                    root = r;
792 >                else if (pp.left == p)
793 >                    pp.left = r;
794 >                else
795 >                    pp.right = r;
796 >                r.left = p;
797 >                p.parent = r;
798 >            }
799 >        }
800  
801 <        /**
802 <         * The per-segment table. Elements are accessed via
803 <         * entryAt/setEntryAt providing volatile semantics.
804 <         */
805 <        transient volatile HashEntry<K,V>[] table;
801 >        /** From CLR */
802 >        private void rotateRight(TreeNode<V> p) {
803 >            if (p != null) {
804 >                TreeNode<V> l = p.left, pp, lr;
805 >                if ((lr = p.left = l.right) != null)
806 >                    lr.parent = p;
807 >                if ((pp = l.parent = p.parent) == null)
808 >                    root = l;
809 >                else if (pp.right == p)
810 >                    pp.right = l;
811 >                else
812 >                    pp.left = l;
813 >                l.right = p;
814 >                p.parent = l;
815 >            }
816 >        }
817  
818          /**
819 <         * The number of elements. Accessed only either within locks
820 <         * or among other volatile reads that maintain visibility.
819 >         * Returns the TreeNode (or null if not found) for the given key
820 >         * starting at given root.
821           */
822 <        transient int count;
822 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
823 >            (int h, Object k, TreeNode<V> p) {
824 >            Class<?> c = k.getClass();
825 >            while (p != null) {
826 >                int dir, ph;  Object pk; Class<?> pc;
827 >                if ((ph = p.hash) == h) {
828 >                    if ((pk = p.key) == k || k.equals(pk))
829 >                        return p;
830 >                    if (c != (pc = pk.getClass()) ||
831 >                        !(k instanceof Comparable) ||
832 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
833 >                        if ((dir = (c == pc) ? 0 :
834 >                             c.getName().compareTo(pc.getName())) == 0) {
835 >                            TreeNode<V> r = null, pl, pr; // check both sides
836 >                            if ((pr = p.right) != null && h >= pr.hash &&
837 >                                (r = getTreeNode(h, k, pr)) != null)
838 >                                return r;
839 >                            else if ((pl = p.left) != null && h <= pl.hash)
840 >                                dir = -1;
841 >                            else // nothing there
842 >                                return null;
843 >                        }
844 >                    }
845 >                }
846 >                else
847 >                    dir = (h < ph) ? -1 : 1;
848 >                p = (dir > 0) ? p.right : p.left;
849 >            }
850 >            return null;
851 >        }
852  
853          /**
854 <         * The total number of mutative operations in this segment.
855 <         * Even though this may overflows 32 bits, it provides
856 <         * sufficient accuracy for stability checks in CHM isEmpty()
310 <         * and size() methods.  Accessed only either within locks or
311 <         * among other volatile reads that maintain visibility.
854 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
855 >         * read-lock to call getTreeNode, but during failure to get
856 >         * lock, searches along next links.
857           */
858 <        transient int modCount;
858 >        final V getValue(int h, Object k) {
859 >            Node<V> r = null;
860 >            int c = getState(); // Must read lock state first
861 >            for (Node<V> e = first; e != null; e = e.next) {
862 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
863 >                    try {
864 >                        r = getTreeNode(h, k, root);
865 >                    } finally {
866 >                        releaseShared(0);
867 >                    }
868 >                    break;
869 >                }
870 >                else if (e.hash == h && k.equals(e.key)) {
871 >                    r = e;
872 >                    break;
873 >                }
874 >                else
875 >                    c = getState();
876 >            }
877 >            return r == null ? null : r.val;
878 >        }
879  
880          /**
881 <         * The table is rehashed when its size exceeds this threshold.
882 <         * (The value of this field is always <tt>(int)(capacity *
318 <         * loadFactor)</tt>.)
881 >         * Finds or adds a node.
882 >         * @return null if added
883           */
884 <        transient int threshold;
884 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
885 >            (int h, Object k, V v) {
886 >            Class<?> c = k.getClass();
887 >            TreeNode<V> pp = root, p = null;
888 >            int dir = 0;
889 >            while (pp != null) { // find existing node or leaf to insert at
890 >                int ph;  Object pk; Class<?> pc;
891 >                p = pp;
892 >                if ((ph = p.hash) == h) {
893 >                    if ((pk = p.key) == k || k.equals(pk))
894 >                        return p;
895 >                    if (c != (pc = pk.getClass()) ||
896 >                        !(k instanceof Comparable) ||
897 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
898 >                        TreeNode<V> s = null, r = null, pr;
899 >                        if ((dir = (c == pc) ? 0 :
900 >                             c.getName().compareTo(pc.getName())) == 0) {
901 >                            if ((pr = p.right) != null && h >= pr.hash &&
902 >                                (r = getTreeNode(h, k, pr)) != null)
903 >                                return r;
904 >                            else // continue left
905 >                                dir = -1;
906 >                        }
907 >                        else if ((pr = p.right) != null && h >= pr.hash)
908 >                            s = pr;
909 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
910 >                            return r;
911 >                    }
912 >                }
913 >                else
914 >                    dir = (h < ph) ? -1 : 1;
915 >                pp = (dir > 0) ? p.right : p.left;
916 >            }
917 >
918 >            TreeNode<V> f = first;
919 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
920 >            if (p == null)
921 >                root = x;
922 >            else { // attach and rebalance; adapted from CLR
923 >                TreeNode<V> xp, xpp;
924 >                if (f != null)
925 >                    f.prev = x;
926 >                if (dir <= 0)
927 >                    p.left = x;
928 >                else
929 >                    p.right = x;
930 >                x.red = true;
931 >                while (x != null && (xp = x.parent) != null && xp.red &&
932 >                       (xpp = xp.parent) != null) {
933 >                    TreeNode<V> xppl = xpp.left;
934 >                    if (xp == xppl) {
935 >                        TreeNode<V> y = xpp.right;
936 >                        if (y != null && y.red) {
937 >                            y.red = false;
938 >                            xp.red = false;
939 >                            xpp.red = true;
940 >                            x = xpp;
941 >                        }
942 >                        else {
943 >                            if (x == xp.right) {
944 >                                rotateLeft(x = xp);
945 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
946 >                            }
947 >                            if (xp != null) {
948 >                                xp.red = false;
949 >                                if (xpp != null) {
950 >                                    xpp.red = true;
951 >                                    rotateRight(xpp);
952 >                                }
953 >                            }
954 >                        }
955 >                    }
956 >                    else {
957 >                        TreeNode<V> y = xppl;
958 >                        if (y != null && y.red) {
959 >                            y.red = false;
960 >                            xp.red = false;
961 >                            xpp.red = true;
962 >                            x = xpp;
963 >                        }
964 >                        else {
965 >                            if (x == xp.left) {
966 >                                rotateRight(x = xp);
967 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
968 >                            }
969 >                            if (xp != null) {
970 >                                xp.red = false;
971 >                                if (xpp != null) {
972 >                                    xpp.red = true;
973 >                                    rotateLeft(xpp);
974 >                                }
975 >                            }
976 >                        }
977 >                    }
978 >                }
979 >                TreeNode<V> r = root;
980 >                if (r != null && r.red)
981 >                    r.red = false;
982 >            }
983 >            return null;
984 >        }
985  
986          /**
987 <         * The load factor for the hash table.  Even though this value
988 <         * is same for all segments, it is replicated to avoid needing
989 <         * links to outer object.
990 <         * @serial
987 >         * Removes the given node, that must be present before this
988 >         * call.  This is messier than typical red-black deletion code
989 >         * because we cannot swap the contents of an interior node
990 >         * with a leaf successor that is pinned by "next" pointers
991 >         * that are accessible independently of lock. So instead we
992 >         * swap the tree linkages.
993           */
994 <        final float loadFactor;
994 >        final void deleteTreeNode(TreeNode<V> p) {
995 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
996 >            TreeNode<V> pred = p.prev;
997 >            if (pred == null)
998 >                first = next;
999 >            else
1000 >                pred.next = next;
1001 >            if (next != null)
1002 >                next.prev = pred;
1003 >            TreeNode<V> replacement;
1004 >            TreeNode<V> pl = p.left;
1005 >            TreeNode<V> pr = p.right;
1006 >            if (pl != null && pr != null) {
1007 >                TreeNode<V> s = pr, sl;
1008 >                while ((sl = s.left) != null) // find successor
1009 >                    s = sl;
1010 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1011 >                TreeNode<V> sr = s.right;
1012 >                TreeNode<V> pp = p.parent;
1013 >                if (s == pr) { // p was s's direct parent
1014 >                    p.parent = s;
1015 >                    s.right = p;
1016 >                }
1017 >                else {
1018 >                    TreeNode<V> sp = s.parent;
1019 >                    if ((p.parent = sp) != null) {
1020 >                        if (s == sp.left)
1021 >                            sp.left = p;
1022 >                        else
1023 >                            sp.right = p;
1024 >                    }
1025 >                    if ((s.right = pr) != null)
1026 >                        pr.parent = s;
1027 >                }
1028 >                p.left = null;
1029 >                if ((p.right = sr) != null)
1030 >                    sr.parent = p;
1031 >                if ((s.left = pl) != null)
1032 >                    pl.parent = s;
1033 >                if ((s.parent = pp) == null)
1034 >                    root = s;
1035 >                else if (p == pp.left)
1036 >                    pp.left = s;
1037 >                else
1038 >                    pp.right = s;
1039 >                replacement = sr;
1040 >            }
1041 >            else
1042 >                replacement = (pl != null) ? pl : pr;
1043 >            TreeNode<V> pp = p.parent;
1044 >            if (replacement == null) {
1045 >                if (pp == null) {
1046 >                    root = null;
1047 >                    return;
1048 >                }
1049 >                replacement = p;
1050 >            }
1051 >            else {
1052 >                replacement.parent = pp;
1053 >                if (pp == null)
1054 >                    root = replacement;
1055 >                else if (p == pp.left)
1056 >                    pp.left = replacement;
1057 >                else
1058 >                    pp.right = replacement;
1059 >                p.left = p.right = p.parent = null;
1060 >            }
1061 >            if (!p.red) { // rebalance, from CLR
1062 >                TreeNode<V> x = replacement;
1063 >                while (x != null) {
1064 >                    TreeNode<V> xp, xpl;
1065 >                    if (x.red || (xp = x.parent) == null) {
1066 >                        x.red = false;
1067 >                        break;
1068 >                    }
1069 >                    if (x == (xpl = xp.left)) {
1070 >                        TreeNode<V> sib = xp.right;
1071 >                        if (sib != null && sib.red) {
1072 >                            sib.red = false;
1073 >                            xp.red = true;
1074 >                            rotateLeft(xp);
1075 >                            sib = (xp = x.parent) == null ? null : xp.right;
1076 >                        }
1077 >                        if (sib == null)
1078 >                            x = xp;
1079 >                        else {
1080 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1081 >                            if ((sr == null || !sr.red) &&
1082 >                                (sl == null || !sl.red)) {
1083 >                                sib.red = true;
1084 >                                x = xp;
1085 >                            }
1086 >                            else {
1087 >                                if (sr == null || !sr.red) {
1088 >                                    if (sl != null)
1089 >                                        sl.red = false;
1090 >                                    sib.red = true;
1091 >                                    rotateRight(sib);
1092 >                                    sib = (xp = x.parent) == null ?
1093 >                                        null : xp.right;
1094 >                                }
1095 >                                if (sib != null) {
1096 >                                    sib.red = (xp == null) ? false : xp.red;
1097 >                                    if ((sr = sib.right) != null)
1098 >                                        sr.red = false;
1099 >                                }
1100 >                                if (xp != null) {
1101 >                                    xp.red = false;
1102 >                                    rotateLeft(xp);
1103 >                                }
1104 >                                x = root;
1105 >                            }
1106 >                        }
1107 >                    }
1108 >                    else { // symmetric
1109 >                        TreeNode<V> sib = xpl;
1110 >                        if (sib != null && sib.red) {
1111 >                            sib.red = false;
1112 >                            xp.red = true;
1113 >                            rotateRight(xp);
1114 >                            sib = (xp = x.parent) == null ? null : xp.left;
1115 >                        }
1116 >                        if (sib == null)
1117 >                            x = xp;
1118 >                        else {
1119 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1120 >                            if ((sl == null || !sl.red) &&
1121 >                                (sr == null || !sr.red)) {
1122 >                                sib.red = true;
1123 >                                x = xp;
1124 >                            }
1125 >                            else {
1126 >                                if (sl == null || !sl.red) {
1127 >                                    if (sr != null)
1128 >                                        sr.red = false;
1129 >                                    sib.red = true;
1130 >                                    rotateLeft(sib);
1131 >                                    sib = (xp = x.parent) == null ?
1132 >                                        null : xp.left;
1133 >                                }
1134 >                                if (sib != null) {
1135 >                                    sib.red = (xp == null) ? false : xp.red;
1136 >                                    if ((sl = sib.left) != null)
1137 >                                        sl.red = false;
1138 >                                }
1139 >                                if (xp != null) {
1140 >                                    xp.red = false;
1141 >                                    rotateRight(xp);
1142 >                                }
1143 >                                x = root;
1144 >                            }
1145 >                        }
1146 >                    }
1147 >                }
1148 >            }
1149 >            if (p == replacement && (pp = p.parent) != null) {
1150 >                if (p == pp.left) // detach pointers
1151 >                    pp.left = null;
1152 >                else if (p == pp.right)
1153 >                    pp.right = null;
1154 >                p.parent = null;
1155 >            }
1156 >        }
1157 >    }
1158  
1159 <        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
1160 <            this.loadFactor = lf;
1161 <            this.threshold = threshold;
1162 <            this.table = tab;
1159 >    /* ---------------- Collision reduction methods -------------- */
1160 >
1161 >    /**
1162 >     * Spreads higher bits to lower, and also forces top bit to 0.
1163 >     * Because the table uses power-of-two masking, sets of hashes
1164 >     * that vary only in bits above the current mask will always
1165 >     * collide. (Among known examples are sets of Float keys holding
1166 >     * consecutive whole numbers in small tables.)  To counter this,
1167 >     * we apply a transform that spreads the impact of higher bits
1168 >     * downward. There is a tradeoff between speed, utility, and
1169 >     * quality of bit-spreading. Because many common sets of hashes
1170 >     * are already reasonably distributed across bits (so don't benefit
1171 >     * from spreading), and because we use trees to handle large sets
1172 >     * of collisions in bins, we don't need excessively high quality.
1173 >     */
1174 >    private static final int spread(int h) {
1175 >        h ^= (h >>> 18) ^ (h >>> 12);
1176 >        return (h ^ (h >>> 10)) & HASH_BITS;
1177 >    }
1178 >
1179 >    /**
1180 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1181 >     * only when locked.
1182 >     */
1183 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1184 >        if (key instanceof Comparable) {
1185 >            TreeBin<V> t = new TreeBin<V>();
1186 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1187 >                t.putTreeNode(e.hash, e.key, e.val);
1188 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1189          }
1190 +    }
1191  
1192 <        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
1193 <            HashEntry<K,V> node = tryLock() ? null :
1194 <                scanAndLockForPut(key, hash, value);
1195 <            V oldValue;
1196 <            try {
1197 <                HashEntry<K,V>[] tab = table;
1198 <                int index = (tab.length - 1) & hash;
1199 <                HashEntry<K,V> first = entryAt(tab, index);
1200 <                for (HashEntry<K,V> e = first;;) {
1201 <                    if (e != null) {
1202 <                        K k;
1203 <                        if ((k = e.key) == key ||
1204 <                            (e.hash == hash && key.equals(k))) {
1205 <                            oldValue = e.value;
1206 <                            if (!onlyIfAbsent) {
1207 <                                e.value = value;
1208 <                                ++modCount;
1192 >    /* ---------------- Internal access and update methods -------------- */
1193 >
1194 >    /** Implementation for get and containsKey */
1195 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1196 >        int h = spread(k.hashCode());
1197 >        retry: for (Node<V>[] tab = table; tab != null;) {
1198 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1199 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1200 >                if ((eh = e.hash) < 0) {
1201 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1202 >                        return ((TreeBin<V>)ek).getValue(h, k);
1203 >                    else {                      // restart with new table
1204 >                        tab = (Node<V>[])ek;
1205 >                        continue retry;
1206 >                    }
1207 >                }
1208 >                else if (eh == h && (ev = e.val) != null &&
1209 >                         ((ek = e.key) == k || k.equals(ek)))
1210 >                    return ev;
1211 >            }
1212 >            break;
1213 >        }
1214 >        return null;
1215 >    }
1216 >
1217 >    /**
1218 >     * Implementation for the four public remove/replace methods:
1219 >     * Replaces node value with v, conditional upon match of cv if
1220 >     * non-null.  If resulting value is null, delete.
1221 >     */
1222 >    @SuppressWarnings("unchecked") private final V internalReplace
1223 >        (Object k, V v, Object cv) {
1224 >        int h = spread(k.hashCode());
1225 >        V oldVal = null;
1226 >        for (Node<V>[] tab = table;;) {
1227 >            Node<V> f; int i, fh; Object fk;
1228 >            if (tab == null ||
1229 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1230 >                break;
1231 >            else if ((fh = f.hash) < 0) {
1232 >                if ((fk = f.key) instanceof TreeBin) {
1233 >                    TreeBin<V> t = (TreeBin<V>)fk;
1234 >                    boolean validated = false;
1235 >                    boolean deleted = false;
1236 >                    t.acquire(0);
1237 >                    try {
1238 >                        if (tabAt(tab, i) == f) {
1239 >                            validated = true;
1240 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1241 >                            if (p != null) {
1242 >                                V pv = p.val;
1243 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1244 >                                    oldVal = pv;
1245 >                                    if ((p.val = v) == null) {
1246 >                                        deleted = true;
1247 >                                        t.deleteTreeNode(p);
1248 >                                    }
1249 >                                }
1250                              }
354                            break;
1251                          }
1252 <                        e = e.next;
1252 >                    } finally {
1253 >                        t.release(0);
1254                      }
1255 <                    else {
1256 <                        if (node != null)
1257 <                            node.setNext(first);
361 <                        else
362 <                            node = new HashEntry<K,V>(hash, key, value, first);
363 <                        int c = count + 1;
364 <                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
365 <                            rehash(node);
366 <                        else
367 <                            setEntryAt(tab, index, node);
368 <                        ++modCount;
369 <                        count = c;
370 <                        oldValue = null;
1255 >                    if (validated) {
1256 >                        if (deleted)
1257 >                            addCount(-1L, -1);
1258                          break;
1259                      }
1260                  }
1261 <            } finally {
1262 <                unlock();
1261 >                else
1262 >                    tab = (Node<V>[])fk;
1263 >            }
1264 >            else if (fh != h && f.next == null) // precheck
1265 >                break;                          // rules out possible existence
1266 >            else {
1267 >                boolean validated = false;
1268 >                boolean deleted = false;
1269 >                synchronized (f) {
1270 >                    if (tabAt(tab, i) == f) {
1271 >                        validated = true;
1272 >                        for (Node<V> e = f, pred = null;;) {
1273 >                            Object ek; V ev;
1274 >                            if (e.hash == h &&
1275 >                                ((ev = e.val) != null) &&
1276 >                                ((ek = e.key) == k || k.equals(ek))) {
1277 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1278 >                                    oldVal = ev;
1279 >                                    if ((e.val = v) == null) {
1280 >                                        deleted = true;
1281 >                                        Node<V> en = e.next;
1282 >                                        if (pred != null)
1283 >                                            pred.next = en;
1284 >                                        else
1285 >                                            setTabAt(tab, i, en);
1286 >                                    }
1287 >                                }
1288 >                                break;
1289 >                            }
1290 >                            pred = e;
1291 >                            if ((e = e.next) == null)
1292 >                                break;
1293 >                        }
1294 >                    }
1295 >                }
1296 >                if (validated) {
1297 >                    if (deleted)
1298 >                        addCount(-1L, -1);
1299 >                    break;
1300 >                }
1301              }
377            return oldValue;
1302          }
1303 +        return oldVal;
1304 +    }
1305  
1306 <        /**
1307 <         * Doubles size of table and repacks entries, also adding the
1308 <         * given node to new table
1309 <         */
1310 <        @SuppressWarnings("unchecked")
1311 <        private void rehash(HashEntry<K,V> node) {
1312 <            /*
1313 <             * Reclassify nodes in each list to new table.  Because we
1314 <             * are using power-of-two expansion, the elements from
1315 <             * each bin must either stay at same index, or move with a
1316 <             * power of two offset. We eliminate unnecessary node
1317 <             * creation by catching cases where old nodes can be
1318 <             * reused because their next fields won't change.
1319 <             * Statistically, at the default threshold, only about
1320 <             * one-sixth of them need cloning when a table
1321 <             * doubles. The nodes they replace will be garbage
1322 <             * collectable as soon as they are no longer referenced by
1323 <             * any reader thread that may be in the midst of
1324 <             * concurrently traversing table. Entry accesses use plain
1325 <             * array indexing because they are followed by volatile
1326 <             * table write.
1327 <             */
1328 <            HashEntry<K,V>[] oldTable = table;
1329 <            int oldCapacity = oldTable.length;
1330 <            int newCapacity = oldCapacity << 1;
1331 <            threshold = (int)(newCapacity * loadFactor);
1332 <            HashEntry<K,V>[] newTable =
1333 <                (HashEntry<K,V>[]) new HashEntry[newCapacity];
1334 <            int sizeMask = newCapacity - 1;
1335 <            for (int i = 0; i < oldCapacity ; i++) {
1336 <                HashEntry<K,V> e = oldTable[i];
1337 <                if (e != null) {
1338 <                    HashEntry<K,V> next = e.next;
1339 <                    int idx = e.hash & sizeMask;
1340 <                    if (next == null)   //  Single node on list
1341 <                        newTable[idx] = e;
1342 <                    else { // Reuse consecutive sequence at same slot
1343 <                        HashEntry<K,V> lastRun = e;
1344 <                        int lastIdx = idx;
1345 <                        for (HashEntry<K,V> last = next;
1346 <                             last != null;
1347 <                             last = last.next) {
1348 <                            int k = last.hash & sizeMask;
1349 <                            if (k != lastIdx) {
1350 <                                lastIdx = k;
1351 <                                lastRun = last;
1352 <                            }
1353 <                        }
1354 <                        newTable[lastIdx] = lastRun;
1355 <                        // Clone remaining nodes
1356 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1357 <                            V v = p.value;
1358 <                            int h = p.hash;
1359 <                            int k = h & sizeMask;
434 <                            HashEntry<K,V> n = newTable[k];
435 <                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
436 <                        }
437 <                    }
438 <                }
439 <            }
440 <            int nodeIndex = node.hash & sizeMask; // add the new node
441 <            node.setNext(newTable[nodeIndex]);
442 <            newTable[nodeIndex] = node;
443 <            table = newTable;
444 <        }
445 <
446 <        /**
447 <         * Scans for a node containing given key while trying to
448 <         * acquire lock, creating and returning one if not found. Upon
449 <         * return, guarantees that lock is held. Unlike in most
450 <         * methods, calls to method equals are not screened: Since
451 <         * traversal speed doesn't matter, we might as well help warm
452 <         * up the associated code and accesses as well.
453 <         *
454 <         * @return a new node if key not found, else null
455 <         */
456 <        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
457 <            HashEntry<K,V> first = entryForHash(this, hash);
458 <            HashEntry<K,V> e = first;
459 <            HashEntry<K,V> node = null;
460 <            int retries = -1; // negative while locating node
461 <            while (!tryLock()) {
462 <                HashEntry<K,V> f; // to recheck first below
463 <                if (retries < 0) {
464 <                    if (e == null) {
465 <                        if (node == null) // speculatively create node
466 <                            node = new HashEntry<K,V>(hash, key, value, null);
467 <                        retries = 0;
1306 >    /*
1307 >     * Internal versions of insertion methods
1308 >     * All have the same basic structure as the first (internalPut):
1309 >     *  1. If table uninitialized, create
1310 >     *  2. If bin empty, try to CAS new node
1311 >     *  3. If bin stale, use new table
1312 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1313 >     *  5. Lock and validate; if valid, scan and add or update
1314 >     *
1315 >     * The putAll method differs mainly in attempting to pre-allocate
1316 >     * enough table space, and also more lazily performs count updates
1317 >     * and checks.
1318 >     *
1319 >     * Most of the function-accepting methods can't be factored nicely
1320 >     * because they require different functional forms, so instead
1321 >     * sprawl out similar mechanics.
1322 >     */
1323 >
1324 >    /** Implementation for put and putIfAbsent */
1325 >    @SuppressWarnings("unchecked") private final V internalPut
1326 >        (K k, V v, boolean onlyIfAbsent) {
1327 >        if (k == null || v == null) throw new NullPointerException();
1328 >        int h = spread(k.hashCode());
1329 >        int len = 0;
1330 >        for (Node<V>[] tab = table;;) {
1331 >            int i, fh; Node<V> f; Object fk; V fv;
1332 >            if (tab == null)
1333 >                tab = initTable();
1334 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1335 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1336 >                    break;                   // no lock when adding to empty bin
1337 >            }
1338 >            else if ((fh = f.hash) < 0) {
1339 >                if ((fk = f.key) instanceof TreeBin) {
1340 >                    TreeBin<V> t = (TreeBin<V>)fk;
1341 >                    V oldVal = null;
1342 >                    t.acquire(0);
1343 >                    try {
1344 >                        if (tabAt(tab, i) == f) {
1345 >                            len = 2;
1346 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1347 >                            if (p != null) {
1348 >                                oldVal = p.val;
1349 >                                if (!onlyIfAbsent)
1350 >                                    p.val = v;
1351 >                            }
1352 >                        }
1353 >                    } finally {
1354 >                        t.release(0);
1355 >                    }
1356 >                    if (len != 0) {
1357 >                        if (oldVal != null)
1358 >                            return oldVal;
1359 >                        break;
1360                      }
469                    else if (key.equals(e.key))
470                        retries = 0;
471                    else
472                        e = e.next;
1361                  }
1362 <                else if (++retries > MAX_SCAN_RETRIES) {
1363 <                    lock();
1362 >                else
1363 >                    tab = (Node<V>[])fk;
1364 >            }
1365 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1366 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1367 >                return fv;
1368 >            else {
1369 >                V oldVal = null;
1370 >                synchronized (f) {
1371 >                    if (tabAt(tab, i) == f) {
1372 >                        len = 1;
1373 >                        for (Node<V> e = f;; ++len) {
1374 >                            Object ek; V ev;
1375 >                            if (e.hash == h &&
1376 >                                (ev = e.val) != null &&
1377 >                                ((ek = e.key) == k || k.equals(ek))) {
1378 >                                oldVal = ev;
1379 >                                if (!onlyIfAbsent)
1380 >                                    e.val = v;
1381 >                                break;
1382 >                            }
1383 >                            Node<V> last = e;
1384 >                            if ((e = e.next) == null) {
1385 >                                last.next = new Node<V>(h, k, v, null);
1386 >                                if (len >= TREE_THRESHOLD)
1387 >                                    replaceWithTreeBin(tab, i, k);
1388 >                                break;
1389 >                            }
1390 >                        }
1391 >                    }
1392 >                }
1393 >                if (len != 0) {
1394 >                    if (oldVal != null)
1395 >                        return oldVal;
1396                      break;
1397                  }
1398 <                else if ((retries & 1) == 0 &&
479 <                         (f = entryForHash(this, hash)) != first) {
480 <                    e = first = f; // re-traverse if entry changed
481 <                    retries = -1;
482 <                }
483 <            }
484 <            return node;
1398 >            }
1399          }
1400 +        addCount(1L, len);
1401 +        return null;
1402 +    }
1403  
1404 <        /**
1405 <         * Scans for a node containing the given key while trying to
1406 <         * acquire lock for a remove or replace operation. Upon
1407 <         * return, guarantees that lock is held.  Note that we must
1408 <         * lock even if the key is not found, to ensure sequential
1409 <         * consistency of updates.
1410 <         */
1411 <        private void scanAndLock(Object key, int hash) {
1412 <            // similar to but simpler than scanAndLockForPut
1413 <            HashEntry<K,V> first = entryForHash(this, hash);
1414 <            HashEntry<K,V> e = first;
1415 <            int retries = -1;
1416 <            while (!tryLock()) {
1417 <                HashEntry<K,V> f;
1418 <                if (retries < 0) {
1419 <                    if (e == null || key.equals(e.key))
1420 <                        retries = 0;
1421 <                    else
1422 <                        e = e.next;
1404 >    /** Implementation for computeIfAbsent */
1405 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1406 >        (K k, Fun<? super K, ? extends V> mf) {
1407 >        if (k == null || mf == null)
1408 >            throw new NullPointerException();
1409 >        int h = spread(k.hashCode());
1410 >        V val = null;
1411 >        int len = 0;
1412 >        for (Node<V>[] tab = table;;) {
1413 >            Node<V> f; int i; Object fk;
1414 >            if (tab == null)
1415 >                tab = initTable();
1416 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1417 >                Node<V> node = new Node<V>(h, k, null, null);
1418 >                synchronized (node) {
1419 >                    if (casTabAt(tab, i, null, node)) {
1420 >                        len = 1;
1421 >                        try {
1422 >                            if ((val = mf.apply(k)) != null)
1423 >                                node.val = val;
1424 >                        } finally {
1425 >                            if (val == null)
1426 >                                setTabAt(tab, i, null);
1427 >                        }
1428 >                    }
1429                  }
1430 <                else if (++retries > MAX_SCAN_RETRIES) {
508 <                    lock();
1430 >                if (len != 0)
1431                      break;
1432 +            }
1433 +            else if (f.hash < 0) {
1434 +                if ((fk = f.key) instanceof TreeBin) {
1435 +                    TreeBin<V> t = (TreeBin<V>)fk;
1436 +                    boolean added = false;
1437 +                    t.acquire(0);
1438 +                    try {
1439 +                        if (tabAt(tab, i) == f) {
1440 +                            len = 1;
1441 +                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1442 +                            if (p != null)
1443 +                                val = p.val;
1444 +                            else if ((val = mf.apply(k)) != null) {
1445 +                                added = true;
1446 +                                len = 2;
1447 +                                t.putTreeNode(h, k, val);
1448 +                            }
1449 +                        }
1450 +                    } finally {
1451 +                        t.release(0);
1452 +                    }
1453 +                    if (len != 0) {
1454 +                        if (!added)
1455 +                            return val;
1456 +                        break;
1457 +                    }
1458 +                }
1459 +                else
1460 +                    tab = (Node<V>[])fk;
1461 +            }
1462 +            else {
1463 +                for (Node<V> e = f; e != null; e = e.next) { // prescan
1464 +                    Object ek; V ev;
1465 +                    if (e.hash == h && (ev = e.val) != null &&
1466 +                        ((ek = e.key) == k || k.equals(ek)))
1467 +                        return ev;
1468 +                }
1469 +                boolean added = false;
1470 +                synchronized (f) {
1471 +                    if (tabAt(tab, i) == f) {
1472 +                        len = 1;
1473 +                        for (Node<V> e = f;; ++len) {
1474 +                            Object ek; V ev;
1475 +                            if (e.hash == h &&
1476 +                                (ev = e.val) != null &&
1477 +                                ((ek = e.key) == k || k.equals(ek))) {
1478 +                                val = ev;
1479 +                                break;
1480 +                            }
1481 +                            Node<V> last = e;
1482 +                            if ((e = e.next) == null) {
1483 +                                if ((val = mf.apply(k)) != null) {
1484 +                                    added = true;
1485 +                                    last.next = new Node<V>(h, k, val, null);
1486 +                                    if (len >= TREE_THRESHOLD)
1487 +                                        replaceWithTreeBin(tab, i, k);
1488 +                                }
1489 +                                break;
1490 +                            }
1491 +                        }
1492 +                    }
1493                  }
1494 <                else if ((retries & 1) == 0 &&
1495 <                         (f = entryForHash(this, hash)) != first) {
1496 <                    e = first = f;
1497 <                    retries = -1;
1494 >                if (len != 0) {
1495 >                    if (!added)
1496 >                        return val;
1497 >                    break;
1498                  }
1499              }
1500          }
1501 +        if (val != null)
1502 +            addCount(1L, len);
1503 +        return val;
1504 +    }
1505  
1506 <        /**
1507 <         * Remove; match on key only if value null, else match both.
1508 <         */
1509 <        final V remove(Object key, int hash, Object value) {
1510 <            if (!tryLock())
1511 <                scanAndLock(key, hash);
1512 <            V oldValue = null;
1513 <            try {
1514 <                HashEntry<K,V>[] tab = table;
1515 <                int index = (tab.length - 1) & hash;
1516 <                HashEntry<K,V> e = entryAt(tab, index);
1517 <                HashEntry<K,V> pred = null;
1518 <                while (e != null) {
1519 <                    K k;
1520 <                    HashEntry<K,V> next = e.next;
1521 <                    if ((k = e.key) == key ||
1522 <                        (e.hash == hash && key.equals(k))) {
1523 <                        V v = e.value;
1524 <                        if (value == null || value == v || value.equals(v)) {
1525 <                            if (pred == null)
1526 <                                setEntryAt(tab, index, next);
1527 <                            else
1528 <                                pred.setNext(next);
1529 <                            ++modCount;
1530 <                            --count;
1531 <                            oldValue = v;
1506 >    /** Implementation for compute */
1507 >    @SuppressWarnings("unchecked") private final V internalCompute
1508 >        (K k, boolean onlyIfPresent,
1509 >         BiFun<? super K, ? super V, ? extends V> mf) {
1510 >        if (k == null || mf == null)
1511 >            throw new NullPointerException();
1512 >        int h = spread(k.hashCode());
1513 >        V val = null;
1514 >        int delta = 0;
1515 >        int len = 0;
1516 >        for (Node<V>[] tab = table;;) {
1517 >            Node<V> f; int i, fh; Object fk;
1518 >            if (tab == null)
1519 >                tab = initTable();
1520 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1521 >                if (onlyIfPresent)
1522 >                    break;
1523 >                Node<V> node = new Node<V>(h, k, null, null);
1524 >                synchronized (node) {
1525 >                    if (casTabAt(tab, i, null, node)) {
1526 >                        try {
1527 >                            len = 1;
1528 >                            if ((val = mf.apply(k, null)) != null) {
1529 >                                node.val = val;
1530 >                                delta = 1;
1531 >                            }
1532 >                        } finally {
1533 >                            if (delta == 0)
1534 >                                setTabAt(tab, i, null);
1535 >                        }
1536 >                    }
1537 >                }
1538 >                if (len != 0)
1539 >                    break;
1540 >            }
1541 >            else if ((fh = f.hash) < 0) {
1542 >                if ((fk = f.key) instanceof TreeBin) {
1543 >                    TreeBin<V> t = (TreeBin<V>)fk;
1544 >                    t.acquire(0);
1545 >                    try {
1546 >                        if (tabAt(tab, i) == f) {
1547 >                            len = 1;
1548 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1549 >                            if (p == null && onlyIfPresent)
1550 >                                break;
1551 >                            V pv = (p == null) ? null : p.val;
1552 >                            if ((val = mf.apply(k, pv)) != null) {
1553 >                                if (p != null)
1554 >                                    p.val = val;
1555 >                                else {
1556 >                                    len = 2;
1557 >                                    delta = 1;
1558 >                                    t.putTreeNode(h, k, val);
1559 >                                }
1560 >                            }
1561 >                            else if (p != null) {
1562 >                                delta = -1;
1563 >                                t.deleteTreeNode(p);
1564 >                            }
1565                          }
1566 +                    } finally {
1567 +                        t.release(0);
1568 +                    }
1569 +                    if (len != 0)
1570                          break;
1571 +                }
1572 +                else
1573 +                    tab = (Node<V>[])fk;
1574 +            }
1575 +            else {
1576 +                synchronized (f) {
1577 +                    if (tabAt(tab, i) == f) {
1578 +                        len = 1;
1579 +                        for (Node<V> e = f, pred = null;; ++len) {
1580 +                            Object ek; V ev;
1581 +                            if (e.hash == h &&
1582 +                                (ev = e.val) != null &&
1583 +                                ((ek = e.key) == k || k.equals(ek))) {
1584 +                                val = mf.apply(k, ev);
1585 +                                if (val != null)
1586 +                                    e.val = val;
1587 +                                else {
1588 +                                    delta = -1;
1589 +                                    Node<V> en = e.next;
1590 +                                    if (pred != null)
1591 +                                        pred.next = en;
1592 +                                    else
1593 +                                        setTabAt(tab, i, en);
1594 +                                }
1595 +                                break;
1596 +                            }
1597 +                            pred = e;
1598 +                            if ((e = e.next) == null) {
1599 +                                if (!onlyIfPresent &&
1600 +                                    (val = mf.apply(k, null)) != null) {
1601 +                                    pred.next = new Node<V>(h, k, val, null);
1602 +                                    delta = 1;
1603 +                                    if (len >= TREE_THRESHOLD)
1604 +                                        replaceWithTreeBin(tab, i, k);
1605 +                                }
1606 +                                break;
1607 +                            }
1608 +                        }
1609                      }
548                    pred = e;
549                    e = next;
1610                  }
1611 <            } finally {
1612 <                unlock();
1611 >                if (len != 0)
1612 >                    break;
1613              }
554            return oldValue;
1614          }
1615 +        if (delta != 0)
1616 +            addCount((long)delta, len);
1617 +        return val;
1618 +    }
1619  
1620 <        final boolean replace(K key, int hash, V oldValue, V newValue) {
1621 <            if (!tryLock())
1622 <                scanAndLock(key, hash);
1623 <            boolean replaced = false;
1624 <            try {
1625 <                HashEntry<K,V> e;
1626 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1627 <                    K k;
1628 <                    if ((k = e.key) == key ||
1629 <                        (e.hash == hash && key.equals(k))) {
1630 <                        if (oldValue.equals(e.value)) {
1631 <                            e.value = newValue;
1632 <                            ++modCount;
1633 <                            replaced = true;
1620 >    /** Implementation for merge */
1621 >    @SuppressWarnings("unchecked") private final V internalMerge
1622 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1623 >        if (k == null || v == null || mf == null)
1624 >            throw new NullPointerException();
1625 >        int h = spread(k.hashCode());
1626 >        V val = null;
1627 >        int delta = 0;
1628 >        int len = 0;
1629 >        for (Node<V>[] tab = table;;) {
1630 >            int i; Node<V> f; Object fk; V fv;
1631 >            if (tab == null)
1632 >                tab = initTable();
1633 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1634 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1635 >                    delta = 1;
1636 >                    val = v;
1637 >                    break;
1638 >                }
1639 >            }
1640 >            else if (f.hash < 0) {
1641 >                if ((fk = f.key) instanceof TreeBin) {
1642 >                    TreeBin<V> t = (TreeBin<V>)fk;
1643 >                    t.acquire(0);
1644 >                    try {
1645 >                        if (tabAt(tab, i) == f) {
1646 >                            len = 1;
1647 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1648 >                            val = (p == null) ? v : mf.apply(p.val, v);
1649 >                            if (val != null) {
1650 >                                if (p != null)
1651 >                                    p.val = val;
1652 >                                else {
1653 >                                    len = 2;
1654 >                                    delta = 1;
1655 >                                    t.putTreeNode(h, k, val);
1656 >                                }
1657 >                            }
1658 >                            else if (p != null) {
1659 >                                delta = -1;
1660 >                                t.deleteTreeNode(p);
1661 >                            }
1662                          }
1663 +                    } finally {
1664 +                        t.release(0);
1665 +                    }
1666 +                    if (len != 0)
1667                          break;
1668 +                }
1669 +                else
1670 +                    tab = (Node<V>[])fk;
1671 +            }
1672 +            else {
1673 +                synchronized (f) {
1674 +                    if (tabAt(tab, i) == f) {
1675 +                        len = 1;
1676 +                        for (Node<V> e = f, pred = null;; ++len) {
1677 +                            Object ek; V ev;
1678 +                            if (e.hash == h &&
1679 +                                (ev = e.val) != null &&
1680 +                                ((ek = e.key) == k || k.equals(ek))) {
1681 +                                val = mf.apply(ev, v);
1682 +                                if (val != null)
1683 +                                    e.val = val;
1684 +                                else {
1685 +                                    delta = -1;
1686 +                                    Node<V> en = e.next;
1687 +                                    if (pred != null)
1688 +                                        pred.next = en;
1689 +                                    else
1690 +                                        setTabAt(tab, i, en);
1691 +                                }
1692 +                                break;
1693 +                            }
1694 +                            pred = e;
1695 +                            if ((e = e.next) == null) {
1696 +                                val = v;
1697 +                                pred.next = new Node<V>(h, k, val, null);
1698 +                                delta = 1;
1699 +                                if (len >= TREE_THRESHOLD)
1700 +                                    replaceWithTreeBin(tab, i, k);
1701 +                                break;
1702 +                            }
1703 +                        }
1704 +                    }
1705 +                }
1706 +                if (len != 0)
1707 +                    break;
1708 +            }
1709 +        }
1710 +        if (delta != 0)
1711 +            addCount((long)delta, len);
1712 +        return val;
1713 +    }
1714 +
1715 +    /** Implementation for putAll */
1716 +    @SuppressWarnings("unchecked") private final void internalPutAll
1717 +        (Map<? extends K, ? extends V> m) {
1718 +        tryPresize(m.size());
1719 +        long delta = 0L;     // number of uncommitted additions
1720 +        boolean npe = false; // to throw exception on exit for nulls
1721 +        try {                // to clean up counts on other exceptions
1722 +            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1723 +                Object k; V v;
1724 +                if (entry == null || (k = entry.getKey()) == null ||
1725 +                    (v = entry.getValue()) == null) {
1726 +                    npe = true;
1727 +                    break;
1728 +                }
1729 +                int h = spread(k.hashCode());
1730 +                for (Node<V>[] tab = table;;) {
1731 +                    int i; Node<V> f; int fh; Object fk;
1732 +                    if (tab == null)
1733 +                        tab = initTable();
1734 +                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1735 +                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1736 +                            ++delta;
1737 +                            break;
1738 +                        }
1739 +                    }
1740 +                    else if ((fh = f.hash) < 0) {
1741 +                        if ((fk = f.key) instanceof TreeBin) {
1742 +                            TreeBin<V> t = (TreeBin<V>)fk;
1743 +                            boolean validated = false;
1744 +                            t.acquire(0);
1745 +                            try {
1746 +                                if (tabAt(tab, i) == f) {
1747 +                                    validated = true;
1748 +                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1749 +                                    if (p != null)
1750 +                                        p.val = v;
1751 +                                    else {
1752 +                                        t.putTreeNode(h, k, v);
1753 +                                        ++delta;
1754 +                                    }
1755 +                                }
1756 +                            } finally {
1757 +                                t.release(0);
1758 +                            }
1759 +                            if (validated)
1760 +                                break;
1761 +                        }
1762 +                        else
1763 +                            tab = (Node<V>[])fk;
1764 +                    }
1765 +                    else {
1766 +                        int len = 0;
1767 +                        synchronized (f) {
1768 +                            if (tabAt(tab, i) == f) {
1769 +                                len = 1;
1770 +                                for (Node<V> e = f;; ++len) {
1771 +                                    Object ek; V ev;
1772 +                                    if (e.hash == h &&
1773 +                                        (ev = e.val) != null &&
1774 +                                        ((ek = e.key) == k || k.equals(ek))) {
1775 +                                        e.val = v;
1776 +                                        break;
1777 +                                    }
1778 +                                    Node<V> last = e;
1779 +                                    if ((e = e.next) == null) {
1780 +                                        ++delta;
1781 +                                        last.next = new Node<V>(h, k, v, null);
1782 +                                        if (len >= TREE_THRESHOLD)
1783 +                                            replaceWithTreeBin(tab, i, k);
1784 +                                        break;
1785 +                                    }
1786 +                                }
1787 +                            }
1788 +                        }
1789 +                        if (len != 0) {
1790 +                            if (len > 1)
1791 +                                addCount(delta, len);
1792 +                            break;
1793 +                        }
1794                      }
1795                  }
575            } finally {
576                unlock();
1796              }
1797 <            return replaced;
1797 >        } finally {
1798 >            if (delta != 0L)
1799 >                addCount(delta, 2);
1800          }
1801 +        if (npe)
1802 +            throw new NullPointerException();
1803 +    }
1804  
1805 <        final V replace(K key, int hash, V value) {
1806 <            if (!tryLock())
1807 <                scanAndLock(key, hash);
1808 <            V oldValue = null;
1809 <            try {
1810 <                HashEntry<K,V> e;
1811 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1812 <                    K k;
1813 <                    if ((k = e.key) == key ||
1814 <                        (e.hash == hash && key.equals(k))) {
1815 <                        oldValue = e.value;
1816 <                        e.value = value;
1817 <                        ++modCount;
1805 >    /**
1806 >     * Implementation for clear. Steps through each bin, removing all
1807 >     * nodes.
1808 >     */
1809 >    @SuppressWarnings("unchecked") private final void internalClear() {
1810 >        long delta = 0L; // negative number of deletions
1811 >        int i = 0;
1812 >        Node<V>[] tab = table;
1813 >        while (tab != null && i < tab.length) {
1814 >            Node<V> f = tabAt(tab, i);
1815 >            if (f == null)
1816 >                ++i;
1817 >            else if (f.hash < 0) {
1818 >                Object fk;
1819 >                if ((fk = f.key) instanceof TreeBin) {
1820 >                    TreeBin<V> t = (TreeBin<V>)fk;
1821 >                    t.acquire(0);
1822 >                    try {
1823 >                        if (tabAt(tab, i) == f) {
1824 >                            for (Node<V> p = t.first; p != null; p = p.next) {
1825 >                                if (p.val != null) { // (currently always true)
1826 >                                    p.val = null;
1827 >                                    --delta;
1828 >                                }
1829 >                            }
1830 >                            t.first = null;
1831 >                            t.root = null;
1832 >                            ++i;
1833 >                        }
1834 >                    } finally {
1835 >                        t.release(0);
1836 >                    }
1837 >                }
1838 >                else
1839 >                    tab = (Node<V>[])fk;
1840 >            }
1841 >            else {
1842 >                synchronized (f) {
1843 >                    if (tabAt(tab, i) == f) {
1844 >                        for (Node<V> e = f; e != null; e = e.next) {
1845 >                            if (e.val != null) {  // (currently always true)
1846 >                                e.val = null;
1847 >                                --delta;
1848 >                            }
1849 >                        }
1850 >                        setTabAt(tab, i, null);
1851 >                        ++i;
1852 >                    }
1853 >                }
1854 >            }
1855 >        }
1856 >        if (delta != 0L)
1857 >            addCount(delta, -1);
1858 >    }
1859 >
1860 >    /* ---------------- Table Initialization and Resizing -------------- */
1861 >
1862 >    /**
1863 >     * Returns a power of two table size for the given desired capacity.
1864 >     * See Hackers Delight, sec 3.2
1865 >     */
1866 >    private static final int tableSizeFor(int c) {
1867 >        int n = c - 1;
1868 >        n |= n >>> 1;
1869 >        n |= n >>> 2;
1870 >        n |= n >>> 4;
1871 >        n |= n >>> 8;
1872 >        n |= n >>> 16;
1873 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1874 >    }
1875 >
1876 >    /**
1877 >     * Initializes table, using the size recorded in sizeCtl.
1878 >     */
1879 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1880 >        Node<V>[] tab; int sc;
1881 >        while ((tab = table) == null) {
1882 >            if ((sc = sizeCtl) < 0)
1883 >                Thread.yield(); // lost initialization race; just spin
1884 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1885 >                try {
1886 >                    if ((tab = table) == null) {
1887 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1888 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1889 >                        table = tab = (Node<V>[])tb;
1890 >                        sc = n - (n >>> 2);
1891 >                    }
1892 >                } finally {
1893 >                    sizeCtl = sc;
1894 >                }
1895 >                break;
1896 >            }
1897 >        }
1898 >        return tab;
1899 >    }
1900 >
1901 >    /**
1902 >     * Adds to count, and if table is too small and not already
1903 >     * resizing, initiates transfer. If already resizing, helps
1904 >     * perform transfer if work is available.  Rechecks occupancy
1905 >     * after a transfer to see if another resize is already needed
1906 >     * because resizings are lagging additions.
1907 >     *
1908 >     * @param x the count to add
1909 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1910 >     */
1911 >    private final void addCount(long x, int check) {
1912 >        CounterCell[] as; long b, s;
1913 >        if ((as = counterCells) != null ||
1914 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1915 >            CounterHashCode hc; CounterCell a; long v; int m;
1916 >            boolean uncontended = true;
1917 >            if ((hc = threadCounterHashCode.get()) == null ||
1918 >                as == null || (m = as.length - 1) < 0 ||
1919 >                (a = as[m & hc.code]) == null ||
1920 >                !(uncontended =
1921 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1922 >                fullAddCount(x, hc, uncontended);
1923 >                return;
1924 >            }
1925 >            if (check <= 1)
1926 >                return;
1927 >            s = sumCount();
1928 >        }
1929 >        if (check >= 0) {
1930 >            Node<V>[] tab, nt; int sc;
1931 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1932 >                   tab.length < MAXIMUM_CAPACITY) {
1933 >                if (sc < 0) {
1934 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1935 >                        (nt = nextTable) == null)
1936                          break;
1937 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1938 +                        transfer(tab, nt);
1939 +                }
1940 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1941 +                    transfer(tab, null);
1942 +                s = sumCount();
1943 +            }
1944 +        }
1945 +    }
1946 +
1947 +    /**
1948 +     * Tries to presize table to accommodate the given number of elements.
1949 +     *
1950 +     * @param size number of elements (doesn't need to be perfectly accurate)
1951 +     */
1952 +    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1953 +        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1954 +            tableSizeFor(size + (size >>> 1) + 1);
1955 +        int sc;
1956 +        while ((sc = sizeCtl) >= 0) {
1957 +            Node<V>[] tab = table; int n;
1958 +            if (tab == null || (n = tab.length) == 0) {
1959 +                n = (sc > c) ? sc : c;
1960 +                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1961 +                    try {
1962 +                        if (table == tab) {
1963 +                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1964 +                            table = (Node<V>[])tb;
1965 +                            sc = n - (n >>> 2);
1966 +                        }
1967 +                    } finally {
1968 +                        sizeCtl = sc;
1969                      }
1970                  }
597            } finally {
598                unlock();
1971              }
1972 <            return oldValue;
1972 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1973 >                break;
1974 >            else if (tab == table &&
1975 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1976 >                transfer(tab, null);
1977          }
1978 +    }
1979  
1980 <        final void clear() {
1981 <            lock();
1980 >    /*
1981 >     * Moves and/or copies the nodes in each bin to new table. See
1982 >     * above for explanation.
1983 >     */
1984 >    @SuppressWarnings("unchecked") private final void transfer
1985 >        (Node<V>[] tab, Node<V>[] nextTab) {
1986 >        int n = tab.length, stride;
1987 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1988 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1989 >        if (nextTab == null) {            // initiating
1990              try {
1991 <                HashEntry<K,V>[] tab = table;
1992 <                for (int i = 0; i < tab.length ; i++)
1993 <                    setEntryAt(tab, i, null);
1994 <                ++modCount;
1995 <                count = 0;
1996 <            } finally {
1997 <                unlock();
1991 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1992 >                nextTab = (Node<V>[])tb;
1993 >            } catch (Throwable ex) {      // try to cope with OOME
1994 >                sizeCtl = Integer.MAX_VALUE;
1995 >                return;
1996 >            }
1997 >            nextTable = nextTab;
1998 >            transferOrigin = n;
1999 >            transferIndex = n;
2000 >            Node<V> rev = new Node<V>(MOVED, tab, null, null);
2001 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2002 >                int nextk = (k > stride) ? k - stride : 0;
2003 >                for (int m = nextk; m < k; ++m)
2004 >                    nextTab[m] = rev;
2005 >                for (int m = n + nextk; m < n + k; ++m)
2006 >                    nextTab[m] = rev;
2007 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2008              }
2009          }
2010 +        int nextn = nextTab.length;
2011 +        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2012 +        boolean advance = true;
2013 +        for (int i = 0, bound = 0;;) {
2014 +            int nextIndex, nextBound; Node<V> f; Object fk;
2015 +            while (advance) {
2016 +                if (--i >= bound)
2017 +                    advance = false;
2018 +                else if ((nextIndex = transferIndex) <= transferOrigin) {
2019 +                    i = -1;
2020 +                    advance = false;
2021 +                }
2022 +                else if (U.compareAndSwapInt
2023 +                         (this, TRANSFERINDEX, nextIndex,
2024 +                          nextBound = (nextIndex > stride ?
2025 +                                       nextIndex - stride : 0))) {
2026 +                    bound = nextBound;
2027 +                    i = nextIndex - 1;
2028 +                    advance = false;
2029 +                }
2030 +            }
2031 +            if (i < 0 || i >= n || i + n >= nextn) {
2032 +                for (int sc;;) {
2033 +                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2034 +                        if (sc == -1) {
2035 +                            nextTable = null;
2036 +                            table = nextTab;
2037 +                            sizeCtl = (n << 1) - (n >>> 1);
2038 +                        }
2039 +                        return;
2040 +                    }
2041 +                }
2042 +            }
2043 +            else if ((f = tabAt(tab, i)) == null) {
2044 +                if (casTabAt(tab, i, null, fwd)) {
2045 +                    setTabAt(nextTab, i, null);
2046 +                    setTabAt(nextTab, i + n, null);
2047 +                    advance = true;
2048 +                }
2049 +            }
2050 +            else if (f.hash >= 0) {
2051 +                synchronized (f) {
2052 +                    if (tabAt(tab, i) == f) {
2053 +                        int runBit = f.hash & n;
2054 +                        Node<V> lastRun = f, lo = null, hi = null;
2055 +                        for (Node<V> p = f.next; p != null; p = p.next) {
2056 +                            int b = p.hash & n;
2057 +                            if (b != runBit) {
2058 +                                runBit = b;
2059 +                                lastRun = p;
2060 +                            }
2061 +                        }
2062 +                        if (runBit == 0)
2063 +                            lo = lastRun;
2064 +                        else
2065 +                            hi = lastRun;
2066 +                        for (Node<V> p = f; p != lastRun; p = p.next) {
2067 +                            int ph = p.hash;
2068 +                            Object pk = p.key; V pv = p.val;
2069 +                            if ((ph & n) == 0)
2070 +                                lo = new Node<V>(ph, pk, pv, lo);
2071 +                            else
2072 +                                hi = new Node<V>(ph, pk, pv, hi);
2073 +                        }
2074 +                        setTabAt(nextTab, i, lo);
2075 +                        setTabAt(nextTab, i + n, hi);
2076 +                        setTabAt(tab, i, fwd);
2077 +                        advance = true;
2078 +                    }
2079 +                }
2080 +            }
2081 +            else if ((fk = f.key) instanceof TreeBin) {
2082 +                TreeBin<V> t = (TreeBin<V>)fk;
2083 +                t.acquire(0);
2084 +                try {
2085 +                    if (tabAt(tab, i) == f) {
2086 +                        TreeBin<V> lt = new TreeBin<V>();
2087 +                        TreeBin<V> ht = new TreeBin<V>();
2088 +                        int lc = 0, hc = 0;
2089 +                        for (Node<V> e = t.first; e != null; e = e.next) {
2090 +                            int h = e.hash;
2091 +                            Object k = e.key; V v = e.val;
2092 +                            if ((h & n) == 0) {
2093 +                                ++lc;
2094 +                                lt.putTreeNode(h, k, v);
2095 +                            }
2096 +                            else {
2097 +                                ++hc;
2098 +                                ht.putTreeNode(h, k, v);
2099 +                            }
2100 +                        }
2101 +                        Node<V> ln, hn; // throw away trees if too small
2102 +                        if (lc < TREE_THRESHOLD) {
2103 +                            ln = null;
2104 +                            for (Node<V> p = lt.first; p != null; p = p.next)
2105 +                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2106 +                        }
2107 +                        else
2108 +                            ln = new Node<V>(MOVED, lt, null, null);
2109 +                        setTabAt(nextTab, i, ln);
2110 +                        if (hc < TREE_THRESHOLD) {
2111 +                            hn = null;
2112 +                            for (Node<V> p = ht.first; p != null; p = p.next)
2113 +                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2114 +                        }
2115 +                        else
2116 +                            hn = new Node<V>(MOVED, ht, null, null);
2117 +                        setTabAt(nextTab, i + n, hn);
2118 +                        setTabAt(tab, i, fwd);
2119 +                        advance = true;
2120 +                    }
2121 +                } finally {
2122 +                    t.release(0);
2123 +                }
2124 +            }
2125 +            else
2126 +                advance = true; // already processed
2127 +        }
2128 +    }
2129 +
2130 +    /* ---------------- Counter support -------------- */
2131 +
2132 +    final long sumCount() {
2133 +        CounterCell[] as = counterCells; CounterCell a;
2134 +        long sum = baseCount;
2135 +        if (as != null) {
2136 +            for (int i = 0; i < as.length; ++i) {
2137 +                if ((a = as[i]) != null)
2138 +                    sum += a.value;
2139 +            }
2140 +        }
2141 +        return sum;
2142      }
2143  
2144 <    // Accessing segments
2145 <
2146 <    /**
2147 <     * Gets the jth element of given segment array (if nonnull) with
2148 <     * volatile element access semantics via Unsafe. (The null check
2149 <     * can trigger harmlessly only during deserialization.) Note:
2150 <     * because each element of segments array is set only once (using
2151 <     * fully ordered writes), some performance-sensitive methods rely
2152 <     * on this method only as a recheck upon null reads.
2153 <     */
2154 <    @SuppressWarnings("unchecked")
2155 <    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
2156 <        long u = (j << SSHIFT) + SBASE;
2157 <        return ss == null ? null :
2158 <            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
2144 >    // See LongAdder version for explanation
2145 >    private final void fullAddCount(long x, CounterHashCode hc,
2146 >                                    boolean wasUncontended) {
2147 >        int h;
2148 >        if (hc == null) {
2149 >            hc = new CounterHashCode();
2150 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2151 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2152 >            threadCounterHashCode.set(hc);
2153 >        }
2154 >        else
2155 >            h = hc.code;
2156 >        boolean collide = false;                // True if last slot nonempty
2157 >        for (;;) {
2158 >            CounterCell[] as; CounterCell a; int n; long v;
2159 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2160 >                if ((a = as[(n - 1) & h]) == null) {
2161 >                    if (counterBusy == 0) {            // Try to attach new Cell
2162 >                        CounterCell r = new CounterCell(x); // Optimistic create
2163 >                        if (counterBusy == 0 &&
2164 >                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2165 >                            boolean created = false;
2166 >                            try {               // Recheck under lock
2167 >                                CounterCell[] rs; int m, j;
2168 >                                if ((rs = counterCells) != null &&
2169 >                                    (m = rs.length) > 0 &&
2170 >                                    rs[j = (m - 1) & h] == null) {
2171 >                                    rs[j] = r;
2172 >                                    created = true;
2173 >                                }
2174 >                            } finally {
2175 >                                counterBusy = 0;
2176 >                            }
2177 >                            if (created)
2178 >                                break;
2179 >                            continue;           // Slot is now non-empty
2180 >                        }
2181 >                    }
2182 >                    collide = false;
2183 >                }
2184 >                else if (!wasUncontended)       // CAS already known to fail
2185 >                    wasUncontended = true;      // Continue after rehash
2186 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2187 >                    break;
2188 >                else if (counterCells != as || n >= NCPU)
2189 >                    collide = false;            // At max size or stale
2190 >                else if (!collide)
2191 >                    collide = true;
2192 >                else if (counterBusy == 0 &&
2193 >                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2194 >                    try {
2195 >                        if (counterCells == as) {// Expand table unless stale
2196 >                            CounterCell[] rs = new CounterCell[n << 1];
2197 >                            for (int i = 0; i < n; ++i)
2198 >                                rs[i] = as[i];
2199 >                            counterCells = rs;
2200 >                        }
2201 >                    } finally {
2202 >                        counterBusy = 0;
2203 >                    }
2204 >                    collide = false;
2205 >                    continue;                   // Retry with expanded table
2206 >                }
2207 >                h ^= h << 13;                   // Rehash
2208 >                h ^= h >>> 17;
2209 >                h ^= h << 5;
2210 >            }
2211 >            else if (counterBusy == 0 && counterCells == as &&
2212 >                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2213 >                boolean init = false;
2214 >                try {                           // Initialize table
2215 >                    if (counterCells == as) {
2216 >                        CounterCell[] rs = new CounterCell[2];
2217 >                        rs[h & 1] = new CounterCell(x);
2218 >                        counterCells = rs;
2219 >                        init = true;
2220 >                    }
2221 >                } finally {
2222 >                    counterBusy = 0;
2223 >                }
2224 >                if (init)
2225 >                    break;
2226 >            }
2227 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2228 >                break;                          // Fall back on using base
2229 >        }
2230 >        hc.code = h;                            // Record index for next time
2231      }
2232  
2233 +    /* ----------------Table Traversal -------------- */
2234 +
2235      /**
2236 <     * Returns the segment for the given index, creating it and
2237 <     * recording in segment table (via CAS) if not already present.
2238 <     *
2239 <     * @param k the index
2240 <     * @return the segment
2241 <     */
2242 <    @SuppressWarnings("unchecked")
2243 <    private Segment<K,V> ensureSegment(int k) {
2244 <        final Segment<K,V>[] ss = this.segments;
2245 <        long u = (k << SSHIFT) + SBASE; // raw offset
2246 <        Segment<K,V> seg;
2247 <        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
2248 <            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
2249 <            int cap = proto.table.length;
2250 <            float lf = proto.loadFactor;
2251 <            int threshold = (int)(cap * lf);
2252 <            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
2253 <            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
2254 <                == null) { // recheck
2255 <                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
2256 <                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
2257 <                       == null) {
2258 <                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
2259 <                        break;
2236 >     * Encapsulates traversal for methods such as containsValue; also
2237 >     * serves as a base class for other iterators and bulk tasks.
2238 >     *
2239 >     * At each step, the iterator snapshots the key ("nextKey") and
2240 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2241 >     * snapshot, has a non-null user value). Because val fields can
2242 >     * change (including to null, indicating deletion), field nextVal
2243 >     * might not be accurate at point of use, but still maintains the
2244 >     * weak consistency property of holding a value that was once
2245 >     * valid. To support iterator.remove, the nextKey field is not
2246 >     * updated (nulled out) when the iterator cannot advance.
2247 >     *
2248 >     * Internal traversals directly access these fields, as in:
2249 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2250 >     *
2251 >     * Exported iterators must track whether the iterator has advanced
2252 >     * (in hasNext vs next) (by setting/checking/nulling field
2253 >     * nextVal), and then extract key, value, or key-value pairs as
2254 >     * return values of next().
2255 >     *
2256 >     * The iterator visits once each still-valid node that was
2257 >     * reachable upon iterator construction. It might miss some that
2258 >     * were added to a bin after the bin was visited, which is OK wrt
2259 >     * consistency guarantees. Maintaining this property in the face
2260 >     * of possible ongoing resizes requires a fair amount of
2261 >     * bookkeeping state that is difficult to optimize away amidst
2262 >     * volatile accesses.  Even so, traversal maintains reasonable
2263 >     * throughput.
2264 >     *
2265 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2266 >     * However, if the table has been resized, then all future steps
2267 >     * must traverse both the bin at the current index as well as at
2268 >     * (index + baseSize); and so on for further resizings. To
2269 >     * paranoically cope with potential sharing by users of iterators
2270 >     * across threads, iteration terminates if a bounds checks fails
2271 >     * for a table read.
2272 >     *
2273 >     * This class extends CountedCompleter to streamline parallel
2274 >     * iteration in bulk operations. This adds only a few fields of
2275 >     * space overhead, which is small enough in cases where it is not
2276 >     * needed to not worry about it.  Because CountedCompleter is
2277 >     * Serializable, but iterators need not be, we need to add warning
2278 >     * suppressions.
2279 >     */
2280 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2281 >        extends CountedCompleter<R> {
2282 >        final ConcurrentHashMap<K, V> map;
2283 >        Node<V> next;        // the next entry to use
2284 >        Object nextKey;      // cached key field of next
2285 >        V nextVal;           // cached val field of next
2286 >        Node<V>[] tab;       // current table; updated if resized
2287 >        int index;           // index of bin to use next
2288 >        int baseIndex;       // current index of initial table
2289 >        int baseLimit;       // index bound for initial table
2290 >        int baseSize;        // initial table size
2291 >        int batch;           // split control
2292 >
2293 >        /** Creates iterator for all entries in the table. */
2294 >        Traverser(ConcurrentHashMap<K, V> map) {
2295 >            this.map = map;
2296 >        }
2297 >
2298 >        /** Creates iterator for split() methods and task constructors */
2299 >        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2300 >            super(it);
2301 >            this.batch = batch;
2302 >            if ((this.map = map) != null && it != null) { // split parent
2303 >                Node<V>[] t;
2304 >                if ((t = it.tab) == null &&
2305 >                    (t = it.tab = map.table) != null)
2306 >                    it.baseLimit = it.baseSize = t.length;
2307 >                this.tab = t;
2308 >                this.baseSize = it.baseSize;
2309 >                int hi = this.baseLimit = it.baseLimit;
2310 >                it.baseLimit = this.index = this.baseIndex =
2311 >                    (hi + it.baseIndex + 1) >>> 1;
2312 >            }
2313 >        }
2314 >
2315 >        /**
2316 >         * Advances next; returns nextVal or null if terminated.
2317 >         * See above for explanation.
2318 >         */
2319 >        @SuppressWarnings("unchecked") final V advance() {
2320 >            Node<V> e = next;
2321 >            V ev = null;
2322 >            outer: do {
2323 >                if (e != null)                  // advance past used/skipped node
2324 >                    e = e.next;
2325 >                while (e == null) {             // get to next non-null bin
2326 >                    ConcurrentHashMap<K, V> m;
2327 >                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2328 >                    if ((t = tab) != null)
2329 >                        n = t.length;
2330 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2331 >                        n = baseLimit = baseSize = t.length;
2332 >                    else
2333 >                        break outer;
2334 >                    if ((b = baseIndex) >= baseLimit ||
2335 >                        (i = index) < 0 || i >= n)
2336 >                        break outer;
2337 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2338 >                        if ((ek = e.key) instanceof TreeBin)
2339 >                            e = ((TreeBin<V>)ek).first;
2340 >                        else {
2341 >                            tab = (Node<V>[])ek;
2342 >                            continue;           // restarts due to null val
2343 >                        }
2344 >                    }                           // visit upper slots if present
2345 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2346 >                }
2347 >                nextKey = e.key;
2348 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2349 >            next = e;
2350 >            return nextVal = ev;
2351 >        }
2352 >
2353 >        public final void remove() {
2354 >            Object k = nextKey;
2355 >            if (k == null && (advance() == null || (k = nextKey) == null))
2356 >                throw new IllegalStateException();
2357 >            map.internalReplace(k, null, null);
2358 >        }
2359 >
2360 >        public final boolean hasNext() {
2361 >            return nextVal != null || advance() != null;
2362 >        }
2363 >
2364 >        public final boolean hasMoreElements() { return hasNext(); }
2365 >
2366 >        public void compute() { } // default no-op CountedCompleter body
2367 >
2368 >        /**
2369 >         * Returns a batch value > 0 if this task should (and must) be
2370 >         * split, if so, adding to pending count, and in any case
2371 >         * updating batch value. The initial batch value is approx
2372 >         * exp2 of the number of times (minus one) to split task by
2373 >         * two before executing leaf action. This value is faster to
2374 >         * compute and more convenient to use as a guide to splitting
2375 >         * than is the depth, since it is used while dividing by two
2376 >         * anyway.
2377 >         */
2378 >        final int preSplit() {
2379 >            ConcurrentHashMap<K, V> m; int b; Node<V>[] t;  ForkJoinPool pool;
2380 >            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2381 >                if ((t = tab) == null && (t = tab = m.table) != null)
2382 >                    baseLimit = baseSize = t.length;
2383 >                if (t != null) {
2384 >                    long n = m.sumCount();
2385 >                    int par = ((pool = getPool()) == null) ?
2386 >                        ForkJoinPool.getCommonPoolParallelism() :
2387 >                        pool.getParallelism();
2388 >                    int sp = par << 3; // slack of 8
2389 >                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2390                  }
2391              }
2392 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2393 +            if ((batch = b) > 0)
2394 +                addToPendingCount(1);
2395 +            return b;
2396          }
2397 <        return seg;
2397 >
2398      }
2399  
2400 <    // Hash-based segment and entry accesses
2400 >    /* ---------------- Public operations -------------- */
2401  
2402      /**
2403 <     * Gets the segment for the given hash code.
2403 >     * Creates a new, empty map with the default initial table size (16).
2404       */
2405 <    @SuppressWarnings("unchecked")
671 <    private Segment<K,V> segmentForHash(int h) {
672 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
673 <        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
2405 >    public ConcurrentHashMap() {
2406      }
2407  
2408      /**
2409 <     * Gets the table entry for the given segment and hash code.
2409 >     * Creates a new, empty map with an initial table size
2410 >     * accommodating the specified number of elements without the need
2411 >     * to dynamically resize.
2412 >     *
2413 >     * @param initialCapacity The implementation performs internal
2414 >     * sizing to accommodate this many elements.
2415 >     * @throws IllegalArgumentException if the initial capacity of
2416 >     * elements is negative
2417       */
2418 <    @SuppressWarnings("unchecked")
2419 <    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
2420 <        HashEntry<K,V>[] tab;
2421 <        return (seg == null || (tab = seg.table) == null) ? null :
2422 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
2423 <            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
2418 >    public ConcurrentHashMap(int initialCapacity) {
2419 >        if (initialCapacity < 0)
2420 >            throw new IllegalArgumentException();
2421 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2422 >                   MAXIMUM_CAPACITY :
2423 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2424 >        this.sizeCtl = cap;
2425      }
2426  
687    /* ---------------- Public operations -------------- */
688
2427      /**
2428 <     * Creates a new, empty map with the specified initial
691 <     * capacity, load factor and concurrency level.
2428 >     * Creates a new map with the same mappings as the given map.
2429       *
2430 <     * @param initialCapacity the initial capacity. The implementation
694 <     * performs internal sizing to accommodate this many elements.
695 <     * @param loadFactor  the load factor threshold, used to control resizing.
696 <     * Resizing may be performed when the average number of elements per
697 <     * bin exceeds this threshold.
698 <     * @param concurrencyLevel the estimated number of concurrently
699 <     * updating threads. The implementation performs internal sizing
700 <     * to try to accommodate this many threads.
701 <     * @throws IllegalArgumentException if the initial capacity is
702 <     * negative or the load factor or concurrencyLevel are
703 <     * nonpositive.
2430 >     * @param m the map
2431       */
2432 <    @SuppressWarnings("unchecked")
2433 <    public ConcurrentHashMap(int initialCapacity,
2434 <                             float loadFactor, int concurrencyLevel) {
708 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
709 <            throw new IllegalArgumentException();
710 <        if (concurrencyLevel > MAX_SEGMENTS)
711 <            concurrencyLevel = MAX_SEGMENTS;
712 <        // Find power-of-two sizes best matching arguments
713 <        int sshift = 0;
714 <        int ssize = 1;
715 <        while (ssize < concurrencyLevel) {
716 <            ++sshift;
717 <            ssize <<= 1;
718 <        }
719 <        this.segmentShift = 32 - sshift;
720 <        this.segmentMask = ssize - 1;
721 <        if (initialCapacity > MAXIMUM_CAPACITY)
722 <            initialCapacity = MAXIMUM_CAPACITY;
723 <        int c = initialCapacity / ssize;
724 <        if (c * ssize < initialCapacity)
725 <            ++c;
726 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
727 <        while (cap < c)
728 <            cap <<= 1;
729 <        // create segments and segments[0]
730 <        Segment<K,V> s0 =
731 <            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
732 <                             (HashEntry<K,V>[])new HashEntry[cap]);
733 <        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
734 <        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
735 <        this.segments = ss;
2432 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2433 >        this.sizeCtl = DEFAULT_CAPACITY;
2434 >        internalPutAll(m);
2435      }
2436  
2437      /**
2438 <     * Creates a new, empty map with the specified initial capacity
2439 <     * and load factor and with the default concurrencyLevel (16).
2438 >     * Creates a new, empty map with an initial table size based on
2439 >     * the given number of elements ({@code initialCapacity}) and
2440 >     * initial table density ({@code loadFactor}).
2441       *
2442 <     * @param initialCapacity The implementation performs internal
2443 <     * sizing to accommodate this many elements.
2444 <     * @param loadFactor  the load factor threshold, used to control resizing.
2445 <     * Resizing may be performed when the average number of elements per
2446 <     * bin exceeds this threshold.
2442 >     * @param initialCapacity the initial capacity. The implementation
2443 >     * performs internal sizing to accommodate this many elements,
2444 >     * given the specified load factor.
2445 >     * @param loadFactor the load factor (table density) for
2446 >     * establishing the initial table size
2447       * @throws IllegalArgumentException if the initial capacity of
2448       * elements is negative or the load factor is nonpositive
2449       *
2450       * @since 1.6
2451       */
2452      public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2453 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2453 >        this(initialCapacity, loadFactor, 1);
2454      }
2455  
2456      /**
2457 <     * Creates a new, empty map with the specified initial capacity,
2458 <     * and with default load factor (0.75) and concurrencyLevel (16).
2457 >     * Creates a new, empty map with an initial table size based on
2458 >     * the given number of elements ({@code initialCapacity}), table
2459 >     * density ({@code loadFactor}), and number of concurrently
2460 >     * updating threads ({@code concurrencyLevel}).
2461       *
2462       * @param initialCapacity the initial capacity. The implementation
2463 <     * performs internal sizing to accommodate this many elements.
2464 <     * @throws IllegalArgumentException if the initial capacity of
2465 <     * elements is negative.
2463 >     * performs internal sizing to accommodate this many elements,
2464 >     * given the specified load factor.
2465 >     * @param loadFactor the load factor (table density) for
2466 >     * establishing the initial table size
2467 >     * @param concurrencyLevel the estimated number of concurrently
2468 >     * updating threads. The implementation may use this value as
2469 >     * a sizing hint.
2470 >     * @throws IllegalArgumentException if the initial capacity is
2471 >     * negative or the load factor or concurrencyLevel are
2472 >     * nonpositive
2473       */
2474 <    public ConcurrentHashMap(int initialCapacity) {
2475 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2474 >    public ConcurrentHashMap(int initialCapacity,
2475 >                               float loadFactor, int concurrencyLevel) {
2476 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2477 >            throw new IllegalArgumentException();
2478 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2479 >            initialCapacity = concurrencyLevel;   // as estimated threads
2480 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2481 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2482 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2483 >        this.sizeCtl = cap;
2484      }
2485  
2486      /**
2487 <     * Creates a new, empty map with a default initial capacity (16),
2488 <     * load factor (0.75) and concurrencyLevel (16).
2487 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2488 >     * from the given type to {@code Boolean.TRUE}.
2489 >     *
2490 >     * @return the new set
2491       */
2492 <    public ConcurrentHashMap() {
2493 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2492 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2493 >        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2494 >                                      Boolean.TRUE);
2495      }
2496  
2497      /**
2498 <     * Creates a new map with the same mappings as the given map.
2499 <     * The map is created with a capacity of 1.5 times the number
780 <     * of mappings in the given map or 16 (whichever is greater),
781 <     * and a default load factor (0.75) and concurrencyLevel (16).
2498 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2499 >     * from the given type to {@code Boolean.TRUE}.
2500       *
2501 <     * @param m the map
2501 >     * @param initialCapacity The implementation performs internal
2502 >     * sizing to accommodate this many elements.
2503 >     * @throws IllegalArgumentException if the initial capacity of
2504 >     * elements is negative
2505 >     * @return the new set
2506       */
2507 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2508 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
2509 <                      DEFAULT_INITIAL_CAPACITY),
788 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
789 <        putAll(m);
2507 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2508 >        return new KeySetView<K,Boolean>
2509 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2510      }
2511  
2512      /**
2513 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
794 <     *
795 <     * @return <tt>true</tt> if this map contains no key-value mappings
2513 >     * {@inheritDoc}
2514       */
2515      public boolean isEmpty() {
2516 <        /*
799 <         * Sum per-segment modCounts to avoid mis-reporting when
800 <         * elements are concurrently added and removed in one segment
801 <         * while checking another, in which case the table was never
802 <         * actually empty at any point. (The sum ensures accuracy up
803 <         * through at least 1<<31 per-segment modifications before
804 <         * recheck.)  Methods size() and containsValue() use similar
805 <         * constructions for stability checks.
806 <         */
807 <        long sum = 0L;
808 <        final Segment<K,V>[] segments = this.segments;
809 <        for (int j = 0; j < segments.length; ++j) {
810 <            Segment<K,V> seg = segmentAt(segments, j);
811 <            if (seg != null) {
812 <                if (seg.count != 0)
813 <                    return false;
814 <                sum += seg.modCount;
815 <            }
816 <        }
817 <        if (sum != 0L) { // recheck unless no modifications
818 <            for (int j = 0; j < segments.length; ++j) {
819 <                Segment<K,V> seg = segmentAt(segments, j);
820 <                if (seg != null) {
821 <                    if (seg.count != 0)
822 <                        return false;
823 <                    sum -= seg.modCount;
824 <                }
825 <            }
826 <            if (sum != 0L)
827 <                return false;
828 <        }
829 <        return true;
2516 >        return sumCount() <= 0L; // ignore transient negative values
2517      }
2518  
2519      /**
2520 <     * Returns the number of key-value mappings in this map.  If the
834 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
835 <     * <tt>Integer.MAX_VALUE</tt>.
836 <     *
837 <     * @return the number of key-value mappings in this map
2520 >     * {@inheritDoc}
2521       */
2522      public int size() {
2523 <        // Try a few times to get accurate count. On failure due to
2524 <        // continuous async changes in table, resort to locking.
2525 <        final Segment<K,V>[] segments = this.segments;
2526 <        int size;
2527 <        boolean overflow; // true if size overflows 32 bits
2528 <        long sum;         // sum of modCounts
2529 <        long last = 0L;   // previous sum
2530 <        int retries = -1; // first iteration isn't retry
2531 <        try {
2532 <            for (;;) {
2533 <                if (retries++ == RETRIES_BEFORE_LOCK) {
2534 <                    for (int j = 0; j < segments.length; ++j)
2535 <                        ensureSegment(j).lock(); // force creation
2536 <                }
2537 <                sum = 0L;
2538 <                size = 0;
2539 <                overflow = false;
2540 <                for (int j = 0; j < segments.length; ++j) {
858 <                    Segment<K,V> seg = segmentAt(segments, j);
859 <                    if (seg != null) {
860 <                        sum += seg.modCount;
861 <                        int c = seg.count;
862 <                        if (c < 0 || (size += c) < 0)
863 <                            overflow = true;
864 <                    }
865 <                }
866 <                if (sum == last)
867 <                    break;
868 <                last = sum;
869 <            }
870 <        } finally {
871 <            if (retries > RETRIES_BEFORE_LOCK) {
872 <                for (int j = 0; j < segments.length; ++j)
873 <                    segmentAt(segments, j).unlock();
874 <            }
875 <        }
876 <        return overflow ? Integer.MAX_VALUE : size;
2523 >        long n = sumCount();
2524 >        return ((n < 0L) ? 0 :
2525 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2526 >                (int)n);
2527 >    }
2528 >
2529 >    /**
2530 >     * Returns the number of mappings. This method should be used
2531 >     * instead of {@link #size} because a ConcurrentHashMap may
2532 >     * contain more mappings than can be represented as an int. The
2533 >     * value returned is an estimate; the actual count may differ if
2534 >     * there are concurrent insertions or removals.
2535 >     *
2536 >     * @return the number of mappings
2537 >     */
2538 >    public long mappingCount() {
2539 >        long n = sumCount();
2540 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2541      }
2542  
2543      /**
# Line 888 | Line 2552 | public class ConcurrentHashMap<K, V> ext
2552       * @throws NullPointerException if the specified key is null
2553       */
2554      public V get(Object key) {
2555 <        Segment<K,V> s; // manually integrate access methods to reduce overhead
2556 <        HashEntry<K,V>[] tab;
2557 <        int h = hash(key.hashCode());
2558 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
2559 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
2560 <            (tab = s.table) != null) {
2561 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
2562 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
2563 <                 e != null; e = e.next) {
2564 <                K k;
2565 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
2566 <                    return e.value;
2567 <            }
2568 <        }
2569 <        return null;
2555 >        return internalGet(key);
2556 >    }
2557 >
2558 >    /**
2559 >     * Returns the value to which the specified key is mapped,
2560 >     * or the given defaultValue if this map contains no mapping for the key.
2561 >     *
2562 >     * @param key the key
2563 >     * @param defaultValue the value to return if this map contains
2564 >     * no mapping for the given key
2565 >     * @return the mapping for the key, if present; else the defaultValue
2566 >     * @throws NullPointerException if the specified key is null
2567 >     */
2568 >    public V getValueOrDefault(Object key, V defaultValue) {
2569 >        V v;
2570 >        return (v = internalGet(key)) == null ? defaultValue : v;
2571      }
2572  
2573      /**
2574       * Tests if the specified object is a key in this table.
2575       *
2576       * @param  key   possible key
2577 <     * @return <tt>true</tt> if and only if the specified object
2577 >     * @return {@code true} if and only if the specified object
2578       *         is a key in this table, as determined by the
2579 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
2579 >     *         {@code equals} method; {@code false} otherwise
2580       * @throws NullPointerException if the specified key is null
2581       */
917    @SuppressWarnings("unchecked")
2582      public boolean containsKey(Object key) {
2583 <        Segment<K,V> s; // same as get() except no need for volatile value read
920 <        HashEntry<K,V>[] tab;
921 <        int h = hash(key.hashCode());
922 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
923 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
924 <            (tab = s.table) != null) {
925 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
926 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
927 <                 e != null; e = e.next) {
928 <                K k;
929 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
930 <                    return true;
931 <            }
932 <        }
933 <        return false;
2583 >        return internalGet(key) != null;
2584      }
2585  
2586      /**
2587 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2588 <     * specified value. Note: This method requires a full internal
2589 <     * traversal of the hash table, and so is much slower than
940 <     * method <tt>containsKey</tt>.
2587 >     * Returns {@code true} if this map maps one or more keys to the
2588 >     * specified value. Note: This method may require a full traversal
2589 >     * of the map, and is much slower than method {@code containsKey}.
2590       *
2591       * @param value value whose presence in this map is to be tested
2592 <     * @return <tt>true</tt> if this map maps one or more keys to the
2592 >     * @return {@code true} if this map maps one or more keys to the
2593       *         specified value
2594       * @throws NullPointerException if the specified value is null
2595       */
2596      public boolean containsValue(Object value) {
948        // Same idea as size()
2597          if (value == null)
2598              throw new NullPointerException();
2599 <        final Segment<K,V>[] segments = this.segments;
2600 <        boolean found = false;
2601 <        long last = 0L;   // previous sum
2602 <        int retries = -1;
2603 <        try {
956 <            outer: for (;;) {
957 <                if (retries++ == RETRIES_BEFORE_LOCK) {
958 <                    for (int j = 0; j < segments.length; ++j)
959 <                        ensureSegment(j).lock(); // force creation
960 <                }
961 <                long sum = 0L;
962 <                for (int j = 0; j < segments.length; ++j) {
963 <                    HashEntry<K,V>[] tab;
964 <                    Segment<K,V> seg = segmentAt(segments, j);
965 <                    if (seg != null && (tab = seg.table) != null) {
966 <                        for (int i = 0 ; i < tab.length; i++) {
967 <                            HashEntry<K,V> e;
968 <                            for (e = entryAt(tab, i); e != null; e = e.next) {
969 <                                V v = e.value;
970 <                                if (v != null && value.equals(v)) {
971 <                                    found = true;
972 <                                    break outer;
973 <                                }
974 <                            }
975 <                        }
976 <                        sum += seg.modCount;
977 <                    }
978 <                }
979 <                if (retries > 0 && sum == last)
980 <                    break;
981 <                last = sum;
982 <            }
983 <        } finally {
984 <            if (retries > RETRIES_BEFORE_LOCK) {
985 <                for (int j = 0; j < segments.length; ++j)
986 <                    segmentAt(segments, j).unlock();
987 <            }
2599 >        V v;
2600 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2601 >        while ((v = it.advance()) != null) {
2602 >            if (v == value || value.equals(v))
2603 >                return true;
2604          }
2605 <        return found;
2605 >        return false;
2606      }
2607  
2608      /**
# Line 998 | Line 2614 | public class ConcurrentHashMap<K, V> ext
2614       * Java Collections framework.
2615       *
2616       * @param  value a value to search for
2617 <     * @return <tt>true</tt> if and only if some key maps to the
2618 <     *         <tt>value</tt> argument in this table as
2619 <     *         determined by the <tt>equals</tt> method;
2620 <     *         <tt>false</tt> otherwise
2617 >     * @return {@code true} if and only if some key maps to the
2618 >     *         {@code value} argument in this table as
2619 >     *         determined by the {@code equals} method;
2620 >     *         {@code false} otherwise
2621       * @throws NullPointerException if the specified value is null
2622       */
2623 <    public boolean contains(Object value) {
2623 >    @Deprecated public boolean contains(Object value) {
2624          return containsValue(value);
2625      }
2626  
# Line 1012 | Line 2628 | public class ConcurrentHashMap<K, V> ext
2628       * Maps the specified key to the specified value in this table.
2629       * Neither the key nor the value can be null.
2630       *
2631 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2631 >     * <p>The value can be retrieved by calling the {@code get} method
2632       * with a key that is equal to the original key.
2633       *
2634       * @param key key with which the specified value is to be associated
2635       * @param value value to be associated with the specified key
2636 <     * @return the previous value associated with <tt>key</tt>, or
2637 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2636 >     * @return the previous value associated with {@code key}, or
2637 >     *         {@code null} if there was no mapping for {@code key}
2638       * @throws NullPointerException if the specified key or value is null
2639       */
1024    @SuppressWarnings("unchecked")
2640      public V put(K key, V value) {
2641 <        Segment<K,V> s;
1027 <        if (value == null)
1028 <            throw new NullPointerException();
1029 <        int hash = hash(key.hashCode());
1030 <        int j = (hash >>> segmentShift) & segmentMask;
1031 <        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1032 <             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1033 <            s = ensureSegment(j);
1034 <        return s.put(key, hash, value, false);
2641 >        return internalPut(key, value, false);
2642      }
2643  
2644      /**
2645       * {@inheritDoc}
2646       *
2647       * @return the previous value associated with the specified key,
2648 <     *         or <tt>null</tt> if there was no mapping for the key
2648 >     *         or {@code null} if there was no mapping for the key
2649       * @throws NullPointerException if the specified key or value is null
2650       */
1044    @SuppressWarnings("unchecked")
2651      public V putIfAbsent(K key, V value) {
2652 <        Segment<K,V> s;
1047 <        if (value == null)
1048 <            throw new NullPointerException();
1049 <        int hash = hash(key.hashCode());
1050 <        int j = (hash >>> segmentShift) & segmentMask;
1051 <        if ((s = (Segment<K,V>)UNSAFE.getObject
1052 <             (segments, (j << SSHIFT) + SBASE)) == null)
1053 <            s = ensureSegment(j);
1054 <        return s.put(key, hash, value, true);
2652 >        return internalPut(key, value, true);
2653      }
2654  
2655      /**
# Line 1062 | Line 2660 | public class ConcurrentHashMap<K, V> ext
2660       * @param m mappings to be stored in this map
2661       */
2662      public void putAll(Map<? extends K, ? extends V> m) {
2663 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2664 <            put(e.getKey(), e.getValue());
2663 >        internalPutAll(m);
2664 >    }
2665 >
2666 >    /**
2667 >     * If the specified key is not already associated with a value,
2668 >     * computes its value using the given mappingFunction and enters
2669 >     * it into the map unless null.  This is equivalent to
2670 >     * <pre> {@code
2671 >     * if (map.containsKey(key))
2672 >     *   return map.get(key);
2673 >     * value = mappingFunction.apply(key);
2674 >     * if (value != null)
2675 >     *   map.put(key, value);
2676 >     * return value;}</pre>
2677 >     *
2678 >     * except that the action is performed atomically.  If the
2679 >     * function returns {@code null} no mapping is recorded. If the
2680 >     * function itself throws an (unchecked) exception, the exception
2681 >     * is rethrown to its caller, and no mapping is recorded.  Some
2682 >     * attempted update operations on this map by other threads may be
2683 >     * blocked while computation is in progress, so the computation
2684 >     * should be short and simple, and must not attempt to update any
2685 >     * other mappings of this Map. The most appropriate usage is to
2686 >     * construct a new object serving as an initial mapped value, or
2687 >     * memoized result, as in:
2688 >     *
2689 >     *  <pre> {@code
2690 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2691 >     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2692 >     *
2693 >     * @param key key with which the specified value is to be associated
2694 >     * @param mappingFunction the function to compute a value
2695 >     * @return the current (existing or computed) value associated with
2696 >     *         the specified key, or null if the computed value is null
2697 >     * @throws NullPointerException if the specified key or mappingFunction
2698 >     *         is null
2699 >     * @throws IllegalStateException if the computation detectably
2700 >     *         attempts a recursive update to this map that would
2701 >     *         otherwise never complete
2702 >     * @throws RuntimeException or Error if the mappingFunction does so,
2703 >     *         in which case the mapping is left unestablished
2704 >     */
2705 >    public V computeIfAbsent
2706 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2707 >        return internalComputeIfAbsent(key, mappingFunction);
2708 >    }
2709 >
2710 >    /**
2711 >     * If the given key is present, computes a new mapping value given a key and
2712 >     * its current mapped value. This is equivalent to
2713 >     *  <pre> {@code
2714 >     *   if (map.containsKey(key)) {
2715 >     *     value = remappingFunction.apply(key, map.get(key));
2716 >     *     if (value != null)
2717 >     *       map.put(key, value);
2718 >     *     else
2719 >     *       map.remove(key);
2720 >     *   }
2721 >     * }</pre>
2722 >     *
2723 >     * except that the action is performed atomically.  If the
2724 >     * function returns {@code null}, the mapping is removed.  If the
2725 >     * function itself throws an (unchecked) exception, the exception
2726 >     * is rethrown to its caller, and the current mapping is left
2727 >     * unchanged.  Some attempted update operations on this map by
2728 >     * other threads may be blocked while computation is in progress,
2729 >     * so the computation should be short and simple, and must not
2730 >     * attempt to update any other mappings of this Map. For example,
2731 >     * to either create or append new messages to a value mapping:
2732 >     *
2733 >     * @param key key with which the specified value is to be associated
2734 >     * @param remappingFunction the function to compute a value
2735 >     * @return the new value associated with the specified key, or null if none
2736 >     * @throws NullPointerException if the specified key or remappingFunction
2737 >     *         is null
2738 >     * @throws IllegalStateException if the computation detectably
2739 >     *         attempts a recursive update to this map that would
2740 >     *         otherwise never complete
2741 >     * @throws RuntimeException or Error if the remappingFunction does so,
2742 >     *         in which case the mapping is unchanged
2743 >     */
2744 >    public V computeIfPresent
2745 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2746 >        return internalCompute(key, true, remappingFunction);
2747 >    }
2748 >
2749 >    /**
2750 >     * Computes a new mapping value given a key and
2751 >     * its current mapped value (or {@code null} if there is no current
2752 >     * mapping). This is equivalent to
2753 >     *  <pre> {@code
2754 >     *   value = remappingFunction.apply(key, map.get(key));
2755 >     *   if (value != null)
2756 >     *     map.put(key, value);
2757 >     *   else
2758 >     *     map.remove(key);
2759 >     * }</pre>
2760 >     *
2761 >     * except that the action is performed atomically.  If the
2762 >     * function returns {@code null}, the mapping is removed.  If the
2763 >     * function itself throws an (unchecked) exception, the exception
2764 >     * is rethrown to its caller, and the current mapping is left
2765 >     * unchanged.  Some attempted update operations on this map by
2766 >     * other threads may be blocked while computation is in progress,
2767 >     * so the computation should be short and simple, and must not
2768 >     * attempt to update any other mappings of this Map. For example,
2769 >     * to either create or append new messages to a value mapping:
2770 >     *
2771 >     * <pre> {@code
2772 >     * Map<Key, String> map = ...;
2773 >     * final String msg = ...;
2774 >     * map.compute(key, new BiFun<Key, String, String>() {
2775 >     *   public String apply(Key k, String v) {
2776 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2777 >     *
2778 >     * @param key key with which the specified value is to be associated
2779 >     * @param remappingFunction the function to compute a value
2780 >     * @return the new value associated with the specified key, or null if none
2781 >     * @throws NullPointerException if the specified key or remappingFunction
2782 >     *         is null
2783 >     * @throws IllegalStateException if the computation detectably
2784 >     *         attempts a recursive update to this map that would
2785 >     *         otherwise never complete
2786 >     * @throws RuntimeException or Error if the remappingFunction does so,
2787 >     *         in which case the mapping is unchanged
2788 >     */
2789 >    public V compute
2790 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2791 >        return internalCompute(key, false, remappingFunction);
2792 >    }
2793 >
2794 >    /**
2795 >     * If the specified key is not already associated
2796 >     * with a value, associate it with the given value.
2797 >     * Otherwise, replace the value with the results of
2798 >     * the given remapping function. This is equivalent to:
2799 >     *  <pre> {@code
2800 >     *   if (!map.containsKey(key))
2801 >     *     map.put(value);
2802 >     *   else {
2803 >     *     newValue = remappingFunction.apply(map.get(key), value);
2804 >     *     if (value != null)
2805 >     *       map.put(key, value);
2806 >     *     else
2807 >     *       map.remove(key);
2808 >     *   }
2809 >     * }</pre>
2810 >     * except that the action is performed atomically.  If the
2811 >     * function returns {@code null}, the mapping is removed.  If the
2812 >     * function itself throws an (unchecked) exception, the exception
2813 >     * is rethrown to its caller, and the current mapping is left
2814 >     * unchanged.  Some attempted update operations on this map by
2815 >     * other threads may be blocked while computation is in progress,
2816 >     * so the computation should be short and simple, and must not
2817 >     * attempt to update any other mappings of this Map.
2818 >     */
2819 >    public V merge
2820 >        (K key, V value,
2821 >         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2822 >        return internalMerge(key, value, remappingFunction);
2823      }
2824  
2825      /**
# Line 1071 | Line 2827 | public class ConcurrentHashMap<K, V> ext
2827       * This method does nothing if the key is not in the map.
2828       *
2829       * @param  key the key that needs to be removed
2830 <     * @return the previous value associated with <tt>key</tt>, or
2831 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2830 >     * @return the previous value associated with {@code key}, or
2831 >     *         {@code null} if there was no mapping for {@code key}
2832       * @throws NullPointerException if the specified key is null
2833       */
2834      public V remove(Object key) {
2835 <        int hash = hash(key.hashCode());
1080 <        Segment<K,V> s = segmentForHash(hash);
1081 <        return s == null ? null : s.remove(key, hash, null);
2835 >        return internalReplace(key, null, null);
2836      }
2837  
2838      /**
# Line 1087 | Line 2841 | public class ConcurrentHashMap<K, V> ext
2841       * @throws NullPointerException if the specified key is null
2842       */
2843      public boolean remove(Object key, Object value) {
2844 <        int hash = hash(key.hashCode());
1091 <        Segment<K,V> s;
1092 <        return value != null && (s = segmentForHash(hash)) != null &&
1093 <            s.remove(key, hash, value) != null;
2844 >        return value != null && internalReplace(key, null, value) != null;
2845      }
2846  
2847      /**
# Line 1099 | Line 2850 | public class ConcurrentHashMap<K, V> ext
2850       * @throws NullPointerException if any of the arguments are null
2851       */
2852      public boolean replace(K key, V oldValue, V newValue) {
2853 <        int hash = hash(key.hashCode());
1103 <        if (oldValue == null || newValue == null)
2853 >        if (key == null || oldValue == null || newValue == null)
2854              throw new NullPointerException();
2855 <        Segment<K,V> s = segmentForHash(hash);
1106 <        return s != null && s.replace(key, hash, oldValue, newValue);
2855 >        return internalReplace(key, newValue, oldValue) != null;
2856      }
2857  
2858      /**
2859       * {@inheritDoc}
2860       *
2861       * @return the previous value associated with the specified key,
2862 <     *         or <tt>null</tt> if there was no mapping for the key
2862 >     *         or {@code null} if there was no mapping for the key
2863       * @throws NullPointerException if the specified key or value is null
2864       */
2865      public V replace(K key, V value) {
2866 <        int hash = hash(key.hashCode());
1118 <        if (value == null)
2866 >        if (key == null || value == null)
2867              throw new NullPointerException();
2868 <        Segment<K,V> s = segmentForHash(hash);
1121 <        return s == null ? null : s.replace(key, hash, value);
2868 >        return internalReplace(key, value, null);
2869      }
2870  
2871      /**
2872       * Removes all of the mappings from this map.
2873       */
2874      public void clear() {
2875 <        final Segment<K,V>[] segments = this.segments;
1129 <        for (int j = 0; j < segments.length; ++j) {
1130 <            Segment<K,V> s = segmentAt(segments, j);
1131 <            if (s != null)
1132 <                s.clear();
1133 <        }
2875 >        internalClear();
2876      }
2877  
2878      /**
2879       * Returns a {@link Set} view of the keys contained in this map.
2880       * The set is backed by the map, so changes to the map are
2881 <     * reflected in the set, and vice-versa.  The set supports element
1140 <     * removal, which removes the corresponding mapping from this map,
1141 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1142 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1143 <     * operations.  It does not support the <tt>add</tt> or
1144 <     * <tt>addAll</tt> operations.
2881 >     * reflected in the set, and vice-versa.
2882       *
2883 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1147 <     * that will never throw {@link ConcurrentModificationException},
1148 <     * and guarantees to traverse elements as they existed upon
1149 <     * construction of the iterator, and may (but is not guaranteed to)
1150 <     * reflect any modifications subsequent to construction.
2883 >     * @return the set view
2884       */
2885 <    public Set<K> keySet() {
2886 <        Set<K> ks = keySet;
2887 <        return (ks != null) ? ks : (keySet = new KeySet());
2885 >    public KeySetView<K,V> keySet() {
2886 >        KeySetView<K,V> ks = keySet;
2887 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2888 >    }
2889 >
2890 >    /**
2891 >     * Returns a {@link Set} view of the keys in this map, using the
2892 >     * given common mapped value for any additions (i.e., {@link
2893 >     * Collection#add} and {@link Collection#addAll}). This is of
2894 >     * course only appropriate if it is acceptable to use the same
2895 >     * value for all additions from this view.
2896 >     *
2897 >     * @param mappedValue the mapped value to use for any
2898 >     * additions.
2899 >     * @return the set view
2900 >     * @throws NullPointerException if the mappedValue is null
2901 >     */
2902 >    public KeySetView<K,V> keySet(V mappedValue) {
2903 >        if (mappedValue == null)
2904 >            throw new NullPointerException();
2905 >        return new KeySetView<K,V>(this, mappedValue);
2906      }
2907  
2908      /**
2909       * Returns a {@link Collection} view of the values contained in this map.
2910       * The collection is backed by the map, so changes to the map are
2911 <     * reflected in the collection, and vice-versa.  The collection
1161 <     * supports element removal, which removes the corresponding
1162 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1163 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1164 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1165 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1166 <     *
1167 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1168 <     * that will never throw {@link ConcurrentModificationException},
1169 <     * and guarantees to traverse elements as they existed upon
1170 <     * construction of the iterator, and may (but is not guaranteed to)
1171 <     * reflect any modifications subsequent to construction.
2911 >     * reflected in the collection, and vice-versa.
2912       */
2913 <    public Collection<V> values() {
2914 <        Collection<V> vs = values;
2915 <        return (vs != null) ? vs : (values = new Values());
2913 >    public ValuesView<K,V> values() {
2914 >        ValuesView<K,V> vs = values;
2915 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2916      }
2917  
2918      /**
# Line 1180 | Line 2920 | public class ConcurrentHashMap<K, V> ext
2920       * The set is backed by the map, so changes to the map are
2921       * reflected in the set, and vice-versa.  The set supports element
2922       * removal, which removes the corresponding mapping from the map,
2923 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2924 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2925 <     * operations.  It does not support the <tt>add</tt> or
2926 <     * <tt>addAll</tt> operations.
2923 >     * via the {@code Iterator.remove}, {@code Set.remove},
2924 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2925 >     * operations.  It does not support the {@code add} or
2926 >     * {@code addAll} operations.
2927       *
2928 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2928 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2929       * that will never throw {@link ConcurrentModificationException},
2930       * and guarantees to traverse elements as they existed upon
2931       * construction of the iterator, and may (but is not guaranteed to)
2932       * reflect any modifications subsequent to construction.
2933       */
2934      public Set<Map.Entry<K,V>> entrySet() {
2935 <        Set<Map.Entry<K,V>> es = entrySet;
2936 <        return (es != null) ? es : (entrySet = new EntrySet());
2935 >        EntrySetView<K,V> es = entrySet;
2936 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2937      }
2938  
2939      /**
# Line 1203 | Line 2943 | public class ConcurrentHashMap<K, V> ext
2943       * @see #keySet()
2944       */
2945      public Enumeration<K> keys() {
2946 <        return new KeyIterator();
2946 >        return new KeyIterator<K,V>(this);
2947      }
2948  
2949      /**
# Line 1213 | Line 2953 | public class ConcurrentHashMap<K, V> ext
2953       * @see #values()
2954       */
2955      public Enumeration<V> elements() {
2956 <        return new ValueIterator();
2956 >        return new ValueIterator<K,V>(this);
2957      }
2958  
2959 <    /* ---------------- Iterator Support -------------- */
2959 >    /**
2960 >     * Returns a partitionable iterator of the keys in this map.
2961 >     *
2962 >     * @return a partitionable iterator of the keys in this map
2963 >     */
2964 >    public Spliterator<K> keySpliterator() {
2965 >        return new KeyIterator<K,V>(this);
2966 >    }
2967  
2968 <    abstract class HashIterator {
2969 <        int nextSegmentIndex;
2970 <        int nextTableIndex;
2971 <        HashEntry<K,V>[] currentTable;
2972 <        HashEntry<K, V> nextEntry;
2973 <        HashEntry<K, V> lastReturned;
2968 >    /**
2969 >     * Returns a partitionable iterator of the values in this map.
2970 >     *
2971 >     * @return a partitionable iterator of the values in this map
2972 >     */
2973 >    public Spliterator<V> valueSpliterator() {
2974 >        return new ValueIterator<K,V>(this);
2975 >    }
2976  
2977 <        HashIterator() {
2978 <            nextSegmentIndex = segments.length - 1;
2979 <            nextTableIndex = -1;
2980 <            advance();
2981 <        }
2977 >    /**
2978 >     * Returns a partitionable iterator of the entries in this map.
2979 >     *
2980 >     * @return a partitionable iterator of the entries in this map
2981 >     */
2982 >    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2983 >        return new EntryIterator<K,V>(this);
2984 >    }
2985  
2986 <        /**
2987 <         * Sets nextEntry to first node of next non-empty table
2988 <         * (in backwards order, to simplify checks).
2989 <         */
2990 <        final void advance() {
2986 >    /**
2987 >     * Returns the hash code value for this {@link Map}, i.e.,
2988 >     * the sum of, for each key-value pair in the map,
2989 >     * {@code key.hashCode() ^ value.hashCode()}.
2990 >     *
2991 >     * @return the hash code value for this map
2992 >     */
2993 >    public int hashCode() {
2994 >        int h = 0;
2995 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2996 >        V v;
2997 >        while ((v = it.advance()) != null) {
2998 >            h += it.nextKey.hashCode() ^ v.hashCode();
2999 >        }
3000 >        return h;
3001 >    }
3002 >
3003 >    /**
3004 >     * Returns a string representation of this map.  The string
3005 >     * representation consists of a list of key-value mappings (in no
3006 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3007 >     * mappings are separated by the characters {@code ", "} (comma
3008 >     * and space).  Each key-value mapping is rendered as the key
3009 >     * followed by an equals sign ("{@code =}") followed by the
3010 >     * associated value.
3011 >     *
3012 >     * @return a string representation of this map
3013 >     */
3014 >    public String toString() {
3015 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3016 >        StringBuilder sb = new StringBuilder();
3017 >        sb.append('{');
3018 >        V v;
3019 >        if ((v = it.advance()) != null) {
3020              for (;;) {
3021 <                if (nextTableIndex >= 0) {
3022 <                    if ((nextEntry = entryAt(currentTable,
3023 <                                             nextTableIndex--)) != null)
3024 <                        break;
3025 <                }
1245 <                else if (nextSegmentIndex >= 0) {
1246 <                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
1247 <                    if (seg != null && (currentTable = seg.table) != null)
1248 <                        nextTableIndex = currentTable.length - 1;
1249 <                }
1250 <                else
3021 >                Object k = it.nextKey;
3022 >                sb.append(k == this ? "(this Map)" : k);
3023 >                sb.append('=');
3024 >                sb.append(v == this ? "(this Map)" : v);
3025 >                if ((v = it.advance()) == null)
3026                      break;
3027 +                sb.append(',').append(' ');
3028              }
3029          }
3030 +        return sb.append('}').toString();
3031 +    }
3032  
3033 <        final HashEntry<K,V> nextEntry() {
3034 <            HashEntry<K,V> e = nextEntry;
3035 <            if (e == null)
3036 <                throw new NoSuchElementException();
3037 <            lastReturned = e; // cannot assign until after null check
3038 <            if ((nextEntry = e.next) == null)
3039 <                advance();
3040 <            return e;
3033 >    /**
3034 >     * Compares the specified object with this map for equality.
3035 >     * Returns {@code true} if the given object is a map with the same
3036 >     * mappings as this map.  This operation may return misleading
3037 >     * results if either map is concurrently modified during execution
3038 >     * of this method.
3039 >     *
3040 >     * @param o object to be compared for equality with this map
3041 >     * @return {@code true} if the specified object is equal to this map
3042 >     */
3043 >    public boolean equals(Object o) {
3044 >        if (o != this) {
3045 >            if (!(o instanceof Map))
3046 >                return false;
3047 >            Map<?,?> m = (Map<?,?>) o;
3048 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3049 >            V val;
3050 >            while ((val = it.advance()) != null) {
3051 >                Object v = m.get(it.nextKey);
3052 >                if (v == null || (v != val && !v.equals(val)))
3053 >                    return false;
3054 >            }
3055 >            for (Map.Entry<?,?> e : m.entrySet()) {
3056 >                Object mk, mv, v;
3057 >                if ((mk = e.getKey()) == null ||
3058 >                    (mv = e.getValue()) == null ||
3059 >                    (v = internalGet(mk)) == null ||
3060 >                    (mv != v && !mv.equals(v)))
3061 >                    return false;
3062 >            }
3063          }
3064 +        return true;
3065 +    }
3066  
3067 <        public final boolean hasNext() { return nextEntry != null; }
1266 <        public final boolean hasMoreElements() { return nextEntry != null; }
3067 >    /* ----------------Iterators -------------- */
3068  
3069 <        public final void remove() {
3070 <            if (lastReturned == null)
3069 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3070 >        extends Traverser<K,V,Object>
3071 >        implements Spliterator<K>, Enumeration<K> {
3072 >        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3073 >        KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3074 >            super(map, it, -1);
3075 >        }
3076 >        public KeyIterator<K,V> split() {
3077 >            if (nextKey != null)
3078                  throw new IllegalStateException();
3079 <            ConcurrentHashMap.this.remove(lastReturned.key);
3080 <            lastReturned = null;
3079 >            return new KeyIterator<K,V>(map, this);
3080 >        }
3081 >        @SuppressWarnings("unchecked") public final K next() {
3082 >            if (nextVal == null && advance() == null)
3083 >                throw new NoSuchElementException();
3084 >            Object k = nextKey;
3085 >            nextVal = null;
3086 >            return (K) k;
3087          }
3088 +
3089 +        public final K nextElement() { return next(); }
3090      }
3091  
3092 <    final class KeyIterator
3093 <        extends HashIterator
3094 <        implements Iterator<K>, Enumeration<K>
3095 <    {
3096 <        public final K next()        { return super.nextEntry().key; }
3097 <        public final K nextElement() { return super.nextEntry().key; }
3092 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3093 >        extends Traverser<K,V,Object>
3094 >        implements Spliterator<V>, Enumeration<V> {
3095 >        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3096 >        ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3097 >            super(map, it, -1);
3098 >        }
3099 >        public ValueIterator<K,V> split() {
3100 >            if (nextKey != null)
3101 >                throw new IllegalStateException();
3102 >            return new ValueIterator<K,V>(map, this);
3103 >        }
3104 >
3105 >        public final V next() {
3106 >            V v;
3107 >            if ((v = nextVal) == null && (v = advance()) == null)
3108 >                throw new NoSuchElementException();
3109 >            nextVal = null;
3110 >            return v;
3111 >        }
3112 >
3113 >        public final V nextElement() { return next(); }
3114      }
3115  
3116 <    final class ValueIterator
3117 <        extends HashIterator
3118 <        implements Iterator<V>, Enumeration<V>
3119 <    {
3120 <        public final V next()        { return super.nextEntry().value; }
3121 <        public final V nextElement() { return super.nextEntry().value; }
3116 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3117 >        extends Traverser<K,V,Object>
3118 >        implements Spliterator<Map.Entry<K,V>> {
3119 >        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3120 >        EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3121 >            super(map, it, -1);
3122 >        }
3123 >        public EntryIterator<K,V> split() {
3124 >            if (nextKey != null)
3125 >                throw new IllegalStateException();
3126 >            return new EntryIterator<K,V>(map, this);
3127 >        }
3128 >
3129 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3130 >            V v;
3131 >            if ((v = nextVal) == null && (v = advance()) == null)
3132 >                throw new NoSuchElementException();
3133 >            Object k = nextKey;
3134 >            nextVal = null;
3135 >            return new MapEntry<K,V>((K)k, v, map);
3136 >        }
3137      }
3138  
3139      /**
3140 <     * Custom Entry class used by EntryIterator.next(), that relays
1294 <     * setValue changes to the underlying map.
3140 >     * Exported Entry for iterators
3141       */
3142 <    final class WriteThroughEntry
3143 <        extends AbstractMap.SimpleEntry<K,V>
3144 <    {
3145 <        WriteThroughEntry(K k, V v) {
3146 <            super(k,v);
3142 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3143 >        final K key; // non-null
3144 >        V val;       // non-null
3145 >        final ConcurrentHashMap<K, V> map;
3146 >        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3147 >            this.key = key;
3148 >            this.val = val;
3149 >            this.map = map;
3150 >        }
3151 >        public final K getKey()       { return key; }
3152 >        public final V getValue()     { return val; }
3153 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3154 >        public final String toString(){ return key + "=" + val; }
3155 >
3156 >        public final boolean equals(Object o) {
3157 >            Object k, v; Map.Entry<?,?> e;
3158 >            return ((o instanceof Map.Entry) &&
3159 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3160 >                    (v = e.getValue()) != null &&
3161 >                    (k == key || k.equals(key)) &&
3162 >                    (v == val || v.equals(val)));
3163          }
3164  
3165          /**
3166           * Sets our entry's value and writes through to the map. The
3167 <         * value to return is somewhat arbitrary here. Since a
3168 <         * WriteThroughEntry does not necessarily track asynchronous
3169 <         * changes, the most recent "previous" value could be
3170 <         * different from what we return (or could even have been
3171 <         * removed in which case the put will re-establish). We do not
1310 <         * and cannot guarantee more.
3167 >         * value to return is somewhat arbitrary here. Since we do not
3168 >         * necessarily track asynchronous changes, the most recent
3169 >         * "previous" value could be different from what we return (or
3170 >         * could even have been removed in which case the put will
3171 >         * re-establish). We do not and cannot guarantee more.
3172           */
3173 <        public V setValue(V value) {
3173 >        public final V setValue(V value) {
3174              if (value == null) throw new NullPointerException();
3175 <            V v = super.setValue(value);
3176 <            ConcurrentHashMap.this.put(getKey(), value);
3175 >            V v = val;
3176 >            val = value;
3177 >            map.put(key, value);
3178              return v;
3179          }
3180      }
3181  
3182 <    final class EntryIterator
3183 <        extends HashIterator
3184 <        implements Iterator<Entry<K,V>>
3185 <    {
3186 <        public Map.Entry<K,V> next() {
3187 <            HashEntry<K,V> e = super.nextEntry();
1326 <            return new WriteThroughEntry(e.key, e.value);
1327 <        }
3182 >    /**
3183 >     * Returns exportable snapshot entry for the given key and value
3184 >     * when write-through can't or shouldn't be used.
3185 >     */
3186 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3187 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3188      }
3189  
3190 <    final class KeySet extends AbstractSet<K> {
3191 <        public Iterator<K> iterator() {
3192 <            return new KeyIterator();
3190 >    /* ---------------- Serialization Support -------------- */
3191 >
3192 >    /**
3193 >     * Stripped-down version of helper class used in previous version,
3194 >     * declared for the sake of serialization compatibility
3195 >     */
3196 >    static class Segment<K,V> implements Serializable {
3197 >        private static final long serialVersionUID = 2249069246763182397L;
3198 >        final float loadFactor;
3199 >        Segment(float lf) { this.loadFactor = lf; }
3200 >    }
3201 >
3202 >    /**
3203 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3204 >     * stream (i.e., serializes it).
3205 >     * @param s the stream
3206 >     * @serialData
3207 >     * the key (Object) and value (Object)
3208 >     * for each key-value mapping, followed by a null pair.
3209 >     * The key-value mappings are emitted in no particular order.
3210 >     */
3211 >    @SuppressWarnings("unchecked") private void writeObject
3212 >        (java.io.ObjectOutputStream s)
3213 >        throws java.io.IOException {
3214 >        if (segments == null) { // for serialization compatibility
3215 >            segments = (Segment<K,V>[])
3216 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3217 >            for (int i = 0; i < segments.length; ++i)
3218 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3219          }
3220 <        public int size() {
3221 <            return ConcurrentHashMap.this.size();
3220 >        s.defaultWriteObject();
3221 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3222 >        V v;
3223 >        while ((v = it.advance()) != null) {
3224 >            s.writeObject(it.nextKey);
3225 >            s.writeObject(v);
3226          }
3227 <        public boolean isEmpty() {
3228 <            return ConcurrentHashMap.this.isEmpty();
3227 >        s.writeObject(null);
3228 >        s.writeObject(null);
3229 >        segments = null; // throw away
3230 >    }
3231 >
3232 >    /**
3233 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3234 >     * @param s the stream
3235 >     */
3236 >    @SuppressWarnings("unchecked") private void readObject
3237 >        (java.io.ObjectInputStream s)
3238 >        throws java.io.IOException, ClassNotFoundException {
3239 >        s.defaultReadObject();
3240 >        this.segments = null; // unneeded
3241 >
3242 >        // Create all nodes, then place in table once size is known
3243 >        long size = 0L;
3244 >        Node<V> p = null;
3245 >        for (;;) {
3246 >            K k = (K) s.readObject();
3247 >            V v = (V) s.readObject();
3248 >            if (k != null && v != null) {
3249 >                int h = spread(k.hashCode());
3250 >                p = new Node<V>(h, k, v, p);
3251 >                ++size;
3252 >            }
3253 >            else
3254 >                break;
3255          }
3256 <        public boolean contains(Object o) {
3257 <            return ConcurrentHashMap.this.containsKey(o);
3256 >        if (p != null) {
3257 >            boolean init = false;
3258 >            int n;
3259 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3260 >                n = MAXIMUM_CAPACITY;
3261 >            else {
3262 >                int sz = (int)size;
3263 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3264 >            }
3265 >            int sc = sizeCtl;
3266 >            boolean collide = false;
3267 >            if (n > sc &&
3268 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3269 >                try {
3270 >                    if (table == null) {
3271 >                        init = true;
3272 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3273 >                        Node<V>[] tab = (Node<V>[])rt;
3274 >                        int mask = n - 1;
3275 >                        while (p != null) {
3276 >                            int j = p.hash & mask;
3277 >                            Node<V> next = p.next;
3278 >                            Node<V> q = p.next = tabAt(tab, j);
3279 >                            setTabAt(tab, j, p);
3280 >                            if (!collide && q != null && q.hash == p.hash)
3281 >                                collide = true;
3282 >                            p = next;
3283 >                        }
3284 >                        table = tab;
3285 >                        addCount(size, -1);
3286 >                        sc = n - (n >>> 2);
3287 >                    }
3288 >                } finally {
3289 >                    sizeCtl = sc;
3290 >                }
3291 >                if (collide) { // rescan and convert to TreeBins
3292 >                    Node<V>[] tab = table;
3293 >                    for (int i = 0; i < tab.length; ++i) {
3294 >                        int c = 0;
3295 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3296 >                            if (++c > TREE_THRESHOLD &&
3297 >                                (e.key instanceof Comparable)) {
3298 >                                replaceWithTreeBin(tab, i, e.key);
3299 >                                break;
3300 >                            }
3301 >                        }
3302 >                    }
3303 >                }
3304 >            }
3305 >            if (!init) { // Can only happen if unsafely published.
3306 >                while (p != null) {
3307 >                    internalPut((K)p.key, p.val, false);
3308 >                    p = p.next;
3309 >                }
3310 >            }
3311          }
3312 <        public boolean remove(Object o) {
3313 <            return ConcurrentHashMap.this.remove(o) != null;
3312 >    }
3313 >
3314 >    // -------------------------------------------------------
3315 >
3316 >    // Sams
3317 >    /** Interface describing a void action of one argument */
3318 >    public interface Action<A> { void apply(A a); }
3319 >    /** Interface describing a void action of two arguments */
3320 >    public interface BiAction<A,B> { void apply(A a, B b); }
3321 >    /** Interface describing a function of one argument */
3322 >    public interface Fun<A,T> { T apply(A a); }
3323 >    /** Interface describing a function of two arguments */
3324 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
3325 >    /** Interface describing a function of no arguments */
3326 >    public interface Generator<T> { T apply(); }
3327 >    /** Interface describing a function mapping its argument to a double */
3328 >    public interface ObjectToDouble<A> { double apply(A a); }
3329 >    /** Interface describing a function mapping its argument to a long */
3330 >    public interface ObjectToLong<A> { long apply(A a); }
3331 >    /** Interface describing a function mapping its argument to an int */
3332 >    public interface ObjectToInt<A> {int apply(A a); }
3333 >    /** Interface describing a function mapping two arguments to a double */
3334 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3335 >    /** Interface describing a function mapping two arguments to a long */
3336 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3337 >    /** Interface describing a function mapping two arguments to an int */
3338 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3339 >    /** Interface describing a function mapping a double to a double */
3340 >    public interface DoubleToDouble { double apply(double a); }
3341 >    /** Interface describing a function mapping a long to a long */
3342 >    public interface LongToLong { long apply(long a); }
3343 >    /** Interface describing a function mapping an int to an int */
3344 >    public interface IntToInt { int apply(int a); }
3345 >    /** Interface describing a function mapping two doubles to a double */
3346 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3347 >    /** Interface describing a function mapping two longs to a long */
3348 >    public interface LongByLongToLong { long apply(long a, long b); }
3349 >    /** Interface describing a function mapping two ints to an int */
3350 >    public interface IntByIntToInt { int apply(int a, int b); }
3351 >
3352 >
3353 >    // -------------------------------------------------------
3354 >
3355 >    // Sequential bulk operations
3356 >
3357 >    /**
3358 >     * Performs the given action for each (key, value).
3359 >     *
3360 >     * @param action the action
3361 >     */
3362 >    @SuppressWarnings("unchecked") public void forEachSequentially
3363 >        (BiAction<K,V> action) {
3364 >        if (action == null) throw new NullPointerException();
3365 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3366 >        V v;
3367 >        while ((v = it.advance()) != null)
3368 >            action.apply((K)it.nextKey, v);
3369 >    }
3370 >
3371 >    /**
3372 >     * Performs the given action for each non-null transformation
3373 >     * of each (key, value).
3374 >     *
3375 >     * @param transformer a function returning the transformation
3376 >     * for an element, or null of there is no transformation (in
3377 >     * which case the action is not applied).
3378 >     * @param action the action
3379 >     */
3380 >    @SuppressWarnings("unchecked") public <U> void forEachSequentially
3381 >        (BiFun<? super K, ? super V, ? extends U> transformer,
3382 >         Action<U> action) {
3383 >        if (transformer == null || action == null)
3384 >            throw new NullPointerException();
3385 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3386 >        V v; U u;
3387 >        while ((v = it.advance()) != null) {
3388 >            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3389 >                action.apply(u);
3390          }
3391 <        public void clear() {
3392 <            ConcurrentHashMap.this.clear();
3391 >    }
3392 >
3393 >    /**
3394 >     * Returns a non-null result from applying the given search
3395 >     * function on each (key, value), or null if none.
3396 >     *
3397 >     * @param searchFunction a function returning a non-null
3398 >     * result on success, else null
3399 >     * @return a non-null result from applying the given search
3400 >     * function on each (key, value), or null if none
3401 >     */
3402 >    @SuppressWarnings("unchecked") public <U> U searchSequentially
3403 >        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3404 >        if (searchFunction == null) throw new NullPointerException();
3405 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3406 >        V v; U u;
3407 >        while ((v = it.advance()) != null) {
3408 >            if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3409 >                return u;
3410          }
3411 +        return null;
3412      }
3413  
3414 <    final class Values extends AbstractCollection<V> {
3415 <        public Iterator<V> iterator() {
3416 <            return new ValueIterator();
3414 >    /**
3415 >     * Returns the result of accumulating the given transformation
3416 >     * of all (key, value) pairs using the given reducer to
3417 >     * combine values, or null if none.
3418 >     *
3419 >     * @param transformer a function returning the transformation
3420 >     * for an element, or null of there is no transformation (in
3421 >     * which case it is not combined).
3422 >     * @param reducer a commutative associative combining function
3423 >     * @return the result of accumulating the given transformation
3424 >     * of all (key, value) pairs
3425 >     */
3426 >    @SuppressWarnings("unchecked") public <U> U reduceSequentially
3427 >        (BiFun<? super K, ? super V, ? extends U> transformer,
3428 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3429 >        if (transformer == null || reducer == null)
3430 >            throw new NullPointerException();
3431 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3432 >        U r = null, u; V v;
3433 >        while ((v = it.advance()) != null) {
3434 >            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3435 >                r = (r == null) ? u : reducer.apply(r, u);
3436          }
3437 <        public int size() {
3438 <            return ConcurrentHashMap.this.size();
3437 >        return r;
3438 >    }
3439 >
3440 >    /**
3441 >     * Returns the result of accumulating the given transformation
3442 >     * of all (key, value) pairs using the given reducer to
3443 >     * combine values, and the given basis as an identity value.
3444 >     *
3445 >     * @param transformer a function returning the transformation
3446 >     * for an element
3447 >     * @param basis the identity (initial default value) for the reduction
3448 >     * @param reducer a commutative associative combining function
3449 >     * @return the result of accumulating the given transformation
3450 >     * of all (key, value) pairs
3451 >     */
3452 >    @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3453 >        (ObjectByObjectToDouble<? super K, ? super V> transformer,
3454 >         double basis,
3455 >         DoubleByDoubleToDouble reducer) {
3456 >        if (transformer == null || reducer == null)
3457 >            throw new NullPointerException();
3458 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3459 >        double r = basis; V v;
3460 >        while ((v = it.advance()) != null)
3461 >            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3462 >        return r;
3463 >    }
3464 >
3465 >    /**
3466 >     * Returns the result of accumulating the given transformation
3467 >     * of all (key, value) pairs using the given reducer to
3468 >     * combine values, and the given basis as an identity value.
3469 >     *
3470 >     * @param transformer a function returning the transformation
3471 >     * for an element
3472 >     * @param basis the identity (initial default value) for the reduction
3473 >     * @param reducer a commutative associative combining function
3474 >     * @return the result of accumulating the given transformation
3475 >     * of all (key, value) pairs
3476 >     */
3477 >    @SuppressWarnings("unchecked") public long reduceToLongSequentially
3478 >        (ObjectByObjectToLong<? super K, ? super V> transformer,
3479 >         long basis,
3480 >         LongByLongToLong reducer) {
3481 >        if (transformer == null || reducer == null)
3482 >            throw new NullPointerException();
3483 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3484 >        long r = basis; V v;
3485 >        while ((v = it.advance()) != null)
3486 >            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3487 >        return r;
3488 >    }
3489 >
3490 >    /**
3491 >     * Returns the result of accumulating the given transformation
3492 >     * of all (key, value) pairs using the given reducer to
3493 >     * combine values, and the given basis as an identity value.
3494 >     *
3495 >     * @param transformer a function returning the transformation
3496 >     * for an element
3497 >     * @param basis the identity (initial default value) for the reduction
3498 >     * @param reducer a commutative associative combining function
3499 >     * @return the result of accumulating the given transformation
3500 >     * of all (key, value) pairs
3501 >     */
3502 >    @SuppressWarnings("unchecked") public int reduceToIntSequentially
3503 >        (ObjectByObjectToInt<? super K, ? super V> transformer,
3504 >         int basis,
3505 >         IntByIntToInt reducer) {
3506 >        if (transformer == null || reducer == null)
3507 >            throw new NullPointerException();
3508 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3509 >        int r = basis; V v;
3510 >        while ((v = it.advance()) != null)
3511 >            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3512 >        return r;
3513 >    }
3514 >
3515 >    /**
3516 >     * Performs the given action for each key.
3517 >     *
3518 >     * @param action the action
3519 >     */
3520 >    @SuppressWarnings("unchecked") public void forEachKeySequentially
3521 >        (Action<K> action) {
3522 >        if (action == null) throw new NullPointerException();
3523 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3524 >        while (it.advance() != null)
3525 >            action.apply((K)it.nextKey);
3526 >    }
3527 >
3528 >    /**
3529 >     * Performs the given action for each non-null transformation
3530 >     * of each key.
3531 >     *
3532 >     * @param transformer a function returning the transformation
3533 >     * for an element, or null of there is no transformation (in
3534 >     * which case the action is not applied).
3535 >     * @param action the action
3536 >     */
3537 >    @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3538 >        (Fun<? super K, ? extends U> transformer,
3539 >         Action<U> action) {
3540 >        if (transformer == null || action == null)
3541 >            throw new NullPointerException();
3542 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3543 >        U u;
3544 >        while (it.advance() != null) {
3545 >            if ((u = transformer.apply((K)it.nextKey)) != null)
3546 >                action.apply(u);
3547          }
3548 <        public boolean isEmpty() {
3549 <            return ConcurrentHashMap.this.isEmpty();
3548 >        ForkJoinTasks.forEachKey
3549 >            (this, transformer, action).invoke();
3550 >    }
3551 >
3552 >    /**
3553 >     * Returns a non-null result from applying the given search
3554 >     * function on each key, or null if none.
3555 >     *
3556 >     * @param searchFunction a function returning a non-null
3557 >     * result on success, else null
3558 >     * @return a non-null result from applying the given search
3559 >     * function on each key, or null if none
3560 >     */
3561 >    @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3562 >        (Fun<? super K, ? extends U> searchFunction) {
3563 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3564 >        U u;
3565 >        while (it.advance() != null) {
3566 >            if ((u = searchFunction.apply((K)it.nextKey)) != null)
3567 >                return u;
3568          }
3569 <        public boolean contains(Object o) {
3570 <            return ConcurrentHashMap.this.containsValue(o);
3569 >        return null;
3570 >    }
3571 >
3572 >    /**
3573 >     * Returns the result of accumulating all keys using the given
3574 >     * reducer to combine values, or null if none.
3575 >     *
3576 >     * @param reducer a commutative associative combining function
3577 >     * @return the result of accumulating all keys using the given
3578 >     * reducer to combine values, or null if none
3579 >     */
3580 >    @SuppressWarnings("unchecked") public K reduceKeysSequentially
3581 >        (BiFun<? super K, ? super K, ? extends K> reducer) {
3582 >        if (reducer == null) throw new NullPointerException();
3583 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3584 >        K r = null;
3585 >        while (it.advance() != null) {
3586 >            K u = (K)it.nextKey;
3587 >            r = (r == null) ? u : reducer.apply(r, u);
3588 >        }
3589 >        return r;
3590 >    }
3591 >
3592 >    /**
3593 >     * Returns the result of accumulating the given transformation
3594 >     * of all keys using the given reducer to combine values, or
3595 >     * null if none.
3596 >     *
3597 >     * @param transformer a function returning the transformation
3598 >     * for an element, or null of there is no transformation (in
3599 >     * which case it is not combined).
3600 >     * @param reducer a commutative associative combining function
3601 >     * @return the result of accumulating the given transformation
3602 >     * of all keys
3603 >     */
3604 >    @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3605 >        (Fun<? super K, ? extends U> transformer,
3606 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3607 >        if (transformer == null || reducer == null)
3608 >            throw new NullPointerException();
3609 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3610 >        U r = null, u;
3611 >        while (it.advance() != null) {
3612 >            if ((u = transformer.apply((K)it.nextKey)) != null)
3613 >                r = (r == null) ? u : reducer.apply(r, u);
3614          }
3615 <        public void clear() {
3616 <            ConcurrentHashMap.this.clear();
3615 >        return r;
3616 >    }
3617 >
3618 >    /**
3619 >     * Returns the result of accumulating the given transformation
3620 >     * of all keys using the given reducer to combine values, and
3621 >     * the given basis as an identity value.
3622 >     *
3623 >     * @param transformer a function returning the transformation
3624 >     * for an element
3625 >     * @param basis the identity (initial default value) for the reduction
3626 >     * @param reducer a commutative associative combining function
3627 >     * @return  the result of accumulating the given transformation
3628 >     * of all keys
3629 >     */
3630 >    @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3631 >        (ObjectToDouble<? super K> transformer,
3632 >         double basis,
3633 >         DoubleByDoubleToDouble reducer) {
3634 >        if (transformer == null || reducer == null)
3635 >            throw new NullPointerException();
3636 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637 >        double r = basis;
3638 >        while (it.advance() != null)
3639 >            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3640 >        return r;
3641 >    }
3642 >
3643 >    /**
3644 >     * Returns the result of accumulating the given transformation
3645 >     * of all keys using the given reducer to combine values, and
3646 >     * the given basis as an identity value.
3647 >     *
3648 >     * @param transformer a function returning the transformation
3649 >     * for an element
3650 >     * @param basis the identity (initial default value) for the reduction
3651 >     * @param reducer a commutative associative combining function
3652 >     * @return the result of accumulating the given transformation
3653 >     * of all keys
3654 >     */
3655 >    @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3656 >        (ObjectToLong<? super K> transformer,
3657 >         long basis,
3658 >         LongByLongToLong reducer) {
3659 >        if (transformer == null || reducer == null)
3660 >            throw new NullPointerException();
3661 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3662 >        long r = basis;
3663 >        while (it.advance() != null)
3664 >            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3665 >        return r;
3666 >    }
3667 >
3668 >    /**
3669 >     * Returns the result of accumulating the given transformation
3670 >     * of all keys using the given reducer to combine values, and
3671 >     * the given basis as an identity value.
3672 >     *
3673 >     * @param transformer a function returning the transformation
3674 >     * for an element
3675 >     * @param basis the identity (initial default value) for the reduction
3676 >     * @param reducer a commutative associative combining function
3677 >     * @return the result of accumulating the given transformation
3678 >     * of all keys
3679 >     */
3680 >    @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3681 >        (ObjectToInt<? super K> transformer,
3682 >         int basis,
3683 >         IntByIntToInt reducer) {
3684 >        if (transformer == null || reducer == null)
3685 >            throw new NullPointerException();
3686 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3687 >        int r = basis;
3688 >        while (it.advance() != null)
3689 >            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3690 >        return r;
3691 >    }
3692 >
3693 >    /**
3694 >     * Performs the given action for each value.
3695 >     *
3696 >     * @param action the action
3697 >     */
3698 >    public void forEachValueSequentially(Action<V> action) {
3699 >        if (action == null) throw new NullPointerException();
3700 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3701 >        V v;
3702 >        while ((v = it.advance()) != null)
3703 >            action.apply(v);
3704 >    }
3705 >
3706 >    /**
3707 >     * Performs the given action for each non-null transformation
3708 >     * of each value.
3709 >     *
3710 >     * @param transformer a function returning the transformation
3711 >     * for an element, or null of there is no transformation (in
3712 >     * which case the action is not applied).
3713 >     */
3714 >    public <U> void forEachValueSequentially
3715 >        (Fun<? super V, ? extends U> transformer,
3716 >         Action<U> action) {
3717 >        if (transformer == null || action == null)
3718 >            throw new NullPointerException();
3719 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3720 >        V v; U u;
3721 >        while ((v = it.advance()) != null) {
3722 >            if ((u = transformer.apply(v)) != null)
3723 >                action.apply(u);
3724          }
3725      }
3726  
3727 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3728 <        public Iterator<Map.Entry<K,V>> iterator() {
3729 <            return new EntryIterator();
3727 >    /**
3728 >     * Returns a non-null result from applying the given search
3729 >     * function on each value, or null if none.
3730 >     *
3731 >     * @param searchFunction a function returning a non-null
3732 >     * result on success, else null
3733 >     * @return a non-null result from applying the given search
3734 >     * function on each value, or null if none
3735 >     *
3736 >     */
3737 >    public <U> U searchValuesSequentially
3738 >        (Fun<? super V, ? extends U> searchFunction) {
3739 >        if (searchFunction == null) throw new NullPointerException();
3740 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3741 >        V v; U u;
3742 >        while ((v = it.advance()) != null) {
3743 >            if ((u = searchFunction.apply(v)) != null)
3744 >                return u;
3745          }
3746 <        public boolean contains(Object o) {
3747 <            if (!(o instanceof Map.Entry))
3748 <                return false;
3749 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3750 <            V v = ConcurrentHashMap.this.get(e.getKey());
3751 <            return v != null && v.equals(e.getValue());
3746 >        return null;
3747 >    }
3748 >
3749 >    /**
3750 >     * Returns the result of accumulating all values using the
3751 >     * given reducer to combine values, or null if none.
3752 >     *
3753 >     * @param reducer a commutative associative combining function
3754 >     * @return  the result of accumulating all values
3755 >     */
3756 >    public V reduceValuesSequentially
3757 >        (BiFun<? super V, ? super V, ? extends V> reducer) {
3758 >        if (reducer == null) throw new NullPointerException();
3759 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3760 >        V r = null; V v;
3761 >        while ((v = it.advance()) != null)
3762 >            r = (r == null) ? v : reducer.apply(r, v);
3763 >        return r;
3764 >    }
3765 >
3766 >    /**
3767 >     * Returns the result of accumulating the given transformation
3768 >     * of all values using the given reducer to combine values, or
3769 >     * null if none.
3770 >     *
3771 >     * @param transformer a function returning the transformation
3772 >     * for an element, or null of there is no transformation (in
3773 >     * which case it is not combined).
3774 >     * @param reducer a commutative associative combining function
3775 >     * @return the result of accumulating the given transformation
3776 >     * of all values
3777 >     */
3778 >    public <U> U reduceValuesSequentially
3779 >        (Fun<? super V, ? extends U> transformer,
3780 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3781 >        if (transformer == null || reducer == null)
3782 >            throw new NullPointerException();
3783 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3784 >        U r = null, u; V v;
3785 >        while ((v = it.advance()) != null) {
3786 >            if ((u = transformer.apply(v)) != null)
3787 >                r = (r == null) ? u : reducer.apply(r, u);
3788          }
3789 <        public boolean remove(Object o) {
3790 <            if (!(o instanceof Map.Entry))
3791 <                return false;
3792 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3793 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
3789 >        return r;
3790 >    }
3791 >
3792 >    /**
3793 >     * Returns the result of accumulating the given transformation
3794 >     * of all values using the given reducer to combine values,
3795 >     * and the given basis as an identity value.
3796 >     *
3797 >     * @param transformer a function returning the transformation
3798 >     * for an element
3799 >     * @param basis the identity (initial default value) for the reduction
3800 >     * @param reducer a commutative associative combining function
3801 >     * @return the result of accumulating the given transformation
3802 >     * of all values
3803 >     */
3804 >    public double reduceValuesToDoubleSequentially
3805 >        (ObjectToDouble<? super V> transformer,
3806 >         double basis,
3807 >         DoubleByDoubleToDouble reducer) {
3808 >        if (transformer == null || reducer == null)
3809 >            throw new NullPointerException();
3810 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3811 >        double r = basis; V v;
3812 >        while ((v = it.advance()) != null)
3813 >            r = reducer.apply(r, transformer.apply(v));
3814 >        return r;
3815 >    }
3816 >
3817 >    /**
3818 >     * Returns the result of accumulating the given transformation
3819 >     * of all values using the given reducer to combine values,
3820 >     * and the given basis as an identity value.
3821 >     *
3822 >     * @param transformer a function returning the transformation
3823 >     * for an element
3824 >     * @param basis the identity (initial default value) for the reduction
3825 >     * @param reducer a commutative associative combining function
3826 >     * @return the result of accumulating the given transformation
3827 >     * of all values
3828 >     */
3829 >    public long reduceValuesToLongSequentially
3830 >        (ObjectToLong<? super V> transformer,
3831 >         long basis,
3832 >         LongByLongToLong reducer) {
3833 >        if (transformer == null || reducer == null)
3834 >            throw new NullPointerException();
3835 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3836 >        long r = basis; V v;
3837 >        while ((v = it.advance()) != null)
3838 >            r = reducer.apply(r, transformer.apply(v));
3839 >        return r;
3840 >    }
3841 >
3842 >    /**
3843 >     * Returns the result of accumulating the given transformation
3844 >     * of all values using the given reducer to combine values,
3845 >     * and the given basis as an identity value.
3846 >     *
3847 >     * @param transformer a function returning the transformation
3848 >     * for an element
3849 >     * @param basis the identity (initial default value) for the reduction
3850 >     * @param reducer a commutative associative combining function
3851 >     * @return the result of accumulating the given transformation
3852 >     * of all values
3853 >     */
3854 >    public int reduceValuesToIntSequentially
3855 >        (ObjectToInt<? super V> transformer,
3856 >         int basis,
3857 >         IntByIntToInt reducer) {
3858 >        if (transformer == null || reducer == null)
3859 >            throw new NullPointerException();
3860 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3861 >        int r = basis; V v;
3862 >        while ((v = it.advance()) != null)
3863 >            r = reducer.apply(r, transformer.apply(v));
3864 >        return r;
3865 >    }
3866 >
3867 >    /**
3868 >     * Performs the given action for each entry.
3869 >     *
3870 >     * @param action the action
3871 >     */
3872 >    @SuppressWarnings("unchecked") public void forEachEntrySequentially
3873 >        (Action<Map.Entry<K,V>> action) {
3874 >        if (action == null) throw new NullPointerException();
3875 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3876 >        V v;
3877 >        while ((v = it.advance()) != null)
3878 >            action.apply(entryFor((K)it.nextKey, v));
3879 >    }
3880 >
3881 >    /**
3882 >     * Performs the given action for each non-null transformation
3883 >     * of each entry.
3884 >     *
3885 >     * @param transformer a function returning the transformation
3886 >     * for an element, or null of there is no transformation (in
3887 >     * which case the action is not applied).
3888 >     * @param action the action
3889 >     */
3890 >    @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3891 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3892 >         Action<U> action) {
3893 >        if (transformer == null || action == null)
3894 >            throw new NullPointerException();
3895 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3896 >        V v; U u;
3897 >        while ((v = it.advance()) != null) {
3898 >            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3899 >                action.apply(u);
3900          }
3901 <        public int size() {
3902 <            return ConcurrentHashMap.this.size();
3901 >    }
3902 >
3903 >    /**
3904 >     * Returns a non-null result from applying the given search
3905 >     * function on each entry, or null if none.
3906 >     *
3907 >     * @param searchFunction a function returning a non-null
3908 >     * result on success, else null
3909 >     * @return a non-null result from applying the given search
3910 >     * function on each entry, or null if none
3911 >     */
3912 >    @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3913 >        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3914 >        if (searchFunction == null) throw new NullPointerException();
3915 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3916 >        V v; U u;
3917 >        while ((v = it.advance()) != null) {
3918 >            if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3919 >                return u;
3920          }
3921 <        public boolean isEmpty() {
3922 <            return ConcurrentHashMap.this.isEmpty();
3921 >        return null;
3922 >    }
3923 >
3924 >    /**
3925 >     * Returns the result of accumulating all entries using the
3926 >     * given reducer to combine values, or null if none.
3927 >     *
3928 >     * @param reducer a commutative associative combining function
3929 >     * @return the result of accumulating all entries
3930 >     */
3931 >    @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3932 >        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3933 >        if (reducer == null) throw new NullPointerException();
3934 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3935 >        Map.Entry<K,V> r = null; V v;
3936 >        while ((v = it.advance()) != null) {
3937 >            Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3938 >            r = (r == null) ? u : reducer.apply(r, u);
3939          }
3940 <        public void clear() {
3941 <            ConcurrentHashMap.this.clear();
3940 >        return r;
3941 >    }
3942 >
3943 >    /**
3944 >     * Returns the result of accumulating the given transformation
3945 >     * of all entries using the given reducer to combine values,
3946 >     * or null if none.
3947 >     *
3948 >     * @param transformer a function returning the transformation
3949 >     * for an element, or null of there is no transformation (in
3950 >     * which case it is not combined).
3951 >     * @param reducer a commutative associative combining function
3952 >     * @return the result of accumulating the given transformation
3953 >     * of all entries
3954 >     */
3955 >    @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3956 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3957 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3958 >        if (transformer == null || reducer == null)
3959 >            throw new NullPointerException();
3960 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3961 >        U r = null, u; V v;
3962 >        while ((v = it.advance()) != null) {
3963 >            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3964 >                r = (r == null) ? u : reducer.apply(r, u);
3965          }
3966 +        return r;
3967      }
3968  
3969 <    /* ---------------- Serialization Support -------------- */
3969 >    /**
3970 >     * Returns the result of accumulating the given transformation
3971 >     * of all entries using the given reducer to combine values,
3972 >     * and the given basis as an identity value.
3973 >     *
3974 >     * @param transformer a function returning the transformation
3975 >     * for an element
3976 >     * @param basis the identity (initial default value) for the reduction
3977 >     * @param reducer a commutative associative combining function
3978 >     * @return the result of accumulating the given transformation
3979 >     * of all entries
3980 >     */
3981 >    @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3982 >        (ObjectToDouble<Map.Entry<K,V>> transformer,
3983 >         double basis,
3984 >         DoubleByDoubleToDouble reducer) {
3985 >        if (transformer == null || reducer == null)
3986 >            throw new NullPointerException();
3987 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3988 >        double r = basis; V v;
3989 >        while ((v = it.advance()) != null)
3990 >            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3991 >        return r;
3992 >    }
3993  
3994      /**
3995 <     * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
3996 <     * stream (i.e., serializes it).
3997 <     * @param s the stream
3998 <     * @serialData
3999 <     * the key (Object) and value (Object)
4000 <     * for each key-value mapping, followed by a null pair.
4001 <     * The key-value mappings are emitted in no particular order.
3995 >     * Returns the result of accumulating the given transformation
3996 >     * of all entries using the given reducer to combine values,
3997 >     * and the given basis as an identity value.
3998 >     *
3999 >     * @param transformer a function returning the transformation
4000 >     * for an element
4001 >     * @param basis the identity (initial default value) for the reduction
4002 >     * @param reducer a commutative associative combining function
4003 >     * @return  the result of accumulating the given transformation
4004 >     * of all entries
4005 >     */
4006 >    @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4007 >        (ObjectToLong<Map.Entry<K,V>> transformer,
4008 >         long basis,
4009 >         LongByLongToLong reducer) {
4010 >        if (transformer == null || reducer == null)
4011 >            throw new NullPointerException();
4012 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4013 >        long r = basis; V v;
4014 >        while ((v = it.advance()) != null)
4015 >            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4016 >        return r;
4017 >    }
4018 >
4019 >    /**
4020 >     * Returns the result of accumulating the given transformation
4021 >     * of all entries using the given reducer to combine values,
4022 >     * and the given basis as an identity value.
4023 >     *
4024 >     * @param transformer a function returning the transformation
4025 >     * for an element
4026 >     * @param basis the identity (initial default value) for the reduction
4027 >     * @param reducer a commutative associative combining function
4028 >     * @return the result of accumulating the given transformation
4029 >     * of all entries
4030 >     */
4031 >    @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4032 >        (ObjectToInt<Map.Entry<K,V>> transformer,
4033 >         int basis,
4034 >         IntByIntToInt reducer) {
4035 >        if (transformer == null || reducer == null)
4036 >            throw new NullPointerException();
4037 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4038 >        int r = basis; V v;
4039 >        while ((v = it.advance()) != null)
4040 >            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4041 >        return r;
4042 >    }
4043 >
4044 >    // Parallel bulk operations
4045 >
4046 >    /**
4047 >     * Performs the given action for each (key, value).
4048 >     *
4049 >     * @param action the action
4050       */
4051 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
4052 <        // force all segments for serialization compatibility
4053 <        for (int k = 0; k < segments.length; ++k)
4054 <            ensureSegment(k);
1412 <        s.defaultWriteObject();
4051 >    public void forEachInParallel(BiAction<K,V> action) {
4052 >        ForkJoinTasks.forEach
4053 >            (this, action).invoke();
4054 >    }
4055  
4056 <        final Segment<K,V>[] segments = this.segments;
4057 <        for (int k = 0; k < segments.length; ++k) {
4058 <            Segment<K,V> seg = segmentAt(segments, k);
4059 <            seg.lock();
4060 <            try {
4061 <                HashEntry<K,V>[] tab = seg.table;
4062 <                for (int i = 0; i < tab.length; ++i) {
4063 <                    HashEntry<K,V> e;
4064 <                    for (e = entryAt(tab, i); e != null; e = e.next) {
4065 <                        s.writeObject(e.key);
4066 <                        s.writeObject(e.value);
4056 >    /**
4057 >     * Performs the given action for each non-null transformation
4058 >     * of each (key, value).
4059 >     *
4060 >     * @param transformer a function returning the transformation
4061 >     * for an element, or null of there is no transformation (in
4062 >     * which case the action is not applied).
4063 >     * @param action the action
4064 >     */
4065 >    public <U> void forEachInParallel
4066 >        (BiFun<? super K, ? super V, ? extends U> transformer,
4067 >                            Action<U> action) {
4068 >        ForkJoinTasks.forEach
4069 >            (this, transformer, action).invoke();
4070 >    }
4071 >
4072 >    /**
4073 >     * Returns a non-null result from applying the given search
4074 >     * function on each (key, value), or null if none.  Upon
4075 >     * success, further element processing is suppressed and the
4076 >     * results of any other parallel invocations of the search
4077 >     * function are ignored.
4078 >     *
4079 >     * @param searchFunction a function returning a non-null
4080 >     * result on success, else null
4081 >     * @return a non-null result from applying the given search
4082 >     * function on each (key, value), or null if none
4083 >     */
4084 >    public <U> U searchInParallel
4085 >        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4086 >        return ForkJoinTasks.search
4087 >            (this, searchFunction).invoke();
4088 >    }
4089 >
4090 >    /**
4091 >     * Returns the result of accumulating the given transformation
4092 >     * of all (key, value) pairs using the given reducer to
4093 >     * combine values, or null if none.
4094 >     *
4095 >     * @param transformer a function returning the transformation
4096 >     * for an element, or null of there is no transformation (in
4097 >     * which case it is not combined).
4098 >     * @param reducer a commutative associative combining function
4099 >     * @return the result of accumulating the given transformation
4100 >     * of all (key, value) pairs
4101 >     */
4102 >    public <U> U reduceInParallel
4103 >        (BiFun<? super K, ? super V, ? extends U> transformer,
4104 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4105 >        return ForkJoinTasks.reduce
4106 >            (this, transformer, reducer).invoke();
4107 >    }
4108 >
4109 >    /**
4110 >     * Returns the result of accumulating the given transformation
4111 >     * of all (key, value) pairs using the given reducer to
4112 >     * combine values, and the given basis as an identity value.
4113 >     *
4114 >     * @param transformer a function returning the transformation
4115 >     * for an element
4116 >     * @param basis the identity (initial default value) for the reduction
4117 >     * @param reducer a commutative associative combining function
4118 >     * @return the result of accumulating the given transformation
4119 >     * of all (key, value) pairs
4120 >     */
4121 >    public double reduceToDoubleInParallel
4122 >        (ObjectByObjectToDouble<? super K, ? super V> transformer,
4123 >         double basis,
4124 >         DoubleByDoubleToDouble reducer) {
4125 >        return ForkJoinTasks.reduceToDouble
4126 >            (this, transformer, basis, reducer).invoke();
4127 >    }
4128 >
4129 >    /**
4130 >     * Returns the result of accumulating the given transformation
4131 >     * of all (key, value) pairs using the given reducer to
4132 >     * combine values, and the given basis as an identity value.
4133 >     *
4134 >     * @param transformer a function returning the transformation
4135 >     * for an element
4136 >     * @param basis the identity (initial default value) for the reduction
4137 >     * @param reducer a commutative associative combining function
4138 >     * @return the result of accumulating the given transformation
4139 >     * of all (key, value) pairs
4140 >     */
4141 >    public long reduceToLongInParallel
4142 >        (ObjectByObjectToLong<? super K, ? super V> transformer,
4143 >         long basis,
4144 >         LongByLongToLong reducer) {
4145 >        return ForkJoinTasks.reduceToLong
4146 >            (this, transformer, basis, reducer).invoke();
4147 >    }
4148 >
4149 >    /**
4150 >     * Returns the result of accumulating the given transformation
4151 >     * of all (key, value) pairs using the given reducer to
4152 >     * combine values, and the given basis as an identity value.
4153 >     *
4154 >     * @param transformer a function returning the transformation
4155 >     * for an element
4156 >     * @param basis the identity (initial default value) for the reduction
4157 >     * @param reducer a commutative associative combining function
4158 >     * @return the result of accumulating the given transformation
4159 >     * of all (key, value) pairs
4160 >     */
4161 >    public int reduceToIntInParallel
4162 >        (ObjectByObjectToInt<? super K, ? super V> transformer,
4163 >         int basis,
4164 >         IntByIntToInt reducer) {
4165 >        return ForkJoinTasks.reduceToInt
4166 >            (this, transformer, basis, reducer).invoke();
4167 >    }
4168 >
4169 >    /**
4170 >     * Performs the given action for each key.
4171 >     *
4172 >     * @param action the action
4173 >     */
4174 >    public void forEachKeyInParallel(Action<K> action) {
4175 >        ForkJoinTasks.forEachKey
4176 >            (this, action).invoke();
4177 >    }
4178 >
4179 >    /**
4180 >     * Performs the given action for each non-null transformation
4181 >     * of each key.
4182 >     *
4183 >     * @param transformer a function returning the transformation
4184 >     * for an element, or null of there is no transformation (in
4185 >     * which case the action is not applied).
4186 >     * @param action the action
4187 >     */
4188 >    public <U> void forEachKeyInParallel
4189 >        (Fun<? super K, ? extends U> transformer,
4190 >         Action<U> action) {
4191 >        ForkJoinTasks.forEachKey
4192 >            (this, transformer, action).invoke();
4193 >    }
4194 >
4195 >    /**
4196 >     * Returns a non-null result from applying the given search
4197 >     * function on each key, or null if none. Upon success,
4198 >     * further element processing is suppressed and the results of
4199 >     * any other parallel invocations of the search function are
4200 >     * ignored.
4201 >     *
4202 >     * @param searchFunction a function returning a non-null
4203 >     * result on success, else null
4204 >     * @return a non-null result from applying the given search
4205 >     * function on each key, or null if none
4206 >     */
4207 >    public <U> U searchKeysInParallel
4208 >        (Fun<? super K, ? extends U> searchFunction) {
4209 >        return ForkJoinTasks.searchKeys
4210 >            (this, searchFunction).invoke();
4211 >    }
4212 >
4213 >    /**
4214 >     * Returns the result of accumulating all keys using the given
4215 >     * reducer to combine values, or null if none.
4216 >     *
4217 >     * @param reducer a commutative associative combining function
4218 >     * @return the result of accumulating all keys using the given
4219 >     * reducer to combine values, or null if none
4220 >     */
4221 >    public K reduceKeysInParallel
4222 >        (BiFun<? super K, ? super K, ? extends K> reducer) {
4223 >        return ForkJoinTasks.reduceKeys
4224 >            (this, reducer).invoke();
4225 >    }
4226 >
4227 >    /**
4228 >     * Returns the result of accumulating the given transformation
4229 >     * of all keys using the given reducer to combine values, or
4230 >     * null if none.
4231 >     *
4232 >     * @param transformer a function returning the transformation
4233 >     * for an element, or null of there is no transformation (in
4234 >     * which case it is not combined).
4235 >     * @param reducer a commutative associative combining function
4236 >     * @return the result of accumulating the given transformation
4237 >     * of all keys
4238 >     */
4239 >    public <U> U reduceKeysInParallel
4240 >        (Fun<? super K, ? extends U> transformer,
4241 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4242 >        return ForkJoinTasks.reduceKeys
4243 >            (this, transformer, reducer).invoke();
4244 >    }
4245 >
4246 >    /**
4247 >     * Returns the result of accumulating the given transformation
4248 >     * of all keys using the given reducer to combine values, and
4249 >     * the given basis as an identity value.
4250 >     *
4251 >     * @param transformer a function returning the transformation
4252 >     * for an element
4253 >     * @param basis the identity (initial default value) for the reduction
4254 >     * @param reducer a commutative associative combining function
4255 >     * @return  the result of accumulating the given transformation
4256 >     * of all keys
4257 >     */
4258 >    public double reduceKeysToDoubleInParallel
4259 >        (ObjectToDouble<? super K> transformer,
4260 >         double basis,
4261 >         DoubleByDoubleToDouble reducer) {
4262 >        return ForkJoinTasks.reduceKeysToDouble
4263 >            (this, transformer, basis, reducer).invoke();
4264 >    }
4265 >
4266 >    /**
4267 >     * Returns the result of accumulating the given transformation
4268 >     * of all keys using the given reducer to combine values, and
4269 >     * the given basis as an identity value.
4270 >     *
4271 >     * @param transformer a function returning the transformation
4272 >     * for an element
4273 >     * @param basis the identity (initial default value) for the reduction
4274 >     * @param reducer a commutative associative combining function
4275 >     * @return the result of accumulating the given transformation
4276 >     * of all keys
4277 >     */
4278 >    public long reduceKeysToLongInParallel
4279 >        (ObjectToLong<? super K> transformer,
4280 >         long basis,
4281 >         LongByLongToLong reducer) {
4282 >        return ForkJoinTasks.reduceKeysToLong
4283 >            (this, transformer, basis, reducer).invoke();
4284 >    }
4285 >
4286 >    /**
4287 >     * Returns the result of accumulating the given transformation
4288 >     * of all keys using the given reducer to combine values, and
4289 >     * the given basis as an identity value.
4290 >     *
4291 >     * @param transformer a function returning the transformation
4292 >     * for an element
4293 >     * @param basis the identity (initial default value) for the reduction
4294 >     * @param reducer a commutative associative combining function
4295 >     * @return the result of accumulating the given transformation
4296 >     * of all keys
4297 >     */
4298 >    public int reduceKeysToIntInParallel
4299 >        (ObjectToInt<? super K> transformer,
4300 >         int basis,
4301 >         IntByIntToInt reducer) {
4302 >        return ForkJoinTasks.reduceKeysToInt
4303 >            (this, transformer, basis, reducer).invoke();
4304 >    }
4305 >
4306 >    /**
4307 >     * Performs the given action for each value.
4308 >     *
4309 >     * @param action the action
4310 >     */
4311 >    public void forEachValueInParallel(Action<V> action) {
4312 >        ForkJoinTasks.forEachValue
4313 >            (this, action).invoke();
4314 >    }
4315 >
4316 >    /**
4317 >     * Performs the given action for each non-null transformation
4318 >     * of each value.
4319 >     *
4320 >     * @param transformer a function returning the transformation
4321 >     * for an element, or null of there is no transformation (in
4322 >     * which case the action is not applied).
4323 >     */
4324 >    public <U> void forEachValueInParallel
4325 >        (Fun<? super V, ? extends U> transformer,
4326 >         Action<U> action) {
4327 >        ForkJoinTasks.forEachValue
4328 >            (this, transformer, action).invoke();
4329 >    }
4330 >
4331 >    /**
4332 >     * Returns a non-null result from applying the given search
4333 >     * function on each value, or null if none.  Upon success,
4334 >     * further element processing is suppressed and the results of
4335 >     * any other parallel invocations of the search function are
4336 >     * ignored.
4337 >     *
4338 >     * @param searchFunction a function returning a non-null
4339 >     * result on success, else null
4340 >     * @return a non-null result from applying the given search
4341 >     * function on each value, or null if none
4342 >     *
4343 >     */
4344 >    public <U> U searchValuesInParallel
4345 >        (Fun<? super V, ? extends U> searchFunction) {
4346 >        return ForkJoinTasks.searchValues
4347 >            (this, searchFunction).invoke();
4348 >    }
4349 >
4350 >    /**
4351 >     * Returns the result of accumulating all values using the
4352 >     * given reducer to combine values, or null if none.
4353 >     *
4354 >     * @param reducer a commutative associative combining function
4355 >     * @return  the result of accumulating all values
4356 >     */
4357 >    public V reduceValuesInParallel
4358 >        (BiFun<? super V, ? super V, ? extends V> reducer) {
4359 >        return ForkJoinTasks.reduceValues
4360 >            (this, reducer).invoke();
4361 >    }
4362 >
4363 >    /**
4364 >     * Returns the result of accumulating the given transformation
4365 >     * of all values using the given reducer to combine values, or
4366 >     * null if none.
4367 >     *
4368 >     * @param transformer a function returning the transformation
4369 >     * for an element, or null of there is no transformation (in
4370 >     * which case it is not combined).
4371 >     * @param reducer a commutative associative combining function
4372 >     * @return the result of accumulating the given transformation
4373 >     * of all values
4374 >     */
4375 >    public <U> U reduceValuesInParallel
4376 >        (Fun<? super V, ? extends U> transformer,
4377 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4378 >        return ForkJoinTasks.reduceValues
4379 >            (this, transformer, reducer).invoke();
4380 >    }
4381 >
4382 >    /**
4383 >     * Returns the result of accumulating the given transformation
4384 >     * of all values using the given reducer to combine values,
4385 >     * and the given basis as an identity value.
4386 >     *
4387 >     * @param transformer a function returning the transformation
4388 >     * for an element
4389 >     * @param basis the identity (initial default value) for the reduction
4390 >     * @param reducer a commutative associative combining function
4391 >     * @return the result of accumulating the given transformation
4392 >     * of all values
4393 >     */
4394 >    public double reduceValuesToDoubleInParallel
4395 >        (ObjectToDouble<? super V> transformer,
4396 >         double basis,
4397 >         DoubleByDoubleToDouble reducer) {
4398 >        return ForkJoinTasks.reduceValuesToDouble
4399 >            (this, transformer, basis, reducer).invoke();
4400 >    }
4401 >
4402 >    /**
4403 >     * Returns the result of accumulating the given transformation
4404 >     * of all values using the given reducer to combine values,
4405 >     * and the given basis as an identity value.
4406 >     *
4407 >     * @param transformer a function returning the transformation
4408 >     * for an element
4409 >     * @param basis the identity (initial default value) for the reduction
4410 >     * @param reducer a commutative associative combining function
4411 >     * @return the result of accumulating the given transformation
4412 >     * of all values
4413 >     */
4414 >    public long reduceValuesToLongInParallel
4415 >        (ObjectToLong<? super V> transformer,
4416 >         long basis,
4417 >         LongByLongToLong reducer) {
4418 >        return ForkJoinTasks.reduceValuesToLong
4419 >            (this, transformer, basis, reducer).invoke();
4420 >    }
4421 >
4422 >    /**
4423 >     * Returns the result of accumulating the given transformation
4424 >     * of all values using the given reducer to combine values,
4425 >     * and the given basis as an identity value.
4426 >     *
4427 >     * @param transformer a function returning the transformation
4428 >     * for an element
4429 >     * @param basis the identity (initial default value) for the reduction
4430 >     * @param reducer a commutative associative combining function
4431 >     * @return the result of accumulating the given transformation
4432 >     * of all values
4433 >     */
4434 >    public int reduceValuesToIntInParallel
4435 >        (ObjectToInt<? super V> transformer,
4436 >         int basis,
4437 >         IntByIntToInt reducer) {
4438 >        return ForkJoinTasks.reduceValuesToInt
4439 >            (this, transformer, basis, reducer).invoke();
4440 >    }
4441 >
4442 >    /**
4443 >     * Performs the given action for each entry.
4444 >     *
4445 >     * @param action the action
4446 >     */
4447 >    public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4448 >        ForkJoinTasks.forEachEntry
4449 >            (this, action).invoke();
4450 >    }
4451 >
4452 >    /**
4453 >     * Performs the given action for each non-null transformation
4454 >     * of each entry.
4455 >     *
4456 >     * @param transformer a function returning the transformation
4457 >     * for an element, or null of there is no transformation (in
4458 >     * which case the action is not applied).
4459 >     * @param action the action
4460 >     */
4461 >    public <U> void forEachEntryInParallel
4462 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4463 >         Action<U> action) {
4464 >        ForkJoinTasks.forEachEntry
4465 >            (this, transformer, action).invoke();
4466 >    }
4467 >
4468 >    /**
4469 >     * Returns a non-null result from applying the given search
4470 >     * function on each entry, or null if none.  Upon success,
4471 >     * further element processing is suppressed and the results of
4472 >     * any other parallel invocations of the search function are
4473 >     * ignored.
4474 >     *
4475 >     * @param searchFunction a function returning a non-null
4476 >     * result on success, else null
4477 >     * @return a non-null result from applying the given search
4478 >     * function on each entry, or null if none
4479 >     */
4480 >    public <U> U searchEntriesInParallel
4481 >        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4482 >        return ForkJoinTasks.searchEntries
4483 >            (this, searchFunction).invoke();
4484 >    }
4485 >
4486 >    /**
4487 >     * Returns the result of accumulating all entries using the
4488 >     * given reducer to combine values, or null if none.
4489 >     *
4490 >     * @param reducer a commutative associative combining function
4491 >     * @return the result of accumulating all entries
4492 >     */
4493 >    public Map.Entry<K,V> reduceEntriesInParallel
4494 >        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4495 >        return ForkJoinTasks.reduceEntries
4496 >            (this, reducer).invoke();
4497 >    }
4498 >
4499 >    /**
4500 >     * Returns the result of accumulating the given transformation
4501 >     * of all entries using the given reducer to combine values,
4502 >     * or null if none.
4503 >     *
4504 >     * @param transformer a function returning the transformation
4505 >     * for an element, or null of there is no transformation (in
4506 >     * which case it is not combined).
4507 >     * @param reducer a commutative associative combining function
4508 >     * @return the result of accumulating the given transformation
4509 >     * of all entries
4510 >     */
4511 >    public <U> U reduceEntriesInParallel
4512 >        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4513 >         BiFun<? super U, ? super U, ? extends U> reducer) {
4514 >        return ForkJoinTasks.reduceEntries
4515 >            (this, transformer, reducer).invoke();
4516 >    }
4517 >
4518 >    /**
4519 >     * Returns the result of accumulating the given transformation
4520 >     * of all entries using the given reducer to combine values,
4521 >     * and the given basis as an identity value.
4522 >     *
4523 >     * @param transformer a function returning the transformation
4524 >     * for an element
4525 >     * @param basis the identity (initial default value) for the reduction
4526 >     * @param reducer a commutative associative combining function
4527 >     * @return the result of accumulating the given transformation
4528 >     * of all entries
4529 >     */
4530 >    public double reduceEntriesToDoubleInParallel
4531 >        (ObjectToDouble<Map.Entry<K,V>> transformer,
4532 >         double basis,
4533 >         DoubleByDoubleToDouble reducer) {
4534 >        return ForkJoinTasks.reduceEntriesToDouble
4535 >            (this, transformer, basis, reducer).invoke();
4536 >    }
4537 >
4538 >    /**
4539 >     * Returns the result of accumulating the given transformation
4540 >     * of all entries using the given reducer to combine values,
4541 >     * and the given basis as an identity value.
4542 >     *
4543 >     * @param transformer a function returning the transformation
4544 >     * for an element
4545 >     * @param basis the identity (initial default value) for the reduction
4546 >     * @param reducer a commutative associative combining function
4547 >     * @return  the result of accumulating the given transformation
4548 >     * of all entries
4549 >     */
4550 >    public long reduceEntriesToLongInParallel
4551 >        (ObjectToLong<Map.Entry<K,V>> transformer,
4552 >         long basis,
4553 >         LongByLongToLong reducer) {
4554 >        return ForkJoinTasks.reduceEntriesToLong
4555 >            (this, transformer, basis, reducer).invoke();
4556 >    }
4557 >
4558 >    /**
4559 >     * Returns the result of accumulating the given transformation
4560 >     * of all entries using the given reducer to combine values,
4561 >     * and the given basis as an identity value.
4562 >     *
4563 >     * @param transformer a function returning the transformation
4564 >     * for an element
4565 >     * @param basis the identity (initial default value) for the reduction
4566 >     * @param reducer a commutative associative combining function
4567 >     * @return the result of accumulating the given transformation
4568 >     * of all entries
4569 >     */
4570 >    public int reduceEntriesToIntInParallel
4571 >        (ObjectToInt<Map.Entry<K,V>> transformer,
4572 >         int basis,
4573 >         IntByIntToInt reducer) {
4574 >        return ForkJoinTasks.reduceEntriesToInt
4575 >            (this, transformer, basis, reducer).invoke();
4576 >    }
4577 >
4578 >
4579 >    /* ----------------Views -------------- */
4580 >
4581 >    /**
4582 >     * Base class for views.
4583 >     */
4584 >    static abstract class CHMView<K, V> {
4585 >        final ConcurrentHashMap<K, V> map;
4586 >        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
4587 >
4588 >        /**
4589 >         * Returns the map backing this view.
4590 >         *
4591 >         * @return the map backing this view
4592 >         */
4593 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4594 >
4595 >        public final int size()                 { return map.size(); }
4596 >        public final boolean isEmpty()          { return map.isEmpty(); }
4597 >        public final void clear()               { map.clear(); }
4598 >
4599 >        // implementations below rely on concrete classes supplying these
4600 >        abstract public Iterator<?> iterator();
4601 >        abstract public boolean contains(Object o);
4602 >        abstract public boolean remove(Object o);
4603 >
4604 >        private static final String oomeMsg = "Required array size too large";
4605 >
4606 >        public final Object[] toArray() {
4607 >            long sz = map.mappingCount();
4608 >            if (sz > (long)(MAX_ARRAY_SIZE))
4609 >                throw new OutOfMemoryError(oomeMsg);
4610 >            int n = (int)sz;
4611 >            Object[] r = new Object[n];
4612 >            int i = 0;
4613 >            Iterator<?> it = iterator();
4614 >            while (it.hasNext()) {
4615 >                if (i == n) {
4616 >                    if (n >= MAX_ARRAY_SIZE)
4617 >                        throw new OutOfMemoryError(oomeMsg);
4618 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4619 >                        n = MAX_ARRAY_SIZE;
4620 >                    else
4621 >                        n += (n >>> 1) + 1;
4622 >                    r = Arrays.copyOf(r, n);
4623 >                }
4624 >                r[i++] = it.next();
4625 >            }
4626 >            return (i == n) ? r : Arrays.copyOf(r, i);
4627 >        }
4628 >
4629 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4630 >            long sz = map.mappingCount();
4631 >            if (sz > (long)(MAX_ARRAY_SIZE))
4632 >                throw new OutOfMemoryError(oomeMsg);
4633 >            int m = (int)sz;
4634 >            T[] r = (a.length >= m) ? a :
4635 >                (T[])java.lang.reflect.Array
4636 >                .newInstance(a.getClass().getComponentType(), m);
4637 >            int n = r.length;
4638 >            int i = 0;
4639 >            Iterator<?> it = iterator();
4640 >            while (it.hasNext()) {
4641 >                if (i == n) {
4642 >                    if (n >= MAX_ARRAY_SIZE)
4643 >                        throw new OutOfMemoryError(oomeMsg);
4644 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4645 >                        n = MAX_ARRAY_SIZE;
4646 >                    else
4647 >                        n += (n >>> 1) + 1;
4648 >                    r = Arrays.copyOf(r, n);
4649 >                }
4650 >                r[i++] = (T)it.next();
4651 >            }
4652 >            if (a == r && i < n) {
4653 >                r[i] = null; // null-terminate
4654 >                return r;
4655 >            }
4656 >            return (i == n) ? r : Arrays.copyOf(r, i);
4657 >        }
4658 >
4659 >        public final int hashCode() {
4660 >            int h = 0;
4661 >            for (Iterator<?> it = iterator(); it.hasNext();)
4662 >                h += it.next().hashCode();
4663 >            return h;
4664 >        }
4665 >
4666 >        public final String toString() {
4667 >            StringBuilder sb = new StringBuilder();
4668 >            sb.append('[');
4669 >            Iterator<?> it = iterator();
4670 >            if (it.hasNext()) {
4671 >                for (;;) {
4672 >                    Object e = it.next();
4673 >                    sb.append(e == this ? "(this Collection)" : e);
4674 >                    if (!it.hasNext())
4675 >                        break;
4676 >                    sb.append(',').append(' ');
4677 >                }
4678 >            }
4679 >            return sb.append(']').toString();
4680 >        }
4681 >
4682 >        public final boolean containsAll(Collection<?> c) {
4683 >            if (c != this) {
4684 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4685 >                    Object e = it.next();
4686 >                    if (e == null || !contains(e))
4687 >                        return false;
4688 >                }
4689 >            }
4690 >            return true;
4691 >        }
4692 >
4693 >        public final boolean removeAll(Collection<?> c) {
4694 >            boolean modified = false;
4695 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4696 >                if (c.contains(it.next())) {
4697 >                    it.remove();
4698 >                    modified = true;
4699 >                }
4700 >            }
4701 >            return modified;
4702 >        }
4703 >
4704 >        public final boolean retainAll(Collection<?> c) {
4705 >            boolean modified = false;
4706 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4707 >                if (!c.contains(it.next())) {
4708 >                    it.remove();
4709 >                    modified = true;
4710 >                }
4711 >            }
4712 >            return modified;
4713 >        }
4714 >
4715 >    }
4716 >
4717 >    /**
4718 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4719 >     * which additions may optionally be enabled by mapping to a
4720 >     * common value.  This class cannot be directly instantiated. See
4721 >     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4722 >     * {@link #newKeySet(int)}.
4723 >     */
4724 >    public static class KeySetView<K,V> extends CHMView<K,V>
4725 >        implements Set<K>, java.io.Serializable {
4726 >        private static final long serialVersionUID = 7249069246763182397L;
4727 >        private final V value;
4728 >        KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
4729 >            super(map);
4730 >            this.value = value;
4731 >        }
4732 >
4733 >        /**
4734 >         * Returns the default mapped value for additions,
4735 >         * or {@code null} if additions are not supported.
4736 >         *
4737 >         * @return the default mapped value for additions, or {@code null}
4738 >         * if not supported.
4739 >         */
4740 >        public V getMappedValue() { return value; }
4741 >
4742 >        // implement Set API
4743 >
4744 >        public boolean contains(Object o) { return map.containsKey(o); }
4745 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4746 >
4747 >        /**
4748 >         * Returns a "weakly consistent" iterator that will never
4749 >         * throw {@link ConcurrentModificationException}, and
4750 >         * guarantees to traverse elements as they existed upon
4751 >         * construction of the iterator, and may (but is not
4752 >         * guaranteed to) reflect any modifications subsequent to
4753 >         * construction.
4754 >         *
4755 >         * @return an iterator over the keys of this map
4756 >         */
4757 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4758 >        public boolean add(K e) {
4759 >            V v;
4760 >            if ((v = value) == null)
4761 >                throw new UnsupportedOperationException();
4762 >            if (e == null)
4763 >                throw new NullPointerException();
4764 >            return map.internalPut(e, v, true) == null;
4765 >        }
4766 >        public boolean addAll(Collection<? extends K> c) {
4767 >            boolean added = false;
4768 >            V v;
4769 >            if ((v = value) == null)
4770 >                throw new UnsupportedOperationException();
4771 >            for (K e : c) {
4772 >                if (e == null)
4773 >                    throw new NullPointerException();
4774 >                if (map.internalPut(e, v, true) == null)
4775 >                    added = true;
4776 >            }
4777 >            return added;
4778 >        }
4779 >        public boolean equals(Object o) {
4780 >            Set<?> c;
4781 >            return ((o instanceof Set) &&
4782 >                    ((c = (Set<?>)o) == this ||
4783 >                     (containsAll(c) && c.containsAll(this))));
4784 >        }
4785 >    }
4786 >
4787 >    /**
4788 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4789 >     * values, in which additions are disabled. This class cannot be
4790 >     * directly instantiated. See {@link #values},
4791 >     *
4792 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4793 >     * that will never throw {@link ConcurrentModificationException},
4794 >     * and guarantees to traverse elements as they existed upon
4795 >     * construction of the iterator, and may (but is not guaranteed to)
4796 >     * reflect any modifications subsequent to construction.
4797 >     */
4798 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4799 >        implements Collection<V> {
4800 >        ValuesView(ConcurrentHashMap<K, V> map)   { super(map); }
4801 >        public final boolean contains(Object o) { return map.containsValue(o); }
4802 >        public final boolean remove(Object o) {
4803 >            if (o != null) {
4804 >                Iterator<V> it = new ValueIterator<K,V>(map);
4805 >                while (it.hasNext()) {
4806 >                    if (o.equals(it.next())) {
4807 >                        it.remove();
4808 >                        return true;
4809                      }
4810                  }
1427            } finally {
1428                seg.unlock();
4811              }
4812 +            return false;
4813          }
4814 <        s.writeObject(null);
4815 <        s.writeObject(null);
4814 >
4815 >        /**
4816 >         * Returns a "weakly consistent" iterator that will never
4817 >         * throw {@link ConcurrentModificationException}, and
4818 >         * guarantees to traverse elements as they existed upon
4819 >         * construction of the iterator, and may (but is not
4820 >         * guaranteed to) reflect any modifications subsequent to
4821 >         * construction.
4822 >         *
4823 >         * @return an iterator over the values of this map
4824 >         */
4825 >        public final Iterator<V> iterator() {
4826 >            return new ValueIterator<K,V>(map);
4827 >        }
4828 >        public final boolean add(V e) {
4829 >            throw new UnsupportedOperationException();
4830 >        }
4831 >        public final boolean addAll(Collection<? extends V> c) {
4832 >            throw new UnsupportedOperationException();
4833 >        }
4834 >
4835      }
4836  
4837      /**
4838 <     * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
4839 <     * stream (i.e., deserializes it).
4840 <     * @param s the stream
4838 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4839 >     * entries.  This class cannot be directly instantiated. See
4840 >     * {@link #entrySet}.
4841       */
4842 <    @SuppressWarnings("unchecked")
4843 <    private void readObject(java.io.ObjectInputStream s)
4844 <        throws IOException, ClassNotFoundException {
4845 <        s.defaultReadObject();
4842 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4843 >        implements Set<Map.Entry<K,V>> {
4844 >        EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4845 >        public final boolean contains(Object o) {
4846 >            Object k, v, r; Map.Entry<?,?> e;
4847 >            return ((o instanceof Map.Entry) &&
4848 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4849 >                    (r = map.get(k)) != null &&
4850 >                    (v = e.getValue()) != null &&
4851 >                    (v == r || v.equals(r)));
4852 >        }
4853 >        public final boolean remove(Object o) {
4854 >            Object k, v; Map.Entry<?,?> e;
4855 >            return ((o instanceof Map.Entry) &&
4856 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4857 >                    (v = e.getValue()) != null &&
4858 >                    map.remove(k, v));
4859 >        }
4860  
4861 <        // Re-initialize segments to be minimally sized, and let grow.
4862 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
4863 <        final Segment<K,V>[] segments = this.segments;
4864 <        for (int k = 0; k < segments.length; ++k) {
4865 <            Segment<K,V> seg = segments[k];
4866 <            if (seg != null) {
4867 <                seg.threshold = (int)(cap * seg.loadFactor);
4868 <                seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
4861 >        /**
4862 >         * Returns a "weakly consistent" iterator that will never
4863 >         * throw {@link ConcurrentModificationException}, and
4864 >         * guarantees to traverse elements as they existed upon
4865 >         * construction of the iterator, and may (but is not
4866 >         * guaranteed to) reflect any modifications subsequent to
4867 >         * construction.
4868 >         *
4869 >         * @return an iterator over the entries of this map
4870 >         */
4871 >        public final Iterator<Map.Entry<K,V>> iterator() {
4872 >            return new EntryIterator<K,V>(map);
4873 >        }
4874 >
4875 >        public final boolean add(Entry<K,V> e) {
4876 >            K key = e.getKey();
4877 >            V value = e.getValue();
4878 >            if (key == null || value == null)
4879 >                throw new NullPointerException();
4880 >            return map.internalPut(key, value, false) == null;
4881 >        }
4882 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4883 >            boolean added = false;
4884 >            for (Entry<K,V> e : c) {
4885 >                if (add(e))
4886 >                    added = true;
4887              }
4888 +            return added;
4889 +        }
4890 +        public boolean equals(Object o) {
4891 +            Set<?> c;
4892 +            return ((o instanceof Set) &&
4893 +                    ((c = (Set<?>)o) == this ||
4894 +                     (containsAll(c) && c.containsAll(this))));
4895          }
4896 +    }
4897  
4898 <        // Read the keys and values, and put the mappings in the table
4899 <        for (;;) {
4900 <            K key = (K) s.readObject();
4901 <            V value = (V) s.readObject();
4902 <            if (key == null)
4903 <                break;
4904 <            put(key, value);
4898 >    // ---------------------------------------------------------------------
4899 >
4900 >    /**
4901 >     * Predefined tasks for performing bulk parallel operations on
4902 >     * ConcurrentHashMaps. These tasks follow the forms and rules used
4903 >     * for bulk operations. Each method has the same name, but returns
4904 >     * a task rather than invoking it. These methods may be useful in
4905 >     * custom applications such as submitting a task without waiting
4906 >     * for completion, using a custom pool, or combining with other
4907 >     * tasks.
4908 >     */
4909 >    public static class ForkJoinTasks {
4910 >        private ForkJoinTasks() {}
4911 >
4912 >        /**
4913 >         * Returns a task that when invoked, performs the given
4914 >         * action for each (key, value)
4915 >         *
4916 >         * @param map the map
4917 >         * @param action the action
4918 >         * @return the task
4919 >         */
4920 >        public static <K,V> ForkJoinTask<Void> forEach
4921 >            (ConcurrentHashMap<K,V> map,
4922 >             BiAction<K,V> action) {
4923 >            if (action == null) throw new NullPointerException();
4924 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4925 >        }
4926 >
4927 >        /**
4928 >         * Returns a task that when invoked, performs the given
4929 >         * action for each non-null transformation of each (key, value)
4930 >         *
4931 >         * @param map the map
4932 >         * @param transformer a function returning the transformation
4933 >         * for an element, or null if there is no transformation (in
4934 >         * which case the action is not applied)
4935 >         * @param action the action
4936 >         * @return the task
4937 >         */
4938 >        public static <K,V,U> ForkJoinTask<Void> forEach
4939 >            (ConcurrentHashMap<K,V> map,
4940 >             BiFun<? super K, ? super V, ? extends U> transformer,
4941 >             Action<U> action) {
4942 >            if (transformer == null || action == null)
4943 >                throw new NullPointerException();
4944 >            return new ForEachTransformedMappingTask<K,V,U>
4945 >                (map, null, -1, transformer, action);
4946 >        }
4947 >
4948 >        /**
4949 >         * Returns a task that when invoked, returns a non-null result
4950 >         * from applying the given search function on each (key,
4951 >         * value), or null if none. Upon success, further element
4952 >         * processing is suppressed and the results of any other
4953 >         * parallel invocations of the search function are ignored.
4954 >         *
4955 >         * @param map the map
4956 >         * @param searchFunction a function returning a non-null
4957 >         * result on success, else null
4958 >         * @return the task
4959 >         */
4960 >        public static <K,V,U> ForkJoinTask<U> search
4961 >            (ConcurrentHashMap<K,V> map,
4962 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4963 >            if (searchFunction == null) throw new NullPointerException();
4964 >            return new SearchMappingsTask<K,V,U>
4965 >                (map, null, -1, searchFunction,
4966 >                 new AtomicReference<U>());
4967 >        }
4968 >
4969 >        /**
4970 >         * Returns a task that when invoked, returns the result of
4971 >         * accumulating the given transformation of all (key, value) pairs
4972 >         * using the given reducer to combine values, or null if none.
4973 >         *
4974 >         * @param map the map
4975 >         * @param transformer a function returning the transformation
4976 >         * for an element, or null if there is no transformation (in
4977 >         * which case it is not combined).
4978 >         * @param reducer a commutative associative combining function
4979 >         * @return the task
4980 >         */
4981 >        public static <K,V,U> ForkJoinTask<U> reduce
4982 >            (ConcurrentHashMap<K,V> map,
4983 >             BiFun<? super K, ? super V, ? extends U> transformer,
4984 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4985 >            if (transformer == null || reducer == null)
4986 >                throw new NullPointerException();
4987 >            return new MapReduceMappingsTask<K,V,U>
4988 >                (map, null, -1, null, transformer, reducer);
4989 >        }
4990 >
4991 >        /**
4992 >         * Returns a task that when invoked, returns the result of
4993 >         * accumulating the given transformation of all (key, value) pairs
4994 >         * using the given reducer to combine values, and the given
4995 >         * basis as an identity value.
4996 >         *
4997 >         * @param map the map
4998 >         * @param transformer a function returning the transformation
4999 >         * for an element
5000 >         * @param basis the identity (initial default value) for the reduction
5001 >         * @param reducer a commutative associative combining function
5002 >         * @return the task
5003 >         */
5004 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
5005 >            (ConcurrentHashMap<K,V> map,
5006 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5007 >             double basis,
5008 >             DoubleByDoubleToDouble reducer) {
5009 >            if (transformer == null || reducer == null)
5010 >                throw new NullPointerException();
5011 >            return new MapReduceMappingsToDoubleTask<K,V>
5012 >                (map, null, -1, null, transformer, basis, reducer);
5013 >        }
5014 >
5015 >        /**
5016 >         * Returns a task that when invoked, returns the result of
5017 >         * accumulating the given transformation of all (key, value) pairs
5018 >         * using the given reducer to combine values, and the given
5019 >         * basis as an identity value.
5020 >         *
5021 >         * @param map the map
5022 >         * @param transformer a function returning the transformation
5023 >         * for an element
5024 >         * @param basis the identity (initial default value) for the reduction
5025 >         * @param reducer a commutative associative combining function
5026 >         * @return the task
5027 >         */
5028 >        public static <K,V> ForkJoinTask<Long> reduceToLong
5029 >            (ConcurrentHashMap<K,V> map,
5030 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5031 >             long basis,
5032 >             LongByLongToLong reducer) {
5033 >            if (transformer == null || reducer == null)
5034 >                throw new NullPointerException();
5035 >            return new MapReduceMappingsToLongTask<K,V>
5036 >                (map, null, -1, null, transformer, basis, reducer);
5037 >        }
5038 >
5039 >        /**
5040 >         * Returns a task that when invoked, returns the result of
5041 >         * accumulating the given transformation of all (key, value) pairs
5042 >         * using the given reducer to combine values, and the given
5043 >         * basis as an identity value.
5044 >         *
5045 >         * @param transformer a function returning the transformation
5046 >         * for an element
5047 >         * @param basis the identity (initial default value) for the reduction
5048 >         * @param reducer a commutative associative combining function
5049 >         * @return the task
5050 >         */
5051 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
5052 >            (ConcurrentHashMap<K,V> map,
5053 >             ObjectByObjectToInt<? super K, ? super V> transformer,
5054 >             int basis,
5055 >             IntByIntToInt reducer) {
5056 >            if (transformer == null || reducer == null)
5057 >                throw new NullPointerException();
5058 >            return new MapReduceMappingsToIntTask<K,V>
5059 >                (map, null, -1, null, transformer, basis, reducer);
5060 >        }
5061 >
5062 >        /**
5063 >         * Returns a task that when invoked, performs the given action
5064 >         * for each key.
5065 >         *
5066 >         * @param map the map
5067 >         * @param action the action
5068 >         * @return the task
5069 >         */
5070 >        public static <K,V> ForkJoinTask<Void> forEachKey
5071 >            (ConcurrentHashMap<K,V> map,
5072 >             Action<K> action) {
5073 >            if (action == null) throw new NullPointerException();
5074 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
5075 >        }
5076 >
5077 >        /**
5078 >         * Returns a task that when invoked, performs the given action
5079 >         * for each non-null transformation of each key.
5080 >         *
5081 >         * @param map the map
5082 >         * @param transformer a function returning the transformation
5083 >         * for an element, or null if there is no transformation (in
5084 >         * which case the action is not applied)
5085 >         * @param action the action
5086 >         * @return the task
5087 >         */
5088 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
5089 >            (ConcurrentHashMap<K,V> map,
5090 >             Fun<? super K, ? extends U> transformer,
5091 >             Action<U> action) {
5092 >            if (transformer == null || action == null)
5093 >                throw new NullPointerException();
5094 >            return new ForEachTransformedKeyTask<K,V,U>
5095 >                (map, null, -1, transformer, action);
5096 >        }
5097 >
5098 >        /**
5099 >         * Returns a task that when invoked, returns a non-null result
5100 >         * from applying the given search function on each key, or
5101 >         * null if none.  Upon success, further element processing is
5102 >         * suppressed and the results of any other parallel
5103 >         * invocations of the search function are ignored.
5104 >         *
5105 >         * @param map the map
5106 >         * @param searchFunction a function returning a non-null
5107 >         * result on success, else null
5108 >         * @return the task
5109 >         */
5110 >        public static <K,V,U> ForkJoinTask<U> searchKeys
5111 >            (ConcurrentHashMap<K,V> map,
5112 >             Fun<? super K, ? extends U> searchFunction) {
5113 >            if (searchFunction == null) throw new NullPointerException();
5114 >            return new SearchKeysTask<K,V,U>
5115 >                (map, null, -1, searchFunction,
5116 >                 new AtomicReference<U>());
5117 >        }
5118 >
5119 >        /**
5120 >         * Returns a task that when invoked, returns the result of
5121 >         * accumulating all keys using the given reducer to combine
5122 >         * values, or null if none.
5123 >         *
5124 >         * @param map the map
5125 >         * @param reducer a commutative associative combining function
5126 >         * @return the task
5127 >         */
5128 >        public static <K,V> ForkJoinTask<K> reduceKeys
5129 >            (ConcurrentHashMap<K,V> map,
5130 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5131 >            if (reducer == null) throw new NullPointerException();
5132 >            return new ReduceKeysTask<K,V>
5133 >                (map, null, -1, null, reducer);
5134 >        }
5135 >
5136 >        /**
5137 >         * Returns a task that when invoked, returns the result of
5138 >         * accumulating the given transformation of all keys using the given
5139 >         * reducer to combine values, or null if none.
5140 >         *
5141 >         * @param map the map
5142 >         * @param transformer a function returning the transformation
5143 >         * for an element, or null if there is no transformation (in
5144 >         * which case it is not combined).
5145 >         * @param reducer a commutative associative combining function
5146 >         * @return the task
5147 >         */
5148 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
5149 >            (ConcurrentHashMap<K,V> map,
5150 >             Fun<? super K, ? extends U> transformer,
5151 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5152 >            if (transformer == null || reducer == null)
5153 >                throw new NullPointerException();
5154 >            return new MapReduceKeysTask<K,V,U>
5155 >                (map, null, -1, null, transformer, reducer);
5156 >        }
5157 >
5158 >        /**
5159 >         * Returns a task that when invoked, returns the result of
5160 >         * accumulating the given transformation of all keys using the given
5161 >         * reducer to combine values, and the given basis as an
5162 >         * identity value.
5163 >         *
5164 >         * @param map the map
5165 >         * @param transformer a function returning the transformation
5166 >         * for an element
5167 >         * @param basis the identity (initial default value) for the reduction
5168 >         * @param reducer a commutative associative combining function
5169 >         * @return the task
5170 >         */
5171 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5172 >            (ConcurrentHashMap<K,V> map,
5173 >             ObjectToDouble<? super K> transformer,
5174 >             double basis,
5175 >             DoubleByDoubleToDouble reducer) {
5176 >            if (transformer == null || reducer == null)
5177 >                throw new NullPointerException();
5178 >            return new MapReduceKeysToDoubleTask<K,V>
5179 >                (map, null, -1, null, transformer, basis, reducer);
5180 >        }
5181 >
5182 >        /**
5183 >         * Returns a task that when invoked, returns the result of
5184 >         * accumulating the given transformation of all keys using the given
5185 >         * reducer to combine values, and the given basis as an
5186 >         * identity value.
5187 >         *
5188 >         * @param map the map
5189 >         * @param transformer a function returning the transformation
5190 >         * for an element
5191 >         * @param basis the identity (initial default value) for the reduction
5192 >         * @param reducer a commutative associative combining function
5193 >         * @return the task
5194 >         */
5195 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5196 >            (ConcurrentHashMap<K,V> map,
5197 >             ObjectToLong<? super K> transformer,
5198 >             long basis,
5199 >             LongByLongToLong reducer) {
5200 >            if (transformer == null || reducer == null)
5201 >                throw new NullPointerException();
5202 >            return new MapReduceKeysToLongTask<K,V>
5203 >                (map, null, -1, null, transformer, basis, reducer);
5204 >        }
5205 >
5206 >        /**
5207 >         * Returns a task that when invoked, returns the result of
5208 >         * accumulating the given transformation of all keys using the given
5209 >         * reducer to combine values, and the given basis as an
5210 >         * identity value.
5211 >         *
5212 >         * @param map the map
5213 >         * @param transformer a function returning the transformation
5214 >         * for an element
5215 >         * @param basis the identity (initial default value) for the reduction
5216 >         * @param reducer a commutative associative combining function
5217 >         * @return the task
5218 >         */
5219 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5220 >            (ConcurrentHashMap<K,V> map,
5221 >             ObjectToInt<? super K> transformer,
5222 >             int basis,
5223 >             IntByIntToInt reducer) {
5224 >            if (transformer == null || reducer == null)
5225 >                throw new NullPointerException();
5226 >            return new MapReduceKeysToIntTask<K,V>
5227 >                (map, null, -1, null, transformer, basis, reducer);
5228 >        }
5229 >
5230 >        /**
5231 >         * Returns a task that when invoked, performs the given action
5232 >         * for each value.
5233 >         *
5234 >         * @param map the map
5235 >         * @param action the action
5236 >         */
5237 >        public static <K,V> ForkJoinTask<Void> forEachValue
5238 >            (ConcurrentHashMap<K,V> map,
5239 >             Action<V> action) {
5240 >            if (action == null) throw new NullPointerException();
5241 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5242 >        }
5243 >
5244 >        /**
5245 >         * Returns a task that when invoked, performs the given action
5246 >         * for each non-null transformation of each value.
5247 >         *
5248 >         * @param map the map
5249 >         * @param transformer a function returning the transformation
5250 >         * for an element, or null if there is no transformation (in
5251 >         * which case the action is not applied)
5252 >         * @param action the action
5253 >         */
5254 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
5255 >            (ConcurrentHashMap<K,V> map,
5256 >             Fun<? super V, ? extends U> transformer,
5257 >             Action<U> action) {
5258 >            if (transformer == null || action == null)
5259 >                throw new NullPointerException();
5260 >            return new ForEachTransformedValueTask<K,V,U>
5261 >                (map, null, -1, transformer, action);
5262 >        }
5263 >
5264 >        /**
5265 >         * Returns a task that when invoked, returns a non-null result
5266 >         * from applying the given search function on each value, or
5267 >         * null if none.  Upon success, further element processing is
5268 >         * suppressed and the results of any other parallel
5269 >         * invocations of the search function are ignored.
5270 >         *
5271 >         * @param map the map
5272 >         * @param searchFunction a function returning a non-null
5273 >         * result on success, else null
5274 >         * @return the task
5275 >         */
5276 >        public static <K,V,U> ForkJoinTask<U> searchValues
5277 >            (ConcurrentHashMap<K,V> map,
5278 >             Fun<? super V, ? extends U> searchFunction) {
5279 >            if (searchFunction == null) throw new NullPointerException();
5280 >            return new SearchValuesTask<K,V,U>
5281 >                (map, null, -1, searchFunction,
5282 >                 new AtomicReference<U>());
5283 >        }
5284 >
5285 >        /**
5286 >         * Returns a task that when invoked, returns the result of
5287 >         * accumulating all values using the given reducer to combine
5288 >         * values, or null if none.
5289 >         *
5290 >         * @param map the map
5291 >         * @param reducer a commutative associative combining function
5292 >         * @return the task
5293 >         */
5294 >        public static <K,V> ForkJoinTask<V> reduceValues
5295 >            (ConcurrentHashMap<K,V> map,
5296 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5297 >            if (reducer == null) throw new NullPointerException();
5298 >            return new ReduceValuesTask<K,V>
5299 >                (map, null, -1, null, reducer);
5300 >        }
5301 >
5302 >        /**
5303 >         * Returns a task that when invoked, returns the result of
5304 >         * accumulating the given transformation of all values using the
5305 >         * given reducer to combine values, or null if none.
5306 >         *
5307 >         * @param map the map
5308 >         * @param transformer a function returning the transformation
5309 >         * for an element, or null if there is no transformation (in
5310 >         * which case it is not combined).
5311 >         * @param reducer a commutative associative combining function
5312 >         * @return the task
5313 >         */
5314 >        public static <K,V,U> ForkJoinTask<U> reduceValues
5315 >            (ConcurrentHashMap<K,V> map,
5316 >             Fun<? super V, ? extends U> transformer,
5317 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5318 >            if (transformer == null || reducer == null)
5319 >                throw new NullPointerException();
5320 >            return new MapReduceValuesTask<K,V,U>
5321 >                (map, null, -1, null, transformer, reducer);
5322 >        }
5323 >
5324 >        /**
5325 >         * Returns a task that when invoked, returns the result of
5326 >         * accumulating the given transformation of all values using the
5327 >         * given reducer to combine values, and the given basis as an
5328 >         * identity value.
5329 >         *
5330 >         * @param map the map
5331 >         * @param transformer a function returning the transformation
5332 >         * for an element
5333 >         * @param basis the identity (initial default value) for the reduction
5334 >         * @param reducer a commutative associative combining function
5335 >         * @return the task
5336 >         */
5337 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5338 >            (ConcurrentHashMap<K,V> map,
5339 >             ObjectToDouble<? super V> transformer,
5340 >             double basis,
5341 >             DoubleByDoubleToDouble reducer) {
5342 >            if (transformer == null || reducer == null)
5343 >                throw new NullPointerException();
5344 >            return new MapReduceValuesToDoubleTask<K,V>
5345 >                (map, null, -1, null, transformer, basis, reducer);
5346 >        }
5347 >
5348 >        /**
5349 >         * Returns a task that when invoked, returns the result of
5350 >         * accumulating the given transformation of all values using the
5351 >         * given reducer to combine values, and the given basis as an
5352 >         * identity value.
5353 >         *
5354 >         * @param map the map
5355 >         * @param transformer a function returning the transformation
5356 >         * for an element
5357 >         * @param basis the identity (initial default value) for the reduction
5358 >         * @param reducer a commutative associative combining function
5359 >         * @return the task
5360 >         */
5361 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5362 >            (ConcurrentHashMap<K,V> map,
5363 >             ObjectToLong<? super V> transformer,
5364 >             long basis,
5365 >             LongByLongToLong reducer) {
5366 >            if (transformer == null || reducer == null)
5367 >                throw new NullPointerException();
5368 >            return new MapReduceValuesToLongTask<K,V>
5369 >                (map, null, -1, null, transformer, basis, reducer);
5370 >        }
5371 >
5372 >        /**
5373 >         * Returns a task that when invoked, returns the result of
5374 >         * accumulating the given transformation of all values using the
5375 >         * given reducer to combine values, and the given basis as an
5376 >         * identity value.
5377 >         *
5378 >         * @param map the map
5379 >         * @param transformer a function returning the transformation
5380 >         * for an element
5381 >         * @param basis the identity (initial default value) for the reduction
5382 >         * @param reducer a commutative associative combining function
5383 >         * @return the task
5384 >         */
5385 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5386 >            (ConcurrentHashMap<K,V> map,
5387 >             ObjectToInt<? super V> transformer,
5388 >             int basis,
5389 >             IntByIntToInt reducer) {
5390 >            if (transformer == null || reducer == null)
5391 >                throw new NullPointerException();
5392 >            return new MapReduceValuesToIntTask<K,V>
5393 >                (map, null, -1, null, transformer, basis, reducer);
5394 >        }
5395 >
5396 >        /**
5397 >         * Returns a task that when invoked, perform the given action
5398 >         * for each entry.
5399 >         *
5400 >         * @param map the map
5401 >         * @param action the action
5402 >         */
5403 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5404 >            (ConcurrentHashMap<K,V> map,
5405 >             Action<Map.Entry<K,V>> action) {
5406 >            if (action == null) throw new NullPointerException();
5407 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5408 >        }
5409 >
5410 >        /**
5411 >         * Returns a task that when invoked, perform the given action
5412 >         * for each non-null transformation of each entry.
5413 >         *
5414 >         * @param map the map
5415 >         * @param transformer a function returning the transformation
5416 >         * for an element, or null if there is no transformation (in
5417 >         * which case the action is not applied)
5418 >         * @param action the action
5419 >         */
5420 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5421 >            (ConcurrentHashMap<K,V> map,
5422 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5423 >             Action<U> action) {
5424 >            if (transformer == null || action == null)
5425 >                throw new NullPointerException();
5426 >            return new ForEachTransformedEntryTask<K,V,U>
5427 >                (map, null, -1, transformer, action);
5428 >        }
5429 >
5430 >        /**
5431 >         * Returns a task that when invoked, returns a non-null result
5432 >         * from applying the given search function on each entry, or
5433 >         * null if none.  Upon success, further element processing is
5434 >         * suppressed and the results of any other parallel
5435 >         * invocations of the search function are ignored.
5436 >         *
5437 >         * @param map the map
5438 >         * @param searchFunction a function returning a non-null
5439 >         * result on success, else null
5440 >         * @return the task
5441 >         */
5442 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5443 >            (ConcurrentHashMap<K,V> map,
5444 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5445 >            if (searchFunction == null) throw new NullPointerException();
5446 >            return new SearchEntriesTask<K,V,U>
5447 >                (map, null, -1, searchFunction,
5448 >                 new AtomicReference<U>());
5449 >        }
5450 >
5451 >        /**
5452 >         * Returns a task that when invoked, returns the result of
5453 >         * accumulating all entries using the given reducer to combine
5454 >         * values, or null if none.
5455 >         *
5456 >         * @param map the map
5457 >         * @param reducer a commutative associative combining function
5458 >         * @return the task
5459 >         */
5460 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5461 >            (ConcurrentHashMap<K,V> map,
5462 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5463 >            if (reducer == null) throw new NullPointerException();
5464 >            return new ReduceEntriesTask<K,V>
5465 >                (map, null, -1, null, reducer);
5466 >        }
5467 >
5468 >        /**
5469 >         * Returns a task that when invoked, returns the result of
5470 >         * accumulating the given transformation of all entries using the
5471 >         * given reducer to combine values, or null if none.
5472 >         *
5473 >         * @param map the map
5474 >         * @param transformer a function returning the transformation
5475 >         * for an element, or null if there is no transformation (in
5476 >         * which case it is not combined).
5477 >         * @param reducer a commutative associative combining function
5478 >         * @return the task
5479 >         */
5480 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5481 >            (ConcurrentHashMap<K,V> map,
5482 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5483 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5484 >            if (transformer == null || reducer == null)
5485 >                throw new NullPointerException();
5486 >            return new MapReduceEntriesTask<K,V,U>
5487 >                (map, null, -1, null, transformer, reducer);
5488 >        }
5489 >
5490 >        /**
5491 >         * Returns a task that when invoked, returns the result of
5492 >         * accumulating the given transformation of all entries using the
5493 >         * given reducer to combine values, and the given basis as an
5494 >         * identity value.
5495 >         *
5496 >         * @param map the map
5497 >         * @param transformer a function returning the transformation
5498 >         * for an element
5499 >         * @param basis the identity (initial default value) for the reduction
5500 >         * @param reducer a commutative associative combining function
5501 >         * @return the task
5502 >         */
5503 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5504 >            (ConcurrentHashMap<K,V> map,
5505 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5506 >             double basis,
5507 >             DoubleByDoubleToDouble reducer) {
5508 >            if (transformer == null || reducer == null)
5509 >                throw new NullPointerException();
5510 >            return new MapReduceEntriesToDoubleTask<K,V>
5511 >                (map, null, -1, null, transformer, basis, reducer);
5512 >        }
5513 >
5514 >        /**
5515 >         * Returns a task that when invoked, returns the result of
5516 >         * accumulating the given transformation of all entries using the
5517 >         * given reducer to combine values, and the given basis as an
5518 >         * identity value.
5519 >         *
5520 >         * @param map the map
5521 >         * @param transformer a function returning the transformation
5522 >         * for an element
5523 >         * @param basis the identity (initial default value) for the reduction
5524 >         * @param reducer a commutative associative combining function
5525 >         * @return the task
5526 >         */
5527 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5528 >            (ConcurrentHashMap<K,V> map,
5529 >             ObjectToLong<Map.Entry<K,V>> transformer,
5530 >             long basis,
5531 >             LongByLongToLong reducer) {
5532 >            if (transformer == null || reducer == null)
5533 >                throw new NullPointerException();
5534 >            return new MapReduceEntriesToLongTask<K,V>
5535 >                (map, null, -1, null, transformer, basis, reducer);
5536 >        }
5537 >
5538 >        /**
5539 >         * Returns a task that when invoked, returns the result of
5540 >         * accumulating the given transformation of all entries using the
5541 >         * given reducer to combine values, and the given basis as an
5542 >         * identity value.
5543 >         *
5544 >         * @param map the map
5545 >         * @param transformer a function returning the transformation
5546 >         * for an element
5547 >         * @param basis the identity (initial default value) for the reduction
5548 >         * @param reducer a commutative associative combining function
5549 >         * @return the task
5550 >         */
5551 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5552 >            (ConcurrentHashMap<K,V> map,
5553 >             ObjectToInt<Map.Entry<K,V>> transformer,
5554 >             int basis,
5555 >             IntByIntToInt reducer) {
5556 >            if (transformer == null || reducer == null)
5557 >                throw new NullPointerException();
5558 >            return new MapReduceEntriesToIntTask<K,V>
5559 >                (map, null, -1, null, transformer, basis, reducer);
5560 >        }
5561 >    }
5562 >
5563 >    // -------------------------------------------------------
5564 >
5565 >    /*
5566 >     * Task classes. Coded in a regular but ugly format/style to
5567 >     * simplify checks that each variant differs in the right way from
5568 >     * others. The null screenings exist because compilers cannot tell
5569 >     * that we've already null-checked task arguments, so we force
5570 >     * simplest hoisted bypass to help avoid convoluted traps.
5571 >     */
5572 >
5573 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5574 >        extends Traverser<K,V,Void> {
5575 >        final Action<K> action;
5576 >        ForEachKeyTask
5577 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5578 >             Action<K> action) {
5579 >            super(m, p, b);
5580 >            this.action = action;
5581 >        }
5582 >        @SuppressWarnings("unchecked") public final void compute() {
5583 >            final Action<K> action;
5584 >            if ((action = this.action) != null) {
5585 >                for (int b; (b = preSplit()) > 0;)
5586 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5587 >                while (advance() != null)
5588 >                    action.apply((K)nextKey);
5589 >                propagateCompletion();
5590 >            }
5591 >        }
5592 >    }
5593 >
5594 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5595 >        extends Traverser<K,V,Void> {
5596 >        final Action<V> action;
5597 >        ForEachValueTask
5598 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5599 >             Action<V> action) {
5600 >            super(m, p, b);
5601 >            this.action = action;
5602 >        }
5603 >        @SuppressWarnings("unchecked") public final void compute() {
5604 >            final Action<V> action;
5605 >            if ((action = this.action) != null) {
5606 >                for (int b; (b = preSplit()) > 0;)
5607 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5608 >                V v;
5609 >                while ((v = advance()) != null)
5610 >                    action.apply(v);
5611 >                propagateCompletion();
5612 >            }
5613 >        }
5614 >    }
5615 >
5616 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5617 >        extends Traverser<K,V,Void> {
5618 >        final Action<Entry<K,V>> action;
5619 >        ForEachEntryTask
5620 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5621 >             Action<Entry<K,V>> action) {
5622 >            super(m, p, b);
5623 >            this.action = action;
5624 >        }
5625 >        @SuppressWarnings("unchecked") public final void compute() {
5626 >            final Action<Entry<K,V>> action;
5627 >            if ((action = this.action) != null) {
5628 >                for (int b; (b = preSplit()) > 0;)
5629 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5630 >                V v;
5631 >                while ((v = advance()) != null)
5632 >                    action.apply(entryFor((K)nextKey, v));
5633 >                propagateCompletion();
5634 >            }
5635 >        }
5636 >    }
5637 >
5638 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5639 >        extends Traverser<K,V,Void> {
5640 >        final BiAction<K,V> action;
5641 >        ForEachMappingTask
5642 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5643 >             BiAction<K,V> action) {
5644 >            super(m, p, b);
5645 >            this.action = action;
5646 >        }
5647 >        @SuppressWarnings("unchecked") public final void compute() {
5648 >            final BiAction<K,V> action;
5649 >            if ((action = this.action) != null) {
5650 >                for (int b; (b = preSplit()) > 0;)
5651 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5652 >                V v;
5653 >                while ((v = advance()) != null)
5654 >                    action.apply((K)nextKey, v);
5655 >                propagateCompletion();
5656 >            }
5657 >        }
5658 >    }
5659 >
5660 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5661 >        extends Traverser<K,V,Void> {
5662 >        final Fun<? super K, ? extends U> transformer;
5663 >        final Action<U> action;
5664 >        ForEachTransformedKeyTask
5665 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5666 >             Fun<? super K, ? extends U> transformer, Action<U> action) {
5667 >            super(m, p, b);
5668 >            this.transformer = transformer; this.action = action;
5669 >        }
5670 >        @SuppressWarnings("unchecked") public final void compute() {
5671 >            final Fun<? super K, ? extends U> transformer;
5672 >            final Action<U> action;
5673 >            if ((transformer = this.transformer) != null &&
5674 >                (action = this.action) != null) {
5675 >                for (int b; (b = preSplit()) > 0;)
5676 >                    new ForEachTransformedKeyTask<K,V,U>
5677 >                        (map, this, b, transformer, action).fork();
5678 >                U u;
5679 >                while (advance() != null) {
5680 >                    if ((u = transformer.apply((K)nextKey)) != null)
5681 >                        action.apply(u);
5682 >                }
5683 >                propagateCompletion();
5684 >            }
5685 >        }
5686 >    }
5687 >
5688 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5689 >        extends Traverser<K,V,Void> {
5690 >        final Fun<? super V, ? extends U> transformer;
5691 >        final Action<U> action;
5692 >        ForEachTransformedValueTask
5693 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5694 >             Fun<? super V, ? extends U> transformer, Action<U> action) {
5695 >            super(m, p, b);
5696 >            this.transformer = transformer; this.action = action;
5697 >        }
5698 >        @SuppressWarnings("unchecked") public final void compute() {
5699 >            final Fun<? super V, ? extends U> transformer;
5700 >            final Action<U> action;
5701 >            if ((transformer = this.transformer) != null &&
5702 >                (action = this.action) != null) {
5703 >                for (int b; (b = preSplit()) > 0;)
5704 >                    new ForEachTransformedValueTask<K,V,U>
5705 >                        (map, this, b, transformer, action).fork();
5706 >                V v; U u;
5707 >                while ((v = advance()) != null) {
5708 >                    if ((u = transformer.apply(v)) != null)
5709 >                        action.apply(u);
5710 >                }
5711 >                propagateCompletion();
5712 >            }
5713 >        }
5714 >    }
5715 >
5716 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5717 >        extends Traverser<K,V,Void> {
5718 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5719 >        final Action<U> action;
5720 >        ForEachTransformedEntryTask
5721 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5722 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5723 >            super(m, p, b);
5724 >            this.transformer = transformer; this.action = action;
5725 >        }
5726 >        @SuppressWarnings("unchecked") public final void compute() {
5727 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5728 >            final Action<U> action;
5729 >            if ((transformer = this.transformer) != null &&
5730 >                (action = this.action) != null) {
5731 >                for (int b; (b = preSplit()) > 0;)
5732 >                    new ForEachTransformedEntryTask<K,V,U>
5733 >                        (map, this, b, transformer, action).fork();
5734 >                V v; U u;
5735 >                while ((v = advance()) != null) {
5736 >                    if ((u = transformer.apply(entryFor((K)nextKey,
5737 >                                                        v))) != null)
5738 >                        action.apply(u);
5739 >                }
5740 >                propagateCompletion();
5741 >            }
5742 >        }
5743 >    }
5744 >
5745 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5746 >        extends Traverser<K,V,Void> {
5747 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5748 >        final Action<U> action;
5749 >        ForEachTransformedMappingTask
5750 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5751 >             BiFun<? super K, ? super V, ? extends U> transformer,
5752 >             Action<U> action) {
5753 >            super(m, p, b);
5754 >            this.transformer = transformer; this.action = action;
5755 >        }
5756 >        @SuppressWarnings("unchecked") public final void compute() {
5757 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5758 >            final Action<U> action;
5759 >            if ((transformer = this.transformer) != null &&
5760 >                (action = this.action) != null) {
5761 >                for (int b; (b = preSplit()) > 0;)
5762 >                    new ForEachTransformedMappingTask<K,V,U>
5763 >                        (map, this, b, transformer, action).fork();
5764 >                V v; U u;
5765 >                while ((v = advance()) != null) {
5766 >                    if ((u = transformer.apply((K)nextKey, v)) != null)
5767 >                        action.apply(u);
5768 >                }
5769 >                propagateCompletion();
5770 >            }
5771 >        }
5772 >    }
5773 >
5774 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5775 >        extends Traverser<K,V,U> {
5776 >        final Fun<? super K, ? extends U> searchFunction;
5777 >        final AtomicReference<U> result;
5778 >        SearchKeysTask
5779 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5780 >             Fun<? super K, ? extends U> searchFunction,
5781 >             AtomicReference<U> result) {
5782 >            super(m, p, b);
5783 >            this.searchFunction = searchFunction; this.result = result;
5784 >        }
5785 >        public final U getRawResult() { return result.get(); }
5786 >        @SuppressWarnings("unchecked") public final void compute() {
5787 >            final Fun<? super K, ? extends U> searchFunction;
5788 >            final AtomicReference<U> result;
5789 >            if ((searchFunction = this.searchFunction) != null &&
5790 >                (result = this.result) != null) {
5791 >                for (int b;;) {
5792 >                    if (result.get() != null)
5793 >                        return;
5794 >                    if ((b = preSplit()) <= 0)
5795 >                        break;
5796 >                    new SearchKeysTask<K,V,U>
5797 >                        (map, this, b, searchFunction, result).fork();
5798 >                }
5799 >                while (result.get() == null) {
5800 >                    U u;
5801 >                    if (advance() == null) {
5802 >                        propagateCompletion();
5803 >                        break;
5804 >                    }
5805 >                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5806 >                        if (result.compareAndSet(null, u))
5807 >                            quietlyCompleteRoot();
5808 >                        break;
5809 >                    }
5810 >                }
5811 >            }
5812 >        }
5813 >    }
5814 >
5815 >    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5816 >        extends Traverser<K,V,U> {
5817 >        final Fun<? super V, ? extends U> searchFunction;
5818 >        final AtomicReference<U> result;
5819 >        SearchValuesTask
5820 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5821 >             Fun<? super V, ? extends U> searchFunction,
5822 >             AtomicReference<U> result) {
5823 >            super(m, p, b);
5824 >            this.searchFunction = searchFunction; this.result = result;
5825 >        }
5826 >        public final U getRawResult() { return result.get(); }
5827 >        @SuppressWarnings("unchecked") public final void compute() {
5828 >            final Fun<? super V, ? extends U> searchFunction;
5829 >            final AtomicReference<U> result;
5830 >            if ((searchFunction = this.searchFunction) != null &&
5831 >                (result = this.result) != null) {
5832 >                for (int b;;) {
5833 >                    if (result.get() != null)
5834 >                        return;
5835 >                    if ((b = preSplit()) <= 0)
5836 >                        break;
5837 >                    new SearchValuesTask<K,V,U>
5838 >                        (map, this, b, searchFunction, result).fork();
5839 >                }
5840 >                while (result.get() == null) {
5841 >                    V v; U u;
5842 >                    if ((v = advance()) == null) {
5843 >                        propagateCompletion();
5844 >                        break;
5845 >                    }
5846 >                    if ((u = searchFunction.apply(v)) != null) {
5847 >                        if (result.compareAndSet(null, u))
5848 >                            quietlyCompleteRoot();
5849 >                        break;
5850 >                    }
5851 >                }
5852 >            }
5853 >        }
5854 >    }
5855 >
5856 >    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5857 >        extends Traverser<K,V,U> {
5858 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5859 >        final AtomicReference<U> result;
5860 >        SearchEntriesTask
5861 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5862 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5863 >             AtomicReference<U> result) {
5864 >            super(m, p, b);
5865 >            this.searchFunction = searchFunction; this.result = result;
5866 >        }
5867 >        public final U getRawResult() { return result.get(); }
5868 >        @SuppressWarnings("unchecked") public final void compute() {
5869 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5870 >            final AtomicReference<U> result;
5871 >            if ((searchFunction = this.searchFunction) != null &&
5872 >                (result = this.result) != null) {
5873 >                for (int b;;) {
5874 >                    if (result.get() != null)
5875 >                        return;
5876 >                    if ((b = preSplit()) <= 0)
5877 >                        break;
5878 >                    new SearchEntriesTask<K,V,U>
5879 >                        (map, this, b, searchFunction, result).fork();
5880 >                }
5881 >                while (result.get() == null) {
5882 >                    V v; U u;
5883 >                    if ((v = advance()) == null) {
5884 >                        propagateCompletion();
5885 >                        break;
5886 >                    }
5887 >                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5888 >                                                           v))) != null) {
5889 >                        if (result.compareAndSet(null, u))
5890 >                            quietlyCompleteRoot();
5891 >                        return;
5892 >                    }
5893 >                }
5894 >            }
5895 >        }
5896 >    }
5897 >
5898 >    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5899 >        extends Traverser<K,V,U> {
5900 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5901 >        final AtomicReference<U> result;
5902 >        SearchMappingsTask
5903 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5904 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5905 >             AtomicReference<U> result) {
5906 >            super(m, p, b);
5907 >            this.searchFunction = searchFunction; this.result = result;
5908 >        }
5909 >        public final U getRawResult() { return result.get(); }
5910 >        @SuppressWarnings("unchecked") public final void compute() {
5911 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5912 >            final AtomicReference<U> result;
5913 >            if ((searchFunction = this.searchFunction) != null &&
5914 >                (result = this.result) != null) {
5915 >                for (int b;;) {
5916 >                    if (result.get() != null)
5917 >                        return;
5918 >                    if ((b = preSplit()) <= 0)
5919 >                        break;
5920 >                    new SearchMappingsTask<K,V,U>
5921 >                        (map, this, b, searchFunction, result).fork();
5922 >                }
5923 >                while (result.get() == null) {
5924 >                    V v; U u;
5925 >                    if ((v = advance()) == null) {
5926 >                        propagateCompletion();
5927 >                        break;
5928 >                    }
5929 >                    if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5930 >                        if (result.compareAndSet(null, u))
5931 >                            quietlyCompleteRoot();
5932 >                        break;
5933 >                    }
5934 >                }
5935 >            }
5936 >        }
5937 >    }
5938 >
5939 >    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5940 >        extends Traverser<K,V,K> {
5941 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5942 >        K result;
5943 >        ReduceKeysTask<K,V> rights, nextRight;
5944 >        ReduceKeysTask
5945 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5946 >             ReduceKeysTask<K,V> nextRight,
5947 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5948 >            super(m, p, b); this.nextRight = nextRight;
5949 >            this.reducer = reducer;
5950 >        }
5951 >        public final K getRawResult() { return result; }
5952 >        @SuppressWarnings("unchecked") public final void compute() {
5953 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5954 >            if ((reducer = this.reducer) != null) {
5955 >                for (int b; (b = preSplit()) > 0;)
5956 >                    (rights = new ReduceKeysTask<K,V>
5957 >                     (map, this, b, rights, reducer)).fork();
5958 >                K r = null;
5959 >                while (advance() != null) {
5960 >                    K u = (K)nextKey;
5961 >                    r = (r == null) ? u : reducer.apply(r, u);
5962 >                }
5963 >                result = r;
5964 >                CountedCompleter<?> c;
5965 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5966 >                    ReduceKeysTask<K,V>
5967 >                        t = (ReduceKeysTask<K,V>)c,
5968 >                        s = t.rights;
5969 >                    while (s != null) {
5970 >                        K tr, sr;
5971 >                        if ((sr = s.result) != null)
5972 >                            t.result = (((tr = t.result) == null) ? sr :
5973 >                                        reducer.apply(tr, sr));
5974 >                        s = t.rights = s.nextRight;
5975 >                    }
5976 >                }
5977 >            }
5978 >        }
5979 >    }
5980 >
5981 >    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5982 >        extends Traverser<K,V,V> {
5983 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5984 >        V result;
5985 >        ReduceValuesTask<K,V> rights, nextRight;
5986 >        ReduceValuesTask
5987 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5988 >             ReduceValuesTask<K,V> nextRight,
5989 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5990 >            super(m, p, b); this.nextRight = nextRight;
5991 >            this.reducer = reducer;
5992 >        }
5993 >        public final V getRawResult() { return result; }
5994 >        @SuppressWarnings("unchecked") public final void compute() {
5995 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5996 >            if ((reducer = this.reducer) != null) {
5997 >                for (int b; (b = preSplit()) > 0;)
5998 >                    (rights = new ReduceValuesTask<K,V>
5999 >                     (map, this, b, rights, reducer)).fork();
6000 >                V r = null;
6001 >                V v;
6002 >                while ((v = advance()) != null) {
6003 >                    V u = v;
6004 >                    r = (r == null) ? u : reducer.apply(r, u);
6005 >                }
6006 >                result = r;
6007 >                CountedCompleter<?> c;
6008 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6009 >                    ReduceValuesTask<K,V>
6010 >                        t = (ReduceValuesTask<K,V>)c,
6011 >                        s = t.rights;
6012 >                    while (s != null) {
6013 >                        V tr, sr;
6014 >                        if ((sr = s.result) != null)
6015 >                            t.result = (((tr = t.result) == null) ? sr :
6016 >                                        reducer.apply(tr, sr));
6017 >                        s = t.rights = s.nextRight;
6018 >                    }
6019 >                }
6020 >            }
6021 >        }
6022 >    }
6023 >
6024 >    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6025 >        extends Traverser<K,V,Map.Entry<K,V>> {
6026 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6027 >        Map.Entry<K,V> result;
6028 >        ReduceEntriesTask<K,V> rights, nextRight;
6029 >        ReduceEntriesTask
6030 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6031 >             ReduceEntriesTask<K,V> nextRight,
6032 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6033 >            super(m, p, b); this.nextRight = nextRight;
6034 >            this.reducer = reducer;
6035 >        }
6036 >        public final Map.Entry<K,V> getRawResult() { return result; }
6037 >        @SuppressWarnings("unchecked") public final void compute() {
6038 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6039 >            if ((reducer = this.reducer) != null) {
6040 >                for (int b; (b = preSplit()) > 0;)
6041 >                    (rights = new ReduceEntriesTask<K,V>
6042 >                     (map, this, b, rights, reducer)).fork();
6043 >                Map.Entry<K,V> r = null;
6044 >                V v;
6045 >                while ((v = advance()) != null) {
6046 >                    Map.Entry<K,V> u = entryFor((K)nextKey, v);
6047 >                    r = (r == null) ? u : reducer.apply(r, u);
6048 >                }
6049 >                result = r;
6050 >                CountedCompleter<?> c;
6051 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6052 >                    ReduceEntriesTask<K,V>
6053 >                        t = (ReduceEntriesTask<K,V>)c,
6054 >                        s = t.rights;
6055 >                    while (s != null) {
6056 >                        Map.Entry<K,V> tr, sr;
6057 >                        if ((sr = s.result) != null)
6058 >                            t.result = (((tr = t.result) == null) ? sr :
6059 >                                        reducer.apply(tr, sr));
6060 >                        s = t.rights = s.nextRight;
6061 >                    }
6062 >                }
6063 >            }
6064 >        }
6065 >    }
6066 >
6067 >    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6068 >        extends Traverser<K,V,U> {
6069 >        final Fun<? super K, ? extends U> transformer;
6070 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6071 >        U result;
6072 >        MapReduceKeysTask<K,V,U> rights, nextRight;
6073 >        MapReduceKeysTask
6074 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6075 >             MapReduceKeysTask<K,V,U> nextRight,
6076 >             Fun<? super K, ? extends U> transformer,
6077 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6078 >            super(m, p, b); this.nextRight = nextRight;
6079 >            this.transformer = transformer;
6080 >            this.reducer = reducer;
6081 >        }
6082 >        public final U getRawResult() { return result; }
6083 >        @SuppressWarnings("unchecked") public final void compute() {
6084 >            final Fun<? super K, ? extends U> transformer;
6085 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6086 >            if ((transformer = this.transformer) != null &&
6087 >                (reducer = this.reducer) != null) {
6088 >                for (int b; (b = preSplit()) > 0;)
6089 >                    (rights = new MapReduceKeysTask<K,V,U>
6090 >                     (map, this, b, rights, transformer, reducer)).fork();
6091 >                U r = null, u;
6092 >                while (advance() != null) {
6093 >                    if ((u = transformer.apply((K)nextKey)) != null)
6094 >                        r = (r == null) ? u : reducer.apply(r, u);
6095 >                }
6096 >                result = r;
6097 >                CountedCompleter<?> c;
6098 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6099 >                    MapReduceKeysTask<K,V,U>
6100 >                        t = (MapReduceKeysTask<K,V,U>)c,
6101 >                        s = t.rights;
6102 >                    while (s != null) {
6103 >                        U tr, sr;
6104 >                        if ((sr = s.result) != null)
6105 >                            t.result = (((tr = t.result) == null) ? sr :
6106 >                                        reducer.apply(tr, sr));
6107 >                        s = t.rights = s.nextRight;
6108 >                    }
6109 >                }
6110 >            }
6111 >        }
6112 >    }
6113 >
6114 >    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6115 >        extends Traverser<K,V,U> {
6116 >        final Fun<? super V, ? extends U> transformer;
6117 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6118 >        U result;
6119 >        MapReduceValuesTask<K,V,U> rights, nextRight;
6120 >        MapReduceValuesTask
6121 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6122 >             MapReduceValuesTask<K,V,U> nextRight,
6123 >             Fun<? super V, ? extends U> transformer,
6124 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6125 >            super(m, p, b); this.nextRight = nextRight;
6126 >            this.transformer = transformer;
6127 >            this.reducer = reducer;
6128 >        }
6129 >        public final U getRawResult() { return result; }
6130 >        @SuppressWarnings("unchecked") public final void compute() {
6131 >            final Fun<? super V, ? extends U> transformer;
6132 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6133 >            if ((transformer = this.transformer) != null &&
6134 >                (reducer = this.reducer) != null) {
6135 >                for (int b; (b = preSplit()) > 0;)
6136 >                    (rights = new MapReduceValuesTask<K,V,U>
6137 >                     (map, this, b, rights, transformer, reducer)).fork();
6138 >                U r = null, u;
6139 >                V v;
6140 >                while ((v = advance()) != null) {
6141 >                    if ((u = transformer.apply(v)) != null)
6142 >                        r = (r == null) ? u : reducer.apply(r, u);
6143 >                }
6144 >                result = r;
6145 >                CountedCompleter<?> c;
6146 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6147 >                    MapReduceValuesTask<K,V,U>
6148 >                        t = (MapReduceValuesTask<K,V,U>)c,
6149 >                        s = t.rights;
6150 >                    while (s != null) {
6151 >                        U tr, sr;
6152 >                        if ((sr = s.result) != null)
6153 >                            t.result = (((tr = t.result) == null) ? sr :
6154 >                                        reducer.apply(tr, sr));
6155 >                        s = t.rights = s.nextRight;
6156 >                    }
6157 >                }
6158 >            }
6159 >        }
6160 >    }
6161 >
6162 >    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6163 >        extends Traverser<K,V,U> {
6164 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
6165 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6166 >        U result;
6167 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
6168 >        MapReduceEntriesTask
6169 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6170 >             MapReduceEntriesTask<K,V,U> nextRight,
6171 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
6172 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6173 >            super(m, p, b); this.nextRight = nextRight;
6174 >            this.transformer = transformer;
6175 >            this.reducer = reducer;
6176 >        }
6177 >        public final U getRawResult() { return result; }
6178 >        @SuppressWarnings("unchecked") public final void compute() {
6179 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
6180 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6181 >            if ((transformer = this.transformer) != null &&
6182 >                (reducer = this.reducer) != null) {
6183 >                for (int b; (b = preSplit()) > 0;)
6184 >                    (rights = new MapReduceEntriesTask<K,V,U>
6185 >                     (map, this, b, rights, transformer, reducer)).fork();
6186 >                U r = null, u;
6187 >                V v;
6188 >                while ((v = advance()) != null) {
6189 >                    if ((u = transformer.apply(entryFor((K)nextKey,
6190 >                                                        v))) != null)
6191 >                        r = (r == null) ? u : reducer.apply(r, u);
6192 >                }
6193 >                result = r;
6194 >                CountedCompleter<?> c;
6195 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6196 >                    MapReduceEntriesTask<K,V,U>
6197 >                        t = (MapReduceEntriesTask<K,V,U>)c,
6198 >                        s = t.rights;
6199 >                    while (s != null) {
6200 >                        U tr, sr;
6201 >                        if ((sr = s.result) != null)
6202 >                            t.result = (((tr = t.result) == null) ? sr :
6203 >                                        reducer.apply(tr, sr));
6204 >                        s = t.rights = s.nextRight;
6205 >                    }
6206 >                }
6207 >            }
6208 >        }
6209 >    }
6210 >
6211 >    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6212 >        extends Traverser<K,V,U> {
6213 >        final BiFun<? super K, ? super V, ? extends U> transformer;
6214 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6215 >        U result;
6216 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
6217 >        MapReduceMappingsTask
6218 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6219 >             MapReduceMappingsTask<K,V,U> nextRight,
6220 >             BiFun<? super K, ? super V, ? extends U> transformer,
6221 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6222 >            super(m, p, b); this.nextRight = nextRight;
6223 >            this.transformer = transformer;
6224 >            this.reducer = reducer;
6225 >        }
6226 >        public final U getRawResult() { return result; }
6227 >        @SuppressWarnings("unchecked") public final void compute() {
6228 >            final BiFun<? super K, ? super V, ? extends U> transformer;
6229 >            final BiFun<? super U, ? super U, ? extends U> reducer;
6230 >            if ((transformer = this.transformer) != null &&
6231 >                (reducer = this.reducer) != null) {
6232 >                for (int b; (b = preSplit()) > 0;)
6233 >                    (rights = new MapReduceMappingsTask<K,V,U>
6234 >                     (map, this, b, rights, transformer, reducer)).fork();
6235 >                U r = null, u;
6236 >                V v;
6237 >                while ((v = advance()) != null) {
6238 >                    if ((u = transformer.apply((K)nextKey, v)) != null)
6239 >                        r = (r == null) ? u : reducer.apply(r, u);
6240 >                }
6241 >                result = r;
6242 >                CountedCompleter<?> c;
6243 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6244 >                    MapReduceMappingsTask<K,V,U>
6245 >                        t = (MapReduceMappingsTask<K,V,U>)c,
6246 >                        s = t.rights;
6247 >                    while (s != null) {
6248 >                        U tr, sr;
6249 >                        if ((sr = s.result) != null)
6250 >                            t.result = (((tr = t.result) == null) ? sr :
6251 >                                        reducer.apply(tr, sr));
6252 >                        s = t.rights = s.nextRight;
6253 >                    }
6254 >                }
6255 >            }
6256 >        }
6257 >    }
6258 >
6259 >    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6260 >        extends Traverser<K,V,Double> {
6261 >        final ObjectToDouble<? super K> transformer;
6262 >        final DoubleByDoubleToDouble reducer;
6263 >        final double basis;
6264 >        double result;
6265 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6266 >        MapReduceKeysToDoubleTask
6267 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6268 >             MapReduceKeysToDoubleTask<K,V> nextRight,
6269 >             ObjectToDouble<? super K> transformer,
6270 >             double basis,
6271 >             DoubleByDoubleToDouble reducer) {
6272 >            super(m, p, b); this.nextRight = nextRight;
6273 >            this.transformer = transformer;
6274 >            this.basis = basis; this.reducer = reducer;
6275 >        }
6276 >        public final Double getRawResult() { return result; }
6277 >        @SuppressWarnings("unchecked") public final void compute() {
6278 >            final ObjectToDouble<? super K> transformer;
6279 >            final DoubleByDoubleToDouble reducer;
6280 >            if ((transformer = this.transformer) != null &&
6281 >                (reducer = this.reducer) != null) {
6282 >                double r = this.basis;
6283 >                for (int b; (b = preSplit()) > 0;)
6284 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
6285 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6286 >                while (advance() != null)
6287 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6288 >                result = r;
6289 >                CountedCompleter<?> c;
6290 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6291 >                    MapReduceKeysToDoubleTask<K,V>
6292 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6293 >                        s = t.rights;
6294 >                    while (s != null) {
6295 >                        t.result = reducer.apply(t.result, s.result);
6296 >                        s = t.rights = s.nextRight;
6297 >                    }
6298 >                }
6299 >            }
6300 >        }
6301 >    }
6302 >
6303 >    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6304 >        extends Traverser<K,V,Double> {
6305 >        final ObjectToDouble<? super V> transformer;
6306 >        final DoubleByDoubleToDouble reducer;
6307 >        final double basis;
6308 >        double result;
6309 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6310 >        MapReduceValuesToDoubleTask
6311 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6312 >             MapReduceValuesToDoubleTask<K,V> nextRight,
6313 >             ObjectToDouble<? super V> transformer,
6314 >             double basis,
6315 >             DoubleByDoubleToDouble reducer) {
6316 >            super(m, p, b); this.nextRight = nextRight;
6317 >            this.transformer = transformer;
6318 >            this.basis = basis; this.reducer = reducer;
6319 >        }
6320 >        public final Double getRawResult() { return result; }
6321 >        @SuppressWarnings("unchecked") public final void compute() {
6322 >            final ObjectToDouble<? super V> transformer;
6323 >            final DoubleByDoubleToDouble reducer;
6324 >            if ((transformer = this.transformer) != null &&
6325 >                (reducer = this.reducer) != null) {
6326 >                double r = this.basis;
6327 >                for (int b; (b = preSplit()) > 0;)
6328 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
6329 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6330 >                V v;
6331 >                while ((v = advance()) != null)
6332 >                    r = reducer.apply(r, transformer.apply(v));
6333 >                result = r;
6334 >                CountedCompleter<?> c;
6335 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6336 >                    MapReduceValuesToDoubleTask<K,V>
6337 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6338 >                        s = t.rights;
6339 >                    while (s != null) {
6340 >                        t.result = reducer.apply(t.result, s.result);
6341 >                        s = t.rights = s.nextRight;
6342 >                    }
6343 >                }
6344 >            }
6345 >        }
6346 >    }
6347 >
6348 >    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6349 >        extends Traverser<K,V,Double> {
6350 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
6351 >        final DoubleByDoubleToDouble reducer;
6352 >        final double basis;
6353 >        double result;
6354 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6355 >        MapReduceEntriesToDoubleTask
6356 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6357 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
6358 >             ObjectToDouble<Map.Entry<K,V>> transformer,
6359 >             double basis,
6360 >             DoubleByDoubleToDouble reducer) {
6361 >            super(m, p, b); this.nextRight = nextRight;
6362 >            this.transformer = transformer;
6363 >            this.basis = basis; this.reducer = reducer;
6364 >        }
6365 >        public final Double getRawResult() { return result; }
6366 >        @SuppressWarnings("unchecked") public final void compute() {
6367 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
6368 >            final DoubleByDoubleToDouble reducer;
6369 >            if ((transformer = this.transformer) != null &&
6370 >                (reducer = this.reducer) != null) {
6371 >                double r = this.basis;
6372 >                for (int b; (b = preSplit()) > 0;)
6373 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6374 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6375 >                V v;
6376 >                while ((v = advance()) != null)
6377 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6378 >                                                                    v)));
6379 >                result = r;
6380 >                CountedCompleter<?> c;
6381 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6382 >                    MapReduceEntriesToDoubleTask<K,V>
6383 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6384 >                        s = t.rights;
6385 >                    while (s != null) {
6386 >                        t.result = reducer.apply(t.result, s.result);
6387 >                        s = t.rights = s.nextRight;
6388 >                    }
6389 >                }
6390 >            }
6391 >        }
6392 >    }
6393 >
6394 >    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6395 >        extends Traverser<K,V,Double> {
6396 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6397 >        final DoubleByDoubleToDouble reducer;
6398 >        final double basis;
6399 >        double result;
6400 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6401 >        MapReduceMappingsToDoubleTask
6402 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6403 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
6404 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
6405 >             double basis,
6406 >             DoubleByDoubleToDouble reducer) {
6407 >            super(m, p, b); this.nextRight = nextRight;
6408 >            this.transformer = transformer;
6409 >            this.basis = basis; this.reducer = reducer;
6410 >        }
6411 >        public final Double getRawResult() { return result; }
6412 >        @SuppressWarnings("unchecked") public final void compute() {
6413 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
6414 >            final DoubleByDoubleToDouble reducer;
6415 >            if ((transformer = this.transformer) != null &&
6416 >                (reducer = this.reducer) != null) {
6417 >                double r = this.basis;
6418 >                for (int b; (b = preSplit()) > 0;)
6419 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6420 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6421 >                V v;
6422 >                while ((v = advance()) != null)
6423 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6424 >                result = r;
6425 >                CountedCompleter<?> c;
6426 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6427 >                    MapReduceMappingsToDoubleTask<K,V>
6428 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6429 >                        s = t.rights;
6430 >                    while (s != null) {
6431 >                        t.result = reducer.apply(t.result, s.result);
6432 >                        s = t.rights = s.nextRight;
6433 >                    }
6434 >                }
6435 >            }
6436 >        }
6437 >    }
6438 >
6439 >    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6440 >        extends Traverser<K,V,Long> {
6441 >        final ObjectToLong<? super K> transformer;
6442 >        final LongByLongToLong reducer;
6443 >        final long basis;
6444 >        long result;
6445 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
6446 >        MapReduceKeysToLongTask
6447 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6448 >             MapReduceKeysToLongTask<K,V> nextRight,
6449 >             ObjectToLong<? super K> transformer,
6450 >             long basis,
6451 >             LongByLongToLong reducer) {
6452 >            super(m, p, b); this.nextRight = nextRight;
6453 >            this.transformer = transformer;
6454 >            this.basis = basis; this.reducer = reducer;
6455 >        }
6456 >        public final Long getRawResult() { return result; }
6457 >        @SuppressWarnings("unchecked") public final void compute() {
6458 >            final ObjectToLong<? super K> transformer;
6459 >            final LongByLongToLong reducer;
6460 >            if ((transformer = this.transformer) != null &&
6461 >                (reducer = this.reducer) != null) {
6462 >                long r = this.basis;
6463 >                for (int b; (b = preSplit()) > 0;)
6464 >                    (rights = new MapReduceKeysToLongTask<K,V>
6465 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6466 >                while (advance() != null)
6467 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6468 >                result = r;
6469 >                CountedCompleter<?> c;
6470 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6471 >                    MapReduceKeysToLongTask<K,V>
6472 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6473 >                        s = t.rights;
6474 >                    while (s != null) {
6475 >                        t.result = reducer.apply(t.result, s.result);
6476 >                        s = t.rights = s.nextRight;
6477 >                    }
6478 >                }
6479 >            }
6480 >        }
6481 >    }
6482 >
6483 >    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6484 >        extends Traverser<K,V,Long> {
6485 >        final ObjectToLong<? super V> transformer;
6486 >        final LongByLongToLong reducer;
6487 >        final long basis;
6488 >        long result;
6489 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
6490 >        MapReduceValuesToLongTask
6491 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6492 >             MapReduceValuesToLongTask<K,V> nextRight,
6493 >             ObjectToLong<? super V> transformer,
6494 >             long basis,
6495 >             LongByLongToLong reducer) {
6496 >            super(m, p, b); this.nextRight = nextRight;
6497 >            this.transformer = transformer;
6498 >            this.basis = basis; this.reducer = reducer;
6499 >        }
6500 >        public final Long getRawResult() { return result; }
6501 >        @SuppressWarnings("unchecked") public final void compute() {
6502 >            final ObjectToLong<? super V> transformer;
6503 >            final LongByLongToLong reducer;
6504 >            if ((transformer = this.transformer) != null &&
6505 >                (reducer = this.reducer) != null) {
6506 >                long r = this.basis;
6507 >                for (int b; (b = preSplit()) > 0;)
6508 >                    (rights = new MapReduceValuesToLongTask<K,V>
6509 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6510 >                V v;
6511 >                while ((v = advance()) != null)
6512 >                    r = reducer.apply(r, transformer.apply(v));
6513 >                result = r;
6514 >                CountedCompleter<?> c;
6515 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6516 >                    MapReduceValuesToLongTask<K,V>
6517 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6518 >                        s = t.rights;
6519 >                    while (s != null) {
6520 >                        t.result = reducer.apply(t.result, s.result);
6521 >                        s = t.rights = s.nextRight;
6522 >                    }
6523 >                }
6524 >            }
6525 >        }
6526 >    }
6527 >
6528 >    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6529 >        extends Traverser<K,V,Long> {
6530 >        final ObjectToLong<Map.Entry<K,V>> transformer;
6531 >        final LongByLongToLong reducer;
6532 >        final long basis;
6533 >        long result;
6534 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6535 >        MapReduceEntriesToLongTask
6536 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6537 >             MapReduceEntriesToLongTask<K,V> nextRight,
6538 >             ObjectToLong<Map.Entry<K,V>> transformer,
6539 >             long basis,
6540 >             LongByLongToLong reducer) {
6541 >            super(m, p, b); this.nextRight = nextRight;
6542 >            this.transformer = transformer;
6543 >            this.basis = basis; this.reducer = reducer;
6544 >        }
6545 >        public final Long getRawResult() { return result; }
6546 >        @SuppressWarnings("unchecked") public final void compute() {
6547 >            final ObjectToLong<Map.Entry<K,V>> transformer;
6548 >            final LongByLongToLong reducer;
6549 >            if ((transformer = this.transformer) != null &&
6550 >                (reducer = this.reducer) != null) {
6551 >                long r = this.basis;
6552 >                for (int b; (b = preSplit()) > 0;)
6553 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6554 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6555 >                V v;
6556 >                while ((v = advance()) != null)
6557 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6558 >                                                                    v)));
6559 >                result = r;
6560 >                CountedCompleter<?> c;
6561 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6562 >                    MapReduceEntriesToLongTask<K,V>
6563 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6564 >                        s = t.rights;
6565 >                    while (s != null) {
6566 >                        t.result = reducer.apply(t.result, s.result);
6567 >                        s = t.rights = s.nextRight;
6568 >                    }
6569 >                }
6570 >            }
6571 >        }
6572 >    }
6573 >
6574 >    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6575 >        extends Traverser<K,V,Long> {
6576 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
6577 >        final LongByLongToLong reducer;
6578 >        final long basis;
6579 >        long result;
6580 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6581 >        MapReduceMappingsToLongTask
6582 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6583 >             MapReduceMappingsToLongTask<K,V> nextRight,
6584 >             ObjectByObjectToLong<? super K, ? super V> transformer,
6585 >             long basis,
6586 >             LongByLongToLong reducer) {
6587 >            super(m, p, b); this.nextRight = nextRight;
6588 >            this.transformer = transformer;
6589 >            this.basis = basis; this.reducer = reducer;
6590 >        }
6591 >        public final Long getRawResult() { return result; }
6592 >        @SuppressWarnings("unchecked") public final void compute() {
6593 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
6594 >            final LongByLongToLong reducer;
6595 >            if ((transformer = this.transformer) != null &&
6596 >                (reducer = this.reducer) != null) {
6597 >                long r = this.basis;
6598 >                for (int b; (b = preSplit()) > 0;)
6599 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6600 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6601 >                V v;
6602 >                while ((v = advance()) != null)
6603 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6604 >                result = r;
6605 >                CountedCompleter<?> c;
6606 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6607 >                    MapReduceMappingsToLongTask<K,V>
6608 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6609 >                        s = t.rights;
6610 >                    while (s != null) {
6611 >                        t.result = reducer.apply(t.result, s.result);
6612 >                        s = t.rights = s.nextRight;
6613 >                    }
6614 >                }
6615 >            }
6616 >        }
6617 >    }
6618 >
6619 >    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6620 >        extends Traverser<K,V,Integer> {
6621 >        final ObjectToInt<? super K> transformer;
6622 >        final IntByIntToInt reducer;
6623 >        final int basis;
6624 >        int result;
6625 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6626 >        MapReduceKeysToIntTask
6627 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6628 >             MapReduceKeysToIntTask<K,V> nextRight,
6629 >             ObjectToInt<? super K> transformer,
6630 >             int basis,
6631 >             IntByIntToInt reducer) {
6632 >            super(m, p, b); this.nextRight = nextRight;
6633 >            this.transformer = transformer;
6634 >            this.basis = basis; this.reducer = reducer;
6635 >        }
6636 >        public final Integer getRawResult() { return result; }
6637 >        @SuppressWarnings("unchecked") public final void compute() {
6638 >            final ObjectToInt<? super K> transformer;
6639 >            final IntByIntToInt reducer;
6640 >            if ((transformer = this.transformer) != null &&
6641 >                (reducer = this.reducer) != null) {
6642 >                int r = this.basis;
6643 >                for (int b; (b = preSplit()) > 0;)
6644 >                    (rights = new MapReduceKeysToIntTask<K,V>
6645 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6646 >                while (advance() != null)
6647 >                    r = reducer.apply(r, transformer.apply((K)nextKey));
6648 >                result = r;
6649 >                CountedCompleter<?> c;
6650 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6651 >                    MapReduceKeysToIntTask<K,V>
6652 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6653 >                        s = t.rights;
6654 >                    while (s != null) {
6655 >                        t.result = reducer.apply(t.result, s.result);
6656 >                        s = t.rights = s.nextRight;
6657 >                    }
6658 >                }
6659 >            }
6660 >        }
6661 >    }
6662 >
6663 >    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6664 >        extends Traverser<K,V,Integer> {
6665 >        final ObjectToInt<? super V> transformer;
6666 >        final IntByIntToInt reducer;
6667 >        final int basis;
6668 >        int result;
6669 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6670 >        MapReduceValuesToIntTask
6671 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6672 >             MapReduceValuesToIntTask<K,V> nextRight,
6673 >             ObjectToInt<? super V> transformer,
6674 >             int basis,
6675 >             IntByIntToInt reducer) {
6676 >            super(m, p, b); this.nextRight = nextRight;
6677 >            this.transformer = transformer;
6678 >            this.basis = basis; this.reducer = reducer;
6679 >        }
6680 >        public final Integer getRawResult() { return result; }
6681 >        @SuppressWarnings("unchecked") public final void compute() {
6682 >            final ObjectToInt<? super V> transformer;
6683 >            final IntByIntToInt reducer;
6684 >            if ((transformer = this.transformer) != null &&
6685 >                (reducer = this.reducer) != null) {
6686 >                int r = this.basis;
6687 >                for (int b; (b = preSplit()) > 0;)
6688 >                    (rights = new MapReduceValuesToIntTask<K,V>
6689 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6690 >                V v;
6691 >                while ((v = advance()) != null)
6692 >                    r = reducer.apply(r, transformer.apply(v));
6693 >                result = r;
6694 >                CountedCompleter<?> c;
6695 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6696 >                    MapReduceValuesToIntTask<K,V>
6697 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6698 >                        s = t.rights;
6699 >                    while (s != null) {
6700 >                        t.result = reducer.apply(t.result, s.result);
6701 >                        s = t.rights = s.nextRight;
6702 >                    }
6703 >                }
6704 >            }
6705 >        }
6706 >    }
6707 >
6708 >    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6709 >        extends Traverser<K,V,Integer> {
6710 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6711 >        final IntByIntToInt reducer;
6712 >        final int basis;
6713 >        int result;
6714 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6715 >        MapReduceEntriesToIntTask
6716 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6717 >             MapReduceEntriesToIntTask<K,V> nextRight,
6718 >             ObjectToInt<Map.Entry<K,V>> transformer,
6719 >             int basis,
6720 >             IntByIntToInt reducer) {
6721 >            super(m, p, b); this.nextRight = nextRight;
6722 >            this.transformer = transformer;
6723 >            this.basis = basis; this.reducer = reducer;
6724 >        }
6725 >        public final Integer getRawResult() { return result; }
6726 >        @SuppressWarnings("unchecked") public final void compute() {
6727 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6728 >            final IntByIntToInt reducer;
6729 >            if ((transformer = this.transformer) != null &&
6730 >                (reducer = this.reducer) != null) {
6731 >                int r = this.basis;
6732 >                for (int b; (b = preSplit()) > 0;)
6733 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6734 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6735 >                V v;
6736 >                while ((v = advance()) != null)
6737 >                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6738 >                                                                    v)));
6739 >                result = r;
6740 >                CountedCompleter<?> c;
6741 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6742 >                    MapReduceEntriesToIntTask<K,V>
6743 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6744 >                        s = t.rights;
6745 >                    while (s != null) {
6746 >                        t.result = reducer.apply(t.result, s.result);
6747 >                        s = t.rights = s.nextRight;
6748 >                    }
6749 >                }
6750 >            }
6751 >        }
6752 >    }
6753 >
6754 >    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6755 >        extends Traverser<K,V,Integer> {
6756 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6757 >        final IntByIntToInt reducer;
6758 >        final int basis;
6759 >        int result;
6760 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6761 >        MapReduceMappingsToIntTask
6762 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6763 >             MapReduceMappingsToIntTask<K,V> nextRight,
6764 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6765 >             int basis,
6766 >             IntByIntToInt reducer) {
6767 >            super(m, p, b); this.nextRight = nextRight;
6768 >            this.transformer = transformer;
6769 >            this.basis = basis; this.reducer = reducer;
6770 >        }
6771 >        public final Integer getRawResult() { return result; }
6772 >        @SuppressWarnings("unchecked") public final void compute() {
6773 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6774 >            final IntByIntToInt reducer;
6775 >            if ((transformer = this.transformer) != null &&
6776 >                (reducer = this.reducer) != null) {
6777 >                int r = this.basis;
6778 >                for (int b; (b = preSplit()) > 0;)
6779 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6780 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6781 >                V v;
6782 >                while ((v = advance()) != null)
6783 >                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6784 >                result = r;
6785 >                CountedCompleter<?> c;
6786 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6787 >                    MapReduceMappingsToIntTask<K,V>
6788 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6789 >                        s = t.rights;
6790 >                    while (s != null) {
6791 >                        t.result = reducer.apply(t.result, s.result);
6792 >                        s = t.rights = s.nextRight;
6793 >                    }
6794 >                }
6795 >            }
6796          }
6797      }
6798  
6799      // Unsafe mechanics
6800 <    private static final sun.misc.Unsafe UNSAFE;
6801 <    private static final long SBASE;
6802 <    private static final int SSHIFT;
6803 <    private static final long TBASE;
6804 <    private static final int TSHIFT;
6800 >    private static final sun.misc.Unsafe U;
6801 >    private static final long SIZECTL;
6802 >    private static final long TRANSFERINDEX;
6803 >    private static final long TRANSFERORIGIN;
6804 >    private static final long BASECOUNT;
6805 >    private static final long COUNTERBUSY;
6806 >    private static final long CELLVALUE;
6807 >    private static final long ABASE;
6808 >    private static final int ASHIFT;
6809  
6810      static {
6811 <        int ss, ts;
6811 >        int ss;
6812          try {
6813 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6814 <            Class tc = HashEntry[].class;
6815 <            Class sc = Segment[].class;
6816 <            TBASE = UNSAFE.arrayBaseOffset(tc);
6817 <            SBASE = UNSAFE.arrayBaseOffset(sc);
6818 <            ts = UNSAFE.arrayIndexScale(tc);
6819 <            ss = UNSAFE.arrayIndexScale(sc);
6813 >            U = sun.misc.Unsafe.getUnsafe();
6814 >            Class<?> k = ConcurrentHashMap.class;
6815 >            SIZECTL = U.objectFieldOffset
6816 >                (k.getDeclaredField("sizeCtl"));
6817 >            TRANSFERINDEX = U.objectFieldOffset
6818 >                (k.getDeclaredField("transferIndex"));
6819 >            TRANSFERORIGIN = U.objectFieldOffset
6820 >                (k.getDeclaredField("transferOrigin"));
6821 >            BASECOUNT = U.objectFieldOffset
6822 >                (k.getDeclaredField("baseCount"));
6823 >            COUNTERBUSY = U.objectFieldOffset
6824 >                (k.getDeclaredField("counterBusy"));
6825 >            Class<?> ck = CounterCell.class;
6826 >            CELLVALUE = U.objectFieldOffset
6827 >                (ck.getDeclaredField("value"));
6828 >            Class<?> sc = Node[].class;
6829 >            ABASE = U.arrayBaseOffset(sc);
6830 >            ss = U.arrayIndexScale(sc);
6831 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6832          } catch (Exception e) {
6833              throw new Error(e);
6834          }
6835 <        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
6835 >        if ((ss & (ss-1)) != 0)
6836              throw new Error("data type scale not a power of two");
1488        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1489        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
6837      }
6838  
6839   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines