ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.75 by jsr166, Thu Jun 16 02:17:07 2005 UTC vs.
Revision 1.115 by jsr166, Fri Dec 2 14:28:17 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8   import java.util.concurrent.locks.*;
9   import java.util.*;
10   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
11  
12   /**
13   * A hash table supporting full concurrency of retrievals and
# Line 62 | Line 59 | import java.io.ObjectOutputStream;
59   * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
60   *
61   * <p>This class is a member of the
62 < * <a href="{@docRoot}/../guide/collections/index.html">
62 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
63   * Java Collections Framework</a>.
64   *
65   * @since 1.5
# Line 76 | Line 73 | public class ConcurrentHashMap<K, V> ext
73  
74      /*
75       * The basic strategy is to subdivide the table among Segments,
76 <     * each of which itself is a concurrently readable hash table.
76 >     * each of which itself is a concurrently readable hash table.  To
77 >     * reduce footprint, all but one segments are constructed only
78 >     * when first needed (see ensureSegment). To maintain visibility
79 >     * in the presence of lazy construction, accesses to segments as
80 >     * well as elements of segment's table must use volatile access,
81 >     * which is done via Unsafe within methods segmentAt etc
82 >     * below. These provide the functionality of AtomicReferenceArrays
83 >     * but reduce the levels of indirection. Additionally,
84 >     * volatile-writes of table elements and entry "next" fields
85 >     * within locked operations use the cheaper "lazySet" forms of
86 >     * writes (via putOrderedObject) because these writes are always
87 >     * followed by lock releases that maintain sequential consistency
88 >     * of table updates.
89 >     *
90 >     * Historical note: The previous version of this class relied
91 >     * heavily on "final" fields, which avoided some volatile reads at
92 >     * the expense of a large initial footprint.  Some remnants of
93 >     * that design (including forced construction of segment 0) exist
94 >     * to ensure serialization compatibility.
95       */
96  
97      /* ---------------- Constants -------------- */
# Line 108 | Line 123 | public class ConcurrentHashMap<K, V> ext
123      static final int MAXIMUM_CAPACITY = 1 << 30;
124  
125      /**
126 +     * The minimum capacity for per-segment tables.  Must be a power
127 +     * of two, at least two to avoid immediate resizing on next use
128 +     * after lazy construction.
129 +     */
130 +    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
131 +
132 +    /**
133       * The maximum number of segments to allow; used to bound
134 <     * constructor arguments.
134 >     * constructor arguments. Must be power of two less than 1 << 24.
135       */
136      static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
137  
# Line 135 | Line 157 | public class ConcurrentHashMap<K, V> ext
157      final int segmentShift;
158  
159      /**
160 <     * The segments, each of which is a specialized hash table
160 >     * The segments, each of which is a specialized hash table.
161       */
162      final Segment<K,V>[] segments;
163  
# Line 143 | Line 165 | public class ConcurrentHashMap<K, V> ext
165      transient Set<Map.Entry<K,V>> entrySet;
166      transient Collection<V> values;
167  
146    /* ---------------- Small Utilities -------------- */
147
148    /**
149     * Returns a hash code for non-null Object x.
150     * Uses the same hash code spreader as most other java.util hash tables.
151     * @param x the object serving as a key
152     * @return the hash code
153     */
154    static int hash(Object x) {
155        int h = x.hashCode();
156        h += ~(h << 9);
157        h ^=  (h >>> 14);
158        h +=  (h << 4);
159        h ^=  (h >>> 10);
160        return h;
161    }
162
163    /**
164     * Returns the segment that should be used for key with given hash
165     * @param hash the hash code for the key
166     * @return the segment
167     */
168    final Segment<K,V> segmentFor(int hash) {
169        return segments[(hash >>> segmentShift) & segmentMask];
170    }
171
172    /* ---------------- Inner Classes -------------- */
173
168      /**
169       * ConcurrentHashMap list entry. Note that this is never exported
170       * out as a user-visible Map.Entry.
177     *
178     * Because the value field is volatile, not final, it is legal wrt
179     * the Java Memory Model for an unsynchronized reader to see null
180     * instead of initial value when read via a data race.  Although a
181     * reordering leading to this is not likely to ever actually
182     * occur, the Segment.readValueUnderLock method is used as a
183     * backup in case a null (pre-initialized) value is ever seen in
184     * an unsynchronized access method.
171       */
172      static final class HashEntry<K,V> {
187        final K key;
173          final int hash;
174 +        final K key;
175          volatile V value;
176 <        final HashEntry<K,V> next;
176 >        volatile HashEntry<K,V> next;
177  
178 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 <            this.key = key;
178 >        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
179              this.hash = hash;
180 <            this.next = next;
180 >            this.key = key;
181              this.value = value;
182 +            this.next = next;
183 +        }
184 +
185 +        /**
186 +         * Sets next field with volatile write semantics.  (See above
187 +         * about use of putOrderedObject.)
188 +         */
189 +        final void setNext(HashEntry<K,V> n) {
190 +            UNSAFE.putOrderedObject(this, nextOffset, n);
191          }
192  
193 <        @SuppressWarnings("unchecked")
194 <        static final <K,V> HashEntry<K,V>[] newArray(int i) {
195 <            return new HashEntry[i];
196 <        }
193 >        // Unsafe mechanics
194 >        static final sun.misc.Unsafe UNSAFE;
195 >        static final long nextOffset;
196 >        static {
197 >            try {
198 >                UNSAFE = sun.misc.Unsafe.getUnsafe();
199 >                Class<?> k = HashEntry.class;
200 >                nextOffset = UNSAFE.objectFieldOffset
201 >                    (k.getDeclaredField("next"));
202 >            } catch (Exception e) {
203 >                throw new Error(e);
204 >            }
205 >        }
206 >    }
207 >
208 >    /**
209 >     * Gets the ith element of given table (if nonnull) with volatile
210 >     * read semantics. Note: This is manually integrated into a few
211 >     * performance-sensitive methods to reduce call overhead.
212 >     */
213 >    @SuppressWarnings("unchecked")
214 >    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
215 >        return (tab == null) ? null :
216 >            (HashEntry<K,V>) UNSAFE.getObjectVolatile
217 >            (tab, ((long)i << TSHIFT) + TBASE);
218 >    }
219 >
220 >    /**
221 >     * Sets the ith element of given table, with volatile write
222 >     * semantics. (See above about use of putOrderedObject.)
223 >     */
224 >    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
225 >                                       HashEntry<K,V> e) {
226 >        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
227 >    }
228 >
229 >    /**
230 >     * Applies a supplemental hash function to a given hashCode, which
231 >     * defends against poor quality hash functions.  This is critical
232 >     * because ConcurrentHashMap uses power-of-two length hash tables,
233 >     * that otherwise encounter collisions for hashCodes that do not
234 >     * differ in lower or upper bits.
235 >     */
236 >    private static int hash(int h) {
237 >        // Spread bits to regularize both segment and index locations,
238 >        // using variant of single-word Wang/Jenkins hash.
239 >        h += (h <<  15) ^ 0xffffcd7d;
240 >        h ^= (h >>> 10);
241 >        h += (h <<   3);
242 >        h ^= (h >>>  6);
243 >        h += (h <<   2) + (h << 14);
244 >        return h ^ (h >>> 16);
245      }
246  
247      /**
# Line 209 | Line 251 | public class ConcurrentHashMap<K, V> ext
251       */
252      static final class Segment<K,V> extends ReentrantLock implements Serializable {
253          /*
254 <         * Segments maintain a table of entry lists that are ALWAYS
255 <         * kept in a consistent state, so can be read without locking.
256 <         * Next fields of nodes are immutable (final).  All list
257 <         * additions are performed at the front of each bin. This
258 <         * makes it easy to check changes, and also fast to traverse.
259 <         * When nodes would otherwise be changed, new nodes are
218 <         * created to replace them. This works well for hash tables
219 <         * since the bin lists tend to be short. (The average length
220 <         * is less than two for the default load factor threshold.)
221 <         *
222 <         * Read operations can thus proceed without locking, but rely
223 <         * on selected uses of volatiles to ensure that completed
224 <         * write operations performed by other threads are
225 <         * noticed. For most purposes, the "count" field, tracking the
226 <         * number of elements, serves as that volatile variable
227 <         * ensuring visibility.  This is convenient because this field
228 <         * needs to be read in many read operations anyway:
229 <         *
230 <         *   - All (unsynchronized) read operations must first read the
231 <         *     "count" field, and should not look at table entries if
232 <         *     it is 0.
233 <         *
234 <         *   - All (synchronized) write operations should write to
235 <         *     the "count" field after structurally changing any bin.
236 <         *     The operations must not take any action that could even
237 <         *     momentarily cause a concurrent read operation to see
238 <         *     inconsistent data. This is made easier by the nature of
239 <         *     the read operations in Map. For example, no operation
240 <         *     can reveal that the table has grown but the threshold
241 <         *     has not yet been updated, so there are no atomicity
242 <         *     requirements for this with respect to reads.
254 >         * Segments maintain a table of entry lists that are always
255 >         * kept in a consistent state, so can be read (via volatile
256 >         * reads of segments and tables) without locking.  This
257 >         * requires replicating nodes when necessary during table
258 >         * resizing, so the old lists can be traversed by readers
259 >         * still using old version of table.
260           *
261 <         * As a guide, all critical volatile reads and writes to the
262 <         * count field are marked in code comments.
261 >         * This class defines only mutative methods requiring locking.
262 >         * Except as noted, the methods of this class perform the
263 >         * per-segment versions of ConcurrentHashMap methods.  (Other
264 >         * methods are integrated directly into ConcurrentHashMap
265 >         * methods.) These mutative methods use a form of controlled
266 >         * spinning on contention via methods scanAndLock and
267 >         * scanAndLockForPut. These intersperse tryLocks with
268 >         * traversals to locate nodes.  The main benefit is to absorb
269 >         * cache misses (which are very common for hash tables) while
270 >         * obtaining locks so that traversal is faster once
271 >         * acquired. We do not actually use the found nodes since they
272 >         * must be re-acquired under lock anyway to ensure sequential
273 >         * consistency of updates (and in any case may be undetectably
274 >         * stale), but they will normally be much faster to re-locate.
275 >         * Also, scanAndLockForPut speculatively creates a fresh node
276 >         * to use in put if no node is found.
277           */
278  
279          private static final long serialVersionUID = 2249069246763182397L;
280  
281          /**
282 <         * The number of elements in this segment's region.
282 >         * The maximum number of times to tryLock in a prescan before
283 >         * possibly blocking on acquire in preparation for a locked
284 >         * segment operation. On multiprocessors, using a bounded
285 >         * number of retries maintains cache acquired while locating
286 >         * nodes.
287           */
288 <        transient volatile int count;
288 >        static final int MAX_SCAN_RETRIES =
289 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
290  
291          /**
292 <         * Number of updates that alter the size of the table. This is
293 <         * used during bulk-read methods to make sure they see a
294 <         * consistent snapshot: If modCounts change during a traversal
295 <         * of segments computing size or checking containsValue, then
296 <         * we might have an inconsistent view of state so (usually)
297 <         * must retry.
292 >         * The per-segment table. Elements are accessed via
293 >         * entryAt/setEntryAt providing volatile semantics.
294 >         */
295 >        transient volatile HashEntry<K,V>[] table;
296 >
297 >        /**
298 >         * The number of elements. Accessed only either within locks
299 >         * or among other volatile reads that maintain visibility.
300 >         */
301 >        transient int count;
302 >
303 >        /**
304 >         * The total number of mutative operations in this segment.
305 >         * Even though this may overflows 32 bits, it provides
306 >         * sufficient accuracy for stability checks in CHM isEmpty()
307 >         * and size() methods.  Accessed only either within locks or
308 >         * among other volatile reads that maintain visibility.
309           */
310          transient int modCount;
311  
# Line 270 | Line 317 | public class ConcurrentHashMap<K, V> ext
317          transient int threshold;
318  
319          /**
273         * The per-segment table.
274         */
275        transient volatile HashEntry<K,V>[] table;
276
277        /**
320           * The load factor for the hash table.  Even though this value
321           * is same for all segments, it is replicated to avoid needing
322           * links to outer object.
# Line 282 | Line 324 | public class ConcurrentHashMap<K, V> ext
324           */
325          final float loadFactor;
326  
327 <        Segment(int initialCapacity, float lf) {
328 <            loadFactor = lf;
329 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
330 <        }
289 <
290 <        @SuppressWarnings("unchecked")
291 <        static final <K,V> Segment<K,V>[] newArray(int i) {
292 <            return new Segment[i];
293 <        }
294 <
295 <        /**
296 <         * Sets table to new HashEntry array.
297 <         * Call only while holding lock or in constructor.
298 <         */
299 <        void setTable(HashEntry<K,V>[] newTable) {
300 <            threshold = (int)(newTable.length * loadFactor);
301 <            table = newTable;
302 <        }
303 <
304 <        /**
305 <         * Returns properly casted first entry of bin for given hash.
306 <         */
307 <        HashEntry<K,V> getFirst(int hash) {
308 <            HashEntry<K,V>[] tab = table;
309 <            return tab[hash & (tab.length - 1)];
327 >        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
328 >            this.loadFactor = lf;
329 >            this.threshold = threshold;
330 >            this.table = tab;
331          }
332  
333 <        /**
334 <         * Reads value field of an entry under lock. Called if value
335 <         * field ever appears to be null. This is possible only if a
336 <         * compiler happens to reorder a HashEntry initialization with
316 <         * its table assignment, which is legal under memory model
317 <         * but is not known to ever occur.
318 <         */
319 <        V readValueUnderLock(HashEntry<K,V> e) {
320 <            lock();
333 >        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
334 >            HashEntry<K,V> node = tryLock() ? null :
335 >                scanAndLockForPut(key, hash, value);
336 >            V oldValue;
337              try {
322                return e.value;
323            } finally {
324                unlock();
325            }
326        }
327
328        /* Specialized implementations of map methods */
329
330        V get(Object key, int hash) {
331            if (count != 0) { // read-volatile
332                HashEntry<K,V> e = getFirst(hash);
333                while (e != null) {
334                    if (e.hash == hash && key.equals(e.key)) {
335                        V v = e.value;
336                        if (v != null)
337                            return v;
338                        return readValueUnderLock(e); // recheck
339                    }
340                    e = e.next;
341                }
342            }
343            return null;
344        }
345
346        boolean containsKey(Object key, int hash) {
347            if (count != 0) { // read-volatile
348                HashEntry<K,V> e = getFirst(hash);
349                while (e != null) {
350                    if (e.hash == hash && key.equals(e.key))
351                        return true;
352                    e = e.next;
353                }
354            }
355            return false;
356        }
357
358        boolean containsValue(Object value) {
359            if (count != 0) { // read-volatile
338                  HashEntry<K,V>[] tab = table;
339 <                int len = tab.length;
340 <                for (int i = 0 ; i < len; i++) {
341 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
342 <                        V v = e.value;
343 <                        if (v == null) // recheck
344 <                            v = readValueUnderLock(e);
345 <                        if (value.equals(v))
346 <                            return true;
339 >                int index = (tab.length - 1) & hash;
340 >                HashEntry<K,V> first = entryAt(tab, index);
341 >                for (HashEntry<K,V> e = first;;) {
342 >                    if (e != null) {
343 >                        K k;
344 >                        if ((k = e.key) == key ||
345 >                            (e.hash == hash && key.equals(k))) {
346 >                            oldValue = e.value;
347 >                            if (!onlyIfAbsent) {
348 >                                e.value = value;
349 >                                ++modCount;
350 >                            }
351 >                            break;
352 >                        }
353 >                        e = e.next;
354 >                    }
355 >                    else {
356 >                        if (node != null)
357 >                            node.setNext(first);
358 >                        else
359 >                            node = new HashEntry<K,V>(hash, key, value, first);
360 >                        int c = count + 1;
361 >                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
362 >                            rehash(node);
363 >                        else
364 >                            setEntryAt(tab, index, node);
365 >                        ++modCount;
366 >                        count = c;
367 >                        oldValue = null;
368 >                        break;
369                      }
370                  }
371            }
372            return false;
373        }
374
375        boolean replace(K key, int hash, V oldValue, V newValue) {
376            lock();
377            try {
378                HashEntry<K,V> e = getFirst(hash);
379                while (e != null && (e.hash != hash || !key.equals(e.key)))
380                    e = e.next;
381
382                boolean replaced = false;
383                if (e != null && oldValue.equals(e.value)) {
384                    replaced = true;
385                    e.value = newValue;
386                }
387                return replaced;
388            } finally {
389                unlock();
390            }
391        }
392
393        V replace(K key, int hash, V newValue) {
394            lock();
395            try {
396                HashEntry<K,V> e = getFirst(hash);
397                while (e != null && (e.hash != hash || !key.equals(e.key)))
398                    e = e.next;
399
400                V oldValue = null;
401                if (e != null) {
402                    oldValue = e.value;
403                    e.value = newValue;
404                }
405                return oldValue;
406            } finally {
407                unlock();
408            }
409        }
410
411
412        V put(K key, int hash, V value, boolean onlyIfAbsent) {
413            lock();
414            try {
415                int c = count;
416                if (c++ > threshold) // ensure capacity
417                    rehash();
418                HashEntry<K,V>[] tab = table;
419                int index = hash & (tab.length - 1);
420                HashEntry<K,V> first = tab[index];
421                HashEntry<K,V> e = first;
422                while (e != null && (e.hash != hash || !key.equals(e.key)))
423                    e = e.next;
424
425                V oldValue;
426                if (e != null) {
427                    oldValue = e.value;
428                    if (!onlyIfAbsent)
429                        e.value = value;
430                }
431                else {
432                    oldValue = null;
433                    ++modCount;
434                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
435                    count = c; // write-volatile
436                }
437                return oldValue;
371              } finally {
372                  unlock();
373              }
374 +            return oldValue;
375          }
376  
377 <        void rehash() {
378 <            HashEntry<K,V>[] oldTable = table;
379 <            int oldCapacity = oldTable.length;
380 <            if (oldCapacity >= MAXIMUM_CAPACITY)
381 <                return;
382 <
377 >        /**
378 >         * Doubles size of table and repacks entries, also adding the
379 >         * given node to new table
380 >         */
381 >        @SuppressWarnings("unchecked")
382 >        private void rehash(HashEntry<K,V> node) {
383              /*
384 <             * Reclassify nodes in each list to new Map.  Because we are
385 <             * using power-of-two expansion, the elements from each bin
386 <             * must either stay at same index, or move with a power of two
387 <             * offset. We eliminate unnecessary node creation by catching
388 <             * cases where old nodes can be reused because their next
389 <             * fields won't change. Statistically, at the default
390 <             * threshold, only about one-sixth of them need cloning when
391 <             * a table doubles. The nodes they replace will be garbage
392 <             * collectable as soon as they are no longer referenced by any
393 <             * reader thread that may be in the midst of traversing table
394 <             * right now.
384 >             * Reclassify nodes in each list to new table.  Because we
385 >             * are using power-of-two expansion, the elements from
386 >             * each bin must either stay at same index, or move with a
387 >             * power of two offset. We eliminate unnecessary node
388 >             * creation by catching cases where old nodes can be
389 >             * reused because their next fields won't change.
390 >             * Statistically, at the default threshold, only about
391 >             * one-sixth of them need cloning when a table
392 >             * doubles. The nodes they replace will be garbage
393 >             * collectable as soon as they are no longer referenced by
394 >             * any reader thread that may be in the midst of
395 >             * concurrently traversing table. Entry accesses use plain
396 >             * array indexing because they are followed by volatile
397 >             * table write.
398               */
399 <
400 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
401 <            threshold = (int)(newTable.length * loadFactor);
402 <            int sizeMask = newTable.length - 1;
399 >            HashEntry<K,V>[] oldTable = table;
400 >            int oldCapacity = oldTable.length;
401 >            int newCapacity = oldCapacity << 1;
402 >            threshold = (int)(newCapacity * loadFactor);
403 >            HashEntry<K,V>[] newTable =
404 >                (HashEntry<K,V>[]) new HashEntry<?,?>[newCapacity];
405 >            int sizeMask = newCapacity - 1;
406              for (int i = 0; i < oldCapacity ; i++) {
467                // We need to guarantee that any existing reads of old Map can
468                //  proceed. So we cannot yet null out each bin.
407                  HashEntry<K,V> e = oldTable[i];
470
408                  if (e != null) {
409                      HashEntry<K,V> next = e.next;
410                      int idx = e.hash & sizeMask;
411 <
475 <                    //  Single node on list
476 <                    if (next == null)
411 >                    if (next == null)   //  Single node on list
412                          newTable[idx] = e;
413 <
479 <                    else {
480 <                        // Reuse trailing consecutive sequence at same slot
413 >                    else { // Reuse consecutive sequence at same slot
414                          HashEntry<K,V> lastRun = e;
415                          int lastIdx = idx;
416                          for (HashEntry<K,V> last = next;
# Line 490 | Line 423 | public class ConcurrentHashMap<K, V> ext
423                              }
424                          }
425                          newTable[lastIdx] = lastRun;
426 <
494 <                        // Clone all remaining nodes
426 >                        // Clone remaining nodes
427                          for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
428 <                            int k = p.hash & sizeMask;
428 >                            V v = p.value;
429 >                            int h = p.hash;
430 >                            int k = h & sizeMask;
431                              HashEntry<K,V> n = newTable[k];
432 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
499 <                                                             n, p.value);
432 >                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
433                          }
434                      }
435                  }
436              }
437 +            int nodeIndex = node.hash & sizeMask; // add the new node
438 +            node.setNext(newTable[nodeIndex]);
439 +            newTable[nodeIndex] = node;
440              table = newTable;
441          }
442  
443          /**
444 +         * Scans for a node containing given key while trying to
445 +         * acquire lock, creating and returning one if not found. Upon
446 +         * return, guarantees that lock is held. Unlike in most
447 +         * methods, calls to method equals are not screened: Since
448 +         * traversal speed doesn't matter, we might as well help warm
449 +         * up the associated code and accesses as well.
450 +         *
451 +         * @return a new node if key not found, else null
452 +         */
453 +        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
454 +            HashEntry<K,V> first = entryForHash(this, hash);
455 +            HashEntry<K,V> e = first;
456 +            HashEntry<K,V> node = null;
457 +            int retries = -1; // negative while locating node
458 +            while (!tryLock()) {
459 +                HashEntry<K,V> f; // to recheck first below
460 +                if (retries < 0) {
461 +                    if (e == null) {
462 +                        if (node == null) // speculatively create node
463 +                            node = new HashEntry<K,V>(hash, key, value, null);
464 +                        retries = 0;
465 +                    }
466 +                    else if (key.equals(e.key))
467 +                        retries = 0;
468 +                    else
469 +                        e = e.next;
470 +                }
471 +                else if (++retries > MAX_SCAN_RETRIES) {
472 +                    lock();
473 +                    break;
474 +                }
475 +                else if ((retries & 1) == 0 &&
476 +                         (f = entryForHash(this, hash)) != first) {
477 +                    e = first = f; // re-traverse if entry changed
478 +                    retries = -1;
479 +                }
480 +            }
481 +            return node;
482 +        }
483 +
484 +        /**
485 +         * Scans for a node containing the given key while trying to
486 +         * acquire lock for a remove or replace operation. Upon
487 +         * return, guarantees that lock is held.  Note that we must
488 +         * lock even if the key is not found, to ensure sequential
489 +         * consistency of updates.
490 +         */
491 +        private void scanAndLock(Object key, int hash) {
492 +            // similar to but simpler than scanAndLockForPut
493 +            HashEntry<K,V> first = entryForHash(this, hash);
494 +            HashEntry<K,V> e = first;
495 +            int retries = -1;
496 +            while (!tryLock()) {
497 +                HashEntry<K,V> f;
498 +                if (retries < 0) {
499 +                    if (e == null || key.equals(e.key))
500 +                        retries = 0;
501 +                    else
502 +                        e = e.next;
503 +                }
504 +                else if (++retries > MAX_SCAN_RETRIES) {
505 +                    lock();
506 +                    break;
507 +                }
508 +                else if ((retries & 1) == 0 &&
509 +                         (f = entryForHash(this, hash)) != first) {
510 +                    e = first = f;
511 +                    retries = -1;
512 +                }
513 +            }
514 +        }
515 +
516 +        /**
517           * Remove; match on key only if value null, else match both.
518           */
519 <        V remove(Object key, int hash, Object value) {
520 <            lock();
519 >        final V remove(Object key, int hash, Object value) {
520 >            if (!tryLock())
521 >                scanAndLock(key, hash);
522 >            V oldValue = null;
523              try {
513                int c = count - 1;
524                  HashEntry<K,V>[] tab = table;
525 <                int index = hash & (tab.length - 1);
526 <                HashEntry<K,V> first = tab[index];
527 <                HashEntry<K,V> e = first;
528 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
529 <                    e = e.next;
525 >                int index = (tab.length - 1) & hash;
526 >                HashEntry<K,V> e = entryAt(tab, index);
527 >                HashEntry<K,V> pred = null;
528 >                while (e != null) {
529 >                    K k;
530 >                    HashEntry<K,V> next = e.next;
531 >                    if ((k = e.key) == key ||
532 >                        (e.hash == hash && key.equals(k))) {
533 >                        V v = e.value;
534 >                        if (value == null || value == v || value.equals(v)) {
535 >                            if (pred == null)
536 >                                setEntryAt(tab, index, next);
537 >                            else
538 >                                pred.setNext(next);
539 >                            ++modCount;
540 >                            --count;
541 >                            oldValue = v;
542 >                        }
543 >                        break;
544 >                    }
545 >                    pred = e;
546 >                    e = next;
547 >                }
548 >            } finally {
549 >                unlock();
550 >            }
551 >            return oldValue;
552 >        }
553  
554 <                V oldValue = null;
555 <                if (e != null) {
556 <                    V v = e.value;
557 <                    if (value == null || value.equals(v)) {
558 <                        oldValue = v;
559 <                        // All entries following removed node can stay
560 <                        // in list, but all preceding ones need to be
561 <                        // cloned.
554 >        final boolean replace(K key, int hash, V oldValue, V newValue) {
555 >            if (!tryLock())
556 >                scanAndLock(key, hash);
557 >            boolean replaced = false;
558 >            try {
559 >                HashEntry<K,V> e;
560 >                for (e = entryForHash(this, hash); e != null; e = e.next) {
561 >                    K k;
562 >                    if ((k = e.key) == key ||
563 >                        (e.hash == hash && key.equals(k))) {
564 >                        if (oldValue.equals(e.value)) {
565 >                            e.value = newValue;
566 >                            ++modCount;
567 >                            replaced = true;
568 >                        }
569 >                        break;
570 >                    }
571 >                }
572 >            } finally {
573 >                unlock();
574 >            }
575 >            return replaced;
576 >        }
577 >
578 >        final V replace(K key, int hash, V value) {
579 >            if (!tryLock())
580 >                scanAndLock(key, hash);
581 >            V oldValue = null;
582 >            try {
583 >                HashEntry<K,V> e;
584 >                for (e = entryForHash(this, hash); e != null; e = e.next) {
585 >                    K k;
586 >                    if ((k = e.key) == key ||
587 >                        (e.hash == hash && key.equals(k))) {
588 >                        oldValue = e.value;
589 >                        e.value = value;
590                          ++modCount;
591 <                        HashEntry<K,V> newFirst = e.next;
531 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
532 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
533 <                                                          newFirst, p.value);
534 <                        tab[index] = newFirst;
535 <                        count = c; // write-volatile
591 >                        break;
592                      }
593                  }
538                return oldValue;
594              } finally {
595                  unlock();
596              }
597 +            return oldValue;
598          }
599  
600 <        void clear() {
601 <            if (count != 0) {
602 <                lock();
603 <                try {
604 <                    HashEntry<K,V>[] tab = table;
605 <                    for (int i = 0; i < tab.length ; i++)
606 <                        tab[i] = null;
607 <                    ++modCount;
608 <                    count = 0; // write-volatile
609 <                } finally {
610 <                    unlock();
600 >        final void clear() {
601 >            lock();
602 >            try {
603 >                HashEntry<K,V>[] tab = table;
604 >                for (int i = 0; i < tab.length ; i++)
605 >                    setEntryAt(tab, i, null);
606 >                ++modCount;
607 >                count = 0;
608 >            } finally {
609 >                unlock();
610 >            }
611 >        }
612 >    }
613 >
614 >    // Accessing segments
615 >
616 >    /**
617 >     * Gets the jth element of given segment array (if nonnull) with
618 >     * volatile element access semantics via Unsafe. (The null check
619 >     * can trigger harmlessly only during deserialization.) Note:
620 >     * because each element of segments array is set only once (using
621 >     * fully ordered writes), some performance-sensitive methods rely
622 >     * on this method only as a recheck upon null reads.
623 >     */
624 >    @SuppressWarnings("unchecked")
625 >    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
626 >        long u = (j << SSHIFT) + SBASE;
627 >        return ss == null ? null :
628 >            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
629 >    }
630 >
631 >    /**
632 >     * Returns the segment for the given index, creating it and
633 >     * recording in segment table (via CAS) if not already present.
634 >     *
635 >     * @param k the index
636 >     * @return the segment
637 >     */
638 >    @SuppressWarnings("unchecked")
639 >    private Segment<K,V> ensureSegment(int k) {
640 >        final Segment<K,V>[] ss = this.segments;
641 >        long u = (k << SSHIFT) + SBASE; // raw offset
642 >        Segment<K,V> seg;
643 >        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
644 >            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
645 >            int cap = proto.table.length;
646 >            float lf = proto.loadFactor;
647 >            int threshold = (int)(cap * lf);
648 >            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry<?,?>[cap];
649 >            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
650 >                == null) { // recheck
651 >                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
652 >                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
653 >                       == null) {
654 >                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
655 >                        break;
656                  }
657              }
658          }
659 +        return seg;
660      }
661  
662 +    // Hash-based segment and entry accesses
663 +
664 +    /**
665 +     * Gets the segment for the given hash code.
666 +     */
667 +    @SuppressWarnings("unchecked")
668 +    private Segment<K,V> segmentForHash(int h) {
669 +        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
670 +        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
671 +    }
672  
673 +    /**
674 +     * Gets the table entry for the given segment and hash code.
675 +     */
676 +    @SuppressWarnings("unchecked")
677 +    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
678 +        HashEntry<K,V>[] tab;
679 +        return (seg == null || (tab = seg.table) == null) ? null :
680 +            (HashEntry<K,V>) UNSAFE.getObjectVolatile
681 +            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
682 +    }
683  
684      /* ---------------- Public operations -------------- */
685  
# Line 577 | Line 699 | public class ConcurrentHashMap<K, V> ext
699       * negative or the load factor or concurrencyLevel are
700       * nonpositive.
701       */
702 +    @SuppressWarnings("unchecked")
703      public ConcurrentHashMap(int initialCapacity,
704                               float loadFactor, int concurrencyLevel) {
705          if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
706              throw new IllegalArgumentException();
584
707          if (concurrencyLevel > MAX_SEGMENTS)
708              concurrencyLevel = MAX_SEGMENTS;
587
709          // Find power-of-two sizes best matching arguments
710          int sshift = 0;
711          int ssize = 1;
# Line 592 | Line 713 | public class ConcurrentHashMap<K, V> ext
713              ++sshift;
714              ssize <<= 1;
715          }
716 <        segmentShift = 32 - sshift;
717 <        segmentMask = ssize - 1;
597 <        this.segments = Segment.newArray(ssize);
598 <
716 >        this.segmentShift = 32 - sshift;
717 >        this.segmentMask = ssize - 1;
718          if (initialCapacity > MAXIMUM_CAPACITY)
719              initialCapacity = MAXIMUM_CAPACITY;
720          int c = initialCapacity / ssize;
721          if (c * ssize < initialCapacity)
722              ++c;
723 <        int cap = 1;
723 >        int cap = MIN_SEGMENT_TABLE_CAPACITY;
724          while (cap < c)
725              cap <<= 1;
726 <
727 <        for (int i = 0; i < this.segments.length; ++i)
728 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
726 >        // create segments and segments[0]
727 >        Segment<K,V> s0 =
728 >            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
729 >                             (HashEntry<K,V>[])new HashEntry<?,?>[cap]);
730 >        Segment<K,V>[] ss = (Segment<K,V>[])new Segment<?,?>[ssize];
731 >        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
732 >        this.segments = ss;
733      }
734  
735      /**
736       * Creates a new, empty map with the specified initial capacity
737 <     * and load factor and with the default concurrencyLevel
615 <     * (<tt>16</tt>).
737 >     * and load factor and with the default concurrencyLevel (16).
738       *
739       * @param initialCapacity The implementation performs internal
740       * sizing to accommodate this many elements.
# Line 621 | Line 743 | public class ConcurrentHashMap<K, V> ext
743       * bin exceeds this threshold.
744       * @throws IllegalArgumentException if the initial capacity of
745       * elements is negative or the load factor is nonpositive
746 +     *
747 +     * @since 1.6
748       */
749      public ConcurrentHashMap(int initialCapacity, float loadFactor) {
750          this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
# Line 628 | Line 752 | public class ConcurrentHashMap<K, V> ext
752  
753      /**
754       * Creates a new, empty map with the specified initial capacity,
755 <     * and with default load factor (<tt>0.75f</tt>)
632 <     * and concurrencyLevel (<tt>16</tt>).
755 >     * and with default load factor (0.75) and concurrencyLevel (16).
756       *
757       * @param initialCapacity the initial capacity. The implementation
758       * performs internal sizing to accommodate this many elements.
# Line 641 | Line 764 | public class ConcurrentHashMap<K, V> ext
764      }
765  
766      /**
767 <     * Creates a new, empty map with a default initial capacity
768 <     * (<tt>16</tt>), load factor
646 <     * (<tt>0.75f</tt>), and concurrencyLevel
647 <     * (<tt>16</tt>).
767 >     * Creates a new, empty map with a default initial capacity (16),
768 >     * load factor (0.75) and concurrencyLevel (16).
769       */
770      public ConcurrentHashMap() {
771          this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
772      }
773  
774      /**
775 <     * Creates a new map with the same mappings as the given map.  The
776 <     * map is created with a capacity of 1.5 times the number of
777 <     * mappings in the given map or <tt>16</tt>
778 <     * (whichever is greater), and a default load factor
779 <     * (<tt>0.75f</tt>) and concurrencyLevel
659 <     * (<tt>16</tt>).
775 >     * Creates a new map with the same mappings as the given map.
776 >     * The map is created with a capacity of 1.5 times the number
777 >     * of mappings in the given map or 16 (whichever is greater),
778 >     * and a default load factor (0.75) and concurrencyLevel (16).
779 >     *
780       * @param m the map
781       */
782      public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
# Line 672 | Line 792 | public class ConcurrentHashMap<K, V> ext
792       * @return <tt>true</tt> if this map contains no key-value mappings
793       */
794      public boolean isEmpty() {
675        final Segment<K,V>[] segments = this.segments;
795          /*
796 <         * We keep track of per-segment modCounts to avoid ABA
797 <         * problems in which an element in one segment was added and
798 <         * in another removed during traversal, in which case the
799 <         * table was never actually empty at any point. Note the
800 <         * similar use of modCounts in the size() and containsValue()
801 <         * methods, which are the only other methods also susceptible
802 <         * to ABA problems.
796 >         * Sum per-segment modCounts to avoid mis-reporting when
797 >         * elements are concurrently added and removed in one segment
798 >         * while checking another, in which case the table was never
799 >         * actually empty at any point. (The sum ensures accuracy up
800 >         * through at least 1<<31 per-segment modifications before
801 >         * recheck.)  Methods size() and containsValue() use similar
802 >         * constructions for stability checks.
803           */
804 <        int[] mc = new int[segments.length];
805 <        int mcsum = 0;
806 <        for (int i = 0; i < segments.length; ++i) {
807 <            if (segments[i].count != 0)
808 <                return false;
809 <            else
691 <                mcsum += mc[i] = segments[i].modCount;
692 <        }
693 <        // If mcsum happens to be zero, then we know we got a snapshot
694 <        // before any modifications at all were made.  This is
695 <        // probably common enough to bother tracking.
696 <        if (mcsum != 0) {
697 <            for (int i = 0; i < segments.length; ++i) {
698 <                if (segments[i].count != 0 ||
699 <                    mc[i] != segments[i].modCount)
804 >        long sum = 0L;
805 >        final Segment<K,V>[] segments = this.segments;
806 >        for (int j = 0; j < segments.length; ++j) {
807 >            Segment<K,V> seg = segmentAt(segments, j);
808 >            if (seg != null) {
809 >                if (seg.count != 0)
810                      return false;
811 +                sum += seg.modCount;
812              }
813          }
814 +        if (sum != 0L) { // recheck unless no modifications
815 +            for (int j = 0; j < segments.length; ++j) {
816 +                Segment<K,V> seg = segmentAt(segments, j);
817 +                if (seg != null) {
818 +                    if (seg.count != 0)
819 +                        return false;
820 +                    sum -= seg.modCount;
821 +                }
822 +            }
823 +            if (sum != 0L)
824 +                return false;
825 +        }
826          return true;
827      }
828  
# Line 711 | Line 834 | public class ConcurrentHashMap<K, V> ext
834       * @return the number of key-value mappings in this map
835       */
836      public int size() {
714        final Segment<K,V>[] segments = this.segments;
715        long sum = 0;
716        long check = 0;
717        int[] mc = new int[segments.length];
837          // Try a few times to get accurate count. On failure due to
838          // continuous async changes in table, resort to locking.
839 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
840 <            check = 0;
841 <            sum = 0;
842 <            int mcsum = 0;
843 <            for (int i = 0; i < segments.length; ++i) {
844 <                sum += segments[i].count;
845 <                mcsum += mc[i] = segments[i].modCount;
846 <            }
847 <            if (mcsum != 0) {
848 <                for (int i = 0; i < segments.length; ++i) {
849 <                    check += segments[i].count;
850 <                    if (mc[i] != segments[i].modCount) {
732 <                        check = -1; // force retry
733 <                        break;
734 <                    }
839 >        final Segment<K,V>[] segments = this.segments;
840 >        final int segmentCount = segments.length;
841 >
842 >        long previousSum = 0L;
843 >        for (int retries = -1; retries < RETRIES_BEFORE_LOCK; retries++) {
844 >            long sum = 0L;    // sum of modCounts
845 >            long size = 0L;
846 >            for (int i = 0; i < segmentCount; i++) {
847 >                Segment<K,V> segment = segmentAt(segments, i);
848 >                if (segment != null) {
849 >                    sum += segment.modCount;
850 >                    size += segment.count;
851                  }
852              }
853 <            if (check == sum)
854 <                break;
853 >            if (sum == previousSum)
854 >                return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
855 >            previousSum = sum;
856          }
857 <        if (check != sum) { // Resort to locking all segments
858 <            sum = 0;
859 <            for (int i = 0; i < segments.length; ++i)
860 <                segments[i].lock();
861 <            for (int i = 0; i < segments.length; ++i)
862 <                sum += segments[i].count;
863 <            for (int i = 0; i < segments.length; ++i)
864 <                segments[i].unlock();
865 <        }
866 <        if (sum > Integer.MAX_VALUE)
750 <            return Integer.MAX_VALUE;
751 <        else
752 <            return (int)sum;
857 >
858 >        long size = 0L;
859 >        for (int i = 0; i < segmentCount; i++) {
860 >            Segment<K,V> segment = ensureSegment(i);
861 >            segment.lock();
862 >            size += segment.count;
863 >        }
864 >        for (int i = 0; i < segmentCount; i++)
865 >            segments[i].unlock();
866 >        return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
867      }
868  
869      /**
870 <     * Returns the value to which this map maps the specified key, or
871 <     * <tt>null</tt> if the map contains no mapping for the key.
872 <     *
873 <     * @param key key whose associated value is to be returned
874 <     * @return the value associated with <tt>key</tt> in this map, or
875 <     *         <tt>null</tt> if there is no mapping for <tt>key</tt>
870 >     * Returns the value to which the specified key is mapped,
871 >     * or {@code null} if this map contains no mapping for the key.
872 >     *
873 >     * <p>More formally, if this map contains a mapping from a key
874 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
875 >     * then this method returns {@code v}; otherwise it returns
876 >     * {@code null}.  (There can be at most one such mapping.)
877 >     *
878       * @throws NullPointerException if the specified key is null
879       */
880 +    @SuppressWarnings("unchecked")
881      public V get(Object key) {
882 <        int hash = hash(key); // throws NullPointerException if key null
883 <        return segmentFor(hash).get(key, hash);
882 >        Segment<K,V> s; // manually integrate access methods to reduce overhead
883 >        HashEntry<K,V>[] tab;
884 >        int h = hash(key.hashCode());
885 >        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
886 >        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
887 >            (tab = s.table) != null) {
888 >            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
889 >                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
890 >                 e != null; e = e.next) {
891 >                K k;
892 >                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
893 >                    return e.value;
894 >            }
895 >        }
896 >        return null;
897      }
898  
899      /**
# Line 775 | Line 905 | public class ConcurrentHashMap<K, V> ext
905       *         <tt>equals</tt> method; <tt>false</tt> otherwise.
906       * @throws NullPointerException if the specified key is null
907       */
908 +    @SuppressWarnings("unchecked")
909      public boolean containsKey(Object key) {
910 <        int hash = hash(key); // throws NullPointerException if key null
911 <        return segmentFor(hash).containsKey(key, hash);
910 >        Segment<K,V> s; // same as get() except no need for volatile value read
911 >        HashEntry<K,V>[] tab;
912 >        int h = hash(key.hashCode());
913 >        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
914 >        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
915 >            (tab = s.table) != null) {
916 >            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
917 >                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
918 >                 e != null; e = e.next) {
919 >                K k;
920 >                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
921 >                    return true;
922 >            }
923 >        }
924 >        return false;
925      }
926  
927      /**
# Line 792 | Line 936 | public class ConcurrentHashMap<K, V> ext
936       * @throws NullPointerException if the specified value is null
937       */
938      public boolean containsValue(Object value) {
939 +        // Same idea as size()
940          if (value == null)
941              throw new NullPointerException();
797
798        // See explanation of modCount use above
799
942          final Segment<K,V>[] segments = this.segments;
943 <        int[] mc = new int[segments.length];
944 <
803 <        // Try a few times without locking
804 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
805 <            int sum = 0;
806 <            int mcsum = 0;
807 <            for (int i = 0; i < segments.length; ++i) {
808 <                int c = segments[i].count;
809 <                mcsum += mc[i] = segments[i].modCount;
810 <                if (segments[i].containsValue(value))
811 <                    return true;
812 <            }
813 <            boolean cleanSweep = true;
814 <            if (mcsum != 0) {
815 <                for (int i = 0; i < segments.length; ++i) {
816 <                    int c = segments[i].count;
817 <                    if (mc[i] != segments[i].modCount) {
818 <                        cleanSweep = false;
819 <                        break;
820 <                    }
821 <                }
822 <            }
823 <            if (cleanSweep)
824 <                return false;
825 <        }
826 <        // Resort to locking all segments
827 <        for (int i = 0; i < segments.length; ++i)
828 <            segments[i].lock();
829 <        boolean found = false;
943 >        long previousSum = 0L;
944 >        int lockCount = 0;
945          try {
946 <            for (int i = 0; i < segments.length; ++i) {
947 <                if (segments[i].containsValue(value)) {
948 <                    found = true;
949 <                    break;
946 >            for (int retries = -1; ; retries++) {
947 >                long sum = 0L;    // sum of modCounts
948 >                for (int j = 0; j < segments.length; j++) {
949 >                    Segment<K,V> segment;
950 >                    if (retries == RETRIES_BEFORE_LOCK) {
951 >                        segment = ensureSegment(j);
952 >                        segment.lock();
953 >                        lockCount++;
954 >                    } else {
955 >                        segment = segmentAt(segments, j);
956 >                        if (segment == null)
957 >                            continue;
958 >                    }
959 >                    HashEntry<K,V>[] tab = segment.table;
960 >                    if (tab != null) {
961 >                        for (int i = 0 ; i < tab.length; i++) {
962 >                            HashEntry<K,V> e;
963 >                            for (e = entryAt(tab, i); e != null; e = e.next) {
964 >                                V v = e.value;
965 >                                if (v != null && value.equals(v))
966 >                                    return true;
967 >                            }
968 >                        }
969 >                        sum += segment.modCount;
970 >                    }
971                  }
972 +                if ((retries >= 0 && sum == previousSum) || lockCount > 0)
973 +                    return false;
974 +                previousSum = sum;
975              }
976          } finally {
977 <            for (int i = 0; i < segments.length; ++i)
978 <                segments[i].unlock();
977 >            for (int j = 0; j < lockCount; j++)
978 >                segments[j].unlock();
979          }
841        return found;
980      }
981  
982      /**
# Line 848 | Line 986 | public class ConcurrentHashMap<K, V> ext
986       * full compatibility with class {@link java.util.Hashtable},
987       * which supported this method prior to introduction of the
988       * Java Collections framework.
989 <
989 >     *
990       * @param  value a value to search for
991       * @return <tt>true</tt> if and only if some key maps to the
992       *         <tt>value</tt> argument in this table as
# Line 873 | Line 1011 | public class ConcurrentHashMap<K, V> ext
1011       *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1012       * @throws NullPointerException if the specified key or value is null
1013       */
1014 +    @SuppressWarnings("unchecked")
1015      public V put(K key, V value) {
1016 +        Segment<K,V> s;
1017          if (value == null)
1018              throw new NullPointerException();
1019 <        int hash = hash(key);
1020 <        return segmentFor(hash).put(key, hash, value, false);
1019 >        int hash = hash(key.hashCode());
1020 >        int j = (hash >>> segmentShift) & segmentMask;
1021 >        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1022 >             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1023 >            s = ensureSegment(j);
1024 >        return s.put(key, hash, value, false);
1025      }
1026  
1027      /**
# Line 887 | Line 1031 | public class ConcurrentHashMap<K, V> ext
1031       *         or <tt>null</tt> if there was no mapping for the key
1032       * @throws NullPointerException if the specified key or value is null
1033       */
1034 +    @SuppressWarnings("unchecked")
1035      public V putIfAbsent(K key, V value) {
1036 +        Segment<K,V> s;
1037          if (value == null)
1038              throw new NullPointerException();
1039 <        int hash = hash(key);
1040 <        return segmentFor(hash).put(key, hash, value, true);
1039 >        int hash = hash(key.hashCode());
1040 >        int j = (hash >>> segmentShift) & segmentMask;
1041 >        if ((s = (Segment<K,V>)UNSAFE.getObject
1042 >             (segments, (j << SSHIFT) + SBASE)) == null)
1043 >            s = ensureSegment(j);
1044 >        return s.put(key, hash, value, true);
1045      }
1046  
1047      /**
# Line 902 | Line 1052 | public class ConcurrentHashMap<K, V> ext
1052       * @param m mappings to be stored in this map
1053       */
1054      public void putAll(Map<? extends K, ? extends V> m) {
1055 <        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) m.entrySet().iterator(); it.hasNext(); ) {
906 <            Entry<? extends K, ? extends V> e = it.next();
1055 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1056              put(e.getKey(), e.getValue());
908        }
1057      }
1058  
1059      /**
# Line 914 | Line 1062 | public class ConcurrentHashMap<K, V> ext
1062       *
1063       * @param  key the key that needs to be removed
1064       * @return the previous value associated with <tt>key</tt>, or
1065 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
1065 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1066       * @throws NullPointerException if the specified key is null
1067       */
1068      public V remove(Object key) {
1069 <        int hash = hash(key);
1070 <        return segmentFor(hash).remove(key, hash, null);
1069 >        int hash = hash(key.hashCode());
1070 >        Segment<K,V> s = segmentForHash(hash);
1071 >        return s == null ? null : s.remove(key, hash, null);
1072      }
1073  
1074      /**
# Line 928 | Line 1077 | public class ConcurrentHashMap<K, V> ext
1077       * @throws NullPointerException if the specified key is null
1078       */
1079      public boolean remove(Object key, Object value) {
1080 <        if (value == null)
1081 <            return false;
1082 <        int hash = hash(key);
1083 <        return segmentFor(hash).remove(key, hash, value) != null;
1080 >        int hash = hash(key.hashCode());
1081 >        Segment<K,V> s;
1082 >        return value != null && (s = segmentForHash(hash)) != null &&
1083 >            s.remove(key, hash, value) != null;
1084      }
1085  
1086      /**
# Line 940 | Line 1089 | public class ConcurrentHashMap<K, V> ext
1089       * @throws NullPointerException if any of the arguments are null
1090       */
1091      public boolean replace(K key, V oldValue, V newValue) {
1092 +        int hash = hash(key.hashCode());
1093          if (oldValue == null || newValue == null)
1094              throw new NullPointerException();
1095 <        int hash = hash(key);
1096 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
1095 >        Segment<K,V> s = segmentForHash(hash);
1096 >        return s != null && s.replace(key, hash, oldValue, newValue);
1097      }
1098  
1099      /**
# Line 954 | Line 1104 | public class ConcurrentHashMap<K, V> ext
1104       * @throws NullPointerException if the specified key or value is null
1105       */
1106      public V replace(K key, V value) {
1107 +        int hash = hash(key.hashCode());
1108          if (value == null)
1109              throw new NullPointerException();
1110 <        int hash = hash(key);
1111 <        return segmentFor(hash).replace(key, hash, value);
1110 >        Segment<K,V> s = segmentForHash(hash);
1111 >        return s == null ? null : s.replace(key, hash, value);
1112      }
1113  
1114      /**
1115       * Removes all of the mappings from this map.
1116       */
1117      public void clear() {
1118 <        for (int i = 0; i < segments.length; ++i)
1119 <            segments[i].clear();
1118 >        final Segment<K,V>[] segments = this.segments;
1119 >        for (int j = 0; j < segments.length; ++j) {
1120 >            Segment<K,V> s = segmentAt(segments, j);
1121 >            if (s != null)
1122 >                s.clear();
1123 >        }
1124      }
1125  
1126      /**
# Line 1035 | Line 1190 | public class ConcurrentHashMap<K, V> ext
1190       * Returns an enumeration of the keys in this table.
1191       *
1192       * @return an enumeration of the keys in this table
1193 <     * @see #keySet
1193 >     * @see #keySet()
1194       */
1195      public Enumeration<K> keys() {
1196          return new KeyIterator();
# Line 1045 | Line 1200 | public class ConcurrentHashMap<K, V> ext
1200       * Returns an enumeration of the values in this table.
1201       *
1202       * @return an enumeration of the values in this table
1203 <     * @see #values
1203 >     * @see #values()
1204       */
1205      public Enumeration<V> elements() {
1206          return new ValueIterator();
# Line 1066 | Line 1221 | public class ConcurrentHashMap<K, V> ext
1221              advance();
1222          }
1223  
1224 <        public boolean hasMoreElements() { return hasNext(); }
1225 <
1224 >        /**
1225 >         * Sets nextEntry to first node of next non-empty table
1226 >         * (in backwards order, to simplify checks).
1227 >         */
1228          final void advance() {
1229 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1230 <                return;
1231 <
1232 <            while (nextTableIndex >= 0) {
1233 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1234 <                    return;
1235 <            }
1236 <
1237 <            while (nextSegmentIndex >= 0) {
1238 <                Segment<K,V> seg = segments[nextSegmentIndex--];
1082 <                if (seg.count != 0) {
1083 <                    currentTable = seg.table;
1084 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
1085 <                        if ( (nextEntry = currentTable[j]) != null) {
1086 <                            nextTableIndex = j - 1;
1087 <                            return;
1088 <                        }
1089 <                    }
1229 >            for (;;) {
1230 >                if (nextTableIndex >= 0) {
1231 >                    if ((nextEntry = entryAt(currentTable,
1232 >                                             nextTableIndex--)) != null)
1233 >                        break;
1234 >                }
1235 >                else if (nextSegmentIndex >= 0) {
1236 >                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
1237 >                    if (seg != null && (currentTable = seg.table) != null)
1238 >                        nextTableIndex = currentTable.length - 1;
1239                  }
1240 +                else
1241 +                    break;
1242              }
1243          }
1244  
1245 <        public boolean hasNext() { return nextEntry != null; }
1246 <
1247 <        HashEntry<K,V> nextEntry() {
1097 <            if (nextEntry == null)
1245 >        final HashEntry<K,V> nextEntry() {
1246 >            HashEntry<K,V> e = nextEntry;
1247 >            if (e == null)
1248                  throw new NoSuchElementException();
1249 <            lastReturned = nextEntry;
1250 <            advance();
1251 <            return lastReturned;
1249 >            lastReturned = e; // cannot assign until after null check
1250 >            if ((nextEntry = e.next) == null)
1251 >                advance();
1252 >            return e;
1253          }
1254  
1255 <        public void remove() {
1255 >        public final boolean hasNext() { return nextEntry != null; }
1256 >        public final boolean hasMoreElements() { return nextEntry != null; }
1257 >
1258 >        public final void remove() {
1259              if (lastReturned == null)
1260                  throw new IllegalStateException();
1261              ConcurrentHashMap.this.remove(lastReturned.key);
# Line 1109 | Line 1263 | public class ConcurrentHashMap<K, V> ext
1263          }
1264      }
1265  
1266 <    final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1267 <        public K next() { return super.nextEntry().key; }
1268 <        public K nextElement() { return super.nextEntry().key; }
1266 >    final class KeyIterator
1267 >        extends HashIterator
1268 >        implements Iterator<K>, Enumeration<K>
1269 >    {
1270 >        public final K next()        { return super.nextEntry().key; }
1271 >        public final K nextElement() { return super.nextEntry().key; }
1272      }
1273  
1274 <    final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1275 <        public V next() { return super.nextEntry().value; }
1276 <        public V nextElement() { return super.nextEntry().value; }
1274 >    final class ValueIterator
1275 >        extends HashIterator
1276 >        implements Iterator<V>, Enumeration<V>
1277 >    {
1278 >        public final V next()        { return super.nextEntry().value; }
1279 >        public final V nextElement() { return super.nextEntry().value; }
1280      }
1281  
1122
1123
1282      /**
1283 <     * Entry iterator. Exported Entry objects must write-through
1284 <     * changes in setValue, even if the nodes have been cloned. So we
1127 <     * cannot return internal HashEntry objects. Instead, the iterator
1128 <     * itself acts as a forwarding pseudo-entry.
1283 >     * Custom Entry class used by EntryIterator.next(), that relays
1284 >     * setValue changes to the underlying map.
1285       */
1286 <    final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1287 <        public Map.Entry<K,V> next() {
1288 <            nextEntry();
1289 <            return this;
1134 <        }
1286 >    final class WriteThroughEntry
1287 >        extends AbstractMap.SimpleEntry<K,V>
1288 >    {
1289 >        static final long serialVersionUID = 7249069246763182397L;
1290  
1291 <        public K getKey() {
1292 <            if (lastReturned == null)
1138 <                throw new IllegalStateException("Entry was removed");
1139 <            return lastReturned.key;
1140 <        }
1141 <
1142 <        public V getValue() {
1143 <            if (lastReturned == null)
1144 <                throw new IllegalStateException("Entry was removed");
1145 <            return ConcurrentHashMap.this.get(lastReturned.key);
1291 >        WriteThroughEntry(K k, V v) {
1292 >            super(k,v);
1293          }
1294  
1295 +        /**
1296 +         * Sets our entry's value and writes through to the map. The
1297 +         * value to return is somewhat arbitrary here. Since a
1298 +         * WriteThroughEntry does not necessarily track asynchronous
1299 +         * changes, the most recent "previous" value could be
1300 +         * different from what we return (or could even have been
1301 +         * removed in which case the put will re-establish). We do not
1302 +         * and cannot guarantee more.
1303 +         */
1304          public V setValue(V value) {
1305 <            if (lastReturned == null)
1306 <                throw new IllegalStateException("Entry was removed");
1307 <            return ConcurrentHashMap.this.put(lastReturned.key, value);
1308 <        }
1153 <
1154 <        public boolean equals(Object o) {
1155 <            // If not acting as entry, just use default.
1156 <            if (lastReturned == null)
1157 <                return super.equals(o);
1158 <            if (!(o instanceof Map.Entry))
1159 <                return false;
1160 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1161 <            return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1162 <        }
1163 <
1164 <        public int hashCode() {
1165 <            // If not acting as entry, just use default.
1166 <            if (lastReturned == null)
1167 <                return super.hashCode();
1168 <
1169 <            Object k = getKey();
1170 <            Object v = getValue();
1171 <            return ((k == null) ? 0 : k.hashCode()) ^
1172 <                   ((v == null) ? 0 : v.hashCode());
1173 <        }
1174 <
1175 <        public String toString() {
1176 <            // If not acting as entry, just use default.
1177 <            if (lastReturned == null)
1178 <                return super.toString();
1179 <            else
1180 <                return getKey() + "=" + getValue();
1305 >            if (value == null) throw new NullPointerException();
1306 >            V v = super.setValue(value);
1307 >            ConcurrentHashMap.this.put(getKey(), value);
1308 >            return v;
1309          }
1310 +    }
1311  
1312 <        boolean eq(Object o1, Object o2) {
1313 <            return (o1 == null ? o2 == null : o1.equals(o2));
1312 >    final class EntryIterator
1313 >        extends HashIterator
1314 >        implements Iterator<Entry<K,V>>
1315 >    {
1316 >        public Map.Entry<K,V> next() {
1317 >            HashEntry<K,V> e = super.nextEntry();
1318 >            return new WriteThroughEntry(e.key, e.value);
1319          }
1186
1320      }
1321  
1322      final class KeySet extends AbstractSet<K> {
# Line 1193 | Line 1326 | public class ConcurrentHashMap<K, V> ext
1326          public int size() {
1327              return ConcurrentHashMap.this.size();
1328          }
1329 +        public boolean isEmpty() {
1330 +            return ConcurrentHashMap.this.isEmpty();
1331 +        }
1332          public boolean contains(Object o) {
1333              return ConcurrentHashMap.this.containsKey(o);
1334          }
# Line 1202 | Line 1338 | public class ConcurrentHashMap<K, V> ext
1338          public void clear() {
1339              ConcurrentHashMap.this.clear();
1340          }
1205        public Object[] toArray() {
1206            Collection<K> c = new ArrayList<K>();
1207            for (Iterator<K> i = iterator(); i.hasNext(); )
1208                c.add(i.next());
1209            return c.toArray();
1210        }
1211        public <T> T[] toArray(T[] a) {
1212            Collection<K> c = new ArrayList<K>();
1213            for (Iterator<K> i = iterator(); i.hasNext(); )
1214                c.add(i.next());
1215            return c.toArray(a);
1216        }
1341      }
1342  
1343      final class Values extends AbstractCollection<V> {
# Line 1223 | Line 1347 | public class ConcurrentHashMap<K, V> ext
1347          public int size() {
1348              return ConcurrentHashMap.this.size();
1349          }
1350 +        public boolean isEmpty() {
1351 +            return ConcurrentHashMap.this.isEmpty();
1352 +        }
1353          public boolean contains(Object o) {
1354              return ConcurrentHashMap.this.containsValue(o);
1355          }
1356          public void clear() {
1357              ConcurrentHashMap.this.clear();
1358          }
1232        public Object[] toArray() {
1233            Collection<V> c = new ArrayList<V>();
1234            for (Iterator<V> i = iterator(); i.hasNext(); )
1235                c.add(i.next());
1236            return c.toArray();
1237        }
1238        public <T> T[] toArray(T[] a) {
1239            Collection<V> c = new ArrayList<V>();
1240            for (Iterator<V> i = iterator(); i.hasNext(); )
1241                c.add(i.next());
1242            return c.toArray(a);
1243        }
1359      }
1360  
1361      final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
# Line 1263 | Line 1378 | public class ConcurrentHashMap<K, V> ext
1378          public int size() {
1379              return ConcurrentHashMap.this.size();
1380          }
1381 +        public boolean isEmpty() {
1382 +            return ConcurrentHashMap.this.isEmpty();
1383 +        }
1384          public void clear() {
1385              ConcurrentHashMap.this.clear();
1386          }
1269        public Object[] toArray() {
1270            // Since we don't ordinarily have distinct Entry objects, we
1271            // must pack elements using exportable SimpleEntry
1272            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1273            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1274                c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1275            return c.toArray();
1276        }
1277        public <T> T[] toArray(T[] a) {
1278            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1279            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1280                c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1281            return c.toArray(a);
1282        }
1283
1387      }
1388  
1389      /* ---------------- Serialization Support -------------- */
1390  
1391      /**
1392 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1393 <     * stream (i.e., serialize it).
1392 >     * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
1393 >     * stream (i.e., serializes it).
1394       * @param s the stream
1395       * @serialData
1396       * the key (Object) and value (Object)
1397       * for each key-value mapping, followed by a null pair.
1398       * The key-value mappings are emitted in no particular order.
1399       */
1400 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
1400 >    private void writeObject(java.io.ObjectOutputStream s)
1401 >            throws java.io.IOException {
1402 >        // force all segments for serialization compatibility
1403 >        for (int k = 0; k < segments.length; ++k)
1404 >            ensureSegment(k);
1405          s.defaultWriteObject();
1406  
1407 +        final Segment<K,V>[] segments = this.segments;
1408          for (int k = 0; k < segments.length; ++k) {
1409 <            Segment<K,V> seg = segments[k];
1409 >            Segment<K,V> seg = segmentAt(segments, k);
1410              seg.lock();
1411              try {
1412                  HashEntry<K,V>[] tab = seg.table;
1413                  for (int i = 0; i < tab.length; ++i) {
1414 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1414 >                    HashEntry<K,V> e;
1415 >                    for (e = entryAt(tab, i); e != null; e = e.next) {
1416                          s.writeObject(e.key);
1417                          s.writeObject(e.value);
1418                      }
# Line 1317 | Line 1426 | public class ConcurrentHashMap<K, V> ext
1426      }
1427  
1428      /**
1429 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1430 <     * stream (i.e., deserialize it).
1429 >     * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
1430 >     * stream (i.e., deserializes it).
1431       * @param s the stream
1432       */
1433 +    @SuppressWarnings("unchecked")
1434      private void readObject(java.io.ObjectInputStream s)
1435 <        throws IOException, ClassNotFoundException  {
1435 >            throws java.io.IOException, ClassNotFoundException {
1436          s.defaultReadObject();
1437  
1438 <        // Initialize each segment to be minimally sized, and let grow.
1439 <        for (int i = 0; i < segments.length; ++i) {
1440 <            segments[i].setTable(new HashEntry[1]);
1438 >        // Re-initialize segments to be minimally sized, and let grow.
1439 >        int cap = MIN_SEGMENT_TABLE_CAPACITY;
1440 >        final Segment<K,V>[] segments = this.segments;
1441 >        for (int k = 0; k < segments.length; ++k) {
1442 >            Segment<K,V> seg = segments[k];
1443 >            if (seg != null) {
1444 >                seg.threshold = (int)(cap * seg.loadFactor);
1445 >                seg.table = (HashEntry<K,V>[]) new HashEntry<?,?>[cap];
1446 >            }
1447          }
1448  
1449          // Read the keys and values, and put the mappings in the table
# Line 1339 | Line 1455 | public class ConcurrentHashMap<K, V> ext
1455              put(key, value);
1456          }
1457      }
1458 +
1459 +    // Unsafe mechanics
1460 +    private static final sun.misc.Unsafe UNSAFE;
1461 +    private static final long SBASE;
1462 +    private static final int SSHIFT;
1463 +    private static final long TBASE;
1464 +    private static final int TSHIFT;
1465 +
1466 +    static {
1467 +        int ss, ts;
1468 +        try {
1469 +            UNSAFE = sun.misc.Unsafe.getUnsafe();
1470 +            Class<?> tc = HashEntry[].class;
1471 +            Class<?> sc = Segment[].class;
1472 +            TBASE = UNSAFE.arrayBaseOffset(tc);
1473 +            SBASE = UNSAFE.arrayBaseOffset(sc);
1474 +            ts = UNSAFE.arrayIndexScale(tc);
1475 +            ss = UNSAFE.arrayIndexScale(sc);
1476 +        } catch (Exception e) {
1477 +            throw new Error(e);
1478 +        }
1479 +        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1480 +            throw new Error("data type scale not a power of two");
1481 +        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1482 +        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
1483 +    }
1484 +
1485   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines