ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.110 by jsr166, Wed Apr 27 14:06:30 2011 UTC vs.
Revision 1.271 by dl, Tue Apr 28 23:06:53 2015 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.atomic.AtomicReference;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42  
43   /**
44   * A hash table supporting full concurrency of retrievals and
45 < * adjustable expected concurrency for updates. This class obeys the
45 > * high expected concurrency for updates. This class obeys the
46   * same functional specification as {@link java.util.Hashtable}, and
47   * includes versions of methods corresponding to each method of
48 < * <tt>Hashtable</tt>. However, even though all operations are
48 > * {@code Hashtable}. However, even though all operations are
49   * thread-safe, retrieval operations do <em>not</em> entail locking,
50   * and there is <em>not</em> any support for locking the entire table
51   * in a way that prevents all access.  This class is fully
52 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
52 > * interoperable with {@code Hashtable} in programs that rely on its
53   * thread safety but not on its synchronization details.
54   *
55 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
56 < * block, so may overlap with update operations (including
57 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
58 < * of the most recently <em>completed</em> update operations holding
59 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
60 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
61 < * removal of only some entries.  Similarly, Iterators and
62 < * Enumerations return elements reflecting the state of the hash table
63 < * at some point at or since the creation of the iterator/enumeration.
64 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
55 > * <p>Retrieval operations (including {@code get}) generally do not
56 > * block, so may overlap with update operations (including {@code put}
57 > * and {@code remove}). Retrievals reflect the results of the most
58 > * recently <em>completed</em> update operations holding upon their
59 > * onset. (More formally, an update operation for a given key bears a
60 > * <em>happens-before</em> relation with any (non-null) retrieval for
61 > * that key reporting the updated value.)  For aggregate operations
62 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 > * reflect insertion or removal of only some entries.  Similarly,
64 > * Iterators, Spliterators and Enumerations return elements reflecting the
65 > * state of the hash table at some point at or since the creation of the
66 > * iterator/enumeration.  They do <em>not</em> throw {@link
67 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
68   * However, iterators are designed to be used by only one thread at a time.
69 + * Bear in mind that the results of aggregate status methods including
70 + * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 + * useful only when a map is not undergoing concurrent updates in other threads.
72 + * Otherwise the results of these methods reflect transient states
73 + * that may be adequate for monitoring or estimation purposes, but not
74 + * for program control.
75 + *
76 + * <p>The table is dynamically expanded when there are too many
77 + * collisions (i.e., keys that have distinct hash codes but fall into
78 + * the same slot modulo the table size), with the expected average
79 + * effect of maintaining roughly two bins per mapping (corresponding
80 + * to a 0.75 load factor threshold for resizing). There may be much
81 + * variance around this average as mappings are added and removed, but
82 + * overall, this maintains a commonly accepted time/space tradeoff for
83 + * hash tables.  However, resizing this or any other kind of hash
84 + * table may be a relatively slow operation. When possible, it is a
85 + * good idea to provide a size estimate as an optional {@code
86 + * initialCapacity} constructor argument. An additional optional
87 + * {@code loadFactor} constructor argument provides a further means of
88 + * customizing initial table capacity by specifying the table density
89 + * to be used in calculating the amount of space to allocate for the
90 + * given number of elements.  Also, for compatibility with previous
91 + * versions of this class, constructors may optionally specify an
92 + * expected {@code concurrencyLevel} as an additional hint for
93 + * internal sizing.  Note that using many keys with exactly the same
94 + * {@code hashCode()} is a sure way to slow down performance of any
95 + * hash table. To ameliorate impact, when keys are {@link Comparable},
96 + * this class may use comparison order among keys to help break ties.
97 + *
98 + * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 + * (using {@link #keySet(Object)} when only keys are of interest, and the
101 + * mapped values are (perhaps transiently) not used or all take the
102 + * same mapping value.
103   *
104 < * <p> The allowed concurrency among update operations is guided by
105 < * the optional <tt>concurrencyLevel</tt> constructor argument
106 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
107 < * table is internally partitioned to try to permit the indicated
108 < * number of concurrent updates without contention. Because placement
109 < * in hash tables is essentially random, the actual concurrency will
45 < * vary.  Ideally, you should choose a value to accommodate as many
46 < * threads as will ever concurrently modify the table. Using a
47 < * significantly higher value than you need can waste space and time,
48 < * and a significantly lower value can lead to thread contention. But
49 < * overestimates and underestimates within an order of magnitude do
50 < * not usually have much noticeable impact. A value of one is
51 < * appropriate when it is known that only one thread will modify and
52 < * all others will only read. Also, resizing this or any other kind of
53 < * hash table is a relatively slow operation, so, when possible, it is
54 < * a good idea to provide estimates of expected table sizes in
55 < * constructors.
104 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 > * form of histogram or multiset) by using {@link
106 > * java.util.concurrent.atomic.LongAdder} values and initializing via
107 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110   *
111   * <p>This class and its views and iterators implement all of the
112   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113   * interfaces.
114   *
115 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
116 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
115 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 > * does <em>not</em> allow {@code null} to be used as a key or value.
117 > *
118 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 > * operations that, unlike most {@link Stream} methods, are designed
120 > * to be safely, and often sensibly, applied even with maps that are
121 > * being concurrently updated by other threads; for example, when
122 > * computing a snapshot summary of the values in a shared registry.
123 > * There are three kinds of operation, each with four forms, accepting
124 > * functions with Keys, Values, Entries, and (Key, Value) arguments
125 > * and/or return values. Because the elements of a ConcurrentHashMap
126 > * are not ordered in any particular way, and may be processed in
127 > * different orders in different parallel executions, the correctness
128 > * of supplied functions should not depend on any ordering, or on any
129 > * other objects or values that may transiently change while
130 > * computation is in progress; and except for forEach actions, should
131 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
132 > * objects do not support method {@code setValue}.
133 > *
134 > * <ul>
135 > * <li> forEach: Perform a given action on each element.
136 > * A variant form applies a given transformation on each element
137 > * before performing the action.</li>
138 > *
139 > * <li> search: Return the first available non-null result of
140 > * applying a given function on each element; skipping further
141 > * search when a result is found.</li>
142 > *
143 > * <li> reduce: Accumulate each element.  The supplied reduction
144 > * function cannot rely on ordering (more formally, it should be
145 > * both associative and commutative).  There are five variants:
146 > *
147 > * <ul>
148 > *
149 > * <li> Plain reductions. (There is not a form of this method for
150 > * (key, value) function arguments since there is no corresponding
151 > * return type.)</li>
152 > *
153 > * <li> Mapped reductions that accumulate the results of a given
154 > * function applied to each element.</li>
155 > *
156 > * <li> Reductions to scalar doubles, longs, and ints, using a
157 > * given basis value.</li>
158 > *
159 > * </ul>
160 > * </li>
161 > * </ul>
162 > *
163 > * <p>These bulk operations accept a {@code parallelismThreshold}
164 > * argument. Methods proceed sequentially if the current map size is
165 > * estimated to be less than the given threshold. Using a value of
166 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
167 > * of {@code 1} results in maximal parallelism by partitioning into
168 > * enough subtasks to fully utilize the {@link
169 > * ForkJoinPool#commonPool()} that is used for all parallel
170 > * computations. Normally, you would initially choose one of these
171 > * extreme values, and then measure performance of using in-between
172 > * values that trade off overhead versus throughput.
173 > *
174 > * <p>The concurrency properties of bulk operations follow
175 > * from those of ConcurrentHashMap: Any non-null result returned
176 > * from {@code get(key)} and related access methods bears a
177 > * happens-before relation with the associated insertion or
178 > * update.  The result of any bulk operation reflects the
179 > * composition of these per-element relations (but is not
180 > * necessarily atomic with respect to the map as a whole unless it
181 > * is somehow known to be quiescent).  Conversely, because keys
182 > * and values in the map are never null, null serves as a reliable
183 > * atomic indicator of the current lack of any result.  To
184 > * maintain this property, null serves as an implicit basis for
185 > * all non-scalar reduction operations. For the double, long, and
186 > * int versions, the basis should be one that, when combined with
187 > * any other value, returns that other value (more formally, it
188 > * should be the identity element for the reduction). Most common
189 > * reductions have these properties; for example, computing a sum
190 > * with basis 0 or a minimum with basis MAX_VALUE.
191 > *
192 > * <p>Search and transformation functions provided as arguments
193 > * should similarly return null to indicate the lack of any result
194 > * (in which case it is not used). In the case of mapped
195 > * reductions, this also enables transformations to serve as
196 > * filters, returning null (or, in the case of primitive
197 > * specializations, the identity basis) if the element should not
198 > * be combined. You can create compound transformations and
199 > * filterings by composing them yourself under this "null means
200 > * there is nothing there now" rule before using them in search or
201 > * reduce operations.
202 > *
203 > * <p>Methods accepting and/or returning Entry arguments maintain
204 > * key-value associations. They may be useful for example when
205 > * finding the key for the greatest value. Note that "plain" Entry
206 > * arguments can be supplied using {@code new
207 > * AbstractMap.SimpleEntry(k,v)}.
208 > *
209 > * <p>Bulk operations may complete abruptly, throwing an
210 > * exception encountered in the application of a supplied
211 > * function. Bear in mind when handling such exceptions that other
212 > * concurrently executing functions could also have thrown
213 > * exceptions, or would have done so if the first exception had
214 > * not occurred.
215 > *
216 > * <p>Speedups for parallel compared to sequential forms are common
217 > * but not guaranteed.  Parallel operations involving brief functions
218 > * on small maps may execute more slowly than sequential forms if the
219 > * underlying work to parallelize the computation is more expensive
220 > * than the computation itself.  Similarly, parallelization may not
221 > * lead to much actual parallelism if all processors are busy
222 > * performing unrelated tasks.
223 > *
224 > * <p>All arguments to all task methods must be non-null.
225   *
226   * <p>This class is a member of the
227   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 232 | import java.io.ObjectOutputStream;
232   * @param <K> the type of keys maintained by this map
233   * @param <V> the type of mapped values
234   */
235 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
236 <        implements ConcurrentMap<K, V>, Serializable {
235 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 >    implements ConcurrentMap<K,V>, Serializable {
237      private static final long serialVersionUID = 7249069246763182397L;
238  
239      /*
240 <     * The basic strategy is to subdivide the table among Segments,
241 <     * each of which itself is a concurrently readable hash table.  To
242 <     * reduce footprint, all but one segments are constructed only
243 <     * when first needed (see ensureSegment). To maintain visibility
244 <     * in the presence of lazy construction, accesses to segments as
245 <     * well as elements of segment's table must use volatile access,
246 <     * which is done via Unsafe within methods segmentAt etc
247 <     * below. These provide the functionality of AtomicReferenceArrays
248 <     * but reduce the levels of indirection. Additionally,
249 <     * volatile-writes of table elements and entry "next" fields
250 <     * within locked operations use the cheaper "lazySet" forms of
251 <     * writes (via putOrderedObject) because these writes are always
252 <     * followed by lock releases that maintain sequential consistency
253 <     * of table updates.
254 <     *
255 <     * Historical note: The previous version of this class relied
256 <     * heavily on "final" fields, which avoided some volatile reads at
257 <     * the expense of a large initial footprint.  Some remnants of
258 <     * that design (including forced construction of segment 0) exist
259 <     * to ensure serialization compatibility.
240 >     * Overview:
241 >     *
242 >     * The primary design goal of this hash table is to maintain
243 >     * concurrent readability (typically method get(), but also
244 >     * iterators and related methods) while minimizing update
245 >     * contention. Secondary goals are to keep space consumption about
246 >     * the same or better than java.util.HashMap, and to support high
247 >     * initial insertion rates on an empty table by many threads.
248 >     *
249 >     * This map usually acts as a binned (bucketed) hash table.  Each
250 >     * key-value mapping is held in a Node.  Most nodes are instances
251 >     * of the basic Node class with hash, key, value, and next
252 >     * fields. However, various subclasses exist: TreeNodes are
253 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
254 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 >     * of bins during resizing. ReservationNodes are used as
256 >     * placeholders while establishing values in computeIfAbsent and
257 >     * related methods.  The types TreeBin, ForwardingNode, and
258 >     * ReservationNode do not hold normal user keys, values, or
259 >     * hashes, and are readily distinguishable during search etc
260 >     * because they have negative hash fields and null key and value
261 >     * fields. (These special nodes are either uncommon or transient,
262 >     * so the impact of carrying around some unused fields is
263 >     * insignificant.)
264 >     *
265 >     * The table is lazily initialized to a power-of-two size upon the
266 >     * first insertion.  Each bin in the table normally contains a
267 >     * list of Nodes (most often, the list has only zero or one Node).
268 >     * Table accesses require volatile/atomic reads, writes, and
269 >     * CASes.  Because there is no other way to arrange this without
270 >     * adding further indirections, we use intrinsics
271 >     * (sun.misc.Unsafe) operations.
272 >     *
273 >     * We use the top (sign) bit of Node hash fields for control
274 >     * purposes -- it is available anyway because of addressing
275 >     * constraints.  Nodes with negative hash fields are specially
276 >     * handled or ignored in map methods.
277 >     *
278 >     * Insertion (via put or its variants) of the first node in an
279 >     * empty bin is performed by just CASing it to the bin.  This is
280 >     * by far the most common case for put operations under most
281 >     * key/hash distributions.  Other update operations (insert,
282 >     * delete, and replace) require locks.  We do not want to waste
283 >     * the space required to associate a distinct lock object with
284 >     * each bin, so instead use the first node of a bin list itself as
285 >     * a lock. Locking support for these locks relies on builtin
286 >     * "synchronized" monitors.
287 >     *
288 >     * Using the first node of a list as a lock does not by itself
289 >     * suffice though: When a node is locked, any update must first
290 >     * validate that it is still the first node after locking it, and
291 >     * retry if not. Because new nodes are always appended to lists,
292 >     * once a node is first in a bin, it remains first until deleted
293 >     * or the bin becomes invalidated (upon resizing).
294 >     *
295 >     * The main disadvantage of per-bin locks is that other update
296 >     * operations on other nodes in a bin list protected by the same
297 >     * lock can stall, for example when user equals() or mapping
298 >     * functions take a long time.  However, statistically, under
299 >     * random hash codes, this is not a common problem.  Ideally, the
300 >     * frequency of nodes in bins follows a Poisson distribution
301 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 >     * parameter of about 0.5 on average, given the resizing threshold
303 >     * of 0.75, although with a large variance because of resizing
304 >     * granularity. Ignoring variance, the expected occurrences of
305 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 >     * first values are:
307 >     *
308 >     * 0:    0.60653066
309 >     * 1:    0.30326533
310 >     * 2:    0.07581633
311 >     * 3:    0.01263606
312 >     * 4:    0.00157952
313 >     * 5:    0.00015795
314 >     * 6:    0.00001316
315 >     * 7:    0.00000094
316 >     * 8:    0.00000006
317 >     * more: less than 1 in ten million
318 >     *
319 >     * Lock contention probability for two threads accessing distinct
320 >     * elements is roughly 1 / (8 * #elements) under random hashes.
321 >     *
322 >     * Actual hash code distributions encountered in practice
323 >     * sometimes deviate significantly from uniform randomness.  This
324 >     * includes the case when N > (1<<30), so some keys MUST collide.
325 >     * Similarly for dumb or hostile usages in which multiple keys are
326 >     * designed to have identical hash codes or ones that differs only
327 >     * in masked-out high bits. So we use a secondary strategy that
328 >     * applies when the number of nodes in a bin exceeds a
329 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
330 >     * specialized form of red-black trees), bounding search time to
331 >     * O(log N).  Each search step in a TreeBin is at least twice as
332 >     * slow as in a regular list, but given that N cannot exceed
333 >     * (1<<64) (before running out of addresses) this bounds search
334 >     * steps, lock hold times, etc, to reasonable constants (roughly
335 >     * 100 nodes inspected per operation worst case) so long as keys
336 >     * are Comparable (which is very common -- String, Long, etc).
337 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
338 >     * traversal pointers as regular nodes, so can be traversed in
339 >     * iterators in the same way.
340 >     *
341 >     * The table is resized when occupancy exceeds a percentage
342 >     * threshold (nominally, 0.75, but see below).  Any thread
343 >     * noticing an overfull bin may assist in resizing after the
344 >     * initiating thread allocates and sets up the replacement array.
345 >     * However, rather than stalling, these other threads may proceed
346 >     * with insertions etc.  The use of TreeBins shields us from the
347 >     * worst case effects of overfilling while resizes are in
348 >     * progress.  Resizing proceeds by transferring bins, one by one,
349 >     * from the table to the next table. However, threads claim small
350 >     * blocks of indices to transfer (via field transferIndex) before
351 >     * doing so, reducing contention.  A generation stamp in field
352 >     * sizeCtl ensures that resizings do not overlap. Because we are
353 >     * using power-of-two expansion, the elements from each bin must
354 >     * either stay at same index, or move with a power of two
355 >     * offset. We eliminate unnecessary node creation by catching
356 >     * cases where old nodes can be reused because their next fields
357 >     * won't change.  On average, only about one-sixth of them need
358 >     * cloning when a table doubles. The nodes they replace will be
359 >     * garbage collectable as soon as they are no longer referenced by
360 >     * any reader thread that may be in the midst of concurrently
361 >     * traversing table.  Upon transfer, the old table bin contains
362 >     * only a special forwarding node (with hash field "MOVED") that
363 >     * contains the next table as its key. On encountering a
364 >     * forwarding node, access and update operations restart, using
365 >     * the new table.
366 >     *
367 >     * Each bin transfer requires its bin lock, which can stall
368 >     * waiting for locks while resizing. However, because other
369 >     * threads can join in and help resize rather than contend for
370 >     * locks, average aggregate waits become shorter as resizing
371 >     * progresses.  The transfer operation must also ensure that all
372 >     * accessible bins in both the old and new table are usable by any
373 >     * traversal.  This is arranged in part by proceeding from the
374 >     * last bin (table.length - 1) up towards the first.  Upon seeing
375 >     * a forwarding node, traversals (see class Traverser) arrange to
376 >     * move to the new table without revisiting nodes.  To ensure that
377 >     * no intervening nodes are skipped even when moved out of order,
378 >     * a stack (see class TableStack) is created on first encounter of
379 >     * a forwarding node during a traversal, to maintain its place if
380 >     * later processing the current table. The need for these
381 >     * save/restore mechanics is relatively rare, but when one
382 >     * forwarding node is encountered, typically many more will be.
383 >     * So Traversers use a simple caching scheme to avoid creating so
384 >     * many new TableStack nodes. (Thanks to Peter Levart for
385 >     * suggesting use of a stack here.)
386 >     *
387 >     * The traversal scheme also applies to partial traversals of
388 >     * ranges of bins (via an alternate Traverser constructor)
389 >     * to support partitioned aggregate operations.  Also, read-only
390 >     * operations give up if ever forwarded to a null table, which
391 >     * provides support for shutdown-style clearing, which is also not
392 >     * currently implemented.
393 >     *
394 >     * Lazy table initialization minimizes footprint until first use,
395 >     * and also avoids resizings when the first operation is from a
396 >     * putAll, constructor with map argument, or deserialization.
397 >     * These cases attempt to override the initial capacity settings,
398 >     * but harmlessly fail to take effect in cases of races.
399 >     *
400 >     * The element count is maintained using a specialization of
401 >     * LongAdder. We need to incorporate a specialization rather than
402 >     * just use a LongAdder in order to access implicit
403 >     * contention-sensing that leads to creation of multiple
404 >     * CounterCells.  The counter mechanics avoid contention on
405 >     * updates but can encounter cache thrashing if read too
406 >     * frequently during concurrent access. To avoid reading so often,
407 >     * resizing under contention is attempted only upon adding to a
408 >     * bin already holding two or more nodes. Under uniform hash
409 >     * distributions, the probability of this occurring at threshold
410 >     * is around 13%, meaning that only about 1 in 8 puts check
411 >     * threshold (and after resizing, many fewer do so).
412 >     *
413 >     * TreeBins use a special form of comparison for search and
414 >     * related operations (which is the main reason we cannot use
415 >     * existing collections such as TreeMaps). TreeBins contain
416 >     * Comparable elements, but may contain others, as well as
417 >     * elements that are Comparable but not necessarily Comparable for
418 >     * the same T, so we cannot invoke compareTo among them. To handle
419 >     * this, the tree is ordered primarily by hash value, then by
420 >     * Comparable.compareTo order if applicable.  On lookup at a node,
421 >     * if elements are not comparable or compare as 0 then both left
422 >     * and right children may need to be searched in the case of tied
423 >     * hash values. (This corresponds to the full list search that
424 >     * would be necessary if all elements were non-Comparable and had
425 >     * tied hashes.) On insertion, to keep a total ordering (or as
426 >     * close as is required here) across rebalancings, we compare
427 >     * classes and identityHashCodes as tie-breakers. The red-black
428 >     * balancing code is updated from pre-jdk-collections
429 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 >     * Algorithms" (CLR).
432 >     *
433 >     * TreeBins also require an additional locking mechanism.  While
434 >     * list traversal is always possible by readers even during
435 >     * updates, tree traversal is not, mainly because of tree-rotations
436 >     * that may change the root node and/or its linkages.  TreeBins
437 >     * include a simple read-write lock mechanism parasitic on the
438 >     * main bin-synchronization strategy: Structural adjustments
439 >     * associated with an insertion or removal are already bin-locked
440 >     * (and so cannot conflict with other writers) but must wait for
441 >     * ongoing readers to finish. Since there can be only one such
442 >     * waiter, we use a simple scheme using a single "waiter" field to
443 >     * block writers.  However, readers need never block.  If the root
444 >     * lock is held, they proceed along the slow traversal path (via
445 >     * next-pointers) until the lock becomes available or the list is
446 >     * exhausted, whichever comes first. These cases are not fast, but
447 >     * maximize aggregate expected throughput.
448 >     *
449 >     * Maintaining API and serialization compatibility with previous
450 >     * versions of this class introduces several oddities. Mainly: We
451 >     * leave untouched but unused constructor arguments refering to
452 >     * concurrencyLevel. We accept a loadFactor constructor argument,
453 >     * but apply it only to initial table capacity (which is the only
454 >     * time that we can guarantee to honor it.) We also declare an
455 >     * unused "Segment" class that is instantiated in minimal form
456 >     * only when serializing.
457 >     *
458 >     * Also, solely for compatibility with previous versions of this
459 >     * class, it extends AbstractMap, even though all of its methods
460 >     * are overridden, so it is just useless baggage.
461 >     *
462 >     * This file is organized to make things a little easier to follow
463 >     * while reading than they might otherwise: First the main static
464 >     * declarations and utilities, then fields, then main public
465 >     * methods (with a few factorings of multiple public methods into
466 >     * internal ones), then sizing methods, trees, traversers, and
467 >     * bulk operations.
468       */
469  
470      /* ---------------- Constants -------------- */
471  
472      /**
473 <     * The default initial capacity for this table,
474 <     * used when not otherwise specified in a constructor.
473 >     * The largest possible table capacity.  This value must be
474 >     * exactly 1<<30 to stay within Java array allocation and indexing
475 >     * bounds for power of two table sizes, and is further required
476 >     * because the top two bits of 32bit hash fields are used for
477 >     * control purposes.
478       */
479 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
479 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
480  
481      /**
482 <     * The default load factor for this table, used when not
483 <     * otherwise specified in a constructor.
482 >     * The default initial table capacity.  Must be a power of 2
483 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484       */
485 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
485 >    private static final int DEFAULT_CAPACITY = 16;
486  
487      /**
488 <     * The default concurrency level for this table, used when not
489 <     * otherwise specified in a constructor.
488 >     * The largest possible (non-power of two) array size.
489 >     * Needed by toArray and related methods.
490       */
491 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
491 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492  
493      /**
494 <     * The maximum capacity, used if a higher value is implicitly
495 <     * specified by either of the constructors with arguments.  MUST
123 <     * be a power of two <= 1<<30 to ensure that entries are indexable
124 <     * using ints.
494 >     * The default concurrency level for this table. Unused but
495 >     * defined for compatibility with previous versions of this class.
496       */
497 <    static final int MAXIMUM_CAPACITY = 1 << 30;
497 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498  
499      /**
500 <     * The minimum capacity for per-segment tables.  Must be a power
501 <     * of two, at least two to avoid immediate resizing on next use
502 <     * after lazy construction.
500 >     * The load factor for this table. Overrides of this value in
501 >     * constructors affect only the initial table capacity.  The
502 >     * actual floating point value isn't normally used -- it is
503 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
504 >     * the associated resizing threshold.
505       */
506 <    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
506 >    private static final float LOAD_FACTOR = 0.75f;
507  
508      /**
509 <     * The maximum number of segments to allow; used to bound
510 <     * constructor arguments. Must be power of two less than 1 << 24.
509 >     * The bin count threshold for using a tree rather than list for a
510 >     * bin.  Bins are converted to trees when adding an element to a
511 >     * bin with at least this many nodes. The value must be greater
512 >     * than 2, and should be at least 8 to mesh with assumptions in
513 >     * tree removal about conversion back to plain bins upon
514 >     * shrinkage.
515       */
516 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
516 >    static final int TREEIFY_THRESHOLD = 8;
517  
518      /**
519 <     * Number of unsynchronized retries in size and containsValue
520 <     * methods before resorting to locking. This is used to avoid
521 <     * unbounded retries if tables undergo continuous modification
145 <     * which would make it impossible to obtain an accurate result.
519 >     * The bin count threshold for untreeifying a (split) bin during a
520 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 >     * most 6 to mesh with shrinkage detection under removal.
522       */
523 <    static final int RETRIES_BEFORE_LOCK = 2;
148 <
149 <    /* ---------------- Fields -------------- */
523 >    static final int UNTREEIFY_THRESHOLD = 6;
524  
525      /**
526 <     * Mask value for indexing into segments. The upper bits of a
527 <     * key's hash code are used to choose the segment.
526 >     * The smallest table capacity for which bins may be treeified.
527 >     * (Otherwise the table is resized if too many nodes in a bin.)
528 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 >     * conflicts between resizing and treeification thresholds.
530       */
531 <    final int segmentMask;
531 >    static final int MIN_TREEIFY_CAPACITY = 64;
532  
533      /**
534 <     * Shift value for indexing within segments.
534 >     * Minimum number of rebinnings per transfer step. Ranges are
535 >     * subdivided to allow multiple resizer threads.  This value
536 >     * serves as a lower bound to avoid resizers encountering
537 >     * excessive memory contention.  The value should be at least
538 >     * DEFAULT_CAPACITY.
539       */
540 <    final int segmentShift;
540 >    private static final int MIN_TRANSFER_STRIDE = 16;
541  
542      /**
543 <     * The segments, each of which is a specialized hash table.
543 >     * The number of bits used for generation stamp in sizeCtl.
544 >     * Must be at least 6 for 32bit arrays.
545       */
546 <    final Segment<K,V>[] segments;
546 >    private static int RESIZE_STAMP_BITS = 16;
547  
548 <    transient Set<K> keySet;
549 <    transient Set<Map.Entry<K,V>> entrySet;
550 <    transient Collection<V> values;
548 >    /**
549 >     * The maximum number of threads that can help resize.
550 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 >     */
552 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553  
554      /**
555 <     * ConcurrentHashMap list entry. Note that this is never exported
556 <     * out as a user-visible Map.Entry.
555 >     * The bit shift for recording size stamp in sizeCtl.
556 >     */
557 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558 >
559 >    /*
560 >     * Encodings for Node hash fields. See above for explanation.
561 >     */
562 >    static final int MOVED     = -1; // hash for forwarding nodes
563 >    static final int TREEBIN   = -2; // hash for roots of trees
564 >    static final int RESERVED  = -3; // hash for transient reservations
565 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566 >
567 >    /** Number of CPUS, to place bounds on some sizings */
568 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
569 >
570 >    /** For serialization compatibility. */
571 >    private static final ObjectStreamField[] serialPersistentFields = {
572 >        new ObjectStreamField("segments", Segment[].class),
573 >        new ObjectStreamField("segmentMask", Integer.TYPE),
574 >        new ObjectStreamField("segmentShift", Integer.TYPE)
575 >    };
576 >
577 >    /* ---------------- Nodes -------------- */
578 >
579 >    /**
580 >     * Key-value entry.  This class is never exported out as a
581 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
582 >     * MapEntry below), but can be used for read-only traversals used
583 >     * in bulk tasks.  Subclasses of Node with a negative hash field
584 >     * are special, and contain null keys and values (but are never
585 >     * exported).  Otherwise, keys and vals are never null.
586       */
587 <    static final class HashEntry<K,V> {
587 >    static class Node<K,V> implements Map.Entry<K,V> {
588          final int hash;
589          final K key;
590 <        volatile V value;
591 <        volatile HashEntry<K,V> next;
590 >        volatile V val;
591 >        volatile Node<K,V> next;
592  
593 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
593 >        Node(int hash, K key, V val, Node<K,V> next) {
594              this.hash = hash;
595              this.key = key;
596 <            this.value = value;
596 >            this.val = val;
597              this.next = next;
598          }
599  
600 +        public final K getKey()     { return key; }
601 +        public final V getValue()   { return val; }
602 +        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
603 +        public final String toString() {
604 +            return Helpers.mapEntryToString(key, val);
605 +        }
606 +        public final V setValue(V value) {
607 +            throw new UnsupportedOperationException();
608 +        }
609 +
610 +        public final boolean equals(Object o) {
611 +            Object k, v, u; Map.Entry<?,?> e;
612 +            return ((o instanceof Map.Entry) &&
613 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
614 +                    (v = e.getValue()) != null &&
615 +                    (k == key || k.equals(key)) &&
616 +                    (v == (u = val) || v.equals(u)));
617 +        }
618 +
619          /**
620 <         * Sets next field with volatile write semantics.  (See above
190 <         * about use of putOrderedObject.)
620 >         * Virtualized support for map.get(); overridden in subclasses.
621           */
622 <        final void setNext(HashEntry<K,V> n) {
623 <            UNSAFE.putOrderedObject(this, nextOffset, n);
622 >        Node<K,V> find(int h, Object k) {
623 >            Node<K,V> e = this;
624 >            if (k != null) {
625 >                do {
626 >                    K ek;
627 >                    if (e.hash == h &&
628 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
629 >                        return e;
630 >                } while ((e = e.next) != null);
631 >            }
632 >            return null;
633          }
634 +    }
635  
636 <        // Unsafe mechanics
637 <        static final sun.misc.Unsafe UNSAFE;
638 <        static final long nextOffset;
639 <        static {
640 <            try {
641 <                UNSAFE = sun.misc.Unsafe.getUnsafe();
642 <                Class k = HashEntry.class;
643 <                nextOffset = UNSAFE.objectFieldOffset
644 <                    (k.getDeclaredField("next"));
645 <            } catch (Exception e) {
646 <                throw new Error(e);
636 >    /* ---------------- Static utilities -------------- */
637 >
638 >    /**
639 >     * Spreads (XORs) higher bits of hash to lower and also forces top
640 >     * bit to 0. Because the table uses power-of-two masking, sets of
641 >     * hashes that vary only in bits above the current mask will
642 >     * always collide. (Among known examples are sets of Float keys
643 >     * holding consecutive whole numbers in small tables.)  So we
644 >     * apply a transform that spreads the impact of higher bits
645 >     * downward. There is a tradeoff between speed, utility, and
646 >     * quality of bit-spreading. Because many common sets of hashes
647 >     * are already reasonably distributed (so don't benefit from
648 >     * spreading), and because we use trees to handle large sets of
649 >     * collisions in bins, we just XOR some shifted bits in the
650 >     * cheapest possible way to reduce systematic lossage, as well as
651 >     * to incorporate impact of the highest bits that would otherwise
652 >     * never be used in index calculations because of table bounds.
653 >     */
654 >    static final int spread(int h) {
655 >        return (h ^ (h >>> 16)) & HASH_BITS;
656 >    }
657 >
658 >    /**
659 >     * Returns a power of two table size for the given desired capacity.
660 >     * See Hackers Delight, sec 3.2
661 >     */
662 >    private static final int tableSizeFor(int c) {
663 >        int n = c - 1;
664 >        n |= n >>> 1;
665 >        n |= n >>> 2;
666 >        n |= n >>> 4;
667 >        n |= n >>> 8;
668 >        n |= n >>> 16;
669 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
670 >    }
671 >
672 >    /**
673 >     * Returns x's Class if it is of the form "class C implements
674 >     * Comparable<C>", else null.
675 >     */
676 >    static Class<?> comparableClassFor(Object x) {
677 >        if (x instanceof Comparable) {
678 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
679 >            if ((c = x.getClass()) == String.class) // bypass checks
680 >                return c;
681 >            if ((ts = c.getGenericInterfaces()) != null) {
682 >                for (int i = 0; i < ts.length; ++i) {
683 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
684 >                        ((p = (ParameterizedType)t).getRawType() ==
685 >                         Comparable.class) &&
686 >                        (as = p.getActualTypeArguments()) != null &&
687 >                        as.length == 1 && as[0] == c) // type arg is c
688 >                        return c;
689 >                }
690              }
691          }
692 +        return null;
693      }
694  
695      /**
696 <     * Gets the ith element of given table (if nonnull) with volatile
697 <     * read semantics. Note: This is manually integrated into a few
214 <     * performance-sensitive methods to reduce call overhead.
696 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
697 >     * class), else 0.
698       */
699 +    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
700 +    static int compareComparables(Class<?> kc, Object k, Object x) {
701 +        return (x == null || x.getClass() != kc ? 0 :
702 +                ((Comparable)k).compareTo(x));
703 +    }
704 +
705 +    /* ---------------- Table element access -------------- */
706 +
707 +    /*
708 +     * Volatile access methods are used for table elements as well as
709 +     * elements of in-progress next table while resizing.  All uses of
710 +     * the tab arguments must be null checked by callers.  All callers
711 +     * also paranoically precheck that tab's length is not zero (or an
712 +     * equivalent check), thus ensuring that any index argument taking
713 +     * the form of a hash value anded with (length - 1) is a valid
714 +     * index.  Note that, to be correct wrt arbitrary concurrency
715 +     * errors by users, these checks must operate on local variables,
716 +     * which accounts for some odd-looking inline assignments below.
717 +     * Note that calls to setTabAt always occur within locked regions,
718 +     * and so in principle require only release ordering, not
719 +     * full volatile semantics, but are currently coded as volatile
720 +     * writes to be conservative.
721 +     */
722 +
723      @SuppressWarnings("unchecked")
724 <    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
725 <        return (tab == null) ? null :
219 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
220 <            (tab, ((long)i << TSHIFT) + TBASE);
724 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
725 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
726      }
727  
728 +    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
729 +                                        Node<K,V> c, Node<K,V> v) {
730 +        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
731 +    }
732 +
733 +    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
734 +        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
735 +    }
736 +
737 +    /* ---------------- Fields -------------- */
738 +
739 +    /**
740 +     * The array of bins. Lazily initialized upon first insertion.
741 +     * Size is always a power of two. Accessed directly by iterators.
742 +     */
743 +    transient volatile Node<K,V>[] table;
744 +
745 +    /**
746 +     * The next table to use; non-null only while resizing.
747 +     */
748 +    private transient volatile Node<K,V>[] nextTable;
749 +
750 +    /**
751 +     * Base counter value, used mainly when there is no contention,
752 +     * but also as a fallback during table initialization
753 +     * races. Updated via CAS.
754 +     */
755 +    private transient volatile long baseCount;
756 +
757 +    /**
758 +     * Table initialization and resizing control.  When negative, the
759 +     * table is being initialized or resized: -1 for initialization,
760 +     * else -(1 + the number of active resizing threads).  Otherwise,
761 +     * when table is null, holds the initial table size to use upon
762 +     * creation, or 0 for default. After initialization, holds the
763 +     * next element count value upon which to resize the table.
764 +     */
765 +    private transient volatile int sizeCtl;
766 +
767 +    /**
768 +     * The next table index (plus one) to split while resizing.
769 +     */
770 +    private transient volatile int transferIndex;
771 +
772 +    /**
773 +     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
774 +     */
775 +    private transient volatile int cellsBusy;
776 +
777 +    /**
778 +     * Table of counter cells. When non-null, size is a power of 2.
779 +     */
780 +    private transient volatile CounterCell[] counterCells;
781 +
782 +    // views
783 +    private transient KeySetView<K,V> keySet;
784 +    private transient ValuesView<K,V> values;
785 +    private transient EntrySetView<K,V> entrySet;
786 +
787 +
788 +    /* ---------------- Public operations -------------- */
789 +
790      /**
791 <     * Sets the ith element of given table, with volatile write
225 <     * semantics. (See above about use of putOrderedObject.)
791 >     * Creates a new, empty map with the default initial table size (16).
792       */
793 <    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
228 <                                       HashEntry<K,V> e) {
229 <        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
793 >    public ConcurrentHashMap() {
794      }
795  
796      /**
797 <     * Applies a supplemental hash function to a given hashCode, which
798 <     * defends against poor quality hash functions.  This is critical
799 <     * because ConcurrentHashMap uses power-of-two length hash tables,
800 <     * that otherwise encounter collisions for hashCodes that do not
801 <     * differ in lower or upper bits.
797 >     * Creates a new, empty map with an initial table size
798 >     * accommodating the specified number of elements without the need
799 >     * to dynamically resize.
800 >     *
801 >     * @param initialCapacity The implementation performs internal
802 >     * sizing to accommodate this many elements.
803 >     * @throws IllegalArgumentException if the initial capacity of
804 >     * elements is negative
805       */
806 <    private static int hash(int h) {
807 <        // Spread bits to regularize both segment and index locations,
808 <        // using variant of single-word Wang/Jenkins hash.
809 <        h += (h <<  15) ^ 0xffffcd7d;
810 <        h ^= (h >>> 10);
811 <        h += (h <<   3);
812 <        h ^= (h >>>  6);
246 <        h += (h <<   2) + (h << 14);
247 <        return h ^ (h >>> 16);
806 >    public ConcurrentHashMap(int initialCapacity) {
807 >        if (initialCapacity < 0)
808 >            throw new IllegalArgumentException();
809 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
810 >                   MAXIMUM_CAPACITY :
811 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
812 >        this.sizeCtl = cap;
813      }
814  
815      /**
816 <     * Segments are specialized versions of hash tables.  This
817 <     * subclasses from ReentrantLock opportunistically, just to
818 <     * simplify some locking and avoid separate construction.
816 >     * Creates a new map with the same mappings as the given map.
817 >     *
818 >     * @param m the map
819       */
820 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
821 <        /*
822 <         * Segments maintain a table of entry lists that are always
823 <         * kept in a consistent state, so can be read (via volatile
259 <         * reads of segments and tables) without locking.  This
260 <         * requires replicating nodes when necessary during table
261 <         * resizing, so the old lists can be traversed by readers
262 <         * still using old version of table.
263 <         *
264 <         * This class defines only mutative methods requiring locking.
265 <         * Except as noted, the methods of this class perform the
266 <         * per-segment versions of ConcurrentHashMap methods.  (Other
267 <         * methods are integrated directly into ConcurrentHashMap
268 <         * methods.) These mutative methods use a form of controlled
269 <         * spinning on contention via methods scanAndLock and
270 <         * scanAndLockForPut. These intersperse tryLocks with
271 <         * traversals to locate nodes.  The main benefit is to absorb
272 <         * cache misses (which are very common for hash tables) while
273 <         * obtaining locks so that traversal is faster once
274 <         * acquired. We do not actually use the found nodes since they
275 <         * must be re-acquired under lock anyway to ensure sequential
276 <         * consistency of updates (and in any case may be undetectably
277 <         * stale), but they will normally be much faster to re-locate.
278 <         * Also, scanAndLockForPut speculatively creates a fresh node
279 <         * to use in put if no node is found.
280 <         */
820 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
821 >        this.sizeCtl = DEFAULT_CAPACITY;
822 >        putAll(m);
823 >    }
824  
825 <        private static final long serialVersionUID = 2249069246763182397L;
825 >    /**
826 >     * Creates a new, empty map with an initial table size based on
827 >     * the given number of elements ({@code initialCapacity}) and
828 >     * initial table density ({@code loadFactor}).
829 >     *
830 >     * @param initialCapacity the initial capacity. The implementation
831 >     * performs internal sizing to accommodate this many elements,
832 >     * given the specified load factor.
833 >     * @param loadFactor the load factor (table density) for
834 >     * establishing the initial table size
835 >     * @throws IllegalArgumentException if the initial capacity of
836 >     * elements is negative or the load factor is nonpositive
837 >     *
838 >     * @since 1.6
839 >     */
840 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
841 >        this(initialCapacity, loadFactor, 1);
842 >    }
843  
844 <        /**
845 <         * The maximum number of times to tryLock in a prescan before
846 <         * possibly blocking on acquire in preparation for a locked
847 <         * segment operation. On multiprocessors, using a bounded
848 <         * number of retries maintains cache acquired while locating
849 <         * nodes.
850 <         */
851 <        static final int MAX_SCAN_RETRIES =
852 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
844 >    /**
845 >     * Creates a new, empty map with an initial table size based on
846 >     * the given number of elements ({@code initialCapacity}), table
847 >     * density ({@code loadFactor}), and number of concurrently
848 >     * updating threads ({@code concurrencyLevel}).
849 >     *
850 >     * @param initialCapacity the initial capacity. The implementation
851 >     * performs internal sizing to accommodate this many elements,
852 >     * given the specified load factor.
853 >     * @param loadFactor the load factor (table density) for
854 >     * establishing the initial table size
855 >     * @param concurrencyLevel the estimated number of concurrently
856 >     * updating threads. The implementation may use this value as
857 >     * a sizing hint.
858 >     * @throws IllegalArgumentException if the initial capacity is
859 >     * negative or the load factor or concurrencyLevel are
860 >     * nonpositive
861 >     */
862 >    public ConcurrentHashMap(int initialCapacity,
863 >                             float loadFactor, int concurrencyLevel) {
864 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
865 >            throw new IllegalArgumentException();
866 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
867 >            initialCapacity = concurrencyLevel;   // as estimated threads
868 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
869 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
870 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
871 >        this.sizeCtl = cap;
872 >    }
873  
874 <        /**
295 <         * The per-segment table. Elements are accessed via
296 <         * entryAt/setEntryAt providing volatile semantics.
297 <         */
298 <        transient volatile HashEntry<K,V>[] table;
874 >    // Original (since JDK1.2) Map methods
875  
876 <        /**
877 <         * The number of elements. Accessed only either within locks
878 <         * or among other volatile reads that maintain visibility.
879 <         */
880 <        transient int count;
876 >    /**
877 >     * {@inheritDoc}
878 >     */
879 >    public int size() {
880 >        long n = sumCount();
881 >        return ((n < 0L) ? 0 :
882 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
883 >                (int)n);
884 >    }
885  
886 <        /**
887 <         * The total number of mutative operations in this segment.
888 <         * Even though this may overflows 32 bits, it provides
889 <         * sufficient accuracy for stability checks in CHM isEmpty()
890 <         * and size() methods.  Accessed only either within locks or
891 <         * among other volatile reads that maintain visibility.
312 <         */
313 <        transient int modCount;
886 >    /**
887 >     * {@inheritDoc}
888 >     */
889 >    public boolean isEmpty() {
890 >        return sumCount() <= 0L; // ignore transient negative values
891 >    }
892  
893 <        /**
894 <         * The table is rehashed when its size exceeds this threshold.
895 <         * (The value of this field is always <tt>(int)(capacity *
896 <         * loadFactor)</tt>.)
897 <         */
898 <        transient int threshold;
893 >    /**
894 >     * Returns the value to which the specified key is mapped,
895 >     * or {@code null} if this map contains no mapping for the key.
896 >     *
897 >     * <p>More formally, if this map contains a mapping from a key
898 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
899 >     * then this method returns {@code v}; otherwise it returns
900 >     * {@code null}.  (There can be at most one such mapping.)
901 >     *
902 >     * @throws NullPointerException if the specified key is null
903 >     */
904 >    public V get(Object key) {
905 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
906 >        int h = spread(key.hashCode());
907 >        if ((tab = table) != null && (n = tab.length) > 0 &&
908 >            (e = tabAt(tab, (n - 1) & h)) != null) {
909 >            if ((eh = e.hash) == h) {
910 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
911 >                    return e.val;
912 >            }
913 >            else if (eh < 0)
914 >                return (p = e.find(h, key)) != null ? p.val : null;
915 >            while ((e = e.next) != null) {
916 >                if (e.hash == h &&
917 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
918 >                    return e.val;
919 >            }
920 >        }
921 >        return null;
922 >    }
923  
924 <        /**
925 <         * The load factor for the hash table.  Even though this value
926 <         * is same for all segments, it is replicated to avoid needing
927 <         * links to outer object.
928 <         * @serial
929 <         */
930 <        final float loadFactor;
924 >    /**
925 >     * Tests if the specified object is a key in this table.
926 >     *
927 >     * @param  key possible key
928 >     * @return {@code true} if and only if the specified object
929 >     *         is a key in this table, as determined by the
930 >     *         {@code equals} method; {@code false} otherwise
931 >     * @throws NullPointerException if the specified key is null
932 >     */
933 >    public boolean containsKey(Object key) {
934 >        return get(key) != null;
935 >    }
936  
937 <        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
938 <            this.loadFactor = lf;
939 <            this.threshold = threshold;
940 <            this.table = tab;
937 >    /**
938 >     * Returns {@code true} if this map maps one or more keys to the
939 >     * specified value. Note: This method may require a full traversal
940 >     * of the map, and is much slower than method {@code containsKey}.
941 >     *
942 >     * @param value value whose presence in this map is to be tested
943 >     * @return {@code true} if this map maps one or more keys to the
944 >     *         specified value
945 >     * @throws NullPointerException if the specified value is null
946 >     */
947 >    public boolean containsValue(Object value) {
948 >        if (value == null)
949 >            throw new NullPointerException();
950 >        Node<K,V>[] t;
951 >        if ((t = table) != null) {
952 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
953 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
954 >                V v;
955 >                if ((v = p.val) == value || (v != null && value.equals(v)))
956 >                    return true;
957 >            }
958          }
959 +        return false;
960 +    }
961  
962 <        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
963 <            HashEntry<K,V> node = tryLock() ? null :
964 <                scanAndLockForPut(key, hash, value);
965 <            V oldValue;
966 <            try {
967 <                HashEntry<K,V>[] tab = table;
968 <                int index = (tab.length - 1) & hash;
969 <                HashEntry<K,V> first = entryAt(tab, index);
970 <                for (HashEntry<K,V> e = first;;) {
971 <                    if (e != null) {
972 <                        K k;
973 <                        if ((k = e.key) == key ||
974 <                            (e.hash == hash && key.equals(k))) {
975 <                            oldValue = e.value;
976 <                            if (!onlyIfAbsent) {
977 <                                e.value = value;
978 <                                ++modCount;
962 >    /**
963 >     * Maps the specified key to the specified value in this table.
964 >     * Neither the key nor the value can be null.
965 >     *
966 >     * <p>The value can be retrieved by calling the {@code get} method
967 >     * with a key that is equal to the original key.
968 >     *
969 >     * @param key key with which the specified value is to be associated
970 >     * @param value value to be associated with the specified key
971 >     * @return the previous value associated with {@code key}, or
972 >     *         {@code null} if there was no mapping for {@code key}
973 >     * @throws NullPointerException if the specified key or value is null
974 >     */
975 >    public V put(K key, V value) {
976 >        return putVal(key, value, false);
977 >    }
978 >
979 >    /** Implementation for put and putIfAbsent */
980 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
981 >        if (key == null || value == null) throw new NullPointerException();
982 >        int hash = spread(key.hashCode());
983 >        int binCount = 0;
984 >        for (Node<K,V>[] tab = table;;) {
985 >            Node<K,V> f; int n, i, fh;
986 >            if (tab == null || (n = tab.length) == 0)
987 >                tab = initTable();
988 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
989 >                if (casTabAt(tab, i, null,
990 >                             new Node<K,V>(hash, key, value, null)))
991 >                    break;                   // no lock when adding to empty bin
992 >            }
993 >            else if ((fh = f.hash) == MOVED)
994 >                tab = helpTransfer(tab, f);
995 >            else {
996 >                V oldVal = null;
997 >                synchronized (f) {
998 >                    if (tabAt(tab, i) == f) {
999 >                        if (fh >= 0) {
1000 >                            binCount = 1;
1001 >                            for (Node<K,V> e = f;; ++binCount) {
1002 >                                K ek;
1003 >                                if (e.hash == hash &&
1004 >                                    ((ek = e.key) == key ||
1005 >                                     (ek != null && key.equals(ek)))) {
1006 >                                    oldVal = e.val;
1007 >                                    if (!onlyIfAbsent)
1008 >                                        e.val = value;
1009 >                                    break;
1010 >                                }
1011 >                                Node<K,V> pred = e;
1012 >                                if ((e = e.next) == null) {
1013 >                                    pred.next = new Node<K,V>(hash, key,
1014 >                                                              value, null);
1015 >                                    break;
1016 >                                }
1017                              }
354                            break;
1018                          }
1019 <                        e = e.next;
1020 <                    }
1021 <                    else {
1022 <                        if (node != null)
1023 <                            node.setNext(first);
1024 <                        else
1025 <                            node = new HashEntry<K,V>(hash, key, value, first);
1026 <                        int c = count + 1;
1027 <                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
1028 <                            rehash(node);
1029 <                        else
1030 <                            setEntryAt(tab, index, node);
368 <                        ++modCount;
369 <                        count = c;
370 <                        oldValue = null;
371 <                        break;
372 <                    }
373 <                }
374 <            } finally {
375 <                unlock();
376 <            }
377 <            return oldValue;
378 <        }
379 <
380 <        /**
381 <         * Doubles size of table and repacks entries, also adding the
382 <         * given node to new table
383 <         */
384 <        @SuppressWarnings("unchecked")
385 <        private void rehash(HashEntry<K,V> node) {
386 <            /*
387 <             * Reclassify nodes in each list to new table.  Because we
388 <             * are using power-of-two expansion, the elements from
389 <             * each bin must either stay at same index, or move with a
390 <             * power of two offset. We eliminate unnecessary node
391 <             * creation by catching cases where old nodes can be
392 <             * reused because their next fields won't change.
393 <             * Statistically, at the default threshold, only about
394 <             * one-sixth of them need cloning when a table
395 <             * doubles. The nodes they replace will be garbage
396 <             * collectable as soon as they are no longer referenced by
397 <             * any reader thread that may be in the midst of
398 <             * concurrently traversing table. Entry accesses use plain
399 <             * array indexing because they are followed by volatile
400 <             * table write.
401 <             */
402 <            HashEntry<K,V>[] oldTable = table;
403 <            int oldCapacity = oldTable.length;
404 <            int newCapacity = oldCapacity << 1;
405 <            threshold = (int)(newCapacity * loadFactor);
406 <            HashEntry<K,V>[] newTable =
407 <                (HashEntry<K,V>[]) new HashEntry[newCapacity];
408 <            int sizeMask = newCapacity - 1;
409 <            for (int i = 0; i < oldCapacity ; i++) {
410 <                HashEntry<K,V> e = oldTable[i];
411 <                if (e != null) {
412 <                    HashEntry<K,V> next = e.next;
413 <                    int idx = e.hash & sizeMask;
414 <                    if (next == null)   //  Single node on list
415 <                        newTable[idx] = e;
416 <                    else { // Reuse consecutive sequence at same slot
417 <                        HashEntry<K,V> lastRun = e;
418 <                        int lastIdx = idx;
419 <                        for (HashEntry<K,V> last = next;
420 <                             last != null;
421 <                             last = last.next) {
422 <                            int k = last.hash & sizeMask;
423 <                            if (k != lastIdx) {
424 <                                lastIdx = k;
425 <                                lastRun = last;
426 <                            }
427 <                        }
428 <                        newTable[lastIdx] = lastRun;
429 <                        // Clone remaining nodes
430 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
431 <                            V v = p.value;
432 <                            int h = p.hash;
433 <                            int k = h & sizeMask;
434 <                            HashEntry<K,V> n = newTable[k];
435 <                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
436 <                        }
437 <                    }
438 <                }
439 <            }
440 <            int nodeIndex = node.hash & sizeMask; // add the new node
441 <            node.setNext(newTable[nodeIndex]);
442 <            newTable[nodeIndex] = node;
443 <            table = newTable;
444 <        }
445 <
446 <        /**
447 <         * Scans for a node containing given key while trying to
448 <         * acquire lock, creating and returning one if not found. Upon
449 <         * return, guarantees that lock is held. Unlike in most
450 <         * methods, calls to method equals are not screened: Since
451 <         * traversal speed doesn't matter, we might as well help warm
452 <         * up the associated code and accesses as well.
453 <         *
454 <         * @return a new node if key not found, else null
455 <         */
456 <        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
457 <            HashEntry<K,V> first = entryForHash(this, hash);
458 <            HashEntry<K,V> e = first;
459 <            HashEntry<K,V> node = null;
460 <            int retries = -1; // negative while locating node
461 <            while (!tryLock()) {
462 <                HashEntry<K,V> f; // to recheck first below
463 <                if (retries < 0) {
464 <                    if (e == null) {
465 <                        if (node == null) // speculatively create node
466 <                            node = new HashEntry<K,V>(hash, key, value, null);
467 <                        retries = 0;
1019 >                        else if (f instanceof TreeBin) {
1020 >                            Node<K,V> p;
1021 >                            binCount = 2;
1022 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1023 >                                                           value)) != null) {
1024 >                                oldVal = p.val;
1025 >                                if (!onlyIfAbsent)
1026 >                                    p.val = value;
1027 >                            }
1028 >                        }
1029 >                        else if (f instanceof ReservationNode)
1030 >                            throw new IllegalStateException("Recursive update");
1031                      }
469                    else if (key.equals(e.key))
470                        retries = 0;
471                    else
472                        e = e.next;
473                }
474                else if (++retries > MAX_SCAN_RETRIES) {
475                    lock();
476                    break;
477                }
478                else if ((retries & 1) == 0 &&
479                         (f = entryForHash(this, hash)) != first) {
480                    e = first = f; // re-traverse if entry changed
481                    retries = -1;
482                }
483            }
484            return node;
485        }
486
487        /**
488         * Scans for a node containing the given key while trying to
489         * acquire lock for a remove or replace operation. Upon
490         * return, guarantees that lock is held.  Note that we must
491         * lock even if the key is not found, to ensure sequential
492         * consistency of updates.
493         */
494        private void scanAndLock(Object key, int hash) {
495            // similar to but simpler than scanAndLockForPut
496            HashEntry<K,V> first = entryForHash(this, hash);
497            HashEntry<K,V> e = first;
498            int retries = -1;
499            while (!tryLock()) {
500                HashEntry<K,V> f;
501                if (retries < 0) {
502                    if (e == null || key.equals(e.key))
503                        retries = 0;
504                    else
505                        e = e.next;
1032                  }
1033 <                else if (++retries > MAX_SCAN_RETRIES) {
1034 <                    lock();
1033 >                if (binCount != 0) {
1034 >                    if (binCount >= TREEIFY_THRESHOLD)
1035 >                        treeifyBin(tab, i);
1036 >                    if (oldVal != null)
1037 >                        return oldVal;
1038                      break;
1039                  }
511                else if ((retries & 1) == 0 &&
512                         (f = entryForHash(this, hash)) != first) {
513                    e = first = f;
514                    retries = -1;
515                }
1040              }
1041          }
1042 +        addCount(1L, binCount);
1043 +        return null;
1044 +    }
1045  
1046 <        /**
1047 <         * Remove; match on key only if value null, else match both.
1048 <         */
1049 <        final V remove(Object key, int hash, Object value) {
1050 <            if (!tryLock())
1051 <                scanAndLock(key, hash);
1052 <            V oldValue = null;
1053 <            try {
1054 <                HashEntry<K,V>[] tab = table;
1055 <                int index = (tab.length - 1) & hash;
1056 <                HashEntry<K,V> e = entryAt(tab, index);
1057 <                HashEntry<K,V> pred = null;
1058 <                while (e != null) {
1059 <                    K k;
1060 <                    HashEntry<K,V> next = e.next;
1061 <                    if ((k = e.key) == key ||
1062 <                        (e.hash == hash && key.equals(k))) {
1063 <                        V v = e.value;
1064 <                        if (value == null || value == v || value.equals(v)) {
1065 <                            if (pred == null)
1066 <                                setEntryAt(tab, index, next);
1067 <                            else
1068 <                                pred.setNext(next);
1069 <                            ++modCount;
1070 <                            --count;
1071 <                            oldValue = v;
1046 >    /**
1047 >     * Copies all of the mappings from the specified map to this one.
1048 >     * These mappings replace any mappings that this map had for any of the
1049 >     * keys currently in the specified map.
1050 >     *
1051 >     * @param m mappings to be stored in this map
1052 >     */
1053 >    public void putAll(Map<? extends K, ? extends V> m) {
1054 >        tryPresize(m.size());
1055 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1056 >            putVal(e.getKey(), e.getValue(), false);
1057 >    }
1058 >
1059 >    /**
1060 >     * Removes the key (and its corresponding value) from this map.
1061 >     * This method does nothing if the key is not in the map.
1062 >     *
1063 >     * @param  key the key that needs to be removed
1064 >     * @return the previous value associated with {@code key}, or
1065 >     *         {@code null} if there was no mapping for {@code key}
1066 >     * @throws NullPointerException if the specified key is null
1067 >     */
1068 >    public V remove(Object key) {
1069 >        return replaceNode(key, null, null);
1070 >    }
1071 >
1072 >    /**
1073 >     * Implementation for the four public remove/replace methods:
1074 >     * Replaces node value with v, conditional upon match of cv if
1075 >     * non-null.  If resulting value is null, delete.
1076 >     */
1077 >    final V replaceNode(Object key, V value, Object cv) {
1078 >        int hash = spread(key.hashCode());
1079 >        for (Node<K,V>[] tab = table;;) {
1080 >            Node<K,V> f; int n, i, fh;
1081 >            if (tab == null || (n = tab.length) == 0 ||
1082 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1083 >                break;
1084 >            else if ((fh = f.hash) == MOVED)
1085 >                tab = helpTransfer(tab, f);
1086 >            else {
1087 >                V oldVal = null;
1088 >                boolean validated = false;
1089 >                synchronized (f) {
1090 >                    if (tabAt(tab, i) == f) {
1091 >                        if (fh >= 0) {
1092 >                            validated = true;
1093 >                            for (Node<K,V> e = f, pred = null;;) {
1094 >                                K ek;
1095 >                                if (e.hash == hash &&
1096 >                                    ((ek = e.key) == key ||
1097 >                                     (ek != null && key.equals(ek)))) {
1098 >                                    V ev = e.val;
1099 >                                    if (cv == null || cv == ev ||
1100 >                                        (ev != null && cv.equals(ev))) {
1101 >                                        oldVal = ev;
1102 >                                        if (value != null)
1103 >                                            e.val = value;
1104 >                                        else if (pred != null)
1105 >                                            pred.next = e.next;
1106 >                                        else
1107 >                                            setTabAt(tab, i, e.next);
1108 >                                    }
1109 >                                    break;
1110 >                                }
1111 >                                pred = e;
1112 >                                if ((e = e.next) == null)
1113 >                                    break;
1114 >                            }
1115                          }
1116 <                        break;
1116 >                        else if (f instanceof TreeBin) {
1117 >                            validated = true;
1118 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1119 >                            TreeNode<K,V> r, p;
1120 >                            if ((r = t.root) != null &&
1121 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1122 >                                V pv = p.val;
1123 >                                if (cv == null || cv == pv ||
1124 >                                    (pv != null && cv.equals(pv))) {
1125 >                                    oldVal = pv;
1126 >                                    if (value != null)
1127 >                                        p.val = value;
1128 >                                    else if (t.removeTreeNode(p))
1129 >                                        setTabAt(tab, i, untreeify(t.first));
1130 >                                }
1131 >                            }
1132 >                        }
1133 >                        else if (f instanceof ReservationNode)
1134 >                            throw new IllegalStateException("Recursive update");
1135                      }
548                    pred = e;
549                    e = next;
1136                  }
1137 <            } finally {
1138 <                unlock();
1139 <            }
1140 <            return oldValue;
1141 <        }
556 <
557 <        final boolean replace(K key, int hash, V oldValue, V newValue) {
558 <            if (!tryLock())
559 <                scanAndLock(key, hash);
560 <            boolean replaced = false;
561 <            try {
562 <                HashEntry<K,V> e;
563 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
564 <                    K k;
565 <                    if ((k = e.key) == key ||
566 <                        (e.hash == hash && key.equals(k))) {
567 <                        if (oldValue.equals(e.value)) {
568 <                            e.value = newValue;
569 <                            ++modCount;
570 <                            replaced = true;
571 <                        }
572 <                        break;
1137 >                if (validated) {
1138 >                    if (oldVal != null) {
1139 >                        if (value == null)
1140 >                            addCount(-1L, -1);
1141 >                        return oldVal;
1142                      }
1143 +                    break;
1144                  }
575            } finally {
576                unlock();
1145              }
578            return replaced;
1146          }
1147 +        return null;
1148 +    }
1149  
1150 <        final V replace(K key, int hash, V value) {
1151 <            if (!tryLock())
1152 <                scanAndLock(key, hash);
1153 <            V oldValue = null;
1154 <            try {
1155 <                HashEntry<K,V> e;
1156 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1157 <                    K k;
1158 <                    if ((k = e.key) == key ||
1159 <                        (e.hash == hash && key.equals(k))) {
1160 <                        oldValue = e.value;
1161 <                        e.value = value;
1162 <                        ++modCount;
1163 <                        break;
1150 >    /**
1151 >     * Removes all of the mappings from this map.
1152 >     */
1153 >    public void clear() {
1154 >        long delta = 0L; // negative number of deletions
1155 >        int i = 0;
1156 >        Node<K,V>[] tab = table;
1157 >        while (tab != null && i < tab.length) {
1158 >            int fh;
1159 >            Node<K,V> f = tabAt(tab, i);
1160 >            if (f == null)
1161 >                ++i;
1162 >            else if ((fh = f.hash) == MOVED) {
1163 >                tab = helpTransfer(tab, f);
1164 >                i = 0; // restart
1165 >            }
1166 >            else {
1167 >                synchronized (f) {
1168 >                    if (tabAt(tab, i) == f) {
1169 >                        Node<K,V> p = (fh >= 0 ? f :
1170 >                                       (f instanceof TreeBin) ?
1171 >                                       ((TreeBin<K,V>)f).first : null);
1172 >                        while (p != null) {
1173 >                            --delta;
1174 >                            p = p.next;
1175 >                        }
1176 >                        setTabAt(tab, i++, null);
1177                      }
1178                  }
597            } finally {
598                unlock();
1179              }
600            return oldValue;
1180          }
1181 +        if (delta != 0L)
1182 +            addCount(delta, -1);
1183 +    }
1184  
1185 <        final void clear() {
1186 <            lock();
1187 <            try {
1188 <                HashEntry<K,V>[] tab = table;
1189 <                for (int i = 0; i < tab.length ; i++)
1190 <                    setEntryAt(tab, i, null);
1191 <                ++modCount;
1192 <                count = 0;
1193 <            } finally {
1194 <                unlock();
1195 <            }
1196 <        }
1185 >    /**
1186 >     * Returns a {@link Set} view of the keys contained in this map.
1187 >     * The set is backed by the map, so changes to the map are
1188 >     * reflected in the set, and vice-versa. The set supports element
1189 >     * removal, which removes the corresponding mapping from this map,
1190 >     * via the {@code Iterator.remove}, {@code Set.remove},
1191 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1192 >     * operations.  It does not support the {@code add} or
1193 >     * {@code addAll} operations.
1194 >     *
1195 >     * <p>The view's iterators and spliterators are
1196 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1197 >     *
1198 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1199 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1200 >     *
1201 >     * @return the set view
1202 >     */
1203 >    public KeySetView<K,V> keySet() {
1204 >        KeySetView<K,V> ks;
1205 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1206 >    }
1207 >
1208 >    /**
1209 >     * Returns a {@link Collection} view of the values contained in this map.
1210 >     * The collection is backed by the map, so changes to the map are
1211 >     * reflected in the collection, and vice-versa.  The collection
1212 >     * supports element removal, which removes the corresponding
1213 >     * mapping from this map, via the {@code Iterator.remove},
1214 >     * {@code Collection.remove}, {@code removeAll},
1215 >     * {@code retainAll}, and {@code clear} operations.  It does not
1216 >     * support the {@code add} or {@code addAll} operations.
1217 >     *
1218 >     * <p>The view's iterators and spliterators are
1219 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1220 >     *
1221 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1222 >     * and {@link Spliterator#NONNULL}.
1223 >     *
1224 >     * @return the collection view
1225 >     */
1226 >    public Collection<V> values() {
1227 >        ValuesView<K,V> vs;
1228 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1229      }
1230  
1231 <    // Accessing segments
1231 >    /**
1232 >     * Returns a {@link Set} view of the mappings contained in this map.
1233 >     * The set is backed by the map, so changes to the map are
1234 >     * reflected in the set, and vice-versa.  The set supports element
1235 >     * removal, which removes the corresponding mapping from the map,
1236 >     * via the {@code Iterator.remove}, {@code Set.remove},
1237 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1238 >     * operations.
1239 >     *
1240 >     * <p>The view's iterators and spliterators are
1241 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1242 >     *
1243 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1244 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1245 >     *
1246 >     * @return the set view
1247 >     */
1248 >    public Set<Map.Entry<K,V>> entrySet() {
1249 >        EntrySetView<K,V> es;
1250 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1251 >    }
1252  
1253      /**
1254 <     * Gets the jth element of given segment array (if nonnull) with
1255 <     * volatile element access semantics via Unsafe. (The null check
1256 <     * can trigger harmlessly only during deserialization.) Note:
1257 <     * because each element of segments array is set only once (using
1258 <     * fully ordered writes), some performance-sensitive methods rely
625 <     * on this method only as a recheck upon null reads.
1254 >     * Returns the hash code value for this {@link Map}, i.e.,
1255 >     * the sum of, for each key-value pair in the map,
1256 >     * {@code key.hashCode() ^ value.hashCode()}.
1257 >     *
1258 >     * @return the hash code value for this map
1259       */
1260 <    @SuppressWarnings("unchecked")
1261 <    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
1262 <        long u = (j << SSHIFT) + SBASE;
1263 <        return ss == null ? null :
1264 <            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
1260 >    public int hashCode() {
1261 >        int h = 0;
1262 >        Node<K,V>[] t;
1263 >        if ((t = table) != null) {
1264 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1265 >            for (Node<K,V> p; (p = it.advance()) != null; )
1266 >                h += p.key.hashCode() ^ p.val.hashCode();
1267 >        }
1268 >        return h;
1269      }
1270  
1271      /**
1272 <     * Returns the segment for the given index, creating it and
1273 <     * recording in segment table (via CAS) if not already present.
1272 >     * Returns a string representation of this map.  The string
1273 >     * representation consists of a list of key-value mappings (in no
1274 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1275 >     * mappings are separated by the characters {@code ", "} (comma
1276 >     * and space).  Each key-value mapping is rendered as the key
1277 >     * followed by an equals sign ("{@code =}") followed by the
1278 >     * associated value.
1279       *
1280 <     * @param k the index
639 <     * @return the segment
1280 >     * @return a string representation of this map
1281       */
1282 <    @SuppressWarnings("unchecked")
1283 <    private Segment<K,V> ensureSegment(int k) {
1284 <        final Segment<K,V>[] ss = this.segments;
1285 <        long u = (k << SSHIFT) + SBASE; // raw offset
1286 <        Segment<K,V> seg;
1287 <        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
1288 <            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
1289 <            int cap = proto.table.length;
1290 <            float lf = proto.loadFactor;
1291 <            int threshold = (int)(cap * lf);
1292 <            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
1293 <            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1294 <                == null) { // recheck
1295 <                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
1296 <                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1297 <                       == null) {
1298 <                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
658 <                        break;
659 <                }
1282 >    public String toString() {
1283 >        Node<K,V>[] t;
1284 >        int f = (t = table) == null ? 0 : t.length;
1285 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1286 >        StringBuilder sb = new StringBuilder();
1287 >        sb.append('{');
1288 >        Node<K,V> p;
1289 >        if ((p = it.advance()) != null) {
1290 >            for (;;) {
1291 >                K k = p.key;
1292 >                V v = p.val;
1293 >                sb.append(k == this ? "(this Map)" : k);
1294 >                sb.append('=');
1295 >                sb.append(v == this ? "(this Map)" : v);
1296 >                if ((p = it.advance()) == null)
1297 >                    break;
1298 >                sb.append(',').append(' ');
1299              }
1300          }
1301 <        return seg;
1301 >        return sb.append('}').toString();
1302      }
1303  
665    // Hash-based segment and entry accesses
666
1304      /**
1305 <     * Gets the segment for the given hash code.
1305 >     * Compares the specified object with this map for equality.
1306 >     * Returns {@code true} if the given object is a map with the same
1307 >     * mappings as this map.  This operation may return misleading
1308 >     * results if either map is concurrently modified during execution
1309 >     * of this method.
1310 >     *
1311 >     * @param o object to be compared for equality with this map
1312 >     * @return {@code true} if the specified object is equal to this map
1313       */
1314 <    @SuppressWarnings("unchecked")
1315 <    private Segment<K,V> segmentForHash(int h) {
1316 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1317 <        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
1314 >    public boolean equals(Object o) {
1315 >        if (o != this) {
1316 >            if (!(o instanceof Map))
1317 >                return false;
1318 >            Map<?,?> m = (Map<?,?>) o;
1319 >            Node<K,V>[] t;
1320 >            int f = (t = table) == null ? 0 : t.length;
1321 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1322 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1323 >                V val = p.val;
1324 >                Object v = m.get(p.key);
1325 >                if (v == null || (v != val && !v.equals(val)))
1326 >                    return false;
1327 >            }
1328 >            for (Map.Entry<?,?> e : m.entrySet()) {
1329 >                Object mk, mv, v;
1330 >                if ((mk = e.getKey()) == null ||
1331 >                    (mv = e.getValue()) == null ||
1332 >                    (v = get(mk)) == null ||
1333 >                    (mv != v && !mv.equals(v)))
1334 >                    return false;
1335 >            }
1336 >        }
1337 >        return true;
1338      }
1339  
1340      /**
1341 <     * Gets the table entry for the given segment and hash code.
1341 >     * Stripped-down version of helper class used in previous version,
1342 >     * declared for the sake of serialization compatibility
1343       */
1344 <    @SuppressWarnings("unchecked")
1345 <    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
1346 <        HashEntry<K,V>[] tab;
1347 <        return (seg == null || (tab = seg.table) == null) ? null :
683 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
684 <            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1344 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1345 >        private static final long serialVersionUID = 2249069246763182397L;
1346 >        final float loadFactor;
1347 >        Segment(float lf) { this.loadFactor = lf; }
1348      }
1349  
687    /* ---------------- Public operations -------------- */
688
1350      /**
1351 <     * Creates a new, empty map with the specified initial
1352 <     * capacity, load factor and concurrency level.
1353 <     *
1354 <     * @param initialCapacity the initial capacity. The implementation
1355 <     * performs internal sizing to accommodate this many elements.
1356 <     * @param loadFactor  the load factor threshold, used to control resizing.
1357 <     * Resizing may be performed when the average number of elements per
1358 <     * bin exceeds this threshold.
698 <     * @param concurrencyLevel the estimated number of concurrently
699 <     * updating threads. The implementation performs internal sizing
700 <     * to try to accommodate this many threads.
701 <     * @throws IllegalArgumentException if the initial capacity is
702 <     * negative or the load factor or concurrencyLevel are
703 <     * nonpositive.
1351 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1352 >     * stream (i.e., serializes it).
1353 >     * @param s the stream
1354 >     * @throws java.io.IOException if an I/O error occurs
1355 >     * @serialData
1356 >     * the key (Object) and value (Object)
1357 >     * for each key-value mapping, followed by a null pair.
1358 >     * The key-value mappings are emitted in no particular order.
1359       */
1360 <    @SuppressWarnings("unchecked")
1361 <    public ConcurrentHashMap(int initialCapacity,
1362 <                             float loadFactor, int concurrencyLevel) {
1363 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
709 <            throw new IllegalArgumentException();
710 <        if (concurrencyLevel > MAX_SEGMENTS)
711 <            concurrencyLevel = MAX_SEGMENTS;
712 <        // Find power-of-two sizes best matching arguments
1360 >    private void writeObject(java.io.ObjectOutputStream s)
1361 >        throws java.io.IOException {
1362 >        // For serialization compatibility
1363 >        // Emulate segment calculation from previous version of this class
1364          int sshift = 0;
1365          int ssize = 1;
1366 <        while (ssize < concurrencyLevel) {
1366 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1367              ++sshift;
1368              ssize <<= 1;
1369          }
1370 <        this.segmentShift = 32 - sshift;
1371 <        this.segmentMask = ssize - 1;
1372 <        if (initialCapacity > MAXIMUM_CAPACITY)
1373 <            initialCapacity = MAXIMUM_CAPACITY;
1374 <        int c = initialCapacity / ssize;
1375 <        if (c * ssize < initialCapacity)
1376 <            ++c;
1377 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
1378 <        while (cap < c)
1379 <            cap <<= 1;
1380 <        // create segments and segments[0]
1381 <        Segment<K,V> s0 =
1382 <            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
1383 <                             (HashEntry<K,V>[])new HashEntry[cap]);
1384 <        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
1385 <        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
1386 <        this.segments = ss;
1370 >        int segmentShift = 32 - sshift;
1371 >        int segmentMask = ssize - 1;
1372 >        @SuppressWarnings("unchecked")
1373 >        Segment<K,V>[] segments = (Segment<K,V>[])
1374 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1375 >        for (int i = 0; i < segments.length; ++i)
1376 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1377 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1378 >        streamFields.put("segments", segments);
1379 >        streamFields.put("segmentShift", segmentShift);
1380 >        streamFields.put("segmentMask", segmentMask);
1381 >        s.writeFields();
1382 >
1383 >        Node<K,V>[] t;
1384 >        if ((t = table) != null) {
1385 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1386 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1387 >                s.writeObject(p.key);
1388 >                s.writeObject(p.val);
1389 >            }
1390 >        }
1391 >        s.writeObject(null);
1392 >        s.writeObject(null);
1393 >        segments = null; // throw away
1394      }
1395  
1396      /**
1397 <     * Creates a new, empty map with the specified initial capacity
1398 <     * and load factor and with the default concurrencyLevel (16).
1399 <     *
1400 <     * @param initialCapacity The implementation performs internal
1401 <     * sizing to accommodate this many elements.
1402 <     * @param loadFactor  the load factor threshold, used to control resizing.
1403 <     * Resizing may be performed when the average number of elements per
1404 <     * bin exceeds this threshold.
1405 <     * @throws IllegalArgumentException if the initial capacity of
1406 <     * elements is negative or the load factor is nonpositive
1397 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1398 >     * @param s the stream
1399 >     * @throws ClassNotFoundException if the class of a serialized object
1400 >     *         could not be found
1401 >     * @throws java.io.IOException if an I/O error occurs
1402 >     */
1403 >    private void readObject(java.io.ObjectInputStream s)
1404 >        throws java.io.IOException, ClassNotFoundException {
1405 >        /*
1406 >         * To improve performance in typical cases, we create nodes
1407 >         * while reading, then place in table once size is known.
1408 >         * However, we must also validate uniqueness and deal with
1409 >         * overpopulated bins while doing so, which requires
1410 >         * specialized versions of putVal mechanics.
1411 >         */
1412 >        sizeCtl = -1; // force exclusion for table construction
1413 >        s.defaultReadObject();
1414 >        long size = 0L;
1415 >        Node<K,V> p = null;
1416 >        for (;;) {
1417 >            @SuppressWarnings("unchecked")
1418 >            K k = (K) s.readObject();
1419 >            @SuppressWarnings("unchecked")
1420 >            V v = (V) s.readObject();
1421 >            if (k != null && v != null) {
1422 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1423 >                ++size;
1424 >            }
1425 >            else
1426 >                break;
1427 >        }
1428 >        if (size == 0L)
1429 >            sizeCtl = 0;
1430 >        else {
1431 >            int n;
1432 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1433 >                n = MAXIMUM_CAPACITY;
1434 >            else {
1435 >                int sz = (int)size;
1436 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1437 >            }
1438 >            @SuppressWarnings("unchecked")
1439 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1440 >            int mask = n - 1;
1441 >            long added = 0L;
1442 >            while (p != null) {
1443 >                boolean insertAtFront;
1444 >                Node<K,V> next = p.next, first;
1445 >                int h = p.hash, j = h & mask;
1446 >                if ((first = tabAt(tab, j)) == null)
1447 >                    insertAtFront = true;
1448 >                else {
1449 >                    K k = p.key;
1450 >                    if (first.hash < 0) {
1451 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1452 >                        if (t.putTreeVal(h, k, p.val) == null)
1453 >                            ++added;
1454 >                        insertAtFront = false;
1455 >                    }
1456 >                    else {
1457 >                        int binCount = 0;
1458 >                        insertAtFront = true;
1459 >                        Node<K,V> q; K qk;
1460 >                        for (q = first; q != null; q = q.next) {
1461 >                            if (q.hash == h &&
1462 >                                ((qk = q.key) == k ||
1463 >                                 (qk != null && k.equals(qk)))) {
1464 >                                insertAtFront = false;
1465 >                                break;
1466 >                            }
1467 >                            ++binCount;
1468 >                        }
1469 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1470 >                            insertAtFront = false;
1471 >                            ++added;
1472 >                            p.next = first;
1473 >                            TreeNode<K,V> hd = null, tl = null;
1474 >                            for (q = p; q != null; q = q.next) {
1475 >                                TreeNode<K,V> t = new TreeNode<K,V>
1476 >                                    (q.hash, q.key, q.val, null, null);
1477 >                                if ((t.prev = tl) == null)
1478 >                                    hd = t;
1479 >                                else
1480 >                                    tl.next = t;
1481 >                                tl = t;
1482 >                            }
1483 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1484 >                        }
1485 >                    }
1486 >                }
1487 >                if (insertAtFront) {
1488 >                    ++added;
1489 >                    p.next = first;
1490 >                    setTabAt(tab, j, p);
1491 >                }
1492 >                p = next;
1493 >            }
1494 >            table = tab;
1495 >            sizeCtl = n - (n >>> 2);
1496 >            baseCount = added;
1497 >        }
1498 >    }
1499 >
1500 >    // ConcurrentMap methods
1501 >
1502 >    /**
1503 >     * {@inheritDoc}
1504       *
1505 <     * @since 1.6
1505 >     * @return the previous value associated with the specified key,
1506 >     *         or {@code null} if there was no mapping for the key
1507 >     * @throws NullPointerException if the specified key or value is null
1508       */
1509 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
1510 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
1509 >    public V putIfAbsent(K key, V value) {
1510 >        return putVal(key, value, true);
1511      }
1512  
1513      /**
1514 <     * Creates a new, empty map with the specified initial capacity,
758 <     * and with default load factor (0.75) and concurrencyLevel (16).
1514 >     * {@inheritDoc}
1515       *
1516 <     * @param initialCapacity the initial capacity. The implementation
761 <     * performs internal sizing to accommodate this many elements.
762 <     * @throws IllegalArgumentException if the initial capacity of
763 <     * elements is negative.
1516 >     * @throws NullPointerException if the specified key is null
1517       */
1518 <    public ConcurrentHashMap(int initialCapacity) {
1519 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1518 >    public boolean remove(Object key, Object value) {
1519 >        if (key == null)
1520 >            throw new NullPointerException();
1521 >        return value != null && replaceNode(key, null, value) != null;
1522      }
1523  
1524      /**
1525 <     * Creates a new, empty map with a default initial capacity (16),
1526 <     * load factor (0.75) and concurrencyLevel (16).
1525 >     * {@inheritDoc}
1526 >     *
1527 >     * @throws NullPointerException if any of the arguments are null
1528       */
1529 <    public ConcurrentHashMap() {
1530 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1529 >    public boolean replace(K key, V oldValue, V newValue) {
1530 >        if (key == null || oldValue == null || newValue == null)
1531 >            throw new NullPointerException();
1532 >        return replaceNode(key, newValue, oldValue) != null;
1533      }
1534  
1535      /**
1536 <     * Creates a new map with the same mappings as the given map.
779 <     * The map is created with a capacity of 1.5 times the number
780 <     * of mappings in the given map or 16 (whichever is greater),
781 <     * and a default load factor (0.75) and concurrencyLevel (16).
1536 >     * {@inheritDoc}
1537       *
1538 <     * @param m the map
1538 >     * @return the previous value associated with the specified key,
1539 >     *         or {@code null} if there was no mapping for the key
1540 >     * @throws NullPointerException if the specified key or value is null
1541       */
1542 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
1543 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
1544 <                      DEFAULT_INITIAL_CAPACITY),
1545 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
789 <        putAll(m);
1542 >    public V replace(K key, V value) {
1543 >        if (key == null || value == null)
1544 >            throw new NullPointerException();
1545 >        return replaceNode(key, value, null);
1546      }
1547  
1548 +    // Overrides of JDK8+ Map extension method defaults
1549 +
1550      /**
1551 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
1551 >     * Returns the value to which the specified key is mapped, or the
1552 >     * given default value if this map contains no mapping for the
1553 >     * key.
1554       *
1555 <     * @return <tt>true</tt> if this map contains no key-value mappings
1555 >     * @param key the key whose associated value is to be returned
1556 >     * @param defaultValue the value to return if this map contains
1557 >     * no mapping for the given key
1558 >     * @return the mapping for the key, if present; else the default value
1559 >     * @throws NullPointerException if the specified key is null
1560       */
1561 <    public boolean isEmpty() {
1562 <        /*
1563 <         * Sum per-segment modCounts to avoid mis-reporting when
1564 <         * elements are concurrently added and removed in one segment
1565 <         * while checking another, in which case the table was never
1566 <         * actually empty at any point. (The sum ensures accuracy up
1567 <         * through at least 1<<31 per-segment modifications before
1568 <         * recheck.)  Methods size() and containsValue() use similar
1569 <         * constructions for stability checks.
1570 <         */
1571 <        long sum = 0L;
1572 <        final Segment<K,V>[] segments = this.segments;
809 <        for (int j = 0; j < segments.length; ++j) {
810 <            Segment<K,V> seg = segmentAt(segments, j);
811 <            if (seg != null) {
812 <                if (seg.count != 0)
813 <                    return false;
814 <                sum += seg.modCount;
1561 >    public V getOrDefault(Object key, V defaultValue) {
1562 >        V v;
1563 >        return (v = get(key)) == null ? defaultValue : v;
1564 >    }
1565 >
1566 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1567 >        if (action == null) throw new NullPointerException();
1568 >        Node<K,V>[] t;
1569 >        if ((t = table) != null) {
1570 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1571 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1572 >                action.accept(p.key, p.val);
1573              }
1574          }
1575 <        if (sum != 0L) { // recheck unless no modifications
1576 <            for (int j = 0; j < segments.length; ++j) {
1577 <                Segment<K,V> seg = segmentAt(segments, j);
1578 <                if (seg != null) {
1579 <                    if (seg.count != 0)
1580 <                        return false;
1581 <                    sum -= seg.modCount;
1575 >    }
1576 >
1577 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1578 >        if (function == null) throw new NullPointerException();
1579 >        Node<K,V>[] t;
1580 >        if ((t = table) != null) {
1581 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 >                V oldValue = p.val;
1584 >                for (K key = p.key;;) {
1585 >                    V newValue = function.apply(key, oldValue);
1586 >                    if (newValue == null)
1587 >                        throw new NullPointerException();
1588 >                    if (replaceNode(key, newValue, oldValue) != null ||
1589 >                        (oldValue = get(key)) == null)
1590 >                        break;
1591                  }
1592              }
826            if (sum != 0L)
827                return false;
1593          }
829        return true;
1594      }
1595  
1596      /**
1597 <     * Returns the number of key-value mappings in this map.  If the
1598 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
1599 <     * <tt>Integer.MAX_VALUE</tt>.
1597 >     * Helper method for EntrySet.removeIf
1598 >     */
1599 >    boolean removeEntryIf(Predicate<? super Entry<K, V>> function) {
1600 >        if (function == null) throw new NullPointerException();
1601 >        Node<K,V>[] t;
1602 >        boolean removed = false;
1603 >        if ((t = table) != null) {
1604 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1605 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1606 >                K k = p.key;
1607 >                V v = p.val;
1608 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1609 >                if (function.test(e) && replaceNode(k, null, v) != null)
1610 >                    removed = true;
1611 >            }
1612 >        }
1613 >        return removed;
1614 >    }
1615 >
1616 >    /**
1617 >     * If the specified key is not already associated with a value,
1618 >     * attempts to compute its value using the given mapping function
1619 >     * and enters it into this map unless {@code null}.  The entire
1620 >     * method invocation is performed atomically, so the function is
1621 >     * applied at most once per key.  Some attempted update operations
1622 >     * on this map by other threads may be blocked while computation
1623 >     * is in progress, so the computation should be short and simple,
1624 >     * and must not attempt to update any other mappings of this map.
1625       *
1626 <     * @return the number of key-value mappings in this map
1626 >     * @param key key with which the specified value is to be associated
1627 >     * @param mappingFunction the function to compute a value
1628 >     * @return the current (existing or computed) value associated with
1629 >     *         the specified key, or null if the computed value is null
1630 >     * @throws NullPointerException if the specified key or mappingFunction
1631 >     *         is null
1632 >     * @throws IllegalStateException if the computation detectably
1633 >     *         attempts a recursive update to this map that would
1634 >     *         otherwise never complete
1635 >     * @throws RuntimeException or Error if the mappingFunction does so,
1636 >     *         in which case the mapping is left unestablished
1637       */
1638 <    public int size() {
1639 <        // Try a few times to get accurate count. On failure due to
1640 <        // continuous async changes in table, resort to locking.
1641 <        final Segment<K,V>[] segments = this.segments;
1642 <        int size;
1643 <        boolean overflow; // true if size overflows 32 bits
1644 <        long sum;         // sum of modCounts
1645 <        long last = 0L;   // previous sum
1646 <        int retries = -1; // first iteration isn't retry
1647 <        try {
1648 <            for (;;) {
1649 <                if (retries++ == RETRIES_BEFORE_LOCK) {
1650 <                    for (int j = 0; j < segments.length; ++j)
1651 <                        ensureSegment(j).lock(); // force creation
1652 <                }
1653 <                sum = 0L;
1654 <                size = 0;
1655 <                overflow = false;
1656 <                for (int j = 0; j < segments.length; ++j) {
1657 <                    Segment<K,V> seg = segmentAt(segments, j);
1658 <                    if (seg != null) {
1659 <                        sum += seg.modCount;
861 <                        int c = seg.count;
862 <                        if (c < 0 || (size += c) < 0)
863 <                            overflow = true;
1638 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1639 >        if (key == null || mappingFunction == null)
1640 >            throw new NullPointerException();
1641 >        int h = spread(key.hashCode());
1642 >        V val = null;
1643 >        int binCount = 0;
1644 >        for (Node<K,V>[] tab = table;;) {
1645 >            Node<K,V> f; int n, i, fh;
1646 >            if (tab == null || (n = tab.length) == 0)
1647 >                tab = initTable();
1648 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1649 >                Node<K,V> r = new ReservationNode<K,V>();
1650 >                synchronized (r) {
1651 >                    if (casTabAt(tab, i, null, r)) {
1652 >                        binCount = 1;
1653 >                        Node<K,V> node = null;
1654 >                        try {
1655 >                            if ((val = mappingFunction.apply(key)) != null)
1656 >                                node = new Node<K,V>(h, key, val, null);
1657 >                        } finally {
1658 >                            setTabAt(tab, i, node);
1659 >                        }
1660                      }
1661                  }
1662 <                if (sum == last)
1662 >                if (binCount != 0)
1663                      break;
868                last = sum;
1664              }
1665 <        } finally {
1666 <            if (retries > RETRIES_BEFORE_LOCK) {
1667 <                for (int j = 0; j < segments.length; ++j)
1668 <                    segmentAt(segments, j).unlock();
1665 >            else if ((fh = f.hash) == MOVED)
1666 >                tab = helpTransfer(tab, f);
1667 >            else {
1668 >                boolean added = false;
1669 >                synchronized (f) {
1670 >                    if (tabAt(tab, i) == f) {
1671 >                        if (fh >= 0) {
1672 >                            binCount = 1;
1673 >                            for (Node<K,V> e = f;; ++binCount) {
1674 >                                K ek;
1675 >                                if (e.hash == h &&
1676 >                                    ((ek = e.key) == key ||
1677 >                                     (ek != null && key.equals(ek)))) {
1678 >                                    val = e.val;
1679 >                                    break;
1680 >                                }
1681 >                                Node<K,V> pred = e;
1682 >                                if ((e = e.next) == null) {
1683 >                                    if ((val = mappingFunction.apply(key)) != null) {
1684 >                                        if (pred.next != null)
1685 >                                            throw new IllegalStateException("Recursive update");
1686 >                                        added = true;
1687 >                                        pred.next = new Node<K,V>(h, key, val, null);
1688 >                                    }
1689 >                                    break;
1690 >                                }
1691 >                            }
1692 >                        }
1693 >                        else if (f instanceof TreeBin) {
1694 >                            binCount = 2;
1695 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1696 >                            TreeNode<K,V> r, p;
1697 >                            if ((r = t.root) != null &&
1698 >                                (p = r.findTreeNode(h, key, null)) != null)
1699 >                                val = p.val;
1700 >                            else if ((val = mappingFunction.apply(key)) != null) {
1701 >                                added = true;
1702 >                                t.putTreeVal(h, key, val);
1703 >                            }
1704 >                        }
1705 >                        else if (f instanceof ReservationNode)
1706 >                            throw new IllegalStateException("Recursive update");
1707 >                    }
1708 >                }
1709 >                if (binCount != 0) {
1710 >                    if (binCount >= TREEIFY_THRESHOLD)
1711 >                        treeifyBin(tab, i);
1712 >                    if (!added)
1713 >                        return val;
1714 >                    break;
1715 >                }
1716              }
1717          }
1718 <        return overflow ? Integer.MAX_VALUE : size;
1718 >        if (val != null)
1719 >            addCount(1L, binCount);
1720 >        return val;
1721      }
1722  
1723      /**
1724 <     * Returns the value to which the specified key is mapped,
1725 <     * or {@code null} if this map contains no mapping for the key.
1726 <     *
1727 <     * <p>More formally, if this map contains a mapping from a key
1728 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
1729 <     * then this method returns {@code v}; otherwise it returns
1730 <     * {@code null}.  (There can be at most one such mapping.)
1724 >     * If the value for the specified key is present, attempts to
1725 >     * compute a new mapping given the key and its current mapped
1726 >     * value.  The entire method invocation is performed atomically.
1727 >     * Some attempted update operations on this map by other threads
1728 >     * may be blocked while computation is in progress, so the
1729 >     * computation should be short and simple, and must not attempt to
1730 >     * update any other mappings of this map.
1731       *
1732 <     * @throws NullPointerException if the specified key is null
1732 >     * @param key key with which a value may be associated
1733 >     * @param remappingFunction the function to compute a value
1734 >     * @return the new value associated with the specified key, or null if none
1735 >     * @throws NullPointerException if the specified key or remappingFunction
1736 >     *         is null
1737 >     * @throws IllegalStateException if the computation detectably
1738 >     *         attempts a recursive update to this map that would
1739 >     *         otherwise never complete
1740 >     * @throws RuntimeException or Error if the remappingFunction does so,
1741 >     *         in which case the mapping is unchanged
1742       */
1743 <    public V get(Object key) {
1744 <        Segment<K,V> s; // manually integrate access methods to reduce overhead
1745 <        HashEntry<K,V>[] tab;
1746 <        int h = hash(key.hashCode());
1747 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1748 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
1749 <            (tab = s.table) != null) {
1750 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
1751 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1752 <                 e != null; e = e.next) {
1753 <                K k;
1754 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
1755 <                    return e.value;
1743 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1744 >        if (key == null || remappingFunction == null)
1745 >            throw new NullPointerException();
1746 >        int h = spread(key.hashCode());
1747 >        V val = null;
1748 >        int delta = 0;
1749 >        int binCount = 0;
1750 >        for (Node<K,V>[] tab = table;;) {
1751 >            Node<K,V> f; int n, i, fh;
1752 >            if (tab == null || (n = tab.length) == 0)
1753 >                tab = initTable();
1754 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1755 >                break;
1756 >            else if ((fh = f.hash) == MOVED)
1757 >                tab = helpTransfer(tab, f);
1758 >            else {
1759 >                synchronized (f) {
1760 >                    if (tabAt(tab, i) == f) {
1761 >                        if (fh >= 0) {
1762 >                            binCount = 1;
1763 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1764 >                                K ek;
1765 >                                if (e.hash == h &&
1766 >                                    ((ek = e.key) == key ||
1767 >                                     (ek != null && key.equals(ek)))) {
1768 >                                    val = remappingFunction.apply(key, e.val);
1769 >                                    if (val != null)
1770 >                                        e.val = val;
1771 >                                    else {
1772 >                                        delta = -1;
1773 >                                        Node<K,V> en = e.next;
1774 >                                        if (pred != null)
1775 >                                            pred.next = en;
1776 >                                        else
1777 >                                            setTabAt(tab, i, en);
1778 >                                    }
1779 >                                    break;
1780 >                                }
1781 >                                pred = e;
1782 >                                if ((e = e.next) == null)
1783 >                                    break;
1784 >                            }
1785 >                        }
1786 >                        else if (f instanceof TreeBin) {
1787 >                            binCount = 2;
1788 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1789 >                            TreeNode<K,V> r, p;
1790 >                            if ((r = t.root) != null &&
1791 >                                (p = r.findTreeNode(h, key, null)) != null) {
1792 >                                val = remappingFunction.apply(key, p.val);
1793 >                                if (val != null)
1794 >                                    p.val = val;
1795 >                                else {
1796 >                                    delta = -1;
1797 >                                    if (t.removeTreeNode(p))
1798 >                                        setTabAt(tab, i, untreeify(t.first));
1799 >                                }
1800 >                            }
1801 >                        }
1802 >                        else if (f instanceof ReservationNode)
1803 >                            throw new IllegalStateException("Recursive update");
1804 >                    }
1805 >                }
1806 >                if (binCount != 0)
1807 >                    break;
1808              }
1809          }
1810 <        return null;
1810 >        if (delta != 0)
1811 >            addCount((long)delta, binCount);
1812 >        return val;
1813      }
1814  
1815      /**
1816 <     * Tests if the specified object is a key in this table.
1816 >     * Attempts to compute a mapping for the specified key and its
1817 >     * current mapped value (or {@code null} if there is no current
1818 >     * mapping). The entire method invocation is performed atomically.
1819 >     * Some attempted update operations on this map by other threads
1820 >     * may be blocked while computation is in progress, so the
1821 >     * computation should be short and simple, and must not attempt to
1822 >     * update any other mappings of this Map.
1823       *
1824 <     * @param  key   possible key
1825 <     * @return <tt>true</tt> if and only if the specified object
1826 <     *         is a key in this table, as determined by the
1827 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
1828 <     * @throws NullPointerException if the specified key is null
1829 <     */
1830 <    @SuppressWarnings("unchecked")
1831 <    public boolean containsKey(Object key) {
1832 <        Segment<K,V> s; // same as get() except no need for volatile value read
1833 <        HashEntry<K,V>[] tab;
1834 <        int h = hash(key.hashCode());
1835 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1836 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
1837 <            (tab = s.table) != null) {
1838 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
1839 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1840 <                 e != null; e = e.next) {
1841 <                K k;
1842 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
1843 <                    return true;
1824 >     * @param key key with which the specified value is to be associated
1825 >     * @param remappingFunction the function to compute a value
1826 >     * @return the new value associated with the specified key, or null if none
1827 >     * @throws NullPointerException if the specified key or remappingFunction
1828 >     *         is null
1829 >     * @throws IllegalStateException if the computation detectably
1830 >     *         attempts a recursive update to this map that would
1831 >     *         otherwise never complete
1832 >     * @throws RuntimeException or Error if the remappingFunction does so,
1833 >     *         in which case the mapping is unchanged
1834 >     */
1835 >    public V compute(K key,
1836 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1837 >        if (key == null || remappingFunction == null)
1838 >            throw new NullPointerException();
1839 >        int h = spread(key.hashCode());
1840 >        V val = null;
1841 >        int delta = 0;
1842 >        int binCount = 0;
1843 >        for (Node<K,V>[] tab = table;;) {
1844 >            Node<K,V> f; int n, i, fh;
1845 >            if (tab == null || (n = tab.length) == 0)
1846 >                tab = initTable();
1847 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1848 >                Node<K,V> r = new ReservationNode<K,V>();
1849 >                synchronized (r) {
1850 >                    if (casTabAt(tab, i, null, r)) {
1851 >                        binCount = 1;
1852 >                        Node<K,V> node = null;
1853 >                        try {
1854 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1855 >                                delta = 1;
1856 >                                node = new Node<K,V>(h, key, val, null);
1857 >                            }
1858 >                        } finally {
1859 >                            setTabAt(tab, i, node);
1860 >                        }
1861 >                    }
1862 >                }
1863 >                if (binCount != 0)
1864 >                    break;
1865 >            }
1866 >            else if ((fh = f.hash) == MOVED)
1867 >                tab = helpTransfer(tab, f);
1868 >            else {
1869 >                synchronized (f) {
1870 >                    if (tabAt(tab, i) == f) {
1871 >                        if (fh >= 0) {
1872 >                            binCount = 1;
1873 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1874 >                                K ek;
1875 >                                if (e.hash == h &&
1876 >                                    ((ek = e.key) == key ||
1877 >                                     (ek != null && key.equals(ek)))) {
1878 >                                    val = remappingFunction.apply(key, e.val);
1879 >                                    if (val != null)
1880 >                                        e.val = val;
1881 >                                    else {
1882 >                                        delta = -1;
1883 >                                        Node<K,V> en = e.next;
1884 >                                        if (pred != null)
1885 >                                            pred.next = en;
1886 >                                        else
1887 >                                            setTabAt(tab, i, en);
1888 >                                    }
1889 >                                    break;
1890 >                                }
1891 >                                pred = e;
1892 >                                if ((e = e.next) == null) {
1893 >                                    val = remappingFunction.apply(key, null);
1894 >                                    if (val != null) {
1895 >                                        if (pred.next != null)
1896 >                                            throw new IllegalStateException("Recursive update");
1897 >                                        delta = 1;
1898 >                                        pred.next =
1899 >                                            new Node<K,V>(h, key, val, null);
1900 >                                    }
1901 >                                    break;
1902 >                                }
1903 >                            }
1904 >                        }
1905 >                        else if (f instanceof TreeBin) {
1906 >                            binCount = 1;
1907 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1908 >                            TreeNode<K,V> r, p;
1909 >                            if ((r = t.root) != null)
1910 >                                p = r.findTreeNode(h, key, null);
1911 >                            else
1912 >                                p = null;
1913 >                            V pv = (p == null) ? null : p.val;
1914 >                            val = remappingFunction.apply(key, pv);
1915 >                            if (val != null) {
1916 >                                if (p != null)
1917 >                                    p.val = val;
1918 >                                else {
1919 >                                    delta = 1;
1920 >                                    t.putTreeVal(h, key, val);
1921 >                                }
1922 >                            }
1923 >                            else if (p != null) {
1924 >                                delta = -1;
1925 >                                if (t.removeTreeNode(p))
1926 >                                    setTabAt(tab, i, untreeify(t.first));
1927 >                            }
1928 >                        }
1929 >                        else if (f instanceof ReservationNode)
1930 >                            throw new IllegalStateException("Recursive update");
1931 >                    }
1932 >                }
1933 >                if (binCount != 0) {
1934 >                    if (binCount >= TREEIFY_THRESHOLD)
1935 >                        treeifyBin(tab, i);
1936 >                    break;
1937 >                }
1938              }
1939          }
1940 <        return false;
1940 >        if (delta != 0)
1941 >            addCount((long)delta, binCount);
1942 >        return val;
1943      }
1944  
1945      /**
1946 <     * Returns <tt>true</tt> if this map maps one or more keys to the
1947 <     * specified value. Note: This method requires a full internal
1948 <     * traversal of the hash table, and so is much slower than
1949 <     * method <tt>containsKey</tt>.
1946 >     * If the specified key is not already associated with a
1947 >     * (non-null) value, associates it with the given value.
1948 >     * Otherwise, replaces the value with the results of the given
1949 >     * remapping function, or removes if {@code null}. The entire
1950 >     * method invocation is performed atomically.  Some attempted
1951 >     * update operations on this map by other threads may be blocked
1952 >     * while computation is in progress, so the computation should be
1953 >     * short and simple, and must not attempt to update any other
1954 >     * mappings of this Map.
1955       *
1956 <     * @param value value whose presence in this map is to be tested
1957 <     * @return <tt>true</tt> if this map maps one or more keys to the
1958 <     *         specified value
1959 <     * @throws NullPointerException if the specified value is null
1956 >     * @param key key with which the specified value is to be associated
1957 >     * @param value the value to use if absent
1958 >     * @param remappingFunction the function to recompute a value if present
1959 >     * @return the new value associated with the specified key, or null if none
1960 >     * @throws NullPointerException if the specified key or the
1961 >     *         remappingFunction is null
1962 >     * @throws RuntimeException or Error if the remappingFunction does so,
1963 >     *         in which case the mapping is unchanged
1964       */
1965 <    public boolean containsValue(Object value) {
1966 <        // Same idea as size()
949 <        if (value == null)
1965 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1966 >        if (key == null || value == null || remappingFunction == null)
1967              throw new NullPointerException();
1968 <        final Segment<K,V>[] segments = this.segments;
1969 <        boolean found = false;
1970 <        long last = 0L;   // previous sum
1971 <        int retries = -1;
1972 <        try {
1973 <            outer: for (;;) {
1974 <                if (retries++ == RETRIES_BEFORE_LOCK) {
1975 <                    for (int j = 0; j < segments.length; ++j)
1976 <                        ensureSegment(j).lock(); // force creation
1977 <                }
1978 <                long sum = 0L;
1979 <                for (int j = 0; j < segments.length; ++j) {
1980 <                    HashEntry<K,V>[] tab;
1981 <                    Segment<K,V> seg = segmentAt(segments, j);
1982 <                    if (seg != null && (tab = seg.table) != null) {
1983 <                        for (int i = 0 ; i < tab.length; i++) {
1984 <                            HashEntry<K,V> e;
1985 <                            for (e = entryAt(tab, i); e != null; e = e.next) {
1986 <                                V v = e.value;
1987 <                                if (v != null && value.equals(v)) {
1988 <                                    found = true;
1989 <                                    break outer;
1968 >        int h = spread(key.hashCode());
1969 >        V val = null;
1970 >        int delta = 0;
1971 >        int binCount = 0;
1972 >        for (Node<K,V>[] tab = table;;) {
1973 >            Node<K,V> f; int n, i, fh;
1974 >            if (tab == null || (n = tab.length) == 0)
1975 >                tab = initTable();
1976 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1977 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1978 >                    delta = 1;
1979 >                    val = value;
1980 >                    break;
1981 >                }
1982 >            }
1983 >            else if ((fh = f.hash) == MOVED)
1984 >                tab = helpTransfer(tab, f);
1985 >            else {
1986 >                synchronized (f) {
1987 >                    if (tabAt(tab, i) == f) {
1988 >                        if (fh >= 0) {
1989 >                            binCount = 1;
1990 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1991 >                                K ek;
1992 >                                if (e.hash == h &&
1993 >                                    ((ek = e.key) == key ||
1994 >                                     (ek != null && key.equals(ek)))) {
1995 >                                    val = remappingFunction.apply(e.val, value);
1996 >                                    if (val != null)
1997 >                                        e.val = val;
1998 >                                    else {
1999 >                                        delta = -1;
2000 >                                        Node<K,V> en = e.next;
2001 >                                        if (pred != null)
2002 >                                            pred.next = en;
2003 >                                        else
2004 >                                            setTabAt(tab, i, en);
2005 >                                    }
2006 >                                    break;
2007 >                                }
2008 >                                pred = e;
2009 >                                if ((e = e.next) == null) {
2010 >                                    delta = 1;
2011 >                                    val = value;
2012 >                                    pred.next =
2013 >                                        new Node<K,V>(h, key, val, null);
2014 >                                    break;
2015                                  }
2016                              }
2017                          }
2018 <                        sum += seg.modCount;
2018 >                        else if (f instanceof TreeBin) {
2019 >                            binCount = 2;
2020 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2021 >                            TreeNode<K,V> r = t.root;
2022 >                            TreeNode<K,V> p = (r == null) ? null :
2023 >                                r.findTreeNode(h, key, null);
2024 >                            val = (p == null) ? value :
2025 >                                remappingFunction.apply(p.val, value);
2026 >                            if (val != null) {
2027 >                                if (p != null)
2028 >                                    p.val = val;
2029 >                                else {
2030 >                                    delta = 1;
2031 >                                    t.putTreeVal(h, key, val);
2032 >                                }
2033 >                            }
2034 >                            else if (p != null) {
2035 >                                delta = -1;
2036 >                                if (t.removeTreeNode(p))
2037 >                                    setTabAt(tab, i, untreeify(t.first));
2038 >                            }
2039 >                        }
2040 >                        else if (f instanceof ReservationNode)
2041 >                            throw new IllegalStateException("Recursive update");
2042                      }
2043                  }
2044 <                if (retries > 0 && sum == last)
2044 >                if (binCount != 0) {
2045 >                    if (binCount >= TREEIFY_THRESHOLD)
2046 >                        treeifyBin(tab, i);
2047                      break;
2048 <                last = sum;
982 <            }
983 <        } finally {
984 <            if (retries > RETRIES_BEFORE_LOCK) {
985 <                for (int j = 0; j < segments.length; ++j)
986 <                    segmentAt(segments, j).unlock();
2048 >                }
2049              }
2050          }
2051 <        return found;
2051 >        if (delta != 0)
2052 >            addCount((long)delta, binCount);
2053 >        return val;
2054      }
2055  
2056 +    // Hashtable legacy methods
2057 +
2058      /**
2059       * Legacy method testing if some key maps into the specified value
2060 <     * in this table.  This method is identical in functionality to
2061 <     * {@link #containsValue}, and exists solely to ensure
2060 >     * in this table.
2061 >     *
2062 >     * @deprecated This method is identical in functionality to
2063 >     * {@link #containsValue(Object)}, and exists solely to ensure
2064       * full compatibility with class {@link java.util.Hashtable},
2065       * which supported this method prior to introduction of the
2066       * Java Collections framework.
2067       *
2068       * @param  value a value to search for
2069 <     * @return <tt>true</tt> if and only if some key maps to the
2070 <     *         <tt>value</tt> argument in this table as
2071 <     *         determined by the <tt>equals</tt> method;
2072 <     *         <tt>false</tt> otherwise
2069 >     * @return {@code true} if and only if some key maps to the
2070 >     *         {@code value} argument in this table as
2071 >     *         determined by the {@code equals} method;
2072 >     *         {@code false} otherwise
2073       * @throws NullPointerException if the specified value is null
2074       */
2075 +    @Deprecated
2076      public boolean contains(Object value) {
2077          return containsValue(value);
2078      }
2079  
2080      /**
2081 <     * Maps the specified key to the specified value in this table.
1013 <     * Neither the key nor the value can be null.
1014 <     *
1015 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
1016 <     * with a key that is equal to the original key.
2081 >     * Returns an enumeration of the keys in this table.
2082       *
2083 <     * @param key key with which the specified value is to be associated
2084 <     * @param value value to be associated with the specified key
1020 <     * @return the previous value associated with <tt>key</tt>, or
1021 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1022 <     * @throws NullPointerException if the specified key or value is null
2083 >     * @return an enumeration of the keys in this table
2084 >     * @see #keySet()
2085       */
2086 <    @SuppressWarnings("unchecked")
2087 <    public V put(K key, V value) {
2088 <        Segment<K,V> s;
2089 <        if (value == null)
1028 <            throw new NullPointerException();
1029 <        int hash = hash(key.hashCode());
1030 <        int j = (hash >>> segmentShift) & segmentMask;
1031 <        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1032 <             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1033 <            s = ensureSegment(j);
1034 <        return s.put(key, hash, value, false);
2086 >    public Enumeration<K> keys() {
2087 >        Node<K,V>[] t;
2088 >        int f = (t = table) == null ? 0 : t.length;
2089 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2090      }
2091  
2092      /**
2093 <     * {@inheritDoc}
2093 >     * Returns an enumeration of the values in this table.
2094       *
2095 <     * @return the previous value associated with the specified key,
2096 <     *         or <tt>null</tt> if there was no mapping for the key
1042 <     * @throws NullPointerException if the specified key or value is null
2095 >     * @return an enumeration of the values in this table
2096 >     * @see #values()
2097       */
2098 <    @SuppressWarnings("unchecked")
2099 <    public V putIfAbsent(K key, V value) {
2100 <        Segment<K,V> s;
2101 <        if (value == null)
1048 <            throw new NullPointerException();
1049 <        int hash = hash(key.hashCode());
1050 <        int j = (hash >>> segmentShift) & segmentMask;
1051 <        if ((s = (Segment<K,V>)UNSAFE.getObject
1052 <             (segments, (j << SSHIFT) + SBASE)) == null)
1053 <            s = ensureSegment(j);
1054 <        return s.put(key, hash, value, true);
2098 >    public Enumeration<V> elements() {
2099 >        Node<K,V>[] t;
2100 >        int f = (t = table) == null ? 0 : t.length;
2101 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2102      }
2103  
2104 +    // ConcurrentHashMap-only methods
2105 +
2106      /**
2107 <     * Copies all of the mappings from the specified map to this one.
2108 <     * These mappings replace any mappings that this map had for any of the
2109 <     * keys currently in the specified map.
2107 >     * Returns the number of mappings. This method should be used
2108 >     * instead of {@link #size} because a ConcurrentHashMap may
2109 >     * contain more mappings than can be represented as an int. The
2110 >     * value returned is an estimate; the actual count may differ if
2111 >     * there are concurrent insertions or removals.
2112       *
2113 <     * @param m mappings to be stored in this map
2113 >     * @return the number of mappings
2114 >     * @since 1.8
2115       */
2116 <    public void putAll(Map<? extends K, ? extends V> m) {
2117 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2118 <            put(e.getKey(), e.getValue());
2116 >    public long mappingCount() {
2117 >        long n = sumCount();
2118 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2119      }
2120  
2121      /**
2122 <     * Removes the key (and its corresponding value) from this map.
2123 <     * This method does nothing if the key is not in the map.
2122 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2123 >     * from the given type to {@code Boolean.TRUE}.
2124       *
2125 <     * @param  key the key that needs to be removed
2126 <     * @return the previous value associated with <tt>key</tt>, or
2127 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1076 <     * @throws NullPointerException if the specified key is null
2125 >     * @param <K> the element type of the returned set
2126 >     * @return the new set
2127 >     * @since 1.8
2128       */
2129 <    public V remove(Object key) {
2130 <        int hash = hash(key.hashCode());
2131 <        Segment<K,V> s = segmentForHash(hash);
1081 <        return s == null ? null : s.remove(key, hash, null);
2129 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2130 >        return new KeySetView<K,Boolean>
2131 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2132      }
2133  
2134      /**
2135 <     * {@inheritDoc}
2135 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2136 >     * from the given type to {@code Boolean.TRUE}.
2137       *
2138 <     * @throws NullPointerException if the specified key is null
2138 >     * @param initialCapacity The implementation performs internal
2139 >     * sizing to accommodate this many elements.
2140 >     * @param <K> the element type of the returned set
2141 >     * @return the new set
2142 >     * @throws IllegalArgumentException if the initial capacity of
2143 >     * elements is negative
2144 >     * @since 1.8
2145       */
2146 <    public boolean remove(Object key, Object value) {
2147 <        int hash = hash(key.hashCode());
2148 <        Segment<K,V> s;
1092 <        return value != null && (s = segmentForHash(hash)) != null &&
1093 <            s.remove(key, hash, value) != null;
2146 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2147 >        return new KeySetView<K,Boolean>
2148 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2149      }
2150  
2151      /**
2152 <     * {@inheritDoc}
2152 >     * Returns a {@link Set} view of the keys in this map, using the
2153 >     * given common mapped value for any additions (i.e., {@link
2154 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2155 >     * This is of course only appropriate if it is acceptable to use
2156 >     * the same value for all additions from this view.
2157       *
2158 <     * @throws NullPointerException if any of the arguments are null
2158 >     * @param mappedValue the mapped value to use for any additions
2159 >     * @return the set view
2160 >     * @throws NullPointerException if the mappedValue is null
2161       */
2162 <    public boolean replace(K key, V oldValue, V newValue) {
2163 <        int hash = hash(key.hashCode());
1103 <        if (oldValue == null || newValue == null)
2162 >    public KeySetView<K,V> keySet(V mappedValue) {
2163 >        if (mappedValue == null)
2164              throw new NullPointerException();
2165 <        Segment<K,V> s = segmentForHash(hash);
1106 <        return s != null && s.replace(key, hash, oldValue, newValue);
2165 >        return new KeySetView<K,V>(this, mappedValue);
2166      }
2167  
2168 +    /* ---------------- Special Nodes -------------- */
2169 +
2170      /**
2171 <     * {@inheritDoc}
1111 <     *
1112 <     * @return the previous value associated with the specified key,
1113 <     *         or <tt>null</tt> if there was no mapping for the key
1114 <     * @throws NullPointerException if the specified key or value is null
2171 >     * A node inserted at head of bins during transfer operations.
2172       */
2173 <    public V replace(K key, V value) {
2174 <        int hash = hash(key.hashCode());
2175 <        if (value == null)
2176 <            throw new NullPointerException();
2177 <        Segment<K,V> s = segmentForHash(hash);
2178 <        return s == null ? null : s.replace(key, hash, value);
2173 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2174 >        final Node<K,V>[] nextTable;
2175 >        ForwardingNode(Node<K,V>[] tab) {
2176 >            super(MOVED, null, null, null);
2177 >            this.nextTable = tab;
2178 >        }
2179 >
2180 >        Node<K,V> find(int h, Object k) {
2181 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2182 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2183 >                Node<K,V> e; int n;
2184 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2185 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2186 >                    return null;
2187 >                for (;;) {
2188 >                    int eh; K ek;
2189 >                    if ((eh = e.hash) == h &&
2190 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2191 >                        return e;
2192 >                    if (eh < 0) {
2193 >                        if (e instanceof ForwardingNode) {
2194 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2195 >                            continue outer;
2196 >                        }
2197 >                        else
2198 >                            return e.find(h, k);
2199 >                    }
2200 >                    if ((e = e.next) == null)
2201 >                        return null;
2202 >                }
2203 >            }
2204 >        }
2205      }
2206  
2207      /**
2208 <     * Removes all of the mappings from this map.
2208 >     * A place-holder node used in computeIfAbsent and compute
2209       */
2210 <    public void clear() {
2211 <        final Segment<K,V>[] segments = this.segments;
2212 <        for (int j = 0; j < segments.length; ++j) {
2213 <            Segment<K,V> s = segmentAt(segments, j);
2214 <            if (s != null)
2215 <                s.clear();
2210 >    static final class ReservationNode<K,V> extends Node<K,V> {
2211 >        ReservationNode() {
2212 >            super(RESERVED, null, null, null);
2213 >        }
2214 >
2215 >        Node<K,V> find(int h, Object k) {
2216 >            return null;
2217          }
2218      }
2219  
2220 +    /* ---------------- Table Initialization and Resizing -------------- */
2221 +
2222      /**
2223 <     * Returns a {@link Set} view of the keys contained in this map.
2224 <     * The set is backed by the map, so changes to the map are
2225 <     * reflected in the set, and vice-versa.  The set supports element
2226 <     * removal, which removes the corresponding mapping from this map,
2227 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1142 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1143 <     * operations.  It does not support the <tt>add</tt> or
1144 <     * <tt>addAll</tt> operations.
1145 <     *
1146 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1147 <     * that will never throw {@link ConcurrentModificationException},
1148 <     * and guarantees to traverse elements as they existed upon
1149 <     * construction of the iterator, and may (but is not guaranteed to)
1150 <     * reflect any modifications subsequent to construction.
1151 <     */
1152 <    public Set<K> keySet() {
1153 <        Set<K> ks = keySet;
1154 <        return (ks != null) ? ks : (keySet = new KeySet());
2223 >     * Returns the stamp bits for resizing a table of size n.
2224 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2225 >     */
2226 >    static final int resizeStamp(int n) {
2227 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2228      }
2229  
2230      /**
2231 <     * Returns a {@link Collection} view of the values contained in this map.
1159 <     * The collection is backed by the map, so changes to the map are
1160 <     * reflected in the collection, and vice-versa.  The collection
1161 <     * supports element removal, which removes the corresponding
1162 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1163 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1164 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1165 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1166 <     *
1167 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1168 <     * that will never throw {@link ConcurrentModificationException},
1169 <     * and guarantees to traverse elements as they existed upon
1170 <     * construction of the iterator, and may (but is not guaranteed to)
1171 <     * reflect any modifications subsequent to construction.
2231 >     * Initializes table, using the size recorded in sizeCtl.
2232       */
2233 <    public Collection<V> values() {
2234 <        Collection<V> vs = values;
2235 <        return (vs != null) ? vs : (values = new Values());
2233 >    private final Node<K,V>[] initTable() {
2234 >        Node<K,V>[] tab; int sc;
2235 >        while ((tab = table) == null || tab.length == 0) {
2236 >            if ((sc = sizeCtl) < 0)
2237 >                Thread.yield(); // lost initialization race; just spin
2238 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2239 >                try {
2240 >                    if ((tab = table) == null || tab.length == 0) {
2241 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2242 >                        @SuppressWarnings("unchecked")
2243 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2244 >                        table = tab = nt;
2245 >                        sc = n - (n >>> 2);
2246 >                    }
2247 >                } finally {
2248 >                    sizeCtl = sc;
2249 >                }
2250 >                break;
2251 >            }
2252 >        }
2253 >        return tab;
2254      }
2255  
2256      /**
2257 <     * Returns a {@link Set} view of the mappings contained in this map.
2258 <     * The set is backed by the map, so changes to the map are
2259 <     * reflected in the set, and vice-versa.  The set supports element
2260 <     * removal, which removes the corresponding mapping from the map,
2261 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2262 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2263 <     * operations.  It does not support the <tt>add</tt> or
2264 <     * <tt>addAll</tt> operations.
1187 <     *
1188 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1189 <     * that will never throw {@link ConcurrentModificationException},
1190 <     * and guarantees to traverse elements as they existed upon
1191 <     * construction of the iterator, and may (but is not guaranteed to)
1192 <     * reflect any modifications subsequent to construction.
2257 >     * Adds to count, and if table is too small and not already
2258 >     * resizing, initiates transfer. If already resizing, helps
2259 >     * perform transfer if work is available.  Rechecks occupancy
2260 >     * after a transfer to see if another resize is already needed
2261 >     * because resizings are lagging additions.
2262 >     *
2263 >     * @param x the count to add
2264 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2265       */
2266 <    public Set<Map.Entry<K,V>> entrySet() {
2267 <        Set<Map.Entry<K,V>> es = entrySet;
2268 <        return (es != null) ? es : (entrySet = new EntrySet());
2266 >    private final void addCount(long x, int check) {
2267 >        CounterCell[] as; long b, s;
2268 >        if ((as = counterCells) != null ||
2269 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2270 >            CounterCell a; long v; int m;
2271 >            boolean uncontended = true;
2272 >            if (as == null || (m = as.length - 1) < 0 ||
2273 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2274 >                !(uncontended =
2275 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2276 >                fullAddCount(x, uncontended);
2277 >                return;
2278 >            }
2279 >            if (check <= 1)
2280 >                return;
2281 >            s = sumCount();
2282 >        }
2283 >        if (check >= 0) {
2284 >            Node<K,V>[] tab, nt; int n, sc;
2285 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2286 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2287 >                int rs = resizeStamp(n);
2288 >                if (sc < 0) {
2289 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2290 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2291 >                        transferIndex <= 0)
2292 >                        break;
2293 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2294 >                        transfer(tab, nt);
2295 >                }
2296 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2297 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2298 >                    transfer(tab, null);
2299 >                s = sumCount();
2300 >            }
2301 >        }
2302      }
2303  
2304      /**
2305 <     * Returns an enumeration of the keys in this table.
1201 <     *
1202 <     * @return an enumeration of the keys in this table
1203 <     * @see #keySet()
2305 >     * Helps transfer if a resize is in progress.
2306       */
2307 <    public Enumeration<K> keys() {
2308 <        return new KeyIterator();
2307 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2308 >        Node<K,V>[] nextTab; int sc;
2309 >        if (tab != null && (f instanceof ForwardingNode) &&
2310 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2311 >            int rs = resizeStamp(tab.length);
2312 >            while (nextTab == nextTable && table == tab &&
2313 >                   (sc = sizeCtl) < 0) {
2314 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2315 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2316 >                    break;
2317 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2318 >                    transfer(tab, nextTab);
2319 >                    break;
2320 >                }
2321 >            }
2322 >            return nextTab;
2323 >        }
2324 >        return table;
2325      }
2326  
2327      /**
2328 <     * Returns an enumeration of the values in this table.
2328 >     * Tries to presize table to accommodate the given number of elements.
2329       *
2330 <     * @return an enumeration of the values in this table
1213 <     * @see #values()
2330 >     * @param size number of elements (doesn't need to be perfectly accurate)
2331       */
2332 <    public Enumeration<V> elements() {
2333 <        return new ValueIterator();
2332 >    private final void tryPresize(int size) {
2333 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2334 >            tableSizeFor(size + (size >>> 1) + 1);
2335 >        int sc;
2336 >        while ((sc = sizeCtl) >= 0) {
2337 >            Node<K,V>[] tab = table; int n;
2338 >            if (tab == null || (n = tab.length) == 0) {
2339 >                n = (sc > c) ? sc : c;
2340 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2341 >                    try {
2342 >                        if (table == tab) {
2343 >                            @SuppressWarnings("unchecked")
2344 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2345 >                            table = nt;
2346 >                            sc = n - (n >>> 2);
2347 >                        }
2348 >                    } finally {
2349 >                        sizeCtl = sc;
2350 >                    }
2351 >                }
2352 >            }
2353 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2354 >                break;
2355 >            else if (tab == table) {
2356 >                int rs = resizeStamp(n);
2357 >                if (U.compareAndSwapInt(this, SIZECTL, sc,
2358 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2359 >                    transfer(tab, null);
2360 >            }
2361 >        }
2362      }
2363  
2364 <    /* ---------------- Iterator Support -------------- */
2364 >    /**
2365 >     * Moves and/or copies the nodes in each bin to new table. See
2366 >     * above for explanation.
2367 >     */
2368 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2369 >        int n = tab.length, stride;
2370 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2371 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2372 >        if (nextTab == null) {            // initiating
2373 >            try {
2374 >                @SuppressWarnings("unchecked")
2375 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2376 >                nextTab = nt;
2377 >            } catch (Throwable ex) {      // try to cope with OOME
2378 >                sizeCtl = Integer.MAX_VALUE;
2379 >                return;
2380 >            }
2381 >            nextTable = nextTab;
2382 >            transferIndex = n;
2383 >        }
2384 >        int nextn = nextTab.length;
2385 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2386 >        boolean advance = true;
2387 >        boolean finishing = false; // to ensure sweep before committing nextTab
2388 >        for (int i = 0, bound = 0;;) {
2389 >            Node<K,V> f; int fh;
2390 >            while (advance) {
2391 >                int nextIndex, nextBound;
2392 >                if (--i >= bound || finishing)
2393 >                    advance = false;
2394 >                else if ((nextIndex = transferIndex) <= 0) {
2395 >                    i = -1;
2396 >                    advance = false;
2397 >                }
2398 >                else if (U.compareAndSwapInt
2399 >                         (this, TRANSFERINDEX, nextIndex,
2400 >                          nextBound = (nextIndex > stride ?
2401 >                                       nextIndex - stride : 0))) {
2402 >                    bound = nextBound;
2403 >                    i = nextIndex - 1;
2404 >                    advance = false;
2405 >                }
2406 >            }
2407 >            if (i < 0 || i >= n || i + n >= nextn) {
2408 >                int sc;
2409 >                if (finishing) {
2410 >                    nextTable = null;
2411 >                    table = nextTab;
2412 >                    sizeCtl = (n << 1) - (n >>> 1);
2413 >                    return;
2414 >                }
2415 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2416 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2417 >                        return;
2418 >                    finishing = advance = true;
2419 >                    i = n; // recheck before commit
2420 >                }
2421 >            }
2422 >            else if ((f = tabAt(tab, i)) == null)
2423 >                advance = casTabAt(tab, i, null, fwd);
2424 >            else if ((fh = f.hash) == MOVED)
2425 >                advance = true; // already processed
2426 >            else {
2427 >                synchronized (f) {
2428 >                    if (tabAt(tab, i) == f) {
2429 >                        Node<K,V> ln, hn;
2430 >                        if (fh >= 0) {
2431 >                            int runBit = fh & n;
2432 >                            Node<K,V> lastRun = f;
2433 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2434 >                                int b = p.hash & n;
2435 >                                if (b != runBit) {
2436 >                                    runBit = b;
2437 >                                    lastRun = p;
2438 >                                }
2439 >                            }
2440 >                            if (runBit == 0) {
2441 >                                ln = lastRun;
2442 >                                hn = null;
2443 >                            }
2444 >                            else {
2445 >                                hn = lastRun;
2446 >                                ln = null;
2447 >                            }
2448 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2449 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2450 >                                if ((ph & n) == 0)
2451 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2452 >                                else
2453 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2454 >                            }
2455 >                            setTabAt(nextTab, i, ln);
2456 >                            setTabAt(nextTab, i + n, hn);
2457 >                            setTabAt(tab, i, fwd);
2458 >                            advance = true;
2459 >                        }
2460 >                        else if (f instanceof TreeBin) {
2461 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2462 >                            TreeNode<K,V> lo = null, loTail = null;
2463 >                            TreeNode<K,V> hi = null, hiTail = null;
2464 >                            int lc = 0, hc = 0;
2465 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2466 >                                int h = e.hash;
2467 >                                TreeNode<K,V> p = new TreeNode<K,V>
2468 >                                    (h, e.key, e.val, null, null);
2469 >                                if ((h & n) == 0) {
2470 >                                    if ((p.prev = loTail) == null)
2471 >                                        lo = p;
2472 >                                    else
2473 >                                        loTail.next = p;
2474 >                                    loTail = p;
2475 >                                    ++lc;
2476 >                                }
2477 >                                else {
2478 >                                    if ((p.prev = hiTail) == null)
2479 >                                        hi = p;
2480 >                                    else
2481 >                                        hiTail.next = p;
2482 >                                    hiTail = p;
2483 >                                    ++hc;
2484 >                                }
2485 >                            }
2486 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2487 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2488 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2489 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2490 >                            setTabAt(nextTab, i, ln);
2491 >                            setTabAt(nextTab, i + n, hn);
2492 >                            setTabAt(tab, i, fwd);
2493 >                            advance = true;
2494 >                        }
2495 >                    }
2496 >                }
2497 >            }
2498 >        }
2499 >    }
2500  
2501 <    abstract class HashIterator {
1222 <        int nextSegmentIndex;
1223 <        int nextTableIndex;
1224 <        HashEntry<K,V>[] currentTable;
1225 <        HashEntry<K, V> nextEntry;
1226 <        HashEntry<K, V> lastReturned;
2501 >    /* ---------------- Counter support -------------- */
2502  
2503 <        HashIterator() {
2504 <            nextSegmentIndex = segments.length - 1;
2505 <            nextTableIndex = -1;
2506 <            advance();
2503 >    /**
2504 >     * A padded cell for distributing counts.  Adapted from LongAdder
2505 >     * and Striped64.  See their internal docs for explanation.
2506 >     */
2507 >    @sun.misc.Contended static final class CounterCell {
2508 >        volatile long value;
2509 >        CounterCell(long x) { value = x; }
2510 >    }
2511 >
2512 >    final long sumCount() {
2513 >        CounterCell[] as = counterCells; CounterCell a;
2514 >        long sum = baseCount;
2515 >        if (as != null) {
2516 >            for (int i = 0; i < as.length; ++i) {
2517 >                if ((a = as[i]) != null)
2518 >                    sum += a.value;
2519 >            }
2520 >        }
2521 >        return sum;
2522 >    }
2523 >
2524 >    // See LongAdder version for explanation
2525 >    private final void fullAddCount(long x, boolean wasUncontended) {
2526 >        int h;
2527 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2528 >            ThreadLocalRandom.localInit();      // force initialization
2529 >            h = ThreadLocalRandom.getProbe();
2530 >            wasUncontended = true;
2531 >        }
2532 >        boolean collide = false;                // True if last slot nonempty
2533 >        for (;;) {
2534 >            CounterCell[] as; CounterCell a; int n; long v;
2535 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2536 >                if ((a = as[(n - 1) & h]) == null) {
2537 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2538 >                        CounterCell r = new CounterCell(x); // Optimistic create
2539 >                        if (cellsBusy == 0 &&
2540 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2541 >                            boolean created = false;
2542 >                            try {               // Recheck under lock
2543 >                                CounterCell[] rs; int m, j;
2544 >                                if ((rs = counterCells) != null &&
2545 >                                    (m = rs.length) > 0 &&
2546 >                                    rs[j = (m - 1) & h] == null) {
2547 >                                    rs[j] = r;
2548 >                                    created = true;
2549 >                                }
2550 >                            } finally {
2551 >                                cellsBusy = 0;
2552 >                            }
2553 >                            if (created)
2554 >                                break;
2555 >                            continue;           // Slot is now non-empty
2556 >                        }
2557 >                    }
2558 >                    collide = false;
2559 >                }
2560 >                else if (!wasUncontended)       // CAS already known to fail
2561 >                    wasUncontended = true;      // Continue after rehash
2562 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2563 >                    break;
2564 >                else if (counterCells != as || n >= NCPU)
2565 >                    collide = false;            // At max size or stale
2566 >                else if (!collide)
2567 >                    collide = true;
2568 >                else if (cellsBusy == 0 &&
2569 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2570 >                    try {
2571 >                        if (counterCells == as) {// Expand table unless stale
2572 >                            CounterCell[] rs = new CounterCell[n << 1];
2573 >                            for (int i = 0; i < n; ++i)
2574 >                                rs[i] = as[i];
2575 >                            counterCells = rs;
2576 >                        }
2577 >                    } finally {
2578 >                        cellsBusy = 0;
2579 >                    }
2580 >                    collide = false;
2581 >                    continue;                   // Retry with expanded table
2582 >                }
2583 >                h = ThreadLocalRandom.advanceProbe(h);
2584 >            }
2585 >            else if (cellsBusy == 0 && counterCells == as &&
2586 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2587 >                boolean init = false;
2588 >                try {                           // Initialize table
2589 >                    if (counterCells == as) {
2590 >                        CounterCell[] rs = new CounterCell[2];
2591 >                        rs[h & 1] = new CounterCell(x);
2592 >                        counterCells = rs;
2593 >                        init = true;
2594 >                    }
2595 >                } finally {
2596 >                    cellsBusy = 0;
2597 >                }
2598 >                if (init)
2599 >                    break;
2600 >            }
2601 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2602 >                break;                          // Fall back on using base
2603 >        }
2604 >    }
2605 >
2606 >    /* ---------------- Conversion from/to TreeBins -------------- */
2607 >
2608 >    /**
2609 >     * Replaces all linked nodes in bin at given index unless table is
2610 >     * too small, in which case resizes instead.
2611 >     */
2612 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2613 >        Node<K,V> b; int n;
2614 >        if (tab != null) {
2615 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2616 >                tryPresize(n << 1);
2617 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2618 >                synchronized (b) {
2619 >                    if (tabAt(tab, index) == b) {
2620 >                        TreeNode<K,V> hd = null, tl = null;
2621 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2622 >                            TreeNode<K,V> p =
2623 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2624 >                                                  null, null);
2625 >                            if ((p.prev = tl) == null)
2626 >                                hd = p;
2627 >                            else
2628 >                                tl.next = p;
2629 >                            tl = p;
2630 >                        }
2631 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2632 >                    }
2633 >                }
2634 >            }
2635 >        }
2636 >    }
2637 >
2638 >    /**
2639 >     * Returns a list on non-TreeNodes replacing those in given list.
2640 >     */
2641 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2642 >        Node<K,V> hd = null, tl = null;
2643 >        for (Node<K,V> q = b; q != null; q = q.next) {
2644 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2645 >            if (tl == null)
2646 >                hd = p;
2647 >            else
2648 >                tl.next = p;
2649 >            tl = p;
2650 >        }
2651 >        return hd;
2652 >    }
2653 >
2654 >    /* ---------------- TreeNodes -------------- */
2655 >
2656 >    /**
2657 >     * Nodes for use in TreeBins
2658 >     */
2659 >    static final class TreeNode<K,V> extends Node<K,V> {
2660 >        TreeNode<K,V> parent;  // red-black tree links
2661 >        TreeNode<K,V> left;
2662 >        TreeNode<K,V> right;
2663 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2664 >        boolean red;
2665 >
2666 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2667 >                 TreeNode<K,V> parent) {
2668 >            super(hash, key, val, next);
2669 >            this.parent = parent;
2670 >        }
2671 >
2672 >        Node<K,V> find(int h, Object k) {
2673 >            return findTreeNode(h, k, null);
2674          }
2675  
2676          /**
2677 <         * Sets nextEntry to first node of next non-empty table
2678 <         * (in backwards order, to simplify checks).
2677 >         * Returns the TreeNode (or null if not found) for the given key
2678 >         * starting at given root.
2679           */
2680 <        final void advance() {
2681 <            for (;;) {
2682 <                if (nextTableIndex >= 0) {
2683 <                    if ((nextEntry = entryAt(currentTable,
2684 <                                             nextTableIndex--)) != null)
2685 <                        break;
2680 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2681 >            if (k != null) {
2682 >                TreeNode<K,V> p = this;
2683 >                do {
2684 >                    int ph, dir; K pk; TreeNode<K,V> q;
2685 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2686 >                    if ((ph = p.hash) > h)
2687 >                        p = pl;
2688 >                    else if (ph < h)
2689 >                        p = pr;
2690 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2691 >                        return p;
2692 >                    else if (pl == null)
2693 >                        p = pr;
2694 >                    else if (pr == null)
2695 >                        p = pl;
2696 >                    else if ((kc != null ||
2697 >                              (kc = comparableClassFor(k)) != null) &&
2698 >                             (dir = compareComparables(kc, k, pk)) != 0)
2699 >                        p = (dir < 0) ? pl : pr;
2700 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2701 >                        return q;
2702 >                    else
2703 >                        p = pl;
2704 >                } while (p != null);
2705 >            }
2706 >            return null;
2707 >        }
2708 >    }
2709 >
2710 >    /* ---------------- TreeBins -------------- */
2711 >
2712 >    /**
2713 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2714 >     * keys or values, but instead point to list of TreeNodes and
2715 >     * their root. They also maintain a parasitic read-write lock
2716 >     * forcing writers (who hold bin lock) to wait for readers (who do
2717 >     * not) to complete before tree restructuring operations.
2718 >     */
2719 >    static final class TreeBin<K,V> extends Node<K,V> {
2720 >        TreeNode<K,V> root;
2721 >        volatile TreeNode<K,V> first;
2722 >        volatile Thread waiter;
2723 >        volatile int lockState;
2724 >        // values for lockState
2725 >        static final int WRITER = 1; // set while holding write lock
2726 >        static final int WAITER = 2; // set when waiting for write lock
2727 >        static final int READER = 4; // increment value for setting read lock
2728 >
2729 >        /**
2730 >         * Tie-breaking utility for ordering insertions when equal
2731 >         * hashCodes and non-comparable. We don't require a total
2732 >         * order, just a consistent insertion rule to maintain
2733 >         * equivalence across rebalancings. Tie-breaking further than
2734 >         * necessary simplifies testing a bit.
2735 >         */
2736 >        static int tieBreakOrder(Object a, Object b) {
2737 >            int d;
2738 >            if (a == null || b == null ||
2739 >                (d = a.getClass().getName().
2740 >                 compareTo(b.getClass().getName())) == 0)
2741 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2742 >                     -1 : 1);
2743 >            return d;
2744 >        }
2745 >
2746 >        /**
2747 >         * Creates bin with initial set of nodes headed by b.
2748 >         */
2749 >        TreeBin(TreeNode<K,V> b) {
2750 >            super(TREEBIN, null, null, null);
2751 >            this.first = b;
2752 >            TreeNode<K,V> r = null;
2753 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2754 >                next = (TreeNode<K,V>)x.next;
2755 >                x.left = x.right = null;
2756 >                if (r == null) {
2757 >                    x.parent = null;
2758 >                    x.red = false;
2759 >                    r = x;
2760                  }
2761 <                else if (nextSegmentIndex >= 0) {
2762 <                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
2763 <                    if (seg != null && (currentTable = seg.table) != null)
2764 <                        nextTableIndex = currentTable.length - 1;
2761 >                else {
2762 >                    K k = x.key;
2763 >                    int h = x.hash;
2764 >                    Class<?> kc = null;
2765 >                    for (TreeNode<K,V> p = r;;) {
2766 >                        int dir, ph;
2767 >                        K pk = p.key;
2768 >                        if ((ph = p.hash) > h)
2769 >                            dir = -1;
2770 >                        else if (ph < h)
2771 >                            dir = 1;
2772 >                        else if ((kc == null &&
2773 >                                  (kc = comparableClassFor(k)) == null) ||
2774 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2775 >                            dir = tieBreakOrder(k, pk);
2776 >                        TreeNode<K,V> xp = p;
2777 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2778 >                            x.parent = xp;
2779 >                            if (dir <= 0)
2780 >                                xp.left = x;
2781 >                            else
2782 >                                xp.right = x;
2783 >                            r = balanceInsertion(r, x);
2784 >                            break;
2785 >                        }
2786 >                    }
2787                  }
2788 <                else
2788 >            }
2789 >            this.root = r;
2790 >            assert checkInvariants(root);
2791 >        }
2792 >
2793 >        /**
2794 >         * Acquires write lock for tree restructuring.
2795 >         */
2796 >        private final void lockRoot() {
2797 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2798 >                contendedLock(); // offload to separate method
2799 >        }
2800 >
2801 >        /**
2802 >         * Releases write lock for tree restructuring.
2803 >         */
2804 >        private final void unlockRoot() {
2805 >            lockState = 0;
2806 >        }
2807 >
2808 >        /**
2809 >         * Possibly blocks awaiting root lock.
2810 >         */
2811 >        private final void contendedLock() {
2812 >            boolean waiting = false;
2813 >            for (int s;;) {
2814 >                if (((s = lockState) & ~WAITER) == 0) {
2815 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2816 >                        if (waiting)
2817 >                            waiter = null;
2818 >                        return;
2819 >                    }
2820 >                }
2821 >                else if ((s & WAITER) == 0) {
2822 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2823 >                        waiting = true;
2824 >                        waiter = Thread.currentThread();
2825 >                    }
2826 >                }
2827 >                else if (waiting)
2828 >                    LockSupport.park(this);
2829 >            }
2830 >        }
2831 >
2832 >        /**
2833 >         * Returns matching node or null if none. Tries to search
2834 >         * using tree comparisons from root, but continues linear
2835 >         * search when lock not available.
2836 >         */
2837 >        final Node<K,V> find(int h, Object k) {
2838 >            if (k != null) {
2839 >                for (Node<K,V> e = first; e != null; ) {
2840 >                    int s; K ek;
2841 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2842 >                        if (e.hash == h &&
2843 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2844 >                            return e;
2845 >                        e = e.next;
2846 >                    }
2847 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2848 >                                                 s + READER)) {
2849 >                        TreeNode<K,V> r, p;
2850 >                        try {
2851 >                            p = ((r = root) == null ? null :
2852 >                                 r.findTreeNode(h, k, null));
2853 >                        } finally {
2854 >                            Thread w;
2855 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2856 >                                (READER|WAITER) && (w = waiter) != null)
2857 >                                LockSupport.unpark(w);
2858 >                        }
2859 >                        return p;
2860 >                    }
2861 >                }
2862 >            }
2863 >            return null;
2864 >        }
2865 >
2866 >        /**
2867 >         * Finds or adds a node.
2868 >         * @return null if added
2869 >         */
2870 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2871 >            Class<?> kc = null;
2872 >            boolean searched = false;
2873 >            for (TreeNode<K,V> p = root;;) {
2874 >                int dir, ph; K pk;
2875 >                if (p == null) {
2876 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2877 >                    break;
2878 >                }
2879 >                else if ((ph = p.hash) > h)
2880 >                    dir = -1;
2881 >                else if (ph < h)
2882 >                    dir = 1;
2883 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2884 >                    return p;
2885 >                else if ((kc == null &&
2886 >                          (kc = comparableClassFor(k)) == null) ||
2887 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2888 >                    if (!searched) {
2889 >                        TreeNode<K,V> q, ch;
2890 >                        searched = true;
2891 >                        if (((ch = p.left) != null &&
2892 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2893 >                            ((ch = p.right) != null &&
2894 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2895 >                            return q;
2896 >                    }
2897 >                    dir = tieBreakOrder(k, pk);
2898 >                }
2899 >
2900 >                TreeNode<K,V> xp = p;
2901 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2902 >                    TreeNode<K,V> x, f = first;
2903 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2904 >                    if (f != null)
2905 >                        f.prev = x;
2906 >                    if (dir <= 0)
2907 >                        xp.left = x;
2908 >                    else
2909 >                        xp.right = x;
2910 >                    if (!xp.red)
2911 >                        x.red = true;
2912 >                    else {
2913 >                        lockRoot();
2914 >                        try {
2915 >                            root = balanceInsertion(root, x);
2916 >                        } finally {
2917 >                            unlockRoot();
2918 >                        }
2919 >                    }
2920                      break;
2921 +                }
2922              }
2923 +            assert checkInvariants(root);
2924 +            return null;
2925          }
2926  
2927 <        final HashEntry<K,V> nextEntry() {
2928 <            HashEntry<K,V> e = nextEntry;
2929 <            if (e == null)
2930 <                throw new NoSuchElementException();
2931 <            lastReturned = e; // cannot assign until after null check
2932 <            if ((nextEntry = e.next) == null)
2933 <                advance();
2934 <            return e;
2927 >        /**
2928 >         * Removes the given node, that must be present before this
2929 >         * call.  This is messier than typical red-black deletion code
2930 >         * because we cannot swap the contents of an interior node
2931 >         * with a leaf successor that is pinned by "next" pointers
2932 >         * that are accessible independently of lock. So instead we
2933 >         * swap the tree linkages.
2934 >         *
2935 >         * @return true if now too small, so should be untreeified
2936 >         */
2937 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2938 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2939 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2940 >            TreeNode<K,V> r, rl;
2941 >            if (pred == null)
2942 >                first = next;
2943 >            else
2944 >                pred.next = next;
2945 >            if (next != null)
2946 >                next.prev = pred;
2947 >            if (first == null) {
2948 >                root = null;
2949 >                return true;
2950 >            }
2951 >            if ((r = root) == null || r.right == null || // too small
2952 >                (rl = r.left) == null || rl.left == null)
2953 >                return true;
2954 >            lockRoot();
2955 >            try {
2956 >                TreeNode<K,V> replacement;
2957 >                TreeNode<K,V> pl = p.left;
2958 >                TreeNode<K,V> pr = p.right;
2959 >                if (pl != null && pr != null) {
2960 >                    TreeNode<K,V> s = pr, sl;
2961 >                    while ((sl = s.left) != null) // find successor
2962 >                        s = sl;
2963 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2964 >                    TreeNode<K,V> sr = s.right;
2965 >                    TreeNode<K,V> pp = p.parent;
2966 >                    if (s == pr) { // p was s's direct parent
2967 >                        p.parent = s;
2968 >                        s.right = p;
2969 >                    }
2970 >                    else {
2971 >                        TreeNode<K,V> sp = s.parent;
2972 >                        if ((p.parent = sp) != null) {
2973 >                            if (s == sp.left)
2974 >                                sp.left = p;
2975 >                            else
2976 >                                sp.right = p;
2977 >                        }
2978 >                        if ((s.right = pr) != null)
2979 >                            pr.parent = s;
2980 >                    }
2981 >                    p.left = null;
2982 >                    if ((p.right = sr) != null)
2983 >                        sr.parent = p;
2984 >                    if ((s.left = pl) != null)
2985 >                        pl.parent = s;
2986 >                    if ((s.parent = pp) == null)
2987 >                        r = s;
2988 >                    else if (p == pp.left)
2989 >                        pp.left = s;
2990 >                    else
2991 >                        pp.right = s;
2992 >                    if (sr != null)
2993 >                        replacement = sr;
2994 >                    else
2995 >                        replacement = p;
2996 >                }
2997 >                else if (pl != null)
2998 >                    replacement = pl;
2999 >                else if (pr != null)
3000 >                    replacement = pr;
3001 >                else
3002 >                    replacement = p;
3003 >                if (replacement != p) {
3004 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
3005 >                    if (pp == null)
3006 >                        r = replacement;
3007 >                    else if (p == pp.left)
3008 >                        pp.left = replacement;
3009 >                    else
3010 >                        pp.right = replacement;
3011 >                    p.left = p.right = p.parent = null;
3012 >                }
3013 >
3014 >                root = (p.red) ? r : balanceDeletion(r, replacement);
3015 >
3016 >                if (p == replacement) {  // detach pointers
3017 >                    TreeNode<K,V> pp;
3018 >                    if ((pp = p.parent) != null) {
3019 >                        if (p == pp.left)
3020 >                            pp.left = null;
3021 >                        else if (p == pp.right)
3022 >                            pp.right = null;
3023 >                        p.parent = null;
3024 >                    }
3025 >                }
3026 >            } finally {
3027 >                unlockRoot();
3028 >            }
3029 >            assert checkInvariants(root);
3030 >            return false;
3031 >        }
3032 >
3033 >        /* ------------------------------------------------------------ */
3034 >        // Red-black tree methods, all adapted from CLR
3035 >
3036 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3037 >                                              TreeNode<K,V> p) {
3038 >            TreeNode<K,V> r, pp, rl;
3039 >            if (p != null && (r = p.right) != null) {
3040 >                if ((rl = p.right = r.left) != null)
3041 >                    rl.parent = p;
3042 >                if ((pp = r.parent = p.parent) == null)
3043 >                    (root = r).red = false;
3044 >                else if (pp.left == p)
3045 >                    pp.left = r;
3046 >                else
3047 >                    pp.right = r;
3048 >                r.left = p;
3049 >                p.parent = r;
3050 >            }
3051 >            return root;
3052 >        }
3053 >
3054 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3055 >                                               TreeNode<K,V> p) {
3056 >            TreeNode<K,V> l, pp, lr;
3057 >            if (p != null && (l = p.left) != null) {
3058 >                if ((lr = p.left = l.right) != null)
3059 >                    lr.parent = p;
3060 >                if ((pp = l.parent = p.parent) == null)
3061 >                    (root = l).red = false;
3062 >                else if (pp.right == p)
3063 >                    pp.right = l;
3064 >                else
3065 >                    pp.left = l;
3066 >                l.right = p;
3067 >                p.parent = l;
3068 >            }
3069 >            return root;
3070 >        }
3071 >
3072 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3073 >                                                    TreeNode<K,V> x) {
3074 >            x.red = true;
3075 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3076 >                if ((xp = x.parent) == null) {
3077 >                    x.red = false;
3078 >                    return x;
3079 >                }
3080 >                else if (!xp.red || (xpp = xp.parent) == null)
3081 >                    return root;
3082 >                if (xp == (xppl = xpp.left)) {
3083 >                    if ((xppr = xpp.right) != null && xppr.red) {
3084 >                        xppr.red = false;
3085 >                        xp.red = false;
3086 >                        xpp.red = true;
3087 >                        x = xpp;
3088 >                    }
3089 >                    else {
3090 >                        if (x == xp.right) {
3091 >                            root = rotateLeft(root, x = xp);
3092 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3093 >                        }
3094 >                        if (xp != null) {
3095 >                            xp.red = false;
3096 >                            if (xpp != null) {
3097 >                                xpp.red = true;
3098 >                                root = rotateRight(root, xpp);
3099 >                            }
3100 >                        }
3101 >                    }
3102 >                }
3103 >                else {
3104 >                    if (xppl != null && xppl.red) {
3105 >                        xppl.red = false;
3106 >                        xp.red = false;
3107 >                        xpp.red = true;
3108 >                        x = xpp;
3109 >                    }
3110 >                    else {
3111 >                        if (x == xp.left) {
3112 >                            root = rotateRight(root, x = xp);
3113 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3114 >                        }
3115 >                        if (xp != null) {
3116 >                            xp.red = false;
3117 >                            if (xpp != null) {
3118 >                                xpp.red = true;
3119 >                                root = rotateLeft(root, xpp);
3120 >                            }
3121 >                        }
3122 >                    }
3123 >                }
3124 >            }
3125 >        }
3126 >
3127 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3128 >                                                   TreeNode<K,V> x) {
3129 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3130 >                if (x == null || x == root)
3131 >                    return root;
3132 >                else if ((xp = x.parent) == null) {
3133 >                    x.red = false;
3134 >                    return x;
3135 >                }
3136 >                else if (x.red) {
3137 >                    x.red = false;
3138 >                    return root;
3139 >                }
3140 >                else if ((xpl = xp.left) == x) {
3141 >                    if ((xpr = xp.right) != null && xpr.red) {
3142 >                        xpr.red = false;
3143 >                        xp.red = true;
3144 >                        root = rotateLeft(root, xp);
3145 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3146 >                    }
3147 >                    if (xpr == null)
3148 >                        x = xp;
3149 >                    else {
3150 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3151 >                        if ((sr == null || !sr.red) &&
3152 >                            (sl == null || !sl.red)) {
3153 >                            xpr.red = true;
3154 >                            x = xp;
3155 >                        }
3156 >                        else {
3157 >                            if (sr == null || !sr.red) {
3158 >                                if (sl != null)
3159 >                                    sl.red = false;
3160 >                                xpr.red = true;
3161 >                                root = rotateRight(root, xpr);
3162 >                                xpr = (xp = x.parent) == null ?
3163 >                                    null : xp.right;
3164 >                            }
3165 >                            if (xpr != null) {
3166 >                                xpr.red = (xp == null) ? false : xp.red;
3167 >                                if ((sr = xpr.right) != null)
3168 >                                    sr.red = false;
3169 >                            }
3170 >                            if (xp != null) {
3171 >                                xp.red = false;
3172 >                                root = rotateLeft(root, xp);
3173 >                            }
3174 >                            x = root;
3175 >                        }
3176 >                    }
3177 >                }
3178 >                else { // symmetric
3179 >                    if (xpl != null && xpl.red) {
3180 >                        xpl.red = false;
3181 >                        xp.red = true;
3182 >                        root = rotateRight(root, xp);
3183 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3184 >                    }
3185 >                    if (xpl == null)
3186 >                        x = xp;
3187 >                    else {
3188 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3189 >                        if ((sl == null || !sl.red) &&
3190 >                            (sr == null || !sr.red)) {
3191 >                            xpl.red = true;
3192 >                            x = xp;
3193 >                        }
3194 >                        else {
3195 >                            if (sl == null || !sl.red) {
3196 >                                if (sr != null)
3197 >                                    sr.red = false;
3198 >                                xpl.red = true;
3199 >                                root = rotateLeft(root, xpl);
3200 >                                xpl = (xp = x.parent) == null ?
3201 >                                    null : xp.left;
3202 >                            }
3203 >                            if (xpl != null) {
3204 >                                xpl.red = (xp == null) ? false : xp.red;
3205 >                                if ((sl = xpl.left) != null)
3206 >                                    sl.red = false;
3207 >                            }
3208 >                            if (xp != null) {
3209 >                                xp.red = false;
3210 >                                root = rotateRight(root, xp);
3211 >                            }
3212 >                            x = root;
3213 >                        }
3214 >                    }
3215 >                }
3216 >            }
3217 >        }
3218 >
3219 >        /**
3220 >         * Recursive invariant check
3221 >         */
3222 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3223 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3224 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3225 >            if (tb != null && tb.next != t)
3226 >                return false;
3227 >            if (tn != null && tn.prev != t)
3228 >                return false;
3229 >            if (tp != null && t != tp.left && t != tp.right)
3230 >                return false;
3231 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3232 >                return false;
3233 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3234 >                return false;
3235 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3236 >                return false;
3237 >            if (tl != null && !checkInvariants(tl))
3238 >                return false;
3239 >            if (tr != null && !checkInvariants(tr))
3240 >                return false;
3241 >            return true;
3242 >        }
3243 >
3244 >        private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3245 >        private static final long LOCKSTATE;
3246 >        static {
3247 >            try {
3248 >                LOCKSTATE = U.objectFieldOffset
3249 >                    (TreeBin.class.getDeclaredField("lockState"));
3250 >            } catch (ReflectiveOperationException e) {
3251 >                throw new Error(e);
3252 >            }
3253 >        }
3254 >    }
3255 >
3256 >    /* ----------------Table Traversal -------------- */
3257 >
3258 >    /**
3259 >     * Records the table, its length, and current traversal index for a
3260 >     * traverser that must process a region of a forwarded table before
3261 >     * proceeding with current table.
3262 >     */
3263 >    static final class TableStack<K,V> {
3264 >        int length;
3265 >        int index;
3266 >        Node<K,V>[] tab;
3267 >        TableStack<K,V> next;
3268 >    }
3269 >
3270 >    /**
3271 >     * Encapsulates traversal for methods such as containsValue; also
3272 >     * serves as a base class for other iterators and spliterators.
3273 >     *
3274 >     * Method advance visits once each still-valid node that was
3275 >     * reachable upon iterator construction. It might miss some that
3276 >     * were added to a bin after the bin was visited, which is OK wrt
3277 >     * consistency guarantees. Maintaining this property in the face
3278 >     * of possible ongoing resizes requires a fair amount of
3279 >     * bookkeeping state that is difficult to optimize away amidst
3280 >     * volatile accesses.  Even so, traversal maintains reasonable
3281 >     * throughput.
3282 >     *
3283 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3284 >     * However, if the table has been resized, then all future steps
3285 >     * must traverse both the bin at the current index as well as at
3286 >     * (index + baseSize); and so on for further resizings. To
3287 >     * paranoically cope with potential sharing by users of iterators
3288 >     * across threads, iteration terminates if a bounds checks fails
3289 >     * for a table read.
3290 >     */
3291 >    static class Traverser<K,V> {
3292 >        Node<K,V>[] tab;        // current table; updated if resized
3293 >        Node<K,V> next;         // the next entry to use
3294 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3295 >        int index;              // index of bin to use next
3296 >        int baseIndex;          // current index of initial table
3297 >        int baseLimit;          // index bound for initial table
3298 >        final int baseSize;     // initial table size
3299 >
3300 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3301 >            this.tab = tab;
3302 >            this.baseSize = size;
3303 >            this.baseIndex = this.index = index;
3304 >            this.baseLimit = limit;
3305 >            this.next = null;
3306 >        }
3307 >
3308 >        /**
3309 >         * Advances if possible, returning next valid node, or null if none.
3310 >         */
3311 >        final Node<K,V> advance() {
3312 >            Node<K,V> e;
3313 >            if ((e = next) != null)
3314 >                e = e.next;
3315 >            for (;;) {
3316 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3317 >                if (e != null)
3318 >                    return next = e;
3319 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3320 >                    (n = t.length) <= (i = index) || i < 0)
3321 >                    return next = null;
3322 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3323 >                    if (e instanceof ForwardingNode) {
3324 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3325 >                        e = null;
3326 >                        pushState(t, i, n);
3327 >                        continue;
3328 >                    }
3329 >                    else if (e instanceof TreeBin)
3330 >                        e = ((TreeBin<K,V>)e).first;
3331 >                    else
3332 >                        e = null;
3333 >                }
3334 >                if (stack != null)
3335 >                    recoverState(n);
3336 >                else if ((index = i + baseSize) >= n)
3337 >                    index = ++baseIndex; // visit upper slots if present
3338 >            }
3339          }
3340  
3341 <        public final boolean hasNext() { return nextEntry != null; }
3342 <        public final boolean hasMoreElements() { return nextEntry != null; }
3341 >        /**
3342 >         * Saves traversal state upon encountering a forwarding node.
3343 >         */
3344 >        private void pushState(Node<K,V>[] t, int i, int n) {
3345 >            TableStack<K,V> s = spare;  // reuse if possible
3346 >            if (s != null)
3347 >                spare = s.next;
3348 >            else
3349 >                s = new TableStack<K,V>();
3350 >            s.tab = t;
3351 >            s.length = n;
3352 >            s.index = i;
3353 >            s.next = stack;
3354 >            stack = s;
3355 >        }
3356 >
3357 >        /**
3358 >         * Possibly pops traversal state.
3359 >         *
3360 >         * @param n length of current table
3361 >         */
3362 >        private void recoverState(int n) {
3363 >            TableStack<K,V> s; int len;
3364 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3365 >                n = len;
3366 >                index = s.index;
3367 >                tab = s.tab;
3368 >                s.tab = null;
3369 >                TableStack<K,V> next = s.next;
3370 >                s.next = spare; // save for reuse
3371 >                stack = next;
3372 >                spare = s;
3373 >            }
3374 >            if (s == null && (index += baseSize) >= n)
3375 >                index = ++baseIndex;
3376 >        }
3377 >    }
3378 >
3379 >    /**
3380 >     * Base of key, value, and entry Iterators. Adds fields to
3381 >     * Traverser to support iterator.remove.
3382 >     */
3383 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3384 >        final ConcurrentHashMap<K,V> map;
3385 >        Node<K,V> lastReturned;
3386 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3387 >                    ConcurrentHashMap<K,V> map) {
3388 >            super(tab, size, index, limit);
3389 >            this.map = map;
3390 >            advance();
3391 >        }
3392 >
3393 >        public final boolean hasNext() { return next != null; }
3394 >        public final boolean hasMoreElements() { return next != null; }
3395  
3396          public final void remove() {
3397 <            if (lastReturned == null)
3397 >            Node<K,V> p;
3398 >            if ((p = lastReturned) == null)
3399                  throw new IllegalStateException();
1271            ConcurrentHashMap.this.remove(lastReturned.key);
3400              lastReturned = null;
3401 +            map.replaceNode(p.key, null, null);
3402 +        }
3403 +    }
3404 +
3405 +    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3406 +        implements Iterator<K>, Enumeration<K> {
3407 +        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3408 +                    ConcurrentHashMap<K,V> map) {
3409 +            super(tab, index, size, limit, map);
3410 +        }
3411 +
3412 +        public final K next() {
3413 +            Node<K,V> p;
3414 +            if ((p = next) == null)
3415 +                throw new NoSuchElementException();
3416 +            K k = p.key;
3417 +            lastReturned = p;
3418 +            advance();
3419 +            return k;
3420 +        }
3421 +
3422 +        public final K nextElement() { return next(); }
3423 +    }
3424 +
3425 +    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3426 +        implements Iterator<V>, Enumeration<V> {
3427 +        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3428 +                      ConcurrentHashMap<K,V> map) {
3429 +            super(tab, index, size, limit, map);
3430 +        }
3431 +
3432 +        public final V next() {
3433 +            Node<K,V> p;
3434 +            if ((p = next) == null)
3435 +                throw new NoSuchElementException();
3436 +            V v = p.val;
3437 +            lastReturned = p;
3438 +            advance();
3439 +            return v;
3440          }
3441 +
3442 +        public final V nextElement() { return next(); }
3443      }
3444  
3445 <    final class KeyIterator
3446 <        extends HashIterator
3447 <        implements Iterator<K>, Enumeration<K>
3448 <    {
3449 <        public final K next()        { return super.nextEntry().key; }
3450 <        public final K nextElement() { return super.nextEntry().key; }
3451 <    }
3452 <
3453 <    final class ValueIterator
3454 <        extends HashIterator
3455 <        implements Iterator<V>, Enumeration<V>
3456 <    {
3457 <        public final V next()        { return super.nextEntry().value; }
3458 <        public final V nextElement() { return super.nextEntry().value; }
3445 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3446 >        implements Iterator<Map.Entry<K,V>> {
3447 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3448 >                      ConcurrentHashMap<K,V> map) {
3449 >            super(tab, index, size, limit, map);
3450 >        }
3451 >
3452 >        public final Map.Entry<K,V> next() {
3453 >            Node<K,V> p;
3454 >            if ((p = next) == null)
3455 >                throw new NoSuchElementException();
3456 >            K k = p.key;
3457 >            V v = p.val;
3458 >            lastReturned = p;
3459 >            advance();
3460 >            return new MapEntry<K,V>(k, v, map);
3461 >        }
3462      }
3463  
3464      /**
3465 <     * Custom Entry class used by EntryIterator.next(), that relays
3466 <     * setValue changes to the underlying map.
3467 <     */
3468 <    final class WriteThroughEntry
3469 <        extends AbstractMap.SimpleEntry<K,V>
3470 <    {
3471 <        WriteThroughEntry(K k, V v) {
3472 <            super(k,v);
3465 >     * Exported Entry for EntryIterator
3466 >     */
3467 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3468 >        final K key; // non-null
3469 >        V val;       // non-null
3470 >        final ConcurrentHashMap<K,V> map;
3471 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3472 >            this.key = key;
3473 >            this.val = val;
3474 >            this.map = map;
3475 >        }
3476 >        public K getKey()        { return key; }
3477 >        public V getValue()      { return val; }
3478 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3479 >        public String toString() {
3480 >            return Helpers.mapEntryToString(key, val);
3481 >        }
3482 >
3483 >        public boolean equals(Object o) {
3484 >            Object k, v; Map.Entry<?,?> e;
3485 >            return ((o instanceof Map.Entry) &&
3486 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3487 >                    (v = e.getValue()) != null &&
3488 >                    (k == key || k.equals(key)) &&
3489 >                    (v == val || v.equals(val)));
3490          }
3491  
3492          /**
3493           * Sets our entry's value and writes through to the map. The
3494 <         * value to return is somewhat arbitrary here. Since a
3495 <         * WriteThroughEntry does not necessarily track asynchronous
3496 <         * changes, the most recent "previous" value could be
3497 <         * different from what we return (or could even have been
3498 <         * removed in which case the put will re-establish). We do not
1310 <         * and cannot guarantee more.
3494 >         * value to return is somewhat arbitrary here. Since we do not
3495 >         * necessarily track asynchronous changes, the most recent
3496 >         * "previous" value could be different from what we return (or
3497 >         * could even have been removed, in which case the put will
3498 >         * re-establish). We do not and cannot guarantee more.
3499           */
3500          public V setValue(V value) {
3501              if (value == null) throw new NullPointerException();
3502 <            V v = super.setValue(value);
3503 <            ConcurrentHashMap.this.put(getKey(), value);
3502 >            V v = val;
3503 >            val = value;
3504 >            map.put(key, value);
3505              return v;
3506          }
3507      }
3508  
3509 <    final class EntryIterator
3510 <        extends HashIterator
3511 <        implements Iterator<Entry<K,V>>
3512 <    {
3513 <        public Map.Entry<K,V> next() {
3514 <            HashEntry<K,V> e = super.nextEntry();
3515 <            return new WriteThroughEntry(e.key, e.value);
3509 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3510 >        implements Spliterator<K> {
3511 >        long est;               // size estimate
3512 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3513 >                       long est) {
3514 >            super(tab, size, index, limit);
3515 >            this.est = est;
3516 >        }
3517 >
3518 >        public Spliterator<K> trySplit() {
3519 >            int i, f, h;
3520 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3521 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3522 >                                        f, est >>>= 1);
3523 >        }
3524 >
3525 >        public void forEachRemaining(Consumer<? super K> action) {
3526 >            if (action == null) throw new NullPointerException();
3527 >            for (Node<K,V> p; (p = advance()) != null;)
3528 >                action.accept(p.key);
3529 >        }
3530 >
3531 >        public boolean tryAdvance(Consumer<? super K> action) {
3532 >            if (action == null) throw new NullPointerException();
3533 >            Node<K,V> p;
3534 >            if ((p = advance()) == null)
3535 >                return false;
3536 >            action.accept(p.key);
3537 >            return true;
3538 >        }
3539 >
3540 >        public long estimateSize() { return est; }
3541 >
3542 >        public int characteristics() {
3543 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3544 >                Spliterator.NONNULL;
3545          }
3546      }
3547  
3548 <    final class KeySet extends AbstractSet<K> {
3549 <        public Iterator<K> iterator() {
3550 <            return new KeyIterator();
3548 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3549 >        implements Spliterator<V> {
3550 >        long est;               // size estimate
3551 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3552 >                         long est) {
3553 >            super(tab, size, index, limit);
3554 >            this.est = est;
3555          }
3556 <        public int size() {
3557 <            return ConcurrentHashMap.this.size();
3556 >
3557 >        public Spliterator<V> trySplit() {
3558 >            int i, f, h;
3559 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3560 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3561 >                                          f, est >>>= 1);
3562          }
3563 <        public boolean isEmpty() {
3564 <            return ConcurrentHashMap.this.isEmpty();
3563 >
3564 >        public void forEachRemaining(Consumer<? super V> action) {
3565 >            if (action == null) throw new NullPointerException();
3566 >            for (Node<K,V> p; (p = advance()) != null;)
3567 >                action.accept(p.val);
3568          }
3569 <        public boolean contains(Object o) {
3570 <            return ConcurrentHashMap.this.containsKey(o);
3569 >
3570 >        public boolean tryAdvance(Consumer<? super V> action) {
3571 >            if (action == null) throw new NullPointerException();
3572 >            Node<K,V> p;
3573 >            if ((p = advance()) == null)
3574 >                return false;
3575 >            action.accept(p.val);
3576 >            return true;
3577          }
3578 <        public boolean remove(Object o) {
3579 <            return ConcurrentHashMap.this.remove(o) != null;
3578 >
3579 >        public long estimateSize() { return est; }
3580 >
3581 >        public int characteristics() {
3582 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3583 >        }
3584 >    }
3585 >
3586 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3587 >        implements Spliterator<Map.Entry<K,V>> {
3588 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3589 >        long est;               // size estimate
3590 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3591 >                         long est, ConcurrentHashMap<K,V> map) {
3592 >            super(tab, size, index, limit);
3593 >            this.map = map;
3594 >            this.est = est;
3595 >        }
3596 >
3597 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3598 >            int i, f, h;
3599 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3600 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3601 >                                          f, est >>>= 1, map);
3602 >        }
3603 >
3604 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3605 >            if (action == null) throw new NullPointerException();
3606 >            for (Node<K,V> p; (p = advance()) != null; )
3607 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3608          }
3609 <        public void clear() {
3610 <            ConcurrentHashMap.this.clear();
3609 >
3610 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3611 >            if (action == null) throw new NullPointerException();
3612 >            Node<K,V> p;
3613 >            if ((p = advance()) == null)
3614 >                return false;
3615 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3616 >            return true;
3617          }
3618 +
3619 +        public long estimateSize() { return est; }
3620 +
3621 +        public int characteristics() {
3622 +            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3623 +                Spliterator.NONNULL;
3624 +        }
3625 +    }
3626 +
3627 +    // Parallel bulk operations
3628 +
3629 +    /**
3630 +     * Computes initial batch value for bulk tasks. The returned value
3631 +     * is approximately exp2 of the number of times (minus one) to
3632 +     * split task by two before executing leaf action. This value is
3633 +     * faster to compute and more convenient to use as a guide to
3634 +     * splitting than is the depth, since it is used while dividing by
3635 +     * two anyway.
3636 +     */
3637 +    final int batchFor(long b) {
3638 +        long n;
3639 +        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3640 +            return 0;
3641 +        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3642 +        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3643 +    }
3644 +
3645 +    /**
3646 +     * Performs the given action for each (key, value).
3647 +     *
3648 +     * @param parallelismThreshold the (estimated) number of elements
3649 +     * needed for this operation to be executed in parallel
3650 +     * @param action the action
3651 +     * @since 1.8
3652 +     */
3653 +    public void forEach(long parallelismThreshold,
3654 +                        BiConsumer<? super K,? super V> action) {
3655 +        if (action == null) throw new NullPointerException();
3656 +        new ForEachMappingTask<K,V>
3657 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3658 +             action).invoke();
3659 +    }
3660 +
3661 +    /**
3662 +     * Performs the given action for each non-null transformation
3663 +     * of each (key, value).
3664 +     *
3665 +     * @param parallelismThreshold the (estimated) number of elements
3666 +     * needed for this operation to be executed in parallel
3667 +     * @param transformer a function returning the transformation
3668 +     * for an element, or null if there is no transformation (in
3669 +     * which case the action is not applied)
3670 +     * @param action the action
3671 +     * @param <U> the return type of the transformer
3672 +     * @since 1.8
3673 +     */
3674 +    public <U> void forEach(long parallelismThreshold,
3675 +                            BiFunction<? super K, ? super V, ? extends U> transformer,
3676 +                            Consumer<? super U> action) {
3677 +        if (transformer == null || action == null)
3678 +            throw new NullPointerException();
3679 +        new ForEachTransformedMappingTask<K,V,U>
3680 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3681 +             transformer, action).invoke();
3682 +    }
3683 +
3684 +    /**
3685 +     * Returns a non-null result from applying the given search
3686 +     * function on each (key, value), or null if none.  Upon
3687 +     * success, further element processing is suppressed and the
3688 +     * results of any other parallel invocations of the search
3689 +     * function are ignored.
3690 +     *
3691 +     * @param parallelismThreshold the (estimated) number of elements
3692 +     * needed for this operation to be executed in parallel
3693 +     * @param searchFunction a function returning a non-null
3694 +     * result on success, else null
3695 +     * @param <U> the return type of the search function
3696 +     * @return a non-null result from applying the given search
3697 +     * function on each (key, value), or null if none
3698 +     * @since 1.8
3699 +     */
3700 +    public <U> U search(long parallelismThreshold,
3701 +                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3702 +        if (searchFunction == null) throw new NullPointerException();
3703 +        return new SearchMappingsTask<K,V,U>
3704 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3705 +             searchFunction, new AtomicReference<U>()).invoke();
3706 +    }
3707 +
3708 +    /**
3709 +     * Returns the result of accumulating the given transformation
3710 +     * of all (key, value) pairs using the given reducer to
3711 +     * combine values, or null if none.
3712 +     *
3713 +     * @param parallelismThreshold the (estimated) number of elements
3714 +     * needed for this operation to be executed in parallel
3715 +     * @param transformer a function returning the transformation
3716 +     * for an element, or null if there is no transformation (in
3717 +     * which case it is not combined)
3718 +     * @param reducer a commutative associative combining function
3719 +     * @param <U> the return type of the transformer
3720 +     * @return the result of accumulating the given transformation
3721 +     * of all (key, value) pairs
3722 +     * @since 1.8
3723 +     */
3724 +    public <U> U reduce(long parallelismThreshold,
3725 +                        BiFunction<? super K, ? super V, ? extends U> transformer,
3726 +                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3727 +        if (transformer == null || reducer == null)
3728 +            throw new NullPointerException();
3729 +        return new MapReduceMappingsTask<K,V,U>
3730 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3731 +             null, transformer, reducer).invoke();
3732 +    }
3733 +
3734 +    /**
3735 +     * Returns the result of accumulating the given transformation
3736 +     * of all (key, value) pairs using the given reducer to
3737 +     * combine values, and the given basis as an identity value.
3738 +     *
3739 +     * @param parallelismThreshold the (estimated) number of elements
3740 +     * needed for this operation to be executed in parallel
3741 +     * @param transformer a function returning the transformation
3742 +     * for an element
3743 +     * @param basis the identity (initial default value) for the reduction
3744 +     * @param reducer a commutative associative combining function
3745 +     * @return the result of accumulating the given transformation
3746 +     * of all (key, value) pairs
3747 +     * @since 1.8
3748 +     */
3749 +    public double reduceToDouble(long parallelismThreshold,
3750 +                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3751 +                                 double basis,
3752 +                                 DoubleBinaryOperator reducer) {
3753 +        if (transformer == null || reducer == null)
3754 +            throw new NullPointerException();
3755 +        return new MapReduceMappingsToDoubleTask<K,V>
3756 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3757 +             null, transformer, basis, reducer).invoke();
3758 +    }
3759 +
3760 +    /**
3761 +     * Returns the result of accumulating the given transformation
3762 +     * of all (key, value) pairs using the given reducer to
3763 +     * combine values, and the given basis as an identity value.
3764 +     *
3765 +     * @param parallelismThreshold the (estimated) number of elements
3766 +     * needed for this operation to be executed in parallel
3767 +     * @param transformer a function returning the transformation
3768 +     * for an element
3769 +     * @param basis the identity (initial default value) for the reduction
3770 +     * @param reducer a commutative associative combining function
3771 +     * @return the result of accumulating the given transformation
3772 +     * of all (key, value) pairs
3773 +     * @since 1.8
3774 +     */
3775 +    public long reduceToLong(long parallelismThreshold,
3776 +                             ToLongBiFunction<? super K, ? super V> transformer,
3777 +                             long basis,
3778 +                             LongBinaryOperator reducer) {
3779 +        if (transformer == null || reducer == null)
3780 +            throw new NullPointerException();
3781 +        return new MapReduceMappingsToLongTask<K,V>
3782 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3783 +             null, transformer, basis, reducer).invoke();
3784 +    }
3785 +
3786 +    /**
3787 +     * Returns the result of accumulating the given transformation
3788 +     * of all (key, value) pairs using the given reducer to
3789 +     * combine values, and the given basis as an identity value.
3790 +     *
3791 +     * @param parallelismThreshold the (estimated) number of elements
3792 +     * needed for this operation to be executed in parallel
3793 +     * @param transformer a function returning the transformation
3794 +     * for an element
3795 +     * @param basis the identity (initial default value) for the reduction
3796 +     * @param reducer a commutative associative combining function
3797 +     * @return the result of accumulating the given transformation
3798 +     * of all (key, value) pairs
3799 +     * @since 1.8
3800 +     */
3801 +    public int reduceToInt(long parallelismThreshold,
3802 +                           ToIntBiFunction<? super K, ? super V> transformer,
3803 +                           int basis,
3804 +                           IntBinaryOperator reducer) {
3805 +        if (transformer == null || reducer == null)
3806 +            throw new NullPointerException();
3807 +        return new MapReduceMappingsToIntTask<K,V>
3808 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3809 +             null, transformer, basis, reducer).invoke();
3810 +    }
3811 +
3812 +    /**
3813 +     * Performs the given action for each key.
3814 +     *
3815 +     * @param parallelismThreshold the (estimated) number of elements
3816 +     * needed for this operation to be executed in parallel
3817 +     * @param action the action
3818 +     * @since 1.8
3819 +     */
3820 +    public void forEachKey(long parallelismThreshold,
3821 +                           Consumer<? super K> action) {
3822 +        if (action == null) throw new NullPointerException();
3823 +        new ForEachKeyTask<K,V>
3824 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3825 +             action).invoke();
3826 +    }
3827 +
3828 +    /**
3829 +     * Performs the given action for each non-null transformation
3830 +     * of each key.
3831 +     *
3832 +     * @param parallelismThreshold the (estimated) number of elements
3833 +     * needed for this operation to be executed in parallel
3834 +     * @param transformer a function returning the transformation
3835 +     * for an element, or null if there is no transformation (in
3836 +     * which case the action is not applied)
3837 +     * @param action the action
3838 +     * @param <U> the return type of the transformer
3839 +     * @since 1.8
3840 +     */
3841 +    public <U> void forEachKey(long parallelismThreshold,
3842 +                               Function<? super K, ? extends U> transformer,
3843 +                               Consumer<? super U> action) {
3844 +        if (transformer == null || action == null)
3845 +            throw new NullPointerException();
3846 +        new ForEachTransformedKeyTask<K,V,U>
3847 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3848 +             transformer, action).invoke();
3849 +    }
3850 +
3851 +    /**
3852 +     * Returns a non-null result from applying the given search
3853 +     * function on each key, or null if none. Upon success,
3854 +     * further element processing is suppressed and the results of
3855 +     * any other parallel invocations of the search function are
3856 +     * ignored.
3857 +     *
3858 +     * @param parallelismThreshold the (estimated) number of elements
3859 +     * needed for this operation to be executed in parallel
3860 +     * @param searchFunction a function returning a non-null
3861 +     * result on success, else null
3862 +     * @param <U> the return type of the search function
3863 +     * @return a non-null result from applying the given search
3864 +     * function on each key, or null if none
3865 +     * @since 1.8
3866 +     */
3867 +    public <U> U searchKeys(long parallelismThreshold,
3868 +                            Function<? super K, ? extends U> searchFunction) {
3869 +        if (searchFunction == null) throw new NullPointerException();
3870 +        return new SearchKeysTask<K,V,U>
3871 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3872 +             searchFunction, new AtomicReference<U>()).invoke();
3873 +    }
3874 +
3875 +    /**
3876 +     * Returns the result of accumulating all keys using the given
3877 +     * reducer to combine values, or null if none.
3878 +     *
3879 +     * @param parallelismThreshold the (estimated) number of elements
3880 +     * needed for this operation to be executed in parallel
3881 +     * @param reducer a commutative associative combining function
3882 +     * @return the result of accumulating all keys using the given
3883 +     * reducer to combine values, or null if none
3884 +     * @since 1.8
3885 +     */
3886 +    public K reduceKeys(long parallelismThreshold,
3887 +                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3888 +        if (reducer == null) throw new NullPointerException();
3889 +        return new ReduceKeysTask<K,V>
3890 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3891 +             null, reducer).invoke();
3892 +    }
3893 +
3894 +    /**
3895 +     * Returns the result of accumulating the given transformation
3896 +     * of all keys using the given reducer to combine values, or
3897 +     * null if none.
3898 +     *
3899 +     * @param parallelismThreshold the (estimated) number of elements
3900 +     * needed for this operation to be executed in parallel
3901 +     * @param transformer a function returning the transformation
3902 +     * for an element, or null if there is no transformation (in
3903 +     * which case it is not combined)
3904 +     * @param reducer a commutative associative combining function
3905 +     * @param <U> the return type of the transformer
3906 +     * @return the result of accumulating the given transformation
3907 +     * of all keys
3908 +     * @since 1.8
3909 +     */
3910 +    public <U> U reduceKeys(long parallelismThreshold,
3911 +                            Function<? super K, ? extends U> transformer,
3912 +         BiFunction<? super U, ? super U, ? extends U> reducer) {
3913 +        if (transformer == null || reducer == null)
3914 +            throw new NullPointerException();
3915 +        return new MapReduceKeysTask<K,V,U>
3916 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3917 +             null, transformer, reducer).invoke();
3918 +    }
3919 +
3920 +    /**
3921 +     * Returns the result of accumulating the given transformation
3922 +     * of all keys using the given reducer to combine values, and
3923 +     * the given basis as an identity value.
3924 +     *
3925 +     * @param parallelismThreshold the (estimated) number of elements
3926 +     * needed for this operation to be executed in parallel
3927 +     * @param transformer a function returning the transformation
3928 +     * for an element
3929 +     * @param basis the identity (initial default value) for the reduction
3930 +     * @param reducer a commutative associative combining function
3931 +     * @return the result of accumulating the given transformation
3932 +     * of all keys
3933 +     * @since 1.8
3934 +     */
3935 +    public double reduceKeysToDouble(long parallelismThreshold,
3936 +                                     ToDoubleFunction<? super K> transformer,
3937 +                                     double basis,
3938 +                                     DoubleBinaryOperator reducer) {
3939 +        if (transformer == null || reducer == null)
3940 +            throw new NullPointerException();
3941 +        return new MapReduceKeysToDoubleTask<K,V>
3942 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3943 +             null, transformer, basis, reducer).invoke();
3944 +    }
3945 +
3946 +    /**
3947 +     * Returns the result of accumulating the given transformation
3948 +     * of all keys using the given reducer to combine values, and
3949 +     * the given basis as an identity value.
3950 +     *
3951 +     * @param parallelismThreshold the (estimated) number of elements
3952 +     * needed for this operation to be executed in parallel
3953 +     * @param transformer a function returning the transformation
3954 +     * for an element
3955 +     * @param basis the identity (initial default value) for the reduction
3956 +     * @param reducer a commutative associative combining function
3957 +     * @return the result of accumulating the given transformation
3958 +     * of all keys
3959 +     * @since 1.8
3960 +     */
3961 +    public long reduceKeysToLong(long parallelismThreshold,
3962 +                                 ToLongFunction<? super K> transformer,
3963 +                                 long basis,
3964 +                                 LongBinaryOperator reducer) {
3965 +        if (transformer == null || reducer == null)
3966 +            throw new NullPointerException();
3967 +        return new MapReduceKeysToLongTask<K,V>
3968 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3969 +             null, transformer, basis, reducer).invoke();
3970 +    }
3971 +
3972 +    /**
3973 +     * Returns the result of accumulating the given transformation
3974 +     * of all keys using the given reducer to combine values, and
3975 +     * the given basis as an identity value.
3976 +     *
3977 +     * @param parallelismThreshold the (estimated) number of elements
3978 +     * needed for this operation to be executed in parallel
3979 +     * @param transformer a function returning the transformation
3980 +     * for an element
3981 +     * @param basis the identity (initial default value) for the reduction
3982 +     * @param reducer a commutative associative combining function
3983 +     * @return the result of accumulating the given transformation
3984 +     * of all keys
3985 +     * @since 1.8
3986 +     */
3987 +    public int reduceKeysToInt(long parallelismThreshold,
3988 +                               ToIntFunction<? super K> transformer,
3989 +                               int basis,
3990 +                               IntBinaryOperator reducer) {
3991 +        if (transformer == null || reducer == null)
3992 +            throw new NullPointerException();
3993 +        return new MapReduceKeysToIntTask<K,V>
3994 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3995 +             null, transformer, basis, reducer).invoke();
3996 +    }
3997 +
3998 +    /**
3999 +     * Performs the given action for each value.
4000 +     *
4001 +     * @param parallelismThreshold the (estimated) number of elements
4002 +     * needed for this operation to be executed in parallel
4003 +     * @param action the action
4004 +     * @since 1.8
4005 +     */
4006 +    public void forEachValue(long parallelismThreshold,
4007 +                             Consumer<? super V> action) {
4008 +        if (action == null)
4009 +            throw new NullPointerException();
4010 +        new ForEachValueTask<K,V>
4011 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4012 +             action).invoke();
4013 +    }
4014 +
4015 +    /**
4016 +     * Performs the given action for each non-null transformation
4017 +     * of each value.
4018 +     *
4019 +     * @param parallelismThreshold the (estimated) number of elements
4020 +     * needed for this operation to be executed in parallel
4021 +     * @param transformer a function returning the transformation
4022 +     * for an element, or null if there is no transformation (in
4023 +     * which case the action is not applied)
4024 +     * @param action the action
4025 +     * @param <U> the return type of the transformer
4026 +     * @since 1.8
4027 +     */
4028 +    public <U> void forEachValue(long parallelismThreshold,
4029 +                                 Function<? super V, ? extends U> transformer,
4030 +                                 Consumer<? super U> action) {
4031 +        if (transformer == null || action == null)
4032 +            throw new NullPointerException();
4033 +        new ForEachTransformedValueTask<K,V,U>
4034 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4035 +             transformer, action).invoke();
4036 +    }
4037 +
4038 +    /**
4039 +     * Returns a non-null result from applying the given search
4040 +     * function on each value, or null if none.  Upon success,
4041 +     * further element processing is suppressed and the results of
4042 +     * any other parallel invocations of the search function are
4043 +     * ignored.
4044 +     *
4045 +     * @param parallelismThreshold the (estimated) number of elements
4046 +     * needed for this operation to be executed in parallel
4047 +     * @param searchFunction a function returning a non-null
4048 +     * result on success, else null
4049 +     * @param <U> the return type of the search function
4050 +     * @return a non-null result from applying the given search
4051 +     * function on each value, or null if none
4052 +     * @since 1.8
4053 +     */
4054 +    public <U> U searchValues(long parallelismThreshold,
4055 +                              Function<? super V, ? extends U> searchFunction) {
4056 +        if (searchFunction == null) throw new NullPointerException();
4057 +        return new SearchValuesTask<K,V,U>
4058 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4059 +             searchFunction, new AtomicReference<U>()).invoke();
4060 +    }
4061 +
4062 +    /**
4063 +     * Returns the result of accumulating all values using the
4064 +     * given reducer to combine values, or null if none.
4065 +     *
4066 +     * @param parallelismThreshold the (estimated) number of elements
4067 +     * needed for this operation to be executed in parallel
4068 +     * @param reducer a commutative associative combining function
4069 +     * @return the result of accumulating all values
4070 +     * @since 1.8
4071 +     */
4072 +    public V reduceValues(long parallelismThreshold,
4073 +                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4074 +        if (reducer == null) throw new NullPointerException();
4075 +        return new ReduceValuesTask<K,V>
4076 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4077 +             null, reducer).invoke();
4078 +    }
4079 +
4080 +    /**
4081 +     * Returns the result of accumulating the given transformation
4082 +     * of all values using the given reducer to combine values, or
4083 +     * null if none.
4084 +     *
4085 +     * @param parallelismThreshold the (estimated) number of elements
4086 +     * needed for this operation to be executed in parallel
4087 +     * @param transformer a function returning the transformation
4088 +     * for an element, or null if there is no transformation (in
4089 +     * which case it is not combined)
4090 +     * @param reducer a commutative associative combining function
4091 +     * @param <U> the return type of the transformer
4092 +     * @return the result of accumulating the given transformation
4093 +     * of all values
4094 +     * @since 1.8
4095 +     */
4096 +    public <U> U reduceValues(long parallelismThreshold,
4097 +                              Function<? super V, ? extends U> transformer,
4098 +                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4099 +        if (transformer == null || reducer == null)
4100 +            throw new NullPointerException();
4101 +        return new MapReduceValuesTask<K,V,U>
4102 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4103 +             null, transformer, reducer).invoke();
4104 +    }
4105 +
4106 +    /**
4107 +     * Returns the result of accumulating the given transformation
4108 +     * of all values using the given reducer to combine values,
4109 +     * and the given basis as an identity value.
4110 +     *
4111 +     * @param parallelismThreshold the (estimated) number of elements
4112 +     * needed for this operation to be executed in parallel
4113 +     * @param transformer a function returning the transformation
4114 +     * for an element
4115 +     * @param basis the identity (initial default value) for the reduction
4116 +     * @param reducer a commutative associative combining function
4117 +     * @return the result of accumulating the given transformation
4118 +     * of all values
4119 +     * @since 1.8
4120 +     */
4121 +    public double reduceValuesToDouble(long parallelismThreshold,
4122 +                                       ToDoubleFunction<? super V> transformer,
4123 +                                       double basis,
4124 +                                       DoubleBinaryOperator reducer) {
4125 +        if (transformer == null || reducer == null)
4126 +            throw new NullPointerException();
4127 +        return new MapReduceValuesToDoubleTask<K,V>
4128 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4129 +             null, transformer, basis, reducer).invoke();
4130      }
4131  
4132 <    final class Values extends AbstractCollection<V> {
4133 <        public Iterator<V> iterator() {
4134 <            return new ValueIterator();
4132 >    /**
4133 >     * Returns the result of accumulating the given transformation
4134 >     * of all values using the given reducer to combine values,
4135 >     * and the given basis as an identity value.
4136 >     *
4137 >     * @param parallelismThreshold the (estimated) number of elements
4138 >     * needed for this operation to be executed in parallel
4139 >     * @param transformer a function returning the transformation
4140 >     * for an element
4141 >     * @param basis the identity (initial default value) for the reduction
4142 >     * @param reducer a commutative associative combining function
4143 >     * @return the result of accumulating the given transformation
4144 >     * of all values
4145 >     * @since 1.8
4146 >     */
4147 >    public long reduceValuesToLong(long parallelismThreshold,
4148 >                                   ToLongFunction<? super V> transformer,
4149 >                                   long basis,
4150 >                                   LongBinaryOperator reducer) {
4151 >        if (transformer == null || reducer == null)
4152 >            throw new NullPointerException();
4153 >        return new MapReduceValuesToLongTask<K,V>
4154 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4155 >             null, transformer, basis, reducer).invoke();
4156 >    }
4157 >
4158 >    /**
4159 >     * Returns the result of accumulating the given transformation
4160 >     * of all values using the given reducer to combine values,
4161 >     * and the given basis as an identity value.
4162 >     *
4163 >     * @param parallelismThreshold the (estimated) number of elements
4164 >     * needed for this operation to be executed in parallel
4165 >     * @param transformer a function returning the transformation
4166 >     * for an element
4167 >     * @param basis the identity (initial default value) for the reduction
4168 >     * @param reducer a commutative associative combining function
4169 >     * @return the result of accumulating the given transformation
4170 >     * of all values
4171 >     * @since 1.8
4172 >     */
4173 >    public int reduceValuesToInt(long parallelismThreshold,
4174 >                                 ToIntFunction<? super V> transformer,
4175 >                                 int basis,
4176 >                                 IntBinaryOperator reducer) {
4177 >        if (transformer == null || reducer == null)
4178 >            throw new NullPointerException();
4179 >        return new MapReduceValuesToIntTask<K,V>
4180 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4181 >             null, transformer, basis, reducer).invoke();
4182 >    }
4183 >
4184 >    /**
4185 >     * Performs the given action for each entry.
4186 >     *
4187 >     * @param parallelismThreshold the (estimated) number of elements
4188 >     * needed for this operation to be executed in parallel
4189 >     * @param action the action
4190 >     * @since 1.8
4191 >     */
4192 >    public void forEachEntry(long parallelismThreshold,
4193 >                             Consumer<? super Map.Entry<K,V>> action) {
4194 >        if (action == null) throw new NullPointerException();
4195 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4196 >                                  action).invoke();
4197 >    }
4198 >
4199 >    /**
4200 >     * Performs the given action for each non-null transformation
4201 >     * of each entry.
4202 >     *
4203 >     * @param parallelismThreshold the (estimated) number of elements
4204 >     * needed for this operation to be executed in parallel
4205 >     * @param transformer a function returning the transformation
4206 >     * for an element, or null if there is no transformation (in
4207 >     * which case the action is not applied)
4208 >     * @param action the action
4209 >     * @param <U> the return type of the transformer
4210 >     * @since 1.8
4211 >     */
4212 >    public <U> void forEachEntry(long parallelismThreshold,
4213 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4214 >                                 Consumer<? super U> action) {
4215 >        if (transformer == null || action == null)
4216 >            throw new NullPointerException();
4217 >        new ForEachTransformedEntryTask<K,V,U>
4218 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4219 >             transformer, action).invoke();
4220 >    }
4221 >
4222 >    /**
4223 >     * Returns a non-null result from applying the given search
4224 >     * function on each entry, or null if none.  Upon success,
4225 >     * further element processing is suppressed and the results of
4226 >     * any other parallel invocations of the search function are
4227 >     * ignored.
4228 >     *
4229 >     * @param parallelismThreshold the (estimated) number of elements
4230 >     * needed for this operation to be executed in parallel
4231 >     * @param searchFunction a function returning a non-null
4232 >     * result on success, else null
4233 >     * @param <U> the return type of the search function
4234 >     * @return a non-null result from applying the given search
4235 >     * function on each entry, or null if none
4236 >     * @since 1.8
4237 >     */
4238 >    public <U> U searchEntries(long parallelismThreshold,
4239 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4240 >        if (searchFunction == null) throw new NullPointerException();
4241 >        return new SearchEntriesTask<K,V,U>
4242 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4243 >             searchFunction, new AtomicReference<U>()).invoke();
4244 >    }
4245 >
4246 >    /**
4247 >     * Returns the result of accumulating all entries using the
4248 >     * given reducer to combine values, or null if none.
4249 >     *
4250 >     * @param parallelismThreshold the (estimated) number of elements
4251 >     * needed for this operation to be executed in parallel
4252 >     * @param reducer a commutative associative combining function
4253 >     * @return the result of accumulating all entries
4254 >     * @since 1.8
4255 >     */
4256 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4257 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4258 >        if (reducer == null) throw new NullPointerException();
4259 >        return new ReduceEntriesTask<K,V>
4260 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4261 >             null, reducer).invoke();
4262 >    }
4263 >
4264 >    /**
4265 >     * Returns the result of accumulating the given transformation
4266 >     * of all entries using the given reducer to combine values,
4267 >     * or null if none.
4268 >     *
4269 >     * @param parallelismThreshold the (estimated) number of elements
4270 >     * needed for this operation to be executed in parallel
4271 >     * @param transformer a function returning the transformation
4272 >     * for an element, or null if there is no transformation (in
4273 >     * which case it is not combined)
4274 >     * @param reducer a commutative associative combining function
4275 >     * @param <U> the return type of the transformer
4276 >     * @return the result of accumulating the given transformation
4277 >     * of all entries
4278 >     * @since 1.8
4279 >     */
4280 >    public <U> U reduceEntries(long parallelismThreshold,
4281 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4282 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4283 >        if (transformer == null || reducer == null)
4284 >            throw new NullPointerException();
4285 >        return new MapReduceEntriesTask<K,V,U>
4286 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4287 >             null, transformer, reducer).invoke();
4288 >    }
4289 >
4290 >    /**
4291 >     * Returns the result of accumulating the given transformation
4292 >     * of all entries using the given reducer to combine values,
4293 >     * and the given basis as an identity value.
4294 >     *
4295 >     * @param parallelismThreshold the (estimated) number of elements
4296 >     * needed for this operation to be executed in parallel
4297 >     * @param transformer a function returning the transformation
4298 >     * for an element
4299 >     * @param basis the identity (initial default value) for the reduction
4300 >     * @param reducer a commutative associative combining function
4301 >     * @return the result of accumulating the given transformation
4302 >     * of all entries
4303 >     * @since 1.8
4304 >     */
4305 >    public double reduceEntriesToDouble(long parallelismThreshold,
4306 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4307 >                                        double basis,
4308 >                                        DoubleBinaryOperator reducer) {
4309 >        if (transformer == null || reducer == null)
4310 >            throw new NullPointerException();
4311 >        return new MapReduceEntriesToDoubleTask<K,V>
4312 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4313 >             null, transformer, basis, reducer).invoke();
4314 >    }
4315 >
4316 >    /**
4317 >     * Returns the result of accumulating the given transformation
4318 >     * of all entries using the given reducer to combine values,
4319 >     * and the given basis as an identity value.
4320 >     *
4321 >     * @param parallelismThreshold the (estimated) number of elements
4322 >     * needed for this operation to be executed in parallel
4323 >     * @param transformer a function returning the transformation
4324 >     * for an element
4325 >     * @param basis the identity (initial default value) for the reduction
4326 >     * @param reducer a commutative associative combining function
4327 >     * @return the result of accumulating the given transformation
4328 >     * of all entries
4329 >     * @since 1.8
4330 >     */
4331 >    public long reduceEntriesToLong(long parallelismThreshold,
4332 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4333 >                                    long basis,
4334 >                                    LongBinaryOperator reducer) {
4335 >        if (transformer == null || reducer == null)
4336 >            throw new NullPointerException();
4337 >        return new MapReduceEntriesToLongTask<K,V>
4338 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4339 >             null, transformer, basis, reducer).invoke();
4340 >    }
4341 >
4342 >    /**
4343 >     * Returns the result of accumulating the given transformation
4344 >     * of all entries using the given reducer to combine values,
4345 >     * and the given basis as an identity value.
4346 >     *
4347 >     * @param parallelismThreshold the (estimated) number of elements
4348 >     * needed for this operation to be executed in parallel
4349 >     * @param transformer a function returning the transformation
4350 >     * for an element
4351 >     * @param basis the identity (initial default value) for the reduction
4352 >     * @param reducer a commutative associative combining function
4353 >     * @return the result of accumulating the given transformation
4354 >     * of all entries
4355 >     * @since 1.8
4356 >     */
4357 >    public int reduceEntriesToInt(long parallelismThreshold,
4358 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4359 >                                  int basis,
4360 >                                  IntBinaryOperator reducer) {
4361 >        if (transformer == null || reducer == null)
4362 >            throw new NullPointerException();
4363 >        return new MapReduceEntriesToIntTask<K,V>
4364 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4365 >             null, transformer, basis, reducer).invoke();
4366 >    }
4367 >
4368 >
4369 >    /* ----------------Views -------------- */
4370 >
4371 >    /**
4372 >     * Base class for views.
4373 >     */
4374 >    abstract static class CollectionView<K,V,E>
4375 >        implements Collection<E>, java.io.Serializable {
4376 >        private static final long serialVersionUID = 7249069246763182397L;
4377 >        final ConcurrentHashMap<K,V> map;
4378 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4379 >
4380 >        /**
4381 >         * Returns the map backing this view.
4382 >         *
4383 >         * @return the map backing this view
4384 >         */
4385 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4386 >
4387 >        /**
4388 >         * Removes all of the elements from this view, by removing all
4389 >         * the mappings from the map backing this view.
4390 >         */
4391 >        public final void clear()      { map.clear(); }
4392 >        public final int size()        { return map.size(); }
4393 >        public final boolean isEmpty() { return map.isEmpty(); }
4394 >
4395 >        // implementations below rely on concrete classes supplying these
4396 >        // abstract methods
4397 >        /**
4398 >         * Returns an iterator over the elements in this collection.
4399 >         *
4400 >         * <p>The returned iterator is
4401 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4402 >         *
4403 >         * @return an iterator over the elements in this collection
4404 >         */
4405 >        public abstract Iterator<E> iterator();
4406 >        public abstract boolean contains(Object o);
4407 >        public abstract boolean remove(Object o);
4408 >
4409 >        private static final String oomeMsg = "Required array size too large";
4410 >
4411 >        public final Object[] toArray() {
4412 >            long sz = map.mappingCount();
4413 >            if (sz > MAX_ARRAY_SIZE)
4414 >                throw new OutOfMemoryError(oomeMsg);
4415 >            int n = (int)sz;
4416 >            Object[] r = new Object[n];
4417 >            int i = 0;
4418 >            for (E e : this) {
4419 >                if (i == n) {
4420 >                    if (n >= MAX_ARRAY_SIZE)
4421 >                        throw new OutOfMemoryError(oomeMsg);
4422 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4423 >                        n = MAX_ARRAY_SIZE;
4424 >                    else
4425 >                        n += (n >>> 1) + 1;
4426 >                    r = Arrays.copyOf(r, n);
4427 >                }
4428 >                r[i++] = e;
4429 >            }
4430 >            return (i == n) ? r : Arrays.copyOf(r, i);
4431          }
4432 <        public int size() {
4433 <            return ConcurrentHashMap.this.size();
4432 >
4433 >        @SuppressWarnings("unchecked")
4434 >        public final <T> T[] toArray(T[] a) {
4435 >            long sz = map.mappingCount();
4436 >            if (sz > MAX_ARRAY_SIZE)
4437 >                throw new OutOfMemoryError(oomeMsg);
4438 >            int m = (int)sz;
4439 >            T[] r = (a.length >= m) ? a :
4440 >                (T[])java.lang.reflect.Array
4441 >                .newInstance(a.getClass().getComponentType(), m);
4442 >            int n = r.length;
4443 >            int i = 0;
4444 >            for (E e : this) {
4445 >                if (i == n) {
4446 >                    if (n >= MAX_ARRAY_SIZE)
4447 >                        throw new OutOfMemoryError(oomeMsg);
4448 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4449 >                        n = MAX_ARRAY_SIZE;
4450 >                    else
4451 >                        n += (n >>> 1) + 1;
4452 >                    r = Arrays.copyOf(r, n);
4453 >                }
4454 >                r[i++] = (T)e;
4455 >            }
4456 >            if (a == r && i < n) {
4457 >                r[i] = null; // null-terminate
4458 >                return r;
4459 >            }
4460 >            return (i == n) ? r : Arrays.copyOf(r, i);
4461          }
4462 <        public boolean isEmpty() {
4463 <            return ConcurrentHashMap.this.isEmpty();
4462 >
4463 >        /**
4464 >         * Returns a string representation of this collection.
4465 >         * The string representation consists of the string representations
4466 >         * of the collection's elements in the order they are returned by
4467 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4468 >         * Adjacent elements are separated by the characters {@code ", "}
4469 >         * (comma and space).  Elements are converted to strings as by
4470 >         * {@link String#valueOf(Object)}.
4471 >         *
4472 >         * @return a string representation of this collection
4473 >         */
4474 >        public final String toString() {
4475 >            StringBuilder sb = new StringBuilder();
4476 >            sb.append('[');
4477 >            Iterator<E> it = iterator();
4478 >            if (it.hasNext()) {
4479 >                for (;;) {
4480 >                    Object e = it.next();
4481 >                    sb.append(e == this ? "(this Collection)" : e);
4482 >                    if (!it.hasNext())
4483 >                        break;
4484 >                    sb.append(',').append(' ');
4485 >                }
4486 >            }
4487 >            return sb.append(']').toString();
4488          }
4489 <        public boolean contains(Object o) {
4490 <            return ConcurrentHashMap.this.containsValue(o);
4489 >
4490 >        public final boolean containsAll(Collection<?> c) {
4491 >            if (c != this) {
4492 >                for (Object e : c) {
4493 >                    if (e == null || !contains(e))
4494 >                        return false;
4495 >                }
4496 >            }
4497 >            return true;
4498          }
4499 <        public void clear() {
4500 <            ConcurrentHashMap.this.clear();
4499 >
4500 >        public final boolean removeAll(Collection<?> c) {
4501 >            if (c == null) throw new NullPointerException();
4502 >            boolean modified = false;
4503 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4504 >                if (c.contains(it.next())) {
4505 >                    it.remove();
4506 >                    modified = true;
4507 >                }
4508 >            }
4509 >            return modified;
4510          }
4511 +
4512 +        public final boolean retainAll(Collection<?> c) {
4513 +            if (c == null) throw new NullPointerException();
4514 +            boolean modified = false;
4515 +            for (Iterator<E> it = iterator(); it.hasNext();) {
4516 +                if (!c.contains(it.next())) {
4517 +                    it.remove();
4518 +                    modified = true;
4519 +                }
4520 +            }
4521 +            return modified;
4522 +        }
4523 +
4524      }
4525  
4526 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4527 <        public Iterator<Map.Entry<K,V>> iterator() {
4528 <            return new EntryIterator();
4526 >    /**
4527 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4528 >     * which additions may optionally be enabled by mapping to a
4529 >     * common value.  This class cannot be directly instantiated.
4530 >     * See {@link #keySet() keySet()},
4531 >     * {@link #keySet(Object) keySet(V)},
4532 >     * {@link #newKeySet() newKeySet()},
4533 >     * {@link #newKeySet(int) newKeySet(int)}.
4534 >     *
4535 >     * @since 1.8
4536 >     */
4537 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4538 >        implements Set<K>, java.io.Serializable {
4539 >        private static final long serialVersionUID = 7249069246763182397L;
4540 >        private final V value;
4541 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4542 >            super(map);
4543 >            this.value = value;
4544 >        }
4545 >
4546 >        /**
4547 >         * Returns the default mapped value for additions,
4548 >         * or {@code null} if additions are not supported.
4549 >         *
4550 >         * @return the default mapped value for additions, or {@code null}
4551 >         * if not supported
4552 >         */
4553 >        public V getMappedValue() { return value; }
4554 >
4555 >        /**
4556 >         * {@inheritDoc}
4557 >         * @throws NullPointerException if the specified key is null
4558 >         */
4559 >        public boolean contains(Object o) { return map.containsKey(o); }
4560 >
4561 >        /**
4562 >         * Removes the key from this map view, by removing the key (and its
4563 >         * corresponding value) from the backing map.  This method does
4564 >         * nothing if the key is not in the map.
4565 >         *
4566 >         * @param  o the key to be removed from the backing map
4567 >         * @return {@code true} if the backing map contained the specified key
4568 >         * @throws NullPointerException if the specified key is null
4569 >         */
4570 >        public boolean remove(Object o) { return map.remove(o) != null; }
4571 >
4572 >        /**
4573 >         * @return an iterator over the keys of the backing map
4574 >         */
4575 >        public Iterator<K> iterator() {
4576 >            Node<K,V>[] t;
4577 >            ConcurrentHashMap<K,V> m = map;
4578 >            int f = (t = m.table) == null ? 0 : t.length;
4579 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4580 >        }
4581 >
4582 >        /**
4583 >         * Adds the specified key to this set view by mapping the key to
4584 >         * the default mapped value in the backing map, if defined.
4585 >         *
4586 >         * @param e key to be added
4587 >         * @return {@code true} if this set changed as a result of the call
4588 >         * @throws NullPointerException if the specified key is null
4589 >         * @throws UnsupportedOperationException if no default mapped value
4590 >         * for additions was provided
4591 >         */
4592 >        public boolean add(K e) {
4593 >            V v;
4594 >            if ((v = value) == null)
4595 >                throw new UnsupportedOperationException();
4596 >            return map.putVal(e, v, true) == null;
4597 >        }
4598 >
4599 >        /**
4600 >         * Adds all of the elements in the specified collection to this set,
4601 >         * as if by calling {@link #add} on each one.
4602 >         *
4603 >         * @param c the elements to be inserted into this set
4604 >         * @return {@code true} if this set changed as a result of the call
4605 >         * @throws NullPointerException if the collection or any of its
4606 >         * elements are {@code null}
4607 >         * @throws UnsupportedOperationException if no default mapped value
4608 >         * for additions was provided
4609 >         */
4610 >        public boolean addAll(Collection<? extends K> c) {
4611 >            boolean added = false;
4612 >            V v;
4613 >            if ((v = value) == null)
4614 >                throw new UnsupportedOperationException();
4615 >            for (K e : c) {
4616 >                if (map.putVal(e, v, true) == null)
4617 >                    added = true;
4618 >            }
4619 >            return added;
4620 >        }
4621 >
4622 >        public int hashCode() {
4623 >            int h = 0;
4624 >            for (K e : this)
4625 >                h += e.hashCode();
4626 >            return h;
4627 >        }
4628 >
4629 >        public boolean equals(Object o) {
4630 >            Set<?> c;
4631 >            return ((o instanceof Set) &&
4632 >                    ((c = (Set<?>)o) == this ||
4633 >                     (containsAll(c) && c.containsAll(this))));
4634 >        }
4635 >
4636 >        public Spliterator<K> spliterator() {
4637 >            Node<K,V>[] t;
4638 >            ConcurrentHashMap<K,V> m = map;
4639 >            long n = m.sumCount();
4640 >            int f = (t = m.table) == null ? 0 : t.length;
4641 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4642 >        }
4643 >
4644 >        public void forEach(Consumer<? super K> action) {
4645 >            if (action == null) throw new NullPointerException();
4646 >            Node<K,V>[] t;
4647 >            if ((t = map.table) != null) {
4648 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4649 >                for (Node<K,V> p; (p = it.advance()) != null; )
4650 >                    action.accept(p.key);
4651 >            }
4652 >        }
4653 >    }
4654 >
4655 >    /**
4656 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4657 >     * values, in which additions are disabled. This class cannot be
4658 >     * directly instantiated. See {@link #values()}.
4659 >     */
4660 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4661 >        implements Collection<V>, java.io.Serializable {
4662 >        private static final long serialVersionUID = 2249069246763182397L;
4663 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4664 >        public final boolean contains(Object o) {
4665 >            return map.containsValue(o);
4666 >        }
4667 >
4668 >        public final boolean remove(Object o) {
4669 >            if (o != null) {
4670 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4671 >                    if (o.equals(it.next())) {
4672 >                        it.remove();
4673 >                        return true;
4674 >                    }
4675 >                }
4676 >            }
4677 >            return false;
4678 >        }
4679 >
4680 >        public final Iterator<V> iterator() {
4681 >            ConcurrentHashMap<K,V> m = map;
4682 >            Node<K,V>[] t;
4683 >            int f = (t = m.table) == null ? 0 : t.length;
4684 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4685          }
4686 +
4687 +        public final boolean add(V e) {
4688 +            throw new UnsupportedOperationException();
4689 +        }
4690 +        public final boolean addAll(Collection<? extends V> c) {
4691 +            throw new UnsupportedOperationException();
4692 +        }
4693 +
4694 +        public Spliterator<V> spliterator() {
4695 +            Node<K,V>[] t;
4696 +            ConcurrentHashMap<K,V> m = map;
4697 +            long n = m.sumCount();
4698 +            int f = (t = m.table) == null ? 0 : t.length;
4699 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4700 +        }
4701 +
4702 +        public void forEach(Consumer<? super V> action) {
4703 +            if (action == null) throw new NullPointerException();
4704 +            Node<K,V>[] t;
4705 +            if ((t = map.table) != null) {
4706 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4707 +                for (Node<K,V> p; (p = it.advance()) != null; )
4708 +                    action.accept(p.val);
4709 +            }
4710 +        }
4711 +    }
4712 +
4713 +    /**
4714 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4715 +     * entries.  This class cannot be directly instantiated. See
4716 +     * {@link #entrySet()}.
4717 +     */
4718 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4719 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4720 +        private static final long serialVersionUID = 2249069246763182397L;
4721 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4722 +
4723          public boolean contains(Object o) {
4724 <            if (!(o instanceof Map.Entry))
4725 <                return false;
4726 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4727 <            V v = ConcurrentHashMap.this.get(e.getKey());
4728 <            return v != null && v.equals(e.getValue());
4724 >            Object k, v, r; Map.Entry<?,?> e;
4725 >            return ((o instanceof Map.Entry) &&
4726 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4727 >                    (r = map.get(k)) != null &&
4728 >                    (v = e.getValue()) != null &&
4729 >                    (v == r || v.equals(r)));
4730          }
4731 +
4732          public boolean remove(Object o) {
4733 <            if (!(o instanceof Map.Entry))
4734 <                return false;
4735 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4736 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4733 >            Object k, v; Map.Entry<?,?> e;
4734 >            return ((o instanceof Map.Entry) &&
4735 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4736 >                    (v = e.getValue()) != null &&
4737 >                    map.remove(k, v));
4738          }
4739 <        public int size() {
4740 <            return ConcurrentHashMap.this.size();
4739 >
4740 >        /**
4741 >         * @return an iterator over the entries of the backing map
4742 >         */
4743 >        public Iterator<Map.Entry<K,V>> iterator() {
4744 >            ConcurrentHashMap<K,V> m = map;
4745 >            Node<K,V>[] t;
4746 >            int f = (t = m.table) == null ? 0 : t.length;
4747 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4748          }
4749 <        public boolean isEmpty() {
4750 <            return ConcurrentHashMap.this.isEmpty();
4749 >
4750 >        public boolean add(Entry<K,V> e) {
4751 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4752          }
4753 <        public void clear() {
4754 <            ConcurrentHashMap.this.clear();
4753 >
4754 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4755 >            boolean added = false;
4756 >            for (Entry<K,V> e : c) {
4757 >                if (add(e))
4758 >                    added = true;
4759 >            }
4760 >            return added;
4761          }
4762 +
4763 +        public boolean removeIf(Predicate<? super Entry<K, V>> filter) {
4764 +            return map.removeEntryIf(filter);
4765 +        }
4766 +
4767 +        public final int hashCode() {
4768 +            int h = 0;
4769 +            Node<K,V>[] t;
4770 +            if ((t = map.table) != null) {
4771 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4772 +                for (Node<K,V> p; (p = it.advance()) != null; ) {
4773 +                    h += p.hashCode();
4774 +                }
4775 +            }
4776 +            return h;
4777 +        }
4778 +
4779 +        public final boolean equals(Object o) {
4780 +            Set<?> c;
4781 +            return ((o instanceof Set) &&
4782 +                    ((c = (Set<?>)o) == this ||
4783 +                     (containsAll(c) && c.containsAll(this))));
4784 +        }
4785 +
4786 +        public Spliterator<Map.Entry<K,V>> spliterator() {
4787 +            Node<K,V>[] t;
4788 +            ConcurrentHashMap<K,V> m = map;
4789 +            long n = m.sumCount();
4790 +            int f = (t = m.table) == null ? 0 : t.length;
4791 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4792 +        }
4793 +
4794 +        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4795 +            if (action == null) throw new NullPointerException();
4796 +            Node<K,V>[] t;
4797 +            if ((t = map.table) != null) {
4798 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4799 +                for (Node<K,V> p; (p = it.advance()) != null; )
4800 +                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4801 +            }
4802 +        }
4803 +
4804      }
4805  
4806 <    /* ---------------- Serialization Support -------------- */
4806 >    // -------------------------------------------------------
4807  
4808      /**
4809 <     * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
4810 <     * stream (i.e., serializes it).
1402 <     * @param s the stream
1403 <     * @serialData
1404 <     * the key (Object) and value (Object)
1405 <     * for each key-value mapping, followed by a null pair.
1406 <     * The key-value mappings are emitted in no particular order.
4809 >     * Base class for bulk tasks. Repeats some fields and code from
4810 >     * class Traverser, because we need to subclass CountedCompleter.
4811       */
4812 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
4813 <        // force all segments for serialization compatibility
4814 <        for (int k = 0; k < segments.length; ++k)
4815 <            ensureSegment(k);
4816 <        s.defaultWriteObject();
4817 <
4818 <        final Segment<K,V>[] segments = this.segments;
4819 <        for (int k = 0; k < segments.length; ++k) {
4820 <            Segment<K,V> seg = segmentAt(segments, k);
4821 <            seg.lock();
4822 <            try {
4823 <                HashEntry<K,V>[] tab = seg.table;
4824 <                for (int i = 0; i < tab.length; ++i) {
4825 <                    HashEntry<K,V> e;
4826 <                    for (e = entryAt(tab, i); e != null; e = e.next) {
4827 <                        s.writeObject(e.key);
4828 <                        s.writeObject(e.value);
4812 >    @SuppressWarnings("serial")
4813 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4814 >        Node<K,V>[] tab;        // same as Traverser
4815 >        Node<K,V> next;
4816 >        TableStack<K,V> stack, spare;
4817 >        int index;
4818 >        int baseIndex;
4819 >        int baseLimit;
4820 >        final int baseSize;
4821 >        int batch;              // split control
4822 >
4823 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4824 >            super(par);
4825 >            this.batch = b;
4826 >            this.index = this.baseIndex = i;
4827 >            if ((this.tab = t) == null)
4828 >                this.baseSize = this.baseLimit = 0;
4829 >            else if (par == null)
4830 >                this.baseSize = this.baseLimit = t.length;
4831 >            else {
4832 >                this.baseLimit = f;
4833 >                this.baseSize = par.baseSize;
4834 >            }
4835 >        }
4836 >
4837 >        /**
4838 >         * Same as Traverser version
4839 >         */
4840 >        final Node<K,V> advance() {
4841 >            Node<K,V> e;
4842 >            if ((e = next) != null)
4843 >                e = e.next;
4844 >            for (;;) {
4845 >                Node<K,V>[] t; int i, n;
4846 >                if (e != null)
4847 >                    return next = e;
4848 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4849 >                    (n = t.length) <= (i = index) || i < 0)
4850 >                    return next = null;
4851 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4852 >                    if (e instanceof ForwardingNode) {
4853 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4854 >                        e = null;
4855 >                        pushState(t, i, n);
4856 >                        continue;
4857                      }
4858 +                    else if (e instanceof TreeBin)
4859 +                        e = ((TreeBin<K,V>)e).first;
4860 +                    else
4861 +                        e = null;
4862                  }
4863 <            } finally {
4864 <                seg.unlock();
4863 >                if (stack != null)
4864 >                    recoverState(n);
4865 >                else if ((index = i + baseSize) >= n)
4866 >                    index = ++baseIndex;
4867              }
4868          }
4869 <        s.writeObject(null);
4870 <        s.writeObject(null);
4869 >
4870 >        private void pushState(Node<K,V>[] t, int i, int n) {
4871 >            TableStack<K,V> s = spare;
4872 >            if (s != null)
4873 >                spare = s.next;
4874 >            else
4875 >                s = new TableStack<K,V>();
4876 >            s.tab = t;
4877 >            s.length = n;
4878 >            s.index = i;
4879 >            s.next = stack;
4880 >            stack = s;
4881 >        }
4882 >
4883 >        private void recoverState(int n) {
4884 >            TableStack<K,V> s; int len;
4885 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4886 >                n = len;
4887 >                index = s.index;
4888 >                tab = s.tab;
4889 >                s.tab = null;
4890 >                TableStack<K,V> next = s.next;
4891 >                s.next = spare; // save for reuse
4892 >                stack = next;
4893 >                spare = s;
4894 >            }
4895 >            if (s == null && (index += baseSize) >= n)
4896 >                index = ++baseIndex;
4897 >        }
4898      }
4899  
4900 <    /**
4901 <     * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
4902 <     * stream (i.e., deserializes it).
4903 <     * @param s the stream
4904 <     */
4905 <    @SuppressWarnings("unchecked")
4906 <    private void readObject(java.io.ObjectInputStream s)
4907 <        throws IOException, ClassNotFoundException {
4908 <        s.defaultReadObject();
4900 >    /*
4901 >     * Task classes. Coded in a regular but ugly format/style to
4902 >     * simplify checks that each variant differs in the right way from
4903 >     * others. The null screenings exist because compilers cannot tell
4904 >     * that we've already null-checked task arguments, so we force
4905 >     * simplest hoisted bypass to help avoid convoluted traps.
4906 >     */
4907 >    @SuppressWarnings("serial")
4908 >    static final class ForEachKeyTask<K,V>
4909 >        extends BulkTask<K,V,Void> {
4910 >        final Consumer<? super K> action;
4911 >        ForEachKeyTask
4912 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4913 >             Consumer<? super K> action) {
4914 >            super(p, b, i, f, t);
4915 >            this.action = action;
4916 >        }
4917 >        public final void compute() {
4918 >            final Consumer<? super K> action;
4919 >            if ((action = this.action) != null) {
4920 >                for (int i = baseIndex, f, h; batch > 0 &&
4921 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4922 >                    addToPendingCount(1);
4923 >                    new ForEachKeyTask<K,V>
4924 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4925 >                         action).fork();
4926 >                }
4927 >                for (Node<K,V> p; (p = advance()) != null;)
4928 >                    action.accept(p.key);
4929 >                propagateCompletion();
4930 >            }
4931 >        }
4932 >    }
4933  
4934 <        // Re-initialize segments to be minimally sized, and let grow.
4935 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
4936 <        final Segment<K,V>[] segments = this.segments;
4937 <        for (int k = 0; k < segments.length; ++k) {
4938 <            Segment<K,V> seg = segments[k];
4939 <            if (seg != null) {
4940 <                seg.threshold = (int)(cap * seg.loadFactor);
4941 <                seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
4934 >    @SuppressWarnings("serial")
4935 >    static final class ForEachValueTask<K,V>
4936 >        extends BulkTask<K,V,Void> {
4937 >        final Consumer<? super V> action;
4938 >        ForEachValueTask
4939 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4940 >             Consumer<? super V> action) {
4941 >            super(p, b, i, f, t);
4942 >            this.action = action;
4943 >        }
4944 >        public final void compute() {
4945 >            final Consumer<? super V> action;
4946 >            if ((action = this.action) != null) {
4947 >                for (int i = baseIndex, f, h; batch > 0 &&
4948 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4949 >                    addToPendingCount(1);
4950 >                    new ForEachValueTask<K,V>
4951 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4952 >                         action).fork();
4953 >                }
4954 >                for (Node<K,V> p; (p = advance()) != null;)
4955 >                    action.accept(p.val);
4956 >                propagateCompletion();
4957              }
4958          }
4959 +    }
4960  
4961 <        // Read the keys and values, and put the mappings in the table
4962 <        for (;;) {
4963 <            K key = (K) s.readObject();
4964 <            V value = (V) s.readObject();
4965 <            if (key == null)
4966 <                break;
4967 <            put(key, value);
4961 >    @SuppressWarnings("serial")
4962 >    static final class ForEachEntryTask<K,V>
4963 >        extends BulkTask<K,V,Void> {
4964 >        final Consumer<? super Entry<K,V>> action;
4965 >        ForEachEntryTask
4966 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4967 >             Consumer<? super Entry<K,V>> action) {
4968 >            super(p, b, i, f, t);
4969 >            this.action = action;
4970 >        }
4971 >        public final void compute() {
4972 >            final Consumer<? super Entry<K,V>> action;
4973 >            if ((action = this.action) != null) {
4974 >                for (int i = baseIndex, f, h; batch > 0 &&
4975 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4976 >                    addToPendingCount(1);
4977 >                    new ForEachEntryTask<K,V>
4978 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4979 >                         action).fork();
4980 >                }
4981 >                for (Node<K,V> p; (p = advance()) != null; )
4982 >                    action.accept(p);
4983 >                propagateCompletion();
4984 >            }
4985 >        }
4986 >    }
4987 >
4988 >    @SuppressWarnings("serial")
4989 >    static final class ForEachMappingTask<K,V>
4990 >        extends BulkTask<K,V,Void> {
4991 >        final BiConsumer<? super K, ? super V> action;
4992 >        ForEachMappingTask
4993 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4994 >             BiConsumer<? super K,? super V> action) {
4995 >            super(p, b, i, f, t);
4996 >            this.action = action;
4997 >        }
4998 >        public final void compute() {
4999 >            final BiConsumer<? super K, ? super V> action;
5000 >            if ((action = this.action) != null) {
5001 >                for (int i = baseIndex, f, h; batch > 0 &&
5002 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5003 >                    addToPendingCount(1);
5004 >                    new ForEachMappingTask<K,V>
5005 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5006 >                         action).fork();
5007 >                }
5008 >                for (Node<K,V> p; (p = advance()) != null; )
5009 >                    action.accept(p.key, p.val);
5010 >                propagateCompletion();
5011 >            }
5012 >        }
5013 >    }
5014 >
5015 >    @SuppressWarnings("serial")
5016 >    static final class ForEachTransformedKeyTask<K,V,U>
5017 >        extends BulkTask<K,V,Void> {
5018 >        final Function<? super K, ? extends U> transformer;
5019 >        final Consumer<? super U> action;
5020 >        ForEachTransformedKeyTask
5021 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5022 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5023 >            super(p, b, i, f, t);
5024 >            this.transformer = transformer; this.action = action;
5025 >        }
5026 >        public final void compute() {
5027 >            final Function<? super K, ? extends U> transformer;
5028 >            final Consumer<? super U> action;
5029 >            if ((transformer = this.transformer) != null &&
5030 >                (action = this.action) != null) {
5031 >                for (int i = baseIndex, f, h; batch > 0 &&
5032 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5033 >                    addToPendingCount(1);
5034 >                    new ForEachTransformedKeyTask<K,V,U>
5035 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5036 >                         transformer, action).fork();
5037 >                }
5038 >                for (Node<K,V> p; (p = advance()) != null; ) {
5039 >                    U u;
5040 >                    if ((u = transformer.apply(p.key)) != null)
5041 >                        action.accept(u);
5042 >                }
5043 >                propagateCompletion();
5044 >            }
5045 >        }
5046 >    }
5047 >
5048 >    @SuppressWarnings("serial")
5049 >    static final class ForEachTransformedValueTask<K,V,U>
5050 >        extends BulkTask<K,V,Void> {
5051 >        final Function<? super V, ? extends U> transformer;
5052 >        final Consumer<? super U> action;
5053 >        ForEachTransformedValueTask
5054 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5055 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5056 >            super(p, b, i, f, t);
5057 >            this.transformer = transformer; this.action = action;
5058 >        }
5059 >        public final void compute() {
5060 >            final Function<? super V, ? extends U> transformer;
5061 >            final Consumer<? super U> action;
5062 >            if ((transformer = this.transformer) != null &&
5063 >                (action = this.action) != null) {
5064 >                for (int i = baseIndex, f, h; batch > 0 &&
5065 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5066 >                    addToPendingCount(1);
5067 >                    new ForEachTransformedValueTask<K,V,U>
5068 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5069 >                         transformer, action).fork();
5070 >                }
5071 >                for (Node<K,V> p; (p = advance()) != null; ) {
5072 >                    U u;
5073 >                    if ((u = transformer.apply(p.val)) != null)
5074 >                        action.accept(u);
5075 >                }
5076 >                propagateCompletion();
5077 >            }
5078 >        }
5079 >    }
5080 >
5081 >    @SuppressWarnings("serial")
5082 >    static final class ForEachTransformedEntryTask<K,V,U>
5083 >        extends BulkTask<K,V,Void> {
5084 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5085 >        final Consumer<? super U> action;
5086 >        ForEachTransformedEntryTask
5087 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5088 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5089 >            super(p, b, i, f, t);
5090 >            this.transformer = transformer; this.action = action;
5091 >        }
5092 >        public final void compute() {
5093 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5094 >            final Consumer<? super U> action;
5095 >            if ((transformer = this.transformer) != null &&
5096 >                (action = this.action) != null) {
5097 >                for (int i = baseIndex, f, h; batch > 0 &&
5098 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5099 >                    addToPendingCount(1);
5100 >                    new ForEachTransformedEntryTask<K,V,U>
5101 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5102 >                         transformer, action).fork();
5103 >                }
5104 >                for (Node<K,V> p; (p = advance()) != null; ) {
5105 >                    U u;
5106 >                    if ((u = transformer.apply(p)) != null)
5107 >                        action.accept(u);
5108 >                }
5109 >                propagateCompletion();
5110 >            }
5111 >        }
5112 >    }
5113 >
5114 >    @SuppressWarnings("serial")
5115 >    static final class ForEachTransformedMappingTask<K,V,U>
5116 >        extends BulkTask<K,V,Void> {
5117 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5118 >        final Consumer<? super U> action;
5119 >        ForEachTransformedMappingTask
5120 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5121 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5122 >             Consumer<? super U> action) {
5123 >            super(p, b, i, f, t);
5124 >            this.transformer = transformer; this.action = action;
5125 >        }
5126 >        public final void compute() {
5127 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5128 >            final Consumer<? super U> action;
5129 >            if ((transformer = this.transformer) != null &&
5130 >                (action = this.action) != null) {
5131 >                for (int i = baseIndex, f, h; batch > 0 &&
5132 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5133 >                    addToPendingCount(1);
5134 >                    new ForEachTransformedMappingTask<K,V,U>
5135 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5136 >                         transformer, action).fork();
5137 >                }
5138 >                for (Node<K,V> p; (p = advance()) != null; ) {
5139 >                    U u;
5140 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5141 >                        action.accept(u);
5142 >                }
5143 >                propagateCompletion();
5144 >            }
5145 >        }
5146 >    }
5147 >
5148 >    @SuppressWarnings("serial")
5149 >    static final class SearchKeysTask<K,V,U>
5150 >        extends BulkTask<K,V,U> {
5151 >        final Function<? super K, ? extends U> searchFunction;
5152 >        final AtomicReference<U> result;
5153 >        SearchKeysTask
5154 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5155 >             Function<? super K, ? extends U> searchFunction,
5156 >             AtomicReference<U> result) {
5157 >            super(p, b, i, f, t);
5158 >            this.searchFunction = searchFunction; this.result = result;
5159 >        }
5160 >        public final U getRawResult() { return result.get(); }
5161 >        public final void compute() {
5162 >            final Function<? super K, ? extends U> searchFunction;
5163 >            final AtomicReference<U> result;
5164 >            if ((searchFunction = this.searchFunction) != null &&
5165 >                (result = this.result) != null) {
5166 >                for (int i = baseIndex, f, h; batch > 0 &&
5167 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5168 >                    if (result.get() != null)
5169 >                        return;
5170 >                    addToPendingCount(1);
5171 >                    new SearchKeysTask<K,V,U>
5172 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5173 >                         searchFunction, result).fork();
5174 >                }
5175 >                while (result.get() == null) {
5176 >                    U u;
5177 >                    Node<K,V> p;
5178 >                    if ((p = advance()) == null) {
5179 >                        propagateCompletion();
5180 >                        break;
5181 >                    }
5182 >                    if ((u = searchFunction.apply(p.key)) != null) {
5183 >                        if (result.compareAndSet(null, u))
5184 >                            quietlyCompleteRoot();
5185 >                        break;
5186 >                    }
5187 >                }
5188 >            }
5189 >        }
5190 >    }
5191 >
5192 >    @SuppressWarnings("serial")
5193 >    static final class SearchValuesTask<K,V,U>
5194 >        extends BulkTask<K,V,U> {
5195 >        final Function<? super V, ? extends U> searchFunction;
5196 >        final AtomicReference<U> result;
5197 >        SearchValuesTask
5198 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5199 >             Function<? super V, ? extends U> searchFunction,
5200 >             AtomicReference<U> result) {
5201 >            super(p, b, i, f, t);
5202 >            this.searchFunction = searchFunction; this.result = result;
5203 >        }
5204 >        public final U getRawResult() { return result.get(); }
5205 >        public final void compute() {
5206 >            final Function<? super V, ? extends U> searchFunction;
5207 >            final AtomicReference<U> result;
5208 >            if ((searchFunction = this.searchFunction) != null &&
5209 >                (result = this.result) != null) {
5210 >                for (int i = baseIndex, f, h; batch > 0 &&
5211 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5212 >                    if (result.get() != null)
5213 >                        return;
5214 >                    addToPendingCount(1);
5215 >                    new SearchValuesTask<K,V,U>
5216 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5217 >                         searchFunction, result).fork();
5218 >                }
5219 >                while (result.get() == null) {
5220 >                    U u;
5221 >                    Node<K,V> p;
5222 >                    if ((p = advance()) == null) {
5223 >                        propagateCompletion();
5224 >                        break;
5225 >                    }
5226 >                    if ((u = searchFunction.apply(p.val)) != null) {
5227 >                        if (result.compareAndSet(null, u))
5228 >                            quietlyCompleteRoot();
5229 >                        break;
5230 >                    }
5231 >                }
5232 >            }
5233 >        }
5234 >    }
5235 >
5236 >    @SuppressWarnings("serial")
5237 >    static final class SearchEntriesTask<K,V,U>
5238 >        extends BulkTask<K,V,U> {
5239 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5240 >        final AtomicReference<U> result;
5241 >        SearchEntriesTask
5242 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5243 >             Function<Entry<K,V>, ? extends U> searchFunction,
5244 >             AtomicReference<U> result) {
5245 >            super(p, b, i, f, t);
5246 >            this.searchFunction = searchFunction; this.result = result;
5247 >        }
5248 >        public final U getRawResult() { return result.get(); }
5249 >        public final void compute() {
5250 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5251 >            final AtomicReference<U> result;
5252 >            if ((searchFunction = this.searchFunction) != null &&
5253 >                (result = this.result) != null) {
5254 >                for (int i = baseIndex, f, h; batch > 0 &&
5255 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5256 >                    if (result.get() != null)
5257 >                        return;
5258 >                    addToPendingCount(1);
5259 >                    new SearchEntriesTask<K,V,U>
5260 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5261 >                         searchFunction, result).fork();
5262 >                }
5263 >                while (result.get() == null) {
5264 >                    U u;
5265 >                    Node<K,V> p;
5266 >                    if ((p = advance()) == null) {
5267 >                        propagateCompletion();
5268 >                        break;
5269 >                    }
5270 >                    if ((u = searchFunction.apply(p)) != null) {
5271 >                        if (result.compareAndSet(null, u))
5272 >                            quietlyCompleteRoot();
5273 >                        return;
5274 >                    }
5275 >                }
5276 >            }
5277 >        }
5278 >    }
5279 >
5280 >    @SuppressWarnings("serial")
5281 >    static final class SearchMappingsTask<K,V,U>
5282 >        extends BulkTask<K,V,U> {
5283 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5284 >        final AtomicReference<U> result;
5285 >        SearchMappingsTask
5286 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5287 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5288 >             AtomicReference<U> result) {
5289 >            super(p, b, i, f, t);
5290 >            this.searchFunction = searchFunction; this.result = result;
5291 >        }
5292 >        public final U getRawResult() { return result.get(); }
5293 >        public final void compute() {
5294 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5295 >            final AtomicReference<U> result;
5296 >            if ((searchFunction = this.searchFunction) != null &&
5297 >                (result = this.result) != null) {
5298 >                for (int i = baseIndex, f, h; batch > 0 &&
5299 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5300 >                    if (result.get() != null)
5301 >                        return;
5302 >                    addToPendingCount(1);
5303 >                    new SearchMappingsTask<K,V,U>
5304 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5305 >                         searchFunction, result).fork();
5306 >                }
5307 >                while (result.get() == null) {
5308 >                    U u;
5309 >                    Node<K,V> p;
5310 >                    if ((p = advance()) == null) {
5311 >                        propagateCompletion();
5312 >                        break;
5313 >                    }
5314 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5315 >                        if (result.compareAndSet(null, u))
5316 >                            quietlyCompleteRoot();
5317 >                        break;
5318 >                    }
5319 >                }
5320 >            }
5321 >        }
5322 >    }
5323 >
5324 >    @SuppressWarnings("serial")
5325 >    static final class ReduceKeysTask<K,V>
5326 >        extends BulkTask<K,V,K> {
5327 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5328 >        K result;
5329 >        ReduceKeysTask<K,V> rights, nextRight;
5330 >        ReduceKeysTask
5331 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5332 >             ReduceKeysTask<K,V> nextRight,
5333 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5334 >            super(p, b, i, f, t); this.nextRight = nextRight;
5335 >            this.reducer = reducer;
5336 >        }
5337 >        public final K getRawResult() { return result; }
5338 >        public final void compute() {
5339 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5340 >            if ((reducer = this.reducer) != null) {
5341 >                for (int i = baseIndex, f, h; batch > 0 &&
5342 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5343 >                    addToPendingCount(1);
5344 >                    (rights = new ReduceKeysTask<K,V>
5345 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5346 >                      rights, reducer)).fork();
5347 >                }
5348 >                K r = null;
5349 >                for (Node<K,V> p; (p = advance()) != null; ) {
5350 >                    K u = p.key;
5351 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5352 >                }
5353 >                result = r;
5354 >                CountedCompleter<?> c;
5355 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5356 >                    @SuppressWarnings("unchecked")
5357 >                    ReduceKeysTask<K,V>
5358 >                        t = (ReduceKeysTask<K,V>)c,
5359 >                        s = t.rights;
5360 >                    while (s != null) {
5361 >                        K tr, sr;
5362 >                        if ((sr = s.result) != null)
5363 >                            t.result = (((tr = t.result) == null) ? sr :
5364 >                                        reducer.apply(tr, sr));
5365 >                        s = t.rights = s.nextRight;
5366 >                    }
5367 >                }
5368 >            }
5369 >        }
5370 >    }
5371 >
5372 >    @SuppressWarnings("serial")
5373 >    static final class ReduceValuesTask<K,V>
5374 >        extends BulkTask<K,V,V> {
5375 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5376 >        V result;
5377 >        ReduceValuesTask<K,V> rights, nextRight;
5378 >        ReduceValuesTask
5379 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5380 >             ReduceValuesTask<K,V> nextRight,
5381 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5382 >            super(p, b, i, f, t); this.nextRight = nextRight;
5383 >            this.reducer = reducer;
5384 >        }
5385 >        public final V getRawResult() { return result; }
5386 >        public final void compute() {
5387 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5388 >            if ((reducer = this.reducer) != null) {
5389 >                for (int i = baseIndex, f, h; batch > 0 &&
5390 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5391 >                    addToPendingCount(1);
5392 >                    (rights = new ReduceValuesTask<K,V>
5393 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5394 >                      rights, reducer)).fork();
5395 >                }
5396 >                V r = null;
5397 >                for (Node<K,V> p; (p = advance()) != null; ) {
5398 >                    V v = p.val;
5399 >                    r = (r == null) ? v : reducer.apply(r, v);
5400 >                }
5401 >                result = r;
5402 >                CountedCompleter<?> c;
5403 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5404 >                    @SuppressWarnings("unchecked")
5405 >                    ReduceValuesTask<K,V>
5406 >                        t = (ReduceValuesTask<K,V>)c,
5407 >                        s = t.rights;
5408 >                    while (s != null) {
5409 >                        V tr, sr;
5410 >                        if ((sr = s.result) != null)
5411 >                            t.result = (((tr = t.result) == null) ? sr :
5412 >                                        reducer.apply(tr, sr));
5413 >                        s = t.rights = s.nextRight;
5414 >                    }
5415 >                }
5416 >            }
5417 >        }
5418 >    }
5419 >
5420 >    @SuppressWarnings("serial")
5421 >    static final class ReduceEntriesTask<K,V>
5422 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5423 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5424 >        Map.Entry<K,V> result;
5425 >        ReduceEntriesTask<K,V> rights, nextRight;
5426 >        ReduceEntriesTask
5427 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5428 >             ReduceEntriesTask<K,V> nextRight,
5429 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5430 >            super(p, b, i, f, t); this.nextRight = nextRight;
5431 >            this.reducer = reducer;
5432 >        }
5433 >        public final Map.Entry<K,V> getRawResult() { return result; }
5434 >        public final void compute() {
5435 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5436 >            if ((reducer = this.reducer) != null) {
5437 >                for (int i = baseIndex, f, h; batch > 0 &&
5438 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5439 >                    addToPendingCount(1);
5440 >                    (rights = new ReduceEntriesTask<K,V>
5441 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5442 >                      rights, reducer)).fork();
5443 >                }
5444 >                Map.Entry<K,V> r = null;
5445 >                for (Node<K,V> p; (p = advance()) != null; )
5446 >                    r = (r == null) ? p : reducer.apply(r, p);
5447 >                result = r;
5448 >                CountedCompleter<?> c;
5449 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5450 >                    @SuppressWarnings("unchecked")
5451 >                    ReduceEntriesTask<K,V>
5452 >                        t = (ReduceEntriesTask<K,V>)c,
5453 >                        s = t.rights;
5454 >                    while (s != null) {
5455 >                        Map.Entry<K,V> tr, sr;
5456 >                        if ((sr = s.result) != null)
5457 >                            t.result = (((tr = t.result) == null) ? sr :
5458 >                                        reducer.apply(tr, sr));
5459 >                        s = t.rights = s.nextRight;
5460 >                    }
5461 >                }
5462 >            }
5463 >        }
5464 >    }
5465 >
5466 >    @SuppressWarnings("serial")
5467 >    static final class MapReduceKeysTask<K,V,U>
5468 >        extends BulkTask<K,V,U> {
5469 >        final Function<? super K, ? extends U> transformer;
5470 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5471 >        U result;
5472 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5473 >        MapReduceKeysTask
5474 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5475 >             MapReduceKeysTask<K,V,U> nextRight,
5476 >             Function<? super K, ? extends U> transformer,
5477 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5478 >            super(p, b, i, f, t); this.nextRight = nextRight;
5479 >            this.transformer = transformer;
5480 >            this.reducer = reducer;
5481 >        }
5482 >        public final U getRawResult() { return result; }
5483 >        public final void compute() {
5484 >            final Function<? super K, ? extends U> transformer;
5485 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5486 >            if ((transformer = this.transformer) != null &&
5487 >                (reducer = this.reducer) != null) {
5488 >                for (int i = baseIndex, f, h; batch > 0 &&
5489 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5490 >                    addToPendingCount(1);
5491 >                    (rights = new MapReduceKeysTask<K,V,U>
5492 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5493 >                      rights, transformer, reducer)).fork();
5494 >                }
5495 >                U r = null;
5496 >                for (Node<K,V> p; (p = advance()) != null; ) {
5497 >                    U u;
5498 >                    if ((u = transformer.apply(p.key)) != null)
5499 >                        r = (r == null) ? u : reducer.apply(r, u);
5500 >                }
5501 >                result = r;
5502 >                CountedCompleter<?> c;
5503 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5504 >                    @SuppressWarnings("unchecked")
5505 >                    MapReduceKeysTask<K,V,U>
5506 >                        t = (MapReduceKeysTask<K,V,U>)c,
5507 >                        s = t.rights;
5508 >                    while (s != null) {
5509 >                        U tr, sr;
5510 >                        if ((sr = s.result) != null)
5511 >                            t.result = (((tr = t.result) == null) ? sr :
5512 >                                        reducer.apply(tr, sr));
5513 >                        s = t.rights = s.nextRight;
5514 >                    }
5515 >                }
5516 >            }
5517 >        }
5518 >    }
5519 >
5520 >    @SuppressWarnings("serial")
5521 >    static final class MapReduceValuesTask<K,V,U>
5522 >        extends BulkTask<K,V,U> {
5523 >        final Function<? super V, ? extends U> transformer;
5524 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5525 >        U result;
5526 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5527 >        MapReduceValuesTask
5528 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5529 >             MapReduceValuesTask<K,V,U> nextRight,
5530 >             Function<? super V, ? extends U> transformer,
5531 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5532 >            super(p, b, i, f, t); this.nextRight = nextRight;
5533 >            this.transformer = transformer;
5534 >            this.reducer = reducer;
5535 >        }
5536 >        public final U getRawResult() { return result; }
5537 >        public final void compute() {
5538 >            final Function<? super V, ? extends U> transformer;
5539 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5540 >            if ((transformer = this.transformer) != null &&
5541 >                (reducer = this.reducer) != null) {
5542 >                for (int i = baseIndex, f, h; batch > 0 &&
5543 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5544 >                    addToPendingCount(1);
5545 >                    (rights = new MapReduceValuesTask<K,V,U>
5546 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5547 >                      rights, transformer, reducer)).fork();
5548 >                }
5549 >                U r = null;
5550 >                for (Node<K,V> p; (p = advance()) != null; ) {
5551 >                    U u;
5552 >                    if ((u = transformer.apply(p.val)) != null)
5553 >                        r = (r == null) ? u : reducer.apply(r, u);
5554 >                }
5555 >                result = r;
5556 >                CountedCompleter<?> c;
5557 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5558 >                    @SuppressWarnings("unchecked")
5559 >                    MapReduceValuesTask<K,V,U>
5560 >                        t = (MapReduceValuesTask<K,V,U>)c,
5561 >                        s = t.rights;
5562 >                    while (s != null) {
5563 >                        U tr, sr;
5564 >                        if ((sr = s.result) != null)
5565 >                            t.result = (((tr = t.result) == null) ? sr :
5566 >                                        reducer.apply(tr, sr));
5567 >                        s = t.rights = s.nextRight;
5568 >                    }
5569 >                }
5570 >            }
5571 >        }
5572 >    }
5573 >
5574 >    @SuppressWarnings("serial")
5575 >    static final class MapReduceEntriesTask<K,V,U>
5576 >        extends BulkTask<K,V,U> {
5577 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5578 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5579 >        U result;
5580 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5581 >        MapReduceEntriesTask
5582 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5583 >             MapReduceEntriesTask<K,V,U> nextRight,
5584 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5585 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5586 >            super(p, b, i, f, t); this.nextRight = nextRight;
5587 >            this.transformer = transformer;
5588 >            this.reducer = reducer;
5589 >        }
5590 >        public final U getRawResult() { return result; }
5591 >        public final void compute() {
5592 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5593 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5594 >            if ((transformer = this.transformer) != null &&
5595 >                (reducer = this.reducer) != null) {
5596 >                for (int i = baseIndex, f, h; batch > 0 &&
5597 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5598 >                    addToPendingCount(1);
5599 >                    (rights = new MapReduceEntriesTask<K,V,U>
5600 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5601 >                      rights, transformer, reducer)).fork();
5602 >                }
5603 >                U r = null;
5604 >                for (Node<K,V> p; (p = advance()) != null; ) {
5605 >                    U u;
5606 >                    if ((u = transformer.apply(p)) != null)
5607 >                        r = (r == null) ? u : reducer.apply(r, u);
5608 >                }
5609 >                result = r;
5610 >                CountedCompleter<?> c;
5611 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5612 >                    @SuppressWarnings("unchecked")
5613 >                    MapReduceEntriesTask<K,V,U>
5614 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5615 >                        s = t.rights;
5616 >                    while (s != null) {
5617 >                        U tr, sr;
5618 >                        if ((sr = s.result) != null)
5619 >                            t.result = (((tr = t.result) == null) ? sr :
5620 >                                        reducer.apply(tr, sr));
5621 >                        s = t.rights = s.nextRight;
5622 >                    }
5623 >                }
5624 >            }
5625 >        }
5626 >    }
5627 >
5628 >    @SuppressWarnings("serial")
5629 >    static final class MapReduceMappingsTask<K,V,U>
5630 >        extends BulkTask<K,V,U> {
5631 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5632 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5633 >        U result;
5634 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5635 >        MapReduceMappingsTask
5636 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5637 >             MapReduceMappingsTask<K,V,U> nextRight,
5638 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5639 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5640 >            super(p, b, i, f, t); this.nextRight = nextRight;
5641 >            this.transformer = transformer;
5642 >            this.reducer = reducer;
5643 >        }
5644 >        public final U getRawResult() { return result; }
5645 >        public final void compute() {
5646 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5647 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5648 >            if ((transformer = this.transformer) != null &&
5649 >                (reducer = this.reducer) != null) {
5650 >                for (int i = baseIndex, f, h; batch > 0 &&
5651 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5652 >                    addToPendingCount(1);
5653 >                    (rights = new MapReduceMappingsTask<K,V,U>
5654 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5655 >                      rights, transformer, reducer)).fork();
5656 >                }
5657 >                U r = null;
5658 >                for (Node<K,V> p; (p = advance()) != null; ) {
5659 >                    U u;
5660 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5661 >                        r = (r == null) ? u : reducer.apply(r, u);
5662 >                }
5663 >                result = r;
5664 >                CountedCompleter<?> c;
5665 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5666 >                    @SuppressWarnings("unchecked")
5667 >                    MapReduceMappingsTask<K,V,U>
5668 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5669 >                        s = t.rights;
5670 >                    while (s != null) {
5671 >                        U tr, sr;
5672 >                        if ((sr = s.result) != null)
5673 >                            t.result = (((tr = t.result) == null) ? sr :
5674 >                                        reducer.apply(tr, sr));
5675 >                        s = t.rights = s.nextRight;
5676 >                    }
5677 >                }
5678 >            }
5679 >        }
5680 >    }
5681 >
5682 >    @SuppressWarnings("serial")
5683 >    static final class MapReduceKeysToDoubleTask<K,V>
5684 >        extends BulkTask<K,V,Double> {
5685 >        final ToDoubleFunction<? super K> transformer;
5686 >        final DoubleBinaryOperator reducer;
5687 >        final double basis;
5688 >        double result;
5689 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5690 >        MapReduceKeysToDoubleTask
5691 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5692 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5693 >             ToDoubleFunction<? super K> transformer,
5694 >             double basis,
5695 >             DoubleBinaryOperator reducer) {
5696 >            super(p, b, i, f, t); this.nextRight = nextRight;
5697 >            this.transformer = transformer;
5698 >            this.basis = basis; this.reducer = reducer;
5699 >        }
5700 >        public final Double getRawResult() { return result; }
5701 >        public final void compute() {
5702 >            final ToDoubleFunction<? super K> transformer;
5703 >            final DoubleBinaryOperator reducer;
5704 >            if ((transformer = this.transformer) != null &&
5705 >                (reducer = this.reducer) != null) {
5706 >                double r = this.basis;
5707 >                for (int i = baseIndex, f, h; batch > 0 &&
5708 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5709 >                    addToPendingCount(1);
5710 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5711 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5712 >                      rights, transformer, r, reducer)).fork();
5713 >                }
5714 >                for (Node<K,V> p; (p = advance()) != null; )
5715 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5716 >                result = r;
5717 >                CountedCompleter<?> c;
5718 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5719 >                    @SuppressWarnings("unchecked")
5720 >                    MapReduceKeysToDoubleTask<K,V>
5721 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5722 >                        s = t.rights;
5723 >                    while (s != null) {
5724 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5725 >                        s = t.rights = s.nextRight;
5726 >                    }
5727 >                }
5728 >            }
5729 >        }
5730 >    }
5731 >
5732 >    @SuppressWarnings("serial")
5733 >    static final class MapReduceValuesToDoubleTask<K,V>
5734 >        extends BulkTask<K,V,Double> {
5735 >        final ToDoubleFunction<? super V> transformer;
5736 >        final DoubleBinaryOperator reducer;
5737 >        final double basis;
5738 >        double result;
5739 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5740 >        MapReduceValuesToDoubleTask
5741 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5742 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5743 >             ToDoubleFunction<? super V> transformer,
5744 >             double basis,
5745 >             DoubleBinaryOperator reducer) {
5746 >            super(p, b, i, f, t); this.nextRight = nextRight;
5747 >            this.transformer = transformer;
5748 >            this.basis = basis; this.reducer = reducer;
5749 >        }
5750 >        public final Double getRawResult() { return result; }
5751 >        public final void compute() {
5752 >            final ToDoubleFunction<? super V> transformer;
5753 >            final DoubleBinaryOperator reducer;
5754 >            if ((transformer = this.transformer) != null &&
5755 >                (reducer = this.reducer) != null) {
5756 >                double r = this.basis;
5757 >                for (int i = baseIndex, f, h; batch > 0 &&
5758 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5759 >                    addToPendingCount(1);
5760 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5761 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5762 >                      rights, transformer, r, reducer)).fork();
5763 >                }
5764 >                for (Node<K,V> p; (p = advance()) != null; )
5765 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5766 >                result = r;
5767 >                CountedCompleter<?> c;
5768 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5769 >                    @SuppressWarnings("unchecked")
5770 >                    MapReduceValuesToDoubleTask<K,V>
5771 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5772 >                        s = t.rights;
5773 >                    while (s != null) {
5774 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5775 >                        s = t.rights = s.nextRight;
5776 >                    }
5777 >                }
5778 >            }
5779 >        }
5780 >    }
5781 >
5782 >    @SuppressWarnings("serial")
5783 >    static final class MapReduceEntriesToDoubleTask<K,V>
5784 >        extends BulkTask<K,V,Double> {
5785 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5786 >        final DoubleBinaryOperator reducer;
5787 >        final double basis;
5788 >        double result;
5789 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5790 >        MapReduceEntriesToDoubleTask
5791 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5792 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5793 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5794 >             double basis,
5795 >             DoubleBinaryOperator reducer) {
5796 >            super(p, b, i, f, t); this.nextRight = nextRight;
5797 >            this.transformer = transformer;
5798 >            this.basis = basis; this.reducer = reducer;
5799 >        }
5800 >        public final Double getRawResult() { return result; }
5801 >        public final void compute() {
5802 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5803 >            final DoubleBinaryOperator reducer;
5804 >            if ((transformer = this.transformer) != null &&
5805 >                (reducer = this.reducer) != null) {
5806 >                double r = this.basis;
5807 >                for (int i = baseIndex, f, h; batch > 0 &&
5808 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5809 >                    addToPendingCount(1);
5810 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5811 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5812 >                      rights, transformer, r, reducer)).fork();
5813 >                }
5814 >                for (Node<K,V> p; (p = advance()) != null; )
5815 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5816 >                result = r;
5817 >                CountedCompleter<?> c;
5818 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5819 >                    @SuppressWarnings("unchecked")
5820 >                    MapReduceEntriesToDoubleTask<K,V>
5821 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5822 >                        s = t.rights;
5823 >                    while (s != null) {
5824 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5825 >                        s = t.rights = s.nextRight;
5826 >                    }
5827 >                }
5828 >            }
5829 >        }
5830 >    }
5831 >
5832 >    @SuppressWarnings("serial")
5833 >    static final class MapReduceMappingsToDoubleTask<K,V>
5834 >        extends BulkTask<K,V,Double> {
5835 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5836 >        final DoubleBinaryOperator reducer;
5837 >        final double basis;
5838 >        double result;
5839 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5840 >        MapReduceMappingsToDoubleTask
5841 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5842 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5843 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5844 >             double basis,
5845 >             DoubleBinaryOperator reducer) {
5846 >            super(p, b, i, f, t); this.nextRight = nextRight;
5847 >            this.transformer = transformer;
5848 >            this.basis = basis; this.reducer = reducer;
5849 >        }
5850 >        public final Double getRawResult() { return result; }
5851 >        public final void compute() {
5852 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5853 >            final DoubleBinaryOperator reducer;
5854 >            if ((transformer = this.transformer) != null &&
5855 >                (reducer = this.reducer) != null) {
5856 >                double r = this.basis;
5857 >                for (int i = baseIndex, f, h; batch > 0 &&
5858 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5859 >                    addToPendingCount(1);
5860 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5861 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5862 >                      rights, transformer, r, reducer)).fork();
5863 >                }
5864 >                for (Node<K,V> p; (p = advance()) != null; )
5865 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5866 >                result = r;
5867 >                CountedCompleter<?> c;
5868 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5869 >                    @SuppressWarnings("unchecked")
5870 >                    MapReduceMappingsToDoubleTask<K,V>
5871 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5872 >                        s = t.rights;
5873 >                    while (s != null) {
5874 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5875 >                        s = t.rights = s.nextRight;
5876 >                    }
5877 >                }
5878 >            }
5879 >        }
5880 >    }
5881 >
5882 >    @SuppressWarnings("serial")
5883 >    static final class MapReduceKeysToLongTask<K,V>
5884 >        extends BulkTask<K,V,Long> {
5885 >        final ToLongFunction<? super K> transformer;
5886 >        final LongBinaryOperator reducer;
5887 >        final long basis;
5888 >        long result;
5889 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5890 >        MapReduceKeysToLongTask
5891 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5892 >             MapReduceKeysToLongTask<K,V> nextRight,
5893 >             ToLongFunction<? super K> transformer,
5894 >             long basis,
5895 >             LongBinaryOperator reducer) {
5896 >            super(p, b, i, f, t); this.nextRight = nextRight;
5897 >            this.transformer = transformer;
5898 >            this.basis = basis; this.reducer = reducer;
5899 >        }
5900 >        public final Long getRawResult() { return result; }
5901 >        public final void compute() {
5902 >            final ToLongFunction<? super K> transformer;
5903 >            final LongBinaryOperator reducer;
5904 >            if ((transformer = this.transformer) != null &&
5905 >                (reducer = this.reducer) != null) {
5906 >                long r = this.basis;
5907 >                for (int i = baseIndex, f, h; batch > 0 &&
5908 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5909 >                    addToPendingCount(1);
5910 >                    (rights = new MapReduceKeysToLongTask<K,V>
5911 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5912 >                      rights, transformer, r, reducer)).fork();
5913 >                }
5914 >                for (Node<K,V> p; (p = advance()) != null; )
5915 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5916 >                result = r;
5917 >                CountedCompleter<?> c;
5918 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5919 >                    @SuppressWarnings("unchecked")
5920 >                    MapReduceKeysToLongTask<K,V>
5921 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5922 >                        s = t.rights;
5923 >                    while (s != null) {
5924 >                        t.result = reducer.applyAsLong(t.result, s.result);
5925 >                        s = t.rights = s.nextRight;
5926 >                    }
5927 >                }
5928 >            }
5929 >        }
5930 >    }
5931 >
5932 >    @SuppressWarnings("serial")
5933 >    static final class MapReduceValuesToLongTask<K,V>
5934 >        extends BulkTask<K,V,Long> {
5935 >        final ToLongFunction<? super V> transformer;
5936 >        final LongBinaryOperator reducer;
5937 >        final long basis;
5938 >        long result;
5939 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5940 >        MapReduceValuesToLongTask
5941 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5942 >             MapReduceValuesToLongTask<K,V> nextRight,
5943 >             ToLongFunction<? super V> transformer,
5944 >             long basis,
5945 >             LongBinaryOperator reducer) {
5946 >            super(p, b, i, f, t); this.nextRight = nextRight;
5947 >            this.transformer = transformer;
5948 >            this.basis = basis; this.reducer = reducer;
5949 >        }
5950 >        public final Long getRawResult() { return result; }
5951 >        public final void compute() {
5952 >            final ToLongFunction<? super V> transformer;
5953 >            final LongBinaryOperator reducer;
5954 >            if ((transformer = this.transformer) != null &&
5955 >                (reducer = this.reducer) != null) {
5956 >                long r = this.basis;
5957 >                for (int i = baseIndex, f, h; batch > 0 &&
5958 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5959 >                    addToPendingCount(1);
5960 >                    (rights = new MapReduceValuesToLongTask<K,V>
5961 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5962 >                      rights, transformer, r, reducer)).fork();
5963 >                }
5964 >                for (Node<K,V> p; (p = advance()) != null; )
5965 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5966 >                result = r;
5967 >                CountedCompleter<?> c;
5968 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5969 >                    @SuppressWarnings("unchecked")
5970 >                    MapReduceValuesToLongTask<K,V>
5971 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5972 >                        s = t.rights;
5973 >                    while (s != null) {
5974 >                        t.result = reducer.applyAsLong(t.result, s.result);
5975 >                        s = t.rights = s.nextRight;
5976 >                    }
5977 >                }
5978 >            }
5979 >        }
5980 >    }
5981 >
5982 >    @SuppressWarnings("serial")
5983 >    static final class MapReduceEntriesToLongTask<K,V>
5984 >        extends BulkTask<K,V,Long> {
5985 >        final ToLongFunction<Map.Entry<K,V>> transformer;
5986 >        final LongBinaryOperator reducer;
5987 >        final long basis;
5988 >        long result;
5989 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5990 >        MapReduceEntriesToLongTask
5991 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5992 >             MapReduceEntriesToLongTask<K,V> nextRight,
5993 >             ToLongFunction<Map.Entry<K,V>> transformer,
5994 >             long basis,
5995 >             LongBinaryOperator reducer) {
5996 >            super(p, b, i, f, t); this.nextRight = nextRight;
5997 >            this.transformer = transformer;
5998 >            this.basis = basis; this.reducer = reducer;
5999 >        }
6000 >        public final Long getRawResult() { return result; }
6001 >        public final void compute() {
6002 >            final ToLongFunction<Map.Entry<K,V>> transformer;
6003 >            final LongBinaryOperator reducer;
6004 >            if ((transformer = this.transformer) != null &&
6005 >                (reducer = this.reducer) != null) {
6006 >                long r = this.basis;
6007 >                for (int i = baseIndex, f, h; batch > 0 &&
6008 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6009 >                    addToPendingCount(1);
6010 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6011 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6012 >                      rights, transformer, r, reducer)).fork();
6013 >                }
6014 >                for (Node<K,V> p; (p = advance()) != null; )
6015 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6016 >                result = r;
6017 >                CountedCompleter<?> c;
6018 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6019 >                    @SuppressWarnings("unchecked")
6020 >                    MapReduceEntriesToLongTask<K,V>
6021 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6022 >                        s = t.rights;
6023 >                    while (s != null) {
6024 >                        t.result = reducer.applyAsLong(t.result, s.result);
6025 >                        s = t.rights = s.nextRight;
6026 >                    }
6027 >                }
6028 >            }
6029 >        }
6030 >    }
6031 >
6032 >    @SuppressWarnings("serial")
6033 >    static final class MapReduceMappingsToLongTask<K,V>
6034 >        extends BulkTask<K,V,Long> {
6035 >        final ToLongBiFunction<? super K, ? super V> transformer;
6036 >        final LongBinaryOperator reducer;
6037 >        final long basis;
6038 >        long result;
6039 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6040 >        MapReduceMappingsToLongTask
6041 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6042 >             MapReduceMappingsToLongTask<K,V> nextRight,
6043 >             ToLongBiFunction<? super K, ? super V> transformer,
6044 >             long basis,
6045 >             LongBinaryOperator reducer) {
6046 >            super(p, b, i, f, t); this.nextRight = nextRight;
6047 >            this.transformer = transformer;
6048 >            this.basis = basis; this.reducer = reducer;
6049 >        }
6050 >        public final Long getRawResult() { return result; }
6051 >        public final void compute() {
6052 >            final ToLongBiFunction<? super K, ? super V> transformer;
6053 >            final LongBinaryOperator reducer;
6054 >            if ((transformer = this.transformer) != null &&
6055 >                (reducer = this.reducer) != null) {
6056 >                long r = this.basis;
6057 >                for (int i = baseIndex, f, h; batch > 0 &&
6058 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6059 >                    addToPendingCount(1);
6060 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6061 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6062 >                      rights, transformer, r, reducer)).fork();
6063 >                }
6064 >                for (Node<K,V> p; (p = advance()) != null; )
6065 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6066 >                result = r;
6067 >                CountedCompleter<?> c;
6068 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6069 >                    @SuppressWarnings("unchecked")
6070 >                    MapReduceMappingsToLongTask<K,V>
6071 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6072 >                        s = t.rights;
6073 >                    while (s != null) {
6074 >                        t.result = reducer.applyAsLong(t.result, s.result);
6075 >                        s = t.rights = s.nextRight;
6076 >                    }
6077 >                }
6078 >            }
6079 >        }
6080 >    }
6081 >
6082 >    @SuppressWarnings("serial")
6083 >    static final class MapReduceKeysToIntTask<K,V>
6084 >        extends BulkTask<K,V,Integer> {
6085 >        final ToIntFunction<? super K> transformer;
6086 >        final IntBinaryOperator reducer;
6087 >        final int basis;
6088 >        int result;
6089 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6090 >        MapReduceKeysToIntTask
6091 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6092 >             MapReduceKeysToIntTask<K,V> nextRight,
6093 >             ToIntFunction<? super K> transformer,
6094 >             int basis,
6095 >             IntBinaryOperator reducer) {
6096 >            super(p, b, i, f, t); this.nextRight = nextRight;
6097 >            this.transformer = transformer;
6098 >            this.basis = basis; this.reducer = reducer;
6099 >        }
6100 >        public final Integer getRawResult() { return result; }
6101 >        public final void compute() {
6102 >            final ToIntFunction<? super K> transformer;
6103 >            final IntBinaryOperator reducer;
6104 >            if ((transformer = this.transformer) != null &&
6105 >                (reducer = this.reducer) != null) {
6106 >                int r = this.basis;
6107 >                for (int i = baseIndex, f, h; batch > 0 &&
6108 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6109 >                    addToPendingCount(1);
6110 >                    (rights = new MapReduceKeysToIntTask<K,V>
6111 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6112 >                      rights, transformer, r, reducer)).fork();
6113 >                }
6114 >                for (Node<K,V> p; (p = advance()) != null; )
6115 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6116 >                result = r;
6117 >                CountedCompleter<?> c;
6118 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6119 >                    @SuppressWarnings("unchecked")
6120 >                    MapReduceKeysToIntTask<K,V>
6121 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6122 >                        s = t.rights;
6123 >                    while (s != null) {
6124 >                        t.result = reducer.applyAsInt(t.result, s.result);
6125 >                        s = t.rights = s.nextRight;
6126 >                    }
6127 >                }
6128 >            }
6129 >        }
6130 >    }
6131 >
6132 >    @SuppressWarnings("serial")
6133 >    static final class MapReduceValuesToIntTask<K,V>
6134 >        extends BulkTask<K,V,Integer> {
6135 >        final ToIntFunction<? super V> transformer;
6136 >        final IntBinaryOperator reducer;
6137 >        final int basis;
6138 >        int result;
6139 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6140 >        MapReduceValuesToIntTask
6141 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6142 >             MapReduceValuesToIntTask<K,V> nextRight,
6143 >             ToIntFunction<? super V> transformer,
6144 >             int basis,
6145 >             IntBinaryOperator reducer) {
6146 >            super(p, b, i, f, t); this.nextRight = nextRight;
6147 >            this.transformer = transformer;
6148 >            this.basis = basis; this.reducer = reducer;
6149 >        }
6150 >        public final Integer getRawResult() { return result; }
6151 >        public final void compute() {
6152 >            final ToIntFunction<? super V> transformer;
6153 >            final IntBinaryOperator reducer;
6154 >            if ((transformer = this.transformer) != null &&
6155 >                (reducer = this.reducer) != null) {
6156 >                int r = this.basis;
6157 >                for (int i = baseIndex, f, h; batch > 0 &&
6158 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6159 >                    addToPendingCount(1);
6160 >                    (rights = new MapReduceValuesToIntTask<K,V>
6161 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6162 >                      rights, transformer, r, reducer)).fork();
6163 >                }
6164 >                for (Node<K,V> p; (p = advance()) != null; )
6165 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6166 >                result = r;
6167 >                CountedCompleter<?> c;
6168 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6169 >                    @SuppressWarnings("unchecked")
6170 >                    MapReduceValuesToIntTask<K,V>
6171 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6172 >                        s = t.rights;
6173 >                    while (s != null) {
6174 >                        t.result = reducer.applyAsInt(t.result, s.result);
6175 >                        s = t.rights = s.nextRight;
6176 >                    }
6177 >                }
6178 >            }
6179 >        }
6180 >    }
6181 >
6182 >    @SuppressWarnings("serial")
6183 >    static final class MapReduceEntriesToIntTask<K,V>
6184 >        extends BulkTask<K,V,Integer> {
6185 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6186 >        final IntBinaryOperator reducer;
6187 >        final int basis;
6188 >        int result;
6189 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6190 >        MapReduceEntriesToIntTask
6191 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6192 >             MapReduceEntriesToIntTask<K,V> nextRight,
6193 >             ToIntFunction<Map.Entry<K,V>> transformer,
6194 >             int basis,
6195 >             IntBinaryOperator reducer) {
6196 >            super(p, b, i, f, t); this.nextRight = nextRight;
6197 >            this.transformer = transformer;
6198 >            this.basis = basis; this.reducer = reducer;
6199 >        }
6200 >        public final Integer getRawResult() { return result; }
6201 >        public final void compute() {
6202 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6203 >            final IntBinaryOperator reducer;
6204 >            if ((transformer = this.transformer) != null &&
6205 >                (reducer = this.reducer) != null) {
6206 >                int r = this.basis;
6207 >                for (int i = baseIndex, f, h; batch > 0 &&
6208 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6209 >                    addToPendingCount(1);
6210 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6211 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6212 >                      rights, transformer, r, reducer)).fork();
6213 >                }
6214 >                for (Node<K,V> p; (p = advance()) != null; )
6215 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6216 >                result = r;
6217 >                CountedCompleter<?> c;
6218 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6219 >                    @SuppressWarnings("unchecked")
6220 >                    MapReduceEntriesToIntTask<K,V>
6221 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6222 >                        s = t.rights;
6223 >                    while (s != null) {
6224 >                        t.result = reducer.applyAsInt(t.result, s.result);
6225 >                        s = t.rights = s.nextRight;
6226 >                    }
6227 >                }
6228 >            }
6229 >        }
6230 >    }
6231 >
6232 >    @SuppressWarnings("serial")
6233 >    static final class MapReduceMappingsToIntTask<K,V>
6234 >        extends BulkTask<K,V,Integer> {
6235 >        final ToIntBiFunction<? super K, ? super V> transformer;
6236 >        final IntBinaryOperator reducer;
6237 >        final int basis;
6238 >        int result;
6239 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6240 >        MapReduceMappingsToIntTask
6241 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6242 >             MapReduceMappingsToIntTask<K,V> nextRight,
6243 >             ToIntBiFunction<? super K, ? super V> transformer,
6244 >             int basis,
6245 >             IntBinaryOperator reducer) {
6246 >            super(p, b, i, f, t); this.nextRight = nextRight;
6247 >            this.transformer = transformer;
6248 >            this.basis = basis; this.reducer = reducer;
6249 >        }
6250 >        public final Integer getRawResult() { return result; }
6251 >        public final void compute() {
6252 >            final ToIntBiFunction<? super K, ? super V> transformer;
6253 >            final IntBinaryOperator reducer;
6254 >            if ((transformer = this.transformer) != null &&
6255 >                (reducer = this.reducer) != null) {
6256 >                int r = this.basis;
6257 >                for (int i = baseIndex, f, h; batch > 0 &&
6258 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6259 >                    addToPendingCount(1);
6260 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6261 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6262 >                      rights, transformer, r, reducer)).fork();
6263 >                }
6264 >                for (Node<K,V> p; (p = advance()) != null; )
6265 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6266 >                result = r;
6267 >                CountedCompleter<?> c;
6268 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6269 >                    @SuppressWarnings("unchecked")
6270 >                    MapReduceMappingsToIntTask<K,V>
6271 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6272 >                        s = t.rights;
6273 >                    while (s != null) {
6274 >                        t.result = reducer.applyAsInt(t.result, s.result);
6275 >                        s = t.rights = s.nextRight;
6276 >                    }
6277 >                }
6278 >            }
6279          }
6280      }
6281  
6282      // Unsafe mechanics
6283 <    private static final sun.misc.Unsafe UNSAFE;
6284 <    private static final long SBASE;
6285 <    private static final int SSHIFT;
6286 <    private static final long TBASE;
6287 <    private static final int TSHIFT;
6283 >    private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6284 >    private static final long SIZECTL;
6285 >    private static final long TRANSFERINDEX;
6286 >    private static final long BASECOUNT;
6287 >    private static final long CELLSBUSY;
6288 >    private static final long CELLVALUE;
6289 >    private static final int ABASE;
6290 >    private static final int ASHIFT;
6291  
6292      static {
1474        int ss, ts;
6293          try {
6294 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6295 <            Class tc = HashEntry[].class;
6296 <            Class sc = Segment[].class;
6297 <            TBASE = UNSAFE.arrayBaseOffset(tc);
6298 <            SBASE = UNSAFE.arrayBaseOffset(sc);
6299 <            ts = UNSAFE.arrayIndexScale(tc);
6300 <            ss = UNSAFE.arrayIndexScale(sc);
6301 <        } catch (Exception e) {
6294 >            SIZECTL = U.objectFieldOffset
6295 >                (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6296 >            TRANSFERINDEX = U.objectFieldOffset
6297 >                (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6298 >            BASECOUNT = U.objectFieldOffset
6299 >                (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6300 >            CELLSBUSY = U.objectFieldOffset
6301 >                (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6302 >
6303 >            CELLVALUE = U.objectFieldOffset
6304 >                (CounterCell.class.getDeclaredField("value"));
6305 >
6306 >            ABASE = U.arrayBaseOffset(Node[].class);
6307 >            int scale = U.arrayIndexScale(Node[].class);
6308 >            if ((scale & (scale - 1)) != 0)
6309 >                throw new Error("array index scale not a power of two");
6310 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6311 >        } catch (ReflectiveOperationException e) {
6312              throw new Error(e);
6313          }
1486        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1487            throw new Error("data type scale not a power of two");
1488        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1489        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
1490    }
6314  
6315 +        // Reduce the risk of rare disastrous classloading in first call to
6316 +        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6317 +        Class<?> ensureLoaded = LockSupport.class;
6318 +    }
6319   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines