ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.110 by jsr166, Wed Apr 27 14:06:30 2011 UTC vs.
Revision 1.169 by jsr166, Mon Jan 28 06:58:52 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 > import java.util.concurrent.ForkJoinPool;
9 > import java.util.concurrent.CountedCompleter;
10 > import java.util.function.*;
11 > import java.util.Spliterator;
12 > import java.util.stream.Stream;
13 > import java.util.stream.Streams;
14 >
15 > import java.util.Comparator;
16 > import java.util.Arrays;
17 > import java.util.Map;
18 > import java.util.Set;
19 > import java.util.Collection;
20 > import java.util.AbstractMap;
21 > import java.util.AbstractSet;
22 > import java.util.AbstractCollection;
23 > import java.util.Hashtable;
24 > import java.util.HashMap;
25 > import java.util.Iterator;
26 > import java.util.Enumeration;
27 > import java.util.ConcurrentModificationException;
28 > import java.util.NoSuchElementException;
29 > import java.util.concurrent.ConcurrentMap;
30 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 > import java.util.concurrent.atomic.AtomicInteger;
32 > import java.util.concurrent.atomic.AtomicReference;
33   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
34  
35   /**
36   * A hash table supporting full concurrency of retrievals and
37 < * adjustable expected concurrency for updates. This class obeys the
37 > * high expected concurrency for updates. This class obeys the
38   * same functional specification as {@link java.util.Hashtable}, and
39   * includes versions of methods corresponding to each method of
40 < * <tt>Hashtable</tt>. However, even though all operations are
40 > * {@code Hashtable}. However, even though all operations are
41   * thread-safe, retrieval operations do <em>not</em> entail locking,
42   * and there is <em>not</em> any support for locking the entire table
43   * in a way that prevents all access.  This class is fully
44 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
44 > * interoperable with {@code Hashtable} in programs that rely on its
45   * thread safety but not on its synchronization details.
46   *
47 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
48 < * block, so may overlap with update operations (including
49 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
50 < * of the most recently <em>completed</em> update operations holding
51 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
52 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
53 < * removal of only some entries.  Similarly, Iterators and
54 < * Enumerations return elements reflecting the state of the hash table
55 < * at some point at or since the creation of the iterator/enumeration.
56 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
57 < * However, iterators are designed to be used by only one thread at a time.
58 < *
59 < * <p> The allowed concurrency among update operations is guided by
60 < * the optional <tt>concurrencyLevel</tt> constructor argument
61 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
62 < * table is internally partitioned to try to permit the indicated
63 < * number of concurrent updates without contention. Because placement
64 < * in hash tables is essentially random, the actual concurrency will
65 < * vary.  Ideally, you should choose a value to accommodate as many
66 < * threads as will ever concurrently modify the table. Using a
67 < * significantly higher value than you need can waste space and time,
68 < * and a significantly lower value can lead to thread contention. But
69 < * overestimates and underestimates within an order of magnitude do
70 < * not usually have much noticeable impact. A value of one is
71 < * appropriate when it is known that only one thread will modify and
72 < * all others will only read. Also, resizing this or any other kind of
73 < * hash table is a relatively slow operation, so, when possible, it is
74 < * a good idea to provide estimates of expected table sizes in
75 < * constructors.
47 > * <p>Retrieval operations (including {@code get}) generally do not
48 > * block, so may overlap with update operations (including {@code put}
49 > * and {@code remove}). Retrievals reflect the results of the most
50 > * recently <em>completed</em> update operations holding upon their
51 > * onset. (More formally, an update operation for a given key bears a
52 > * <em>happens-before</em> relation with any (non-null) retrieval for
53 > * that key reporting the updated value.)  For aggregate operations
54 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 > * reflect insertion or removal of only some entries.  Similarly,
56 > * Iterators and Enumerations return elements reflecting the state of
57 > * the hash table at some point at or since the creation of the
58 > * iterator/enumeration.  They do <em>not</em> throw {@link
59 > * ConcurrentModificationException}.  However, iterators are designed
60 > * to be used by only one thread at a time.  Bear in mind that the
61 > * results of aggregate status methods including {@code size}, {@code
62 > * isEmpty}, and {@code containsValue} are typically useful only when
63 > * a map is not undergoing concurrent updates in other threads.
64 > * Otherwise the results of these methods reflect transient states
65 > * that may be adequate for monitoring or estimation purposes, but not
66 > * for program control.
67 > *
68 > * <p>The table is dynamically expanded when there are too many
69 > * collisions (i.e., keys that have distinct hash codes but fall into
70 > * the same slot modulo the table size), with the expected average
71 > * effect of maintaining roughly two bins per mapping (corresponding
72 > * to a 0.75 load factor threshold for resizing). There may be much
73 > * variance around this average as mappings are added and removed, but
74 > * overall, this maintains a commonly accepted time/space tradeoff for
75 > * hash tables.  However, resizing this or any other kind of hash
76 > * table may be a relatively slow operation. When possible, it is a
77 > * good idea to provide a size estimate as an optional {@code
78 > * initialCapacity} constructor argument. An additional optional
79 > * {@code loadFactor} constructor argument provides a further means of
80 > * customizing initial table capacity by specifying the table density
81 > * to be used in calculating the amount of space to allocate for the
82 > * given number of elements.  Also, for compatibility with previous
83 > * versions of this class, constructors may optionally specify an
84 > * expected {@code concurrencyLevel} as an additional hint for
85 > * internal sizing.  Note that using many keys with exactly the same
86 > * {@code hashCode()} is a sure way to slow down performance of any
87 > * hash table.
88 > *
89 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 > * (using {@link #keySet(Object)} when only keys are of interest, and the
92 > * mapped values are (perhaps transiently) not used or all take the
93 > * same mapping value.
94 > *
95 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 > * form of histogram or multiset) by using {@link
97 > * java.util.concurrent.atomic.LongAdder} values and initializing via
98 > * {@link #computeIfAbsent}. For example, to add a count to a {@code
99 > * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
100 > * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101   *
102   * <p>This class and its views and iterators implement all of the
103   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104   * interfaces.
105   *
106 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
107 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
106 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 > * does <em>not</em> allow {@code null} to be used as a key or value.
108 > *
109 > * <p>ConcurrentHashMaps support sequential and parallel operations
110 > * bulk operations. (Parallel forms use the {@link
111 > * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 > * contexts are available in class {@link ForkJoinTasks}. These
113 > * operations are designed to be safely, and often sensibly, applied
114 > * even with maps that are being concurrently updated by other
115 > * threads; for example, when computing a snapshot summary of the
116 > * values in a shared registry.  There are three kinds of operation,
117 > * each with four forms, accepting functions with Keys, Values,
118 > * Entries, and (Key, Value) arguments and/or return values. Because
119 > * the elements of a ConcurrentHashMap are not ordered in any
120 > * particular way, and may be processed in different orders in
121 > * different parallel executions, the correctness of supplied
122 > * functions should not depend on any ordering, or on any other
123 > * objects or values that may transiently change while computation is
124 > * in progress; and except for forEach actions, should ideally be
125 > * side-effect-free.
126 > *
127 > * <ul>
128 > * <li> forEach: Perform a given action on each element.
129 > * A variant form applies a given transformation on each element
130 > * before performing the action.</li>
131 > *
132 > * <li> search: Return the first available non-null result of
133 > * applying a given function on each element; skipping further
134 > * search when a result is found.</li>
135 > *
136 > * <li> reduce: Accumulate each element.  The supplied reduction
137 > * function cannot rely on ordering (more formally, it should be
138 > * both associative and commutative).  There are five variants:
139 > *
140 > * <ul>
141 > *
142 > * <li> Plain reductions. (There is not a form of this method for
143 > * (key, value) function arguments since there is no corresponding
144 > * return type.)</li>
145 > *
146 > * <li> Mapped reductions that accumulate the results of a given
147 > * function applied to each element.</li>
148 > *
149 > * <li> Reductions to scalar doubles, longs, and ints, using a
150 > * given basis value.</li>
151 > *
152 > * </li>
153 > * </ul>
154 > * </ul>
155 > *
156 > * <p>The concurrency properties of bulk operations follow
157 > * from those of ConcurrentHashMap: Any non-null result returned
158 > * from {@code get(key)} and related access methods bears a
159 > * happens-before relation with the associated insertion or
160 > * update.  The result of any bulk operation reflects the
161 > * composition of these per-element relations (but is not
162 > * necessarily atomic with respect to the map as a whole unless it
163 > * is somehow known to be quiescent).  Conversely, because keys
164 > * and values in the map are never null, null serves as a reliable
165 > * atomic indicator of the current lack of any result.  To
166 > * maintain this property, null serves as an implicit basis for
167 > * all non-scalar reduction operations. For the double, long, and
168 > * int versions, the basis should be one that, when combined with
169 > * any other value, returns that other value (more formally, it
170 > * should be the identity element for the reduction). Most common
171 > * reductions have these properties; for example, computing a sum
172 > * with basis 0 or a minimum with basis MAX_VALUE.
173 > *
174 > * <p>Search and transformation functions provided as arguments
175 > * should similarly return null to indicate the lack of any result
176 > * (in which case it is not used). In the case of mapped
177 > * reductions, this also enables transformations to serve as
178 > * filters, returning null (or, in the case of primitive
179 > * specializations, the identity basis) if the element should not
180 > * be combined. You can create compound transformations and
181 > * filterings by composing them yourself under this "null means
182 > * there is nothing there now" rule before using them in search or
183 > * reduce operations.
184 > *
185 > * <p>Methods accepting and/or returning Entry arguments maintain
186 > * key-value associations. They may be useful for example when
187 > * finding the key for the greatest value. Note that "plain" Entry
188 > * arguments can be supplied using {@code new
189 > * AbstractMap.SimpleEntry(k,v)}.
190 > *
191 > * <p>Bulk operations may complete abruptly, throwing an
192 > * exception encountered in the application of a supplied
193 > * function. Bear in mind when handling such exceptions that other
194 > * concurrently executing functions could also have thrown
195 > * exceptions, or would have done so if the first exception had
196 > * not occurred.
197 > *
198 > * <p>Speedups for parallel compared to sequential forms are common
199 > * but not guaranteed.  Parallel operations involving brief functions
200 > * on small maps may execute more slowly than sequential forms if the
201 > * underlying work to parallelize the computation is more expensive
202 > * than the computation itself.  Similarly, parallelization may not
203 > * lead to much actual parallelism if all processors are busy
204 > * performing unrelated tasks.
205 > *
206 > * <p>All arguments to all task methods must be non-null.
207   *
208   * <p>This class is a member of the
209   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 214 | import java.io.ObjectOutputStream;
214   * @param <K> the type of keys maintained by this map
215   * @param <V> the type of mapped values
216   */
217 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
218 <        implements ConcurrentMap<K, V>, Serializable {
217 > public class ConcurrentHashMap<K, V>
218 >    implements ConcurrentMap<K, V>, Serializable {
219      private static final long serialVersionUID = 7249069246763182397L;
220  
221      /*
222 <     * The basic strategy is to subdivide the table among Segments,
223 <     * each of which itself is a concurrently readable hash table.  To
224 <     * reduce footprint, all but one segments are constructed only
225 <     * when first needed (see ensureSegment). To maintain visibility
226 <     * in the presence of lazy construction, accesses to segments as
227 <     * well as elements of segment's table must use volatile access,
228 <     * which is done via Unsafe within methods segmentAt etc
229 <     * below. These provide the functionality of AtomicReferenceArrays
230 <     * but reduce the levels of indirection. Additionally,
231 <     * volatile-writes of table elements and entry "next" fields
232 <     * within locked operations use the cheaper "lazySet" forms of
233 <     * writes (via putOrderedObject) because these writes are always
234 <     * followed by lock releases that maintain sequential consistency
235 <     * of table updates.
236 <     *
237 <     * Historical note: The previous version of this class relied
238 <     * heavily on "final" fields, which avoided some volatile reads at
239 <     * the expense of a large initial footprint.  Some remnants of
240 <     * that design (including forced construction of segment 0) exist
241 <     * to ensure serialization compatibility.
222 >     * Overview:
223 >     *
224 >     * The primary design goal of this hash table is to maintain
225 >     * concurrent readability (typically method get(), but also
226 >     * iterators and related methods) while minimizing update
227 >     * contention. Secondary goals are to keep space consumption about
228 >     * the same or better than java.util.HashMap, and to support high
229 >     * initial insertion rates on an empty table by many threads.
230 >     *
231 >     * Each key-value mapping is held in a Node.  Because Node key
232 >     * fields can contain special values, they are defined using plain
233 >     * Object types (not type "K"). This leads to a lot of explicit
234 >     * casting (and many explicit warning suppressions to tell
235 >     * compilers not to complain about it). It also allows some of the
236 >     * public methods to be factored into a smaller number of internal
237 >     * methods (although sadly not so for the five variants of
238 >     * put-related operations). The validation-based approach
239 >     * explained below leads to a lot of code sprawl because
240 >     * retry-control precludes factoring into smaller methods.
241 >     *
242 >     * The table is lazily initialized to a power-of-two size upon the
243 >     * first insertion.  Each bin in the table normally contains a
244 >     * list of Nodes (most often, the list has only zero or one Node).
245 >     * Table accesses require volatile/atomic reads, writes, and
246 >     * CASes.  Because there is no other way to arrange this without
247 >     * adding further indirections, we use intrinsics
248 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
249 >     * are always accurately traversable under volatile reads, so long
250 >     * as lookups check hash code and non-nullness of value before
251 >     * checking key equality.
252 >     *
253 >     * We use the top (sign) bit of Node hash fields for control
254 >     * purposes -- it is available anyway because of addressing
255 >     * constraints.  Nodes with negative hash fields are forwarding
256 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
257 >     * of each normal Node's hash field contain a transformation of
258 >     * the key's hash code.
259 >     *
260 >     * Insertion (via put or its variants) of the first node in an
261 >     * empty bin is performed by just CASing it to the bin.  This is
262 >     * by far the most common case for put operations under most
263 >     * key/hash distributions.  Other update operations (insert,
264 >     * delete, and replace) require locks.  We do not want to waste
265 >     * the space required to associate a distinct lock object with
266 >     * each bin, so instead use the first node of a bin list itself as
267 >     * a lock. Locking support for these locks relies on builtin
268 >     * "synchronized" monitors.
269 >     *
270 >     * Using the first node of a list as a lock does not by itself
271 >     * suffice though: When a node is locked, any update must first
272 >     * validate that it is still the first node after locking it, and
273 >     * retry if not. Because new nodes are always appended to lists,
274 >     * once a node is first in a bin, it remains first until deleted
275 >     * or the bin becomes invalidated (upon resizing).  However,
276 >     * operations that only conditionally update may inspect nodes
277 >     * until the point of update. This is a converse of sorts to the
278 >     * lazy locking technique described by Herlihy & Shavit.
279 >     *
280 >     * The main disadvantage of per-bin locks is that other update
281 >     * operations on other nodes in a bin list protected by the same
282 >     * lock can stall, for example when user equals() or mapping
283 >     * functions take a long time.  However, statistically, under
284 >     * random hash codes, this is not a common problem.  Ideally, the
285 >     * frequency of nodes in bins follows a Poisson distribution
286 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 >     * parameter of about 0.5 on average, given the resizing threshold
288 >     * of 0.75, although with a large variance because of resizing
289 >     * granularity. Ignoring variance, the expected occurrences of
290 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 >     * first values are:
292 >     *
293 >     * 0:    0.60653066
294 >     * 1:    0.30326533
295 >     * 2:    0.07581633
296 >     * 3:    0.01263606
297 >     * 4:    0.00157952
298 >     * 5:    0.00015795
299 >     * 6:    0.00001316
300 >     * 7:    0.00000094
301 >     * 8:    0.00000006
302 >     * more: less than 1 in ten million
303 >     *
304 >     * Lock contention probability for two threads accessing distinct
305 >     * elements is roughly 1 / (8 * #elements) under random hashes.
306 >     *
307 >     * Actual hash code distributions encountered in practice
308 >     * sometimes deviate significantly from uniform randomness.  This
309 >     * includes the case when N > (1<<30), so some keys MUST collide.
310 >     * Similarly for dumb or hostile usages in which multiple keys are
311 >     * designed to have identical hash codes. Also, although we guard
312 >     * against the worst effects of this (see method spread), sets of
313 >     * hashes may differ only in bits that do not impact their bin
314 >     * index for a given power-of-two mask.  So we use a secondary
315 >     * strategy that applies when the number of nodes in a bin exceeds
316 >     * a threshold, and at least one of the keys implements
317 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
318 >     * (a specialized form of red-black trees), bounding search time
319 >     * to O(log N).  Each search step in a TreeBin is around twice as
320 >     * slow as in a regular list, but given that N cannot exceed
321 >     * (1<<64) (before running out of addresses) this bounds search
322 >     * steps, lock hold times, etc, to reasonable constants (roughly
323 >     * 100 nodes inspected per operation worst case) so long as keys
324 >     * are Comparable (which is very common -- String, Long, etc).
325 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
326 >     * traversal pointers as regular nodes, so can be traversed in
327 >     * iterators in the same way.
328 >     *
329 >     * The table is resized when occupancy exceeds a percentage
330 >     * threshold (nominally, 0.75, but see below).  Any thread
331 >     * noticing an overfull bin may assist in resizing after the
332 >     * initiating thread allocates and sets up the replacement
333 >     * array. However, rather than stalling, these other threads may
334 >     * proceed with insertions etc.  The use of TreeBins shields us
335 >     * from the worst case effects of overfilling while resizes are in
336 >     * progress.  Resizing proceeds by transferring bins, one by one,
337 >     * from the table to the next table. To enable concurrency, the
338 >     * next table must be (incrementally) prefilled with place-holders
339 >     * serving as reverse forwarders to the old table.  Because we are
340 >     * using power-of-two expansion, the elements from each bin must
341 >     * either stay at same index, or move with a power of two
342 >     * offset. We eliminate unnecessary node creation by catching
343 >     * cases where old nodes can be reused because their next fields
344 >     * won't change.  On average, only about one-sixth of them need
345 >     * cloning when a table doubles. The nodes they replace will be
346 >     * garbage collectable as soon as they are no longer referenced by
347 >     * any reader thread that may be in the midst of concurrently
348 >     * traversing table.  Upon transfer, the old table bin contains
349 >     * only a special forwarding node (with hash field "MOVED") that
350 >     * contains the next table as its key. On encountering a
351 >     * forwarding node, access and update operations restart, using
352 >     * the new table.
353 >     *
354 >     * Each bin transfer requires its bin lock, which can stall
355 >     * waiting for locks while resizing. However, because other
356 >     * threads can join in and help resize rather than contend for
357 >     * locks, average aggregate waits become shorter as resizing
358 >     * progresses.  The transfer operation must also ensure that all
359 >     * accessible bins in both the old and new table are usable by any
360 >     * traversal.  This is arranged by proceeding from the last bin
361 >     * (table.length - 1) up towards the first.  Upon seeing a
362 >     * forwarding node, traversals (see class Traverser) arrange to
363 >     * move to the new table without revisiting nodes.  However, to
364 >     * ensure that no intervening nodes are skipped, bin splitting can
365 >     * only begin after the associated reverse-forwarders are in
366 >     * place.
367 >     *
368 >     * The traversal scheme also applies to partial traversals of
369 >     * ranges of bins (via an alternate Traverser constructor)
370 >     * to support partitioned aggregate operations.  Also, read-only
371 >     * operations give up if ever forwarded to a null table, which
372 >     * provides support for shutdown-style clearing, which is also not
373 >     * currently implemented.
374 >     *
375 >     * Lazy table initialization minimizes footprint until first use,
376 >     * and also avoids resizings when the first operation is from a
377 >     * putAll, constructor with map argument, or deserialization.
378 >     * These cases attempt to override the initial capacity settings,
379 >     * but harmlessly fail to take effect in cases of races.
380 >     *
381 >     * The element count is maintained using a specialization of
382 >     * LongAdder. We need to incorporate a specialization rather than
383 >     * just use a LongAdder in order to access implicit
384 >     * contention-sensing that leads to creation of multiple
385 >     * Cells.  The counter mechanics avoid contention on
386 >     * updates but can encounter cache thrashing if read too
387 >     * frequently during concurrent access. To avoid reading so often,
388 >     * resizing under contention is attempted only upon adding to a
389 >     * bin already holding two or more nodes. Under uniform hash
390 >     * distributions, the probability of this occurring at threshold
391 >     * is around 13%, meaning that only about 1 in 8 puts check
392 >     * threshold (and after resizing, many fewer do so). The bulk
393 >     * putAll operation further reduces contention by only committing
394 >     * count updates upon these size checks.
395 >     *
396 >     * Maintaining API and serialization compatibility with previous
397 >     * versions of this class introduces several oddities. Mainly: We
398 >     * leave untouched but unused constructor arguments refering to
399 >     * concurrencyLevel. We accept a loadFactor constructor argument,
400 >     * but apply it only to initial table capacity (which is the only
401 >     * time that we can guarantee to honor it.) We also declare an
402 >     * unused "Segment" class that is instantiated in minimal form
403 >     * only when serializing.
404       */
405  
406      /* ---------------- Constants -------------- */
407  
408      /**
409 <     * The default initial capacity for this table,
410 <     * used when not otherwise specified in a constructor.
409 >     * The largest possible table capacity.  This value must be
410 >     * exactly 1<<30 to stay within Java array allocation and indexing
411 >     * bounds for power of two table sizes, and is further required
412 >     * because the top two bits of 32bit hash fields are used for
413 >     * control purposes.
414       */
415 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
415 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
416  
417      /**
418 <     * The default load factor for this table, used when not
419 <     * otherwise specified in a constructor.
418 >     * The default initial table capacity.  Must be a power of 2
419 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420       */
421 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
421 >    private static final int DEFAULT_CAPACITY = 16;
422  
423      /**
424 <     * The default concurrency level for this table, used when not
425 <     * otherwise specified in a constructor.
424 >     * The largest possible (non-power of two) array size.
425 >     * Needed by toArray and related methods.
426       */
427 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
427 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428  
429      /**
430 <     * The maximum capacity, used if a higher value is implicitly
431 <     * specified by either of the constructors with arguments.  MUST
123 <     * be a power of two <= 1<<30 to ensure that entries are indexable
124 <     * using ints.
430 >     * The default concurrency level for this table. Unused but
431 >     * defined for compatibility with previous versions of this class.
432       */
433 <    static final int MAXIMUM_CAPACITY = 1 << 30;
433 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434  
435      /**
436 <     * The minimum capacity for per-segment tables.  Must be a power
437 <     * of two, at least two to avoid immediate resizing on next use
438 <     * after lazy construction.
436 >     * The load factor for this table. Overrides of this value in
437 >     * constructors affect only the initial table capacity.  The
438 >     * actual floating point value isn't normally used -- it is
439 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
440 >     * the associated resizing threshold.
441       */
442 <    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
442 >    private static final float LOAD_FACTOR = 0.75f;
443  
444      /**
445 <     * The maximum number of segments to allow; used to bound
446 <     * constructor arguments. Must be power of two less than 1 << 24.
445 >     * The bin count threshold for using a tree rather than list for a
446 >     * bin.  The value reflects the approximate break-even point for
447 >     * using tree-based operations.
448       */
449 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
449 >    private static final int TREE_THRESHOLD = 8;
450  
451      /**
452 <     * Number of unsynchronized retries in size and containsValue
453 <     * methods before resorting to locking. This is used to avoid
454 <     * unbounded retries if tables undergo continuous modification
455 <     * which would make it impossible to obtain an accurate result.
452 >     * Minimum number of rebinnings per transfer step. Ranges are
453 >     * subdivided to allow multiple resizer threads.  This value
454 >     * serves as a lower bound to avoid resizers encountering
455 >     * excessive memory contention.  The value should be at least
456 >     * DEFAULT_CAPACITY.
457       */
458 <    static final int RETRIES_BEFORE_LOCK = 2;
458 >    private static final int MIN_TRANSFER_STRIDE = 16;
459 >
460 >    /*
461 >     * Encodings for Node hash fields. See above for explanation.
462 >     */
463 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
464 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465 >
466 >    /** Number of CPUS, to place bounds on some sizings */
467 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
468 >
469 >    /* ---------------- Counters -------------- */
470 >
471 >    // Adapted from LongAdder and Striped64.
472 >    // See their internal docs for explanation.
473 >
474 >    // A padded cell for distributing counts
475 >    static final class Cell {
476 >        volatile long p0, p1, p2, p3, p4, p5, p6;
477 >        volatile long value;
478 >        volatile long q0, q1, q2, q3, q4, q5, q6;
479 >        Cell(long x) { value = x; }
480 >    }
481  
482      /* ---------------- Fields -------------- */
483  
484      /**
485 <     * Mask value for indexing into segments. The upper bits of a
486 <     * key's hash code are used to choose the segment.
485 >     * The array of bins. Lazily initialized upon first insertion.
486 >     * Size is always a power of two. Accessed directly by iterators.
487       */
488 <    final int segmentMask;
488 >    transient volatile Node<V>[] table;
489  
490      /**
491 <     * Shift value for indexing within segments.
491 >     * The next table to use; non-null only while resizing.
492       */
493 <    final int segmentShift;
493 >    private transient volatile Node<V>[] nextTable;
494  
495      /**
496 <     * The segments, each of which is a specialized hash table.
496 >     * Base counter value, used mainly when there is no contention,
497 >     * but also as a fallback during table initialization
498 >     * races. Updated via CAS.
499       */
500 <    final Segment<K,V>[] segments;
500 >    private transient volatile long baseCount;
501  
502 <    transient Set<K> keySet;
503 <    transient Set<Map.Entry<K,V>> entrySet;
504 <    transient Collection<V> values;
502 >    /**
503 >     * Table initialization and resizing control.  When negative, the
504 >     * table is being initialized or resized: -1 for initialization,
505 >     * else -(1 + the number of active resizing threads).  Otherwise,
506 >     * when table is null, holds the initial table size to use upon
507 >     * creation, or 0 for default. After initialization, holds the
508 >     * next element count value upon which to resize the table.
509 >     */
510 >    private transient volatile int sizeCtl;
511  
512      /**
513 <     * ConcurrentHashMap list entry. Note that this is never exported
173 <     * out as a user-visible Map.Entry.
513 >     * The next table index (plus one) to split while resizing.
514       */
515 <    static final class HashEntry<K,V> {
515 >    private transient volatile int transferIndex;
516 >
517 >    /**
518 >     * The least available table index to split while resizing.
519 >     */
520 >    private transient volatile int transferOrigin;
521 >
522 >    /**
523 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 >     */
525 >    private transient volatile int cellsBusy;
526 >
527 >    /**
528 >     * Table of counter cells. When non-null, size is a power of 2.
529 >     */
530 >    private transient volatile Cell[] counterCells;
531 >
532 >    // views
533 >    private transient KeySetView<K,V> keySet;
534 >    private transient ValuesView<K,V> values;
535 >    private transient EntrySetView<K,V> entrySet;
536 >
537 >    /** For serialization compatibility. Null unless serialized; see below */
538 >    private Segment<K,V>[] segments;
539 >
540 >    /* ---------------- Table element access -------------- */
541 >
542 >    /*
543 >     * Volatile access methods are used for table elements as well as
544 >     * elements of in-progress next table while resizing.  Uses are
545 >     * null checked by callers, and implicitly bounds-checked, relying
546 >     * on the invariants that tab arrays have non-zero size, and all
547 >     * indices are masked with (tab.length - 1) which is never
548 >     * negative and always less than length. Note that, to be correct
549 >     * wrt arbitrary concurrency errors by users, bounds checks must
550 >     * operate on local variables, which accounts for some odd-looking
551 >     * inline assignments below.
552 >     */
553 >
554 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 >        (Node<V>[] tab, int i) { // used by Traverser
556 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 >    }
558 >
559 >    private static final <V> boolean casTabAt
560 >        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 >    }
563 >
564 >    private static final <V> void setTabAt
565 >        (Node<V>[] tab, int i, Node<V> v) {
566 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 >    }
568 >
569 >    /* ---------------- Nodes -------------- */
570 >
571 >    /**
572 >     * Key-value entry. Note that this is never exported out as a
573 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 >     * field of MOVED are special, and do not contain user keys or
575 >     * values.  Otherwise, keys are never null, and null val fields
576 >     * indicate that a node is in the process of being deleted or
577 >     * created. For purposes of read-only access, a key may be read
578 >     * before a val, but can only be used after checking val to be
579 >     * non-null.
580 >     */
581 >    static class Node<V> {
582          final int hash;
583 <        final K key;
584 <        volatile V value;
585 <        volatile HashEntry<K,V> next;
583 >        final Object key;
584 >        volatile V val;
585 >        volatile Node<V> next;
586  
587 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
587 >        Node(int hash, Object key, V val, Node<V> next) {
588              this.hash = hash;
589              this.key = key;
590 <            this.value = value;
590 >            this.val = val;
591              this.next = next;
592          }
593 +    }
594  
595 <        /**
189 <         * Sets next field with volatile write semantics.  (See above
190 <         * about use of putOrderedObject.)
191 <         */
192 <        final void setNext(HashEntry<K,V> n) {
193 <            UNSAFE.putOrderedObject(this, nextOffset, n);
194 <        }
595 >    /* ---------------- TreeBins -------------- */
596  
597 <        // Unsafe mechanics
598 <        static final sun.misc.Unsafe UNSAFE;
599 <        static final long nextOffset;
600 <        static {
601 <            try {
602 <                UNSAFE = sun.misc.Unsafe.getUnsafe();
603 <                Class k = HashEntry.class;
604 <                nextOffset = UNSAFE.objectFieldOffset
605 <                    (k.getDeclaredField("next"));
606 <            } catch (Exception e) {
607 <                throw new Error(e);
608 <            }
597 >    /**
598 >     * Nodes for use in TreeBins
599 >     */
600 >    static final class TreeNode<V> extends Node<V> {
601 >        TreeNode<V> parent;  // red-black tree links
602 >        TreeNode<V> left;
603 >        TreeNode<V> right;
604 >        TreeNode<V> prev;    // needed to unlink next upon deletion
605 >        boolean red;
606 >
607 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 >            super(hash, key, val, next);
609 >            this.parent = parent;
610          }
611      }
612  
613      /**
614 <     * Gets the ith element of given table (if nonnull) with volatile
615 <     * read semantics. Note: This is manually integrated into a few
616 <     * performance-sensitive methods to reduce call overhead.
617 <     */
618 <    @SuppressWarnings("unchecked")
619 <    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
620 <        return (tab == null) ? null :
621 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
622 <            (tab, ((long)i << TSHIFT) + TBASE);
623 <    }
624 <
625 <    /**
626 <     * Sets the ith element of given table, with volatile write
627 <     * semantics. (See above about use of putOrderedObject.)
628 <     */
629 <    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
630 <                                       HashEntry<K,V> e) {
631 <        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
632 <    }
633 <
634 <    /**
635 <     * Applies a supplemental hash function to a given hashCode, which
636 <     * defends against poor quality hash functions.  This is critical
637 <     * because ConcurrentHashMap uses power-of-two length hash tables,
638 <     * that otherwise encounter collisions for hashCodes that do not
639 <     * differ in lower or upper bits.
640 <     */
641 <    private static int hash(int h) {
642 <        // Spread bits to regularize both segment and index locations,
643 <        // using variant of single-word Wang/Jenkins hash.
644 <        h += (h <<  15) ^ 0xffffcd7d;
645 <        h ^= (h >>> 10);
646 <        h += (h <<   3);
647 <        h ^= (h >>>  6);
648 <        h += (h <<   2) + (h << 14);
649 <        return h ^ (h >>> 16);
650 <    }
651 <
652 <    /**
653 <     * Segments are specialized versions of hash tables.  This
654 <     * subclasses from ReentrantLock opportunistically, just to
655 <     * simplify some locking and avoid separate construction.
656 <     */
255 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
256 <        /*
257 <         * Segments maintain a table of entry lists that are always
258 <         * kept in a consistent state, so can be read (via volatile
259 <         * reads of segments and tables) without locking.  This
260 <         * requires replicating nodes when necessary during table
261 <         * resizing, so the old lists can be traversed by readers
262 <         * still using old version of table.
263 <         *
264 <         * This class defines only mutative methods requiring locking.
265 <         * Except as noted, the methods of this class perform the
266 <         * per-segment versions of ConcurrentHashMap methods.  (Other
267 <         * methods are integrated directly into ConcurrentHashMap
268 <         * methods.) These mutative methods use a form of controlled
269 <         * spinning on contention via methods scanAndLock and
270 <         * scanAndLockForPut. These intersperse tryLocks with
271 <         * traversals to locate nodes.  The main benefit is to absorb
272 <         * cache misses (which are very common for hash tables) while
273 <         * obtaining locks so that traversal is faster once
274 <         * acquired. We do not actually use the found nodes since they
275 <         * must be re-acquired under lock anyway to ensure sequential
276 <         * consistency of updates (and in any case may be undetectably
277 <         * stale), but they will normally be much faster to re-locate.
278 <         * Also, scanAndLockForPut speculatively creates a fresh node
279 <         * to use in put if no node is found.
280 <         */
281 <
614 >     * A specialized form of red-black tree for use in bins
615 >     * whose size exceeds a threshold.
616 >     *
617 >     * TreeBins use a special form of comparison for search and
618 >     * related operations (which is the main reason we cannot use
619 >     * existing collections such as TreeMaps). TreeBins contain
620 >     * Comparable elements, but may contain others, as well as
621 >     * elements that are Comparable but not necessarily Comparable<T>
622 >     * for the same T, so we cannot invoke compareTo among them. To
623 >     * handle this, the tree is ordered primarily by hash value, then
624 >     * by getClass().getName() order, and then by Comparator order
625 >     * among elements of the same class.  On lookup at a node, if
626 >     * elements are not comparable or compare as 0, both left and
627 >     * right children may need to be searched in the case of tied hash
628 >     * values. (This corresponds to the full list search that would be
629 >     * necessary if all elements were non-Comparable and had tied
630 >     * hashes.)  The red-black balancing code is updated from
631 >     * pre-jdk-collections
632 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 >     * Algorithms" (CLR).
635 >     *
636 >     * TreeBins also maintain a separate locking discipline than
637 >     * regular bins. Because they are forwarded via special MOVED
638 >     * nodes at bin heads (which can never change once established),
639 >     * we cannot use those nodes as locks. Instead, TreeBin
640 >     * extends AbstractQueuedSynchronizer to support a simple form of
641 >     * read-write lock. For update operations and table validation,
642 >     * the exclusive form of lock behaves in the same way as bin-head
643 >     * locks. However, lookups use shared read-lock mechanics to allow
644 >     * multiple readers in the absence of writers.  Additionally,
645 >     * these lookups do not ever block: While the lock is not
646 >     * available, they proceed along the slow traversal path (via
647 >     * next-pointers) until the lock becomes available or the list is
648 >     * exhausted, whichever comes first. (These cases are not fast,
649 >     * but maximize aggregate expected throughput.)  The AQS mechanics
650 >     * for doing this are straightforward.  The lock state is held as
651 >     * AQS getState().  Read counts are negative; the write count (1)
652 >     * is positive.  There are no signalling preferences among readers
653 >     * and writers. Since we don't need to export full Lock API, we
654 >     * just override the minimal AQS methods and use them directly.
655 >     */
656 >    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657          private static final long serialVersionUID = 2249069246763182397L;
658 +        transient TreeNode<V> root;  // root of tree
659 +        transient TreeNode<V> first; // head of next-pointer list
660  
661 <        /**
662 <         * The maximum number of times to tryLock in a prescan before
663 <         * possibly blocking on acquire in preparation for a locked
664 <         * segment operation. On multiprocessors, using a bounded
665 <         * number of retries maintains cache acquired while locating
666 <         * nodes.
667 <         */
668 <        static final int MAX_SCAN_RETRIES =
669 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
661 >        /* AQS overrides */
662 >        public final boolean isHeldExclusively() { return getState() > 0; }
663 >        public final boolean tryAcquire(int ignore) {
664 >            if (compareAndSetState(0, 1)) {
665 >                setExclusiveOwnerThread(Thread.currentThread());
666 >                return true;
667 >            }
668 >            return false;
669 >        }
670 >        public final boolean tryRelease(int ignore) {
671 >            setExclusiveOwnerThread(null);
672 >            setState(0);
673 >            return true;
674 >        }
675 >        public final int tryAcquireShared(int ignore) {
676 >            for (int c;;) {
677 >                if ((c = getState()) > 0)
678 >                    return -1;
679 >                if (compareAndSetState(c, c -1))
680 >                    return 1;
681 >            }
682 >        }
683 >        public final boolean tryReleaseShared(int ignore) {
684 >            int c;
685 >            do {} while (!compareAndSetState(c = getState(), c + 1));
686 >            return c == -1;
687 >        }
688 >
689 >        /** From CLR */
690 >        private void rotateLeft(TreeNode<V> p) {
691 >            if (p != null) {
692 >                TreeNode<V> r = p.right, pp, rl;
693 >                if ((rl = p.right = r.left) != null)
694 >                    rl.parent = p;
695 >                if ((pp = r.parent = p.parent) == null)
696 >                    root = r;
697 >                else if (pp.left == p)
698 >                    pp.left = r;
699 >                else
700 >                    pp.right = r;
701 >                r.left = p;
702 >                p.parent = r;
703 >            }
704 >        }
705  
706 <        /**
707 <         * The per-segment table. Elements are accessed via
708 <         * entryAt/setEntryAt providing volatile semantics.
709 <         */
710 <        transient volatile HashEntry<K,V>[] table;
706 >        /** From CLR */
707 >        private void rotateRight(TreeNode<V> p) {
708 >            if (p != null) {
709 >                TreeNode<V> l = p.left, pp, lr;
710 >                if ((lr = p.left = l.right) != null)
711 >                    lr.parent = p;
712 >                if ((pp = l.parent = p.parent) == null)
713 >                    root = l;
714 >                else if (pp.right == p)
715 >                    pp.right = l;
716 >                else
717 >                    pp.left = l;
718 >                l.right = p;
719 >                p.parent = l;
720 >            }
721 >        }
722  
723          /**
724 <         * The number of elements. Accessed only either within locks
725 <         * or among other volatile reads that maintain visibility.
724 >         * Returns the TreeNode (or null if not found) for the given key
725 >         * starting at given root.
726           */
727 <        transient int count;
727 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 >            (int h, Object k, TreeNode<V> p) {
729 >            Class<?> c = k.getClass();
730 >            while (p != null) {
731 >                int dir, ph;  Object pk; Class<?> pc;
732 >                if ((ph = p.hash) == h) {
733 >                    if ((pk = p.key) == k || k.equals(pk))
734 >                        return p;
735 >                    if (c != (pc = pk.getClass()) ||
736 >                        !(k instanceof Comparable) ||
737 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 >                        if ((dir = (c == pc) ? 0 :
739 >                             c.getName().compareTo(pc.getName())) == 0) {
740 >                            TreeNode<V> r = null, pl, pr; // check both sides
741 >                            if ((pr = p.right) != null && h >= pr.hash &&
742 >                                (r = getTreeNode(h, k, pr)) != null)
743 >                                return r;
744 >                            else if ((pl = p.left) != null && h <= pl.hash)
745 >                                dir = -1;
746 >                            else // nothing there
747 >                                return null;
748 >                        }
749 >                    }
750 >                }
751 >                else
752 >                    dir = (h < ph) ? -1 : 1;
753 >                p = (dir > 0) ? p.right : p.left;
754 >            }
755 >            return null;
756 >        }
757  
758          /**
759 <         * The total number of mutative operations in this segment.
760 <         * Even though this may overflows 32 bits, it provides
761 <         * sufficient accuracy for stability checks in CHM isEmpty()
310 <         * and size() methods.  Accessed only either within locks or
311 <         * among other volatile reads that maintain visibility.
759 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 >         * read-lock to call getTreeNode, but during failure to get
761 >         * lock, searches along next links.
762           */
763 <        transient int modCount;
763 >        final V getValue(int h, Object k) {
764 >            Node<V> r = null;
765 >            int c = getState(); // Must read lock state first
766 >            for (Node<V> e = first; e != null; e = e.next) {
767 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
768 >                    try {
769 >                        r = getTreeNode(h, k, root);
770 >                    } finally {
771 >                        releaseShared(0);
772 >                    }
773 >                    break;
774 >                }
775 >                else if (e.hash == h && k.equals(e.key)) {
776 >                    r = e;
777 >                    break;
778 >                }
779 >                else
780 >                    c = getState();
781 >            }
782 >            return r == null ? null : r.val;
783 >        }
784  
785          /**
786 <         * The table is rehashed when its size exceeds this threshold.
787 <         * (The value of this field is always <tt>(int)(capacity *
318 <         * loadFactor)</tt>.)
786 >         * Finds or adds a node.
787 >         * @return null if added
788           */
789 <        transient int threshold;
789 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 >            (int h, Object k, V v) {
791 >            Class<?> c = k.getClass();
792 >            TreeNode<V> pp = root, p = null;
793 >            int dir = 0;
794 >            while (pp != null) { // find existing node or leaf to insert at
795 >                int ph;  Object pk; Class<?> pc;
796 >                p = pp;
797 >                if ((ph = p.hash) == h) {
798 >                    if ((pk = p.key) == k || k.equals(pk))
799 >                        return p;
800 >                    if (c != (pc = pk.getClass()) ||
801 >                        !(k instanceof Comparable) ||
802 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 >                        TreeNode<V> s = null, r = null, pr;
804 >                        if ((dir = (c == pc) ? 0 :
805 >                             c.getName().compareTo(pc.getName())) == 0) {
806 >                            if ((pr = p.right) != null && h >= pr.hash &&
807 >                                (r = getTreeNode(h, k, pr)) != null)
808 >                                return r;
809 >                            else // continue left
810 >                                dir = -1;
811 >                        }
812 >                        else if ((pr = p.right) != null && h >= pr.hash)
813 >                            s = pr;
814 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
815 >                            return r;
816 >                    }
817 >                }
818 >                else
819 >                    dir = (h < ph) ? -1 : 1;
820 >                pp = (dir > 0) ? p.right : p.left;
821 >            }
822 >
823 >            TreeNode<V> f = first;
824 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 >            if (p == null)
826 >                root = x;
827 >            else { // attach and rebalance; adapted from CLR
828 >                TreeNode<V> xp, xpp;
829 >                if (f != null)
830 >                    f.prev = x;
831 >                if (dir <= 0)
832 >                    p.left = x;
833 >                else
834 >                    p.right = x;
835 >                x.red = true;
836 >                while (x != null && (xp = x.parent) != null && xp.red &&
837 >                       (xpp = xp.parent) != null) {
838 >                    TreeNode<V> xppl = xpp.left;
839 >                    if (xp == xppl) {
840 >                        TreeNode<V> y = xpp.right;
841 >                        if (y != null && y.red) {
842 >                            y.red = false;
843 >                            xp.red = false;
844 >                            xpp.red = true;
845 >                            x = xpp;
846 >                        }
847 >                        else {
848 >                            if (x == xp.right) {
849 >                                rotateLeft(x = xp);
850 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
851 >                            }
852 >                            if (xp != null) {
853 >                                xp.red = false;
854 >                                if (xpp != null) {
855 >                                    xpp.red = true;
856 >                                    rotateRight(xpp);
857 >                                }
858 >                            }
859 >                        }
860 >                    }
861 >                    else {
862 >                        TreeNode<V> y = xppl;
863 >                        if (y != null && y.red) {
864 >                            y.red = false;
865 >                            xp.red = false;
866 >                            xpp.red = true;
867 >                            x = xpp;
868 >                        }
869 >                        else {
870 >                            if (x == xp.left) {
871 >                                rotateRight(x = xp);
872 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
873 >                            }
874 >                            if (xp != null) {
875 >                                xp.red = false;
876 >                                if (xpp != null) {
877 >                                    xpp.red = true;
878 >                                    rotateLeft(xpp);
879 >                                }
880 >                            }
881 >                        }
882 >                    }
883 >                }
884 >                TreeNode<V> r = root;
885 >                if (r != null && r.red)
886 >                    r.red = false;
887 >            }
888 >            return null;
889 >        }
890  
891          /**
892 <         * The load factor for the hash table.  Even though this value
893 <         * is same for all segments, it is replicated to avoid needing
894 <         * links to outer object.
895 <         * @serial
892 >         * Removes the given node, that must be present before this
893 >         * call.  This is messier than typical red-black deletion code
894 >         * because we cannot swap the contents of an interior node
895 >         * with a leaf successor that is pinned by "next" pointers
896 >         * that are accessible independently of lock. So instead we
897 >         * swap the tree linkages.
898           */
899 <        final float loadFactor;
899 >        final void deleteTreeNode(TreeNode<V> p) {
900 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 >            TreeNode<V> pred = p.prev;
902 >            if (pred == null)
903 >                first = next;
904 >            else
905 >                pred.next = next;
906 >            if (next != null)
907 >                next.prev = pred;
908 >            TreeNode<V> replacement;
909 >            TreeNode<V> pl = p.left;
910 >            TreeNode<V> pr = p.right;
911 >            if (pl != null && pr != null) {
912 >                TreeNode<V> s = pr, sl;
913 >                while ((sl = s.left) != null) // find successor
914 >                    s = sl;
915 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 >                TreeNode<V> sr = s.right;
917 >                TreeNode<V> pp = p.parent;
918 >                if (s == pr) { // p was s's direct parent
919 >                    p.parent = s;
920 >                    s.right = p;
921 >                }
922 >                else {
923 >                    TreeNode<V> sp = s.parent;
924 >                    if ((p.parent = sp) != null) {
925 >                        if (s == sp.left)
926 >                            sp.left = p;
927 >                        else
928 >                            sp.right = p;
929 >                    }
930 >                    if ((s.right = pr) != null)
931 >                        pr.parent = s;
932 >                }
933 >                p.left = null;
934 >                if ((p.right = sr) != null)
935 >                    sr.parent = p;
936 >                if ((s.left = pl) != null)
937 >                    pl.parent = s;
938 >                if ((s.parent = pp) == null)
939 >                    root = s;
940 >                else if (p == pp.left)
941 >                    pp.left = s;
942 >                else
943 >                    pp.right = s;
944 >                replacement = sr;
945 >            }
946 >            else
947 >                replacement = (pl != null) ? pl : pr;
948 >            TreeNode<V> pp = p.parent;
949 >            if (replacement == null) {
950 >                if (pp == null) {
951 >                    root = null;
952 >                    return;
953 >                }
954 >                replacement = p;
955 >            }
956 >            else {
957 >                replacement.parent = pp;
958 >                if (pp == null)
959 >                    root = replacement;
960 >                else if (p == pp.left)
961 >                    pp.left = replacement;
962 >                else
963 >                    pp.right = replacement;
964 >                p.left = p.right = p.parent = null;
965 >            }
966 >            if (!p.red) { // rebalance, from CLR
967 >                TreeNode<V> x = replacement;
968 >                while (x != null) {
969 >                    TreeNode<V> xp, xpl;
970 >                    if (x.red || (xp = x.parent) == null) {
971 >                        x.red = false;
972 >                        break;
973 >                    }
974 >                    if (x == (xpl = xp.left)) {
975 >                        TreeNode<V> sib = xp.right;
976 >                        if (sib != null && sib.red) {
977 >                            sib.red = false;
978 >                            xp.red = true;
979 >                            rotateLeft(xp);
980 >                            sib = (xp = x.parent) == null ? null : xp.right;
981 >                        }
982 >                        if (sib == null)
983 >                            x = xp;
984 >                        else {
985 >                            TreeNode<V> sl = sib.left, sr = sib.right;
986 >                            if ((sr == null || !sr.red) &&
987 >                                (sl == null || !sl.red)) {
988 >                                sib.red = true;
989 >                                x = xp;
990 >                            }
991 >                            else {
992 >                                if (sr == null || !sr.red) {
993 >                                    if (sl != null)
994 >                                        sl.red = false;
995 >                                    sib.red = true;
996 >                                    rotateRight(sib);
997 >                                    sib = (xp = x.parent) == null ?
998 >                                        null : xp.right;
999 >                                }
1000 >                                if (sib != null) {
1001 >                                    sib.red = (xp == null) ? false : xp.red;
1002 >                                    if ((sr = sib.right) != null)
1003 >                                        sr.red = false;
1004 >                                }
1005 >                                if (xp != null) {
1006 >                                    xp.red = false;
1007 >                                    rotateLeft(xp);
1008 >                                }
1009 >                                x = root;
1010 >                            }
1011 >                        }
1012 >                    }
1013 >                    else { // symmetric
1014 >                        TreeNode<V> sib = xpl;
1015 >                        if (sib != null && sib.red) {
1016 >                            sib.red = false;
1017 >                            xp.red = true;
1018 >                            rotateRight(xp);
1019 >                            sib = (xp = x.parent) == null ? null : xp.left;
1020 >                        }
1021 >                        if (sib == null)
1022 >                            x = xp;
1023 >                        else {
1024 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1025 >                            if ((sl == null || !sl.red) &&
1026 >                                (sr == null || !sr.red)) {
1027 >                                sib.red = true;
1028 >                                x = xp;
1029 >                            }
1030 >                            else {
1031 >                                if (sl == null || !sl.red) {
1032 >                                    if (sr != null)
1033 >                                        sr.red = false;
1034 >                                    sib.red = true;
1035 >                                    rotateLeft(sib);
1036 >                                    sib = (xp = x.parent) == null ?
1037 >                                        null : xp.left;
1038 >                                }
1039 >                                if (sib != null) {
1040 >                                    sib.red = (xp == null) ? false : xp.red;
1041 >                                    if ((sl = sib.left) != null)
1042 >                                        sl.red = false;
1043 >                                }
1044 >                                if (xp != null) {
1045 >                                    xp.red = false;
1046 >                                    rotateRight(xp);
1047 >                                }
1048 >                                x = root;
1049 >                            }
1050 >                        }
1051 >                    }
1052 >                }
1053 >            }
1054 >            if (p == replacement && (pp = p.parent) != null) {
1055 >                if (p == pp.left) // detach pointers
1056 >                    pp.left = null;
1057 >                else if (p == pp.right)
1058 >                    pp.right = null;
1059 >                p.parent = null;
1060 >            }
1061 >        }
1062 >    }
1063 >
1064 >    /* ---------------- Collision reduction methods -------------- */
1065  
1066 <        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
1067 <            this.loadFactor = lf;
1068 <            this.threshold = threshold;
1069 <            this.table = tab;
1066 >    /**
1067 >     * Spreads higher bits to lower, and also forces top bit to 0.
1068 >     * Because the table uses power-of-two masking, sets of hashes
1069 >     * that vary only in bits above the current mask will always
1070 >     * collide. (Among known examples are sets of Float keys holding
1071 >     * consecutive whole numbers in small tables.)  To counter this,
1072 >     * we apply a transform that spreads the impact of higher bits
1073 >     * downward. There is a tradeoff between speed, utility, and
1074 >     * quality of bit-spreading. Because many common sets of hashes
1075 >     * are already reasonably distributed across bits (so don't benefit
1076 >     * from spreading), and because we use trees to handle large sets
1077 >     * of collisions in bins, we don't need excessively high quality.
1078 >     */
1079 >    private static final int spread(int h) {
1080 >        h ^= (h >>> 18) ^ (h >>> 12);
1081 >        return (h ^ (h >>> 10)) & HASH_BITS;
1082 >    }
1083 >
1084 >    /**
1085 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1086 >     * only when locked.
1087 >     */
1088 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 >        if (key instanceof Comparable) {
1090 >            TreeBin<V> t = new TreeBin<V>();
1091 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 >                t.putTreeNode(e.hash, e.key, e.val);
1093 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094          }
1095 +    }
1096  
1097 <        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
1098 <            HashEntry<K,V> node = tryLock() ? null :
1099 <                scanAndLockForPut(key, hash, value);
1100 <            V oldValue;
1101 <            try {
1102 <                HashEntry<K,V>[] tab = table;
1103 <                int index = (tab.length - 1) & hash;
1104 <                HashEntry<K,V> first = entryAt(tab, index);
1105 <                for (HashEntry<K,V> e = first;;) {
1106 <                    if (e != null) {
1107 <                        K k;
1108 <                        if ((k = e.key) == key ||
1109 <                            (e.hash == hash && key.equals(k))) {
1110 <                            oldValue = e.value;
1111 <                            if (!onlyIfAbsent) {
1112 <                                e.value = value;
1113 <                                ++modCount;
1097 >    /* ---------------- Internal access and update methods -------------- */
1098 >
1099 >    /** Implementation for get and containsKey */
1100 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 >        int h = spread(k.hashCode());
1102 >        retry: for (Node<V>[] tab = table; tab != null;) {
1103 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 >                if ((eh = e.hash) < 0) {
1106 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1107 >                        return ((TreeBin<V>)ek).getValue(h, k);
1108 >                    else {                      // restart with new table
1109 >                        tab = (Node<V>[])ek;
1110 >                        continue retry;
1111 >                    }
1112 >                }
1113 >                else if (eh == h && (ev = e.val) != null &&
1114 >                         ((ek = e.key) == k || k.equals(ek)))
1115 >                    return ev;
1116 >            }
1117 >            break;
1118 >        }
1119 >        return null;
1120 >    }
1121 >
1122 >    /**
1123 >     * Implementation for the four public remove/replace methods:
1124 >     * Replaces node value with v, conditional upon match of cv if
1125 >     * non-null.  If resulting value is null, delete.
1126 >     */
1127 >    @SuppressWarnings("unchecked") private final V internalReplace
1128 >        (Object k, V v, Object cv) {
1129 >        int h = spread(k.hashCode());
1130 >        V oldVal = null;
1131 >        for (Node<V>[] tab = table;;) {
1132 >            Node<V> f; int i, fh; Object fk;
1133 >            if (tab == null ||
1134 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 >                break;
1136 >            else if ((fh = f.hash) < 0) {
1137 >                if ((fk = f.key) instanceof TreeBin) {
1138 >                    TreeBin<V> t = (TreeBin<V>)fk;
1139 >                    boolean validated = false;
1140 >                    boolean deleted = false;
1141 >                    t.acquire(0);
1142 >                    try {
1143 >                        if (tabAt(tab, i) == f) {
1144 >                            validated = true;
1145 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 >                            if (p != null) {
1147 >                                V pv = p.val;
1148 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1149 >                                    oldVal = pv;
1150 >                                    if ((p.val = v) == null) {
1151 >                                        deleted = true;
1152 >                                        t.deleteTreeNode(p);
1153 >                                    }
1154 >                                }
1155                              }
354                            break;
1156                          }
1157 <                        e = e.next;
1157 >                    } finally {
1158 >                        t.release(0);
1159                      }
1160 <                    else {
1161 <                        if (node != null)
1162 <                            node.setNext(first);
361 <                        else
362 <                            node = new HashEntry<K,V>(hash, key, value, first);
363 <                        int c = count + 1;
364 <                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
365 <                            rehash(node);
366 <                        else
367 <                            setEntryAt(tab, index, node);
368 <                        ++modCount;
369 <                        count = c;
370 <                        oldValue = null;
1160 >                    if (validated) {
1161 >                        if (deleted)
1162 >                            addCount(-1L, -1);
1163                          break;
1164                      }
1165                  }
1166 <            } finally {
1167 <                unlock();
1166 >                else
1167 >                    tab = (Node<V>[])fk;
1168 >            }
1169 >            else if (fh != h && f.next == null) // precheck
1170 >                break;                          // rules out possible existence
1171 >            else {
1172 >                boolean validated = false;
1173 >                boolean deleted = false;
1174 >                synchronized (f) {
1175 >                    if (tabAt(tab, i) == f) {
1176 >                        validated = true;
1177 >                        for (Node<V> e = f, pred = null;;) {
1178 >                            Object ek; V ev;
1179 >                            if (e.hash == h &&
1180 >                                ((ev = e.val) != null) &&
1181 >                                ((ek = e.key) == k || k.equals(ek))) {
1182 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1183 >                                    oldVal = ev;
1184 >                                    if ((e.val = v) == null) {
1185 >                                        deleted = true;
1186 >                                        Node<V> en = e.next;
1187 >                                        if (pred != null)
1188 >                                            pred.next = en;
1189 >                                        else
1190 >                                            setTabAt(tab, i, en);
1191 >                                    }
1192 >                                }
1193 >                                break;
1194 >                            }
1195 >                            pred = e;
1196 >                            if ((e = e.next) == null)
1197 >                                break;
1198 >                        }
1199 >                    }
1200 >                }
1201 >                if (validated) {
1202 >                    if (deleted)
1203 >                        addCount(-1L, -1);
1204 >                    break;
1205 >                }
1206              }
377            return oldValue;
1207          }
1208 +        return oldVal;
1209 +    }
1210  
1211 <        /**
1212 <         * Doubles size of table and repacks entries, also adding the
1213 <         * given node to new table
1214 <         */
1215 <        @SuppressWarnings("unchecked")
1216 <        private void rehash(HashEntry<K,V> node) {
1217 <            /*
1218 <             * Reclassify nodes in each list to new table.  Because we
1219 <             * are using power-of-two expansion, the elements from
1220 <             * each bin must either stay at same index, or move with a
1221 <             * power of two offset. We eliminate unnecessary node
1222 <             * creation by catching cases where old nodes can be
1223 <             * reused because their next fields won't change.
1224 <             * Statistically, at the default threshold, only about
1225 <             * one-sixth of them need cloning when a table
1226 <             * doubles. The nodes they replace will be garbage
1227 <             * collectable as soon as they are no longer referenced by
1228 <             * any reader thread that may be in the midst of
1229 <             * concurrently traversing table. Entry accesses use plain
1230 <             * array indexing because they are followed by volatile
1231 <             * table write.
1232 <             */
1233 <            HashEntry<K,V>[] oldTable = table;
1234 <            int oldCapacity = oldTable.length;
1235 <            int newCapacity = oldCapacity << 1;
1236 <            threshold = (int)(newCapacity * loadFactor);
1237 <            HashEntry<K,V>[] newTable =
1238 <                (HashEntry<K,V>[]) new HashEntry[newCapacity];
1239 <            int sizeMask = newCapacity - 1;
1240 <            for (int i = 0; i < oldCapacity ; i++) {
1241 <                HashEntry<K,V> e = oldTable[i];
1242 <                if (e != null) {
1243 <                    HashEntry<K,V> next = e.next;
1244 <                    int idx = e.hash & sizeMask;
1245 <                    if (next == null)   //  Single node on list
1246 <                        newTable[idx] = e;
1247 <                    else { // Reuse consecutive sequence at same slot
1248 <                        HashEntry<K,V> lastRun = e;
1249 <                        int lastIdx = idx;
1250 <                        for (HashEntry<K,V> last = next;
1251 <                             last != null;
1252 <                             last = last.next) {
1253 <                            int k = last.hash & sizeMask;
1254 <                            if (k != lastIdx) {
1255 <                                lastIdx = k;
1256 <                                lastRun = last;
1257 <                            }
1258 <                        }
1259 <                        newTable[lastIdx] = lastRun;
1260 <                        // Clone remaining nodes
1261 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1262 <                            V v = p.value;
1263 <                            int h = p.hash;
1264 <                            int k = h & sizeMask;
434 <                            HashEntry<K,V> n = newTable[k];
435 <                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
436 <                        }
437 <                    }
438 <                }
439 <            }
440 <            int nodeIndex = node.hash & sizeMask; // add the new node
441 <            node.setNext(newTable[nodeIndex]);
442 <            newTable[nodeIndex] = node;
443 <            table = newTable;
444 <        }
445 <
446 <        /**
447 <         * Scans for a node containing given key while trying to
448 <         * acquire lock, creating and returning one if not found. Upon
449 <         * return, guarantees that lock is held. Unlike in most
450 <         * methods, calls to method equals are not screened: Since
451 <         * traversal speed doesn't matter, we might as well help warm
452 <         * up the associated code and accesses as well.
453 <         *
454 <         * @return a new node if key not found, else null
455 <         */
456 <        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
457 <            HashEntry<K,V> first = entryForHash(this, hash);
458 <            HashEntry<K,V> e = first;
459 <            HashEntry<K,V> node = null;
460 <            int retries = -1; // negative while locating node
461 <            while (!tryLock()) {
462 <                HashEntry<K,V> f; // to recheck first below
463 <                if (retries < 0) {
464 <                    if (e == null) {
465 <                        if (node == null) // speculatively create node
466 <                            node = new HashEntry<K,V>(hash, key, value, null);
467 <                        retries = 0;
1211 >    /*
1212 >     * Internal versions of insertion methods
1213 >     * All have the same basic structure as the first (internalPut):
1214 >     *  1. If table uninitialized, create
1215 >     *  2. If bin empty, try to CAS new node
1216 >     *  3. If bin stale, use new table
1217 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 >     *  5. Lock and validate; if valid, scan and add or update
1219 >     *
1220 >     * The putAll method differs mainly in attempting to pre-allocate
1221 >     * enough table space, and also more lazily performs count updates
1222 >     * and checks.
1223 >     *
1224 >     * Most of the function-accepting methods can't be factored nicely
1225 >     * because they require different functional forms, so instead
1226 >     * sprawl out similar mechanics.
1227 >     */
1228 >
1229 >    /** Implementation for put and putIfAbsent */
1230 >    @SuppressWarnings("unchecked") private final V internalPut
1231 >        (K k, V v, boolean onlyIfAbsent) {
1232 >        if (k == null || v == null) throw new NullPointerException();
1233 >        int h = spread(k.hashCode());
1234 >        int len = 0;
1235 >        for (Node<V>[] tab = table;;) {
1236 >            int i, fh; Node<V> f; Object fk; V fv;
1237 >            if (tab == null)
1238 >                tab = initTable();
1239 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 >                    break;                   // no lock when adding to empty bin
1242 >            }
1243 >            else if ((fh = f.hash) < 0) {
1244 >                if ((fk = f.key) instanceof TreeBin) {
1245 >                    TreeBin<V> t = (TreeBin<V>)fk;
1246 >                    V oldVal = null;
1247 >                    t.acquire(0);
1248 >                    try {
1249 >                        if (tabAt(tab, i) == f) {
1250 >                            len = 2;
1251 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1252 >                            if (p != null) {
1253 >                                oldVal = p.val;
1254 >                                if (!onlyIfAbsent)
1255 >                                    p.val = v;
1256 >                            }
1257 >                        }
1258 >                    } finally {
1259 >                        t.release(0);
1260 >                    }
1261 >                    if (len != 0) {
1262 >                        if (oldVal != null)
1263 >                            return oldVal;
1264 >                        break;
1265                      }
469                    else if (key.equals(e.key))
470                        retries = 0;
471                    else
472                        e = e.next;
1266                  }
1267 <                else if (++retries > MAX_SCAN_RETRIES) {
1268 <                    lock();
1267 >                else
1268 >                    tab = (Node<V>[])fk;
1269 >            }
1270 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 >                return fv;
1273 >            else {
1274 >                V oldVal = null;
1275 >                synchronized (f) {
1276 >                    if (tabAt(tab, i) == f) {
1277 >                        len = 1;
1278 >                        for (Node<V> e = f;; ++len) {
1279 >                            Object ek; V ev;
1280 >                            if (e.hash == h &&
1281 >                                (ev = e.val) != null &&
1282 >                                ((ek = e.key) == k || k.equals(ek))) {
1283 >                                oldVal = ev;
1284 >                                if (!onlyIfAbsent)
1285 >                                    e.val = v;
1286 >                                break;
1287 >                            }
1288 >                            Node<V> last = e;
1289 >                            if ((e = e.next) == null) {
1290 >                                last.next = new Node<V>(h, k, v, null);
1291 >                                if (len >= TREE_THRESHOLD)
1292 >                                    replaceWithTreeBin(tab, i, k);
1293 >                                break;
1294 >                            }
1295 >                        }
1296 >                    }
1297 >                }
1298 >                if (len != 0) {
1299 >                    if (oldVal != null)
1300 >                        return oldVal;
1301                      break;
1302                  }
1303 <                else if ((retries & 1) == 0 &&
479 <                         (f = entryForHash(this, hash)) != first) {
480 <                    e = first = f; // re-traverse if entry changed
481 <                    retries = -1;
482 <                }
483 <            }
484 <            return node;
1303 >            }
1304          }
1305 +        addCount(1L, len);
1306 +        return null;
1307 +    }
1308  
1309 <        /**
1310 <         * Scans for a node containing the given key while trying to
1311 <         * acquire lock for a remove or replace operation. Upon
1312 <         * return, guarantees that lock is held.  Note that we must
1313 <         * lock even if the key is not found, to ensure sequential
1314 <         * consistency of updates.
1315 <         */
1316 <        private void scanAndLock(Object key, int hash) {
1317 <            // similar to but simpler than scanAndLockForPut
1318 <            HashEntry<K,V> first = entryForHash(this, hash);
1319 <            HashEntry<K,V> e = first;
1320 <            int retries = -1;
1321 <            while (!tryLock()) {
1322 <                HashEntry<K,V> f;
1323 <                if (retries < 0) {
1324 <                    if (e == null || key.equals(e.key))
1325 <                        retries = 0;
1326 <                    else
1327 <                        e = e.next;
1309 >    /** Implementation for computeIfAbsent */
1310 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 >        (K k, Function<? super K, ? extends V> mf) {
1312 >        if (k == null || mf == null)
1313 >            throw new NullPointerException();
1314 >        int h = spread(k.hashCode());
1315 >        V val = null;
1316 >        int len = 0;
1317 >        for (Node<V>[] tab = table;;) {
1318 >            Node<V> f; int i; Object fk;
1319 >            if (tab == null)
1320 >                tab = initTable();
1321 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 >                Node<V> node = new Node<V>(h, k, null, null);
1323 >                synchronized (node) {
1324 >                    if (casTabAt(tab, i, null, node)) {
1325 >                        len = 1;
1326 >                        try {
1327 >                            if ((val = mf.apply(k)) != null)
1328 >                                node.val = val;
1329 >                        } finally {
1330 >                            if (val == null)
1331 >                                setTabAt(tab, i, null);
1332 >                        }
1333 >                    }
1334                  }
1335 <                else if (++retries > MAX_SCAN_RETRIES) {
508 <                    lock();
1335 >                if (len != 0)
1336                      break;
1337 +            }
1338 +            else if (f.hash < 0) {
1339 +                if ((fk = f.key) instanceof TreeBin) {
1340 +                    TreeBin<V> t = (TreeBin<V>)fk;
1341 +                    boolean added = false;
1342 +                    t.acquire(0);
1343 +                    try {
1344 +                        if (tabAt(tab, i) == f) {
1345 +                            len = 1;
1346 +                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 +                            if (p != null)
1348 +                                val = p.val;
1349 +                            else if ((val = mf.apply(k)) != null) {
1350 +                                added = true;
1351 +                                len = 2;
1352 +                                t.putTreeNode(h, k, val);
1353 +                            }
1354 +                        }
1355 +                    } finally {
1356 +                        t.release(0);
1357 +                    }
1358 +                    if (len != 0) {
1359 +                        if (!added)
1360 +                            return val;
1361 +                        break;
1362 +                    }
1363 +                }
1364 +                else
1365 +                    tab = (Node<V>[])fk;
1366 +            }
1367 +            else {
1368 +                for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 +                    Object ek; V ev;
1370 +                    if (e.hash == h && (ev = e.val) != null &&
1371 +                        ((ek = e.key) == k || k.equals(ek)))
1372 +                        return ev;
1373                  }
1374 <                else if ((retries & 1) == 0 &&
1375 <                         (f = entryForHash(this, hash)) != first) {
1376 <                    e = first = f;
1377 <                    retries = -1;
1374 >                boolean added = false;
1375 >                synchronized (f) {
1376 >                    if (tabAt(tab, i) == f) {
1377 >                        len = 1;
1378 >                        for (Node<V> e = f;; ++len) {
1379 >                            Object ek; V ev;
1380 >                            if (e.hash == h &&
1381 >                                (ev = e.val) != null &&
1382 >                                ((ek = e.key) == k || k.equals(ek))) {
1383 >                                val = ev;
1384 >                                break;
1385 >                            }
1386 >                            Node<V> last = e;
1387 >                            if ((e = e.next) == null) {
1388 >                                if ((val = mf.apply(k)) != null) {
1389 >                                    added = true;
1390 >                                    last.next = new Node<V>(h, k, val, null);
1391 >                                    if (len >= TREE_THRESHOLD)
1392 >                                        replaceWithTreeBin(tab, i, k);
1393 >                                }
1394 >                                break;
1395 >                            }
1396 >                        }
1397 >                    }
1398 >                }
1399 >                if (len != 0) {
1400 >                    if (!added)
1401 >                        return val;
1402 >                    break;
1403                  }
1404              }
1405          }
1406 +        if (val != null)
1407 +            addCount(1L, len);
1408 +        return val;
1409 +    }
1410  
1411 <        /**
1412 <         * Remove; match on key only if value null, else match both.
1413 <         */
1414 <        final V remove(Object key, int hash, Object value) {
1415 <            if (!tryLock())
1416 <                scanAndLock(key, hash);
1417 <            V oldValue = null;
1418 <            try {
1419 <                HashEntry<K,V>[] tab = table;
1420 <                int index = (tab.length - 1) & hash;
1421 <                HashEntry<K,V> e = entryAt(tab, index);
1422 <                HashEntry<K,V> pred = null;
1423 <                while (e != null) {
1424 <                    K k;
1425 <                    HashEntry<K,V> next = e.next;
1426 <                    if ((k = e.key) == key ||
1427 <                        (e.hash == hash && key.equals(k))) {
1428 <                        V v = e.value;
1429 <                        if (value == null || value == v || value.equals(v)) {
1430 <                            if (pred == null)
1431 <                                setEntryAt(tab, index, next);
1432 <                            else
1433 <                                pred.setNext(next);
1434 <                            ++modCount;
1435 <                            --count;
1436 <                            oldValue = v;
1411 >    /** Implementation for compute */
1412 >    @SuppressWarnings("unchecked") private final V internalCompute
1413 >        (K k, boolean onlyIfPresent,
1414 >         BiFunction<? super K, ? super V, ? extends V> mf) {
1415 >        if (k == null || mf == null)
1416 >            throw new NullPointerException();
1417 >        int h = spread(k.hashCode());
1418 >        V val = null;
1419 >        int delta = 0;
1420 >        int len = 0;
1421 >        for (Node<V>[] tab = table;;) {
1422 >            Node<V> f; int i, fh; Object fk;
1423 >            if (tab == null)
1424 >                tab = initTable();
1425 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 >                if (onlyIfPresent)
1427 >                    break;
1428 >                Node<V> node = new Node<V>(h, k, null, null);
1429 >                synchronized (node) {
1430 >                    if (casTabAt(tab, i, null, node)) {
1431 >                        try {
1432 >                            len = 1;
1433 >                            if ((val = mf.apply(k, null)) != null) {
1434 >                                node.val = val;
1435 >                                delta = 1;
1436 >                            }
1437 >                        } finally {
1438 >                            if (delta == 0)
1439 >                                setTabAt(tab, i, null);
1440                          }
1441 +                    }
1442 +                }
1443 +                if (len != 0)
1444 +                    break;
1445 +            }
1446 +            else if ((fh = f.hash) < 0) {
1447 +                if ((fk = f.key) instanceof TreeBin) {
1448 +                    TreeBin<V> t = (TreeBin<V>)fk;
1449 +                    t.acquire(0);
1450 +                    try {
1451 +                        if (tabAt(tab, i) == f) {
1452 +                            len = 1;
1453 +                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 +                            if (p == null && onlyIfPresent)
1455 +                                break;
1456 +                            V pv = (p == null) ? null : p.val;
1457 +                            if ((val = mf.apply(k, pv)) != null) {
1458 +                                if (p != null)
1459 +                                    p.val = val;
1460 +                                else {
1461 +                                    len = 2;
1462 +                                    delta = 1;
1463 +                                    t.putTreeNode(h, k, val);
1464 +                                }
1465 +                            }
1466 +                            else if (p != null) {
1467 +                                delta = -1;
1468 +                                t.deleteTreeNode(p);
1469 +                            }
1470 +                        }
1471 +                    } finally {
1472 +                        t.release(0);
1473 +                    }
1474 +                    if (len != 0)
1475                          break;
1476 +                }
1477 +                else
1478 +                    tab = (Node<V>[])fk;
1479 +            }
1480 +            else {
1481 +                synchronized (f) {
1482 +                    if (tabAt(tab, i) == f) {
1483 +                        len = 1;
1484 +                        for (Node<V> e = f, pred = null;; ++len) {
1485 +                            Object ek; V ev;
1486 +                            if (e.hash == h &&
1487 +                                (ev = e.val) != null &&
1488 +                                ((ek = e.key) == k || k.equals(ek))) {
1489 +                                val = mf.apply(k, ev);
1490 +                                if (val != null)
1491 +                                    e.val = val;
1492 +                                else {
1493 +                                    delta = -1;
1494 +                                    Node<V> en = e.next;
1495 +                                    if (pred != null)
1496 +                                        pred.next = en;
1497 +                                    else
1498 +                                        setTabAt(tab, i, en);
1499 +                                }
1500 +                                break;
1501 +                            }
1502 +                            pred = e;
1503 +                            if ((e = e.next) == null) {
1504 +                                if (!onlyIfPresent &&
1505 +                                    (val = mf.apply(k, null)) != null) {
1506 +                                    pred.next = new Node<V>(h, k, val, null);
1507 +                                    delta = 1;
1508 +                                    if (len >= TREE_THRESHOLD)
1509 +                                        replaceWithTreeBin(tab, i, k);
1510 +                                }
1511 +                                break;
1512 +                            }
1513 +                        }
1514                      }
548                    pred = e;
549                    e = next;
1515                  }
1516 <            } finally {
1517 <                unlock();
1516 >                if (len != 0)
1517 >                    break;
1518              }
554            return oldValue;
1519          }
1520 +        if (delta != 0)
1521 +            addCount((long)delta, len);
1522 +        return val;
1523 +    }
1524  
1525 <        final boolean replace(K key, int hash, V oldValue, V newValue) {
1526 <            if (!tryLock())
1527 <                scanAndLock(key, hash);
1528 <            boolean replaced = false;
1529 <            try {
1530 <                HashEntry<K,V> e;
1531 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1532 <                    K k;
1533 <                    if ((k = e.key) == key ||
1534 <                        (e.hash == hash && key.equals(k))) {
1535 <                        if (oldValue.equals(e.value)) {
1536 <                            e.value = newValue;
1537 <                            ++modCount;
1538 <                            replaced = true;
1525 >    /** Implementation for merge */
1526 >    @SuppressWarnings("unchecked") private final V internalMerge
1527 >        (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 >        if (k == null || v == null || mf == null)
1529 >            throw new NullPointerException();
1530 >        int h = spread(k.hashCode());
1531 >        V val = null;
1532 >        int delta = 0;
1533 >        int len = 0;
1534 >        for (Node<V>[] tab = table;;) {
1535 >            int i; Node<V> f; Object fk; V fv;
1536 >            if (tab == null)
1537 >                tab = initTable();
1538 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 >                    delta = 1;
1541 >                    val = v;
1542 >                    break;
1543 >                }
1544 >            }
1545 >            else if (f.hash < 0) {
1546 >                if ((fk = f.key) instanceof TreeBin) {
1547 >                    TreeBin<V> t = (TreeBin<V>)fk;
1548 >                    t.acquire(0);
1549 >                    try {
1550 >                        if (tabAt(tab, i) == f) {
1551 >                            len = 1;
1552 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 >                            val = (p == null) ? v : mf.apply(p.val, v);
1554 >                            if (val != null) {
1555 >                                if (p != null)
1556 >                                    p.val = val;
1557 >                                else {
1558 >                                    len = 2;
1559 >                                    delta = 1;
1560 >                                    t.putTreeNode(h, k, val);
1561 >                                }
1562 >                            }
1563 >                            else if (p != null) {
1564 >                                delta = -1;
1565 >                                t.deleteTreeNode(p);
1566 >                            }
1567                          }
1568 +                    } finally {
1569 +                        t.release(0);
1570 +                    }
1571 +                    if (len != 0)
1572                          break;
1573 +                }
1574 +                else
1575 +                    tab = (Node<V>[])fk;
1576 +            }
1577 +            else {
1578 +                synchronized (f) {
1579 +                    if (tabAt(tab, i) == f) {
1580 +                        len = 1;
1581 +                        for (Node<V> e = f, pred = null;; ++len) {
1582 +                            Object ek; V ev;
1583 +                            if (e.hash == h &&
1584 +                                (ev = e.val) != null &&
1585 +                                ((ek = e.key) == k || k.equals(ek))) {
1586 +                                val = mf.apply(ev, v);
1587 +                                if (val != null)
1588 +                                    e.val = val;
1589 +                                else {
1590 +                                    delta = -1;
1591 +                                    Node<V> en = e.next;
1592 +                                    if (pred != null)
1593 +                                        pred.next = en;
1594 +                                    else
1595 +                                        setTabAt(tab, i, en);
1596 +                                }
1597 +                                break;
1598 +                            }
1599 +                            pred = e;
1600 +                            if ((e = e.next) == null) {
1601 +                                val = v;
1602 +                                pred.next = new Node<V>(h, k, val, null);
1603 +                                delta = 1;
1604 +                                if (len >= TREE_THRESHOLD)
1605 +                                    replaceWithTreeBin(tab, i, k);
1606 +                                break;
1607 +                            }
1608 +                        }
1609                      }
1610                  }
1611 <            } finally {
1612 <                unlock();
1611 >                if (len != 0)
1612 >                    break;
1613              }
578            return replaced;
1614          }
1615 +        if (delta != 0)
1616 +            addCount((long)delta, len);
1617 +        return val;
1618 +    }
1619 +
1620 +    /** Implementation for putAll */
1621 +    @SuppressWarnings("unchecked") private final void internalPutAll
1622 +        (Map<? extends K, ? extends V> m) {
1623 +        tryPresize(m.size());
1624 +        long delta = 0L;     // number of uncommitted additions
1625 +        boolean npe = false; // to throw exception on exit for nulls
1626 +        try {                // to clean up counts on other exceptions
1627 +            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 +                Object k; V v;
1629 +                if (entry == null || (k = entry.getKey()) == null ||
1630 +                    (v = entry.getValue()) == null) {
1631 +                    npe = true;
1632 +                    break;
1633 +                }
1634 +                int h = spread(k.hashCode());
1635 +                for (Node<V>[] tab = table;;) {
1636 +                    int i; Node<V> f; int fh; Object fk;
1637 +                    if (tab == null)
1638 +                        tab = initTable();
1639 +                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 +                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 +                            ++delta;
1642 +                            break;
1643 +                        }
1644 +                    }
1645 +                    else if ((fh = f.hash) < 0) {
1646 +                        if ((fk = f.key) instanceof TreeBin) {
1647 +                            TreeBin<V> t = (TreeBin<V>)fk;
1648 +                            boolean validated = false;
1649 +                            t.acquire(0);
1650 +                            try {
1651 +                                if (tabAt(tab, i) == f) {
1652 +                                    validated = true;
1653 +                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 +                                    if (p != null)
1655 +                                        p.val = v;
1656 +                                    else {
1657 +                                        t.putTreeNode(h, k, v);
1658 +                                        ++delta;
1659 +                                    }
1660 +                                }
1661 +                            } finally {
1662 +                                t.release(0);
1663 +                            }
1664 +                            if (validated)
1665 +                                break;
1666 +                        }
1667 +                        else
1668 +                            tab = (Node<V>[])fk;
1669 +                    }
1670 +                    else {
1671 +                        int len = 0;
1672 +                        synchronized (f) {
1673 +                            if (tabAt(tab, i) == f) {
1674 +                                len = 1;
1675 +                                for (Node<V> e = f;; ++len) {
1676 +                                    Object ek; V ev;
1677 +                                    if (e.hash == h &&
1678 +                                        (ev = e.val) != null &&
1679 +                                        ((ek = e.key) == k || k.equals(ek))) {
1680 +                                        e.val = v;
1681 +                                        break;
1682 +                                    }
1683 +                                    Node<V> last = e;
1684 +                                    if ((e = e.next) == null) {
1685 +                                        ++delta;
1686 +                                        last.next = new Node<V>(h, k, v, null);
1687 +                                        if (len >= TREE_THRESHOLD)
1688 +                                            replaceWithTreeBin(tab, i, k);
1689 +                                        break;
1690 +                                    }
1691 +                                }
1692 +                            }
1693 +                        }
1694 +                        if (len != 0) {
1695 +                            if (len > 1) {
1696 +                                addCount(delta, len);
1697 +                                delta = 0L;
1698 +                            }
1699 +                            break;
1700 +                        }
1701 +                    }
1702 +                }
1703 +            }
1704 +        } finally {
1705 +            if (delta != 0L)
1706 +                addCount(delta, 2);
1707 +        }
1708 +        if (npe)
1709 +            throw new NullPointerException();
1710 +    }
1711  
1712 <        final V replace(K key, int hash, V value) {
1713 <            if (!tryLock())
1714 <                scanAndLock(key, hash);
1715 <            V oldValue = null;
1716 <            try {
1717 <                HashEntry<K,V> e;
1718 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1719 <                    K k;
1720 <                    if ((k = e.key) == key ||
1721 <                        (e.hash == hash && key.equals(k))) {
1722 <                        oldValue = e.value;
1723 <                        e.value = value;
1724 <                        ++modCount;
1712 >    /**
1713 >     * Implementation for clear. Steps through each bin, removing all
1714 >     * nodes.
1715 >     */
1716 >    @SuppressWarnings("unchecked") private final void internalClear() {
1717 >        long delta = 0L; // negative number of deletions
1718 >        int i = 0;
1719 >        Node<V>[] tab = table;
1720 >        while (tab != null && i < tab.length) {
1721 >            Node<V> f = tabAt(tab, i);
1722 >            if (f == null)
1723 >                ++i;
1724 >            else if (f.hash < 0) {
1725 >                Object fk;
1726 >                if ((fk = f.key) instanceof TreeBin) {
1727 >                    TreeBin<V> t = (TreeBin<V>)fk;
1728 >                    t.acquire(0);
1729 >                    try {
1730 >                        if (tabAt(tab, i) == f) {
1731 >                            for (Node<V> p = t.first; p != null; p = p.next) {
1732 >                                if (p.val != null) { // (currently always true)
1733 >                                    p.val = null;
1734 >                                    --delta;
1735 >                                }
1736 >                            }
1737 >                            t.first = null;
1738 >                            t.root = null;
1739 >                            ++i;
1740 >                        }
1741 >                    } finally {
1742 >                        t.release(0);
1743 >                    }
1744 >                }
1745 >                else
1746 >                    tab = (Node<V>[])fk;
1747 >            }
1748 >            else {
1749 >                synchronized (f) {
1750 >                    if (tabAt(tab, i) == f) {
1751 >                        for (Node<V> e = f; e != null; e = e.next) {
1752 >                            if (e.val != null) {  // (currently always true)
1753 >                                e.val = null;
1754 >                                --delta;
1755 >                            }
1756 >                        }
1757 >                        setTabAt(tab, i, null);
1758 >                        ++i;
1759 >                    }
1760 >                }
1761 >            }
1762 >        }
1763 >        if (delta != 0L)
1764 >            addCount(delta, -1);
1765 >    }
1766 >
1767 >    /* ---------------- Table Initialization and Resizing -------------- */
1768 >
1769 >    /**
1770 >     * Returns a power of two table size for the given desired capacity.
1771 >     * See Hackers Delight, sec 3.2
1772 >     */
1773 >    private static final int tableSizeFor(int c) {
1774 >        int n = c - 1;
1775 >        n |= n >>> 1;
1776 >        n |= n >>> 2;
1777 >        n |= n >>> 4;
1778 >        n |= n >>> 8;
1779 >        n |= n >>> 16;
1780 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 >    }
1782 >
1783 >    /**
1784 >     * Initializes table, using the size recorded in sizeCtl.
1785 >     */
1786 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 >        Node<V>[] tab; int sc;
1788 >        while ((tab = table) == null) {
1789 >            if ((sc = sizeCtl) < 0)
1790 >                Thread.yield(); // lost initialization race; just spin
1791 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 >                try {
1793 >                    if ((tab = table) == null) {
1794 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 >                        table = tab = (Node<V>[])tb;
1797 >                        sc = n - (n >>> 2);
1798 >                    }
1799 >                } finally {
1800 >                    sizeCtl = sc;
1801 >                }
1802 >                break;
1803 >            }
1804 >        }
1805 >        return tab;
1806 >    }
1807 >
1808 >    /**
1809 >     * Adds to count, and if table is too small and not already
1810 >     * resizing, initiates transfer. If already resizing, helps
1811 >     * perform transfer if work is available.  Rechecks occupancy
1812 >     * after a transfer to see if another resize is already needed
1813 >     * because resizings are lagging additions.
1814 >     *
1815 >     * @param x the count to add
1816 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 >     */
1818 >    private final void addCount(long x, int check) {
1819 >        Cell[] as; long b, s;
1820 >        if ((as = counterCells) != null ||
1821 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 >            Cell a; long v; int m;
1823 >            boolean uncontended = true;
1824 >            if (as == null || (m = as.length - 1) < 0 ||
1825 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 >                !(uncontended =
1827 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 >                fullAddCount(x, uncontended);
1829 >                return;
1830 >            }
1831 >            if (check <= 1)
1832 >                return;
1833 >            s = sumCount();
1834 >        }
1835 >        if (check >= 0) {
1836 >            Node<V>[] tab, nt; int sc;
1837 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 >                   tab.length < MAXIMUM_CAPACITY) {
1839 >                if (sc < 0) {
1840 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1841 >                        (nt = nextTable) == null)
1842                          break;
1843 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 +                        transfer(tab, nt);
1845 +                }
1846 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 +                    transfer(tab, null);
1848 +                s = sumCount();
1849 +            }
1850 +        }
1851 +    }
1852 +
1853 +    /**
1854 +     * Tries to presize table to accommodate the given number of elements.
1855 +     *
1856 +     * @param size number of elements (doesn't need to be perfectly accurate)
1857 +     */
1858 +    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 +        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860 +            tableSizeFor(size + (size >>> 1) + 1);
1861 +        int sc;
1862 +        while ((sc = sizeCtl) >= 0) {
1863 +            Node<V>[] tab = table; int n;
1864 +            if (tab == null || (n = tab.length) == 0) {
1865 +                n = (sc > c) ? sc : c;
1866 +                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 +                    try {
1868 +                        if (table == tab) {
1869 +                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 +                            table = (Node<V>[])tb;
1871 +                            sc = n - (n >>> 2);
1872 +                        }
1873 +                    } finally {
1874 +                        sizeCtl = sc;
1875                      }
1876                  }
597            } finally {
598                unlock();
1877              }
1878 <            return oldValue;
1878 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879 >                break;
1880 >            else if (tab == table &&
1881 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 >                transfer(tab, null);
1883          }
1884 +    }
1885  
1886 <        final void clear() {
1887 <            lock();
1886 >    /*
1887 >     * Moves and/or copies the nodes in each bin to new table. See
1888 >     * above for explanation.
1889 >     */
1890 >    @SuppressWarnings("unchecked") private final void transfer
1891 >        (Node<V>[] tab, Node<V>[] nextTab) {
1892 >        int n = tab.length, stride;
1893 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 >        if (nextTab == null) {            // initiating
1896              try {
1897 <                HashEntry<K,V>[] tab = table;
1898 <                for (int i = 0; i < tab.length ; i++)
1899 <                    setEntryAt(tab, i, null);
1900 <                ++modCount;
1901 <                count = 0;
1902 <            } finally {
1903 <                unlock();
1897 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 >                nextTab = (Node<V>[])tb;
1899 >            } catch (Throwable ex) {      // try to cope with OOME
1900 >                sizeCtl = Integer.MAX_VALUE;
1901 >                return;
1902 >            }
1903 >            nextTable = nextTab;
1904 >            transferOrigin = n;
1905 >            transferIndex = n;
1906 >            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
1908 >                int nextk = (k > stride) ? k - stride : 0;
1909 >                for (int m = nextk; m < k; ++m)
1910 >                    nextTab[m] = rev;
1911 >                for (int m = n + nextk; m < n + k; ++m)
1912 >                    nextTab[m] = rev;
1913 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914              }
1915          }
1916 +        int nextn = nextTab.length;
1917 +        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 +        boolean advance = true;
1919 +        for (int i = 0, bound = 0;;) {
1920 +            int nextIndex, nextBound; Node<V> f; Object fk;
1921 +            while (advance) {
1922 +                if (--i >= bound)
1923 +                    advance = false;
1924 +                else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 +                    i = -1;
1926 +                    advance = false;
1927 +                }
1928 +                else if (U.compareAndSwapInt
1929 +                         (this, TRANSFERINDEX, nextIndex,
1930 +                          nextBound = (nextIndex > stride ?
1931 +                                       nextIndex - stride : 0))) {
1932 +                    bound = nextBound;
1933 +                    i = nextIndex - 1;
1934 +                    advance = false;
1935 +                }
1936 +            }
1937 +            if (i < 0 || i >= n || i + n >= nextn) {
1938 +                for (int sc;;) {
1939 +                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 +                        if (sc == -1) {
1941 +                            nextTable = null;
1942 +                            table = nextTab;
1943 +                            sizeCtl = (n << 1) - (n >>> 1);
1944 +                        }
1945 +                        return;
1946 +                    }
1947 +                }
1948 +            }
1949 +            else if ((f = tabAt(tab, i)) == null) {
1950 +                if (casTabAt(tab, i, null, fwd)) {
1951 +                    setTabAt(nextTab, i, null);
1952 +                    setTabAt(nextTab, i + n, null);
1953 +                    advance = true;
1954 +                }
1955 +            }
1956 +            else if (f.hash >= 0) {
1957 +                synchronized (f) {
1958 +                    if (tabAt(tab, i) == f) {
1959 +                        int runBit = f.hash & n;
1960 +                        Node<V> lastRun = f, lo = null, hi = null;
1961 +                        for (Node<V> p = f.next; p != null; p = p.next) {
1962 +                            int b = p.hash & n;
1963 +                            if (b != runBit) {
1964 +                                runBit = b;
1965 +                                lastRun = p;
1966 +                            }
1967 +                        }
1968 +                        if (runBit == 0)
1969 +                            lo = lastRun;
1970 +                        else
1971 +                            hi = lastRun;
1972 +                        for (Node<V> p = f; p != lastRun; p = p.next) {
1973 +                            int ph = p.hash;
1974 +                            Object pk = p.key; V pv = p.val;
1975 +                            if ((ph & n) == 0)
1976 +                                lo = new Node<V>(ph, pk, pv, lo);
1977 +                            else
1978 +                                hi = new Node<V>(ph, pk, pv, hi);
1979 +                        }
1980 +                        setTabAt(nextTab, i, lo);
1981 +                        setTabAt(nextTab, i + n, hi);
1982 +                        setTabAt(tab, i, fwd);
1983 +                        advance = true;
1984 +                    }
1985 +                }
1986 +            }
1987 +            else if ((fk = f.key) instanceof TreeBin) {
1988 +                TreeBin<V> t = (TreeBin<V>)fk;
1989 +                t.acquire(0);
1990 +                try {
1991 +                    if (tabAt(tab, i) == f) {
1992 +                        TreeBin<V> lt = new TreeBin<V>();
1993 +                        TreeBin<V> ht = new TreeBin<V>();
1994 +                        int lc = 0, hc = 0;
1995 +                        for (Node<V> e = t.first; e != null; e = e.next) {
1996 +                            int h = e.hash;
1997 +                            Object k = e.key; V v = e.val;
1998 +                            if ((h & n) == 0) {
1999 +                                ++lc;
2000 +                                lt.putTreeNode(h, k, v);
2001 +                            }
2002 +                            else {
2003 +                                ++hc;
2004 +                                ht.putTreeNode(h, k, v);
2005 +                            }
2006 +                        }
2007 +                        Node<V> ln, hn; // throw away trees if too small
2008 +                        if (lc < TREE_THRESHOLD) {
2009 +                            ln = null;
2010 +                            for (Node<V> p = lt.first; p != null; p = p.next)
2011 +                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 +                        }
2013 +                        else
2014 +                            ln = new Node<V>(MOVED, lt, null, null);
2015 +                        setTabAt(nextTab, i, ln);
2016 +                        if (hc < TREE_THRESHOLD) {
2017 +                            hn = null;
2018 +                            for (Node<V> p = ht.first; p != null; p = p.next)
2019 +                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 +                        }
2021 +                        else
2022 +                            hn = new Node<V>(MOVED, ht, null, null);
2023 +                        setTabAt(nextTab, i + n, hn);
2024 +                        setTabAt(tab, i, fwd);
2025 +                        advance = true;
2026 +                    }
2027 +                } finally {
2028 +                    t.release(0);
2029 +                }
2030 +            }
2031 +            else
2032 +                advance = true; // already processed
2033 +        }
2034      }
2035  
2036 <    // Accessing segments
2037 <
2038 <    /**
2039 <     * Gets the jth element of given segment array (if nonnull) with
2040 <     * volatile element access semantics via Unsafe. (The null check
2041 <     * can trigger harmlessly only during deserialization.) Note:
2042 <     * because each element of segments array is set only once (using
2043 <     * fully ordered writes), some performance-sensitive methods rely
2044 <     * on this method only as a recheck upon null reads.
2045 <     */
2046 <    @SuppressWarnings("unchecked")
2047 <    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
629 <        long u = (j << SSHIFT) + SBASE;
630 <        return ss == null ? null :
631 <            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
2036 >    /* ---------------- Counter support -------------- */
2037 >
2038 >    final long sumCount() {
2039 >        Cell[] as = counterCells; Cell a;
2040 >        long sum = baseCount;
2041 >        if (as != null) {
2042 >            for (int i = 0; i < as.length; ++i) {
2043 >                if ((a = as[i]) != null)
2044 >                    sum += a.value;
2045 >            }
2046 >        }
2047 >        return sum;
2048      }
2049  
2050 +    // See LongAdder version for explanation
2051 +    private final void fullAddCount(long x, boolean wasUncontended) {
2052 +        int h;
2053 +        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 +            ThreadLocalRandom.localInit();      // force initialization
2055 +            h = ThreadLocalRandom.getProbe();
2056 +            wasUncontended = true;
2057 +        }
2058 +        boolean collide = false;                // True if last slot nonempty
2059 +        for (;;) {
2060 +            Cell[] as; Cell a; int n; long v;
2061 +            if ((as = counterCells) != null && (n = as.length) > 0) {
2062 +                if ((a = as[(n - 1) & h]) == null) {
2063 +                    if (cellsBusy == 0) {            // Try to attach new Cell
2064 +                        Cell r = new Cell(x); // Optimistic create
2065 +                        if (cellsBusy == 0 &&
2066 +                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 +                            boolean created = false;
2068 +                            try {               // Recheck under lock
2069 +                                Cell[] rs; int m, j;
2070 +                                if ((rs = counterCells) != null &&
2071 +                                    (m = rs.length) > 0 &&
2072 +                                    rs[j = (m - 1) & h] == null) {
2073 +                                    rs[j] = r;
2074 +                                    created = true;
2075 +                                }
2076 +                            } finally {
2077 +                                cellsBusy = 0;
2078 +                            }
2079 +                            if (created)
2080 +                                break;
2081 +                            continue;           // Slot is now non-empty
2082 +                        }
2083 +                    }
2084 +                    collide = false;
2085 +                }
2086 +                else if (!wasUncontended)       // CAS already known to fail
2087 +                    wasUncontended = true;      // Continue after rehash
2088 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 +                    break;
2090 +                else if (counterCells != as || n >= NCPU)
2091 +                    collide = false;            // At max size or stale
2092 +                else if (!collide)
2093 +                    collide = true;
2094 +                else if (cellsBusy == 0 &&
2095 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 +                    try {
2097 +                        if (counterCells == as) {// Expand table unless stale
2098 +                            Cell[] rs = new Cell[n << 1];
2099 +                            for (int i = 0; i < n; ++i)
2100 +                                rs[i] = as[i];
2101 +                            counterCells = rs;
2102 +                        }
2103 +                    } finally {
2104 +                        cellsBusy = 0;
2105 +                    }
2106 +                    collide = false;
2107 +                    continue;                   // Retry with expanded table
2108 +                }
2109 +                h = ThreadLocalRandom.advanceProbe(h);
2110 +            }
2111 +            else if (cellsBusy == 0 && counterCells == as &&
2112 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 +                boolean init = false;
2114 +                try {                           // Initialize table
2115 +                    if (counterCells == as) {
2116 +                        Cell[] rs = new Cell[2];
2117 +                        rs[h & 1] = new Cell(x);
2118 +                        counterCells = rs;
2119 +                        init = true;
2120 +                    }
2121 +                } finally {
2122 +                    cellsBusy = 0;
2123 +                }
2124 +                if (init)
2125 +                    break;
2126 +            }
2127 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 +                break;                          // Fall back on using base
2129 +        }
2130 +    }
2131 +
2132 +    /* ----------------Table Traversal -------------- */
2133 +
2134      /**
2135 <     * Returns the segment for the given index, creating it and
2136 <     * recording in segment table (via CAS) if not already present.
2137 <     *
2138 <     * @param k the index
2139 <     * @return the segment
2140 <     */
2141 <    @SuppressWarnings("unchecked")
2142 <    private Segment<K,V> ensureSegment(int k) {
2143 <        final Segment<K,V>[] ss = this.segments;
2144 <        long u = (k << SSHIFT) + SBASE; // raw offset
2145 <        Segment<K,V> seg;
2146 <        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
2147 <            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
2148 <            int cap = proto.table.length;
2149 <            float lf = proto.loadFactor;
2150 <            int threshold = (int)(cap * lf);
2151 <            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
2152 <            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
2153 <                == null) { // recheck
2154 <                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
2155 <                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
2156 <                       == null) {
2157 <                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
2158 <                        break;
2135 >     * Encapsulates traversal for methods such as containsValue; also
2136 >     * serves as a base class for other iterators and bulk tasks.
2137 >     *
2138 >     * At each step, the iterator snapshots the key ("nextKey") and
2139 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2140 >     * snapshot, has a non-null user value). Because val fields can
2141 >     * change (including to null, indicating deletion), field nextVal
2142 >     * might not be accurate at point of use, but still maintains the
2143 >     * weak consistency property of holding a value that was once
2144 >     * valid. To support iterator.remove, the nextKey field is not
2145 >     * updated (nulled out) when the iterator cannot advance.
2146 >     *
2147 >     * Internal traversals directly access these fields, as in:
2148 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2149 >     *
2150 >     * Exported iterators must track whether the iterator has advanced
2151 >     * (in hasNext vs next) (by setting/checking/nulling field
2152 >     * nextVal), and then extract key, value, or key-value pairs as
2153 >     * return values of next().
2154 >     *
2155 >     * The iterator visits once each still-valid node that was
2156 >     * reachable upon iterator construction. It might miss some that
2157 >     * were added to a bin after the bin was visited, which is OK wrt
2158 >     * consistency guarantees. Maintaining this property in the face
2159 >     * of possible ongoing resizes requires a fair amount of
2160 >     * bookkeeping state that is difficult to optimize away amidst
2161 >     * volatile accesses.  Even so, traversal maintains reasonable
2162 >     * throughput.
2163 >     *
2164 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2165 >     * However, if the table has been resized, then all future steps
2166 >     * must traverse both the bin at the current index as well as at
2167 >     * (index + baseSize); and so on for further resizings. To
2168 >     * paranoically cope with potential sharing by users of iterators
2169 >     * across threads, iteration terminates if a bounds checks fails
2170 >     * for a table read.
2171 >     *
2172 >     * This class supports both Spliterator-based traversal and
2173 >     * CountedCompleter-based bulk tasks. The same "batch" field is
2174 >     * used, but in slightly different ways, in the two cases.  For
2175 >     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 >     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 >     * size that halves down to zero for leaf tasks, that is only
2178 >     * computed upon execution of the task. (Tasks can be submitted to
2179 >     * any pool, of any size, so we don't know scale factors until
2180 >     * running.)
2181 >     *
2182 >     * This class extends CountedCompleter to streamline parallel
2183 >     * iteration in bulk operations. This adds only a few fields of
2184 >     * space overhead, which is small enough in cases where it is not
2185 >     * needed to not worry about it.  Because CountedCompleter is
2186 >     * Serializable, but iterators need not be, we need to add warning
2187 >     * suppressions.
2188 >     */
2189 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 >        extends CountedCompleter<R> {
2191 >        final ConcurrentHashMap<K, V> map;
2192 >        Node<V> next;        // the next entry to use
2193 >        K nextKey;           // cached key field of next
2194 >        V nextVal;           // cached val field of next
2195 >        Node<V>[] tab;       // current table; updated if resized
2196 >        int index;           // index of bin to use next
2197 >        int baseIndex;       // current index of initial table
2198 >        int baseLimit;       // index bound for initial table
2199 >        int baseSize;        // initial table size
2200 >        int batch;           // split control
2201 >        /** Creates iterator for all entries in the table. */
2202 >        Traverser(ConcurrentHashMap<K, V> map) {
2203 >            this.map = map;
2204 >            Node<V>[] t;
2205 >            if ((t = tab = map.table) != null)
2206 >                baseLimit = baseSize = t.length;
2207 >        }
2208 >
2209 >        /** Task constructor */
2210 >        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 >            super(it);
2212 >            this.map = map;
2213 >            this.batch = batch; // -1 if unknown
2214 >            if (it == null) {
2215 >                Node<V>[] t;
2216 >                if ((t = tab = map.table) != null)
2217 >                    baseLimit = baseSize = t.length;
2218 >            }
2219 >            else { // split parent
2220 >                this.tab = it.tab;
2221 >                this.baseSize = it.baseSize;
2222 >                int hi = this.baseLimit = it.baseLimit;
2223 >                it.baseLimit = this.index = this.baseIndex =
2224 >                    (hi + it.baseIndex + 1) >>> 1;
2225 >            }
2226 >        }
2227 >
2228 >        /** Spliterator constructor */
2229 >        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 >            super(it);
2231 >            this.map = map;
2232 >            if (it == null) {
2233 >                Node<V>[] t;
2234 >                if ((t = tab = map.table) != null)
2235 >                    baseLimit = baseSize = t.length;
2236 >                long n = map.sumCount();
2237 >                batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 >                         (int)n);
2239 >            }
2240 >            else {
2241 >                this.tab = it.tab;
2242 >                this.baseSize = it.baseSize;
2243 >                int hi = this.baseLimit = it.baseLimit;
2244 >                it.baseLimit = this.index = this.baseIndex =
2245 >                    (hi + it.baseIndex + 1) >>> 1;
2246 >                this.batch = it.batch >>>= 1;
2247 >            }
2248 >        }
2249 >
2250 >        /**
2251 >         * Advances next; returns nextVal or null if terminated.
2252 >         * See above for explanation.
2253 >         */
2254 >        @SuppressWarnings("unchecked") final V advance() {
2255 >            Node<V> e = next;
2256 >            V ev = null;
2257 >            outer: do {
2258 >                if (e != null)                  // advance past used/skipped node
2259 >                    e = e.next;
2260 >                while (e == null) {             // get to next non-null bin
2261 >                    ConcurrentHashMap<K, V> m;
2262 >                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2263 >                    if ((t = tab) != null)
2264 >                        n = t.length;
2265 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2266 >                        n = baseLimit = baseSize = t.length;
2267 >                    else
2268 >                        break outer;
2269 >                    if ((b = baseIndex) >= baseLimit ||
2270 >                        (i = index) < 0 || i >= n)
2271 >                        break outer;
2272 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 >                        if ((ek = e.key) instanceof TreeBin)
2274 >                            e = ((TreeBin<V>)ek).first;
2275 >                        else {
2276 >                            tab = (Node<V>[])ek;
2277 >                            continue;           // restarts due to null val
2278 >                        }
2279 >                    }                           // visit upper slots if present
2280 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281                  }
2282 +                nextKey = (K)e.key;
2283 +            } while ((ev = e.val) == null);    // skip deleted or special nodes
2284 +            next = e;
2285 +            return nextVal = ev;
2286 +        }
2287 +
2288 +        public final void remove() {
2289 +            K k = nextKey;
2290 +            if (k == null && (advance() == null || (k = nextKey) == null))
2291 +                throw new IllegalStateException();
2292 +            map.internalReplace(k, null, null);
2293 +        }
2294 +
2295 +        public final boolean hasNext() {
2296 +            return nextVal != null || advance() != null;
2297 +        }
2298 +
2299 +        public final boolean hasMoreElements() { return hasNext(); }
2300 +
2301 +        public void compute() { } // default no-op CountedCompleter body
2302 +
2303 +        /**
2304 +         * Returns a batch value > 0 if this task should (and must) be
2305 +         * split, if so, adding to pending count, and in any case
2306 +         * updating batch value. The initial batch value is approx
2307 +         * exp2 of the number of times (minus one) to split task by
2308 +         * two before executing leaf action. This value is faster to
2309 +         * compute and more convenient to use as a guide to splitting
2310 +         * than is the depth, since it is used while dividing by two
2311 +         * anyway.
2312 +         */
2313 +        final int preSplit() {
2314 +            int b;  ForkJoinPool pool;
2315 +            if ((b = batch) < 0) { // force initialization
2316 +                int sp = (((pool = getPool()) == null) ?
2317 +                          ForkJoinPool.getCommonPoolParallelism() :
2318 +                          pool.getParallelism()) << 3; // slack of 8
2319 +                long n = map.sumCount();
2320 +                b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321              }
2322 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 +            if ((batch = b) > 0)
2324 +                addToPendingCount(1);
2325 +            return b;
2326 +        }
2327 +
2328 +        // spliterator support
2329 +
2330 +        public boolean hasExactSize() {
2331 +            return false;
2332 +        }
2333 +
2334 +        public boolean hasExactSplits() {
2335 +            return false;
2336 +        }
2337 +
2338 +        public long estimateSize() {
2339 +            return batch;
2340          }
662        return seg;
2341      }
2342  
2343 <    // Hash-based segment and entry accesses
2343 >    /* ---------------- Public operations -------------- */
2344  
2345      /**
2346 <     * Gets the segment for the given hash code.
2346 >     * Creates a new, empty map with the default initial table size (16).
2347       */
2348 <    @SuppressWarnings("unchecked")
671 <    private Segment<K,V> segmentForHash(int h) {
672 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
673 <        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
2348 >    public ConcurrentHashMap() {
2349      }
2350  
2351      /**
2352 <     * Gets the table entry for the given segment and hash code.
2352 >     * Creates a new, empty map with an initial table size
2353 >     * accommodating the specified number of elements without the need
2354 >     * to dynamically resize.
2355 >     *
2356 >     * @param initialCapacity The implementation performs internal
2357 >     * sizing to accommodate this many elements.
2358 >     * @throws IllegalArgumentException if the initial capacity of
2359 >     * elements is negative
2360       */
2361 <    @SuppressWarnings("unchecked")
2362 <    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
2363 <        HashEntry<K,V>[] tab;
2364 <        return (seg == null || (tab = seg.table) == null) ? null :
2365 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
2366 <            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
2361 >    public ConcurrentHashMap(int initialCapacity) {
2362 >        if (initialCapacity < 0)
2363 >            throw new IllegalArgumentException();
2364 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365 >                   MAXIMUM_CAPACITY :
2366 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367 >        this.sizeCtl = cap;
2368      }
2369  
687    /* ---------------- Public operations -------------- */
688
2370      /**
2371 <     * Creates a new, empty map with the specified initial
691 <     * capacity, load factor and concurrency level.
2371 >     * Creates a new map with the same mappings as the given map.
2372       *
2373 <     * @param initialCapacity the initial capacity. The implementation
694 <     * performs internal sizing to accommodate this many elements.
695 <     * @param loadFactor  the load factor threshold, used to control resizing.
696 <     * Resizing may be performed when the average number of elements per
697 <     * bin exceeds this threshold.
698 <     * @param concurrencyLevel the estimated number of concurrently
699 <     * updating threads. The implementation performs internal sizing
700 <     * to try to accommodate this many threads.
701 <     * @throws IllegalArgumentException if the initial capacity is
702 <     * negative or the load factor or concurrencyLevel are
703 <     * nonpositive.
2373 >     * @param m the map
2374       */
2375 <    @SuppressWarnings("unchecked")
2376 <    public ConcurrentHashMap(int initialCapacity,
2377 <                             float loadFactor, int concurrencyLevel) {
708 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
709 <            throw new IllegalArgumentException();
710 <        if (concurrencyLevel > MAX_SEGMENTS)
711 <            concurrencyLevel = MAX_SEGMENTS;
712 <        // Find power-of-two sizes best matching arguments
713 <        int sshift = 0;
714 <        int ssize = 1;
715 <        while (ssize < concurrencyLevel) {
716 <            ++sshift;
717 <            ssize <<= 1;
718 <        }
719 <        this.segmentShift = 32 - sshift;
720 <        this.segmentMask = ssize - 1;
721 <        if (initialCapacity > MAXIMUM_CAPACITY)
722 <            initialCapacity = MAXIMUM_CAPACITY;
723 <        int c = initialCapacity / ssize;
724 <        if (c * ssize < initialCapacity)
725 <            ++c;
726 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
727 <        while (cap < c)
728 <            cap <<= 1;
729 <        // create segments and segments[0]
730 <        Segment<K,V> s0 =
731 <            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
732 <                             (HashEntry<K,V>[])new HashEntry[cap]);
733 <        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
734 <        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
735 <        this.segments = ss;
2375 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376 >        this.sizeCtl = DEFAULT_CAPACITY;
2377 >        internalPutAll(m);
2378      }
2379  
2380      /**
2381 <     * Creates a new, empty map with the specified initial capacity
2382 <     * and load factor and with the default concurrencyLevel (16).
2381 >     * Creates a new, empty map with an initial table size based on
2382 >     * the given number of elements ({@code initialCapacity}) and
2383 >     * initial table density ({@code loadFactor}).
2384       *
2385 <     * @param initialCapacity The implementation performs internal
2386 <     * sizing to accommodate this many elements.
2387 <     * @param loadFactor  the load factor threshold, used to control resizing.
2388 <     * Resizing may be performed when the average number of elements per
2389 <     * bin exceeds this threshold.
2385 >     * @param initialCapacity the initial capacity. The implementation
2386 >     * performs internal sizing to accommodate this many elements,
2387 >     * given the specified load factor.
2388 >     * @param loadFactor the load factor (table density) for
2389 >     * establishing the initial table size
2390       * @throws IllegalArgumentException if the initial capacity of
2391       * elements is negative or the load factor is nonpositive
2392       *
2393       * @since 1.6
2394       */
2395      public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2396 >        this(initialCapacity, loadFactor, 1);
2397      }
2398  
2399      /**
2400 <     * Creates a new, empty map with the specified initial capacity,
2401 <     * and with default load factor (0.75) and concurrencyLevel (16).
2400 >     * Creates a new, empty map with an initial table size based on
2401 >     * the given number of elements ({@code initialCapacity}), table
2402 >     * density ({@code loadFactor}), and number of concurrently
2403 >     * updating threads ({@code concurrencyLevel}).
2404       *
2405       * @param initialCapacity the initial capacity. The implementation
2406 <     * performs internal sizing to accommodate this many elements.
2407 <     * @throws IllegalArgumentException if the initial capacity of
2408 <     * elements is negative.
2406 >     * performs internal sizing to accommodate this many elements,
2407 >     * given the specified load factor.
2408 >     * @param loadFactor the load factor (table density) for
2409 >     * establishing the initial table size
2410 >     * @param concurrencyLevel the estimated number of concurrently
2411 >     * updating threads. The implementation may use this value as
2412 >     * a sizing hint.
2413 >     * @throws IllegalArgumentException if the initial capacity is
2414 >     * negative or the load factor or concurrencyLevel are
2415 >     * nonpositive
2416       */
2417 <    public ConcurrentHashMap(int initialCapacity) {
2418 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2417 >    public ConcurrentHashMap(int initialCapacity,
2418 >                               float loadFactor, int concurrencyLevel) {
2419 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420 >            throw new IllegalArgumentException();
2421 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2422 >            initialCapacity = concurrencyLevel;   // as estimated threads
2423 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426 >        this.sizeCtl = cap;
2427      }
2428  
2429      /**
2430 <     * Creates a new, empty map with a default initial capacity (16),
2431 <     * load factor (0.75) and concurrencyLevel (16).
2430 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2431 >     * from the given type to {@code Boolean.TRUE}.
2432 >     *
2433 >     * @return the new set
2434       */
2435 <    public ConcurrentHashMap() {
2436 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2435 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2436 >        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2437 >                                      Boolean.TRUE);
2438      }
2439  
2440      /**
2441 <     * Creates a new map with the same mappings as the given map.
2442 <     * The map is created with a capacity of 1.5 times the number
780 <     * of mappings in the given map or 16 (whichever is greater),
781 <     * and a default load factor (0.75) and concurrencyLevel (16).
2441 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2442 >     * from the given type to {@code Boolean.TRUE}.
2443       *
2444 <     * @param m the map
2444 >     * @param initialCapacity The implementation performs internal
2445 >     * sizing to accommodate this many elements.
2446 >     * @throws IllegalArgumentException if the initial capacity of
2447 >     * elements is negative
2448 >     * @return the new set
2449       */
2450 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2451 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
2452 <                      DEFAULT_INITIAL_CAPACITY),
788 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
789 <        putAll(m);
2450 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 >        return new KeySetView<K,Boolean>
2452 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453      }
2454  
2455      /**
2456 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
794 <     *
795 <     * @return <tt>true</tt> if this map contains no key-value mappings
2456 >     * {@inheritDoc}
2457       */
2458      public boolean isEmpty() {
2459 <        /*
799 <         * Sum per-segment modCounts to avoid mis-reporting when
800 <         * elements are concurrently added and removed in one segment
801 <         * while checking another, in which case the table was never
802 <         * actually empty at any point. (The sum ensures accuracy up
803 <         * through at least 1<<31 per-segment modifications before
804 <         * recheck.)  Methods size() and containsValue() use similar
805 <         * constructions for stability checks.
806 <         */
807 <        long sum = 0L;
808 <        final Segment<K,V>[] segments = this.segments;
809 <        for (int j = 0; j < segments.length; ++j) {
810 <            Segment<K,V> seg = segmentAt(segments, j);
811 <            if (seg != null) {
812 <                if (seg.count != 0)
813 <                    return false;
814 <                sum += seg.modCount;
815 <            }
816 <        }
817 <        if (sum != 0L) { // recheck unless no modifications
818 <            for (int j = 0; j < segments.length; ++j) {
819 <                Segment<K,V> seg = segmentAt(segments, j);
820 <                if (seg != null) {
821 <                    if (seg.count != 0)
822 <                        return false;
823 <                    sum -= seg.modCount;
824 <                }
825 <            }
826 <            if (sum != 0L)
827 <                return false;
828 <        }
829 <        return true;
2459 >        return sumCount() <= 0L; // ignore transient negative values
2460      }
2461  
2462      /**
2463 <     * Returns the number of key-value mappings in this map.  If the
834 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
835 <     * <tt>Integer.MAX_VALUE</tt>.
836 <     *
837 <     * @return the number of key-value mappings in this map
2463 >     * {@inheritDoc}
2464       */
2465      public int size() {
2466 <        // Try a few times to get accurate count. On failure due to
2467 <        // continuous async changes in table, resort to locking.
2468 <        final Segment<K,V>[] segments = this.segments;
2469 <        int size;
2470 <        boolean overflow; // true if size overflows 32 bits
2471 <        long sum;         // sum of modCounts
2472 <        long last = 0L;   // previous sum
2473 <        int retries = -1; // first iteration isn't retry
2474 <        try {
2475 <            for (;;) {
2476 <                if (retries++ == RETRIES_BEFORE_LOCK) {
2477 <                    for (int j = 0; j < segments.length; ++j)
2478 <                        ensureSegment(j).lock(); // force creation
2479 <                }
2480 <                sum = 0L;
2481 <                size = 0;
2482 <                overflow = false;
2483 <                for (int j = 0; j < segments.length; ++j) {
858 <                    Segment<K,V> seg = segmentAt(segments, j);
859 <                    if (seg != null) {
860 <                        sum += seg.modCount;
861 <                        int c = seg.count;
862 <                        if (c < 0 || (size += c) < 0)
863 <                            overflow = true;
864 <                    }
865 <                }
866 <                if (sum == last)
867 <                    break;
868 <                last = sum;
869 <            }
870 <        } finally {
871 <            if (retries > RETRIES_BEFORE_LOCK) {
872 <                for (int j = 0; j < segments.length; ++j)
873 <                    segmentAt(segments, j).unlock();
874 <            }
875 <        }
876 <        return overflow ? Integer.MAX_VALUE : size;
2466 >        long n = sumCount();
2467 >        return ((n < 0L) ? 0 :
2468 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469 >                (int)n);
2470 >    }
2471 >
2472 >    /**
2473 >     * Returns the number of mappings. This method should be used
2474 >     * instead of {@link #size} because a ConcurrentHashMap may
2475 >     * contain more mappings than can be represented as an int. The
2476 >     * value returned is an estimate; the actual count may differ if
2477 >     * there are concurrent insertions or removals.
2478 >     *
2479 >     * @return the number of mappings
2480 >     */
2481 >    public long mappingCount() {
2482 >        long n = sumCount();
2483 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2484      }
2485  
2486      /**
# Line 888 | Line 2495 | public class ConcurrentHashMap<K, V> ext
2495       * @throws NullPointerException if the specified key is null
2496       */
2497      public V get(Object key) {
2498 <        Segment<K,V> s; // manually integrate access methods to reduce overhead
2499 <        HashEntry<K,V>[] tab;
2500 <        int h = hash(key.hashCode());
2501 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
2502 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
2503 <            (tab = s.table) != null) {
2504 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
2505 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
2506 <                 e != null; e = e.next) {
2507 <                K k;
2508 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
2509 <                    return e.value;
2510 <            }
2511 <        }
2512 <        return null;
2498 >        return internalGet(key);
2499 >    }
2500 >
2501 >    /**
2502 >     * Returns the value to which the specified key is mapped,
2503 >     * or the given defaultValue if this map contains no mapping for the key.
2504 >     *
2505 >     * @param key the key
2506 >     * @param defaultValue the value to return if this map contains
2507 >     * no mapping for the given key
2508 >     * @return the mapping for the key, if present; else the defaultValue
2509 >     * @throws NullPointerException if the specified key is null
2510 >     */
2511 >    public V getValueOrDefault(Object key, V defaultValue) {
2512 >        V v;
2513 >        return (v = internalGet(key)) == null ? defaultValue : v;
2514      }
2515  
2516      /**
2517       * Tests if the specified object is a key in this table.
2518       *
2519       * @param  key   possible key
2520 <     * @return <tt>true</tt> if and only if the specified object
2520 >     * @return {@code true} if and only if the specified object
2521       *         is a key in this table, as determined by the
2522 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
2522 >     *         {@code equals} method; {@code false} otherwise
2523       * @throws NullPointerException if the specified key is null
2524       */
917    @SuppressWarnings("unchecked")
2525      public boolean containsKey(Object key) {
2526 <        Segment<K,V> s; // same as get() except no need for volatile value read
920 <        HashEntry<K,V>[] tab;
921 <        int h = hash(key.hashCode());
922 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
923 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
924 <            (tab = s.table) != null) {
925 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
926 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
927 <                 e != null; e = e.next) {
928 <                K k;
929 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
930 <                    return true;
931 <            }
932 <        }
933 <        return false;
2526 >        return internalGet(key) != null;
2527      }
2528  
2529      /**
2530 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2531 <     * specified value. Note: This method requires a full internal
2532 <     * traversal of the hash table, and so is much slower than
940 <     * method <tt>containsKey</tt>.
2530 >     * Returns {@code true} if this map maps one or more keys to the
2531 >     * specified value. Note: This method may require a full traversal
2532 >     * of the map, and is much slower than method {@code containsKey}.
2533       *
2534       * @param value value whose presence in this map is to be tested
2535 <     * @return <tt>true</tt> if this map maps one or more keys to the
2535 >     * @return {@code true} if this map maps one or more keys to the
2536       *         specified value
2537       * @throws NullPointerException if the specified value is null
2538       */
2539      public boolean containsValue(Object value) {
948        // Same idea as size()
2540          if (value == null)
2541              throw new NullPointerException();
2542 <        final Segment<K,V>[] segments = this.segments;
2543 <        boolean found = false;
2544 <        long last = 0L;   // previous sum
2545 <        int retries = -1;
2546 <        try {
956 <            outer: for (;;) {
957 <                if (retries++ == RETRIES_BEFORE_LOCK) {
958 <                    for (int j = 0; j < segments.length; ++j)
959 <                        ensureSegment(j).lock(); // force creation
960 <                }
961 <                long sum = 0L;
962 <                for (int j = 0; j < segments.length; ++j) {
963 <                    HashEntry<K,V>[] tab;
964 <                    Segment<K,V> seg = segmentAt(segments, j);
965 <                    if (seg != null && (tab = seg.table) != null) {
966 <                        for (int i = 0 ; i < tab.length; i++) {
967 <                            HashEntry<K,V> e;
968 <                            for (e = entryAt(tab, i); e != null; e = e.next) {
969 <                                V v = e.value;
970 <                                if (v != null && value.equals(v)) {
971 <                                    found = true;
972 <                                    break outer;
973 <                                }
974 <                            }
975 <                        }
976 <                        sum += seg.modCount;
977 <                    }
978 <                }
979 <                if (retries > 0 && sum == last)
980 <                    break;
981 <                last = sum;
982 <            }
983 <        } finally {
984 <            if (retries > RETRIES_BEFORE_LOCK) {
985 <                for (int j = 0; j < segments.length; ++j)
986 <                    segmentAt(segments, j).unlock();
987 <            }
2542 >        V v;
2543 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544 >        while ((v = it.advance()) != null) {
2545 >            if (v == value || value.equals(v))
2546 >                return true;
2547          }
2548 <        return found;
2548 >        return false;
2549      }
2550  
2551      /**
# Line 998 | Line 2557 | public class ConcurrentHashMap<K, V> ext
2557       * Java Collections framework.
2558       *
2559       * @param  value a value to search for
2560 <     * @return <tt>true</tt> if and only if some key maps to the
2561 <     *         <tt>value</tt> argument in this table as
2562 <     *         determined by the <tt>equals</tt> method;
2563 <     *         <tt>false</tt> otherwise
2560 >     * @return {@code true} if and only if some key maps to the
2561 >     *         {@code value} argument in this table as
2562 >     *         determined by the {@code equals} method;
2563 >     *         {@code false} otherwise
2564       * @throws NullPointerException if the specified value is null
2565       */
2566 <    public boolean contains(Object value) {
2566 >    @Deprecated public boolean contains(Object value) {
2567          return containsValue(value);
2568      }
2569  
# Line 1012 | Line 2571 | public class ConcurrentHashMap<K, V> ext
2571       * Maps the specified key to the specified value in this table.
2572       * Neither the key nor the value can be null.
2573       *
2574 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2574 >     * <p>The value can be retrieved by calling the {@code get} method
2575       * with a key that is equal to the original key.
2576       *
2577       * @param key key with which the specified value is to be associated
2578       * @param value value to be associated with the specified key
2579 <     * @return the previous value associated with <tt>key</tt>, or
2580 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2579 >     * @return the previous value associated with {@code key}, or
2580 >     *         {@code null} if there was no mapping for {@code key}
2581       * @throws NullPointerException if the specified key or value is null
2582       */
1024    @SuppressWarnings("unchecked")
2583      public V put(K key, V value) {
2584 <        Segment<K,V> s;
1027 <        if (value == null)
1028 <            throw new NullPointerException();
1029 <        int hash = hash(key.hashCode());
1030 <        int j = (hash >>> segmentShift) & segmentMask;
1031 <        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1032 <             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1033 <            s = ensureSegment(j);
1034 <        return s.put(key, hash, value, false);
2584 >        return internalPut(key, value, false);
2585      }
2586  
2587      /**
2588       * {@inheritDoc}
2589       *
2590       * @return the previous value associated with the specified key,
2591 <     *         or <tt>null</tt> if there was no mapping for the key
2591 >     *         or {@code null} if there was no mapping for the key
2592       * @throws NullPointerException if the specified key or value is null
2593       */
1044    @SuppressWarnings("unchecked")
2594      public V putIfAbsent(K key, V value) {
2595 <        Segment<K,V> s;
1047 <        if (value == null)
1048 <            throw new NullPointerException();
1049 <        int hash = hash(key.hashCode());
1050 <        int j = (hash >>> segmentShift) & segmentMask;
1051 <        if ((s = (Segment<K,V>)UNSAFE.getObject
1052 <             (segments, (j << SSHIFT) + SBASE)) == null)
1053 <            s = ensureSegment(j);
1054 <        return s.put(key, hash, value, true);
2595 >        return internalPut(key, value, true);
2596      }
2597  
2598      /**
# Line 1062 | Line 2603 | public class ConcurrentHashMap<K, V> ext
2603       * @param m mappings to be stored in this map
2604       */
2605      public void putAll(Map<? extends K, ? extends V> m) {
2606 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2607 <            put(e.getKey(), e.getValue());
2606 >        internalPutAll(m);
2607 >    }
2608 >
2609 >    /**
2610 >     * If the specified key is not already associated with a value (or
2611 >     * is mapped to {@code null}), attempts to compute its value using
2612 >     * the given mapping function and enters it into this map unless
2613 >     * {@code null}. The entire method invocation is performed
2614 >     * atomically, so the function is applied at most once per key.
2615 >     * Some attempted update operations on this map by other threads
2616 >     * may be blocked while computation is in progress, so the
2617 >     * computation should be short and simple, and must not attempt to
2618 >     * update any other mappings of this Map.
2619 >     *
2620 >     * @param key key with which the specified value is to be associated
2621 >     * @param mappingFunction the function to compute a value
2622 >     * @return the current (existing or computed) value associated with
2623 >     *         the specified key, or null if the computed value is null
2624 >     * @throws NullPointerException if the specified key or mappingFunction
2625 >     *         is null
2626 >     * @throws IllegalStateException if the computation detectably
2627 >     *         attempts a recursive update to this map that would
2628 >     *         otherwise never complete
2629 >     * @throws RuntimeException or Error if the mappingFunction does so,
2630 >     *         in which case the mapping is left unestablished
2631 >     */
2632 >    public V computeIfAbsent
2633 >        (K key, Function<? super K, ? extends V> mappingFunction) {
2634 >        return internalComputeIfAbsent(key, mappingFunction);
2635 >    }
2636 >
2637 >    /**
2638 >     * If the value for the specified key is present and non-null,
2639 >     * attempts to compute a new mapping given the key and its current
2640 >     * mapped value.  The entire method invocation is performed
2641 >     * atomically.  Some attempted update operations on this map by
2642 >     * other threads may be blocked while computation is in progress,
2643 >     * so the computation should be short and simple, and must not
2644 >     * attempt to update any other mappings of this Map.
2645 >     *
2646 >     * @param key key with which the specified value is to be associated
2647 >     * @param remappingFunction the function to compute a value
2648 >     * @return the new value associated with the specified key, or null if none
2649 >     * @throws NullPointerException if the specified key or remappingFunction
2650 >     *         is null
2651 >     * @throws IllegalStateException if the computation detectably
2652 >     *         attempts a recursive update to this map that would
2653 >     *         otherwise never complete
2654 >     * @throws RuntimeException or Error if the remappingFunction does so,
2655 >     *         in which case the mapping is unchanged
2656 >     */
2657 >    public V computeIfPresent
2658 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 >        return internalCompute(key, true, remappingFunction);
2660 >    }
2661 >
2662 >    /**
2663 >     * Attempts to compute a mapping for the specified key and its
2664 >     * current mapped value (or {@code null} if there is no current
2665 >     * mapping). The entire method invocation is performed atomically.
2666 >     * Some attempted update operations on this map by other threads
2667 >     * may be blocked while computation is in progress, so the
2668 >     * computation should be short and simple, and must not attempt to
2669 >     * update any other mappings of this Map.
2670 >     *
2671 >     * @param key key with which the specified value is to be associated
2672 >     * @param remappingFunction the function to compute a value
2673 >     * @return the new value associated with the specified key, or null if none
2674 >     * @throws NullPointerException if the specified key or remappingFunction
2675 >     *         is null
2676 >     * @throws IllegalStateException if the computation detectably
2677 >     *         attempts a recursive update to this map that would
2678 >     *         otherwise never complete
2679 >     * @throws RuntimeException or Error if the remappingFunction does so,
2680 >     *         in which case the mapping is unchanged
2681 >     */
2682 >    public V compute
2683 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 >        return internalCompute(key, false, remappingFunction);
2685 >    }
2686 >
2687 >    /**
2688 >     * If the specified key is not already associated with a
2689 >     * (non-null) value, associates it with the given value.
2690 >     * Otherwise, replaces the value with the results of the given
2691 >     * remapping function, or removes if {@code null}. The entire
2692 >     * method invocation is performed atomically.  Some attempted
2693 >     * update operations on this map by other threads may be blocked
2694 >     * while computation is in progress, so the computation should be
2695 >     * short and simple, and must not attempt to update any other
2696 >     * mappings of this Map.
2697 >     *
2698 >     * @param key key with which the specified value is to be associated
2699 >     * @param value the value to use if absent
2700 >     * @param remappingFunction the function to recompute a value if present
2701 >     * @return the new value associated with the specified key, or null if none
2702 >     * @throws NullPointerException if the specified key or the
2703 >     *         remappingFunction is null
2704 >     * @throws RuntimeException or Error if the remappingFunction does so,
2705 >     *         in which case the mapping is unchanged
2706 >     */
2707 >    public V merge
2708 >        (K key, V value,
2709 >         BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 >        return internalMerge(key, value, remappingFunction);
2711      }
2712  
2713      /**
# Line 1071 | Line 2715 | public class ConcurrentHashMap<K, V> ext
2715       * This method does nothing if the key is not in the map.
2716       *
2717       * @param  key the key that needs to be removed
2718 <     * @return the previous value associated with <tt>key</tt>, or
2719 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2718 >     * @return the previous value associated with {@code key}, or
2719 >     *         {@code null} if there was no mapping for {@code key}
2720       * @throws NullPointerException if the specified key is null
2721       */
2722      public V remove(Object key) {
2723 <        int hash = hash(key.hashCode());
1080 <        Segment<K,V> s = segmentForHash(hash);
1081 <        return s == null ? null : s.remove(key, hash, null);
2723 >        return internalReplace(key, null, null);
2724      }
2725  
2726      /**
# Line 1087 | Line 2729 | public class ConcurrentHashMap<K, V> ext
2729       * @throws NullPointerException if the specified key is null
2730       */
2731      public boolean remove(Object key, Object value) {
2732 <        int hash = hash(key.hashCode());
2733 <        Segment<K,V> s;
2734 <        return value != null && (s = segmentForHash(hash)) != null &&
1093 <            s.remove(key, hash, value) != null;
2732 >        if (key == null)
2733 >            throw new NullPointerException();
2734 >        return value != null && internalReplace(key, null, value) != null;
2735      }
2736  
2737      /**
# Line 1099 | Line 2740 | public class ConcurrentHashMap<K, V> ext
2740       * @throws NullPointerException if any of the arguments are null
2741       */
2742      public boolean replace(K key, V oldValue, V newValue) {
2743 <        int hash = hash(key.hashCode());
1103 <        if (oldValue == null || newValue == null)
2743 >        if (key == null || oldValue == null || newValue == null)
2744              throw new NullPointerException();
2745 <        Segment<K,V> s = segmentForHash(hash);
1106 <        return s != null && s.replace(key, hash, oldValue, newValue);
2745 >        return internalReplace(key, newValue, oldValue) != null;
2746      }
2747  
2748      /**
2749       * {@inheritDoc}
2750       *
2751       * @return the previous value associated with the specified key,
2752 <     *         or <tt>null</tt> if there was no mapping for the key
2752 >     *         or {@code null} if there was no mapping for the key
2753       * @throws NullPointerException if the specified key or value is null
2754       */
2755      public V replace(K key, V value) {
2756 <        int hash = hash(key.hashCode());
1118 <        if (value == null)
2756 >        if (key == null || value == null)
2757              throw new NullPointerException();
2758 <        Segment<K,V> s = segmentForHash(hash);
1121 <        return s == null ? null : s.replace(key, hash, value);
2758 >        return internalReplace(key, value, null);
2759      }
2760  
2761      /**
2762       * Removes all of the mappings from this map.
2763       */
2764      public void clear() {
2765 <        final Segment<K,V>[] segments = this.segments;
1129 <        for (int j = 0; j < segments.length; ++j) {
1130 <            Segment<K,V> s = segmentAt(segments, j);
1131 <            if (s != null)
1132 <                s.clear();
1133 <        }
2765 >        internalClear();
2766      }
2767  
2768      /**
2769       * Returns a {@link Set} view of the keys contained in this map.
2770       * The set is backed by the map, so changes to the map are
2771 <     * reflected in the set, and vice-versa.  The set supports element
1140 <     * removal, which removes the corresponding mapping from this map,
1141 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1142 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1143 <     * operations.  It does not support the <tt>add</tt> or
1144 <     * <tt>addAll</tt> operations.
2771 >     * reflected in the set, and vice-versa.
2772       *
2773 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1147 <     * that will never throw {@link ConcurrentModificationException},
1148 <     * and guarantees to traverse elements as they existed upon
1149 <     * construction of the iterator, and may (but is not guaranteed to)
1150 <     * reflect any modifications subsequent to construction.
2773 >     * @return the set view
2774       */
2775 <    public Set<K> keySet() {
2776 <        Set<K> ks = keySet;
2777 <        return (ks != null) ? ks : (keySet = new KeySet());
2775 >    public KeySetView<K,V> keySet() {
2776 >        KeySetView<K,V> ks = keySet;
2777 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2778 >    }
2779 >
2780 >    /**
2781 >     * Returns a {@link Set} view of the keys in this map, using the
2782 >     * given common mapped value for any additions (i.e., {@link
2783 >     * Collection#add} and {@link Collection#addAll}). This is of
2784 >     * course only appropriate if it is acceptable to use the same
2785 >     * value for all additions from this view.
2786 >     *
2787 >     * @param mappedValue the mapped value to use for any
2788 >     * additions.
2789 >     * @return the set view
2790 >     * @throws NullPointerException if the mappedValue is null
2791 >     */
2792 >    public KeySetView<K,V> keySet(V mappedValue) {
2793 >        if (mappedValue == null)
2794 >            throw new NullPointerException();
2795 >        return new KeySetView<K,V>(this, mappedValue);
2796      }
2797  
2798      /**
2799       * Returns a {@link Collection} view of the values contained in this map.
2800       * The collection is backed by the map, so changes to the map are
2801 <     * reflected in the collection, and vice-versa.  The collection
1161 <     * supports element removal, which removes the corresponding
1162 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1163 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1164 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1165 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1166 <     *
1167 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1168 <     * that will never throw {@link ConcurrentModificationException},
1169 <     * and guarantees to traverse elements as they existed upon
1170 <     * construction of the iterator, and may (but is not guaranteed to)
1171 <     * reflect any modifications subsequent to construction.
2801 >     * reflected in the collection, and vice-versa.
2802       */
2803 <    public Collection<V> values() {
2804 <        Collection<V> vs = values;
2805 <        return (vs != null) ? vs : (values = new Values());
2803 >    public ValuesView<K,V> values() {
2804 >        ValuesView<K,V> vs = values;
2805 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2806      }
2807  
2808      /**
# Line 1180 | Line 2810 | public class ConcurrentHashMap<K, V> ext
2810       * The set is backed by the map, so changes to the map are
2811       * reflected in the set, and vice-versa.  The set supports element
2812       * removal, which removes the corresponding mapping from the map,
2813 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2814 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2815 <     * operations.  It does not support the <tt>add</tt> or
2816 <     * <tt>addAll</tt> operations.
2813 >     * via the {@code Iterator.remove}, {@code Set.remove},
2814 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2815 >     * operations.  It does not support the {@code add} or
2816 >     * {@code addAll} operations.
2817       *
2818 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2818 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2819       * that will never throw {@link ConcurrentModificationException},
2820       * and guarantees to traverse elements as they existed upon
2821       * construction of the iterator, and may (but is not guaranteed to)
2822       * reflect any modifications subsequent to construction.
2823       */
2824      public Set<Map.Entry<K,V>> entrySet() {
2825 <        Set<Map.Entry<K,V>> es = entrySet;
2826 <        return (es != null) ? es : (entrySet = new EntrySet());
2825 >        EntrySetView<K,V> es = entrySet;
2826 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2827      }
2828  
2829      /**
# Line 1203 | Line 2833 | public class ConcurrentHashMap<K, V> ext
2833       * @see #keySet()
2834       */
2835      public Enumeration<K> keys() {
2836 <        return new KeyIterator();
2836 >        return new KeyIterator<K,V>(this);
2837      }
2838  
2839      /**
# Line 1213 | Line 2843 | public class ConcurrentHashMap<K, V> ext
2843       * @see #values()
2844       */
2845      public Enumeration<V> elements() {
2846 <        return new ValueIterator();
2846 >        return new ValueIterator<K,V>(this);
2847      }
2848  
2849 <    /* ---------------- Iterator Support -------------- */
2850 <
2851 <    abstract class HashIterator {
2852 <        int nextSegmentIndex;
2853 <        int nextTableIndex;
2854 <        HashEntry<K,V>[] currentTable;
2855 <        HashEntry<K, V> nextEntry;
2856 <        HashEntry<K, V> lastReturned;
2857 <
2858 <        HashIterator() {
2859 <            nextSegmentIndex = segments.length - 1;
2860 <            nextTableIndex = -1;
2861 <            advance();
2862 <        }
2849 >    /**
2850 >     * Returns the hash code value for this {@link Map}, i.e.,
2851 >     * the sum of, for each key-value pair in the map,
2852 >     * {@code key.hashCode() ^ value.hashCode()}.
2853 >     *
2854 >     * @return the hash code value for this map
2855 >     */
2856 >    public int hashCode() {
2857 >        int h = 0;
2858 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2859 >        V v;
2860 >        while ((v = it.advance()) != null) {
2861 >            h += it.nextKey.hashCode() ^ v.hashCode();
2862 >        }
2863 >        return h;
2864 >    }
2865  
2866 <        /**
2867 <         * Sets nextEntry to first node of next non-empty table
2868 <         * (in backwards order, to simplify checks).
2869 <         */
2870 <        final void advance() {
2866 >    /**
2867 >     * Returns a string representation of this map.  The string
2868 >     * representation consists of a list of key-value mappings (in no
2869 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2870 >     * mappings are separated by the characters {@code ", "} (comma
2871 >     * and space).  Each key-value mapping is rendered as the key
2872 >     * followed by an equals sign ("{@code =}") followed by the
2873 >     * associated value.
2874 >     *
2875 >     * @return a string representation of this map
2876 >     */
2877 >    public String toString() {
2878 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2879 >        StringBuilder sb = new StringBuilder();
2880 >        sb.append('{');
2881 >        V v;
2882 >        if ((v = it.advance()) != null) {
2883              for (;;) {
2884 <                if (nextTableIndex >= 0) {
2885 <                    if ((nextEntry = entryAt(currentTable,
2886 <                                             nextTableIndex--)) != null)
2887 <                        break;
2888 <                }
1245 <                else if (nextSegmentIndex >= 0) {
1246 <                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
1247 <                    if (seg != null && (currentTable = seg.table) != null)
1248 <                        nextTableIndex = currentTable.length - 1;
1249 <                }
1250 <                else
2884 >                K k = it.nextKey;
2885 >                sb.append(k == this ? "(this Map)" : k);
2886 >                sb.append('=');
2887 >                sb.append(v == this ? "(this Map)" : v);
2888 >                if ((v = it.advance()) == null)
2889                      break;
2890 +                sb.append(',').append(' ');
2891              }
2892          }
2893 +        return sb.append('}').toString();
2894 +    }
2895  
2896 <        final HashEntry<K,V> nextEntry() {
2897 <            HashEntry<K,V> e = nextEntry;
2898 <            if (e == null)
2896 >    /**
2897 >     * Compares the specified object with this map for equality.
2898 >     * Returns {@code true} if the given object is a map with the same
2899 >     * mappings as this map.  This operation may return misleading
2900 >     * results if either map is concurrently modified during execution
2901 >     * of this method.
2902 >     *
2903 >     * @param o object to be compared for equality with this map
2904 >     * @return {@code true} if the specified object is equal to this map
2905 >     */
2906 >    public boolean equals(Object o) {
2907 >        if (o != this) {
2908 >            if (!(o instanceof Map))
2909 >                return false;
2910 >            Map<?,?> m = (Map<?,?>) o;
2911 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2912 >            V val;
2913 >            while ((val = it.advance()) != null) {
2914 >                Object v = m.get(it.nextKey);
2915 >                if (v == null || (v != val && !v.equals(val)))
2916 >                    return false;
2917 >            }
2918 >            for (Map.Entry<?,?> e : m.entrySet()) {
2919 >                Object mk, mv, v;
2920 >                if ((mk = e.getKey()) == null ||
2921 >                    (mv = e.getValue()) == null ||
2922 >                    (v = internalGet(mk)) == null ||
2923 >                    (mv != v && !mv.equals(v)))
2924 >                    return false;
2925 >            }
2926 >        }
2927 >        return true;
2928 >    }
2929 >
2930 >    /* ----------------Iterators -------------- */
2931 >
2932 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
2933 >        extends Traverser<K,V,Object>
2934 >        implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2935 >        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2936 >        KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2937 >            super(map, it);
2938 >        }
2939 >        public KeyIterator<K,V> trySplit() {
2940 >            if (tab != null && baseIndex == baseLimit)
2941 >                return null;
2942 >            return new KeyIterator<K,V>(map, this);
2943 >        }
2944 >        public final K next() {
2945 >            if (nextVal == null && advance() == null)
2946                  throw new NoSuchElementException();
2947 <            lastReturned = e; // cannot assign until after null check
2948 <            if ((nextEntry = e.next) == null)
2949 <                advance();
1262 <            return e;
2947 >            K k = nextKey;
2948 >            nextVal = null;
2949 >            return k;
2950          }
2951  
2952 <        public final boolean hasNext() { return nextEntry != null; }
1266 <        public final boolean hasMoreElements() { return nextEntry != null; }
2952 >        public final K nextElement() { return next(); }
2953  
2954 <        public final void remove() {
2955 <            if (lastReturned == null)
2956 <                throw new IllegalStateException();
2957 <            ConcurrentHashMap.this.remove(lastReturned.key);
2958 <            lastReturned = null;
2954 >        public Iterator<K> iterator() { return this; }
2955 >
2956 >        public void forEach(Block<? super K> action) {
2957 >            if (action == null) throw new NullPointerException();
2958 >            while (advance() != null)
2959 >                action.accept(nextKey);
2960 >        }
2961 >
2962 >        public boolean tryAdvance(Block<? super K> block) {
2963 >            if (block == null) throw new NullPointerException();
2964 >            if (advance() == null)
2965 >                return false;
2966 >            block.accept(nextKey);
2967 >            return true;
2968          }
2969      }
2970  
2971 <    final class KeyIterator
2972 <        extends HashIterator
2973 <        implements Iterator<K>, Enumeration<K>
2974 <    {
2975 <        public final K next()        { return super.nextEntry().key; }
2976 <        public final K nextElement() { return super.nextEntry().key; }
2971 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
2972 >        extends Traverser<K,V,Object>
2973 >        implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2974 >        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2975 >        ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2976 >            super(map, it);
2977 >        }
2978 >        public ValueIterator<K,V> trySplit() {
2979 >            if (tab != null && baseIndex == baseLimit)
2980 >                return null;
2981 >            return new ValueIterator<K,V>(map, this);
2982 >        }
2983 >
2984 >        public final V next() {
2985 >            V v;
2986 >            if ((v = nextVal) == null && (v = advance()) == null)
2987 >                throw new NoSuchElementException();
2988 >            nextVal = null;
2989 >            return v;
2990 >        }
2991 >
2992 >        public final V nextElement() { return next(); }
2993 >
2994 >        public Iterator<V> iterator() { return this; }
2995 >
2996 >        public void forEach(Block<? super V> action) {
2997 >            if (action == null) throw new NullPointerException();
2998 >            V v;
2999 >            while ((v = advance()) != null)
3000 >                action.accept(v);
3001 >        }
3002 >
3003 >        public boolean tryAdvance(Block<? super V> block) {
3004 >            V v;
3005 >            if (block == null) throw new NullPointerException();
3006 >            if ((v = advance()) == null)
3007 >                return false;
3008 >            block.accept(v);
3009 >            return true;
3010 >        }
3011 >
3012      }
3013  
3014 <    final class ValueIterator
3015 <        extends HashIterator
3016 <        implements Iterator<V>, Enumeration<V>
3017 <    {
3018 <        public final V next()        { return super.nextEntry().value; }
3019 <        public final V nextElement() { return super.nextEntry().value; }
3014 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3015 >        extends Traverser<K,V,Object>
3016 >        implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3017 >        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3018 >        EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3019 >            super(map, it);
3020 >        }
3021 >        public EntryIterator<K,V> trySplit() {
3022 >            if (tab != null && baseIndex == baseLimit)
3023 >                return null;
3024 >            return new EntryIterator<K,V>(map, this);
3025 >        }
3026 >
3027 >        public final Map.Entry<K,V> next() {
3028 >            V v;
3029 >            if ((v = nextVal) == null && (v = advance()) == null)
3030 >                throw new NoSuchElementException();
3031 >            K k = nextKey;
3032 >            nextVal = null;
3033 >            return new MapEntry<K,V>(k, v, map);
3034 >        }
3035 >
3036 >        public Iterator<Map.Entry<K,V>> iterator() { return this; }
3037 >
3038 >        public void forEach(Block<? super Map.Entry<K,V>> action) {
3039 >            if (action == null) throw new NullPointerException();
3040 >            V v;
3041 >            while ((v = advance()) != null)
3042 >                action.accept(entryFor(nextKey, v));
3043 >        }
3044 >
3045 >        public boolean tryAdvance(Block<? super Map.Entry<K,V>> block) {
3046 >            V v;
3047 >            if (block == null) throw new NullPointerException();
3048 >            if ((v = advance()) == null)
3049 >                return false;
3050 >            block.accept(entryFor(nextKey, v));
3051 >            return true;
3052 >        }
3053 >
3054      }
3055  
3056      /**
3057 <     * Custom Entry class used by EntryIterator.next(), that relays
1294 <     * setValue changes to the underlying map.
3057 >     * Exported Entry for iterators
3058       */
3059 <    final class WriteThroughEntry
3060 <        extends AbstractMap.SimpleEntry<K,V>
3061 <    {
3062 <        WriteThroughEntry(K k, V v) {
3063 <            super(k,v);
3059 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3060 >        final K key; // non-null
3061 >        V val;       // non-null
3062 >        final ConcurrentHashMap<K, V> map;
3063 >        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3064 >            this.key = key;
3065 >            this.val = val;
3066 >            this.map = map;
3067 >        }
3068 >        public final K getKey()       { return key; }
3069 >        public final V getValue()     { return val; }
3070 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3071 >        public final String toString(){ return key + "=" + val; }
3072 >
3073 >        public final boolean equals(Object o) {
3074 >            Object k, v; Map.Entry<?,?> e;
3075 >            return ((o instanceof Map.Entry) &&
3076 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3077 >                    (v = e.getValue()) != null &&
3078 >                    (k == key || k.equals(key)) &&
3079 >                    (v == val || v.equals(val)));
3080          }
3081  
3082          /**
3083           * Sets our entry's value and writes through to the map. The
3084 <         * value to return is somewhat arbitrary here. Since a
3085 <         * WriteThroughEntry does not necessarily track asynchronous
3086 <         * changes, the most recent "previous" value could be
3087 <         * different from what we return (or could even have been
3088 <         * removed in which case the put will re-establish). We do not
1310 <         * and cannot guarantee more.
3084 >         * value to return is somewhat arbitrary here. Since we do not
3085 >         * necessarily track asynchronous changes, the most recent
3086 >         * "previous" value could be different from what we return (or
3087 >         * could even have been removed in which case the put will
3088 >         * re-establish). We do not and cannot guarantee more.
3089           */
3090 <        public V setValue(V value) {
3090 >        public final V setValue(V value) {
3091              if (value == null) throw new NullPointerException();
3092 <            V v = super.setValue(value);
3093 <            ConcurrentHashMap.this.put(getKey(), value);
3092 >            V v = val;
3093 >            val = value;
3094 >            map.put(key, value);
3095              return v;
3096          }
3097      }
3098  
3099 <    final class EntryIterator
3100 <        extends HashIterator
3101 <        implements Iterator<Entry<K,V>>
3102 <    {
3103 <        public Map.Entry<K,V> next() {
3104 <            HashEntry<K,V> e = super.nextEntry();
1326 <            return new WriteThroughEntry(e.key, e.value);
1327 <        }
3099 >    /**
3100 >     * Returns exportable snapshot entry for the given key and value
3101 >     * when write-through can't or shouldn't be used.
3102 >     */
3103 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3104 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3105      }
3106  
3107 <    final class KeySet extends AbstractSet<K> {
3108 <        public Iterator<K> iterator() {
3109 <            return new KeyIterator();
3107 >    /* ---------------- Serialization Support -------------- */
3108 >
3109 >    /**
3110 >     * Stripped-down version of helper class used in previous version,
3111 >     * declared for the sake of serialization compatibility
3112 >     */
3113 >    static class Segment<K,V> implements Serializable {
3114 >        private static final long serialVersionUID = 2249069246763182397L;
3115 >        final float loadFactor;
3116 >        Segment(float lf) { this.loadFactor = lf; }
3117 >    }
3118 >
3119 >    /**
3120 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3121 >     * stream (i.e., serializes it).
3122 >     * @param s the stream
3123 >     * @serialData
3124 >     * the key (Object) and value (Object)
3125 >     * for each key-value mapping, followed by a null pair.
3126 >     * The key-value mappings are emitted in no particular order.
3127 >     */
3128 >    @SuppressWarnings("unchecked") private void writeObject
3129 >        (java.io.ObjectOutputStream s)
3130 >        throws java.io.IOException {
3131 >        if (segments == null) { // for serialization compatibility
3132 >            segments = (Segment<K,V>[])
3133 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3134 >            for (int i = 0; i < segments.length; ++i)
3135 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3136          }
3137 <        public int size() {
3138 <            return ConcurrentHashMap.this.size();
3137 >        s.defaultWriteObject();
3138 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3139 >        V v;
3140 >        while ((v = it.advance()) != null) {
3141 >            s.writeObject(it.nextKey);
3142 >            s.writeObject(v);
3143          }
3144 <        public boolean isEmpty() {
3145 <            return ConcurrentHashMap.this.isEmpty();
3144 >        s.writeObject(null);
3145 >        s.writeObject(null);
3146 >        segments = null; // throw away
3147 >    }
3148 >
3149 >    /**
3150 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3151 >     * @param s the stream
3152 >     */
3153 >    @SuppressWarnings("unchecked") private void readObject
3154 >        (java.io.ObjectInputStream s)
3155 >        throws java.io.IOException, ClassNotFoundException {
3156 >        s.defaultReadObject();
3157 >        this.segments = null; // unneeded
3158 >
3159 >        // Create all nodes, then place in table once size is known
3160 >        long size = 0L;
3161 >        Node<V> p = null;
3162 >        for (;;) {
3163 >            K k = (K) s.readObject();
3164 >            V v = (V) s.readObject();
3165 >            if (k != null && v != null) {
3166 >                int h = spread(k.hashCode());
3167 >                p = new Node<V>(h, k, v, p);
3168 >                ++size;
3169 >            }
3170 >            else
3171 >                break;
3172          }
3173 <        public boolean contains(Object o) {
3174 <            return ConcurrentHashMap.this.containsKey(o);
3173 >        if (p != null) {
3174 >            boolean init = false;
3175 >            int n;
3176 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3177 >                n = MAXIMUM_CAPACITY;
3178 >            else {
3179 >                int sz = (int)size;
3180 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3181 >            }
3182 >            int sc = sizeCtl;
3183 >            boolean collide = false;
3184 >            if (n > sc &&
3185 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3186 >                try {
3187 >                    if (table == null) {
3188 >                        init = true;
3189 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3190 >                        Node<V>[] tab = (Node<V>[])rt;
3191 >                        int mask = n - 1;
3192 >                        while (p != null) {
3193 >                            int j = p.hash & mask;
3194 >                            Node<V> next = p.next;
3195 >                            Node<V> q = p.next = tabAt(tab, j);
3196 >                            setTabAt(tab, j, p);
3197 >                            if (!collide && q != null && q.hash == p.hash)
3198 >                                collide = true;
3199 >                            p = next;
3200 >                        }
3201 >                        table = tab;
3202 >                        addCount(size, -1);
3203 >                        sc = n - (n >>> 2);
3204 >                    }
3205 >                } finally {
3206 >                    sizeCtl = sc;
3207 >                }
3208 >                if (collide) { // rescan and convert to TreeBins
3209 >                    Node<V>[] tab = table;
3210 >                    for (int i = 0; i < tab.length; ++i) {
3211 >                        int c = 0;
3212 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3213 >                            if (++c > TREE_THRESHOLD &&
3214 >                                (e.key instanceof Comparable)) {
3215 >                                replaceWithTreeBin(tab, i, e.key);
3216 >                                break;
3217 >                            }
3218 >                        }
3219 >                    }
3220 >                }
3221 >            }
3222 >            if (!init) { // Can only happen if unsafely published.
3223 >                while (p != null) {
3224 >                    internalPut((K)p.key, p.val, false);
3225 >                    p = p.next;
3226 >                }
3227 >            }
3228          }
3229 <        public boolean remove(Object o) {
3230 <            return ConcurrentHashMap.this.remove(o) != null;
3229 >    }
3230 >
3231 >    // -------------------------------------------------------
3232 >
3233 >    // Sequential bulk operations
3234 >
3235 >    /**
3236 >     * Performs the given action for each (key, value).
3237 >     *
3238 >     * @param action the action
3239 >     */
3240 >    public void forEachSequentially
3241 >        (BiBlock<? super K, ? super V> action) {
3242 >        if (action == null) throw new NullPointerException();
3243 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3244 >        V v;
3245 >        while ((v = it.advance()) != null)
3246 >            action.accept(it.nextKey, v);
3247 >    }
3248 >
3249 >    /**
3250 >     * Performs the given action for each non-null transformation
3251 >     * of each (key, value).
3252 >     *
3253 >     * @param transformer a function returning the transformation
3254 >     * for an element, or null if there is no transformation (in
3255 >     * which case the action is not applied).
3256 >     * @param action the action
3257 >     */
3258 >    public <U> void forEachSequentially
3259 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3260 >         Block<? super U> action) {
3261 >        if (transformer == null || action == null)
3262 >            throw new NullPointerException();
3263 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3264 >        V v; U u;
3265 >        while ((v = it.advance()) != null) {
3266 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3267 >                action.accept(u);
3268          }
3269 <        public void clear() {
3270 <            ConcurrentHashMap.this.clear();
3269 >    }
3270 >
3271 >    /**
3272 >     * Returns a non-null result from applying the given search
3273 >     * function on each (key, value), or null if none.
3274 >     *
3275 >     * @param searchFunction a function returning a non-null
3276 >     * result on success, else null
3277 >     * @return a non-null result from applying the given search
3278 >     * function on each (key, value), or null if none
3279 >     */
3280 >    public <U> U searchSequentially
3281 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3282 >        if (searchFunction == null) throw new NullPointerException();
3283 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3284 >        V v; U u;
3285 >        while ((v = it.advance()) != null) {
3286 >            if ((u = searchFunction.apply(it.nextKey, v)) != null)
3287 >                return u;
3288          }
3289 +        return null;
3290      }
3291  
3292 <    final class Values extends AbstractCollection<V> {
3293 <        public Iterator<V> iterator() {
3294 <            return new ValueIterator();
3292 >    /**
3293 >     * Returns the result of accumulating the given transformation
3294 >     * of all (key, value) pairs using the given reducer to
3295 >     * combine values, or null if none.
3296 >     *
3297 >     * @param transformer a function returning the transformation
3298 >     * for an element, or null if there is no transformation (in
3299 >     * which case it is not combined).
3300 >     * @param reducer a commutative associative combining function
3301 >     * @return the result of accumulating the given transformation
3302 >     * of all (key, value) pairs
3303 >     */
3304 >    public <U> U reduceSequentially
3305 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3306 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3307 >        if (transformer == null || reducer == null)
3308 >            throw new NullPointerException();
3309 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3310 >        U r = null, u; V v;
3311 >        while ((v = it.advance()) != null) {
3312 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3313 >                r = (r == null) ? u : reducer.apply(r, u);
3314          }
3315 <        public int size() {
3316 <            return ConcurrentHashMap.this.size();
3315 >        return r;
3316 >    }
3317 >
3318 >    /**
3319 >     * Returns the result of accumulating the given transformation
3320 >     * of all (key, value) pairs using the given reducer to
3321 >     * combine values, and the given basis as an identity value.
3322 >     *
3323 >     * @param transformer a function returning the transformation
3324 >     * for an element
3325 >     * @param basis the identity (initial default value) for the reduction
3326 >     * @param reducer a commutative associative combining function
3327 >     * @return the result of accumulating the given transformation
3328 >     * of all (key, value) pairs
3329 >     */
3330 >    public double reduceToDoubleSequentially
3331 >        (DoubleBiFunction<? super K, ? super V> transformer,
3332 >         double basis,
3333 >         DoubleBinaryOperator reducer) {
3334 >        if (transformer == null || reducer == null)
3335 >            throw new NullPointerException();
3336 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3337 >        double r = basis; V v;
3338 >        while ((v = it.advance()) != null)
3339 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3340 >        return r;
3341 >    }
3342 >
3343 >    /**
3344 >     * Returns the result of accumulating the given transformation
3345 >     * of all (key, value) pairs using the given reducer to
3346 >     * combine values, and the given basis as an identity value.
3347 >     *
3348 >     * @param transformer a function returning the transformation
3349 >     * for an element
3350 >     * @param basis the identity (initial default value) for the reduction
3351 >     * @param reducer a commutative associative combining function
3352 >     * @return the result of accumulating the given transformation
3353 >     * of all (key, value) pairs
3354 >     */
3355 >    public long reduceToLongSequentially
3356 >        (LongBiFunction<? super K, ? super V> transformer,
3357 >         long basis,
3358 >         LongBinaryOperator reducer) {
3359 >        if (transformer == null || reducer == null)
3360 >            throw new NullPointerException();
3361 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3362 >        long r = basis; V v;
3363 >        while ((v = it.advance()) != null)
3364 >            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3365 >        return r;
3366 >    }
3367 >
3368 >    /**
3369 >     * Returns the result of accumulating the given transformation
3370 >     * of all (key, value) pairs using the given reducer to
3371 >     * combine values, and the given basis as an identity value.
3372 >     *
3373 >     * @param transformer a function returning the transformation
3374 >     * for an element
3375 >     * @param basis the identity (initial default value) for the reduction
3376 >     * @param reducer a commutative associative combining function
3377 >     * @return the result of accumulating the given transformation
3378 >     * of all (key, value) pairs
3379 >     */
3380 >    public int reduceToIntSequentially
3381 >        (IntBiFunction<? super K, ? super V> transformer,
3382 >         int basis,
3383 >         IntBinaryOperator reducer) {
3384 >        if (transformer == null || reducer == null)
3385 >            throw new NullPointerException();
3386 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3387 >        int r = basis; V v;
3388 >        while ((v = it.advance()) != null)
3389 >            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3390 >        return r;
3391 >    }
3392 >
3393 >    /**
3394 >     * Performs the given action for each key.
3395 >     *
3396 >     * @param action the action
3397 >     */
3398 >    public void forEachKeySequentially
3399 >        (Block<? super K> action) {
3400 >        if (action == null) throw new NullPointerException();
3401 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3402 >        while (it.advance() != null)
3403 >            action.accept(it.nextKey);
3404 >    }
3405 >
3406 >    /**
3407 >     * Performs the given action for each non-null transformation
3408 >     * of each key.
3409 >     *
3410 >     * @param transformer a function returning the transformation
3411 >     * for an element, or null if there is no transformation (in
3412 >     * which case the action is not applied).
3413 >     * @param action the action
3414 >     */
3415 >    public <U> void forEachKeySequentially
3416 >        (Function<? super K, ? extends U> transformer,
3417 >         Block<? super U> action) {
3418 >        if (transformer == null || action == null)
3419 >            throw new NullPointerException();
3420 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3421 >        U u;
3422 >        while (it.advance() != null) {
3423 >            if ((u = transformer.apply(it.nextKey)) != null)
3424 >                action.accept(u);
3425          }
3426 <        public boolean isEmpty() {
3427 <            return ConcurrentHashMap.this.isEmpty();
3426 >        ForkJoinTasks.forEachKey
3427 >            (this, transformer, action).invoke();
3428 >    }
3429 >
3430 >    /**
3431 >     * Returns a non-null result from applying the given search
3432 >     * function on each key, or null if none.
3433 >     *
3434 >     * @param searchFunction a function returning a non-null
3435 >     * result on success, else null
3436 >     * @return a non-null result from applying the given search
3437 >     * function on each key, or null if none
3438 >     */
3439 >    public <U> U searchKeysSequentially
3440 >        (Function<? super K, ? extends U> searchFunction) {
3441 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3442 >        U u;
3443 >        while (it.advance() != null) {
3444 >            if ((u = searchFunction.apply(it.nextKey)) != null)
3445 >                return u;
3446          }
3447 <        public boolean contains(Object o) {
3448 <            return ConcurrentHashMap.this.containsValue(o);
3447 >        return null;
3448 >    }
3449 >
3450 >    /**
3451 >     * Returns the result of accumulating all keys using the given
3452 >     * reducer to combine values, or null if none.
3453 >     *
3454 >     * @param reducer a commutative associative combining function
3455 >     * @return the result of accumulating all keys using the given
3456 >     * reducer to combine values, or null if none
3457 >     */
3458 >    public K reduceKeysSequentially
3459 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
3460 >        if (reducer == null) throw new NullPointerException();
3461 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3462 >        K r = null;
3463 >        while (it.advance() != null) {
3464 >            K u = it.nextKey;
3465 >            r = (r == null) ? u : reducer.apply(r, u);
3466 >        }
3467 >        return r;
3468 >    }
3469 >
3470 >    /**
3471 >     * Returns the result of accumulating the given transformation
3472 >     * of all keys using the given reducer to combine values, or
3473 >     * null if none.
3474 >     *
3475 >     * @param transformer a function returning the transformation
3476 >     * for an element, or null if there is no transformation (in
3477 >     * which case it is not combined).
3478 >     * @param reducer a commutative associative combining function
3479 >     * @return the result of accumulating the given transformation
3480 >     * of all keys
3481 >     */
3482 >    public <U> U reduceKeysSequentially
3483 >        (Function<? super K, ? extends U> transformer,
3484 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3485 >        if (transformer == null || reducer == null)
3486 >            throw new NullPointerException();
3487 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3488 >        U r = null, u;
3489 >        while (it.advance() != null) {
3490 >            if ((u = transformer.apply(it.nextKey)) != null)
3491 >                r = (r == null) ? u : reducer.apply(r, u);
3492          }
3493 <        public void clear() {
3494 <            ConcurrentHashMap.this.clear();
3493 >        return r;
3494 >    }
3495 >
3496 >    /**
3497 >     * Returns the result of accumulating the given transformation
3498 >     * of all keys using the given reducer to combine values, and
3499 >     * the given basis as an identity value.
3500 >     *
3501 >     * @param transformer a function returning the transformation
3502 >     * for an element
3503 >     * @param basis the identity (initial default value) for the reduction
3504 >     * @param reducer a commutative associative combining function
3505 >     * @return the result of accumulating the given transformation
3506 >     * of all keys
3507 >     */
3508 >    public double reduceKeysToDoubleSequentially
3509 >        (DoubleFunction<? super K> transformer,
3510 >         double basis,
3511 >         DoubleBinaryOperator reducer) {
3512 >        if (transformer == null || reducer == null)
3513 >            throw new NullPointerException();
3514 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3515 >        double r = basis;
3516 >        while (it.advance() != null)
3517 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3518 >        return r;
3519 >    }
3520 >
3521 >    /**
3522 >     * Returns the result of accumulating the given transformation
3523 >     * of all keys using the given reducer to combine values, and
3524 >     * the given basis as an identity value.
3525 >     *
3526 >     * @param transformer a function returning the transformation
3527 >     * for an element
3528 >     * @param basis the identity (initial default value) for the reduction
3529 >     * @param reducer a commutative associative combining function
3530 >     * @return the result of accumulating the given transformation
3531 >     * of all keys
3532 >     */
3533 >    public long reduceKeysToLongSequentially
3534 >        (LongFunction<? super K> transformer,
3535 >         long basis,
3536 >         LongBinaryOperator reducer) {
3537 >        if (transformer == null || reducer == null)
3538 >            throw new NullPointerException();
3539 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3540 >        long r = basis;
3541 >        while (it.advance() != null)
3542 >            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3543 >        return r;
3544 >    }
3545 >
3546 >    /**
3547 >     * Returns the result of accumulating the given transformation
3548 >     * of all keys using the given reducer to combine values, and
3549 >     * the given basis as an identity value.
3550 >     *
3551 >     * @param transformer a function returning the transformation
3552 >     * for an element
3553 >     * @param basis the identity (initial default value) for the reduction
3554 >     * @param reducer a commutative associative combining function
3555 >     * @return the result of accumulating the given transformation
3556 >     * of all keys
3557 >     */
3558 >    public int reduceKeysToIntSequentially
3559 >        (IntFunction<? super K> transformer,
3560 >         int basis,
3561 >         IntBinaryOperator reducer) {
3562 >        if (transformer == null || reducer == null)
3563 >            throw new NullPointerException();
3564 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3565 >        int r = basis;
3566 >        while (it.advance() != null)
3567 >            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3568 >        return r;
3569 >    }
3570 >
3571 >    /**
3572 >     * Performs the given action for each value.
3573 >     *
3574 >     * @param action the action
3575 >     */
3576 >    public void forEachValueSequentially(Block<? super V> action) {
3577 >        if (action == null) throw new NullPointerException();
3578 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3579 >        V v;
3580 >        while ((v = it.advance()) != null)
3581 >            action.accept(v);
3582 >    }
3583 >
3584 >    /**
3585 >     * Performs the given action for each non-null transformation
3586 >     * of each value.
3587 >     *
3588 >     * @param transformer a function returning the transformation
3589 >     * for an element, or null if there is no transformation (in
3590 >     * which case the action is not applied).
3591 >     */
3592 >    public <U> void forEachValueSequentially
3593 >        (Function<? super V, ? extends U> transformer,
3594 >         Block<? super U> action) {
3595 >        if (transformer == null || action == null)
3596 >            throw new NullPointerException();
3597 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3598 >        V v; U u;
3599 >        while ((v = it.advance()) != null) {
3600 >            if ((u = transformer.apply(v)) != null)
3601 >                action.accept(u);
3602          }
3603      }
3604  
3605 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3606 <        public Iterator<Map.Entry<K,V>> iterator() {
3607 <            return new EntryIterator();
3605 >    /**
3606 >     * Returns a non-null result from applying the given search
3607 >     * function on each value, or null if none.
3608 >     *
3609 >     * @param searchFunction a function returning a non-null
3610 >     * result on success, else null
3611 >     * @return a non-null result from applying the given search
3612 >     * function on each value, or null if none
3613 >     */
3614 >    public <U> U searchValuesSequentially
3615 >        (Function<? super V, ? extends U> searchFunction) {
3616 >        if (searchFunction == null) throw new NullPointerException();
3617 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3618 >        V v; U u;
3619 >        while ((v = it.advance()) != null) {
3620 >            if ((u = searchFunction.apply(v)) != null)
3621 >                return u;
3622          }
3623 <        public boolean contains(Object o) {
3624 <            if (!(o instanceof Map.Entry))
3625 <                return false;
3626 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3627 <            V v = ConcurrentHashMap.this.get(e.getKey());
3628 <            return v != null && v.equals(e.getValue());
3623 >        return null;
3624 >    }
3625 >
3626 >    /**
3627 >     * Returns the result of accumulating all values using the
3628 >     * given reducer to combine values, or null if none.
3629 >     *
3630 >     * @param reducer a commutative associative combining function
3631 >     * @return the result of accumulating all values
3632 >     */
3633 >    public V reduceValuesSequentially
3634 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
3635 >        if (reducer == null) throw new NullPointerException();
3636 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637 >        V r = null; V v;
3638 >        while ((v = it.advance()) != null)
3639 >            r = (r == null) ? v : reducer.apply(r, v);
3640 >        return r;
3641 >    }
3642 >
3643 >    /**
3644 >     * Returns the result of accumulating the given transformation
3645 >     * of all values using the given reducer to combine values, or
3646 >     * null if none.
3647 >     *
3648 >     * @param transformer a function returning the transformation
3649 >     * for an element, or null if there is no transformation (in
3650 >     * which case it is not combined).
3651 >     * @param reducer a commutative associative combining function
3652 >     * @return the result of accumulating the given transformation
3653 >     * of all values
3654 >     */
3655 >    public <U> U reduceValuesSequentially
3656 >        (Function<? super V, ? extends U> transformer,
3657 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3658 >        if (transformer == null || reducer == null)
3659 >            throw new NullPointerException();
3660 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3661 >        U r = null, u; V v;
3662 >        while ((v = it.advance()) != null) {
3663 >            if ((u = transformer.apply(v)) != null)
3664 >                r = (r == null) ? u : reducer.apply(r, u);
3665          }
3666 <        public boolean remove(Object o) {
3667 <            if (!(o instanceof Map.Entry))
3668 <                return false;
3669 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3670 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
3666 >        return r;
3667 >    }
3668 >
3669 >    /**
3670 >     * Returns the result of accumulating the given transformation
3671 >     * of all values using the given reducer to combine values,
3672 >     * and the given basis as an identity value.
3673 >     *
3674 >     * @param transformer a function returning the transformation
3675 >     * for an element
3676 >     * @param basis the identity (initial default value) for the reduction
3677 >     * @param reducer a commutative associative combining function
3678 >     * @return the result of accumulating the given transformation
3679 >     * of all values
3680 >     */
3681 >    public double reduceValuesToDoubleSequentially
3682 >        (DoubleFunction<? super V> transformer,
3683 >         double basis,
3684 >         DoubleBinaryOperator reducer) {
3685 >        if (transformer == null || reducer == null)
3686 >            throw new NullPointerException();
3687 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3688 >        double r = basis; V v;
3689 >        while ((v = it.advance()) != null)
3690 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3691 >        return r;
3692 >    }
3693 >
3694 >    /**
3695 >     * Returns the result of accumulating the given transformation
3696 >     * of all values using the given reducer to combine values,
3697 >     * and the given basis as an identity value.
3698 >     *
3699 >     * @param transformer a function returning the transformation
3700 >     * for an element
3701 >     * @param basis the identity (initial default value) for the reduction
3702 >     * @param reducer a commutative associative combining function
3703 >     * @return the result of accumulating the given transformation
3704 >     * of all values
3705 >     */
3706 >    public long reduceValuesToLongSequentially
3707 >        (LongFunction<? super V> transformer,
3708 >         long basis,
3709 >         LongBinaryOperator reducer) {
3710 >        if (transformer == null || reducer == null)
3711 >            throw new NullPointerException();
3712 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3713 >        long r = basis; V v;
3714 >        while ((v = it.advance()) != null)
3715 >            r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3716 >        return r;
3717 >    }
3718 >
3719 >    /**
3720 >     * Returns the result of accumulating the given transformation
3721 >     * of all values using the given reducer to combine values,
3722 >     * and the given basis as an identity value.
3723 >     *
3724 >     * @param transformer a function returning the transformation
3725 >     * for an element
3726 >     * @param basis the identity (initial default value) for the reduction
3727 >     * @param reducer a commutative associative combining function
3728 >     * @return the result of accumulating the given transformation
3729 >     * of all values
3730 >     */
3731 >    public int reduceValuesToIntSequentially
3732 >        (IntFunction<? super V> transformer,
3733 >         int basis,
3734 >         IntBinaryOperator reducer) {
3735 >        if (transformer == null || reducer == null)
3736 >            throw new NullPointerException();
3737 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738 >        int r = basis; V v;
3739 >        while ((v = it.advance()) != null)
3740 >            r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3741 >        return r;
3742 >    }
3743 >
3744 >    /**
3745 >     * Performs the given action for each entry.
3746 >     *
3747 >     * @param action the action
3748 >     */
3749 >    public void forEachEntrySequentially
3750 >        (Block<? super Map.Entry<K,V>> action) {
3751 >        if (action == null) throw new NullPointerException();
3752 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3753 >        V v;
3754 >        while ((v = it.advance()) != null)
3755 >            action.accept(entryFor(it.nextKey, v));
3756 >    }
3757 >
3758 >    /**
3759 >     * Performs the given action for each non-null transformation
3760 >     * of each entry.
3761 >     *
3762 >     * @param transformer a function returning the transformation
3763 >     * for an element, or null if there is no transformation (in
3764 >     * which case the action is not applied).
3765 >     * @param action the action
3766 >     */
3767 >    public <U> void forEachEntrySequentially
3768 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3769 >         Block<? super U> action) {
3770 >        if (transformer == null || action == null)
3771 >            throw new NullPointerException();
3772 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3773 >        V v; U u;
3774 >        while ((v = it.advance()) != null) {
3775 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3776 >                action.accept(u);
3777          }
3778 <        public int size() {
3779 <            return ConcurrentHashMap.this.size();
3778 >    }
3779 >
3780 >    /**
3781 >     * Returns a non-null result from applying the given search
3782 >     * function on each entry, or null if none.
3783 >     *
3784 >     * @param searchFunction a function returning a non-null
3785 >     * result on success, else null
3786 >     * @return a non-null result from applying the given search
3787 >     * function on each entry, or null if none
3788 >     */
3789 >    public <U> U searchEntriesSequentially
3790 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3791 >        if (searchFunction == null) throw new NullPointerException();
3792 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3793 >        V v; U u;
3794 >        while ((v = it.advance()) != null) {
3795 >            if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3796 >                return u;
3797          }
3798 <        public boolean isEmpty() {
3799 <            return ConcurrentHashMap.this.isEmpty();
3798 >        return null;
3799 >    }
3800 >
3801 >    /**
3802 >     * Returns the result of accumulating all entries using the
3803 >     * given reducer to combine values, or null if none.
3804 >     *
3805 >     * @param reducer a commutative associative combining function
3806 >     * @return the result of accumulating all entries
3807 >     */
3808 >    public Map.Entry<K,V> reduceEntriesSequentially
3809 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3810 >        if (reducer == null) throw new NullPointerException();
3811 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3812 >        Map.Entry<K,V> r = null; V v;
3813 >        while ((v = it.advance()) != null) {
3814 >            Map.Entry<K,V> u = entryFor(it.nextKey, v);
3815 >            r = (r == null) ? u : reducer.apply(r, u);
3816          }
3817 <        public void clear() {
3818 <            ConcurrentHashMap.this.clear();
3817 >        return r;
3818 >    }
3819 >
3820 >    /**
3821 >     * Returns the result of accumulating the given transformation
3822 >     * of all entries using the given reducer to combine values,
3823 >     * or null if none.
3824 >     *
3825 >     * @param transformer a function returning the transformation
3826 >     * for an element, or null if there is no transformation (in
3827 >     * which case it is not combined).
3828 >     * @param reducer a commutative associative combining function
3829 >     * @return the result of accumulating the given transformation
3830 >     * of all entries
3831 >     */
3832 >    public <U> U reduceEntriesSequentially
3833 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3834 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3835 >        if (transformer == null || reducer == null)
3836 >            throw new NullPointerException();
3837 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3838 >        U r = null, u; V v;
3839 >        while ((v = it.advance()) != null) {
3840 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3841 >                r = (r == null) ? u : reducer.apply(r, u);
3842          }
3843 +        return r;
3844      }
3845  
3846 <    /* ---------------- Serialization Support -------------- */
3846 >    /**
3847 >     * Returns the result of accumulating the given transformation
3848 >     * of all entries using the given reducer to combine values,
3849 >     * and the given basis as an identity value.
3850 >     *
3851 >     * @param transformer a function returning the transformation
3852 >     * for an element
3853 >     * @param basis the identity (initial default value) for the reduction
3854 >     * @param reducer a commutative associative combining function
3855 >     * @return the result of accumulating the given transformation
3856 >     * of all entries
3857 >     */
3858 >    public double reduceEntriesToDoubleSequentially
3859 >        (DoubleFunction<Map.Entry<K,V>> transformer,
3860 >         double basis,
3861 >         DoubleBinaryOperator reducer) {
3862 >        if (transformer == null || reducer == null)
3863 >            throw new NullPointerException();
3864 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3865 >        double r = basis; V v;
3866 >        while ((v = it.advance()) != null)
3867 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3868 >        return r;
3869 >    }
3870  
3871      /**
3872 <     * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
3873 <     * stream (i.e., serializes it).
3874 <     * @param s the stream
3875 <     * @serialData
3876 <     * the key (Object) and value (Object)
3877 <     * for each key-value mapping, followed by a null pair.
3878 <     * The key-value mappings are emitted in no particular order.
3872 >     * Returns the result of accumulating the given transformation
3873 >     * of all entries using the given reducer to combine values,
3874 >     * and the given basis as an identity value.
3875 >     *
3876 >     * @param transformer a function returning the transformation
3877 >     * for an element
3878 >     * @param basis the identity (initial default value) for the reduction
3879 >     * @param reducer a commutative associative combining function
3880 >     * @return the result of accumulating the given transformation
3881 >     * of all entries
3882 >     */
3883 >    public long reduceEntriesToLongSequentially
3884 >        (LongFunction<Map.Entry<K,V>> transformer,
3885 >         long basis,
3886 >         LongBinaryOperator reducer) {
3887 >        if (transformer == null || reducer == null)
3888 >            throw new NullPointerException();
3889 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3890 >        long r = basis; V v;
3891 >        while ((v = it.advance()) != null)
3892 >            r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3893 >        return r;
3894 >    }
3895 >
3896 >    /**
3897 >     * Returns the result of accumulating the given transformation
3898 >     * of all entries using the given reducer to combine values,
3899 >     * and the given basis as an identity value.
3900 >     *
3901 >     * @param transformer a function returning the transformation
3902 >     * for an element
3903 >     * @param basis the identity (initial default value) for the reduction
3904 >     * @param reducer a commutative associative combining function
3905 >     * @return the result of accumulating the given transformation
3906 >     * of all entries
3907 >     */
3908 >    public int reduceEntriesToIntSequentially
3909 >        (IntFunction<Map.Entry<K,V>> transformer,
3910 >         int basis,
3911 >         IntBinaryOperator reducer) {
3912 >        if (transformer == null || reducer == null)
3913 >            throw new NullPointerException();
3914 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3915 >        int r = basis; V v;
3916 >        while ((v = it.advance()) != null)
3917 >            r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3918 >        return r;
3919 >    }
3920 >
3921 >    // Parallel bulk operations
3922 >
3923 >    /**
3924 >     * Performs the given action for each (key, value).
3925 >     *
3926 >     * @param action the action
3927       */
3928 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
3929 <        // force all segments for serialization compatibility
3930 <        for (int k = 0; k < segments.length; ++k)
3931 <            ensureSegment(k);
1412 <        s.defaultWriteObject();
3928 >    public void forEachInParallel(BiBlock<? super K,? super V> action) {
3929 >        ForkJoinTasks.forEach
3930 >            (this, action).invoke();
3931 >    }
3932  
3933 <        final Segment<K,V>[] segments = this.segments;
3934 <        for (int k = 0; k < segments.length; ++k) {
3935 <            Segment<K,V> seg = segmentAt(segments, k);
3936 <            seg.lock();
3937 <            try {
3938 <                HashEntry<K,V>[] tab = seg.table;
3939 <                for (int i = 0; i < tab.length; ++i) {
3940 <                    HashEntry<K,V> e;
3941 <                    for (e = entryAt(tab, i); e != null; e = e.next) {
3942 <                        s.writeObject(e.key);
3943 <                        s.writeObject(e.value);
3933 >    /**
3934 >     * Performs the given action for each non-null transformation
3935 >     * of each (key, value).
3936 >     *
3937 >     * @param transformer a function returning the transformation
3938 >     * for an element, or null if there is no transformation (in
3939 >     * which case the action is not applied).
3940 >     * @param action the action
3941 >     */
3942 >    public <U> void forEachInParallel
3943 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3944 >                            Block<? super U> action) {
3945 >        ForkJoinTasks.forEach
3946 >            (this, transformer, action).invoke();
3947 >    }
3948 >
3949 >    /**
3950 >     * Returns a non-null result from applying the given search
3951 >     * function on each (key, value), or null if none.  Upon
3952 >     * success, further element processing is suppressed and the
3953 >     * results of any other parallel invocations of the search
3954 >     * function are ignored.
3955 >     *
3956 >     * @param searchFunction a function returning a non-null
3957 >     * result on success, else null
3958 >     * @return a non-null result from applying the given search
3959 >     * function on each (key, value), or null if none
3960 >     */
3961 >    public <U> U searchInParallel
3962 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3963 >        return ForkJoinTasks.search
3964 >            (this, searchFunction).invoke();
3965 >    }
3966 >
3967 >    /**
3968 >     * Returns the result of accumulating the given transformation
3969 >     * of all (key, value) pairs using the given reducer to
3970 >     * combine values, or null if none.
3971 >     *
3972 >     * @param transformer a function returning the transformation
3973 >     * for an element, or null if there is no transformation (in
3974 >     * which case it is not combined).
3975 >     * @param reducer a commutative associative combining function
3976 >     * @return the result of accumulating the given transformation
3977 >     * of all (key, value) pairs
3978 >     */
3979 >    public <U> U reduceInParallel
3980 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3981 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3982 >        return ForkJoinTasks.reduce
3983 >            (this, transformer, reducer).invoke();
3984 >    }
3985 >
3986 >    /**
3987 >     * Returns the result of accumulating the given transformation
3988 >     * of all (key, value) pairs using the given reducer to
3989 >     * combine values, and the given basis as an identity value.
3990 >     *
3991 >     * @param transformer a function returning the transformation
3992 >     * for an element
3993 >     * @param basis the identity (initial default value) for the reduction
3994 >     * @param reducer a commutative associative combining function
3995 >     * @return the result of accumulating the given transformation
3996 >     * of all (key, value) pairs
3997 >     */
3998 >    public double reduceToDoubleInParallel
3999 >        (DoubleBiFunction<? super K, ? super V> transformer,
4000 >         double basis,
4001 >         DoubleBinaryOperator reducer) {
4002 >        return ForkJoinTasks.reduceToDouble
4003 >            (this, transformer, basis, reducer).invoke();
4004 >    }
4005 >
4006 >    /**
4007 >     * Returns the result of accumulating the given transformation
4008 >     * of all (key, value) pairs using the given reducer to
4009 >     * combine values, and the given basis as an identity value.
4010 >     *
4011 >     * @param transformer a function returning the transformation
4012 >     * for an element
4013 >     * @param basis the identity (initial default value) for the reduction
4014 >     * @param reducer a commutative associative combining function
4015 >     * @return the result of accumulating the given transformation
4016 >     * of all (key, value) pairs
4017 >     */
4018 >    public long reduceToLongInParallel
4019 >        (LongBiFunction<? super K, ? super V> transformer,
4020 >         long basis,
4021 >         LongBinaryOperator reducer) {
4022 >        return ForkJoinTasks.reduceToLong
4023 >            (this, transformer, basis, reducer).invoke();
4024 >    }
4025 >
4026 >    /**
4027 >     * Returns the result of accumulating the given transformation
4028 >     * of all (key, value) pairs using the given reducer to
4029 >     * combine values, and the given basis as an identity value.
4030 >     *
4031 >     * @param transformer a function returning the transformation
4032 >     * for an element
4033 >     * @param basis the identity (initial default value) for the reduction
4034 >     * @param reducer a commutative associative combining function
4035 >     * @return the result of accumulating the given transformation
4036 >     * of all (key, value) pairs
4037 >     */
4038 >    public int reduceToIntInParallel
4039 >        (IntBiFunction<? super K, ? super V> transformer,
4040 >         int basis,
4041 >         IntBinaryOperator reducer) {
4042 >        return ForkJoinTasks.reduceToInt
4043 >            (this, transformer, basis, reducer).invoke();
4044 >    }
4045 >
4046 >    /**
4047 >     * Performs the given action for each key.
4048 >     *
4049 >     * @param action the action
4050 >     */
4051 >    public void forEachKeyInParallel(Block<? super K> action) {
4052 >        ForkJoinTasks.forEachKey
4053 >            (this, action).invoke();
4054 >    }
4055 >
4056 >    /**
4057 >     * Performs the given action for each non-null transformation
4058 >     * of each key.
4059 >     *
4060 >     * @param transformer a function returning the transformation
4061 >     * for an element, or null if there is no transformation (in
4062 >     * which case the action is not applied).
4063 >     * @param action the action
4064 >     */
4065 >    public <U> void forEachKeyInParallel
4066 >        (Function<? super K, ? extends U> transformer,
4067 >         Block<? super U> action) {
4068 >        ForkJoinTasks.forEachKey
4069 >            (this, transformer, action).invoke();
4070 >    }
4071 >
4072 >    /**
4073 >     * Returns a non-null result from applying the given search
4074 >     * function on each key, or null if none. Upon success,
4075 >     * further element processing is suppressed and the results of
4076 >     * any other parallel invocations of the search function are
4077 >     * ignored.
4078 >     *
4079 >     * @param searchFunction a function returning a non-null
4080 >     * result on success, else null
4081 >     * @return a non-null result from applying the given search
4082 >     * function on each key, or null if none
4083 >     */
4084 >    public <U> U searchKeysInParallel
4085 >        (Function<? super K, ? extends U> searchFunction) {
4086 >        return ForkJoinTasks.searchKeys
4087 >            (this, searchFunction).invoke();
4088 >    }
4089 >
4090 >    /**
4091 >     * Returns the result of accumulating all keys using the given
4092 >     * reducer to combine values, or null if none.
4093 >     *
4094 >     * @param reducer a commutative associative combining function
4095 >     * @return the result of accumulating all keys using the given
4096 >     * reducer to combine values, or null if none
4097 >     */
4098 >    public K reduceKeysInParallel
4099 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
4100 >        return ForkJoinTasks.reduceKeys
4101 >            (this, reducer).invoke();
4102 >    }
4103 >
4104 >    /**
4105 >     * Returns the result of accumulating the given transformation
4106 >     * of all keys using the given reducer to combine values, or
4107 >     * null if none.
4108 >     *
4109 >     * @param transformer a function returning the transformation
4110 >     * for an element, or null if there is no transformation (in
4111 >     * which case it is not combined).
4112 >     * @param reducer a commutative associative combining function
4113 >     * @return the result of accumulating the given transformation
4114 >     * of all keys
4115 >     */
4116 >    public <U> U reduceKeysInParallel
4117 >        (Function<? super K, ? extends U> transformer,
4118 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4119 >        return ForkJoinTasks.reduceKeys
4120 >            (this, transformer, reducer).invoke();
4121 >    }
4122 >
4123 >    /**
4124 >     * Returns the result of accumulating the given transformation
4125 >     * of all keys using the given reducer to combine values, and
4126 >     * the given basis as an identity value.
4127 >     *
4128 >     * @param transformer a function returning the transformation
4129 >     * for an element
4130 >     * @param basis the identity (initial default value) for the reduction
4131 >     * @param reducer a commutative associative combining function
4132 >     * @return the result of accumulating the given transformation
4133 >     * of all keys
4134 >     */
4135 >    public double reduceKeysToDoubleInParallel
4136 >        (DoubleFunction<? super K> transformer,
4137 >         double basis,
4138 >         DoubleBinaryOperator reducer) {
4139 >        return ForkJoinTasks.reduceKeysToDouble
4140 >            (this, transformer, basis, reducer).invoke();
4141 >    }
4142 >
4143 >    /**
4144 >     * Returns the result of accumulating the given transformation
4145 >     * of all keys using the given reducer to combine values, and
4146 >     * the given basis as an identity value.
4147 >     *
4148 >     * @param transformer a function returning the transformation
4149 >     * for an element
4150 >     * @param basis the identity (initial default value) for the reduction
4151 >     * @param reducer a commutative associative combining function
4152 >     * @return the result of accumulating the given transformation
4153 >     * of all keys
4154 >     */
4155 >    public long reduceKeysToLongInParallel
4156 >        (LongFunction<? super K> transformer,
4157 >         long basis,
4158 >         LongBinaryOperator reducer) {
4159 >        return ForkJoinTasks.reduceKeysToLong
4160 >            (this, transformer, basis, reducer).invoke();
4161 >    }
4162 >
4163 >    /**
4164 >     * Returns the result of accumulating the given transformation
4165 >     * of all keys using the given reducer to combine values, and
4166 >     * the given basis as an identity value.
4167 >     *
4168 >     * @param transformer a function returning the transformation
4169 >     * for an element
4170 >     * @param basis the identity (initial default value) for the reduction
4171 >     * @param reducer a commutative associative combining function
4172 >     * @return the result of accumulating the given transformation
4173 >     * of all keys
4174 >     */
4175 >    public int reduceKeysToIntInParallel
4176 >        (IntFunction<? super K> transformer,
4177 >         int basis,
4178 >         IntBinaryOperator reducer) {
4179 >        return ForkJoinTasks.reduceKeysToInt
4180 >            (this, transformer, basis, reducer).invoke();
4181 >    }
4182 >
4183 >    /**
4184 >     * Performs the given action for each value.
4185 >     *
4186 >     * @param action the action
4187 >     */
4188 >    public void forEachValueInParallel(Block<? super V> action) {
4189 >        ForkJoinTasks.forEachValue
4190 >            (this, action).invoke();
4191 >    }
4192 >
4193 >    /**
4194 >     * Performs the given action for each non-null transformation
4195 >     * of each value.
4196 >     *
4197 >     * @param transformer a function returning the transformation
4198 >     * for an element, or null if there is no transformation (in
4199 >     * which case the action is not applied).
4200 >     */
4201 >    public <U> void forEachValueInParallel
4202 >        (Function<? super V, ? extends U> transformer,
4203 >         Block<? super U> action) {
4204 >        ForkJoinTasks.forEachValue
4205 >            (this, transformer, action).invoke();
4206 >    }
4207 >
4208 >    /**
4209 >     * Returns a non-null result from applying the given search
4210 >     * function on each value, or null if none.  Upon success,
4211 >     * further element processing is suppressed and the results of
4212 >     * any other parallel invocations of the search function are
4213 >     * ignored.
4214 >     *
4215 >     * @param searchFunction a function returning a non-null
4216 >     * result on success, else null
4217 >     * @return a non-null result from applying the given search
4218 >     * function on each value, or null if none
4219 >     */
4220 >    public <U> U searchValuesInParallel
4221 >        (Function<? super V, ? extends U> searchFunction) {
4222 >        return ForkJoinTasks.searchValues
4223 >            (this, searchFunction).invoke();
4224 >    }
4225 >
4226 >    /**
4227 >     * Returns the result of accumulating all values using the
4228 >     * given reducer to combine values, or null if none.
4229 >     *
4230 >     * @param reducer a commutative associative combining function
4231 >     * @return the result of accumulating all values
4232 >     */
4233 >    public V reduceValuesInParallel
4234 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4235 >        return ForkJoinTasks.reduceValues
4236 >            (this, reducer).invoke();
4237 >    }
4238 >
4239 >    /**
4240 >     * Returns the result of accumulating the given transformation
4241 >     * of all values using the given reducer to combine values, or
4242 >     * null if none.
4243 >     *
4244 >     * @param transformer a function returning the transformation
4245 >     * for an element, or null if there is no transformation (in
4246 >     * which case it is not combined).
4247 >     * @param reducer a commutative associative combining function
4248 >     * @return the result of accumulating the given transformation
4249 >     * of all values
4250 >     */
4251 >    public <U> U reduceValuesInParallel
4252 >        (Function<? super V, ? extends U> transformer,
4253 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4254 >        return ForkJoinTasks.reduceValues
4255 >            (this, transformer, reducer).invoke();
4256 >    }
4257 >
4258 >    /**
4259 >     * Returns the result of accumulating the given transformation
4260 >     * of all values using the given reducer to combine values,
4261 >     * and the given basis as an identity value.
4262 >     *
4263 >     * @param transformer a function returning the transformation
4264 >     * for an element
4265 >     * @param basis the identity (initial default value) for the reduction
4266 >     * @param reducer a commutative associative combining function
4267 >     * @return the result of accumulating the given transformation
4268 >     * of all values
4269 >     */
4270 >    public double reduceValuesToDoubleInParallel
4271 >        (DoubleFunction<? super V> transformer,
4272 >         double basis,
4273 >         DoubleBinaryOperator reducer) {
4274 >        return ForkJoinTasks.reduceValuesToDouble
4275 >            (this, transformer, basis, reducer).invoke();
4276 >    }
4277 >
4278 >    /**
4279 >     * Returns the result of accumulating the given transformation
4280 >     * of all values using the given reducer to combine values,
4281 >     * and the given basis as an identity value.
4282 >     *
4283 >     * @param transformer a function returning the transformation
4284 >     * for an element
4285 >     * @param basis the identity (initial default value) for the reduction
4286 >     * @param reducer a commutative associative combining function
4287 >     * @return the result of accumulating the given transformation
4288 >     * of all values
4289 >     */
4290 >    public long reduceValuesToLongInParallel
4291 >        (LongFunction<? super V> transformer,
4292 >         long basis,
4293 >         LongBinaryOperator reducer) {
4294 >        return ForkJoinTasks.reduceValuesToLong
4295 >            (this, transformer, basis, reducer).invoke();
4296 >    }
4297 >
4298 >    /**
4299 >     * Returns the result of accumulating the given transformation
4300 >     * of all values using the given reducer to combine values,
4301 >     * and the given basis as an identity value.
4302 >     *
4303 >     * @param transformer a function returning the transformation
4304 >     * for an element
4305 >     * @param basis the identity (initial default value) for the reduction
4306 >     * @param reducer a commutative associative combining function
4307 >     * @return the result of accumulating the given transformation
4308 >     * of all values
4309 >     */
4310 >    public int reduceValuesToIntInParallel
4311 >        (IntFunction<? super V> transformer,
4312 >         int basis,
4313 >         IntBinaryOperator reducer) {
4314 >        return ForkJoinTasks.reduceValuesToInt
4315 >            (this, transformer, basis, reducer).invoke();
4316 >    }
4317 >
4318 >    /**
4319 >     * Performs the given action for each entry.
4320 >     *
4321 >     * @param action the action
4322 >     */
4323 >    public void forEachEntryInParallel(Block<? super Map.Entry<K,V>> action) {
4324 >        ForkJoinTasks.forEachEntry
4325 >            (this, action).invoke();
4326 >    }
4327 >
4328 >    /**
4329 >     * Performs the given action for each non-null transformation
4330 >     * of each entry.
4331 >     *
4332 >     * @param transformer a function returning the transformation
4333 >     * for an element, or null if there is no transformation (in
4334 >     * which case the action is not applied).
4335 >     * @param action the action
4336 >     */
4337 >    public <U> void forEachEntryInParallel
4338 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4339 >         Block<? super U> action) {
4340 >        ForkJoinTasks.forEachEntry
4341 >            (this, transformer, action).invoke();
4342 >    }
4343 >
4344 >    /**
4345 >     * Returns a non-null result from applying the given search
4346 >     * function on each entry, or null if none.  Upon success,
4347 >     * further element processing is suppressed and the results of
4348 >     * any other parallel invocations of the search function are
4349 >     * ignored.
4350 >     *
4351 >     * @param searchFunction a function returning a non-null
4352 >     * result on success, else null
4353 >     * @return a non-null result from applying the given search
4354 >     * function on each entry, or null if none
4355 >     */
4356 >    public <U> U searchEntriesInParallel
4357 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4358 >        return ForkJoinTasks.searchEntries
4359 >            (this, searchFunction).invoke();
4360 >    }
4361 >
4362 >    /**
4363 >     * Returns the result of accumulating all entries using the
4364 >     * given reducer to combine values, or null if none.
4365 >     *
4366 >     * @param reducer a commutative associative combining function
4367 >     * @return the result of accumulating all entries
4368 >     */
4369 >    public Map.Entry<K,V> reduceEntriesInParallel
4370 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4371 >        return ForkJoinTasks.reduceEntries
4372 >            (this, reducer).invoke();
4373 >    }
4374 >
4375 >    /**
4376 >     * Returns the result of accumulating the given transformation
4377 >     * of all entries using the given reducer to combine values,
4378 >     * or null if none.
4379 >     *
4380 >     * @param transformer a function returning the transformation
4381 >     * for an element, or null if there is no transformation (in
4382 >     * which case it is not combined).
4383 >     * @param reducer a commutative associative combining function
4384 >     * @return the result of accumulating the given transformation
4385 >     * of all entries
4386 >     */
4387 >    public <U> U reduceEntriesInParallel
4388 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4389 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4390 >        return ForkJoinTasks.reduceEntries
4391 >            (this, transformer, reducer).invoke();
4392 >    }
4393 >
4394 >    /**
4395 >     * Returns the result of accumulating the given transformation
4396 >     * of all entries using the given reducer to combine values,
4397 >     * and the given basis as an identity value.
4398 >     *
4399 >     * @param transformer a function returning the transformation
4400 >     * for an element
4401 >     * @param basis the identity (initial default value) for the reduction
4402 >     * @param reducer a commutative associative combining function
4403 >     * @return the result of accumulating the given transformation
4404 >     * of all entries
4405 >     */
4406 >    public double reduceEntriesToDoubleInParallel
4407 >        (DoubleFunction<Map.Entry<K,V>> transformer,
4408 >         double basis,
4409 >         DoubleBinaryOperator reducer) {
4410 >        return ForkJoinTasks.reduceEntriesToDouble
4411 >            (this, transformer, basis, reducer).invoke();
4412 >    }
4413 >
4414 >    /**
4415 >     * Returns the result of accumulating the given transformation
4416 >     * of all entries using the given reducer to combine values,
4417 >     * and the given basis as an identity value.
4418 >     *
4419 >     * @param transformer a function returning the transformation
4420 >     * for an element
4421 >     * @param basis the identity (initial default value) for the reduction
4422 >     * @param reducer a commutative associative combining function
4423 >     * @return the result of accumulating the given transformation
4424 >     * of all entries
4425 >     */
4426 >    public long reduceEntriesToLongInParallel
4427 >        (LongFunction<Map.Entry<K,V>> transformer,
4428 >         long basis,
4429 >         LongBinaryOperator reducer) {
4430 >        return ForkJoinTasks.reduceEntriesToLong
4431 >            (this, transformer, basis, reducer).invoke();
4432 >    }
4433 >
4434 >    /**
4435 >     * Returns the result of accumulating the given transformation
4436 >     * of all entries using the given reducer to combine values,
4437 >     * and the given basis as an identity value.
4438 >     *
4439 >     * @param transformer a function returning the transformation
4440 >     * for an element
4441 >     * @param basis the identity (initial default value) for the reduction
4442 >     * @param reducer a commutative associative combining function
4443 >     * @return the result of accumulating the given transformation
4444 >     * of all entries
4445 >     */
4446 >    public int reduceEntriesToIntInParallel
4447 >        (IntFunction<Map.Entry<K,V>> transformer,
4448 >         int basis,
4449 >         IntBinaryOperator reducer) {
4450 >        return ForkJoinTasks.reduceEntriesToInt
4451 >            (this, transformer, basis, reducer).invoke();
4452 >    }
4453 >
4454 >
4455 >    /* ----------------Views -------------- */
4456 >
4457 >    /**
4458 >     * Base class for views.
4459 >     */
4460 >    abstract static class CHMView<K, V> implements java.io.Serializable {
4461 >        private static final long serialVersionUID = 7249069246763182397L;
4462 >        final ConcurrentHashMap<K, V> map;
4463 >        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
4464 >
4465 >        /**
4466 >         * Returns the map backing this view.
4467 >         *
4468 >         * @return the map backing this view
4469 >         */
4470 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4471 >
4472 >        public final int size()                 { return map.size(); }
4473 >        public final boolean isEmpty()          { return map.isEmpty(); }
4474 >        public final void clear()               { map.clear(); }
4475 >
4476 >        // implementations below rely on concrete classes supplying these
4477 >        public abstract Iterator<?> iterator();
4478 >        public abstract boolean contains(Object o);
4479 >        public abstract boolean remove(Object o);
4480 >
4481 >        private static final String oomeMsg = "Required array size too large";
4482 >
4483 >        public final Object[] toArray() {
4484 >            long sz = map.mappingCount();
4485 >            if (sz > (long)(MAX_ARRAY_SIZE))
4486 >                throw new OutOfMemoryError(oomeMsg);
4487 >            int n = (int)sz;
4488 >            Object[] r = new Object[n];
4489 >            int i = 0;
4490 >            Iterator<?> it = iterator();
4491 >            while (it.hasNext()) {
4492 >                if (i == n) {
4493 >                    if (n >= MAX_ARRAY_SIZE)
4494 >                        throw new OutOfMemoryError(oomeMsg);
4495 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4496 >                        n = MAX_ARRAY_SIZE;
4497 >                    else
4498 >                        n += (n >>> 1) + 1;
4499 >                    r = Arrays.copyOf(r, n);
4500 >                }
4501 >                r[i++] = it.next();
4502 >            }
4503 >            return (i == n) ? r : Arrays.copyOf(r, i);
4504 >        }
4505 >
4506 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4507 >            long sz = map.mappingCount();
4508 >            if (sz > (long)(MAX_ARRAY_SIZE))
4509 >                throw new OutOfMemoryError(oomeMsg);
4510 >            int m = (int)sz;
4511 >            T[] r = (a.length >= m) ? a :
4512 >                (T[])java.lang.reflect.Array
4513 >                .newInstance(a.getClass().getComponentType(), m);
4514 >            int n = r.length;
4515 >            int i = 0;
4516 >            Iterator<?> it = iterator();
4517 >            while (it.hasNext()) {
4518 >                if (i == n) {
4519 >                    if (n >= MAX_ARRAY_SIZE)
4520 >                        throw new OutOfMemoryError(oomeMsg);
4521 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4522 >                        n = MAX_ARRAY_SIZE;
4523 >                    else
4524 >                        n += (n >>> 1) + 1;
4525 >                    r = Arrays.copyOf(r, n);
4526 >                }
4527 >                r[i++] = (T)it.next();
4528 >            }
4529 >            if (a == r && i < n) {
4530 >                r[i] = null; // null-terminate
4531 >                return r;
4532 >            }
4533 >            return (i == n) ? r : Arrays.copyOf(r, i);
4534 >        }
4535 >
4536 >        public final int hashCode() {
4537 >            int h = 0;
4538 >            for (Iterator<?> it = iterator(); it.hasNext();)
4539 >                h += it.next().hashCode();
4540 >            return h;
4541 >        }
4542 >
4543 >        public final String toString() {
4544 >            StringBuilder sb = new StringBuilder();
4545 >            sb.append('[');
4546 >            Iterator<?> it = iterator();
4547 >            if (it.hasNext()) {
4548 >                for (;;) {
4549 >                    Object e = it.next();
4550 >                    sb.append(e == this ? "(this Collection)" : e);
4551 >                    if (!it.hasNext())
4552 >                        break;
4553 >                    sb.append(',').append(' ');
4554 >                }
4555 >            }
4556 >            return sb.append(']').toString();
4557 >        }
4558 >
4559 >        public final boolean containsAll(Collection<?> c) {
4560 >            if (c != this) {
4561 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4562 >                    Object e = it.next();
4563 >                    if (e == null || !contains(e))
4564 >                        return false;
4565 >                }
4566 >            }
4567 >            return true;
4568 >        }
4569 >
4570 >        public final boolean removeAll(Collection<?> c) {
4571 >            boolean modified = false;
4572 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4573 >                if (c.contains(it.next())) {
4574 >                    it.remove();
4575 >                    modified = true;
4576 >                }
4577 >            }
4578 >            return modified;
4579 >        }
4580 >
4581 >        public final boolean retainAll(Collection<?> c) {
4582 >            boolean modified = false;
4583 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4584 >                if (!c.contains(it.next())) {
4585 >                    it.remove();
4586 >                    modified = true;
4587 >                }
4588 >            }
4589 >            return modified;
4590 >        }
4591 >
4592 >    }
4593 >
4594 >    /**
4595 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4596 >     * which additions may optionally be enabled by mapping to a
4597 >     * common value.  This class cannot be directly instantiated. See
4598 >     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4599 >     * {@link #newKeySet(int)}.
4600 >     */
4601 >    public static class KeySetView<K,V> extends CHMView<K,V>
4602 >        implements Set<K>, java.io.Serializable {
4603 >        private static final long serialVersionUID = 7249069246763182397L;
4604 >        private final V value;
4605 >        KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
4606 >            super(map);
4607 >            this.value = value;
4608 >        }
4609 >
4610 >        /**
4611 >         * Returns the default mapped value for additions,
4612 >         * or {@code null} if additions are not supported.
4613 >         *
4614 >         * @return the default mapped value for additions, or {@code null}
4615 >         * if not supported.
4616 >         */
4617 >        public V getMappedValue() { return value; }
4618 >
4619 >        // implement Set API
4620 >
4621 >        public boolean contains(Object o) { return map.containsKey(o); }
4622 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4623 >
4624 >        /**
4625 >         * Returns a "weakly consistent" iterator that will never
4626 >         * throw {@link ConcurrentModificationException}, and
4627 >         * guarantees to traverse elements as they existed upon
4628 >         * construction of the iterator, and may (but is not
4629 >         * guaranteed to) reflect any modifications subsequent to
4630 >         * construction.
4631 >         *
4632 >         * @return an iterator over the keys of this map
4633 >         */
4634 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4635 >        public boolean add(K e) {
4636 >            V v;
4637 >            if ((v = value) == null)
4638 >                throw new UnsupportedOperationException();
4639 >            if (e == null)
4640 >                throw new NullPointerException();
4641 >            return map.internalPut(e, v, true) == null;
4642 >        }
4643 >        public boolean addAll(Collection<? extends K> c) {
4644 >            boolean added = false;
4645 >            V v;
4646 >            if ((v = value) == null)
4647 >                throw new UnsupportedOperationException();
4648 >            for (K e : c) {
4649 >                if (e == null)
4650 >                    throw new NullPointerException();
4651 >                if (map.internalPut(e, v, true) == null)
4652 >                    added = true;
4653 >            }
4654 >            return added;
4655 >        }
4656 >        public boolean equals(Object o) {
4657 >            Set<?> c;
4658 >            return ((o instanceof Set) &&
4659 >                    ((c = (Set<?>)o) == this ||
4660 >                     (containsAll(c) && c.containsAll(this))));
4661 >        }
4662 >
4663 >        public Stream<K> stream() {
4664 >            return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4665 >        }
4666 >        public Stream<K> parallelStream() {
4667 >            return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4668 >                                          0);
4669 >        }
4670 >    }
4671 >
4672 >    /**
4673 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4674 >     * values, in which additions are disabled. This class cannot be
4675 >     * directly instantiated. See {@link #values},
4676 >     *
4677 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4678 >     * that will never throw {@link ConcurrentModificationException},
4679 >     * and guarantees to traverse elements as they existed upon
4680 >     * construction of the iterator, and may (but is not guaranteed to)
4681 >     * reflect any modifications subsequent to construction.
4682 >     */
4683 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4684 >        implements Collection<V> {
4685 >        private static final long serialVersionUID = 2249069246763182397L;
4686 >        ValuesView(ConcurrentHashMap<K, V> map)   { super(map); }
4687 >        public final boolean contains(Object o) { return map.containsValue(o); }
4688 >        public final boolean remove(Object o) {
4689 >            if (o != null) {
4690 >                Iterator<V> it = new ValueIterator<K,V>(map);
4691 >                while (it.hasNext()) {
4692 >                    if (o.equals(it.next())) {
4693 >                        it.remove();
4694 >                        return true;
4695                      }
4696                  }
1427            } finally {
1428                seg.unlock();
4697              }
4698 +            return false;
4699          }
4700 <        s.writeObject(null);
4701 <        s.writeObject(null);
4700 >
4701 >        /**
4702 >         * Returns a "weakly consistent" iterator that will never
4703 >         * throw {@link ConcurrentModificationException}, and
4704 >         * guarantees to traverse elements as they existed upon
4705 >         * construction of the iterator, and may (but is not
4706 >         * guaranteed to) reflect any modifications subsequent to
4707 >         * construction.
4708 >         *
4709 >         * @return an iterator over the values of this map
4710 >         */
4711 >        public final Iterator<V> iterator() {
4712 >            return new ValueIterator<K,V>(map);
4713 >        }
4714 >        public final boolean add(V e) {
4715 >            throw new UnsupportedOperationException();
4716 >        }
4717 >        public final boolean addAll(Collection<? extends V> c) {
4718 >            throw new UnsupportedOperationException();
4719 >        }
4720 >
4721 >        public Stream<V> stream() {
4722 >            return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4723 >        }
4724 >
4725 >        public Stream<V> parallelStream() {
4726 >            return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4727 >                                          0);
4728 >        }
4729 >
4730      }
4731  
4732      /**
4733 <     * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
4734 <     * stream (i.e., deserializes it).
4735 <     * @param s the stream
4733 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4734 >     * entries.  This class cannot be directly instantiated. See
4735 >     * {@link #entrySet}.
4736       */
4737 <    @SuppressWarnings("unchecked")
4738 <    private void readObject(java.io.ObjectInputStream s)
4739 <        throws IOException, ClassNotFoundException {
4740 <        s.defaultReadObject();
4737 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4738 >        implements Set<Map.Entry<K,V>> {
4739 >        private static final long serialVersionUID = 2249069246763182397L;
4740 >        EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4741 >        public final boolean contains(Object o) {
4742 >            Object k, v, r; Map.Entry<?,?> e;
4743 >            return ((o instanceof Map.Entry) &&
4744 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4745 >                    (r = map.get(k)) != null &&
4746 >                    (v = e.getValue()) != null &&
4747 >                    (v == r || v.equals(r)));
4748 >        }
4749 >        public final boolean remove(Object o) {
4750 >            Object k, v; Map.Entry<?,?> e;
4751 >            return ((o instanceof Map.Entry) &&
4752 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4753 >                    (v = e.getValue()) != null &&
4754 >                    map.remove(k, v));
4755 >        }
4756 >
4757 >        /**
4758 >         * Returns a "weakly consistent" iterator that will never
4759 >         * throw {@link ConcurrentModificationException}, and
4760 >         * guarantees to traverse elements as they existed upon
4761 >         * construction of the iterator, and may (but is not
4762 >         * guaranteed to) reflect any modifications subsequent to
4763 >         * construction.
4764 >         *
4765 >         * @return an iterator over the entries of this map
4766 >         */
4767 >        public final Iterator<Map.Entry<K,V>> iterator() {
4768 >            return new EntryIterator<K,V>(map);
4769 >        }
4770  
4771 <        // Re-initialize segments to be minimally sized, and let grow.
4772 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
4773 <        final Segment<K,V>[] segments = this.segments;
4774 <        for (int k = 0; k < segments.length; ++k) {
4775 <            Segment<K,V> seg = segments[k];
4776 <            if (seg != null) {
4777 <                seg.threshold = (int)(cap * seg.loadFactor);
4778 <                seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
4771 >        public final boolean add(Entry<K,V> e) {
4772 >            K key = e.getKey();
4773 >            V value = e.getValue();
4774 >            if (key == null || value == null)
4775 >                throw new NullPointerException();
4776 >            return map.internalPut(key, value, false) == null;
4777 >        }
4778 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4779 >            boolean added = false;
4780 >            for (Entry<K,V> e : c) {
4781 >                if (add(e))
4782 >                    added = true;
4783              }
4784 +            return added;
4785 +        }
4786 +        public boolean equals(Object o) {
4787 +            Set<?> c;
4788 +            return ((o instanceof Set) &&
4789 +                    ((c = (Set<?>)o) == this ||
4790 +                     (containsAll(c) && c.containsAll(this))));
4791          }
4792  
4793 <        // Read the keys and values, and put the mappings in the table
4794 <        for (;;) {
4795 <            K key = (K) s.readObject();
4796 <            V value = (V) s.readObject();
4797 <            if (key == null)
4798 <                break;
4799 <            put(key, value);
4793 >        public Stream<Map.Entry<K,V>> stream() {
4794 >            return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4795 >        }
4796 >
4797 >        public Stream<Map.Entry<K,V>> parallelStream() {
4798 >            return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4799 >                                          0);
4800 >        }
4801 >    }
4802 >
4803 >    // ---------------------------------------------------------------------
4804 >
4805 >    /**
4806 >     * Predefined tasks for performing bulk parallel operations on
4807 >     * ConcurrentHashMaps. These tasks follow the forms and rules used
4808 >     * for bulk operations. Each method has the same name, but returns
4809 >     * a task rather than invoking it. These methods may be useful in
4810 >     * custom applications such as submitting a task without waiting
4811 >     * for completion, using a custom pool, or combining with other
4812 >     * tasks.
4813 >     */
4814 >    public static class ForkJoinTasks {
4815 >        private ForkJoinTasks() {}
4816 >
4817 >        /**
4818 >         * Returns a task that when invoked, performs the given
4819 >         * action for each (key, value)
4820 >         *
4821 >         * @param map the map
4822 >         * @param action the action
4823 >         * @return the task
4824 >         */
4825 >        public static <K,V> ForkJoinTask<Void> forEach
4826 >            (ConcurrentHashMap<K,V> map,
4827 >             BiBlock<? super K, ? super V> action) {
4828 >            if (action == null) throw new NullPointerException();
4829 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4830 >        }
4831 >
4832 >        /**
4833 >         * Returns a task that when invoked, performs the given
4834 >         * action for each non-null transformation of each (key, value)
4835 >         *
4836 >         * @param map the map
4837 >         * @param transformer a function returning the transformation
4838 >         * for an element, or null if there is no transformation (in
4839 >         * which case the action is not applied)
4840 >         * @param action the action
4841 >         * @return the task
4842 >         */
4843 >        public static <K,V,U> ForkJoinTask<Void> forEach
4844 >            (ConcurrentHashMap<K,V> map,
4845 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4846 >             Block<? super U> action) {
4847 >            if (transformer == null || action == null)
4848 >                throw new NullPointerException();
4849 >            return new ForEachTransformedMappingTask<K,V,U>
4850 >                (map, null, -1, transformer, action);
4851 >        }
4852 >
4853 >        /**
4854 >         * Returns a task that when invoked, returns a non-null result
4855 >         * from applying the given search function on each (key,
4856 >         * value), or null if none. Upon success, further element
4857 >         * processing is suppressed and the results of any other
4858 >         * parallel invocations of the search function are ignored.
4859 >         *
4860 >         * @param map the map
4861 >         * @param searchFunction a function returning a non-null
4862 >         * result on success, else null
4863 >         * @return the task
4864 >         */
4865 >        public static <K,V,U> ForkJoinTask<U> search
4866 >            (ConcurrentHashMap<K,V> map,
4867 >             BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4868 >            if (searchFunction == null) throw new NullPointerException();
4869 >            return new SearchMappingsTask<K,V,U>
4870 >                (map, null, -1, searchFunction,
4871 >                 new AtomicReference<U>());
4872 >        }
4873 >
4874 >        /**
4875 >         * Returns a task that when invoked, returns the result of
4876 >         * accumulating the given transformation of all (key, value) pairs
4877 >         * using the given reducer to combine values, or null if none.
4878 >         *
4879 >         * @param map the map
4880 >         * @param transformer a function returning the transformation
4881 >         * for an element, or null if there is no transformation (in
4882 >         * which case it is not combined).
4883 >         * @param reducer a commutative associative combining function
4884 >         * @return the task
4885 >         */
4886 >        public static <K,V,U> ForkJoinTask<U> reduce
4887 >            (ConcurrentHashMap<K,V> map,
4888 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4889 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
4890 >            if (transformer == null || reducer == null)
4891 >                throw new NullPointerException();
4892 >            return new MapReduceMappingsTask<K,V,U>
4893 >                (map, null, -1, null, transformer, reducer);
4894 >        }
4895 >
4896 >        /**
4897 >         * Returns a task that when invoked, returns the result of
4898 >         * accumulating the given transformation of all (key, value) pairs
4899 >         * using the given reducer to combine values, and the given
4900 >         * basis as an identity value.
4901 >         *
4902 >         * @param map the map
4903 >         * @param transformer a function returning the transformation
4904 >         * for an element
4905 >         * @param basis the identity (initial default value) for the reduction
4906 >         * @param reducer a commutative associative combining function
4907 >         * @return the task
4908 >         */
4909 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4910 >            (ConcurrentHashMap<K,V> map,
4911 >             DoubleBiFunction<? super K, ? super V> transformer,
4912 >             double basis,
4913 >             DoubleBinaryOperator reducer) {
4914 >            if (transformer == null || reducer == null)
4915 >                throw new NullPointerException();
4916 >            return new MapReduceMappingsToDoubleTask<K,V>
4917 >                (map, null, -1, null, transformer, basis, reducer);
4918 >        }
4919 >
4920 >        /**
4921 >         * Returns a task that when invoked, returns the result of
4922 >         * accumulating the given transformation of all (key, value) pairs
4923 >         * using the given reducer to combine values, and the given
4924 >         * basis as an identity value.
4925 >         *
4926 >         * @param map the map
4927 >         * @param transformer a function returning the transformation
4928 >         * for an element
4929 >         * @param basis the identity (initial default value) for the reduction
4930 >         * @param reducer a commutative associative combining function
4931 >         * @return the task
4932 >         */
4933 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4934 >            (ConcurrentHashMap<K,V> map,
4935 >             LongBiFunction<? super K, ? super V> transformer,
4936 >             long basis,
4937 >             LongBinaryOperator reducer) {
4938 >            if (transformer == null || reducer == null)
4939 >                throw new NullPointerException();
4940 >            return new MapReduceMappingsToLongTask<K,V>
4941 >                (map, null, -1, null, transformer, basis, reducer);
4942 >        }
4943 >
4944 >        /**
4945 >         * Returns a task that when invoked, returns the result of
4946 >         * accumulating the given transformation of all (key, value) pairs
4947 >         * using the given reducer to combine values, and the given
4948 >         * basis as an identity value.
4949 >         *
4950 >         * @param transformer a function returning the transformation
4951 >         * for an element
4952 >         * @param basis the identity (initial default value) for the reduction
4953 >         * @param reducer a commutative associative combining function
4954 >         * @return the task
4955 >         */
4956 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4957 >            (ConcurrentHashMap<K,V> map,
4958 >             IntBiFunction<? super K, ? super V> transformer,
4959 >             int basis,
4960 >             IntBinaryOperator reducer) {
4961 >            if (transformer == null || reducer == null)
4962 >                throw new NullPointerException();
4963 >            return new MapReduceMappingsToIntTask<K,V>
4964 >                (map, null, -1, null, transformer, basis, reducer);
4965 >        }
4966 >
4967 >        /**
4968 >         * Returns a task that when invoked, performs the given action
4969 >         * for each key.
4970 >         *
4971 >         * @param map the map
4972 >         * @param action the action
4973 >         * @return the task
4974 >         */
4975 >        public static <K,V> ForkJoinTask<Void> forEachKey
4976 >            (ConcurrentHashMap<K,V> map,
4977 >             Block<? super K> action) {
4978 >            if (action == null) throw new NullPointerException();
4979 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
4980 >        }
4981 >
4982 >        /**
4983 >         * Returns a task that when invoked, performs the given action
4984 >         * for each non-null transformation of each key.
4985 >         *
4986 >         * @param map the map
4987 >         * @param transformer a function returning the transformation
4988 >         * for an element, or null if there is no transformation (in
4989 >         * which case the action is not applied)
4990 >         * @param action the action
4991 >         * @return the task
4992 >         */
4993 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4994 >            (ConcurrentHashMap<K,V> map,
4995 >             Function<? super K, ? extends U> transformer,
4996 >             Block<? super U> action) {
4997 >            if (transformer == null || action == null)
4998 >                throw new NullPointerException();
4999 >            return new ForEachTransformedKeyTask<K,V,U>
5000 >                (map, null, -1, transformer, action);
5001 >        }
5002 >
5003 >        /**
5004 >         * Returns a task that when invoked, returns a non-null result
5005 >         * from applying the given search function on each key, or
5006 >         * null if none.  Upon success, further element processing is
5007 >         * suppressed and the results of any other parallel
5008 >         * invocations of the search function are ignored.
5009 >         *
5010 >         * @param map the map
5011 >         * @param searchFunction a function returning a non-null
5012 >         * result on success, else null
5013 >         * @return the task
5014 >         */
5015 >        public static <K,V,U> ForkJoinTask<U> searchKeys
5016 >            (ConcurrentHashMap<K,V> map,
5017 >             Function<? super K, ? extends U> searchFunction) {
5018 >            if (searchFunction == null) throw new NullPointerException();
5019 >            return new SearchKeysTask<K,V,U>
5020 >                (map, null, -1, searchFunction,
5021 >                 new AtomicReference<U>());
5022 >        }
5023 >
5024 >        /**
5025 >         * Returns a task that when invoked, returns the result of
5026 >         * accumulating all keys using the given reducer to combine
5027 >         * values, or null if none.
5028 >         *
5029 >         * @param map the map
5030 >         * @param reducer a commutative associative combining function
5031 >         * @return the task
5032 >         */
5033 >        public static <K,V> ForkJoinTask<K> reduceKeys
5034 >            (ConcurrentHashMap<K,V> map,
5035 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5036 >            if (reducer == null) throw new NullPointerException();
5037 >            return new ReduceKeysTask<K,V>
5038 >                (map, null, -1, null, reducer);
5039 >        }
5040 >
5041 >        /**
5042 >         * Returns a task that when invoked, returns the result of
5043 >         * accumulating the given transformation of all keys using the given
5044 >         * reducer to combine values, or null if none.
5045 >         *
5046 >         * @param map the map
5047 >         * @param transformer a function returning the transformation
5048 >         * for an element, or null if there is no transformation (in
5049 >         * which case it is not combined).
5050 >         * @param reducer a commutative associative combining function
5051 >         * @return the task
5052 >         */
5053 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
5054 >            (ConcurrentHashMap<K,V> map,
5055 >             Function<? super K, ? extends U> transformer,
5056 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5057 >            if (transformer == null || reducer == null)
5058 >                throw new NullPointerException();
5059 >            return new MapReduceKeysTask<K,V,U>
5060 >                (map, null, -1, null, transformer, reducer);
5061 >        }
5062 >
5063 >        /**
5064 >         * Returns a task that when invoked, returns the result of
5065 >         * accumulating the given transformation of all keys using the given
5066 >         * reducer to combine values, and the given basis as an
5067 >         * identity value.
5068 >         *
5069 >         * @param map the map
5070 >         * @param transformer a function returning the transformation
5071 >         * for an element
5072 >         * @param basis the identity (initial default value) for the reduction
5073 >         * @param reducer a commutative associative combining function
5074 >         * @return the task
5075 >         */
5076 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5077 >            (ConcurrentHashMap<K,V> map,
5078 >             DoubleFunction<? super K> transformer,
5079 >             double basis,
5080 >             DoubleBinaryOperator reducer) {
5081 >            if (transformer == null || reducer == null)
5082 >                throw new NullPointerException();
5083 >            return new MapReduceKeysToDoubleTask<K,V>
5084 >                (map, null, -1, null, transformer, basis, reducer);
5085 >        }
5086 >
5087 >        /**
5088 >         * Returns a task that when invoked, returns the result of
5089 >         * accumulating the given transformation of all keys using the given
5090 >         * reducer to combine values, and the given basis as an
5091 >         * identity value.
5092 >         *
5093 >         * @param map the map
5094 >         * @param transformer a function returning the transformation
5095 >         * for an element
5096 >         * @param basis the identity (initial default value) for the reduction
5097 >         * @param reducer a commutative associative combining function
5098 >         * @return the task
5099 >         */
5100 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5101 >            (ConcurrentHashMap<K,V> map,
5102 >             LongFunction<? super K> transformer,
5103 >             long basis,
5104 >             LongBinaryOperator reducer) {
5105 >            if (transformer == null || reducer == null)
5106 >                throw new NullPointerException();
5107 >            return new MapReduceKeysToLongTask<K,V>
5108 >                (map, null, -1, null, transformer, basis, reducer);
5109 >        }
5110 >
5111 >        /**
5112 >         * Returns a task that when invoked, returns the result of
5113 >         * accumulating the given transformation of all keys using the given
5114 >         * reducer to combine values, and the given basis as an
5115 >         * identity value.
5116 >         *
5117 >         * @param map the map
5118 >         * @param transformer a function returning the transformation
5119 >         * for an element
5120 >         * @param basis the identity (initial default value) for the reduction
5121 >         * @param reducer a commutative associative combining function
5122 >         * @return the task
5123 >         */
5124 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5125 >            (ConcurrentHashMap<K,V> map,
5126 >             IntFunction<? super K> transformer,
5127 >             int basis,
5128 >             IntBinaryOperator reducer) {
5129 >            if (transformer == null || reducer == null)
5130 >                throw new NullPointerException();
5131 >            return new MapReduceKeysToIntTask<K,V>
5132 >                (map, null, -1, null, transformer, basis, reducer);
5133 >        }
5134 >
5135 >        /**
5136 >         * Returns a task that when invoked, performs the given action
5137 >         * for each value.
5138 >         *
5139 >         * @param map the map
5140 >         * @param action the action
5141 >         */
5142 >        public static <K,V> ForkJoinTask<Void> forEachValue
5143 >            (ConcurrentHashMap<K,V> map,
5144 >             Block<? super V> action) {
5145 >            if (action == null) throw new NullPointerException();
5146 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5147 >        }
5148 >
5149 >        /**
5150 >         * Returns a task that when invoked, performs the given action
5151 >         * for each non-null transformation of each value.
5152 >         *
5153 >         * @param map the map
5154 >         * @param transformer a function returning the transformation
5155 >         * for an element, or null if there is no transformation (in
5156 >         * which case the action is not applied)
5157 >         * @param action the action
5158 >         */
5159 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
5160 >            (ConcurrentHashMap<K,V> map,
5161 >             Function<? super V, ? extends U> transformer,
5162 >             Block<? super U> action) {
5163 >            if (transformer == null || action == null)
5164 >                throw new NullPointerException();
5165 >            return new ForEachTransformedValueTask<K,V,U>
5166 >                (map, null, -1, transformer, action);
5167 >        }
5168 >
5169 >        /**
5170 >         * Returns a task that when invoked, returns a non-null result
5171 >         * from applying the given search function on each value, or
5172 >         * null if none.  Upon success, further element processing is
5173 >         * suppressed and the results of any other parallel
5174 >         * invocations of the search function are ignored.
5175 >         *
5176 >         * @param map the map
5177 >         * @param searchFunction a function returning a non-null
5178 >         * result on success, else null
5179 >         * @return the task
5180 >         */
5181 >        public static <K,V,U> ForkJoinTask<U> searchValues
5182 >            (ConcurrentHashMap<K,V> map,
5183 >             Function<? super V, ? extends U> searchFunction) {
5184 >            if (searchFunction == null) throw new NullPointerException();
5185 >            return new SearchValuesTask<K,V,U>
5186 >                (map, null, -1, searchFunction,
5187 >                 new AtomicReference<U>());
5188 >        }
5189 >
5190 >        /**
5191 >         * Returns a task that when invoked, returns the result of
5192 >         * accumulating all values using the given reducer to combine
5193 >         * values, or null if none.
5194 >         *
5195 >         * @param map the map
5196 >         * @param reducer a commutative associative combining function
5197 >         * @return the task
5198 >         */
5199 >        public static <K,V> ForkJoinTask<V> reduceValues
5200 >            (ConcurrentHashMap<K,V> map,
5201 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5202 >            if (reducer == null) throw new NullPointerException();
5203 >            return new ReduceValuesTask<K,V>
5204 >                (map, null, -1, null, reducer);
5205 >        }
5206 >
5207 >        /**
5208 >         * Returns a task that when invoked, returns the result of
5209 >         * accumulating the given transformation of all values using the
5210 >         * given reducer to combine values, or null if none.
5211 >         *
5212 >         * @param map the map
5213 >         * @param transformer a function returning the transformation
5214 >         * for an element, or null if there is no transformation (in
5215 >         * which case it is not combined).
5216 >         * @param reducer a commutative associative combining function
5217 >         * @return the task
5218 >         */
5219 >        public static <K,V,U> ForkJoinTask<U> reduceValues
5220 >            (ConcurrentHashMap<K,V> map,
5221 >             Function<? super V, ? extends U> transformer,
5222 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5223 >            if (transformer == null || reducer == null)
5224 >                throw new NullPointerException();
5225 >            return new MapReduceValuesTask<K,V,U>
5226 >                (map, null, -1, null, transformer, reducer);
5227 >        }
5228 >
5229 >        /**
5230 >         * Returns a task that when invoked, returns the result of
5231 >         * accumulating the given transformation of all values using the
5232 >         * given reducer to combine values, and the given basis as an
5233 >         * identity value.
5234 >         *
5235 >         * @param map the map
5236 >         * @param transformer a function returning the transformation
5237 >         * for an element
5238 >         * @param basis the identity (initial default value) for the reduction
5239 >         * @param reducer a commutative associative combining function
5240 >         * @return the task
5241 >         */
5242 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5243 >            (ConcurrentHashMap<K,V> map,
5244 >             DoubleFunction<? super V> transformer,
5245 >             double basis,
5246 >             DoubleBinaryOperator reducer) {
5247 >            if (transformer == null || reducer == null)
5248 >                throw new NullPointerException();
5249 >            return new MapReduceValuesToDoubleTask<K,V>
5250 >                (map, null, -1, null, transformer, basis, reducer);
5251 >        }
5252 >
5253 >        /**
5254 >         * Returns a task that when invoked, returns the result of
5255 >         * accumulating the given transformation of all values using the
5256 >         * given reducer to combine values, and the given basis as an
5257 >         * identity value.
5258 >         *
5259 >         * @param map the map
5260 >         * @param transformer a function returning the transformation
5261 >         * for an element
5262 >         * @param basis the identity (initial default value) for the reduction
5263 >         * @param reducer a commutative associative combining function
5264 >         * @return the task
5265 >         */
5266 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5267 >            (ConcurrentHashMap<K,V> map,
5268 >             LongFunction<? super V> transformer,
5269 >             long basis,
5270 >             LongBinaryOperator reducer) {
5271 >            if (transformer == null || reducer == null)
5272 >                throw new NullPointerException();
5273 >            return new MapReduceValuesToLongTask<K,V>
5274 >                (map, null, -1, null, transformer, basis, reducer);
5275 >        }
5276 >
5277 >        /**
5278 >         * Returns a task that when invoked, returns the result of
5279 >         * accumulating the given transformation of all values using the
5280 >         * given reducer to combine values, and the given basis as an
5281 >         * identity value.
5282 >         *
5283 >         * @param map the map
5284 >         * @param transformer a function returning the transformation
5285 >         * for an element
5286 >         * @param basis the identity (initial default value) for the reduction
5287 >         * @param reducer a commutative associative combining function
5288 >         * @return the task
5289 >         */
5290 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5291 >            (ConcurrentHashMap<K,V> map,
5292 >             IntFunction<? super V> transformer,
5293 >             int basis,
5294 >             IntBinaryOperator reducer) {
5295 >            if (transformer == null || reducer == null)
5296 >                throw new NullPointerException();
5297 >            return new MapReduceValuesToIntTask<K,V>
5298 >                (map, null, -1, null, transformer, basis, reducer);
5299 >        }
5300 >
5301 >        /**
5302 >         * Returns a task that when invoked, perform the given action
5303 >         * for each entry.
5304 >         *
5305 >         * @param map the map
5306 >         * @param action the action
5307 >         */
5308 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5309 >            (ConcurrentHashMap<K,V> map,
5310 >             Block<? super Map.Entry<K,V>> action) {
5311 >            if (action == null) throw new NullPointerException();
5312 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5313 >        }
5314 >
5315 >        /**
5316 >         * Returns a task that when invoked, perform the given action
5317 >         * for each non-null transformation of each entry.
5318 >         *
5319 >         * @param map the map
5320 >         * @param transformer a function returning the transformation
5321 >         * for an element, or null if there is no transformation (in
5322 >         * which case the action is not applied)
5323 >         * @param action the action
5324 >         */
5325 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5326 >            (ConcurrentHashMap<K,V> map,
5327 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5328 >             Block<? super U> action) {
5329 >            if (transformer == null || action == null)
5330 >                throw new NullPointerException();
5331 >            return new ForEachTransformedEntryTask<K,V,U>
5332 >                (map, null, -1, transformer, action);
5333 >        }
5334 >
5335 >        /**
5336 >         * Returns a task that when invoked, returns a non-null result
5337 >         * from applying the given search function on each entry, or
5338 >         * null if none.  Upon success, further element processing is
5339 >         * suppressed and the results of any other parallel
5340 >         * invocations of the search function are ignored.
5341 >         *
5342 >         * @param map the map
5343 >         * @param searchFunction a function returning a non-null
5344 >         * result on success, else null
5345 >         * @return the task
5346 >         */
5347 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5348 >            (ConcurrentHashMap<K,V> map,
5349 >             Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5350 >            if (searchFunction == null) throw new NullPointerException();
5351 >            return new SearchEntriesTask<K,V,U>
5352 >                (map, null, -1, searchFunction,
5353 >                 new AtomicReference<U>());
5354 >        }
5355 >
5356 >        /**
5357 >         * Returns a task that when invoked, returns the result of
5358 >         * accumulating all entries using the given reducer to combine
5359 >         * values, or null if none.
5360 >         *
5361 >         * @param map the map
5362 >         * @param reducer a commutative associative combining function
5363 >         * @return the task
5364 >         */
5365 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5366 >            (ConcurrentHashMap<K,V> map,
5367 >             BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5368 >            if (reducer == null) throw new NullPointerException();
5369 >            return new ReduceEntriesTask<K,V>
5370 >                (map, null, -1, null, reducer);
5371 >        }
5372 >
5373 >        /**
5374 >         * Returns a task that when invoked, returns the result of
5375 >         * accumulating the given transformation of all entries using the
5376 >         * given reducer to combine values, or null if none.
5377 >         *
5378 >         * @param map the map
5379 >         * @param transformer a function returning the transformation
5380 >         * for an element, or null if there is no transformation (in
5381 >         * which case it is not combined).
5382 >         * @param reducer a commutative associative combining function
5383 >         * @return the task
5384 >         */
5385 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5386 >            (ConcurrentHashMap<K,V> map,
5387 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5388 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5389 >            if (transformer == null || reducer == null)
5390 >                throw new NullPointerException();
5391 >            return new MapReduceEntriesTask<K,V,U>
5392 >                (map, null, -1, null, transformer, reducer);
5393 >        }
5394 >
5395 >        /**
5396 >         * Returns a task that when invoked, returns the result of
5397 >         * accumulating the given transformation of all entries using the
5398 >         * given reducer to combine values, and the given basis as an
5399 >         * identity value.
5400 >         *
5401 >         * @param map the map
5402 >         * @param transformer a function returning the transformation
5403 >         * for an element
5404 >         * @param basis the identity (initial default value) for the reduction
5405 >         * @param reducer a commutative associative combining function
5406 >         * @return the task
5407 >         */
5408 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5409 >            (ConcurrentHashMap<K,V> map,
5410 >             DoubleFunction<Map.Entry<K,V>> transformer,
5411 >             double basis,
5412 >             DoubleBinaryOperator reducer) {
5413 >            if (transformer == null || reducer == null)
5414 >                throw new NullPointerException();
5415 >            return new MapReduceEntriesToDoubleTask<K,V>
5416 >                (map, null, -1, null, transformer, basis, reducer);
5417 >        }
5418 >
5419 >        /**
5420 >         * Returns a task that when invoked, returns the result of
5421 >         * accumulating the given transformation of all entries using the
5422 >         * given reducer to combine values, and the given basis as an
5423 >         * identity value.
5424 >         *
5425 >         * @param map the map
5426 >         * @param transformer a function returning the transformation
5427 >         * for an element
5428 >         * @param basis the identity (initial default value) for the reduction
5429 >         * @param reducer a commutative associative combining function
5430 >         * @return the task
5431 >         */
5432 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5433 >            (ConcurrentHashMap<K,V> map,
5434 >             LongFunction<Map.Entry<K,V>> transformer,
5435 >             long basis,
5436 >             LongBinaryOperator reducer) {
5437 >            if (transformer == null || reducer == null)
5438 >                throw new NullPointerException();
5439 >            return new MapReduceEntriesToLongTask<K,V>
5440 >                (map, null, -1, null, transformer, basis, reducer);
5441 >        }
5442 >
5443 >        /**
5444 >         * Returns a task that when invoked, returns the result of
5445 >         * accumulating the given transformation of all entries using the
5446 >         * given reducer to combine values, and the given basis as an
5447 >         * identity value.
5448 >         *
5449 >         * @param map the map
5450 >         * @param transformer a function returning the transformation
5451 >         * for an element
5452 >         * @param basis the identity (initial default value) for the reduction
5453 >         * @param reducer a commutative associative combining function
5454 >         * @return the task
5455 >         */
5456 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5457 >            (ConcurrentHashMap<K,V> map,
5458 >             IntFunction<Map.Entry<K,V>> transformer,
5459 >             int basis,
5460 >             IntBinaryOperator reducer) {
5461 >            if (transformer == null || reducer == null)
5462 >                throw new NullPointerException();
5463 >            return new MapReduceEntriesToIntTask<K,V>
5464 >                (map, null, -1, null, transformer, basis, reducer);
5465 >        }
5466 >    }
5467 >
5468 >    // -------------------------------------------------------
5469 >
5470 >    /*
5471 >     * Task classes. Coded in a regular but ugly format/style to
5472 >     * simplify checks that each variant differs in the right way from
5473 >     * others. The null screenings exist because compilers cannot tell
5474 >     * that we've already null-checked task arguments, so we force
5475 >     * simplest hoisted bypass to help avoid convoluted traps.
5476 >     */
5477 >
5478 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5479 >        extends Traverser<K,V,Void> {
5480 >        final Block<? super K> action;
5481 >        ForEachKeyTask
5482 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5483 >             Block<? super K> action) {
5484 >            super(m, p, b);
5485 >            this.action = action;
5486 >        }
5487 >        public final void compute() {
5488 >            final Block<? super K> action;
5489 >            if ((action = this.action) != null) {
5490 >                for (int b; (b = preSplit()) > 0;)
5491 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5492 >                while (advance() != null)
5493 >                    action.accept(nextKey);
5494 >                propagateCompletion();
5495 >            }
5496 >        }
5497 >    }
5498 >
5499 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5500 >        extends Traverser<K,V,Void> {
5501 >        final Block<? super V> action;
5502 >        ForEachValueTask
5503 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5504 >             Block<? super V> action) {
5505 >            super(m, p, b);
5506 >            this.action = action;
5507 >        }
5508 >        public final void compute() {
5509 >            final Block<? super V> action;
5510 >            if ((action = this.action) != null) {
5511 >                for (int b; (b = preSplit()) > 0;)
5512 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5513 >                V v;
5514 >                while ((v = advance()) != null)
5515 >                    action.accept(v);
5516 >                propagateCompletion();
5517 >            }
5518 >        }
5519 >    }
5520 >
5521 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5522 >        extends Traverser<K,V,Void> {
5523 >        final Block<? super Entry<K,V>> action;
5524 >        ForEachEntryTask
5525 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5526 >             Block<? super Entry<K,V>> action) {
5527 >            super(m, p, b);
5528 >            this.action = action;
5529 >        }
5530 >        public final void compute() {
5531 >            final Block<? super Entry<K,V>> action;
5532 >            if ((action = this.action) != null) {
5533 >                for (int b; (b = preSplit()) > 0;)
5534 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5535 >                V v;
5536 >                while ((v = advance()) != null)
5537 >                    action.accept(entryFor(nextKey, v));
5538 >                propagateCompletion();
5539 >            }
5540 >        }
5541 >    }
5542 >
5543 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5544 >        extends Traverser<K,V,Void> {
5545 >        final BiBlock<? super K, ? super V> action;
5546 >        ForEachMappingTask
5547 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5548 >             BiBlock<? super K,? super V> action) {
5549 >            super(m, p, b);
5550 >            this.action = action;
5551 >        }
5552 >        public final void compute() {
5553 >            final BiBlock<? super K, ? super V> action;
5554 >            if ((action = this.action) != null) {
5555 >                for (int b; (b = preSplit()) > 0;)
5556 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5557 >                V v;
5558 >                while ((v = advance()) != null)
5559 >                    action.accept(nextKey, v);
5560 >                propagateCompletion();
5561 >            }
5562 >        }
5563 >    }
5564 >
5565 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5566 >        extends Traverser<K,V,Void> {
5567 >        final Function<? super K, ? extends U> transformer;
5568 >        final Block<? super U> action;
5569 >        ForEachTransformedKeyTask
5570 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5571 >             Function<? super K, ? extends U> transformer, Block<? super U> action) {
5572 >            super(m, p, b);
5573 >            this.transformer = transformer; this.action = action;
5574 >        }
5575 >        public final void compute() {
5576 >            final Function<? super K, ? extends U> transformer;
5577 >            final Block<? super U> action;
5578 >            if ((transformer = this.transformer) != null &&
5579 >                (action = this.action) != null) {
5580 >                for (int b; (b = preSplit()) > 0;)
5581 >                    new ForEachTransformedKeyTask<K,V,U>
5582 >                        (map, this, b, transformer, action).fork();
5583 >                U u;
5584 >                while (advance() != null) {
5585 >                    if ((u = transformer.apply(nextKey)) != null)
5586 >                        action.accept(u);
5587 >                }
5588 >                propagateCompletion();
5589 >            }
5590 >        }
5591 >    }
5592 >
5593 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5594 >        extends Traverser<K,V,Void> {
5595 >        final Function<? super V, ? extends U> transformer;
5596 >        final Block<? super U> action;
5597 >        ForEachTransformedValueTask
5598 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5599 >             Function<? super V, ? extends U> transformer, Block<? super U> action) {
5600 >            super(m, p, b);
5601 >            this.transformer = transformer; this.action = action;
5602 >        }
5603 >        public final void compute() {
5604 >            final Function<? super V, ? extends U> transformer;
5605 >            final Block<? super U> action;
5606 >            if ((transformer = this.transformer) != null &&
5607 >                (action = this.action) != null) {
5608 >                for (int b; (b = preSplit()) > 0;)
5609 >                    new ForEachTransformedValueTask<K,V,U>
5610 >                        (map, this, b, transformer, action).fork();
5611 >                V v; U u;
5612 >                while ((v = advance()) != null) {
5613 >                    if ((u = transformer.apply(v)) != null)
5614 >                        action.accept(u);
5615 >                }
5616 >                propagateCompletion();
5617 >            }
5618 >        }
5619 >    }
5620 >
5621 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5622 >        extends Traverser<K,V,Void> {
5623 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5624 >        final Block<? super U> action;
5625 >        ForEachTransformedEntryTask
5626 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5627 >             Function<Map.Entry<K,V>, ? extends U> transformer, Block<? super U> action) {
5628 >            super(m, p, b);
5629 >            this.transformer = transformer; this.action = action;
5630 >        }
5631 >        public final void compute() {
5632 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5633 >            final Block<? super U> action;
5634 >            if ((transformer = this.transformer) != null &&
5635 >                (action = this.action) != null) {
5636 >                for (int b; (b = preSplit()) > 0;)
5637 >                    new ForEachTransformedEntryTask<K,V,U>
5638 >                        (map, this, b, transformer, action).fork();
5639 >                V v; U u;
5640 >                while ((v = advance()) != null) {
5641 >                    if ((u = transformer.apply(entryFor(nextKey,
5642 >                                                        v))) != null)
5643 >                        action.accept(u);
5644 >                }
5645 >                propagateCompletion();
5646 >            }
5647 >        }
5648 >    }
5649 >
5650 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5651 >        extends Traverser<K,V,Void> {
5652 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5653 >        final Block<? super U> action;
5654 >        ForEachTransformedMappingTask
5655 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5656 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5657 >             Block<? super U> action) {
5658 >            super(m, p, b);
5659 >            this.transformer = transformer; this.action = action;
5660 >        }
5661 >        public final void compute() {
5662 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5663 >            final Block<? super U> action;
5664 >            if ((transformer = this.transformer) != null &&
5665 >                (action = this.action) != null) {
5666 >                for (int b; (b = preSplit()) > 0;)
5667 >                    new ForEachTransformedMappingTask<K,V,U>
5668 >                        (map, this, b, transformer, action).fork();
5669 >                V v; U u;
5670 >                while ((v = advance()) != null) {
5671 >                    if ((u = transformer.apply(nextKey, v)) != null)
5672 >                        action.accept(u);
5673 >                }
5674 >                propagateCompletion();
5675 >            }
5676 >        }
5677 >    }
5678 >
5679 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5680 >        extends Traverser<K,V,U> {
5681 >        final Function<? super K, ? extends U> searchFunction;
5682 >        final AtomicReference<U> result;
5683 >        SearchKeysTask
5684 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5685 >             Function<? super K, ? extends U> searchFunction,
5686 >             AtomicReference<U> result) {
5687 >            super(m, p, b);
5688 >            this.searchFunction = searchFunction; this.result = result;
5689 >        }
5690 >        public final U getRawResult() { return result.get(); }
5691 >        public final void compute() {
5692 >            final Function<? super K, ? extends U> searchFunction;
5693 >            final AtomicReference<U> result;
5694 >            if ((searchFunction = this.searchFunction) != null &&
5695 >                (result = this.result) != null) {
5696 >                for (int b;;) {
5697 >                    if (result.get() != null)
5698 >                        return;
5699 >                    if ((b = preSplit()) <= 0)
5700 >                        break;
5701 >                    new SearchKeysTask<K,V,U>
5702 >                        (map, this, b, searchFunction, result).fork();
5703 >                }
5704 >                while (result.get() == null) {
5705 >                    U u;
5706 >                    if (advance() == null) {
5707 >                        propagateCompletion();
5708 >                        break;
5709 >                    }
5710 >                    if ((u = searchFunction.apply(nextKey)) != null) {
5711 >                        if (result.compareAndSet(null, u))
5712 >                            quietlyCompleteRoot();
5713 >                        break;
5714 >                    }
5715 >                }
5716 >            }
5717 >        }
5718 >    }
5719 >
5720 >    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5721 >        extends Traverser<K,V,U> {
5722 >        final Function<? super V, ? extends U> searchFunction;
5723 >        final AtomicReference<U> result;
5724 >        SearchValuesTask
5725 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5726 >             Function<? super V, ? extends U> searchFunction,
5727 >             AtomicReference<U> result) {
5728 >            super(m, p, b);
5729 >            this.searchFunction = searchFunction; this.result = result;
5730 >        }
5731 >        public final U getRawResult() { return result.get(); }
5732 >        public final void compute() {
5733 >            final Function<? super V, ? extends U> searchFunction;
5734 >            final AtomicReference<U> result;
5735 >            if ((searchFunction = this.searchFunction) != null &&
5736 >                (result = this.result) != null) {
5737 >                for (int b;;) {
5738 >                    if (result.get() != null)
5739 >                        return;
5740 >                    if ((b = preSplit()) <= 0)
5741 >                        break;
5742 >                    new SearchValuesTask<K,V,U>
5743 >                        (map, this, b, searchFunction, result).fork();
5744 >                }
5745 >                while (result.get() == null) {
5746 >                    V v; U u;
5747 >                    if ((v = advance()) == null) {
5748 >                        propagateCompletion();
5749 >                        break;
5750 >                    }
5751 >                    if ((u = searchFunction.apply(v)) != null) {
5752 >                        if (result.compareAndSet(null, u))
5753 >                            quietlyCompleteRoot();
5754 >                        break;
5755 >                    }
5756 >                }
5757 >            }
5758 >        }
5759 >    }
5760 >
5761 >    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5762 >        extends Traverser<K,V,U> {
5763 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5764 >        final AtomicReference<U> result;
5765 >        SearchEntriesTask
5766 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5767 >             Function<Entry<K,V>, ? extends U> searchFunction,
5768 >             AtomicReference<U> result) {
5769 >            super(m, p, b);
5770 >            this.searchFunction = searchFunction; this.result = result;
5771 >        }
5772 >        public final U getRawResult() { return result.get(); }
5773 >        public final void compute() {
5774 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5775 >            final AtomicReference<U> result;
5776 >            if ((searchFunction = this.searchFunction) != null &&
5777 >                (result = this.result) != null) {
5778 >                for (int b;;) {
5779 >                    if (result.get() != null)
5780 >                        return;
5781 >                    if ((b = preSplit()) <= 0)
5782 >                        break;
5783 >                    new SearchEntriesTask<K,V,U>
5784 >                        (map, this, b, searchFunction, result).fork();
5785 >                }
5786 >                while (result.get() == null) {
5787 >                    V v; U u;
5788 >                    if ((v = advance()) == null) {
5789 >                        propagateCompletion();
5790 >                        break;
5791 >                    }
5792 >                    if ((u = searchFunction.apply(entryFor(nextKey,
5793 >                                                           v))) != null) {
5794 >                        if (result.compareAndSet(null, u))
5795 >                            quietlyCompleteRoot();
5796 >                        return;
5797 >                    }
5798 >                }
5799 >            }
5800 >        }
5801 >    }
5802 >
5803 >    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5804 >        extends Traverser<K,V,U> {
5805 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5806 >        final AtomicReference<U> result;
5807 >        SearchMappingsTask
5808 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5809 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5810 >             AtomicReference<U> result) {
5811 >            super(m, p, b);
5812 >            this.searchFunction = searchFunction; this.result = result;
5813 >        }
5814 >        public final U getRawResult() { return result.get(); }
5815 >        public final void compute() {
5816 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5817 >            final AtomicReference<U> result;
5818 >            if ((searchFunction = this.searchFunction) != null &&
5819 >                (result = this.result) != null) {
5820 >                for (int b;;) {
5821 >                    if (result.get() != null)
5822 >                        return;
5823 >                    if ((b = preSplit()) <= 0)
5824 >                        break;
5825 >                    new SearchMappingsTask<K,V,U>
5826 >                        (map, this, b, searchFunction, result).fork();
5827 >                }
5828 >                while (result.get() == null) {
5829 >                    V v; U u;
5830 >                    if ((v = advance()) == null) {
5831 >                        propagateCompletion();
5832 >                        break;
5833 >                    }
5834 >                    if ((u = searchFunction.apply(nextKey, v)) != null) {
5835 >                        if (result.compareAndSet(null, u))
5836 >                            quietlyCompleteRoot();
5837 >                        break;
5838 >                    }
5839 >                }
5840 >            }
5841 >        }
5842 >    }
5843 >
5844 >    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5845 >        extends Traverser<K,V,K> {
5846 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5847 >        K result;
5848 >        ReduceKeysTask<K,V> rights, nextRight;
5849 >        ReduceKeysTask
5850 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5851 >             ReduceKeysTask<K,V> nextRight,
5852 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5853 >            super(m, p, b); this.nextRight = nextRight;
5854 >            this.reducer = reducer;
5855 >        }
5856 >        public final K getRawResult() { return result; }
5857 >        @SuppressWarnings("unchecked") public final void compute() {
5858 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5859 >            if ((reducer = this.reducer) != null) {
5860 >                for (int b; (b = preSplit()) > 0;)
5861 >                    (rights = new ReduceKeysTask<K,V>
5862 >                     (map, this, b, rights, reducer)).fork();
5863 >                K r = null;
5864 >                while (advance() != null) {
5865 >                    K u = nextKey;
5866 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5867 >                }
5868 >                result = r;
5869 >                CountedCompleter<?> c;
5870 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5871 >                    ReduceKeysTask<K,V>
5872 >                        t = (ReduceKeysTask<K,V>)c,
5873 >                        s = t.rights;
5874 >                    while (s != null) {
5875 >                        K tr, sr;
5876 >                        if ((sr = s.result) != null)
5877 >                            t.result = (((tr = t.result) == null) ? sr :
5878 >                                        reducer.apply(tr, sr));
5879 >                        s = t.rights = s.nextRight;
5880 >                    }
5881 >                }
5882 >            }
5883 >        }
5884 >    }
5885 >
5886 >    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5887 >        extends Traverser<K,V,V> {
5888 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5889 >        V result;
5890 >        ReduceValuesTask<K,V> rights, nextRight;
5891 >        ReduceValuesTask
5892 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5893 >             ReduceValuesTask<K,V> nextRight,
5894 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5895 >            super(m, p, b); this.nextRight = nextRight;
5896 >            this.reducer = reducer;
5897 >        }
5898 >        public final V getRawResult() { return result; }
5899 >        @SuppressWarnings("unchecked") public final void compute() {
5900 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5901 >            if ((reducer = this.reducer) != null) {
5902 >                for (int b; (b = preSplit()) > 0;)
5903 >                    (rights = new ReduceValuesTask<K,V>
5904 >                     (map, this, b, rights, reducer)).fork();
5905 >                V r = null, v;
5906 >                while ((v = advance()) != null)
5907 >                    r = (r == null) ? v : reducer.apply(r, v);
5908 >                result = r;
5909 >                CountedCompleter<?> c;
5910 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5911 >                    ReduceValuesTask<K,V>
5912 >                        t = (ReduceValuesTask<K,V>)c,
5913 >                        s = t.rights;
5914 >                    while (s != null) {
5915 >                        V tr, sr;
5916 >                        if ((sr = s.result) != null)
5917 >                            t.result = (((tr = t.result) == null) ? sr :
5918 >                                        reducer.apply(tr, sr));
5919 >                        s = t.rights = s.nextRight;
5920 >                    }
5921 >                }
5922 >            }
5923 >        }
5924 >    }
5925 >
5926 >    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5927 >        extends Traverser<K,V,Map.Entry<K,V>> {
5928 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5929 >        Map.Entry<K,V> result;
5930 >        ReduceEntriesTask<K,V> rights, nextRight;
5931 >        ReduceEntriesTask
5932 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5933 >             ReduceEntriesTask<K,V> nextRight,
5934 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5935 >            super(m, p, b); this.nextRight = nextRight;
5936 >            this.reducer = reducer;
5937 >        }
5938 >        public final Map.Entry<K,V> getRawResult() { return result; }
5939 >        @SuppressWarnings("unchecked") public final void compute() {
5940 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5941 >            if ((reducer = this.reducer) != null) {
5942 >                for (int b; (b = preSplit()) > 0;)
5943 >                    (rights = new ReduceEntriesTask<K,V>
5944 >                     (map, this, b, rights, reducer)).fork();
5945 >                Map.Entry<K,V> r = null;
5946 >                V v;
5947 >                while ((v = advance()) != null) {
5948 >                    Map.Entry<K,V> u = entryFor(nextKey, v);
5949 >                    r = (r == null) ? u : reducer.apply(r, u);
5950 >                }
5951 >                result = r;
5952 >                CountedCompleter<?> c;
5953 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5954 >                    ReduceEntriesTask<K,V>
5955 >                        t = (ReduceEntriesTask<K,V>)c,
5956 >                        s = t.rights;
5957 >                    while (s != null) {
5958 >                        Map.Entry<K,V> tr, sr;
5959 >                        if ((sr = s.result) != null)
5960 >                            t.result = (((tr = t.result) == null) ? sr :
5961 >                                        reducer.apply(tr, sr));
5962 >                        s = t.rights = s.nextRight;
5963 >                    }
5964 >                }
5965 >            }
5966 >        }
5967 >    }
5968 >
5969 >    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5970 >        extends Traverser<K,V,U> {
5971 >        final Function<? super K, ? extends U> transformer;
5972 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5973 >        U result;
5974 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5975 >        MapReduceKeysTask
5976 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5977 >             MapReduceKeysTask<K,V,U> nextRight,
5978 >             Function<? super K, ? extends U> transformer,
5979 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5980 >            super(m, p, b); this.nextRight = nextRight;
5981 >            this.transformer = transformer;
5982 >            this.reducer = reducer;
5983 >        }
5984 >        public final U getRawResult() { return result; }
5985 >        @SuppressWarnings("unchecked") public final void compute() {
5986 >            final Function<? super K, ? extends U> transformer;
5987 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5988 >            if ((transformer = this.transformer) != null &&
5989 >                (reducer = this.reducer) != null) {
5990 >                for (int b; (b = preSplit()) > 0;)
5991 >                    (rights = new MapReduceKeysTask<K,V,U>
5992 >                     (map, this, b, rights, transformer, reducer)).fork();
5993 >                U r = null, u;
5994 >                while (advance() != null) {
5995 >                    if ((u = transformer.apply(nextKey)) != null)
5996 >                        r = (r == null) ? u : reducer.apply(r, u);
5997 >                }
5998 >                result = r;
5999 >                CountedCompleter<?> c;
6000 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6001 >                    MapReduceKeysTask<K,V,U>
6002 >                        t = (MapReduceKeysTask<K,V,U>)c,
6003 >                        s = t.rights;
6004 >                    while (s != null) {
6005 >                        U tr, sr;
6006 >                        if ((sr = s.result) != null)
6007 >                            t.result = (((tr = t.result) == null) ? sr :
6008 >                                        reducer.apply(tr, sr));
6009 >                        s = t.rights = s.nextRight;
6010 >                    }
6011 >                }
6012 >            }
6013 >        }
6014 >    }
6015 >
6016 >    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6017 >        extends Traverser<K,V,U> {
6018 >        final Function<? super V, ? extends U> transformer;
6019 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6020 >        U result;
6021 >        MapReduceValuesTask<K,V,U> rights, nextRight;
6022 >        MapReduceValuesTask
6023 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6024 >             MapReduceValuesTask<K,V,U> nextRight,
6025 >             Function<? super V, ? extends U> transformer,
6026 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6027 >            super(m, p, b); this.nextRight = nextRight;
6028 >            this.transformer = transformer;
6029 >            this.reducer = reducer;
6030 >        }
6031 >        public final U getRawResult() { return result; }
6032 >        @SuppressWarnings("unchecked") public final void compute() {
6033 >            final Function<? super V, ? extends U> transformer;
6034 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6035 >            if ((transformer = this.transformer) != null &&
6036 >                (reducer = this.reducer) != null) {
6037 >                for (int b; (b = preSplit()) > 0;)
6038 >                    (rights = new MapReduceValuesTask<K,V,U>
6039 >                     (map, this, b, rights, transformer, reducer)).fork();
6040 >                U r = null, u;
6041 >                V v;
6042 >                while ((v = advance()) != null) {
6043 >                    if ((u = transformer.apply(v)) != null)
6044 >                        r = (r == null) ? u : reducer.apply(r, u);
6045 >                }
6046 >                result = r;
6047 >                CountedCompleter<?> c;
6048 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6049 >                    MapReduceValuesTask<K,V,U>
6050 >                        t = (MapReduceValuesTask<K,V,U>)c,
6051 >                        s = t.rights;
6052 >                    while (s != null) {
6053 >                        U tr, sr;
6054 >                        if ((sr = s.result) != null)
6055 >                            t.result = (((tr = t.result) == null) ? sr :
6056 >                                        reducer.apply(tr, sr));
6057 >                        s = t.rights = s.nextRight;
6058 >                    }
6059 >                }
6060 >            }
6061 >        }
6062 >    }
6063 >
6064 >    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6065 >        extends Traverser<K,V,U> {
6066 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
6067 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6068 >        U result;
6069 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
6070 >        MapReduceEntriesTask
6071 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6072 >             MapReduceEntriesTask<K,V,U> nextRight,
6073 >             Function<Map.Entry<K,V>, ? extends U> transformer,
6074 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6075 >            super(m, p, b); this.nextRight = nextRight;
6076 >            this.transformer = transformer;
6077 >            this.reducer = reducer;
6078 >        }
6079 >        public final U getRawResult() { return result; }
6080 >        @SuppressWarnings("unchecked") public final void compute() {
6081 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
6082 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6083 >            if ((transformer = this.transformer) != null &&
6084 >                (reducer = this.reducer) != null) {
6085 >                for (int b; (b = preSplit()) > 0;)
6086 >                    (rights = new MapReduceEntriesTask<K,V,U>
6087 >                     (map, this, b, rights, transformer, reducer)).fork();
6088 >                U r = null, u;
6089 >                V v;
6090 >                while ((v = advance()) != null) {
6091 >                    if ((u = transformer.apply(entryFor(nextKey,
6092 >                                                        v))) != null)
6093 >                        r = (r == null) ? u : reducer.apply(r, u);
6094 >                }
6095 >                result = r;
6096 >                CountedCompleter<?> c;
6097 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6098 >                    MapReduceEntriesTask<K,V,U>
6099 >                        t = (MapReduceEntriesTask<K,V,U>)c,
6100 >                        s = t.rights;
6101 >                    while (s != null) {
6102 >                        U tr, sr;
6103 >                        if ((sr = s.result) != null)
6104 >                            t.result = (((tr = t.result) == null) ? sr :
6105 >                                        reducer.apply(tr, sr));
6106 >                        s = t.rights = s.nextRight;
6107 >                    }
6108 >                }
6109 >            }
6110 >        }
6111 >    }
6112 >
6113 >    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6114 >        extends Traverser<K,V,U> {
6115 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
6116 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6117 >        U result;
6118 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
6119 >        MapReduceMappingsTask
6120 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6121 >             MapReduceMappingsTask<K,V,U> nextRight,
6122 >             BiFunction<? super K, ? super V, ? extends U> transformer,
6123 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6124 >            super(m, p, b); this.nextRight = nextRight;
6125 >            this.transformer = transformer;
6126 >            this.reducer = reducer;
6127 >        }
6128 >        public final U getRawResult() { return result; }
6129 >        @SuppressWarnings("unchecked") public final void compute() {
6130 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
6131 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6132 >            if ((transformer = this.transformer) != null &&
6133 >                (reducer = this.reducer) != null) {
6134 >                for (int b; (b = preSplit()) > 0;)
6135 >                    (rights = new MapReduceMappingsTask<K,V,U>
6136 >                     (map, this, b, rights, transformer, reducer)).fork();
6137 >                U r = null, u;
6138 >                V v;
6139 >                while ((v = advance()) != null) {
6140 >                    if ((u = transformer.apply(nextKey, v)) != null)
6141 >                        r = (r == null) ? u : reducer.apply(r, u);
6142 >                }
6143 >                result = r;
6144 >                CountedCompleter<?> c;
6145 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6146 >                    MapReduceMappingsTask<K,V,U>
6147 >                        t = (MapReduceMappingsTask<K,V,U>)c,
6148 >                        s = t.rights;
6149 >                    while (s != null) {
6150 >                        U tr, sr;
6151 >                        if ((sr = s.result) != null)
6152 >                            t.result = (((tr = t.result) == null) ? sr :
6153 >                                        reducer.apply(tr, sr));
6154 >                        s = t.rights = s.nextRight;
6155 >                    }
6156 >                }
6157 >            }
6158 >        }
6159 >    }
6160 >
6161 >    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6162 >        extends Traverser<K,V,Double> {
6163 >        final DoubleFunction<? super K> transformer;
6164 >        final DoubleBinaryOperator reducer;
6165 >        final double basis;
6166 >        double result;
6167 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6168 >        MapReduceKeysToDoubleTask
6169 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6170 >             MapReduceKeysToDoubleTask<K,V> nextRight,
6171 >             DoubleFunction<? super K> transformer,
6172 >             double basis,
6173 >             DoubleBinaryOperator reducer) {
6174 >            super(m, p, b); this.nextRight = nextRight;
6175 >            this.transformer = transformer;
6176 >            this.basis = basis; this.reducer = reducer;
6177 >        }
6178 >        public final Double getRawResult() { return result; }
6179 >        @SuppressWarnings("unchecked") public final void compute() {
6180 >            final DoubleFunction<? super K> transformer;
6181 >            final DoubleBinaryOperator reducer;
6182 >            if ((transformer = this.transformer) != null &&
6183 >                (reducer = this.reducer) != null) {
6184 >                double r = this.basis;
6185 >                for (int b; (b = preSplit()) > 0;)
6186 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
6187 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6188 >                while (advance() != null)
6189 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6190 >                result = r;
6191 >                CountedCompleter<?> c;
6192 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6193 >                    MapReduceKeysToDoubleTask<K,V>
6194 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6195 >                        s = t.rights;
6196 >                    while (s != null) {
6197 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6198 >                        s = t.rights = s.nextRight;
6199 >                    }
6200 >                }
6201 >            }
6202 >        }
6203 >    }
6204 >
6205 >    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6206 >        extends Traverser<K,V,Double> {
6207 >        final DoubleFunction<? super V> transformer;
6208 >        final DoubleBinaryOperator reducer;
6209 >        final double basis;
6210 >        double result;
6211 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6212 >        MapReduceValuesToDoubleTask
6213 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6214 >             MapReduceValuesToDoubleTask<K,V> nextRight,
6215 >             DoubleFunction<? super V> transformer,
6216 >             double basis,
6217 >             DoubleBinaryOperator reducer) {
6218 >            super(m, p, b); this.nextRight = nextRight;
6219 >            this.transformer = transformer;
6220 >            this.basis = basis; this.reducer = reducer;
6221 >        }
6222 >        public final Double getRawResult() { return result; }
6223 >        @SuppressWarnings("unchecked") public final void compute() {
6224 >            final DoubleFunction<? super V> transformer;
6225 >            final DoubleBinaryOperator reducer;
6226 >            if ((transformer = this.transformer) != null &&
6227 >                (reducer = this.reducer) != null) {
6228 >                double r = this.basis;
6229 >                for (int b; (b = preSplit()) > 0;)
6230 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
6231 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6232 >                V v;
6233 >                while ((v = advance()) != null)
6234 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6235 >                result = r;
6236 >                CountedCompleter<?> c;
6237 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6238 >                    MapReduceValuesToDoubleTask<K,V>
6239 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6240 >                        s = t.rights;
6241 >                    while (s != null) {
6242 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6243 >                        s = t.rights = s.nextRight;
6244 >                    }
6245 >                }
6246 >            }
6247 >        }
6248 >    }
6249 >
6250 >    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6251 >        extends Traverser<K,V,Double> {
6252 >        final DoubleFunction<Map.Entry<K,V>> transformer;
6253 >        final DoubleBinaryOperator reducer;
6254 >        final double basis;
6255 >        double result;
6256 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6257 >        MapReduceEntriesToDoubleTask
6258 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6259 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
6260 >             DoubleFunction<Map.Entry<K,V>> transformer,
6261 >             double basis,
6262 >             DoubleBinaryOperator reducer) {
6263 >            super(m, p, b); this.nextRight = nextRight;
6264 >            this.transformer = transformer;
6265 >            this.basis = basis; this.reducer = reducer;
6266 >        }
6267 >        public final Double getRawResult() { return result; }
6268 >        @SuppressWarnings("unchecked") public final void compute() {
6269 >            final DoubleFunction<Map.Entry<K,V>> transformer;
6270 >            final DoubleBinaryOperator reducer;
6271 >            if ((transformer = this.transformer) != null &&
6272 >                (reducer = this.reducer) != null) {
6273 >                double r = this.basis;
6274 >                for (int b; (b = preSplit()) > 0;)
6275 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6276 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6277 >                V v;
6278 >                while ((v = advance()) != null)
6279 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6280 >                                                                    v)));
6281 >                result = r;
6282 >                CountedCompleter<?> c;
6283 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6284 >                    MapReduceEntriesToDoubleTask<K,V>
6285 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6286 >                        s = t.rights;
6287 >                    while (s != null) {
6288 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6289 >                        s = t.rights = s.nextRight;
6290 >                    }
6291 >                }
6292 >            }
6293 >        }
6294 >    }
6295 >
6296 >    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6297 >        extends Traverser<K,V,Double> {
6298 >        final DoubleBiFunction<? super K, ? super V> transformer;
6299 >        final DoubleBinaryOperator reducer;
6300 >        final double basis;
6301 >        double result;
6302 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6303 >        MapReduceMappingsToDoubleTask
6304 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6305 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
6306 >             DoubleBiFunction<? super K, ? super V> transformer,
6307 >             double basis,
6308 >             DoubleBinaryOperator reducer) {
6309 >            super(m, p, b); this.nextRight = nextRight;
6310 >            this.transformer = transformer;
6311 >            this.basis = basis; this.reducer = reducer;
6312 >        }
6313 >        public final Double getRawResult() { return result; }
6314 >        @SuppressWarnings("unchecked") public final void compute() {
6315 >            final DoubleBiFunction<? super K, ? super V> transformer;
6316 >            final DoubleBinaryOperator reducer;
6317 >            if ((transformer = this.transformer) != null &&
6318 >                (reducer = this.reducer) != null) {
6319 >                double r = this.basis;
6320 >                for (int b; (b = preSplit()) > 0;)
6321 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6322 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6323 >                V v;
6324 >                while ((v = advance()) != null)
6325 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6326 >                result = r;
6327 >                CountedCompleter<?> c;
6328 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6329 >                    MapReduceMappingsToDoubleTask<K,V>
6330 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6331 >                        s = t.rights;
6332 >                    while (s != null) {
6333 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6334 >                        s = t.rights = s.nextRight;
6335 >                    }
6336 >                }
6337 >            }
6338 >        }
6339 >    }
6340 >
6341 >    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6342 >        extends Traverser<K,V,Long> {
6343 >        final LongFunction<? super K> transformer;
6344 >        final LongBinaryOperator reducer;
6345 >        final long basis;
6346 >        long result;
6347 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
6348 >        MapReduceKeysToLongTask
6349 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6350 >             MapReduceKeysToLongTask<K,V> nextRight,
6351 >             LongFunction<? super K> transformer,
6352 >             long basis,
6353 >             LongBinaryOperator reducer) {
6354 >            super(m, p, b); this.nextRight = nextRight;
6355 >            this.transformer = transformer;
6356 >            this.basis = basis; this.reducer = reducer;
6357 >        }
6358 >        public final Long getRawResult() { return result; }
6359 >        @SuppressWarnings("unchecked") public final void compute() {
6360 >            final LongFunction<? super K> transformer;
6361 >            final LongBinaryOperator reducer;
6362 >            if ((transformer = this.transformer) != null &&
6363 >                (reducer = this.reducer) != null) {
6364 >                long r = this.basis;
6365 >                for (int b; (b = preSplit()) > 0;)
6366 >                    (rights = new MapReduceKeysToLongTask<K,V>
6367 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6368 >                while (advance() != null)
6369 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6370 >                result = r;
6371 >                CountedCompleter<?> c;
6372 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6373 >                    MapReduceKeysToLongTask<K,V>
6374 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6375 >                        s = t.rights;
6376 >                    while (s != null) {
6377 >                        t.result = reducer.applyAsLong(t.result, s.result);
6378 >                        s = t.rights = s.nextRight;
6379 >                    }
6380 >                }
6381 >            }
6382 >        }
6383 >    }
6384 >
6385 >    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6386 >        extends Traverser<K,V,Long> {
6387 >        final LongFunction<? super V> transformer;
6388 >        final LongBinaryOperator reducer;
6389 >        final long basis;
6390 >        long result;
6391 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
6392 >        MapReduceValuesToLongTask
6393 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6394 >             MapReduceValuesToLongTask<K,V> nextRight,
6395 >             LongFunction<? super V> transformer,
6396 >             long basis,
6397 >             LongBinaryOperator reducer) {
6398 >            super(m, p, b); this.nextRight = nextRight;
6399 >            this.transformer = transformer;
6400 >            this.basis = basis; this.reducer = reducer;
6401 >        }
6402 >        public final Long getRawResult() { return result; }
6403 >        @SuppressWarnings("unchecked") public final void compute() {
6404 >            final LongFunction<? super V> transformer;
6405 >            final LongBinaryOperator reducer;
6406 >            if ((transformer = this.transformer) != null &&
6407 >                (reducer = this.reducer) != null) {
6408 >                long r = this.basis;
6409 >                for (int b; (b = preSplit()) > 0;)
6410 >                    (rights = new MapReduceValuesToLongTask<K,V>
6411 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6412 >                V v;
6413 >                while ((v = advance()) != null)
6414 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6415 >                result = r;
6416 >                CountedCompleter<?> c;
6417 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6418 >                    MapReduceValuesToLongTask<K,V>
6419 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6420 >                        s = t.rights;
6421 >                    while (s != null) {
6422 >                        t.result = reducer.applyAsLong(t.result, s.result);
6423 >                        s = t.rights = s.nextRight;
6424 >                    }
6425 >                }
6426 >            }
6427 >        }
6428 >    }
6429 >
6430 >    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6431 >        extends Traverser<K,V,Long> {
6432 >        final LongFunction<Map.Entry<K,V>> transformer;
6433 >        final LongBinaryOperator reducer;
6434 >        final long basis;
6435 >        long result;
6436 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6437 >        MapReduceEntriesToLongTask
6438 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6439 >             MapReduceEntriesToLongTask<K,V> nextRight,
6440 >             LongFunction<Map.Entry<K,V>> transformer,
6441 >             long basis,
6442 >             LongBinaryOperator reducer) {
6443 >            super(m, p, b); this.nextRight = nextRight;
6444 >            this.transformer = transformer;
6445 >            this.basis = basis; this.reducer = reducer;
6446 >        }
6447 >        public final Long getRawResult() { return result; }
6448 >        @SuppressWarnings("unchecked") public final void compute() {
6449 >            final LongFunction<Map.Entry<K,V>> transformer;
6450 >            final LongBinaryOperator reducer;
6451 >            if ((transformer = this.transformer) != null &&
6452 >                (reducer = this.reducer) != null) {
6453 >                long r = this.basis;
6454 >                for (int b; (b = preSplit()) > 0;)
6455 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6456 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6457 >                V v;
6458 >                while ((v = advance()) != null)
6459 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6460 >                result = r;
6461 >                CountedCompleter<?> c;
6462 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6463 >                    MapReduceEntriesToLongTask<K,V>
6464 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6465 >                        s = t.rights;
6466 >                    while (s != null) {
6467 >                        t.result = reducer.applyAsLong(t.result, s.result);
6468 >                        s = t.rights = s.nextRight;
6469 >                    }
6470 >                }
6471 >            }
6472 >        }
6473 >    }
6474 >
6475 >    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6476 >        extends Traverser<K,V,Long> {
6477 >        final LongBiFunction<? super K, ? super V> transformer;
6478 >        final LongBinaryOperator reducer;
6479 >        final long basis;
6480 >        long result;
6481 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6482 >        MapReduceMappingsToLongTask
6483 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6484 >             MapReduceMappingsToLongTask<K,V> nextRight,
6485 >             LongBiFunction<? super K, ? super V> transformer,
6486 >             long basis,
6487 >             LongBinaryOperator reducer) {
6488 >            super(m, p, b); this.nextRight = nextRight;
6489 >            this.transformer = transformer;
6490 >            this.basis = basis; this.reducer = reducer;
6491 >        }
6492 >        public final Long getRawResult() { return result; }
6493 >        @SuppressWarnings("unchecked") public final void compute() {
6494 >            final LongBiFunction<? super K, ? super V> transformer;
6495 >            final LongBinaryOperator reducer;
6496 >            if ((transformer = this.transformer) != null &&
6497 >                (reducer = this.reducer) != null) {
6498 >                long r = this.basis;
6499 >                for (int b; (b = preSplit()) > 0;)
6500 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6501 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6502 >                V v;
6503 >                while ((v = advance()) != null)
6504 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6505 >                result = r;
6506 >                CountedCompleter<?> c;
6507 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6508 >                    MapReduceMappingsToLongTask<K,V>
6509 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6510 >                        s = t.rights;
6511 >                    while (s != null) {
6512 >                        t.result = reducer.applyAsLong(t.result, s.result);
6513 >                        s = t.rights = s.nextRight;
6514 >                    }
6515 >                }
6516 >            }
6517 >        }
6518 >    }
6519 >
6520 >    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6521 >        extends Traverser<K,V,Integer> {
6522 >        final IntFunction<? super K> transformer;
6523 >        final IntBinaryOperator reducer;
6524 >        final int basis;
6525 >        int result;
6526 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6527 >        MapReduceKeysToIntTask
6528 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6529 >             MapReduceKeysToIntTask<K,V> nextRight,
6530 >             IntFunction<? super K> transformer,
6531 >             int basis,
6532 >             IntBinaryOperator reducer) {
6533 >            super(m, p, b); this.nextRight = nextRight;
6534 >            this.transformer = transformer;
6535 >            this.basis = basis; this.reducer = reducer;
6536 >        }
6537 >        public final Integer getRawResult() { return result; }
6538 >        @SuppressWarnings("unchecked") public final void compute() {
6539 >            final IntFunction<? super K> transformer;
6540 >            final IntBinaryOperator reducer;
6541 >            if ((transformer = this.transformer) != null &&
6542 >                (reducer = this.reducer) != null) {
6543 >                int r = this.basis;
6544 >                for (int b; (b = preSplit()) > 0;)
6545 >                    (rights = new MapReduceKeysToIntTask<K,V>
6546 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6547 >                while (advance() != null)
6548 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6549 >                result = r;
6550 >                CountedCompleter<?> c;
6551 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6552 >                    MapReduceKeysToIntTask<K,V>
6553 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6554 >                        s = t.rights;
6555 >                    while (s != null) {
6556 >                        t.result = reducer.applyAsInt(t.result, s.result);
6557 >                        s = t.rights = s.nextRight;
6558 >                    }
6559 >                }
6560 >            }
6561 >        }
6562 >    }
6563 >
6564 >    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6565 >        extends Traverser<K,V,Integer> {
6566 >        final IntFunction<? super V> transformer;
6567 >        final IntBinaryOperator reducer;
6568 >        final int basis;
6569 >        int result;
6570 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6571 >        MapReduceValuesToIntTask
6572 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6573 >             MapReduceValuesToIntTask<K,V> nextRight,
6574 >             IntFunction<? super V> transformer,
6575 >             int basis,
6576 >             IntBinaryOperator reducer) {
6577 >            super(m, p, b); this.nextRight = nextRight;
6578 >            this.transformer = transformer;
6579 >            this.basis = basis; this.reducer = reducer;
6580 >        }
6581 >        public final Integer getRawResult() { return result; }
6582 >        @SuppressWarnings("unchecked") public final void compute() {
6583 >            final IntFunction<? super V> transformer;
6584 >            final IntBinaryOperator reducer;
6585 >            if ((transformer = this.transformer) != null &&
6586 >                (reducer = this.reducer) != null) {
6587 >                int r = this.basis;
6588 >                for (int b; (b = preSplit()) > 0;)
6589 >                    (rights = new MapReduceValuesToIntTask<K,V>
6590 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6591 >                V v;
6592 >                while ((v = advance()) != null)
6593 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6594 >                result = r;
6595 >                CountedCompleter<?> c;
6596 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6597 >                    MapReduceValuesToIntTask<K,V>
6598 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6599 >                        s = t.rights;
6600 >                    while (s != null) {
6601 >                        t.result = reducer.applyAsInt(t.result, s.result);
6602 >                        s = t.rights = s.nextRight;
6603 >                    }
6604 >                }
6605 >            }
6606 >        }
6607 >    }
6608 >
6609 >    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6610 >        extends Traverser<K,V,Integer> {
6611 >        final IntFunction<Map.Entry<K,V>> transformer;
6612 >        final IntBinaryOperator reducer;
6613 >        final int basis;
6614 >        int result;
6615 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6616 >        MapReduceEntriesToIntTask
6617 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6618 >             MapReduceEntriesToIntTask<K,V> nextRight,
6619 >             IntFunction<Map.Entry<K,V>> transformer,
6620 >             int basis,
6621 >             IntBinaryOperator reducer) {
6622 >            super(m, p, b); this.nextRight = nextRight;
6623 >            this.transformer = transformer;
6624 >            this.basis = basis; this.reducer = reducer;
6625 >        }
6626 >        public final Integer getRawResult() { return result; }
6627 >        @SuppressWarnings("unchecked") public final void compute() {
6628 >            final IntFunction<Map.Entry<K,V>> transformer;
6629 >            final IntBinaryOperator reducer;
6630 >            if ((transformer = this.transformer) != null &&
6631 >                (reducer = this.reducer) != null) {
6632 >                int r = this.basis;
6633 >                for (int b; (b = preSplit()) > 0;)
6634 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6635 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6636 >                V v;
6637 >                while ((v = advance()) != null)
6638 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6639 >                                                                    v)));
6640 >                result = r;
6641 >                CountedCompleter<?> c;
6642 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6643 >                    MapReduceEntriesToIntTask<K,V>
6644 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6645 >                        s = t.rights;
6646 >                    while (s != null) {
6647 >                        t.result = reducer.applyAsInt(t.result, s.result);
6648 >                        s = t.rights = s.nextRight;
6649 >                    }
6650 >                }
6651 >            }
6652 >        }
6653 >    }
6654 >
6655 >    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6656 >        extends Traverser<K,V,Integer> {
6657 >        final IntBiFunction<? super K, ? super V> transformer;
6658 >        final IntBinaryOperator reducer;
6659 >        final int basis;
6660 >        int result;
6661 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6662 >        MapReduceMappingsToIntTask
6663 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6664 >             MapReduceMappingsToIntTask<K,V> nextRight,
6665 >             IntBiFunction<? super K, ? super V> transformer,
6666 >             int basis,
6667 >             IntBinaryOperator reducer) {
6668 >            super(m, p, b); this.nextRight = nextRight;
6669 >            this.transformer = transformer;
6670 >            this.basis = basis; this.reducer = reducer;
6671 >        }
6672 >        public final Integer getRawResult() { return result; }
6673 >        @SuppressWarnings("unchecked") public final void compute() {
6674 >            final IntBiFunction<? super K, ? super V> transformer;
6675 >            final IntBinaryOperator reducer;
6676 >            if ((transformer = this.transformer) != null &&
6677 >                (reducer = this.reducer) != null) {
6678 >                int r = this.basis;
6679 >                for (int b; (b = preSplit()) > 0;)
6680 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6681 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6682 >                V v;
6683 >                while ((v = advance()) != null)
6684 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6685 >                result = r;
6686 >                CountedCompleter<?> c;
6687 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6688 >                    MapReduceMappingsToIntTask<K,V>
6689 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6690 >                        s = t.rights;
6691 >                    while (s != null) {
6692 >                        t.result = reducer.applyAsInt(t.result, s.result);
6693 >                        s = t.rights = s.nextRight;
6694 >                    }
6695 >                }
6696 >            }
6697          }
6698      }
6699  
6700      // Unsafe mechanics
6701 <    private static final sun.misc.Unsafe UNSAFE;
6702 <    private static final long SBASE;
6703 <    private static final int SSHIFT;
6704 <    private static final long TBASE;
6705 <    private static final int TSHIFT;
6701 >    private static final sun.misc.Unsafe U;
6702 >    private static final long SIZECTL;
6703 >    private static final long TRANSFERINDEX;
6704 >    private static final long TRANSFERORIGIN;
6705 >    private static final long BASECOUNT;
6706 >    private static final long CELLSBUSY;
6707 >    private static final long CELLVALUE;
6708 >    private static final long ABASE;
6709 >    private static final int ASHIFT;
6710  
6711      static {
1474        int ss, ts;
6712          try {
6713 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6714 <            Class tc = HashEntry[].class;
6715 <            Class sc = Segment[].class;
6716 <            TBASE = UNSAFE.arrayBaseOffset(tc);
6717 <            SBASE = UNSAFE.arrayBaseOffset(sc);
6718 <            ts = UNSAFE.arrayIndexScale(tc);
6719 <            ss = UNSAFE.arrayIndexScale(sc);
6713 >            U = sun.misc.Unsafe.getUnsafe();
6714 >            Class<?> k = ConcurrentHashMap.class;
6715 >            SIZECTL = U.objectFieldOffset
6716 >                (k.getDeclaredField("sizeCtl"));
6717 >            TRANSFERINDEX = U.objectFieldOffset
6718 >                (k.getDeclaredField("transferIndex"));
6719 >            TRANSFERORIGIN = U.objectFieldOffset
6720 >                (k.getDeclaredField("transferOrigin"));
6721 >            BASECOUNT = U.objectFieldOffset
6722 >                (k.getDeclaredField("baseCount"));
6723 >            CELLSBUSY = U.objectFieldOffset
6724 >                (k.getDeclaredField("cellsBusy"));
6725 >            Class<?> ck = Cell.class;
6726 >            CELLVALUE = U.objectFieldOffset
6727 >                (ck.getDeclaredField("value"));
6728 >            Class<?> sc = Node[].class;
6729 >            ABASE = U.arrayBaseOffset(sc);
6730 >            int scale = U.arrayIndexScale(sc);
6731 >            if ((scale & (scale - 1)) != 0)
6732 >                throw new Error("data type scale not a power of two");
6733 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6734          } catch (Exception e) {
6735              throw new Error(e);
6736          }
1486        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1487            throw new Error("data type scale not a power of two");
1488        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1489        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
6737      }
6738  
6739   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines