ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.112 by jsr166, Fri Jun 3 02:28:05 2011 UTC vs.
Revision 1.218 by jsr166, Sat Jun 1 06:15:45 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
8   import java.io.Serializable;
9 < import java.io.IOException;
10 < import java.io.ObjectInputStream;
11 < import java.io.ObjectOutputStream;
9 > import java.io.ObjectStreamField;
10 > import java.lang.reflect.ParameterizedType;
11 > import java.lang.reflect.Type;
12 > import java.util.Arrays;
13 > import java.util.Collection;
14 > import java.util.Comparator;
15 > import java.util.ConcurrentModificationException;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.ConcurrentMap;
25 > import java.util.concurrent.ForkJoinPool;
26 > import java.util.concurrent.atomic.AtomicReference;
27 > import java.util.concurrent.locks.ReentrantLock;
28 > import java.util.concurrent.locks.StampedLock;
29 > import java.util.function.BiConsumer;
30 > import java.util.function.BiFunction;
31 > import java.util.function.BinaryOperator;
32 > import java.util.function.Consumer;
33 > import java.util.function.DoubleBinaryOperator;
34 > import java.util.function.Function;
35 > import java.util.function.IntBinaryOperator;
36 > import java.util.function.LongBinaryOperator;
37 > import java.util.function.ToDoubleBiFunction;
38 > import java.util.function.ToDoubleFunction;
39 > import java.util.function.ToIntBiFunction;
40 > import java.util.function.ToIntFunction;
41 > import java.util.function.ToLongBiFunction;
42 > import java.util.function.ToLongFunction;
43 > import java.util.stream.Stream;
44  
45   /**
46   * A hash table supporting full concurrency of retrievals and
47 < * adjustable expected concurrency for updates. This class obeys the
47 > * high expected concurrency for updates. This class obeys the
48   * same functional specification as {@link java.util.Hashtable}, and
49   * includes versions of methods corresponding to each method of
50 < * <tt>Hashtable</tt>. However, even though all operations are
50 > * {@code Hashtable}. However, even though all operations are
51   * thread-safe, retrieval operations do <em>not</em> entail locking,
52   * and there is <em>not</em> any support for locking the entire table
53   * in a way that prevents all access.  This class is fully
54 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
54 > * interoperable with {@code Hashtable} in programs that rely on its
55   * thread safety but not on its synchronization details.
56   *
57 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
58 < * block, so may overlap with update operations (including
59 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
60 < * of the most recently <em>completed</em> update operations holding
61 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
62 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
63 < * removal of only some entries.  Similarly, Iterators and
64 < * Enumerations return elements reflecting the state of the hash table
65 < * at some point at or since the creation of the iterator/enumeration.
66 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
67 < * However, iterators are designed to be used by only one thread at a time.
68 < *
69 < * <p> The allowed concurrency among update operations is guided by
70 < * the optional <tt>concurrencyLevel</tt> constructor argument
71 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
72 < * table is internally partitioned to try to permit the indicated
73 < * number of concurrent updates without contention. Because placement
74 < * in hash tables is essentially random, the actual concurrency will
75 < * vary.  Ideally, you should choose a value to accommodate as many
76 < * threads as will ever concurrently modify the table. Using a
77 < * significantly higher value than you need can waste space and time,
78 < * and a significantly lower value can lead to thread contention. But
79 < * overestimates and underestimates within an order of magnitude do
80 < * not usually have much noticeable impact. A value of one is
81 < * appropriate when it is known that only one thread will modify and
82 < * all others will only read. Also, resizing this or any other kind of
83 < * hash table is a relatively slow operation, so, when possible, it is
84 < * a good idea to provide estimates of expected table sizes in
85 < * constructors.
57 > * <p>Retrieval operations (including {@code get}) generally do not
58 > * block, so may overlap with update operations (including {@code put}
59 > * and {@code remove}). Retrievals reflect the results of the most
60 > * recently <em>completed</em> update operations holding upon their
61 > * onset. (More formally, an update operation for a given key bears a
62 > * <em>happens-before</em> relation with any (non-null) retrieval for
63 > * that key reporting the updated value.)  For aggregate operations
64 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
65 > * reflect insertion or removal of only some entries.  Similarly,
66 > * Iterators and Enumerations return elements reflecting the state of
67 > * the hash table at some point at or since the creation of the
68 > * iterator/enumeration.  They do <em>not</em> throw {@link
69 > * ConcurrentModificationException}.  However, iterators are designed
70 > * to be used by only one thread at a time.  Bear in mind that the
71 > * results of aggregate status methods including {@code size}, {@code
72 > * isEmpty}, and {@code containsValue} are typically useful only when
73 > * a map is not undergoing concurrent updates in other threads.
74 > * Otherwise the results of these methods reflect transient states
75 > * that may be adequate for monitoring or estimation purposes, but not
76 > * for program control.
77 > *
78 > * <p>The table is dynamically expanded when there are too many
79 > * collisions (i.e., keys that have distinct hash codes but fall into
80 > * the same slot modulo the table size), with the expected average
81 > * effect of maintaining roughly two bins per mapping (corresponding
82 > * to a 0.75 load factor threshold for resizing). There may be much
83 > * variance around this average as mappings are added and removed, but
84 > * overall, this maintains a commonly accepted time/space tradeoff for
85 > * hash tables.  However, resizing this or any other kind of hash
86 > * table may be a relatively slow operation. When possible, it is a
87 > * good idea to provide a size estimate as an optional {@code
88 > * initialCapacity} constructor argument. An additional optional
89 > * {@code loadFactor} constructor argument provides a further means of
90 > * customizing initial table capacity by specifying the table density
91 > * to be used in calculating the amount of space to allocate for the
92 > * given number of elements.  Also, for compatibility with previous
93 > * versions of this class, constructors may optionally specify an
94 > * expected {@code concurrencyLevel} as an additional hint for
95 > * internal sizing.  Note that using many keys with exactly the same
96 > * {@code hashCode()} is a sure way to slow down performance of any
97 > * hash table. To ameliorate impact, when keys are {@link Comparable},
98 > * this class may use comparison order among keys to help break ties.
99 > *
100 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
101 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
102 > * (using {@link #keySet(Object)} when only keys are of interest, and the
103 > * mapped values are (perhaps transiently) not used or all take the
104 > * same mapping value.
105 > *
106 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
107 > * form of histogram or multiset) by using {@link
108 > * java.util.concurrent.atomic.LongAdder} values and initializing via
109 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
110 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
111 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
112   *
113   * <p>This class and its views and iterators implement all of the
114   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
115   * interfaces.
116   *
117 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
118 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
117 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
118 > * does <em>not</em> allow {@code null} to be used as a key or value.
119 > *
120 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
121 > * operations that, unlike most {@link Stream} methods, are designed
122 > * to be safely, and often sensibly, applied even with maps that are
123 > * being concurrently updated by other threads; for example, when
124 > * computing a snapshot summary of the values in a shared registry.
125 > * There are three kinds of operation, each with four forms, accepting
126 > * functions with Keys, Values, Entries, and (Key, Value) arguments
127 > * and/or return values. Because the elements of a ConcurrentHashMap
128 > * are not ordered in any particular way, and may be processed in
129 > * different orders in different parallel executions, the correctness
130 > * of supplied functions should not depend on any ordering, or on any
131 > * other objects or values that may transiently change while
132 > * computation is in progress; and except for forEach actions, should
133 > * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
134 > * objects do not support method {@code setValue}.
135 > *
136 > * <ul>
137 > * <li> forEach: Perform a given action on each element.
138 > * A variant form applies a given transformation on each element
139 > * before performing the action.</li>
140 > *
141 > * <li> search: Return the first available non-null result of
142 > * applying a given function on each element; skipping further
143 > * search when a result is found.</li>
144 > *
145 > * <li> reduce: Accumulate each element.  The supplied reduction
146 > * function cannot rely on ordering (more formally, it should be
147 > * both associative and commutative).  There are five variants:
148 > *
149 > * <ul>
150 > *
151 > * <li> Plain reductions. (There is not a form of this method for
152 > * (key, value) function arguments since there is no corresponding
153 > * return type.)</li>
154 > *
155 > * <li> Mapped reductions that accumulate the results of a given
156 > * function applied to each element.</li>
157 > *
158 > * <li> Reductions to scalar doubles, longs, and ints, using a
159 > * given basis value.</li>
160 > *
161 > * </ul>
162 > * </li>
163 > * </ul>
164 > *
165 > * <p>These bulk operations accept a {@code parallelismThreshold}
166 > * argument. Methods proceed sequentially if the current map size is
167 > * estimated to be less than the given threshold. Using a value of
168 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
169 > * of {@code 1} results in maximal parallelism by partitioning into
170 > * enough subtasks to utilize all processors. Normally, you would
171 > * initially choose one of these extreme values, and then measure
172 > * performance of using in-between values that trade off overhead
173 > * versus throughput. Parallel forms use the {@link
174 > * ForkJoinPool#commonPool()}.
175 > *
176 > * <p>The concurrency properties of bulk operations follow
177 > * from those of ConcurrentHashMap: Any non-null result returned
178 > * from {@code get(key)} and related access methods bears a
179 > * happens-before relation with the associated insertion or
180 > * update.  The result of any bulk operation reflects the
181 > * composition of these per-element relations (but is not
182 > * necessarily atomic with respect to the map as a whole unless it
183 > * is somehow known to be quiescent).  Conversely, because keys
184 > * and values in the map are never null, null serves as a reliable
185 > * atomic indicator of the current lack of any result.  To
186 > * maintain this property, null serves as an implicit basis for
187 > * all non-scalar reduction operations. For the double, long, and
188 > * int versions, the basis should be one that, when combined with
189 > * any other value, returns that other value (more formally, it
190 > * should be the identity element for the reduction). Most common
191 > * reductions have these properties; for example, computing a sum
192 > * with basis 0 or a minimum with basis MAX_VALUE.
193 > *
194 > * <p>Search and transformation functions provided as arguments
195 > * should similarly return null to indicate the lack of any result
196 > * (in which case it is not used). In the case of mapped
197 > * reductions, this also enables transformations to serve as
198 > * filters, returning null (or, in the case of primitive
199 > * specializations, the identity basis) if the element should not
200 > * be combined. You can create compound transformations and
201 > * filterings by composing them yourself under this "null means
202 > * there is nothing there now" rule before using them in search or
203 > * reduce operations.
204 > *
205 > * <p>Methods accepting and/or returning Entry arguments maintain
206 > * key-value associations. They may be useful for example when
207 > * finding the key for the greatest value. Note that "plain" Entry
208 > * arguments can be supplied using {@code new
209 > * AbstractMap.SimpleEntry(k,v)}.
210 > *
211 > * <p>Bulk operations may complete abruptly, throwing an
212 > * exception encountered in the application of a supplied
213 > * function. Bear in mind when handling such exceptions that other
214 > * concurrently executing functions could also have thrown
215 > * exceptions, or would have done so if the first exception had
216 > * not occurred.
217 > *
218 > * <p>Speedups for parallel compared to sequential forms are common
219 > * but not guaranteed.  Parallel operations involving brief functions
220 > * on small maps may execute more slowly than sequential forms if the
221 > * underlying work to parallelize the computation is more expensive
222 > * than the computation itself.  Similarly, parallelization may not
223 > * lead to much actual parallelism if all processors are busy
224 > * performing unrelated tasks.
225 > *
226 > * <p>All arguments to all task methods must be non-null.
227   *
228   * <p>This class is a member of the
229   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 234 | import java.io.ObjectOutputStream;
234   * @param <K> the type of keys maintained by this map
235   * @param <V> the type of mapped values
236   */
237 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
238 <        implements ConcurrentMap<K, V>, Serializable {
237 > @SuppressWarnings({"unchecked", "rawtypes", "serial"})
238 > public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239      private static final long serialVersionUID = 7249069246763182397L;
240  
241      /*
242 <     * The basic strategy is to subdivide the table among Segments,
243 <     * each of which itself is a concurrently readable hash table.  To
244 <     * reduce footprint, all but one segments are constructed only
245 <     * when first needed (see ensureSegment). To maintain visibility
246 <     * in the presence of lazy construction, accesses to segments as
247 <     * well as elements of segment's table must use volatile access,
248 <     * which is done via Unsafe within methods segmentAt etc
249 <     * below. These provide the functionality of AtomicReferenceArrays
250 <     * but reduce the levels of indirection. Additionally,
251 <     * volatile-writes of table elements and entry "next" fields
252 <     * within locked operations use the cheaper "lazySet" forms of
253 <     * writes (via putOrderedObject) because these writes are always
254 <     * followed by lock releases that maintain sequential consistency
255 <     * of table updates.
256 <     *
257 <     * Historical note: The previous version of this class relied
258 <     * heavily on "final" fields, which avoided some volatile reads at
259 <     * the expense of a large initial footprint.  Some remnants of
260 <     * that design (including forced construction of segment 0) exist
261 <     * to ensure serialization compatibility.
242 >     * Overview:
243 >     *
244 >     * The primary design goal of this hash table is to maintain
245 >     * concurrent readability (typically method get(), but also
246 >     * iterators and related methods) while minimizing update
247 >     * contention. Secondary goals are to keep space consumption about
248 >     * the same or better than java.util.HashMap, and to support high
249 >     * initial insertion rates on an empty table by many threads.
250 >     *
251 >     * Each key-value mapping is held in a Node.  Because Node key
252 >     * fields can contain special values, they are defined using plain
253 >     * Object types (not type "K"). This leads to a lot of explicit
254 >     * casting (and the use of class-wide warning suppressions).  It
255 >     * also allows some of the public methods to be factored into a
256 >     * smaller number of internal methods (although sadly not so for
257 >     * the five variants of put-related operations). The
258 >     * validation-based approach explained below leads to a lot of
259 >     * code sprawl because retry-control precludes factoring into
260 >     * smaller methods.
261 >     *
262 >     * The table is lazily initialized to a power-of-two size upon the
263 >     * first insertion.  Each bin in the table normally contains a
264 >     * list of Nodes (most often, the list has only zero or one Node).
265 >     * Table accesses require volatile/atomic reads, writes, and
266 >     * CASes.  Because there is no other way to arrange this without
267 >     * adding further indirections, we use intrinsics
268 >     * (sun.misc.Unsafe) operations.
269 >     *
270 >     * We use the top (sign) bit of Node hash fields for control
271 >     * purposes -- it is available anyway because of addressing
272 >     * constraints.  Nodes with negative hash fields are forwarding
273 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
274 >     * of each normal Node's hash field contain a transformation of
275 >     * the key's hash code.
276 >     *
277 >     * Insertion (via put or its variants) of the first node in an
278 >     * empty bin is performed by just CASing it to the bin.  This is
279 >     * by far the most common case for put operations under most
280 >     * key/hash distributions.  Other update operations (insert,
281 >     * delete, and replace) require locks.  We do not want to waste
282 >     * the space required to associate a distinct lock object with
283 >     * each bin, so instead use the first node of a bin list itself as
284 >     * a lock. Locking support for these locks relies on builtin
285 >     * "synchronized" monitors.
286 >     *
287 >     * Using the first node of a list as a lock does not by itself
288 >     * suffice though: When a node is locked, any update must first
289 >     * validate that it is still the first node after locking it, and
290 >     * retry if not. Because new nodes are always appended to lists,
291 >     * once a node is first in a bin, it remains first until deleted
292 >     * or the bin becomes invalidated (upon resizing).
293 >     *
294 >     * The main disadvantage of per-bin locks is that other update
295 >     * operations on other nodes in a bin list protected by the same
296 >     * lock can stall, for example when user equals() or mapping
297 >     * functions take a long time.  However, statistically, under
298 >     * random hash codes, this is not a common problem.  Ideally, the
299 >     * frequency of nodes in bins follows a Poisson distribution
300 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
301 >     * parameter of about 0.5 on average, given the resizing threshold
302 >     * of 0.75, although with a large variance because of resizing
303 >     * granularity. Ignoring variance, the expected occurrences of
304 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
305 >     * first values are:
306 >     *
307 >     * 0:    0.60653066
308 >     * 1:    0.30326533
309 >     * 2:    0.07581633
310 >     * 3:    0.01263606
311 >     * 4:    0.00157952
312 >     * 5:    0.00015795
313 >     * 6:    0.00001316
314 >     * 7:    0.00000094
315 >     * 8:    0.00000006
316 >     * more: less than 1 in ten million
317 >     *
318 >     * Lock contention probability for two threads accessing distinct
319 >     * elements is roughly 1 / (8 * #elements) under random hashes.
320 >     *
321 >     * Actual hash code distributions encountered in practice
322 >     * sometimes deviate significantly from uniform randomness.  This
323 >     * includes the case when N > (1<<30), so some keys MUST collide.
324 >     * Similarly for dumb or hostile usages in which multiple keys are
325 >     * designed to have identical hash codes. Also, although we guard
326 >     * against the worst effects of this (see method spread), sets of
327 >     * hashes may differ only in bits that do not impact their bin
328 >     * index for a given power-of-two mask.  So we use a secondary
329 >     * strategy that applies when the number of nodes in a bin exceeds
330 >     * a threshold, and at least one of the keys implements
331 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
332 >     * (a specialized form of red-black trees), bounding search time
333 >     * to O(log N).  Each search step in a TreeBin is at least twice as
334 >     * slow as in a regular list, but given that N cannot exceed
335 >     * (1<<64) (before running out of addresses) this bounds search
336 >     * steps, lock hold times, etc, to reasonable constants (roughly
337 >     * 100 nodes inspected per operation worst case) so long as keys
338 >     * are Comparable (which is very common -- String, Long, etc).
339 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
340 >     * traversal pointers as regular nodes, so can be traversed in
341 >     * iterators in the same way.
342 >     *
343 >     * The table is resized when occupancy exceeds a percentage
344 >     * threshold (nominally, 0.75, but see below).  Any thread
345 >     * noticing an overfull bin may assist in resizing after the
346 >     * initiating thread allocates and sets up the replacement
347 >     * array. However, rather than stalling, these other threads may
348 >     * proceed with insertions etc.  The use of TreeBins shields us
349 >     * from the worst case effects of overfilling while resizes are in
350 >     * progress.  Resizing proceeds by transferring bins, one by one,
351 >     * from the table to the next table. To enable concurrency, the
352 >     * next table must be (incrementally) prefilled with place-holders
353 >     * serving as reverse forwarders to the old table.  Because we are
354 >     * using power-of-two expansion, the elements from each bin must
355 >     * either stay at same index, or move with a power of two
356 >     * offset. We eliminate unnecessary node creation by catching
357 >     * cases where old nodes can be reused because their next fields
358 >     * won't change.  On average, only about one-sixth of them need
359 >     * cloning when a table doubles. The nodes they replace will be
360 >     * garbage collectable as soon as they are no longer referenced by
361 >     * any reader thread that may be in the midst of concurrently
362 >     * traversing table.  Upon transfer, the old table bin contains
363 >     * only a special forwarding node (with hash field "MOVED") that
364 >     * contains the next table as its key. On encountering a
365 >     * forwarding node, access and update operations restart, using
366 >     * the new table.
367 >     *
368 >     * Each bin transfer requires its bin lock, which can stall
369 >     * waiting for locks while resizing. However, because other
370 >     * threads can join in and help resize rather than contend for
371 >     * locks, average aggregate waits become shorter as resizing
372 >     * progresses.  The transfer operation must also ensure that all
373 >     * accessible bins in both the old and new table are usable by any
374 >     * traversal.  This is arranged by proceeding from the last bin
375 >     * (table.length - 1) up towards the first.  Upon seeing a
376 >     * forwarding node, traversals (see class Traverser) arrange to
377 >     * move to the new table without revisiting nodes.  However, to
378 >     * ensure that no intervening nodes are skipped, bin splitting can
379 >     * only begin after the associated reverse-forwarders are in
380 >     * place.
381 >     *
382 >     * The traversal scheme also applies to partial traversals of
383 >     * ranges of bins (via an alternate Traverser constructor)
384 >     * to support partitioned aggregate operations.  Also, read-only
385 >     * operations give up if ever forwarded to a null table, which
386 >     * provides support for shutdown-style clearing, which is also not
387 >     * currently implemented.
388 >     *
389 >     * Lazy table initialization minimizes footprint until first use,
390 >     * and also avoids resizings when the first operation is from a
391 >     * putAll, constructor with map argument, or deserialization.
392 >     * These cases attempt to override the initial capacity settings,
393 >     * but harmlessly fail to take effect in cases of races.
394 >     *
395 >     * The element count is maintained using a specialization of
396 >     * LongAdder. We need to incorporate a specialization rather than
397 >     * just use a LongAdder in order to access implicit
398 >     * contention-sensing that leads to creation of multiple
399 >     * Cells.  The counter mechanics avoid contention on
400 >     * updates but can encounter cache thrashing if read too
401 >     * frequently during concurrent access. To avoid reading so often,
402 >     * resizing under contention is attempted only upon adding to a
403 >     * bin already holding two or more nodes. Under uniform hash
404 >     * distributions, the probability of this occurring at threshold
405 >     * is around 13%, meaning that only about 1 in 8 puts check
406 >     * threshold (and after resizing, many fewer do so). The bulk
407 >     * putAll operation further reduces contention by only committing
408 >     * count updates upon these size checks.
409 >     *
410 >     * Maintaining API and serialization compatibility with previous
411 >     * versions of this class introduces several oddities. Mainly: We
412 >     * leave untouched but unused constructor arguments refering to
413 >     * concurrencyLevel. We accept a loadFactor constructor argument,
414 >     * but apply it only to initial table capacity (which is the only
415 >     * time that we can guarantee to honor it.) We also declare an
416 >     * unused "Segment" class that is instantiated in minimal form
417 >     * only when serializing.
418       */
419  
420      /* ---------------- Constants -------------- */
421  
422      /**
423 <     * The default initial capacity for this table,
424 <     * used when not otherwise specified in a constructor.
423 >     * The largest possible table capacity.  This value must be
424 >     * exactly 1<<30 to stay within Java array allocation and indexing
425 >     * bounds for power of two table sizes, and is further required
426 >     * because the top two bits of 32bit hash fields are used for
427 >     * control purposes.
428 >     */
429 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
430 >
431 >    /**
432 >     * The default initial table capacity.  Must be a power of 2
433 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
434       */
435 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
435 >    private static final int DEFAULT_CAPACITY = 16;
436  
437      /**
438 <     * The default load factor for this table, used when not
439 <     * otherwise specified in a constructor.
438 >     * The largest possible (non-power of two) array size.
439 >     * Needed by toArray and related methods.
440       */
441 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
441 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
442  
443      /**
444 <     * The default concurrency level for this table, used when not
445 <     * otherwise specified in a constructor.
444 >     * The default concurrency level for this table. Unused but
445 >     * defined for compatibility with previous versions of this class.
446       */
447 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
447 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
448  
449      /**
450 <     * The maximum capacity, used if a higher value is implicitly
451 <     * specified by either of the constructors with arguments.  MUST
452 <     * be a power of two <= 1<<30 to ensure that entries are indexable
453 <     * using ints.
450 >     * The load factor for this table. Overrides of this value in
451 >     * constructors affect only the initial table capacity.  The
452 >     * actual floating point value isn't normally used -- it is
453 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
454 >     * the associated resizing threshold.
455       */
456 <    static final int MAXIMUM_CAPACITY = 1 << 30;
456 >    private static final float LOAD_FACTOR = 0.75f;
457  
458      /**
459 <     * The minimum capacity for per-segment tables.  Must be a power
460 <     * of two, at least two to avoid immediate resizing on next use
461 <     * after lazy construction.
459 >     * The bin count threshold for using a tree rather than list for a
460 >     * bin.  The value reflects the approximate break-even point for
461 >     * using tree-based operations.
462       */
463 <    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
463 >    private static final int TREE_THRESHOLD = 8;
464  
465      /**
466 <     * The maximum number of segments to allow; used to bound
467 <     * constructor arguments. Must be power of two less than 1 << 24.
466 >     * Minimum number of rebinnings per transfer step. Ranges are
467 >     * subdivided to allow multiple resizer threads.  This value
468 >     * serves as a lower bound to avoid resizers encountering
469 >     * excessive memory contention.  The value should be at least
470 >     * DEFAULT_CAPACITY.
471       */
472 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
472 >    private static final int MIN_TRANSFER_STRIDE = 16;
473 >
474 >    /*
475 >     * Encodings for Node hash fields. See above for explanation.
476 >     */
477 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
478 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
479 >
480 >    /** Number of CPUS, to place bounds on some sizings */
481 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
482 >
483 >    /** For serialization compatibility. */
484 >    private static final ObjectStreamField[] serialPersistentFields = {
485 >        new ObjectStreamField("segments", Segment[].class),
486 >        new ObjectStreamField("segmentMask", Integer.TYPE),
487 >        new ObjectStreamField("segmentShift", Integer.TYPE)
488 >    };
489  
490      /**
491 <     * Number of unsynchronized retries in size and containsValue
492 <     * methods before resorting to locking. This is used to avoid
144 <     * unbounded retries if tables undergo continuous modification
145 <     * which would make it impossible to obtain an accurate result.
491 >     * A padded cell for distributing counts.  Adapted from LongAdder
492 >     * and Striped64.  See their internal docs for explanation.
493       */
494 <    static final int RETRIES_BEFORE_LOCK = 2;
494 >    @sun.misc.Contended static final class Cell {
495 >        volatile long value;
496 >        Cell(long x) { value = x; }
497 >    }
498  
499      /* ---------------- Fields -------------- */
500  
501      /**
502 <     * Mask value for indexing into segments. The upper bits of a
503 <     * key's hash code are used to choose the segment.
502 >     * The array of bins. Lazily initialized upon first insertion.
503 >     * Size is always a power of two. Accessed directly by iterators.
504 >     */
505 >    transient volatile Node<K,V>[] table;
506 >
507 >    /**
508 >     * The next table to use; non-null only while resizing.
509 >     */
510 >    private transient volatile Node<K,V>[] nextTable;
511 >
512 >    /**
513 >     * Base counter value, used mainly when there is no contention,
514 >     * but also as a fallback during table initialization
515 >     * races. Updated via CAS.
516 >     */
517 >    private transient volatile long baseCount;
518 >
519 >    /**
520 >     * Table initialization and resizing control.  When negative, the
521 >     * table is being initialized or resized: -1 for initialization,
522 >     * else -(1 + the number of active resizing threads).  Otherwise,
523 >     * when table is null, holds the initial table size to use upon
524 >     * creation, or 0 for default. After initialization, holds the
525 >     * next element count value upon which to resize the table.
526 >     */
527 >    private transient volatile int sizeCtl;
528 >
529 >    /**
530 >     * The next table index (plus one) to split while resizing.
531 >     */
532 >    private transient volatile int transferIndex;
533 >
534 >    /**
535 >     * The least available table index to split while resizing.
536       */
537 <    final int segmentMask;
537 >    private transient volatile int transferOrigin;
538  
539      /**
540 <     * Shift value for indexing within segments.
540 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
541       */
542 <    final int segmentShift;
542 >    private transient volatile int cellsBusy;
543  
544      /**
545 <     * The segments, each of which is a specialized hash table.
545 >     * Table of counter cells. When non-null, size is a power of 2.
546 >     */
547 >    private transient volatile Cell[] counterCells;
548 >
549 >    // views
550 >    private transient KeySetView<K,V> keySet;
551 >    private transient ValuesView<K,V> values;
552 >    private transient EntrySetView<K,V> entrySet;
553 >
554 >    /* ---------------- Table element access -------------- */
555 >
556 >    /*
557 >     * Volatile access methods are used for table elements as well as
558 >     * elements of in-progress next table while resizing.  Uses are
559 >     * null checked by callers, and implicitly bounds-checked, relying
560 >     * on the invariants that tab arrays have non-zero size, and all
561 >     * indices are masked with (tab.length - 1) which is never
562 >     * negative and always less than length. Note that, to be correct
563 >     * wrt arbitrary concurrency errors by users, bounds checks must
564 >     * operate on local variables, which accounts for some odd-looking
565 >     * inline assignments below.
566       */
165    final Segment<K,V>[] segments;
567  
568 <    transient Set<K> keySet;
569 <    transient Set<Map.Entry<K,V>> entrySet;
570 <    transient Collection<V> values;
568 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
569 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
570 >    }
571 >
572 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
573 >                                        Node<K,V> c, Node<K,V> v) {
574 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
575 >    }
576 >
577 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
578 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
579 >    }
580 >
581 >    /* ---------------- Nodes -------------- */
582  
583      /**
584 <     * ConcurrentHashMap list entry. Note that this is never exported
585 <     * out as a user-visible Map.Entry.
584 >     * Key-value entry.  This class is never exported out as a
585 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
586 >     * MapEntry below), but can be used for read-only traversals used
587 >     * in bulk tasks.  Nodes with a hash field of MOVED are special,
588 >     * and do not contain user keys or values (and are never
589 >     * exported).  Otherwise, keys and vals are never null.
590       */
591 <    static final class HashEntry<K,V> {
591 >    static class Node<K,V> implements Map.Entry<K,V> {
592          final int hash;
593 <        final K key;
594 <        volatile V value;
595 <        volatile HashEntry<K,V> next;
593 >        final Object key;
594 >        volatile V val;
595 >        Node<K,V> next;
596  
597 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
597 >        Node(int hash, Object key, V val, Node<K,V> next) {
598              this.hash = hash;
599              this.key = key;
600 <            this.value = value;
600 >            this.val = val;
601              this.next = next;
602          }
603  
604 <        /**
605 <         * Sets next field with volatile write semantics.  (See above
606 <         * about use of putOrderedObject.)
607 <         */
608 <        final void setNext(HashEntry<K,V> n) {
609 <            UNSAFE.putOrderedObject(this, nextOffset, n);
604 >        public final K getKey()       { return (K)key; }
605 >        public final V getValue()     { return val; }
606 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
607 >        public final String toString(){ return key + "=" + val; }
608 >        public final V setValue(V value) {
609 >            throw new UnsupportedOperationException();
610          }
611  
612 <        // Unsafe mechanics
613 <        static final sun.misc.Unsafe UNSAFE;
614 <        static final long nextOffset;
615 <        static {
616 <            try {
617 <                UNSAFE = sun.misc.Unsafe.getUnsafe();
618 <                Class<?> k = HashEntry.class;
203 <                nextOffset = UNSAFE.objectFieldOffset
204 <                    (k.getDeclaredField("next"));
205 <            } catch (Exception e) {
206 <                throw new Error(e);
207 <            }
612 >        public final boolean equals(Object o) {
613 >            Object k, v, u; Map.Entry<?,?> e;
614 >            return ((o instanceof Map.Entry) &&
615 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
616 >                    (v = e.getValue()) != null &&
617 >                    (k == key || k.equals(key)) &&
618 >                    (v == (u = val) || v.equals(u)));
619          }
620      }
621  
622      /**
623 <     * Gets the ith element of given table (if nonnull) with volatile
213 <     * read semantics. Note: This is manually integrated into a few
214 <     * performance-sensitive methods to reduce call overhead.
623 >     * Exported Entry for EntryIterator
624       */
625 <    @SuppressWarnings("unchecked")
626 <    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
627 <        return (tab == null) ? null :
628 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
629 <            (tab, ((long)i << TSHIFT) + TBASE);
625 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
626 >        final K key; // non-null
627 >        V val;       // non-null
628 >        final ConcurrentHashMap<K,V> map;
629 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
630 >            this.key = key;
631 >            this.val = val;
632 >            this.map = map;
633 >        }
634 >        public K getKey()        { return key; }
635 >        public V getValue()      { return val; }
636 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
637 >        public String toString() { return key + "=" + val; }
638 >
639 >        public boolean equals(Object o) {
640 >            Object k, v; Map.Entry<?,?> e;
641 >            return ((o instanceof Map.Entry) &&
642 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
643 >                    (v = e.getValue()) != null &&
644 >                    (k == key || k.equals(key)) &&
645 >                    (v == val || v.equals(val)));
646 >        }
647 >
648 >        /**
649 >         * Sets our entry's value and writes through to the map. The
650 >         * value to return is somewhat arbitrary here. Since we do not
651 >         * necessarily track asynchronous changes, the most recent
652 >         * "previous" value could be different from what we return (or
653 >         * could even have been removed, in which case the put will
654 >         * re-establish). We do not and cannot guarantee more.
655 >         */
656 >        public V setValue(V value) {
657 >            if (value == null) throw new NullPointerException();
658 >            V v = val;
659 >            val = value;
660 >            map.put(key, value);
661 >            return v;
662 >        }
663      }
664  
665 +
666 +    /* ---------------- TreeBins -------------- */
667 +
668      /**
669 <     * Sets the ith element of given table, with volatile write
225 <     * semantics. (See above about use of putOrderedObject.)
669 >     * Nodes for use in TreeBins
670       */
671 <    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
672 <                                       HashEntry<K,V> e) {
673 <        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
671 >    static final class TreeNode<K,V> extends Node<K,V> {
672 >        TreeNode<K,V> parent;  // red-black tree links
673 >        TreeNode<K,V> left;
674 >        TreeNode<K,V> right;
675 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
676 >        boolean red;
677 >
678 >        TreeNode(int hash, Object key, V val, Node<K,V> next,
679 >                 TreeNode<K,V> parent) {
680 >            super(hash, key, val, next);
681 >            this.parent = parent;
682 >        }
683      }
684  
685      /**
686 <     * Applies a supplemental hash function to a given hashCode, which
687 <     * defends against poor quality hash functions.  This is critical
688 <     * because ConcurrentHashMap uses power-of-two length hash tables,
689 <     * that otherwise encounter collisions for hashCodes that do not
690 <     * differ in lower or upper bits.
691 <     */
692 <    private static int hash(int h) {
693 <        // Spread bits to regularize both segment and index locations,
694 <        // using variant of single-word Wang/Jenkins hash.
695 <        h += (h <<  15) ^ 0xffffcd7d;
696 <        h ^= (h >>> 10);
697 <        h += (h <<   3);
698 <        h ^= (h >>>  6);
699 <        h += (h <<   2) + (h << 14);
700 <        return h ^ (h >>> 16);
686 >     * Returns a Class for the given object of the form "class C
687 >     * implements Comparable<C>", if one exists, else null.  See below
688 >     * for explanation.
689 >     */
690 >    static Class<?> comparableClassFor(Object x) {
691 >        Class<?> c, s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
692 >        if ((c = x.getClass()) == String.class) // bypass checks
693 >            return c;
694 >        if ((cmpc = Comparable.class).isAssignableFrom(c)) {
695 >            while (cmpc.isAssignableFrom(s = c.getSuperclass()))
696 >                c = s; // find topmost comparable class
697 >            if ((ts = c.getGenericInterfaces()) != null) {
698 >                for (int i = 0; i < ts.length; ++i) {
699 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
700 >                        ((p = (ParameterizedType)t).getRawType() == cmpc) &&
701 >                        (as = p.getActualTypeArguments()) != null &&
702 >                        as.length == 1 && as[0] == c) // type arg is c
703 >                        return c;
704 >                }
705 >            }
706 >        }
707 >        return null;
708      }
709  
710      /**
711 <     * Segments are specialized versions of hash tables.  This
712 <     * subclasses from ReentrantLock opportunistically, just to
713 <     * simplify some locking and avoid separate construction.
711 >     * A specialized form of red-black tree for use in bins
712 >     * whose size exceeds a threshold.
713 >     *
714 >     * TreeBins use a special form of comparison for search and
715 >     * related operations (which is the main reason we cannot use
716 >     * existing collections such as TreeMaps). TreeBins contain
717 >     * Comparable elements, but may contain others, as well as
718 >     * elements that are Comparable but not necessarily Comparable
719 >     * for the same T, so we cannot invoke compareTo among them. To
720 >     * handle this, the tree is ordered primarily by hash value, then
721 >     * by Comparable.compareTo order if applicable.  On lookup at a
722 >     * node, if elements are not comparable or compare as 0 then both
723 >     * left and right children may need to be searched in the case of
724 >     * tied hash values. (This corresponds to the full list search
725 >     * that would be necessary if all elements were non-Comparable and
726 >     * had tied hashes.)  The red-black balancing code is updated from
727 >     * pre-jdk-collections
728 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
729 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
730 >     * Algorithms" (CLR).
731 >     *
732 >     * TreeBins also maintain a separate locking discipline than
733 >     * regular bins. Because they are forwarded via special MOVED
734 >     * nodes at bin heads (which can never change once established),
735 >     * we cannot use those nodes as locks. Instead, TreeBin extends
736 >     * StampedLock to support a form of read-write lock. For update
737 >     * operations and table validation, the exclusive form of lock
738 >     * behaves in the same way as bin-head locks. However, lookups use
739 >     * shared read-lock mechanics to allow multiple readers in the
740 >     * absence of writers.  Additionally, these lookups do not ever
741 >     * block: While the lock is not available, they proceed along the
742 >     * slow traversal path (via next-pointers) until the lock becomes
743 >     * available or the list is exhausted, whichever comes
744 >     * first. These cases are not fast, but maximize aggregate
745 >     * expected throughput.
746       */
747 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
256 <        /*
257 <         * Segments maintain a table of entry lists that are always
258 <         * kept in a consistent state, so can be read (via volatile
259 <         * reads of segments and tables) without locking.  This
260 <         * requires replicating nodes when necessary during table
261 <         * resizing, so the old lists can be traversed by readers
262 <         * still using old version of table.
263 <         *
264 <         * This class defines only mutative methods requiring locking.
265 <         * Except as noted, the methods of this class perform the
266 <         * per-segment versions of ConcurrentHashMap methods.  (Other
267 <         * methods are integrated directly into ConcurrentHashMap
268 <         * methods.) These mutative methods use a form of controlled
269 <         * spinning on contention via methods scanAndLock and
270 <         * scanAndLockForPut. These intersperse tryLocks with
271 <         * traversals to locate nodes.  The main benefit is to absorb
272 <         * cache misses (which are very common for hash tables) while
273 <         * obtaining locks so that traversal is faster once
274 <         * acquired. We do not actually use the found nodes since they
275 <         * must be re-acquired under lock anyway to ensure sequential
276 <         * consistency of updates (and in any case may be undetectably
277 <         * stale), but they will normally be much faster to re-locate.
278 <         * Also, scanAndLockForPut speculatively creates a fresh node
279 <         * to use in put if no node is found.
280 <         */
281 <
747 >    static final class TreeBin<K,V> extends StampedLock {
748          private static final long serialVersionUID = 2249069246763182397L;
749 +        transient TreeNode<K,V> root;  // root of tree
750 +        transient TreeNode<K,V> first; // head of next-pointer list
751 +
752 +        /** From CLR */
753 +        private void rotateLeft(TreeNode<K,V> p) {
754 +            if (p != null) {
755 +                TreeNode<K,V> r = p.right, pp, rl;
756 +                if ((rl = p.right = r.left) != null)
757 +                    rl.parent = p;
758 +                if ((pp = r.parent = p.parent) == null)
759 +                    root = r;
760 +                else if (pp.left == p)
761 +                    pp.left = r;
762 +                else
763 +                    pp.right = r;
764 +                r.left = p;
765 +                p.parent = r;
766 +            }
767 +        }
768 +
769 +        /** From CLR */
770 +        private void rotateRight(TreeNode<K,V> p) {
771 +            if (p != null) {
772 +                TreeNode<K,V> l = p.left, pp, lr;
773 +                if ((lr = p.left = l.right) != null)
774 +                    lr.parent = p;
775 +                if ((pp = l.parent = p.parent) == null)
776 +                    root = l;
777 +                else if (pp.right == p)
778 +                    pp.right = l;
779 +                else
780 +                    pp.left = l;
781 +                l.right = p;
782 +                p.parent = l;
783 +            }
784 +        }
785  
786          /**
787 <         * The maximum number of times to tryLock in a prescan before
788 <         * possibly blocking on acquire in preparation for a locked
287 <         * segment operation. On multiprocessors, using a bounded
288 <         * number of retries maintains cache acquired while locating
289 <         * nodes.
787 >         * Returns the TreeNode (or null if not found) for the given key
788 >         * starting at given root.
789           */
790 <        static final int MAX_SCAN_RETRIES =
791 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
790 >        final TreeNode<K,V> getTreeNode(int h, Object k, TreeNode<K,V> p,
791 >                                        Class<?> cc) {
792 >            while (p != null) {
793 >                int dir, ph; Object pk;
794 >                if ((ph = p.hash) != h)
795 >                    dir = (h < ph) ? -1 : 1;
796 >                else if ((pk = p.key) == k || k.equals(pk))
797 >                    return p;
798 >                else if (cc == null || comparableClassFor(pk) != cc ||
799 >                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
800 >                    TreeNode<K,V> r, pr; // check both sides
801 >                    if ((pr = p.right) != null &&
802 >                        (r = getTreeNode(h, k, pr, cc)) != null)
803 >                        return r;
804 >                    else // continue left
805 >                        dir = -1;
806 >                }
807 >                p = (dir > 0) ? p.right : p.left;
808 >            }
809 >            return null;
810 >        }
811  
812          /**
813 <         * The per-segment table. Elements are accessed via
814 <         * entryAt/setEntryAt providing volatile semantics.
813 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
814 >         * read-lock to call getTreeNode, but during failure to get
815 >         * lock, searches along next links.
816           */
817 <        transient volatile HashEntry<K,V>[] table;
817 >        final V getValue(int h, Object k) {
818 >            Class<?> cc = comparableClassFor(k);
819 >            Node<K,V> r = null;
820 >            for (Node<K,V> e = first; e != null; e = e.next) {
821 >                long s;
822 >                if ((s = tryReadLock()) != 0L) {
823 >                    try {
824 >                        r = getTreeNode(h, k, root, cc);
825 >                    } finally {
826 >                        unlockRead(s);
827 >                    }
828 >                    break;
829 >                }
830 >                else if (e.hash == h && k.equals(e.key)) {
831 >                    r = e;
832 >                    break;
833 >                }
834 >            }
835 >            return r == null ? null : r.val;
836 >        }
837  
838          /**
839 <         * The number of elements. Accessed only either within locks
840 <         * or among other volatile reads that maintain visibility.
839 >         * Finds or adds a node.
840 >         * @return null if added
841           */
842 <        transient int count;
842 >        final TreeNode<K,V> putTreeNode(int h, Object k, V v) {
843 >            Class<?> cc = comparableClassFor(k);
844 >            TreeNode<K,V> pp = root, p = null;
845 >            int dir = 0;
846 >            while (pp != null) { // find existing node or leaf to insert at
847 >                int ph; Object pk;
848 >                p = pp;
849 >                if ((ph = p.hash) != h)
850 >                    dir = (h < ph) ? -1 : 1;
851 >                else if ((pk = p.key) == k || k.equals(pk))
852 >                    return p;
853 >                else if (cc == null || comparableClassFor(pk) != cc ||
854 >                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
855 >                    TreeNode<K,V> r, pr;
856 >                    if ((pr = p.right) != null &&
857 >                        (r = getTreeNode(h, k, pr, cc)) != null)
858 >                        return r;
859 >                    else // continue left
860 >                        dir = -1;
861 >                }
862 >                pp = (dir > 0) ? p.right : p.left;
863 >            }
864 >
865 >            TreeNode<K,V> f = first;
866 >            TreeNode<K,V> x = first = new TreeNode<K,V>(h, k, v, f, p);
867 >            if (p == null)
868 >                root = x;
869 >            else { // attach and rebalance; adapted from CLR
870 >                if (f != null)
871 >                    f.prev = x;
872 >                if (dir <= 0)
873 >                    p.left = x;
874 >                else
875 >                    p.right = x;
876 >                x.red = true;
877 >                for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
878 >                    if ((xp = x.parent) == null) {
879 >                        (root = x).red = false;
880 >                        break;
881 >                    }
882 >                    else if (!xp.red || (xpp = xp.parent) == null) {
883 >                        TreeNode<K,V> r = root;
884 >                        if (r != null && r.red)
885 >                            r.red = false;
886 >                        break;
887 >                    }
888 >                    else if ((xppl = xpp.left) == xp) {
889 >                        if ((xppr = xpp.right) != null && xppr.red) {
890 >                            xppr.red = false;
891 >                            xp.red = false;
892 >                            xpp.red = true;
893 >                            x = xpp;
894 >                        }
895 >                        else {
896 >                            if (x == xp.right) {
897 >                                rotateLeft(x = xp);
898 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
899 >                            }
900 >                            if (xp != null) {
901 >                                xp.red = false;
902 >                                if (xpp != null) {
903 >                                    xpp.red = true;
904 >                                    rotateRight(xpp);
905 >                                }
906 >                            }
907 >                        }
908 >                    }
909 >                    else {
910 >                        if (xppl != null && xppl.red) {
911 >                            xppl.red = false;
912 >                            xp.red = false;
913 >                            xpp.red = true;
914 >                            x = xpp;
915 >                        }
916 >                        else {
917 >                            if (x == xp.left) {
918 >                                rotateRight(x = xp);
919 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
920 >                            }
921 >                            if (xp != null) {
922 >                                xp.red = false;
923 >                                if (xpp != null) {
924 >                                    xpp.red = true;
925 >                                    rotateLeft(xpp);
926 >                                }
927 >                            }
928 >                        }
929 >                    }
930 >                }
931 >            }
932 >            assert checkInvariants();
933 >            return null;
934 >        }
935  
936          /**
937 <         * The total number of mutative operations in this segment.
938 <         * Even though this may overflows 32 bits, it provides
939 <         * sufficient accuracy for stability checks in CHM isEmpty()
940 <         * and size() methods.  Accessed only either within locks or
941 <         * among other volatile reads that maintain visibility.
937 >         * Removes the given node, that must be present before this
938 >         * call.  This is messier than typical red-black deletion code
939 >         * because we cannot swap the contents of an interior node
940 >         * with a leaf successor that is pinned by "next" pointers
941 >         * that are accessible independently of lock. So instead we
942 >         * swap the tree linkages.
943           */
944 <        transient int modCount;
944 >        final void deleteTreeNode(TreeNode<K,V> p) {
945 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
946 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
947 >            if (pred == null)
948 >                first = next;
949 >            else
950 >                pred.next = next;
951 >            if (next != null)
952 >                next.prev = pred;
953 >            else if (pred == null) {
954 >                root = null;
955 >                return;
956 >            }
957 >            TreeNode<K,V> replacement;
958 >            TreeNode<K,V> pl = p.left;
959 >            TreeNode<K,V> pr = p.right;
960 >            if (pl != null && pr != null) {
961 >                TreeNode<K,V> s = pr, sl;
962 >                while ((sl = s.left) != null) // find successor
963 >                    s = sl;
964 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
965 >                TreeNode<K,V> sr = s.right;
966 >                TreeNode<K,V> pp = p.parent;
967 >                if (s == pr) { // p was s's direct parent
968 >                    p.parent = s;
969 >                    s.right = p;
970 >                }
971 >                else {
972 >                    TreeNode<K,V> sp = s.parent;
973 >                    if ((p.parent = sp) != null) {
974 >                        if (s == sp.left)
975 >                            sp.left = p;
976 >                        else
977 >                            sp.right = p;
978 >                    }
979 >                    if ((s.right = pr) != null)
980 >                        pr.parent = s;
981 >                }
982 >                p.left = null;
983 >                if ((p.right = sr) != null)
984 >                    sr.parent = p;
985 >                if ((s.left = pl) != null)
986 >                    pl.parent = s;
987 >                if ((s.parent = pp) == null)
988 >                    root = s;
989 >                else if (p == pp.left)
990 >                    pp.left = s;
991 >                else
992 >                    pp.right = s;
993 >                if (sr != null)
994 >                    replacement = sr;
995 >                else
996 >                    replacement = p;
997 >            }
998 >            else if (pl != null)
999 >                replacement = pl;
1000 >            else if (pr != null)
1001 >                replacement = pr;
1002 >            else
1003 >                replacement = p;
1004 >            if (replacement != p) {
1005 >                TreeNode<K,V> pp = replacement.parent = p.parent;
1006 >                if (pp == null)
1007 >                    root = replacement;
1008 >                else if (p == pp.left)
1009 >                    pp.left = replacement;
1010 >                else
1011 >                    pp.right = replacement;
1012 >                p.left = p.right = p.parent = null;
1013 >            }
1014 >            if (!p.red) { // rebalance, from CLR
1015 >                for (TreeNode<K,V> x = replacement; x != null; ) {
1016 >                    TreeNode<K,V> xp, xpl, xpr;
1017 >                    if (x.red || (xp = x.parent) == null) {
1018 >                        x.red = false;
1019 >                        break;
1020 >                    }
1021 >                    else if ((xpl = xp.left) == x) {
1022 >                        if ((xpr = xp.right) != null && xpr.red) {
1023 >                            xpr.red = false;
1024 >                            xp.red = true;
1025 >                            rotateLeft(xp);
1026 >                            xpr = (xp = x.parent) == null ? null : xp.right;
1027 >                        }
1028 >                        if (xpr == null)
1029 >                            x = xp;
1030 >                        else {
1031 >                            TreeNode<K,V> sl = xpr.left, sr = xpr.right;
1032 >                            if ((sr == null || !sr.red) &&
1033 >                                (sl == null || !sl.red)) {
1034 >                                xpr.red = true;
1035 >                                x = xp;
1036 >                            }
1037 >                            else {
1038 >                                if (sr == null || !sr.red) {
1039 >                                    if (sl != null)
1040 >                                        sl.red = false;
1041 >                                    xpr.red = true;
1042 >                                    rotateRight(xpr);
1043 >                                    xpr = (xp = x.parent) == null ?
1044 >                                        null : xp.right;
1045 >                                }
1046 >                                if (xpr != null) {
1047 >                                    xpr.red = (xp == null) ? false : xp.red;
1048 >                                    if ((sr = xpr.right) != null)
1049 >                                        sr.red = false;
1050 >                                }
1051 >                                if (xp != null) {
1052 >                                    xp.red = false;
1053 >                                    rotateLeft(xp);
1054 >                                }
1055 >                                x = root;
1056 >                            }
1057 >                        }
1058 >                    }
1059 >                    else { // symmetric
1060 >                        if (xpl != null && xpl.red) {
1061 >                            xpl.red = false;
1062 >                            xp.red = true;
1063 >                            rotateRight(xp);
1064 >                            xpl = (xp = x.parent) == null ? null : xp.left;
1065 >                        }
1066 >                        if (xpl == null)
1067 >                            x = xp;
1068 >                        else {
1069 >                            TreeNode<K,V> sl = xpl.left, sr = xpl.right;
1070 >                            if ((sl == null || !sl.red) &&
1071 >                                (sr == null || !sr.red)) {
1072 >                                xpl.red = true;
1073 >                                x = xp;
1074 >                            }
1075 >                            else {
1076 >                                if (sl == null || !sl.red) {
1077 >                                    if (sr != null)
1078 >                                        sr.red = false;
1079 >                                    xpl.red = true;
1080 >                                    rotateLeft(xpl);
1081 >                                    xpl = (xp = x.parent) == null ?
1082 >                                        null : xp.left;
1083 >                                }
1084 >                                if (xpl != null) {
1085 >                                    xpl.red = (xp == null) ? false : xp.red;
1086 >                                    if ((sl = xpl.left) != null)
1087 >                                        sl.red = false;
1088 >                                }
1089 >                                if (xp != null) {
1090 >                                    xp.red = false;
1091 >                                    rotateRight(xp);
1092 >                                }
1093 >                                x = root;
1094 >                            }
1095 >                        }
1096 >                    }
1097 >                }
1098 >            }
1099 >            if (p == replacement) {  // detach pointers
1100 >                TreeNode<K,V> pp;
1101 >                if ((pp = p.parent) != null) {
1102 >                    if (p == pp.left)
1103 >                        pp.left = null;
1104 >                    else if (p == pp.right)
1105 >                        pp.right = null;
1106 >                    p.parent = null;
1107 >                }
1108 >            }
1109 >            assert checkInvariants();
1110 >        }
1111  
1112          /**
1113 <         * The table is rehashed when its size exceeds this threshold.
317 <         * (The value of this field is always <tt>(int)(capacity *
318 <         * loadFactor)</tt>.)
1113 >         * Checks linkage and balance invariants at root
1114           */
1115 <        transient int threshold;
1115 >        final boolean checkInvariants() {
1116 >            TreeNode<K,V> r = root;
1117 >            if (r == null)
1118 >                return (first == null);
1119 >            else
1120 >                return (first != null) && checkTreeNode(r);
1121 >        }
1122  
1123          /**
1124 <         * The load factor for the hash table.  Even though this value
324 <         * is same for all segments, it is replicated to avoid needing
325 <         * links to outer object.
326 <         * @serial
1124 >         * Recursive invariant check
1125           */
1126 <        final float loadFactor;
1126 >        final boolean checkTreeNode(TreeNode<K,V> t) {
1127 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
1128 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
1129 >            if (tb != null && tb.next != t)
1130 >                return false;
1131 >            if (tn != null && tn.prev != t)
1132 >                return false;
1133 >            if (tp != null && t != tp.left && t != tp.right)
1134 >                return false;
1135 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
1136 >                return false;
1137 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
1138 >                return false;
1139 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
1140 >                return false;
1141 >            if (tl != null && !checkTreeNode(tl))
1142 >                return false;
1143 >            if (tr != null && !checkTreeNode(tr))
1144 >                return false;
1145 >            return true;
1146 >        }
1147 >    }
1148  
1149 <        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
1150 <            this.loadFactor = lf;
1151 <            this.threshold = threshold;
1152 <            this.table = tab;
1149 >    /* ---------------- Collision reduction methods -------------- */
1150 >
1151 >    /**
1152 >     * Spreads higher bits to lower, and also forces top bit to 0.
1153 >     * Because the table uses power-of-two masking, sets of hashes
1154 >     * that vary only in bits above the current mask will always
1155 >     * collide. (Among known examples are sets of Float keys holding
1156 >     * consecutive whole numbers in small tables.)  To counter this,
1157 >     * we apply a transform that spreads the impact of higher bits
1158 >     * downward. There is a tradeoff between speed, utility, and
1159 >     * quality of bit-spreading. Because many common sets of hashes
1160 >     * are already reasonably distributed across bits (so don't benefit
1161 >     * from spreading), and because we use trees to handle large sets
1162 >     * of collisions in bins, we don't need excessively high quality.
1163 >     */
1164 >    private static final int spread(int h) {
1165 >        h ^= (h >>> 18) ^ (h >>> 12);
1166 >        return (h ^ (h >>> 10)) & HASH_BITS;
1167 >    }
1168 >
1169 >    /**
1170 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1171 >     * only when locked.
1172 >     */
1173 >    private final void replaceWithTreeBin(Node<K,V>[] tab, int index, Object key) {
1174 >        if (tab != null && comparableClassFor(key) != null) {
1175 >            TreeBin<K,V> t = new TreeBin<K,V>();
1176 >            for (Node<K,V> e = tabAt(tab, index); e != null; e = e.next)
1177 >                t.putTreeNode(e.hash, e.key, e.val);
1178 >            setTabAt(tab, index, new Node<K,V>(MOVED, t, null, null));
1179          }
1180 +    }
1181  
1182 <        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
1183 <            HashEntry<K,V> node = tryLock() ? null :
1184 <                scanAndLockForPut(key, hash, value);
1185 <            V oldValue;
1186 <            try {
1187 <                HashEntry<K,V>[] tab = table;
1188 <                int index = (tab.length - 1) & hash;
1189 <                HashEntry<K,V> first = entryAt(tab, index);
1190 <                for (HashEntry<K,V> e = first;;) {
1191 <                    if (e != null) {
1192 <                        K k;
1193 <                        if ((k = e.key) == key ||
1194 <                            (e.hash == hash && key.equals(k))) {
1195 <                            oldValue = e.value;
1196 <                            if (!onlyIfAbsent) {
1197 <                                e.value = value;
1198 <                                ++modCount;
1182 >    /* ---------------- Internal access and update methods -------------- */
1183 >
1184 >    /** Implementation for get and containsKey */
1185 >    private final V internalGet(Object k) {
1186 >        int h = spread(k.hashCode());
1187 >        V v = null;
1188 >        Node<K,V>[] tab; Node<K,V> e;
1189 >        if ((tab = table) != null &&
1190 >            (e = tabAt(tab, (tab.length - 1) & h)) != null) {
1191 >            for (;;) {
1192 >                int eh; Object ek;
1193 >                if ((eh = e.hash) < 0) {
1194 >                    if ((ek = e.key) instanceof TreeBin) { // search TreeBin
1195 >                        v = ((TreeBin<K,V>)ek).getValue(h, k);
1196 >                        break;
1197 >                    }
1198 >                    else if (!(ek instanceof Node[]) ||    // try new table
1199 >                             (e = tabAt(tab = (Node<K,V>[])ek,
1200 >                                        (tab.length - 1) & h)) == null)
1201 >                        break;
1202 >                }
1203 >                else if (eh == h && ((ek = e.key) == k || k.equals(ek))) {
1204 >                    v = e.val;
1205 >                    break;
1206 >                }
1207 >                else if ((e = e.next) == null)
1208 >                    break;
1209 >            }
1210 >        }
1211 >        return v;
1212 >    }
1213 >
1214 >    /**
1215 >     * Implementation for the four public remove/replace methods:
1216 >     * Replaces node value with v, conditional upon match of cv if
1217 >     * non-null.  If resulting value is null, delete.
1218 >     */
1219 >    private final V internalReplace(Object k, V v, Object cv) {
1220 >        int h = spread(k.hashCode());
1221 >        V oldVal = null;
1222 >        for (Node<K,V>[] tab = table;;) {
1223 >            Node<K,V> f; int i, fh; Object fk;
1224 >            if (tab == null ||
1225 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1226 >                break;
1227 >            else if ((fh = f.hash) < 0) {
1228 >                if ((fk = f.key) instanceof TreeBin) {
1229 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1230 >                    long stamp = t.writeLock();
1231 >                    boolean validated = false;
1232 >                    boolean deleted = false;
1233 >                    try {
1234 >                        if (tabAt(tab, i) == f) {
1235 >                            validated = true;
1236 >                            Class<?> cc = comparableClassFor(k);
1237 >                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1238 >                            if (p != null) {
1239 >                                V pv = p.val;
1240 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1241 >                                    oldVal = pv;
1242 >                                    if (v != null)
1243 >                                        p.val = v;
1244 >                                    else {
1245 >                                        deleted = true;
1246 >                                        t.deleteTreeNode(p);
1247 >                                    }
1248 >                                }
1249                              }
354                            break;
1250                          }
1251 <                        e = e.next;
1251 >                    } finally {
1252 >                        t.unlockWrite(stamp);
1253                      }
1254 <                    else {
1255 <                        if (node != null)
1256 <                            node.setNext(first);
361 <                        else
362 <                            node = new HashEntry<K,V>(hash, key, value, first);
363 <                        int c = count + 1;
364 <                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
365 <                            rehash(node);
366 <                        else
367 <                            setEntryAt(tab, index, node);
368 <                        ++modCount;
369 <                        count = c;
370 <                        oldValue = null;
1254 >                    if (validated) {
1255 >                        if (deleted)
1256 >                            addCount(-1L, -1);
1257                          break;
1258                      }
1259                  }
1260 <            } finally {
1261 <                unlock();
1260 >                else
1261 >                    tab = (Node<K,V>[])fk;
1262 >            }
1263 >            else {
1264 >                boolean validated = false;
1265 >                boolean deleted = false;
1266 >                synchronized (f) {
1267 >                    if (tabAt(tab, i) == f) {
1268 >                        validated = true;
1269 >                        for (Node<K,V> e = f, pred = null;;) {
1270 >                            Object ek;
1271 >                            if (e.hash == h &&
1272 >                                ((ek = e.key) == k || k.equals(ek))) {
1273 >                                V ev = e.val;
1274 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1275 >                                    oldVal = ev;
1276 >                                    if (v != null)
1277 >                                        e.val = v;
1278 >                                    else {
1279 >                                        deleted = true;
1280 >                                        Node<K,V> en = e.next;
1281 >                                        if (pred != null)
1282 >                                            pred.next = en;
1283 >                                        else
1284 >                                            setTabAt(tab, i, en);
1285 >                                    }
1286 >                                }
1287 >                                break;
1288 >                            }
1289 >                            pred = e;
1290 >                            if ((e = e.next) == null)
1291 >                                break;
1292 >                        }
1293 >                    }
1294 >                }
1295 >                if (validated) {
1296 >                    if (deleted)
1297 >                        addCount(-1L, -1);
1298 >                    break;
1299 >                }
1300              }
377            return oldValue;
1301          }
1302 +        return oldVal;
1303 +    }
1304  
1305 <        /**
1306 <         * Doubles size of table and repacks entries, also adding the
1307 <         * given node to new table
1308 <         */
1309 <        @SuppressWarnings("unchecked")
1310 <        private void rehash(HashEntry<K,V> node) {
1311 <            /*
1312 <             * Reclassify nodes in each list to new table.  Because we
1313 <             * are using power-of-two expansion, the elements from
1314 <             * each bin must either stay at same index, or move with a
1315 <             * power of two offset. We eliminate unnecessary node
1316 <             * creation by catching cases where old nodes can be
1317 <             * reused because their next fields won't change.
1318 <             * Statistically, at the default threshold, only about
1319 <             * one-sixth of them need cloning when a table
1320 <             * doubles. The nodes they replace will be garbage
1321 <             * collectable as soon as they are no longer referenced by
1322 <             * any reader thread that may be in the midst of
1323 <             * concurrently traversing table. Entry accesses use plain
1324 <             * array indexing because they are followed by volatile
1325 <             * table write.
1326 <             */
1327 <            HashEntry<K,V>[] oldTable = table;
1328 <            int oldCapacity = oldTable.length;
1329 <            int newCapacity = oldCapacity << 1;
1330 <            threshold = (int)(newCapacity * loadFactor);
1331 <            HashEntry<K,V>[] newTable =
1332 <                (HashEntry<K,V>[]) new HashEntry<?,?>[newCapacity];
1333 <            int sizeMask = newCapacity - 1;
1334 <            for (int i = 0; i < oldCapacity ; i++) {
1335 <                HashEntry<K,V> e = oldTable[i];
1336 <                if (e != null) {
1337 <                    HashEntry<K,V> next = e.next;
1338 <                    int idx = e.hash & sizeMask;
1339 <                    if (next == null)   //  Single node on list
1340 <                        newTable[idx] = e;
1341 <                    else { // Reuse consecutive sequence at same slot
1342 <                        HashEntry<K,V> lastRun = e;
1343 <                        int lastIdx = idx;
1344 <                        for (HashEntry<K,V> last = next;
1345 <                             last != null;
1346 <                             last = last.next) {
1347 <                            int k = last.hash & sizeMask;
1348 <                            if (k != lastIdx) {
1349 <                                lastIdx = k;
1350 <                                lastRun = last;
1351 <                            }
1352 <                        }
1353 <                        newTable[lastIdx] = lastRun;
1354 <                        // Clone remaining nodes
1355 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1356 <                            V v = p.value;
1357 <                            int h = p.hash;
1358 <                            int k = h & sizeMask;
1359 <                            HashEntry<K,V> n = newTable[k];
1360 <                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
1305 >    /*
1306 >     * Internal versions of insertion methods
1307 >     * All have the same basic structure as the first (internalPut):
1308 >     *  1. If table uninitialized, create
1309 >     *  2. If bin empty, try to CAS new node
1310 >     *  3. If bin stale, use new table
1311 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1312 >     *  5. Lock and validate; if valid, scan and add or update
1313 >     *
1314 >     * The putAll method differs mainly in attempting to pre-allocate
1315 >     * enough table space, and also more lazily performs count updates
1316 >     * and checks.
1317 >     *
1318 >     * Most of the function-accepting methods can't be factored nicely
1319 >     * because they require different functional forms, so instead
1320 >     * sprawl out similar mechanics.
1321 >     */
1322 >
1323 >    /** Implementation for put and putIfAbsent */
1324 >    private final V internalPut(K k, V v, boolean onlyIfAbsent) {
1325 >        if (k == null || v == null) throw new NullPointerException();
1326 >        int h = spread(k.hashCode());
1327 >        int len = 0;
1328 >        for (Node<K,V>[] tab = table;;) {
1329 >            int i, fh; Node<K,V> f; Object fk;
1330 >            if (tab == null)
1331 >                tab = initTable();
1332 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 >                if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null)))
1334 >                    break;                   // no lock when adding to empty bin
1335 >            }
1336 >            else if ((fh = f.hash) < 0) {
1337 >                if ((fk = f.key) instanceof TreeBin) {
1338 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1339 >                    long stamp = t.writeLock();
1340 >                    V oldVal = null;
1341 >                    try {
1342 >                        if (tabAt(tab, i) == f) {
1343 >                            len = 2;
1344 >                            TreeNode<K,V> p = t.putTreeNode(h, k, v);
1345 >                            if (p != null) {
1346 >                                oldVal = p.val;
1347 >                                if (!onlyIfAbsent)
1348 >                                    p.val = v;
1349 >                            }
1350 >                        }
1351 >                    } finally {
1352 >                        t.unlockWrite(stamp);
1353 >                    }
1354 >                    if (len != 0) {
1355 >                        if (oldVal != null)
1356 >                            return oldVal;
1357 >                        break;
1358 >                    }
1359 >                }
1360 >                else
1361 >                    tab = (Node<K,V>[])fk;
1362 >            }
1363 >            else {
1364 >                V oldVal = null;
1365 >                synchronized (f) {
1366 >                    if (tabAt(tab, i) == f) {
1367 >                        len = 1;
1368 >                        for (Node<K,V> e = f;; ++len) {
1369 >                            Object ek;
1370 >                            if (e.hash == h &&
1371 >                                ((ek = e.key) == k || k.equals(ek))) {
1372 >                                oldVal = e.val;
1373 >                                if (!onlyIfAbsent)
1374 >                                    e.val = v;
1375 >                                break;
1376 >                            }
1377 >                            Node<K,V> last = e;
1378 >                            if ((e = e.next) == null) {
1379 >                                last.next = new Node<K,V>(h, k, v, null);
1380 >                                if (len > TREE_THRESHOLD)
1381 >                                    replaceWithTreeBin(tab, i, k);
1382 >                                break;
1383 >                            }
1384                          }
1385                      }
1386                  }
1387 +                if (len != 0) {
1388 +                    if (oldVal != null)
1389 +                        return oldVal;
1390 +                    break;
1391 +                }
1392              }
440            int nodeIndex = node.hash & sizeMask; // add the new node
441            node.setNext(newTable[nodeIndex]);
442            newTable[nodeIndex] = node;
443            table = newTable;
1393          }
1394 +        addCount(1L, len);
1395 +        return null;
1396 +    }
1397  
1398 <        /**
1399 <         * Scans for a node containing given key while trying to
1400 <         * acquire lock, creating and returning one if not found. Upon
1401 <         * return, guarantees that lock is held. Unlike in most
1402 <         * methods, calls to method equals are not screened: Since
1403 <         * traversal speed doesn't matter, we might as well help warm
1404 <         * up the associated code and accesses as well.
1405 <         *
1406 <         * @return a new node if key not found, else null
1407 <         */
1408 <        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
1409 <            HashEntry<K,V> first = entryForHash(this, hash);
1410 <            HashEntry<K,V> e = first;
1411 <            HashEntry<K,V> node = null;
1412 <            int retries = -1; // negative while locating node
1413 <            while (!tryLock()) {
1414 <                HashEntry<K,V> f; // to recheck first below
1415 <                if (retries < 0) {
1416 <                    if (e == null) {
1417 <                        if (node == null) // speculatively create node
1418 <                            node = new HashEntry<K,V>(hash, key, value, null);
1419 <                        retries = 0;
1398 >    /** Implementation for computeIfAbsent */
1399 >    private final V internalComputeIfAbsent(K k, Function<? super K, ? extends V> mf) {
1400 >        if (k == null || mf == null)
1401 >            throw new NullPointerException();
1402 >        int h = spread(k.hashCode());
1403 >        V val = null;
1404 >        int len = 0;
1405 >        for (Node<K,V>[] tab = table;;) {
1406 >            Node<K,V> f; int i; Object fk;
1407 >            if (tab == null)
1408 >                tab = initTable();
1409 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1410 >                Node<K,V> node = new Node<K,V>(h, k, null, null);
1411 >                synchronized (node) {
1412 >                    if (casTabAt(tab, i, null, node)) {
1413 >                        len = 1;
1414 >                        try {
1415 >                            if ((val = mf.apply(k)) != null)
1416 >                                node.val = val;
1417 >                        } finally {
1418 >                            if (val == null)
1419 >                                setTabAt(tab, i, null);
1420 >                        }
1421                      }
469                    else if (key.equals(e.key))
470                        retries = 0;
471                    else
472                        e = e.next;
1422                  }
1423 <                else if (++retries > MAX_SCAN_RETRIES) {
475 <                    lock();
1423 >                if (len != 0)
1424                      break;
1425 +            }
1426 +            else if (f.hash < 0) {
1427 +                if ((fk = f.key) instanceof TreeBin) {
1428 +                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1429 +                    long stamp = t.writeLock();
1430 +                    boolean added = false;
1431 +                    try {
1432 +                        if (tabAt(tab, i) == f) {
1433 +                            len = 2;
1434 +                            Class<?> cc = comparableClassFor(k);
1435 +                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1436 +                            if (p != null)
1437 +                                val = p.val;
1438 +                            else if ((val = mf.apply(k)) != null) {
1439 +                                added = true;
1440 +                                t.putTreeNode(h, k, val);
1441 +                            }
1442 +                        }
1443 +                    } finally {
1444 +                        t.unlockWrite(stamp);
1445 +                    }
1446 +                    if (len != 0) {
1447 +                        if (!added)
1448 +                            return val;
1449 +                        break;
1450 +                    }
1451                  }
1452 <                else if ((retries & 1) == 0 &&
1453 <                         (f = entryForHash(this, hash)) != first) {
1454 <                    e = first = f; // re-traverse if entry changed
1455 <                    retries = -1;
1452 >                else
1453 >                    tab = (Node<K,V>[])fk;
1454 >            }
1455 >            else {
1456 >                boolean added = false;
1457 >                synchronized (f) {
1458 >                    if (tabAt(tab, i) == f) {
1459 >                        len = 1;
1460 >                        for (Node<K,V> e = f;; ++len) {
1461 >                            Object ek; V ev;
1462 >                            if (e.hash == h &&
1463 >                                ((ek = e.key) == k || k.equals(ek))) {
1464 >                                val = e.val;
1465 >                                break;
1466 >                            }
1467 >                            Node<K,V> last = e;
1468 >                            if ((e = e.next) == null) {
1469 >                                if ((val = mf.apply(k)) != null) {
1470 >                                    added = true;
1471 >                                    last.next = new Node<K,V>(h, k, val, null);
1472 >                                    if (len > TREE_THRESHOLD)
1473 >                                        replaceWithTreeBin(tab, i, k);
1474 >                                }
1475 >                                break;
1476 >                            }
1477 >                        }
1478 >                    }
1479 >                }
1480 >                if (len != 0) {
1481 >                    if (!added)
1482 >                        return val;
1483 >                    break;
1484                  }
1485              }
484            return node;
1486          }
1487 +        if (val != null)
1488 +            addCount(1L, len);
1489 +        return val;
1490 +    }
1491  
1492 <        /**
1493 <         * Scans for a node containing the given key while trying to
1494 <         * acquire lock for a remove or replace operation. Upon
1495 <         * return, guarantees that lock is held.  Note that we must
1496 <         * lock even if the key is not found, to ensure sequential
1497 <         * consistency of updates.
1498 <         */
1499 <        private void scanAndLock(Object key, int hash) {
1500 <            // similar to but simpler than scanAndLockForPut
1501 <            HashEntry<K,V> first = entryForHash(this, hash);
1502 <            HashEntry<K,V> e = first;
1503 <            int retries = -1;
1504 <            while (!tryLock()) {
1505 <                HashEntry<K,V> f;
1506 <                if (retries < 0) {
1507 <                    if (e == null || key.equals(e.key))
1508 <                        retries = 0;
1509 <                    else
1510 <                        e = e.next;
1492 >    /** Implementation for compute */
1493 >    private final V internalCompute(K k, boolean onlyIfPresent,
1494 >                                    BiFunction<? super K, ? super V, ? extends V> mf) {
1495 >        if (k == null || mf == null)
1496 >            throw new NullPointerException();
1497 >        int h = spread(k.hashCode());
1498 >        V val = null;
1499 >        int delta = 0;
1500 >        int len = 0;
1501 >        for (Node<K,V>[] tab = table;;) {
1502 >            Node<K,V> f; int i, fh; Object fk;
1503 >            if (tab == null)
1504 >                tab = initTable();
1505 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1506 >                if (onlyIfPresent)
1507 >                    break;
1508 >                Node<K,V> node = new Node<K,V>(h, k, null, null);
1509 >                synchronized (node) {
1510 >                    if (casTabAt(tab, i, null, node)) {
1511 >                        try {
1512 >                            len = 1;
1513 >                            if ((val = mf.apply(k, null)) != null) {
1514 >                                node.val = val;
1515 >                                delta = 1;
1516 >                            }
1517 >                        } finally {
1518 >                            if (delta == 0)
1519 >                                setTabAt(tab, i, null);
1520 >                        }
1521 >                    }
1522                  }
1523 <                else if (++retries > MAX_SCAN_RETRIES) {
508 <                    lock();
1523 >                if (len != 0)
1524                      break;
1525 +            }
1526 +            else if ((fh = f.hash) < 0) {
1527 +                if ((fk = f.key) instanceof TreeBin) {
1528 +                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1529 +                    long stamp = t.writeLock();
1530 +                    try {
1531 +                        if (tabAt(tab, i) == f) {
1532 +                            len = 2;
1533 +                            Class<?> cc = comparableClassFor(k);
1534 +                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1535 +                            if (p != null || !onlyIfPresent) {
1536 +                                V pv = (p == null) ? null : p.val;
1537 +                                if ((val = mf.apply(k, pv)) != null) {
1538 +                                    if (p != null)
1539 +                                        p.val = val;
1540 +                                    else {
1541 +                                        delta = 1;
1542 +                                        t.putTreeNode(h, k, val);
1543 +                                    }
1544 +                                }
1545 +                                else if (p != null) {
1546 +                                    delta = -1;
1547 +                                    t.deleteTreeNode(p);
1548 +                                }
1549 +                            }
1550 +                        }
1551 +                    } finally {
1552 +                        t.unlockWrite(stamp);
1553 +                    }
1554 +                    if (len != 0)
1555 +                        break;
1556                  }
1557 <                else if ((retries & 1) == 0 &&
1558 <                         (f = entryForHash(this, hash)) != first) {
1559 <                    e = first = f;
1560 <                    retries = -1;
1557 >                else
1558 >                    tab = (Node<K,V>[])fk;
1559 >            }
1560 >            else {
1561 >                synchronized (f) {
1562 >                    if (tabAt(tab, i) == f) {
1563 >                        len = 1;
1564 >                        for (Node<K,V> e = f, pred = null;; ++len) {
1565 >                            Object ek;
1566 >                            if (e.hash == h &&
1567 >                                ((ek = e.key) == k || k.equals(ek))) {
1568 >                                val = mf.apply(k, e.val);
1569 >                                if (val != null)
1570 >                                    e.val = val;
1571 >                                else {
1572 >                                    delta = -1;
1573 >                                    Node<K,V> en = e.next;
1574 >                                    if (pred != null)
1575 >                                        pred.next = en;
1576 >                                    else
1577 >                                        setTabAt(tab, i, en);
1578 >                                }
1579 >                                break;
1580 >                            }
1581 >                            pred = e;
1582 >                            if ((e = e.next) == null) {
1583 >                                if (!onlyIfPresent &&
1584 >                                    (val = mf.apply(k, null)) != null) {
1585 >                                    pred.next = new Node<K,V>(h, k, val, null);
1586 >                                    delta = 1;
1587 >                                    if (len > TREE_THRESHOLD)
1588 >                                        replaceWithTreeBin(tab, i, k);
1589 >                                }
1590 >                                break;
1591 >                            }
1592 >                        }
1593 >                    }
1594                  }
1595 +                if (len != 0)
1596 +                    break;
1597              }
1598          }
1599 +        if (delta != 0)
1600 +            addCount((long)delta, len);
1601 +        return val;
1602 +    }
1603  
1604 <        /**
1605 <         * Remove; match on key only if value null, else match both.
1606 <         */
1607 <        final V remove(Object key, int hash, Object value) {
1608 <            if (!tryLock())
1609 <                scanAndLock(key, hash);
1610 <            V oldValue = null;
1611 <            try {
1612 <                HashEntry<K,V>[] tab = table;
1613 <                int index = (tab.length - 1) & hash;
1614 <                HashEntry<K,V> e = entryAt(tab, index);
1615 <                HashEntry<K,V> pred = null;
1616 <                while (e != null) {
1617 <                    K k;
1618 <                    HashEntry<K,V> next = e.next;
1619 <                    if ((k = e.key) == key ||
1620 <                        (e.hash == hash && key.equals(k))) {
1621 <                        V v = e.value;
1622 <                        if (value == null || value == v || value.equals(v)) {
1623 <                            if (pred == null)
1624 <                                setEntryAt(tab, index, next);
1625 <                            else
1626 <                                pred.setNext(next);
1627 <                            ++modCount;
1628 <                            --count;
1629 <                            oldValue = v;
1604 >    /** Implementation for merge */
1605 >    private final V internalMerge(K k, V v,
1606 >                                  BiFunction<? super V, ? super V, ? extends V> mf) {
1607 >        if (k == null || v == null || mf == null)
1608 >            throw new NullPointerException();
1609 >        int h = spread(k.hashCode());
1610 >        V val = null;
1611 >        int delta = 0;
1612 >        int len = 0;
1613 >        for (Node<K,V>[] tab = table;;) {
1614 >            int i; Node<K,V> f; Object fk;
1615 >            if (tab == null)
1616 >                tab = initTable();
1617 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1618 >                if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1619 >                    delta = 1;
1620 >                    val = v;
1621 >                    break;
1622 >                }
1623 >            }
1624 >            else if (f.hash < 0) {
1625 >                if ((fk = f.key) instanceof TreeBin) {
1626 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1627 >                    long stamp = t.writeLock();
1628 >                    try {
1629 >                        if (tabAt(tab, i) == f) {
1630 >                            len = 2;
1631 >                            Class<?> cc = comparableClassFor(k);
1632 >                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1633 >                            val = (p == null) ? v : mf.apply(p.val, v);
1634 >                            if (val != null) {
1635 >                                if (p != null)
1636 >                                    p.val = val;
1637 >                                else {
1638 >                                    delta = 1;
1639 >                                    t.putTreeNode(h, k, val);
1640 >                                }
1641 >                            }
1642 >                            else if (p != null) {
1643 >                                delta = -1;
1644 >                                t.deleteTreeNode(p);
1645 >                            }
1646                          }
1647 +                    } finally {
1648 +                        t.unlockWrite(stamp);
1649 +                    }
1650 +                    if (len != 0)
1651                          break;
1652 +                }
1653 +                else
1654 +                    tab = (Node<K,V>[])fk;
1655 +            }
1656 +            else {
1657 +                synchronized (f) {
1658 +                    if (tabAt(tab, i) == f) {
1659 +                        len = 1;
1660 +                        for (Node<K,V> e = f, pred = null;; ++len) {
1661 +                            Object ek;
1662 +                            if (e.hash == h &&
1663 +                                ((ek = e.key) == k || k.equals(ek))) {
1664 +                                val = mf.apply(e.val, v);
1665 +                                if (val != null)
1666 +                                    e.val = val;
1667 +                                else {
1668 +                                    delta = -1;
1669 +                                    Node<K,V> en = e.next;
1670 +                                    if (pred != null)
1671 +                                        pred.next = en;
1672 +                                    else
1673 +                                        setTabAt(tab, i, en);
1674 +                                }
1675 +                                break;
1676 +                            }
1677 +                            pred = e;
1678 +                            if ((e = e.next) == null) {
1679 +                                delta = 1;
1680 +                                val = v;
1681 +                                pred.next = new Node<K,V>(h, k, val, null);
1682 +                                if (len > TREE_THRESHOLD)
1683 +                                    replaceWithTreeBin(tab, i, k);
1684 +                                break;
1685 +                            }
1686 +                        }
1687                      }
548                    pred = e;
549                    e = next;
1688                  }
1689 <            } finally {
1690 <                unlock();
1689 >                if (len != 0)
1690 >                    break;
1691              }
554            return oldValue;
1692          }
1693 +        if (delta != 0)
1694 +            addCount((long)delta, len);
1695 +        return val;
1696 +    }
1697 +
1698 +    /** Implementation for putAll */
1699 +    private final void internalPutAll(Map<? extends K, ? extends V> m) {
1700 +        tryPresize(m.size());
1701 +        long delta = 0L;     // number of uncommitted additions
1702 +        boolean npe = false; // to throw exception on exit for nulls
1703 +        try {                // to clean up counts on other exceptions
1704 +            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1705 +                Object k; V v;
1706 +                if (entry == null || (k = entry.getKey()) == null ||
1707 +                    (v = entry.getValue()) == null) {
1708 +                    npe = true;
1709 +                    break;
1710 +                }
1711 +                int h = spread(k.hashCode());
1712 +                for (Node<K,V>[] tab = table;;) {
1713 +                    int i; Node<K,V> f; int fh; Object fk;
1714 +                    if (tab == null)
1715 +                        tab = initTable();
1716 +                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1717 +                        if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1718 +                            ++delta;
1719 +                            break;
1720 +                        }
1721 +                    }
1722 +                    else if ((fh = f.hash) < 0) {
1723 +                        if ((fk = f.key) instanceof TreeBin) {
1724 +                            TreeBin<K,V> t = (TreeBin<K,V>)fk;
1725 +                            long stamp = t.writeLock();
1726 +                            boolean validated = false;
1727 +                            try {
1728 +                                if (tabAt(tab, i) == f) {
1729 +                                    validated = true;
1730 +                                    Class<?> cc = comparableClassFor(k);
1731 +                                    TreeNode<K,V> p = t.getTreeNode(h, k,
1732 +                                                                    t.root, cc);
1733 +                                    if (p != null)
1734 +                                        p.val = v;
1735 +                                    else {
1736 +                                        ++delta;
1737 +                                        t.putTreeNode(h, k, v);
1738 +                                    }
1739 +                                }
1740 +                            } finally {
1741 +                                t.unlockWrite(stamp);
1742 +                            }
1743 +                            if (validated)
1744 +                                break;
1745 +                        }
1746 +                        else
1747 +                            tab = (Node<K,V>[])fk;
1748 +                    }
1749 +                    else {
1750 +                        int len = 0;
1751 +                        synchronized (f) {
1752 +                            if (tabAt(tab, i) == f) {
1753 +                                len = 1;
1754 +                                for (Node<K,V> e = f;; ++len) {
1755 +                                    Object ek;
1756 +                                    if (e.hash == h &&
1757 +                                        ((ek = e.key) == k || k.equals(ek))) {
1758 +                                        e.val = v;
1759 +                                        break;
1760 +                                    }
1761 +                                    Node<K,V> last = e;
1762 +                                    if ((e = e.next) == null) {
1763 +                                        ++delta;
1764 +                                        last.next = new Node<K,V>(h, k, v, null);
1765 +                                        if (len > TREE_THRESHOLD)
1766 +                                            replaceWithTreeBin(tab, i, k);
1767 +                                        break;
1768 +                                    }
1769 +                                }
1770 +                            }
1771 +                        }
1772 +                        if (len != 0) {
1773 +                            if (len > 1) {
1774 +                                addCount(delta, len);
1775 +                                delta = 0L;
1776 +                            }
1777 +                            break;
1778 +                        }
1779 +                    }
1780 +                }
1781 +            }
1782 +        } finally {
1783 +            if (delta != 0L)
1784 +                addCount(delta, 2);
1785 +        }
1786 +        if (npe)
1787 +            throw new NullPointerException();
1788 +    }
1789  
1790 <        final boolean replace(K key, int hash, V oldValue, V newValue) {
1791 <            if (!tryLock())
1792 <                scanAndLock(key, hash);
1793 <            boolean replaced = false;
1794 <            try {
1795 <                HashEntry<K,V> e;
1796 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1797 <                    K k;
1798 <                    if ((k = e.key) == key ||
1799 <                        (e.hash == hash && key.equals(k))) {
1800 <                        if (oldValue.equals(e.value)) {
1801 <                            e.value = newValue;
1802 <                            ++modCount;
1803 <                            replaced = true;
1790 >    /**
1791 >     * Implementation for clear. Steps through each bin, removing all
1792 >     * nodes.
1793 >     */
1794 >    private final void internalClear() {
1795 >        long delta = 0L; // negative number of deletions
1796 >        int i = 0;
1797 >        Node<K,V>[] tab = table;
1798 >        while (tab != null && i < tab.length) {
1799 >            Node<K,V> f = tabAt(tab, i);
1800 >            if (f == null)
1801 >                ++i;
1802 >            else if (f.hash < 0) {
1803 >                Object fk;
1804 >                if ((fk = f.key) instanceof TreeBin) {
1805 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1806 >                    long stamp = t.writeLock();
1807 >                    try {
1808 >                        if (tabAt(tab, i) == f) {
1809 >                            for (Node<K,V> p = t.first; p != null; p = p.next)
1810 >                                --delta;
1811 >                            t.first = null;
1812 >                            t.root = null;
1813 >                            ++i;
1814                          }
1815 <                        break;
1815 >                    } finally {
1816 >                        t.unlockWrite(stamp);
1817 >                    }
1818 >                }
1819 >                else
1820 >                    tab = (Node<K,V>[])fk;
1821 >            }
1822 >            else {
1823 >                synchronized (f) {
1824 >                    if (tabAt(tab, i) == f) {
1825 >                        for (Node<K,V> e = f; e != null; e = e.next)
1826 >                            --delta;
1827 >                        setTabAt(tab, i, null);
1828 >                        ++i;
1829                      }
1830                  }
575            } finally {
576                unlock();
1831              }
578            return replaced;
1832          }
1833 +        if (delta != 0L)
1834 +            addCount(delta, -1);
1835 +    }
1836  
1837 <        final V replace(K key, int hash, V value) {
1838 <            if (!tryLock())
1839 <                scanAndLock(key, hash);
1840 <            V oldValue = null;
1841 <            try {
1842 <                HashEntry<K,V> e;
1843 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1844 <                    K k;
1845 <                    if ((k = e.key) == key ||
1846 <                        (e.hash == hash && key.equals(k))) {
1847 <                        oldValue = e.value;
1848 <                        e.value = value;
1849 <                        ++modCount;
1837 >    /* ---------------- Table Initialization and Resizing -------------- */
1838 >
1839 >    /**
1840 >     * Returns a power of two table size for the given desired capacity.
1841 >     * See Hackers Delight, sec 3.2
1842 >     */
1843 >    private static final int tableSizeFor(int c) {
1844 >        int n = c - 1;
1845 >        n |= n >>> 1;
1846 >        n |= n >>> 2;
1847 >        n |= n >>> 4;
1848 >        n |= n >>> 8;
1849 >        n |= n >>> 16;
1850 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1851 >    }
1852 >
1853 >    /**
1854 >     * Initializes table, using the size recorded in sizeCtl.
1855 >     */
1856 >    private final Node<K,V>[] initTable() {
1857 >        Node<K,V>[] tab; int sc;
1858 >        while ((tab = table) == null) {
1859 >            if ((sc = sizeCtl) < 0)
1860 >                Thread.yield(); // lost initialization race; just spin
1861 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1862 >                try {
1863 >                    if ((tab = table) == null) {
1864 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1865 >                        table = tab = (Node<K,V>[])new Node[n];
1866 >                        sc = n - (n >>> 2);
1867 >                    }
1868 >                } finally {
1869 >                    sizeCtl = sc;
1870 >                }
1871 >                break;
1872 >            }
1873 >        }
1874 >        return tab;
1875 >    }
1876 >
1877 >    /**
1878 >     * Adds to count, and if table is too small and not already
1879 >     * resizing, initiates transfer. If already resizing, helps
1880 >     * perform transfer if work is available.  Rechecks occupancy
1881 >     * after a transfer to see if another resize is already needed
1882 >     * because resizings are lagging additions.
1883 >     *
1884 >     * @param x the count to add
1885 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1886 >     */
1887 >    private final void addCount(long x, int check) {
1888 >        Cell[] as; long b, s;
1889 >        if ((as = counterCells) != null ||
1890 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1891 >            Cell a; long v; int m;
1892 >            boolean uncontended = true;
1893 >            if (as == null || (m = as.length - 1) < 0 ||
1894 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1895 >                !(uncontended =
1896 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1897 >                fullAddCount(x, uncontended);
1898 >                return;
1899 >            }
1900 >            if (check <= 1)
1901 >                return;
1902 >            s = sumCount();
1903 >        }
1904 >        if (check >= 0) {
1905 >            Node<K,V>[] tab, nt; int sc;
1906 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1907 >                   tab.length < MAXIMUM_CAPACITY) {
1908 >                if (sc < 0) {
1909 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1910 >                        (nt = nextTable) == null)
1911                          break;
1912 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1913 +                        transfer(tab, nt);
1914 +                }
1915 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1916 +                    transfer(tab, null);
1917 +                s = sumCount();
1918 +            }
1919 +        }
1920 +    }
1921 +
1922 +    /**
1923 +     * Tries to presize table to accommodate the given number of elements.
1924 +     *
1925 +     * @param size number of elements (doesn't need to be perfectly accurate)
1926 +     */
1927 +    private final void tryPresize(int size) {
1928 +        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1929 +            tableSizeFor(size + (size >>> 1) + 1);
1930 +        int sc;
1931 +        while ((sc = sizeCtl) >= 0) {
1932 +            Node<K,V>[] tab = table; int n;
1933 +            if (tab == null || (n = tab.length) == 0) {
1934 +                n = (sc > c) ? sc : c;
1935 +                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1936 +                    try {
1937 +                        if (table == tab) {
1938 +                            table = (Node<K,V>[])new Node[n];
1939 +                            sc = n - (n >>> 2);
1940 +                        }
1941 +                    } finally {
1942 +                        sizeCtl = sc;
1943                      }
1944                  }
597            } finally {
598                unlock();
1945              }
1946 <            return oldValue;
1946 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1947 >                break;
1948 >            else if (tab == table &&
1949 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1950 >                transfer(tab, null);
1951          }
1952 +    }
1953  
1954 <        final void clear() {
1955 <            lock();
1954 >    /**
1955 >     * Moves and/or copies the nodes in each bin to new table. See
1956 >     * above for explanation.
1957 >     */
1958 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
1959 >        int n = tab.length, stride;
1960 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1961 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1962 >        if (nextTab == null) {            // initiating
1963              try {
1964 <                HashEntry<K,V>[] tab = table;
1965 <                for (int i = 0; i < tab.length ; i++)
1966 <                    setEntryAt(tab, i, null);
1967 <                ++modCount;
1968 <                count = 0;
1969 <            } finally {
1970 <                unlock();
1964 >                nextTab = (Node<K,V>[])new Node[n << 1];
1965 >            } catch (Throwable ex) {      // try to cope with OOME
1966 >                sizeCtl = Integer.MAX_VALUE;
1967 >                return;
1968 >            }
1969 >            nextTable = nextTab;
1970 >            transferOrigin = n;
1971 >            transferIndex = n;
1972 >            Node<K,V> rev = new Node<K,V>(MOVED, tab, null, null);
1973 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
1974 >                int nextk = (k > stride) ? k - stride : 0;
1975 >                for (int m = nextk; m < k; ++m)
1976 >                    nextTab[m] = rev;
1977 >                for (int m = n + nextk; m < n + k; ++m)
1978 >                    nextTab[m] = rev;
1979 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1980 >            }
1981 >        }
1982 >        int nextn = nextTab.length;
1983 >        Node<K,V> fwd = new Node<K,V>(MOVED, nextTab, null, null);
1984 >        boolean advance = true;
1985 >        for (int i = 0, bound = 0;;) {
1986 >            int nextIndex, nextBound; Node<K,V> f; Object fk;
1987 >            while (advance) {
1988 >                if (--i >= bound)
1989 >                    advance = false;
1990 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
1991 >                    i = -1;
1992 >                    advance = false;
1993 >                }
1994 >                else if (U.compareAndSwapInt
1995 >                         (this, TRANSFERINDEX, nextIndex,
1996 >                          nextBound = (nextIndex > stride ?
1997 >                                       nextIndex - stride : 0))) {
1998 >                    bound = nextBound;
1999 >                    i = nextIndex - 1;
2000 >                    advance = false;
2001 >                }
2002 >            }
2003 >            if (i < 0 || i >= n || i + n >= nextn) {
2004 >                for (int sc;;) {
2005 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2006 >                        if (sc == -1) {
2007 >                            nextTable = null;
2008 >                            table = nextTab;
2009 >                            sizeCtl = (n << 1) - (n >>> 1);
2010 >                        }
2011 >                        return;
2012 >                    }
2013 >                }
2014 >            }
2015 >            else if ((f = tabAt(tab, i)) == null) {
2016 >                if (casTabAt(tab, i, null, fwd)) {
2017 >                    setTabAt(nextTab, i, null);
2018 >                    setTabAt(nextTab, i + n, null);
2019 >                    advance = true;
2020 >                }
2021 >            }
2022 >            else if (f.hash >= 0) {
2023 >                synchronized (f) {
2024 >                    if (tabAt(tab, i) == f) {
2025 >                        int runBit = f.hash & n;
2026 >                        Node<K,V> lastRun = f, lo = null, hi = null;
2027 >                        for (Node<K,V> p = f.next; p != null; p = p.next) {
2028 >                            int b = p.hash & n;
2029 >                            if (b != runBit) {
2030 >                                runBit = b;
2031 >                                lastRun = p;
2032 >                            }
2033 >                        }
2034 >                        if (runBit == 0)
2035 >                            lo = lastRun;
2036 >                        else
2037 >                            hi = lastRun;
2038 >                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
2039 >                            int ph = p.hash; Object pk = p.key; V pv = p.val;
2040 >                            if ((ph & n) == 0)
2041 >                                lo = new Node<K,V>(ph, pk, pv, lo);
2042 >                            else
2043 >                                hi = new Node<K,V>(ph, pk, pv, hi);
2044 >                        }
2045 >                        setTabAt(nextTab, i, lo);
2046 >                        setTabAt(nextTab, i + n, hi);
2047 >                        setTabAt(tab, i, fwd);
2048 >                        advance = true;
2049 >                    }
2050 >                }
2051 >            }
2052 >            else if ((fk = f.key) instanceof TreeBin) {
2053 >                TreeBin<K,V> t = (TreeBin<K,V>)fk;
2054 >                long stamp = t.writeLock();
2055 >                try {
2056 >                    if (tabAt(tab, i) == f) {
2057 >                        TreeNode<K,V> root;
2058 >                        Node<K,V> ln = null, hn = null;
2059 >                        if ((root = t.root) != null) {
2060 >                            Node<K,V> e, p; TreeNode<K,V> lr, rr; int lh;
2061 >                            TreeBin<K,V> lt = null, ht = null;
2062 >                            for (lr = root; lr.left != null; lr = lr.left);
2063 >                            for (rr = root; rr.right != null; rr = rr.right);
2064 >                            if ((lh = lr.hash) == rr.hash) { // move entire tree
2065 >                                if ((lh & n) == 0)
2066 >                                    lt = t;
2067 >                                else
2068 >                                    ht = t;
2069 >                            }
2070 >                            else {
2071 >                                lt = new TreeBin<K,V>();
2072 >                                ht = new TreeBin<K,V>();
2073 >                                int lc = 0, hc = 0;
2074 >                                for (e = t.first; e != null; e = e.next) {
2075 >                                    int h = e.hash;
2076 >                                    Object k = e.key; V v = e.val;
2077 >                                    if ((h & n) == 0) {
2078 >                                        ++lc;
2079 >                                        lt.putTreeNode(h, k, v);
2080 >                                    }
2081 >                                    else {
2082 >                                        ++hc;
2083 >                                        ht.putTreeNode(h, k, v);
2084 >                                    }
2085 >                                }
2086 >                                if (lc < TREE_THRESHOLD) { // throw away
2087 >                                    for (p = lt.first; p != null; p = p.next)
2088 >                                        ln = new Node<K,V>(p.hash, p.key,
2089 >                                                           p.val, ln);
2090 >                                    lt = null;
2091 >                                }
2092 >                                if (hc < TREE_THRESHOLD) {
2093 >                                    for (p = ht.first; p != null; p = p.next)
2094 >                                        hn = new Node<K,V>(p.hash, p.key,
2095 >                                                           p.val, hn);
2096 >                                    ht = null;
2097 >                                }
2098 >                            }
2099 >                            if (ln == null && lt != null)
2100 >                                ln = new Node<K,V>(MOVED, lt, null, null);
2101 >                            if (hn == null && ht != null)
2102 >                                hn = new Node<K,V>(MOVED, ht, null, null);
2103 >                        }
2104 >                        setTabAt(nextTab, i, ln);
2105 >                        setTabAt(nextTab, i + n, hn);
2106 >                        setTabAt(tab, i, fwd);
2107 >                        advance = true;
2108 >                    }
2109 >                } finally {
2110 >                    t.unlockWrite(stamp);
2111 >                }
2112              }
2113 +            else
2114 +                advance = true; // already processed
2115          }
2116      }
2117  
2118 <    // Accessing segments
2119 <
2120 <    /**
2121 <     * Gets the jth element of given segment array (if nonnull) with
2122 <     * volatile element access semantics via Unsafe. (The null check
2123 <     * can trigger harmlessly only during deserialization.) Note:
2124 <     * because each element of segments array is set only once (using
2125 <     * fully ordered writes), some performance-sensitive methods rely
2126 <     * on this method only as a recheck upon null reads.
2127 <     */
2128 <    @SuppressWarnings("unchecked")
2129 <    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
629 <        long u = (j << SSHIFT) + SBASE;
630 <        return ss == null ? null :
631 <            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
2118 >    /* ---------------- Counter support -------------- */
2119 >
2120 >    final long sumCount() {
2121 >        Cell[] as = counterCells; Cell a;
2122 >        long sum = baseCount;
2123 >        if (as != null) {
2124 >            for (int i = 0; i < as.length; ++i) {
2125 >                if ((a = as[i]) != null)
2126 >                    sum += a.value;
2127 >            }
2128 >        }
2129 >        return sum;
2130      }
2131  
2132 <    /**
2133 <     * Returns the segment for the given index, creating it and
2134 <     * recording in segment table (via CAS) if not already present.
2135 <     *
2136 <     * @param k the index
2137 <     * @return the segment
2138 <     */
2139 <    @SuppressWarnings("unchecked")
2140 <    private Segment<K,V> ensureSegment(int k) {
2141 <        final Segment<K,V>[] ss = this.segments;
2142 <        long u = (k << SSHIFT) + SBASE; // raw offset
2143 <        Segment<K,V> seg;
2144 <        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
2145 <            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
2146 <            int cap = proto.table.length;
2147 <            float lf = proto.loadFactor;
2148 <            int threshold = (int)(cap * lf);
2149 <            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry<?,?>[cap];
2150 <            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
2151 <                == null) { // recheck
2152 <                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
2153 <                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
2154 <                       == null) {
2155 <                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
2156 <                        break;
2132 >    // See LongAdder version for explanation
2133 >    private final void fullAddCount(long x, boolean wasUncontended) {
2134 >        int h;
2135 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2136 >            ThreadLocalRandom.localInit();      // force initialization
2137 >            h = ThreadLocalRandom.getProbe();
2138 >            wasUncontended = true;
2139 >        }
2140 >        boolean collide = false;                // True if last slot nonempty
2141 >        for (;;) {
2142 >            Cell[] as; Cell a; int n; long v;
2143 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2144 >                if ((a = as[(n - 1) & h]) == null) {
2145 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2146 >                        Cell r = new Cell(x); // Optimistic create
2147 >                        if (cellsBusy == 0 &&
2148 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2149 >                            boolean created = false;
2150 >                            try {               // Recheck under lock
2151 >                                Cell[] rs; int m, j;
2152 >                                if ((rs = counterCells) != null &&
2153 >                                    (m = rs.length) > 0 &&
2154 >                                    rs[j = (m - 1) & h] == null) {
2155 >                                    rs[j] = r;
2156 >                                    created = true;
2157 >                                }
2158 >                            } finally {
2159 >                                cellsBusy = 0;
2160 >                            }
2161 >                            if (created)
2162 >                                break;
2163 >                            continue;           // Slot is now non-empty
2164 >                        }
2165 >                    }
2166 >                    collide = false;
2167 >                }
2168 >                else if (!wasUncontended)       // CAS already known to fail
2169 >                    wasUncontended = true;      // Continue after rehash
2170 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2171 >                    break;
2172 >                else if (counterCells != as || n >= NCPU)
2173 >                    collide = false;            // At max size or stale
2174 >                else if (!collide)
2175 >                    collide = true;
2176 >                else if (cellsBusy == 0 &&
2177 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2178 >                    try {
2179 >                        if (counterCells == as) {// Expand table unless stale
2180 >                            Cell[] rs = new Cell[n << 1];
2181 >                            for (int i = 0; i < n; ++i)
2182 >                                rs[i] = as[i];
2183 >                            counterCells = rs;
2184 >                        }
2185 >                    } finally {
2186 >                        cellsBusy = 0;
2187 >                    }
2188 >                    collide = false;
2189 >                    continue;                   // Retry with expanded table
2190 >                }
2191 >                h = ThreadLocalRandom.advanceProbe(h);
2192 >            }
2193 >            else if (cellsBusy == 0 && counterCells == as &&
2194 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2195 >                boolean init = false;
2196 >                try {                           // Initialize table
2197 >                    if (counterCells == as) {
2198 >                        Cell[] rs = new Cell[2];
2199 >                        rs[h & 1] = new Cell(x);
2200 >                        counterCells = rs;
2201 >                        init = true;
2202 >                    }
2203 >                } finally {
2204 >                    cellsBusy = 0;
2205                  }
2206 +                if (init)
2207 +                    break;
2208              }
2209 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2210 +                break;                          // Fall back on using base
2211          }
662        return seg;
2212      }
2213  
2214 <    // Hash-based segment and entry accesses
2214 >    /* ----------------Table Traversal -------------- */
2215  
2216      /**
2217 <     * Gets the segment for the given hash code.
2218 <     */
2219 <    @SuppressWarnings("unchecked")
2220 <    private Segment<K,V> segmentForHash(int h) {
2221 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
2222 <        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
2217 >     * Encapsulates traversal for methods such as containsValue; also
2218 >     * serves as a base class for other iterators and spliterators.
2219 >     *
2220 >     * Method advance visits once each still-valid node that was
2221 >     * reachable upon iterator construction. It might miss some that
2222 >     * were added to a bin after the bin was visited, which is OK wrt
2223 >     * consistency guarantees. Maintaining this property in the face
2224 >     * of possible ongoing resizes requires a fair amount of
2225 >     * bookkeeping state that is difficult to optimize away amidst
2226 >     * volatile accesses.  Even so, traversal maintains reasonable
2227 >     * throughput.
2228 >     *
2229 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2230 >     * However, if the table has been resized, then all future steps
2231 >     * must traverse both the bin at the current index as well as at
2232 >     * (index + baseSize); and so on for further resizings. To
2233 >     * paranoically cope with potential sharing by users of iterators
2234 >     * across threads, iteration terminates if a bounds checks fails
2235 >     * for a table read.
2236 >     */
2237 >    static class Traverser<K,V> {
2238 >        Node<K,V>[] tab;        // current table; updated if resized
2239 >        Node<K,V> next;         // the next entry to use
2240 >        int index;              // index of bin to use next
2241 >        int baseIndex;          // current index of initial table
2242 >        int baseLimit;          // index bound for initial table
2243 >        final int baseSize;     // initial table size
2244 >
2245 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
2246 >            this.tab = tab;
2247 >            this.baseSize = size;
2248 >            this.baseIndex = this.index = index;
2249 >            this.baseLimit = limit;
2250 >            this.next = null;
2251 >        }
2252 >
2253 >        /**
2254 >         * Advances if possible, returning next valid node, or null if none.
2255 >         */
2256 >        final Node<K,V> advance() {
2257 >            Node<K,V> e;
2258 >            if ((e = next) != null)
2259 >                e = e.next;
2260 >            for (;;) {
2261 >                Node<K,V>[] t; int i, n; Object ek;  // must use locals in checks
2262 >                if (e != null)
2263 >                    return next = e;
2264 >                if (baseIndex >= baseLimit || (t = tab) == null ||
2265 >                    (n = t.length) <= (i = index) || i < 0)
2266 >                    return next = null;
2267 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
2268 >                    if ((ek = e.key) instanceof TreeBin)
2269 >                        e = ((TreeBin<K,V>)ek).first;
2270 >                    else {
2271 >                        tab = (Node<K,V>[])ek;
2272 >                        e = null;
2273 >                        continue;
2274 >                    }
2275 >                }
2276 >                if ((index += baseSize) >= n)
2277 >                    index = ++baseIndex;    // visit upper slots if present
2278 >            }
2279 >        }
2280      }
2281  
2282      /**
2283 <     * Gets the table entry for the given segment and hash code.
2283 >     * Base of key, value, and entry Iterators. Adds fields to
2284 >     * Traverser to support iterator.remove
2285       */
2286 <    @SuppressWarnings("unchecked")
2287 <    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
2288 <        HashEntry<K,V>[] tab;
2289 <        return (seg == null || (tab = seg.table) == null) ? null :
2290 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
2291 <            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
2286 >    static class BaseIterator<K,V> extends Traverser<K,V> {
2287 >        final ConcurrentHashMap<K,V> map;
2288 >        Node<K,V> lastReturned;
2289 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
2290 >                    ConcurrentHashMap<K,V> map) {
2291 >            super(tab, size, index, limit);
2292 >            this.map = map;
2293 >            advance();
2294 >        }
2295 >
2296 >        public final boolean hasNext() { return next != null; }
2297 >        public final boolean hasMoreElements() { return next != null; }
2298 >
2299 >        public final void remove() {
2300 >            Node<K,V> p;
2301 >            if ((p = lastReturned) == null)
2302 >                throw new IllegalStateException();
2303 >            lastReturned = null;
2304 >            map.internalReplace((K)p.key, null, null);
2305 >        }
2306 >    }
2307 >
2308 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
2309 >        implements Iterator<K>, Enumeration<K> {
2310 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
2311 >                    ConcurrentHashMap<K,V> map) {
2312 >            super(tab, index, size, limit, map);
2313 >        }
2314 >
2315 >        public final K next() {
2316 >            Node<K,V> p;
2317 >            if ((p = next) == null)
2318 >                throw new NoSuchElementException();
2319 >            K k = (K)p.key;
2320 >            lastReturned = p;
2321 >            advance();
2322 >            return k;
2323 >        }
2324 >
2325 >        public final K nextElement() { return next(); }
2326 >    }
2327 >
2328 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
2329 >        implements Iterator<V>, Enumeration<V> {
2330 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
2331 >                      ConcurrentHashMap<K,V> map) {
2332 >            super(tab, index, size, limit, map);
2333 >        }
2334 >
2335 >        public final V next() {
2336 >            Node<K,V> p;
2337 >            if ((p = next) == null)
2338 >                throw new NoSuchElementException();
2339 >            V v = p.val;
2340 >            lastReturned = p;
2341 >            advance();
2342 >            return v;
2343 >        }
2344 >
2345 >        public final V nextElement() { return next(); }
2346 >    }
2347 >
2348 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
2349 >        implements Iterator<Map.Entry<K,V>> {
2350 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
2351 >                      ConcurrentHashMap<K,V> map) {
2352 >            super(tab, index, size, limit, map);
2353 >        }
2354 >
2355 >        public final Map.Entry<K,V> next() {
2356 >            Node<K,V> p;
2357 >            if ((p = next) == null)
2358 >                throw new NoSuchElementException();
2359 >            K k = (K)p.key;
2360 >            V v = p.val;
2361 >            lastReturned = p;
2362 >            advance();
2363 >            return new MapEntry<K,V>(k, v, map);
2364 >        }
2365 >    }
2366 >
2367 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
2368 >        implements Spliterator<K> {
2369 >        long est;               // size estimate
2370 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2371 >                       long est) {
2372 >            super(tab, size, index, limit);
2373 >            this.est = est;
2374 >        }
2375 >
2376 >        public Spliterator<K> trySplit() {
2377 >            int i, f, h;
2378 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2379 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
2380 >                                        f, est >>>= 1);
2381 >        }
2382 >
2383 >        public void forEachRemaining(Consumer<? super K> action) {
2384 >            if (action == null) throw new NullPointerException();
2385 >            for (Node<K,V> p; (p = advance()) != null;)
2386 >                action.accept((K)p.key);
2387 >        }
2388 >
2389 >        public boolean tryAdvance(Consumer<? super K> action) {
2390 >            if (action == null) throw new NullPointerException();
2391 >            Node<K,V> p;
2392 >            if ((p = advance()) == null)
2393 >                return false;
2394 >            action.accept((K)p.key);
2395 >            return true;
2396 >        }
2397 >
2398 >        public long estimateSize() { return est; }
2399 >
2400 >        public int characteristics() {
2401 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2402 >                Spliterator.NONNULL;
2403 >        }
2404 >    }
2405 >
2406 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
2407 >        implements Spliterator<V> {
2408 >        long est;               // size estimate
2409 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
2410 >                         long est) {
2411 >            super(tab, size, index, limit);
2412 >            this.est = est;
2413 >        }
2414 >
2415 >        public Spliterator<V> trySplit() {
2416 >            int i, f, h;
2417 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2418 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
2419 >                                          f, est >>>= 1);
2420 >        }
2421 >
2422 >        public void forEachRemaining(Consumer<? super V> action) {
2423 >            if (action == null) throw new NullPointerException();
2424 >            for (Node<K,V> p; (p = advance()) != null;)
2425 >                action.accept(p.val);
2426 >        }
2427 >
2428 >        public boolean tryAdvance(Consumer<? super V> action) {
2429 >            if (action == null) throw new NullPointerException();
2430 >            Node<K,V> p;
2431 >            if ((p = advance()) == null)
2432 >                return false;
2433 >            action.accept(p.val);
2434 >            return true;
2435 >        }
2436 >
2437 >        public long estimateSize() { return est; }
2438 >
2439 >        public int characteristics() {
2440 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
2441 >        }
2442      }
2443  
2444 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
2445 +        implements Spliterator<Map.Entry<K,V>> {
2446 +        final ConcurrentHashMap<K,V> map; // To export MapEntry
2447 +        long est;               // size estimate
2448 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2449 +                         long est, ConcurrentHashMap<K,V> map) {
2450 +            super(tab, size, index, limit);
2451 +            this.map = map;
2452 +            this.est = est;
2453 +        }
2454 +
2455 +        public Spliterator<Map.Entry<K,V>> trySplit() {
2456 +            int i, f, h;
2457 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2458 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
2459 +                                          f, est >>>= 1, map);
2460 +        }
2461 +
2462 +        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
2463 +            if (action == null) throw new NullPointerException();
2464 +            for (Node<K,V> p; (p = advance()) != null; )
2465 +                action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2466 +        }
2467 +
2468 +        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
2469 +            if (action == null) throw new NullPointerException();
2470 +            Node<K,V> p;
2471 +            if ((p = advance()) == null)
2472 +                return false;
2473 +            action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2474 +            return true;
2475 +        }
2476 +
2477 +        public long estimateSize() { return est; }
2478 +
2479 +        public int characteristics() {
2480 +            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2481 +                Spliterator.NONNULL;
2482 +        }
2483 +    }
2484 +
2485 +
2486      /* ---------------- Public operations -------------- */
2487  
2488      /**
2489 <     * Creates a new, empty map with the specified initial
691 <     * capacity, load factor and concurrency level.
692 <     *
693 <     * @param initialCapacity the initial capacity. The implementation
694 <     * performs internal sizing to accommodate this many elements.
695 <     * @param loadFactor  the load factor threshold, used to control resizing.
696 <     * Resizing may be performed when the average number of elements per
697 <     * bin exceeds this threshold.
698 <     * @param concurrencyLevel the estimated number of concurrently
699 <     * updating threads. The implementation performs internal sizing
700 <     * to try to accommodate this many threads.
701 <     * @throws IllegalArgumentException if the initial capacity is
702 <     * negative or the load factor or concurrencyLevel are
703 <     * nonpositive.
2489 >     * Creates a new, empty map with the default initial table size (16).
2490       */
2491 <    @SuppressWarnings("unchecked")
706 <    public ConcurrentHashMap(int initialCapacity,
707 <                             float loadFactor, int concurrencyLevel) {
708 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
709 <            throw new IllegalArgumentException();
710 <        if (concurrencyLevel > MAX_SEGMENTS)
711 <            concurrencyLevel = MAX_SEGMENTS;
712 <        // Find power-of-two sizes best matching arguments
713 <        int sshift = 0;
714 <        int ssize = 1;
715 <        while (ssize < concurrencyLevel) {
716 <            ++sshift;
717 <            ssize <<= 1;
718 <        }
719 <        this.segmentShift = 32 - sshift;
720 <        this.segmentMask = ssize - 1;
721 <        if (initialCapacity > MAXIMUM_CAPACITY)
722 <            initialCapacity = MAXIMUM_CAPACITY;
723 <        int c = initialCapacity / ssize;
724 <        if (c * ssize < initialCapacity)
725 <            ++c;
726 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
727 <        while (cap < c)
728 <            cap <<= 1;
729 <        // create segments and segments[0]
730 <        Segment<K,V> s0 =
731 <            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
732 <                             (HashEntry<K,V>[])new HashEntry<?,?>[cap]);
733 <        Segment<K,V>[] ss = (Segment<K,V>[])new Segment<?,?>[ssize];
734 <        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
735 <        this.segments = ss;
2491 >    public ConcurrentHashMap() {
2492      }
2493  
2494      /**
2495 <     * Creates a new, empty map with the specified initial capacity
2496 <     * and load factor and with the default concurrencyLevel (16).
2495 >     * Creates a new, empty map with an initial table size
2496 >     * accommodating the specified number of elements without the need
2497 >     * to dynamically resize.
2498       *
2499       * @param initialCapacity The implementation performs internal
2500       * sizing to accommodate this many elements.
2501 <     * @param loadFactor  the load factor threshold, used to control resizing.
2502 <     * Resizing may be performed when the average number of elements per
2503 <     * bin exceeds this threshold.
2501 >     * @throws IllegalArgumentException if the initial capacity of
2502 >     * elements is negative
2503 >     */
2504 >    public ConcurrentHashMap(int initialCapacity) {
2505 >        if (initialCapacity < 0)
2506 >            throw new IllegalArgumentException();
2507 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2508 >                   MAXIMUM_CAPACITY :
2509 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2510 >        this.sizeCtl = cap;
2511 >    }
2512 >
2513 >    /**
2514 >     * Creates a new map with the same mappings as the given map.
2515 >     *
2516 >     * @param m the map
2517 >     */
2518 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2519 >        this.sizeCtl = DEFAULT_CAPACITY;
2520 >        internalPutAll(m);
2521 >    }
2522 >
2523 >    /**
2524 >     * Creates a new, empty map with an initial table size based on
2525 >     * the given number of elements ({@code initialCapacity}) and
2526 >     * initial table density ({@code loadFactor}).
2527 >     *
2528 >     * @param initialCapacity the initial capacity. The implementation
2529 >     * performs internal sizing to accommodate this many elements,
2530 >     * given the specified load factor.
2531 >     * @param loadFactor the load factor (table density) for
2532 >     * establishing the initial table size
2533       * @throws IllegalArgumentException if the initial capacity of
2534       * elements is negative or the load factor is nonpositive
2535       *
2536       * @since 1.6
2537       */
2538      public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2539 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2539 >        this(initialCapacity, loadFactor, 1);
2540      }
2541  
2542      /**
2543 <     * Creates a new, empty map with the specified initial capacity,
2544 <     * and with default load factor (0.75) and concurrencyLevel (16).
2543 >     * Creates a new, empty map with an initial table size based on
2544 >     * the given number of elements ({@code initialCapacity}), table
2545 >     * density ({@code loadFactor}), and number of concurrently
2546 >     * updating threads ({@code concurrencyLevel}).
2547       *
2548       * @param initialCapacity the initial capacity. The implementation
2549 <     * performs internal sizing to accommodate this many elements.
2550 <     * @throws IllegalArgumentException if the initial capacity of
2551 <     * elements is negative.
2549 >     * performs internal sizing to accommodate this many elements,
2550 >     * given the specified load factor.
2551 >     * @param loadFactor the load factor (table density) for
2552 >     * establishing the initial table size
2553 >     * @param concurrencyLevel the estimated number of concurrently
2554 >     * updating threads. The implementation may use this value as
2555 >     * a sizing hint.
2556 >     * @throws IllegalArgumentException if the initial capacity is
2557 >     * negative or the load factor or concurrencyLevel are
2558 >     * nonpositive
2559       */
2560 <    public ConcurrentHashMap(int initialCapacity) {
2561 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2560 >    public ConcurrentHashMap(int initialCapacity,
2561 >                             float loadFactor, int concurrencyLevel) {
2562 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2563 >            throw new IllegalArgumentException();
2564 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2565 >            initialCapacity = concurrencyLevel;   // as estimated threads
2566 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2567 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2568 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2569 >        this.sizeCtl = cap;
2570      }
2571  
2572      /**
2573 <     * Creates a new, empty map with a default initial capacity (16),
2574 <     * load factor (0.75) and concurrencyLevel (16).
2573 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2574 >     * from the given type to {@code Boolean.TRUE}.
2575 >     *
2576 >     * @return the new set
2577       */
2578 <    public ConcurrentHashMap() {
2579 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2578 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2579 >        return new KeySetView<K,Boolean>
2580 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2581      }
2582  
2583      /**
2584 <     * Creates a new map with the same mappings as the given map.
2585 <     * The map is created with a capacity of 1.5 times the number
780 <     * of mappings in the given map or 16 (whichever is greater),
781 <     * and a default load factor (0.75) and concurrencyLevel (16).
2584 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2585 >     * from the given type to {@code Boolean.TRUE}.
2586       *
2587 <     * @param m the map
2587 >     * @param initialCapacity The implementation performs internal
2588 >     * sizing to accommodate this many elements.
2589 >     * @throws IllegalArgumentException if the initial capacity of
2590 >     * elements is negative
2591 >     * @return the new set
2592       */
2593 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2594 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
2595 <                      DEFAULT_INITIAL_CAPACITY),
788 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
789 <        putAll(m);
2593 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2594 >        return new KeySetView<K,Boolean>
2595 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2596      }
2597  
2598      /**
2599 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
794 <     *
795 <     * @return <tt>true</tt> if this map contains no key-value mappings
2599 >     * {@inheritDoc}
2600       */
2601      public boolean isEmpty() {
2602 <        /*
799 <         * Sum per-segment modCounts to avoid mis-reporting when
800 <         * elements are concurrently added and removed in one segment
801 <         * while checking another, in which case the table was never
802 <         * actually empty at any point. (The sum ensures accuracy up
803 <         * through at least 1<<31 per-segment modifications before
804 <         * recheck.)  Methods size() and containsValue() use similar
805 <         * constructions for stability checks.
806 <         */
807 <        long sum = 0L;
808 <        final Segment<K,V>[] segments = this.segments;
809 <        for (int j = 0; j < segments.length; ++j) {
810 <            Segment<K,V> seg = segmentAt(segments, j);
811 <            if (seg != null) {
812 <                if (seg.count != 0)
813 <                    return false;
814 <                sum += seg.modCount;
815 <            }
816 <        }
817 <        if (sum != 0L) { // recheck unless no modifications
818 <            for (int j = 0; j < segments.length; ++j) {
819 <                Segment<K,V> seg = segmentAt(segments, j);
820 <                if (seg != null) {
821 <                    if (seg.count != 0)
822 <                        return false;
823 <                    sum -= seg.modCount;
824 <                }
825 <            }
826 <            if (sum != 0L)
827 <                return false;
828 <        }
829 <        return true;
2602 >        return sumCount() <= 0L; // ignore transient negative values
2603      }
2604  
2605      /**
2606 <     * Returns the number of key-value mappings in this map.  If the
834 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
835 <     * <tt>Integer.MAX_VALUE</tt>.
836 <     *
837 <     * @return the number of key-value mappings in this map
2606 >     * {@inheritDoc}
2607       */
2608      public int size() {
2609 <        // Try a few times to get accurate count. On failure due to
2610 <        // continuous async changes in table, resort to locking.
2611 <        final Segment<K,V>[] segments = this.segments;
2612 <        final int segmentCount = segments.length;
2613 <
845 <        long previousSum = 0L;
846 <        for (int retries = -1; retries < RETRIES_BEFORE_LOCK; retries++) {
847 <            long sum = 0L;    // sum of modCounts
848 <            long size = 0L;
849 <            for (int i = 0; i < segmentCount; i++) {
850 <                Segment<K,V> segment = segmentAt(segments, i);
851 <                if (segment != null) {
852 <                    sum += segment.modCount;
853 <                    size += segment.count;
854 <                }
855 <            }
856 <            if (sum == previousSum)
857 <                return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
858 <            previousSum = sum;
859 <        }
2609 >        long n = sumCount();
2610 >        return ((n < 0L) ? 0 :
2611 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2612 >                (int)n);
2613 >    }
2614  
2615 <        long size = 0L;
2616 <        for (int i = 0; i < segmentCount; i++) {
2617 <            Segment<K,V> segment = ensureSegment(i);
2618 <            segment.lock();
2619 <            size += segment.count;
2620 <        }
2621 <        for (int i = 0; i < segmentCount; i++)
2622 <            segments[i].unlock();
2623 <        return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
2615 >    /**
2616 >     * Returns the number of mappings. This method should be used
2617 >     * instead of {@link #size} because a ConcurrentHashMap may
2618 >     * contain more mappings than can be represented as an int. The
2619 >     * value returned is an estimate; the actual count may differ if
2620 >     * there are concurrent insertions or removals.
2621 >     *
2622 >     * @return the number of mappings
2623 >     */
2624 >    public long mappingCount() {
2625 >        long n = sumCount();
2626 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2627      }
2628  
2629      /**
# Line 881 | Line 2638 | public class ConcurrentHashMap<K, V> ext
2638       * @throws NullPointerException if the specified key is null
2639       */
2640      public V get(Object key) {
2641 <        Segment<K,V> s; // manually integrate access methods to reduce overhead
2642 <        HashEntry<K,V>[] tab;
2643 <        int h = hash(key.hashCode());
2644 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
2645 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
2646 <            (tab = s.table) != null) {
2647 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
2648 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
2649 <                 e != null; e = e.next) {
2650 <                K k;
2651 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
2652 <                    return e.value;
2653 <            }
2654 <        }
2655 <        return null;
2641 >        return internalGet(key);
2642 >    }
2643 >
2644 >    /**
2645 >     * Returns the value to which the specified key is mapped, or the
2646 >     * given default value if this map contains no mapping for the
2647 >     * key.
2648 >     *
2649 >     * @param key the key whose associated value is to be returned
2650 >     * @param defaultValue the value to return if this map contains
2651 >     * no mapping for the given key
2652 >     * @return the mapping for the key, if present; else the default value
2653 >     * @throws NullPointerException if the specified key is null
2654 >     */
2655 >    public V getOrDefault(Object key, V defaultValue) {
2656 >        V v;
2657 >        return (v = internalGet(key)) == null ? defaultValue : v;
2658      }
2659  
2660      /**
2661       * Tests if the specified object is a key in this table.
2662       *
2663 <     * @param  key   possible key
2664 <     * @return <tt>true</tt> if and only if the specified object
2663 >     * @param  key possible key
2664 >     * @return {@code true} if and only if the specified object
2665       *         is a key in this table, as determined by the
2666 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
2666 >     *         {@code equals} method; {@code false} otherwise
2667       * @throws NullPointerException if the specified key is null
2668       */
910    @SuppressWarnings("unchecked")
2669      public boolean containsKey(Object key) {
2670 <        Segment<K,V> s; // same as get() except no need for volatile value read
913 <        HashEntry<K,V>[] tab;
914 <        int h = hash(key.hashCode());
915 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
916 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
917 <            (tab = s.table) != null) {
918 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
919 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
920 <                 e != null; e = e.next) {
921 <                K k;
922 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
923 <                    return true;
924 <            }
925 <        }
926 <        return false;
2670 >        return internalGet(key) != null;
2671      }
2672  
2673      /**
2674 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2675 <     * specified value. Note: This method requires a full internal
2676 <     * traversal of the hash table, and so is much slower than
933 <     * method <tt>containsKey</tt>.
2674 >     * Returns {@code true} if this map maps one or more keys to the
2675 >     * specified value. Note: This method may require a full traversal
2676 >     * of the map, and is much slower than method {@code containsKey}.
2677       *
2678       * @param value value whose presence in this map is to be tested
2679 <     * @return <tt>true</tt> if this map maps one or more keys to the
2679 >     * @return {@code true} if this map maps one or more keys to the
2680       *         specified value
2681       * @throws NullPointerException if the specified value is null
2682       */
2683      public boolean containsValue(Object value) {
941        // Same idea as size()
2684          if (value == null)
2685              throw new NullPointerException();
2686 <        final Segment<K,V>[] segments = this.segments;
2687 <        long previousSum = 0L;
2688 <        int lockCount = 0;
2689 <        try {
2690 <            for (int retries = -1; ; retries++) {
2691 <                long sum = 0L;    // sum of modCounts
2692 <                for (int j = 0; j < segments.length; j++) {
951 <                    Segment<K,V> segment;
952 <                    if (retries == RETRIES_BEFORE_LOCK) {
953 <                        segment = ensureSegment(j);
954 <                        segment.lock();
955 <                        lockCount++;
956 <                    } else {
957 <                        segment = segmentAt(segments, j);
958 <                        if (segment == null)
959 <                            continue;
960 <                    }
961 <                    HashEntry<K,V>[] tab = segment.table;
962 <                    if (tab != null) {
963 <                        for (int i = 0 ; i < tab.length; i++) {
964 <                            HashEntry<K,V> e;
965 <                            for (e = entryAt(tab, i); e != null; e = e.next) {
966 <                                V v = e.value;
967 <                                if (v != null && value.equals(v))
968 <                                    return true;
969 <                            }
970 <                        }
971 <                        sum += segment.modCount;
972 <                    }
973 <                }
974 <                if ((retries >= 0 && sum == previousSum) || lockCount > 0)
975 <                    return false;
976 <                previousSum = sum;
2686 >        Node<K,V>[] t;
2687 >        if ((t = table) != null) {
2688 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2689 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
2690 >                V v;
2691 >                if ((v = p.val) == value || value.equals(v))
2692 >                    return true;
2693              }
978        } finally {
979            for (int j = 0; j < lockCount; j++)
980                segments[j].unlock();
2694          }
2695 +        return false;
2696      }
2697  
2698      /**
2699       * Legacy method testing if some key maps into the specified value
2700       * in this table.  This method is identical in functionality to
2701 <     * {@link #containsValue}, and exists solely to ensure
2701 >     * {@link #containsValue(Object)}, and exists solely to ensure
2702       * full compatibility with class {@link java.util.Hashtable},
2703       * which supported this method prior to introduction of the
2704       * Java Collections framework.
2705       *
2706       * @param  value a value to search for
2707 <     * @return <tt>true</tt> if and only if some key maps to the
2708 <     *         <tt>value</tt> argument in this table as
2709 <     *         determined by the <tt>equals</tt> method;
2710 <     *         <tt>false</tt> otherwise
2707 >     * @return {@code true} if and only if some key maps to the
2708 >     *         {@code value} argument in this table as
2709 >     *         determined by the {@code equals} method;
2710 >     *         {@code false} otherwise
2711       * @throws NullPointerException if the specified value is null
2712       */
2713 <    public boolean contains(Object value) {
2713 >    @Deprecated public boolean contains(Object value) {
2714          return containsValue(value);
2715      }
2716  
# Line 1004 | Line 2718 | public class ConcurrentHashMap<K, V> ext
2718       * Maps the specified key to the specified value in this table.
2719       * Neither the key nor the value can be null.
2720       *
2721 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2721 >     * <p>The value can be retrieved by calling the {@code get} method
2722       * with a key that is equal to the original key.
2723       *
2724       * @param key key with which the specified value is to be associated
2725       * @param value value to be associated with the specified key
2726 <     * @return the previous value associated with <tt>key</tt>, or
2727 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2726 >     * @return the previous value associated with {@code key}, or
2727 >     *         {@code null} if there was no mapping for {@code key}
2728       * @throws NullPointerException if the specified key or value is null
2729       */
1016    @SuppressWarnings("unchecked")
2730      public V put(K key, V value) {
2731 <        Segment<K,V> s;
1019 <        if (value == null)
1020 <            throw new NullPointerException();
1021 <        int hash = hash(key.hashCode());
1022 <        int j = (hash >>> segmentShift) & segmentMask;
1023 <        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1024 <             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1025 <            s = ensureSegment(j);
1026 <        return s.put(key, hash, value, false);
2731 >        return internalPut(key, value, false);
2732      }
2733  
2734      /**
2735       * {@inheritDoc}
2736       *
2737       * @return the previous value associated with the specified key,
2738 <     *         or <tt>null</tt> if there was no mapping for the key
2738 >     *         or {@code null} if there was no mapping for the key
2739       * @throws NullPointerException if the specified key or value is null
2740       */
1036    @SuppressWarnings("unchecked")
2741      public V putIfAbsent(K key, V value) {
2742 <        Segment<K,V> s;
1039 <        if (value == null)
1040 <            throw new NullPointerException();
1041 <        int hash = hash(key.hashCode());
1042 <        int j = (hash >>> segmentShift) & segmentMask;
1043 <        if ((s = (Segment<K,V>)UNSAFE.getObject
1044 <             (segments, (j << SSHIFT) + SBASE)) == null)
1045 <            s = ensureSegment(j);
1046 <        return s.put(key, hash, value, true);
2742 >        return internalPut(key, value, true);
2743      }
2744  
2745      /**
# Line 1054 | Line 2750 | public class ConcurrentHashMap<K, V> ext
2750       * @param m mappings to be stored in this map
2751       */
2752      public void putAll(Map<? extends K, ? extends V> m) {
2753 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2754 <            put(e.getKey(), e.getValue());
2753 >        internalPutAll(m);
2754 >    }
2755 >
2756 >    /**
2757 >     * If the specified key is not already associated with a value,
2758 >     * attempts to compute its value using the given mapping function
2759 >     * and enters it into this map unless {@code null}.  The entire
2760 >     * method invocation is performed atomically, so the function is
2761 >     * applied at most once per key.  Some attempted update operations
2762 >     * on this map by other threads may be blocked while computation
2763 >     * is in progress, so the computation should be short and simple,
2764 >     * and must not attempt to update any other mappings of this map.
2765 >     *
2766 >     * @param key key with which the specified value is to be associated
2767 >     * @param mappingFunction the function to compute a value
2768 >     * @return the current (existing or computed) value associated with
2769 >     *         the specified key, or null if the computed value is null
2770 >     * @throws NullPointerException if the specified key or mappingFunction
2771 >     *         is null
2772 >     * @throws IllegalStateException if the computation detectably
2773 >     *         attempts a recursive update to this map that would
2774 >     *         otherwise never complete
2775 >     * @throws RuntimeException or Error if the mappingFunction does so,
2776 >     *         in which case the mapping is left unestablished
2777 >     */
2778 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
2779 >        return internalComputeIfAbsent(key, mappingFunction);
2780 >    }
2781 >
2782 >    /**
2783 >     * If the value for the specified key is present, attempts to
2784 >     * compute a new mapping given the key and its current mapped
2785 >     * value.  The entire method invocation is performed atomically.
2786 >     * Some attempted update operations on this map by other threads
2787 >     * may be blocked while computation is in progress, so the
2788 >     * computation should be short and simple, and must not attempt to
2789 >     * update any other mappings of this map.
2790 >     *
2791 >     * @param key key with which a value may be associated
2792 >     * @param remappingFunction the function to compute a value
2793 >     * @return the new value associated with the specified key, or null if none
2794 >     * @throws NullPointerException if the specified key or remappingFunction
2795 >     *         is null
2796 >     * @throws IllegalStateException if the computation detectably
2797 >     *         attempts a recursive update to this map that would
2798 >     *         otherwise never complete
2799 >     * @throws RuntimeException or Error if the remappingFunction does so,
2800 >     *         in which case the mapping is unchanged
2801 >     */
2802 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2803 >        return internalCompute(key, true, remappingFunction);
2804 >    }
2805 >
2806 >    /**
2807 >     * Attempts to compute a mapping for the specified key and its
2808 >     * current mapped value (or {@code null} if there is no current
2809 >     * mapping). The entire method invocation is performed atomically.
2810 >     * Some attempted update operations on this map by other threads
2811 >     * may be blocked while computation is in progress, so the
2812 >     * computation should be short and simple, and must not attempt to
2813 >     * update any other mappings of this Map.
2814 >     *
2815 >     * @param key key with which the specified value is to be associated
2816 >     * @param remappingFunction the function to compute a value
2817 >     * @return the new value associated with the specified key, or null if none
2818 >     * @throws NullPointerException if the specified key or remappingFunction
2819 >     *         is null
2820 >     * @throws IllegalStateException if the computation detectably
2821 >     *         attempts a recursive update to this map that would
2822 >     *         otherwise never complete
2823 >     * @throws RuntimeException or Error if the remappingFunction does so,
2824 >     *         in which case the mapping is unchanged
2825 >     */
2826 >    public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2827 >        return internalCompute(key, false, remappingFunction);
2828 >    }
2829 >
2830 >    /**
2831 >     * If the specified key is not already associated with a
2832 >     * (non-null) value, associates it with the given value.
2833 >     * Otherwise, replaces the value with the results of the given
2834 >     * remapping function, or removes if {@code null}. The entire
2835 >     * method invocation is performed atomically.  Some attempted
2836 >     * update operations on this map by other threads may be blocked
2837 >     * while computation is in progress, so the computation should be
2838 >     * short and simple, and must not attempt to update any other
2839 >     * mappings of this Map.
2840 >     *
2841 >     * @param key key with which the specified value is to be associated
2842 >     * @param value the value to use if absent
2843 >     * @param remappingFunction the function to recompute a value if present
2844 >     * @return the new value associated with the specified key, or null if none
2845 >     * @throws NullPointerException if the specified key or the
2846 >     *         remappingFunction is null
2847 >     * @throws RuntimeException or Error if the remappingFunction does so,
2848 >     *         in which case the mapping is unchanged
2849 >     */
2850 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2851 >        return internalMerge(key, value, remappingFunction);
2852      }
2853  
2854      /**
# Line 1063 | Line 2856 | public class ConcurrentHashMap<K, V> ext
2856       * This method does nothing if the key is not in the map.
2857       *
2858       * @param  key the key that needs to be removed
2859 <     * @return the previous value associated with <tt>key</tt>, or
2860 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
2859 >     * @return the previous value associated with {@code key}, or
2860 >     *         {@code null} if there was no mapping for {@code key}
2861       * @throws NullPointerException if the specified key is null
2862       */
2863      public V remove(Object key) {
2864 <        int hash = hash(key.hashCode());
1072 <        Segment<K,V> s = segmentForHash(hash);
1073 <        return s == null ? null : s.remove(key, hash, null);
2864 >        return internalReplace(key, null, null);
2865      }
2866  
2867      /**
# Line 1079 | Line 2870 | public class ConcurrentHashMap<K, V> ext
2870       * @throws NullPointerException if the specified key is null
2871       */
2872      public boolean remove(Object key, Object value) {
2873 <        int hash = hash(key.hashCode());
2874 <        Segment<K,V> s;
2875 <        return value != null && (s = segmentForHash(hash)) != null &&
1085 <            s.remove(key, hash, value) != null;
2873 >        if (key == null)
2874 >            throw new NullPointerException();
2875 >        return value != null && internalReplace(key, null, value) != null;
2876      }
2877  
2878      /**
# Line 1091 | Line 2881 | public class ConcurrentHashMap<K, V> ext
2881       * @throws NullPointerException if any of the arguments are null
2882       */
2883      public boolean replace(K key, V oldValue, V newValue) {
2884 <        int hash = hash(key.hashCode());
1095 <        if (oldValue == null || newValue == null)
2884 >        if (key == null || oldValue == null || newValue == null)
2885              throw new NullPointerException();
2886 <        Segment<K,V> s = segmentForHash(hash);
1098 <        return s != null && s.replace(key, hash, oldValue, newValue);
2886 >        return internalReplace(key, newValue, oldValue) != null;
2887      }
2888  
2889      /**
2890       * {@inheritDoc}
2891       *
2892       * @return the previous value associated with the specified key,
2893 <     *         or <tt>null</tt> if there was no mapping for the key
2893 >     *         or {@code null} if there was no mapping for the key
2894       * @throws NullPointerException if the specified key or value is null
2895       */
2896      public V replace(K key, V value) {
2897 <        int hash = hash(key.hashCode());
1110 <        if (value == null)
2897 >        if (key == null || value == null)
2898              throw new NullPointerException();
2899 <        Segment<K,V> s = segmentForHash(hash);
1113 <        return s == null ? null : s.replace(key, hash, value);
2899 >        return internalReplace(key, value, null);
2900      }
2901  
2902      /**
2903       * Removes all of the mappings from this map.
2904       */
2905      public void clear() {
2906 <        final Segment<K,V>[] segments = this.segments;
1121 <        for (int j = 0; j < segments.length; ++j) {
1122 <            Segment<K,V> s = segmentAt(segments, j);
1123 <            if (s != null)
1124 <                s.clear();
1125 <        }
2906 >        internalClear();
2907      }
2908  
2909      /**
2910       * Returns a {@link Set} view of the keys contained in this map.
2911       * The set is backed by the map, so changes to the map are
2912 <     * reflected in the set, and vice-versa.  The set supports element
2912 >     * reflected in the set, and vice-versa. The set supports element
2913       * removal, which removes the corresponding mapping from this map,
2914 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2915 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2916 <     * operations.  It does not support the <tt>add</tt> or
2917 <     * <tt>addAll</tt> operations.
2914 >     * via the {@code Iterator.remove}, {@code Set.remove},
2915 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2916 >     * operations.  It does not support the {@code add} or
2917 >     * {@code addAll} operations.
2918       *
2919 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2919 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2920       * that will never throw {@link ConcurrentModificationException},
2921       * and guarantees to traverse elements as they existed upon
2922       * construction of the iterator, and may (but is not guaranteed to)
2923       * reflect any modifications subsequent to construction.
2924 +     *
2925 +     * @return the set view
2926 +     */
2927 +    public KeySetView<K,V> keySet() {
2928 +        KeySetView<K,V> ks = keySet;
2929 +        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2930 +    }
2931 +
2932 +    /**
2933 +     * Returns a {@link Set} view of the keys in this map, using the
2934 +     * given common mapped value for any additions (i.e., {@link
2935 +     * Collection#add} and {@link Collection#addAll(Collection)}).
2936 +     * This is of course only appropriate if it is acceptable to use
2937 +     * the same value for all additions from this view.
2938 +     *
2939 +     * @param mappedValue the mapped value to use for any additions
2940 +     * @return the set view
2941 +     * @throws NullPointerException if the mappedValue is null
2942       */
2943 <    public Set<K> keySet() {
2944 <        Set<K> ks = keySet;
2945 <        return (ks != null) ? ks : (keySet = new KeySet());
2943 >    public KeySetView<K,V> keySet(V mappedValue) {
2944 >        if (mappedValue == null)
2945 >            throw new NullPointerException();
2946 >        return new KeySetView<K,V>(this, mappedValue);
2947      }
2948  
2949      /**
# Line 1151 | Line 2951 | public class ConcurrentHashMap<K, V> ext
2951       * The collection is backed by the map, so changes to the map are
2952       * reflected in the collection, and vice-versa.  The collection
2953       * supports element removal, which removes the corresponding
2954 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
2955 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
2956 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
2957 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
2954 >     * mapping from this map, via the {@code Iterator.remove},
2955 >     * {@code Collection.remove}, {@code removeAll},
2956 >     * {@code retainAll}, and {@code clear} operations.  It does not
2957 >     * support the {@code add} or {@code addAll} operations.
2958       *
2959 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2959 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2960       * that will never throw {@link ConcurrentModificationException},
2961       * and guarantees to traverse elements as they existed upon
2962       * construction of the iterator, and may (but is not guaranteed to)
2963       * reflect any modifications subsequent to construction.
2964 +     *
2965 +     * @return the collection view
2966       */
2967      public Collection<V> values() {
2968 <        Collection<V> vs = values;
2969 <        return (vs != null) ? vs : (values = new Values());
2968 >        ValuesView<K,V> vs = values;
2969 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2970      }
2971  
2972      /**
# Line 1172 | Line 2974 | public class ConcurrentHashMap<K, V> ext
2974       * The set is backed by the map, so changes to the map are
2975       * reflected in the set, and vice-versa.  The set supports element
2976       * removal, which removes the corresponding mapping from the map,
2977 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2978 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2979 <     * operations.  It does not support the <tt>add</tt> or
1178 <     * <tt>addAll</tt> operations.
2977 >     * via the {@code Iterator.remove}, {@code Set.remove},
2978 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2979 >     * operations.
2980       *
2981 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2981 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2982       * that will never throw {@link ConcurrentModificationException},
2983       * and guarantees to traverse elements as they existed upon
2984       * construction of the iterator, and may (but is not guaranteed to)
2985       * reflect any modifications subsequent to construction.
2986 +     *
2987 +     * @return the set view
2988       */
2989      public Set<Map.Entry<K,V>> entrySet() {
2990 <        Set<Map.Entry<K,V>> es = entrySet;
2991 <        return (es != null) ? es : (entrySet = new EntrySet());
2990 >        EntrySetView<K,V> es = entrySet;
2991 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2992      }
2993  
2994      /**
# Line 1195 | Line 2998 | public class ConcurrentHashMap<K, V> ext
2998       * @see #keySet()
2999       */
3000      public Enumeration<K> keys() {
3001 <        return new KeyIterator();
3001 >        Node<K,V>[] t;
3002 >        int f = (t = table) == null ? 0 : t.length;
3003 >        return new KeyIterator<K,V>(t, f, 0, f, this);
3004      }
3005  
3006      /**
# Line 1205 | Line 3010 | public class ConcurrentHashMap<K, V> ext
3010       * @see #values()
3011       */
3012      public Enumeration<V> elements() {
3013 <        return new ValueIterator();
3013 >        Node<K,V>[] t;
3014 >        int f = (t = table) == null ? 0 : t.length;
3015 >        return new ValueIterator<K,V>(t, f, 0, f, this);
3016      }
3017  
3018 <    /* ---------------- Iterator Support -------------- */
3018 >    /**
3019 >     * Returns the hash code value for this {@link Map}, i.e.,
3020 >     * the sum of, for each key-value pair in the map,
3021 >     * {@code key.hashCode() ^ value.hashCode()}.
3022 >     *
3023 >     * @return the hash code value for this map
3024 >     */
3025 >    public int hashCode() {
3026 >        int h = 0;
3027 >        Node<K,V>[] t;
3028 >        if ((t = table) != null) {
3029 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3030 >            for (Node<K,V> p; (p = it.advance()) != null; )
3031 >                h += p.key.hashCode() ^ p.val.hashCode();
3032 >        }
3033 >        return h;
3034 >    }
3035 >
3036 >    /**
3037 >     * Returns a string representation of this map.  The string
3038 >     * representation consists of a list of key-value mappings (in no
3039 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3040 >     * mappings are separated by the characters {@code ", "} (comma
3041 >     * and space).  Each key-value mapping is rendered as the key
3042 >     * followed by an equals sign ("{@code =}") followed by the
3043 >     * associated value.
3044 >     *
3045 >     * @return a string representation of this map
3046 >     */
3047 >    public String toString() {
3048 >        Node<K,V>[] t;
3049 >        int f = (t = table) == null ? 0 : t.length;
3050 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3051 >        StringBuilder sb = new StringBuilder();
3052 >        sb.append('{');
3053 >        Node<K,V> p;
3054 >        if ((p = it.advance()) != null) {
3055 >            for (;;) {
3056 >                K k = (K)p.key;
3057 >                V v = p.val;
3058 >                sb.append(k == this ? "(this Map)" : k);
3059 >                sb.append('=');
3060 >                sb.append(v == this ? "(this Map)" : v);
3061 >                if ((p = it.advance()) == null)
3062 >                    break;
3063 >                sb.append(',').append(' ');
3064 >            }
3065 >        }
3066 >        return sb.append('}').toString();
3067 >    }
3068  
3069 <    abstract class HashIterator {
3070 <        int nextSegmentIndex;
3071 <        int nextTableIndex;
3072 <        HashEntry<K,V>[] currentTable;
3073 <        HashEntry<K, V> nextEntry;
3074 <        HashEntry<K, V> lastReturned;
3069 >    /**
3070 >     * Compares the specified object with this map for equality.
3071 >     * Returns {@code true} if the given object is a map with the same
3072 >     * mappings as this map.  This operation may return misleading
3073 >     * results if either map is concurrently modified during execution
3074 >     * of this method.
3075 >     *
3076 >     * @param o object to be compared for equality with this map
3077 >     * @return {@code true} if the specified object is equal to this map
3078 >     */
3079 >    public boolean equals(Object o) {
3080 >        if (o != this) {
3081 >            if (!(o instanceof Map))
3082 >                return false;
3083 >            Map<?,?> m = (Map<?,?>) o;
3084 >            Node<K,V>[] t;
3085 >            int f = (t = table) == null ? 0 : t.length;
3086 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3087 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
3088 >                V val = p.val;
3089 >                Object v = m.get(p.key);
3090 >                if (v == null || (v != val && !v.equals(val)))
3091 >                    return false;
3092 >            }
3093 >            for (Map.Entry<?,?> e : m.entrySet()) {
3094 >                Object mk, mv, v;
3095 >                if ((mk = e.getKey()) == null ||
3096 >                    (mv = e.getValue()) == null ||
3097 >                    (v = internalGet(mk)) == null ||
3098 >                    (mv != v && !mv.equals(v)))
3099 >                    return false;
3100 >            }
3101 >        }
3102 >        return true;
3103 >    }
3104  
3105 <        HashIterator() {
3106 <            nextSegmentIndex = segments.length - 1;
3107 <            nextTableIndex = -1;
3108 <            advance();
3105 >    /* ---------------- Serialization Support -------------- */
3106 >
3107 >    /**
3108 >     * Stripped-down version of helper class used in previous version,
3109 >     * declared for the sake of serialization compatibility
3110 >     */
3111 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
3112 >        private static final long serialVersionUID = 2249069246763182397L;
3113 >        final float loadFactor;
3114 >        Segment(float lf) { this.loadFactor = lf; }
3115 >    }
3116 >
3117 >    /**
3118 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3119 >     * stream (i.e., serializes it).
3120 >     * @param s the stream
3121 >     * @serialData
3122 >     * the key (Object) and value (Object)
3123 >     * for each key-value mapping, followed by a null pair.
3124 >     * The key-value mappings are emitted in no particular order.
3125 >     */
3126 >    private void writeObject(java.io.ObjectOutputStream s)
3127 >        throws java.io.IOException {
3128 >        // For serialization compatibility
3129 >        // Emulate segment calculation from previous version of this class
3130 >        int sshift = 0;
3131 >        int ssize = 1;
3132 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
3133 >            ++sshift;
3134 >            ssize <<= 1;
3135 >        }
3136 >        int segmentShift = 32 - sshift;
3137 >        int segmentMask = ssize - 1;
3138 >        Segment<K,V>[] segments = (Segment<K,V>[])
3139 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3140 >        for (int i = 0; i < segments.length; ++i)
3141 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
3142 >        s.putFields().put("segments", segments);
3143 >        s.putFields().put("segmentShift", segmentShift);
3144 >        s.putFields().put("segmentMask", segmentMask);
3145 >        s.writeFields();
3146 >
3147 >        Node<K,V>[] t;
3148 >        if ((t = table) != null) {
3149 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3150 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
3151 >                s.writeObject(p.key);
3152 >                s.writeObject(p.val);
3153 >            }
3154 >        }
3155 >        s.writeObject(null);
3156 >        s.writeObject(null);
3157 >        segments = null; // throw away
3158 >    }
3159 >
3160 >    /**
3161 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3162 >     * @param s the stream
3163 >     */
3164 >    private void readObject(java.io.ObjectInputStream s)
3165 >        throws java.io.IOException, ClassNotFoundException {
3166 >        s.defaultReadObject();
3167 >
3168 >        // Create all nodes, then place in table once size is known
3169 >        long size = 0L;
3170 >        Node<K,V> p = null;
3171 >        for (;;) {
3172 >            K k = (K) s.readObject();
3173 >            V v = (V) s.readObject();
3174 >            if (k != null && v != null) {
3175 >                int h = spread(k.hashCode());
3176 >                p = new Node<K,V>(h, k, v, p);
3177 >                ++size;
3178 >            }
3179 >            else
3180 >                break;
3181 >        }
3182 >        if (p != null) {
3183 >            boolean init = false;
3184 >            int n;
3185 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3186 >                n = MAXIMUM_CAPACITY;
3187 >            else {
3188 >                int sz = (int)size;
3189 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3190 >            }
3191 >            int sc = sizeCtl;
3192 >            boolean collide = false;
3193 >            if (n > sc &&
3194 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3195 >                try {
3196 >                    if (table == null) {
3197 >                        init = true;
3198 >                        Node<K,V>[] tab = (Node<K,V>[])new Node[n];
3199 >                        int mask = n - 1;
3200 >                        while (p != null) {
3201 >                            int j = p.hash & mask;
3202 >                            Node<K,V> next = p.next;
3203 >                            Node<K,V> q = p.next = tabAt(tab, j);
3204 >                            setTabAt(tab, j, p);
3205 >                            if (!collide && q != null && q.hash == p.hash)
3206 >                                collide = true;
3207 >                            p = next;
3208 >                        }
3209 >                        table = tab;
3210 >                        addCount(size, -1);
3211 >                        sc = n - (n >>> 2);
3212 >                    }
3213 >                } finally {
3214 >                    sizeCtl = sc;
3215 >                }
3216 >                if (collide) { // rescan and convert to TreeBins
3217 >                    Node<K,V>[] tab = table;
3218 >                    for (int i = 0; i < tab.length; ++i) {
3219 >                        int c = 0;
3220 >                        for (Node<K,V> e = tabAt(tab, i); e != null; e = e.next) {
3221 >                            if (++c > TREE_THRESHOLD &&
3222 >                                (e.key instanceof Comparable)) {
3223 >                                replaceWithTreeBin(tab, i, e.key);
3224 >                                break;
3225 >                            }
3226 >                        }
3227 >                    }
3228 >                }
3229 >            }
3230 >            if (!init) { // Can only happen if unsafely published.
3231 >                while (p != null) {
3232 >                    internalPut((K)p.key, p.val, false);
3233 >                    p = p.next;
3234 >                }
3235 >            }
3236 >        }
3237 >    }
3238 >
3239 >    // -------------------------------------------------------
3240 >
3241 >    // Overrides of other default Map methods
3242 >
3243 >    public void forEach(BiConsumer<? super K, ? super V> action) {
3244 >        if (action == null) throw new NullPointerException();
3245 >        Node<K,V>[] t;
3246 >        if ((t = table) != null) {
3247 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3248 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
3249 >                action.accept((K)p.key, p.val);
3250 >            }
3251 >        }
3252 >    }
3253 >
3254 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3255 >        if (function == null) throw new NullPointerException();
3256 >        Node<K,V>[] t;
3257 >        if ((t = table) != null) {
3258 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3259 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
3260 >                K k = (K)p.key;
3261 >                internalPut(k, function.apply(k, p.val), false);
3262 >            }
3263 >        }
3264 >    }
3265 >
3266 >    // -------------------------------------------------------
3267 >
3268 >    // Parallel bulk operations
3269 >
3270 >    /**
3271 >     * Computes initial batch value for bulk tasks. The returned value
3272 >     * is approximately exp2 of the number of times (minus one) to
3273 >     * split task by two before executing leaf action. This value is
3274 >     * faster to compute and more convenient to use as a guide to
3275 >     * splitting than is the depth, since it is used while dividing by
3276 >     * two anyway.
3277 >     */
3278 >    final int batchFor(long b) {
3279 >        long n;
3280 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3281 >            return 0;
3282 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3283 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3284 >    }
3285 >
3286 >    /**
3287 >     * Performs the given action for each (key, value).
3288 >     *
3289 >     * @param parallelismThreshold the (estimated) number of elements
3290 >     * needed for this operation to be executed in parallel
3291 >     * @param action the action
3292 >     */
3293 >    public void forEach(long parallelismThreshold,
3294 >                        BiConsumer<? super K,? super V> action) {
3295 >        if (action == null) throw new NullPointerException();
3296 >        new ForEachMappingTask<K,V>
3297 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3298 >             action).invoke();
3299 >    }
3300 >
3301 >    /**
3302 >     * Performs the given action for each non-null transformation
3303 >     * of each (key, value).
3304 >     *
3305 >     * @param parallelismThreshold the (estimated) number of elements
3306 >     * needed for this operation to be executed in parallel
3307 >     * @param transformer a function returning the transformation
3308 >     * for an element, or null if there is no transformation (in
3309 >     * which case the action is not applied)
3310 >     * @param action the action
3311 >     */
3312 >    public <U> void forEach(long parallelismThreshold,
3313 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3314 >                            Consumer<? super U> action) {
3315 >        if (transformer == null || action == null)
3316 >            throw new NullPointerException();
3317 >        new ForEachTransformedMappingTask<K,V,U>
3318 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3319 >             transformer, action).invoke();
3320 >    }
3321 >
3322 >    /**
3323 >     * Returns a non-null result from applying the given search
3324 >     * function on each (key, value), or null if none.  Upon
3325 >     * success, further element processing is suppressed and the
3326 >     * results of any other parallel invocations of the search
3327 >     * function are ignored.
3328 >     *
3329 >     * @param parallelismThreshold the (estimated) number of elements
3330 >     * needed for this operation to be executed in parallel
3331 >     * @param searchFunction a function returning a non-null
3332 >     * result on success, else null
3333 >     * @return a non-null result from applying the given search
3334 >     * function on each (key, value), or null if none
3335 >     */
3336 >    public <U> U search(long parallelismThreshold,
3337 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3338 >        if (searchFunction == null) throw new NullPointerException();
3339 >        return new SearchMappingsTask<K,V,U>
3340 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3341 >             searchFunction, new AtomicReference<U>()).invoke();
3342 >    }
3343 >
3344 >    /**
3345 >     * Returns the result of accumulating the given transformation
3346 >     * of all (key, value) pairs using the given reducer to
3347 >     * combine values, or null if none.
3348 >     *
3349 >     * @param parallelismThreshold the (estimated) number of elements
3350 >     * needed for this operation to be executed in parallel
3351 >     * @param transformer a function returning the transformation
3352 >     * for an element, or null if there is no transformation (in
3353 >     * which case it is not combined)
3354 >     * @param reducer a commutative associative combining function
3355 >     * @return the result of accumulating the given transformation
3356 >     * of all (key, value) pairs
3357 >     */
3358 >    public <U> U reduce(long parallelismThreshold,
3359 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3360 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3361 >        if (transformer == null || reducer == null)
3362 >            throw new NullPointerException();
3363 >        return new MapReduceMappingsTask<K,V,U>
3364 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3365 >             null, transformer, reducer).invoke();
3366 >    }
3367 >
3368 >    /**
3369 >     * Returns the result of accumulating the given transformation
3370 >     * of all (key, value) pairs using the given reducer to
3371 >     * combine values, and the given basis as an identity value.
3372 >     *
3373 >     * @param parallelismThreshold the (estimated) number of elements
3374 >     * needed for this operation to be executed in parallel
3375 >     * @param transformer a function returning the transformation
3376 >     * for an element
3377 >     * @param basis the identity (initial default value) for the reduction
3378 >     * @param reducer a commutative associative combining function
3379 >     * @return the result of accumulating the given transformation
3380 >     * of all (key, value) pairs
3381 >     */
3382 >    public double reduceToDoubleIn(long parallelismThreshold,
3383 >                                   ToDoubleBiFunction<? super K, ? super V> transformer,
3384 >                                   double basis,
3385 >                                   DoubleBinaryOperator reducer) {
3386 >        if (transformer == null || reducer == null)
3387 >            throw new NullPointerException();
3388 >        return new MapReduceMappingsToDoubleTask<K,V>
3389 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3390 >             null, transformer, basis, reducer).invoke();
3391 >    }
3392 >
3393 >    /**
3394 >     * Returns the result of accumulating the given transformation
3395 >     * of all (key, value) pairs using the given reducer to
3396 >     * combine values, and the given basis as an identity value.
3397 >     *
3398 >     * @param parallelismThreshold the (estimated) number of elements
3399 >     * needed for this operation to be executed in parallel
3400 >     * @param transformer a function returning the transformation
3401 >     * for an element
3402 >     * @param basis the identity (initial default value) for the reduction
3403 >     * @param reducer a commutative associative combining function
3404 >     * @return the result of accumulating the given transformation
3405 >     * of all (key, value) pairs
3406 >     */
3407 >    public long reduceToLong(long parallelismThreshold,
3408 >                             ToLongBiFunction<? super K, ? super V> transformer,
3409 >                             long basis,
3410 >                             LongBinaryOperator reducer) {
3411 >        if (transformer == null || reducer == null)
3412 >            throw new NullPointerException();
3413 >        return new MapReduceMappingsToLongTask<K,V>
3414 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3415 >             null, transformer, basis, reducer).invoke();
3416 >    }
3417 >
3418 >    /**
3419 >     * Returns the result of accumulating the given transformation
3420 >     * of all (key, value) pairs using the given reducer to
3421 >     * combine values, and the given basis as an identity value.
3422 >     *
3423 >     * @param parallelismThreshold the (estimated) number of elements
3424 >     * needed for this operation to be executed in parallel
3425 >     * @param transformer a function returning the transformation
3426 >     * for an element
3427 >     * @param basis the identity (initial default value) for the reduction
3428 >     * @param reducer a commutative associative combining function
3429 >     * @return the result of accumulating the given transformation
3430 >     * of all (key, value) pairs
3431 >     */
3432 >    public int reduceToInt(long parallelismThreshold,
3433 >                           ToIntBiFunction<? super K, ? super V> transformer,
3434 >                           int basis,
3435 >                           IntBinaryOperator reducer) {
3436 >        if (transformer == null || reducer == null)
3437 >            throw new NullPointerException();
3438 >        return new MapReduceMappingsToIntTask<K,V>
3439 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3440 >             null, transformer, basis, reducer).invoke();
3441 >    }
3442 >
3443 >    /**
3444 >     * Performs the given action for each key.
3445 >     *
3446 >     * @param parallelismThreshold the (estimated) number of elements
3447 >     * needed for this operation to be executed in parallel
3448 >     * @param action the action
3449 >     */
3450 >    public void forEachKey(long parallelismThreshold,
3451 >                           Consumer<? super K> action) {
3452 >        if (action == null) throw new NullPointerException();
3453 >        new ForEachKeyTask<K,V>
3454 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3455 >             action).invoke();
3456 >    }
3457 >
3458 >    /**
3459 >     * Performs the given action for each non-null transformation
3460 >     * of each key.
3461 >     *
3462 >     * @param parallelismThreshold the (estimated) number of elements
3463 >     * needed for this operation to be executed in parallel
3464 >     * @param transformer a function returning the transformation
3465 >     * for an element, or null if there is no transformation (in
3466 >     * which case the action is not applied)
3467 >     * @param action the action
3468 >     */
3469 >    public <U> void forEachKey(long parallelismThreshold,
3470 >                               Function<? super K, ? extends U> transformer,
3471 >                               Consumer<? super U> action) {
3472 >        if (transformer == null || action == null)
3473 >            throw new NullPointerException();
3474 >        new ForEachTransformedKeyTask<K,V,U>
3475 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3476 >             transformer, action).invoke();
3477 >    }
3478 >
3479 >    /**
3480 >     * Returns a non-null result from applying the given search
3481 >     * function on each key, or null if none. Upon success,
3482 >     * further element processing is suppressed and the results of
3483 >     * any other parallel invocations of the search function are
3484 >     * ignored.
3485 >     *
3486 >     * @param parallelismThreshold the (estimated) number of elements
3487 >     * needed for this operation to be executed in parallel
3488 >     * @param searchFunction a function returning a non-null
3489 >     * result on success, else null
3490 >     * @return a non-null result from applying the given search
3491 >     * function on each key, or null if none
3492 >     */
3493 >    public <U> U searchKeys(long parallelismThreshold,
3494 >                            Function<? super K, ? extends U> searchFunction) {
3495 >        if (searchFunction == null) throw new NullPointerException();
3496 >        return new SearchKeysTask<K,V,U>
3497 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3498 >             searchFunction, new AtomicReference<U>()).invoke();
3499 >    }
3500 >
3501 >    /**
3502 >     * Returns the result of accumulating all keys using the given
3503 >     * reducer to combine values, or null if none.
3504 >     *
3505 >     * @param parallelismThreshold the (estimated) number of elements
3506 >     * needed for this operation to be executed in parallel
3507 >     * @param reducer a commutative associative combining function
3508 >     * @return the result of accumulating all keys using the given
3509 >     * reducer to combine values, or null if none
3510 >     */
3511 >    public K reduceKeys(long parallelismThreshold,
3512 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3513 >        if (reducer == null) throw new NullPointerException();
3514 >        return new ReduceKeysTask<K,V>
3515 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3516 >             null, reducer).invoke();
3517 >    }
3518 >
3519 >    /**
3520 >     * Returns the result of accumulating the given transformation
3521 >     * of all keys using the given reducer to combine values, or
3522 >     * null if none.
3523 >     *
3524 >     * @param parallelismThreshold the (estimated) number of elements
3525 >     * needed for this operation to be executed in parallel
3526 >     * @param transformer a function returning the transformation
3527 >     * for an element, or null if there is no transformation (in
3528 >     * which case it is not combined)
3529 >     * @param reducer a commutative associative combining function
3530 >     * @return the result of accumulating the given transformation
3531 >     * of all keys
3532 >     */
3533 >    public <U> U reduceKeys(long parallelismThreshold,
3534 >                            Function<? super K, ? extends U> transformer,
3535 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3536 >        if (transformer == null || reducer == null)
3537 >            throw new NullPointerException();
3538 >        return new MapReduceKeysTask<K,V,U>
3539 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3540 >             null, transformer, reducer).invoke();
3541 >    }
3542 >
3543 >    /**
3544 >     * Returns the result of accumulating the given transformation
3545 >     * of all keys using the given reducer to combine values, and
3546 >     * the given basis as an identity value.
3547 >     *
3548 >     * @param parallelismThreshold the (estimated) number of elements
3549 >     * needed for this operation to be executed in parallel
3550 >     * @param transformer a function returning the transformation
3551 >     * for an element
3552 >     * @param basis the identity (initial default value) for the reduction
3553 >     * @param reducer a commutative associative combining function
3554 >     * @return the result of accumulating the given transformation
3555 >     * of all keys
3556 >     */
3557 >    public double reduceKeysToDouble(long parallelismThreshold,
3558 >                                     ToDoubleFunction<? super K> transformer,
3559 >                                     double basis,
3560 >                                     DoubleBinaryOperator reducer) {
3561 >        if (transformer == null || reducer == null)
3562 >            throw new NullPointerException();
3563 >        return new MapReduceKeysToDoubleTask<K,V>
3564 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3565 >             null, transformer, basis, reducer).invoke();
3566 >    }
3567 >
3568 >    /**
3569 >     * Returns the result of accumulating the given transformation
3570 >     * of all keys using the given reducer to combine values, and
3571 >     * the given basis as an identity value.
3572 >     *
3573 >     * @param parallelismThreshold the (estimated) number of elements
3574 >     * needed for this operation to be executed in parallel
3575 >     * @param transformer a function returning the transformation
3576 >     * for an element
3577 >     * @param basis the identity (initial default value) for the reduction
3578 >     * @param reducer a commutative associative combining function
3579 >     * @return the result of accumulating the given transformation
3580 >     * of all keys
3581 >     */
3582 >    public long reduceKeysToLong(long parallelismThreshold,
3583 >                                 ToLongFunction<? super K> transformer,
3584 >                                 long basis,
3585 >                                 LongBinaryOperator reducer) {
3586 >        if (transformer == null || reducer == null)
3587 >            throw new NullPointerException();
3588 >        return new MapReduceKeysToLongTask<K,V>
3589 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3590 >             null, transformer, basis, reducer).invoke();
3591 >    }
3592 >
3593 >    /**
3594 >     * Returns the result of accumulating the given transformation
3595 >     * of all keys using the given reducer to combine values, and
3596 >     * the given basis as an identity value.
3597 >     *
3598 >     * @param parallelismThreshold the (estimated) number of elements
3599 >     * needed for this operation to be executed in parallel
3600 >     * @param transformer a function returning the transformation
3601 >     * for an element
3602 >     * @param basis the identity (initial default value) for the reduction
3603 >     * @param reducer a commutative associative combining function
3604 >     * @return the result of accumulating the given transformation
3605 >     * of all keys
3606 >     */
3607 >    public int reduceKeysToInt(long parallelismThreshold,
3608 >                               ToIntFunction<? super K> transformer,
3609 >                               int basis,
3610 >                               IntBinaryOperator reducer) {
3611 >        if (transformer == null || reducer == null)
3612 >            throw new NullPointerException();
3613 >        return new MapReduceKeysToIntTask<K,V>
3614 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3615 >             null, transformer, basis, reducer).invoke();
3616 >    }
3617 >
3618 >    /**
3619 >     * Performs the given action for each value.
3620 >     *
3621 >     * @param parallelismThreshold the (estimated) number of elements
3622 >     * needed for this operation to be executed in parallel
3623 >     * @param action the action
3624 >     */
3625 >    public void forEachValue(long parallelismThreshold,
3626 >                             Consumer<? super V> action) {
3627 >        if (action == null)
3628 >            throw new NullPointerException();
3629 >        new ForEachValueTask<K,V>
3630 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3631 >             action).invoke();
3632 >    }
3633 >
3634 >    /**
3635 >     * Performs the given action for each non-null transformation
3636 >     * of each value.
3637 >     *
3638 >     * @param parallelismThreshold the (estimated) number of elements
3639 >     * needed for this operation to be executed in parallel
3640 >     * @param transformer a function returning the transformation
3641 >     * for an element, or null if there is no transformation (in
3642 >     * which case the action is not applied)
3643 >     * @param action the action
3644 >     */
3645 >    public <U> void forEachValue(long parallelismThreshold,
3646 >                                 Function<? super V, ? extends U> transformer,
3647 >                                 Consumer<? super U> action) {
3648 >        if (transformer == null || action == null)
3649 >            throw new NullPointerException();
3650 >        new ForEachTransformedValueTask<K,V,U>
3651 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3652 >             transformer, action).invoke();
3653 >    }
3654 >
3655 >    /**
3656 >     * Returns a non-null result from applying the given search
3657 >     * function on each value, or null if none.  Upon success,
3658 >     * further element processing is suppressed and the results of
3659 >     * any other parallel invocations of the search function are
3660 >     * ignored.
3661 >     *
3662 >     * @param parallelismThreshold the (estimated) number of elements
3663 >     * needed for this operation to be executed in parallel
3664 >     * @param searchFunction a function returning a non-null
3665 >     * result on success, else null
3666 >     * @return a non-null result from applying the given search
3667 >     * function on each value, or null if none
3668 >     */
3669 >    public <U> U searchValues(long parallelismThreshold,
3670 >                              Function<? super V, ? extends U> searchFunction) {
3671 >        if (searchFunction == null) throw new NullPointerException();
3672 >        return new SearchValuesTask<K,V,U>
3673 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3674 >             searchFunction, new AtomicReference<U>()).invoke();
3675 >    }
3676 >
3677 >    /**
3678 >     * Returns the result of accumulating all values using the
3679 >     * given reducer to combine values, or null if none.
3680 >     *
3681 >     * @param parallelismThreshold the (estimated) number of elements
3682 >     * needed for this operation to be executed in parallel
3683 >     * @param reducer a commutative associative combining function
3684 >     * @return the result of accumulating all values
3685 >     */
3686 >    public V reduceValues(long parallelismThreshold,
3687 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
3688 >        if (reducer == null) throw new NullPointerException();
3689 >        return new ReduceValuesTask<K,V>
3690 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3691 >             null, reducer).invoke();
3692 >    }
3693 >
3694 >    /**
3695 >     * Returns the result of accumulating the given transformation
3696 >     * of all values using the given reducer to combine values, or
3697 >     * null if none.
3698 >     *
3699 >     * @param parallelismThreshold the (estimated) number of elements
3700 >     * needed for this operation to be executed in parallel
3701 >     * @param transformer a function returning the transformation
3702 >     * for an element, or null if there is no transformation (in
3703 >     * which case it is not combined)
3704 >     * @param reducer a commutative associative combining function
3705 >     * @return the result of accumulating the given transformation
3706 >     * of all values
3707 >     */
3708 >    public <U> U reduceValues(long parallelismThreshold,
3709 >                              Function<? super V, ? extends U> transformer,
3710 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
3711 >        if (transformer == null || reducer == null)
3712 >            throw new NullPointerException();
3713 >        return new MapReduceValuesTask<K,V,U>
3714 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3715 >             null, transformer, reducer).invoke();
3716 >    }
3717 >
3718 >    /**
3719 >     * Returns the result of accumulating the given transformation
3720 >     * of all values using the given reducer to combine values,
3721 >     * and the given basis as an identity value.
3722 >     *
3723 >     * @param parallelismThreshold the (estimated) number of elements
3724 >     * needed for this operation to be executed in parallel
3725 >     * @param transformer a function returning the transformation
3726 >     * for an element
3727 >     * @param basis the identity (initial default value) for the reduction
3728 >     * @param reducer a commutative associative combining function
3729 >     * @return the result of accumulating the given transformation
3730 >     * of all values
3731 >     */
3732 >    public double reduceValuesToDouble(long parallelismThreshold,
3733 >                                       ToDoubleFunction<? super V> transformer,
3734 >                                       double basis,
3735 >                                       DoubleBinaryOperator reducer) {
3736 >        if (transformer == null || reducer == null)
3737 >            throw new NullPointerException();
3738 >        return new MapReduceValuesToDoubleTask<K,V>
3739 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3740 >             null, transformer, basis, reducer).invoke();
3741 >    }
3742 >
3743 >    /**
3744 >     * Returns the result of accumulating the given transformation
3745 >     * of all values using the given reducer to combine values,
3746 >     * and the given basis as an identity value.
3747 >     *
3748 >     * @param parallelismThreshold the (estimated) number of elements
3749 >     * needed for this operation to be executed in parallel
3750 >     * @param transformer a function returning the transformation
3751 >     * for an element
3752 >     * @param basis the identity (initial default value) for the reduction
3753 >     * @param reducer a commutative associative combining function
3754 >     * @return the result of accumulating the given transformation
3755 >     * of all values
3756 >     */
3757 >    public long reduceValuesToLong(long parallelismThreshold,
3758 >                                   ToLongFunction<? super V> transformer,
3759 >                                   long basis,
3760 >                                   LongBinaryOperator reducer) {
3761 >        if (transformer == null || reducer == null)
3762 >            throw new NullPointerException();
3763 >        return new MapReduceValuesToLongTask<K,V>
3764 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3765 >             null, transformer, basis, reducer).invoke();
3766 >    }
3767 >
3768 >    /**
3769 >     * Returns the result of accumulating the given transformation
3770 >     * of all values using the given reducer to combine values,
3771 >     * and the given basis as an identity value.
3772 >     *
3773 >     * @param parallelismThreshold the (estimated) number of elements
3774 >     * needed for this operation to be executed in parallel
3775 >     * @param transformer a function returning the transformation
3776 >     * for an element
3777 >     * @param basis the identity (initial default value) for the reduction
3778 >     * @param reducer a commutative associative combining function
3779 >     * @return the result of accumulating the given transformation
3780 >     * of all values
3781 >     */
3782 >    public int reduceValuesToInt(long parallelismThreshold,
3783 >                                 ToIntFunction<? super V> transformer,
3784 >                                 int basis,
3785 >                                 IntBinaryOperator reducer) {
3786 >        if (transformer == null || reducer == null)
3787 >            throw new NullPointerException();
3788 >        return new MapReduceValuesToIntTask<K,V>
3789 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3790 >             null, transformer, basis, reducer).invoke();
3791 >    }
3792 >
3793 >    /**
3794 >     * Performs the given action for each entry.
3795 >     *
3796 >     * @param parallelismThreshold the (estimated) number of elements
3797 >     * needed for this operation to be executed in parallel
3798 >     * @param action the action
3799 >     */
3800 >    public void forEachEntry(long parallelismThreshold,
3801 >                             Consumer<? super Map.Entry<K,V>> action) {
3802 >        if (action == null) throw new NullPointerException();
3803 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3804 >                                  action).invoke();
3805 >    }
3806 >
3807 >    /**
3808 >     * Performs the given action for each non-null transformation
3809 >     * of each entry.
3810 >     *
3811 >     * @param parallelismThreshold the (estimated) number of elements
3812 >     * needed for this operation to be executed in parallel
3813 >     * @param transformer a function returning the transformation
3814 >     * for an element, or null if there is no transformation (in
3815 >     * which case the action is not applied)
3816 >     * @param action the action
3817 >     */
3818 >    public <U> void forEachEntry(long parallelismThreshold,
3819 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
3820 >                                 Consumer<? super U> action) {
3821 >        if (transformer == null || action == null)
3822 >            throw new NullPointerException();
3823 >        new ForEachTransformedEntryTask<K,V,U>
3824 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3825 >             transformer, action).invoke();
3826 >    }
3827 >
3828 >    /**
3829 >     * Returns a non-null result from applying the given search
3830 >     * function on each entry, or null if none.  Upon success,
3831 >     * further element processing is suppressed and the results of
3832 >     * any other parallel invocations of the search function are
3833 >     * ignored.
3834 >     *
3835 >     * @param parallelismThreshold the (estimated) number of elements
3836 >     * needed for this operation to be executed in parallel
3837 >     * @param searchFunction a function returning a non-null
3838 >     * result on success, else null
3839 >     * @return a non-null result from applying the given search
3840 >     * function on each entry, or null if none
3841 >     */
3842 >    public <U> U searchEntries(long parallelismThreshold,
3843 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3844 >        if (searchFunction == null) throw new NullPointerException();
3845 >        return new SearchEntriesTask<K,V,U>
3846 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3847 >             searchFunction, new AtomicReference<U>()).invoke();
3848 >    }
3849 >
3850 >    /**
3851 >     * Returns the result of accumulating all entries using the
3852 >     * given reducer to combine values, or null if none.
3853 >     *
3854 >     * @param parallelismThreshold the (estimated) number of elements
3855 >     * needed for this operation to be executed in parallel
3856 >     * @param reducer a commutative associative combining function
3857 >     * @return the result of accumulating all entries
3858 >     */
3859 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
3860 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3861 >        if (reducer == null) throw new NullPointerException();
3862 >        return new ReduceEntriesTask<K,V>
3863 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3864 >             null, reducer).invoke();
3865 >    }
3866 >
3867 >    /**
3868 >     * Returns the result of accumulating the given transformation
3869 >     * of all entries using the given reducer to combine values,
3870 >     * or null if none.
3871 >     *
3872 >     * @param parallelismThreshold the (estimated) number of elements
3873 >     * needed for this operation to be executed in parallel
3874 >     * @param transformer a function returning the transformation
3875 >     * for an element, or null if there is no transformation (in
3876 >     * which case it is not combined)
3877 >     * @param reducer a commutative associative combining function
3878 >     * @return the result of accumulating the given transformation
3879 >     * of all entries
3880 >     */
3881 >    public <U> U reduceEntries(long parallelismThreshold,
3882 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
3883 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
3884 >        if (transformer == null || reducer == null)
3885 >            throw new NullPointerException();
3886 >        return new MapReduceEntriesTask<K,V,U>
3887 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3888 >             null, transformer, reducer).invoke();
3889 >    }
3890 >
3891 >    /**
3892 >     * Returns the result of accumulating the given transformation
3893 >     * of all entries using the given reducer to combine values,
3894 >     * and the given basis as an identity value.
3895 >     *
3896 >     * @param parallelismThreshold the (estimated) number of elements
3897 >     * needed for this operation to be executed in parallel
3898 >     * @param transformer a function returning the transformation
3899 >     * for an element
3900 >     * @param basis the identity (initial default value) for the reduction
3901 >     * @param reducer a commutative associative combining function
3902 >     * @return the result of accumulating the given transformation
3903 >     * of all entries
3904 >     */
3905 >    public double reduceEntriesToDouble(long parallelismThreshold,
3906 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
3907 >                                        double basis,
3908 >                                        DoubleBinaryOperator reducer) {
3909 >        if (transformer == null || reducer == null)
3910 >            throw new NullPointerException();
3911 >        return new MapReduceEntriesToDoubleTask<K,V>
3912 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3913 >             null, transformer, basis, reducer).invoke();
3914 >    }
3915 >
3916 >    /**
3917 >     * Returns the result of accumulating the given transformation
3918 >     * of all entries using the given reducer to combine values,
3919 >     * and the given basis as an identity value.
3920 >     *
3921 >     * @param parallelismThreshold the (estimated) number of elements
3922 >     * needed for this operation to be executed in parallel
3923 >     * @param transformer a function returning the transformation
3924 >     * for an element
3925 >     * @param basis the identity (initial default value) for the reduction
3926 >     * @param reducer a commutative associative combining function
3927 >     * @return the result of accumulating the given transformation
3928 >     * of all entries
3929 >     */
3930 >    public long reduceEntriesToLong(long parallelismThreshold,
3931 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
3932 >                                    long basis,
3933 >                                    LongBinaryOperator reducer) {
3934 >        if (transformer == null || reducer == null)
3935 >            throw new NullPointerException();
3936 >        return new MapReduceEntriesToLongTask<K,V>
3937 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3938 >             null, transformer, basis, reducer).invoke();
3939 >    }
3940 >
3941 >    /**
3942 >     * Returns the result of accumulating the given transformation
3943 >     * of all entries using the given reducer to combine values,
3944 >     * and the given basis as an identity value.
3945 >     *
3946 >     * @param parallelismThreshold the (estimated) number of elements
3947 >     * needed for this operation to be executed in parallel
3948 >     * @param transformer a function returning the transformation
3949 >     * for an element
3950 >     * @param basis the identity (initial default value) for the reduction
3951 >     * @param reducer a commutative associative combining function
3952 >     * @return the result of accumulating the given transformation
3953 >     * of all entries
3954 >     */
3955 >    public int reduceEntriesToInt(long parallelismThreshold,
3956 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
3957 >                                  int basis,
3958 >                                  IntBinaryOperator reducer) {
3959 >        if (transformer == null || reducer == null)
3960 >            throw new NullPointerException();
3961 >        return new MapReduceEntriesToIntTask<K,V>
3962 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3963 >             null, transformer, basis, reducer).invoke();
3964 >    }
3965 >
3966 >
3967 >    /* ----------------Views -------------- */
3968 >
3969 >    /**
3970 >     * Base class for views.
3971 >     */
3972 >    abstract static class CollectionView<K,V,E>
3973 >        implements Collection<E>, java.io.Serializable {
3974 >        private static final long serialVersionUID = 7249069246763182397L;
3975 >        final ConcurrentHashMap<K,V> map;
3976 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
3977 >
3978 >        /**
3979 >         * Returns the map backing this view.
3980 >         *
3981 >         * @return the map backing this view
3982 >         */
3983 >        public ConcurrentHashMap<K,V> getMap() { return map; }
3984 >
3985 >        /**
3986 >         * Removes all of the elements from this view, by removing all
3987 >         * the mappings from the map backing this view.
3988 >         */
3989 >        public final void clear()      { map.clear(); }
3990 >        public final int size()        { return map.size(); }
3991 >        public final boolean isEmpty() { return map.isEmpty(); }
3992 >
3993 >        // implementations below rely on concrete classes supplying these
3994 >        // abstract methods
3995 >        /**
3996 >         * Returns a "weakly consistent" iterator that will never
3997 >         * throw {@link ConcurrentModificationException}, and
3998 >         * guarantees to traverse elements as they existed upon
3999 >         * construction of the iterator, and may (but is not
4000 >         * guaranteed to) reflect any modifications subsequent to
4001 >         * construction.
4002 >         */
4003 >        public abstract Iterator<E> iterator();
4004 >        public abstract boolean contains(Object o);
4005 >        public abstract boolean remove(Object o);
4006 >
4007 >        private static final String oomeMsg = "Required array size too large";
4008 >
4009 >        public final Object[] toArray() {
4010 >            long sz = map.mappingCount();
4011 >            if (sz > MAX_ARRAY_SIZE)
4012 >                throw new OutOfMemoryError(oomeMsg);
4013 >            int n = (int)sz;
4014 >            Object[] r = new Object[n];
4015 >            int i = 0;
4016 >            for (E e : this) {
4017 >                if (i == n) {
4018 >                    if (n >= MAX_ARRAY_SIZE)
4019 >                        throw new OutOfMemoryError(oomeMsg);
4020 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4021 >                        n = MAX_ARRAY_SIZE;
4022 >                    else
4023 >                        n += (n >>> 1) + 1;
4024 >                    r = Arrays.copyOf(r, n);
4025 >                }
4026 >                r[i++] = e;
4027 >            }
4028 >            return (i == n) ? r : Arrays.copyOf(r, i);
4029 >        }
4030 >
4031 >        public final <T> T[] toArray(T[] a) {
4032 >            long sz = map.mappingCount();
4033 >            if (sz > MAX_ARRAY_SIZE)
4034 >                throw new OutOfMemoryError(oomeMsg);
4035 >            int m = (int)sz;
4036 >            T[] r = (a.length >= m) ? a :
4037 >                (T[])java.lang.reflect.Array
4038 >                .newInstance(a.getClass().getComponentType(), m);
4039 >            int n = r.length;
4040 >            int i = 0;
4041 >            for (E e : this) {
4042 >                if (i == n) {
4043 >                    if (n >= MAX_ARRAY_SIZE)
4044 >                        throw new OutOfMemoryError(oomeMsg);
4045 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4046 >                        n = MAX_ARRAY_SIZE;
4047 >                    else
4048 >                        n += (n >>> 1) + 1;
4049 >                    r = Arrays.copyOf(r, n);
4050 >                }
4051 >                r[i++] = (T)e;
4052 >            }
4053 >            if (a == r && i < n) {
4054 >                r[i] = null; // null-terminate
4055 >                return r;
4056 >            }
4057 >            return (i == n) ? r : Arrays.copyOf(r, i);
4058          }
4059  
4060          /**
4061 <         * Sets nextEntry to first node of next non-empty table
4062 <         * (in backwards order, to simplify checks).
4061 >         * Returns a string representation of this collection.
4062 >         * The string representation consists of the string representations
4063 >         * of the collection's elements in the order they are returned by
4064 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4065 >         * Adjacent elements are separated by the characters {@code ", "}
4066 >         * (comma and space).  Elements are converted to strings as by
4067 >         * {@link String#valueOf(Object)}.
4068 >         *
4069 >         * @return a string representation of this collection
4070           */
4071 <        final void advance() {
4072 <            for (;;) {
4073 <                if (nextTableIndex >= 0) {
4074 <                    if ((nextEntry = entryAt(currentTable,
4075 <                                             nextTableIndex--)) != null)
4071 >        public final String toString() {
4072 >            StringBuilder sb = new StringBuilder();
4073 >            sb.append('[');
4074 >            Iterator<E> it = iterator();
4075 >            if (it.hasNext()) {
4076 >                for (;;) {
4077 >                    Object e = it.next();
4078 >                    sb.append(e == this ? "(this Collection)" : e);
4079 >                    if (!it.hasNext())
4080                          break;
4081 +                    sb.append(',').append(' ');
4082                  }
4083 <                else if (nextSegmentIndex >= 0) {
4084 <                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
4085 <                    if (seg != null && (currentTable = seg.table) != null)
4086 <                        nextTableIndex = currentTable.length - 1;
4083 >            }
4084 >            return sb.append(']').toString();
4085 >        }
4086 >
4087 >        public final boolean containsAll(Collection<?> c) {
4088 >            if (c != this) {
4089 >                for (Object e : c) {
4090 >                    if (e == null || !contains(e))
4091 >                        return false;
4092                  }
1242                else
1243                    break;
4093              }
4094 +            return true;
4095          }
4096  
4097 <        final HashEntry<K,V> nextEntry() {
4098 <            HashEntry<K,V> e = nextEntry;
4099 <            if (e == null)
4100 <                throw new NoSuchElementException();
4101 <            lastReturned = e; // cannot assign until after null check
4102 <            if ((nextEntry = e.next) == null)
4103 <                advance();
4104 <            return e;
4097 >        public final boolean removeAll(Collection<?> c) {
4098 >            boolean modified = false;
4099 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4100 >                if (c.contains(it.next())) {
4101 >                    it.remove();
4102 >                    modified = true;
4103 >                }
4104 >            }
4105 >            return modified;
4106          }
4107  
4108 <        public final boolean hasNext() { return nextEntry != null; }
4109 <        public final boolean hasMoreElements() { return nextEntry != null; }
4108 >        public final boolean retainAll(Collection<?> c) {
4109 >            boolean modified = false;
4110 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4111 >                if (!c.contains(it.next())) {
4112 >                    it.remove();
4113 >                    modified = true;
4114 >                }
4115 >            }
4116 >            return modified;
4117 >        }
4118  
4119 <        public final void remove() {
4120 <            if (lastReturned == null)
4121 <                throw new IllegalStateException();
4122 <            ConcurrentHashMap.this.remove(lastReturned.key);
4123 <            lastReturned = null;
4119 >    }
4120 >
4121 >    /**
4122 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4123 >     * which additions may optionally be enabled by mapping to a
4124 >     * common value.  This class cannot be directly instantiated.
4125 >     * See {@link #keySet() keySet()},
4126 >     * {@link #keySet(Object) keySet(V)},
4127 >     * {@link #newKeySet() newKeySet()},
4128 >     * {@link #newKeySet(int) newKeySet(int)}.
4129 >     */
4130 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4131 >        implements Set<K>, java.io.Serializable {
4132 >        private static final long serialVersionUID = 7249069246763182397L;
4133 >        private final V value;
4134 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4135 >            super(map);
4136 >            this.value = value;
4137 >        }
4138 >
4139 >        /**
4140 >         * Returns the default mapped value for additions,
4141 >         * or {@code null} if additions are not supported.
4142 >         *
4143 >         * @return the default mapped value for additions, or {@code null}
4144 >         * if not supported
4145 >         */
4146 >        public V getMappedValue() { return value; }
4147 >
4148 >        /**
4149 >         * {@inheritDoc}
4150 >         * @throws NullPointerException if the specified key is null
4151 >         */
4152 >        public boolean contains(Object o) { return map.containsKey(o); }
4153 >
4154 >        /**
4155 >         * Removes the key from this map view, by removing the key (and its
4156 >         * corresponding value) from the backing map.  This method does
4157 >         * nothing if the key is not in the map.
4158 >         *
4159 >         * @param  o the key to be removed from the backing map
4160 >         * @return {@code true} if the backing map contained the specified key
4161 >         * @throws NullPointerException if the specified key is null
4162 >         */
4163 >        public boolean remove(Object o) { return map.remove(o) != null; }
4164 >
4165 >        /**
4166 >         * @return an iterator over the keys of the backing map
4167 >         */
4168 >        public Iterator<K> iterator() {
4169 >            Node<K,V>[] t;
4170 >            ConcurrentHashMap<K,V> m = map;
4171 >            int f = (t = m.table) == null ? 0 : t.length;
4172 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4173 >        }
4174 >
4175 >        /**
4176 >         * Adds the specified key to this set view by mapping the key to
4177 >         * the default mapped value in the backing map, if defined.
4178 >         *
4179 >         * @param e key to be added
4180 >         * @return {@code true} if this set changed as a result of the call
4181 >         * @throws NullPointerException if the specified key is null
4182 >         * @throws UnsupportedOperationException if no default mapped value
4183 >         * for additions was provided
4184 >         */
4185 >        public boolean add(K e) {
4186 >            V v;
4187 >            if ((v = value) == null)
4188 >                throw new UnsupportedOperationException();
4189 >            return map.internalPut(e, v, true) == null;
4190 >        }
4191 >
4192 >        /**
4193 >         * Adds all of the elements in the specified collection to this set,
4194 >         * as if by calling {@link #add} on each one.
4195 >         *
4196 >         * @param c the elements to be inserted into this set
4197 >         * @return {@code true} if this set changed as a result of the call
4198 >         * @throws NullPointerException if the collection or any of its
4199 >         * elements are {@code null}
4200 >         * @throws UnsupportedOperationException if no default mapped value
4201 >         * for additions was provided
4202 >         */
4203 >        public boolean addAll(Collection<? extends K> c) {
4204 >            boolean added = false;
4205 >            V v;
4206 >            if ((v = value) == null)
4207 >                throw new UnsupportedOperationException();
4208 >            for (K e : c) {
4209 >                if (map.internalPut(e, v, true) == null)
4210 >                    added = true;
4211 >            }
4212 >            return added;
4213 >        }
4214 >
4215 >        public int hashCode() {
4216 >            int h = 0;
4217 >            for (K e : this)
4218 >                h += e.hashCode();
4219 >            return h;
4220 >        }
4221 >
4222 >        public boolean equals(Object o) {
4223 >            Set<?> c;
4224 >            return ((o instanceof Set) &&
4225 >                    ((c = (Set<?>)o) == this ||
4226 >                     (containsAll(c) && c.containsAll(this))));
4227 >        }
4228 >
4229 >        public Spliterator<K> spliterator() {
4230 >            Node<K,V>[] t;
4231 >            ConcurrentHashMap<K,V> m = map;
4232 >            long n = m.sumCount();
4233 >            int f = (t = m.table) == null ? 0 : t.length;
4234 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4235 >        }
4236 >
4237 >        public void forEach(Consumer<? super K> action) {
4238 >            if (action == null) throw new NullPointerException();
4239 >            Node<K,V>[] t;
4240 >            if ((t = map.table) != null) {
4241 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4242 >                for (Node<K,V> p; (p = it.advance()) != null; )
4243 >                    action.accept((K)p.key);
4244 >            }
4245          }
4246      }
4247  
4248 <    final class KeyIterator
4249 <        extends HashIterator
4250 <        implements Iterator<K>, Enumeration<K>
4251 <    {
4252 <        public final K next()        { return super.nextEntry().key; }
4253 <        public final K nextElement() { return super.nextEntry().key; }
4254 <    }
4255 <
4256 <    final class ValueIterator
4257 <        extends HashIterator
4258 <        implements Iterator<V>, Enumeration<V>
4259 <    {
4260 <        public final V next()        { return super.nextEntry().value; }
4261 <        public final V nextElement() { return super.nextEntry().value; }
4248 >    /**
4249 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4250 >     * values, in which additions are disabled. This class cannot be
4251 >     * directly instantiated. See {@link #values()}.
4252 >     */
4253 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4254 >        implements Collection<V>, java.io.Serializable {
4255 >        private static final long serialVersionUID = 2249069246763182397L;
4256 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4257 >        public final boolean contains(Object o) {
4258 >            return map.containsValue(o);
4259 >        }
4260 >
4261 >        public final boolean remove(Object o) {
4262 >            if (o != null) {
4263 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4264 >                    if (o.equals(it.next())) {
4265 >                        it.remove();
4266 >                        return true;
4267 >                    }
4268 >                }
4269 >            }
4270 >            return false;
4271 >        }
4272 >
4273 >        public final Iterator<V> iterator() {
4274 >            ConcurrentHashMap<K,V> m = map;
4275 >            Node<K,V>[] t;
4276 >            int f = (t = m.table) == null ? 0 : t.length;
4277 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4278 >        }
4279 >
4280 >        public final boolean add(V e) {
4281 >            throw new UnsupportedOperationException();
4282 >        }
4283 >        public final boolean addAll(Collection<? extends V> c) {
4284 >            throw new UnsupportedOperationException();
4285 >        }
4286 >
4287 >        public Spliterator<V> spliterator() {
4288 >            Node<K,V>[] t;
4289 >            ConcurrentHashMap<K,V> m = map;
4290 >            long n = m.sumCount();
4291 >            int f = (t = m.table) == null ? 0 : t.length;
4292 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4293 >        }
4294 >
4295 >        public void forEach(Consumer<? super V> action) {
4296 >            if (action == null) throw new NullPointerException();
4297 >            Node<K,V>[] t;
4298 >            if ((t = map.table) != null) {
4299 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4300 >                for (Node<K,V> p; (p = it.advance()) != null; )
4301 >                    action.accept(p.val);
4302 >            }
4303 >        }
4304      }
4305  
4306      /**
4307 <     * Custom Entry class used by EntryIterator.next(), that relays
4308 <     * setValue changes to the underlying map.
4309 <     */
4310 <    final class WriteThroughEntry
4311 <        extends AbstractMap.SimpleEntry<K,V>
4312 <    {
4313 <        WriteThroughEntry(K k, V v) {
4314 <            super(k,v);
4307 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4308 >     * entries.  This class cannot be directly instantiated. See
4309 >     * {@link #entrySet()}.
4310 >     */
4311 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4312 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4313 >        private static final long serialVersionUID = 2249069246763182397L;
4314 >        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4315 >
4316 >        public boolean contains(Object o) {
4317 >            Object k, v, r; Map.Entry<?,?> e;
4318 >            return ((o instanceof Map.Entry) &&
4319 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4320 >                    (r = map.get(k)) != null &&
4321 >                    (v = e.getValue()) != null &&
4322 >                    (v == r || v.equals(r)));
4323 >        }
4324 >
4325 >        public boolean remove(Object o) {
4326 >            Object k, v; Map.Entry<?,?> e;
4327 >            return ((o instanceof Map.Entry) &&
4328 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4329 >                    (v = e.getValue()) != null &&
4330 >                    map.remove(k, v));
4331          }
4332  
4333          /**
4334 <         * Sets our entry's value and writes through to the map. The
1297 <         * value to return is somewhat arbitrary here. Since a
1298 <         * WriteThroughEntry does not necessarily track asynchronous
1299 <         * changes, the most recent "previous" value could be
1300 <         * different from what we return (or could even have been
1301 <         * removed in which case the put will re-establish). We do not
1302 <         * and cannot guarantee more.
4334 >         * @return an iterator over the entries of the backing map
4335           */
4336 <        public V setValue(V value) {
4337 <            if (value == null) throw new NullPointerException();
4338 <            V v = super.setValue(value);
4339 <            ConcurrentHashMap.this.put(getKey(), value);
4340 <            return v;
4336 >        public Iterator<Map.Entry<K,V>> iterator() {
4337 >            ConcurrentHashMap<K,V> m = map;
4338 >            Node<K,V>[] t;
4339 >            int f = (t = m.table) == null ? 0 : t.length;
4340 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4341 >        }
4342 >
4343 >        public boolean add(Entry<K,V> e) {
4344 >            return map.internalPut(e.getKey(), e.getValue(), false) == null;
4345 >        }
4346 >
4347 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4348 >            boolean added = false;
4349 >            for (Entry<K,V> e : c) {
4350 >                if (add(e))
4351 >                    added = true;
4352 >            }
4353 >            return added;
4354 >        }
4355 >
4356 >        public final int hashCode() {
4357 >            int h = 0;
4358 >            Node<K,V>[] t;
4359 >            if ((t = map.table) != null) {
4360 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4361 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4362 >                    h += p.hashCode();
4363 >                }
4364 >            }
4365 >            return h;
4366 >        }
4367 >
4368 >        public final boolean equals(Object o) {
4369 >            Set<?> c;
4370 >            return ((o instanceof Set) &&
4371 >                    ((c = (Set<?>)o) == this ||
4372 >                     (containsAll(c) && c.containsAll(this))));
4373 >        }
4374 >
4375 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4376 >            Node<K,V>[] t;
4377 >            ConcurrentHashMap<K,V> m = map;
4378 >            long n = m.sumCount();
4379 >            int f = (t = m.table) == null ? 0 : t.length;
4380 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4381 >        }
4382 >
4383 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4384 >            if (action == null) throw new NullPointerException();
4385 >            Node<K,V>[] t;
4386 >            if ((t = map.table) != null) {
4387 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4388 >                for (Node<K,V> p; (p = it.advance()) != null; )
4389 >                    action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
4390 >            }
4391          }
4392 +
4393      }
4394  
4395 <    final class EntryIterator
4396 <        extends HashIterator
4397 <        implements Iterator<Entry<K,V>>
4398 <    {
4399 <        public Map.Entry<K,V> next() {
4400 <            HashEntry<K,V> e = super.nextEntry();
4401 <            return new WriteThroughEntry(e.key, e.value);
4395 >    // -------------------------------------------------------
4396 >
4397 >    /**
4398 >     * Base class for bulk tasks. Repeats some fields and code from
4399 >     * class Traverser, because we need to subclass CountedCompleter.
4400 >     */
4401 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4402 >        Node<K,V>[] tab;        // same as Traverser
4403 >        Node<K,V> next;
4404 >        int index;
4405 >        int baseIndex;
4406 >        int baseLimit;
4407 >        final int baseSize;
4408 >        int batch;              // split control
4409 >
4410 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4411 >            super(par);
4412 >            this.batch = b;
4413 >            this.index = this.baseIndex = i;
4414 >            if ((this.tab = t) == null)
4415 >                this.baseSize = this.baseLimit = 0;
4416 >            else if (par == null)
4417 >                this.baseSize = this.baseLimit = t.length;
4418 >            else {
4419 >                this.baseLimit = f;
4420 >                this.baseSize = par.baseSize;
4421 >            }
4422 >        }
4423 >
4424 >        /**
4425 >         * Same as Traverser version
4426 >         */
4427 >        final Node<K,V> advance() {
4428 >            Node<K,V> e;
4429 >            if ((e = next) != null)
4430 >                e = e.next;
4431 >            for (;;) {
4432 >                Node<K,V>[] t; int i, n; Object ek;
4433 >                if (e != null)
4434 >                    return next = e;
4435 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4436 >                    (n = t.length) <= (i = index) || i < 0)
4437 >                    return next = null;
4438 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4439 >                    if ((ek = e.key) instanceof TreeBin)
4440 >                        e = ((TreeBin<K,V>)ek).first;
4441 >                    else {
4442 >                        tab = (Node<K,V>[])ek;
4443 >                        e = null;
4444 >                        continue;
4445 >                    }
4446 >                }
4447 >                if ((index += baseSize) >= n)
4448 >                    index = ++baseIndex;
4449 >            }
4450          }
4451      }
4452  
4453 <    final class KeySet extends AbstractSet<K> {
4454 <        public Iterator<K> iterator() {
4455 <            return new KeyIterator();
4453 >    /*
4454 >     * Task classes. Coded in a regular but ugly format/style to
4455 >     * simplify checks that each variant differs in the right way from
4456 >     * others. The null screenings exist because compilers cannot tell
4457 >     * that we've already null-checked task arguments, so we force
4458 >     * simplest hoisted bypass to help avoid convoluted traps.
4459 >     */
4460 >
4461 >    static final class ForEachKeyTask<K,V>
4462 >        extends BulkTask<K,V,Void> {
4463 >        final Consumer<? super K> action;
4464 >        ForEachKeyTask
4465 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4466 >             Consumer<? super K> action) {
4467 >            super(p, b, i, f, t);
4468 >            this.action = action;
4469 >        }
4470 >        public final void compute() {
4471 >            final Consumer<? super K> action;
4472 >            if ((action = this.action) != null) {
4473 >                for (int i = baseIndex, f, h; batch > 0 &&
4474 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4475 >                    addToPendingCount(1);
4476 >                    new ForEachKeyTask<K,V>
4477 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4478 >                         action).fork();
4479 >                }
4480 >                for (Node<K,V> p; (p = advance()) != null;)
4481 >                    action.accept((K)p.key);
4482 >                propagateCompletion();
4483 >            }
4484          }
4485 <        public int size() {
4486 <            return ConcurrentHashMap.this.size();
4485 >    }
4486 >
4487 >    static final class ForEachValueTask<K,V>
4488 >        extends BulkTask<K,V,Void> {
4489 >        final Consumer<? super V> action;
4490 >        ForEachValueTask
4491 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4492 >             Consumer<? super V> action) {
4493 >            super(p, b, i, f, t);
4494 >            this.action = action;
4495 >        }
4496 >        public final void compute() {
4497 >            final Consumer<? super V> action;
4498 >            if ((action = this.action) != null) {
4499 >                for (int i = baseIndex, f, h; batch > 0 &&
4500 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4501 >                    addToPendingCount(1);
4502 >                    new ForEachValueTask<K,V>
4503 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4504 >                         action).fork();
4505 >                }
4506 >                for (Node<K,V> p; (p = advance()) != null;)
4507 >                    action.accept(p.val);
4508 >                propagateCompletion();
4509 >            }
4510          }
4511 <        public boolean isEmpty() {
4512 <            return ConcurrentHashMap.this.isEmpty();
4511 >    }
4512 >
4513 >    static final class ForEachEntryTask<K,V>
4514 >        extends BulkTask<K,V,Void> {
4515 >        final Consumer<? super Entry<K,V>> action;
4516 >        ForEachEntryTask
4517 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4518 >             Consumer<? super Entry<K,V>> action) {
4519 >            super(p, b, i, f, t);
4520 >            this.action = action;
4521 >        }
4522 >        public final void compute() {
4523 >            final Consumer<? super Entry<K,V>> action;
4524 >            if ((action = this.action) != null) {
4525 >                for (int i = baseIndex, f, h; batch > 0 &&
4526 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4527 >                    addToPendingCount(1);
4528 >                    new ForEachEntryTask<K,V>
4529 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4530 >                         action).fork();
4531 >                }
4532 >                for (Node<K,V> p; (p = advance()) != null; )
4533 >                    action.accept(p);
4534 >                propagateCompletion();
4535 >            }
4536          }
4537 <        public boolean contains(Object o) {
4538 <            return ConcurrentHashMap.this.containsKey(o);
4537 >    }
4538 >
4539 >    static final class ForEachMappingTask<K,V>
4540 >        extends BulkTask<K,V,Void> {
4541 >        final BiConsumer<? super K, ? super V> action;
4542 >        ForEachMappingTask
4543 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4544 >             BiConsumer<? super K,? super V> action) {
4545 >            super(p, b, i, f, t);
4546 >            this.action = action;
4547 >        }
4548 >        public final void compute() {
4549 >            final BiConsumer<? super K, ? super V> action;
4550 >            if ((action = this.action) != null) {
4551 >                for (int i = baseIndex, f, h; batch > 0 &&
4552 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4553 >                    addToPendingCount(1);
4554 >                    new ForEachMappingTask<K,V>
4555 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4556 >                         action).fork();
4557 >                }
4558 >                for (Node<K,V> p; (p = advance()) != null; )
4559 >                    action.accept((K)p.key, p.val);
4560 >                propagateCompletion();
4561 >            }
4562          }
4563 <        public boolean remove(Object o) {
4564 <            return ConcurrentHashMap.this.remove(o) != null;
4563 >    }
4564 >
4565 >    static final class ForEachTransformedKeyTask<K,V,U>
4566 >        extends BulkTask<K,V,Void> {
4567 >        final Function<? super K, ? extends U> transformer;
4568 >        final Consumer<? super U> action;
4569 >        ForEachTransformedKeyTask
4570 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4571 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4572 >            super(p, b, i, f, t);
4573 >            this.transformer = transformer; this.action = action;
4574 >        }
4575 >        public final void compute() {
4576 >            final Function<? super K, ? extends U> transformer;
4577 >            final Consumer<? super U> action;
4578 >            if ((transformer = this.transformer) != null &&
4579 >                (action = this.action) != null) {
4580 >                for (int i = baseIndex, f, h; batch > 0 &&
4581 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4582 >                    addToPendingCount(1);
4583 >                    new ForEachTransformedKeyTask<K,V,U>
4584 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4585 >                         transformer, action).fork();
4586 >                }
4587 >                for (Node<K,V> p; (p = advance()) != null; ) {
4588 >                    U u;
4589 >                    if ((u = transformer.apply((K)p.key)) != null)
4590 >                        action.accept(u);
4591 >                }
4592 >                propagateCompletion();
4593 >            }
4594          }
4595 <        public void clear() {
4596 <            ConcurrentHashMap.this.clear();
4595 >    }
4596 >
4597 >    static final class ForEachTransformedValueTask<K,V,U>
4598 >        extends BulkTask<K,V,Void> {
4599 >        final Function<? super V, ? extends U> transformer;
4600 >        final Consumer<? super U> action;
4601 >        ForEachTransformedValueTask
4602 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4603 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4604 >            super(p, b, i, f, t);
4605 >            this.transformer = transformer; this.action = action;
4606 >        }
4607 >        public final void compute() {
4608 >            final Function<? super V, ? extends U> transformer;
4609 >            final Consumer<? super U> action;
4610 >            if ((transformer = this.transformer) != null &&
4611 >                (action = this.action) != null) {
4612 >                for (int i = baseIndex, f, h; batch > 0 &&
4613 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4614 >                    addToPendingCount(1);
4615 >                    new ForEachTransformedValueTask<K,V,U>
4616 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4617 >                         transformer, action).fork();
4618 >                }
4619 >                for (Node<K,V> p; (p = advance()) != null; ) {
4620 >                    U u;
4621 >                    if ((u = transformer.apply(p.val)) != null)
4622 >                        action.accept(u);
4623 >                }
4624 >                propagateCompletion();
4625 >            }
4626          }
4627      }
4628  
4629 <    final class Values extends AbstractCollection<V> {
4630 <        public Iterator<V> iterator() {
4631 <            return new ValueIterator();
4629 >    static final class ForEachTransformedEntryTask<K,V,U>
4630 >        extends BulkTask<K,V,Void> {
4631 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
4632 >        final Consumer<? super U> action;
4633 >        ForEachTransformedEntryTask
4634 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4635 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4636 >            super(p, b, i, f, t);
4637 >            this.transformer = transformer; this.action = action;
4638 >        }
4639 >        public final void compute() {
4640 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
4641 >            final Consumer<? super U> action;
4642 >            if ((transformer = this.transformer) != null &&
4643 >                (action = this.action) != null) {
4644 >                for (int i = baseIndex, f, h; batch > 0 &&
4645 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4646 >                    addToPendingCount(1);
4647 >                    new ForEachTransformedEntryTask<K,V,U>
4648 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4649 >                         transformer, action).fork();
4650 >                }
4651 >                for (Node<K,V> p; (p = advance()) != null; ) {
4652 >                    U u;
4653 >                    if ((u = transformer.apply(p)) != null)
4654 >                        action.accept(u);
4655 >                }
4656 >                propagateCompletion();
4657 >            }
4658          }
4659 <        public int size() {
4660 <            return ConcurrentHashMap.this.size();
4659 >    }
4660 >
4661 >    static final class ForEachTransformedMappingTask<K,V,U>
4662 >        extends BulkTask<K,V,Void> {
4663 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
4664 >        final Consumer<? super U> action;
4665 >        ForEachTransformedMappingTask
4666 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4667 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4668 >             Consumer<? super U> action) {
4669 >            super(p, b, i, f, t);
4670 >            this.transformer = transformer; this.action = action;
4671 >        }
4672 >        public final void compute() {
4673 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
4674 >            final Consumer<? super U> action;
4675 >            if ((transformer = this.transformer) != null &&
4676 >                (action = this.action) != null) {
4677 >                for (int i = baseIndex, f, h; batch > 0 &&
4678 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4679 >                    addToPendingCount(1);
4680 >                    new ForEachTransformedMappingTask<K,V,U>
4681 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4682 >                         transformer, action).fork();
4683 >                }
4684 >                for (Node<K,V> p; (p = advance()) != null; ) {
4685 >                    U u;
4686 >                    if ((u = transformer.apply((K)p.key, p.val)) != null)
4687 >                        action.accept(u);
4688 >                }
4689 >                propagateCompletion();
4690 >            }
4691          }
4692 <        public boolean isEmpty() {
4693 <            return ConcurrentHashMap.this.isEmpty();
4692 >    }
4693 >
4694 >    static final class SearchKeysTask<K,V,U>
4695 >        extends BulkTask<K,V,U> {
4696 >        final Function<? super K, ? extends U> searchFunction;
4697 >        final AtomicReference<U> result;
4698 >        SearchKeysTask
4699 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4700 >             Function<? super K, ? extends U> searchFunction,
4701 >             AtomicReference<U> result) {
4702 >            super(p, b, i, f, t);
4703 >            this.searchFunction = searchFunction; this.result = result;
4704 >        }
4705 >        public final U getRawResult() { return result.get(); }
4706 >        public final void compute() {
4707 >            final Function<? super K, ? extends U> searchFunction;
4708 >            final AtomicReference<U> result;
4709 >            if ((searchFunction = this.searchFunction) != null &&
4710 >                (result = this.result) != null) {
4711 >                for (int i = baseIndex, f, h; batch > 0 &&
4712 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4713 >                    if (result.get() != null)
4714 >                        return;
4715 >                    addToPendingCount(1);
4716 >                    new SearchKeysTask<K,V,U>
4717 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4718 >                         searchFunction, result).fork();
4719 >                }
4720 >                while (result.get() == null) {
4721 >                    U u;
4722 >                    Node<K,V> p;
4723 >                    if ((p = advance()) == null) {
4724 >                        propagateCompletion();
4725 >                        break;
4726 >                    }
4727 >                    if ((u = searchFunction.apply((K)p.key)) != null) {
4728 >                        if (result.compareAndSet(null, u))
4729 >                            quietlyCompleteRoot();
4730 >                        break;
4731 >                    }
4732 >                }
4733 >            }
4734          }
4735 <        public boolean contains(Object o) {
4736 <            return ConcurrentHashMap.this.containsValue(o);
4735 >    }
4736 >
4737 >    static final class SearchValuesTask<K,V,U>
4738 >        extends BulkTask<K,V,U> {
4739 >        final Function<? super V, ? extends U> searchFunction;
4740 >        final AtomicReference<U> result;
4741 >        SearchValuesTask
4742 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4743 >             Function<? super V, ? extends U> searchFunction,
4744 >             AtomicReference<U> result) {
4745 >            super(p, b, i, f, t);
4746 >            this.searchFunction = searchFunction; this.result = result;
4747 >        }
4748 >        public final U getRawResult() { return result.get(); }
4749 >        public final void compute() {
4750 >            final Function<? super V, ? extends U> searchFunction;
4751 >            final AtomicReference<U> result;
4752 >            if ((searchFunction = this.searchFunction) != null &&
4753 >                (result = this.result) != null) {
4754 >                for (int i = baseIndex, f, h; batch > 0 &&
4755 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4756 >                    if (result.get() != null)
4757 >                        return;
4758 >                    addToPendingCount(1);
4759 >                    new SearchValuesTask<K,V,U>
4760 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4761 >                         searchFunction, result).fork();
4762 >                }
4763 >                while (result.get() == null) {
4764 >                    U u;
4765 >                    Node<K,V> p;
4766 >                    if ((p = advance()) == null) {
4767 >                        propagateCompletion();
4768 >                        break;
4769 >                    }
4770 >                    if ((u = searchFunction.apply(p.val)) != null) {
4771 >                        if (result.compareAndSet(null, u))
4772 >                            quietlyCompleteRoot();
4773 >                        break;
4774 >                    }
4775 >                }
4776 >            }
4777          }
4778 <        public void clear() {
4779 <            ConcurrentHashMap.this.clear();
4778 >    }
4779 >
4780 >    static final class SearchEntriesTask<K,V,U>
4781 >        extends BulkTask<K,V,U> {
4782 >        final Function<Entry<K,V>, ? extends U> searchFunction;
4783 >        final AtomicReference<U> result;
4784 >        SearchEntriesTask
4785 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4786 >             Function<Entry<K,V>, ? extends U> searchFunction,
4787 >             AtomicReference<U> result) {
4788 >            super(p, b, i, f, t);
4789 >            this.searchFunction = searchFunction; this.result = result;
4790 >        }
4791 >        public final U getRawResult() { return result.get(); }
4792 >        public final void compute() {
4793 >            final Function<Entry<K,V>, ? extends U> searchFunction;
4794 >            final AtomicReference<U> result;
4795 >            if ((searchFunction = this.searchFunction) != null &&
4796 >                (result = this.result) != null) {
4797 >                for (int i = baseIndex, f, h; batch > 0 &&
4798 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4799 >                    if (result.get() != null)
4800 >                        return;
4801 >                    addToPendingCount(1);
4802 >                    new SearchEntriesTask<K,V,U>
4803 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4804 >                         searchFunction, result).fork();
4805 >                }
4806 >                while (result.get() == null) {
4807 >                    U u;
4808 >                    Node<K,V> p;
4809 >                    if ((p = advance()) == null) {
4810 >                        propagateCompletion();
4811 >                        break;
4812 >                    }
4813 >                    if ((u = searchFunction.apply(p)) != null) {
4814 >                        if (result.compareAndSet(null, u))
4815 >                            quietlyCompleteRoot();
4816 >                        return;
4817 >                    }
4818 >                }
4819 >            }
4820          }
4821      }
4822  
4823 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4824 <        public Iterator<Map.Entry<K,V>> iterator() {
4825 <            return new EntryIterator();
4823 >    static final class SearchMappingsTask<K,V,U>
4824 >        extends BulkTask<K,V,U> {
4825 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4826 >        final AtomicReference<U> result;
4827 >        SearchMappingsTask
4828 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4829 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
4830 >             AtomicReference<U> result) {
4831 >            super(p, b, i, f, t);
4832 >            this.searchFunction = searchFunction; this.result = result;
4833 >        }
4834 >        public final U getRawResult() { return result.get(); }
4835 >        public final void compute() {
4836 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4837 >            final AtomicReference<U> result;
4838 >            if ((searchFunction = this.searchFunction) != null &&
4839 >                (result = this.result) != null) {
4840 >                for (int i = baseIndex, f, h; batch > 0 &&
4841 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4842 >                    if (result.get() != null)
4843 >                        return;
4844 >                    addToPendingCount(1);
4845 >                    new SearchMappingsTask<K,V,U>
4846 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4847 >                         searchFunction, result).fork();
4848 >                }
4849 >                while (result.get() == null) {
4850 >                    U u;
4851 >                    Node<K,V> p;
4852 >                    if ((p = advance()) == null) {
4853 >                        propagateCompletion();
4854 >                        break;
4855 >                    }
4856 >                    if ((u = searchFunction.apply((K)p.key, p.val)) != null) {
4857 >                        if (result.compareAndSet(null, u))
4858 >                            quietlyCompleteRoot();
4859 >                        break;
4860 >                    }
4861 >                }
4862 >            }
4863          }
4864 <        public boolean contains(Object o) {
4865 <            if (!(o instanceof Map.Entry))
4866 <                return false;
4867 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4868 <            V v = ConcurrentHashMap.this.get(e.getKey());
4869 <            return v != null && v.equals(e.getValue());
4864 >    }
4865 >
4866 >    static final class ReduceKeysTask<K,V>
4867 >        extends BulkTask<K,V,K> {
4868 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
4869 >        K result;
4870 >        ReduceKeysTask<K,V> rights, nextRight;
4871 >        ReduceKeysTask
4872 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4873 >             ReduceKeysTask<K,V> nextRight,
4874 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
4875 >            super(p, b, i, f, t); this.nextRight = nextRight;
4876 >            this.reducer = reducer;
4877 >        }
4878 >        public final K getRawResult() { return result; }
4879 >        public final void compute() {
4880 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
4881 >            if ((reducer = this.reducer) != null) {
4882 >                for (int i = baseIndex, f, h; batch > 0 &&
4883 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4884 >                    addToPendingCount(1);
4885 >                    (rights = new ReduceKeysTask<K,V>
4886 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
4887 >                      rights, reducer)).fork();
4888 >                }
4889 >                K r = null;
4890 >                for (Node<K,V> p; (p = advance()) != null; ) {
4891 >                    K u = (K)p.key;
4892 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
4893 >                }
4894 >                result = r;
4895 >                CountedCompleter<?> c;
4896 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
4897 >                    ReduceKeysTask<K,V>
4898 >                        t = (ReduceKeysTask<K,V>)c,
4899 >                        s = t.rights;
4900 >                    while (s != null) {
4901 >                        K tr, sr;
4902 >                        if ((sr = s.result) != null)
4903 >                            t.result = (((tr = t.result) == null) ? sr :
4904 >                                        reducer.apply(tr, sr));
4905 >                        s = t.rights = s.nextRight;
4906 >                    }
4907 >                }
4908 >            }
4909          }
4910 <        public boolean remove(Object o) {
4911 <            if (!(o instanceof Map.Entry))
4912 <                return false;
4913 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4914 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4910 >    }
4911 >
4912 >    static final class ReduceValuesTask<K,V>
4913 >        extends BulkTask<K,V,V> {
4914 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
4915 >        V result;
4916 >        ReduceValuesTask<K,V> rights, nextRight;
4917 >        ReduceValuesTask
4918 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4919 >             ReduceValuesTask<K,V> nextRight,
4920 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
4921 >            super(p, b, i, f, t); this.nextRight = nextRight;
4922 >            this.reducer = reducer;
4923 >        }
4924 >        public final V getRawResult() { return result; }
4925 >        public final void compute() {
4926 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
4927 >            if ((reducer = this.reducer) != null) {
4928 >                for (int i = baseIndex, f, h; batch > 0 &&
4929 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4930 >                    addToPendingCount(1);
4931 >                    (rights = new ReduceValuesTask<K,V>
4932 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
4933 >                      rights, reducer)).fork();
4934 >                }
4935 >                V r = null;
4936 >                for (Node<K,V> p; (p = advance()) != null; ) {
4937 >                    V v = p.val;
4938 >                    r = (r == null) ? v : reducer.apply(r, v);
4939 >                }
4940 >                result = r;
4941 >                CountedCompleter<?> c;
4942 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
4943 >                    ReduceValuesTask<K,V>
4944 >                        t = (ReduceValuesTask<K,V>)c,
4945 >                        s = t.rights;
4946 >                    while (s != null) {
4947 >                        V tr, sr;
4948 >                        if ((sr = s.result) != null)
4949 >                            t.result = (((tr = t.result) == null) ? sr :
4950 >                                        reducer.apply(tr, sr));
4951 >                        s = t.rights = s.nextRight;
4952 >                    }
4953 >                }
4954 >            }
4955          }
4956 <        public int size() {
4957 <            return ConcurrentHashMap.this.size();
4956 >    }
4957 >
4958 >    static final class ReduceEntriesTask<K,V>
4959 >        extends BulkTask<K,V,Map.Entry<K,V>> {
4960 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
4961 >        Map.Entry<K,V> result;
4962 >        ReduceEntriesTask<K,V> rights, nextRight;
4963 >        ReduceEntriesTask
4964 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4965 >             ReduceEntriesTask<K,V> nextRight,
4966 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4967 >            super(p, b, i, f, t); this.nextRight = nextRight;
4968 >            this.reducer = reducer;
4969 >        }
4970 >        public final Map.Entry<K,V> getRawResult() { return result; }
4971 >        public final void compute() {
4972 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
4973 >            if ((reducer = this.reducer) != null) {
4974 >                for (int i = baseIndex, f, h; batch > 0 &&
4975 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4976 >                    addToPendingCount(1);
4977 >                    (rights = new ReduceEntriesTask<K,V>
4978 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
4979 >                      rights, reducer)).fork();
4980 >                }
4981 >                Map.Entry<K,V> r = null;
4982 >                for (Node<K,V> p; (p = advance()) != null; )
4983 >                    r = (r == null) ? p : reducer.apply(r, p);
4984 >                result = r;
4985 >                CountedCompleter<?> c;
4986 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
4987 >                    ReduceEntriesTask<K,V>
4988 >                        t = (ReduceEntriesTask<K,V>)c,
4989 >                        s = t.rights;
4990 >                    while (s != null) {
4991 >                        Map.Entry<K,V> tr, sr;
4992 >                        if ((sr = s.result) != null)
4993 >                            t.result = (((tr = t.result) == null) ? sr :
4994 >                                        reducer.apply(tr, sr));
4995 >                        s = t.rights = s.nextRight;
4996 >                    }
4997 >                }
4998 >            }
4999          }
5000 <        public boolean isEmpty() {
5001 <            return ConcurrentHashMap.this.isEmpty();
5000 >    }
5001 >
5002 >    static final class MapReduceKeysTask<K,V,U>
5003 >        extends BulkTask<K,V,U> {
5004 >        final Function<? super K, ? extends U> transformer;
5005 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5006 >        U result;
5007 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5008 >        MapReduceKeysTask
5009 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5010 >             MapReduceKeysTask<K,V,U> nextRight,
5011 >             Function<? super K, ? extends U> transformer,
5012 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5013 >            super(p, b, i, f, t); this.nextRight = nextRight;
5014 >            this.transformer = transformer;
5015 >            this.reducer = reducer;
5016 >        }
5017 >        public final U getRawResult() { return result; }
5018 >        public final void compute() {
5019 >            final Function<? super K, ? extends U> transformer;
5020 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5021 >            if ((transformer = this.transformer) != null &&
5022 >                (reducer = this.reducer) != null) {
5023 >                for (int i = baseIndex, f, h; batch > 0 &&
5024 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5025 >                    addToPendingCount(1);
5026 >                    (rights = new MapReduceKeysTask<K,V,U>
5027 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5028 >                      rights, transformer, reducer)).fork();
5029 >                }
5030 >                U r = null;
5031 >                for (Node<K,V> p; (p = advance()) != null; ) {
5032 >                    U u;
5033 >                    if ((u = transformer.apply((K)p.key)) != null)
5034 >                        r = (r == null) ? u : reducer.apply(r, u);
5035 >                }
5036 >                result = r;
5037 >                CountedCompleter<?> c;
5038 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5039 >                    MapReduceKeysTask<K,V,U>
5040 >                        t = (MapReduceKeysTask<K,V,U>)c,
5041 >                        s = t.rights;
5042 >                    while (s != null) {
5043 >                        U tr, sr;
5044 >                        if ((sr = s.result) != null)
5045 >                            t.result = (((tr = t.result) == null) ? sr :
5046 >                                        reducer.apply(tr, sr));
5047 >                        s = t.rights = s.nextRight;
5048 >                    }
5049 >                }
5050 >            }
5051          }
5052 <        public void clear() {
5053 <            ConcurrentHashMap.this.clear();
5052 >    }
5053 >
5054 >    static final class MapReduceValuesTask<K,V,U>
5055 >        extends BulkTask<K,V,U> {
5056 >        final Function<? super V, ? extends U> transformer;
5057 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5058 >        U result;
5059 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5060 >        MapReduceValuesTask
5061 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5062 >             MapReduceValuesTask<K,V,U> nextRight,
5063 >             Function<? super V, ? extends U> transformer,
5064 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5065 >            super(p, b, i, f, t); this.nextRight = nextRight;
5066 >            this.transformer = transformer;
5067 >            this.reducer = reducer;
5068 >        }
5069 >        public final U getRawResult() { return result; }
5070 >        public final void compute() {
5071 >            final Function<? super V, ? extends U> transformer;
5072 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5073 >            if ((transformer = this.transformer) != null &&
5074 >                (reducer = this.reducer) != null) {
5075 >                for (int i = baseIndex, f, h; batch > 0 &&
5076 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5077 >                    addToPendingCount(1);
5078 >                    (rights = new MapReduceValuesTask<K,V,U>
5079 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5080 >                      rights, transformer, reducer)).fork();
5081 >                }
5082 >                U r = null;
5083 >                for (Node<K,V> p; (p = advance()) != null; ) {
5084 >                    U u;
5085 >                    if ((u = transformer.apply(p.val)) != null)
5086 >                        r = (r == null) ? u : reducer.apply(r, u);
5087 >                }
5088 >                result = r;
5089 >                CountedCompleter<?> c;
5090 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5091 >                    MapReduceValuesTask<K,V,U>
5092 >                        t = (MapReduceValuesTask<K,V,U>)c,
5093 >                        s = t.rights;
5094 >                    while (s != null) {
5095 >                        U tr, sr;
5096 >                        if ((sr = s.result) != null)
5097 >                            t.result = (((tr = t.result) == null) ? sr :
5098 >                                        reducer.apply(tr, sr));
5099 >                        s = t.rights = s.nextRight;
5100 >                    }
5101 >                }
5102 >            }
5103          }
5104      }
5105  
5106 <    /* ---------------- Serialization Support -------------- */
5106 >    static final class MapReduceEntriesTask<K,V,U>
5107 >        extends BulkTask<K,V,U> {
5108 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5109 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5110 >        U result;
5111 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5112 >        MapReduceEntriesTask
5113 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5114 >             MapReduceEntriesTask<K,V,U> nextRight,
5115 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5116 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5117 >            super(p, b, i, f, t); this.nextRight = nextRight;
5118 >            this.transformer = transformer;
5119 >            this.reducer = reducer;
5120 >        }
5121 >        public final U getRawResult() { return result; }
5122 >        public final void compute() {
5123 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5124 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5125 >            if ((transformer = this.transformer) != null &&
5126 >                (reducer = this.reducer) != null) {
5127 >                for (int i = baseIndex, f, h; batch > 0 &&
5128 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5129 >                    addToPendingCount(1);
5130 >                    (rights = new MapReduceEntriesTask<K,V,U>
5131 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5132 >                      rights, transformer, reducer)).fork();
5133 >                }
5134 >                U r = null;
5135 >                for (Node<K,V> p; (p = advance()) != null; ) {
5136 >                    U u;
5137 >                    if ((u = transformer.apply(p)) != null)
5138 >                        r = (r == null) ? u : reducer.apply(r, u);
5139 >                }
5140 >                result = r;
5141 >                CountedCompleter<?> c;
5142 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5143 >                    MapReduceEntriesTask<K,V,U>
5144 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5145 >                        s = t.rights;
5146 >                    while (s != null) {
5147 >                        U tr, sr;
5148 >                        if ((sr = s.result) != null)
5149 >                            t.result = (((tr = t.result) == null) ? sr :
5150 >                                        reducer.apply(tr, sr));
5151 >                        s = t.rights = s.nextRight;
5152 >                    }
5153 >                }
5154 >            }
5155 >        }
5156 >    }
5157  
5158 <    /**
5159 <     * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
5160 <     * stream (i.e., serializes it).
5161 <     * @param s the stream
5162 <     * @serialData
5163 <     * the key (Object) and value (Object)
5164 <     * for each key-value mapping, followed by a null pair.
5165 <     * The key-value mappings are emitted in no particular order.
5166 <     */
5167 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
5168 <        // force all segments for serialization compatibility
5169 <        for (int k = 0; k < segments.length; ++k)
5170 <            ensureSegment(k);
5171 <        s.defaultWriteObject();
5172 <
5173 <        final Segment<K,V>[] segments = this.segments;
5174 <        for (int k = 0; k < segments.length; ++k) {
5175 <            Segment<K,V> seg = segmentAt(segments, k);
5176 <            seg.lock();
5177 <            try {
5178 <                HashEntry<K,V>[] tab = seg.table;
5179 <                for (int i = 0; i < tab.length; ++i) {
5180 <                    HashEntry<K,V> e;
5181 <                    for (e = entryAt(tab, i); e != null; e = e.next) {
5182 <                        s.writeObject(e.key);
5183 <                        s.writeObject(e.value);
5158 >    static final class MapReduceMappingsTask<K,V,U>
5159 >        extends BulkTask<K,V,U> {
5160 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5161 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5162 >        U result;
5163 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5164 >        MapReduceMappingsTask
5165 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5166 >             MapReduceMappingsTask<K,V,U> nextRight,
5167 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5168 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5169 >            super(p, b, i, f, t); this.nextRight = nextRight;
5170 >            this.transformer = transformer;
5171 >            this.reducer = reducer;
5172 >        }
5173 >        public final U getRawResult() { return result; }
5174 >        public final void compute() {
5175 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5176 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5177 >            if ((transformer = this.transformer) != null &&
5178 >                (reducer = this.reducer) != null) {
5179 >                for (int i = baseIndex, f, h; batch > 0 &&
5180 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5181 >                    addToPendingCount(1);
5182 >                    (rights = new MapReduceMappingsTask<K,V,U>
5183 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5184 >                      rights, transformer, reducer)).fork();
5185 >                }
5186 >                U r = null;
5187 >                for (Node<K,V> p; (p = advance()) != null; ) {
5188 >                    U u;
5189 >                    if ((u = transformer.apply((K)p.key, p.val)) != null)
5190 >                        r = (r == null) ? u : reducer.apply(r, u);
5191 >                }
5192 >                result = r;
5193 >                CountedCompleter<?> c;
5194 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5195 >                    MapReduceMappingsTask<K,V,U>
5196 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5197 >                        s = t.rights;
5198 >                    while (s != null) {
5199 >                        U tr, sr;
5200 >                        if ((sr = s.result) != null)
5201 >                            t.result = (((tr = t.result) == null) ? sr :
5202 >                                        reducer.apply(tr, sr));
5203 >                        s = t.rights = s.nextRight;
5204                      }
5205                  }
1419            } finally {
1420                seg.unlock();
5206              }
5207          }
1423        s.writeObject(null);
1424        s.writeObject(null);
5208      }
5209  
5210 <    /**
5211 <     * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
5212 <     * stream (i.e., deserializes it).
5213 <     * @param s the stream
5214 <     */
5215 <    @SuppressWarnings("unchecked")
5216 <    private void readObject(java.io.ObjectInputStream s)
5217 <        throws IOException, ClassNotFoundException {
5218 <        s.defaultReadObject();
5210 >    static final class MapReduceKeysToDoubleTask<K,V>
5211 >        extends BulkTask<K,V,Double> {
5212 >        final ToDoubleFunction<? super K> transformer;
5213 >        final DoubleBinaryOperator reducer;
5214 >        final double basis;
5215 >        double result;
5216 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5217 >        MapReduceKeysToDoubleTask
5218 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5219 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5220 >             ToDoubleFunction<? super K> transformer,
5221 >             double basis,
5222 >             DoubleBinaryOperator reducer) {
5223 >            super(p, b, i, f, t); this.nextRight = nextRight;
5224 >            this.transformer = transformer;
5225 >            this.basis = basis; this.reducer = reducer;
5226 >        }
5227 >        public final Double getRawResult() { return result; }
5228 >        public final void compute() {
5229 >            final ToDoubleFunction<? super K> transformer;
5230 >            final DoubleBinaryOperator reducer;
5231 >            if ((transformer = this.transformer) != null &&
5232 >                (reducer = this.reducer) != null) {
5233 >                double r = this.basis;
5234 >                for (int i = baseIndex, f, h; batch > 0 &&
5235 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5236 >                    addToPendingCount(1);
5237 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5238 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5239 >                      rights, transformer, r, reducer)).fork();
5240 >                }
5241 >                for (Node<K,V> p; (p = advance()) != null; )
5242 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key));
5243 >                result = r;
5244 >                CountedCompleter<?> c;
5245 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5246 >                    MapReduceKeysToDoubleTask<K,V>
5247 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5248 >                        s = t.rights;
5249 >                    while (s != null) {
5250 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5251 >                        s = t.rights = s.nextRight;
5252 >                    }
5253 >                }
5254 >            }
5255 >        }
5256 >    }
5257  
5258 <        // Re-initialize segments to be minimally sized, and let grow.
5259 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
5260 <        final Segment<K,V>[] segments = this.segments;
5261 <        for (int k = 0; k < segments.length; ++k) {
5262 <            Segment<K,V> seg = segments[k];
5263 <            if (seg != null) {
5264 <                seg.threshold = (int)(cap * seg.loadFactor);
5265 <                seg.table = (HashEntry<K,V>[]) new HashEntry<?,?>[cap];
5258 >    static final class MapReduceValuesToDoubleTask<K,V>
5259 >        extends BulkTask<K,V,Double> {
5260 >        final ToDoubleFunction<? super V> transformer;
5261 >        final DoubleBinaryOperator reducer;
5262 >        final double basis;
5263 >        double result;
5264 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5265 >        MapReduceValuesToDoubleTask
5266 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5267 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5268 >             ToDoubleFunction<? super V> transformer,
5269 >             double basis,
5270 >             DoubleBinaryOperator reducer) {
5271 >            super(p, b, i, f, t); this.nextRight = nextRight;
5272 >            this.transformer = transformer;
5273 >            this.basis = basis; this.reducer = reducer;
5274 >        }
5275 >        public final Double getRawResult() { return result; }
5276 >        public final void compute() {
5277 >            final ToDoubleFunction<? super V> transformer;
5278 >            final DoubleBinaryOperator reducer;
5279 >            if ((transformer = this.transformer) != null &&
5280 >                (reducer = this.reducer) != null) {
5281 >                double r = this.basis;
5282 >                for (int i = baseIndex, f, h; batch > 0 &&
5283 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5284 >                    addToPendingCount(1);
5285 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5286 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5287 >                      rights, transformer, r, reducer)).fork();
5288 >                }
5289 >                for (Node<K,V> p; (p = advance()) != null; )
5290 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5291 >                result = r;
5292 >                CountedCompleter<?> c;
5293 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5294 >                    MapReduceValuesToDoubleTask<K,V>
5295 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5296 >                        s = t.rights;
5297 >                    while (s != null) {
5298 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5299 >                        s = t.rights = s.nextRight;
5300 >                    }
5301 >                }
5302              }
5303          }
5304 +    }
5305  
5306 <        // Read the keys and values, and put the mappings in the table
5307 <        for (;;) {
5308 <            K key = (K) s.readObject();
5309 <            V value = (V) s.readObject();
5310 <            if (key == null)
5311 <                break;
5312 <            put(key, value);
5306 >    static final class MapReduceEntriesToDoubleTask<K,V>
5307 >        extends BulkTask<K,V,Double> {
5308 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5309 >        final DoubleBinaryOperator reducer;
5310 >        final double basis;
5311 >        double result;
5312 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5313 >        MapReduceEntriesToDoubleTask
5314 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5315 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5316 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5317 >             double basis,
5318 >             DoubleBinaryOperator reducer) {
5319 >            super(p, b, i, f, t); this.nextRight = nextRight;
5320 >            this.transformer = transformer;
5321 >            this.basis = basis; this.reducer = reducer;
5322 >        }
5323 >        public final Double getRawResult() { return result; }
5324 >        public final void compute() {
5325 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5326 >            final DoubleBinaryOperator reducer;
5327 >            if ((transformer = this.transformer) != null &&
5328 >                (reducer = this.reducer) != null) {
5329 >                double r = this.basis;
5330 >                for (int i = baseIndex, f, h; batch > 0 &&
5331 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5332 >                    addToPendingCount(1);
5333 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5334 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5335 >                      rights, transformer, r, reducer)).fork();
5336 >                }
5337 >                for (Node<K,V> p; (p = advance()) != null; )
5338 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5339 >                result = r;
5340 >                CountedCompleter<?> c;
5341 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5342 >                    MapReduceEntriesToDoubleTask<K,V>
5343 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5344 >                        s = t.rights;
5345 >                    while (s != null) {
5346 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5347 >                        s = t.rights = s.nextRight;
5348 >                    }
5349 >                }
5350 >            }
5351 >        }
5352 >    }
5353 >
5354 >    static final class MapReduceMappingsToDoubleTask<K,V>
5355 >        extends BulkTask<K,V,Double> {
5356 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5357 >        final DoubleBinaryOperator reducer;
5358 >        final double basis;
5359 >        double result;
5360 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5361 >        MapReduceMappingsToDoubleTask
5362 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5363 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5364 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5365 >             double basis,
5366 >             DoubleBinaryOperator reducer) {
5367 >            super(p, b, i, f, t); this.nextRight = nextRight;
5368 >            this.transformer = transformer;
5369 >            this.basis = basis; this.reducer = reducer;
5370 >        }
5371 >        public final Double getRawResult() { return result; }
5372 >        public final void compute() {
5373 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5374 >            final DoubleBinaryOperator reducer;
5375 >            if ((transformer = this.transformer) != null &&
5376 >                (reducer = this.reducer) != null) {
5377 >                double r = this.basis;
5378 >                for (int i = baseIndex, f, h; batch > 0 &&
5379 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5380 >                    addToPendingCount(1);
5381 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5382 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5383 >                      rights, transformer, r, reducer)).fork();
5384 >                }
5385 >                for (Node<K,V> p; (p = advance()) != null; )
5386 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key, p.val));
5387 >                result = r;
5388 >                CountedCompleter<?> c;
5389 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5390 >                    MapReduceMappingsToDoubleTask<K,V>
5391 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5392 >                        s = t.rights;
5393 >                    while (s != null) {
5394 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5395 >                        s = t.rights = s.nextRight;
5396 >                    }
5397 >                }
5398 >            }
5399 >        }
5400 >    }
5401 >
5402 >    static final class MapReduceKeysToLongTask<K,V>
5403 >        extends BulkTask<K,V,Long> {
5404 >        final ToLongFunction<? super K> transformer;
5405 >        final LongBinaryOperator reducer;
5406 >        final long basis;
5407 >        long result;
5408 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5409 >        MapReduceKeysToLongTask
5410 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5411 >             MapReduceKeysToLongTask<K,V> nextRight,
5412 >             ToLongFunction<? super K> transformer,
5413 >             long basis,
5414 >             LongBinaryOperator reducer) {
5415 >            super(p, b, i, f, t); this.nextRight = nextRight;
5416 >            this.transformer = transformer;
5417 >            this.basis = basis; this.reducer = reducer;
5418 >        }
5419 >        public final Long getRawResult() { return result; }
5420 >        public final void compute() {
5421 >            final ToLongFunction<? super K> transformer;
5422 >            final LongBinaryOperator reducer;
5423 >            if ((transformer = this.transformer) != null &&
5424 >                (reducer = this.reducer) != null) {
5425 >                long r = this.basis;
5426 >                for (int i = baseIndex, f, h; batch > 0 &&
5427 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5428 >                    addToPendingCount(1);
5429 >                    (rights = new MapReduceKeysToLongTask<K,V>
5430 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5431 >                      rights, transformer, r, reducer)).fork();
5432 >                }
5433 >                for (Node<K,V> p; (p = advance()) != null; )
5434 >                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key));
5435 >                result = r;
5436 >                CountedCompleter<?> c;
5437 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5438 >                    MapReduceKeysToLongTask<K,V>
5439 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5440 >                        s = t.rights;
5441 >                    while (s != null) {
5442 >                        t.result = reducer.applyAsLong(t.result, s.result);
5443 >                        s = t.rights = s.nextRight;
5444 >                    }
5445 >                }
5446 >            }
5447 >        }
5448 >    }
5449 >
5450 >    static final class MapReduceValuesToLongTask<K,V>
5451 >        extends BulkTask<K,V,Long> {
5452 >        final ToLongFunction<? super V> transformer;
5453 >        final LongBinaryOperator reducer;
5454 >        final long basis;
5455 >        long result;
5456 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5457 >        MapReduceValuesToLongTask
5458 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5459 >             MapReduceValuesToLongTask<K,V> nextRight,
5460 >             ToLongFunction<? super V> transformer,
5461 >             long basis,
5462 >             LongBinaryOperator reducer) {
5463 >            super(p, b, i, f, t); this.nextRight = nextRight;
5464 >            this.transformer = transformer;
5465 >            this.basis = basis; this.reducer = reducer;
5466 >        }
5467 >        public final Long getRawResult() { return result; }
5468 >        public final void compute() {
5469 >            final ToLongFunction<? super V> transformer;
5470 >            final LongBinaryOperator reducer;
5471 >            if ((transformer = this.transformer) != null &&
5472 >                (reducer = this.reducer) != null) {
5473 >                long r = this.basis;
5474 >                for (int i = baseIndex, f, h; batch > 0 &&
5475 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5476 >                    addToPendingCount(1);
5477 >                    (rights = new MapReduceValuesToLongTask<K,V>
5478 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5479 >                      rights, transformer, r, reducer)).fork();
5480 >                }
5481 >                for (Node<K,V> p; (p = advance()) != null; )
5482 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5483 >                result = r;
5484 >                CountedCompleter<?> c;
5485 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5486 >                    MapReduceValuesToLongTask<K,V>
5487 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5488 >                        s = t.rights;
5489 >                    while (s != null) {
5490 >                        t.result = reducer.applyAsLong(t.result, s.result);
5491 >                        s = t.rights = s.nextRight;
5492 >                    }
5493 >                }
5494 >            }
5495 >        }
5496 >    }
5497 >
5498 >    static final class MapReduceEntriesToLongTask<K,V>
5499 >        extends BulkTask<K,V,Long> {
5500 >        final ToLongFunction<Map.Entry<K,V>> transformer;
5501 >        final LongBinaryOperator reducer;
5502 >        final long basis;
5503 >        long result;
5504 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5505 >        MapReduceEntriesToLongTask
5506 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5507 >             MapReduceEntriesToLongTask<K,V> nextRight,
5508 >             ToLongFunction<Map.Entry<K,V>> transformer,
5509 >             long basis,
5510 >             LongBinaryOperator reducer) {
5511 >            super(p, b, i, f, t); this.nextRight = nextRight;
5512 >            this.transformer = transformer;
5513 >            this.basis = basis; this.reducer = reducer;
5514 >        }
5515 >        public final Long getRawResult() { return result; }
5516 >        public final void compute() {
5517 >            final ToLongFunction<Map.Entry<K,V>> transformer;
5518 >            final LongBinaryOperator reducer;
5519 >            if ((transformer = this.transformer) != null &&
5520 >                (reducer = this.reducer) != null) {
5521 >                long r = this.basis;
5522 >                for (int i = baseIndex, f, h; batch > 0 &&
5523 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5524 >                    addToPendingCount(1);
5525 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5526 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5527 >                      rights, transformer, r, reducer)).fork();
5528 >                }
5529 >                for (Node<K,V> p; (p = advance()) != null; )
5530 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5531 >                result = r;
5532 >                CountedCompleter<?> c;
5533 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5534 >                    MapReduceEntriesToLongTask<K,V>
5535 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5536 >                        s = t.rights;
5537 >                    while (s != null) {
5538 >                        t.result = reducer.applyAsLong(t.result, s.result);
5539 >                        s = t.rights = s.nextRight;
5540 >                    }
5541 >                }
5542 >            }
5543 >        }
5544 >    }
5545 >
5546 >    static final class MapReduceMappingsToLongTask<K,V>
5547 >        extends BulkTask<K,V,Long> {
5548 >        final ToLongBiFunction<? super K, ? super V> transformer;
5549 >        final LongBinaryOperator reducer;
5550 >        final long basis;
5551 >        long result;
5552 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5553 >        MapReduceMappingsToLongTask
5554 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5555 >             MapReduceMappingsToLongTask<K,V> nextRight,
5556 >             ToLongBiFunction<? super K, ? super V> transformer,
5557 >             long basis,
5558 >             LongBinaryOperator reducer) {
5559 >            super(p, b, i, f, t); this.nextRight = nextRight;
5560 >            this.transformer = transformer;
5561 >            this.basis = basis; this.reducer = reducer;
5562 >        }
5563 >        public final Long getRawResult() { return result; }
5564 >        public final void compute() {
5565 >            final ToLongBiFunction<? super K, ? super V> transformer;
5566 >            final LongBinaryOperator reducer;
5567 >            if ((transformer = this.transformer) != null &&
5568 >                (reducer = this.reducer) != null) {
5569 >                long r = this.basis;
5570 >                for (int i = baseIndex, f, h; batch > 0 &&
5571 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5572 >                    addToPendingCount(1);
5573 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5574 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5575 >                      rights, transformer, r, reducer)).fork();
5576 >                }
5577 >                for (Node<K,V> p; (p = advance()) != null; )
5578 >                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key, p.val));
5579 >                result = r;
5580 >                CountedCompleter<?> c;
5581 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5582 >                    MapReduceMappingsToLongTask<K,V>
5583 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5584 >                        s = t.rights;
5585 >                    while (s != null) {
5586 >                        t.result = reducer.applyAsLong(t.result, s.result);
5587 >                        s = t.rights = s.nextRight;
5588 >                    }
5589 >                }
5590 >            }
5591 >        }
5592 >    }
5593 >
5594 >    static final class MapReduceKeysToIntTask<K,V>
5595 >        extends BulkTask<K,V,Integer> {
5596 >        final ToIntFunction<? super K> transformer;
5597 >        final IntBinaryOperator reducer;
5598 >        final int basis;
5599 >        int result;
5600 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5601 >        MapReduceKeysToIntTask
5602 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5603 >             MapReduceKeysToIntTask<K,V> nextRight,
5604 >             ToIntFunction<? super K> transformer,
5605 >             int basis,
5606 >             IntBinaryOperator reducer) {
5607 >            super(p, b, i, f, t); this.nextRight = nextRight;
5608 >            this.transformer = transformer;
5609 >            this.basis = basis; this.reducer = reducer;
5610 >        }
5611 >        public final Integer getRawResult() { return result; }
5612 >        public final void compute() {
5613 >            final ToIntFunction<? super K> transformer;
5614 >            final IntBinaryOperator reducer;
5615 >            if ((transformer = this.transformer) != null &&
5616 >                (reducer = this.reducer) != null) {
5617 >                int r = this.basis;
5618 >                for (int i = baseIndex, f, h; batch > 0 &&
5619 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5620 >                    addToPendingCount(1);
5621 >                    (rights = new MapReduceKeysToIntTask<K,V>
5622 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5623 >                      rights, transformer, r, reducer)).fork();
5624 >                }
5625 >                for (Node<K,V> p; (p = advance()) != null; )
5626 >                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key));
5627 >                result = r;
5628 >                CountedCompleter<?> c;
5629 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5630 >                    MapReduceKeysToIntTask<K,V>
5631 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5632 >                        s = t.rights;
5633 >                    while (s != null) {
5634 >                        t.result = reducer.applyAsInt(t.result, s.result);
5635 >                        s = t.rights = s.nextRight;
5636 >                    }
5637 >                }
5638 >            }
5639 >        }
5640 >    }
5641 >
5642 >    static final class MapReduceValuesToIntTask<K,V>
5643 >        extends BulkTask<K,V,Integer> {
5644 >        final ToIntFunction<? super V> transformer;
5645 >        final IntBinaryOperator reducer;
5646 >        final int basis;
5647 >        int result;
5648 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5649 >        MapReduceValuesToIntTask
5650 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5651 >             MapReduceValuesToIntTask<K,V> nextRight,
5652 >             ToIntFunction<? super V> transformer,
5653 >             int basis,
5654 >             IntBinaryOperator reducer) {
5655 >            super(p, b, i, f, t); this.nextRight = nextRight;
5656 >            this.transformer = transformer;
5657 >            this.basis = basis; this.reducer = reducer;
5658 >        }
5659 >        public final Integer getRawResult() { return result; }
5660 >        public final void compute() {
5661 >            final ToIntFunction<? super V> transformer;
5662 >            final IntBinaryOperator reducer;
5663 >            if ((transformer = this.transformer) != null &&
5664 >                (reducer = this.reducer) != null) {
5665 >                int r = this.basis;
5666 >                for (int i = baseIndex, f, h; batch > 0 &&
5667 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5668 >                    addToPendingCount(1);
5669 >                    (rights = new MapReduceValuesToIntTask<K,V>
5670 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5671 >                      rights, transformer, r, reducer)).fork();
5672 >                }
5673 >                for (Node<K,V> p; (p = advance()) != null; )
5674 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5675 >                result = r;
5676 >                CountedCompleter<?> c;
5677 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5678 >                    MapReduceValuesToIntTask<K,V>
5679 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5680 >                        s = t.rights;
5681 >                    while (s != null) {
5682 >                        t.result = reducer.applyAsInt(t.result, s.result);
5683 >                        s = t.rights = s.nextRight;
5684 >                    }
5685 >                }
5686 >            }
5687 >        }
5688 >    }
5689 >
5690 >    static final class MapReduceEntriesToIntTask<K,V>
5691 >        extends BulkTask<K,V,Integer> {
5692 >        final ToIntFunction<Map.Entry<K,V>> transformer;
5693 >        final IntBinaryOperator reducer;
5694 >        final int basis;
5695 >        int result;
5696 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5697 >        MapReduceEntriesToIntTask
5698 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5699 >             MapReduceEntriesToIntTask<K,V> nextRight,
5700 >             ToIntFunction<Map.Entry<K,V>> transformer,
5701 >             int basis,
5702 >             IntBinaryOperator reducer) {
5703 >            super(p, b, i, f, t); this.nextRight = nextRight;
5704 >            this.transformer = transformer;
5705 >            this.basis = basis; this.reducer = reducer;
5706 >        }
5707 >        public final Integer getRawResult() { return result; }
5708 >        public final void compute() {
5709 >            final ToIntFunction<Map.Entry<K,V>> transformer;
5710 >            final IntBinaryOperator reducer;
5711 >            if ((transformer = this.transformer) != null &&
5712 >                (reducer = this.reducer) != null) {
5713 >                int r = this.basis;
5714 >                for (int i = baseIndex, f, h; batch > 0 &&
5715 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5716 >                    addToPendingCount(1);
5717 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5718 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5719 >                      rights, transformer, r, reducer)).fork();
5720 >                }
5721 >                for (Node<K,V> p; (p = advance()) != null; )
5722 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5723 >                result = r;
5724 >                CountedCompleter<?> c;
5725 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5726 >                    MapReduceEntriesToIntTask<K,V>
5727 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5728 >                        s = t.rights;
5729 >                    while (s != null) {
5730 >                        t.result = reducer.applyAsInt(t.result, s.result);
5731 >                        s = t.rights = s.nextRight;
5732 >                    }
5733 >                }
5734 >            }
5735 >        }
5736 >    }
5737 >
5738 >    static final class MapReduceMappingsToIntTask<K,V>
5739 >        extends BulkTask<K,V,Integer> {
5740 >        final ToIntBiFunction<? super K, ? super V> transformer;
5741 >        final IntBinaryOperator reducer;
5742 >        final int basis;
5743 >        int result;
5744 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
5745 >        MapReduceMappingsToIntTask
5746 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5747 >             MapReduceMappingsToIntTask<K,V> nextRight,
5748 >             ToIntBiFunction<? super K, ? super V> transformer,
5749 >             int basis,
5750 >             IntBinaryOperator reducer) {
5751 >            super(p, b, i, f, t); this.nextRight = nextRight;
5752 >            this.transformer = transformer;
5753 >            this.basis = basis; this.reducer = reducer;
5754 >        }
5755 >        public final Integer getRawResult() { return result; }
5756 >        public final void compute() {
5757 >            final ToIntBiFunction<? super K, ? super V> transformer;
5758 >            final IntBinaryOperator reducer;
5759 >            if ((transformer = this.transformer) != null &&
5760 >                (reducer = this.reducer) != null) {
5761 >                int r = this.basis;
5762 >                for (int i = baseIndex, f, h; batch > 0 &&
5763 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5764 >                    addToPendingCount(1);
5765 >                    (rights = new MapReduceMappingsToIntTask<K,V>
5766 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5767 >                      rights, transformer, r, reducer)).fork();
5768 >                }
5769 >                for (Node<K,V> p; (p = advance()) != null; )
5770 >                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key, p.val));
5771 >                result = r;
5772 >                CountedCompleter<?> c;
5773 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5774 >                    MapReduceMappingsToIntTask<K,V>
5775 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
5776 >                        s = t.rights;
5777 >                    while (s != null) {
5778 >                        t.result = reducer.applyAsInt(t.result, s.result);
5779 >                        s = t.rights = s.nextRight;
5780 >                    }
5781 >                }
5782 >            }
5783          }
5784      }
5785  
5786      // Unsafe mechanics
5787 <    private static final sun.misc.Unsafe UNSAFE;
5788 <    private static final long SBASE;
5789 <    private static final int SSHIFT;
5790 <    private static final long TBASE;
5791 <    private static final int TSHIFT;
5787 >    private static final sun.misc.Unsafe U;
5788 >    private static final long SIZECTL;
5789 >    private static final long TRANSFERINDEX;
5790 >    private static final long TRANSFERORIGIN;
5791 >    private static final long BASECOUNT;
5792 >    private static final long CELLSBUSY;
5793 >    private static final long CELLVALUE;
5794 >    private static final long ABASE;
5795 >    private static final int ASHIFT;
5796  
5797      static {
1466        int ss, ts;
5798          try {
5799 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
5800 <            Class<?> tc = HashEntry[].class;
5801 <            Class<?> sc = Segment[].class;
5802 <            TBASE = UNSAFE.arrayBaseOffset(tc);
5803 <            SBASE = UNSAFE.arrayBaseOffset(sc);
5804 <            ts = UNSAFE.arrayIndexScale(tc);
5805 <            ss = UNSAFE.arrayIndexScale(sc);
5799 >            U = sun.misc.Unsafe.getUnsafe();
5800 >            Class<?> k = ConcurrentHashMap.class;
5801 >            SIZECTL = U.objectFieldOffset
5802 >                (k.getDeclaredField("sizeCtl"));
5803 >            TRANSFERINDEX = U.objectFieldOffset
5804 >                (k.getDeclaredField("transferIndex"));
5805 >            TRANSFERORIGIN = U.objectFieldOffset
5806 >                (k.getDeclaredField("transferOrigin"));
5807 >            BASECOUNT = U.objectFieldOffset
5808 >                (k.getDeclaredField("baseCount"));
5809 >            CELLSBUSY = U.objectFieldOffset
5810 >                (k.getDeclaredField("cellsBusy"));
5811 >            Class<?> ck = Cell.class;
5812 >            CELLVALUE = U.objectFieldOffset
5813 >                (ck.getDeclaredField("value"));
5814 >            Class<?> sc = Node[].class;
5815 >            ABASE = U.arrayBaseOffset(sc);
5816 >            int scale = U.arrayIndexScale(sc);
5817 >            if ((scale & (scale - 1)) != 0)
5818 >                throw new Error("data type scale not a power of two");
5819 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
5820          } catch (Exception e) {
5821              throw new Error(e);
5822          }
1478        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1479            throw new Error("data type scale not a power of two");
1480        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1481        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
5823      }
1483
5824   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines