ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.115 by jsr166, Fri Dec 2 14:28:17 2011 UTC vs.
Revision 1.315 by dl, Wed Nov 28 23:52:49 2018 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 + import java.lang.reflect.ParameterizedType;
12 + import java.lang.reflect.Type;
13 + import java.util.AbstractMap;
14 + import java.util.Arrays;
15 + import java.util.Collection;
16 + import java.util.Enumeration;
17 + import java.util.HashMap;
18 + import java.util.Hashtable;
19 + import java.util.Iterator;
20 + import java.util.Map;
21 + import java.util.NoSuchElementException;
22 + import java.util.Set;
23 + import java.util.Spliterator;
24 + import java.util.concurrent.atomic.AtomicReference;
25 + import java.util.concurrent.locks.LockSupport;
26 + import java.util.concurrent.locks.ReentrantLock;
27 + import java.util.function.BiConsumer;
28 + import java.util.function.BiFunction;
29 + import java.util.function.Consumer;
30 + import java.util.function.DoubleBinaryOperator;
31 + import java.util.function.Function;
32 + import java.util.function.IntBinaryOperator;
33 + import java.util.function.LongBinaryOperator;
34 + import java.util.function.Predicate;
35 + import java.util.function.ToDoubleBiFunction;
36 + import java.util.function.ToDoubleFunction;
37 + import java.util.function.ToIntBiFunction;
38 + import java.util.function.ToIntFunction;
39 + import java.util.function.ToLongBiFunction;
40 + import java.util.function.ToLongFunction;
41 + import java.util.stream.Stream;
42 + import jdk.internal.misc.Unsafe;
43  
44   /**
45   * A hash table supporting full concurrency of retrievals and
46 < * adjustable expected concurrency for updates. This class obeys the
46 > * high expected concurrency for updates. This class obeys the
47   * same functional specification as {@link java.util.Hashtable}, and
48   * includes versions of methods corresponding to each method of
49 < * <tt>Hashtable</tt>. However, even though all operations are
49 > * {@code Hashtable}. However, even though all operations are
50   * thread-safe, retrieval operations do <em>not</em> entail locking,
51   * and there is <em>not</em> any support for locking the entire table
52   * in a way that prevents all access.  This class is fully
53 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
53 > * interoperable with {@code Hashtable} in programs that rely on its
54   * thread safety but not on its synchronization details.
55   *
56 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
57 < * block, so may overlap with update operations (including
58 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
59 < * of the most recently <em>completed</em> update operations holding
60 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
61 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
62 < * removal of only some entries.  Similarly, Iterators and
63 < * Enumerations return elements reflecting the state of the hash table
64 < * at some point at or since the creation of the iterator/enumeration.
65 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
56 > * <p>Retrieval operations (including {@code get}) generally do not
57 > * block, so may overlap with update operations (including {@code put}
58 > * and {@code remove}). Retrievals reflect the results of the most
59 > * recently <em>completed</em> update operations holding upon their
60 > * onset. (More formally, an update operation for a given key bears a
61 > * <em>happens-before</em> relation with any (non-null) retrieval for
62 > * that key reporting the updated value.)  For aggregate operations
63 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 > * reflect insertion or removal of only some entries.  Similarly,
65 > * Iterators, Spliterators and Enumerations return elements reflecting the
66 > * state of the hash table at some point at or since the creation of the
67 > * iterator/enumeration.  They do <em>not</em> throw {@link
68 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
69   * However, iterators are designed to be used by only one thread at a time.
70 + * Bear in mind that the results of aggregate status methods including
71 + * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 + * useful only when a map is not undergoing concurrent updates in other threads.
73 + * Otherwise the results of these methods reflect transient states
74 + * that may be adequate for monitoring or estimation purposes, but not
75 + * for program control.
76 + *
77 + * <p>The table is dynamically expanded when there are too many
78 + * collisions (i.e., keys that have distinct hash codes but fall into
79 + * the same slot modulo the table size), with the expected average
80 + * effect of maintaining roughly two bins per mapping (corresponding
81 + * to a 0.75 load factor threshold for resizing). There may be much
82 + * variance around this average as mappings are added and removed, but
83 + * overall, this maintains a commonly accepted time/space tradeoff for
84 + * hash tables.  However, resizing this or any other kind of hash
85 + * table may be a relatively slow operation. When possible, it is a
86 + * good idea to provide a size estimate as an optional {@code
87 + * initialCapacity} constructor argument. An additional optional
88 + * {@code loadFactor} constructor argument provides a further means of
89 + * customizing initial table capacity by specifying the table density
90 + * to be used in calculating the amount of space to allocate for the
91 + * given number of elements.  Also, for compatibility with previous
92 + * versions of this class, constructors may optionally specify an
93 + * expected {@code concurrencyLevel} as an additional hint for
94 + * internal sizing.  Note that using many keys with exactly the same
95 + * {@code hashCode()} is a sure way to slow down performance of any
96 + * hash table. To ameliorate impact, when keys are {@link Comparable},
97 + * this class may use comparison order among keys to help break ties.
98 + *
99 + * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 + * (using {@link #keySet(Object)} when only keys are of interest, and the
102 + * mapped values are (perhaps transiently) not used or all take the
103 + * same mapping value.
104   *
105 < * <p> The allowed concurrency among update operations is guided by
106 < * the optional <tt>concurrencyLevel</tt> constructor argument
107 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
108 < * table is internally partitioned to try to permit the indicated
109 < * number of concurrent updates without contention. Because placement
110 < * in hash tables is essentially random, the actual concurrency will
42 < * vary.  Ideally, you should choose a value to accommodate as many
43 < * threads as will ever concurrently modify the table. Using a
44 < * significantly higher value than you need can waste space and time,
45 < * and a significantly lower value can lead to thread contention. But
46 < * overestimates and underestimates within an order of magnitude do
47 < * not usually have much noticeable impact. A value of one is
48 < * appropriate when it is known that only one thread will modify and
49 < * all others will only read. Also, resizing this or any other kind of
50 < * hash table is a relatively slow operation, so, when possible, it is
51 < * a good idea to provide estimates of expected table sizes in
52 < * constructors.
105 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 > * form of histogram or multiset) by using {@link
107 > * java.util.concurrent.atomic.LongAdder} values and initializing via
108 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111   *
112   * <p>This class and its views and iterators implement all of the
113   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114   * interfaces.
115   *
116 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
117 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
116 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 > * does <em>not</em> allow {@code null} to be used as a key or value.
118 > *
119 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 > * operations that, unlike most {@link Stream} methods, are designed
121 > * to be safely, and often sensibly, applied even with maps that are
122 > * being concurrently updated by other threads; for example, when
123 > * computing a snapshot summary of the values in a shared registry.
124 > * There are three kinds of operation, each with four forms, accepting
125 > * functions with keys, values, entries, and (key, value) pairs as
126 > * arguments and/or return values. Because the elements of a
127 > * ConcurrentHashMap are not ordered in any particular way, and may be
128 > * processed in different orders in different parallel executions, the
129 > * correctness of supplied functions should not depend on any
130 > * ordering, or on any other objects or values that may transiently
131 > * change while computation is in progress; and except for forEach
132 > * actions, should ideally be side-effect-free. Bulk operations on
133 > * {@link Map.Entry} objects do not support method {@code setValue}.
134 > *
135 > * <ul>
136 > * <li>forEach: Performs a given action on each element.
137 > * A variant form applies a given transformation on each element
138 > * before performing the action.
139 > *
140 > * <li>search: Returns the first available non-null result of
141 > * applying a given function on each element; skipping further
142 > * search when a result is found.
143 > *
144 > * <li>reduce: Accumulates each element.  The supplied reduction
145 > * function cannot rely on ordering (more formally, it should be
146 > * both associative and commutative).  There are five variants:
147 > *
148 > * <ul>
149 > *
150 > * <li>Plain reductions. (There is not a form of this method for
151 > * (key, value) function arguments since there is no corresponding
152 > * return type.)
153 > *
154 > * <li>Mapped reductions that accumulate the results of a given
155 > * function applied to each element.
156 > *
157 > * <li>Reductions to scalar doubles, longs, and ints, using a
158 > * given basis value.
159 > *
160 > * </ul>
161 > * </ul>
162 > *
163 > * <p>These bulk operations accept a {@code parallelismThreshold}
164 > * argument. Methods proceed sequentially if the current map size is
165 > * estimated to be less than the given threshold. Using a value of
166 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
167 > * of {@code 1} results in maximal parallelism by partitioning into
168 > * enough subtasks to fully utilize the {@link
169 > * ForkJoinPool#commonPool()} that is used for all parallel
170 > * computations. Normally, you would initially choose one of these
171 > * extreme values, and then measure performance of using in-between
172 > * values that trade off overhead versus throughput.
173 > *
174 > * <p>The concurrency properties of bulk operations follow
175 > * from those of ConcurrentHashMap: Any non-null result returned
176 > * from {@code get(key)} and related access methods bears a
177 > * happens-before relation with the associated insertion or
178 > * update.  The result of any bulk operation reflects the
179 > * composition of these per-element relations (but is not
180 > * necessarily atomic with respect to the map as a whole unless it
181 > * is somehow known to be quiescent).  Conversely, because keys
182 > * and values in the map are never null, null serves as a reliable
183 > * atomic indicator of the current lack of any result.  To
184 > * maintain this property, null serves as an implicit basis for
185 > * all non-scalar reduction operations. For the double, long, and
186 > * int versions, the basis should be one that, when combined with
187 > * any other value, returns that other value (more formally, it
188 > * should be the identity element for the reduction). Most common
189 > * reductions have these properties; for example, computing a sum
190 > * with basis 0 or a minimum with basis MAX_VALUE.
191 > *
192 > * <p>Search and transformation functions provided as arguments
193 > * should similarly return null to indicate the lack of any result
194 > * (in which case it is not used). In the case of mapped
195 > * reductions, this also enables transformations to serve as
196 > * filters, returning null (or, in the case of primitive
197 > * specializations, the identity basis) if the element should not
198 > * be combined. You can create compound transformations and
199 > * filterings by composing them yourself under this "null means
200 > * there is nothing there now" rule before using them in search or
201 > * reduce operations.
202 > *
203 > * <p>Methods accepting and/or returning Entry arguments maintain
204 > * key-value associations. They may be useful for example when
205 > * finding the key for the greatest value. Note that "plain" Entry
206 > * arguments can be supplied using {@code new
207 > * AbstractMap.SimpleEntry(k,v)}.
208 > *
209 > * <p>Bulk operations may complete abruptly, throwing an
210 > * exception encountered in the application of a supplied
211 > * function. Bear in mind when handling such exceptions that other
212 > * concurrently executing functions could also have thrown
213 > * exceptions, or would have done so if the first exception had
214 > * not occurred.
215 > *
216 > * <p>Speedups for parallel compared to sequential forms are common
217 > * but not guaranteed.  Parallel operations involving brief functions
218 > * on small maps may execute more slowly than sequential forms if the
219 > * underlying work to parallelize the computation is more expensive
220 > * than the computation itself.  Similarly, parallelization may not
221 > * lead to much actual parallelism if all processors are busy
222 > * performing unrelated tasks.
223 > *
224 > * <p>All arguments to all task methods must be non-null.
225   *
226   * <p>This class is a member of the
227 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
227 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
228   * Java Collections Framework</a>.
229   *
230   * @since 1.5
# Line 67 | Line 232 | import java.io.Serializable;
232   * @param <K> the type of keys maintained by this map
233   * @param <V> the type of mapped values
234   */
235 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
236 <        implements ConcurrentMap<K, V>, Serializable {
235 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 >    implements ConcurrentMap<K,V>, Serializable {
237      private static final long serialVersionUID = 7249069246763182397L;
238  
239      /*
240 <     * The basic strategy is to subdivide the table among Segments,
241 <     * each of which itself is a concurrently readable hash table.  To
242 <     * reduce footprint, all but one segments are constructed only
243 <     * when first needed (see ensureSegment). To maintain visibility
244 <     * in the presence of lazy construction, accesses to segments as
245 <     * well as elements of segment's table must use volatile access,
246 <     * which is done via Unsafe within methods segmentAt etc
247 <     * below. These provide the functionality of AtomicReferenceArrays
248 <     * but reduce the levels of indirection. Additionally,
249 <     * volatile-writes of table elements and entry "next" fields
250 <     * within locked operations use the cheaper "lazySet" forms of
251 <     * writes (via putOrderedObject) because these writes are always
252 <     * followed by lock releases that maintain sequential consistency
253 <     * of table updates.
254 <     *
255 <     * Historical note: The previous version of this class relied
256 <     * heavily on "final" fields, which avoided some volatile reads at
257 <     * the expense of a large initial footprint.  Some remnants of
258 <     * that design (including forced construction of segment 0) exist
259 <     * to ensure serialization compatibility.
240 >     * Overview:
241 >     *
242 >     * The primary design goal of this hash table is to maintain
243 >     * concurrent readability (typically method get(), but also
244 >     * iterators and related methods) while minimizing update
245 >     * contention. Secondary goals are to keep space consumption about
246 >     * the same or better than java.util.HashMap, and to support high
247 >     * initial insertion rates on an empty table by many threads.
248 >     *
249 >     * This map usually acts as a binned (bucketed) hash table.  Each
250 >     * key-value mapping is held in a Node.  Most nodes are instances
251 >     * of the basic Node class with hash, key, value, and next
252 >     * fields. However, various subclasses exist: TreeNodes are
253 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
254 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 >     * of bins during resizing. ReservationNodes are used as
256 >     * placeholders while establishing values in computeIfAbsent and
257 >     * related methods.  The types TreeBin, ForwardingNode, and
258 >     * ReservationNode do not hold normal user keys, values, or
259 >     * hashes, and are readily distinguishable during search etc
260 >     * because they have negative hash fields and null key and value
261 >     * fields. (These special nodes are either uncommon or transient,
262 >     * so the impact of carrying around some unused fields is
263 >     * insignificant.)
264 >     *
265 >     * The table is lazily initialized to a power-of-two size upon the
266 >     * first insertion.  Each bin in the table normally contains a
267 >     * list of Nodes (most often, the list has only zero or one Node).
268 >     * Table accesses require volatile/atomic reads, writes, and
269 >     * CASes.  Because there is no other way to arrange this without
270 >     * adding further indirections, we use intrinsics
271 >     * (jdk.internal.misc.Unsafe) operations.
272 >     *
273 >     * We use the top (sign) bit of Node hash fields for control
274 >     * purposes -- it is available anyway because of addressing
275 >     * constraints.  Nodes with negative hash fields are specially
276 >     * handled or ignored in map methods.
277 >     *
278 >     * Insertion (via put or its variants) of the first node in an
279 >     * empty bin is performed by just CASing it to the bin.  This is
280 >     * by far the most common case for put operations under most
281 >     * key/hash distributions.  Other update operations (insert,
282 >     * delete, and replace) require locks.  We do not want to waste
283 >     * the space required to associate a distinct lock object with
284 >     * each bin, so instead use the first node of a bin list itself as
285 >     * a lock. Locking support for these locks relies on builtin
286 >     * "synchronized" monitors.
287 >     *
288 >     * Using the first node of a list as a lock does not by itself
289 >     * suffice though: When a node is locked, any update must first
290 >     * validate that it is still the first node after locking it, and
291 >     * retry if not. Because new nodes are always appended to lists,
292 >     * once a node is first in a bin, it remains first until deleted
293 >     * or the bin becomes invalidated (upon resizing).
294 >     *
295 >     * The main disadvantage of per-bin locks is that other update
296 >     * operations on other nodes in a bin list protected by the same
297 >     * lock can stall, for example when user equals() or mapping
298 >     * functions take a long time.  However, statistically, under
299 >     * random hash codes, this is not a common problem.  Ideally, the
300 >     * frequency of nodes in bins follows a Poisson distribution
301 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 >     * parameter of about 0.5 on average, given the resizing threshold
303 >     * of 0.75, although with a large variance because of resizing
304 >     * granularity. Ignoring variance, the expected occurrences of
305 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 >     * first values are:
307 >     *
308 >     * 0:    0.60653066
309 >     * 1:    0.30326533
310 >     * 2:    0.07581633
311 >     * 3:    0.01263606
312 >     * 4:    0.00157952
313 >     * 5:    0.00015795
314 >     * 6:    0.00001316
315 >     * 7:    0.00000094
316 >     * 8:    0.00000006
317 >     * more: less than 1 in ten million
318 >     *
319 >     * Lock contention probability for two threads accessing distinct
320 >     * elements is roughly 1 / (8 * #elements) under random hashes.
321 >     *
322 >     * Actual hash code distributions encountered in practice
323 >     * sometimes deviate significantly from uniform randomness.  This
324 >     * includes the case when N > (1<<30), so some keys MUST collide.
325 >     * Similarly for dumb or hostile usages in which multiple keys are
326 >     * designed to have identical hash codes or ones that differs only
327 >     * in masked-out high bits. So we use a secondary strategy that
328 >     * applies when the number of nodes in a bin exceeds a
329 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
330 >     * specialized form of red-black trees), bounding search time to
331 >     * O(log N).  Each search step in a TreeBin is at least twice as
332 >     * slow as in a regular list, but given that N cannot exceed
333 >     * (1<<64) (before running out of addresses) this bounds search
334 >     * steps, lock hold times, etc, to reasonable constants (roughly
335 >     * 100 nodes inspected per operation worst case) so long as keys
336 >     * are Comparable (which is very common -- String, Long, etc).
337 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
338 >     * traversal pointers as regular nodes, so can be traversed in
339 >     * iterators in the same way.
340 >     *
341 >     * The table is resized when occupancy exceeds a percentage
342 >     * threshold (nominally, 0.75, but see below).  Any thread
343 >     * noticing an overfull bin may assist in resizing after the
344 >     * initiating thread allocates and sets up the replacement array.
345 >     * However, rather than stalling, these other threads may proceed
346 >     * with insertions etc.  The use of TreeBins shields us from the
347 >     * worst case effects of overfilling while resizes are in
348 >     * progress.  Resizing proceeds by transferring bins, one by one,
349 >     * from the table to the next table. However, threads claim small
350 >     * blocks of indices to transfer (via field transferIndex) before
351 >     * doing so, reducing contention.  A generation stamp in field
352 >     * sizeCtl ensures that resizings do not overlap. Because we are
353 >     * using power-of-two expansion, the elements from each bin must
354 >     * either stay at same index, or move with a power of two
355 >     * offset. We eliminate unnecessary node creation by catching
356 >     * cases where old nodes can be reused because their next fields
357 >     * won't change.  On average, only about one-sixth of them need
358 >     * cloning when a table doubles. The nodes they replace will be
359 >     * garbage collectable as soon as they are no longer referenced by
360 >     * any reader thread that may be in the midst of concurrently
361 >     * traversing table.  Upon transfer, the old table bin contains
362 >     * only a special forwarding node (with hash field "MOVED") that
363 >     * contains the next table as its key. On encountering a
364 >     * forwarding node, access and update operations restart, using
365 >     * the new table.
366 >     *
367 >     * Each bin transfer requires its bin lock, which can stall
368 >     * waiting for locks while resizing. However, because other
369 >     * threads can join in and help resize rather than contend for
370 >     * locks, average aggregate waits become shorter as resizing
371 >     * progresses.  The transfer operation must also ensure that all
372 >     * accessible bins in both the old and new table are usable by any
373 >     * traversal.  This is arranged in part by proceeding from the
374 >     * last bin (table.length - 1) up towards the first.  Upon seeing
375 >     * a forwarding node, traversals (see class Traverser) arrange to
376 >     * move to the new table without revisiting nodes.  To ensure that
377 >     * no intervening nodes are skipped even when moved out of order,
378 >     * a stack (see class TableStack) is created on first encounter of
379 >     * a forwarding node during a traversal, to maintain its place if
380 >     * later processing the current table. The need for these
381 >     * save/restore mechanics is relatively rare, but when one
382 >     * forwarding node is encountered, typically many more will be.
383 >     * So Traversers use a simple caching scheme to avoid creating so
384 >     * many new TableStack nodes. (Thanks to Peter Levart for
385 >     * suggesting use of a stack here.)
386 >     *
387 >     * The traversal scheme also applies to partial traversals of
388 >     * ranges of bins (via an alternate Traverser constructor)
389 >     * to support partitioned aggregate operations.  Also, read-only
390 >     * operations give up if ever forwarded to a null table, which
391 >     * provides support for shutdown-style clearing, which is also not
392 >     * currently implemented.
393 >     *
394 >     * Lazy table initialization minimizes footprint until first use,
395 >     * and also avoids resizings when the first operation is from a
396 >     * putAll, constructor with map argument, or deserialization.
397 >     * These cases attempt to override the initial capacity settings,
398 >     * but harmlessly fail to take effect in cases of races.
399 >     *
400 >     * The element count is maintained using a specialization of
401 >     * LongAdder. We need to incorporate a specialization rather than
402 >     * just use a LongAdder in order to access implicit
403 >     * contention-sensing that leads to creation of multiple
404 >     * CounterCells.  The counter mechanics avoid contention on
405 >     * updates but can encounter cache thrashing if read too
406 >     * frequently during concurrent access. To avoid reading so often,
407 >     * resizing under contention is attempted only upon adding to a
408 >     * bin already holding two or more nodes. Under uniform hash
409 >     * distributions, the probability of this occurring at threshold
410 >     * is around 13%, meaning that only about 1 in 8 puts check
411 >     * threshold (and after resizing, many fewer do so).
412 >     *
413 >     * TreeBins use a special form of comparison for search and
414 >     * related operations (which is the main reason we cannot use
415 >     * existing collections such as TreeMaps). TreeBins contain
416 >     * Comparable elements, but may contain others, as well as
417 >     * elements that are Comparable but not necessarily Comparable for
418 >     * the same T, so we cannot invoke compareTo among them. To handle
419 >     * this, the tree is ordered primarily by hash value, then by
420 >     * Comparable.compareTo order if applicable.  On lookup at a node,
421 >     * if elements are not comparable or compare as 0 then both left
422 >     * and right children may need to be searched in the case of tied
423 >     * hash values. (This corresponds to the full list search that
424 >     * would be necessary if all elements were non-Comparable and had
425 >     * tied hashes.) On insertion, to keep a total ordering (or as
426 >     * close as is required here) across rebalancings, we compare
427 >     * classes and identityHashCodes as tie-breakers. The red-black
428 >     * balancing code is updated from pre-jdk-collections
429 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 >     * Algorithms" (CLR).
432 >     *
433 >     * TreeBins also require an additional locking mechanism.  While
434 >     * list traversal is always possible by readers even during
435 >     * updates, tree traversal is not, mainly because of tree-rotations
436 >     * that may change the root node and/or its linkages.  TreeBins
437 >     * include a simple read-write lock mechanism parasitic on the
438 >     * main bin-synchronization strategy: Structural adjustments
439 >     * associated with an insertion or removal are already bin-locked
440 >     * (and so cannot conflict with other writers) but must wait for
441 >     * ongoing readers to finish. Since there can be only one such
442 >     * waiter, we use a simple scheme using a single "waiter" field to
443 >     * block writers.  However, readers need never block.  If the root
444 >     * lock is held, they proceed along the slow traversal path (via
445 >     * next-pointers) until the lock becomes available or the list is
446 >     * exhausted, whichever comes first. These cases are not fast, but
447 >     * maximize aggregate expected throughput.
448 >     *
449 >     * Maintaining API and serialization compatibility with previous
450 >     * versions of this class introduces several oddities. Mainly: We
451 >     * leave untouched but unused constructor arguments referring to
452 >     * concurrencyLevel. We accept a loadFactor constructor argument,
453 >     * but apply it only to initial table capacity (which is the only
454 >     * time that we can guarantee to honor it.) We also declare an
455 >     * unused "Segment" class that is instantiated in minimal form
456 >     * only when serializing.
457 >     *
458 >     * Also, solely for compatibility with previous versions of this
459 >     * class, it extends AbstractMap, even though all of its methods
460 >     * are overridden, so it is just useless baggage.
461 >     *
462 >     * This file is organized to make things a little easier to follow
463 >     * while reading than they might otherwise: First the main static
464 >     * declarations and utilities, then fields, then main public
465 >     * methods (with a few factorings of multiple public methods into
466 >     * internal ones), then sizing methods, trees, traversers, and
467 >     * bulk operations.
468       */
469  
470      /* ---------------- Constants -------------- */
471  
472      /**
473 <     * The default initial capacity for this table,
474 <     * used when not otherwise specified in a constructor.
473 >     * The largest possible table capacity.  This value must be
474 >     * exactly 1<<30 to stay within Java array allocation and indexing
475 >     * bounds for power of two table sizes, and is further required
476 >     * because the top two bits of 32bit hash fields are used for
477 >     * control purposes.
478       */
479 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
479 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
480  
481      /**
482 <     * The default load factor for this table, used when not
483 <     * otherwise specified in a constructor.
482 >     * The default initial table capacity.  Must be a power of 2
483 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484       */
485 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
485 >    private static final int DEFAULT_CAPACITY = 16;
486  
487      /**
488 <     * The default concurrency level for this table, used when not
489 <     * otherwise specified in a constructor.
488 >     * The largest possible (non-power of two) array size.
489 >     * Needed by toArray and related methods.
490       */
491 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
491 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492  
493      /**
494 <     * The maximum capacity, used if a higher value is implicitly
495 <     * specified by either of the constructors with arguments.  MUST
120 <     * be a power of two <= 1<<30 to ensure that entries are indexable
121 <     * using ints.
494 >     * The default concurrency level for this table. Unused but
495 >     * defined for compatibility with previous versions of this class.
496       */
497 <    static final int MAXIMUM_CAPACITY = 1 << 30;
497 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498  
499      /**
500 <     * The minimum capacity for per-segment tables.  Must be a power
501 <     * of two, at least two to avoid immediate resizing on next use
502 <     * after lazy construction.
500 >     * The load factor for this table. Overrides of this value in
501 >     * constructors affect only the initial table capacity.  The
502 >     * actual floating point value isn't normally used -- it is
503 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
504 >     * the associated resizing threshold.
505       */
506 <    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
506 >    private static final float LOAD_FACTOR = 0.75f;
507  
508      /**
509 <     * The maximum number of segments to allow; used to bound
510 <     * constructor arguments. Must be power of two less than 1 << 24.
509 >     * The bin count threshold for using a tree rather than list for a
510 >     * bin.  Bins are converted to trees when adding an element to a
511 >     * bin with at least this many nodes. The value must be greater
512 >     * than 2, and should be at least 8 to mesh with assumptions in
513 >     * tree removal about conversion back to plain bins upon
514 >     * shrinkage.
515       */
516 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
516 >    static final int TREEIFY_THRESHOLD = 8;
517  
518      /**
519 <     * Number of unsynchronized retries in size and containsValue
520 <     * methods before resorting to locking. This is used to avoid
521 <     * unbounded retries if tables undergo continuous modification
142 <     * which would make it impossible to obtain an accurate result.
519 >     * The bin count threshold for untreeifying a (split) bin during a
520 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 >     * most 6 to mesh with shrinkage detection under removal.
522       */
523 <    static final int RETRIES_BEFORE_LOCK = 2;
145 <
146 <    /* ---------------- Fields -------------- */
523 >    static final int UNTREEIFY_THRESHOLD = 6;
524  
525      /**
526 <     * Mask value for indexing into segments. The upper bits of a
527 <     * key's hash code are used to choose the segment.
526 >     * The smallest table capacity for which bins may be treeified.
527 >     * (Otherwise the table is resized if too many nodes in a bin.)
528 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 >     * conflicts between resizing and treeification thresholds.
530       */
531 <    final int segmentMask;
531 >    static final int MIN_TREEIFY_CAPACITY = 64;
532  
533      /**
534 <     * Shift value for indexing within segments.
534 >     * Minimum number of rebinnings per transfer step. Ranges are
535 >     * subdivided to allow multiple resizer threads.  This value
536 >     * serves as a lower bound to avoid resizers encountering
537 >     * excessive memory contention.  The value should be at least
538 >     * DEFAULT_CAPACITY.
539       */
540 <    final int segmentShift;
540 >    private static final int MIN_TRANSFER_STRIDE = 16;
541  
542      /**
543 <     * The segments, each of which is a specialized hash table.
543 >     * The number of bits used for generation stamp in sizeCtl.
544 >     * Must be at least 6 for 32bit arrays.
545       */
546 <    final Segment<K,V>[] segments;
546 >    private static final int RESIZE_STAMP_BITS = 16;
547  
548 <    transient Set<K> keySet;
549 <    transient Set<Map.Entry<K,V>> entrySet;
550 <    transient Collection<V> values;
548 >    /**
549 >     * The maximum number of threads that can help resize.
550 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 >     */
552 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553  
554      /**
555 <     * ConcurrentHashMap list entry. Note that this is never exported
556 <     * out as a user-visible Map.Entry.
555 >     * The bit shift for recording size stamp in sizeCtl.
556 >     */
557 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558 >
559 >    /*
560 >     * Encodings for Node hash fields. See above for explanation.
561 >     */
562 >    static final int MOVED     = -1; // hash for forwarding nodes
563 >    static final int TREEBIN   = -2; // hash for roots of trees
564 >    static final int RESERVED  = -3; // hash for transient reservations
565 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566 >
567 >    /** Number of CPUS, to place bounds on some sizings */
568 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
569 >
570 >    /**
571 >     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 >     * @serialField segments Segment[]
573 >     *   The segments, each of which is a specialized hash table.
574 >     * @serialField segmentMask int
575 >     *   Mask value for indexing into segments. The upper bits of a
576 >     *   key's hash code are used to choose the segment.
577 >     * @serialField segmentShift int
578 >     *   Shift value for indexing within segments.
579 >     */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE),
584 >    };
585 >
586 >    /* ---------------- Nodes -------------- */
587 >
588 >    /**
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595       */
596 <    static final class HashEntry<K,V> {
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597          final int hash;
598          final K key;
599 <        volatile V value;
600 <        volatile HashEntry<K,V> next;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601  
602 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
602 >        Node(int hash, K key, V val) {
603              this.hash = hash;
604              this.key = key;
605 <            this.value = value;
605 >            this.val = val;
606 >        }
607 >
608 >        Node(int hash, K key, V val, Node<K,V> next) {
609 >            this(hash, key, val);
610              this.next = next;
611          }
612  
613 +        public final K getKey()     { return key; }
614 +        public final V getValue()   { return val; }
615 +        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 +        public final String toString() {
617 +            return Helpers.mapEntryToString(key, val);
618 +        }
619 +        public final V setValue(V value) {
620 +            throw new UnsupportedOperationException();
621 +        }
622 +
623 +        public final boolean equals(Object o) {
624 +            Object k, v, u; Map.Entry<?,?> e;
625 +            return ((o instanceof Map.Entry) &&
626 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 +                    (v = e.getValue()) != null &&
628 +                    (k == key || k.equals(key)) &&
629 +                    (v == (u = val) || v.equals(u)));
630 +        }
631 +
632          /**
633 <         * Sets next field with volatile write semantics.  (See above
187 <         * about use of putOrderedObject.)
633 >         * Virtualized support for map.get(); overridden in subclasses.
634           */
635 <        final void setNext(HashEntry<K,V> n) {
636 <            UNSAFE.putOrderedObject(this, nextOffset, n);
635 >        Node<K,V> find(int h, Object k) {
636 >            Node<K,V> e = this;
637 >            if (k != null) {
638 >                do {
639 >                    K ek;
640 >                    if (e.hash == h &&
641 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 >                        return e;
643 >                } while ((e = e.next) != null);
644 >            }
645 >            return null;
646          }
647 +    }
648  
649 <        // Unsafe mechanics
650 <        static final sun.misc.Unsafe UNSAFE;
651 <        static final long nextOffset;
652 <        static {
653 <            try {
654 <                UNSAFE = sun.misc.Unsafe.getUnsafe();
655 <                Class<?> k = HashEntry.class;
656 <                nextOffset = UNSAFE.objectFieldOffset
657 <                    (k.getDeclaredField("next"));
658 <            } catch (Exception e) {
659 <                throw new Error(e);
649 >    /* ---------------- Static utilities -------------- */
650 >
651 >    /**
652 >     * Spreads (XORs) higher bits of hash to lower and also forces top
653 >     * bit to 0. Because the table uses power-of-two masking, sets of
654 >     * hashes that vary only in bits above the current mask will
655 >     * always collide. (Among known examples are sets of Float keys
656 >     * holding consecutive whole numbers in small tables.)  So we
657 >     * apply a transform that spreads the impact of higher bits
658 >     * downward. There is a tradeoff between speed, utility, and
659 >     * quality of bit-spreading. Because many common sets of hashes
660 >     * are already reasonably distributed (so don't benefit from
661 >     * spreading), and because we use trees to handle large sets of
662 >     * collisions in bins, we just XOR some shifted bits in the
663 >     * cheapest possible way to reduce systematic lossage, as well as
664 >     * to incorporate impact of the highest bits that would otherwise
665 >     * never be used in index calculations because of table bounds.
666 >     */
667 >    static final int spread(int h) {
668 >        return (h ^ (h >>> 16)) & HASH_BITS;
669 >    }
670 >
671 >    /**
672 >     * Returns a power of two table size for the given desired capacity.
673 >     * See Hackers Delight, sec 3.2
674 >     */
675 >    private static final int tableSizeFor(int c) {
676 >        int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678 >    }
679 >
680 >    /**
681 >     * Returns x's Class if it is of the form "class C implements
682 >     * Comparable<C>", else null.
683 >     */
684 >    static Class<?> comparableClassFor(Object x) {
685 >        if (x instanceof Comparable) {
686 >            Class<?> c; Type[] ts, as; ParameterizedType p;
687 >            if ((c = x.getClass()) == String.class) // bypass checks
688 >                return c;
689 >            if ((ts = c.getGenericInterfaces()) != null) {
690 >                for (Type t : ts) {
691 >                    if ((t instanceof ParameterizedType) &&
692 >                        ((p = (ParameterizedType)t).getRawType() ==
693 >                         Comparable.class) &&
694 >                        (as = p.getActualTypeArguments()) != null &&
695 >                        as.length == 1 && as[0] == c) // type arg is c
696 >                        return c;
697 >                }
698              }
699          }
700 +        return null;
701      }
702  
703      /**
704 <     * Gets the ith element of given table (if nonnull) with volatile
705 <     * read semantics. Note: This is manually integrated into a few
211 <     * performance-sensitive methods to reduce call overhead.
704 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 >     * class), else 0.
706       */
707 +    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 +    static int compareComparables(Class<?> kc, Object k, Object x) {
709 +        return (x == null || x.getClass() != kc ? 0 :
710 +                ((Comparable)k).compareTo(x));
711 +    }
712 +
713 +    /* ---------------- Table element access -------------- */
714 +
715 +    /*
716 +     * Atomic access methods are used for table elements as well as
717 +     * elements of in-progress next table while resizing.  All uses of
718 +     * the tab arguments must be null checked by callers.  All callers
719 +     * also paranoically precheck that tab's length is not zero (or an
720 +     * equivalent check), thus ensuring that any index argument taking
721 +     * the form of a hash value anded with (length - 1) is a valid
722 +     * index.  Note that, to be correct wrt arbitrary concurrency
723 +     * errors by users, these checks must operate on local variables,
724 +     * which accounts for some odd-looking inline assignments below.
725 +     * Note that calls to setTabAt always occur within locked regions,
726 +     * and so require only release ordering.
727 +     */
728 +
729      @SuppressWarnings("unchecked")
730 <    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
731 <        return (tab == null) ? null :
732 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
733 <            (tab, ((long)i << TSHIFT) + TBASE);
730 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 >        return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 >    }
733 >
734 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 >                                        Node<K,V> c, Node<K,V> v) {
736 >        return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737      }
738  
739 +    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 +        U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741 +    }
742 +
743 +    /* ---------------- Fields -------------- */
744 +
745 +    /**
746 +     * The array of bins. Lazily initialized upon first insertion.
747 +     * Size is always a power of two. Accessed directly by iterators.
748 +     */
749 +    transient volatile Node<K,V>[] table;
750 +
751 +    /**
752 +     * The next table to use; non-null only while resizing.
753 +     */
754 +    private transient volatile Node<K,V>[] nextTable;
755 +
756 +    /**
757 +     * Base counter value, used mainly when there is no contention,
758 +     * but also as a fallback during table initialization
759 +     * races. Updated via CAS.
760 +     */
761 +    private transient volatile long baseCount;
762 +
763 +    /**
764 +     * Table initialization and resizing control.  When negative, the
765 +     * table is being initialized or resized: -1 for initialization,
766 +     * else -(1 + the number of active resizing threads).  Otherwise,
767 +     * when table is null, holds the initial table size to use upon
768 +     * creation, or 0 for default. After initialization, holds the
769 +     * next element count value upon which to resize the table.
770 +     */
771 +    private transient volatile int sizeCtl;
772 +
773 +    /**
774 +     * The next table index (plus one) to split while resizing.
775 +     */
776 +    private transient volatile int transferIndex;
777 +
778 +    /**
779 +     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 +     */
781 +    private transient volatile int cellsBusy;
782 +
783 +    /**
784 +     * Table of counter cells. When non-null, size is a power of 2.
785 +     */
786 +    private transient volatile CounterCell[] counterCells;
787 +
788 +    // views
789 +    private transient KeySetView<K,V> keySet;
790 +    private transient ValuesView<K,V> values;
791 +    private transient EntrySetView<K,V> entrySet;
792 +
793 +
794 +    /* ---------------- Public operations -------------- */
795 +
796      /**
797 <     * Sets the ith element of given table, with volatile write
222 <     * semantics. (See above about use of putOrderedObject.)
797 >     * Creates a new, empty map with the default initial table size (16).
798       */
799 <    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
225 <                                       HashEntry<K,V> e) {
226 <        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
799 >    public ConcurrentHashMap() {
800      }
801  
802      /**
803 <     * Applies a supplemental hash function to a given hashCode, which
804 <     * defends against poor quality hash functions.  This is critical
805 <     * because ConcurrentHashMap uses power-of-two length hash tables,
806 <     * that otherwise encounter collisions for hashCodes that do not
807 <     * differ in lower or upper bits.
803 >     * Creates a new, empty map with an initial table size
804 >     * accommodating the specified number of elements without the need
805 >     * to dynamically resize.
806 >     *
807 >     * @param initialCapacity The implementation performs internal
808 >     * sizing to accommodate this many elements.
809 >     * @throws IllegalArgumentException if the initial capacity of
810 >     * elements is negative
811       */
812 <    private static int hash(int h) {
813 <        // Spread bits to regularize both segment and index locations,
238 <        // using variant of single-word Wang/Jenkins hash.
239 <        h += (h <<  15) ^ 0xffffcd7d;
240 <        h ^= (h >>> 10);
241 <        h += (h <<   3);
242 <        h ^= (h >>>  6);
243 <        h += (h <<   2) + (h << 14);
244 <        return h ^ (h >>> 16);
812 >    public ConcurrentHashMap(int initialCapacity) {
813 >        this(initialCapacity, LOAD_FACTOR, 1);
814      }
815  
816      /**
817 <     * Segments are specialized versions of hash tables.  This
818 <     * subclasses from ReentrantLock opportunistically, just to
819 <     * simplify some locking and avoid separate construction.
817 >     * Creates a new map with the same mappings as the given map.
818 >     *
819 >     * @param m the map
820       */
821 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
822 <        /*
823 <         * Segments maintain a table of entry lists that are always
824 <         * kept in a consistent state, so can be read (via volatile
256 <         * reads of segments and tables) without locking.  This
257 <         * requires replicating nodes when necessary during table
258 <         * resizing, so the old lists can be traversed by readers
259 <         * still using old version of table.
260 <         *
261 <         * This class defines only mutative methods requiring locking.
262 <         * Except as noted, the methods of this class perform the
263 <         * per-segment versions of ConcurrentHashMap methods.  (Other
264 <         * methods are integrated directly into ConcurrentHashMap
265 <         * methods.) These mutative methods use a form of controlled
266 <         * spinning on contention via methods scanAndLock and
267 <         * scanAndLockForPut. These intersperse tryLocks with
268 <         * traversals to locate nodes.  The main benefit is to absorb
269 <         * cache misses (which are very common for hash tables) while
270 <         * obtaining locks so that traversal is faster once
271 <         * acquired. We do not actually use the found nodes since they
272 <         * must be re-acquired under lock anyway to ensure sequential
273 <         * consistency of updates (and in any case may be undetectably
274 <         * stale), but they will normally be much faster to re-locate.
275 <         * Also, scanAndLockForPut speculatively creates a fresh node
276 <         * to use in put if no node is found.
277 <         */
821 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 >        this.sizeCtl = DEFAULT_CAPACITY;
823 >        putAll(m);
824 >    }
825  
826 <        private static final long serialVersionUID = 2249069246763182397L;
826 >    /**
827 >     * Creates a new, empty map with an initial table size based on
828 >     * the given number of elements ({@code initialCapacity}) and
829 >     * initial table density ({@code loadFactor}).
830 >     *
831 >     * @param initialCapacity the initial capacity. The implementation
832 >     * performs internal sizing to accommodate this many elements,
833 >     * given the specified load factor.
834 >     * @param loadFactor the load factor (table density) for
835 >     * establishing the initial table size
836 >     * @throws IllegalArgumentException if the initial capacity of
837 >     * elements is negative or the load factor is nonpositive
838 >     *
839 >     * @since 1.6
840 >     */
841 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 >        this(initialCapacity, loadFactor, 1);
843 >    }
844  
845 <        /**
846 <         * The maximum number of times to tryLock in a prescan before
847 <         * possibly blocking on acquire in preparation for a locked
848 <         * segment operation. On multiprocessors, using a bounded
849 <         * number of retries maintains cache acquired while locating
850 <         * nodes.
851 <         */
852 <        static final int MAX_SCAN_RETRIES =
853 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
845 >    /**
846 >     * Creates a new, empty map with an initial table size based on
847 >     * the given number of elements ({@code initialCapacity}), initial
848 >     * table density ({@code loadFactor}), and number of concurrently
849 >     * updating threads ({@code concurrencyLevel}).
850 >     *
851 >     * @param initialCapacity the initial capacity. The implementation
852 >     * performs internal sizing to accommodate this many elements,
853 >     * given the specified load factor.
854 >     * @param loadFactor the load factor (table density) for
855 >     * establishing the initial table size
856 >     * @param concurrencyLevel the estimated number of concurrently
857 >     * updating threads. The implementation may use this value as
858 >     * a sizing hint.
859 >     * @throws IllegalArgumentException if the initial capacity is
860 >     * negative or the load factor or concurrencyLevel are
861 >     * nonpositive
862 >     */
863 >    public ConcurrentHashMap(int initialCapacity,
864 >                             float loadFactor, int concurrencyLevel) {
865 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 >            throw new IllegalArgumentException();
867 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
868 >            initialCapacity = concurrencyLevel;   // as estimated threads
869 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 >        this.sizeCtl = cap;
873 >    }
874  
875 <        /**
292 <         * The per-segment table. Elements are accessed via
293 <         * entryAt/setEntryAt providing volatile semantics.
294 <         */
295 <        transient volatile HashEntry<K,V>[] table;
875 >    // Original (since JDK1.2) Map methods
876  
877 <        /**
878 <         * The number of elements. Accessed only either within locks
879 <         * or among other volatile reads that maintain visibility.
880 <         */
881 <        transient int count;
877 >    /**
878 >     * {@inheritDoc}
879 >     */
880 >    public int size() {
881 >        long n = sumCount();
882 >        return ((n < 0L) ? 0 :
883 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 >                (int)n);
885 >    }
886  
887 <        /**
888 <         * The total number of mutative operations in this segment.
889 <         * Even though this may overflows 32 bits, it provides
890 <         * sufficient accuracy for stability checks in CHM isEmpty()
891 <         * and size() methods.  Accessed only either within locks or
892 <         * among other volatile reads that maintain visibility.
309 <         */
310 <        transient int modCount;
887 >    /**
888 >     * {@inheritDoc}
889 >     */
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892 >    }
893  
894 <        /**
895 <         * The table is rehashed when its size exceeds this threshold.
896 <         * (The value of this field is always <tt>(int)(capacity *
897 <         * loadFactor)</tt>.)
898 <         */
899 <        transient int threshold;
894 >    /**
895 >     * Returns the value to which the specified key is mapped,
896 >     * or {@code null} if this map contains no mapping for the key.
897 >     *
898 >     * <p>More formally, if this map contains a mapping from a key
899 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 >     * then this method returns {@code v}; otherwise it returns
901 >     * {@code null}.  (There can be at most one such mapping.)
902 >     *
903 >     * @throws NullPointerException if the specified key is null
904 >     */
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920 >            }
921 >        }
922 >        return null;
923 >    }
924  
925 <        /**
926 <         * The load factor for the hash table.  Even though this value
927 <         * is same for all segments, it is replicated to avoid needing
928 <         * links to outer object.
929 <         * @serial
930 <         */
931 <        final float loadFactor;
925 >    /**
926 >     * Tests if the specified object is a key in this table.
927 >     *
928 >     * @param  key possible key
929 >     * @return {@code true} if and only if the specified object
930 >     *         is a key in this table, as determined by the
931 >     *         {@code equals} method; {@code false} otherwise
932 >     * @throws NullPointerException if the specified key is null
933 >     */
934 >    public boolean containsKey(Object key) {
935 >        return get(key) != null;
936 >    }
937  
938 <        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
939 <            this.loadFactor = lf;
940 <            this.threshold = threshold;
941 <            this.table = tab;
938 >    /**
939 >     * Returns {@code true} if this map maps one or more keys to the
940 >     * specified value. Note: This method may require a full traversal
941 >     * of the map, and is much slower than method {@code containsKey}.
942 >     *
943 >     * @param value value whose presence in this map is to be tested
944 >     * @return {@code true} if this map maps one or more keys to the
945 >     *         specified value
946 >     * @throws NullPointerException if the specified value is null
947 >     */
948 >    public boolean containsValue(Object value) {
949 >        if (value == null)
950 >            throw new NullPointerException();
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958 >            }
959          }
960 +        return false;
961 +    }
962  
963 <        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
964 <            HashEntry<K,V> node = tryLock() ? null :
965 <                scanAndLockForPut(key, hash, value);
966 <            V oldValue;
967 <            try {
968 <                HashEntry<K,V>[] tab = table;
969 <                int index = (tab.length - 1) & hash;
970 <                HashEntry<K,V> first = entryAt(tab, index);
971 <                for (HashEntry<K,V> e = first;;) {
972 <                    if (e != null) {
973 <                        K k;
974 <                        if ((k = e.key) == key ||
975 <                            (e.hash == hash && key.equals(k))) {
976 <                            oldValue = e.value;
977 <                            if (!onlyIfAbsent) {
978 <                                e.value = value;
979 <                                ++modCount;
963 >    /**
964 >     * Maps the specified key to the specified value in this table.
965 >     * Neither the key nor the value can be null.
966 >     *
967 >     * <p>The value can be retrieved by calling the {@code get} method
968 >     * with a key that is equal to the original key.
969 >     *
970 >     * @param key key with which the specified value is to be associated
971 >     * @param value value to be associated with the specified key
972 >     * @return the previous value associated with {@code key}, or
973 >     *         {@code null} if there was no mapping for {@code key}
974 >     * @throws NullPointerException if the specified key or value is null
975 >     */
976 >    public V put(K key, V value) {
977 >        return putVal(key, value, false);
978 >    }
979 >
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh; K fk; V fv;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 >                    break;                   // no lock when adding to empty bin
992 >            }
993 >            else if ((fh = f.hash) == MOVED)
994 >                tab = helpTransfer(tab, f);
995 >            else if (onlyIfAbsent // check first node without acquiring lock
996 >                     && fh == hash
997 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998 >                     && (fv = f.val) != null)
999 >                return fv;
1000 >            else {
1001 >                V oldVal = null;
1002 >                synchronized (f) {
1003 >                    if (tabAt(tab, i) == f) {
1004 >                        if (fh >= 0) {
1005 >                            binCount = 1;
1006 >                            for (Node<K,V> e = f;; ++binCount) {
1007 >                                K ek;
1008 >                                if (e.hash == hash &&
1009 >                                    ((ek = e.key) == key ||
1010 >                                     (ek != null && key.equals(ek)))) {
1011 >                                    oldVal = e.val;
1012 >                                    if (!onlyIfAbsent)
1013 >                                        e.val = value;
1014 >                                    break;
1015 >                                }
1016 >                                Node<K,V> pred = e;
1017 >                                if ((e = e.next) == null) {
1018 >                                    pred.next = new Node<K,V>(hash, key, value);
1019 >                                    break;
1020 >                                }
1021                              }
351                            break;
1022                          }
1023 <                        e = e.next;
1024 <                    }
1025 <                    else {
1026 <                        if (node != null)
1027 <                            node.setNext(first);
1028 <                        else
1029 <                            node = new HashEntry<K,V>(hash, key, value, first);
1030 <                        int c = count + 1;
1031 <                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
1032 <                            rehash(node);
1033 <                        else
1034 <                            setEntryAt(tab, index, node);
365 <                        ++modCount;
366 <                        count = c;
367 <                        oldValue = null;
368 <                        break;
369 <                    }
370 <                }
371 <            } finally {
372 <                unlock();
373 <            }
374 <            return oldValue;
375 <        }
376 <
377 <        /**
378 <         * Doubles size of table and repacks entries, also adding the
379 <         * given node to new table
380 <         */
381 <        @SuppressWarnings("unchecked")
382 <        private void rehash(HashEntry<K,V> node) {
383 <            /*
384 <             * Reclassify nodes in each list to new table.  Because we
385 <             * are using power-of-two expansion, the elements from
386 <             * each bin must either stay at same index, or move with a
387 <             * power of two offset. We eliminate unnecessary node
388 <             * creation by catching cases where old nodes can be
389 <             * reused because their next fields won't change.
390 <             * Statistically, at the default threshold, only about
391 <             * one-sixth of them need cloning when a table
392 <             * doubles. The nodes they replace will be garbage
393 <             * collectable as soon as they are no longer referenced by
394 <             * any reader thread that may be in the midst of
395 <             * concurrently traversing table. Entry accesses use plain
396 <             * array indexing because they are followed by volatile
397 <             * table write.
398 <             */
399 <            HashEntry<K,V>[] oldTable = table;
400 <            int oldCapacity = oldTable.length;
401 <            int newCapacity = oldCapacity << 1;
402 <            threshold = (int)(newCapacity * loadFactor);
403 <            HashEntry<K,V>[] newTable =
404 <                (HashEntry<K,V>[]) new HashEntry<?,?>[newCapacity];
405 <            int sizeMask = newCapacity - 1;
406 <            for (int i = 0; i < oldCapacity ; i++) {
407 <                HashEntry<K,V> e = oldTable[i];
408 <                if (e != null) {
409 <                    HashEntry<K,V> next = e.next;
410 <                    int idx = e.hash & sizeMask;
411 <                    if (next == null)   //  Single node on list
412 <                        newTable[idx] = e;
413 <                    else { // Reuse consecutive sequence at same slot
414 <                        HashEntry<K,V> lastRun = e;
415 <                        int lastIdx = idx;
416 <                        for (HashEntry<K,V> last = next;
417 <                             last != null;
418 <                             last = last.next) {
419 <                            int k = last.hash & sizeMask;
420 <                            if (k != lastIdx) {
421 <                                lastIdx = k;
422 <                                lastRun = last;
423 <                            }
424 <                        }
425 <                        newTable[lastIdx] = lastRun;
426 <                        // Clone remaining nodes
427 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
428 <                            V v = p.value;
429 <                            int h = p.hash;
430 <                            int k = h & sizeMask;
431 <                            HashEntry<K,V> n = newTable[k];
432 <                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
433 <                        }
434 <                    }
435 <                }
436 <            }
437 <            int nodeIndex = node.hash & sizeMask; // add the new node
438 <            node.setNext(newTable[nodeIndex]);
439 <            newTable[nodeIndex] = node;
440 <            table = newTable;
441 <        }
442 <
443 <        /**
444 <         * Scans for a node containing given key while trying to
445 <         * acquire lock, creating and returning one if not found. Upon
446 <         * return, guarantees that lock is held. Unlike in most
447 <         * methods, calls to method equals are not screened: Since
448 <         * traversal speed doesn't matter, we might as well help warm
449 <         * up the associated code and accesses as well.
450 <         *
451 <         * @return a new node if key not found, else null
452 <         */
453 <        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
454 <            HashEntry<K,V> first = entryForHash(this, hash);
455 <            HashEntry<K,V> e = first;
456 <            HashEntry<K,V> node = null;
457 <            int retries = -1; // negative while locating node
458 <            while (!tryLock()) {
459 <                HashEntry<K,V> f; // to recheck first below
460 <                if (retries < 0) {
461 <                    if (e == null) {
462 <                        if (node == null) // speculatively create node
463 <                            node = new HashEntry<K,V>(hash, key, value, null);
464 <                        retries = 0;
1023 >                        else if (f instanceof TreeBin) {
1024 >                            Node<K,V> p;
1025 >                            binCount = 2;
1026 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027 >                                                           value)) != null) {
1028 >                                oldVal = p.val;
1029 >                                if (!onlyIfAbsent)
1030 >                                    p.val = value;
1031 >                            }
1032 >                        }
1033 >                        else if (f instanceof ReservationNode)
1034 >                            throw new IllegalStateException("Recursive update");
1035                      }
466                    else if (key.equals(e.key))
467                        retries = 0;
468                    else
469                        e = e.next;
470                }
471                else if (++retries > MAX_SCAN_RETRIES) {
472                    lock();
473                    break;
474                }
475                else if ((retries & 1) == 0 &&
476                         (f = entryForHash(this, hash)) != first) {
477                    e = first = f; // re-traverse if entry changed
478                    retries = -1;
479                }
480            }
481            return node;
482        }
483
484        /**
485         * Scans for a node containing the given key while trying to
486         * acquire lock for a remove or replace operation. Upon
487         * return, guarantees that lock is held.  Note that we must
488         * lock even if the key is not found, to ensure sequential
489         * consistency of updates.
490         */
491        private void scanAndLock(Object key, int hash) {
492            // similar to but simpler than scanAndLockForPut
493            HashEntry<K,V> first = entryForHash(this, hash);
494            HashEntry<K,V> e = first;
495            int retries = -1;
496            while (!tryLock()) {
497                HashEntry<K,V> f;
498                if (retries < 0) {
499                    if (e == null || key.equals(e.key))
500                        retries = 0;
501                    else
502                        e = e.next;
1036                  }
1037 <                else if (++retries > MAX_SCAN_RETRIES) {
1038 <                    lock();
1037 >                if (binCount != 0) {
1038 >                    if (binCount >= TREEIFY_THRESHOLD)
1039 >                        treeifyBin(tab, i);
1040 >                    if (oldVal != null)
1041 >                        return oldVal;
1042                      break;
1043                  }
508                else if ((retries & 1) == 0 &&
509                         (f = entryForHash(this, hash)) != first) {
510                    e = first = f;
511                    retries = -1;
512                }
1044              }
1045          }
1046 +        addCount(1L, binCount);
1047 +        return null;
1048 +    }
1049  
1050 <        /**
1051 <         * Remove; match on key only if value null, else match both.
1052 <         */
1053 <        final V remove(Object key, int hash, Object value) {
1054 <            if (!tryLock())
1055 <                scanAndLock(key, hash);
1056 <            V oldValue = null;
1057 <            try {
1058 <                HashEntry<K,V>[] tab = table;
1059 <                int index = (tab.length - 1) & hash;
1060 <                HashEntry<K,V> e = entryAt(tab, index);
1061 <                HashEntry<K,V> pred = null;
1062 <                while (e != null) {
1063 <                    K k;
1064 <                    HashEntry<K,V> next = e.next;
1065 <                    if ((k = e.key) == key ||
1066 <                        (e.hash == hash && key.equals(k))) {
1067 <                        V v = e.value;
1068 <                        if (value == null || value == v || value.equals(v)) {
1069 <                            if (pred == null)
1070 <                                setEntryAt(tab, index, next);
1071 <                            else
1072 <                                pred.setNext(next);
1073 <                            ++modCount;
1074 <                            --count;
1075 <                            oldValue = v;
1050 >    /**
1051 >     * Copies all of the mappings from the specified map to this one.
1052 >     * These mappings replace any mappings that this map had for any of the
1053 >     * keys currently in the specified map.
1054 >     *
1055 >     * @param m mappings to be stored in this map
1056 >     */
1057 >    public void putAll(Map<? extends K, ? extends V> m) {
1058 >        tryPresize(m.size());
1059 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060 >            putVal(e.getKey(), e.getValue(), false);
1061 >    }
1062 >
1063 >    /**
1064 >     * Removes the key (and its corresponding value) from this map.
1065 >     * This method does nothing if the key is not in the map.
1066 >     *
1067 >     * @param  key the key that needs to be removed
1068 >     * @return the previous value associated with {@code key}, or
1069 >     *         {@code null} if there was no mapping for {@code key}
1070 >     * @throws NullPointerException if the specified key is null
1071 >     */
1072 >    public V remove(Object key) {
1073 >        return replaceNode(key, null, null);
1074 >    }
1075 >
1076 >    /**
1077 >     * Implementation for the four public remove/replace methods:
1078 >     * Replaces node value with v, conditional upon match of cv if
1079 >     * non-null.  If resulting value is null, delete.
1080 >     */
1081 >    final V replaceNode(Object key, V value, Object cv) {
1082 >        int hash = spread(key.hashCode());
1083 >        for (Node<K,V>[] tab = table;;) {
1084 >            Node<K,V> f; int n, i, fh;
1085 >            if (tab == null || (n = tab.length) == 0 ||
1086 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087 >                break;
1088 >            else if ((fh = f.hash) == MOVED)
1089 >                tab = helpTransfer(tab, f);
1090 >            else {
1091 >                V oldVal = null;
1092 >                boolean validated = false;
1093 >                synchronized (f) {
1094 >                    if (tabAt(tab, i) == f) {
1095 >                        if (fh >= 0) {
1096 >                            validated = true;
1097 >                            for (Node<K,V> e = f, pred = null;;) {
1098 >                                K ek;
1099 >                                if (e.hash == hash &&
1100 >                                    ((ek = e.key) == key ||
1101 >                                     (ek != null && key.equals(ek)))) {
1102 >                                    V ev = e.val;
1103 >                                    if (cv == null || cv == ev ||
1104 >                                        (ev != null && cv.equals(ev))) {
1105 >                                        oldVal = ev;
1106 >                                        if (value != null)
1107 >                                            e.val = value;
1108 >                                        else if (pred != null)
1109 >                                            pred.next = e.next;
1110 >                                        else
1111 >                                            setTabAt(tab, i, e.next);
1112 >                                    }
1113 >                                    break;
1114 >                                }
1115 >                                pred = e;
1116 >                                if ((e = e.next) == null)
1117 >                                    break;
1118 >                            }
1119                          }
1120 <                        break;
1120 >                        else if (f instanceof TreeBin) {
1121 >                            validated = true;
1122 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1123 >                            TreeNode<K,V> r, p;
1124 >                            if ((r = t.root) != null &&
1125 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1126 >                                V pv = p.val;
1127 >                                if (cv == null || cv == pv ||
1128 >                                    (pv != null && cv.equals(pv))) {
1129 >                                    oldVal = pv;
1130 >                                    if (value != null)
1131 >                                        p.val = value;
1132 >                                    else if (t.removeTreeNode(p))
1133 >                                        setTabAt(tab, i, untreeify(t.first));
1134 >                                }
1135 >                            }
1136 >                        }
1137 >                        else if (f instanceof ReservationNode)
1138 >                            throw new IllegalStateException("Recursive update");
1139                      }
545                    pred = e;
546                    e = next;
1140                  }
1141 <            } finally {
1142 <                unlock();
1143 <            }
1144 <            return oldValue;
1145 <        }
553 <
554 <        final boolean replace(K key, int hash, V oldValue, V newValue) {
555 <            if (!tryLock())
556 <                scanAndLock(key, hash);
557 <            boolean replaced = false;
558 <            try {
559 <                HashEntry<K,V> e;
560 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
561 <                    K k;
562 <                    if ((k = e.key) == key ||
563 <                        (e.hash == hash && key.equals(k))) {
564 <                        if (oldValue.equals(e.value)) {
565 <                            e.value = newValue;
566 <                            ++modCount;
567 <                            replaced = true;
568 <                        }
569 <                        break;
1141 >                if (validated) {
1142 >                    if (oldVal != null) {
1143 >                        if (value == null)
1144 >                            addCount(-1L, -1);
1145 >                        return oldVal;
1146                      }
1147 +                    break;
1148                  }
572            } finally {
573                unlock();
1149              }
575            return replaced;
1150          }
1151 +        return null;
1152 +    }
1153  
1154 <        final V replace(K key, int hash, V value) {
1155 <            if (!tryLock())
1156 <                scanAndLock(key, hash);
1157 <            V oldValue = null;
1158 <            try {
1159 <                HashEntry<K,V> e;
1160 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1161 <                    K k;
1162 <                    if ((k = e.key) == key ||
1163 <                        (e.hash == hash && key.equals(k))) {
1164 <                        oldValue = e.value;
1165 <                        e.value = value;
1166 <                        ++modCount;
1167 <                        break;
1154 >    /**
1155 >     * Removes all of the mappings from this map.
1156 >     */
1157 >    public void clear() {
1158 >        long delta = 0L; // negative number of deletions
1159 >        int i = 0;
1160 >        Node<K,V>[] tab = table;
1161 >        while (tab != null && i < tab.length) {
1162 >            int fh;
1163 >            Node<K,V> f = tabAt(tab, i);
1164 >            if (f == null)
1165 >                ++i;
1166 >            else if ((fh = f.hash) == MOVED) {
1167 >                tab = helpTransfer(tab, f);
1168 >                i = 0; // restart
1169 >            }
1170 >            else {
1171 >                synchronized (f) {
1172 >                    if (tabAt(tab, i) == f) {
1173 >                        Node<K,V> p = (fh >= 0 ? f :
1174 >                                       (f instanceof TreeBin) ?
1175 >                                       ((TreeBin<K,V>)f).first : null);
1176 >                        while (p != null) {
1177 >                            --delta;
1178 >                            p = p.next;
1179 >                        }
1180 >                        setTabAt(tab, i++, null);
1181                      }
1182                  }
594            } finally {
595                unlock();
1183              }
597            return oldValue;
1184          }
1185 +        if (delta != 0L)
1186 +            addCount(delta, -1);
1187 +    }
1188  
1189 <        final void clear() {
1190 <            lock();
1191 <            try {
1192 <                HashEntry<K,V>[] tab = table;
1193 <                for (int i = 0; i < tab.length ; i++)
1194 <                    setEntryAt(tab, i, null);
1195 <                ++modCount;
1196 <                count = 0;
1197 <            } finally {
1198 <                unlock();
1199 <            }
1200 <        }
1189 >    /**
1190 >     * Returns a {@link Set} view of the keys contained in this map.
1191 >     * The set is backed by the map, so changes to the map are
1192 >     * reflected in the set, and vice-versa. The set supports element
1193 >     * removal, which removes the corresponding mapping from this map,
1194 >     * via the {@code Iterator.remove}, {@code Set.remove},
1195 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1196 >     * operations.  It does not support the {@code add} or
1197 >     * {@code addAll} operations.
1198 >     *
1199 >     * <p>The view's iterators and spliterators are
1200 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 >     *
1202 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204 >     *
1205 >     * @return the set view
1206 >     */
1207 >    public KeySetView<K,V> keySet() {
1208 >        KeySetView<K,V> ks;
1209 >        if ((ks = keySet) != null) return ks;
1210 >        return keySet = new KeySetView<K,V>(this, null);
1211      }
1212  
1213 <    // Accessing segments
1213 >    /**
1214 >     * Returns a {@link Collection} view of the values contained in this map.
1215 >     * The collection is backed by the map, so changes to the map are
1216 >     * reflected in the collection, and vice-versa.  The collection
1217 >     * supports element removal, which removes the corresponding
1218 >     * mapping from this map, via the {@code Iterator.remove},
1219 >     * {@code Collection.remove}, {@code removeAll},
1220 >     * {@code retainAll}, and {@code clear} operations.  It does not
1221 >     * support the {@code add} or {@code addAll} operations.
1222 >     *
1223 >     * <p>The view's iterators and spliterators are
1224 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 >     *
1226 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227 >     * and {@link Spliterator#NONNULL}.
1228 >     *
1229 >     * @return the collection view
1230 >     */
1231 >    public Collection<V> values() {
1232 >        ValuesView<K,V> vs;
1233 >        if ((vs = values) != null) return vs;
1234 >        return values = new ValuesView<K,V>(this);
1235 >    }
1236  
1237      /**
1238 <     * Gets the jth element of given segment array (if nonnull) with
1239 <     * volatile element access semantics via Unsafe. (The null check
1240 <     * can trigger harmlessly only during deserialization.) Note:
1241 <     * because each element of segments array is set only once (using
1242 <     * fully ordered writes), some performance-sensitive methods rely
1243 <     * on this method only as a recheck upon null reads.
1238 >     * Returns a {@link Set} view of the mappings contained in this map.
1239 >     * The set is backed by the map, so changes to the map are
1240 >     * reflected in the set, and vice-versa.  The set supports element
1241 >     * removal, which removes the corresponding mapping from the map,
1242 >     * via the {@code Iterator.remove}, {@code Set.remove},
1243 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1244 >     * operations.
1245 >     *
1246 >     * <p>The view's iterators and spliterators are
1247 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 >     *
1249 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251 >     *
1252 >     * @return the set view
1253       */
1254 <    @SuppressWarnings("unchecked")
1255 <    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
1256 <        long u = (j << SSHIFT) + SBASE;
1257 <        return ss == null ? null :
628 <            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
1254 >    public Set<Map.Entry<K,V>> entrySet() {
1255 >        EntrySetView<K,V> es;
1256 >        if ((es = entrySet) != null) return es;
1257 >        return entrySet = new EntrySetView<K,V>(this);
1258      }
1259  
1260      /**
1261 <     * Returns the segment for the given index, creating it and
1262 <     * recording in segment table (via CAS) if not already present.
1261 >     * Returns the hash code value for this {@link Map}, i.e.,
1262 >     * the sum of, for each key-value pair in the map,
1263 >     * {@code key.hashCode() ^ value.hashCode()}.
1264       *
1265 <     * @param k the index
636 <     * @return the segment
1265 >     * @return the hash code value for this map
1266       */
1267 <    @SuppressWarnings("unchecked")
1268 <    private Segment<K,V> ensureSegment(int k) {
1269 <        final Segment<K,V>[] ss = this.segments;
1270 <        long u = (k << SSHIFT) + SBASE; // raw offset
1271 <        Segment<K,V> seg;
1272 <        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
1273 <            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
1274 <            int cap = proto.table.length;
1275 <            float lf = proto.loadFactor;
1276 <            int threshold = (int)(cap * lf);
1277 <            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry<?,?>[cap];
1278 <            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1279 <                == null) { // recheck
1280 <                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
1281 <                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1282 <                       == null) {
1283 <                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
1284 <                        break;
1285 <                }
1267 >    public int hashCode() {
1268 >        int h = 0;
1269 >        Node<K,V>[] t;
1270 >        if ((t = table) != null) {
1271 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 >            for (Node<K,V> p; (p = it.advance()) != null; )
1273 >                h += p.key.hashCode() ^ p.val.hashCode();
1274 >        }
1275 >        return h;
1276 >    }
1277 >
1278 >    /**
1279 >     * Returns a string representation of this map.  The string
1280 >     * representation consists of a list of key-value mappings (in no
1281 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1282 >     * mappings are separated by the characters {@code ", "} (comma
1283 >     * and space).  Each key-value mapping is rendered as the key
1284 >     * followed by an equals sign ("{@code =}") followed by the
1285 >     * associated value.
1286 >     *
1287 >     * @return a string representation of this map
1288 >     */
1289 >    public String toString() {
1290 >        Node<K,V>[] t;
1291 >        int f = (t = table) == null ? 0 : t.length;
1292 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 >        StringBuilder sb = new StringBuilder();
1294 >        sb.append('{');
1295 >        Node<K,V> p;
1296 >        if ((p = it.advance()) != null) {
1297 >            for (;;) {
1298 >                K k = p.key;
1299 >                V v = p.val;
1300 >                sb.append(k == this ? "(this Map)" : k);
1301 >                sb.append('=');
1302 >                sb.append(v == this ? "(this Map)" : v);
1303 >                if ((p = it.advance()) == null)
1304 >                    break;
1305 >                sb.append(',').append(' ');
1306              }
1307          }
1308 <        return seg;
1308 >        return sb.append('}').toString();
1309      }
1310  
662    // Hash-based segment and entry accesses
663
1311      /**
1312 <     * Gets the segment for the given hash code.
1312 >     * Compares the specified object with this map for equality.
1313 >     * Returns {@code true} if the given object is a map with the same
1314 >     * mappings as this map.  This operation may return misleading
1315 >     * results if either map is concurrently modified during execution
1316 >     * of this method.
1317 >     *
1318 >     * @param o object to be compared for equality with this map
1319 >     * @return {@code true} if the specified object is equal to this map
1320       */
1321 <    @SuppressWarnings("unchecked")
1322 <    private Segment<K,V> segmentForHash(int h) {
1323 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1324 <        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
1321 >    public boolean equals(Object o) {
1322 >        if (o != this) {
1323 >            if (!(o instanceof Map))
1324 >                return false;
1325 >            Map<?,?> m = (Map<?,?>) o;
1326 >            Node<K,V>[] t;
1327 >            int f = (t = table) == null ? 0 : t.length;
1328 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 >                V val = p.val;
1331 >                Object v = m.get(p.key);
1332 >                if (v == null || (v != val && !v.equals(val)))
1333 >                    return false;
1334 >            }
1335 >            for (Map.Entry<?,?> e : m.entrySet()) {
1336 >                Object mk, mv, v;
1337 >                if ((mk = e.getKey()) == null ||
1338 >                    (mv = e.getValue()) == null ||
1339 >                    (v = get(mk)) == null ||
1340 >                    (mv != v && !mv.equals(v)))
1341 >                    return false;
1342 >            }
1343 >        }
1344 >        return true;
1345      }
1346  
1347      /**
1348 <     * Gets the table entry for the given segment and hash code.
1348 >     * Stripped-down version of helper class used in previous version,
1349 >     * declared for the sake of serialization compatibility.
1350       */
1351 <    @SuppressWarnings("unchecked")
1352 <    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
1353 <        HashEntry<K,V>[] tab;
1354 <        return (seg == null || (tab = seg.table) == null) ? null :
680 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
681 <            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1351 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 >        private static final long serialVersionUID = 2249069246763182397L;
1353 >        final float loadFactor;
1354 >        Segment(float lf) { this.loadFactor = lf; }
1355      }
1356  
684    /* ---------------- Public operations -------------- */
685
1357      /**
1358 <     * Creates a new, empty map with the specified initial
688 <     * capacity, load factor and concurrency level.
1358 >     * Saves this map to a stream (that is, serializes it).
1359       *
1360 <     * @param initialCapacity the initial capacity. The implementation
1361 <     * performs internal sizing to accommodate this many elements.
1362 <     * @param loadFactor  the load factor threshold, used to control resizing.
1363 <     * Resizing may be performed when the average number of elements per
1364 <     * bin exceeds this threshold.
1365 <     * @param concurrencyLevel the estimated number of concurrently
696 <     * updating threads. The implementation performs internal sizing
697 <     * to try to accommodate this many threads.
698 <     * @throws IllegalArgumentException if the initial capacity is
699 <     * negative or the load factor or concurrencyLevel are
700 <     * nonpositive.
1360 >     * @param s the stream
1361 >     * @throws java.io.IOException if an I/O error occurs
1362 >     * @serialData
1363 >     * the serialized fields, followed by the key (Object) and value
1364 >     * (Object) for each key-value mapping, followed by a null pair.
1365 >     * The key-value mappings are emitted in no particular order.
1366       */
1367 <    @SuppressWarnings("unchecked")
1368 <    public ConcurrentHashMap(int initialCapacity,
1369 <                             float loadFactor, int concurrencyLevel) {
1370 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
706 <            throw new IllegalArgumentException();
707 <        if (concurrencyLevel > MAX_SEGMENTS)
708 <            concurrencyLevel = MAX_SEGMENTS;
709 <        // Find power-of-two sizes best matching arguments
1367 >    private void writeObject(java.io.ObjectOutputStream s)
1368 >        throws java.io.IOException {
1369 >        // For serialization compatibility
1370 >        // Emulate segment calculation from previous version of this class
1371          int sshift = 0;
1372          int ssize = 1;
1373 <        while (ssize < concurrencyLevel) {
1373 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374              ++sshift;
1375              ssize <<= 1;
1376          }
1377 <        this.segmentShift = 32 - sshift;
1378 <        this.segmentMask = ssize - 1;
1379 <        if (initialCapacity > MAXIMUM_CAPACITY)
1380 <            initialCapacity = MAXIMUM_CAPACITY;
1381 <        int c = initialCapacity / ssize;
1382 <        if (c * ssize < initialCapacity)
1383 <            ++c;
1384 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
1385 <        while (cap < c)
1386 <            cap <<= 1;
1387 <        // create segments and segments[0]
1388 <        Segment<K,V> s0 =
1389 <            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
1390 <                             (HashEntry<K,V>[])new HashEntry<?,?>[cap]);
1391 <        Segment<K,V>[] ss = (Segment<K,V>[])new Segment<?,?>[ssize];
1392 <        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
1393 <        this.segments = ss;
1377 >        int segmentShift = 32 - sshift;
1378 >        int segmentMask = ssize - 1;
1379 >        @SuppressWarnings("unchecked")
1380 >        Segment<K,V>[] segments = (Segment<K,V>[])
1381 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382 >        for (int i = 0; i < segments.length; ++i)
1383 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385 >        streamFields.put("segments", segments);
1386 >        streamFields.put("segmentShift", segmentShift);
1387 >        streamFields.put("segmentMask", segmentMask);
1388 >        s.writeFields();
1389 >
1390 >        Node<K,V>[] t;
1391 >        if ((t = table) != null) {
1392 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1394 >                s.writeObject(p.key);
1395 >                s.writeObject(p.val);
1396 >            }
1397 >        }
1398 >        s.writeObject(null);
1399 >        s.writeObject(null);
1400      }
1401  
1402      /**
1403 <     * Creates a new, empty map with the specified initial capacity
1404 <     * and load factor and with the default concurrencyLevel (16).
1405 <     *
1406 <     * @param initialCapacity The implementation performs internal
1407 <     * sizing to accommodate this many elements.
1408 <     * @param loadFactor  the load factor threshold, used to control resizing.
1409 <     * Resizing may be performed when the average number of elements per
1410 <     * bin exceeds this threshold.
1411 <     * @throws IllegalArgumentException if the initial capacity of
1412 <     * elements is negative or the load factor is nonpositive
1403 >     * Reconstitutes this map from a stream (that is, deserializes it).
1404 >     * @param s the stream
1405 >     * @throws ClassNotFoundException if the class of a serialized object
1406 >     *         could not be found
1407 >     * @throws java.io.IOException if an I/O error occurs
1408 >     */
1409 >    private void readObject(java.io.ObjectInputStream s)
1410 >        throws java.io.IOException, ClassNotFoundException {
1411 >        /*
1412 >         * To improve performance in typical cases, we create nodes
1413 >         * while reading, then place in table once size is known.
1414 >         * However, we must also validate uniqueness and deal with
1415 >         * overpopulated bins while doing so, which requires
1416 >         * specialized versions of putVal mechanics.
1417 >         */
1418 >        sizeCtl = -1; // force exclusion for table construction
1419 >        s.defaultReadObject();
1420 >        long size = 0L;
1421 >        Node<K,V> p = null;
1422 >        for (;;) {
1423 >            @SuppressWarnings("unchecked")
1424 >            K k = (K) s.readObject();
1425 >            @SuppressWarnings("unchecked")
1426 >            V v = (V) s.readObject();
1427 >            if (k != null && v != null) {
1428 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429 >                ++size;
1430 >            }
1431 >            else
1432 >                break;
1433 >        }
1434 >        if (size == 0L)
1435 >            sizeCtl = 0;
1436 >        else {
1437 >            long ts = (long)(1.0 + size / LOAD_FACTOR);
1438 >            int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439 >                MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 >            @SuppressWarnings("unchecked")
1441 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 >            int mask = n - 1;
1443 >            long added = 0L;
1444 >            while (p != null) {
1445 >                boolean insertAtFront;
1446 >                Node<K,V> next = p.next, first;
1447 >                int h = p.hash, j = h & mask;
1448 >                if ((first = tabAt(tab, j)) == null)
1449 >                    insertAtFront = true;
1450 >                else {
1451 >                    K k = p.key;
1452 >                    if (first.hash < 0) {
1453 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1454 >                        if (t.putTreeVal(h, k, p.val) == null)
1455 >                            ++added;
1456 >                        insertAtFront = false;
1457 >                    }
1458 >                    else {
1459 >                        int binCount = 0;
1460 >                        insertAtFront = true;
1461 >                        Node<K,V> q; K qk;
1462 >                        for (q = first; q != null; q = q.next) {
1463 >                            if (q.hash == h &&
1464 >                                ((qk = q.key) == k ||
1465 >                                 (qk != null && k.equals(qk)))) {
1466 >                                insertAtFront = false;
1467 >                                break;
1468 >                            }
1469 >                            ++binCount;
1470 >                        }
1471 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472 >                            insertAtFront = false;
1473 >                            ++added;
1474 >                            p.next = first;
1475 >                            TreeNode<K,V> hd = null, tl = null;
1476 >                            for (q = p; q != null; q = q.next) {
1477 >                                TreeNode<K,V> t = new TreeNode<K,V>
1478 >                                    (q.hash, q.key, q.val, null, null);
1479 >                                if ((t.prev = tl) == null)
1480 >                                    hd = t;
1481 >                                else
1482 >                                    tl.next = t;
1483 >                                tl = t;
1484 >                            }
1485 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 >                        }
1487 >                    }
1488 >                }
1489 >                if (insertAtFront) {
1490 >                    ++added;
1491 >                    p.next = first;
1492 >                    setTabAt(tab, j, p);
1493 >                }
1494 >                p = next;
1495 >            }
1496 >            table = tab;
1497 >            sizeCtl = n - (n >>> 2);
1498 >            baseCount = added;
1499 >        }
1500 >    }
1501 >
1502 >    // ConcurrentMap methods
1503 >
1504 >    /**
1505 >     * {@inheritDoc}
1506       *
1507 <     * @since 1.6
1507 >     * @return the previous value associated with the specified key,
1508 >     *         or {@code null} if there was no mapping for the key
1509 >     * @throws NullPointerException if the specified key or value is null
1510       */
1511 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
1512 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
1511 >    public V putIfAbsent(K key, V value) {
1512 >        return putVal(key, value, true);
1513      }
1514  
1515      /**
1516 <     * Creates a new, empty map with the specified initial capacity,
755 <     * and with default load factor (0.75) and concurrencyLevel (16).
1516 >     * {@inheritDoc}
1517       *
1518 <     * @param initialCapacity the initial capacity. The implementation
758 <     * performs internal sizing to accommodate this many elements.
759 <     * @throws IllegalArgumentException if the initial capacity of
760 <     * elements is negative.
1518 >     * @throws NullPointerException if the specified key is null
1519       */
1520 <    public ConcurrentHashMap(int initialCapacity) {
1521 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1520 >    public boolean remove(Object key, Object value) {
1521 >        if (key == null)
1522 >            throw new NullPointerException();
1523 >        return value != null && replaceNode(key, null, value) != null;
1524      }
1525  
1526      /**
1527 <     * Creates a new, empty map with a default initial capacity (16),
1528 <     * load factor (0.75) and concurrencyLevel (16).
1527 >     * {@inheritDoc}
1528 >     *
1529 >     * @throws NullPointerException if any of the arguments are null
1530       */
1531 <    public ConcurrentHashMap() {
1532 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1531 >    public boolean replace(K key, V oldValue, V newValue) {
1532 >        if (key == null || oldValue == null || newValue == null)
1533 >            throw new NullPointerException();
1534 >        return replaceNode(key, newValue, oldValue) != null;
1535      }
1536  
1537      /**
1538 <     * Creates a new map with the same mappings as the given map.
776 <     * The map is created with a capacity of 1.5 times the number
777 <     * of mappings in the given map or 16 (whichever is greater),
778 <     * and a default load factor (0.75) and concurrencyLevel (16).
1538 >     * {@inheritDoc}
1539       *
1540 <     * @param m the map
1540 >     * @return the previous value associated with the specified key,
1541 >     *         or {@code null} if there was no mapping for the key
1542 >     * @throws NullPointerException if the specified key or value is null
1543       */
1544 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
1545 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
1546 <                      DEFAULT_INITIAL_CAPACITY),
1547 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
786 <        putAll(m);
1544 >    public V replace(K key, V value) {
1545 >        if (key == null || value == null)
1546 >            throw new NullPointerException();
1547 >        return replaceNode(key, value, null);
1548      }
1549  
1550 +    // Overrides of JDK8+ Map extension method defaults
1551 +
1552      /**
1553 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
1553 >     * Returns the value to which the specified key is mapped, or the
1554 >     * given default value if this map contains no mapping for the
1555 >     * key.
1556       *
1557 <     * @return <tt>true</tt> if this map contains no key-value mappings
1557 >     * @param key the key whose associated value is to be returned
1558 >     * @param defaultValue the value to return if this map contains
1559 >     * no mapping for the given key
1560 >     * @return the mapping for the key, if present; else the default value
1561 >     * @throws NullPointerException if the specified key is null
1562       */
1563 <    public boolean isEmpty() {
1564 <        /*
1565 <         * Sum per-segment modCounts to avoid mis-reporting when
1566 <         * elements are concurrently added and removed in one segment
1567 <         * while checking another, in which case the table was never
1568 <         * actually empty at any point. (The sum ensures accuracy up
1569 <         * through at least 1<<31 per-segment modifications before
1570 <         * recheck.)  Methods size() and containsValue() use similar
1571 <         * constructions for stability checks.
1572 <         */
1573 <        long sum = 0L;
1574 <        final Segment<K,V>[] segments = this.segments;
806 <        for (int j = 0; j < segments.length; ++j) {
807 <            Segment<K,V> seg = segmentAt(segments, j);
808 <            if (seg != null) {
809 <                if (seg.count != 0)
810 <                    return false;
811 <                sum += seg.modCount;
1563 >    public V getOrDefault(Object key, V defaultValue) {
1564 >        V v;
1565 >        return (v = get(key)) == null ? defaultValue : v;
1566 >    }
1567 >
1568 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1569 >        if (action == null) throw new NullPointerException();
1570 >        Node<K,V>[] t;
1571 >        if ((t = table) != null) {
1572 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1574 >                action.accept(p.key, p.val);
1575              }
1576          }
1577 <        if (sum != 0L) { // recheck unless no modifications
1578 <            for (int j = 0; j < segments.length; ++j) {
1579 <                Segment<K,V> seg = segmentAt(segments, j);
1580 <                if (seg != null) {
1581 <                    if (seg.count != 0)
1582 <                        return false;
1583 <                    sum -= seg.modCount;
1577 >    }
1578 >
1579 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580 >        if (function == null) throw new NullPointerException();
1581 >        Node<K,V>[] t;
1582 >        if ((t = table) != null) {
1583 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 >                V oldValue = p.val;
1586 >                for (K key = p.key;;) {
1587 >                    V newValue = function.apply(key, oldValue);
1588 >                    if (newValue == null)
1589 >                        throw new NullPointerException();
1590 >                    if (replaceNode(key, newValue, oldValue) != null ||
1591 >                        (oldValue = get(key)) == null)
1592 >                        break;
1593                  }
1594              }
823            if (sum != 0L)
824                return false;
1595          }
826        return true;
1596      }
1597  
1598      /**
1599 <     * Returns the number of key-value mappings in this map.  If the
831 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
832 <     * <tt>Integer.MAX_VALUE</tt>.
833 <     *
834 <     * @return the number of key-value mappings in this map
1599 >     * Helper method for EntrySetView.removeIf.
1600       */
1601 <    public int size() {
1602 <        // Try a few times to get accurate count. On failure due to
1603 <        // continuous async changes in table, resort to locking.
1604 <        final Segment<K,V>[] segments = this.segments;
1605 <        final int segmentCount = segments.length;
1606 <
1607 <        long previousSum = 0L;
1608 <        for (int retries = -1; retries < RETRIES_BEFORE_LOCK; retries++) {
1609 <            long sum = 0L;    // sum of modCounts
1610 <            long size = 0L;
1611 <            for (int i = 0; i < segmentCount; i++) {
1612 <                Segment<K,V> segment = segmentAt(segments, i);
1613 <                if (segment != null) {
849 <                    sum += segment.modCount;
850 <                    size += segment.count;
851 <                }
852 <            }
853 <            if (sum == previousSum)
854 <                return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
855 <            previousSum = sum;
1601 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 >        if (function == null) throw new NullPointerException();
1603 >        Node<K,V>[] t;
1604 >        boolean removed = false;
1605 >        if ((t = table) != null) {
1606 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1608 >                K k = p.key;
1609 >                V v = p.val;
1610 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611 >                if (function.test(e) && replaceNode(k, null, v) != null)
1612 >                    removed = true;
1613 >            }
1614          }
1615 +        return removed;
1616 +    }
1617  
1618 <        long size = 0L;
1619 <        for (int i = 0; i < segmentCount; i++) {
1620 <            Segment<K,V> segment = ensureSegment(i);
1621 <            segment.lock();
1622 <            size += segment.count;
1623 <        }
1624 <        for (int i = 0; i < segmentCount; i++)
1625 <            segments[i].unlock();
1626 <        return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
1618 >    /**
1619 >     * Helper method for ValuesView.removeIf.
1620 >     */
1621 >    boolean removeValueIf(Predicate<? super V> function) {
1622 >        if (function == null) throw new NullPointerException();
1623 >        Node<K,V>[] t;
1624 >        boolean removed = false;
1625 >        if ((t = table) != null) {
1626 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1628 >                K k = p.key;
1629 >                V v = p.val;
1630 >                if (function.test(v) && replaceNode(k, null, v) != null)
1631 >                    removed = true;
1632 >            }
1633 >        }
1634 >        return removed;
1635      }
1636  
1637      /**
1638 <     * Returns the value to which the specified key is mapped,
1639 <     * or {@code null} if this map contains no mapping for the key.
1638 >     * If the specified key is not already associated with a value,
1639 >     * attempts to compute its value using the given mapping function
1640 >     * and enters it into this map unless {@code null}.  The entire
1641 >     * method invocation is performed atomically, so the function is
1642 >     * applied at most once per key.  Some attempted update operations
1643 >     * on this map by other threads may be blocked while computation
1644 >     * is in progress, so the computation should be short and simple,
1645 >     * and must not attempt to update any other mappings of this map.
1646       *
1647 <     * <p>More formally, if this map contains a mapping from a key
1648 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
1649 <     * then this method returns {@code v}; otherwise it returns
1650 <     * {@code null}.  (There can be at most one such mapping.)
1651 <     *
1652 <     * @throws NullPointerException if the specified key is null
1647 >     * @param key key with which the specified value is to be associated
1648 >     * @param mappingFunction the function to compute a value
1649 >     * @return the current (existing or computed) value associated with
1650 >     *         the specified key, or null if the computed value is null
1651 >     * @throws NullPointerException if the specified key or mappingFunction
1652 >     *         is null
1653 >     * @throws IllegalStateException if the computation detectably
1654 >     *         attempts a recursive update to this map that would
1655 >     *         otherwise never complete
1656 >     * @throws RuntimeException or Error if the mappingFunction does so,
1657 >     *         in which case the mapping is left unestablished
1658       */
1659 <    @SuppressWarnings("unchecked")
1660 <    public V get(Object key) {
1661 <        Segment<K,V> s; // manually integrate access methods to reduce overhead
1662 <        HashEntry<K,V>[] tab;
1663 <        int h = hash(key.hashCode());
1664 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1665 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
1666 <            (tab = s.table) != null) {
1667 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
1668 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1669 <                 e != null; e = e.next) {
1670 <                K k;
1671 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
1672 <                    return e.value;
1659 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1660 >        if (key == null || mappingFunction == null)
1661 >            throw new NullPointerException();
1662 >        int h = spread(key.hashCode());
1663 >        V val = null;
1664 >        int binCount = 0;
1665 >        for (Node<K,V>[] tab = table;;) {
1666 >            Node<K,V> f; int n, i, fh; K fk; V fv;
1667 >            if (tab == null || (n = tab.length) == 0)
1668 >                tab = initTable();
1669 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1670 >                Node<K,V> r = new ReservationNode<K,V>();
1671 >                synchronized (r) {
1672 >                    if (casTabAt(tab, i, null, r)) {
1673 >                        binCount = 1;
1674 >                        Node<K,V> node = null;
1675 >                        try {
1676 >                            if ((val = mappingFunction.apply(key)) != null)
1677 >                                node = new Node<K,V>(h, key, val);
1678 >                        } finally {
1679 >                            setTabAt(tab, i, node);
1680 >                        }
1681 >                    }
1682 >                }
1683 >                if (binCount != 0)
1684 >                    break;
1685 >            }
1686 >            else if ((fh = f.hash) == MOVED)
1687 >                tab = helpTransfer(tab, f);
1688 >            else if (fh == h    // check first node without acquiring lock
1689 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1690 >                     && (fv = f.val) != null)
1691 >                return fv;
1692 >            else {
1693 >                boolean added = false;
1694 >                synchronized (f) {
1695 >                    if (tabAt(tab, i) == f) {
1696 >                        if (fh >= 0) {
1697 >                            binCount = 1;
1698 >                            for (Node<K,V> e = f;; ++binCount) {
1699 >                                K ek;
1700 >                                if (e.hash == h &&
1701 >                                    ((ek = e.key) == key ||
1702 >                                     (ek != null && key.equals(ek)))) {
1703 >                                    val = e.val;
1704 >                                    break;
1705 >                                }
1706 >                                Node<K,V> pred = e;
1707 >                                if ((e = e.next) == null) {
1708 >                                    if ((val = mappingFunction.apply(key)) != null) {
1709 >                                        if (pred.next != null)
1710 >                                            throw new IllegalStateException("Recursive update");
1711 >                                        added = true;
1712 >                                        pred.next = new Node<K,V>(h, key, val);
1713 >                                    }
1714 >                                    break;
1715 >                                }
1716 >                            }
1717 >                        }
1718 >                        else if (f instanceof TreeBin) {
1719 >                            binCount = 2;
1720 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1721 >                            TreeNode<K,V> r, p;
1722 >                            if ((r = t.root) != null &&
1723 >                                (p = r.findTreeNode(h, key, null)) != null)
1724 >                                val = p.val;
1725 >                            else if ((val = mappingFunction.apply(key)) != null) {
1726 >                                added = true;
1727 >                                t.putTreeVal(h, key, val);
1728 >                            }
1729 >                        }
1730 >                        else if (f instanceof ReservationNode)
1731 >                            throw new IllegalStateException("Recursive update");
1732 >                    }
1733 >                }
1734 >                if (binCount != 0) {
1735 >                    if (binCount >= TREEIFY_THRESHOLD)
1736 >                        treeifyBin(tab, i);
1737 >                    if (!added)
1738 >                        return val;
1739 >                    break;
1740 >                }
1741              }
1742          }
1743 <        return null;
1743 >        if (val != null)
1744 >            addCount(1L, binCount);
1745 >        return val;
1746      }
1747  
1748      /**
1749 <     * Tests if the specified object is a key in this table.
1749 >     * If the value for the specified key is present, attempts to
1750 >     * compute a new mapping given the key and its current mapped
1751 >     * value.  The entire method invocation is performed atomically.
1752 >     * Some attempted update operations on this map by other threads
1753 >     * may be blocked while computation is in progress, so the
1754 >     * computation should be short and simple, and must not attempt to
1755 >     * update any other mappings of this map.
1756       *
1757 <     * @param  key   possible key
1758 <     * @return <tt>true</tt> if and only if the specified object
1759 <     *         is a key in this table, as determined by the
1760 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
1761 <     * @throws NullPointerException if the specified key is null
1757 >     * @param key key with which a value may be associated
1758 >     * @param remappingFunction the function to compute a value
1759 >     * @return the new value associated with the specified key, or null if none
1760 >     * @throws NullPointerException if the specified key or remappingFunction
1761 >     *         is null
1762 >     * @throws IllegalStateException if the computation detectably
1763 >     *         attempts a recursive update to this map that would
1764 >     *         otherwise never complete
1765 >     * @throws RuntimeException or Error if the remappingFunction does so,
1766 >     *         in which case the mapping is unchanged
1767       */
1768 <    @SuppressWarnings("unchecked")
1769 <    public boolean containsKey(Object key) {
1770 <        Segment<K,V> s; // same as get() except no need for volatile value read
1771 <        HashEntry<K,V>[] tab;
1772 <        int h = hash(key.hashCode());
1773 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1774 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
1775 <            (tab = s.table) != null) {
1776 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
1777 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1778 <                 e != null; e = e.next) {
1779 <                K k;
1780 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
1781 <                    return true;
1768 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1769 >        if (key == null || remappingFunction == null)
1770 >            throw new NullPointerException();
1771 >        int h = spread(key.hashCode());
1772 >        V val = null;
1773 >        int delta = 0;
1774 >        int binCount = 0;
1775 >        for (Node<K,V>[] tab = table;;) {
1776 >            Node<K,V> f; int n, i, fh;
1777 >            if (tab == null || (n = tab.length) == 0)
1778 >                tab = initTable();
1779 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1780 >                break;
1781 >            else if ((fh = f.hash) == MOVED)
1782 >                tab = helpTransfer(tab, f);
1783 >            else {
1784 >                synchronized (f) {
1785 >                    if (tabAt(tab, i) == f) {
1786 >                        if (fh >= 0) {
1787 >                            binCount = 1;
1788 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1789 >                                K ek;
1790 >                                if (e.hash == h &&
1791 >                                    ((ek = e.key) == key ||
1792 >                                     (ek != null && key.equals(ek)))) {
1793 >                                    val = remappingFunction.apply(key, e.val);
1794 >                                    if (val != null)
1795 >                                        e.val = val;
1796 >                                    else {
1797 >                                        delta = -1;
1798 >                                        Node<K,V> en = e.next;
1799 >                                        if (pred != null)
1800 >                                            pred.next = en;
1801 >                                        else
1802 >                                            setTabAt(tab, i, en);
1803 >                                    }
1804 >                                    break;
1805 >                                }
1806 >                                pred = e;
1807 >                                if ((e = e.next) == null)
1808 >                                    break;
1809 >                            }
1810 >                        }
1811 >                        else if (f instanceof TreeBin) {
1812 >                            binCount = 2;
1813 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1814 >                            TreeNode<K,V> r, p;
1815 >                            if ((r = t.root) != null &&
1816 >                                (p = r.findTreeNode(h, key, null)) != null) {
1817 >                                val = remappingFunction.apply(key, p.val);
1818 >                                if (val != null)
1819 >                                    p.val = val;
1820 >                                else {
1821 >                                    delta = -1;
1822 >                                    if (t.removeTreeNode(p))
1823 >                                        setTabAt(tab, i, untreeify(t.first));
1824 >                                }
1825 >                            }
1826 >                        }
1827 >                        else if (f instanceof ReservationNode)
1828 >                            throw new IllegalStateException("Recursive update");
1829 >                    }
1830 >                }
1831 >                if (binCount != 0)
1832 >                    break;
1833              }
1834          }
1835 <        return false;
1835 >        if (delta != 0)
1836 >            addCount((long)delta, binCount);
1837 >        return val;
1838      }
1839  
1840      /**
1841 <     * Returns <tt>true</tt> if this map maps one or more keys to the
1842 <     * specified value. Note: This method requires a full internal
1843 <     * traversal of the hash table, and so is much slower than
1844 <     * method <tt>containsKey</tt>.
1841 >     * Attempts to compute a mapping for the specified key and its
1842 >     * current mapped value (or {@code null} if there is no current
1843 >     * mapping). The entire method invocation is performed atomically.
1844 >     * Some attempted update operations on this map by other threads
1845 >     * may be blocked while computation is in progress, so the
1846 >     * computation should be short and simple, and must not attempt to
1847 >     * update any other mappings of this Map.
1848       *
1849 <     * @param value value whose presence in this map is to be tested
1850 <     * @return <tt>true</tt> if this map maps one or more keys to the
1851 <     *         specified value
1852 <     * @throws NullPointerException if the specified value is null
1849 >     * @param key key with which the specified value is to be associated
1850 >     * @param remappingFunction the function to compute a value
1851 >     * @return the new value associated with the specified key, or null if none
1852 >     * @throws NullPointerException if the specified key or remappingFunction
1853 >     *         is null
1854 >     * @throws IllegalStateException if the computation detectably
1855 >     *         attempts a recursive update to this map that would
1856 >     *         otherwise never complete
1857 >     * @throws RuntimeException or Error if the remappingFunction does so,
1858 >     *         in which case the mapping is unchanged
1859 >     */
1860 >    public V compute(K key,
1861 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1862 >        if (key == null || remappingFunction == null)
1863 >            throw new NullPointerException();
1864 >        int h = spread(key.hashCode());
1865 >        V val = null;
1866 >        int delta = 0;
1867 >        int binCount = 0;
1868 >        for (Node<K,V>[] tab = table;;) {
1869 >            Node<K,V> f; int n, i, fh;
1870 >            if (tab == null || (n = tab.length) == 0)
1871 >                tab = initTable();
1872 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1873 >                Node<K,V> r = new ReservationNode<K,V>();
1874 >                synchronized (r) {
1875 >                    if (casTabAt(tab, i, null, r)) {
1876 >                        binCount = 1;
1877 >                        Node<K,V> node = null;
1878 >                        try {
1879 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1880 >                                delta = 1;
1881 >                                node = new Node<K,V>(h, key, val);
1882 >                            }
1883 >                        } finally {
1884 >                            setTabAt(tab, i, node);
1885 >                        }
1886 >                    }
1887 >                }
1888 >                if (binCount != 0)
1889 >                    break;
1890 >            }
1891 >            else if ((fh = f.hash) == MOVED)
1892 >                tab = helpTransfer(tab, f);
1893 >            else {
1894 >                synchronized (f) {
1895 >                    if (tabAt(tab, i) == f) {
1896 >                        if (fh >= 0) {
1897 >                            binCount = 1;
1898 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1899 >                                K ek;
1900 >                                if (e.hash == h &&
1901 >                                    ((ek = e.key) == key ||
1902 >                                     (ek != null && key.equals(ek)))) {
1903 >                                    val = remappingFunction.apply(key, e.val);
1904 >                                    if (val != null)
1905 >                                        e.val = val;
1906 >                                    else {
1907 >                                        delta = -1;
1908 >                                        Node<K,V> en = e.next;
1909 >                                        if (pred != null)
1910 >                                            pred.next = en;
1911 >                                        else
1912 >                                            setTabAt(tab, i, en);
1913 >                                    }
1914 >                                    break;
1915 >                                }
1916 >                                pred = e;
1917 >                                if ((e = e.next) == null) {
1918 >                                    val = remappingFunction.apply(key, null);
1919 >                                    if (val != null) {
1920 >                                        if (pred.next != null)
1921 >                                            throw new IllegalStateException("Recursive update");
1922 >                                        delta = 1;
1923 >                                        pred.next = new Node<K,V>(h, key, val);
1924 >                                    }
1925 >                                    break;
1926 >                                }
1927 >                            }
1928 >                        }
1929 >                        else if (f instanceof TreeBin) {
1930 >                            binCount = 1;
1931 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1932 >                            TreeNode<K,V> r, p;
1933 >                            if ((r = t.root) != null)
1934 >                                p = r.findTreeNode(h, key, null);
1935 >                            else
1936 >                                p = null;
1937 >                            V pv = (p == null) ? null : p.val;
1938 >                            val = remappingFunction.apply(key, pv);
1939 >                            if (val != null) {
1940 >                                if (p != null)
1941 >                                    p.val = val;
1942 >                                else {
1943 >                                    delta = 1;
1944 >                                    t.putTreeVal(h, key, val);
1945 >                                }
1946 >                            }
1947 >                            else if (p != null) {
1948 >                                delta = -1;
1949 >                                if (t.removeTreeNode(p))
1950 >                                    setTabAt(tab, i, untreeify(t.first));
1951 >                            }
1952 >                        }
1953 >                        else if (f instanceof ReservationNode)
1954 >                            throw new IllegalStateException("Recursive update");
1955 >                    }
1956 >                }
1957 >                if (binCount != 0) {
1958 >                    if (binCount >= TREEIFY_THRESHOLD)
1959 >                        treeifyBin(tab, i);
1960 >                    break;
1961 >                }
1962 >            }
1963 >        }
1964 >        if (delta != 0)
1965 >            addCount((long)delta, binCount);
1966 >        return val;
1967 >    }
1968 >
1969 >    /**
1970 >     * If the specified key is not already associated with a
1971 >     * (non-null) value, associates it with the given value.
1972 >     * Otherwise, replaces the value with the results of the given
1973 >     * remapping function, or removes if {@code null}. The entire
1974 >     * method invocation is performed atomically.  Some attempted
1975 >     * update operations on this map by other threads may be blocked
1976 >     * while computation is in progress, so the computation should be
1977 >     * short and simple, and must not attempt to update any other
1978 >     * mappings of this Map.
1979 >     *
1980 >     * @param key key with which the specified value is to be associated
1981 >     * @param value the value to use if absent
1982 >     * @param remappingFunction the function to recompute a value if present
1983 >     * @return the new value associated with the specified key, or null if none
1984 >     * @throws NullPointerException if the specified key or the
1985 >     *         remappingFunction is null
1986 >     * @throws RuntimeException or Error if the remappingFunction does so,
1987 >     *         in which case the mapping is unchanged
1988       */
1989 <    public boolean containsValue(Object value) {
1990 <        // Same idea as size()
940 <        if (value == null)
1989 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1990 >        if (key == null || value == null || remappingFunction == null)
1991              throw new NullPointerException();
1992 <        final Segment<K,V>[] segments = this.segments;
1993 <        long previousSum = 0L;
1994 <        int lockCount = 0;
1995 <        try {
1996 <            for (int retries = -1; ; retries++) {
1997 <                long sum = 0L;    // sum of modCounts
1998 <                for (int j = 0; j < segments.length; j++) {
1999 <                    Segment<K,V> segment;
2000 <                    if (retries == RETRIES_BEFORE_LOCK) {
2001 <                        segment = ensureSegment(j);
2002 <                        segment.lock();
2003 <                        lockCount++;
2004 <                    } else {
2005 <                        segment = segmentAt(segments, j);
2006 <                        if (segment == null)
2007 <                            continue;
2008 <                    }
2009 <                    HashEntry<K,V>[] tab = segment.table;
2010 <                    if (tab != null) {
2011 <                        for (int i = 0 ; i < tab.length; i++) {
2012 <                            HashEntry<K,V> e;
2013 <                            for (e = entryAt(tab, i); e != null; e = e.next) {
2014 <                                V v = e.value;
2015 <                                if (v != null && value.equals(v))
2016 <                                    return true;
1992 >        int h = spread(key.hashCode());
1993 >        V val = null;
1994 >        int delta = 0;
1995 >        int binCount = 0;
1996 >        for (Node<K,V>[] tab = table;;) {
1997 >            Node<K,V> f; int n, i, fh;
1998 >            if (tab == null || (n = tab.length) == 0)
1999 >                tab = initTable();
2000 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2001 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2002 >                    delta = 1;
2003 >                    val = value;
2004 >                    break;
2005 >                }
2006 >            }
2007 >            else if ((fh = f.hash) == MOVED)
2008 >                tab = helpTransfer(tab, f);
2009 >            else {
2010 >                synchronized (f) {
2011 >                    if (tabAt(tab, i) == f) {
2012 >                        if (fh >= 0) {
2013 >                            binCount = 1;
2014 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2015 >                                K ek;
2016 >                                if (e.hash == h &&
2017 >                                    ((ek = e.key) == key ||
2018 >                                     (ek != null && key.equals(ek)))) {
2019 >                                    val = remappingFunction.apply(e.val, value);
2020 >                                    if (val != null)
2021 >                                        e.val = val;
2022 >                                    else {
2023 >                                        delta = -1;
2024 >                                        Node<K,V> en = e.next;
2025 >                                        if (pred != null)
2026 >                                            pred.next = en;
2027 >                                        else
2028 >                                            setTabAt(tab, i, en);
2029 >                                    }
2030 >                                    break;
2031 >                                }
2032 >                                pred = e;
2033 >                                if ((e = e.next) == null) {
2034 >                                    delta = 1;
2035 >                                    val = value;
2036 >                                    pred.next = new Node<K,V>(h, key, val);
2037 >                                    break;
2038 >                                }
2039 >                            }
2040 >                        }
2041 >                        else if (f instanceof TreeBin) {
2042 >                            binCount = 2;
2043 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2044 >                            TreeNode<K,V> r = t.root;
2045 >                            TreeNode<K,V> p = (r == null) ? null :
2046 >                                r.findTreeNode(h, key, null);
2047 >                            val = (p == null) ? value :
2048 >                                remappingFunction.apply(p.val, value);
2049 >                            if (val != null) {
2050 >                                if (p != null)
2051 >                                    p.val = val;
2052 >                                else {
2053 >                                    delta = 1;
2054 >                                    t.putTreeVal(h, key, val);
2055 >                                }
2056 >                            }
2057 >                            else if (p != null) {
2058 >                                delta = -1;
2059 >                                if (t.removeTreeNode(p))
2060 >                                    setTabAt(tab, i, untreeify(t.first));
2061                              }
2062                          }
2063 <                        sum += segment.modCount;
2063 >                        else if (f instanceof ReservationNode)
2064 >                            throw new IllegalStateException("Recursive update");
2065                      }
2066                  }
2067 <                if ((retries >= 0 && sum == previousSum) || lockCount > 0)
2068 <                    return false;
2069 <                previousSum = sum;
2067 >                if (binCount != 0) {
2068 >                    if (binCount >= TREEIFY_THRESHOLD)
2069 >                        treeifyBin(tab, i);
2070 >                    break;
2071 >                }
2072              }
976        } finally {
977            for (int j = 0; j < lockCount; j++)
978                segments[j].unlock();
2073          }
2074 +        if (delta != 0)
2075 +            addCount((long)delta, binCount);
2076 +        return val;
2077      }
2078  
2079 +    // Hashtable legacy methods
2080 +
2081      /**
2082 <     * Legacy method testing if some key maps into the specified value
2083 <     * in this table.  This method is identical in functionality to
2084 <     * {@link #containsValue}, and exists solely to ensure
2082 >     * Tests if some key maps into the specified value in this table.
2083 >     *
2084 >     * <p>Note that this method is identical in functionality to
2085 >     * {@link #containsValue(Object)}, and exists solely to ensure
2086       * full compatibility with class {@link java.util.Hashtable},
2087       * which supported this method prior to introduction of the
2088 <     * Java Collections framework.
2088 >     * Java Collections Framework.
2089       *
2090       * @param  value a value to search for
2091 <     * @return <tt>true</tt> if and only if some key maps to the
2092 <     *         <tt>value</tt> argument in this table as
2093 <     *         determined by the <tt>equals</tt> method;
2094 <     *         <tt>false</tt> otherwise
2091 >     * @return {@code true} if and only if some key maps to the
2092 >     *         {@code value} argument in this table as
2093 >     *         determined by the {@code equals} method;
2094 >     *         {@code false} otherwise
2095       * @throws NullPointerException if the specified value is null
2096       */
2097      public boolean contains(Object value) {
# Line 999 | Line 2099 | public class ConcurrentHashMap<K, V> ext
2099      }
2100  
2101      /**
2102 <     * Maps the specified key to the specified value in this table.
1003 <     * Neither the key nor the value can be null.
1004 <     *
1005 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
1006 <     * with a key that is equal to the original key.
2102 >     * Returns an enumeration of the keys in this table.
2103       *
2104 <     * @param key key with which the specified value is to be associated
2105 <     * @param value value to be associated with the specified key
1010 <     * @return the previous value associated with <tt>key</tt>, or
1011 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1012 <     * @throws NullPointerException if the specified key or value is null
2104 >     * @return an enumeration of the keys in this table
2105 >     * @see #keySet()
2106       */
2107 <    @SuppressWarnings("unchecked")
2108 <    public V put(K key, V value) {
2109 <        Segment<K,V> s;
2110 <        if (value == null)
1018 <            throw new NullPointerException();
1019 <        int hash = hash(key.hashCode());
1020 <        int j = (hash >>> segmentShift) & segmentMask;
1021 <        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1022 <             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1023 <            s = ensureSegment(j);
1024 <        return s.put(key, hash, value, false);
2107 >    public Enumeration<K> keys() {
2108 >        Node<K,V>[] t;
2109 >        int f = (t = table) == null ? 0 : t.length;
2110 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2111      }
2112  
2113      /**
2114 <     * {@inheritDoc}
2114 >     * Returns an enumeration of the values in this table.
2115       *
2116 <     * @return the previous value associated with the specified key,
2117 <     *         or <tt>null</tt> if there was no mapping for the key
1032 <     * @throws NullPointerException if the specified key or value is null
2116 >     * @return an enumeration of the values in this table
2117 >     * @see #values()
2118       */
2119 <    @SuppressWarnings("unchecked")
2120 <    public V putIfAbsent(K key, V value) {
2121 <        Segment<K,V> s;
2122 <        if (value == null)
1038 <            throw new NullPointerException();
1039 <        int hash = hash(key.hashCode());
1040 <        int j = (hash >>> segmentShift) & segmentMask;
1041 <        if ((s = (Segment<K,V>)UNSAFE.getObject
1042 <             (segments, (j << SSHIFT) + SBASE)) == null)
1043 <            s = ensureSegment(j);
1044 <        return s.put(key, hash, value, true);
2119 >    public Enumeration<V> elements() {
2120 >        Node<K,V>[] t;
2121 >        int f = (t = table) == null ? 0 : t.length;
2122 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2123      }
2124  
2125 +    // ConcurrentHashMap-only methods
2126 +
2127      /**
2128 <     * Copies all of the mappings from the specified map to this one.
2129 <     * These mappings replace any mappings that this map had for any of the
2130 <     * keys currently in the specified map.
2128 >     * Returns the number of mappings. This method should be used
2129 >     * instead of {@link #size} because a ConcurrentHashMap may
2130 >     * contain more mappings than can be represented as an int. The
2131 >     * value returned is an estimate; the actual count may differ if
2132 >     * there are concurrent insertions or removals.
2133       *
2134 <     * @param m mappings to be stored in this map
2134 >     * @return the number of mappings
2135 >     * @since 1.8
2136       */
2137 <    public void putAll(Map<? extends K, ? extends V> m) {
2138 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2139 <            put(e.getKey(), e.getValue());
2137 >    public long mappingCount() {
2138 >        long n = sumCount();
2139 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2140      }
2141  
2142      /**
2143 <     * Removes the key (and its corresponding value) from this map.
2144 <     * This method does nothing if the key is not in the map.
2143 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2144 >     * from the given type to {@code Boolean.TRUE}.
2145       *
2146 <     * @param  key the key that needs to be removed
2147 <     * @return the previous value associated with <tt>key</tt>, or
2148 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1066 <     * @throws NullPointerException if the specified key is null
2146 >     * @param <K> the element type of the returned set
2147 >     * @return the new set
2148 >     * @since 1.8
2149       */
2150 <    public V remove(Object key) {
2151 <        int hash = hash(key.hashCode());
2152 <        Segment<K,V> s = segmentForHash(hash);
1071 <        return s == null ? null : s.remove(key, hash, null);
2150 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2151 >        return new KeySetView<K,Boolean>
2152 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2153      }
2154  
2155      /**
2156 <     * {@inheritDoc}
2156 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2157 >     * from the given type to {@code Boolean.TRUE}.
2158       *
2159 <     * @throws NullPointerException if the specified key is null
2159 >     * @param initialCapacity The implementation performs internal
2160 >     * sizing to accommodate this many elements.
2161 >     * @param <K> the element type of the returned set
2162 >     * @return the new set
2163 >     * @throws IllegalArgumentException if the initial capacity of
2164 >     * elements is negative
2165 >     * @since 1.8
2166       */
2167 <    public boolean remove(Object key, Object value) {
2168 <        int hash = hash(key.hashCode());
2169 <        Segment<K,V> s;
1082 <        return value != null && (s = segmentForHash(hash)) != null &&
1083 <            s.remove(key, hash, value) != null;
2167 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2168 >        return new KeySetView<K,Boolean>
2169 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2170      }
2171  
2172      /**
2173 <     * {@inheritDoc}
2173 >     * Returns a {@link Set} view of the keys in this map, using the
2174 >     * given common mapped value for any additions (i.e., {@link
2175 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2176 >     * This is of course only appropriate if it is acceptable to use
2177 >     * the same value for all additions from this view.
2178       *
2179 <     * @throws NullPointerException if any of the arguments are null
2179 >     * @param mappedValue the mapped value to use for any additions
2180 >     * @return the set view
2181 >     * @throws NullPointerException if the mappedValue is null
2182       */
2183 <    public boolean replace(K key, V oldValue, V newValue) {
2184 <        int hash = hash(key.hashCode());
1093 <        if (oldValue == null || newValue == null)
2183 >    public KeySetView<K,V> keySet(V mappedValue) {
2184 >        if (mappedValue == null)
2185              throw new NullPointerException();
2186 <        Segment<K,V> s = segmentForHash(hash);
1096 <        return s != null && s.replace(key, hash, oldValue, newValue);
2186 >        return new KeySetView<K,V>(this, mappedValue);
2187      }
2188  
2189 +    /* ---------------- Special Nodes -------------- */
2190 +
2191      /**
2192 <     * {@inheritDoc}
1101 <     *
1102 <     * @return the previous value associated with the specified key,
1103 <     *         or <tt>null</tt> if there was no mapping for the key
1104 <     * @throws NullPointerException if the specified key or value is null
2192 >     * A node inserted at head of bins during transfer operations.
2193       */
2194 <    public V replace(K key, V value) {
2195 <        int hash = hash(key.hashCode());
2196 <        if (value == null)
2197 <            throw new NullPointerException();
2198 <        Segment<K,V> s = segmentForHash(hash);
2199 <        return s == null ? null : s.replace(key, hash, value);
2194 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2195 >        final Node<K,V>[] nextTable;
2196 >        ForwardingNode(Node<K,V>[] tab) {
2197 >            super(MOVED, null, null);
2198 >            this.nextTable = tab;
2199 >        }
2200 >
2201 >        Node<K,V> find(int h, Object k) {
2202 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2203 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2204 >                Node<K,V> e; int n;
2205 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2206 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2207 >                    return null;
2208 >                for (;;) {
2209 >                    int eh; K ek;
2210 >                    if ((eh = e.hash) == h &&
2211 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2212 >                        return e;
2213 >                    if (eh < 0) {
2214 >                        if (e instanceof ForwardingNode) {
2215 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2216 >                            continue outer;
2217 >                        }
2218 >                        else
2219 >                            return e.find(h, k);
2220 >                    }
2221 >                    if ((e = e.next) == null)
2222 >                        return null;
2223 >                }
2224 >            }
2225 >        }
2226      }
2227  
2228      /**
2229 <     * Removes all of the mappings from this map.
2229 >     * A place-holder node used in computeIfAbsent and compute.
2230       */
2231 <    public void clear() {
2232 <        final Segment<K,V>[] segments = this.segments;
2233 <        for (int j = 0; j < segments.length; ++j) {
2234 <            Segment<K,V> s = segmentAt(segments, j);
2235 <            if (s != null)
2236 <                s.clear();
2231 >    static final class ReservationNode<K,V> extends Node<K,V> {
2232 >        ReservationNode() {
2233 >            super(RESERVED, null, null);
2234 >        }
2235 >
2236 >        Node<K,V> find(int h, Object k) {
2237 >            return null;
2238          }
2239      }
2240  
2241 +    /* ---------------- Table Initialization and Resizing -------------- */
2242 +
2243      /**
2244 <     * Returns a {@link Set} view of the keys contained in this map.
2245 <     * The set is backed by the map, so changes to the map are
2246 <     * reflected in the set, and vice-versa.  The set supports element
2247 <     * removal, which removes the corresponding mapping from this map,
2248 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1132 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1133 <     * operations.  It does not support the <tt>add</tt> or
1134 <     * <tt>addAll</tt> operations.
1135 <     *
1136 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1137 <     * that will never throw {@link ConcurrentModificationException},
1138 <     * and guarantees to traverse elements as they existed upon
1139 <     * construction of the iterator, and may (but is not guaranteed to)
1140 <     * reflect any modifications subsequent to construction.
1141 <     */
1142 <    public Set<K> keySet() {
1143 <        Set<K> ks = keySet;
1144 <        return (ks != null) ? ks : (keySet = new KeySet());
2244 >     * Returns the stamp bits for resizing a table of size n.
2245 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2246 >     */
2247 >    static final int resizeStamp(int n) {
2248 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2249      }
2250  
2251      /**
2252 <     * Returns a {@link Collection} view of the values contained in this map.
1149 <     * The collection is backed by the map, so changes to the map are
1150 <     * reflected in the collection, and vice-versa.  The collection
1151 <     * supports element removal, which removes the corresponding
1152 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1153 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1154 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1155 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1156 <     *
1157 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1158 <     * that will never throw {@link ConcurrentModificationException},
1159 <     * and guarantees to traverse elements as they existed upon
1160 <     * construction of the iterator, and may (but is not guaranteed to)
1161 <     * reflect any modifications subsequent to construction.
2252 >     * Initializes table, using the size recorded in sizeCtl.
2253       */
2254 <    public Collection<V> values() {
2255 <        Collection<V> vs = values;
2256 <        return (vs != null) ? vs : (values = new Values());
2254 >    private final Node<K,V>[] initTable() {
2255 >        Node<K,V>[] tab; int sc;
2256 >        while ((tab = table) == null || tab.length == 0) {
2257 >            if ((sc = sizeCtl) < 0)
2258 >                Thread.yield(); // lost initialization race; just spin
2259 >            else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2260 >                try {
2261 >                    if ((tab = table) == null || tab.length == 0) {
2262 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2263 >                        @SuppressWarnings("unchecked")
2264 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2265 >                        table = tab = nt;
2266 >                        sc = n - (n >>> 2);
2267 >                    }
2268 >                } finally {
2269 >                    sizeCtl = sc;
2270 >                }
2271 >                break;
2272 >            }
2273 >        }
2274 >        return tab;
2275      }
2276  
2277      /**
2278 <     * Returns a {@link Set} view of the mappings contained in this map.
2279 <     * The set is backed by the map, so changes to the map are
2280 <     * reflected in the set, and vice-versa.  The set supports element
2281 <     * removal, which removes the corresponding mapping from the map,
2282 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2283 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2284 <     * operations.  It does not support the <tt>add</tt> or
2285 <     * <tt>addAll</tt> operations.
1177 <     *
1178 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1179 <     * that will never throw {@link ConcurrentModificationException},
1180 <     * and guarantees to traverse elements as they existed upon
1181 <     * construction of the iterator, and may (but is not guaranteed to)
1182 <     * reflect any modifications subsequent to construction.
2278 >     * Adds to count, and if table is too small and not already
2279 >     * resizing, initiates transfer. If already resizing, helps
2280 >     * perform transfer if work is available.  Rechecks occupancy
2281 >     * after a transfer to see if another resize is already needed
2282 >     * because resizings are lagging additions.
2283 >     *
2284 >     * @param x the count to add
2285 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2286       */
2287 <    public Set<Map.Entry<K,V>> entrySet() {
2288 <        Set<Map.Entry<K,V>> es = entrySet;
2289 <        return (es != null) ? es : (entrySet = new EntrySet());
2287 >    private final void addCount(long x, int check) {
2288 >        CounterCell[] cs; long b, s;
2289 >        if ((cs = counterCells) != null ||
2290 >            !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2291 >            CounterCell c; long v; int m;
2292 >            boolean uncontended = true;
2293 >            if (cs == null || (m = cs.length - 1) < 0 ||
2294 >                (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2295 >                !(uncontended =
2296 >                  U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2297 >                fullAddCount(x, uncontended);
2298 >                return;
2299 >            }
2300 >            if (check <= 1)
2301 >                return;
2302 >            s = sumCount();
2303 >        }
2304 >        if (check >= 0) {
2305 >            Node<K,V>[] tab, nt; int n, sc;
2306 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2307 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2308 >                int rs = resizeStamp(n);
2309 >                if (sc < 0) {
2310 >                    if ((sc >>> RESIZE_STAMP_SHIFT) == rs + 1 ||
2311 >                        (sc >>> RESIZE_STAMP_SHIFT) == rs + MAX_RESIZERS ||
2312 >                        (nt = nextTable) == null || transferIndex <= 0)
2313 >                        break;
2314 >                    if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2315 >                        transfer(tab, nt);
2316 >                }
2317 >                else if (U.compareAndSetInt(this, SIZECTL, sc,
2318 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2319 >                    transfer(tab, null);
2320 >                s = sumCount();
2321 >            }
2322 >        }
2323      }
2324  
2325      /**
2326 <     * Returns an enumeration of the keys in this table.
1191 <     *
1192 <     * @return an enumeration of the keys in this table
1193 <     * @see #keySet()
2326 >     * Helps transfer if a resize is in progress.
2327       */
2328 <    public Enumeration<K> keys() {
2329 <        return new KeyIterator();
2328 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2329 >        Node<K,V>[] nextTab; int sc;
2330 >        if (tab != null && (f instanceof ForwardingNode) &&
2331 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2332 >            int rs = resizeStamp(tab.length);
2333 >            while (nextTab == nextTable && table == tab &&
2334 >                   (sc = sizeCtl) < 0) {
2335 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2336 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2337 >                    break;
2338 >                if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2339 >                    transfer(tab, nextTab);
2340 >                    break;
2341 >                }
2342 >            }
2343 >            return nextTab;
2344 >        }
2345 >        return table;
2346      }
2347  
2348      /**
2349 <     * Returns an enumeration of the values in this table.
2349 >     * Tries to presize table to accommodate the given number of elements.
2350       *
2351 <     * @return an enumeration of the values in this table
1203 <     * @see #values()
2351 >     * @param size number of elements (doesn't need to be perfectly accurate)
2352       */
2353 <    public Enumeration<V> elements() {
2354 <        return new ValueIterator();
2353 >    private final void tryPresize(int size) {
2354 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2355 >            tableSizeFor(size + (size >>> 1) + 1);
2356 >        int sc;
2357 >        while ((sc = sizeCtl) >= 0) {
2358 >            Node<K,V>[] tab = table; int n;
2359 >            if (tab == null || (n = tab.length) == 0) {
2360 >                n = (sc > c) ? sc : c;
2361 >                if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2362 >                    try {
2363 >                        if (table == tab) {
2364 >                            @SuppressWarnings("unchecked")
2365 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2366 >                            table = nt;
2367 >                            sc = n - (n >>> 2);
2368 >                        }
2369 >                    } finally {
2370 >                        sizeCtl = sc;
2371 >                    }
2372 >                }
2373 >            }
2374 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2375 >                break;
2376 >            else if (tab == table) {
2377 >                int rs = resizeStamp(n);
2378 >                if (U.compareAndSetInt(this, SIZECTL, sc,
2379 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2380 >                    transfer(tab, null);
2381 >            }
2382 >        }
2383      }
2384  
2385 <    /* ---------------- Iterator Support -------------- */
2385 >    /**
2386 >     * Moves and/or copies the nodes in each bin to new table. See
2387 >     * above for explanation.
2388 >     */
2389 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2390 >        int n = tab.length, stride;
2391 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2392 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2393 >        if (nextTab == null) {            // initiating
2394 >            try {
2395 >                @SuppressWarnings("unchecked")
2396 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2397 >                nextTab = nt;
2398 >            } catch (Throwable ex) {      // try to cope with OOME
2399 >                sizeCtl = Integer.MAX_VALUE;
2400 >                return;
2401 >            }
2402 >            nextTable = nextTab;
2403 >            transferIndex = n;
2404 >        }
2405 >        int nextn = nextTab.length;
2406 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2407 >        boolean advance = true;
2408 >        boolean finishing = false; // to ensure sweep before committing nextTab
2409 >        for (int i = 0, bound = 0;;) {
2410 >            Node<K,V> f; int fh;
2411 >            while (advance) {
2412 >                int nextIndex, nextBound;
2413 >                if (--i >= bound || finishing)
2414 >                    advance = false;
2415 >                else if ((nextIndex = transferIndex) <= 0) {
2416 >                    i = -1;
2417 >                    advance = false;
2418 >                }
2419 >                else if (U.compareAndSetInt
2420 >                         (this, TRANSFERINDEX, nextIndex,
2421 >                          nextBound = (nextIndex > stride ?
2422 >                                       nextIndex - stride : 0))) {
2423 >                    bound = nextBound;
2424 >                    i = nextIndex - 1;
2425 >                    advance = false;
2426 >                }
2427 >            }
2428 >            if (i < 0 || i >= n || i + n >= nextn) {
2429 >                int sc;
2430 >                if (finishing) {
2431 >                    nextTable = null;
2432 >                    table = nextTab;
2433 >                    sizeCtl = (n << 1) - (n >>> 1);
2434 >                    return;
2435 >                }
2436 >                if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2437 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2438 >                        return;
2439 >                    finishing = advance = true;
2440 >                    i = n; // recheck before commit
2441 >                }
2442 >            }
2443 >            else if ((f = tabAt(tab, i)) == null)
2444 >                advance = casTabAt(tab, i, null, fwd);
2445 >            else if ((fh = f.hash) == MOVED)
2446 >                advance = true; // already processed
2447 >            else {
2448 >                synchronized (f) {
2449 >                    if (tabAt(tab, i) == f) {
2450 >                        Node<K,V> ln, hn;
2451 >                        if (fh >= 0) {
2452 >                            int runBit = fh & n;
2453 >                            Node<K,V> lastRun = f;
2454 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2455 >                                int b = p.hash & n;
2456 >                                if (b != runBit) {
2457 >                                    runBit = b;
2458 >                                    lastRun = p;
2459 >                                }
2460 >                            }
2461 >                            if (runBit == 0) {
2462 >                                ln = lastRun;
2463 >                                hn = null;
2464 >                            }
2465 >                            else {
2466 >                                hn = lastRun;
2467 >                                ln = null;
2468 >                            }
2469 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2470 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2471 >                                if ((ph & n) == 0)
2472 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2473 >                                else
2474 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2475 >                            }
2476 >                            setTabAt(nextTab, i, ln);
2477 >                            setTabAt(nextTab, i + n, hn);
2478 >                            setTabAt(tab, i, fwd);
2479 >                            advance = true;
2480 >                        }
2481 >                        else if (f instanceof TreeBin) {
2482 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2483 >                            TreeNode<K,V> lo = null, loTail = null;
2484 >                            TreeNode<K,V> hi = null, hiTail = null;
2485 >                            int lc = 0, hc = 0;
2486 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2487 >                                int h = e.hash;
2488 >                                TreeNode<K,V> p = new TreeNode<K,V>
2489 >                                    (h, e.key, e.val, null, null);
2490 >                                if ((h & n) == 0) {
2491 >                                    if ((p.prev = loTail) == null)
2492 >                                        lo = p;
2493 >                                    else
2494 >                                        loTail.next = p;
2495 >                                    loTail = p;
2496 >                                    ++lc;
2497 >                                }
2498 >                                else {
2499 >                                    if ((p.prev = hiTail) == null)
2500 >                                        hi = p;
2501 >                                    else
2502 >                                        hiTail.next = p;
2503 >                                    hiTail = p;
2504 >                                    ++hc;
2505 >                                }
2506 >                            }
2507 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2508 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2509 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2510 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2511 >                            setTabAt(nextTab, i, ln);
2512 >                            setTabAt(nextTab, i + n, hn);
2513 >                            setTabAt(tab, i, fwd);
2514 >                            advance = true;
2515 >                        }
2516 >                        else if (f instanceof ReservationNode)
2517 >                            throw new IllegalStateException("Recursive update");
2518 >                    }
2519 >                }
2520 >            }
2521 >        }
2522 >    }
2523  
2524 <    abstract class HashIterator {
1212 <        int nextSegmentIndex;
1213 <        int nextTableIndex;
1214 <        HashEntry<K,V>[] currentTable;
1215 <        HashEntry<K, V> nextEntry;
1216 <        HashEntry<K, V> lastReturned;
2524 >    /* ---------------- Counter support -------------- */
2525  
2526 <        HashIterator() {
2527 <            nextSegmentIndex = segments.length - 1;
2528 <            nextTableIndex = -1;
2529 <            advance();
2526 >    /**
2527 >     * A padded cell for distributing counts.  Adapted from LongAdder
2528 >     * and Striped64.  See their internal docs for explanation.
2529 >     */
2530 >    @jdk.internal.vm.annotation.Contended static final class CounterCell {
2531 >        volatile long value;
2532 >        CounterCell(long x) { value = x; }
2533 >    }
2534 >
2535 >    final long sumCount() {
2536 >        CounterCell[] cs = counterCells;
2537 >        long sum = baseCount;
2538 >        if (cs != null) {
2539 >            for (CounterCell c : cs)
2540 >                if (c != null)
2541 >                    sum += c.value;
2542 >        }
2543 >        return sum;
2544 >    }
2545 >
2546 >    // See LongAdder version for explanation
2547 >    private final void fullAddCount(long x, boolean wasUncontended) {
2548 >        int h;
2549 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2550 >            ThreadLocalRandom.localInit();      // force initialization
2551 >            h = ThreadLocalRandom.getProbe();
2552 >            wasUncontended = true;
2553 >        }
2554 >        boolean collide = false;                // True if last slot nonempty
2555 >        for (;;) {
2556 >            CounterCell[] cs; CounterCell c; int n; long v;
2557 >            if ((cs = counterCells) != null && (n = cs.length) > 0) {
2558 >                if ((c = cs[(n - 1) & h]) == null) {
2559 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2560 >                        CounterCell r = new CounterCell(x); // Optimistic create
2561 >                        if (cellsBusy == 0 &&
2562 >                            U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2563 >                            boolean created = false;
2564 >                            try {               // Recheck under lock
2565 >                                CounterCell[] rs; int m, j;
2566 >                                if ((rs = counterCells) != null &&
2567 >                                    (m = rs.length) > 0 &&
2568 >                                    rs[j = (m - 1) & h] == null) {
2569 >                                    rs[j] = r;
2570 >                                    created = true;
2571 >                                }
2572 >                            } finally {
2573 >                                cellsBusy = 0;
2574 >                            }
2575 >                            if (created)
2576 >                                break;
2577 >                            continue;           // Slot is now non-empty
2578 >                        }
2579 >                    }
2580 >                    collide = false;
2581 >                }
2582 >                else if (!wasUncontended)       // CAS already known to fail
2583 >                    wasUncontended = true;      // Continue after rehash
2584 >                else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2585 >                    break;
2586 >                else if (counterCells != cs || n >= NCPU)
2587 >                    collide = false;            // At max size or stale
2588 >                else if (!collide)
2589 >                    collide = true;
2590 >                else if (cellsBusy == 0 &&
2591 >                         U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2592 >                    try {
2593 >                        if (counterCells == cs) // Expand table unless stale
2594 >                            counterCells = Arrays.copyOf(cs, n << 1);
2595 >                    } finally {
2596 >                        cellsBusy = 0;
2597 >                    }
2598 >                    collide = false;
2599 >                    continue;                   // Retry with expanded table
2600 >                }
2601 >                h = ThreadLocalRandom.advanceProbe(h);
2602 >            }
2603 >            else if (cellsBusy == 0 && counterCells == cs &&
2604 >                     U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2605 >                boolean init = false;
2606 >                try {                           // Initialize table
2607 >                    if (counterCells == cs) {
2608 >                        CounterCell[] rs = new CounterCell[2];
2609 >                        rs[h & 1] = new CounterCell(x);
2610 >                        counterCells = rs;
2611 >                        init = true;
2612 >                    }
2613 >                } finally {
2614 >                    cellsBusy = 0;
2615 >                }
2616 >                if (init)
2617 >                    break;
2618 >            }
2619 >            else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2620 >                break;                          // Fall back on using base
2621 >        }
2622 >    }
2623 >
2624 >    /* ---------------- Conversion from/to TreeBins -------------- */
2625 >
2626 >    /**
2627 >     * Replaces all linked nodes in bin at given index unless table is
2628 >     * too small, in which case resizes instead.
2629 >     */
2630 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2631 >        Node<K,V> b; int n;
2632 >        if (tab != null) {
2633 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2634 >                tryPresize(n << 1);
2635 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2636 >                synchronized (b) {
2637 >                    if (tabAt(tab, index) == b) {
2638 >                        TreeNode<K,V> hd = null, tl = null;
2639 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2640 >                            TreeNode<K,V> p =
2641 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2642 >                                                  null, null);
2643 >                            if ((p.prev = tl) == null)
2644 >                                hd = p;
2645 >                            else
2646 >                                tl.next = p;
2647 >                            tl = p;
2648 >                        }
2649 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2650 >                    }
2651 >                }
2652 >            }
2653 >        }
2654 >    }
2655 >
2656 >    /**
2657 >     * Returns a list of non-TreeNodes replacing those in given list.
2658 >     */
2659 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2660 >        Node<K,V> hd = null, tl = null;
2661 >        for (Node<K,V> q = b; q != null; q = q.next) {
2662 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2663 >            if (tl == null)
2664 >                hd = p;
2665 >            else
2666 >                tl.next = p;
2667 >            tl = p;
2668 >        }
2669 >        return hd;
2670 >    }
2671 >
2672 >    /* ---------------- TreeNodes -------------- */
2673 >
2674 >    /**
2675 >     * Nodes for use in TreeBins.
2676 >     */
2677 >    static final class TreeNode<K,V> extends Node<K,V> {
2678 >        TreeNode<K,V> parent;  // red-black tree links
2679 >        TreeNode<K,V> left;
2680 >        TreeNode<K,V> right;
2681 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2682 >        boolean red;
2683 >
2684 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2685 >                 TreeNode<K,V> parent) {
2686 >            super(hash, key, val, next);
2687 >            this.parent = parent;
2688 >        }
2689 >
2690 >        Node<K,V> find(int h, Object k) {
2691 >            return findTreeNode(h, k, null);
2692          }
2693  
2694          /**
2695 <         * Sets nextEntry to first node of next non-empty table
2696 <         * (in backwards order, to simplify checks).
2695 >         * Returns the TreeNode (or null if not found) for the given key
2696 >         * starting at given root.
2697           */
2698 <        final void advance() {
2699 <            for (;;) {
2700 <                if (nextTableIndex >= 0) {
2701 <                    if ((nextEntry = entryAt(currentTable,
2702 <                                             nextTableIndex--)) != null)
2703 <                        break;
2698 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2699 >            if (k != null) {
2700 >                TreeNode<K,V> p = this;
2701 >                do {
2702 >                    int ph, dir; K pk; TreeNode<K,V> q;
2703 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2704 >                    if ((ph = p.hash) > h)
2705 >                        p = pl;
2706 >                    else if (ph < h)
2707 >                        p = pr;
2708 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2709 >                        return p;
2710 >                    else if (pl == null)
2711 >                        p = pr;
2712 >                    else if (pr == null)
2713 >                        p = pl;
2714 >                    else if ((kc != null ||
2715 >                              (kc = comparableClassFor(k)) != null) &&
2716 >                             (dir = compareComparables(kc, k, pk)) != 0)
2717 >                        p = (dir < 0) ? pl : pr;
2718 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2719 >                        return q;
2720 >                    else
2721 >                        p = pl;
2722 >                } while (p != null);
2723 >            }
2724 >            return null;
2725 >        }
2726 >    }
2727 >
2728 >    /* ---------------- TreeBins -------------- */
2729 >
2730 >    /**
2731 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2732 >     * keys or values, but instead point to list of TreeNodes and
2733 >     * their root. They also maintain a parasitic read-write lock
2734 >     * forcing writers (who hold bin lock) to wait for readers (who do
2735 >     * not) to complete before tree restructuring operations.
2736 >     */
2737 >    static final class TreeBin<K,V> extends Node<K,V> {
2738 >        TreeNode<K,V> root;
2739 >        volatile TreeNode<K,V> first;
2740 >        volatile Thread waiter;
2741 >        volatile int lockState;
2742 >        // values for lockState
2743 >        static final int WRITER = 1; // set while holding write lock
2744 >        static final int WAITER = 2; // set when waiting for write lock
2745 >        static final int READER = 4; // increment value for setting read lock
2746 >
2747 >        /**
2748 >         * Tie-breaking utility for ordering insertions when equal
2749 >         * hashCodes and non-comparable. We don't require a total
2750 >         * order, just a consistent insertion rule to maintain
2751 >         * equivalence across rebalancings. Tie-breaking further than
2752 >         * necessary simplifies testing a bit.
2753 >         */
2754 >        static int tieBreakOrder(Object a, Object b) {
2755 >            int d;
2756 >            if (a == null || b == null ||
2757 >                (d = a.getClass().getName().
2758 >                 compareTo(b.getClass().getName())) == 0)
2759 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2760 >                     -1 : 1);
2761 >            return d;
2762 >        }
2763 >
2764 >        /**
2765 >         * Creates bin with initial set of nodes headed by b.
2766 >         */
2767 >        TreeBin(TreeNode<K,V> b) {
2768 >            super(TREEBIN, null, null);
2769 >            this.first = b;
2770 >            TreeNode<K,V> r = null;
2771 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2772 >                next = (TreeNode<K,V>)x.next;
2773 >                x.left = x.right = null;
2774 >                if (r == null) {
2775 >                    x.parent = null;
2776 >                    x.red = false;
2777 >                    r = x;
2778                  }
2779 <                else if (nextSegmentIndex >= 0) {
2780 <                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
2781 <                    if (seg != null && (currentTable = seg.table) != null)
2782 <                        nextTableIndex = currentTable.length - 1;
2779 >                else {
2780 >                    K k = x.key;
2781 >                    int h = x.hash;
2782 >                    Class<?> kc = null;
2783 >                    for (TreeNode<K,V> p = r;;) {
2784 >                        int dir, ph;
2785 >                        K pk = p.key;
2786 >                        if ((ph = p.hash) > h)
2787 >                            dir = -1;
2788 >                        else if (ph < h)
2789 >                            dir = 1;
2790 >                        else if ((kc == null &&
2791 >                                  (kc = comparableClassFor(k)) == null) ||
2792 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2793 >                            dir = tieBreakOrder(k, pk);
2794 >                        TreeNode<K,V> xp = p;
2795 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2796 >                            x.parent = xp;
2797 >                            if (dir <= 0)
2798 >                                xp.left = x;
2799 >                            else
2800 >                                xp.right = x;
2801 >                            r = balanceInsertion(r, x);
2802 >                            break;
2803 >                        }
2804 >                    }
2805                  }
2806 <                else
2806 >            }
2807 >            this.root = r;
2808 >            assert checkInvariants(root);
2809 >        }
2810 >
2811 >        /**
2812 >         * Acquires write lock for tree restructuring.
2813 >         */
2814 >        private final void lockRoot() {
2815 >            if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2816 >                contendedLock(); // offload to separate method
2817 >        }
2818 >
2819 >        /**
2820 >         * Releases write lock for tree restructuring.
2821 >         */
2822 >        private final void unlockRoot() {
2823 >            lockState = 0;
2824 >        }
2825 >
2826 >        /**
2827 >         * Possibly blocks awaiting root lock.
2828 >         */
2829 >        private final void contendedLock() {
2830 >            boolean waiting = false;
2831 >            for (int s;;) {
2832 >                if (((s = lockState) & ~WAITER) == 0) {
2833 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2834 >                        if (waiting)
2835 >                            waiter = null;
2836 >                        return;
2837 >                    }
2838 >                }
2839 >                else if ((s & WAITER) == 0) {
2840 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2841 >                        waiting = true;
2842 >                        waiter = Thread.currentThread();
2843 >                    }
2844 >                }
2845 >                else if (waiting)
2846 >                    LockSupport.park(this);
2847 >            }
2848 >        }
2849 >
2850 >        /**
2851 >         * Returns matching node or null if none. Tries to search
2852 >         * using tree comparisons from root, but continues linear
2853 >         * search when lock not available.
2854 >         */
2855 >        final Node<K,V> find(int h, Object k) {
2856 >            if (k != null) {
2857 >                for (Node<K,V> e = first; e != null; ) {
2858 >                    int s; K ek;
2859 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2860 >                        if (e.hash == h &&
2861 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2862 >                            return e;
2863 >                        e = e.next;
2864 >                    }
2865 >                    else if (U.compareAndSetInt(this, LOCKSTATE, s,
2866 >                                                 s + READER)) {
2867 >                        TreeNode<K,V> r, p;
2868 >                        try {
2869 >                            p = ((r = root) == null ? null :
2870 >                                 r.findTreeNode(h, k, null));
2871 >                        } finally {
2872 >                            Thread w;
2873 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2874 >                                (READER|WAITER) && (w = waiter) != null)
2875 >                                LockSupport.unpark(w);
2876 >                        }
2877 >                        return p;
2878 >                    }
2879 >                }
2880 >            }
2881 >            return null;
2882 >        }
2883 >
2884 >        /**
2885 >         * Finds or adds a node.
2886 >         * @return null if added
2887 >         */
2888 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2889 >            Class<?> kc = null;
2890 >            boolean searched = false;
2891 >            for (TreeNode<K,V> p = root;;) {
2892 >                int dir, ph; K pk;
2893 >                if (p == null) {
2894 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2895                      break;
2896 +                }
2897 +                else if ((ph = p.hash) > h)
2898 +                    dir = -1;
2899 +                else if (ph < h)
2900 +                    dir = 1;
2901 +                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2902 +                    return p;
2903 +                else if ((kc == null &&
2904 +                          (kc = comparableClassFor(k)) == null) ||
2905 +                         (dir = compareComparables(kc, k, pk)) == 0) {
2906 +                    if (!searched) {
2907 +                        TreeNode<K,V> q, ch;
2908 +                        searched = true;
2909 +                        if (((ch = p.left) != null &&
2910 +                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2911 +                            ((ch = p.right) != null &&
2912 +                             (q = ch.findTreeNode(h, k, kc)) != null))
2913 +                            return q;
2914 +                    }
2915 +                    dir = tieBreakOrder(k, pk);
2916 +                }
2917 +
2918 +                TreeNode<K,V> xp = p;
2919 +                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2920 +                    TreeNode<K,V> x, f = first;
2921 +                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2922 +                    if (f != null)
2923 +                        f.prev = x;
2924 +                    if (dir <= 0)
2925 +                        xp.left = x;
2926 +                    else
2927 +                        xp.right = x;
2928 +                    if (!xp.red)
2929 +                        x.red = true;
2930 +                    else {
2931 +                        lockRoot();
2932 +                        try {
2933 +                            root = balanceInsertion(root, x);
2934 +                        } finally {
2935 +                            unlockRoot();
2936 +                        }
2937 +                    }
2938 +                    break;
2939 +                }
2940              }
2941 +            assert checkInvariants(root);
2942 +            return null;
2943          }
2944  
2945 <        final HashEntry<K,V> nextEntry() {
2946 <            HashEntry<K,V> e = nextEntry;
2947 <            if (e == null)
2948 <                throw new NoSuchElementException();
2949 <            lastReturned = e; // cannot assign until after null check
2950 <            if ((nextEntry = e.next) == null)
2951 <                advance();
2952 <            return e;
2945 >        /**
2946 >         * Removes the given node, that must be present before this
2947 >         * call.  This is messier than typical red-black deletion code
2948 >         * because we cannot swap the contents of an interior node
2949 >         * with a leaf successor that is pinned by "next" pointers
2950 >         * that are accessible independently of lock. So instead we
2951 >         * swap the tree linkages.
2952 >         *
2953 >         * @return true if now too small, so should be untreeified
2954 >         */
2955 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2956 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2957 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2958 >            TreeNode<K,V> r, rl;
2959 >            if (pred == null)
2960 >                first = next;
2961 >            else
2962 >                pred.next = next;
2963 >            if (next != null)
2964 >                next.prev = pred;
2965 >            if (first == null) {
2966 >                root = null;
2967 >                return true;
2968 >            }
2969 >            if ((r = root) == null || r.right == null || // too small
2970 >                (rl = r.left) == null || rl.left == null)
2971 >                return true;
2972 >            lockRoot();
2973 >            try {
2974 >                TreeNode<K,V> replacement;
2975 >                TreeNode<K,V> pl = p.left;
2976 >                TreeNode<K,V> pr = p.right;
2977 >                if (pl != null && pr != null) {
2978 >                    TreeNode<K,V> s = pr, sl;
2979 >                    while ((sl = s.left) != null) // find successor
2980 >                        s = sl;
2981 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2982 >                    TreeNode<K,V> sr = s.right;
2983 >                    TreeNode<K,V> pp = p.parent;
2984 >                    if (s == pr) { // p was s's direct parent
2985 >                        p.parent = s;
2986 >                        s.right = p;
2987 >                    }
2988 >                    else {
2989 >                        TreeNode<K,V> sp = s.parent;
2990 >                        if ((p.parent = sp) != null) {
2991 >                            if (s == sp.left)
2992 >                                sp.left = p;
2993 >                            else
2994 >                                sp.right = p;
2995 >                        }
2996 >                        if ((s.right = pr) != null)
2997 >                            pr.parent = s;
2998 >                    }
2999 >                    p.left = null;
3000 >                    if ((p.right = sr) != null)
3001 >                        sr.parent = p;
3002 >                    if ((s.left = pl) != null)
3003 >                        pl.parent = s;
3004 >                    if ((s.parent = pp) == null)
3005 >                        r = s;
3006 >                    else if (p == pp.left)
3007 >                        pp.left = s;
3008 >                    else
3009 >                        pp.right = s;
3010 >                    if (sr != null)
3011 >                        replacement = sr;
3012 >                    else
3013 >                        replacement = p;
3014 >                }
3015 >                else if (pl != null)
3016 >                    replacement = pl;
3017 >                else if (pr != null)
3018 >                    replacement = pr;
3019 >                else
3020 >                    replacement = p;
3021 >                if (replacement != p) {
3022 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
3023 >                    if (pp == null)
3024 >                        r = replacement;
3025 >                    else if (p == pp.left)
3026 >                        pp.left = replacement;
3027 >                    else
3028 >                        pp.right = replacement;
3029 >                    p.left = p.right = p.parent = null;
3030 >                }
3031 >
3032 >                root = (p.red) ? r : balanceDeletion(r, replacement);
3033 >
3034 >                if (p == replacement) {  // detach pointers
3035 >                    TreeNode<K,V> pp;
3036 >                    if ((pp = p.parent) != null) {
3037 >                        if (p == pp.left)
3038 >                            pp.left = null;
3039 >                        else if (p == pp.right)
3040 >                            pp.right = null;
3041 >                        p.parent = null;
3042 >                    }
3043 >                }
3044 >            } finally {
3045 >                unlockRoot();
3046 >            }
3047 >            assert checkInvariants(root);
3048 >            return false;
3049          }
3050  
3051 <        public final boolean hasNext() { return nextEntry != null; }
3052 <        public final boolean hasMoreElements() { return nextEntry != null; }
3051 >        /* ------------------------------------------------------------ */
3052 >        // Red-black tree methods, all adapted from CLR
3053 >
3054 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3055 >                                              TreeNode<K,V> p) {
3056 >            TreeNode<K,V> r, pp, rl;
3057 >            if (p != null && (r = p.right) != null) {
3058 >                if ((rl = p.right = r.left) != null)
3059 >                    rl.parent = p;
3060 >                if ((pp = r.parent = p.parent) == null)
3061 >                    (root = r).red = false;
3062 >                else if (pp.left == p)
3063 >                    pp.left = r;
3064 >                else
3065 >                    pp.right = r;
3066 >                r.left = p;
3067 >                p.parent = r;
3068 >            }
3069 >            return root;
3070 >        }
3071 >
3072 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3073 >                                               TreeNode<K,V> p) {
3074 >            TreeNode<K,V> l, pp, lr;
3075 >            if (p != null && (l = p.left) != null) {
3076 >                if ((lr = p.left = l.right) != null)
3077 >                    lr.parent = p;
3078 >                if ((pp = l.parent = p.parent) == null)
3079 >                    (root = l).red = false;
3080 >                else if (pp.right == p)
3081 >                    pp.right = l;
3082 >                else
3083 >                    pp.left = l;
3084 >                l.right = p;
3085 >                p.parent = l;
3086 >            }
3087 >            return root;
3088 >        }
3089 >
3090 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3091 >                                                    TreeNode<K,V> x) {
3092 >            x.red = true;
3093 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3094 >                if ((xp = x.parent) == null) {
3095 >                    x.red = false;
3096 >                    return x;
3097 >                }
3098 >                else if (!xp.red || (xpp = xp.parent) == null)
3099 >                    return root;
3100 >                if (xp == (xppl = xpp.left)) {
3101 >                    if ((xppr = xpp.right) != null && xppr.red) {
3102 >                        xppr.red = false;
3103 >                        xp.red = false;
3104 >                        xpp.red = true;
3105 >                        x = xpp;
3106 >                    }
3107 >                    else {
3108 >                        if (x == xp.right) {
3109 >                            root = rotateLeft(root, x = xp);
3110 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3111 >                        }
3112 >                        if (xp != null) {
3113 >                            xp.red = false;
3114 >                            if (xpp != null) {
3115 >                                xpp.red = true;
3116 >                                root = rotateRight(root, xpp);
3117 >                            }
3118 >                        }
3119 >                    }
3120 >                }
3121 >                else {
3122 >                    if (xppl != null && xppl.red) {
3123 >                        xppl.red = false;
3124 >                        xp.red = false;
3125 >                        xpp.red = true;
3126 >                        x = xpp;
3127 >                    }
3128 >                    else {
3129 >                        if (x == xp.left) {
3130 >                            root = rotateRight(root, x = xp);
3131 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3132 >                        }
3133 >                        if (xp != null) {
3134 >                            xp.red = false;
3135 >                            if (xpp != null) {
3136 >                                xpp.red = true;
3137 >                                root = rotateLeft(root, xpp);
3138 >                            }
3139 >                        }
3140 >                    }
3141 >                }
3142 >            }
3143 >        }
3144 >
3145 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3146 >                                                   TreeNode<K,V> x) {
3147 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3148 >                if (x == null || x == root)
3149 >                    return root;
3150 >                else if ((xp = x.parent) == null) {
3151 >                    x.red = false;
3152 >                    return x;
3153 >                }
3154 >                else if (x.red) {
3155 >                    x.red = false;
3156 >                    return root;
3157 >                }
3158 >                else if ((xpl = xp.left) == x) {
3159 >                    if ((xpr = xp.right) != null && xpr.red) {
3160 >                        xpr.red = false;
3161 >                        xp.red = true;
3162 >                        root = rotateLeft(root, xp);
3163 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3164 >                    }
3165 >                    if (xpr == null)
3166 >                        x = xp;
3167 >                    else {
3168 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3169 >                        if ((sr == null || !sr.red) &&
3170 >                            (sl == null || !sl.red)) {
3171 >                            xpr.red = true;
3172 >                            x = xp;
3173 >                        }
3174 >                        else {
3175 >                            if (sr == null || !sr.red) {
3176 >                                if (sl != null)
3177 >                                    sl.red = false;
3178 >                                xpr.red = true;
3179 >                                root = rotateRight(root, xpr);
3180 >                                xpr = (xp = x.parent) == null ?
3181 >                                    null : xp.right;
3182 >                            }
3183 >                            if (xpr != null) {
3184 >                                xpr.red = (xp == null) ? false : xp.red;
3185 >                                if ((sr = xpr.right) != null)
3186 >                                    sr.red = false;
3187 >                            }
3188 >                            if (xp != null) {
3189 >                                xp.red = false;
3190 >                                root = rotateLeft(root, xp);
3191 >                            }
3192 >                            x = root;
3193 >                        }
3194 >                    }
3195 >                }
3196 >                else { // symmetric
3197 >                    if (xpl != null && xpl.red) {
3198 >                        xpl.red = false;
3199 >                        xp.red = true;
3200 >                        root = rotateRight(root, xp);
3201 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3202 >                    }
3203 >                    if (xpl == null)
3204 >                        x = xp;
3205 >                    else {
3206 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3207 >                        if ((sl == null || !sl.red) &&
3208 >                            (sr == null || !sr.red)) {
3209 >                            xpl.red = true;
3210 >                            x = xp;
3211 >                        }
3212 >                        else {
3213 >                            if (sl == null || !sl.red) {
3214 >                                if (sr != null)
3215 >                                    sr.red = false;
3216 >                                xpl.red = true;
3217 >                                root = rotateLeft(root, xpl);
3218 >                                xpl = (xp = x.parent) == null ?
3219 >                                    null : xp.left;
3220 >                            }
3221 >                            if (xpl != null) {
3222 >                                xpl.red = (xp == null) ? false : xp.red;
3223 >                                if ((sl = xpl.left) != null)
3224 >                                    sl.red = false;
3225 >                            }
3226 >                            if (xp != null) {
3227 >                                xp.red = false;
3228 >                                root = rotateRight(root, xp);
3229 >                            }
3230 >                            x = root;
3231 >                        }
3232 >                    }
3233 >                }
3234 >            }
3235 >        }
3236 >
3237 >        /**
3238 >         * Checks invariants recursively for the tree of Nodes rooted at t.
3239 >         */
3240 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3241 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3242 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3243 >            if (tb != null && tb.next != t)
3244 >                return false;
3245 >            if (tn != null && tn.prev != t)
3246 >                return false;
3247 >            if (tp != null && t != tp.left && t != tp.right)
3248 >                return false;
3249 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3250 >                return false;
3251 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3252 >                return false;
3253 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3254 >                return false;
3255 >            if (tl != null && !checkInvariants(tl))
3256 >                return false;
3257 >            if (tr != null && !checkInvariants(tr))
3258 >                return false;
3259 >            return true;
3260 >        }
3261 >
3262 >        private static final Unsafe U = Unsafe.getUnsafe();
3263 >        private static final long LOCKSTATE;
3264 >        static {
3265 >            try {
3266 >                LOCKSTATE = U.objectFieldOffset
3267 >                    (TreeBin.class.getDeclaredField("lockState"));
3268 >            } catch (ReflectiveOperationException e) {
3269 >                throw new ExceptionInInitializerError(e);
3270 >            }
3271 >        }
3272 >    }
3273 >
3274 >    /* ----------------Table Traversal -------------- */
3275 >
3276 >    /**
3277 >     * Records the table, its length, and current traversal index for a
3278 >     * traverser that must process a region of a forwarded table before
3279 >     * proceeding with current table.
3280 >     */
3281 >    static final class TableStack<K,V> {
3282 >        int length;
3283 >        int index;
3284 >        Node<K,V>[] tab;
3285 >        TableStack<K,V> next;
3286 >    }
3287 >
3288 >    /**
3289 >     * Encapsulates traversal for methods such as containsValue; also
3290 >     * serves as a base class for other iterators and spliterators.
3291 >     *
3292 >     * Method advance visits once each still-valid node that was
3293 >     * reachable upon iterator construction. It might miss some that
3294 >     * were added to a bin after the bin was visited, which is OK wrt
3295 >     * consistency guarantees. Maintaining this property in the face
3296 >     * of possible ongoing resizes requires a fair amount of
3297 >     * bookkeeping state that is difficult to optimize away amidst
3298 >     * volatile accesses.  Even so, traversal maintains reasonable
3299 >     * throughput.
3300 >     *
3301 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3302 >     * However, if the table has been resized, then all future steps
3303 >     * must traverse both the bin at the current index as well as at
3304 >     * (index + baseSize); and so on for further resizings. To
3305 >     * paranoically cope with potential sharing by users of iterators
3306 >     * across threads, iteration terminates if a bounds checks fails
3307 >     * for a table read.
3308 >     */
3309 >    static class Traverser<K,V> {
3310 >        Node<K,V>[] tab;        // current table; updated if resized
3311 >        Node<K,V> next;         // the next entry to use
3312 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3313 >        int index;              // index of bin to use next
3314 >        int baseIndex;          // current index of initial table
3315 >        int baseLimit;          // index bound for initial table
3316 >        final int baseSize;     // initial table size
3317 >
3318 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3319 >            this.tab = tab;
3320 >            this.baseSize = size;
3321 >            this.baseIndex = this.index = index;
3322 >            this.baseLimit = limit;
3323 >            this.next = null;
3324 >        }
3325 >
3326 >        /**
3327 >         * Advances if possible, returning next valid node, or null if none.
3328 >         */
3329 >        final Node<K,V> advance() {
3330 >            Node<K,V> e;
3331 >            if ((e = next) != null)
3332 >                e = e.next;
3333 >            for (;;) {
3334 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3335 >                if (e != null)
3336 >                    return next = e;
3337 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3338 >                    (n = t.length) <= (i = index) || i < 0)
3339 >                    return next = null;
3340 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3341 >                    if (e instanceof ForwardingNode) {
3342 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3343 >                        e = null;
3344 >                        pushState(t, i, n);
3345 >                        continue;
3346 >                    }
3347 >                    else if (e instanceof TreeBin)
3348 >                        e = ((TreeBin<K,V>)e).first;
3349 >                    else
3350 >                        e = null;
3351 >                }
3352 >                if (stack != null)
3353 >                    recoverState(n);
3354 >                else if ((index = i + baseSize) >= n)
3355 >                    index = ++baseIndex; // visit upper slots if present
3356 >            }
3357 >        }
3358 >
3359 >        /**
3360 >         * Saves traversal state upon encountering a forwarding node.
3361 >         */
3362 >        private void pushState(Node<K,V>[] t, int i, int n) {
3363 >            TableStack<K,V> s = spare;  // reuse if possible
3364 >            if (s != null)
3365 >                spare = s.next;
3366 >            else
3367 >                s = new TableStack<K,V>();
3368 >            s.tab = t;
3369 >            s.length = n;
3370 >            s.index = i;
3371 >            s.next = stack;
3372 >            stack = s;
3373 >        }
3374 >
3375 >        /**
3376 >         * Possibly pops traversal state.
3377 >         *
3378 >         * @param n length of current table
3379 >         */
3380 >        private void recoverState(int n) {
3381 >            TableStack<K,V> s; int len;
3382 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3383 >                n = len;
3384 >                index = s.index;
3385 >                tab = s.tab;
3386 >                s.tab = null;
3387 >                TableStack<K,V> next = s.next;
3388 >                s.next = spare; // save for reuse
3389 >                stack = next;
3390 >                spare = s;
3391 >            }
3392 >            if (s == null && (index += baseSize) >= n)
3393 >                index = ++baseIndex;
3394 >        }
3395 >    }
3396 >
3397 >    /**
3398 >     * Base of key, value, and entry Iterators. Adds fields to
3399 >     * Traverser to support iterator.remove.
3400 >     */
3401 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3402 >        final ConcurrentHashMap<K,V> map;
3403 >        Node<K,V> lastReturned;
3404 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3405 >                    ConcurrentHashMap<K,V> map) {
3406 >            super(tab, size, index, limit);
3407 >            this.map = map;
3408 >            advance();
3409 >        }
3410 >
3411 >        public final boolean hasNext() { return next != null; }
3412 >        public final boolean hasMoreElements() { return next != null; }
3413  
3414          public final void remove() {
3415 <            if (lastReturned == null)
3415 >            Node<K,V> p;
3416 >            if ((p = lastReturned) == null)
3417                  throw new IllegalStateException();
1261            ConcurrentHashMap.this.remove(lastReturned.key);
3418              lastReturned = null;
3419 +            map.replaceNode(p.key, null, null);
3420          }
3421      }
3422  
3423 <    final class KeyIterator
3424 <        extends HashIterator
3425 <        implements Iterator<K>, Enumeration<K>
3426 <    {
3427 <        public final K next()        { return super.nextEntry().key; }
3428 <        public final K nextElement() { return super.nextEntry().key; }
3423 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3424 >        implements Iterator<K>, Enumeration<K> {
3425 >        KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3426 >                    ConcurrentHashMap<K,V> map) {
3427 >            super(tab, size, index, limit, map);
3428 >        }
3429 >
3430 >        public final K next() {
3431 >            Node<K,V> p;
3432 >            if ((p = next) == null)
3433 >                throw new NoSuchElementException();
3434 >            K k = p.key;
3435 >            lastReturned = p;
3436 >            advance();
3437 >            return k;
3438 >        }
3439 >
3440 >        public final K nextElement() { return next(); }
3441      }
3442  
3443 <    final class ValueIterator
3444 <        extends HashIterator
3445 <        implements Iterator<V>, Enumeration<V>
3446 <    {
3447 <        public final V next()        { return super.nextEntry().value; }
3448 <        public final V nextElement() { return super.nextEntry().value; }
3443 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3444 >        implements Iterator<V>, Enumeration<V> {
3445 >        ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3446 >                      ConcurrentHashMap<K,V> map) {
3447 >            super(tab, size, index, limit, map);
3448 >        }
3449 >
3450 >        public final V next() {
3451 >            Node<K,V> p;
3452 >            if ((p = next) == null)
3453 >                throw new NoSuchElementException();
3454 >            V v = p.val;
3455 >            lastReturned = p;
3456 >            advance();
3457 >            return v;
3458 >        }
3459 >
3460 >        public final V nextElement() { return next(); }
3461 >    }
3462 >
3463 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3464 >        implements Iterator<Map.Entry<K,V>> {
3465 >        EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3466 >                      ConcurrentHashMap<K,V> map) {
3467 >            super(tab, size, index, limit, map);
3468 >        }
3469 >
3470 >        public final Map.Entry<K,V> next() {
3471 >            Node<K,V> p;
3472 >            if ((p = next) == null)
3473 >                throw new NoSuchElementException();
3474 >            K k = p.key;
3475 >            V v = p.val;
3476 >            lastReturned = p;
3477 >            advance();
3478 >            return new MapEntry<K,V>(k, v, map);
3479 >        }
3480      }
3481  
3482      /**
3483 <     * Custom Entry class used by EntryIterator.next(), that relays
1284 <     * setValue changes to the underlying map.
3483 >     * Exported Entry for EntryIterator.
3484       */
3485 <    final class WriteThroughEntry
3486 <        extends AbstractMap.SimpleEntry<K,V>
3487 <    {
3488 <        static final long serialVersionUID = 7249069246763182397L;
3489 <
3490 <        WriteThroughEntry(K k, V v) {
3491 <            super(k,v);
3485 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3486 >        final K key; // non-null
3487 >        V val;       // non-null
3488 >        final ConcurrentHashMap<K,V> map;
3489 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3490 >            this.key = key;
3491 >            this.val = val;
3492 >            this.map = map;
3493 >        }
3494 >        public K getKey()        { return key; }
3495 >        public V getValue()      { return val; }
3496 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3497 >        public String toString() {
3498 >            return Helpers.mapEntryToString(key, val);
3499 >        }
3500 >
3501 >        public boolean equals(Object o) {
3502 >            Object k, v; Map.Entry<?,?> e;
3503 >            return ((o instanceof Map.Entry) &&
3504 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3505 >                    (v = e.getValue()) != null &&
3506 >                    (k == key || k.equals(key)) &&
3507 >                    (v == val || v.equals(val)));
3508          }
3509  
3510          /**
3511           * Sets our entry's value and writes through to the map. The
3512 <         * value to return is somewhat arbitrary here. Since a
3513 <         * WriteThroughEntry does not necessarily track asynchronous
3514 <         * changes, the most recent "previous" value could be
3515 <         * different from what we return (or could even have been
3516 <         * removed in which case the put will re-establish). We do not
1302 <         * and cannot guarantee more.
3512 >         * value to return is somewhat arbitrary here. Since we do not
3513 >         * necessarily track asynchronous changes, the most recent
3514 >         * "previous" value could be different from what we return (or
3515 >         * could even have been removed, in which case the put will
3516 >         * re-establish). We do not and cannot guarantee more.
3517           */
3518          public V setValue(V value) {
3519              if (value == null) throw new NullPointerException();
3520 <            V v = super.setValue(value);
3521 <            ConcurrentHashMap.this.put(getKey(), value);
3520 >            V v = val;
3521 >            val = value;
3522 >            map.put(key, value);
3523              return v;
3524          }
3525      }
3526  
3527 <    final class EntryIterator
3528 <        extends HashIterator
3529 <        implements Iterator<Entry<K,V>>
3530 <    {
3531 <        public Map.Entry<K,V> next() {
3532 <            HashEntry<K,V> e = super.nextEntry();
3533 <            return new WriteThroughEntry(e.key, e.value);
3527 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3528 >        implements Spliterator<K> {
3529 >        long est;               // size estimate
3530 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3531 >                       long est) {
3532 >            super(tab, size, index, limit);
3533 >            this.est = est;
3534 >        }
3535 >
3536 >        public KeySpliterator<K,V> trySplit() {
3537 >            int i, f, h;
3538 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3539 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3540 >                                        f, est >>>= 1);
3541 >        }
3542 >
3543 >        public void forEachRemaining(Consumer<? super K> action) {
3544 >            if (action == null) throw new NullPointerException();
3545 >            for (Node<K,V> p; (p = advance()) != null;)
3546 >                action.accept(p.key);
3547 >        }
3548 >
3549 >        public boolean tryAdvance(Consumer<? super K> action) {
3550 >            if (action == null) throw new NullPointerException();
3551 >            Node<K,V> p;
3552 >            if ((p = advance()) == null)
3553 >                return false;
3554 >            action.accept(p.key);
3555 >            return true;
3556 >        }
3557 >
3558 >        public long estimateSize() { return est; }
3559 >
3560 >        public int characteristics() {
3561 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3562 >                Spliterator.NONNULL;
3563          }
3564      }
3565  
3566 <    final class KeySet extends AbstractSet<K> {
3567 <        public Iterator<K> iterator() {
3568 <            return new KeyIterator();
3566 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3567 >        implements Spliterator<V> {
3568 >        long est;               // size estimate
3569 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3570 >                         long est) {
3571 >            super(tab, size, index, limit);
3572 >            this.est = est;
3573 >        }
3574 >
3575 >        public ValueSpliterator<K,V> trySplit() {
3576 >            int i, f, h;
3577 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3578 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3579 >                                          f, est >>>= 1);
3580          }
3581 <        public int size() {
3582 <            return ConcurrentHashMap.this.size();
3581 >
3582 >        public void forEachRemaining(Consumer<? super V> action) {
3583 >            if (action == null) throw new NullPointerException();
3584 >            for (Node<K,V> p; (p = advance()) != null;)
3585 >                action.accept(p.val);
3586          }
3587 <        public boolean isEmpty() {
3588 <            return ConcurrentHashMap.this.isEmpty();
3587 >
3588 >        public boolean tryAdvance(Consumer<? super V> action) {
3589 >            if (action == null) throw new NullPointerException();
3590 >            Node<K,V> p;
3591 >            if ((p = advance()) == null)
3592 >                return false;
3593 >            action.accept(p.val);
3594 >            return true;
3595          }
3596 <        public boolean contains(Object o) {
3597 <            return ConcurrentHashMap.this.containsKey(o);
3596 >
3597 >        public long estimateSize() { return est; }
3598 >
3599 >        public int characteristics() {
3600 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3601          }
3602 <        public boolean remove(Object o) {
3603 <            return ConcurrentHashMap.this.remove(o) != null;
3602 >    }
3603 >
3604 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3605 >        implements Spliterator<Map.Entry<K,V>> {
3606 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3607 >        long est;               // size estimate
3608 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3609 >                         long est, ConcurrentHashMap<K,V> map) {
3610 >            super(tab, size, index, limit);
3611 >            this.map = map;
3612 >            this.est = est;
3613 >        }
3614 >
3615 >        public EntrySpliterator<K,V> trySplit() {
3616 >            int i, f, h;
3617 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3618 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3619 >                                          f, est >>>= 1, map);
3620 >        }
3621 >
3622 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3623 >            if (action == null) throw new NullPointerException();
3624 >            for (Node<K,V> p; (p = advance()) != null; )
3625 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3626 >        }
3627 >
3628 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3629 >            if (action == null) throw new NullPointerException();
3630 >            Node<K,V> p;
3631 >            if ((p = advance()) == null)
3632 >                return false;
3633 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3634 >            return true;
3635 >        }
3636 >
3637 >        public long estimateSize() { return est; }
3638 >
3639 >        public int characteristics() {
3640 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3641 >                Spliterator.NONNULL;
3642 >        }
3643 >    }
3644 >
3645 >    // Parallel bulk operations
3646 >
3647 >    /**
3648 >     * Computes initial batch value for bulk tasks. The returned value
3649 >     * is approximately exp2 of the number of times (minus one) to
3650 >     * split task by two before executing leaf action. This value is
3651 >     * faster to compute and more convenient to use as a guide to
3652 >     * splitting than is the depth, since it is used while dividing by
3653 >     * two anyway.
3654 >     */
3655 >    final int batchFor(long b) {
3656 >        long n;
3657 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3658 >            return 0;
3659 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3660 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3661 >    }
3662 >
3663 >    /**
3664 >     * Performs the given action for each (key, value).
3665 >     *
3666 >     * @param parallelismThreshold the (estimated) number of elements
3667 >     * needed for this operation to be executed in parallel
3668 >     * @param action the action
3669 >     * @since 1.8
3670 >     */
3671 >    public void forEach(long parallelismThreshold,
3672 >                        BiConsumer<? super K,? super V> action) {
3673 >        if (action == null) throw new NullPointerException();
3674 >        new ForEachMappingTask<K,V>
3675 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3676 >             action).invoke();
3677 >    }
3678 >
3679 >    /**
3680 >     * Performs the given action for each non-null transformation
3681 >     * of each (key, value).
3682 >     *
3683 >     * @param parallelismThreshold the (estimated) number of elements
3684 >     * needed for this operation to be executed in parallel
3685 >     * @param transformer a function returning the transformation
3686 >     * for an element, or null if there is no transformation (in
3687 >     * which case the action is not applied)
3688 >     * @param action the action
3689 >     * @param <U> the return type of the transformer
3690 >     * @since 1.8
3691 >     */
3692 >    public <U> void forEach(long parallelismThreshold,
3693 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3694 >                            Consumer<? super U> action) {
3695 >        if (transformer == null || action == null)
3696 >            throw new NullPointerException();
3697 >        new ForEachTransformedMappingTask<K,V,U>
3698 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3699 >             transformer, action).invoke();
3700 >    }
3701 >
3702 >    /**
3703 >     * Returns a non-null result from applying the given search
3704 >     * function on each (key, value), or null if none.  Upon
3705 >     * success, further element processing is suppressed and the
3706 >     * results of any other parallel invocations of the search
3707 >     * function are ignored.
3708 >     *
3709 >     * @param parallelismThreshold the (estimated) number of elements
3710 >     * needed for this operation to be executed in parallel
3711 >     * @param searchFunction a function returning a non-null
3712 >     * result on success, else null
3713 >     * @param <U> the return type of the search function
3714 >     * @return a non-null result from applying the given search
3715 >     * function on each (key, value), or null if none
3716 >     * @since 1.8
3717 >     */
3718 >    public <U> U search(long parallelismThreshold,
3719 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3720 >        if (searchFunction == null) throw new NullPointerException();
3721 >        return new SearchMappingsTask<K,V,U>
3722 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3723 >             searchFunction, new AtomicReference<U>()).invoke();
3724 >    }
3725 >
3726 >    /**
3727 >     * Returns the result of accumulating the given transformation
3728 >     * of all (key, value) pairs using the given reducer to
3729 >     * combine values, or null if none.
3730 >     *
3731 >     * @param parallelismThreshold the (estimated) number of elements
3732 >     * needed for this operation to be executed in parallel
3733 >     * @param transformer a function returning the transformation
3734 >     * for an element, or null if there is no transformation (in
3735 >     * which case it is not combined)
3736 >     * @param reducer a commutative associative combining function
3737 >     * @param <U> the return type of the transformer
3738 >     * @return the result of accumulating the given transformation
3739 >     * of all (key, value) pairs
3740 >     * @since 1.8
3741 >     */
3742 >    public <U> U reduce(long parallelismThreshold,
3743 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3744 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3745 >        if (transformer == null || reducer == null)
3746 >            throw new NullPointerException();
3747 >        return new MapReduceMappingsTask<K,V,U>
3748 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3749 >             null, transformer, reducer).invoke();
3750 >    }
3751 >
3752 >    /**
3753 >     * Returns the result of accumulating the given transformation
3754 >     * of all (key, value) pairs using the given reducer to
3755 >     * combine values, and the given basis as an identity value.
3756 >     *
3757 >     * @param parallelismThreshold the (estimated) number of elements
3758 >     * needed for this operation to be executed in parallel
3759 >     * @param transformer a function returning the transformation
3760 >     * for an element
3761 >     * @param basis the identity (initial default value) for the reduction
3762 >     * @param reducer a commutative associative combining function
3763 >     * @return the result of accumulating the given transformation
3764 >     * of all (key, value) pairs
3765 >     * @since 1.8
3766 >     */
3767 >    public double reduceToDouble(long parallelismThreshold,
3768 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3769 >                                 double basis,
3770 >                                 DoubleBinaryOperator reducer) {
3771 >        if (transformer == null || reducer == null)
3772 >            throw new NullPointerException();
3773 >        return new MapReduceMappingsToDoubleTask<K,V>
3774 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3775 >             null, transformer, basis, reducer).invoke();
3776 >    }
3777 >
3778 >    /**
3779 >     * Returns the result of accumulating the given transformation
3780 >     * of all (key, value) pairs using the given reducer to
3781 >     * combine values, and the given basis as an identity value.
3782 >     *
3783 >     * @param parallelismThreshold the (estimated) number of elements
3784 >     * needed for this operation to be executed in parallel
3785 >     * @param transformer a function returning the transformation
3786 >     * for an element
3787 >     * @param basis the identity (initial default value) for the reduction
3788 >     * @param reducer a commutative associative combining function
3789 >     * @return the result of accumulating the given transformation
3790 >     * of all (key, value) pairs
3791 >     * @since 1.8
3792 >     */
3793 >    public long reduceToLong(long parallelismThreshold,
3794 >                             ToLongBiFunction<? super K, ? super V> transformer,
3795 >                             long basis,
3796 >                             LongBinaryOperator reducer) {
3797 >        if (transformer == null || reducer == null)
3798 >            throw new NullPointerException();
3799 >        return new MapReduceMappingsToLongTask<K,V>
3800 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3801 >             null, transformer, basis, reducer).invoke();
3802 >    }
3803 >
3804 >    /**
3805 >     * Returns the result of accumulating the given transformation
3806 >     * of all (key, value) pairs using the given reducer to
3807 >     * combine values, and the given basis as an identity value.
3808 >     *
3809 >     * @param parallelismThreshold the (estimated) number of elements
3810 >     * needed for this operation to be executed in parallel
3811 >     * @param transformer a function returning the transformation
3812 >     * for an element
3813 >     * @param basis the identity (initial default value) for the reduction
3814 >     * @param reducer a commutative associative combining function
3815 >     * @return the result of accumulating the given transformation
3816 >     * of all (key, value) pairs
3817 >     * @since 1.8
3818 >     */
3819 >    public int reduceToInt(long parallelismThreshold,
3820 >                           ToIntBiFunction<? super K, ? super V> transformer,
3821 >                           int basis,
3822 >                           IntBinaryOperator reducer) {
3823 >        if (transformer == null || reducer == null)
3824 >            throw new NullPointerException();
3825 >        return new MapReduceMappingsToIntTask<K,V>
3826 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3827 >             null, transformer, basis, reducer).invoke();
3828 >    }
3829 >
3830 >    /**
3831 >     * Performs the given action for each key.
3832 >     *
3833 >     * @param parallelismThreshold the (estimated) number of elements
3834 >     * needed for this operation to be executed in parallel
3835 >     * @param action the action
3836 >     * @since 1.8
3837 >     */
3838 >    public void forEachKey(long parallelismThreshold,
3839 >                           Consumer<? super K> action) {
3840 >        if (action == null) throw new NullPointerException();
3841 >        new ForEachKeyTask<K,V>
3842 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3843 >             action).invoke();
3844 >    }
3845 >
3846 >    /**
3847 >     * Performs the given action for each non-null transformation
3848 >     * of each key.
3849 >     *
3850 >     * @param parallelismThreshold the (estimated) number of elements
3851 >     * needed for this operation to be executed in parallel
3852 >     * @param transformer a function returning the transformation
3853 >     * for an element, or null if there is no transformation (in
3854 >     * which case the action is not applied)
3855 >     * @param action the action
3856 >     * @param <U> the return type of the transformer
3857 >     * @since 1.8
3858 >     */
3859 >    public <U> void forEachKey(long parallelismThreshold,
3860 >                               Function<? super K, ? extends U> transformer,
3861 >                               Consumer<? super U> action) {
3862 >        if (transformer == null || action == null)
3863 >            throw new NullPointerException();
3864 >        new ForEachTransformedKeyTask<K,V,U>
3865 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3866 >             transformer, action).invoke();
3867 >    }
3868 >
3869 >    /**
3870 >     * Returns a non-null result from applying the given search
3871 >     * function on each key, or null if none. Upon success,
3872 >     * further element processing is suppressed and the results of
3873 >     * any other parallel invocations of the search function are
3874 >     * ignored.
3875 >     *
3876 >     * @param parallelismThreshold the (estimated) number of elements
3877 >     * needed for this operation to be executed in parallel
3878 >     * @param searchFunction a function returning a non-null
3879 >     * result on success, else null
3880 >     * @param <U> the return type of the search function
3881 >     * @return a non-null result from applying the given search
3882 >     * function on each key, or null if none
3883 >     * @since 1.8
3884 >     */
3885 >    public <U> U searchKeys(long parallelismThreshold,
3886 >                            Function<? super K, ? extends U> searchFunction) {
3887 >        if (searchFunction == null) throw new NullPointerException();
3888 >        return new SearchKeysTask<K,V,U>
3889 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3890 >             searchFunction, new AtomicReference<U>()).invoke();
3891 >    }
3892 >
3893 >    /**
3894 >     * Returns the result of accumulating all keys using the given
3895 >     * reducer to combine values, or null if none.
3896 >     *
3897 >     * @param parallelismThreshold the (estimated) number of elements
3898 >     * needed for this operation to be executed in parallel
3899 >     * @param reducer a commutative associative combining function
3900 >     * @return the result of accumulating all keys using the given
3901 >     * reducer to combine values, or null if none
3902 >     * @since 1.8
3903 >     */
3904 >    public K reduceKeys(long parallelismThreshold,
3905 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3906 >        if (reducer == null) throw new NullPointerException();
3907 >        return new ReduceKeysTask<K,V>
3908 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3909 >             null, reducer).invoke();
3910 >    }
3911 >
3912 >    /**
3913 >     * Returns the result of accumulating the given transformation
3914 >     * of all keys using the given reducer to combine values, or
3915 >     * null if none.
3916 >     *
3917 >     * @param parallelismThreshold the (estimated) number of elements
3918 >     * needed for this operation to be executed in parallel
3919 >     * @param transformer a function returning the transformation
3920 >     * for an element, or null if there is no transformation (in
3921 >     * which case it is not combined)
3922 >     * @param reducer a commutative associative combining function
3923 >     * @param <U> the return type of the transformer
3924 >     * @return the result of accumulating the given transformation
3925 >     * of all keys
3926 >     * @since 1.8
3927 >     */
3928 >    public <U> U reduceKeys(long parallelismThreshold,
3929 >                            Function<? super K, ? extends U> transformer,
3930 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3931 >        if (transformer == null || reducer == null)
3932 >            throw new NullPointerException();
3933 >        return new MapReduceKeysTask<K,V,U>
3934 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3935 >             null, transformer, reducer).invoke();
3936 >    }
3937 >
3938 >    /**
3939 >     * Returns the result of accumulating the given transformation
3940 >     * of all keys using the given reducer to combine values, and
3941 >     * the given basis as an identity value.
3942 >     *
3943 >     * @param parallelismThreshold the (estimated) number of elements
3944 >     * needed for this operation to be executed in parallel
3945 >     * @param transformer a function returning the transformation
3946 >     * for an element
3947 >     * @param basis the identity (initial default value) for the reduction
3948 >     * @param reducer a commutative associative combining function
3949 >     * @return the result of accumulating the given transformation
3950 >     * of all keys
3951 >     * @since 1.8
3952 >     */
3953 >    public double reduceKeysToDouble(long parallelismThreshold,
3954 >                                     ToDoubleFunction<? super K> transformer,
3955 >                                     double basis,
3956 >                                     DoubleBinaryOperator reducer) {
3957 >        if (transformer == null || reducer == null)
3958 >            throw new NullPointerException();
3959 >        return new MapReduceKeysToDoubleTask<K,V>
3960 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3961 >             null, transformer, basis, reducer).invoke();
3962 >    }
3963 >
3964 >    /**
3965 >     * Returns the result of accumulating the given transformation
3966 >     * of all keys using the given reducer to combine values, and
3967 >     * the given basis as an identity value.
3968 >     *
3969 >     * @param parallelismThreshold the (estimated) number of elements
3970 >     * needed for this operation to be executed in parallel
3971 >     * @param transformer a function returning the transformation
3972 >     * for an element
3973 >     * @param basis the identity (initial default value) for the reduction
3974 >     * @param reducer a commutative associative combining function
3975 >     * @return the result of accumulating the given transformation
3976 >     * of all keys
3977 >     * @since 1.8
3978 >     */
3979 >    public long reduceKeysToLong(long parallelismThreshold,
3980 >                                 ToLongFunction<? super K> transformer,
3981 >                                 long basis,
3982 >                                 LongBinaryOperator reducer) {
3983 >        if (transformer == null || reducer == null)
3984 >            throw new NullPointerException();
3985 >        return new MapReduceKeysToLongTask<K,V>
3986 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3987 >             null, transformer, basis, reducer).invoke();
3988 >    }
3989 >
3990 >    /**
3991 >     * Returns the result of accumulating the given transformation
3992 >     * of all keys using the given reducer to combine values, and
3993 >     * the given basis as an identity value.
3994 >     *
3995 >     * @param parallelismThreshold the (estimated) number of elements
3996 >     * needed for this operation to be executed in parallel
3997 >     * @param transformer a function returning the transformation
3998 >     * for an element
3999 >     * @param basis the identity (initial default value) for the reduction
4000 >     * @param reducer a commutative associative combining function
4001 >     * @return the result of accumulating the given transformation
4002 >     * of all keys
4003 >     * @since 1.8
4004 >     */
4005 >    public int reduceKeysToInt(long parallelismThreshold,
4006 >                               ToIntFunction<? super K> transformer,
4007 >                               int basis,
4008 >                               IntBinaryOperator reducer) {
4009 >        if (transformer == null || reducer == null)
4010 >            throw new NullPointerException();
4011 >        return new MapReduceKeysToIntTask<K,V>
4012 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4013 >             null, transformer, basis, reducer).invoke();
4014 >    }
4015 >
4016 >    /**
4017 >     * Performs the given action for each value.
4018 >     *
4019 >     * @param parallelismThreshold the (estimated) number of elements
4020 >     * needed for this operation to be executed in parallel
4021 >     * @param action the action
4022 >     * @since 1.8
4023 >     */
4024 >    public void forEachValue(long parallelismThreshold,
4025 >                             Consumer<? super V> action) {
4026 >        if (action == null)
4027 >            throw new NullPointerException();
4028 >        new ForEachValueTask<K,V>
4029 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4030 >             action).invoke();
4031 >    }
4032 >
4033 >    /**
4034 >     * Performs the given action for each non-null transformation
4035 >     * of each value.
4036 >     *
4037 >     * @param parallelismThreshold the (estimated) number of elements
4038 >     * needed for this operation to be executed in parallel
4039 >     * @param transformer a function returning the transformation
4040 >     * for an element, or null if there is no transformation (in
4041 >     * which case the action is not applied)
4042 >     * @param action the action
4043 >     * @param <U> the return type of the transformer
4044 >     * @since 1.8
4045 >     */
4046 >    public <U> void forEachValue(long parallelismThreshold,
4047 >                                 Function<? super V, ? extends U> transformer,
4048 >                                 Consumer<? super U> action) {
4049 >        if (transformer == null || action == null)
4050 >            throw new NullPointerException();
4051 >        new ForEachTransformedValueTask<K,V,U>
4052 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4053 >             transformer, action).invoke();
4054 >    }
4055 >
4056 >    /**
4057 >     * Returns a non-null result from applying the given search
4058 >     * function on each value, or null if none.  Upon success,
4059 >     * further element processing is suppressed and the results of
4060 >     * any other parallel invocations of the search function are
4061 >     * ignored.
4062 >     *
4063 >     * @param parallelismThreshold the (estimated) number of elements
4064 >     * needed for this operation to be executed in parallel
4065 >     * @param searchFunction a function returning a non-null
4066 >     * result on success, else null
4067 >     * @param <U> the return type of the search function
4068 >     * @return a non-null result from applying the given search
4069 >     * function on each value, or null if none
4070 >     * @since 1.8
4071 >     */
4072 >    public <U> U searchValues(long parallelismThreshold,
4073 >                              Function<? super V, ? extends U> searchFunction) {
4074 >        if (searchFunction == null) throw new NullPointerException();
4075 >        return new SearchValuesTask<K,V,U>
4076 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4077 >             searchFunction, new AtomicReference<U>()).invoke();
4078 >    }
4079 >
4080 >    /**
4081 >     * Returns the result of accumulating all values using the
4082 >     * given reducer to combine values, or null if none.
4083 >     *
4084 >     * @param parallelismThreshold the (estimated) number of elements
4085 >     * needed for this operation to be executed in parallel
4086 >     * @param reducer a commutative associative combining function
4087 >     * @return the result of accumulating all values
4088 >     * @since 1.8
4089 >     */
4090 >    public V reduceValues(long parallelismThreshold,
4091 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4092 >        if (reducer == null) throw new NullPointerException();
4093 >        return new ReduceValuesTask<K,V>
4094 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4095 >             null, reducer).invoke();
4096 >    }
4097 >
4098 >    /**
4099 >     * Returns the result of accumulating the given transformation
4100 >     * of all values using the given reducer to combine values, or
4101 >     * null if none.
4102 >     *
4103 >     * @param parallelismThreshold the (estimated) number of elements
4104 >     * needed for this operation to be executed in parallel
4105 >     * @param transformer a function returning the transformation
4106 >     * for an element, or null if there is no transformation (in
4107 >     * which case it is not combined)
4108 >     * @param reducer a commutative associative combining function
4109 >     * @param <U> the return type of the transformer
4110 >     * @return the result of accumulating the given transformation
4111 >     * of all values
4112 >     * @since 1.8
4113 >     */
4114 >    public <U> U reduceValues(long parallelismThreshold,
4115 >                              Function<? super V, ? extends U> transformer,
4116 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4117 >        if (transformer == null || reducer == null)
4118 >            throw new NullPointerException();
4119 >        return new MapReduceValuesTask<K,V,U>
4120 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4121 >             null, transformer, reducer).invoke();
4122 >    }
4123 >
4124 >    /**
4125 >     * Returns the result of accumulating the given transformation
4126 >     * of all values using the given reducer to combine values,
4127 >     * and the given basis as an identity value.
4128 >     *
4129 >     * @param parallelismThreshold the (estimated) number of elements
4130 >     * needed for this operation to be executed in parallel
4131 >     * @param transformer a function returning the transformation
4132 >     * for an element
4133 >     * @param basis the identity (initial default value) for the reduction
4134 >     * @param reducer a commutative associative combining function
4135 >     * @return the result of accumulating the given transformation
4136 >     * of all values
4137 >     * @since 1.8
4138 >     */
4139 >    public double reduceValuesToDouble(long parallelismThreshold,
4140 >                                       ToDoubleFunction<? super V> transformer,
4141 >                                       double basis,
4142 >                                       DoubleBinaryOperator reducer) {
4143 >        if (transformer == null || reducer == null)
4144 >            throw new NullPointerException();
4145 >        return new MapReduceValuesToDoubleTask<K,V>
4146 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4147 >             null, transformer, basis, reducer).invoke();
4148 >    }
4149 >
4150 >    /**
4151 >     * Returns the result of accumulating the given transformation
4152 >     * of all values using the given reducer to combine values,
4153 >     * and the given basis as an identity value.
4154 >     *
4155 >     * @param parallelismThreshold the (estimated) number of elements
4156 >     * needed for this operation to be executed in parallel
4157 >     * @param transformer a function returning the transformation
4158 >     * for an element
4159 >     * @param basis the identity (initial default value) for the reduction
4160 >     * @param reducer a commutative associative combining function
4161 >     * @return the result of accumulating the given transformation
4162 >     * of all values
4163 >     * @since 1.8
4164 >     */
4165 >    public long reduceValuesToLong(long parallelismThreshold,
4166 >                                   ToLongFunction<? super V> transformer,
4167 >                                   long basis,
4168 >                                   LongBinaryOperator reducer) {
4169 >        if (transformer == null || reducer == null)
4170 >            throw new NullPointerException();
4171 >        return new MapReduceValuesToLongTask<K,V>
4172 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4173 >             null, transformer, basis, reducer).invoke();
4174 >    }
4175 >
4176 >    /**
4177 >     * Returns the result of accumulating the given transformation
4178 >     * of all values using the given reducer to combine values,
4179 >     * and the given basis as an identity value.
4180 >     *
4181 >     * @param parallelismThreshold the (estimated) number of elements
4182 >     * needed for this operation to be executed in parallel
4183 >     * @param transformer a function returning the transformation
4184 >     * for an element
4185 >     * @param basis the identity (initial default value) for the reduction
4186 >     * @param reducer a commutative associative combining function
4187 >     * @return the result of accumulating the given transformation
4188 >     * of all values
4189 >     * @since 1.8
4190 >     */
4191 >    public int reduceValuesToInt(long parallelismThreshold,
4192 >                                 ToIntFunction<? super V> transformer,
4193 >                                 int basis,
4194 >                                 IntBinaryOperator reducer) {
4195 >        if (transformer == null || reducer == null)
4196 >            throw new NullPointerException();
4197 >        return new MapReduceValuesToIntTask<K,V>
4198 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4199 >             null, transformer, basis, reducer).invoke();
4200 >    }
4201 >
4202 >    /**
4203 >     * Performs the given action for each entry.
4204 >     *
4205 >     * @param parallelismThreshold the (estimated) number of elements
4206 >     * needed for this operation to be executed in parallel
4207 >     * @param action the action
4208 >     * @since 1.8
4209 >     */
4210 >    public void forEachEntry(long parallelismThreshold,
4211 >                             Consumer<? super Map.Entry<K,V>> action) {
4212 >        if (action == null) throw new NullPointerException();
4213 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4214 >                                  action).invoke();
4215 >    }
4216 >
4217 >    /**
4218 >     * Performs the given action for each non-null transformation
4219 >     * of each entry.
4220 >     *
4221 >     * @param parallelismThreshold the (estimated) number of elements
4222 >     * needed for this operation to be executed in parallel
4223 >     * @param transformer a function returning the transformation
4224 >     * for an element, or null if there is no transformation (in
4225 >     * which case the action is not applied)
4226 >     * @param action the action
4227 >     * @param <U> the return type of the transformer
4228 >     * @since 1.8
4229 >     */
4230 >    public <U> void forEachEntry(long parallelismThreshold,
4231 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4232 >                                 Consumer<? super U> action) {
4233 >        if (transformer == null || action == null)
4234 >            throw new NullPointerException();
4235 >        new ForEachTransformedEntryTask<K,V,U>
4236 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4237 >             transformer, action).invoke();
4238 >    }
4239 >
4240 >    /**
4241 >     * Returns a non-null result from applying the given search
4242 >     * function on each entry, or null if none.  Upon success,
4243 >     * further element processing is suppressed and the results of
4244 >     * any other parallel invocations of the search function are
4245 >     * ignored.
4246 >     *
4247 >     * @param parallelismThreshold the (estimated) number of elements
4248 >     * needed for this operation to be executed in parallel
4249 >     * @param searchFunction a function returning a non-null
4250 >     * result on success, else null
4251 >     * @param <U> the return type of the search function
4252 >     * @return a non-null result from applying the given search
4253 >     * function on each entry, or null if none
4254 >     * @since 1.8
4255 >     */
4256 >    public <U> U searchEntries(long parallelismThreshold,
4257 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4258 >        if (searchFunction == null) throw new NullPointerException();
4259 >        return new SearchEntriesTask<K,V,U>
4260 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4261 >             searchFunction, new AtomicReference<U>()).invoke();
4262 >    }
4263 >
4264 >    /**
4265 >     * Returns the result of accumulating all entries using the
4266 >     * given reducer to combine values, or null if none.
4267 >     *
4268 >     * @param parallelismThreshold the (estimated) number of elements
4269 >     * needed for this operation to be executed in parallel
4270 >     * @param reducer a commutative associative combining function
4271 >     * @return the result of accumulating all entries
4272 >     * @since 1.8
4273 >     */
4274 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4275 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4276 >        if (reducer == null) throw new NullPointerException();
4277 >        return new ReduceEntriesTask<K,V>
4278 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4279 >             null, reducer).invoke();
4280 >    }
4281 >
4282 >    /**
4283 >     * Returns the result of accumulating the given transformation
4284 >     * of all entries using the given reducer to combine values,
4285 >     * or null if none.
4286 >     *
4287 >     * @param parallelismThreshold the (estimated) number of elements
4288 >     * needed for this operation to be executed in parallel
4289 >     * @param transformer a function returning the transformation
4290 >     * for an element, or null if there is no transformation (in
4291 >     * which case it is not combined)
4292 >     * @param reducer a commutative associative combining function
4293 >     * @param <U> the return type of the transformer
4294 >     * @return the result of accumulating the given transformation
4295 >     * of all entries
4296 >     * @since 1.8
4297 >     */
4298 >    public <U> U reduceEntries(long parallelismThreshold,
4299 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4300 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4301 >        if (transformer == null || reducer == null)
4302 >            throw new NullPointerException();
4303 >        return new MapReduceEntriesTask<K,V,U>
4304 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4305 >             null, transformer, reducer).invoke();
4306 >    }
4307 >
4308 >    /**
4309 >     * Returns the result of accumulating the given transformation
4310 >     * of all entries using the given reducer to combine values,
4311 >     * and the given basis as an identity value.
4312 >     *
4313 >     * @param parallelismThreshold the (estimated) number of elements
4314 >     * needed for this operation to be executed in parallel
4315 >     * @param transformer a function returning the transformation
4316 >     * for an element
4317 >     * @param basis the identity (initial default value) for the reduction
4318 >     * @param reducer a commutative associative combining function
4319 >     * @return the result of accumulating the given transformation
4320 >     * of all entries
4321 >     * @since 1.8
4322 >     */
4323 >    public double reduceEntriesToDouble(long parallelismThreshold,
4324 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4325 >                                        double basis,
4326 >                                        DoubleBinaryOperator reducer) {
4327 >        if (transformer == null || reducer == null)
4328 >            throw new NullPointerException();
4329 >        return new MapReduceEntriesToDoubleTask<K,V>
4330 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4331 >             null, transformer, basis, reducer).invoke();
4332 >    }
4333 >
4334 >    /**
4335 >     * Returns the result of accumulating the given transformation
4336 >     * of all entries using the given reducer to combine values,
4337 >     * and the given basis as an identity value.
4338 >     *
4339 >     * @param parallelismThreshold the (estimated) number of elements
4340 >     * needed for this operation to be executed in parallel
4341 >     * @param transformer a function returning the transformation
4342 >     * for an element
4343 >     * @param basis the identity (initial default value) for the reduction
4344 >     * @param reducer a commutative associative combining function
4345 >     * @return the result of accumulating the given transformation
4346 >     * of all entries
4347 >     * @since 1.8
4348 >     */
4349 >    public long reduceEntriesToLong(long parallelismThreshold,
4350 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4351 >                                    long basis,
4352 >                                    LongBinaryOperator reducer) {
4353 >        if (transformer == null || reducer == null)
4354 >            throw new NullPointerException();
4355 >        return new MapReduceEntriesToLongTask<K,V>
4356 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4357 >             null, transformer, basis, reducer).invoke();
4358 >    }
4359 >
4360 >    /**
4361 >     * Returns the result of accumulating the given transformation
4362 >     * of all entries using the given reducer to combine values,
4363 >     * and the given basis as an identity value.
4364 >     *
4365 >     * @param parallelismThreshold the (estimated) number of elements
4366 >     * needed for this operation to be executed in parallel
4367 >     * @param transformer a function returning the transformation
4368 >     * for an element
4369 >     * @param basis the identity (initial default value) for the reduction
4370 >     * @param reducer a commutative associative combining function
4371 >     * @return the result of accumulating the given transformation
4372 >     * of all entries
4373 >     * @since 1.8
4374 >     */
4375 >    public int reduceEntriesToInt(long parallelismThreshold,
4376 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4377 >                                  int basis,
4378 >                                  IntBinaryOperator reducer) {
4379 >        if (transformer == null || reducer == null)
4380 >            throw new NullPointerException();
4381 >        return new MapReduceEntriesToIntTask<K,V>
4382 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4383 >             null, transformer, basis, reducer).invoke();
4384 >    }
4385 >
4386 >
4387 >    /* ----------------Views -------------- */
4388 >
4389 >    /**
4390 >     * Base class for views.
4391 >     */
4392 >    abstract static class CollectionView<K,V,E>
4393 >        implements Collection<E>, java.io.Serializable {
4394 >        private static final long serialVersionUID = 7249069246763182397L;
4395 >        final ConcurrentHashMap<K,V> map;
4396 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4397 >
4398 >        /**
4399 >         * Returns the map backing this view.
4400 >         *
4401 >         * @return the map backing this view
4402 >         */
4403 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4404 >
4405 >        /**
4406 >         * Removes all of the elements from this view, by removing all
4407 >         * the mappings from the map backing this view.
4408 >         */
4409 >        public final void clear()      { map.clear(); }
4410 >        public final int size()        { return map.size(); }
4411 >        public final boolean isEmpty() { return map.isEmpty(); }
4412 >
4413 >        // implementations below rely on concrete classes supplying these
4414 >        // abstract methods
4415 >        /**
4416 >         * Returns an iterator over the elements in this collection.
4417 >         *
4418 >         * <p>The returned iterator is
4419 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4420 >         *
4421 >         * @return an iterator over the elements in this collection
4422 >         */
4423 >        public abstract Iterator<E> iterator();
4424 >        public abstract boolean contains(Object o);
4425 >        public abstract boolean remove(Object o);
4426 >
4427 >        private static final String OOME_MSG = "Required array size too large";
4428 >
4429 >        public final Object[] toArray() {
4430 >            long sz = map.mappingCount();
4431 >            if (sz > MAX_ARRAY_SIZE)
4432 >                throw new OutOfMemoryError(OOME_MSG);
4433 >            int n = (int)sz;
4434 >            Object[] r = new Object[n];
4435 >            int i = 0;
4436 >            for (E e : this) {
4437 >                if (i == n) {
4438 >                    if (n >= MAX_ARRAY_SIZE)
4439 >                        throw new OutOfMemoryError(OOME_MSG);
4440 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4441 >                        n = MAX_ARRAY_SIZE;
4442 >                    else
4443 >                        n += (n >>> 1) + 1;
4444 >                    r = Arrays.copyOf(r, n);
4445 >                }
4446 >                r[i++] = e;
4447 >            }
4448 >            return (i == n) ? r : Arrays.copyOf(r, i);
4449          }
4450 <        public void clear() {
4451 <            ConcurrentHashMap.this.clear();
4450 >
4451 >        @SuppressWarnings("unchecked")
4452 >        public final <T> T[] toArray(T[] a) {
4453 >            long sz = map.mappingCount();
4454 >            if (sz > MAX_ARRAY_SIZE)
4455 >                throw new OutOfMemoryError(OOME_MSG);
4456 >            int m = (int)sz;
4457 >            T[] r = (a.length >= m) ? a :
4458 >                (T[])java.lang.reflect.Array
4459 >                .newInstance(a.getClass().getComponentType(), m);
4460 >            int n = r.length;
4461 >            int i = 0;
4462 >            for (E e : this) {
4463 >                if (i == n) {
4464 >                    if (n >= MAX_ARRAY_SIZE)
4465 >                        throw new OutOfMemoryError(OOME_MSG);
4466 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4467 >                        n = MAX_ARRAY_SIZE;
4468 >                    else
4469 >                        n += (n >>> 1) + 1;
4470 >                    r = Arrays.copyOf(r, n);
4471 >                }
4472 >                r[i++] = (T)e;
4473 >            }
4474 >            if (a == r && i < n) {
4475 >                r[i] = null; // null-terminate
4476 >                return r;
4477 >            }
4478 >            return (i == n) ? r : Arrays.copyOf(r, i);
4479          }
4480 +
4481 +        /**
4482 +         * Returns a string representation of this collection.
4483 +         * The string representation consists of the string representations
4484 +         * of the collection's elements in the order they are returned by
4485 +         * its iterator, enclosed in square brackets ({@code "[]"}).
4486 +         * Adjacent elements are separated by the characters {@code ", "}
4487 +         * (comma and space).  Elements are converted to strings as by
4488 +         * {@link String#valueOf(Object)}.
4489 +         *
4490 +         * @return a string representation of this collection
4491 +         */
4492 +        public final String toString() {
4493 +            StringBuilder sb = new StringBuilder();
4494 +            sb.append('[');
4495 +            Iterator<E> it = iterator();
4496 +            if (it.hasNext()) {
4497 +                for (;;) {
4498 +                    Object e = it.next();
4499 +                    sb.append(e == this ? "(this Collection)" : e);
4500 +                    if (!it.hasNext())
4501 +                        break;
4502 +                    sb.append(',').append(' ');
4503 +                }
4504 +            }
4505 +            return sb.append(']').toString();
4506 +        }
4507 +
4508 +        public final boolean containsAll(Collection<?> c) {
4509 +            if (c != this) {
4510 +                for (Object e : c) {
4511 +                    if (e == null || !contains(e))
4512 +                        return false;
4513 +                }
4514 +            }
4515 +            return true;
4516 +        }
4517 +
4518 +        public boolean removeAll(Collection<?> c) {
4519 +            if (c == null) throw new NullPointerException();
4520 +            boolean modified = false;
4521 +            // Use (c instanceof Set) as a hint that lookup in c is as
4522 +            // efficient as this view
4523 +            Node<K,V>[] t;
4524 +            if ((t = map.table) == null) {
4525 +                return false;
4526 +            } else if (c instanceof Set<?> && c.size() > t.length) {
4527 +                for (Iterator<?> it = iterator(); it.hasNext(); ) {
4528 +                    if (c.contains(it.next())) {
4529 +                        it.remove();
4530 +                        modified = true;
4531 +                    }
4532 +                }
4533 +            } else {
4534 +                for (Object e : c)
4535 +                    modified |= remove(e);
4536 +            }
4537 +            return modified;
4538 +        }
4539 +
4540 +        public final boolean retainAll(Collection<?> c) {
4541 +            if (c == null) throw new NullPointerException();
4542 +            boolean modified = false;
4543 +            for (Iterator<E> it = iterator(); it.hasNext();) {
4544 +                if (!c.contains(it.next())) {
4545 +                    it.remove();
4546 +                    modified = true;
4547 +                }
4548 +            }
4549 +            return modified;
4550 +        }
4551 +
4552      }
4553  
4554 <    final class Values extends AbstractCollection<V> {
4555 <        public Iterator<V> iterator() {
4556 <            return new ValueIterator();
4554 >    /**
4555 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4556 >     * which additions may optionally be enabled by mapping to a
4557 >     * common value.  This class cannot be directly instantiated.
4558 >     * See {@link #keySet() keySet()},
4559 >     * {@link #keySet(Object) keySet(V)},
4560 >     * {@link #newKeySet() newKeySet()},
4561 >     * {@link #newKeySet(int) newKeySet(int)}.
4562 >     *
4563 >     * @since 1.8
4564 >     */
4565 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4566 >        implements Set<K>, java.io.Serializable {
4567 >        private static final long serialVersionUID = 7249069246763182397L;
4568 >        private final V value;
4569 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4570 >            super(map);
4571 >            this.value = value;
4572          }
4573 <        public int size() {
4574 <            return ConcurrentHashMap.this.size();
4573 >
4574 >        /**
4575 >         * Returns the default mapped value for additions,
4576 >         * or {@code null} if additions are not supported.
4577 >         *
4578 >         * @return the default mapped value for additions, or {@code null}
4579 >         * if not supported
4580 >         */
4581 >        public V getMappedValue() { return value; }
4582 >
4583 >        /**
4584 >         * {@inheritDoc}
4585 >         * @throws NullPointerException if the specified key is null
4586 >         */
4587 >        public boolean contains(Object o) { return map.containsKey(o); }
4588 >
4589 >        /**
4590 >         * Removes the key from this map view, by removing the key (and its
4591 >         * corresponding value) from the backing map.  This method does
4592 >         * nothing if the key is not in the map.
4593 >         *
4594 >         * @param  o the key to be removed from the backing map
4595 >         * @return {@code true} if the backing map contained the specified key
4596 >         * @throws NullPointerException if the specified key is null
4597 >         */
4598 >        public boolean remove(Object o) { return map.remove(o) != null; }
4599 >
4600 >        /**
4601 >         * @return an iterator over the keys of the backing map
4602 >         */
4603 >        public Iterator<K> iterator() {
4604 >            Node<K,V>[] t;
4605 >            ConcurrentHashMap<K,V> m = map;
4606 >            int f = (t = m.table) == null ? 0 : t.length;
4607 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4608          }
4609 <        public boolean isEmpty() {
4610 <            return ConcurrentHashMap.this.isEmpty();
4609 >
4610 >        /**
4611 >         * Adds the specified key to this set view by mapping the key to
4612 >         * the default mapped value in the backing map, if defined.
4613 >         *
4614 >         * @param e key to be added
4615 >         * @return {@code true} if this set changed as a result of the call
4616 >         * @throws NullPointerException if the specified key is null
4617 >         * @throws UnsupportedOperationException if no default mapped value
4618 >         * for additions was provided
4619 >         */
4620 >        public boolean add(K e) {
4621 >            V v;
4622 >            if ((v = value) == null)
4623 >                throw new UnsupportedOperationException();
4624 >            return map.putVal(e, v, true) == null;
4625          }
4626 <        public boolean contains(Object o) {
4627 <            return ConcurrentHashMap.this.containsValue(o);
4626 >
4627 >        /**
4628 >         * Adds all of the elements in the specified collection to this set,
4629 >         * as if by calling {@link #add} on each one.
4630 >         *
4631 >         * @param c the elements to be inserted into this set
4632 >         * @return {@code true} if this set changed as a result of the call
4633 >         * @throws NullPointerException if the collection or any of its
4634 >         * elements are {@code null}
4635 >         * @throws UnsupportedOperationException if no default mapped value
4636 >         * for additions was provided
4637 >         */
4638 >        public boolean addAll(Collection<? extends K> c) {
4639 >            boolean added = false;
4640 >            V v;
4641 >            if ((v = value) == null)
4642 >                throw new UnsupportedOperationException();
4643 >            for (K e : c) {
4644 >                if (map.putVal(e, v, true) == null)
4645 >                    added = true;
4646 >            }
4647 >            return added;
4648          }
4649 <        public void clear() {
4650 <            ConcurrentHashMap.this.clear();
4649 >
4650 >        public int hashCode() {
4651 >            int h = 0;
4652 >            for (K e : this)
4653 >                h += e.hashCode();
4654 >            return h;
4655 >        }
4656 >
4657 >        public boolean equals(Object o) {
4658 >            Set<?> c;
4659 >            return ((o instanceof Set) &&
4660 >                    ((c = (Set<?>)o) == this ||
4661 >                     (containsAll(c) && c.containsAll(this))));
4662 >        }
4663 >
4664 >        public Spliterator<K> spliterator() {
4665 >            Node<K,V>[] t;
4666 >            ConcurrentHashMap<K,V> m = map;
4667 >            long n = m.sumCount();
4668 >            int f = (t = m.table) == null ? 0 : t.length;
4669 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4670 >        }
4671 >
4672 >        public void forEach(Consumer<? super K> action) {
4673 >            if (action == null) throw new NullPointerException();
4674 >            Node<K,V>[] t;
4675 >            if ((t = map.table) != null) {
4676 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4677 >                for (Node<K,V> p; (p = it.advance()) != null; )
4678 >                    action.accept(p.key);
4679 >            }
4680          }
4681      }
4682  
4683 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4684 <        public Iterator<Map.Entry<K,V>> iterator() {
4685 <            return new EntryIterator();
4683 >    /**
4684 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4685 >     * values, in which additions are disabled. This class cannot be
4686 >     * directly instantiated. See {@link #values()}.
4687 >     */
4688 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4689 >        implements Collection<V>, java.io.Serializable {
4690 >        private static final long serialVersionUID = 2249069246763182397L;
4691 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4692 >        public final boolean contains(Object o) {
4693 >            return map.containsValue(o);
4694          }
4695 +
4696 +        public final boolean remove(Object o) {
4697 +            if (o != null) {
4698 +                for (Iterator<V> it = iterator(); it.hasNext();) {
4699 +                    if (o.equals(it.next())) {
4700 +                        it.remove();
4701 +                        return true;
4702 +                    }
4703 +                }
4704 +            }
4705 +            return false;
4706 +        }
4707 +
4708 +        public final Iterator<V> iterator() {
4709 +            ConcurrentHashMap<K,V> m = map;
4710 +            Node<K,V>[] t;
4711 +            int f = (t = m.table) == null ? 0 : t.length;
4712 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4713 +        }
4714 +
4715 +        public final boolean add(V e) {
4716 +            throw new UnsupportedOperationException();
4717 +        }
4718 +        public final boolean addAll(Collection<? extends V> c) {
4719 +            throw new UnsupportedOperationException();
4720 +        }
4721 +
4722 +        @Override public boolean removeAll(Collection<?> c) {
4723 +            if (c == null) throw new NullPointerException();
4724 +            boolean modified = false;
4725 +            for (Iterator<V> it = iterator(); it.hasNext();) {
4726 +                if (c.contains(it.next())) {
4727 +                    it.remove();
4728 +                    modified = true;
4729 +                }
4730 +            }
4731 +            return modified;
4732 +        }
4733 +
4734 +        public boolean removeIf(Predicate<? super V> filter) {
4735 +            return map.removeValueIf(filter);
4736 +        }
4737 +
4738 +        public Spliterator<V> spliterator() {
4739 +            Node<K,V>[] t;
4740 +            ConcurrentHashMap<K,V> m = map;
4741 +            long n = m.sumCount();
4742 +            int f = (t = m.table) == null ? 0 : t.length;
4743 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4744 +        }
4745 +
4746 +        public void forEach(Consumer<? super V> action) {
4747 +            if (action == null) throw new NullPointerException();
4748 +            Node<K,V>[] t;
4749 +            if ((t = map.table) != null) {
4750 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4751 +                for (Node<K,V> p; (p = it.advance()) != null; )
4752 +                    action.accept(p.val);
4753 +            }
4754 +        }
4755 +    }
4756 +
4757 +    /**
4758 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4759 +     * entries.  This class cannot be directly instantiated. See
4760 +     * {@link #entrySet()}.
4761 +     */
4762 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4763 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4764 +        private static final long serialVersionUID = 2249069246763182397L;
4765 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4766 +
4767          public boolean contains(Object o) {
4768 <            if (!(o instanceof Map.Entry))
4769 <                return false;
4770 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4771 <            V v = ConcurrentHashMap.this.get(e.getKey());
4772 <            return v != null && v.equals(e.getValue());
4768 >            Object k, v, r; Map.Entry<?,?> e;
4769 >            return ((o instanceof Map.Entry) &&
4770 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4771 >                    (r = map.get(k)) != null &&
4772 >                    (v = e.getValue()) != null &&
4773 >                    (v == r || v.equals(r)));
4774          }
4775 +
4776          public boolean remove(Object o) {
4777 <            if (!(o instanceof Map.Entry))
4778 <                return false;
4779 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4780 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4777 >            Object k, v; Map.Entry<?,?> e;
4778 >            return ((o instanceof Map.Entry) &&
4779 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4780 >                    (v = e.getValue()) != null &&
4781 >                    map.remove(k, v));
4782          }
4783 <        public int size() {
4784 <            return ConcurrentHashMap.this.size();
4783 >
4784 >        /**
4785 >         * @return an iterator over the entries of the backing map
4786 >         */
4787 >        public Iterator<Map.Entry<K,V>> iterator() {
4788 >            ConcurrentHashMap<K,V> m = map;
4789 >            Node<K,V>[] t;
4790 >            int f = (t = m.table) == null ? 0 : t.length;
4791 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4792          }
4793 <        public boolean isEmpty() {
4794 <            return ConcurrentHashMap.this.isEmpty();
4793 >
4794 >        public boolean add(Entry<K,V> e) {
4795 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4796          }
4797 <        public void clear() {
4798 <            ConcurrentHashMap.this.clear();
4797 >
4798 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4799 >            boolean added = false;
4800 >            for (Entry<K,V> e : c) {
4801 >                if (add(e))
4802 >                    added = true;
4803 >            }
4804 >            return added;
4805 >        }
4806 >
4807 >        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4808 >            return map.removeEntryIf(filter);
4809 >        }
4810 >
4811 >        public final int hashCode() {
4812 >            int h = 0;
4813 >            Node<K,V>[] t;
4814 >            if ((t = map.table) != null) {
4815 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4816 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4817 >                    h += p.hashCode();
4818 >                }
4819 >            }
4820 >            return h;
4821 >        }
4822 >
4823 >        public final boolean equals(Object o) {
4824 >            Set<?> c;
4825 >            return ((o instanceof Set) &&
4826 >                    ((c = (Set<?>)o) == this ||
4827 >                     (containsAll(c) && c.containsAll(this))));
4828 >        }
4829 >
4830 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4831 >            Node<K,V>[] t;
4832 >            ConcurrentHashMap<K,V> m = map;
4833 >            long n = m.sumCount();
4834 >            int f = (t = m.table) == null ? 0 : t.length;
4835 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4836 >        }
4837 >
4838 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4839 >            if (action == null) throw new NullPointerException();
4840 >            Node<K,V>[] t;
4841 >            if ((t = map.table) != null) {
4842 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4843 >                for (Node<K,V> p; (p = it.advance()) != null; )
4844 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4845 >            }
4846          }
4847 +
4848      }
4849  
4850 <    /* ---------------- Serialization Support -------------- */
4850 >    // -------------------------------------------------------
4851  
4852      /**
4853 <     * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
4854 <     * stream (i.e., serializes it).
1394 <     * @param s the stream
1395 <     * @serialData
1396 <     * the key (Object) and value (Object)
1397 <     * for each key-value mapping, followed by a null pair.
1398 <     * The key-value mappings are emitted in no particular order.
4853 >     * Base class for bulk tasks. Repeats some fields and code from
4854 >     * class Traverser, because we need to subclass CountedCompleter.
4855       */
4856 <    private void writeObject(java.io.ObjectOutputStream s)
4857 <            throws java.io.IOException {
4858 <        // force all segments for serialization compatibility
4859 <        for (int k = 0; k < segments.length; ++k)
4860 <            ensureSegment(k);
4861 <        s.defaultWriteObject();
4862 <
4863 <        final Segment<K,V>[] segments = this.segments;
4864 <        for (int k = 0; k < segments.length; ++k) {
4865 <            Segment<K,V> seg = segmentAt(segments, k);
4866 <            seg.lock();
4867 <            try {
4868 <                HashEntry<K,V>[] tab = seg.table;
4869 <                for (int i = 0; i < tab.length; ++i) {
4870 <                    HashEntry<K,V> e;
4871 <                    for (e = entryAt(tab, i); e != null; e = e.next) {
4872 <                        s.writeObject(e.key);
4873 <                        s.writeObject(e.value);
4856 >    @SuppressWarnings("serial")
4857 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4858 >        Node<K,V>[] tab;        // same as Traverser
4859 >        Node<K,V> next;
4860 >        TableStack<K,V> stack, spare;
4861 >        int index;
4862 >        int baseIndex;
4863 >        int baseLimit;
4864 >        final int baseSize;
4865 >        int batch;              // split control
4866 >
4867 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4868 >            super(par);
4869 >            this.batch = b;
4870 >            this.index = this.baseIndex = i;
4871 >            if ((this.tab = t) == null)
4872 >                this.baseSize = this.baseLimit = 0;
4873 >            else if (par == null)
4874 >                this.baseSize = this.baseLimit = t.length;
4875 >            else {
4876 >                this.baseLimit = f;
4877 >                this.baseSize = par.baseSize;
4878 >            }
4879 >        }
4880 >
4881 >        /**
4882 >         * Same as Traverser version.
4883 >         */
4884 >        final Node<K,V> advance() {
4885 >            Node<K,V> e;
4886 >            if ((e = next) != null)
4887 >                e = e.next;
4888 >            for (;;) {
4889 >                Node<K,V>[] t; int i, n;
4890 >                if (e != null)
4891 >                    return next = e;
4892 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4893 >                    (n = t.length) <= (i = index) || i < 0)
4894 >                    return next = null;
4895 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4896 >                    if (e instanceof ForwardingNode) {
4897 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4898 >                        e = null;
4899 >                        pushState(t, i, n);
4900 >                        continue;
4901                      }
4902 +                    else if (e instanceof TreeBin)
4903 +                        e = ((TreeBin<K,V>)e).first;
4904 +                    else
4905 +                        e = null;
4906                  }
4907 <            } finally {
4908 <                seg.unlock();
4907 >                if (stack != null)
4908 >                    recoverState(n);
4909 >                else if ((index = i + baseSize) >= n)
4910 >                    index = ++baseIndex;
4911              }
4912          }
4913 <        s.writeObject(null);
4914 <        s.writeObject(null);
4913 >
4914 >        private void pushState(Node<K,V>[] t, int i, int n) {
4915 >            TableStack<K,V> s = spare;
4916 >            if (s != null)
4917 >                spare = s.next;
4918 >            else
4919 >                s = new TableStack<K,V>();
4920 >            s.tab = t;
4921 >            s.length = n;
4922 >            s.index = i;
4923 >            s.next = stack;
4924 >            stack = s;
4925 >        }
4926 >
4927 >        private void recoverState(int n) {
4928 >            TableStack<K,V> s; int len;
4929 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4930 >                n = len;
4931 >                index = s.index;
4932 >                tab = s.tab;
4933 >                s.tab = null;
4934 >                TableStack<K,V> next = s.next;
4935 >                s.next = spare; // save for reuse
4936 >                stack = next;
4937 >                spare = s;
4938 >            }
4939 >            if (s == null && (index += baseSize) >= n)
4940 >                index = ++baseIndex;
4941 >        }
4942      }
4943  
4944 <    /**
4945 <     * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
4946 <     * stream (i.e., deserializes it).
4947 <     * @param s the stream
4948 <     */
4949 <    @SuppressWarnings("unchecked")
4950 <    private void readObject(java.io.ObjectInputStream s)
4951 <            throws java.io.IOException, ClassNotFoundException {
4952 <        s.defaultReadObject();
4944 >    /*
4945 >     * Task classes. Coded in a regular but ugly format/style to
4946 >     * simplify checks that each variant differs in the right way from
4947 >     * others. The null screenings exist because compilers cannot tell
4948 >     * that we've already null-checked task arguments, so we force
4949 >     * simplest hoisted bypass to help avoid convoluted traps.
4950 >     */
4951 >    @SuppressWarnings("serial")
4952 >    static final class ForEachKeyTask<K,V>
4953 >        extends BulkTask<K,V,Void> {
4954 >        final Consumer<? super K> action;
4955 >        ForEachKeyTask
4956 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4957 >             Consumer<? super K> action) {
4958 >            super(p, b, i, f, t);
4959 >            this.action = action;
4960 >        }
4961 >        public final void compute() {
4962 >            final Consumer<? super K> action;
4963 >            if ((action = this.action) != null) {
4964 >                for (int i = baseIndex, f, h; batch > 0 &&
4965 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4966 >                    addToPendingCount(1);
4967 >                    new ForEachKeyTask<K,V>
4968 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4969 >                         action).fork();
4970 >                }
4971 >                for (Node<K,V> p; (p = advance()) != null;)
4972 >                    action.accept(p.key);
4973 >                propagateCompletion();
4974 >            }
4975 >        }
4976 >    }
4977  
4978 <        // Re-initialize segments to be minimally sized, and let grow.
4979 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
4980 <        final Segment<K,V>[] segments = this.segments;
4981 <        for (int k = 0; k < segments.length; ++k) {
4982 <            Segment<K,V> seg = segments[k];
4983 <            if (seg != null) {
4984 <                seg.threshold = (int)(cap * seg.loadFactor);
4985 <                seg.table = (HashEntry<K,V>[]) new HashEntry<?,?>[cap];
4978 >    @SuppressWarnings("serial")
4979 >    static final class ForEachValueTask<K,V>
4980 >        extends BulkTask<K,V,Void> {
4981 >        final Consumer<? super V> action;
4982 >        ForEachValueTask
4983 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4984 >             Consumer<? super V> action) {
4985 >            super(p, b, i, f, t);
4986 >            this.action = action;
4987 >        }
4988 >        public final void compute() {
4989 >            final Consumer<? super V> action;
4990 >            if ((action = this.action) != null) {
4991 >                for (int i = baseIndex, f, h; batch > 0 &&
4992 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4993 >                    addToPendingCount(1);
4994 >                    new ForEachValueTask<K,V>
4995 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4996 >                         action).fork();
4997 >                }
4998 >                for (Node<K,V> p; (p = advance()) != null;)
4999 >                    action.accept(p.val);
5000 >                propagateCompletion();
5001              }
5002          }
5003 +    }
5004  
5005 <        // Read the keys and values, and put the mappings in the table
5006 <        for (;;) {
5007 <            K key = (K) s.readObject();
5008 <            V value = (V) s.readObject();
5009 <            if (key == null)
5010 <                break;
5011 <            put(key, value);
5005 >    @SuppressWarnings("serial")
5006 >    static final class ForEachEntryTask<K,V>
5007 >        extends BulkTask<K,V,Void> {
5008 >        final Consumer<? super Entry<K,V>> action;
5009 >        ForEachEntryTask
5010 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5011 >             Consumer<? super Entry<K,V>> action) {
5012 >            super(p, b, i, f, t);
5013 >            this.action = action;
5014 >        }
5015 >        public final void compute() {
5016 >            final Consumer<? super Entry<K,V>> action;
5017 >            if ((action = this.action) != null) {
5018 >                for (int i = baseIndex, f, h; batch > 0 &&
5019 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5020 >                    addToPendingCount(1);
5021 >                    new ForEachEntryTask<K,V>
5022 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5023 >                         action).fork();
5024 >                }
5025 >                for (Node<K,V> p; (p = advance()) != null; )
5026 >                    action.accept(p);
5027 >                propagateCompletion();
5028 >            }
5029 >        }
5030 >    }
5031 >
5032 >    @SuppressWarnings("serial")
5033 >    static final class ForEachMappingTask<K,V>
5034 >        extends BulkTask<K,V,Void> {
5035 >        final BiConsumer<? super K, ? super V> action;
5036 >        ForEachMappingTask
5037 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5038 >             BiConsumer<? super K,? super V> action) {
5039 >            super(p, b, i, f, t);
5040 >            this.action = action;
5041 >        }
5042 >        public final void compute() {
5043 >            final BiConsumer<? super K, ? super V> action;
5044 >            if ((action = this.action) != null) {
5045 >                for (int i = baseIndex, f, h; batch > 0 &&
5046 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5047 >                    addToPendingCount(1);
5048 >                    new ForEachMappingTask<K,V>
5049 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5050 >                         action).fork();
5051 >                }
5052 >                for (Node<K,V> p; (p = advance()) != null; )
5053 >                    action.accept(p.key, p.val);
5054 >                propagateCompletion();
5055 >            }
5056 >        }
5057 >    }
5058 >
5059 >    @SuppressWarnings("serial")
5060 >    static final class ForEachTransformedKeyTask<K,V,U>
5061 >        extends BulkTask<K,V,Void> {
5062 >        final Function<? super K, ? extends U> transformer;
5063 >        final Consumer<? super U> action;
5064 >        ForEachTransformedKeyTask
5065 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5066 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5067 >            super(p, b, i, f, t);
5068 >            this.transformer = transformer; this.action = action;
5069 >        }
5070 >        public final void compute() {
5071 >            final Function<? super K, ? extends U> transformer;
5072 >            final Consumer<? super U> action;
5073 >            if ((transformer = this.transformer) != null &&
5074 >                (action = this.action) != null) {
5075 >                for (int i = baseIndex, f, h; batch > 0 &&
5076 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5077 >                    addToPendingCount(1);
5078 >                    new ForEachTransformedKeyTask<K,V,U>
5079 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5080 >                         transformer, action).fork();
5081 >                }
5082 >                for (Node<K,V> p; (p = advance()) != null; ) {
5083 >                    U u;
5084 >                    if ((u = transformer.apply(p.key)) != null)
5085 >                        action.accept(u);
5086 >                }
5087 >                propagateCompletion();
5088 >            }
5089 >        }
5090 >    }
5091 >
5092 >    @SuppressWarnings("serial")
5093 >    static final class ForEachTransformedValueTask<K,V,U>
5094 >        extends BulkTask<K,V,Void> {
5095 >        final Function<? super V, ? extends U> transformer;
5096 >        final Consumer<? super U> action;
5097 >        ForEachTransformedValueTask
5098 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5099 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5100 >            super(p, b, i, f, t);
5101 >            this.transformer = transformer; this.action = action;
5102 >        }
5103 >        public final void compute() {
5104 >            final Function<? super V, ? extends U> transformer;
5105 >            final Consumer<? super U> action;
5106 >            if ((transformer = this.transformer) != null &&
5107 >                (action = this.action) != null) {
5108 >                for (int i = baseIndex, f, h; batch > 0 &&
5109 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5110 >                    addToPendingCount(1);
5111 >                    new ForEachTransformedValueTask<K,V,U>
5112 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5113 >                         transformer, action).fork();
5114 >                }
5115 >                for (Node<K,V> p; (p = advance()) != null; ) {
5116 >                    U u;
5117 >                    if ((u = transformer.apply(p.val)) != null)
5118 >                        action.accept(u);
5119 >                }
5120 >                propagateCompletion();
5121 >            }
5122 >        }
5123 >    }
5124 >
5125 >    @SuppressWarnings("serial")
5126 >    static final class ForEachTransformedEntryTask<K,V,U>
5127 >        extends BulkTask<K,V,Void> {
5128 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5129 >        final Consumer<? super U> action;
5130 >        ForEachTransformedEntryTask
5131 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5132 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5133 >            super(p, b, i, f, t);
5134 >            this.transformer = transformer; this.action = action;
5135 >        }
5136 >        public final void compute() {
5137 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5138 >            final Consumer<? super U> action;
5139 >            if ((transformer = this.transformer) != null &&
5140 >                (action = this.action) != null) {
5141 >                for (int i = baseIndex, f, h; batch > 0 &&
5142 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5143 >                    addToPendingCount(1);
5144 >                    new ForEachTransformedEntryTask<K,V,U>
5145 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5146 >                         transformer, action).fork();
5147 >                }
5148 >                for (Node<K,V> p; (p = advance()) != null; ) {
5149 >                    U u;
5150 >                    if ((u = transformer.apply(p)) != null)
5151 >                        action.accept(u);
5152 >                }
5153 >                propagateCompletion();
5154 >            }
5155 >        }
5156 >    }
5157 >
5158 >    @SuppressWarnings("serial")
5159 >    static final class ForEachTransformedMappingTask<K,V,U>
5160 >        extends BulkTask<K,V,Void> {
5161 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5162 >        final Consumer<? super U> action;
5163 >        ForEachTransformedMappingTask
5164 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5165 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5166 >             Consumer<? super U> action) {
5167 >            super(p, b, i, f, t);
5168 >            this.transformer = transformer; this.action = action;
5169 >        }
5170 >        public final void compute() {
5171 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5172 >            final Consumer<? super U> action;
5173 >            if ((transformer = this.transformer) != null &&
5174 >                (action = this.action) != null) {
5175 >                for (int i = baseIndex, f, h; batch > 0 &&
5176 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5177 >                    addToPendingCount(1);
5178 >                    new ForEachTransformedMappingTask<K,V,U>
5179 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5180 >                         transformer, action).fork();
5181 >                }
5182 >                for (Node<K,V> p; (p = advance()) != null; ) {
5183 >                    U u;
5184 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5185 >                        action.accept(u);
5186 >                }
5187 >                propagateCompletion();
5188 >            }
5189 >        }
5190 >    }
5191 >
5192 >    @SuppressWarnings("serial")
5193 >    static final class SearchKeysTask<K,V,U>
5194 >        extends BulkTask<K,V,U> {
5195 >        final Function<? super K, ? extends U> searchFunction;
5196 >        final AtomicReference<U> result;
5197 >        SearchKeysTask
5198 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5199 >             Function<? super K, ? extends U> searchFunction,
5200 >             AtomicReference<U> result) {
5201 >            super(p, b, i, f, t);
5202 >            this.searchFunction = searchFunction; this.result = result;
5203 >        }
5204 >        public final U getRawResult() { return result.get(); }
5205 >        public final void compute() {
5206 >            final Function<? super K, ? extends U> searchFunction;
5207 >            final AtomicReference<U> result;
5208 >            if ((searchFunction = this.searchFunction) != null &&
5209 >                (result = this.result) != null) {
5210 >                for (int i = baseIndex, f, h; batch > 0 &&
5211 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5212 >                    if (result.get() != null)
5213 >                        return;
5214 >                    addToPendingCount(1);
5215 >                    new SearchKeysTask<K,V,U>
5216 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5217 >                         searchFunction, result).fork();
5218 >                }
5219 >                while (result.get() == null) {
5220 >                    U u;
5221 >                    Node<K,V> p;
5222 >                    if ((p = advance()) == null) {
5223 >                        propagateCompletion();
5224 >                        break;
5225 >                    }
5226 >                    if ((u = searchFunction.apply(p.key)) != null) {
5227 >                        if (result.compareAndSet(null, u))
5228 >                            quietlyCompleteRoot();
5229 >                        break;
5230 >                    }
5231 >                }
5232 >            }
5233 >        }
5234 >    }
5235 >
5236 >    @SuppressWarnings("serial")
5237 >    static final class SearchValuesTask<K,V,U>
5238 >        extends BulkTask<K,V,U> {
5239 >        final Function<? super V, ? extends U> searchFunction;
5240 >        final AtomicReference<U> result;
5241 >        SearchValuesTask
5242 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5243 >             Function<? super V, ? extends U> searchFunction,
5244 >             AtomicReference<U> result) {
5245 >            super(p, b, i, f, t);
5246 >            this.searchFunction = searchFunction; this.result = result;
5247 >        }
5248 >        public final U getRawResult() { return result.get(); }
5249 >        public final void compute() {
5250 >            final Function<? super V, ? extends U> searchFunction;
5251 >            final AtomicReference<U> result;
5252 >            if ((searchFunction = this.searchFunction) != null &&
5253 >                (result = this.result) != null) {
5254 >                for (int i = baseIndex, f, h; batch > 0 &&
5255 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5256 >                    if (result.get() != null)
5257 >                        return;
5258 >                    addToPendingCount(1);
5259 >                    new SearchValuesTask<K,V,U>
5260 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5261 >                         searchFunction, result).fork();
5262 >                }
5263 >                while (result.get() == null) {
5264 >                    U u;
5265 >                    Node<K,V> p;
5266 >                    if ((p = advance()) == null) {
5267 >                        propagateCompletion();
5268 >                        break;
5269 >                    }
5270 >                    if ((u = searchFunction.apply(p.val)) != null) {
5271 >                        if (result.compareAndSet(null, u))
5272 >                            quietlyCompleteRoot();
5273 >                        break;
5274 >                    }
5275 >                }
5276 >            }
5277 >        }
5278 >    }
5279 >
5280 >    @SuppressWarnings("serial")
5281 >    static final class SearchEntriesTask<K,V,U>
5282 >        extends BulkTask<K,V,U> {
5283 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5284 >        final AtomicReference<U> result;
5285 >        SearchEntriesTask
5286 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5287 >             Function<Entry<K,V>, ? extends U> searchFunction,
5288 >             AtomicReference<U> result) {
5289 >            super(p, b, i, f, t);
5290 >            this.searchFunction = searchFunction; this.result = result;
5291 >        }
5292 >        public final U getRawResult() { return result.get(); }
5293 >        public final void compute() {
5294 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5295 >            final AtomicReference<U> result;
5296 >            if ((searchFunction = this.searchFunction) != null &&
5297 >                (result = this.result) != null) {
5298 >                for (int i = baseIndex, f, h; batch > 0 &&
5299 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5300 >                    if (result.get() != null)
5301 >                        return;
5302 >                    addToPendingCount(1);
5303 >                    new SearchEntriesTask<K,V,U>
5304 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5305 >                         searchFunction, result).fork();
5306 >                }
5307 >                while (result.get() == null) {
5308 >                    U u;
5309 >                    Node<K,V> p;
5310 >                    if ((p = advance()) == null) {
5311 >                        propagateCompletion();
5312 >                        break;
5313 >                    }
5314 >                    if ((u = searchFunction.apply(p)) != null) {
5315 >                        if (result.compareAndSet(null, u))
5316 >                            quietlyCompleteRoot();
5317 >                        return;
5318 >                    }
5319 >                }
5320 >            }
5321 >        }
5322 >    }
5323 >
5324 >    @SuppressWarnings("serial")
5325 >    static final class SearchMappingsTask<K,V,U>
5326 >        extends BulkTask<K,V,U> {
5327 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5328 >        final AtomicReference<U> result;
5329 >        SearchMappingsTask
5330 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5331 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5332 >             AtomicReference<U> result) {
5333 >            super(p, b, i, f, t);
5334 >            this.searchFunction = searchFunction; this.result = result;
5335 >        }
5336 >        public final U getRawResult() { return result.get(); }
5337 >        public final void compute() {
5338 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5339 >            final AtomicReference<U> result;
5340 >            if ((searchFunction = this.searchFunction) != null &&
5341 >                (result = this.result) != null) {
5342 >                for (int i = baseIndex, f, h; batch > 0 &&
5343 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5344 >                    if (result.get() != null)
5345 >                        return;
5346 >                    addToPendingCount(1);
5347 >                    new SearchMappingsTask<K,V,U>
5348 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5349 >                         searchFunction, result).fork();
5350 >                }
5351 >                while (result.get() == null) {
5352 >                    U u;
5353 >                    Node<K,V> p;
5354 >                    if ((p = advance()) == null) {
5355 >                        propagateCompletion();
5356 >                        break;
5357 >                    }
5358 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5359 >                        if (result.compareAndSet(null, u))
5360 >                            quietlyCompleteRoot();
5361 >                        break;
5362 >                    }
5363 >                }
5364 >            }
5365 >        }
5366 >    }
5367 >
5368 >    @SuppressWarnings("serial")
5369 >    static final class ReduceKeysTask<K,V>
5370 >        extends BulkTask<K,V,K> {
5371 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5372 >        K result;
5373 >        ReduceKeysTask<K,V> rights, nextRight;
5374 >        ReduceKeysTask
5375 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5376 >             ReduceKeysTask<K,V> nextRight,
5377 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5378 >            super(p, b, i, f, t); this.nextRight = nextRight;
5379 >            this.reducer = reducer;
5380 >        }
5381 >        public final K getRawResult() { return result; }
5382 >        public final void compute() {
5383 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5384 >            if ((reducer = this.reducer) != null) {
5385 >                for (int i = baseIndex, f, h; batch > 0 &&
5386 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5387 >                    addToPendingCount(1);
5388 >                    (rights = new ReduceKeysTask<K,V>
5389 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5390 >                      rights, reducer)).fork();
5391 >                }
5392 >                K r = null;
5393 >                for (Node<K,V> p; (p = advance()) != null; ) {
5394 >                    K u = p.key;
5395 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5396 >                }
5397 >                result = r;
5398 >                CountedCompleter<?> c;
5399 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5400 >                    @SuppressWarnings("unchecked")
5401 >                    ReduceKeysTask<K,V>
5402 >                        t = (ReduceKeysTask<K,V>)c,
5403 >                        s = t.rights;
5404 >                    while (s != null) {
5405 >                        K tr, sr;
5406 >                        if ((sr = s.result) != null)
5407 >                            t.result = (((tr = t.result) == null) ? sr :
5408 >                                        reducer.apply(tr, sr));
5409 >                        s = t.rights = s.nextRight;
5410 >                    }
5411 >                }
5412 >            }
5413 >        }
5414 >    }
5415 >
5416 >    @SuppressWarnings("serial")
5417 >    static final class ReduceValuesTask<K,V>
5418 >        extends BulkTask<K,V,V> {
5419 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5420 >        V result;
5421 >        ReduceValuesTask<K,V> rights, nextRight;
5422 >        ReduceValuesTask
5423 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5424 >             ReduceValuesTask<K,V> nextRight,
5425 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5426 >            super(p, b, i, f, t); this.nextRight = nextRight;
5427 >            this.reducer = reducer;
5428 >        }
5429 >        public final V getRawResult() { return result; }
5430 >        public final void compute() {
5431 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5432 >            if ((reducer = this.reducer) != null) {
5433 >                for (int i = baseIndex, f, h; batch > 0 &&
5434 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5435 >                    addToPendingCount(1);
5436 >                    (rights = new ReduceValuesTask<K,V>
5437 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5438 >                      rights, reducer)).fork();
5439 >                }
5440 >                V r = null;
5441 >                for (Node<K,V> p; (p = advance()) != null; ) {
5442 >                    V v = p.val;
5443 >                    r = (r == null) ? v : reducer.apply(r, v);
5444 >                }
5445 >                result = r;
5446 >                CountedCompleter<?> c;
5447 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5448 >                    @SuppressWarnings("unchecked")
5449 >                    ReduceValuesTask<K,V>
5450 >                        t = (ReduceValuesTask<K,V>)c,
5451 >                        s = t.rights;
5452 >                    while (s != null) {
5453 >                        V tr, sr;
5454 >                        if ((sr = s.result) != null)
5455 >                            t.result = (((tr = t.result) == null) ? sr :
5456 >                                        reducer.apply(tr, sr));
5457 >                        s = t.rights = s.nextRight;
5458 >                    }
5459 >                }
5460 >            }
5461 >        }
5462 >    }
5463 >
5464 >    @SuppressWarnings("serial")
5465 >    static final class ReduceEntriesTask<K,V>
5466 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5467 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5468 >        Map.Entry<K,V> result;
5469 >        ReduceEntriesTask<K,V> rights, nextRight;
5470 >        ReduceEntriesTask
5471 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5472 >             ReduceEntriesTask<K,V> nextRight,
5473 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5474 >            super(p, b, i, f, t); this.nextRight = nextRight;
5475 >            this.reducer = reducer;
5476 >        }
5477 >        public final Map.Entry<K,V> getRawResult() { return result; }
5478 >        public final void compute() {
5479 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5480 >            if ((reducer = this.reducer) != null) {
5481 >                for (int i = baseIndex, f, h; batch > 0 &&
5482 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5483 >                    addToPendingCount(1);
5484 >                    (rights = new ReduceEntriesTask<K,V>
5485 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5486 >                      rights, reducer)).fork();
5487 >                }
5488 >                Map.Entry<K,V> r = null;
5489 >                for (Node<K,V> p; (p = advance()) != null; )
5490 >                    r = (r == null) ? p : reducer.apply(r, p);
5491 >                result = r;
5492 >                CountedCompleter<?> c;
5493 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5494 >                    @SuppressWarnings("unchecked")
5495 >                    ReduceEntriesTask<K,V>
5496 >                        t = (ReduceEntriesTask<K,V>)c,
5497 >                        s = t.rights;
5498 >                    while (s != null) {
5499 >                        Map.Entry<K,V> tr, sr;
5500 >                        if ((sr = s.result) != null)
5501 >                            t.result = (((tr = t.result) == null) ? sr :
5502 >                                        reducer.apply(tr, sr));
5503 >                        s = t.rights = s.nextRight;
5504 >                    }
5505 >                }
5506 >            }
5507 >        }
5508 >    }
5509 >
5510 >    @SuppressWarnings("serial")
5511 >    static final class MapReduceKeysTask<K,V,U>
5512 >        extends BulkTask<K,V,U> {
5513 >        final Function<? super K, ? extends U> transformer;
5514 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5515 >        U result;
5516 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5517 >        MapReduceKeysTask
5518 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5519 >             MapReduceKeysTask<K,V,U> nextRight,
5520 >             Function<? super K, ? extends U> transformer,
5521 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5522 >            super(p, b, i, f, t); this.nextRight = nextRight;
5523 >            this.transformer = transformer;
5524 >            this.reducer = reducer;
5525 >        }
5526 >        public final U getRawResult() { return result; }
5527 >        public final void compute() {
5528 >            final Function<? super K, ? extends U> transformer;
5529 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5530 >            if ((transformer = this.transformer) != null &&
5531 >                (reducer = this.reducer) != null) {
5532 >                for (int i = baseIndex, f, h; batch > 0 &&
5533 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5534 >                    addToPendingCount(1);
5535 >                    (rights = new MapReduceKeysTask<K,V,U>
5536 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5537 >                      rights, transformer, reducer)).fork();
5538 >                }
5539 >                U r = null;
5540 >                for (Node<K,V> p; (p = advance()) != null; ) {
5541 >                    U u;
5542 >                    if ((u = transformer.apply(p.key)) != null)
5543 >                        r = (r == null) ? u : reducer.apply(r, u);
5544 >                }
5545 >                result = r;
5546 >                CountedCompleter<?> c;
5547 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5548 >                    @SuppressWarnings("unchecked")
5549 >                    MapReduceKeysTask<K,V,U>
5550 >                        t = (MapReduceKeysTask<K,V,U>)c,
5551 >                        s = t.rights;
5552 >                    while (s != null) {
5553 >                        U tr, sr;
5554 >                        if ((sr = s.result) != null)
5555 >                            t.result = (((tr = t.result) == null) ? sr :
5556 >                                        reducer.apply(tr, sr));
5557 >                        s = t.rights = s.nextRight;
5558 >                    }
5559 >                }
5560 >            }
5561 >        }
5562 >    }
5563 >
5564 >    @SuppressWarnings("serial")
5565 >    static final class MapReduceValuesTask<K,V,U>
5566 >        extends BulkTask<K,V,U> {
5567 >        final Function<? super V, ? extends U> transformer;
5568 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5569 >        U result;
5570 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5571 >        MapReduceValuesTask
5572 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5573 >             MapReduceValuesTask<K,V,U> nextRight,
5574 >             Function<? super V, ? extends U> transformer,
5575 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5576 >            super(p, b, i, f, t); this.nextRight = nextRight;
5577 >            this.transformer = transformer;
5578 >            this.reducer = reducer;
5579 >        }
5580 >        public final U getRawResult() { return result; }
5581 >        public final void compute() {
5582 >            final Function<? super V, ? extends U> transformer;
5583 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5584 >            if ((transformer = this.transformer) != null &&
5585 >                (reducer = this.reducer) != null) {
5586 >                for (int i = baseIndex, f, h; batch > 0 &&
5587 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5588 >                    addToPendingCount(1);
5589 >                    (rights = new MapReduceValuesTask<K,V,U>
5590 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5591 >                      rights, transformer, reducer)).fork();
5592 >                }
5593 >                U r = null;
5594 >                for (Node<K,V> p; (p = advance()) != null; ) {
5595 >                    U u;
5596 >                    if ((u = transformer.apply(p.val)) != null)
5597 >                        r = (r == null) ? u : reducer.apply(r, u);
5598 >                }
5599 >                result = r;
5600 >                CountedCompleter<?> c;
5601 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5602 >                    @SuppressWarnings("unchecked")
5603 >                    MapReduceValuesTask<K,V,U>
5604 >                        t = (MapReduceValuesTask<K,V,U>)c,
5605 >                        s = t.rights;
5606 >                    while (s != null) {
5607 >                        U tr, sr;
5608 >                        if ((sr = s.result) != null)
5609 >                            t.result = (((tr = t.result) == null) ? sr :
5610 >                                        reducer.apply(tr, sr));
5611 >                        s = t.rights = s.nextRight;
5612 >                    }
5613 >                }
5614 >            }
5615 >        }
5616 >    }
5617 >
5618 >    @SuppressWarnings("serial")
5619 >    static final class MapReduceEntriesTask<K,V,U>
5620 >        extends BulkTask<K,V,U> {
5621 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5622 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5623 >        U result;
5624 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5625 >        MapReduceEntriesTask
5626 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5627 >             MapReduceEntriesTask<K,V,U> nextRight,
5628 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5629 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5630 >            super(p, b, i, f, t); this.nextRight = nextRight;
5631 >            this.transformer = transformer;
5632 >            this.reducer = reducer;
5633 >        }
5634 >        public final U getRawResult() { return result; }
5635 >        public final void compute() {
5636 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5637 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5638 >            if ((transformer = this.transformer) != null &&
5639 >                (reducer = this.reducer) != null) {
5640 >                for (int i = baseIndex, f, h; batch > 0 &&
5641 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5642 >                    addToPendingCount(1);
5643 >                    (rights = new MapReduceEntriesTask<K,V,U>
5644 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5645 >                      rights, transformer, reducer)).fork();
5646 >                }
5647 >                U r = null;
5648 >                for (Node<K,V> p; (p = advance()) != null; ) {
5649 >                    U u;
5650 >                    if ((u = transformer.apply(p)) != null)
5651 >                        r = (r == null) ? u : reducer.apply(r, u);
5652 >                }
5653 >                result = r;
5654 >                CountedCompleter<?> c;
5655 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5656 >                    @SuppressWarnings("unchecked")
5657 >                    MapReduceEntriesTask<K,V,U>
5658 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5659 >                        s = t.rights;
5660 >                    while (s != null) {
5661 >                        U tr, sr;
5662 >                        if ((sr = s.result) != null)
5663 >                            t.result = (((tr = t.result) == null) ? sr :
5664 >                                        reducer.apply(tr, sr));
5665 >                        s = t.rights = s.nextRight;
5666 >                    }
5667 >                }
5668 >            }
5669 >        }
5670 >    }
5671 >
5672 >    @SuppressWarnings("serial")
5673 >    static final class MapReduceMappingsTask<K,V,U>
5674 >        extends BulkTask<K,V,U> {
5675 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5676 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5677 >        U result;
5678 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5679 >        MapReduceMappingsTask
5680 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5681 >             MapReduceMappingsTask<K,V,U> nextRight,
5682 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5683 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5684 >            super(p, b, i, f, t); this.nextRight = nextRight;
5685 >            this.transformer = transformer;
5686 >            this.reducer = reducer;
5687 >        }
5688 >        public final U getRawResult() { return result; }
5689 >        public final void compute() {
5690 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5691 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5692 >            if ((transformer = this.transformer) != null &&
5693 >                (reducer = this.reducer) != null) {
5694 >                for (int i = baseIndex, f, h; batch > 0 &&
5695 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5696 >                    addToPendingCount(1);
5697 >                    (rights = new MapReduceMappingsTask<K,V,U>
5698 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5699 >                      rights, transformer, reducer)).fork();
5700 >                }
5701 >                U r = null;
5702 >                for (Node<K,V> p; (p = advance()) != null; ) {
5703 >                    U u;
5704 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5705 >                        r = (r == null) ? u : reducer.apply(r, u);
5706 >                }
5707 >                result = r;
5708 >                CountedCompleter<?> c;
5709 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5710 >                    @SuppressWarnings("unchecked")
5711 >                    MapReduceMappingsTask<K,V,U>
5712 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5713 >                        s = t.rights;
5714 >                    while (s != null) {
5715 >                        U tr, sr;
5716 >                        if ((sr = s.result) != null)
5717 >                            t.result = (((tr = t.result) == null) ? sr :
5718 >                                        reducer.apply(tr, sr));
5719 >                        s = t.rights = s.nextRight;
5720 >                    }
5721 >                }
5722 >            }
5723 >        }
5724 >    }
5725 >
5726 >    @SuppressWarnings("serial")
5727 >    static final class MapReduceKeysToDoubleTask<K,V>
5728 >        extends BulkTask<K,V,Double> {
5729 >        final ToDoubleFunction<? super K> transformer;
5730 >        final DoubleBinaryOperator reducer;
5731 >        final double basis;
5732 >        double result;
5733 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5734 >        MapReduceKeysToDoubleTask
5735 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5736 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5737 >             ToDoubleFunction<? super K> transformer,
5738 >             double basis,
5739 >             DoubleBinaryOperator reducer) {
5740 >            super(p, b, i, f, t); this.nextRight = nextRight;
5741 >            this.transformer = transformer;
5742 >            this.basis = basis; this.reducer = reducer;
5743 >        }
5744 >        public final Double getRawResult() { return result; }
5745 >        public final void compute() {
5746 >            final ToDoubleFunction<? super K> transformer;
5747 >            final DoubleBinaryOperator reducer;
5748 >            if ((transformer = this.transformer) != null &&
5749 >                (reducer = this.reducer) != null) {
5750 >                double r = this.basis;
5751 >                for (int i = baseIndex, f, h; batch > 0 &&
5752 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5753 >                    addToPendingCount(1);
5754 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5755 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5756 >                      rights, transformer, r, reducer)).fork();
5757 >                }
5758 >                for (Node<K,V> p; (p = advance()) != null; )
5759 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5760 >                result = r;
5761 >                CountedCompleter<?> c;
5762 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5763 >                    @SuppressWarnings("unchecked")
5764 >                    MapReduceKeysToDoubleTask<K,V>
5765 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5766 >                        s = t.rights;
5767 >                    while (s != null) {
5768 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5769 >                        s = t.rights = s.nextRight;
5770 >                    }
5771 >                }
5772 >            }
5773 >        }
5774 >    }
5775 >
5776 >    @SuppressWarnings("serial")
5777 >    static final class MapReduceValuesToDoubleTask<K,V>
5778 >        extends BulkTask<K,V,Double> {
5779 >        final ToDoubleFunction<? super V> transformer;
5780 >        final DoubleBinaryOperator reducer;
5781 >        final double basis;
5782 >        double result;
5783 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5784 >        MapReduceValuesToDoubleTask
5785 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5786 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5787 >             ToDoubleFunction<? super V> transformer,
5788 >             double basis,
5789 >             DoubleBinaryOperator reducer) {
5790 >            super(p, b, i, f, t); this.nextRight = nextRight;
5791 >            this.transformer = transformer;
5792 >            this.basis = basis; this.reducer = reducer;
5793 >        }
5794 >        public final Double getRawResult() { return result; }
5795 >        public final void compute() {
5796 >            final ToDoubleFunction<? super V> transformer;
5797 >            final DoubleBinaryOperator reducer;
5798 >            if ((transformer = this.transformer) != null &&
5799 >                (reducer = this.reducer) != null) {
5800 >                double r = this.basis;
5801 >                for (int i = baseIndex, f, h; batch > 0 &&
5802 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5803 >                    addToPendingCount(1);
5804 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5805 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5806 >                      rights, transformer, r, reducer)).fork();
5807 >                }
5808 >                for (Node<K,V> p; (p = advance()) != null; )
5809 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5810 >                result = r;
5811 >                CountedCompleter<?> c;
5812 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5813 >                    @SuppressWarnings("unchecked")
5814 >                    MapReduceValuesToDoubleTask<K,V>
5815 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5816 >                        s = t.rights;
5817 >                    while (s != null) {
5818 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5819 >                        s = t.rights = s.nextRight;
5820 >                    }
5821 >                }
5822 >            }
5823 >        }
5824 >    }
5825 >
5826 >    @SuppressWarnings("serial")
5827 >    static final class MapReduceEntriesToDoubleTask<K,V>
5828 >        extends BulkTask<K,V,Double> {
5829 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5830 >        final DoubleBinaryOperator reducer;
5831 >        final double basis;
5832 >        double result;
5833 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5834 >        MapReduceEntriesToDoubleTask
5835 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5836 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5837 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5838 >             double basis,
5839 >             DoubleBinaryOperator reducer) {
5840 >            super(p, b, i, f, t); this.nextRight = nextRight;
5841 >            this.transformer = transformer;
5842 >            this.basis = basis; this.reducer = reducer;
5843 >        }
5844 >        public final Double getRawResult() { return result; }
5845 >        public final void compute() {
5846 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5847 >            final DoubleBinaryOperator reducer;
5848 >            if ((transformer = this.transformer) != null &&
5849 >                (reducer = this.reducer) != null) {
5850 >                double r = this.basis;
5851 >                for (int i = baseIndex, f, h; batch > 0 &&
5852 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5853 >                    addToPendingCount(1);
5854 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5855 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5856 >                      rights, transformer, r, reducer)).fork();
5857 >                }
5858 >                for (Node<K,V> p; (p = advance()) != null; )
5859 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5860 >                result = r;
5861 >                CountedCompleter<?> c;
5862 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5863 >                    @SuppressWarnings("unchecked")
5864 >                    MapReduceEntriesToDoubleTask<K,V>
5865 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5866 >                        s = t.rights;
5867 >                    while (s != null) {
5868 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5869 >                        s = t.rights = s.nextRight;
5870 >                    }
5871 >                }
5872 >            }
5873 >        }
5874 >    }
5875 >
5876 >    @SuppressWarnings("serial")
5877 >    static final class MapReduceMappingsToDoubleTask<K,V>
5878 >        extends BulkTask<K,V,Double> {
5879 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5880 >        final DoubleBinaryOperator reducer;
5881 >        final double basis;
5882 >        double result;
5883 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5884 >        MapReduceMappingsToDoubleTask
5885 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5886 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5887 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5888 >             double basis,
5889 >             DoubleBinaryOperator reducer) {
5890 >            super(p, b, i, f, t); this.nextRight = nextRight;
5891 >            this.transformer = transformer;
5892 >            this.basis = basis; this.reducer = reducer;
5893 >        }
5894 >        public final Double getRawResult() { return result; }
5895 >        public final void compute() {
5896 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5897 >            final DoubleBinaryOperator reducer;
5898 >            if ((transformer = this.transformer) != null &&
5899 >                (reducer = this.reducer) != null) {
5900 >                double r = this.basis;
5901 >                for (int i = baseIndex, f, h; batch > 0 &&
5902 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5903 >                    addToPendingCount(1);
5904 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5905 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5906 >                      rights, transformer, r, reducer)).fork();
5907 >                }
5908 >                for (Node<K,V> p; (p = advance()) != null; )
5909 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5910 >                result = r;
5911 >                CountedCompleter<?> c;
5912 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5913 >                    @SuppressWarnings("unchecked")
5914 >                    MapReduceMappingsToDoubleTask<K,V>
5915 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5916 >                        s = t.rights;
5917 >                    while (s != null) {
5918 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5919 >                        s = t.rights = s.nextRight;
5920 >                    }
5921 >                }
5922 >            }
5923 >        }
5924 >    }
5925 >
5926 >    @SuppressWarnings("serial")
5927 >    static final class MapReduceKeysToLongTask<K,V>
5928 >        extends BulkTask<K,V,Long> {
5929 >        final ToLongFunction<? super K> transformer;
5930 >        final LongBinaryOperator reducer;
5931 >        final long basis;
5932 >        long result;
5933 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5934 >        MapReduceKeysToLongTask
5935 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5936 >             MapReduceKeysToLongTask<K,V> nextRight,
5937 >             ToLongFunction<? super K> transformer,
5938 >             long basis,
5939 >             LongBinaryOperator reducer) {
5940 >            super(p, b, i, f, t); this.nextRight = nextRight;
5941 >            this.transformer = transformer;
5942 >            this.basis = basis; this.reducer = reducer;
5943 >        }
5944 >        public final Long getRawResult() { return result; }
5945 >        public final void compute() {
5946 >            final ToLongFunction<? super K> transformer;
5947 >            final LongBinaryOperator reducer;
5948 >            if ((transformer = this.transformer) != null &&
5949 >                (reducer = this.reducer) != null) {
5950 >                long r = this.basis;
5951 >                for (int i = baseIndex, f, h; batch > 0 &&
5952 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5953 >                    addToPendingCount(1);
5954 >                    (rights = new MapReduceKeysToLongTask<K,V>
5955 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5956 >                      rights, transformer, r, reducer)).fork();
5957 >                }
5958 >                for (Node<K,V> p; (p = advance()) != null; )
5959 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5960 >                result = r;
5961 >                CountedCompleter<?> c;
5962 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5963 >                    @SuppressWarnings("unchecked")
5964 >                    MapReduceKeysToLongTask<K,V>
5965 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5966 >                        s = t.rights;
5967 >                    while (s != null) {
5968 >                        t.result = reducer.applyAsLong(t.result, s.result);
5969 >                        s = t.rights = s.nextRight;
5970 >                    }
5971 >                }
5972 >            }
5973 >        }
5974 >    }
5975 >
5976 >    @SuppressWarnings("serial")
5977 >    static final class MapReduceValuesToLongTask<K,V>
5978 >        extends BulkTask<K,V,Long> {
5979 >        final ToLongFunction<? super V> transformer;
5980 >        final LongBinaryOperator reducer;
5981 >        final long basis;
5982 >        long result;
5983 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5984 >        MapReduceValuesToLongTask
5985 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5986 >             MapReduceValuesToLongTask<K,V> nextRight,
5987 >             ToLongFunction<? super V> transformer,
5988 >             long basis,
5989 >             LongBinaryOperator reducer) {
5990 >            super(p, b, i, f, t); this.nextRight = nextRight;
5991 >            this.transformer = transformer;
5992 >            this.basis = basis; this.reducer = reducer;
5993 >        }
5994 >        public final Long getRawResult() { return result; }
5995 >        public final void compute() {
5996 >            final ToLongFunction<? super V> transformer;
5997 >            final LongBinaryOperator reducer;
5998 >            if ((transformer = this.transformer) != null &&
5999 >                (reducer = this.reducer) != null) {
6000 >                long r = this.basis;
6001 >                for (int i = baseIndex, f, h; batch > 0 &&
6002 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6003 >                    addToPendingCount(1);
6004 >                    (rights = new MapReduceValuesToLongTask<K,V>
6005 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6006 >                      rights, transformer, r, reducer)).fork();
6007 >                }
6008 >                for (Node<K,V> p; (p = advance()) != null; )
6009 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6010 >                result = r;
6011 >                CountedCompleter<?> c;
6012 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6013 >                    @SuppressWarnings("unchecked")
6014 >                    MapReduceValuesToLongTask<K,V>
6015 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6016 >                        s = t.rights;
6017 >                    while (s != null) {
6018 >                        t.result = reducer.applyAsLong(t.result, s.result);
6019 >                        s = t.rights = s.nextRight;
6020 >                    }
6021 >                }
6022 >            }
6023 >        }
6024 >    }
6025 >
6026 >    @SuppressWarnings("serial")
6027 >    static final class MapReduceEntriesToLongTask<K,V>
6028 >        extends BulkTask<K,V,Long> {
6029 >        final ToLongFunction<Map.Entry<K,V>> transformer;
6030 >        final LongBinaryOperator reducer;
6031 >        final long basis;
6032 >        long result;
6033 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6034 >        MapReduceEntriesToLongTask
6035 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6036 >             MapReduceEntriesToLongTask<K,V> nextRight,
6037 >             ToLongFunction<Map.Entry<K,V>> transformer,
6038 >             long basis,
6039 >             LongBinaryOperator reducer) {
6040 >            super(p, b, i, f, t); this.nextRight = nextRight;
6041 >            this.transformer = transformer;
6042 >            this.basis = basis; this.reducer = reducer;
6043 >        }
6044 >        public final Long getRawResult() { return result; }
6045 >        public final void compute() {
6046 >            final ToLongFunction<Map.Entry<K,V>> transformer;
6047 >            final LongBinaryOperator reducer;
6048 >            if ((transformer = this.transformer) != null &&
6049 >                (reducer = this.reducer) != null) {
6050 >                long r = this.basis;
6051 >                for (int i = baseIndex, f, h; batch > 0 &&
6052 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6053 >                    addToPendingCount(1);
6054 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6055 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6056 >                      rights, transformer, r, reducer)).fork();
6057 >                }
6058 >                for (Node<K,V> p; (p = advance()) != null; )
6059 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6060 >                result = r;
6061 >                CountedCompleter<?> c;
6062 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6063 >                    @SuppressWarnings("unchecked")
6064 >                    MapReduceEntriesToLongTask<K,V>
6065 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6066 >                        s = t.rights;
6067 >                    while (s != null) {
6068 >                        t.result = reducer.applyAsLong(t.result, s.result);
6069 >                        s = t.rights = s.nextRight;
6070 >                    }
6071 >                }
6072 >            }
6073 >        }
6074 >    }
6075 >
6076 >    @SuppressWarnings("serial")
6077 >    static final class MapReduceMappingsToLongTask<K,V>
6078 >        extends BulkTask<K,V,Long> {
6079 >        final ToLongBiFunction<? super K, ? super V> transformer;
6080 >        final LongBinaryOperator reducer;
6081 >        final long basis;
6082 >        long result;
6083 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6084 >        MapReduceMappingsToLongTask
6085 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6086 >             MapReduceMappingsToLongTask<K,V> nextRight,
6087 >             ToLongBiFunction<? super K, ? super V> transformer,
6088 >             long basis,
6089 >             LongBinaryOperator reducer) {
6090 >            super(p, b, i, f, t); this.nextRight = nextRight;
6091 >            this.transformer = transformer;
6092 >            this.basis = basis; this.reducer = reducer;
6093 >        }
6094 >        public final Long getRawResult() { return result; }
6095 >        public final void compute() {
6096 >            final ToLongBiFunction<? super K, ? super V> transformer;
6097 >            final LongBinaryOperator reducer;
6098 >            if ((transformer = this.transformer) != null &&
6099 >                (reducer = this.reducer) != null) {
6100 >                long r = this.basis;
6101 >                for (int i = baseIndex, f, h; batch > 0 &&
6102 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6103 >                    addToPendingCount(1);
6104 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6105 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6106 >                      rights, transformer, r, reducer)).fork();
6107 >                }
6108 >                for (Node<K,V> p; (p = advance()) != null; )
6109 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6110 >                result = r;
6111 >                CountedCompleter<?> c;
6112 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6113 >                    @SuppressWarnings("unchecked")
6114 >                    MapReduceMappingsToLongTask<K,V>
6115 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6116 >                        s = t.rights;
6117 >                    while (s != null) {
6118 >                        t.result = reducer.applyAsLong(t.result, s.result);
6119 >                        s = t.rights = s.nextRight;
6120 >                    }
6121 >                }
6122 >            }
6123 >        }
6124 >    }
6125 >
6126 >    @SuppressWarnings("serial")
6127 >    static final class MapReduceKeysToIntTask<K,V>
6128 >        extends BulkTask<K,V,Integer> {
6129 >        final ToIntFunction<? super K> transformer;
6130 >        final IntBinaryOperator reducer;
6131 >        final int basis;
6132 >        int result;
6133 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6134 >        MapReduceKeysToIntTask
6135 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6136 >             MapReduceKeysToIntTask<K,V> nextRight,
6137 >             ToIntFunction<? super K> transformer,
6138 >             int basis,
6139 >             IntBinaryOperator reducer) {
6140 >            super(p, b, i, f, t); this.nextRight = nextRight;
6141 >            this.transformer = transformer;
6142 >            this.basis = basis; this.reducer = reducer;
6143 >        }
6144 >        public final Integer getRawResult() { return result; }
6145 >        public final void compute() {
6146 >            final ToIntFunction<? super K> transformer;
6147 >            final IntBinaryOperator reducer;
6148 >            if ((transformer = this.transformer) != null &&
6149 >                (reducer = this.reducer) != null) {
6150 >                int r = this.basis;
6151 >                for (int i = baseIndex, f, h; batch > 0 &&
6152 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6153 >                    addToPendingCount(1);
6154 >                    (rights = new MapReduceKeysToIntTask<K,V>
6155 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6156 >                      rights, transformer, r, reducer)).fork();
6157 >                }
6158 >                for (Node<K,V> p; (p = advance()) != null; )
6159 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6160 >                result = r;
6161 >                CountedCompleter<?> c;
6162 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6163 >                    @SuppressWarnings("unchecked")
6164 >                    MapReduceKeysToIntTask<K,V>
6165 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6166 >                        s = t.rights;
6167 >                    while (s != null) {
6168 >                        t.result = reducer.applyAsInt(t.result, s.result);
6169 >                        s = t.rights = s.nextRight;
6170 >                    }
6171 >                }
6172 >            }
6173 >        }
6174 >    }
6175 >
6176 >    @SuppressWarnings("serial")
6177 >    static final class MapReduceValuesToIntTask<K,V>
6178 >        extends BulkTask<K,V,Integer> {
6179 >        final ToIntFunction<? super V> transformer;
6180 >        final IntBinaryOperator reducer;
6181 >        final int basis;
6182 >        int result;
6183 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6184 >        MapReduceValuesToIntTask
6185 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6186 >             MapReduceValuesToIntTask<K,V> nextRight,
6187 >             ToIntFunction<? super V> transformer,
6188 >             int basis,
6189 >             IntBinaryOperator reducer) {
6190 >            super(p, b, i, f, t); this.nextRight = nextRight;
6191 >            this.transformer = transformer;
6192 >            this.basis = basis; this.reducer = reducer;
6193 >        }
6194 >        public final Integer getRawResult() { return result; }
6195 >        public final void compute() {
6196 >            final ToIntFunction<? super V> transformer;
6197 >            final IntBinaryOperator reducer;
6198 >            if ((transformer = this.transformer) != null &&
6199 >                (reducer = this.reducer) != null) {
6200 >                int r = this.basis;
6201 >                for (int i = baseIndex, f, h; batch > 0 &&
6202 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6203 >                    addToPendingCount(1);
6204 >                    (rights = new MapReduceValuesToIntTask<K,V>
6205 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6206 >                      rights, transformer, r, reducer)).fork();
6207 >                }
6208 >                for (Node<K,V> p; (p = advance()) != null; )
6209 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6210 >                result = r;
6211 >                CountedCompleter<?> c;
6212 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6213 >                    @SuppressWarnings("unchecked")
6214 >                    MapReduceValuesToIntTask<K,V>
6215 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6216 >                        s = t.rights;
6217 >                    while (s != null) {
6218 >                        t.result = reducer.applyAsInt(t.result, s.result);
6219 >                        s = t.rights = s.nextRight;
6220 >                    }
6221 >                }
6222 >            }
6223 >        }
6224 >    }
6225 >
6226 >    @SuppressWarnings("serial")
6227 >    static final class MapReduceEntriesToIntTask<K,V>
6228 >        extends BulkTask<K,V,Integer> {
6229 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6230 >        final IntBinaryOperator reducer;
6231 >        final int basis;
6232 >        int result;
6233 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6234 >        MapReduceEntriesToIntTask
6235 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6236 >             MapReduceEntriesToIntTask<K,V> nextRight,
6237 >             ToIntFunction<Map.Entry<K,V>> transformer,
6238 >             int basis,
6239 >             IntBinaryOperator reducer) {
6240 >            super(p, b, i, f, t); this.nextRight = nextRight;
6241 >            this.transformer = transformer;
6242 >            this.basis = basis; this.reducer = reducer;
6243 >        }
6244 >        public final Integer getRawResult() { return result; }
6245 >        public final void compute() {
6246 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6247 >            final IntBinaryOperator reducer;
6248 >            if ((transformer = this.transformer) != null &&
6249 >                (reducer = this.reducer) != null) {
6250 >                int r = this.basis;
6251 >                for (int i = baseIndex, f, h; batch > 0 &&
6252 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6253 >                    addToPendingCount(1);
6254 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6255 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6256 >                      rights, transformer, r, reducer)).fork();
6257 >                }
6258 >                for (Node<K,V> p; (p = advance()) != null; )
6259 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6260 >                result = r;
6261 >                CountedCompleter<?> c;
6262 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6263 >                    @SuppressWarnings("unchecked")
6264 >                    MapReduceEntriesToIntTask<K,V>
6265 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6266 >                        s = t.rights;
6267 >                    while (s != null) {
6268 >                        t.result = reducer.applyAsInt(t.result, s.result);
6269 >                        s = t.rights = s.nextRight;
6270 >                    }
6271 >                }
6272 >            }
6273 >        }
6274 >    }
6275 >
6276 >    @SuppressWarnings("serial")
6277 >    static final class MapReduceMappingsToIntTask<K,V>
6278 >        extends BulkTask<K,V,Integer> {
6279 >        final ToIntBiFunction<? super K, ? super V> transformer;
6280 >        final IntBinaryOperator reducer;
6281 >        final int basis;
6282 >        int result;
6283 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6284 >        MapReduceMappingsToIntTask
6285 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6286 >             MapReduceMappingsToIntTask<K,V> nextRight,
6287 >             ToIntBiFunction<? super K, ? super V> transformer,
6288 >             int basis,
6289 >             IntBinaryOperator reducer) {
6290 >            super(p, b, i, f, t); this.nextRight = nextRight;
6291 >            this.transformer = transformer;
6292 >            this.basis = basis; this.reducer = reducer;
6293 >        }
6294 >        public final Integer getRawResult() { return result; }
6295 >        public final void compute() {
6296 >            final ToIntBiFunction<? super K, ? super V> transformer;
6297 >            final IntBinaryOperator reducer;
6298 >            if ((transformer = this.transformer) != null &&
6299 >                (reducer = this.reducer) != null) {
6300 >                int r = this.basis;
6301 >                for (int i = baseIndex, f, h; batch > 0 &&
6302 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6303 >                    addToPendingCount(1);
6304 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6305 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6306 >                      rights, transformer, r, reducer)).fork();
6307 >                }
6308 >                for (Node<K,V> p; (p = advance()) != null; )
6309 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6310 >                result = r;
6311 >                CountedCompleter<?> c;
6312 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6313 >                    @SuppressWarnings("unchecked")
6314 >                    MapReduceMappingsToIntTask<K,V>
6315 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6316 >                        s = t.rights;
6317 >                    while (s != null) {
6318 >                        t.result = reducer.applyAsInt(t.result, s.result);
6319 >                        s = t.rights = s.nextRight;
6320 >                    }
6321 >                }
6322 >            }
6323          }
6324      }
6325  
6326      // Unsafe mechanics
6327 <    private static final sun.misc.Unsafe UNSAFE;
6328 <    private static final long SBASE;
6329 <    private static final int SSHIFT;
6330 <    private static final long TBASE;
6331 <    private static final int TSHIFT;
6327 >    private static final Unsafe U = Unsafe.getUnsafe();
6328 >    private static final long SIZECTL;
6329 >    private static final long TRANSFERINDEX;
6330 >    private static final long BASECOUNT;
6331 >    private static final long CELLSBUSY;
6332 >    private static final long CELLVALUE;
6333 >    private static final int ABASE;
6334 >    private static final int ASHIFT;
6335  
6336      static {
1467        int ss, ts;
6337          try {
6338 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6339 <            Class<?> tc = HashEntry[].class;
6340 <            Class<?> sc = Segment[].class;
6341 <            TBASE = UNSAFE.arrayBaseOffset(tc);
6342 <            SBASE = UNSAFE.arrayBaseOffset(sc);
6343 <            ts = UNSAFE.arrayIndexScale(tc);
6344 <            ss = UNSAFE.arrayIndexScale(sc);
6345 <        } catch (Exception e) {
6346 <            throw new Error(e);
6347 <        }
6348 <        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
6349 <            throw new Error("data type scale not a power of two");
6350 <        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6351 <        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
6352 <    }
6338 >            SIZECTL = U.objectFieldOffset
6339 >                (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6340 >            TRANSFERINDEX = U.objectFieldOffset
6341 >                (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6342 >            BASECOUNT = U.objectFieldOffset
6343 >                (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6344 >            CELLSBUSY = U.objectFieldOffset
6345 >                (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6346 >
6347 >            CELLVALUE = U.objectFieldOffset
6348 >                (CounterCell.class.getDeclaredField("value"));
6349 >
6350 >            ABASE = U.arrayBaseOffset(Node[].class);
6351 >            int scale = U.arrayIndexScale(Node[].class);
6352 >            if ((scale & (scale - 1)) != 0)
6353 >                throw new ExceptionInInitializerError("array index scale not a power of two");
6354 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6355 >        } catch (ReflectiveOperationException e) {
6356 >            throw new ExceptionInInitializerError(e);
6357 >        }
6358 >
6359 >        // Reduce the risk of rare disastrous classloading in first call to
6360 >        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6361 >        Class<?> ensureLoaded = LockSupport.class;
6362  
6363 +        // Eager class load observed to help JIT during startup
6364 +        ensureLoaded = ReservationNode.class;
6365 +    }
6366   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines