ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.23 by dl, Sat Sep 13 18:51:10 2003 UTC vs.
Revision 1.110 by jsr166, Wed Apr 27 14:06:30 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3 < * Expert Group and released to the public domain. Use, modify, and
4 < * redistribute this code in any way without acknowledgement.
3 > * Expert Group and released to the public domain, as explained at
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
# Line 17 | Line 17 | import java.io.ObjectOutputStream;
17   * adjustable expected concurrency for updates. This class obeys the
18   * same functional specification as {@link java.util.Hashtable}, and
19   * includes versions of methods corresponding to each method of
20 < * <tt>Hashtable</tt> . However, even though all operations are
20 > * <tt>Hashtable</tt>. However, even though all operations are
21   * thread-safe, retrieval operations do <em>not</em> entail locking,
22   * and there is <em>not</em> any support for locking the entire table
23   * in a way that prevents all access.  This class is fully
24   * interoperable with <tt>Hashtable</tt> in programs that rely on its
25   * thread safety but not on its synchronization details.
26   *
27 < * <p> Retrieval operations (including <tt>get</tt>) ordinarily
28 < * overlap with update operations (including <tt>put</tt> and
29 < * <tt>remove</tt>). Retrievals reflect the results of the most
30 < * recently <em>completed</em> update operations holding upon their
31 < * onset.  For aggregate operations such as <tt>putAll</tt> and
32 < * <tt>clear</tt>, concurrent retrievals may reflect insertion or
27 > * <p> Retrieval operations (including <tt>get</tt>) generally do not
28 > * block, so may overlap with update operations (including
29 > * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30 > * of the most recently <em>completed</em> update operations holding
31 > * upon their onset.  For aggregate operations such as <tt>putAll</tt>
32 > * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33   * removal of only some entries.  Similarly, Iterators and
34   * Enumerations return elements reflecting the state of the hash table
35   * at some point at or since the creation of the iterator/enumeration.
36 < * They do <em>not</em> throw <tt>ConcurrentModificationException</tt>.
37 < * However, Iterators are designed to be used by only one thread at a
38 < * time.
36 > * They do <em>not</em> throw {@link ConcurrentModificationException}.
37 > * However, iterators are designed to be used by only one thread at a time.
38   *
39   * <p> The allowed concurrency among update operations is guided by
40   * the optional <tt>concurrencyLevel</tt> constructor argument
41 < * (default 16), which is used as a hint for internal sizing.  The
41 > * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
42   * table is internally partitioned to try to permit the indicated
43   * number of concurrent updates without contention. Because placement
44   * in hash tables is essentially random, the actual concurrency will
45   * vary.  Ideally, you should choose a value to accommodate as many
46 < * threads as will ever concurrently access the table. Using a
46 > * threads as will ever concurrently modify the table. Using a
47   * significantly higher value than you need can waste space and time,
48   * and a significantly lower value can lead to thread contention. But
49   * overestimates and underestimates within an order of magnitude do
50 < * not usually have much noticeable impact.
50 > * not usually have much noticeable impact. A value of one is
51 > * appropriate when it is known that only one thread will modify and
52 > * all others will only read. Also, resizing this or any other kind of
53 > * hash table is a relatively slow operation, so, when possible, it is
54 > * a good idea to provide estimates of expected table sizes in
55 > * constructors.
56   *
57 < * <p>This class implements all of the <em>optional</em> methods
58 < * of the {@link Map} and {@link Iterator} interfaces.
57 > * <p>This class and its views and iterators implement all of the
58 > * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59 > * interfaces.
60   *
61 < * <p> Like {@link java.util.Hashtable} but unlike {@link
62 < * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
63 < * used as a key or value.
61 > * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62 > * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63 > *
64 > * <p>This class is a member of the
65 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
66 > * Java Collections Framework</a>.
67   *
68   * @since 1.5
69   * @author Doug Lea
70 + * @param <K> the type of keys maintained by this map
71 + * @param <V> the type of mapped values
72   */
73   public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 <        implements ConcurrentMap<K, V>, Cloneable, Serializable {
74 >        implements ConcurrentMap<K, V>, Serializable {
75      private static final long serialVersionUID = 7249069246763182397L;
76  
77      /*
78       * The basic strategy is to subdivide the table among Segments,
79 <     * each of which itself is a concurrently readable hash table.
79 >     * each of which itself is a concurrently readable hash table.  To
80 >     * reduce footprint, all but one segments are constructed only
81 >     * when first needed (see ensureSegment). To maintain visibility
82 >     * in the presence of lazy construction, accesses to segments as
83 >     * well as elements of segment's table must use volatile access,
84 >     * which is done via Unsafe within methods segmentAt etc
85 >     * below. These provide the functionality of AtomicReferenceArrays
86 >     * but reduce the levels of indirection. Additionally,
87 >     * volatile-writes of table elements and entry "next" fields
88 >     * within locked operations use the cheaper "lazySet" forms of
89 >     * writes (via putOrderedObject) because these writes are always
90 >     * followed by lock releases that maintain sequential consistency
91 >     * of table updates.
92 >     *
93 >     * Historical note: The previous version of this class relied
94 >     * heavily on "final" fields, which avoided some volatile reads at
95 >     * the expense of a large initial footprint.  Some remnants of
96 >     * that design (including forced construction of segment 0) exist
97 >     * to ensure serialization compatibility.
98       */
99  
100      /* ---------------- Constants -------------- */
101  
102      /**
103 <     * The default initial number of table slots for this table.
104 <     * Used when not otherwise specified in constructor.
103 >     * The default initial capacity for this table,
104 >     * used when not otherwise specified in a constructor.
105 >     */
106 >    static final int DEFAULT_INITIAL_CAPACITY = 16;
107 >
108 >    /**
109 >     * The default load factor for this table, used when not
110 >     * otherwise specified in a constructor.
111 >     */
112 >    static final float DEFAULT_LOAD_FACTOR = 0.75f;
113 >
114 >    /**
115 >     * The default concurrency level for this table, used when not
116 >     * otherwise specified in a constructor.
117       */
118 <    private static int DEFAULT_INITIAL_CAPACITY = 16;
118 >    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
119  
120      /**
121       * The maximum capacity, used if a higher value is implicitly
122       * specified by either of the constructors with arguments.  MUST
123 <     * be a power of two <= 1<<30 to ensure that entries are indexible
123 >     * be a power of two <= 1<<30 to ensure that entries are indexable
124       * using ints.
125       */
126 <    static final int MAXIMUM_CAPACITY = 1 << 30;
126 >    static final int MAXIMUM_CAPACITY = 1 << 30;
127  
128      /**
129 <     * The default load factor for this table.  Used when not
130 <     * otherwise specified in constructor.
129 >     * The minimum capacity for per-segment tables.  Must be a power
130 >     * of two, at least two to avoid immediate resizing on next use
131 >     * after lazy construction.
132       */
133 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
133 >    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
134  
135      /**
136 <     * The default number of concurrency control segments.
137 <     **/
138 <    private static final int DEFAULT_SEGMENTS = 16;
136 >     * The maximum number of segments to allow; used to bound
137 >     * constructor arguments. Must be power of two less than 1 << 24.
138 >     */
139 >    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
140  
141      /**
142 <     * The maximum number of segments to allow; used to bound ctor arguments.
142 >     * Number of unsynchronized retries in size and containsValue
143 >     * methods before resorting to locking. This is used to avoid
144 >     * unbounded retries if tables undergo continuous modification
145 >     * which would make it impossible to obtain an accurate result.
146       */
147 <    private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
147 >    static final int RETRIES_BEFORE_LOCK = 2;
148  
149      /* ---------------- Fields -------------- */
150  
151      /**
152       * Mask value for indexing into segments. The upper bits of a
153       * key's hash code are used to choose the segment.
154 <     **/
155 <    private final int segmentMask;
154 >     */
155 >    final int segmentMask;
156  
157      /**
158       * Shift value for indexing within segments.
159 <     **/
160 <    private final int segmentShift;
159 >     */
160 >    final int segmentShift;
161  
162      /**
163 <     * The segments, each of which is a specialized hash table
163 >     * The segments, each of which is a specialized hash table.
164       */
165 <    private final Segment[] segments;
165 >    final Segment<K,V>[] segments;
166  
167 <    private transient Set<K> keySet;
168 <    private transient Set<Map.Entry<K,V>> entrySet;
169 <    private transient Collection<V> values;
125 <
126 <    /* ---------------- Small Utilities -------------- */
167 >    transient Set<K> keySet;
168 >    transient Set<Map.Entry<K,V>> entrySet;
169 >    transient Collection<V> values;
170  
171      /**
172 <     * Return a hash code for non-null Object x.
173 <     * Uses the same hash code spreader as most other j.u hash tables.
131 <     * @param x the object serving as a key
132 <     * @return the hash code
172 >     * ConcurrentHashMap list entry. Note that this is never exported
173 >     * out as a user-visible Map.Entry.
174       */
175 <    private static int hash(Object x) {
176 <        int h = x.hashCode();
177 <        h += ~(h << 9);
178 <        h ^=  (h >>> 14);
179 <        h +=  (h << 4);
180 <        h ^=  (h >>> 10);
181 <        return h;
175 >    static final class HashEntry<K,V> {
176 >        final int hash;
177 >        final K key;
178 >        volatile V value;
179 >        volatile HashEntry<K,V> next;
180 >
181 >        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
182 >            this.hash = hash;
183 >            this.key = key;
184 >            this.value = value;
185 >            this.next = next;
186 >        }
187 >
188 >        /**
189 >         * Sets next field with volatile write semantics.  (See above
190 >         * about use of putOrderedObject.)
191 >         */
192 >        final void setNext(HashEntry<K,V> n) {
193 >            UNSAFE.putOrderedObject(this, nextOffset, n);
194 >        }
195 >
196 >        // Unsafe mechanics
197 >        static final sun.misc.Unsafe UNSAFE;
198 >        static final long nextOffset;
199 >        static {
200 >            try {
201 >                UNSAFE = sun.misc.Unsafe.getUnsafe();
202 >                Class k = HashEntry.class;
203 >                nextOffset = UNSAFE.objectFieldOffset
204 >                    (k.getDeclaredField("next"));
205 >            } catch (Exception e) {
206 >                throw new Error(e);
207 >            }
208 >        }
209      }
210  
211      /**
212 <     * Return the segment that should be used for key with given hash
213 <     */
214 <    private Segment<K,V> segmentFor(int hash) {
215 <        return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
212 >     * Gets the ith element of given table (if nonnull) with volatile
213 >     * read semantics. Note: This is manually integrated into a few
214 >     * performance-sensitive methods to reduce call overhead.
215 >     */
216 >    @SuppressWarnings("unchecked")
217 >    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
218 >        return (tab == null) ? null :
219 >            (HashEntry<K,V>) UNSAFE.getObjectVolatile
220 >            (tab, ((long)i << TSHIFT) + TBASE);
221      }
222  
223 <    /* ---------------- Inner Classes -------------- */
223 >    /**
224 >     * Sets the ith element of given table, with volatile write
225 >     * semantics. (See above about use of putOrderedObject.)
226 >     */
227 >    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
228 >                                       HashEntry<K,V> e) {
229 >        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
230 >    }
231 >
232 >    /**
233 >     * Applies a supplemental hash function to a given hashCode, which
234 >     * defends against poor quality hash functions.  This is critical
235 >     * because ConcurrentHashMap uses power-of-two length hash tables,
236 >     * that otherwise encounter collisions for hashCodes that do not
237 >     * differ in lower or upper bits.
238 >     */
239 >    private static int hash(int h) {
240 >        // Spread bits to regularize both segment and index locations,
241 >        // using variant of single-word Wang/Jenkins hash.
242 >        h += (h <<  15) ^ 0xffffcd7d;
243 >        h ^= (h >>> 10);
244 >        h += (h <<   3);
245 >        h ^= (h >>>  6);
246 >        h += (h <<   2) + (h << 14);
247 >        return h ^ (h >>> 16);
248 >    }
249  
250      /**
251       * Segments are specialized versions of hash tables.  This
252       * subclasses from ReentrantLock opportunistically, just to
253       * simplify some locking and avoid separate construction.
254 <     **/
255 <    private static final class Segment<K,V> extends ReentrantLock implements Serializable {
254 >     */
255 >    static final class Segment<K,V> extends ReentrantLock implements Serializable {
256          /*
257 <         * Segments maintain a table of entry lists that are ALWAYS
258 <         * kept in a consistent state, so can be read without locking.
259 <         * Next fields of nodes are immutable (final).  All list
260 <         * additions are performed at the front of each bin. This
261 <         * makes it easy to check changes, and also fast to traverse.
262 <         * When nodes would otherwise be changed, new nodes are
165 <         * created to replace them. This works well for hash tables
166 <         * since the bin lists tend to be short. (The average length
167 <         * is less than two for the default load factor threshold.)
168 <         *
169 <         * Read operations can thus proceed without locking, but rely
170 <         * on a memory barrier to ensure that completed write
171 <         * operations performed by other threads are
172 <         * noticed. Conveniently, the "count" field, tracking the
173 <         * number of elements, can also serve as the volatile variable
174 <         * providing proper read/write barriers. This is convenient
175 <         * because this field needs to be read in many read operations
176 <         * anyway.
177 <         *
178 <         * Implementors note. The basic rules for all this are:
179 <         *
180 <         *   - All unsynchronized read operations must first read the
181 <         *     "count" field, and should not look at table entries if
182 <         *     it is 0.
257 >         * Segments maintain a table of entry lists that are always
258 >         * kept in a consistent state, so can be read (via volatile
259 >         * reads of segments and tables) without locking.  This
260 >         * requires replicating nodes when necessary during table
261 >         * resizing, so the old lists can be traversed by readers
262 >         * still using old version of table.
263           *
264 <         *   - All synchronized write operations should write to
265 <         *     the "count" field after updating. The operations must not
266 <         *     take any action that could even momentarily cause
267 <         *     a concurrent read operation to see inconsistent
268 <         *     data. This is made easier by the nature of the read
269 <         *     operations in Map. For example, no operation
270 <         *     can reveal that the table has grown but the threshold
271 <         *     has not yet been updated, so there are no atomicity
272 <         *     requirements for this with respect to reads.
273 <         *
274 <         * As a guide, all critical volatile reads and writes are marked
275 <         * in code comments.
264 >         * This class defines only mutative methods requiring locking.
265 >         * Except as noted, the methods of this class perform the
266 >         * per-segment versions of ConcurrentHashMap methods.  (Other
267 >         * methods are integrated directly into ConcurrentHashMap
268 >         * methods.) These mutative methods use a form of controlled
269 >         * spinning on contention via methods scanAndLock and
270 >         * scanAndLockForPut. These intersperse tryLocks with
271 >         * traversals to locate nodes.  The main benefit is to absorb
272 >         * cache misses (which are very common for hash tables) while
273 >         * obtaining locks so that traversal is faster once
274 >         * acquired. We do not actually use the found nodes since they
275 >         * must be re-acquired under lock anyway to ensure sequential
276 >         * consistency of updates (and in any case may be undetectably
277 >         * stale), but they will normally be much faster to re-locate.
278 >         * Also, scanAndLockForPut speculatively creates a fresh node
279 >         * to use in put if no node is found.
280           */
281  
282 +        private static final long serialVersionUID = 2249069246763182397L;
283 +
284          /**
285 <         * The number of elements in this segment's region.
286 <         **/
287 <        transient volatile int count;
285 >         * The maximum number of times to tryLock in a prescan before
286 >         * possibly blocking on acquire in preparation for a locked
287 >         * segment operation. On multiprocessors, using a bounded
288 >         * number of retries maintains cache acquired while locating
289 >         * nodes.
290 >         */
291 >        static final int MAX_SCAN_RETRIES =
292 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
293  
294          /**
295 <         * Number of updates; used for checking lack of modifications
296 <         * in bulk-read methods.
295 >         * The per-segment table. Elements are accessed via
296 >         * entryAt/setEntryAt providing volatile semantics.
297           */
298 <        transient int modCount;
298 >        transient volatile HashEntry<K,V>[] table;
299  
300          /**
301 <         * The table is rehashed when its size exceeds this threshold.
302 <         * (The value of this field is always (int)(capacity *
303 <         * loadFactor).)
301 >         * The number of elements. Accessed only either within locks
302 >         * or among other volatile reads that maintain visibility.
303 >         */
304 >        transient int count;
305 >
306 >        /**
307 >         * The total number of mutative operations in this segment.
308 >         * Even though this may overflows 32 bits, it provides
309 >         * sufficient accuracy for stability checks in CHM isEmpty()
310 >         * and size() methods.  Accessed only either within locks or
311 >         * among other volatile reads that maintain visibility.
312           */
313 <        private transient int threshold;
313 >        transient int modCount;
314  
315          /**
316 <         * The per-segment table
316 >         * The table is rehashed when its size exceeds this threshold.
317 >         * (The value of this field is always <tt>(int)(capacity *
318 >         * loadFactor)</tt>.)
319           */
320 <        transient HashEntry[] table;
320 >        transient int threshold;
321  
322          /**
323           * The load factor for the hash table.  Even though this value
# Line 224 | Line 325 | public class ConcurrentHashMap<K, V> ext
325           * links to outer object.
326           * @serial
327           */
328 <        private final float loadFactor;
228 <
229 <        Segment(int initialCapacity, float lf) {
230 <            loadFactor = lf;
231 <            setTable(new HashEntry[initialCapacity]);
232 <        }
328 >        final float loadFactor;
329  
330 <        /**
331 <         * Set table to new HashEntry array.
332 <         * Call only while holding lock or in constructor.
333 <         **/
238 <        private void setTable(HashEntry[] newTable) {
239 <            table = newTable;
240 <            threshold = (int)(newTable.length * loadFactor);
241 <            count = count; // write-volatile
242 <        }
243 <
244 <        /* Specialized implementations of map methods */
245 <
246 <        V get(K key, int hash) {
247 <            if (count != 0) { // read-volatile
248 <                HashEntry[] tab = table;
249 <                int index = hash & (tab.length - 1);
250 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
251 <                while (e != null) {
252 <                    if (e.hash == hash && key.equals(e.key))
253 <                        return e.value;
254 <                    e = e.next;
255 <                }
256 <            }
257 <            return null;
258 <        }
259 <
260 <        boolean containsKey(Object key, int hash) {
261 <            if (count != 0) { // read-volatile
262 <                HashEntry[] tab = table;
263 <                int index = hash & (tab.length - 1);
264 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
265 <                while (e != null) {
266 <                    if (e.hash == hash && key.equals(e.key))
267 <                        return true;
268 <                    e = e.next;
269 <                }
270 <            }
271 <            return false;
272 <        }
273 <
274 <        boolean containsValue(Object value) {
275 <            if (count != 0) { // read-volatile
276 <                HashEntry[] tab = table;
277 <                int len = tab.length;
278 <                for (int i = 0 ; i < len; i++)
279 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
280 <                        if (value.equals(e.value))
281 <                            return true;
282 <            }
283 <            return false;
330 >        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
331 >            this.loadFactor = lf;
332 >            this.threshold = threshold;
333 >            this.table = tab;
334          }
335  
336 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
337 <            lock();
336 >        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
337 >            HashEntry<K,V> node = tryLock() ? null :
338 >                scanAndLockForPut(key, hash, value);
339 >            V oldValue;
340              try {
341 <                int c = count;
342 <                HashEntry[] tab = table;
343 <                int index = hash & (tab.length - 1);
344 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
345 <
346 <                for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
347 <                    if (e.hash == hash && key.equals(e.key)) {
348 <                        V oldValue = e.value;
349 <                        if (!onlyIfAbsent)
350 <                            e.value = value;
341 >                HashEntry<K,V>[] tab = table;
342 >                int index = (tab.length - 1) & hash;
343 >                HashEntry<K,V> first = entryAt(tab, index);
344 >                for (HashEntry<K,V> e = first;;) {
345 >                    if (e != null) {
346 >                        K k;
347 >                        if ((k = e.key) == key ||
348 >                            (e.hash == hash && key.equals(k))) {
349 >                            oldValue = e.value;
350 >                            if (!onlyIfAbsent) {
351 >                                e.value = value;
352 >                                ++modCount;
353 >                            }
354 >                            break;
355 >                        }
356 >                        e = e.next;
357 >                    }
358 >                    else {
359 >                        if (node != null)
360 >                            node.setNext(first);
361 >                        else
362 >                            node = new HashEntry<K,V>(hash, key, value, first);
363 >                        int c = count + 1;
364 >                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
365 >                            rehash(node);
366 >                        else
367 >                            setEntryAt(tab, index, node);
368                          ++modCount;
369 <                        count = c; // write-volatile
370 <                        return oldValue;
369 >                        count = c;
370 >                        oldValue = null;
371 >                        break;
372                      }
373                  }
304
305                tab[index] = new HashEntry<K,V>(hash, key, value, first);
306                ++modCount;
307                ++c;
308                count = c; // write-volatile
309                if (c > threshold)
310                    setTable(rehash(tab));
311                return null;
374              } finally {
375                  unlock();
376              }
377 +            return oldValue;
378          }
379  
380 <        private HashEntry[] rehash(HashEntry[] oldTable) {
381 <            int oldCapacity = oldTable.length;
382 <            if (oldCapacity >= MAXIMUM_CAPACITY)
383 <                return oldTable;
384 <
380 >        /**
381 >         * Doubles size of table and repacks entries, also adding the
382 >         * given node to new table
383 >         */
384 >        @SuppressWarnings("unchecked")
385 >        private void rehash(HashEntry<K,V> node) {
386              /*
387 <             * Reclassify nodes in each list to new Map.  Because we are
388 <             * using power-of-two expansion, the elements from each bin
389 <             * must either stay at same index, or move with a power of two
390 <             * offset. We eliminate unnecessary node creation by catching
391 <             * cases where old nodes can be reused because their next
392 <             * fields won't change. Statistically, at the default
393 <             * threshhold, only about one-sixth of them need cloning when
394 <             * a table doubles. The nodes they replace will be garbage
395 <             * collectable as soon as they are no longer referenced by any
396 <             * reader thread that may be in the midst of traversing table
397 <             * right now.
387 >             * Reclassify nodes in each list to new table.  Because we
388 >             * are using power-of-two expansion, the elements from
389 >             * each bin must either stay at same index, or move with a
390 >             * power of two offset. We eliminate unnecessary node
391 >             * creation by catching cases where old nodes can be
392 >             * reused because their next fields won't change.
393 >             * Statistically, at the default threshold, only about
394 >             * one-sixth of them need cloning when a table
395 >             * doubles. The nodes they replace will be garbage
396 >             * collectable as soon as they are no longer referenced by
397 >             * any reader thread that may be in the midst of
398 >             * concurrently traversing table. Entry accesses use plain
399 >             * array indexing because they are followed by volatile
400 >             * table write.
401               */
402 <
403 <            HashEntry[] newTable = new HashEntry[oldCapacity << 1];
404 <            int sizeMask = newTable.length - 1;
402 >            HashEntry<K,V>[] oldTable = table;
403 >            int oldCapacity = oldTable.length;
404 >            int newCapacity = oldCapacity << 1;
405 >            threshold = (int)(newCapacity * loadFactor);
406 >            HashEntry<K,V>[] newTable =
407 >                (HashEntry<K,V>[]) new HashEntry[newCapacity];
408 >            int sizeMask = newCapacity - 1;
409              for (int i = 0; i < oldCapacity ; i++) {
410 <                // We need to guarantee that any existing reads of old Map can
340 <                //  proceed. So we cannot yet null out each bin.
341 <                HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
342 <
410 >                HashEntry<K,V> e = oldTable[i];
411                  if (e != null) {
412                      HashEntry<K,V> next = e.next;
413                      int idx = e.hash & sizeMask;
414 <
347 <                    //  Single node on list
348 <                    if (next == null)
414 >                    if (next == null)   //  Single node on list
415                          newTable[idx] = e;
416 <
351 <                    else {
352 <                        // Reuse trailing consecutive sequence at same slot
416 >                    else { // Reuse consecutive sequence at same slot
417                          HashEntry<K,V> lastRun = e;
418                          int lastIdx = idx;
419                          for (HashEntry<K,V> last = next;
# Line 362 | Line 426 | public class ConcurrentHashMap<K, V> ext
426                              }
427                          }
428                          newTable[lastIdx] = lastRun;
429 <
366 <                        // Clone all remaining nodes
429 >                        // Clone remaining nodes
430                          for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
431 <                            int k = p.hash & sizeMask;
432 <                            newTable[k] = new HashEntry<K,V>(p.hash,
433 <                                                             p.key,
434 <                                                             p.value,
435 <                                                             (HashEntry<K,V>) newTable[k]);
431 >                            V v = p.value;
432 >                            int h = p.hash;
433 >                            int k = h & sizeMask;
434 >                            HashEntry<K,V> n = newTable[k];
435 >                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
436                          }
437                      }
438                  }
439              }
440 <            return newTable;
440 >            int nodeIndex = node.hash & sizeMask; // add the new node
441 >            node.setNext(newTable[nodeIndex]);
442 >            newTable[nodeIndex] = node;
443 >            table = newTable;
444 >        }
445 >
446 >        /**
447 >         * Scans for a node containing given key while trying to
448 >         * acquire lock, creating and returning one if not found. Upon
449 >         * return, guarantees that lock is held. Unlike in most
450 >         * methods, calls to method equals are not screened: Since
451 >         * traversal speed doesn't matter, we might as well help warm
452 >         * up the associated code and accesses as well.
453 >         *
454 >         * @return a new node if key not found, else null
455 >         */
456 >        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
457 >            HashEntry<K,V> first = entryForHash(this, hash);
458 >            HashEntry<K,V> e = first;
459 >            HashEntry<K,V> node = null;
460 >            int retries = -1; // negative while locating node
461 >            while (!tryLock()) {
462 >                HashEntry<K,V> f; // to recheck first below
463 >                if (retries < 0) {
464 >                    if (e == null) {
465 >                        if (node == null) // speculatively create node
466 >                            node = new HashEntry<K,V>(hash, key, value, null);
467 >                        retries = 0;
468 >                    }
469 >                    else if (key.equals(e.key))
470 >                        retries = 0;
471 >                    else
472 >                        e = e.next;
473 >                }
474 >                else if (++retries > MAX_SCAN_RETRIES) {
475 >                    lock();
476 >                    break;
477 >                }
478 >                else if ((retries & 1) == 0 &&
479 >                         (f = entryForHash(this, hash)) != first) {
480 >                    e = first = f; // re-traverse if entry changed
481 >                    retries = -1;
482 >                }
483 >            }
484 >            return node;
485 >        }
486 >
487 >        /**
488 >         * Scans for a node containing the given key while trying to
489 >         * acquire lock for a remove or replace operation. Upon
490 >         * return, guarantees that lock is held.  Note that we must
491 >         * lock even if the key is not found, to ensure sequential
492 >         * consistency of updates.
493 >         */
494 >        private void scanAndLock(Object key, int hash) {
495 >            // similar to but simpler than scanAndLockForPut
496 >            HashEntry<K,V> first = entryForHash(this, hash);
497 >            HashEntry<K,V> e = first;
498 >            int retries = -1;
499 >            while (!tryLock()) {
500 >                HashEntry<K,V> f;
501 >                if (retries < 0) {
502 >                    if (e == null || key.equals(e.key))
503 >                        retries = 0;
504 >                    else
505 >                        e = e.next;
506 >                }
507 >                else if (++retries > MAX_SCAN_RETRIES) {
508 >                    lock();
509 >                    break;
510 >                }
511 >                else if ((retries & 1) == 0 &&
512 >                         (f = entryForHash(this, hash)) != first) {
513 >                    e = first = f;
514 >                    retries = -1;
515 >                }
516 >            }
517          }
518  
519          /**
520           * Remove; match on key only if value null, else match both.
521           */
522 <        V remove(Object key, int hash, Object value) {
523 <            lock();
522 >        final V remove(Object key, int hash, Object value) {
523 >            if (!tryLock())
524 >                scanAndLock(key, hash);
525 >            V oldValue = null;
526              try {
527 <                int c = count;
528 <                HashEntry[] tab = table;
529 <                int index = hash & (tab.length - 1);
530 <                HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
531 <
532 <                HashEntry<K,V> e = first;
533 <                for (;;) {
534 <                    if (e == null)
535 <                        return null;
536 <                    if (e.hash == hash && key.equals(e.key))
527 >                HashEntry<K,V>[] tab = table;
528 >                int index = (tab.length - 1) & hash;
529 >                HashEntry<K,V> e = entryAt(tab, index);
530 >                HashEntry<K,V> pred = null;
531 >                while (e != null) {
532 >                    K k;
533 >                    HashEntry<K,V> next = e.next;
534 >                    if ((k = e.key) == key ||
535 >                        (e.hash == hash && key.equals(k))) {
536 >                        V v = e.value;
537 >                        if (value == null || value == v || value.equals(v)) {
538 >                            if (pred == null)
539 >                                setEntryAt(tab, index, next);
540 >                            else
541 >                                pred.setNext(next);
542 >                            ++modCount;
543 >                            --count;
544 >                            oldValue = v;
545 >                        }
546                          break;
547 <                    e = e.next;
547 >                    }
548 >                    pred = e;
549 >                    e = next;
550                  }
551 +            } finally {
552 +                unlock();
553 +            }
554 +            return oldValue;
555 +        }
556  
557 <                V oldValue = e.value;
558 <                if (value != null && !value.equals(oldValue))
559 <                    return null;
560 <
561 <                // All entries following removed node can stay in list, but
562 <                // all preceeding ones need to be cloned.
563 <                HashEntry<K,V> newFirst = e.next;
564 <                for (HashEntry<K,V> p = first; p != e; p = p.next)
565 <                    newFirst = new HashEntry<K,V>(p.hash, p.key,
566 <                                                  p.value, newFirst);
567 <                tab[index] = newFirst;
568 <                ++modCount;
569 <                count = c-1; // write-volatile
570 <                return oldValue;
557 >        final boolean replace(K key, int hash, V oldValue, V newValue) {
558 >            if (!tryLock())
559 >                scanAndLock(key, hash);
560 >            boolean replaced = false;
561 >            try {
562 >                HashEntry<K,V> e;
563 >                for (e = entryForHash(this, hash); e != null; e = e.next) {
564 >                    K k;
565 >                    if ((k = e.key) == key ||
566 >                        (e.hash == hash && key.equals(k))) {
567 >                        if (oldValue.equals(e.value)) {
568 >                            e.value = newValue;
569 >                            ++modCount;
570 >                            replaced = true;
571 >                        }
572 >                        break;
573 >                    }
574 >                }
575 >            } finally {
576 >                unlock();
577 >            }
578 >            return replaced;
579 >        }
580 >
581 >        final V replace(K key, int hash, V value) {
582 >            if (!tryLock())
583 >                scanAndLock(key, hash);
584 >            V oldValue = null;
585 >            try {
586 >                HashEntry<K,V> e;
587 >                for (e = entryForHash(this, hash); e != null; e = e.next) {
588 >                    K k;
589 >                    if ((k = e.key) == key ||
590 >                        (e.hash == hash && key.equals(k))) {
591 >                        oldValue = e.value;
592 >                        e.value = value;
593 >                        ++modCount;
594 >                        break;
595 >                    }
596 >                }
597              } finally {
598                  unlock();
599              }
600 +            return oldValue;
601          }
602  
603 <        void clear() {
603 >        final void clear() {
604              lock();
605              try {
606 <                HashEntry[] tab = table;
606 >                HashEntry<K,V>[] tab = table;
607                  for (int i = 0; i < tab.length ; i++)
608 <                    tab[i] = null;
608 >                    setEntryAt(tab, i, null);
609                  ++modCount;
610 <                count = 0; // write-volatile
610 >                count = 0;
611              } finally {
612                  unlock();
613              }
614          }
615      }
616  
617 +    // Accessing segments
618 +
619      /**
620 <     * ConcurrentHashMap list entry.
620 >     * Gets the jth element of given segment array (if nonnull) with
621 >     * volatile element access semantics via Unsafe. (The null check
622 >     * can trigger harmlessly only during deserialization.) Note:
623 >     * because each element of segments array is set only once (using
624 >     * fully ordered writes), some performance-sensitive methods rely
625 >     * on this method only as a recheck upon null reads.
626       */
627 <    private static class HashEntry<K,V> implements Entry<K,V> {
628 <        private final K key;
629 <        private V value;
630 <        private final int hash;
631 <        private final HashEntry<K,V> next;
632 <
442 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
443 <            this.value = value;
444 <            this.hash = hash;
445 <            this.key = key;
446 <            this.next = next;
447 <        }
448 <
449 <        public K getKey() {
450 <            return key;
451 <        }
452 <
453 <        public V getValue() {
454 <            return value;
455 <        }
456 <
457 <        public V setValue(V newValue) {
458 <            // We aren't required to, and don't provide any
459 <            // visibility barriers for setting value.
460 <            if (newValue == null)
461 <                throw new NullPointerException();
462 <            V oldValue = this.value;
463 <            this.value = newValue;
464 <            return oldValue;
465 <        }
627 >    @SuppressWarnings("unchecked")
628 >    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
629 >        long u = (j << SSHIFT) + SBASE;
630 >        return ss == null ? null :
631 >            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
632 >    }
633  
634 <        public boolean equals(Object o) {
635 <            if (!(o instanceof Entry))
636 <                return false;
637 <            Entry<K,V> e = (Entry<K,V>)o;
638 <            return (key.equals(e.getKey()) && value.equals(e.getValue()));
634 >    /**
635 >     * Returns the segment for the given index, creating it and
636 >     * recording in segment table (via CAS) if not already present.
637 >     *
638 >     * @param k the index
639 >     * @return the segment
640 >     */
641 >    @SuppressWarnings("unchecked")
642 >    private Segment<K,V> ensureSegment(int k) {
643 >        final Segment<K,V>[] ss = this.segments;
644 >        long u = (k << SSHIFT) + SBASE; // raw offset
645 >        Segment<K,V> seg;
646 >        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
647 >            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
648 >            int cap = proto.table.length;
649 >            float lf = proto.loadFactor;
650 >            int threshold = (int)(cap * lf);
651 >            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
652 >            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
653 >                == null) { // recheck
654 >                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
655 >                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
656 >                       == null) {
657 >                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
658 >                        break;
659 >                }
660 >            }
661          }
662 +        return seg;
663 +    }
664  
665 <        public int hashCode() {
475 <            return  key.hashCode() ^ value.hashCode();
476 <        }
665 >    // Hash-based segment and entry accesses
666  
667 <        public String toString() {
668 <            return key + "=" + value;
669 <        }
667 >    /**
668 >     * Gets the segment for the given hash code.
669 >     */
670 >    @SuppressWarnings("unchecked")
671 >    private Segment<K,V> segmentForHash(int h) {
672 >        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
673 >        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
674      }
675  
676 +    /**
677 +     * Gets the table entry for the given segment and hash code.
678 +     */
679 +    @SuppressWarnings("unchecked")
680 +    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
681 +        HashEntry<K,V>[] tab;
682 +        return (seg == null || (tab = seg.table) == null) ? null :
683 +            (HashEntry<K,V>) UNSAFE.getObjectVolatile
684 +            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
685 +    }
686  
687      /* ---------------- Public operations -------------- */
688  
689      /**
690 <     * Constructs a new, empty map with the specified initial
691 <     * capacity and the specified load factor.
690 >     * Creates a new, empty map with the specified initial
691 >     * capacity, load factor and concurrency level.
692       *
693       * @param initialCapacity the initial capacity. The implementation
694       * performs internal sizing to accommodate this many elements.
695       * @param loadFactor  the load factor threshold, used to control resizing.
696 +     * Resizing may be performed when the average number of elements per
697 +     * bin exceeds this threshold.
698       * @param concurrencyLevel the estimated number of concurrently
699       * updating threads. The implementation performs internal sizing
700 <     * to try to accommodate this many threads.  
700 >     * to try to accommodate this many threads.
701       * @throws IllegalArgumentException if the initial capacity is
702       * negative or the load factor or concurrencyLevel are
703       * nonpositive.
704       */
705 +    @SuppressWarnings("unchecked")
706      public ConcurrentHashMap(int initialCapacity,
707                               float loadFactor, int concurrencyLevel) {
708          if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
709              throw new IllegalArgumentException();
504
710          if (concurrencyLevel > MAX_SEGMENTS)
711              concurrencyLevel = MAX_SEGMENTS;
507
712          // Find power-of-two sizes best matching arguments
713          int sshift = 0;
714          int ssize = 1;
# Line 512 | Line 716 | public class ConcurrentHashMap<K, V> ext
716              ++sshift;
717              ssize <<= 1;
718          }
719 <        segmentShift = 32 - sshift;
720 <        segmentMask = ssize - 1;
517 <        this.segments = new Segment[ssize];
518 <
719 >        this.segmentShift = 32 - sshift;
720 >        this.segmentMask = ssize - 1;
721          if (initialCapacity > MAXIMUM_CAPACITY)
722              initialCapacity = MAXIMUM_CAPACITY;
723          int c = initialCapacity / ssize;
724          if (c * ssize < initialCapacity)
725              ++c;
726 <        int cap = 1;
726 >        int cap = MIN_SEGMENT_TABLE_CAPACITY;
727          while (cap < c)
728              cap <<= 1;
729 <
730 <        for (int i = 0; i < this.segments.length; ++i)
731 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
729 >        // create segments and segments[0]
730 >        Segment<K,V> s0 =
731 >            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
732 >                             (HashEntry<K,V>[])new HashEntry[cap]);
733 >        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
734 >        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
735 >        this.segments = ss;
736      }
737  
738      /**
739 <     * Constructs a new, empty map with the specified initial
740 <     * capacity,  and with default load factor and concurrencyLevel.
739 >     * Creates a new, empty map with the specified initial capacity
740 >     * and load factor and with the default concurrencyLevel (16).
741       *
742       * @param initialCapacity The implementation performs internal
743       * sizing to accommodate this many elements.
744 +     * @param loadFactor  the load factor threshold, used to control resizing.
745 +     * Resizing may be performed when the average number of elements per
746 +     * bin exceeds this threshold.
747 +     * @throws IllegalArgumentException if the initial capacity of
748 +     * elements is negative or the load factor is nonpositive
749 +     *
750 +     * @since 1.6
751 +     */
752 +    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
753 +        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
754 +    }
755 +
756 +    /**
757 +     * Creates a new, empty map with the specified initial capacity,
758 +     * and with default load factor (0.75) and concurrencyLevel (16).
759 +     *
760 +     * @param initialCapacity the initial capacity. The implementation
761 +     * performs internal sizing to accommodate this many elements.
762       * @throws IllegalArgumentException if the initial capacity of
763       * elements is negative.
764       */
765      public ConcurrentHashMap(int initialCapacity) {
766 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
766 >        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
767      }
768  
769      /**
770 <     * Constructs a new, empty map with a default initial capacity,
771 <     * load factor, and concurrencyLevel.
770 >     * Creates a new, empty map with a default initial capacity (16),
771 >     * load factor (0.75) and concurrencyLevel (16).
772       */
773      public ConcurrentHashMap() {
774 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
774 >        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
775      }
776  
777      /**
778 <     * Constructs a new map with the same mappings as the given map.  The
779 <     * map is created with a capacity of twice the number of mappings in
780 <     * the given map or 11 (whichever is greater), and a default load factor.
778 >     * Creates a new map with the same mappings as the given map.
779 >     * The map is created with a capacity of 1.5 times the number
780 >     * of mappings in the given map or 16 (whichever is greater),
781 >     * and a default load factor (0.75) and concurrencyLevel (16).
782 >     *
783 >     * @param m the map
784       */
785 <    public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
786 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
787 <                      11),
788 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
789 <        putAll(t);
785 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
786 >        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
787 >                      DEFAULT_INITIAL_CAPACITY),
788 >             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
789 >        putAll(m);
790      }
791  
792 <    // inherit Map javadoc
792 >    /**
793 >     * Returns <tt>true</tt> if this map contains no key-value mappings.
794 >     *
795 >     * @return <tt>true</tt> if this map contains no key-value mappings
796 >     */
797      public boolean isEmpty() {
798          /*
799 <         * We need to keep track of per-segment modCounts to avoid ABA
800 <         * problems in which an element in one segment was added and
801 <         * in another removed during traversal, in which case the
802 <         * table was never actually empty at any point. Note the
803 <         * similar use of modCounts in the size() and containsValue()
804 <         * methods, which are the only other methods also susceptible
805 <         * to ABA problems.
799 >         * Sum per-segment modCounts to avoid mis-reporting when
800 >         * elements are concurrently added and removed in one segment
801 >         * while checking another, in which case the table was never
802 >         * actually empty at any point. (The sum ensures accuracy up
803 >         * through at least 1<<31 per-segment modifications before
804 >         * recheck.)  Methods size() and containsValue() use similar
805 >         * constructions for stability checks.
806           */
807 <        int[] mc = new int[segments.length];
808 <        int mcsum = 0;
809 <        for (int i = 0; i < segments.length; ++i) {
810 <            if (segments[i].count != 0)
811 <                return false;
812 <            else
582 <                mcsum += mc[i] = segments[i].modCount;
583 <        }
584 <        // If mcsum happens to be zero, then we know we got a snapshot
585 <        // before any modifications at all were made.  This is
586 <        // probably common enough to bother tracking.
587 <        if (mcsum != 0) {
588 <            for (int i = 0; i < segments.length; ++i) {
589 <                if (segments[i].count != 0 ||
590 <                    mc[i] != segments[i].modCount)
807 >        long sum = 0L;
808 >        final Segment<K,V>[] segments = this.segments;
809 >        for (int j = 0; j < segments.length; ++j) {
810 >            Segment<K,V> seg = segmentAt(segments, j);
811 >            if (seg != null) {
812 >                if (seg.count != 0)
813                      return false;
814 +                sum += seg.modCount;
815              }
816          }
817 +        if (sum != 0L) { // recheck unless no modifications
818 +            for (int j = 0; j < segments.length; ++j) {
819 +                Segment<K,V> seg = segmentAt(segments, j);
820 +                if (seg != null) {
821 +                    if (seg.count != 0)
822 +                        return false;
823 +                    sum -= seg.modCount;
824 +                }
825 +            }
826 +            if (sum != 0L)
827 +                return false;
828 +        }
829          return true;
830      }
831  
832 <    // inherit Map javadoc
832 >    /**
833 >     * Returns the number of key-value mappings in this map.  If the
834 >     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
835 >     * <tt>Integer.MAX_VALUE</tt>.
836 >     *
837 >     * @return the number of key-value mappings in this map
838 >     */
839      public int size() {
840 <        int[] mc = new int[segments.length];
841 <        for (;;) {
842 <            long sum = 0;
843 <            int mcsum = 0;
844 <            for (int i = 0; i < segments.length; ++i) {
845 <                sum += segments[i].count;
846 <                mcsum += mc[i] = segments[i].modCount;
847 <            }
848 <            int check = 0;
849 <            if (mcsum != 0) {
850 <                for (int i = 0; i < segments.length; ++i) {
851 <                    check += segments[i].count;
852 <                    if (mc[i] != segments[i].modCount) {
853 <                        check = -1; // force retry
854 <                        break;
840 >        // Try a few times to get accurate count. On failure due to
841 >        // continuous async changes in table, resort to locking.
842 >        final Segment<K,V>[] segments = this.segments;
843 >        int size;
844 >        boolean overflow; // true if size overflows 32 bits
845 >        long sum;         // sum of modCounts
846 >        long last = 0L;   // previous sum
847 >        int retries = -1; // first iteration isn't retry
848 >        try {
849 >            for (;;) {
850 >                if (retries++ == RETRIES_BEFORE_LOCK) {
851 >                    for (int j = 0; j < segments.length; ++j)
852 >                        ensureSegment(j).lock(); // force creation
853 >                }
854 >                sum = 0L;
855 >                size = 0;
856 >                overflow = false;
857 >                for (int j = 0; j < segments.length; ++j) {
858 >                    Segment<K,V> seg = segmentAt(segments, j);
859 >                    if (seg != null) {
860 >                        sum += seg.modCount;
861 >                        int c = seg.count;
862 >                        if (c < 0 || (size += c) < 0)
863 >                            overflow = true;
864                      }
865                  }
866 +                if (sum == last)
867 +                    break;
868 +                last = sum;
869              }
870 <            if (check == sum) {
871 <                if (sum > Integer.MAX_VALUE)
872 <                    return Integer.MAX_VALUE;
873 <                else
621 <                    return (int)sum;
870 >        } finally {
871 >            if (retries > RETRIES_BEFORE_LOCK) {
872 >                for (int j = 0; j < segments.length; ++j)
873 >                    segmentAt(segments, j).unlock();
874              }
875          }
876 +        return overflow ? Integer.MAX_VALUE : size;
877      }
878  
626
879      /**
880 <     * Returns the value to which the specified key is mapped in this table.
880 >     * Returns the value to which the specified key is mapped,
881 >     * or {@code null} if this map contains no mapping for the key.
882 >     *
883 >     * <p>More formally, if this map contains a mapping from a key
884 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
885 >     * then this method returns {@code v}; otherwise it returns
886 >     * {@code null}.  (There can be at most one such mapping.)
887       *
888 <     * @param   key   a key in the table.
631 <     * @return  the value to which the key is mapped in this table;
632 <     *          <tt>null</tt> if the key is not mapped to any value in
633 <     *          this table.
634 <     * @throws  NullPointerException  if the key is
635 <     *               <tt>null</tt>.
888 >     * @throws NullPointerException if the specified key is null
889       */
890      public V get(Object key) {
891 <        int hash = hash(key); // throws NullPointerException if key null
892 <        return segmentFor(hash).get((K) key, hash);
891 >        Segment<K,V> s; // manually integrate access methods to reduce overhead
892 >        HashEntry<K,V>[] tab;
893 >        int h = hash(key.hashCode());
894 >        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
895 >        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
896 >            (tab = s.table) != null) {
897 >            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
898 >                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
899 >                 e != null; e = e.next) {
900 >                K k;
901 >                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
902 >                    return e.value;
903 >            }
904 >        }
905 >        return null;
906      }
907  
908      /**
909       * Tests if the specified object is a key in this table.
910       *
911 <     * @param   key   possible key.
912 <     * @return  <tt>true</tt> if and only if the specified object
913 <     *          is a key in this table, as determined by the
914 <     *          <tt>equals</tt> method; <tt>false</tt> otherwise.
915 <     * @throws  NullPointerException  if the key is
650 <     *               <tt>null</tt>.
911 >     * @param  key   possible key
912 >     * @return <tt>true</tt> if and only if the specified object
913 >     *         is a key in this table, as determined by the
914 >     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
915 >     * @throws NullPointerException if the specified key is null
916       */
917 +    @SuppressWarnings("unchecked")
918      public boolean containsKey(Object key) {
919 <        int hash = hash(key); // throws NullPointerException if key null
920 <        return segmentFor(hash).containsKey(key, hash);
919 >        Segment<K,V> s; // same as get() except no need for volatile value read
920 >        HashEntry<K,V>[] tab;
921 >        int h = hash(key.hashCode());
922 >        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
923 >        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
924 >            (tab = s.table) != null) {
925 >            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
926 >                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
927 >                 e != null; e = e.next) {
928 >                K k;
929 >                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
930 >                    return true;
931 >            }
932 >        }
933 >        return false;
934      }
935  
936      /**
# Line 660 | Line 939 | public class ConcurrentHashMap<K, V> ext
939       * traversal of the hash table, and so is much slower than
940       * method <tt>containsKey</tt>.
941       *
942 <     * @param value value whose presence in this map is to be tested.
942 >     * @param value value whose presence in this map is to be tested
943       * @return <tt>true</tt> if this map maps one or more keys to the
944 <     * specified value.
945 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
944 >     *         specified value
945 >     * @throws NullPointerException if the specified value is null
946       */
947      public boolean containsValue(Object value) {
948 +        // Same idea as size()
949          if (value == null)
950              throw new NullPointerException();
951 <
952 <        int[] mc = new int[segments.length];
953 <        for (;;) {
954 <            int sum = 0;
955 <            int mcsum = 0;
956 <            for (int i = 0; i < segments.length; ++i) {
957 <                int c = segments[i].count;
958 <                mcsum += mc[i] = segments[i].modCount;
959 <                if (segments[i].containsValue(value))
960 <                    return true;
961 <            }
962 <            boolean cleanSweep = true;
963 <            if (mcsum != 0) {
964 <                for (int i = 0; i < segments.length; ++i) {
965 <                    int c = segments[i].count;
966 <                    if (mc[i] != segments[i].modCount) {
967 <                        cleanSweep = false;
968 <                        break;
951 >        final Segment<K,V>[] segments = this.segments;
952 >        boolean found = false;
953 >        long last = 0L;   // previous sum
954 >        int retries = -1;
955 >        try {
956 >            outer: for (;;) {
957 >                if (retries++ == RETRIES_BEFORE_LOCK) {
958 >                    for (int j = 0; j < segments.length; ++j)
959 >                        ensureSegment(j).lock(); // force creation
960 >                }
961 >                long sum = 0L;
962 >                for (int j = 0; j < segments.length; ++j) {
963 >                    HashEntry<K,V>[] tab;
964 >                    Segment<K,V> seg = segmentAt(segments, j);
965 >                    if (seg != null && (tab = seg.table) != null) {
966 >                        for (int i = 0 ; i < tab.length; i++) {
967 >                            HashEntry<K,V> e;
968 >                            for (e = entryAt(tab, i); e != null; e = e.next) {
969 >                                V v = e.value;
970 >                                if (v != null && value.equals(v)) {
971 >                                    found = true;
972 >                                    break outer;
973 >                                }
974 >                            }
975 >                        }
976 >                        sum += seg.modCount;
977                      }
978                  }
979 +                if (retries > 0 && sum == last)
980 +                    break;
981 +                last = sum;
982 +            }
983 +        } finally {
984 +            if (retries > RETRIES_BEFORE_LOCK) {
985 +                for (int j = 0; j < segments.length; ++j)
986 +                    segmentAt(segments, j).unlock();
987              }
692            if (cleanSweep)
693                return false;
988          }
989 +        return found;
990      }
991  
992      /**
993       * Legacy method testing if some key maps into the specified value
994       * in this table.  This method is identical in functionality to
995 <     * {@link #containsValue}, and  exists solely to ensure
995 >     * {@link #containsValue}, and exists solely to ensure
996       * full compatibility with class {@link java.util.Hashtable},
997       * which supported this method prior to introduction of the
998       * Java Collections framework.
999 <
1000 <     * @param      value   a value to search for.
1001 <     * @return     <tt>true</tt> if and only if some key maps to the
1002 <     *             <tt>value</tt> argument in this table as
1003 <     *             determined by the <tt>equals</tt> method;
1004 <     *             <tt>false</tt> otherwise.
1005 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
999 >     *
1000 >     * @param  value a value to search for
1001 >     * @return <tt>true</tt> if and only if some key maps to the
1002 >     *         <tt>value</tt> argument in this table as
1003 >     *         determined by the <tt>equals</tt> method;
1004 >     *         <tt>false</tt> otherwise
1005 >     * @throws NullPointerException if the specified value is null
1006       */
1007      public boolean contains(Object value) {
1008          return containsValue(value);
1009      }
1010  
1011      /**
1012 <     * Maps the specified <tt>key</tt> to the specified
1013 <     * <tt>value</tt> in this table. Neither the key nor the
719 <     * value can be <tt>null</tt>. <p>
1012 >     * Maps the specified key to the specified value in this table.
1013 >     * Neither the key nor the value can be null.
1014       *
1015 <     * The value can be retrieved by calling the <tt>get</tt> method
1015 >     * <p> The value can be retrieved by calling the <tt>get</tt> method
1016       * with a key that is equal to the original key.
1017       *
1018 <     * @param      key     the table key.
1019 <     * @param      value   the value.
1020 <     * @return     the previous value of the specified key in this table,
1021 <     *             or <tt>null</tt> if it did not have one.
1022 <     * @throws  NullPointerException  if the key or value is
729 <     *               <tt>null</tt>.
1018 >     * @param key key with which the specified value is to be associated
1019 >     * @param value value to be associated with the specified key
1020 >     * @return the previous value associated with <tt>key</tt>, or
1021 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1022 >     * @throws NullPointerException if the specified key or value is null
1023       */
1024 +    @SuppressWarnings("unchecked")
1025      public V put(K key, V value) {
1026 +        Segment<K,V> s;
1027          if (value == null)
1028              throw new NullPointerException();
1029 <        int hash = hash(key);
1030 <        return segmentFor(hash).put(key, hash, value, false);
1029 >        int hash = hash(key.hashCode());
1030 >        int j = (hash >>> segmentShift) & segmentMask;
1031 >        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1032 >             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1033 >            s = ensureSegment(j);
1034 >        return s.put(key, hash, value, false);
1035      }
1036  
1037      /**
1038 <     * If the specified key is not already associated
740 <     * with a value, associate it with the given value.
741 <     * This is equivalent to
742 <     * <pre>
743 <     *   if (!map.containsKey(key))
744 <     *      return map.put(key, value);
745 <     *   else
746 <     *      return map.get(key);
747 <     * </pre>
748 <     * Except that the action is performed atomically.
749 <     * @param key key with which the specified value is to be associated.
750 <     * @param value value to be associated with the specified key.
751 <     * @return previous value associated with specified key, or <tt>null</tt>
752 <     *         if there was no mapping for key.  A <tt>null</tt> return can
753 <     *         also indicate that the map previously associated <tt>null</tt>
754 <     *         with the specified key, if the implementation supports
755 <     *         <tt>null</tt> values.
756 <     *
757 <     * @throws UnsupportedOperationException if the <tt>put</tt> operation is
758 <     *            not supported by this map.
759 <     * @throws ClassCastException if the class of the specified key or value
760 <     *            prevents it from being stored in this map.
761 <     * @throws NullPointerException if the specified key or value is
762 <     *            <tt>null</tt>.
1038 >     * {@inheritDoc}
1039       *
1040 <     **/
1040 >     * @return the previous value associated with the specified key,
1041 >     *         or <tt>null</tt> if there was no mapping for the key
1042 >     * @throws NullPointerException if the specified key or value is null
1043 >     */
1044 >    @SuppressWarnings("unchecked")
1045      public V putIfAbsent(K key, V value) {
1046 +        Segment<K,V> s;
1047          if (value == null)
1048              throw new NullPointerException();
1049 <        int hash = hash(key);
1050 <        return segmentFor(hash).put(key, hash, value, true);
1049 >        int hash = hash(key.hashCode());
1050 >        int j = (hash >>> segmentShift) & segmentMask;
1051 >        if ((s = (Segment<K,V>)UNSAFE.getObject
1052 >             (segments, (j << SSHIFT) + SBASE)) == null)
1053 >            s = ensureSegment(j);
1054 >        return s.put(key, hash, value, true);
1055      }
1056  
772
1057      /**
1058       * Copies all of the mappings from the specified map to this one.
775     *
1059       * These mappings replace any mappings that this map had for any of the
1060 <     * keys currently in the specified Map.
1060 >     * keys currently in the specified map.
1061       *
1062 <     * @param t Mappings to be stored in this map.
1062 >     * @param m mappings to be stored in this map
1063       */
1064 <    public void putAll(Map<? extends K, ? extends V> t) {
1065 <        for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
783 <            Entry<? extends K, ? extends V> e = it.next();
1064 >    public void putAll(Map<? extends K, ? extends V> m) {
1065 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1066              put(e.getKey(), e.getValue());
785        }
1067      }
1068  
1069      /**
1070 <     * Removes the key (and its corresponding value) from this
1071 <     * table. This method does nothing if the key is not in the table.
1070 >     * Removes the key (and its corresponding value) from this map.
1071 >     * This method does nothing if the key is not in the map.
1072       *
1073 <     * @param   key   the key that needs to be removed.
1074 <     * @return  the value to which the key had been mapped in this table,
1075 <     *          or <tt>null</tt> if the key did not have a mapping.
1076 <     * @throws  NullPointerException  if the key is
796 <     *               <tt>null</tt>.
1073 >     * @param  key the key that needs to be removed
1074 >     * @return the previous value associated with <tt>key</tt>, or
1075 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1076 >     * @throws NullPointerException if the specified key is null
1077       */
1078      public V remove(Object key) {
1079 <        int hash = hash(key);
1080 <        return segmentFor(hash).remove(key, hash, null);
1079 >        int hash = hash(key.hashCode());
1080 >        Segment<K,V> s = segmentForHash(hash);
1081 >        return s == null ? null : s.remove(key, hash, null);
1082      }
1083  
1084      /**
1085 <     * Remove entry for key only if currently mapped to given value.
1086 <     * Acts as
1087 <     * <pre>
807 <     *  if (map.get(key).equals(value)) {
808 <     *     map.remove(key);
809 <     *     return true;
810 <     * } else return false;
811 <     * </pre>
812 <     * except that the action is performed atomically.
813 <     * @param key key with which the specified value is associated.
814 <     * @param value value associated with the specified key.
815 <     * @return true if the value was removed
816 <     * @throws NullPointerException if the specified key is
817 <     *            <tt>null</tt>.
1085 >     * {@inheritDoc}
1086 >     *
1087 >     * @throws NullPointerException if the specified key is null
1088       */
1089      public boolean remove(Object key, Object value) {
1090 <        int hash = hash(key);
1091 <        return segmentFor(hash).remove(key, hash, value) != null;
1090 >        int hash = hash(key.hashCode());
1091 >        Segment<K,V> s;
1092 >        return value != null && (s = segmentForHash(hash)) != null &&
1093 >            s.remove(key, hash, value) != null;
1094      }
1095  
1096      /**
1097 <     * Removes all mappings from this map.
1097 >     * {@inheritDoc}
1098 >     *
1099 >     * @throws NullPointerException if any of the arguments are null
1100       */
1101 <    public void clear() {
1102 <        for (int i = 0; i < segments.length; ++i)
1103 <            segments[i].clear();
1101 >    public boolean replace(K key, V oldValue, V newValue) {
1102 >        int hash = hash(key.hashCode());
1103 >        if (oldValue == null || newValue == null)
1104 >            throw new NullPointerException();
1105 >        Segment<K,V> s = segmentForHash(hash);
1106 >        return s != null && s.replace(key, hash, oldValue, newValue);
1107      }
1108  
832
1109      /**
1110 <     * Returns a shallow copy of this
835 <     * <tt>ConcurrentHashMap</tt> instance: the keys and
836 <     * values themselves are not cloned.
1110 >     * {@inheritDoc}
1111       *
1112 <     * @return a shallow copy of this map.
1112 >     * @return the previous value associated with the specified key,
1113 >     *         or <tt>null</tt> if there was no mapping for the key
1114 >     * @throws NullPointerException if the specified key or value is null
1115       */
1116 <    public Object clone() {
1117 <        // We cannot call super.clone, since it would share final
1118 <        // segments array, and there's no way to reassign finals.
1116 >    public V replace(K key, V value) {
1117 >        int hash = hash(key.hashCode());
1118 >        if (value == null)
1119 >            throw new NullPointerException();
1120 >        Segment<K,V> s = segmentForHash(hash);
1121 >        return s == null ? null : s.replace(key, hash, value);
1122 >    }
1123  
1124 <        float lf = segments[0].loadFactor;
1125 <        int segs = segments.length;
1126 <        int cap = (int)(size() / lf);
1127 <        if (cap < segs) cap = segs;
1128 <        ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
1129 <        t.putAll(this);
1130 <        return t;
1124 >    /**
1125 >     * Removes all of the mappings from this map.
1126 >     */
1127 >    public void clear() {
1128 >        final Segment<K,V>[] segments = this.segments;
1129 >        for (int j = 0; j < segments.length; ++j) {
1130 >            Segment<K,V> s = segmentAt(segments, j);
1131 >            if (s != null)
1132 >                s.clear();
1133 >        }
1134      }
1135  
1136      /**
1137 <     * Returns a set view of the keys contained in this map.  The set is
1138 <     * backed by the map, so changes to the map are reflected in the set, and
1139 <     * vice-versa.  The set supports element removal, which removes the
1140 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
1141 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
1142 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
1137 >     * Returns a {@link Set} view of the keys contained in this map.
1138 >     * The set is backed by the map, so changes to the map are
1139 >     * reflected in the set, and vice-versa.  The set supports element
1140 >     * removal, which removes the corresponding mapping from this map,
1141 >     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1142 >     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1143 >     * operations.  It does not support the <tt>add</tt> or
1144       * <tt>addAll</tt> operations.
1145 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
1146 <     * will never throw {@link java.util.ConcurrentModificationException},
1145 >     *
1146 >     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1147 >     * that will never throw {@link ConcurrentModificationException},
1148       * and guarantees to traverse elements as they existed upon
1149       * construction of the iterator, and may (but is not guaranteed to)
1150       * reflect any modifications subsequent to construction.
866     *
867     * @return a set view of the keys contained in this map.
1151       */
1152      public Set<K> keySet() {
1153          Set<K> ks = keySet;
1154          return (ks != null) ? ks : (keySet = new KeySet());
1155      }
1156  
874
1157      /**
1158 <     * Returns a collection view of the values contained in this map.  The
1159 <     * collection is backed by the map, so changes to the map are reflected in
1160 <     * the collection, and vice-versa.  The collection supports element
1161 <     * removal, which removes the corresponding mapping from this map, via the
1162 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1163 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1164 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1165 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
1166 <     * will never throw {@link java.util.ConcurrentModificationException},
1158 >     * Returns a {@link Collection} view of the values contained in this map.
1159 >     * The collection is backed by the map, so changes to the map are
1160 >     * reflected in the collection, and vice-versa.  The collection
1161 >     * supports element removal, which removes the corresponding
1162 >     * mapping from this map, via the <tt>Iterator.remove</tt>,
1163 >     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1164 >     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1165 >     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1166 >     *
1167 >     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1168 >     * that will never throw {@link ConcurrentModificationException},
1169       * and guarantees to traverse elements as they existed upon
1170       * construction of the iterator, and may (but is not guaranteed to)
1171       * reflect any modifications subsequent to construction.
888     *
889     * @return a collection view of the values contained in this map.
1172       */
1173      public Collection<V> values() {
1174          Collection<V> vs = values;
1175          return (vs != null) ? vs : (values = new Values());
1176      }
1177  
896
1178      /**
1179 <     * Returns a collection view of the mappings contained in this map.  Each
1180 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
1181 <     * collection is backed by the map, so changes to the map are reflected in
1182 <     * the collection, and vice-versa.  The collection supports element
1183 <     * removal, which removes the corresponding mapping from the map, via the
1184 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1185 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1186 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1187 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
1188 <     * will never throw {@link java.util.ConcurrentModificationException},
1179 >     * Returns a {@link Set} view of the mappings contained in this map.
1180 >     * The set is backed by the map, so changes to the map are
1181 >     * reflected in the set, and vice-versa.  The set supports element
1182 >     * removal, which removes the corresponding mapping from the map,
1183 >     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1184 >     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1185 >     * operations.  It does not support the <tt>add</tt> or
1186 >     * <tt>addAll</tt> operations.
1187 >     *
1188 >     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1189 >     * that will never throw {@link ConcurrentModificationException},
1190       * and guarantees to traverse elements as they existed upon
1191       * construction of the iterator, and may (but is not guaranteed to)
1192       * reflect any modifications subsequent to construction.
911     *
912     * @return a collection view of the mappings contained in this map.
1193       */
1194      public Set<Map.Entry<K,V>> entrySet() {
1195          Set<Map.Entry<K,V>> es = entrySet;
1196 <        return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
1196 >        return (es != null) ? es : (entrySet = new EntrySet());
1197      }
1198  
919
1199      /**
1200       * Returns an enumeration of the keys in this table.
1201       *
1202 <     * @return  an enumeration of the keys in this table.
1203 <     * @see     #keySet
1202 >     * @return an enumeration of the keys in this table
1203 >     * @see #keySet()
1204       */
1205      public Enumeration<K> keys() {
1206          return new KeyIterator();
# Line 929 | Line 1208 | public class ConcurrentHashMap<K, V> ext
1208  
1209      /**
1210       * Returns an enumeration of the values in this table.
932     * Use the Enumeration methods on the returned object to fetch the elements
933     * sequentially.
1211       *
1212 <     * @return  an enumeration of the values in this table.
1213 <     * @see     #values
1212 >     * @return an enumeration of the values in this table
1213 >     * @see #values()
1214       */
1215      public Enumeration<V> elements() {
1216          return new ValueIterator();
# Line 941 | Line 1218 | public class ConcurrentHashMap<K, V> ext
1218  
1219      /* ---------------- Iterator Support -------------- */
1220  
1221 <    private abstract class HashIterator {
1222 <        private int nextSegmentIndex;
1223 <        private int nextTableIndex;
1224 <        private HashEntry[] currentTable;
1225 <        private HashEntry<K, V> nextEntry;
1226 <        private HashEntry<K, V> lastReturned;
1221 >    abstract class HashIterator {
1222 >        int nextSegmentIndex;
1223 >        int nextTableIndex;
1224 >        HashEntry<K,V>[] currentTable;
1225 >        HashEntry<K, V> nextEntry;
1226 >        HashEntry<K, V> lastReturned;
1227  
1228 <        private HashIterator() {
1228 >        HashIterator() {
1229              nextSegmentIndex = segments.length - 1;
1230              nextTableIndex = -1;
1231              advance();
1232          }
1233  
1234 <        public boolean hasMoreElements() { return hasNext(); }
1235 <
1236 <        private void advance() {
1237 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1238 <                return;
1239 <
1240 <            while (nextTableIndex >= 0) {
1241 <                if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
1242 <                    return;
1243 <            }
1244 <
1245 <            while (nextSegmentIndex >= 0) {
1246 <                Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
1247 <                if (seg.count != 0) {
1248 <                    currentTable = seg.table;
972 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
973 <                        if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
974 <                            nextTableIndex = j - 1;
975 <                            return;
976 <                        }
977 <                    }
1234 >        /**
1235 >         * Sets nextEntry to first node of next non-empty table
1236 >         * (in backwards order, to simplify checks).
1237 >         */
1238 >        final void advance() {
1239 >            for (;;) {
1240 >                if (nextTableIndex >= 0) {
1241 >                    if ((nextEntry = entryAt(currentTable,
1242 >                                             nextTableIndex--)) != null)
1243 >                        break;
1244 >                }
1245 >                else if (nextSegmentIndex >= 0) {
1246 >                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
1247 >                    if (seg != null && (currentTable = seg.table) != null)
1248 >                        nextTableIndex = currentTable.length - 1;
1249                  }
1250 +                else
1251 +                    break;
1252              }
1253          }
1254  
1255 <        public boolean hasNext() { return nextEntry != null; }
1256 <
1257 <        HashEntry<K,V> nextEntry() {
985 <            if (nextEntry == null)
1255 >        final HashEntry<K,V> nextEntry() {
1256 >            HashEntry<K,V> e = nextEntry;
1257 >            if (e == null)
1258                  throw new NoSuchElementException();
1259 <            lastReturned = nextEntry;
1260 <            advance();
1261 <            return lastReturned;
1259 >            lastReturned = e; // cannot assign until after null check
1260 >            if ((nextEntry = e.next) == null)
1261 >                advance();
1262 >            return e;
1263          }
1264  
1265 <        public void remove() {
1265 >        public final boolean hasNext() { return nextEntry != null; }
1266 >        public final boolean hasMoreElements() { return nextEntry != null; }
1267 >
1268 >        public final void remove() {
1269              if (lastReturned == null)
1270                  throw new IllegalStateException();
1271              ConcurrentHashMap.this.remove(lastReturned.key);
# Line 997 | Line 1273 | public class ConcurrentHashMap<K, V> ext
1273          }
1274      }
1275  
1276 <    private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1277 <        public K next() { return super.nextEntry().key; }
1278 <        public K nextElement() { return super.nextEntry().key; }
1276 >    final class KeyIterator
1277 >        extends HashIterator
1278 >        implements Iterator<K>, Enumeration<K>
1279 >    {
1280 >        public final K next()        { return super.nextEntry().key; }
1281 >        public final K nextElement() { return super.nextEntry().key; }
1282 >    }
1283 >
1284 >    final class ValueIterator
1285 >        extends HashIterator
1286 >        implements Iterator<V>, Enumeration<V>
1287 >    {
1288 >        public final V next()        { return super.nextEntry().value; }
1289 >        public final V nextElement() { return super.nextEntry().value; }
1290      }
1291  
1292 <    private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1293 <        public V next() { return super.nextEntry().value; }
1294 <        public V nextElement() { return super.nextEntry().value; }
1292 >    /**
1293 >     * Custom Entry class used by EntryIterator.next(), that relays
1294 >     * setValue changes to the underlying map.
1295 >     */
1296 >    final class WriteThroughEntry
1297 >        extends AbstractMap.SimpleEntry<K,V>
1298 >    {
1299 >        WriteThroughEntry(K k, V v) {
1300 >            super(k,v);
1301 >        }
1302 >
1303 >        /**
1304 >         * Sets our entry's value and writes through to the map. The
1305 >         * value to return is somewhat arbitrary here. Since a
1306 >         * WriteThroughEntry does not necessarily track asynchronous
1307 >         * changes, the most recent "previous" value could be
1308 >         * different from what we return (or could even have been
1309 >         * removed in which case the put will re-establish). We do not
1310 >         * and cannot guarantee more.
1311 >         */
1312 >        public V setValue(V value) {
1313 >            if (value == null) throw new NullPointerException();
1314 >            V v = super.setValue(value);
1315 >            ConcurrentHashMap.this.put(getKey(), value);
1316 >            return v;
1317 >        }
1318      }
1319  
1320 <    private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
1321 <        public Map.Entry<K,V> next() { return super.nextEntry(); }
1320 >    final class EntryIterator
1321 >        extends HashIterator
1322 >        implements Iterator<Entry<K,V>>
1323 >    {
1324 >        public Map.Entry<K,V> next() {
1325 >            HashEntry<K,V> e = super.nextEntry();
1326 >            return new WriteThroughEntry(e.key, e.value);
1327 >        }
1328      }
1329  
1330 <    private class KeySet extends AbstractSet<K> {
1330 >    final class KeySet extends AbstractSet<K> {
1331          public Iterator<K> iterator() {
1332              return new KeyIterator();
1333          }
1334          public int size() {
1335              return ConcurrentHashMap.this.size();
1336          }
1337 +        public boolean isEmpty() {
1338 +            return ConcurrentHashMap.this.isEmpty();
1339 +        }
1340          public boolean contains(Object o) {
1341              return ConcurrentHashMap.this.containsKey(o);
1342          }
# Line 1029 | Line 1348 | public class ConcurrentHashMap<K, V> ext
1348          }
1349      }
1350  
1351 <    private class Values extends AbstractCollection<V> {
1351 >    final class Values extends AbstractCollection<V> {
1352          public Iterator<V> iterator() {
1353              return new ValueIterator();
1354          }
1355          public int size() {
1356              return ConcurrentHashMap.this.size();
1357          }
1358 +        public boolean isEmpty() {
1359 +            return ConcurrentHashMap.this.isEmpty();
1360 +        }
1361          public boolean contains(Object o) {
1362              return ConcurrentHashMap.this.containsValue(o);
1363          }
# Line 1044 | Line 1366 | public class ConcurrentHashMap<K, V> ext
1366          }
1367      }
1368  
1369 <    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1369 >    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1370          public Iterator<Map.Entry<K,V>> iterator() {
1371              return new EntryIterator();
1372          }
1373          public boolean contains(Object o) {
1374              if (!(o instanceof Map.Entry))
1375                  return false;
1376 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1376 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1377              V v = ConcurrentHashMap.this.get(e.getKey());
1378              return v != null && v.equals(e.getValue());
1379          }
1380          public boolean remove(Object o) {
1381              if (!(o instanceof Map.Entry))
1382                  return false;
1383 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1383 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1384              return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1385          }
1386          public int size() {
1387              return ConcurrentHashMap.this.size();
1388          }
1389 +        public boolean isEmpty() {
1390 +            return ConcurrentHashMap.this.isEmpty();
1391 +        }
1392          public void clear() {
1393              ConcurrentHashMap.this.clear();
1394          }
# Line 1072 | Line 1397 | public class ConcurrentHashMap<K, V> ext
1397      /* ---------------- Serialization Support -------------- */
1398  
1399      /**
1400 <     * Save the state of the <tt>ConcurrentHashMap</tt>
1401 <     * instance to a stream (i.e.,
1077 <     * serialize it).
1400 >     * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
1401 >     * stream (i.e., serializes it).
1402       * @param s the stream
1403       * @serialData
1404       * the key (Object) and value (Object)
1405       * for each key-value mapping, followed by a null pair.
1406       * The key-value mappings are emitted in no particular order.
1407       */
1408 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
1408 >    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1409 >        // force all segments for serialization compatibility
1410 >        for (int k = 0; k < segments.length; ++k)
1411 >            ensureSegment(k);
1412          s.defaultWriteObject();
1413  
1414 +        final Segment<K,V>[] segments = this.segments;
1415          for (int k = 0; k < segments.length; ++k) {
1416 <            Segment<K,V> seg = (Segment<K,V>)segments[k];
1416 >            Segment<K,V> seg = segmentAt(segments, k);
1417              seg.lock();
1418              try {
1419 <                HashEntry[] tab = seg.table;
1419 >                HashEntry<K,V>[] tab = seg.table;
1420                  for (int i = 0; i < tab.length; ++i) {
1421 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1421 >                    HashEntry<K,V> e;
1422 >                    for (e = entryAt(tab, i); e != null; e = e.next) {
1423                          s.writeObject(e.key);
1424                          s.writeObject(e.value);
1425                      }
# Line 1104 | Line 1433 | public class ConcurrentHashMap<K, V> ext
1433      }
1434  
1435      /**
1436 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
1437 <     * instance from a stream (i.e.,
1109 <     * deserialize it).
1436 >     * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
1437 >     * stream (i.e., deserializes it).
1438       * @param s the stream
1439       */
1440 +    @SuppressWarnings("unchecked")
1441      private void readObject(java.io.ObjectInputStream s)
1442 <        throws IOException, ClassNotFoundException  {
1442 >        throws IOException, ClassNotFoundException {
1443          s.defaultReadObject();
1444  
1445 <        // Initialize each segment to be minimally sized, and let grow.
1446 <        for (int i = 0; i < segments.length; ++i) {
1447 <            segments[i].setTable(new HashEntry[1]);
1445 >        // Re-initialize segments to be minimally sized, and let grow.
1446 >        int cap = MIN_SEGMENT_TABLE_CAPACITY;
1447 >        final Segment<K,V>[] segments = this.segments;
1448 >        for (int k = 0; k < segments.length; ++k) {
1449 >            Segment<K,V> seg = segments[k];
1450 >            if (seg != null) {
1451 >                seg.threshold = (int)(cap * seg.loadFactor);
1452 >                seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
1453 >            }
1454          }
1455  
1456          // Read the keys and values, and put the mappings in the table
# Line 1127 | Line 1462 | public class ConcurrentHashMap<K, V> ext
1462              put(key, value);
1463          }
1464      }
1130 }
1465  
1466 +    // Unsafe mechanics
1467 +    private static final sun.misc.Unsafe UNSAFE;
1468 +    private static final long SBASE;
1469 +    private static final int SSHIFT;
1470 +    private static final long TBASE;
1471 +    private static final int TSHIFT;
1472 +
1473 +    static {
1474 +        int ss, ts;
1475 +        try {
1476 +            UNSAFE = sun.misc.Unsafe.getUnsafe();
1477 +            Class tc = HashEntry[].class;
1478 +            Class sc = Segment[].class;
1479 +            TBASE = UNSAFE.arrayBaseOffset(tc);
1480 +            SBASE = UNSAFE.arrayBaseOffset(sc);
1481 +            ts = UNSAFE.arrayIndexScale(tc);
1482 +            ss = UNSAFE.arrayIndexScale(sc);
1483 +        } catch (Exception e) {
1484 +            throw new Error(e);
1485 +        }
1486 +        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1487 +            throw new Error("data type scale not a power of two");
1488 +        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1489 +        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
1490 +    }
1491 +
1492 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines