ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.143 by jsr166, Fri Nov 9 03:30:03 2012 UTC vs.
Revision 1.169 by jsr166, Mon Jan 28 06:58:52 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 import java.util.concurrent.atomic.LongAdder;
8   import java.util.concurrent.ForkJoinPool;
9 < import java.util.concurrent.ForkJoinTask;
9 > import java.util.concurrent.CountedCompleter;
10 > import java.util.function.*;
11 > import java.util.Spliterator;
12 > import java.util.stream.Stream;
13 > import java.util.stream.Streams;
14  
15   import java.util.Comparator;
16   import java.util.Arrays;
# Line 24 | Line 27 | import java.util.Enumeration;
27   import java.util.ConcurrentModificationException;
28   import java.util.NoSuchElementException;
29   import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
30   import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 + import java.util.concurrent.atomic.AtomicInteger;
32   import java.util.concurrent.atomic.AtomicReference;
31
33   import java.io.Serializable;
34  
35   /**
# Line 43 | Line 44 | import java.io.Serializable;
44   * interoperable with {@code Hashtable} in programs that rely on its
45   * thread safety but not on its synchronization details.
46   *
47 < * <p> Retrieval operations (including {@code get}) generally do not
47 > * <p>Retrieval operations (including {@code get}) generally do not
48   * block, so may overlap with update operations (including {@code put}
49   * and {@code remove}). Retrievals reflect the results of the most
50   * recently <em>completed</em> update operations holding upon their
# Line 64 | Line 65 | import java.io.Serializable;
65   * that may be adequate for monitoring or estimation purposes, but not
66   * for program control.
67   *
68 < * <p> The table is dynamically expanded when there are too many
68 > * <p>The table is dynamically expanded when there are too many
69   * collisions (i.e., keys that have distinct hash codes but fall into
70   * the same slot modulo the table size), with the expected average
71   * effect of maintaining roughly two bins per mapping (corresponding
# Line 85 | Line 86 | import java.io.Serializable;
86   * {@code hashCode()} is a sure way to slow down performance of any
87   * hash table.
88   *
89 < * <p> A {@link Set} projection of a ConcurrentHashMap may be created
89 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91   * (using {@link #keySet(Object)} when only keys are of interest, and the
92   * mapped values are (perhaps transiently) not used or all take the
93   * same mapping value.
94   *
95 < * <p> A ConcurrentHashMap can be used as scalable frequency map (a
96 < * form of histogram or multiset) by using {@link LongAdder} values
97 < * and initializing via {@link #computeIfAbsent}. For example, to add
98 < * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
99 < * can use {@code freqs.computeIfAbsent(k -> new
100 < * LongAdder()).increment();}
95 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 > * form of histogram or multiset) by using {@link
97 > * java.util.concurrent.atomic.LongAdder} values and initializing via
98 > * {@link #computeIfAbsent}. For example, to add a count to a {@code
99 > * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
100 > * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101   *
102   * <p>This class and its views and iterators implement all of the
103   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104   * interfaces.
105   *
106 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
106 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107   * does <em>not</em> allow {@code null} to be used as a key or value.
108   *
109 < * <p>ConcurrentHashMaps support parallel operations using the {@link
110 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
111 < * are available in class {@link ForkJoinTasks}). These operations are
112 < * designed to be safely, and often sensibly, applied even with maps
113 < * that are being concurrently updated by other threads; for example,
114 < * when computing a snapshot summary of the values in a shared
115 < * registry.  There are three kinds of operation, each with four
116 < * forms, accepting functions with Keys, Values, Entries, and (Key,
117 < * Value) arguments and/or return values. (The first three forms are
118 < * also available via the {@link #keySet()}, {@link #values()} and
119 < * {@link #entrySet()} views). Because the elements of a
120 < * ConcurrentHashMap are not ordered in any particular way, and may be
121 < * processed in different orders in different parallel executions, the
122 < * correctness of supplied functions should not depend on any
123 < * ordering, or on any other objects or values that may transiently
124 < * change while computation is in progress; and except for forEach
125 < * actions, should ideally be side-effect-free.
109 > * <p>ConcurrentHashMaps support sequential and parallel operations
110 > * bulk operations. (Parallel forms use the {@link
111 > * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 > * contexts are available in class {@link ForkJoinTasks}. These
113 > * operations are designed to be safely, and often sensibly, applied
114 > * even with maps that are being concurrently updated by other
115 > * threads; for example, when computing a snapshot summary of the
116 > * values in a shared registry.  There are three kinds of operation,
117 > * each with four forms, accepting functions with Keys, Values,
118 > * Entries, and (Key, Value) arguments and/or return values. Because
119 > * the elements of a ConcurrentHashMap are not ordered in any
120 > * particular way, and may be processed in different orders in
121 > * different parallel executions, the correctness of supplied
122 > * functions should not depend on any ordering, or on any other
123 > * objects or values that may transiently change while computation is
124 > * in progress; and except for forEach actions, should ideally be
125 > * side-effect-free.
126   *
127   * <ul>
128   * <li> forEach: Perform a given action on each element.
# Line 187 | Line 188 | import java.io.Serializable;
188   * arguments can be supplied using {@code new
189   * AbstractMap.SimpleEntry(k,v)}.
190   *
191 < * <p> Bulk operations may complete abruptly, throwing an
191 > * <p>Bulk operations may complete abruptly, throwing an
192   * exception encountered in the application of a supplied
193   * function. Bear in mind when handling such exceptions that other
194   * concurrently executing functions could also have thrown
195   * exceptions, or would have done so if the first exception had
196   * not occurred.
197   *
198 < * <p>Parallel speedups for bulk operations compared to sequential
199 < * processing are common but not guaranteed.  Operations involving
200 < * brief functions on small maps may execute more slowly than
201 < * sequential loops if the underlying work to parallelize the
202 < * computation is more expensive than the computation itself.
203 < * Similarly, parallelization may not lead to much actual parallelism
204 < * if all processors are busy performing unrelated tasks.
204 < *
205 < * <p> All arguments to all task methods must be non-null.
198 > * <p>Speedups for parallel compared to sequential forms are common
199 > * but not guaranteed.  Parallel operations involving brief functions
200 > * on small maps may execute more slowly than sequential forms if the
201 > * underlying work to parallelize the computation is more expensive
202 > * than the computation itself.  Similarly, parallelization may not
203 > * lead to much actual parallelism if all processors are busy
204 > * performing unrelated tasks.
205   *
206 < * <p><em>jsr166e note: During transition, this class
208 < * uses nested functional interfaces with different names but the
209 < * same forms as those expected for JDK8.<em>
206 > * <p>All arguments to all task methods must be non-null.
207   *
208   * <p>This class is a member of the
209   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 221 | Line 218 | public class ConcurrentHashMap<K, V>
218      implements ConcurrentMap<K, V>, Serializable {
219      private static final long serialVersionUID = 7249069246763182397L;
220  
224    /**
225     * A partitionable iterator. A Spliterator can be traversed
226     * directly, but can also be partitioned (before traversal) by
227     * creating another Spliterator that covers a non-overlapping
228     * portion of the elements, and so may be amenable to parallel
229     * execution.
230     *
231     * <p> This interface exports a subset of expected JDK8
232     * functionality.
233     *
234     * <p>Sample usage: Here is one (of the several) ways to compute
235     * the sum of the values held in a map using the ForkJoin
236     * framework. As illustrated here, Spliterators are well suited to
237     * designs in which a task repeatedly splits off half its work
238     * into forked subtasks until small enough to process directly,
239     * and then joins these subtasks. Variants of this style can also
240     * be used in completion-based designs.
241     *
242     * <pre>
243     * {@code ConcurrentHashMap<String, Long> m = ...
244     * // split as if have 8 * parallelism, for load balance
245     * int n = m.size();
246     * int p = aForkJoinPool.getParallelism() * 8;
247     * int split = (n < p)? n : p;
248     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
249     * // ...
250     * static class SumValues extends RecursiveTask<Long> {
251     *   final Spliterator<Long> s;
252     *   final int split;             // split while > 1
253     *   final SumValues nextJoin;    // records forked subtasks to join
254     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
255     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
256     *   }
257     *   public Long compute() {
258     *     long sum = 0;
259     *     SumValues subtasks = null; // fork subtasks
260     *     for (int s = split >>> 1; s > 0; s >>>= 1)
261     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
262     *     while (s.hasNext())        // directly process remaining elements
263     *       sum += s.next();
264     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
265     *       sum += t.join();         // collect subtask results
266     *     return sum;
267     *   }
268     * }
269     * }</pre>
270     */
271    public static interface Spliterator<T> extends Iterator<T> {
272        /**
273         * Returns a Spliterator covering approximately half of the
274         * elements, guaranteed not to overlap with those subsequently
275         * returned by this Spliterator.  After invoking this method,
276         * the current Spliterator will <em>not</em> produce any of
277         * the elements of the returned Spliterator, but the two
278         * Spliterators together will produce all of the elements that
279         * would have been produced by this Spliterator had this
280         * method not been called. The exact number of elements
281         * produced by the returned Spliterator is not guaranteed, and
282         * may be zero (i.e., with {@code hasNext()} reporting {@code
283         * false}) if this Spliterator cannot be further split.
284         *
285         * @return a Spliterator covering approximately half of the
286         * elements
287         * @throws IllegalStateException if this Spliterator has
288         * already commenced traversing elements
289         */
290        Spliterator<T> split();
291    }
292
293
221      /*
222       * Overview:
223       *
# Line 301 | Line 228 | public class ConcurrentHashMap<K, V>
228       * the same or better than java.util.HashMap, and to support high
229       * initial insertion rates on an empty table by many threads.
230       *
231 <     * Each key-value mapping is held in a Node.  Because Node fields
232 <     * can contain special values, they are defined using plain Object
233 <     * types. Similarly in turn, all internal methods that use them
234 <     * work off Object types. And similarly, so do the internal
235 <     * methods of auxiliary iterator and view classes.  All public
236 <     * generic typed methods relay in/out of these internal methods,
237 <     * supplying null-checks and casts as needed. This also allows
238 <     * many of the public methods to be factored into a smaller number
239 <     * of internal methods (although sadly not so for the five
313 <     * variants of put-related operations). The validation-based
314 <     * approach explained below leads to a lot of code sprawl because
231 >     * Each key-value mapping is held in a Node.  Because Node key
232 >     * fields can contain special values, they are defined using plain
233 >     * Object types (not type "K"). This leads to a lot of explicit
234 >     * casting (and many explicit warning suppressions to tell
235 >     * compilers not to complain about it). It also allows some of the
236 >     * public methods to be factored into a smaller number of internal
237 >     * methods (although sadly not so for the five variants of
238 >     * put-related operations). The validation-based approach
239 >     * explained below leads to a lot of code sprawl because
240       * retry-control precludes factoring into smaller methods.
241       *
242       * The table is lazily initialized to a power-of-two size upon the
# Line 325 | Line 250 | public class ConcurrentHashMap<K, V>
250       * as lookups check hash code and non-nullness of value before
251       * checking key equality.
252       *
253 <     * We use the top two bits of Node hash fields for control
254 <     * purposes -- they are available anyway because of addressing
255 <     * constraints.  As explained further below, these top bits are
256 <     * used as follows:
257 <     *  00 - Normal
258 <     *  01 - Locked
334 <     *  11 - Locked and may have a thread waiting for lock
335 <     *  10 - Node is a forwarding node
336 <     *
337 <     * The lower 30 bits of each Node's hash field contain a
338 <     * transformation of the key's hash code, except for forwarding
339 <     * nodes, for which the lower bits are zero (and so always have
340 <     * hash field == MOVED).
253 >     * We use the top (sign) bit of Node hash fields for control
254 >     * purposes -- it is available anyway because of addressing
255 >     * constraints.  Nodes with negative hash fields are forwarding
256 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
257 >     * of each normal Node's hash field contain a transformation of
258 >     * the key's hash code.
259       *
260       * Insertion (via put or its variants) of the first node in an
261       * empty bin is performed by just CASing it to the bin.  This is
# Line 346 | Line 264 | public class ConcurrentHashMap<K, V>
264       * delete, and replace) require locks.  We do not want to waste
265       * the space required to associate a distinct lock object with
266       * each bin, so instead use the first node of a bin list itself as
267 <     * a lock. Blocking support for these locks relies on the builtin
268 <     * "synchronized" monitors.  However, we also need a tryLock
351 <     * construction, so we overlay these by using bits of the Node
352 <     * hash field for lock control (see above), and so normally use
353 <     * builtin monitors only for blocking and signalling using
354 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
267 >     * a lock. Locking support for these locks relies on builtin
268 >     * "synchronized" monitors.
269       *
270       * Using the first node of a list as a lock does not by itself
271       * suffice though: When a node is locked, any update must first
# Line 413 | Line 327 | public class ConcurrentHashMap<K, V>
327       * iterators in the same way.
328       *
329       * The table is resized when occupancy exceeds a percentage
330 <     * threshold (nominally, 0.75, but see below).  Only a single
331 <     * thread performs the resize (using field "sizeCtl", to arrange
332 <     * exclusion), but the table otherwise remains usable for reads
333 <     * and updates. Resizing proceeds by transferring bins, one by
334 <     * one, from the table to the next table.  Because we are using
335 <     * power-of-two expansion, the elements from each bin must either
336 <     * stay at same index, or move with a power of two offset. We
337 <     * eliminate unnecessary node creation by catching cases where old
338 <     * nodes can be reused because their next fields won't change.  On
339 <     * average, only about one-sixth of them need cloning when a table
340 <     * doubles. The nodes they replace will be garbage collectable as
341 <     * soon as they are no longer referenced by any reader thread that
342 <     * may be in the midst of concurrently traversing table.  Upon
343 <     * transfer, the old table bin contains only a special forwarding
344 <     * node (with hash field "MOVED") that contains the next table as
345 <     * its key. On encountering a forwarding node, access and update
346 <     * operations restart, using the new table.
347 <     *
348 <     * Each bin transfer requires its bin lock. However, unlike other
349 <     * cases, a transfer can skip a bin if it fails to acquire its
350 <     * lock, and revisit it later (unless it is a TreeBin). Method
351 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
352 <     * have been skipped because of failure to acquire a lock, and
353 <     * blocks only if none are available (i.e., only very rarely).
354 <     * The transfer operation must also ensure that all accessible
355 <     * bins in both the old and new table are usable by any traversal.
356 <     * When there are no lock acquisition failures, this is arranged
357 <     * simply by proceeding from the last bin (table.length - 1) up
358 <     * towards the first.  Upon seeing a forwarding node, traversals
359 <     * (see class Iter) arrange to move to the new table
360 <     * without revisiting nodes.  However, when any node is skipped
361 <     * during a transfer, all earlier table bins may have become
362 <     * visible, so are initialized with a reverse-forwarding node back
363 <     * to the old table until the new ones are established. (This
364 <     * sometimes requires transiently locking a forwarding node, which
365 <     * is possible under the above encoding.) These more expensive
366 <     * mechanics trigger only when necessary.
330 >     * threshold (nominally, 0.75, but see below).  Any thread
331 >     * noticing an overfull bin may assist in resizing after the
332 >     * initiating thread allocates and sets up the replacement
333 >     * array. However, rather than stalling, these other threads may
334 >     * proceed with insertions etc.  The use of TreeBins shields us
335 >     * from the worst case effects of overfilling while resizes are in
336 >     * progress.  Resizing proceeds by transferring bins, one by one,
337 >     * from the table to the next table. To enable concurrency, the
338 >     * next table must be (incrementally) prefilled with place-holders
339 >     * serving as reverse forwarders to the old table.  Because we are
340 >     * using power-of-two expansion, the elements from each bin must
341 >     * either stay at same index, or move with a power of two
342 >     * offset. We eliminate unnecessary node creation by catching
343 >     * cases where old nodes can be reused because their next fields
344 >     * won't change.  On average, only about one-sixth of them need
345 >     * cloning when a table doubles. The nodes they replace will be
346 >     * garbage collectable as soon as they are no longer referenced by
347 >     * any reader thread that may be in the midst of concurrently
348 >     * traversing table.  Upon transfer, the old table bin contains
349 >     * only a special forwarding node (with hash field "MOVED") that
350 >     * contains the next table as its key. On encountering a
351 >     * forwarding node, access and update operations restart, using
352 >     * the new table.
353 >     *
354 >     * Each bin transfer requires its bin lock, which can stall
355 >     * waiting for locks while resizing. However, because other
356 >     * threads can join in and help resize rather than contend for
357 >     * locks, average aggregate waits become shorter as resizing
358 >     * progresses.  The transfer operation must also ensure that all
359 >     * accessible bins in both the old and new table are usable by any
360 >     * traversal.  This is arranged by proceeding from the last bin
361 >     * (table.length - 1) up towards the first.  Upon seeing a
362 >     * forwarding node, traversals (see class Traverser) arrange to
363 >     * move to the new table without revisiting nodes.  However, to
364 >     * ensure that no intervening nodes are skipped, bin splitting can
365 >     * only begin after the associated reverse-forwarders are in
366 >     * place.
367       *
368       * The traversal scheme also applies to partial traversals of
369       * ranges of bins (via an alternate Traverser constructor)
# Line 464 | Line 378 | public class ConcurrentHashMap<K, V>
378       * These cases attempt to override the initial capacity settings,
379       * but harmlessly fail to take effect in cases of races.
380       *
381 <     * The element count is maintained using a LongAdder, which avoids
382 <     * contention on updates but can encounter cache thrashing if read
383 <     * too frequently during concurrent access. To avoid reading so
384 <     * often, resizing is attempted either when a bin lock is
385 <     * contended, or upon adding to a bin already holding two or more
386 <     * nodes (checked before adding in the xIfAbsent methods, after
387 <     * adding in others). Under uniform hash distributions, the
388 <     * probability of this occurring at threshold is around 13%,
389 <     * meaning that only about 1 in 8 puts check threshold (and after
390 <     * resizing, many fewer do so). But this approximation has high
391 <     * variance for small table sizes, so we check on any collision
392 <     * for sizes <= 64. The bulk putAll operation further reduces
393 <     * contention by only committing count updates upon these size
394 <     * checks.
381 >     * The element count is maintained using a specialization of
382 >     * LongAdder. We need to incorporate a specialization rather than
383 >     * just use a LongAdder in order to access implicit
384 >     * contention-sensing that leads to creation of multiple
385 >     * Cells.  The counter mechanics avoid contention on
386 >     * updates but can encounter cache thrashing if read too
387 >     * frequently during concurrent access. To avoid reading so often,
388 >     * resizing under contention is attempted only upon adding to a
389 >     * bin already holding two or more nodes. Under uniform hash
390 >     * distributions, the probability of this occurring at threshold
391 >     * is around 13%, meaning that only about 1 in 8 puts check
392 >     * threshold (and after resizing, many fewer do so). The bulk
393 >     * putAll operation further reduces contention by only committing
394 >     * count updates upon these size checks.
395       *
396       * Maintaining API and serialization compatibility with previous
397       * versions of this class introduces several oddities. Mainly: We
# Line 528 | Line 442 | public class ConcurrentHashMap<K, V>
442      private static final float LOAD_FACTOR = 0.75f;
443  
444      /**
531     * The buffer size for skipped bins during transfers. The
532     * value is arbitrary but should be large enough to avoid
533     * most locking stalls during resizes.
534     */
535    private static final int TRANSFER_BUFFER_SIZE = 32;
536
537    /**
445       * The bin count threshold for using a tree rather than list for a
446       * bin.  The value reflects the approximate break-even point for
447       * using tree-based operations.
448       */
449      private static final int TREE_THRESHOLD = 8;
450  
451 +    /**
452 +     * Minimum number of rebinnings per transfer step. Ranges are
453 +     * subdivided to allow multiple resizer threads.  This value
454 +     * serves as a lower bound to avoid resizers encountering
455 +     * excessive memory contention.  The value should be at least
456 +     * DEFAULT_CAPACITY.
457 +     */
458 +    private static final int MIN_TRANSFER_STRIDE = 16;
459 +
460      /*
461 <     * Encodings for special uses of Node hash fields. See above for
546 <     * explanation.
461 >     * Encodings for Node hash fields. See above for explanation.
462       */
463      static final int MOVED     = 0x80000000; // hash field for forwarding nodes
464 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
465 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
466 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
464 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465 >
466 >    /** Number of CPUS, to place bounds on some sizings */
467 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
468 >
469 >    /* ---------------- Counters -------------- */
470 >
471 >    // Adapted from LongAdder and Striped64.
472 >    // See their internal docs for explanation.
473 >
474 >    // A padded cell for distributing counts
475 >    static final class Cell {
476 >        volatile long p0, p1, p2, p3, p4, p5, p6;
477 >        volatile long value;
478 >        volatile long q0, q1, q2, q3, q4, q5, q6;
479 >        Cell(long x) { value = x; }
480 >    }
481  
482      /* ---------------- Fields -------------- */
483  
# Line 556 | Line 485 | public class ConcurrentHashMap<K, V>
485       * The array of bins. Lazily initialized upon first insertion.
486       * Size is always a power of two. Accessed directly by iterators.
487       */
488 <    transient volatile Node[] table;
488 >    transient volatile Node<V>[] table;
489  
490      /**
491 <     * The counter maintaining number of elements.
491 >     * The next table to use; non-null only while resizing.
492       */
493 <    private transient final LongAdder counter;
493 >    private transient volatile Node<V>[] nextTable;
494 >
495 >    /**
496 >     * Base counter value, used mainly when there is no contention,
497 >     * but also as a fallback during table initialization
498 >     * races. Updated via CAS.
499 >     */
500 >    private transient volatile long baseCount;
501  
502      /**
503       * Table initialization and resizing control.  When negative, the
504 <     * table is being initialized or resized. Otherwise, when table is
505 <     * null, holds the initial table size to use upon creation, or 0
506 <     * for default. After initialization, holds the next element count
507 <     * value upon which to resize the table.
504 >     * table is being initialized or resized: -1 for initialization,
505 >     * else -(1 + the number of active resizing threads).  Otherwise,
506 >     * when table is null, holds the initial table size to use upon
507 >     * creation, or 0 for default. After initialization, holds the
508 >     * next element count value upon which to resize the table.
509       */
510      private transient volatile int sizeCtl;
511  
512 +    /**
513 +     * The next table index (plus one) to split while resizing.
514 +     */
515 +    private transient volatile int transferIndex;
516 +
517 +    /**
518 +     * The least available table index to split while resizing.
519 +     */
520 +    private transient volatile int transferOrigin;
521 +
522 +    /**
523 +     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 +     */
525 +    private transient volatile int cellsBusy;
526 +
527 +    /**
528 +     * Table of counter cells. When non-null, size is a power of 2.
529 +     */
530 +    private transient volatile Cell[] counterCells;
531 +
532      // views
533      private transient KeySetView<K,V> keySet;
534      private transient ValuesView<K,V> values;
# Line 594 | Line 551 | public class ConcurrentHashMap<K, V>
551       * inline assignments below.
552       */
553  
554 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
555 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
554 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 >        (Node<V>[] tab, int i) { // used by Traverser
556 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557      }
558  
559 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
560 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
559 >    private static final <V> boolean casTabAt
560 >        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562      }
563  
564 <    private static final void setTabAt(Node[] tab, int i, Node v) {
565 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
564 >    private static final <V> void setTabAt
565 >        (Node<V>[] tab, int i, Node<V> v) {
566 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567      }
568  
569      /* ---------------- Nodes -------------- */
# Line 618 | Line 578 | public class ConcurrentHashMap<K, V>
578       * before a val, but can only be used after checking val to be
579       * non-null.
580       */
581 <    static class Node {
582 <        volatile int hash;
581 >    static class Node<V> {
582 >        final int hash;
583          final Object key;
584 <        volatile Object val;
585 <        volatile Node next;
584 >        volatile V val;
585 >        volatile Node<V> next;
586  
587 <        Node(int hash, Object key, Object val, Node next) {
587 >        Node(int hash, Object key, V val, Node<V> next) {
588              this.hash = hash;
589              this.key = key;
590              this.val = val;
591              this.next = next;
592          }
633
634        /** CompareAndSet the hash field */
635        final boolean casHash(int cmp, int val) {
636            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
637        }
638
639        /** The number of spins before blocking for a lock */
640        static final int MAX_SPINS =
641            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
642
643        /**
644         * Spins a while if LOCKED bit set and this node is the first
645         * of its bin, and then sets WAITING bits on hash field and
646         * blocks (once) if they are still set.  It is OK for this
647         * method to return even if lock is not available upon exit,
648         * which enables these simple single-wait mechanics.
649         *
650         * The corresponding signalling operation is performed within
651         * callers: Upon detecting that WAITING has been set when
652         * unlocking lock (via a failed CAS from non-waiting LOCKED
653         * state), unlockers acquire the sync lock and perform a
654         * notifyAll.
655         *
656         * The initial sanity check on tab and bounds is not currently
657         * necessary in the only usages of this method, but enables
658         * use in other future contexts.
659         */
660        final void tryAwaitLock(Node[] tab, int i) {
661            if (tab != null && i >= 0 && i < tab.length) { // sanity check
662                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
663                int spins = MAX_SPINS, h;
664                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
665                    if (spins >= 0) {
666                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
667                        if (r >= 0 && --spins == 0)
668                            Thread.yield();  // yield before block
669                    }
670                    else if (casHash(h, h | WAITING)) {
671                        synchronized (this) {
672                            if (tabAt(tab, i) == this &&
673                                (hash & WAITING) == WAITING) {
674                                try {
675                                    wait();
676                                } catch (InterruptedException ie) {
677                                    try {
678                                        Thread.currentThread().interrupt();
679                                    } catch (SecurityException ignore) {
680                                    }
681                                }
682                            }
683                            else
684                                notifyAll(); // possibly won race vs signaller
685                        }
686                        break;
687                    }
688                }
689            }
690        }
691
692        // Unsafe mechanics for casHash
693        private static final sun.misc.Unsafe UNSAFE;
694        private static final long hashOffset;
695
696        static {
697            try {
698                UNSAFE = sun.misc.Unsafe.getUnsafe();
699                Class<?> k = Node.class;
700                hashOffset = UNSAFE.objectFieldOffset
701                    (k.getDeclaredField("hash"));
702            } catch (Exception e) {
703                throw new Error(e);
704            }
705        }
593      }
594  
595      /* ---------------- TreeBins -------------- */
# Line 710 | Line 597 | public class ConcurrentHashMap<K, V>
597      /**
598       * Nodes for use in TreeBins
599       */
600 <    static final class TreeNode extends Node {
601 <        TreeNode parent;  // red-black tree links
602 <        TreeNode left;
603 <        TreeNode right;
604 <        TreeNode prev;    // needed to unlink next upon deletion
600 >    static final class TreeNode<V> extends Node<V> {
601 >        TreeNode<V> parent;  // red-black tree links
602 >        TreeNode<V> left;
603 >        TreeNode<V> right;
604 >        TreeNode<V> prev;    // needed to unlink next upon deletion
605          boolean red;
606  
607 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
607 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608              super(hash, key, val, next);
609              this.parent = parent;
610          }
# Line 766 | Line 653 | public class ConcurrentHashMap<K, V>
653       * and writers. Since we don't need to export full Lock API, we
654       * just override the minimal AQS methods and use them directly.
655       */
656 <    static final class TreeBin extends AbstractQueuedSynchronizer {
656 >    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657          private static final long serialVersionUID = 2249069246763182397L;
658 <        transient TreeNode root;  // root of tree
659 <        transient TreeNode first; // head of next-pointer list
658 >        transient TreeNode<V> root;  // root of tree
659 >        transient TreeNode<V> first; // head of next-pointer list
660  
661          /* AQS overrides */
662          public final boolean isHeldExclusively() { return getState() > 0; }
# Line 800 | Line 687 | public class ConcurrentHashMap<K, V>
687          }
688  
689          /** From CLR */
690 <        private void rotateLeft(TreeNode p) {
690 >        private void rotateLeft(TreeNode<V> p) {
691              if (p != null) {
692 <                TreeNode r = p.right, pp, rl;
692 >                TreeNode<V> r = p.right, pp, rl;
693                  if ((rl = p.right = r.left) != null)
694                      rl.parent = p;
695                  if ((pp = r.parent = p.parent) == null)
# Line 817 | Line 704 | public class ConcurrentHashMap<K, V>
704          }
705  
706          /** From CLR */
707 <        private void rotateRight(TreeNode p) {
707 >        private void rotateRight(TreeNode<V> p) {
708              if (p != null) {
709 <                TreeNode l = p.left, pp, lr;
709 >                TreeNode<V> l = p.left, pp, lr;
710                  if ((lr = p.left = l.right) != null)
711                      lr.parent = p;
712                  if ((pp = l.parent = p.parent) == null)
# Line 837 | Line 724 | public class ConcurrentHashMap<K, V>
724           * Returns the TreeNode (or null if not found) for the given key
725           * starting at given root.
726           */
727 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
728 <            (int h, Object k, TreeNode p) {
727 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 >            (int h, Object k, TreeNode<V> p) {
729              Class<?> c = k.getClass();
730              while (p != null) {
731                  int dir, ph;  Object pk; Class<?> pc;
# Line 848 | Line 735 | public class ConcurrentHashMap<K, V>
735                      if (c != (pc = pk.getClass()) ||
736                          !(k instanceof Comparable) ||
737                          (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
739 <                        TreeNode r = null, s = null, pl, pr;
740 <                        if (dir >= 0) {
741 <                            if ((pl = p.left) != null && h <= pl.hash)
742 <                                s = pl;
738 >                        if ((dir = (c == pc) ? 0 :
739 >                             c.getName().compareTo(pc.getName())) == 0) {
740 >                            TreeNode<V> r = null, pl, pr; // check both sides
741 >                            if ((pr = p.right) != null && h >= pr.hash &&
742 >                                (r = getTreeNode(h, k, pr)) != null)
743 >                                return r;
744 >                            else if ((pl = p.left) != null && h <= pl.hash)
745 >                                dir = -1;
746 >                            else // nothing there
747 >                                return null;
748                          }
857                        else if ((pr = p.right) != null && h >= pr.hash)
858                            s = pr;
859                        if (s != null && (r = getTreeNode(h, k, s)) != null)
860                            return r;
749                      }
750                  }
751                  else
# Line 872 | Line 760 | public class ConcurrentHashMap<K, V>
760           * read-lock to call getTreeNode, but during failure to get
761           * lock, searches along next links.
762           */
763 <        final Object getValue(int h, Object k) {
764 <            Node r = null;
763 >        final V getValue(int h, Object k) {
764 >            Node<V> r = null;
765              int c = getState(); // Must read lock state first
766 <            for (Node e = first; e != null; e = e.next) {
766 >            for (Node<V> e = first; e != null; e = e.next) {
767                  if (c <= 0 && compareAndSetState(c, c - 1)) {
768                      try {
769                          r = getTreeNode(h, k, root);
# Line 884 | Line 772 | public class ConcurrentHashMap<K, V>
772                      }
773                      break;
774                  }
775 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
775 >                else if (e.hash == h && k.equals(e.key)) {
776                      r = e;
777                      break;
778                  }
# Line 898 | Line 786 | public class ConcurrentHashMap<K, V>
786           * Finds or adds a node.
787           * @return null if added
788           */
789 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
790 <            (int h, Object k, Object v) {
789 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 >            (int h, Object k, V v) {
791              Class<?> c = k.getClass();
792 <            TreeNode pp = root, p = null;
792 >            TreeNode<V> pp = root, p = null;
793              int dir = 0;
794              while (pp != null) { // find existing node or leaf to insert at
795                  int ph;  Object pk; Class<?> pc;
# Line 912 | Line 800 | public class ConcurrentHashMap<K, V>
800                      if (c != (pc = pk.getClass()) ||
801                          !(k instanceof Comparable) ||
802                          (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
804 <                        TreeNode r = null, s = null, pl, pr;
805 <                        if (dir >= 0) {
806 <                            if ((pl = p.left) != null && h <= pl.hash)
807 <                                s = pl;
803 >                        TreeNode<V> s = null, r = null, pr;
804 >                        if ((dir = (c == pc) ? 0 :
805 >                             c.getName().compareTo(pc.getName())) == 0) {
806 >                            if ((pr = p.right) != null && h >= pr.hash &&
807 >                                (r = getTreeNode(h, k, pr)) != null)
808 >                                return r;
809 >                            else // continue left
810 >                                dir = -1;
811                          }
812                          else if ((pr = p.right) != null && h >= pr.hash)
813                              s = pr;
# Line 929 | Line 820 | public class ConcurrentHashMap<K, V>
820                  pp = (dir > 0) ? p.right : p.left;
821              }
822  
823 <            TreeNode f = first;
824 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
823 >            TreeNode<V> f = first;
824 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825              if (p == null)
826                  root = x;
827              else { // attach and rebalance; adapted from CLR
828 <                TreeNode xp, xpp;
828 >                TreeNode<V> xp, xpp;
829                  if (f != null)
830                      f.prev = x;
831                  if (dir <= 0)
# Line 944 | Line 835 | public class ConcurrentHashMap<K, V>
835                  x.red = true;
836                  while (x != null && (xp = x.parent) != null && xp.red &&
837                         (xpp = xp.parent) != null) {
838 <                    TreeNode xppl = xpp.left;
838 >                    TreeNode<V> xppl = xpp.left;
839                      if (xp == xppl) {
840 <                        TreeNode y = xpp.right;
840 >                        TreeNode<V> y = xpp.right;
841                          if (y != null && y.red) {
842                              y.red = false;
843                              xp.red = false;
# Line 968 | Line 859 | public class ConcurrentHashMap<K, V>
859                          }
860                      }
861                      else {
862 <                        TreeNode y = xppl;
862 >                        TreeNode<V> y = xppl;
863                          if (y != null && y.red) {
864                              y.red = false;
865                              xp.red = false;
# Line 990 | Line 881 | public class ConcurrentHashMap<K, V>
881                          }
882                      }
883                  }
884 <                TreeNode r = root;
884 >                TreeNode<V> r = root;
885                  if (r != null && r.red)
886                      r.red = false;
887              }
# Line 1005 | Line 896 | public class ConcurrentHashMap<K, V>
896           * that are accessible independently of lock. So instead we
897           * swap the tree linkages.
898           */
899 <        final void deleteTreeNode(TreeNode p) {
900 <            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
901 <            TreeNode pred = p.prev;
899 >        final void deleteTreeNode(TreeNode<V> p) {
900 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 >            TreeNode<V> pred = p.prev;
902              if (pred == null)
903                  first = next;
904              else
905                  pred.next = next;
906              if (next != null)
907                  next.prev = pred;
908 <            TreeNode replacement;
909 <            TreeNode pl = p.left;
910 <            TreeNode pr = p.right;
908 >            TreeNode<V> replacement;
909 >            TreeNode<V> pl = p.left;
910 >            TreeNode<V> pr = p.right;
911              if (pl != null && pr != null) {
912 <                TreeNode s = pr, sl;
912 >                TreeNode<V> s = pr, sl;
913                  while ((sl = s.left) != null) // find successor
914                      s = sl;
915                  boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 <                TreeNode sr = s.right;
917 <                TreeNode pp = p.parent;
916 >                TreeNode<V> sr = s.right;
917 >                TreeNode<V> pp = p.parent;
918                  if (s == pr) { // p was s's direct parent
919                      p.parent = s;
920                      s.right = p;
921                  }
922                  else {
923 <                    TreeNode sp = s.parent;
923 >                    TreeNode<V> sp = s.parent;
924                      if ((p.parent = sp) != null) {
925                          if (s == sp.left)
926                              sp.left = p;
# Line 1054 | Line 945 | public class ConcurrentHashMap<K, V>
945              }
946              else
947                  replacement = (pl != null) ? pl : pr;
948 <            TreeNode pp = p.parent;
948 >            TreeNode<V> pp = p.parent;
949              if (replacement == null) {
950                  if (pp == null) {
951                      root = null;
# Line 1073 | Line 964 | public class ConcurrentHashMap<K, V>
964                  p.left = p.right = p.parent = null;
965              }
966              if (!p.red) { // rebalance, from CLR
967 <                TreeNode x = replacement;
967 >                TreeNode<V> x = replacement;
968                  while (x != null) {
969 <                    TreeNode xp, xpl;
969 >                    TreeNode<V> xp, xpl;
970                      if (x.red || (xp = x.parent) == null) {
971                          x.red = false;
972                          break;
973                      }
974                      if (x == (xpl = xp.left)) {
975 <                        TreeNode sib = xp.right;
975 >                        TreeNode<V> sib = xp.right;
976                          if (sib != null && sib.red) {
977                              sib.red = false;
978                              xp.red = true;
# Line 1091 | Line 982 | public class ConcurrentHashMap<K, V>
982                          if (sib == null)
983                              x = xp;
984                          else {
985 <                            TreeNode sl = sib.left, sr = sib.right;
985 >                            TreeNode<V> sl = sib.left, sr = sib.right;
986                              if ((sr == null || !sr.red) &&
987                                  (sl == null || !sl.red)) {
988                                  sib.red = true;
# Line 1103 | Line 994 | public class ConcurrentHashMap<K, V>
994                                          sl.red = false;
995                                      sib.red = true;
996                                      rotateRight(sib);
997 <                                    sib = (xp = x.parent) == null ? null : xp.right;
997 >                                    sib = (xp = x.parent) == null ?
998 >                                        null : xp.right;
999                                  }
1000                                  if (sib != null) {
1001                                      sib.red = (xp == null) ? false : xp.red;
# Line 1119 | Line 1011 | public class ConcurrentHashMap<K, V>
1011                          }
1012                      }
1013                      else { // symmetric
1014 <                        TreeNode sib = xpl;
1014 >                        TreeNode<V> sib = xpl;
1015                          if (sib != null && sib.red) {
1016                              sib.red = false;
1017                              xp.red = true;
# Line 1129 | Line 1021 | public class ConcurrentHashMap<K, V>
1021                          if (sib == null)
1022                              x = xp;
1023                          else {
1024 <                            TreeNode sl = sib.left, sr = sib.right;
1024 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1025                              if ((sl == null || !sl.red) &&
1026                                  (sr == null || !sr.red)) {
1027                                  sib.red = true;
# Line 1141 | Line 1033 | public class ConcurrentHashMap<K, V>
1033                                          sr.red = false;
1034                                      sib.red = true;
1035                                      rotateLeft(sib);
1036 <                                    sib = (xp = x.parent) == null ? null : xp.left;
1036 >                                    sib = (xp = x.parent) == null ?
1037 >                                        null : xp.left;
1038                                  }
1039                                  if (sib != null) {
1040                                      sib.red = (xp == null) ? false : xp.red;
# Line 1171 | Line 1064 | public class ConcurrentHashMap<K, V>
1064      /* ---------------- Collision reduction methods -------------- */
1065  
1066      /**
1067 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1067 >     * Spreads higher bits to lower, and also forces top bit to 0.
1068       * Because the table uses power-of-two masking, sets of hashes
1069       * that vary only in bits above the current mask will always
1070       * collide. (Among known examples are sets of Float keys holding
# Line 1189 | Line 1082 | public class ConcurrentHashMap<K, V>
1082      }
1083  
1084      /**
1085 <     * Replaces a list bin with a tree bin. Call only when locked.
1086 <     * Fails to replace if the given key is non-comparable or table
1087 <     * is, or needs, resizing.
1088 <     */
1089 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1090 <        if ((key instanceof Comparable) &&
1091 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1092 <            TreeBin t = new TreeBin();
1093 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1201 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1202 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1085 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1086 >     * only when locked.
1087 >     */
1088 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 >        if (key instanceof Comparable) {
1090 >            TreeBin<V> t = new TreeBin<V>();
1091 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 >                t.putTreeNode(e.hash, e.key, e.val);
1093 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094          }
1095      }
1096  
1097      /* ---------------- Internal access and update methods -------------- */
1098  
1099      /** Implementation for get and containsKey */
1100 <    private final Object internalGet(Object k) {
1100 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101          int h = spread(k.hashCode());
1102 <        retry: for (Node[] tab = table; tab != null;) {
1103 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1102 >        retry: for (Node<V>[] tab = table; tab != null;) {
1103 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 <                if ((eh = e.hash) == MOVED) {
1105 >                if ((eh = e.hash) < 0) {
1106                      if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1107 <                        return ((TreeBin)ek).getValue(h, k);
1108 <                    else {                        // restart with new table
1109 <                        tab = (Node[])ek;
1107 >                        return ((TreeBin<V>)ek).getValue(h, k);
1108 >                    else {                      // restart with new table
1109 >                        tab = (Node<V>[])ek;
1110                          continue retry;
1111                      }
1112                  }
1113 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1113 >                else if (eh == h && (ev = e.val) != null &&
1114                           ((ek = e.key) == k || k.equals(ek)))
1115                      return ev;
1116              }
# Line 1233 | Line 1124 | public class ConcurrentHashMap<K, V>
1124       * Replaces node value with v, conditional upon match of cv if
1125       * non-null.  If resulting value is null, delete.
1126       */
1127 <    private final Object internalReplace(Object k, Object v, Object cv) {
1127 >    @SuppressWarnings("unchecked") private final V internalReplace
1128 >        (Object k, V v, Object cv) {
1129          int h = spread(k.hashCode());
1130 <        Object oldVal = null;
1131 <        for (Node[] tab = table;;) {
1132 <            Node f; int i, fh; Object fk;
1130 >        V oldVal = null;
1131 >        for (Node<V>[] tab = table;;) {
1132 >            Node<V> f; int i, fh; Object fk;
1133              if (tab == null ||
1134                  (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135                  break;
1136 <            else if ((fh = f.hash) == MOVED) {
1136 >            else if ((fh = f.hash) < 0) {
1137                  if ((fk = f.key) instanceof TreeBin) {
1138 <                    TreeBin t = (TreeBin)fk;
1138 >                    TreeBin<V> t = (TreeBin<V>)fk;
1139                      boolean validated = false;
1140                      boolean deleted = false;
1141                      t.acquire(0);
1142                      try {
1143                          if (tabAt(tab, i) == f) {
1144                              validated = true;
1145 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1145 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146                              if (p != null) {
1147 <                                Object pv = p.val;
1147 >                                V pv = p.val;
1148                                  if (cv == null || cv == pv || cv.equals(pv)) {
1149                                      oldVal = pv;
1150                                      if ((p.val = v) == null) {
# Line 1267 | Line 1159 | public class ConcurrentHashMap<K, V>
1159                      }
1160                      if (validated) {
1161                          if (deleted)
1162 <                            counter.add(-1L);
1162 >                            addCount(-1L, -1);
1163                          break;
1164                      }
1165                  }
1166                  else
1167 <                    tab = (Node[])fk;
1167 >                    tab = (Node<V>[])fk;
1168              }
1169 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1169 >            else if (fh != h && f.next == null) // precheck
1170                  break;                          // rules out possible existence
1171 <            else if ((fh & LOCKED) != 0) {
1280 <                checkForResize();               // try resizing if can't get lock
1281 <                f.tryAwaitLock(tab, i);
1282 <            }
1283 <            else if (f.casHash(fh, fh | LOCKED)) {
1171 >            else {
1172                  boolean validated = false;
1173                  boolean deleted = false;
1174 <                try {
1174 >                synchronized (f) {
1175                      if (tabAt(tab, i) == f) {
1176                          validated = true;
1177 <                        for (Node e = f, pred = null;;) {
1178 <                            Object ek, ev;
1179 <                            if ((e.hash & HASH_BITS) == h &&
1177 >                        for (Node<V> e = f, pred = null;;) {
1178 >                            Object ek; V ev;
1179 >                            if (e.hash == h &&
1180                                  ((ev = e.val) != null) &&
1181                                  ((ek = e.key) == k || k.equals(ek))) {
1182                                  if (cv == null || cv == ev || cv.equals(ev)) {
1183                                      oldVal = ev;
1184                                      if ((e.val = v) == null) {
1185                                          deleted = true;
1186 <                                        Node en = e.next;
1186 >                                        Node<V> en = e.next;
1187                                          if (pred != null)
1188                                              pred.next = en;
1189                                          else
# Line 1309 | Line 1197 | public class ConcurrentHashMap<K, V>
1197                                  break;
1198                          }
1199                      }
1312                } finally {
1313                    if (!f.casHash(fh | LOCKED, fh)) {
1314                        f.hash = fh;
1315                        synchronized (f) { f.notifyAll(); };
1316                    }
1200                  }
1201                  if (validated) {
1202                      if (deleted)
1203 <                        counter.add(-1L);
1203 >                        addCount(-1L, -1);
1204                      break;
1205                  }
1206              }
# Line 1326 | Line 1209 | public class ConcurrentHashMap<K, V>
1209      }
1210  
1211      /*
1212 <     * Internal versions of the six insertion methods, each a
1213 <     * little more complicated than the last. All have
1331 <     * the same basic structure as the first (internalPut):
1212 >     * Internal versions of insertion methods
1213 >     * All have the same basic structure as the first (internalPut):
1214       *  1. If table uninitialized, create
1215       *  2. If bin empty, try to CAS new node
1216       *  3. If bin stale, use new table
1217       *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218       *  5. Lock and validate; if valid, scan and add or update
1219       *
1220 <     * The others interweave other checks and/or alternative actions:
1221 <     *  * Plain put checks for and performs resize after insertion.
1222 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1223 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1224 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1225 <     *    mechanics to deal with, calls, potential exceptions and null
1226 <     *    returns from function call.
1345 <     *  * compute uses the same function-call mechanics, but without
1346 <     *    the prescans
1347 <     *  * merge acts as putIfAbsent in the absent case, but invokes the
1348 <     *    update function if present
1349 <     *  * putAll attempts to pre-allocate enough table space
1350 <     *    and more lazily performs count updates and checks.
1351 <     *
1352 <     * Someday when details settle down a bit more, it might be worth
1353 <     * some factoring to reduce sprawl.
1220 >     * The putAll method differs mainly in attempting to pre-allocate
1221 >     * enough table space, and also more lazily performs count updates
1222 >     * and checks.
1223 >     *
1224 >     * Most of the function-accepting methods can't be factored nicely
1225 >     * because they require different functional forms, so instead
1226 >     * sprawl out similar mechanics.
1227       */
1228  
1229 <    /** Implementation for put */
1230 <    private final Object internalPut(Object k, Object v) {
1229 >    /** Implementation for put and putIfAbsent */
1230 >    @SuppressWarnings("unchecked") private final V internalPut
1231 >        (K k, V v, boolean onlyIfAbsent) {
1232 >        if (k == null || v == null) throw new NullPointerException();
1233          int h = spread(k.hashCode());
1234 <        int count = 0;
1235 <        for (Node[] tab = table;;) {
1236 <            int i; Node f; int fh; Object fk;
1234 >        int len = 0;
1235 >        for (Node<V>[] tab = table;;) {
1236 >            int i, fh; Node<V> f; Object fk; V fv;
1237              if (tab == null)
1238                  tab = initTable();
1239              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1240 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241                      break;                   // no lock when adding to empty bin
1242              }
1243 <            else if ((fh = f.hash) == MOVED) {
1243 >            else if ((fh = f.hash) < 0) {
1244                  if ((fk = f.key) instanceof TreeBin) {
1245 <                    TreeBin t = (TreeBin)fk;
1246 <                    Object oldVal = null;
1245 >                    TreeBin<V> t = (TreeBin<V>)fk;
1246 >                    V oldVal = null;
1247                      t.acquire(0);
1248                      try {
1249                          if (tabAt(tab, i) == f) {
1250 <                            count = 2;
1251 <                            TreeNode p = t.putTreeNode(h, k, v);
1250 >                            len = 2;
1251 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1252                              if (p != null) {
1253                                  oldVal = p.val;
1254 <                                p.val = v;
1254 >                                if (!onlyIfAbsent)
1255 >                                    p.val = v;
1256                              }
1257                          }
1258                      } finally {
1259                          t.release(0);
1260                      }
1261 <                    if (count != 0) {
1261 >                    if (len != 0) {
1262                          if (oldVal != null)
1263                              return oldVal;
1264                          break;
1265                      }
1266                  }
1267                  else
1268 <                    tab = (Node[])fk;
1268 >                    tab = (Node<V>[])fk;
1269              }
1270 <            else if ((fh & LOCKED) != 0) {
1271 <                checkForResize();
1272 <                f.tryAwaitLock(tab, i);
1273 <            }
1274 <            else if (f.casHash(fh, fh | LOCKED)) {
1275 <                Object oldVal = null;
1400 <                try {                        // needed in case equals() throws
1270 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 >                return fv;
1273 >            else {
1274 >                V oldVal = null;
1275 >                synchronized (f) {
1276                      if (tabAt(tab, i) == f) {
1277 <                        count = 1;
1278 <                        for (Node e = f;; ++count) {
1279 <                            Object ek, ev;
1280 <                            if ((e.hash & HASH_BITS) == h &&
1277 >                        len = 1;
1278 >                        for (Node<V> e = f;; ++len) {
1279 >                            Object ek; V ev;
1280 >                            if (e.hash == h &&
1281                                  (ev = e.val) != null &&
1282                                  ((ek = e.key) == k || k.equals(ek))) {
1283                                  oldVal = ev;
1284 <                                e.val = v;
1284 >                                if (!onlyIfAbsent)
1285 >                                    e.val = v;
1286                                  break;
1287                              }
1288 <                            Node last = e;
1288 >                            Node<V> last = e;
1289                              if ((e = e.next) == null) {
1290 <                                last.next = new Node(h, k, v, null);
1291 <                                if (count >= TREE_THRESHOLD)
1290 >                                last.next = new Node<V>(h, k, v, null);
1291 >                                if (len >= TREE_THRESHOLD)
1292                                      replaceWithTreeBin(tab, i, k);
1293                                  break;
1294                              }
1295                          }
1296                      }
1421                } finally {                  // unlock and signal if needed
1422                    if (!f.casHash(fh | LOCKED, fh)) {
1423                        f.hash = fh;
1424                        synchronized (f) { f.notifyAll(); };
1425                    }
1297                  }
1298 <                if (count != 0) {
1298 >                if (len != 0) {
1299                      if (oldVal != null)
1300                          return oldVal;
1430                    if (tab.length <= 64)
1431                        count = 2;
1432                    break;
1433                }
1434            }
1435        }
1436        counter.add(1L);
1437        if (count > 1)
1438            checkForResize();
1439        return null;
1440    }
1441
1442    /** Implementation for putIfAbsent */
1443    private final Object internalPutIfAbsent(Object k, Object v) {
1444        int h = spread(k.hashCode());
1445        int count = 0;
1446        for (Node[] tab = table;;) {
1447            int i; Node f; int fh; Object fk, fv;
1448            if (tab == null)
1449                tab = initTable();
1450            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1451                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1301                      break;
1453            }
1454            else if ((fh = f.hash) == MOVED) {
1455                if ((fk = f.key) instanceof TreeBin) {
1456                    TreeBin t = (TreeBin)fk;
1457                    Object oldVal = null;
1458                    t.acquire(0);
1459                    try {
1460                        if (tabAt(tab, i) == f) {
1461                            count = 2;
1462                            TreeNode p = t.putTreeNode(h, k, v);
1463                            if (p != null)
1464                                oldVal = p.val;
1465                        }
1466                    } finally {
1467                        t.release(0);
1468                    }
1469                    if (count != 0) {
1470                        if (oldVal != null)
1471                            return oldVal;
1472                        break;
1473                    }
1474                }
1475                else
1476                    tab = (Node[])fk;
1477            }
1478            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1479                     ((fk = f.key) == k || k.equals(fk)))
1480                return fv;
1481            else {
1482                Node g = f.next;
1483                if (g != null) { // at least 2 nodes -- search and maybe resize
1484                    for (Node e = g;;) {
1485                        Object ek, ev;
1486                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1487                            ((ek = e.key) == k || k.equals(ek)))
1488                            return ev;
1489                        if ((e = e.next) == null) {
1490                            checkForResize();
1491                            break;
1492                        }
1493                    }
1494                }
1495                if (((fh = f.hash) & LOCKED) != 0) {
1496                    checkForResize();
1497                    f.tryAwaitLock(tab, i);
1498                }
1499                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1500                    Object oldVal = null;
1501                    try {
1502                        if (tabAt(tab, i) == f) {
1503                            count = 1;
1504                            for (Node e = f;; ++count) {
1505                                Object ek, ev;
1506                                if ((e.hash & HASH_BITS) == h &&
1507                                    (ev = e.val) != null &&
1508                                    ((ek = e.key) == k || k.equals(ek))) {
1509                                    oldVal = ev;
1510                                    break;
1511                                }
1512                                Node last = e;
1513                                if ((e = e.next) == null) {
1514                                    last.next = new Node(h, k, v, null);
1515                                    if (count >= TREE_THRESHOLD)
1516                                        replaceWithTreeBin(tab, i, k);
1517                                    break;
1518                                }
1519                            }
1520                        }
1521                    } finally {
1522                        if (!f.casHash(fh | LOCKED, fh)) {
1523                            f.hash = fh;
1524                            synchronized (f) { f.notifyAll(); };
1525                        }
1526                    }
1527                    if (count != 0) {
1528                        if (oldVal != null)
1529                            return oldVal;
1530                        if (tab.length <= 64)
1531                            count = 2;
1532                        break;
1533                    }
1302                  }
1303              }
1304          }
1305 <        counter.add(1L);
1538 <        if (count > 1)
1539 <            checkForResize();
1305 >        addCount(1L, len);
1306          return null;
1307      }
1308  
1309      /** Implementation for computeIfAbsent */
1310 <    private final Object internalComputeIfAbsent(K k,
1311 <                                                 Fun<? super K, ?> mf) {
1310 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 >        (K k, Function<? super K, ? extends V> mf) {
1312 >        if (k == null || mf == null)
1313 >            throw new NullPointerException();
1314          int h = spread(k.hashCode());
1315 <        Object val = null;
1316 <        int count = 0;
1317 <        for (Node[] tab = table;;) {
1318 <            Node f; int i, fh; Object fk, fv;
1315 >        V val = null;
1316 >        int len = 0;
1317 >        for (Node<V>[] tab = table;;) {
1318 >            Node<V> f; int i; Object fk;
1319              if (tab == null)
1320                  tab = initTable();
1321              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1323 <                if (casTabAt(tab, i, null, node)) {
1324 <                    count = 1;
1325 <                    try {
1326 <                        if ((val = mf.apply(k)) != null)
1327 <                            node.val = val;
1328 <                    } finally {
1329 <                        if (val == null)
1330 <                            setTabAt(tab, i, null);
1331 <                        if (!node.casHash(fh, h)) {
1564 <                            node.hash = h;
1565 <                            synchronized (node) { node.notifyAll(); };
1322 >                Node<V> node = new Node<V>(h, k, null, null);
1323 >                synchronized (node) {
1324 >                    if (casTabAt(tab, i, null, node)) {
1325 >                        len = 1;
1326 >                        try {
1327 >                            if ((val = mf.apply(k)) != null)
1328 >                                node.val = val;
1329 >                        } finally {
1330 >                            if (val == null)
1331 >                                setTabAt(tab, i, null);
1332                          }
1333                      }
1334                  }
1335 <                if (count != 0)
1335 >                if (len != 0)
1336                      break;
1337              }
1338 <            else if ((fh = f.hash) == MOVED) {
1338 >            else if (f.hash < 0) {
1339                  if ((fk = f.key) instanceof TreeBin) {
1340 <                    TreeBin t = (TreeBin)fk;
1340 >                    TreeBin<V> t = (TreeBin<V>)fk;
1341                      boolean added = false;
1342                      t.acquire(0);
1343                      try {
1344                          if (tabAt(tab, i) == f) {
1345 <                            count = 1;
1346 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1345 >                            len = 1;
1346 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347                              if (p != null)
1348                                  val = p.val;
1349                              else if ((val = mf.apply(k)) != null) {
1350                                  added = true;
1351 <                                count = 2;
1351 >                                len = 2;
1352                                  t.putTreeNode(h, k, val);
1353                              }
1354                          }
1355                      } finally {
1356                          t.release(0);
1357                      }
1358 <                    if (count != 0) {
1358 >                    if (len != 0) {
1359                          if (!added)
1360                              return val;
1361                          break;
1362                      }
1363                  }
1364                  else
1365 <                    tab = (Node[])fk;
1365 >                    tab = (Node<V>[])fk;
1366              }
1601            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1602                     ((fk = f.key) == k || k.equals(fk)))
1603                return fv;
1367              else {
1368 <                Node g = f.next;
1369 <                if (g != null) {
1370 <                    for (Node e = g;;) {
1371 <                        Object ek, ev;
1372 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1610 <                            ((ek = e.key) == k || k.equals(ek)))
1611 <                            return ev;
1612 <                        if ((e = e.next) == null) {
1613 <                            checkForResize();
1614 <                            break;
1615 <                        }
1616 <                    }
1617 <                }
1618 <                if (((fh = f.hash) & LOCKED) != 0) {
1619 <                    checkForResize();
1620 <                    f.tryAwaitLock(tab, i);
1368 >                for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 >                    Object ek; V ev;
1370 >                    if (e.hash == h && (ev = e.val) != null &&
1371 >                        ((ek = e.key) == k || k.equals(ek)))
1372 >                        return ev;
1373                  }
1374 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1375 <                    boolean added = false;
1376 <                    try {
1377 <                        if (tabAt(tab, i) == f) {
1378 <                            count = 1;
1379 <                            for (Node e = f;; ++count) {
1380 <                                Object ek, ev;
1381 <                                if ((e.hash & HASH_BITS) == h &&
1382 <                                    (ev = e.val) != null &&
1383 <                                    ((ek = e.key) == k || k.equals(ek))) {
1384 <                                    val = ev;
1385 <                                    break;
1386 <                                }
1387 <                                Node last = e;
1388 <                                if ((e = e.next) == null) {
1389 <                                    if ((val = mf.apply(k)) != null) {
1390 <                                        added = true;
1391 <                                        last.next = new Node(h, k, val, null);
1392 <                                        if (count >= TREE_THRESHOLD)
1641 <                                            replaceWithTreeBin(tab, i, k);
1642 <                                    }
1643 <                                    break;
1374 >                boolean added = false;
1375 >                synchronized (f) {
1376 >                    if (tabAt(tab, i) == f) {
1377 >                        len = 1;
1378 >                        for (Node<V> e = f;; ++len) {
1379 >                            Object ek; V ev;
1380 >                            if (e.hash == h &&
1381 >                                (ev = e.val) != null &&
1382 >                                ((ek = e.key) == k || k.equals(ek))) {
1383 >                                val = ev;
1384 >                                break;
1385 >                            }
1386 >                            Node<V> last = e;
1387 >                            if ((e = e.next) == null) {
1388 >                                if ((val = mf.apply(k)) != null) {
1389 >                                    added = true;
1390 >                                    last.next = new Node<V>(h, k, val, null);
1391 >                                    if (len >= TREE_THRESHOLD)
1392 >                                        replaceWithTreeBin(tab, i, k);
1393                                  }
1394 +                                break;
1395                              }
1396                          }
1647                    } finally {
1648                        if (!f.casHash(fh | LOCKED, fh)) {
1649                            f.hash = fh;
1650                            synchronized (f) { f.notifyAll(); };
1651                        }
1652                    }
1653                    if (count != 0) {
1654                        if (!added)
1655                            return val;
1656                        if (tab.length <= 64)
1657                            count = 2;
1658                        break;
1397                      }
1398                  }
1399 +                if (len != 0) {
1400 +                    if (!added)
1401 +                        return val;
1402 +                    break;
1403 +                }
1404              }
1405          }
1406 <        if (val != null) {
1407 <            counter.add(1L);
1665 <            if (count > 1)
1666 <                checkForResize();
1667 <        }
1406 >        if (val != null)
1407 >            addCount(1L, len);
1408          return val;
1409      }
1410  
1411      /** Implementation for compute */
1412 <    @SuppressWarnings("unchecked") private final Object internalCompute
1413 <        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1412 >    @SuppressWarnings("unchecked") private final V internalCompute
1413 >        (K k, boolean onlyIfPresent,
1414 >         BiFunction<? super K, ? super V, ? extends V> mf) {
1415 >        if (k == null || mf == null)
1416 >            throw new NullPointerException();
1417          int h = spread(k.hashCode());
1418 <        Object val = null;
1418 >        V val = null;
1419          int delta = 0;
1420 <        int count = 0;
1421 <        for (Node[] tab = table;;) {
1422 <            Node f; int i, fh; Object fk;
1420 >        int len = 0;
1421 >        for (Node<V>[] tab = table;;) {
1422 >            Node<V> f; int i, fh; Object fk;
1423              if (tab == null)
1424                  tab = initTable();
1425              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426                  if (onlyIfPresent)
1427                      break;
1428 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1429 <                if (casTabAt(tab, i, null, node)) {
1430 <                    try {
1431 <                        count = 1;
1432 <                        if ((val = mf.apply(k, null)) != null) {
1433 <                            node.val = val;
1434 <                            delta = 1;
1435 <                        }
1436 <                    } finally {
1437 <                        if (delta == 0)
1438 <                            setTabAt(tab, i, null);
1439 <                        if (!node.casHash(fh, h)) {
1697 <                            node.hash = h;
1698 <                            synchronized (node) { node.notifyAll(); };
1428 >                Node<V> node = new Node<V>(h, k, null, null);
1429 >                synchronized (node) {
1430 >                    if (casTabAt(tab, i, null, node)) {
1431 >                        try {
1432 >                            len = 1;
1433 >                            if ((val = mf.apply(k, null)) != null) {
1434 >                                node.val = val;
1435 >                                delta = 1;
1436 >                            }
1437 >                        } finally {
1438 >                            if (delta == 0)
1439 >                                setTabAt(tab, i, null);
1440                          }
1441                      }
1442                  }
1443 <                if (count != 0)
1443 >                if (len != 0)
1444                      break;
1445              }
1446 <            else if ((fh = f.hash) == MOVED) {
1446 >            else if ((fh = f.hash) < 0) {
1447                  if ((fk = f.key) instanceof TreeBin) {
1448 <                    TreeBin t = (TreeBin)fk;
1448 >                    TreeBin<V> t = (TreeBin<V>)fk;
1449                      t.acquire(0);
1450                      try {
1451                          if (tabAt(tab, i) == f) {
1452 <                            count = 1;
1453 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1454 <                            Object pv = (p == null) ? null : p.val;
1455 <                            if ((val = mf.apply(k, (V)pv)) != null) {
1452 >                            len = 1;
1453 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 >                            if (p == null && onlyIfPresent)
1455 >                                break;
1456 >                            V pv = (p == null) ? null : p.val;
1457 >                            if ((val = mf.apply(k, pv)) != null) {
1458                                  if (p != null)
1459                                      p.val = val;
1460                                  else {
1461 <                                    count = 2;
1461 >                                    len = 2;
1462                                      delta = 1;
1463                                      t.putTreeNode(h, k, val);
1464                                  }
# Line 1728 | Line 1471 | public class ConcurrentHashMap<K, V>
1471                      } finally {
1472                          t.release(0);
1473                      }
1474 <                    if (count != 0)
1474 >                    if (len != 0)
1475                          break;
1476                  }
1477                  else
1478 <                    tab = (Node[])fk;
1736 <            }
1737 <            else if ((fh & LOCKED) != 0) {
1738 <                checkForResize();
1739 <                f.tryAwaitLock(tab, i);
1478 >                    tab = (Node<V>[])fk;
1479              }
1480 <            else if (f.casHash(fh, fh | LOCKED)) {
1481 <                try {
1480 >            else {
1481 >                synchronized (f) {
1482                      if (tabAt(tab, i) == f) {
1483 <                        count = 1;
1484 <                        for (Node e = f, pred = null;; ++count) {
1485 <                            Object ek, ev;
1486 <                            if ((e.hash & HASH_BITS) == h &&
1483 >                        len = 1;
1484 >                        for (Node<V> e = f, pred = null;; ++len) {
1485 >                            Object ek; V ev;
1486 >                            if (e.hash == h &&
1487                                  (ev = e.val) != null &&
1488                                  ((ek = e.key) == k || k.equals(ek))) {
1489 <                                val = mf.apply(k, (V)ev);
1489 >                                val = mf.apply(k, ev);
1490                                  if (val != null)
1491                                      e.val = val;
1492                                  else {
1493                                      delta = -1;
1494 <                                    Node en = e.next;
1494 >                                    Node<V> en = e.next;
1495                                      if (pred != null)
1496                                          pred.next = en;
1497                                      else
# Line 1762 | Line 1501 | public class ConcurrentHashMap<K, V>
1501                              }
1502                              pred = e;
1503                              if ((e = e.next) == null) {
1504 <                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1505 <                                    pred.next = new Node(h, k, val, null);
1504 >                                if (!onlyIfPresent &&
1505 >                                    (val = mf.apply(k, null)) != null) {
1506 >                                    pred.next = new Node<V>(h, k, val, null);
1507                                      delta = 1;
1508 <                                    if (count >= TREE_THRESHOLD)
1508 >                                    if (len >= TREE_THRESHOLD)
1509                                          replaceWithTreeBin(tab, i, k);
1510                                  }
1511                                  break;
1512                              }
1513                          }
1514                      }
1775                } finally {
1776                    if (!f.casHash(fh | LOCKED, fh)) {
1777                        f.hash = fh;
1778                        synchronized (f) { f.notifyAll(); };
1779                    }
1515                  }
1516 <                if (count != 0) {
1782 <                    if (tab.length <= 64)
1783 <                        count = 2;
1516 >                if (len != 0)
1517                      break;
1785                }
1518              }
1519          }
1520 <        if (delta != 0) {
1521 <            counter.add((long)delta);
1790 <            if (count > 1)
1791 <                checkForResize();
1792 <        }
1520 >        if (delta != 0)
1521 >            addCount((long)delta, len);
1522          return val;
1523      }
1524  
1525      /** Implementation for merge */
1526 <    @SuppressWarnings("unchecked") private final Object internalMerge
1527 <        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1526 >    @SuppressWarnings("unchecked") private final V internalMerge
1527 >        (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 >        if (k == null || v == null || mf == null)
1529 >            throw new NullPointerException();
1530          int h = spread(k.hashCode());
1531 <        Object val = null;
1531 >        V val = null;
1532          int delta = 0;
1533 <        int count = 0;
1534 <        for (Node[] tab = table;;) {
1535 <            int i; Node f; int fh; Object fk, fv;
1533 >        int len = 0;
1534 >        for (Node<V>[] tab = table;;) {
1535 >            int i; Node<V> f; Object fk; V fv;
1536              if (tab == null)
1537                  tab = initTable();
1538              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 <                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1539 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540                      delta = 1;
1541                      val = v;
1542                      break;
1543                  }
1544              }
1545 <            else if ((fh = f.hash) == MOVED) {
1545 >            else if (f.hash < 0) {
1546                  if ((fk = f.key) instanceof TreeBin) {
1547 <                    TreeBin t = (TreeBin)fk;
1547 >                    TreeBin<V> t = (TreeBin<V>)fk;
1548                      t.acquire(0);
1549                      try {
1550                          if (tabAt(tab, i) == f) {
1551 <                            count = 1;
1552 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1553 <                            val = (p == null) ? v : mf.apply((V)p.val, v);
1551 >                            len = 1;
1552 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 >                            val = (p == null) ? v : mf.apply(p.val, v);
1554                              if (val != null) {
1555                                  if (p != null)
1556                                      p.val = val;
1557                                  else {
1558 <                                    count = 2;
1558 >                                    len = 2;
1559                                      delta = 1;
1560                                      t.putTreeNode(h, k, val);
1561                                  }
# Line 1837 | Line 1568 | public class ConcurrentHashMap<K, V>
1568                      } finally {
1569                          t.release(0);
1570                      }
1571 <                    if (count != 0)
1571 >                    if (len != 0)
1572                          break;
1573                  }
1574                  else
1575 <                    tab = (Node[])fk;
1575 >                    tab = (Node<V>[])fk;
1576              }
1577 <            else if ((fh & LOCKED) != 0) {
1578 <                checkForResize();
1848 <                f.tryAwaitLock(tab, i);
1849 <            }
1850 <            else if (f.casHash(fh, fh | LOCKED)) {
1851 <                try {
1577 >            else {
1578 >                synchronized (f) {
1579                      if (tabAt(tab, i) == f) {
1580 <                        count = 1;
1581 <                        for (Node e = f, pred = null;; ++count) {
1582 <                            Object ek, ev;
1583 <                            if ((e.hash & HASH_BITS) == h &&
1580 >                        len = 1;
1581 >                        for (Node<V> e = f, pred = null;; ++len) {
1582 >                            Object ek; V ev;
1583 >                            if (e.hash == h &&
1584                                  (ev = e.val) != null &&
1585                                  ((ek = e.key) == k || k.equals(ek))) {
1586 <                                val = mf.apply(v, (V)ev);
1586 >                                val = mf.apply(ev, v);
1587                                  if (val != null)
1588                                      e.val = val;
1589                                  else {
1590                                      delta = -1;
1591 <                                    Node en = e.next;
1591 >                                    Node<V> en = e.next;
1592                                      if (pred != null)
1593                                          pred.next = en;
1594                                      else
# Line 1872 | Line 1599 | public class ConcurrentHashMap<K, V>
1599                              pred = e;
1600                              if ((e = e.next) == null) {
1601                                  val = v;
1602 <                                pred.next = new Node(h, k, val, null);
1602 >                                pred.next = new Node<V>(h, k, val, null);
1603                                  delta = 1;
1604 <                                if (count >= TREE_THRESHOLD)
1604 >                                if (len >= TREE_THRESHOLD)
1605                                      replaceWithTreeBin(tab, i, k);
1606                                  break;
1607                              }
1608                          }
1609                      }
1883                } finally {
1884                    if (!f.casHash(fh | LOCKED, fh)) {
1885                        f.hash = fh;
1886                        synchronized (f) { f.notifyAll(); };
1887                    }
1610                  }
1611 <                if (count != 0) {
1890 <                    if (tab.length <= 64)
1891 <                        count = 2;
1611 >                if (len != 0)
1612                      break;
1893                }
1613              }
1614          }
1615 <        if (delta != 0) {
1616 <            counter.add((long)delta);
1898 <            if (count > 1)
1899 <                checkForResize();
1900 <        }
1615 >        if (delta != 0)
1616 >            addCount((long)delta, len);
1617          return val;
1618      }
1619  
1620      /** Implementation for putAll */
1621 <    private final void internalPutAll(Map<?, ?> m) {
1621 >    @SuppressWarnings("unchecked") private final void internalPutAll
1622 >        (Map<? extends K, ? extends V> m) {
1623          tryPresize(m.size());
1624          long delta = 0L;     // number of uncommitted additions
1625          boolean npe = false; // to throw exception on exit for nulls
1626          try {                // to clean up counts on other exceptions
1627 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1628 <                Object k, v;
1627 >            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 >                Object k; V v;
1629                  if (entry == null || (k = entry.getKey()) == null ||
1630                      (v = entry.getValue()) == null) {
1631                      npe = true;
1632                      break;
1633                  }
1634                  int h = spread(k.hashCode());
1635 <                for (Node[] tab = table;;) {
1636 <                    int i; Node f; int fh; Object fk;
1635 >                for (Node<V>[] tab = table;;) {
1636 >                    int i; Node<V> f; int fh; Object fk;
1637                      if (tab == null)
1638                          tab = initTable();
1639                      else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1640 >                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641                              ++delta;
1642                              break;
1643                          }
1644                      }
1645 <                    else if ((fh = f.hash) == MOVED) {
1645 >                    else if ((fh = f.hash) < 0) {
1646                          if ((fk = f.key) instanceof TreeBin) {
1647 <                            TreeBin t = (TreeBin)fk;
1647 >                            TreeBin<V> t = (TreeBin<V>)fk;
1648                              boolean validated = false;
1649                              t.acquire(0);
1650                              try {
1651                                  if (tabAt(tab, i) == f) {
1652                                      validated = true;
1653 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
1653 >                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654                                      if (p != null)
1655                                          p.val = v;
1656                                      else {
# Line 1948 | Line 1665 | public class ConcurrentHashMap<K, V>
1665                                  break;
1666                          }
1667                          else
1668 <                            tab = (Node[])fk;
1668 >                            tab = (Node<V>[])fk;
1669                      }
1670 <                    else if ((fh & LOCKED) != 0) {
1671 <                        counter.add(delta);
1672 <                        delta = 0L;
1956 <                        checkForResize();
1957 <                        f.tryAwaitLock(tab, i);
1958 <                    }
1959 <                    else if (f.casHash(fh, fh | LOCKED)) {
1960 <                        int count = 0;
1961 <                        try {
1670 >                    else {
1671 >                        int len = 0;
1672 >                        synchronized (f) {
1673                              if (tabAt(tab, i) == f) {
1674 <                                count = 1;
1675 <                                for (Node e = f;; ++count) {
1676 <                                    Object ek, ev;
1677 <                                    if ((e.hash & HASH_BITS) == h &&
1674 >                                len = 1;
1675 >                                for (Node<V> e = f;; ++len) {
1676 >                                    Object ek; V ev;
1677 >                                    if (e.hash == h &&
1678                                          (ev = e.val) != null &&
1679                                          ((ek = e.key) == k || k.equals(ek))) {
1680                                          e.val = v;
1681                                          break;
1682                                      }
1683 <                                    Node last = e;
1683 >                                    Node<V> last = e;
1684                                      if ((e = e.next) == null) {
1685                                          ++delta;
1686 <                                        last.next = new Node(h, k, v, null);
1687 <                                        if (count >= TREE_THRESHOLD)
1686 >                                        last.next = new Node<V>(h, k, v, null);
1687 >                                        if (len >= TREE_THRESHOLD)
1688                                              replaceWithTreeBin(tab, i, k);
1689                                          break;
1690                                      }
1691                                  }
1692                              }
1982                        } finally {
1983                            if (!f.casHash(fh | LOCKED, fh)) {
1984                                f.hash = fh;
1985                                synchronized (f) { f.notifyAll(); };
1986                            }
1693                          }
1694 <                        if (count != 0) {
1695 <                            if (count > 1) {
1696 <                                counter.add(delta);
1694 >                        if (len != 0) {
1695 >                            if (len > 1) {
1696 >                                addCount(delta, len);
1697                                  delta = 0L;
1992                                checkForResize();
1698                              }
1699                              break;
1700                          }
# Line 1997 | Line 1702 | public class ConcurrentHashMap<K, V>
1702                  }
1703              }
1704          } finally {
1705 <            if (delta != 0)
1706 <                counter.add(delta);
1705 >            if (delta != 0L)
1706 >                addCount(delta, 2);
1707          }
1708          if (npe)
1709              throw new NullPointerException();
1710      }
1711  
1712 +    /**
1713 +     * Implementation for clear. Steps through each bin, removing all
1714 +     * nodes.
1715 +     */
1716 +    @SuppressWarnings("unchecked") private final void internalClear() {
1717 +        long delta = 0L; // negative number of deletions
1718 +        int i = 0;
1719 +        Node<V>[] tab = table;
1720 +        while (tab != null && i < tab.length) {
1721 +            Node<V> f = tabAt(tab, i);
1722 +            if (f == null)
1723 +                ++i;
1724 +            else if (f.hash < 0) {
1725 +                Object fk;
1726 +                if ((fk = f.key) instanceof TreeBin) {
1727 +                    TreeBin<V> t = (TreeBin<V>)fk;
1728 +                    t.acquire(0);
1729 +                    try {
1730 +                        if (tabAt(tab, i) == f) {
1731 +                            for (Node<V> p = t.first; p != null; p = p.next) {
1732 +                                if (p.val != null) { // (currently always true)
1733 +                                    p.val = null;
1734 +                                    --delta;
1735 +                                }
1736 +                            }
1737 +                            t.first = null;
1738 +                            t.root = null;
1739 +                            ++i;
1740 +                        }
1741 +                    } finally {
1742 +                        t.release(0);
1743 +                    }
1744 +                }
1745 +                else
1746 +                    tab = (Node<V>[])fk;
1747 +            }
1748 +            else {
1749 +                synchronized (f) {
1750 +                    if (tabAt(tab, i) == f) {
1751 +                        for (Node<V> e = f; e != null; e = e.next) {
1752 +                            if (e.val != null) {  // (currently always true)
1753 +                                e.val = null;
1754 +                                --delta;
1755 +                            }
1756 +                        }
1757 +                        setTabAt(tab, i, null);
1758 +                        ++i;
1759 +                    }
1760 +                }
1761 +            }
1762 +        }
1763 +        if (delta != 0L)
1764 +            addCount(delta, -1);
1765 +    }
1766 +
1767      /* ---------------- Table Initialization and Resizing -------------- */
1768  
1769      /**
# Line 2023 | Line 1783 | public class ConcurrentHashMap<K, V>
1783      /**
1784       * Initializes table, using the size recorded in sizeCtl.
1785       */
1786 <    private final Node[] initTable() {
1787 <        Node[] tab; int sc;
1786 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 >        Node<V>[] tab; int sc;
1788          while ((tab = table) == null) {
1789              if ((sc = sizeCtl) < 0)
1790                  Thread.yield(); // lost initialization race; just spin
1791 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1791 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792                  try {
1793                      if ((tab = table) == null) {
1794                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 <                        tab = table = new Node[n];
1795 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 >                        table = tab = (Node<V>[])tb;
1797                          sc = n - (n >>> 2);
1798                      }
1799                  } finally {
# Line 2045 | Line 1806 | public class ConcurrentHashMap<K, V>
1806      }
1807  
1808      /**
1809 <     * If table is too small and not already resizing, creates next
1810 <     * table and transfers bins.  Rechecks occupancy after a transfer
1811 <     * to see if another resize is already needed because resizings
1812 <     * are lagging additions.
1813 <     */
1814 <    private final void checkForResize() {
1815 <        Node[] tab; int n, sc;
1816 <        while ((tab = table) != null &&
1817 <               (n = tab.length) < MAXIMUM_CAPACITY &&
1818 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1819 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1820 <            try {
1821 <                if (tab == table) {
1822 <                    table = rebuild(tab);
1823 <                    sc = (n << 1) - (n >>> 1);
1809 >     * Adds to count, and if table is too small and not already
1810 >     * resizing, initiates transfer. If already resizing, helps
1811 >     * perform transfer if work is available.  Rechecks occupancy
1812 >     * after a transfer to see if another resize is already needed
1813 >     * because resizings are lagging additions.
1814 >     *
1815 >     * @param x the count to add
1816 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 >     */
1818 >    private final void addCount(long x, int check) {
1819 >        Cell[] as; long b, s;
1820 >        if ((as = counterCells) != null ||
1821 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 >            Cell a; long v; int m;
1823 >            boolean uncontended = true;
1824 >            if (as == null || (m = as.length - 1) < 0 ||
1825 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 >                !(uncontended =
1827 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 >                fullAddCount(x, uncontended);
1829 >                return;
1830 >            }
1831 >            if (check <= 1)
1832 >                return;
1833 >            s = sumCount();
1834 >        }
1835 >        if (check >= 0) {
1836 >            Node<V>[] tab, nt; int sc;
1837 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 >                   tab.length < MAXIMUM_CAPACITY) {
1839 >                if (sc < 0) {
1840 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1841 >                        (nt = nextTable) == null)
1842 >                        break;
1843 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 >                        transfer(tab, nt);
1845                  }
1846 <            } finally {
1847 <                sizeCtl = sc;
1846 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 >                    transfer(tab, null);
1848 >                s = sumCount();
1849              }
1850          }
1851      }
# Line 2072 | Line 1855 | public class ConcurrentHashMap<K, V>
1855       *
1856       * @param size number of elements (doesn't need to be perfectly accurate)
1857       */
1858 <    private final void tryPresize(int size) {
1858 >    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859          int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860              tableSizeFor(size + (size >>> 1) + 1);
1861          int sc;
1862          while ((sc = sizeCtl) >= 0) {
1863 <            Node[] tab = table; int n;
1863 >            Node<V>[] tab = table; int n;
1864              if (tab == null || (n = tab.length) == 0) {
1865                  n = (sc > c) ? sc : c;
1866 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1866 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867                      try {
1868                          if (table == tab) {
1869 <                            table = new Node[n];
1869 >                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 >                            table = (Node<V>[])tb;
1871                              sc = n - (n >>> 2);
1872                          }
1873                      } finally {
# Line 2093 | Line 1877 | public class ConcurrentHashMap<K, V>
1877              }
1878              else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879                  break;
1880 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1881 <                try {
1882 <                    if (table == tab) {
2099 <                        table = rebuild(tab);
2100 <                        sc = (n << 1) - (n >>> 1);
2101 <                    }
2102 <                } finally {
2103 <                    sizeCtl = sc;
2104 <                }
2105 <            }
1880 >            else if (tab == table &&
1881 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 >                transfer(tab, null);
1883          }
1884      }
1885  
1886      /*
1887       * Moves and/or copies the nodes in each bin to new table. See
1888       * above for explanation.
2112     *
2113     * @return the new table
1889       */
1890 <    private static final Node[] rebuild(Node[] tab) {
1891 <        int n = tab.length;
1892 <        Node[] nextTab = new Node[n << 1];
1893 <        Node fwd = new Node(MOVED, nextTab, null, null);
1894 <        int[] buffer = null;       // holds bins to revisit; null until needed
1895 <        Node rev = null;           // reverse forwarder; null until needed
1896 <        int nbuffered = 0;         // the number of bins in buffer list
1897 <        int bufferIndex = 0;       // buffer index of current buffered bin
1898 <        int bin = n - 1;           // current non-buffered bin or -1 if none
1899 <
1900 <        for (int i = bin;;) {      // start upwards sweep
1901 <            int fh; Node f;
1902 <            if ((f = tabAt(tab, i)) == null) {
1903 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
1904 <                    if (!casTabAt(tab, i, f, fwd))
1905 <                        continue;
1906 <                }
1907 <                else {             // transiently use a locked forwarding node
1908 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1909 <                    if (!casTabAt(tab, i, f, g))
1910 <                        continue;
1890 >    @SuppressWarnings("unchecked") private final void transfer
1891 >        (Node<V>[] tab, Node<V>[] nextTab) {
1892 >        int n = tab.length, stride;
1893 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 >        if (nextTab == null) {            // initiating
1896 >            try {
1897 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 >                nextTab = (Node<V>[])tb;
1899 >            } catch (Throwable ex) {      // try to cope with OOME
1900 >                sizeCtl = Integer.MAX_VALUE;
1901 >                return;
1902 >            }
1903 >            nextTable = nextTab;
1904 >            transferOrigin = n;
1905 >            transferIndex = n;
1906 >            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
1908 >                int nextk = (k > stride) ? k - stride : 0;
1909 >                for (int m = nextk; m < k; ++m)
1910 >                    nextTab[m] = rev;
1911 >                for (int m = n + nextk; m < n + k; ++m)
1912 >                    nextTab[m] = rev;
1913 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914 >            }
1915 >        }
1916 >        int nextn = nextTab.length;
1917 >        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 >        boolean advance = true;
1919 >        for (int i = 0, bound = 0;;) {
1920 >            int nextIndex, nextBound; Node<V> f; Object fk;
1921 >            while (advance) {
1922 >                if (--i >= bound)
1923 >                    advance = false;
1924 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 >                    i = -1;
1926 >                    advance = false;
1927 >                }
1928 >                else if (U.compareAndSwapInt
1929 >                         (this, TRANSFERINDEX, nextIndex,
1930 >                          nextBound = (nextIndex > stride ?
1931 >                                       nextIndex - stride : 0))) {
1932 >                    bound = nextBound;
1933 >                    i = nextIndex - 1;
1934 >                    advance = false;
1935 >                }
1936 >            }
1937 >            if (i < 0 || i >= n || i + n >= nextn) {
1938 >                for (int sc;;) {
1939 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 >                        if (sc == -1) {
1941 >                            nextTable = null;
1942 >                            table = nextTab;
1943 >                            sizeCtl = (n << 1) - (n >>> 1);
1944 >                        }
1945 >                        return;
1946 >                    }
1947 >                }
1948 >            }
1949 >            else if ((f = tabAt(tab, i)) == null) {
1950 >                if (casTabAt(tab, i, null, fwd)) {
1951                      setTabAt(nextTab, i, null);
1952                      setTabAt(nextTab, i + n, null);
1953 <                    setTabAt(tab, i, fwd);
2139 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2140 <                        g.hash = MOVED;
2141 <                        synchronized (g) { g.notifyAll(); }
2142 <                    }
1953 >                    advance = true;
1954                  }
1955              }
1956 <            else if ((fh = f.hash) == MOVED) {
1957 <                Object fk = f.key;
1958 <                if (fk instanceof TreeBin) {
1959 <                    TreeBin t = (TreeBin)fk;
1960 <                    boolean validated = false;
1961 <                    t.acquire(0);
1962 <                    try {
1963 <                        if (tabAt(tab, i) == f) {
1964 <                            validated = true;
1965 <                            splitTreeBin(nextTab, i, t);
1966 <                            setTabAt(tab, i, fwd);
1956 >            else if (f.hash >= 0) {
1957 >                synchronized (f) {
1958 >                    if (tabAt(tab, i) == f) {
1959 >                        int runBit = f.hash & n;
1960 >                        Node<V> lastRun = f, lo = null, hi = null;
1961 >                        for (Node<V> p = f.next; p != null; p = p.next) {
1962 >                            int b = p.hash & n;
1963 >                            if (b != runBit) {
1964 >                                runBit = b;
1965 >                                lastRun = p;
1966 >                            }
1967                          }
1968 <                    } finally {
1969 <                        t.release(0);
1968 >                        if (runBit == 0)
1969 >                            lo = lastRun;
1970 >                        else
1971 >                            hi = lastRun;
1972 >                        for (Node<V> p = f; p != lastRun; p = p.next) {
1973 >                            int ph = p.hash;
1974 >                            Object pk = p.key; V pv = p.val;
1975 >                            if ((ph & n) == 0)
1976 >                                lo = new Node<V>(ph, pk, pv, lo);
1977 >                            else
1978 >                                hi = new Node<V>(ph, pk, pv, hi);
1979 >                        }
1980 >                        setTabAt(nextTab, i, lo);
1981 >                        setTabAt(nextTab, i + n, hi);
1982 >                        setTabAt(tab, i, fwd);
1983 >                        advance = true;
1984                      }
2160                    if (!validated)
2161                        continue;
1985                  }
1986              }
1987 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1988 <                boolean validated = false;
1989 <                try {              // split to lo and hi lists; copying as needed
1987 >            else if ((fk = f.key) instanceof TreeBin) {
1988 >                TreeBin<V> t = (TreeBin<V>)fk;
1989 >                t.acquire(0);
1990 >                try {
1991                      if (tabAt(tab, i) == f) {
1992 <                        validated = true;
1993 <                        splitBin(nextTab, i, f);
1992 >                        TreeBin<V> lt = new TreeBin<V>();
1993 >                        TreeBin<V> ht = new TreeBin<V>();
1994 >                        int lc = 0, hc = 0;
1995 >                        for (Node<V> e = t.first; e != null; e = e.next) {
1996 >                            int h = e.hash;
1997 >                            Object k = e.key; V v = e.val;
1998 >                            if ((h & n) == 0) {
1999 >                                ++lc;
2000 >                                lt.putTreeNode(h, k, v);
2001 >                            }
2002 >                            else {
2003 >                                ++hc;
2004 >                                ht.putTreeNode(h, k, v);
2005 >                            }
2006 >                        }
2007 >                        Node<V> ln, hn; // throw away trees if too small
2008 >                        if (lc < TREE_THRESHOLD) {
2009 >                            ln = null;
2010 >                            for (Node<V> p = lt.first; p != null; p = p.next)
2011 >                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 >                        }
2013 >                        else
2014 >                            ln = new Node<V>(MOVED, lt, null, null);
2015 >                        setTabAt(nextTab, i, ln);
2016 >                        if (hc < TREE_THRESHOLD) {
2017 >                            hn = null;
2018 >                            for (Node<V> p = ht.first; p != null; p = p.next)
2019 >                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 >                        }
2021 >                        else
2022 >                            hn = new Node<V>(MOVED, ht, null, null);
2023 >                        setTabAt(nextTab, i + n, hn);
2024                          setTabAt(tab, i, fwd);
2025 +                        advance = true;
2026                      }
2027                  } finally {
2028 <                    if (!f.casHash(fh | LOCKED, fh)) {
2174 <                        f.hash = fh;
2175 <                        synchronized (f) { f.notifyAll(); };
2176 <                    }
2028 >                    t.release(0);
2029                  }
2178                if (!validated)
2179                    continue;
2180            }
2181            else {
2182                if (buffer == null) // initialize buffer for revisits
2183                    buffer = new int[TRANSFER_BUFFER_SIZE];
2184                if (bin < 0 && bufferIndex > 0) {
2185                    int j = buffer[--bufferIndex];
2186                    buffer[bufferIndex] = i;
2187                    i = j;         // swap with another bin
2188                    continue;
2189                }
2190                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2191                    f.tryAwaitLock(tab, i);
2192                    continue;      // no other options -- block
2193                }
2194                if (rev == null)   // initialize reverse-forwarder
2195                    rev = new Node(MOVED, tab, null, null);
2196                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2197                    continue;      // recheck before adding to list
2198                buffer[nbuffered++] = i;
2199                setTabAt(nextTab, i, rev);     // install place-holders
2200                setTabAt(nextTab, i + n, rev);
2201            }
2202
2203            if (bin > 0)
2204                i = --bin;
2205            else if (buffer != null && nbuffered > 0) {
2206                bin = -1;
2207                i = buffer[bufferIndex = --nbuffered];
2030              }
2031              else
2032 <                return nextTab;
2032 >                advance = true; // already processed
2033          }
2034      }
2035  
2036 <    /**
2215 <     * Splits a normal bin with list headed by e into lo and hi parts;
2216 <     * installs in given table.
2217 <     */
2218 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2219 <        int bit = nextTab.length >>> 1; // bit to split on
2220 <        int runBit = e.hash & bit;
2221 <        Node lastRun = e, lo = null, hi = null;
2222 <        for (Node p = e.next; p != null; p = p.next) {
2223 <            int b = p.hash & bit;
2224 <            if (b != runBit) {
2225 <                runBit = b;
2226 <                lastRun = p;
2227 <            }
2228 <        }
2229 <        if (runBit == 0)
2230 <            lo = lastRun;
2231 <        else
2232 <            hi = lastRun;
2233 <        for (Node p = e; p != lastRun; p = p.next) {
2234 <            int ph = p.hash & HASH_BITS;
2235 <            Object pk = p.key, pv = p.val;
2236 <            if ((ph & bit) == 0)
2237 <                lo = new Node(ph, pk, pv, lo);
2238 <            else
2239 <                hi = new Node(ph, pk, pv, hi);
2240 <        }
2241 <        setTabAt(nextTab, i, lo);
2242 <        setTabAt(nextTab, i + bit, hi);
2243 <    }
2036 >    /* ---------------- Counter support -------------- */
2037  
2038 <    /**
2039 <     * Splits a tree bin into lo and hi parts; installs in given table.
2040 <     */
2041 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2042 <        int bit = nextTab.length >>> 1;
2043 <        TreeBin lt = new TreeBin();
2044 <        TreeBin ht = new TreeBin();
2252 <        int lc = 0, hc = 0;
2253 <        for (Node e = t.first; e != null; e = e.next) {
2254 <            int h = e.hash & HASH_BITS;
2255 <            Object k = e.key, v = e.val;
2256 <            if ((h & bit) == 0) {
2257 <                ++lc;
2258 <                lt.putTreeNode(h, k, v);
2259 <            }
2260 <            else {
2261 <                ++hc;
2262 <                ht.putTreeNode(h, k, v);
2038 >    final long sumCount() {
2039 >        Cell[] as = counterCells; Cell a;
2040 >        long sum = baseCount;
2041 >        if (as != null) {
2042 >            for (int i = 0; i < as.length; ++i) {
2043 >                if ((a = as[i]) != null)
2044 >                    sum += a.value;
2045              }
2046          }
2047 <        Node ln, hn; // throw away trees if too small
2266 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2267 <            ln = null;
2268 <            for (Node p = lt.first; p != null; p = p.next)
2269 <                ln = new Node(p.hash, p.key, p.val, ln);
2270 <        }
2271 <        else
2272 <            ln = new Node(MOVED, lt, null, null);
2273 <        setTabAt(nextTab, i, ln);
2274 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2275 <            hn = null;
2276 <            for (Node p = ht.first; p != null; p = p.next)
2277 <                hn = new Node(p.hash, p.key, p.val, hn);
2278 <        }
2279 <        else
2280 <            hn = new Node(MOVED, ht, null, null);
2281 <        setTabAt(nextTab, i + bit, hn);
2047 >        return sum;
2048      }
2049  
2050 <    /**
2051 <     * Implementation for clear. Steps through each bin, removing all
2052 <     * nodes.
2053 <     */
2054 <    private final void internalClear() {
2055 <        long delta = 0L; // negative number of deletions
2056 <        int i = 0;
2057 <        Node[] tab = table;
2058 <        while (tab != null && i < tab.length) {
2059 <            int fh; Object fk;
2060 <            Node f = tabAt(tab, i);
2061 <            if (f == null)
2062 <                ++i;
2063 <            else if ((fh = f.hash) == MOVED) {
2064 <                if ((fk = f.key) instanceof TreeBin) {
2065 <                    TreeBin t = (TreeBin)fk;
2066 <                    t.acquire(0);
2067 <                    try {
2068 <                        if (tabAt(tab, i) == f) {
2069 <                            for (Node p = t.first; p != null; p = p.next) {
2070 <                                if (p.val != null) { // (currently always true)
2071 <                                    p.val = null;
2072 <                                    --delta;
2050 >    // See LongAdder version for explanation
2051 >    private final void fullAddCount(long x, boolean wasUncontended) {
2052 >        int h;
2053 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 >            ThreadLocalRandom.localInit();      // force initialization
2055 >            h = ThreadLocalRandom.getProbe();
2056 >            wasUncontended = true;
2057 >        }
2058 >        boolean collide = false;                // True if last slot nonempty
2059 >        for (;;) {
2060 >            Cell[] as; Cell a; int n; long v;
2061 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2062 >                if ((a = as[(n - 1) & h]) == null) {
2063 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2064 >                        Cell r = new Cell(x); // Optimistic create
2065 >                        if (cellsBusy == 0 &&
2066 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 >                            boolean created = false;
2068 >                            try {               // Recheck under lock
2069 >                                Cell[] rs; int m, j;
2070 >                                if ((rs = counterCells) != null &&
2071 >                                    (m = rs.length) > 0 &&
2072 >                                    rs[j = (m - 1) & h] == null) {
2073 >                                    rs[j] = r;
2074 >                                    created = true;
2075                                  }
2076 +                            } finally {
2077 +                                cellsBusy = 0;
2078                              }
2079 <                            t.first = null;
2080 <                            t.root = null;
2081 <                            ++i;
2079 >                            if (created)
2080 >                                break;
2081 >                            continue;           // Slot is now non-empty
2082 >                        }
2083 >                    }
2084 >                    collide = false;
2085 >                }
2086 >                else if (!wasUncontended)       // CAS already known to fail
2087 >                    wasUncontended = true;      // Continue after rehash
2088 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 >                    break;
2090 >                else if (counterCells != as || n >= NCPU)
2091 >                    collide = false;            // At max size or stale
2092 >                else if (!collide)
2093 >                    collide = true;
2094 >                else if (cellsBusy == 0 &&
2095 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 >                    try {
2097 >                        if (counterCells == as) {// Expand table unless stale
2098 >                            Cell[] rs = new Cell[n << 1];
2099 >                            for (int i = 0; i < n; ++i)
2100 >                                rs[i] = as[i];
2101 >                            counterCells = rs;
2102                          }
2103                      } finally {
2104 <                        t.release(0);
2104 >                        cellsBusy = 0;
2105                      }
2106 +                    collide = false;
2107 +                    continue;                   // Retry with expanded table
2108                  }
2109 <                else
2318 <                    tab = (Node[])fk;
2109 >                h = ThreadLocalRandom.advanceProbe(h);
2110              }
2111 <            else if ((fh & LOCKED) != 0) {
2112 <                counter.add(delta); // opportunistically update count
2113 <                delta = 0L;
2114 <                f.tryAwaitLock(tab, i);
2115 <            }
2116 <            else if (f.casHash(fh, fh | LOCKED)) {
2117 <                try {
2118 <                    if (tabAt(tab, i) == f) {
2119 <                        for (Node e = f; e != null; e = e.next) {
2329 <                            if (e.val != null) {  // (currently always true)
2330 <                                e.val = null;
2331 <                                --delta;
2332 <                            }
2333 <                        }
2334 <                        setTabAt(tab, i, null);
2335 <                        ++i;
2111 >            else if (cellsBusy == 0 && counterCells == as &&
2112 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 >                boolean init = false;
2114 >                try {                           // Initialize table
2115 >                    if (counterCells == as) {
2116 >                        Cell[] rs = new Cell[2];
2117 >                        rs[h & 1] = new Cell(x);
2118 >                        counterCells = rs;
2119 >                        init = true;
2120                      }
2121                  } finally {
2122 <                    if (!f.casHash(fh | LOCKED, fh)) {
2339 <                        f.hash = fh;
2340 <                        synchronized (f) { f.notifyAll(); };
2341 <                    }
2122 >                    cellsBusy = 0;
2123                  }
2124 +                if (init)
2125 +                    break;
2126              }
2127 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 +                break;                          // Fall back on using base
2129          }
2345        if (delta != 0)
2346            counter.add(delta);
2130      }
2131  
2132      /* ----------------Table Traversal -------------- */
# Line 2386 | Line 2169 | public class ConcurrentHashMap<K, V>
2169       * across threads, iteration terminates if a bounds checks fails
2170       * for a table read.
2171       *
2172 <     * This class extends ForkJoinTask to streamline parallel
2173 <     * iteration in bulk operations (see BulkTask). This adds only an
2174 <     * int of space overhead, which is close enough to negligible in
2175 <     * cases where it is not needed to not worry about it.  Because
2176 <     * ForkJoinTask is Serializable, but iterators need not be, we
2177 <     * need to add warning suppressions.
2172 >     * This class supports both Spliterator-based traversal and
2173 >     * CountedCompleter-based bulk tasks. The same "batch" field is
2174 >     * used, but in slightly different ways, in the two cases.  For
2175 >     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 >     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 >     * size that halves down to zero for leaf tasks, that is only
2178 >     * computed upon execution of the task. (Tasks can be submitted to
2179 >     * any pool, of any size, so we don't know scale factors until
2180 >     * running.)
2181 >     *
2182 >     * This class extends CountedCompleter to streamline parallel
2183 >     * iteration in bulk operations. This adds only a few fields of
2184 >     * space overhead, which is small enough in cases where it is not
2185 >     * needed to not worry about it.  Because CountedCompleter is
2186 >     * Serializable, but iterators need not be, we need to add warning
2187 >     * suppressions.
2188       */
2189 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2189 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 >        extends CountedCompleter<R> {
2191          final ConcurrentHashMap<K, V> map;
2192 <        Node next;           // the next entry to use
2193 <        Object nextKey;      // cached key field of next
2194 <        Object nextVal;      // cached val field of next
2195 <        Node[] tab;          // current table; updated if resized
2192 >        Node<V> next;        // the next entry to use
2193 >        K nextKey;           // cached key field of next
2194 >        V nextVal;           // cached val field of next
2195 >        Node<V>[] tab;       // current table; updated if resized
2196          int index;           // index of bin to use next
2197          int baseIndex;       // current index of initial table
2198          int baseLimit;       // index bound for initial table
2199          int baseSize;        // initial table size
2200 <
2200 >        int batch;           // split control
2201          /** Creates iterator for all entries in the table. */
2202          Traverser(ConcurrentHashMap<K, V> map) {
2203              this.map = map;
2204 +            Node<V>[] t;
2205 +            if ((t = tab = map.table) != null)
2206 +                baseLimit = baseSize = t.length;
2207          }
2208  
2209 <        /** Creates iterator for split() methods */
2210 <        Traverser(Traverser<K,V,?> it) {
2211 <            ConcurrentHashMap<K, V> m; Node[] t;
2212 <            if ((m = this.map = it.map) == null)
2213 <                t = null;
2214 <            else if ((t = it.tab) == null && // force parent tab initialization
2215 <                     (t = it.tab = m.table) != null)
2216 <                it.baseLimit = it.baseSize = t.length;
2217 <            this.tab = t;
2218 <            this.baseSize = it.baseSize;
2219 <            it.baseLimit = this.index = this.baseIndex =
2220 <                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2209 >        /** Task constructor */
2210 >        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 >            super(it);
2212 >            this.map = map;
2213 >            this.batch = batch; // -1 if unknown
2214 >            if (it == null) {
2215 >                Node<V>[] t;
2216 >                if ((t = tab = map.table) != null)
2217 >                    baseLimit = baseSize = t.length;
2218 >            }
2219 >            else { // split parent
2220 >                this.tab = it.tab;
2221 >                this.baseSize = it.baseSize;
2222 >                int hi = this.baseLimit = it.baseLimit;
2223 >                it.baseLimit = this.index = this.baseIndex =
2224 >                    (hi + it.baseIndex + 1) >>> 1;
2225 >            }
2226 >        }
2227 >
2228 >        /** Spliterator constructor */
2229 >        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 >            super(it);
2231 >            this.map = map;
2232 >            if (it == null) {
2233 >                Node<V>[] t;
2234 >                if ((t = tab = map.table) != null)
2235 >                    baseLimit = baseSize = t.length;
2236 >                long n = map.sumCount();
2237 >                batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 >                         (int)n);
2239 >            }
2240 >            else {
2241 >                this.tab = it.tab;
2242 >                this.baseSize = it.baseSize;
2243 >                int hi = this.baseLimit = it.baseLimit;
2244 >                it.baseLimit = this.index = this.baseIndex =
2245 >                    (hi + it.baseIndex + 1) >>> 1;
2246 >                this.batch = it.batch >>>= 1;
2247 >            }
2248          }
2249  
2250          /**
2251           * Advances next; returns nextVal or null if terminated.
2252           * See above for explanation.
2253           */
2254 <        final Object advance() {
2255 <            Node e = next;
2256 <            Object ev = null;
2254 >        @SuppressWarnings("unchecked") final V advance() {
2255 >            Node<V> e = next;
2256 >            V ev = null;
2257              outer: do {
2258                  if (e != null)                  // advance past used/skipped node
2259                      e = e.next;
2260                  while (e == null) {             // get to next non-null bin
2261                      ConcurrentHashMap<K, V> m;
2262 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2262 >                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2263                      if ((t = tab) != null)
2264                          n = t.length;
2265                      else if ((m = map) != null && (t = tab = m.table) != null)
# Line 2445 | Line 2269 | public class ConcurrentHashMap<K, V>
2269                      if ((b = baseIndex) >= baseLimit ||
2270                          (i = index) < 0 || i >= n)
2271                          break outer;
2272 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2272 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273                          if ((ek = e.key) instanceof TreeBin)
2274 <                            e = ((TreeBin)ek).first;
2274 >                            e = ((TreeBin<V>)ek).first;
2275                          else {
2276 <                            tab = (Node[])ek;
2276 >                            tab = (Node<V>[])ek;
2277                              continue;           // restarts due to null val
2278                          }
2279                      }                           // visit upper slots if present
2280                      index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281                  }
2282 <                nextKey = e.key;
2282 >                nextKey = (K)e.key;
2283              } while ((ev = e.val) == null);    // skip deleted or special nodes
2284              next = e;
2285              return nextVal = ev;
2286          }
2287  
2288          public final void remove() {
2289 <            Object k = nextKey;
2289 >            K k = nextKey;
2290              if (k == null && (advance() == null || (k = nextKey) == null))
2291                  throw new IllegalStateException();
2292              map.internalReplace(k, null, null);
# Line 2473 | Line 2297 | public class ConcurrentHashMap<K, V>
2297          }
2298  
2299          public final boolean hasMoreElements() { return hasNext(); }
2300 <        public final void setRawResult(Object x) { }
2301 <        public R getRawResult() { return null; }
2302 <        public boolean exec() { return true; }
2300 >
2301 >        public void compute() { } // default no-op CountedCompleter body
2302 >
2303 >        /**
2304 >         * Returns a batch value > 0 if this task should (and must) be
2305 >         * split, if so, adding to pending count, and in any case
2306 >         * updating batch value. The initial batch value is approx
2307 >         * exp2 of the number of times (minus one) to split task by
2308 >         * two before executing leaf action. This value is faster to
2309 >         * compute and more convenient to use as a guide to splitting
2310 >         * than is the depth, since it is used while dividing by two
2311 >         * anyway.
2312 >         */
2313 >        final int preSplit() {
2314 >            int b;  ForkJoinPool pool;
2315 >            if ((b = batch) < 0) { // force initialization
2316 >                int sp = (((pool = getPool()) == null) ?
2317 >                          ForkJoinPool.getCommonPoolParallelism() :
2318 >                          pool.getParallelism()) << 3; // slack of 8
2319 >                long n = map.sumCount();
2320 >                b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 >            }
2322 >            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 >            if ((batch = b) > 0)
2324 >                addToPendingCount(1);
2325 >            return b;
2326 >        }
2327 >
2328 >        // spliterator support
2329 >
2330 >        public boolean hasExactSize() {
2331 >            return false;
2332 >        }
2333 >
2334 >        public boolean hasExactSplits() {
2335 >            return false;
2336 >        }
2337 >
2338 >        public long estimateSize() {
2339 >            return batch;
2340 >        }
2341      }
2342  
2343      /* ---------------- Public operations -------------- */
# Line 2484 | Line 2346 | public class ConcurrentHashMap<K, V>
2346       * Creates a new, empty map with the default initial table size (16).
2347       */
2348      public ConcurrentHashMap() {
2487        this.counter = new LongAdder();
2349      }
2350  
2351      /**
# Line 2503 | Line 2364 | public class ConcurrentHashMap<K, V>
2364          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365                     MAXIMUM_CAPACITY :
2366                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2506        this.counter = new LongAdder();
2367          this.sizeCtl = cap;
2368      }
2369  
# Line 2513 | Line 2373 | public class ConcurrentHashMap<K, V>
2373       * @param m the map
2374       */
2375      public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2516        this.counter = new LongAdder();
2376          this.sizeCtl = DEFAULT_CAPACITY;
2377          internalPutAll(m);
2378      }
# Line 2564 | Line 2423 | public class ConcurrentHashMap<K, V>
2423          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2567        this.counter = new LongAdder();
2426          this.sizeCtl = cap;
2427      }
2428  
# Line 2590 | Line 2448 | public class ConcurrentHashMap<K, V>
2448       * @return the new set
2449       */
2450      public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 <        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(initialCapacity),
2452 <                                      Boolean.TRUE);
2451 >        return new KeySetView<K,Boolean>
2452 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453      }
2454  
2455      /**
2456       * {@inheritDoc}
2457       */
2458      public boolean isEmpty() {
2459 <        return counter.sum() <= 0L; // ignore transient negative values
2459 >        return sumCount() <= 0L; // ignore transient negative values
2460      }
2461  
2462      /**
2463       * {@inheritDoc}
2464       */
2465      public int size() {
2466 <        long n = counter.sum();
2466 >        long n = sumCount();
2467          return ((n < 0L) ? 0 :
2468                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469                  (int)n);
# Line 2615 | Line 2473 | public class ConcurrentHashMap<K, V>
2473       * Returns the number of mappings. This method should be used
2474       * instead of {@link #size} because a ConcurrentHashMap may
2475       * contain more mappings than can be represented as an int. The
2476 <     * value returned is a snapshot; the actual count may differ if
2477 <     * there are ongoing concurrent insertions or removals.
2476 >     * value returned is an estimate; the actual count may differ if
2477 >     * there are concurrent insertions or removals.
2478       *
2479       * @return the number of mappings
2480       */
2481      public long mappingCount() {
2482 <        long n = counter.sum();
2482 >        long n = sumCount();
2483          return (n < 0L) ? 0L : n; // ignore transient negative values
2484      }
2485  
# Line 2636 | Line 2494 | public class ConcurrentHashMap<K, V>
2494       *
2495       * @throws NullPointerException if the specified key is null
2496       */
2497 <    @SuppressWarnings("unchecked") public V get(Object key) {
2498 <        if (key == null)
2641 <            throw new NullPointerException();
2642 <        return (V)internalGet(key);
2497 >    public V get(Object key) {
2498 >        return internalGet(key);
2499      }
2500  
2501      /**
# Line 2652 | Line 2508 | public class ConcurrentHashMap<K, V>
2508       * @return the mapping for the key, if present; else the defaultValue
2509       * @throws NullPointerException if the specified key is null
2510       */
2511 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2512 <        if (key == null)
2513 <            throw new NullPointerException();
2658 <        V v = (V) internalGet(key);
2659 <        return v == null ? defaultValue : v;
2511 >    public V getValueOrDefault(Object key, V defaultValue) {
2512 >        V v;
2513 >        return (v = internalGet(key)) == null ? defaultValue : v;
2514      }
2515  
2516      /**
# Line 2669 | Line 2523 | public class ConcurrentHashMap<K, V>
2523       * @throws NullPointerException if the specified key is null
2524       */
2525      public boolean containsKey(Object key) {
2672        if (key == null)
2673            throw new NullPointerException();
2526          return internalGet(key) != null;
2527      }
2528  
# Line 2687 | Line 2539 | public class ConcurrentHashMap<K, V>
2539      public boolean containsValue(Object value) {
2540          if (value == null)
2541              throw new NullPointerException();
2542 <        Object v;
2542 >        V v;
2543          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544          while ((v = it.advance()) != null) {
2545              if (v == value || value.equals(v))
# Line 2711 | Line 2563 | public class ConcurrentHashMap<K, V>
2563       *         {@code false} otherwise
2564       * @throws NullPointerException if the specified value is null
2565       */
2566 <    public boolean contains(Object value) {
2566 >    @Deprecated public boolean contains(Object value) {
2567          return containsValue(value);
2568      }
2569  
# Line 2719 | Line 2571 | public class ConcurrentHashMap<K, V>
2571       * Maps the specified key to the specified value in this table.
2572       * Neither the key nor the value can be null.
2573       *
2574 <     * <p> The value can be retrieved by calling the {@code get} method
2574 >     * <p>The value can be retrieved by calling the {@code get} method
2575       * with a key that is equal to the original key.
2576       *
2577       * @param key key with which the specified value is to be associated
# Line 2728 | Line 2580 | public class ConcurrentHashMap<K, V>
2580       *         {@code null} if there was no mapping for {@code key}
2581       * @throws NullPointerException if the specified key or value is null
2582       */
2583 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
2584 <        if (key == null || value == null)
2733 <            throw new NullPointerException();
2734 <        return (V)internalPut(key, value);
2583 >    public V put(K key, V value) {
2584 >        return internalPut(key, value, false);
2585      }
2586  
2587      /**
# Line 2741 | Line 2591 | public class ConcurrentHashMap<K, V>
2591       *         or {@code null} if there was no mapping for the key
2592       * @throws NullPointerException if the specified key or value is null
2593       */
2594 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2595 <        if (key == null || value == null)
2746 <            throw new NullPointerException();
2747 <        return (V)internalPutIfAbsent(key, value);
2594 >    public V putIfAbsent(K key, V value) {
2595 >        return internalPut(key, value, true);
2596      }
2597  
2598      /**
# Line 2759 | Line 2607 | public class ConcurrentHashMap<K, V>
2607      }
2608  
2609      /**
2610 <     * If the specified key is not already associated with a value,
2611 <     * computes its value using the given mappingFunction and enters
2612 <     * it into the map unless null.  This is equivalent to
2613 <     * <pre> {@code
2614 <     * if (map.containsKey(key))
2615 <     *   return map.get(key);
2616 <     * value = mappingFunction.apply(key);
2617 <     * if (value != null)
2618 <     *   map.put(key, value);
2771 <     * return value;}</pre>
2772 <     *
2773 <     * except that the action is performed atomically.  If the
2774 <     * function returns {@code null} no mapping is recorded. If the
2775 <     * function itself throws an (unchecked) exception, the exception
2776 <     * is rethrown to its caller, and no mapping is recorded.  Some
2777 <     * attempted update operations on this map by other threads may be
2778 <     * blocked while computation is in progress, so the computation
2779 <     * should be short and simple, and must not attempt to update any
2780 <     * other mappings of this Map. The most appropriate usage is to
2781 <     * construct a new object serving as an initial mapped value, or
2782 <     * memoized result, as in:
2783 <     *
2784 <     *  <pre> {@code
2785 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2786 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2610 >     * If the specified key is not already associated with a value (or
2611 >     * is mapped to {@code null}), attempts to compute its value using
2612 >     * the given mapping function and enters it into this map unless
2613 >     * {@code null}. The entire method invocation is performed
2614 >     * atomically, so the function is applied at most once per key.
2615 >     * Some attempted update operations on this map by other threads
2616 >     * may be blocked while computation is in progress, so the
2617 >     * computation should be short and simple, and must not attempt to
2618 >     * update any other mappings of this Map.
2619       *
2620       * @param key key with which the specified value is to be associated
2621       * @param mappingFunction the function to compute a value
# Line 2797 | Line 2629 | public class ConcurrentHashMap<K, V>
2629       * @throws RuntimeException or Error if the mappingFunction does so,
2630       *         in which case the mapping is left unestablished
2631       */
2632 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2633 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
2634 <        if (key == null || mappingFunction == null)
2803 <            throw new NullPointerException();
2804 <        return (V)internalComputeIfAbsent(key, mappingFunction);
2632 >    public V computeIfAbsent
2633 >        (K key, Function<? super K, ? extends V> mappingFunction) {
2634 >        return internalComputeIfAbsent(key, mappingFunction);
2635      }
2636  
2637      /**
2638 <     * If the given key is present, computes a new mapping value given a key and
2639 <     * its current mapped value. This is equivalent to
2640 <     *  <pre> {@code
2641 <     *   if (map.containsKey(key)) {
2812 <     *     value = remappingFunction.apply(key, map.get(key));
2813 <     *     if (value != null)
2814 <     *       map.put(key, value);
2815 <     *     else
2816 <     *       map.remove(key);
2817 <     *   }
2818 <     * }</pre>
2819 <     *
2820 <     * except that the action is performed atomically.  If the
2821 <     * function returns {@code null}, the mapping is removed.  If the
2822 <     * function itself throws an (unchecked) exception, the exception
2823 <     * is rethrown to its caller, and the current mapping is left
2824 <     * unchanged.  Some attempted update operations on this map by
2638 >     * If the value for the specified key is present and non-null,
2639 >     * attempts to compute a new mapping given the key and its current
2640 >     * mapped value.  The entire method invocation is performed
2641 >     * atomically.  Some attempted update operations on this map by
2642       * other threads may be blocked while computation is in progress,
2643       * so the computation should be short and simple, and must not
2644 <     * attempt to update any other mappings of this Map. For example,
2828 <     * to either create or append new messages to a value mapping:
2644 >     * attempt to update any other mappings of this Map.
2645       *
2646       * @param key key with which the specified value is to be associated
2647       * @param remappingFunction the function to compute a value
# Line 2838 | Line 2654 | public class ConcurrentHashMap<K, V>
2654       * @throws RuntimeException or Error if the remappingFunction does so,
2655       *         in which case the mapping is unchanged
2656       */
2657 <    @SuppressWarnings("unchecked") public V computeIfPresent
2658 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2659 <        if (key == null || remappingFunction == null)
2844 <            throw new NullPointerException();
2845 <        return (V)internalCompute(key, true, remappingFunction);
2657 >    public V computeIfPresent
2658 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 >        return internalCompute(key, true, remappingFunction);
2660      }
2661  
2662      /**
2663 <     * Computes a new mapping value given a key and
2664 <     * its current mapped value (or {@code null} if there is no current
2665 <     * mapping). This is equivalent to
2666 <     *  <pre> {@code
2667 <     *   value = remappingFunction.apply(key, map.get(key));
2668 <     *   if (value != null)
2669 <     *     map.put(key, value);
2856 <     *   else
2857 <     *     map.remove(key);
2858 <     * }</pre>
2859 <     *
2860 <     * except that the action is performed atomically.  If the
2861 <     * function returns {@code null}, the mapping is removed.  If the
2862 <     * function itself throws an (unchecked) exception, the exception
2863 <     * is rethrown to its caller, and the current mapping is left
2864 <     * unchanged.  Some attempted update operations on this map by
2865 <     * other threads may be blocked while computation is in progress,
2866 <     * so the computation should be short and simple, and must not
2867 <     * attempt to update any other mappings of this Map. For example,
2868 <     * to either create or append new messages to a value mapping:
2869 <     *
2870 <     * <pre> {@code
2871 <     * Map<Key, String> map = ...;
2872 <     * final String msg = ...;
2873 <     * map.compute(key, new BiFun<Key, String, String>() {
2874 <     *   public String apply(Key k, String v) {
2875 <     *    return (v == null) ? msg : v + msg;});}}</pre>
2663 >     * Attempts to compute a mapping for the specified key and its
2664 >     * current mapped value (or {@code null} if there is no current
2665 >     * mapping). The entire method invocation is performed atomically.
2666 >     * Some attempted update operations on this map by other threads
2667 >     * may be blocked while computation is in progress, so the
2668 >     * computation should be short and simple, and must not attempt to
2669 >     * update any other mappings of this Map.
2670       *
2671       * @param key key with which the specified value is to be associated
2672       * @param remappingFunction the function to compute a value
# Line 2885 | Line 2679 | public class ConcurrentHashMap<K, V>
2679       * @throws RuntimeException or Error if the remappingFunction does so,
2680       *         in which case the mapping is unchanged
2681       */
2682 <    @SuppressWarnings("unchecked") public V compute
2683 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2684 <        if (key == null || remappingFunction == null)
2891 <            throw new NullPointerException();
2892 <        return (V)internalCompute(key, false, remappingFunction);
2682 >    public V compute
2683 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 >        return internalCompute(key, false, remappingFunction);
2685      }
2686  
2687      /**
2688 <     * If the specified key is not already associated
2689 <     * with a value, associate it with the given value.
2690 <     * Otherwise, replace the value with the results of
2691 <     * the given remapping function. This is equivalent to:
2692 <     *  <pre> {@code
2693 <     *   if (!map.containsKey(key))
2694 <     *     map.put(value);
2695 <     *   else {
2696 <     *     newValue = remappingFunction.apply(map.get(key), value);
2697 <     *     if (value != null)
2698 <     *       map.put(key, value);
2699 <     *     else
2700 <     *       map.remove(key);
2701 <     *   }
2702 <     * }</pre>
2703 <     * except that the action is performed atomically.  If the
2704 <     * function returns {@code null}, the mapping is removed.  If the
2705 <     * function itself throws an (unchecked) exception, the exception
2914 <     * is rethrown to its caller, and the current mapping is left
2915 <     * unchanged.  Some attempted update operations on this map by
2916 <     * other threads may be blocked while computation is in progress,
2917 <     * so the computation should be short and simple, and must not
2918 <     * attempt to update any other mappings of this Map.
2688 >     * If the specified key is not already associated with a
2689 >     * (non-null) value, associates it with the given value.
2690 >     * Otherwise, replaces the value with the results of the given
2691 >     * remapping function, or removes if {@code null}. The entire
2692 >     * method invocation is performed atomically.  Some attempted
2693 >     * update operations on this map by other threads may be blocked
2694 >     * while computation is in progress, so the computation should be
2695 >     * short and simple, and must not attempt to update any other
2696 >     * mappings of this Map.
2697 >     *
2698 >     * @param key key with which the specified value is to be associated
2699 >     * @param value the value to use if absent
2700 >     * @param remappingFunction the function to recompute a value if present
2701 >     * @return the new value associated with the specified key, or null if none
2702 >     * @throws NullPointerException if the specified key or the
2703 >     *         remappingFunction is null
2704 >     * @throws RuntimeException or Error if the remappingFunction does so,
2705 >     *         in which case the mapping is unchanged
2706       */
2707 <    @SuppressWarnings("unchecked") public V merge
2708 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2709 <        if (key == null || value == null || remappingFunction == null)
2710 <            throw new NullPointerException();
2924 <        return (V)internalMerge(key, value, remappingFunction);
2707 >    public V merge
2708 >        (K key, V value,
2709 >         BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 >        return internalMerge(key, value, remappingFunction);
2711      }
2712  
2713      /**
# Line 2933 | Line 2719 | public class ConcurrentHashMap<K, V>
2719       *         {@code null} if there was no mapping for {@code key}
2720       * @throws NullPointerException if the specified key is null
2721       */
2722 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2723 <        if (key == null)
2938 <            throw new NullPointerException();
2939 <        return (V)internalReplace(key, null, null);
2722 >    public V remove(Object key) {
2723 >        return internalReplace(key, null, null);
2724      }
2725  
2726      /**
# Line 2947 | Line 2731 | public class ConcurrentHashMap<K, V>
2731      public boolean remove(Object key, Object value) {
2732          if (key == null)
2733              throw new NullPointerException();
2734 <        if (value == null)
2951 <            return false;
2952 <        return internalReplace(key, null, value) != null;
2734 >        return value != null && internalReplace(key, null, value) != null;
2735      }
2736  
2737      /**
# Line 2970 | Line 2752 | public class ConcurrentHashMap<K, V>
2752       *         or {@code null} if there was no mapping for the key
2753       * @throws NullPointerException if the specified key or value is null
2754       */
2755 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2755 >    public V replace(K key, V value) {
2756          if (key == null || value == null)
2757              throw new NullPointerException();
2758 <        return (V)internalReplace(key, value, null);
2758 >        return internalReplace(key, value, null);
2759      }
2760  
2761      /**
# Line 3065 | Line 2847 | public class ConcurrentHashMap<K, V>
2847      }
2848  
2849      /**
3068     * Returns a partitionable iterator of the keys in this map.
3069     *
3070     * @return a partitionable iterator of the keys in this map
3071     */
3072    public Spliterator<K> keySpliterator() {
3073        return new KeyIterator<K,V>(this);
3074    }
3075
3076    /**
3077     * Returns a partitionable iterator of the values in this map.
3078     *
3079     * @return a partitionable iterator of the values in this map
3080     */
3081    public Spliterator<V> valueSpliterator() {
3082        return new ValueIterator<K,V>(this);
3083    }
3084
3085    /**
3086     * Returns a partitionable iterator of the entries in this map.
3087     *
3088     * @return a partitionable iterator of the entries in this map
3089     */
3090    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3091        return new EntryIterator<K,V>(this);
3092    }
3093
3094    /**
2850       * Returns the hash code value for this {@link Map}, i.e.,
2851       * the sum of, for each key-value pair in the map,
2852       * {@code key.hashCode() ^ value.hashCode()}.
# Line 3101 | Line 2856 | public class ConcurrentHashMap<K, V>
2856      public int hashCode() {
2857          int h = 0;
2858          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2859 <        Object v;
2859 >        V v;
2860          while ((v = it.advance()) != null) {
2861              h += it.nextKey.hashCode() ^ v.hashCode();
2862          }
# Line 3123 | Line 2878 | public class ConcurrentHashMap<K, V>
2878          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2879          StringBuilder sb = new StringBuilder();
2880          sb.append('{');
2881 <        Object v;
2881 >        V v;
2882          if ((v = it.advance()) != null) {
2883              for (;;) {
2884 <                Object k = it.nextKey;
2884 >                K k = it.nextKey;
2885                  sb.append(k == this ? "(this Map)" : k);
2886                  sb.append('=');
2887                  sb.append(v == this ? "(this Map)" : v);
# Line 3154 | Line 2909 | public class ConcurrentHashMap<K, V>
2909                  return false;
2910              Map<?,?> m = (Map<?,?>) o;
2911              Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2912 <            Object val;
2912 >            V val;
2913              while ((val = it.advance()) != null) {
2914                  Object v = m.get(it.nextKey);
2915                  if (v == null || (v != val && !v.equals(val)))
# Line 3174 | Line 2929 | public class ConcurrentHashMap<K, V>
2929  
2930      /* ----------------Iterators -------------- */
2931  
2932 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
2933 <        implements Spliterator<K>, Enumeration<K> {
2932 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
2933 >        extends Traverser<K,V,Object>
2934 >        implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2935          KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2936 <        KeyIterator(Traverser<K,V,Object> it) {
2937 <            super(it);
2936 >        KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2937 >            super(map, it);
2938          }
2939 <        public KeyIterator<K,V> split() {
2940 <            if (nextKey != null)
2941 <                throw new IllegalStateException();
2942 <            return new KeyIterator<K,V>(this);
2939 >        public KeyIterator<K,V> trySplit() {
2940 >            if (tab != null && baseIndex == baseLimit)
2941 >                return null;
2942 >            return new KeyIterator<K,V>(map, this);
2943          }
2944 <        @SuppressWarnings("unchecked") public final K next() {
2944 >        public final K next() {
2945              if (nextVal == null && advance() == null)
2946                  throw new NoSuchElementException();
2947 <            Object k = nextKey;
2947 >            K k = nextKey;
2948              nextVal = null;
2949 <            return (K) k;
2949 >            return k;
2950          }
2951  
2952          public final K nextElement() { return next(); }
2953 +
2954 +        public Iterator<K> iterator() { return this; }
2955 +
2956 +        public void forEach(Block<? super K> action) {
2957 +            if (action == null) throw new NullPointerException();
2958 +            while (advance() != null)
2959 +                action.accept(nextKey);
2960 +        }
2961 +
2962 +        public boolean tryAdvance(Block<? super K> block) {
2963 +            if (block == null) throw new NullPointerException();
2964 +            if (advance() == null)
2965 +                return false;
2966 +            block.accept(nextKey);
2967 +            return true;
2968 +        }
2969      }
2970  
2971 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
2972 <        implements Spliterator<V>, Enumeration<V> {
2971 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
2972 >        extends Traverser<K,V,Object>
2973 >        implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2974          ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2975 <        ValueIterator(Traverser<K,V,Object> it) {
2976 <            super(it);
2975 >        ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2976 >            super(map, it);
2977          }
2978 <        public ValueIterator<K,V> split() {
2979 <            if (nextKey != null)
2980 <                throw new IllegalStateException();
2981 <            return new ValueIterator<K,V>(this);
2978 >        public ValueIterator<K,V> trySplit() {
2979 >            if (tab != null && baseIndex == baseLimit)
2980 >                return null;
2981 >            return new ValueIterator<K,V>(map, this);
2982          }
2983  
2984 <        @SuppressWarnings("unchecked") public final V next() {
2985 <            Object v;
2984 >        public final V next() {
2985 >            V v;
2986              if ((v = nextVal) == null && (v = advance()) == null)
2987                  throw new NoSuchElementException();
2988              nextVal = null;
2989 <            return (V) v;
2989 >            return v;
2990          }
2991  
2992          public final V nextElement() { return next(); }
2993 +
2994 +        public Iterator<V> iterator() { return this; }
2995 +
2996 +        public void forEach(Block<? super V> action) {
2997 +            if (action == null) throw new NullPointerException();
2998 +            V v;
2999 +            while ((v = advance()) != null)
3000 +                action.accept(v);
3001 +        }
3002 +
3003 +        public boolean tryAdvance(Block<? super V> block) {
3004 +            V v;
3005 +            if (block == null) throw new NullPointerException();
3006 +            if ((v = advance()) == null)
3007 +                return false;
3008 +            block.accept(v);
3009 +            return true;
3010 +        }
3011 +
3012      }
3013  
3014 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3015 <        implements Spliterator<Map.Entry<K,V>> {
3014 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3015 >        extends Traverser<K,V,Object>
3016 >        implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3017          EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3018 <        EntryIterator(Traverser<K,V,Object> it) {
3019 <            super(it);
3018 >        EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3019 >            super(map, it);
3020          }
3021 <        public EntryIterator<K,V> split() {
3022 <            if (nextKey != null)
3023 <                throw new IllegalStateException();
3024 <            return new EntryIterator<K,V>(this);
3021 >        public EntryIterator<K,V> trySplit() {
3022 >            if (tab != null && baseIndex == baseLimit)
3023 >                return null;
3024 >            return new EntryIterator<K,V>(map, this);
3025          }
3026  
3027 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3028 <            Object v;
3027 >        public final Map.Entry<K,V> next() {
3028 >            V v;
3029              if ((v = nextVal) == null && (v = advance()) == null)
3030                  throw new NoSuchElementException();
3031 <            Object k = nextKey;
3031 >            K k = nextKey;
3032              nextVal = null;
3033 <            return new MapEntry<K,V>((K)k, (V)v, map);
3033 >            return new MapEntry<K,V>(k, v, map);
3034 >        }
3035 >
3036 >        public Iterator<Map.Entry<K,V>> iterator() { return this; }
3037 >
3038 >        public void forEach(Block<? super Map.Entry<K,V>> action) {
3039 >            if (action == null) throw new NullPointerException();
3040 >            V v;
3041 >            while ((v = advance()) != null)
3042 >                action.accept(entryFor(nextKey, v));
3043          }
3044 +
3045 +        public boolean tryAdvance(Block<? super Map.Entry<K,V>> block) {
3046 +            V v;
3047 +            if (block == null) throw new NullPointerException();
3048 +            if ((v = advance()) == null)
3049 +                return false;
3050 +            block.accept(entryFor(nextKey, v));
3051 +            return true;
3052 +        }
3053 +
3054      }
3055  
3056      /**
# Line 3284 | Line 3096 | public class ConcurrentHashMap<K, V>
3096          }
3097      }
3098  
3099 +    /**
3100 +     * Returns exportable snapshot entry for the given key and value
3101 +     * when write-through can't or shouldn't be used.
3102 +     */
3103 +    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3104 +        return new AbstractMap.SimpleEntry<K,V>(k, v);
3105 +    }
3106 +
3107      /* ---------------- Serialization Support -------------- */
3108  
3109      /**
# Line 3305 | Line 3125 | public class ConcurrentHashMap<K, V>
3125       * for each key-value mapping, followed by a null pair.
3126       * The key-value mappings are emitted in no particular order.
3127       */
3128 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3128 >    @SuppressWarnings("unchecked") private void writeObject
3129 >        (java.io.ObjectOutputStream s)
3130          throws java.io.IOException {
3131          if (segments == null) { // for serialization compatibility
3132              segments = (Segment<K,V>[])
# Line 3315 | Line 3136 | public class ConcurrentHashMap<K, V>
3136          }
3137          s.defaultWriteObject();
3138          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3139 <        Object v;
3139 >        V v;
3140          while ((v = it.advance()) != null) {
3141              s.writeObject(it.nextKey);
3142              s.writeObject(v);
# Line 3329 | Line 3150 | public class ConcurrentHashMap<K, V>
3150       * Reconstitutes the instance from a stream (that is, deserializes it).
3151       * @param s the stream
3152       */
3153 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3153 >    @SuppressWarnings("unchecked") private void readObject
3154 >        (java.io.ObjectInputStream s)
3155          throws java.io.IOException, ClassNotFoundException {
3156          s.defaultReadObject();
3157          this.segments = null; // unneeded
3336        // initialize transient final field
3337        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3158  
3159          // Create all nodes, then place in table once size is known
3160          long size = 0L;
3161 <        Node p = null;
3161 >        Node<V> p = null;
3162          for (;;) {
3163              K k = (K) s.readObject();
3164              V v = (V) s.readObject();
3165              if (k != null && v != null) {
3166                  int h = spread(k.hashCode());
3167 <                p = new Node(h, k, v, p);
3167 >                p = new Node<V>(h, k, v, p);
3168                  ++size;
3169              }
3170              else
# Line 3362 | Line 3182 | public class ConcurrentHashMap<K, V>
3182              int sc = sizeCtl;
3183              boolean collide = false;
3184              if (n > sc &&
3185 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3185 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3186                  try {
3187                      if (table == null) {
3188                          init = true;
3189 <                        Node[] tab = new Node[n];
3189 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3190 >                        Node<V>[] tab = (Node<V>[])rt;
3191                          int mask = n - 1;
3192                          while (p != null) {
3193                              int j = p.hash & mask;
3194 <                            Node next = p.next;
3195 <                            Node q = p.next = tabAt(tab, j);
3194 >                            Node<V> next = p.next;
3195 >                            Node<V> q = p.next = tabAt(tab, j);
3196                              setTabAt(tab, j, p);
3197                              if (!collide && q != null && q.hash == p.hash)
3198                                  collide = true;
3199                              p = next;
3200                          }
3201                          table = tab;
3202 <                        counter.add(size);
3202 >                        addCount(size, -1);
3203                          sc = n - (n >>> 2);
3204                      }
3205                  } finally {
3206                      sizeCtl = sc;
3207                  }
3208                  if (collide) { // rescan and convert to TreeBins
3209 <                    Node[] tab = table;
3209 >                    Node<V>[] tab = table;
3210                      for (int i = 0; i < tab.length; ++i) {
3211                          int c = 0;
3212 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3212 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3213                              if (++c > TREE_THRESHOLD &&
3214                                  (e.key instanceof Comparable)) {
3215                                  replaceWithTreeBin(tab, i, e.key);
# Line 3400 | Line 3221 | public class ConcurrentHashMap<K, V>
3221              }
3222              if (!init) { // Can only happen if unsafely published.
3223                  while (p != null) {
3224 <                    internalPut(p.key, p.val);
3224 >                    internalPut((K)p.key, p.val, false);
3225                      p = p.next;
3226                  }
3227              }
3228          }
3229      }
3230  
3410
3231      // -------------------------------------------------------
3232  
3233 <    // Sams
3414 <    /** Interface describing a void action of one argument */
3415 <    public interface Action<A> { void apply(A a); }
3416 <    /** Interface describing a void action of two arguments */
3417 <    public interface BiAction<A,B> { void apply(A a, B b); }
3418 <    /** Interface describing a function of one argument */
3419 <    public interface Fun<A,T> { T apply(A a); }
3420 <    /** Interface describing a function of two arguments */
3421 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3422 <    /** Interface describing a function of no arguments */
3423 <    public interface Generator<T> { T apply(); }
3424 <    /** Interface describing a function mapping its argument to a double */
3425 <    public interface ObjectToDouble<A> { double apply(A a); }
3426 <    /** Interface describing a function mapping its argument to a long */
3427 <    public interface ObjectToLong<A> { long apply(A a); }
3428 <    /** Interface describing a function mapping its argument to an int */
3429 <    public interface ObjectToInt<A> {int apply(A a); }
3430 <    /** Interface describing a function mapping two arguments to a double */
3431 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3432 <    /** Interface describing a function mapping two arguments to a long */
3433 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3434 <    /** Interface describing a function mapping two arguments to an int */
3435 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3436 <    /** Interface describing a function mapping a double to a double */
3437 <    public interface DoubleToDouble { double apply(double a); }
3438 <    /** Interface describing a function mapping a long to a long */
3439 <    public interface LongToLong { long apply(long a); }
3440 <    /** Interface describing a function mapping an int to an int */
3441 <    public interface IntToInt { int apply(int a); }
3442 <    /** Interface describing a function mapping two doubles to a double */
3443 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3444 <    /** Interface describing a function mapping two longs to a long */
3445 <    public interface LongByLongToLong { long apply(long a, long b); }
3446 <    /** Interface describing a function mapping two ints to an int */
3447 <    public interface IntByIntToInt { int apply(int a, int b); }
3233 >    // Sequential bulk operations
3234  
3235 +    /**
3236 +     * Performs the given action for each (key, value).
3237 +     *
3238 +     * @param action the action
3239 +     */
3240 +    public void forEachSequentially
3241 +        (BiBlock<? super K, ? super V> action) {
3242 +        if (action == null) throw new NullPointerException();
3243 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3244 +        V v;
3245 +        while ((v = it.advance()) != null)
3246 +            action.accept(it.nextKey, v);
3247 +    }
3248  
3249 <    // -------------------------------------------------------
3249 >    /**
3250 >     * Performs the given action for each non-null transformation
3251 >     * of each (key, value).
3252 >     *
3253 >     * @param transformer a function returning the transformation
3254 >     * for an element, or null if there is no transformation (in
3255 >     * which case the action is not applied).
3256 >     * @param action the action
3257 >     */
3258 >    public <U> void forEachSequentially
3259 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3260 >         Block<? super U> action) {
3261 >        if (transformer == null || action == null)
3262 >            throw new NullPointerException();
3263 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3264 >        V v; U u;
3265 >        while ((v = it.advance()) != null) {
3266 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3267 >                action.accept(u);
3268 >        }
3269 >    }
3270 >
3271 >    /**
3272 >     * Returns a non-null result from applying the given search
3273 >     * function on each (key, value), or null if none.
3274 >     *
3275 >     * @param searchFunction a function returning a non-null
3276 >     * result on success, else null
3277 >     * @return a non-null result from applying the given search
3278 >     * function on each (key, value), or null if none
3279 >     */
3280 >    public <U> U searchSequentially
3281 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3282 >        if (searchFunction == null) throw new NullPointerException();
3283 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3284 >        V v; U u;
3285 >        while ((v = it.advance()) != null) {
3286 >            if ((u = searchFunction.apply(it.nextKey, v)) != null)
3287 >                return u;
3288 >        }
3289 >        return null;
3290 >    }
3291 >
3292 >    /**
3293 >     * Returns the result of accumulating the given transformation
3294 >     * of all (key, value) pairs using the given reducer to
3295 >     * combine values, or null if none.
3296 >     *
3297 >     * @param transformer a function returning the transformation
3298 >     * for an element, or null if there is no transformation (in
3299 >     * which case it is not combined).
3300 >     * @param reducer a commutative associative combining function
3301 >     * @return the result of accumulating the given transformation
3302 >     * of all (key, value) pairs
3303 >     */
3304 >    public <U> U reduceSequentially
3305 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3306 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3307 >        if (transformer == null || reducer == null)
3308 >            throw new NullPointerException();
3309 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3310 >        U r = null, u; V v;
3311 >        while ((v = it.advance()) != null) {
3312 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3313 >                r = (r == null) ? u : reducer.apply(r, u);
3314 >        }
3315 >        return r;
3316 >    }
3317 >
3318 >    /**
3319 >     * Returns the result of accumulating the given transformation
3320 >     * of all (key, value) pairs using the given reducer to
3321 >     * combine values, and the given basis as an identity value.
3322 >     *
3323 >     * @param transformer a function returning the transformation
3324 >     * for an element
3325 >     * @param basis the identity (initial default value) for the reduction
3326 >     * @param reducer a commutative associative combining function
3327 >     * @return the result of accumulating the given transformation
3328 >     * of all (key, value) pairs
3329 >     */
3330 >    public double reduceToDoubleSequentially
3331 >        (DoubleBiFunction<? super K, ? super V> transformer,
3332 >         double basis,
3333 >         DoubleBinaryOperator reducer) {
3334 >        if (transformer == null || reducer == null)
3335 >            throw new NullPointerException();
3336 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3337 >        double r = basis; V v;
3338 >        while ((v = it.advance()) != null)
3339 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3340 >        return r;
3341 >    }
3342 >
3343 >    /**
3344 >     * Returns the result of accumulating the given transformation
3345 >     * of all (key, value) pairs using the given reducer to
3346 >     * combine values, and the given basis as an identity value.
3347 >     *
3348 >     * @param transformer a function returning the transformation
3349 >     * for an element
3350 >     * @param basis the identity (initial default value) for the reduction
3351 >     * @param reducer a commutative associative combining function
3352 >     * @return the result of accumulating the given transformation
3353 >     * of all (key, value) pairs
3354 >     */
3355 >    public long reduceToLongSequentially
3356 >        (LongBiFunction<? super K, ? super V> transformer,
3357 >         long basis,
3358 >         LongBinaryOperator reducer) {
3359 >        if (transformer == null || reducer == null)
3360 >            throw new NullPointerException();
3361 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3362 >        long r = basis; V v;
3363 >        while ((v = it.advance()) != null)
3364 >            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3365 >        return r;
3366 >    }
3367 >
3368 >    /**
3369 >     * Returns the result of accumulating the given transformation
3370 >     * of all (key, value) pairs using the given reducer to
3371 >     * combine values, and the given basis as an identity value.
3372 >     *
3373 >     * @param transformer a function returning the transformation
3374 >     * for an element
3375 >     * @param basis the identity (initial default value) for the reduction
3376 >     * @param reducer a commutative associative combining function
3377 >     * @return the result of accumulating the given transformation
3378 >     * of all (key, value) pairs
3379 >     */
3380 >    public int reduceToIntSequentially
3381 >        (IntBiFunction<? super K, ? super V> transformer,
3382 >         int basis,
3383 >         IntBinaryOperator reducer) {
3384 >        if (transformer == null || reducer == null)
3385 >            throw new NullPointerException();
3386 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3387 >        int r = basis; V v;
3388 >        while ((v = it.advance()) != null)
3389 >            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3390 >        return r;
3391 >    }
3392 >
3393 >    /**
3394 >     * Performs the given action for each key.
3395 >     *
3396 >     * @param action the action
3397 >     */
3398 >    public void forEachKeySequentially
3399 >        (Block<? super K> action) {
3400 >        if (action == null) throw new NullPointerException();
3401 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3402 >        while (it.advance() != null)
3403 >            action.accept(it.nextKey);
3404 >    }
3405 >
3406 >    /**
3407 >     * Performs the given action for each non-null transformation
3408 >     * of each key.
3409 >     *
3410 >     * @param transformer a function returning the transformation
3411 >     * for an element, or null if there is no transformation (in
3412 >     * which case the action is not applied).
3413 >     * @param action the action
3414 >     */
3415 >    public <U> void forEachKeySequentially
3416 >        (Function<? super K, ? extends U> transformer,
3417 >         Block<? super U> action) {
3418 >        if (transformer == null || action == null)
3419 >            throw new NullPointerException();
3420 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3421 >        U u;
3422 >        while (it.advance() != null) {
3423 >            if ((u = transformer.apply(it.nextKey)) != null)
3424 >                action.accept(u);
3425 >        }
3426 >        ForkJoinTasks.forEachKey
3427 >            (this, transformer, action).invoke();
3428 >    }
3429 >
3430 >    /**
3431 >     * Returns a non-null result from applying the given search
3432 >     * function on each key, or null if none.
3433 >     *
3434 >     * @param searchFunction a function returning a non-null
3435 >     * result on success, else null
3436 >     * @return a non-null result from applying the given search
3437 >     * function on each key, or null if none
3438 >     */
3439 >    public <U> U searchKeysSequentially
3440 >        (Function<? super K, ? extends U> searchFunction) {
3441 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3442 >        U u;
3443 >        while (it.advance() != null) {
3444 >            if ((u = searchFunction.apply(it.nextKey)) != null)
3445 >                return u;
3446 >        }
3447 >        return null;
3448 >    }
3449 >
3450 >    /**
3451 >     * Returns the result of accumulating all keys using the given
3452 >     * reducer to combine values, or null if none.
3453 >     *
3454 >     * @param reducer a commutative associative combining function
3455 >     * @return the result of accumulating all keys using the given
3456 >     * reducer to combine values, or null if none
3457 >     */
3458 >    public K reduceKeysSequentially
3459 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
3460 >        if (reducer == null) throw new NullPointerException();
3461 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3462 >        K r = null;
3463 >        while (it.advance() != null) {
3464 >            K u = it.nextKey;
3465 >            r = (r == null) ? u : reducer.apply(r, u);
3466 >        }
3467 >        return r;
3468 >    }
3469 >
3470 >    /**
3471 >     * Returns the result of accumulating the given transformation
3472 >     * of all keys using the given reducer to combine values, or
3473 >     * null if none.
3474 >     *
3475 >     * @param transformer a function returning the transformation
3476 >     * for an element, or null if there is no transformation (in
3477 >     * which case it is not combined).
3478 >     * @param reducer a commutative associative combining function
3479 >     * @return the result of accumulating the given transformation
3480 >     * of all keys
3481 >     */
3482 >    public <U> U reduceKeysSequentially
3483 >        (Function<? super K, ? extends U> transformer,
3484 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3485 >        if (transformer == null || reducer == null)
3486 >            throw new NullPointerException();
3487 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3488 >        U r = null, u;
3489 >        while (it.advance() != null) {
3490 >            if ((u = transformer.apply(it.nextKey)) != null)
3491 >                r = (r == null) ? u : reducer.apply(r, u);
3492 >        }
3493 >        return r;
3494 >    }
3495 >
3496 >    /**
3497 >     * Returns the result of accumulating the given transformation
3498 >     * of all keys using the given reducer to combine values, and
3499 >     * the given basis as an identity value.
3500 >     *
3501 >     * @param transformer a function returning the transformation
3502 >     * for an element
3503 >     * @param basis the identity (initial default value) for the reduction
3504 >     * @param reducer a commutative associative combining function
3505 >     * @return the result of accumulating the given transformation
3506 >     * of all keys
3507 >     */
3508 >    public double reduceKeysToDoubleSequentially
3509 >        (DoubleFunction<? super K> transformer,
3510 >         double basis,
3511 >         DoubleBinaryOperator reducer) {
3512 >        if (transformer == null || reducer == null)
3513 >            throw new NullPointerException();
3514 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3515 >        double r = basis;
3516 >        while (it.advance() != null)
3517 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3518 >        return r;
3519 >    }
3520 >
3521 >    /**
3522 >     * Returns the result of accumulating the given transformation
3523 >     * of all keys using the given reducer to combine values, and
3524 >     * the given basis as an identity value.
3525 >     *
3526 >     * @param transformer a function returning the transformation
3527 >     * for an element
3528 >     * @param basis the identity (initial default value) for the reduction
3529 >     * @param reducer a commutative associative combining function
3530 >     * @return the result of accumulating the given transformation
3531 >     * of all keys
3532 >     */
3533 >    public long reduceKeysToLongSequentially
3534 >        (LongFunction<? super K> transformer,
3535 >         long basis,
3536 >         LongBinaryOperator reducer) {
3537 >        if (transformer == null || reducer == null)
3538 >            throw new NullPointerException();
3539 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3540 >        long r = basis;
3541 >        while (it.advance() != null)
3542 >            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3543 >        return r;
3544 >    }
3545 >
3546 >    /**
3547 >     * Returns the result of accumulating the given transformation
3548 >     * of all keys using the given reducer to combine values, and
3549 >     * the given basis as an identity value.
3550 >     *
3551 >     * @param transformer a function returning the transformation
3552 >     * for an element
3553 >     * @param basis the identity (initial default value) for the reduction
3554 >     * @param reducer a commutative associative combining function
3555 >     * @return the result of accumulating the given transformation
3556 >     * of all keys
3557 >     */
3558 >    public int reduceKeysToIntSequentially
3559 >        (IntFunction<? super K> transformer,
3560 >         int basis,
3561 >         IntBinaryOperator reducer) {
3562 >        if (transformer == null || reducer == null)
3563 >            throw new NullPointerException();
3564 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3565 >        int r = basis;
3566 >        while (it.advance() != null)
3567 >            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3568 >        return r;
3569 >    }
3570 >
3571 >    /**
3572 >     * Performs the given action for each value.
3573 >     *
3574 >     * @param action the action
3575 >     */
3576 >    public void forEachValueSequentially(Block<? super V> action) {
3577 >        if (action == null) throw new NullPointerException();
3578 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3579 >        V v;
3580 >        while ((v = it.advance()) != null)
3581 >            action.accept(v);
3582 >    }
3583 >
3584 >    /**
3585 >     * Performs the given action for each non-null transformation
3586 >     * of each value.
3587 >     *
3588 >     * @param transformer a function returning the transformation
3589 >     * for an element, or null if there is no transformation (in
3590 >     * which case the action is not applied).
3591 >     */
3592 >    public <U> void forEachValueSequentially
3593 >        (Function<? super V, ? extends U> transformer,
3594 >         Block<? super U> action) {
3595 >        if (transformer == null || action == null)
3596 >            throw new NullPointerException();
3597 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3598 >        V v; U u;
3599 >        while ((v = it.advance()) != null) {
3600 >            if ((u = transformer.apply(v)) != null)
3601 >                action.accept(u);
3602 >        }
3603 >    }
3604 >
3605 >    /**
3606 >     * Returns a non-null result from applying the given search
3607 >     * function on each value, or null if none.
3608 >     *
3609 >     * @param searchFunction a function returning a non-null
3610 >     * result on success, else null
3611 >     * @return a non-null result from applying the given search
3612 >     * function on each value, or null if none
3613 >     */
3614 >    public <U> U searchValuesSequentially
3615 >        (Function<? super V, ? extends U> searchFunction) {
3616 >        if (searchFunction == null) throw new NullPointerException();
3617 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3618 >        V v; U u;
3619 >        while ((v = it.advance()) != null) {
3620 >            if ((u = searchFunction.apply(v)) != null)
3621 >                return u;
3622 >        }
3623 >        return null;
3624 >    }
3625 >
3626 >    /**
3627 >     * Returns the result of accumulating all values using the
3628 >     * given reducer to combine values, or null if none.
3629 >     *
3630 >     * @param reducer a commutative associative combining function
3631 >     * @return the result of accumulating all values
3632 >     */
3633 >    public V reduceValuesSequentially
3634 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
3635 >        if (reducer == null) throw new NullPointerException();
3636 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637 >        V r = null; V v;
3638 >        while ((v = it.advance()) != null)
3639 >            r = (r == null) ? v : reducer.apply(r, v);
3640 >        return r;
3641 >    }
3642 >
3643 >    /**
3644 >     * Returns the result of accumulating the given transformation
3645 >     * of all values using the given reducer to combine values, or
3646 >     * null if none.
3647 >     *
3648 >     * @param transformer a function returning the transformation
3649 >     * for an element, or null if there is no transformation (in
3650 >     * which case it is not combined).
3651 >     * @param reducer a commutative associative combining function
3652 >     * @return the result of accumulating the given transformation
3653 >     * of all values
3654 >     */
3655 >    public <U> U reduceValuesSequentially
3656 >        (Function<? super V, ? extends U> transformer,
3657 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3658 >        if (transformer == null || reducer == null)
3659 >            throw new NullPointerException();
3660 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3661 >        U r = null, u; V v;
3662 >        while ((v = it.advance()) != null) {
3663 >            if ((u = transformer.apply(v)) != null)
3664 >                r = (r == null) ? u : reducer.apply(r, u);
3665 >        }
3666 >        return r;
3667 >    }
3668 >
3669 >    /**
3670 >     * Returns the result of accumulating the given transformation
3671 >     * of all values using the given reducer to combine values,
3672 >     * and the given basis as an identity value.
3673 >     *
3674 >     * @param transformer a function returning the transformation
3675 >     * for an element
3676 >     * @param basis the identity (initial default value) for the reduction
3677 >     * @param reducer a commutative associative combining function
3678 >     * @return the result of accumulating the given transformation
3679 >     * of all values
3680 >     */
3681 >    public double reduceValuesToDoubleSequentially
3682 >        (DoubleFunction<? super V> transformer,
3683 >         double basis,
3684 >         DoubleBinaryOperator reducer) {
3685 >        if (transformer == null || reducer == null)
3686 >            throw new NullPointerException();
3687 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3688 >        double r = basis; V v;
3689 >        while ((v = it.advance()) != null)
3690 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3691 >        return r;
3692 >    }
3693 >
3694 >    /**
3695 >     * Returns the result of accumulating the given transformation
3696 >     * of all values using the given reducer to combine values,
3697 >     * and the given basis as an identity value.
3698 >     *
3699 >     * @param transformer a function returning the transformation
3700 >     * for an element
3701 >     * @param basis the identity (initial default value) for the reduction
3702 >     * @param reducer a commutative associative combining function
3703 >     * @return the result of accumulating the given transformation
3704 >     * of all values
3705 >     */
3706 >    public long reduceValuesToLongSequentially
3707 >        (LongFunction<? super V> transformer,
3708 >         long basis,
3709 >         LongBinaryOperator reducer) {
3710 >        if (transformer == null || reducer == null)
3711 >            throw new NullPointerException();
3712 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3713 >        long r = basis; V v;
3714 >        while ((v = it.advance()) != null)
3715 >            r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3716 >        return r;
3717 >    }
3718 >
3719 >    /**
3720 >     * Returns the result of accumulating the given transformation
3721 >     * of all values using the given reducer to combine values,
3722 >     * and the given basis as an identity value.
3723 >     *
3724 >     * @param transformer a function returning the transformation
3725 >     * for an element
3726 >     * @param basis the identity (initial default value) for the reduction
3727 >     * @param reducer a commutative associative combining function
3728 >     * @return the result of accumulating the given transformation
3729 >     * of all values
3730 >     */
3731 >    public int reduceValuesToIntSequentially
3732 >        (IntFunction<? super V> transformer,
3733 >         int basis,
3734 >         IntBinaryOperator reducer) {
3735 >        if (transformer == null || reducer == null)
3736 >            throw new NullPointerException();
3737 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738 >        int r = basis; V v;
3739 >        while ((v = it.advance()) != null)
3740 >            r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3741 >        return r;
3742 >    }
3743 >
3744 >    /**
3745 >     * Performs the given action for each entry.
3746 >     *
3747 >     * @param action the action
3748 >     */
3749 >    public void forEachEntrySequentially
3750 >        (Block<? super Map.Entry<K,V>> action) {
3751 >        if (action == null) throw new NullPointerException();
3752 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3753 >        V v;
3754 >        while ((v = it.advance()) != null)
3755 >            action.accept(entryFor(it.nextKey, v));
3756 >    }
3757 >
3758 >    /**
3759 >     * Performs the given action for each non-null transformation
3760 >     * of each entry.
3761 >     *
3762 >     * @param transformer a function returning the transformation
3763 >     * for an element, or null if there is no transformation (in
3764 >     * which case the action is not applied).
3765 >     * @param action the action
3766 >     */
3767 >    public <U> void forEachEntrySequentially
3768 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3769 >         Block<? super U> action) {
3770 >        if (transformer == null || action == null)
3771 >            throw new NullPointerException();
3772 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3773 >        V v; U u;
3774 >        while ((v = it.advance()) != null) {
3775 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3776 >                action.accept(u);
3777 >        }
3778 >    }
3779 >
3780 >    /**
3781 >     * Returns a non-null result from applying the given search
3782 >     * function on each entry, or null if none.
3783 >     *
3784 >     * @param searchFunction a function returning a non-null
3785 >     * result on success, else null
3786 >     * @return a non-null result from applying the given search
3787 >     * function on each entry, or null if none
3788 >     */
3789 >    public <U> U searchEntriesSequentially
3790 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3791 >        if (searchFunction == null) throw new NullPointerException();
3792 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3793 >        V v; U u;
3794 >        while ((v = it.advance()) != null) {
3795 >            if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3796 >                return u;
3797 >        }
3798 >        return null;
3799 >    }
3800 >
3801 >    /**
3802 >     * Returns the result of accumulating all entries using the
3803 >     * given reducer to combine values, or null if none.
3804 >     *
3805 >     * @param reducer a commutative associative combining function
3806 >     * @return the result of accumulating all entries
3807 >     */
3808 >    public Map.Entry<K,V> reduceEntriesSequentially
3809 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3810 >        if (reducer == null) throw new NullPointerException();
3811 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3812 >        Map.Entry<K,V> r = null; V v;
3813 >        while ((v = it.advance()) != null) {
3814 >            Map.Entry<K,V> u = entryFor(it.nextKey, v);
3815 >            r = (r == null) ? u : reducer.apply(r, u);
3816 >        }
3817 >        return r;
3818 >    }
3819 >
3820 >    /**
3821 >     * Returns the result of accumulating the given transformation
3822 >     * of all entries using the given reducer to combine values,
3823 >     * or null if none.
3824 >     *
3825 >     * @param transformer a function returning the transformation
3826 >     * for an element, or null if there is no transformation (in
3827 >     * which case it is not combined).
3828 >     * @param reducer a commutative associative combining function
3829 >     * @return the result of accumulating the given transformation
3830 >     * of all entries
3831 >     */
3832 >    public <U> U reduceEntriesSequentially
3833 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3834 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3835 >        if (transformer == null || reducer == null)
3836 >            throw new NullPointerException();
3837 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3838 >        U r = null, u; V v;
3839 >        while ((v = it.advance()) != null) {
3840 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3841 >                r = (r == null) ? u : reducer.apply(r, u);
3842 >        }
3843 >        return r;
3844 >    }
3845 >
3846 >    /**
3847 >     * Returns the result of accumulating the given transformation
3848 >     * of all entries using the given reducer to combine values,
3849 >     * and the given basis as an identity value.
3850 >     *
3851 >     * @param transformer a function returning the transformation
3852 >     * for an element
3853 >     * @param basis the identity (initial default value) for the reduction
3854 >     * @param reducer a commutative associative combining function
3855 >     * @return the result of accumulating the given transformation
3856 >     * of all entries
3857 >     */
3858 >    public double reduceEntriesToDoubleSequentially
3859 >        (DoubleFunction<Map.Entry<K,V>> transformer,
3860 >         double basis,
3861 >         DoubleBinaryOperator reducer) {
3862 >        if (transformer == null || reducer == null)
3863 >            throw new NullPointerException();
3864 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3865 >        double r = basis; V v;
3866 >        while ((v = it.advance()) != null)
3867 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3868 >        return r;
3869 >    }
3870 >
3871 >    /**
3872 >     * Returns the result of accumulating the given transformation
3873 >     * of all entries using the given reducer to combine values,
3874 >     * and the given basis as an identity value.
3875 >     *
3876 >     * @param transformer a function returning the transformation
3877 >     * for an element
3878 >     * @param basis the identity (initial default value) for the reduction
3879 >     * @param reducer a commutative associative combining function
3880 >     * @return the result of accumulating the given transformation
3881 >     * of all entries
3882 >     */
3883 >    public long reduceEntriesToLongSequentially
3884 >        (LongFunction<Map.Entry<K,V>> transformer,
3885 >         long basis,
3886 >         LongBinaryOperator reducer) {
3887 >        if (transformer == null || reducer == null)
3888 >            throw new NullPointerException();
3889 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3890 >        long r = basis; V v;
3891 >        while ((v = it.advance()) != null)
3892 >            r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3893 >        return r;
3894 >    }
3895 >
3896 >    /**
3897 >     * Returns the result of accumulating the given transformation
3898 >     * of all entries using the given reducer to combine values,
3899 >     * and the given basis as an identity value.
3900 >     *
3901 >     * @param transformer a function returning the transformation
3902 >     * for an element
3903 >     * @param basis the identity (initial default value) for the reduction
3904 >     * @param reducer a commutative associative combining function
3905 >     * @return the result of accumulating the given transformation
3906 >     * of all entries
3907 >     */
3908 >    public int reduceEntriesToIntSequentially
3909 >        (IntFunction<Map.Entry<K,V>> transformer,
3910 >         int basis,
3911 >         IntBinaryOperator reducer) {
3912 >        if (transformer == null || reducer == null)
3913 >            throw new NullPointerException();
3914 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3915 >        int r = basis; V v;
3916 >        while ((v = it.advance()) != null)
3917 >            r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3918 >        return r;
3919 >    }
3920 >
3921 >    // Parallel bulk operations
3922  
3923      /**
3924       * Performs the given action for each (key, value).
3925       *
3926       * @param action the action
3927       */
3928 <    public void forEach(BiAction<K,V> action) {
3928 >    public void forEachInParallel(BiBlock<? super K,? super V> action) {
3929          ForkJoinTasks.forEach
3930              (this, action).invoke();
3931      }
# Line 3464 | Line 3935 | public class ConcurrentHashMap<K, V>
3935       * of each (key, value).
3936       *
3937       * @param transformer a function returning the transformation
3938 <     * for an element, or null of there is no transformation (in
3938 >     * for an element, or null if there is no transformation (in
3939       * which case the action is not applied).
3940       * @param action the action
3941       */
3942 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3943 <                            Action<U> action) {
3942 >    public <U> void forEachInParallel
3943 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3944 >                            Block<? super U> action) {
3945          ForkJoinTasks.forEach
3946              (this, transformer, action).invoke();
3947      }
# Line 3486 | Line 3958 | public class ConcurrentHashMap<K, V>
3958       * @return a non-null result from applying the given search
3959       * function on each (key, value), or null if none
3960       */
3961 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3961 >    public <U> U searchInParallel
3962 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3963          return ForkJoinTasks.search
3964              (this, searchFunction).invoke();
3965      }
# Line 3497 | Line 3970 | public class ConcurrentHashMap<K, V>
3970       * combine values, or null if none.
3971       *
3972       * @param transformer a function returning the transformation
3973 <     * for an element, or null of there is no transformation (in
3973 >     * for an element, or null if there is no transformation (in
3974       * which case it is not combined).
3975       * @param reducer a commutative associative combining function
3976       * @return the result of accumulating the given transformation
3977       * of all (key, value) pairs
3978       */
3979 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3980 <                        BiFun<? super U, ? super U, ? extends U> reducer) {
3979 >    public <U> U reduceInParallel
3980 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3981 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3982          return ForkJoinTasks.reduce
3983              (this, transformer, reducer).invoke();
3984      }
# Line 3521 | Line 3995 | public class ConcurrentHashMap<K, V>
3995       * @return the result of accumulating the given transformation
3996       * of all (key, value) pairs
3997       */
3998 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3999 <                                 double basis,
4000 <                                 DoubleByDoubleToDouble reducer) {
3998 >    public double reduceToDoubleInParallel
3999 >        (DoubleBiFunction<? super K, ? super V> transformer,
4000 >         double basis,
4001 >         DoubleBinaryOperator reducer) {
4002          return ForkJoinTasks.reduceToDouble
4003              (this, transformer, basis, reducer).invoke();
4004      }
# Line 3540 | Line 4015 | public class ConcurrentHashMap<K, V>
4015       * @return the result of accumulating the given transformation
4016       * of all (key, value) pairs
4017       */
4018 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
4019 <                             long basis,
4020 <                             LongByLongToLong reducer) {
4018 >    public long reduceToLongInParallel
4019 >        (LongBiFunction<? super K, ? super V> transformer,
4020 >         long basis,
4021 >         LongBinaryOperator reducer) {
4022          return ForkJoinTasks.reduceToLong
4023              (this, transformer, basis, reducer).invoke();
4024      }
# Line 3559 | Line 4035 | public class ConcurrentHashMap<K, V>
4035       * @return the result of accumulating the given transformation
4036       * of all (key, value) pairs
4037       */
4038 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
4039 <                           int basis,
4040 <                           IntByIntToInt reducer) {
4038 >    public int reduceToIntInParallel
4039 >        (IntBiFunction<? super K, ? super V> transformer,
4040 >         int basis,
4041 >         IntBinaryOperator reducer) {
4042          return ForkJoinTasks.reduceToInt
4043              (this, transformer, basis, reducer).invoke();
4044      }
# Line 3571 | Line 4048 | public class ConcurrentHashMap<K, V>
4048       *
4049       * @param action the action
4050       */
4051 <    public void forEachKey(Action<K> action) {
4051 >    public void forEachKeyInParallel(Block<? super K> action) {
4052          ForkJoinTasks.forEachKey
4053              (this, action).invoke();
4054      }
# Line 3581 | Line 4058 | public class ConcurrentHashMap<K, V>
4058       * of each key.
4059       *
4060       * @param transformer a function returning the transformation
4061 <     * for an element, or null of there is no transformation (in
4061 >     * for an element, or null if there is no transformation (in
4062       * which case the action is not applied).
4063       * @param action the action
4064       */
4065 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
4066 <                               Action<U> action) {
4065 >    public <U> void forEachKeyInParallel
4066 >        (Function<? super K, ? extends U> transformer,
4067 >         Block<? super U> action) {
4068          ForkJoinTasks.forEachKey
4069              (this, transformer, action).invoke();
4070      }
# Line 3603 | Line 4081 | public class ConcurrentHashMap<K, V>
4081       * @return a non-null result from applying the given search
4082       * function on each key, or null if none
4083       */
4084 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
4084 >    public <U> U searchKeysInParallel
4085 >        (Function<? super K, ? extends U> searchFunction) {
4086          return ForkJoinTasks.searchKeys
4087              (this, searchFunction).invoke();
4088      }
# Line 3616 | Line 4095 | public class ConcurrentHashMap<K, V>
4095       * @return the result of accumulating all keys using the given
4096       * reducer to combine values, or null if none
4097       */
4098 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
4098 >    public K reduceKeysInParallel
4099 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
4100          return ForkJoinTasks.reduceKeys
4101              (this, reducer).invoke();
4102      }
# Line 3627 | Line 4107 | public class ConcurrentHashMap<K, V>
4107       * null if none.
4108       *
4109       * @param transformer a function returning the transformation
4110 <     * for an element, or null of there is no transformation (in
4110 >     * for an element, or null if there is no transformation (in
4111       * which case it is not combined).
4112       * @param reducer a commutative associative combining function
4113       * @return the result of accumulating the given transformation
4114       * of all keys
4115       */
4116 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
4117 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4116 >    public <U> U reduceKeysInParallel
4117 >        (Function<? super K, ? extends U> transformer,
4118 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4119          return ForkJoinTasks.reduceKeys
4120              (this, transformer, reducer).invoke();
4121      }
# Line 3648 | Line 4129 | public class ConcurrentHashMap<K, V>
4129       * for an element
4130       * @param basis the identity (initial default value) for the reduction
4131       * @param reducer a commutative associative combining function
4132 <     * @return  the result of accumulating the given transformation
4132 >     * @return the result of accumulating the given transformation
4133       * of all keys
4134       */
4135 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
4136 <                                     double basis,
4137 <                                     DoubleByDoubleToDouble reducer) {
4135 >    public double reduceKeysToDoubleInParallel
4136 >        (DoubleFunction<? super K> transformer,
4137 >         double basis,
4138 >         DoubleBinaryOperator reducer) {
4139          return ForkJoinTasks.reduceKeysToDouble
4140              (this, transformer, basis, reducer).invoke();
4141      }
# Line 3670 | Line 4152 | public class ConcurrentHashMap<K, V>
4152       * @return the result of accumulating the given transformation
4153       * of all keys
4154       */
4155 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
4156 <                                 long basis,
4157 <                                 LongByLongToLong reducer) {
4155 >    public long reduceKeysToLongInParallel
4156 >        (LongFunction<? super K> transformer,
4157 >         long basis,
4158 >         LongBinaryOperator reducer) {
4159          return ForkJoinTasks.reduceKeysToLong
4160              (this, transformer, basis, reducer).invoke();
4161      }
# Line 3689 | Line 4172 | public class ConcurrentHashMap<K, V>
4172       * @return the result of accumulating the given transformation
4173       * of all keys
4174       */
4175 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
4176 <                               int basis,
4177 <                               IntByIntToInt reducer) {
4175 >    public int reduceKeysToIntInParallel
4176 >        (IntFunction<? super K> transformer,
4177 >         int basis,
4178 >         IntBinaryOperator reducer) {
4179          return ForkJoinTasks.reduceKeysToInt
4180              (this, transformer, basis, reducer).invoke();
4181      }
# Line 3701 | Line 4185 | public class ConcurrentHashMap<K, V>
4185       *
4186       * @param action the action
4187       */
4188 <    public void forEachValue(Action<V> action) {
4188 >    public void forEachValueInParallel(Block<? super V> action) {
4189          ForkJoinTasks.forEachValue
4190              (this, action).invoke();
4191      }
# Line 3711 | Line 4195 | public class ConcurrentHashMap<K, V>
4195       * of each value.
4196       *
4197       * @param transformer a function returning the transformation
4198 <     * for an element, or null of there is no transformation (in
4198 >     * for an element, or null if there is no transformation (in
4199       * which case the action is not applied).
4200       */
4201 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
4202 <                                 Action<U> action) {
4201 >    public <U> void forEachValueInParallel
4202 >        (Function<? super V, ? extends U> transformer,
4203 >         Block<? super U> action) {
4204          ForkJoinTasks.forEachValue
4205              (this, transformer, action).invoke();
4206      }
# Line 3731 | Line 4216 | public class ConcurrentHashMap<K, V>
4216       * result on success, else null
4217       * @return a non-null result from applying the given search
4218       * function on each value, or null if none
3734     *
4219       */
4220 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
4220 >    public <U> U searchValuesInParallel
4221 >        (Function<? super V, ? extends U> searchFunction) {
4222          return ForkJoinTasks.searchValues
4223              (this, searchFunction).invoke();
4224      }
# Line 3743 | Line 4228 | public class ConcurrentHashMap<K, V>
4228       * given reducer to combine values, or null if none.
4229       *
4230       * @param reducer a commutative associative combining function
4231 <     * @return  the result of accumulating all values
4231 >     * @return the result of accumulating all values
4232       */
4233 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
4233 >    public V reduceValuesInParallel
4234 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4235          return ForkJoinTasks.reduceValues
4236              (this, reducer).invoke();
4237      }
# Line 3756 | Line 4242 | public class ConcurrentHashMap<K, V>
4242       * null if none.
4243       *
4244       * @param transformer a function returning the transformation
4245 <     * for an element, or null of there is no transformation (in
4245 >     * for an element, or null if there is no transformation (in
4246       * which case it is not combined).
4247       * @param reducer a commutative associative combining function
4248       * @return the result of accumulating the given transformation
4249       * of all values
4250       */
4251 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
4252 <                              BiFun<? super U, ? super U, ? extends U> reducer) {
4251 >    public <U> U reduceValuesInParallel
4252 >        (Function<? super V, ? extends U> transformer,
4253 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4254          return ForkJoinTasks.reduceValues
4255              (this, transformer, reducer).invoke();
4256      }
# Line 3780 | Line 4267 | public class ConcurrentHashMap<K, V>
4267       * @return the result of accumulating the given transformation
4268       * of all values
4269       */
4270 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
4271 <                                       double basis,
4272 <                                       DoubleByDoubleToDouble reducer) {
4270 >    public double reduceValuesToDoubleInParallel
4271 >        (DoubleFunction<? super V> transformer,
4272 >         double basis,
4273 >         DoubleBinaryOperator reducer) {
4274          return ForkJoinTasks.reduceValuesToDouble
4275              (this, transformer, basis, reducer).invoke();
4276      }
# Line 3799 | Line 4287 | public class ConcurrentHashMap<K, V>
4287       * @return the result of accumulating the given transformation
4288       * of all values
4289       */
4290 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4291 <                                   long basis,
4292 <                                   LongByLongToLong reducer) {
4290 >    public long reduceValuesToLongInParallel
4291 >        (LongFunction<? super V> transformer,
4292 >         long basis,
4293 >         LongBinaryOperator reducer) {
4294          return ForkJoinTasks.reduceValuesToLong
4295              (this, transformer, basis, reducer).invoke();
4296      }
# Line 3818 | Line 4307 | public class ConcurrentHashMap<K, V>
4307       * @return the result of accumulating the given transformation
4308       * of all values
4309       */
4310 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4311 <                                 int basis,
4312 <                                 IntByIntToInt reducer) {
4310 >    public int reduceValuesToIntInParallel
4311 >        (IntFunction<? super V> transformer,
4312 >         int basis,
4313 >         IntBinaryOperator reducer) {
4314          return ForkJoinTasks.reduceValuesToInt
4315              (this, transformer, basis, reducer).invoke();
4316      }
# Line 3830 | Line 4320 | public class ConcurrentHashMap<K, V>
4320       *
4321       * @param action the action
4322       */
4323 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
4323 >    public void forEachEntryInParallel(Block<? super Map.Entry<K,V>> action) {
4324          ForkJoinTasks.forEachEntry
4325              (this, action).invoke();
4326      }
# Line 3840 | Line 4330 | public class ConcurrentHashMap<K, V>
4330       * of each entry.
4331       *
4332       * @param transformer a function returning the transformation
4333 <     * for an element, or null of there is no transformation (in
4333 >     * for an element, or null if there is no transformation (in
4334       * which case the action is not applied).
4335       * @param action the action
4336       */
4337 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4338 <                                 Action<U> action) {
4337 >    public <U> void forEachEntryInParallel
4338 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4339 >         Block<? super U> action) {
4340          ForkJoinTasks.forEachEntry
4341              (this, transformer, action).invoke();
4342      }
# Line 3862 | Line 4353 | public class ConcurrentHashMap<K, V>
4353       * @return a non-null result from applying the given search
4354       * function on each entry, or null if none
4355       */
4356 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4356 >    public <U> U searchEntriesInParallel
4357 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4358          return ForkJoinTasks.searchEntries
4359              (this, searchFunction).invoke();
4360      }
# Line 3874 | Line 4366 | public class ConcurrentHashMap<K, V>
4366       * @param reducer a commutative associative combining function
4367       * @return the result of accumulating all entries
4368       */
4369 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4369 >    public Map.Entry<K,V> reduceEntriesInParallel
4370 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4371          return ForkJoinTasks.reduceEntries
4372              (this, reducer).invoke();
4373      }
# Line 3885 | Line 4378 | public class ConcurrentHashMap<K, V>
4378       * or null if none.
4379       *
4380       * @param transformer a function returning the transformation
4381 <     * for an element, or null of there is no transformation (in
4381 >     * for an element, or null if there is no transformation (in
4382       * which case it is not combined).
4383       * @param reducer a commutative associative combining function
4384       * @return the result of accumulating the given transformation
4385       * of all entries
4386       */
4387 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4388 <                               BiFun<? super U, ? super U, ? extends U> reducer) {
4387 >    public <U> U reduceEntriesInParallel
4388 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4389 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4390          return ForkJoinTasks.reduceEntries
4391              (this, transformer, reducer).invoke();
4392      }
# Line 3909 | Line 4403 | public class ConcurrentHashMap<K, V>
4403       * @return the result of accumulating the given transformation
4404       * of all entries
4405       */
4406 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4407 <                                        double basis,
4408 <                                        DoubleByDoubleToDouble reducer) {
4406 >    public double reduceEntriesToDoubleInParallel
4407 >        (DoubleFunction<Map.Entry<K,V>> transformer,
4408 >         double basis,
4409 >         DoubleBinaryOperator reducer) {
4410          return ForkJoinTasks.reduceEntriesToDouble
4411              (this, transformer, basis, reducer).invoke();
4412      }
# Line 3925 | Line 4420 | public class ConcurrentHashMap<K, V>
4420       * for an element
4421       * @param basis the identity (initial default value) for the reduction
4422       * @param reducer a commutative associative combining function
4423 <     * @return  the result of accumulating the given transformation
4423 >     * @return the result of accumulating the given transformation
4424       * of all entries
4425       */
4426 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4427 <                                    long basis,
4428 <                                    LongByLongToLong reducer) {
4426 >    public long reduceEntriesToLongInParallel
4427 >        (LongFunction<Map.Entry<K,V>> transformer,
4428 >         long basis,
4429 >         LongBinaryOperator reducer) {
4430          return ForkJoinTasks.reduceEntriesToLong
4431              (this, transformer, basis, reducer).invoke();
4432      }
# Line 3947 | Line 4443 | public class ConcurrentHashMap<K, V>
4443       * @return the result of accumulating the given transformation
4444       * of all entries
4445       */
4446 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4447 <                                  int basis,
4448 <                                  IntByIntToInt reducer) {
4446 >    public int reduceEntriesToIntInParallel
4447 >        (IntFunction<Map.Entry<K,V>> transformer,
4448 >         int basis,
4449 >         IntBinaryOperator reducer) {
4450          return ForkJoinTasks.reduceEntriesToInt
4451              (this, transformer, basis, reducer).invoke();
4452      }
4453  
4454 +
4455      /* ----------------Views -------------- */
4456  
4457      /**
4458       * Base class for views.
4459       */
4460 <    static abstract class CHMView<K, V> {
4460 >    abstract static class CHMView<K, V> implements java.io.Serializable {
4461 >        private static final long serialVersionUID = 7249069246763182397L;
4462          final ConcurrentHashMap<K, V> map;
4463          CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
4464  
# Line 3975 | Line 4474 | public class ConcurrentHashMap<K, V>
4474          public final void clear()               { map.clear(); }
4475  
4476          // implementations below rely on concrete classes supplying these
4477 <        abstract public Iterator<?> iterator();
4478 <        abstract public boolean contains(Object o);
4479 <        abstract public boolean remove(Object o);
4477 >        public abstract Iterator<?> iterator();
4478 >        public abstract boolean contains(Object o);
4479 >        public abstract boolean remove(Object o);
4480  
4481          private static final String oomeMsg = "Required array size too large";
4482  
# Line 4099 | Line 4598 | public class ConcurrentHashMap<K, V>
4598       * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4599       * {@link #newKeySet(int)}.
4600       */
4601 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4601 >    public static class KeySetView<K,V> extends CHMView<K,V>
4602 >        implements Set<K>, java.io.Serializable {
4603          private static final long serialVersionUID = 7249069246763182397L;
4604          private final V value;
4605          KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
# Line 4138 | Line 4638 | public class ConcurrentHashMap<K, V>
4638                  throw new UnsupportedOperationException();
4639              if (e == null)
4640                  throw new NullPointerException();
4641 <            return map.internalPutIfAbsent(e, v) == null;
4641 >            return map.internalPut(e, v, true) == null;
4642          }
4643          public boolean addAll(Collection<? extends K> c) {
4644              boolean added = false;
# Line 4148 | Line 4648 | public class ConcurrentHashMap<K, V>
4648              for (K e : c) {
4649                  if (e == null)
4650                      throw new NullPointerException();
4651 <                if (map.internalPutIfAbsent(e, v) == null)
4651 >                if (map.internalPut(e, v, true) == null)
4652                      added = true;
4653              }
4654              return added;
# Line 4160 | Line 4660 | public class ConcurrentHashMap<K, V>
4660                       (containsAll(c) && c.containsAll(this))));
4661          }
4662  
4663 <        /**
4664 <         * Performs the given action for each key.
4165 <         *
4166 <         * @param action the action
4167 <         */
4168 <        public void forEach(Action<K> action) {
4169 <            ForkJoinTasks.forEachKey
4170 <                (map, action).invoke();
4171 <        }
4172 <
4173 <        /**
4174 <         * Performs the given action for each non-null transformation
4175 <         * of each key.
4176 <         *
4177 <         * @param transformer a function returning the transformation
4178 <         * for an element, or null of there is no transformation (in
4179 <         * which case the action is not applied).
4180 <         * @param action the action
4181 <         */
4182 <        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4183 <                                Action<U> action) {
4184 <            ForkJoinTasks.forEachKey
4185 <                (map, transformer, action).invoke();
4186 <        }
4187 <
4188 <        /**
4189 <         * Returns a non-null result from applying the given search
4190 <         * function on each key, or null if none. Upon success,
4191 <         * further element processing is suppressed and the results of
4192 <         * any other parallel invocations of the search function are
4193 <         * ignored.
4194 <         *
4195 <         * @param searchFunction a function returning a non-null
4196 <         * result on success, else null
4197 <         * @return a non-null result from applying the given search
4198 <         * function on each key, or null if none
4199 <         */
4200 <        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4201 <            return ForkJoinTasks.searchKeys
4202 <                (map, searchFunction).invoke();
4203 <        }
4204 <
4205 <        /**
4206 <         * Returns the result of accumulating all keys using the given
4207 <         * reducer to combine values, or null if none.
4208 <         *
4209 <         * @param reducer a commutative associative combining function
4210 <         * @return the result of accumulating all keys using the given
4211 <         * reducer to combine values, or null if none
4212 <         */
4213 <        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4214 <            return ForkJoinTasks.reduceKeys
4215 <                (map, reducer).invoke();
4216 <        }
4217 <
4218 <        /**
4219 <         * Returns the result of accumulating the given transformation
4220 <         * of all keys using the given reducer to combine values, and
4221 <         * the given basis as an identity value.
4222 <         *
4223 <         * @param transformer a function returning the transformation
4224 <         * for an element
4225 <         * @param basis the identity (initial default value) for the reduction
4226 <         * @param reducer a commutative associative combining function
4227 <         * @return  the result of accumulating the given transformation
4228 <         * of all keys
4229 <         */
4230 <        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4231 <                                     double basis,
4232 <                                     DoubleByDoubleToDouble reducer) {
4233 <            return ForkJoinTasks.reduceKeysToDouble
4234 <                (map, transformer, basis, reducer).invoke();
4235 <        }
4236 <
4237 <
4238 <        /**
4239 <         * Returns the result of accumulating the given transformation
4240 <         * of all keys using the given reducer to combine values, and
4241 <         * the given basis as an identity value.
4242 <         *
4243 <         * @param transformer a function returning the transformation
4244 <         * for an element
4245 <         * @param basis the identity (initial default value) for the reduction
4246 <         * @param reducer a commutative associative combining function
4247 <         * @return the result of accumulating the given transformation
4248 <         * of all keys
4249 <         */
4250 <        public long reduceToLong(ObjectToLong<? super K> transformer,
4251 <                                 long basis,
4252 <                                 LongByLongToLong reducer) {
4253 <            return ForkJoinTasks.reduceKeysToLong
4254 <                (map, transformer, basis, reducer).invoke();
4663 >        public Stream<K> stream() {
4664 >            return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4665          }
4666 <
4667 <        /**
4668 <         * Returns the result of accumulating the given transformation
4259 <         * of all keys using the given reducer to combine values, and
4260 <         * the given basis as an identity value.
4261 <         *
4262 <         * @param transformer a function returning the transformation
4263 <         * for an element
4264 <         * @param basis the identity (initial default value) for the reduction
4265 <         * @param reducer a commutative associative combining function
4266 <         * @return the result of accumulating the given transformation
4267 <         * of all keys
4268 <         */
4269 <        public int reduceToInt(ObjectToInt<? super K> transformer,
4270 <                               int basis,
4271 <                               IntByIntToInt reducer) {
4272 <            return ForkJoinTasks.reduceKeysToInt
4273 <                (map, transformer, basis, reducer).invoke();
4666 >        public Stream<K> parallelStream() {
4667 >            return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4668 >                                          0);
4669          }
4275
4670      }
4671  
4672      /**
# Line 4288 | Line 4682 | public class ConcurrentHashMap<K, V>
4682       */
4683      public static final class ValuesView<K,V> extends CHMView<K,V>
4684          implements Collection<V> {
4685 +        private static final long serialVersionUID = 2249069246763182397L;
4686          ValuesView(ConcurrentHashMap<K, V> map)   { super(map); }
4687          public final boolean contains(Object o) { return map.containsValue(o); }
4688          public final boolean remove(Object o) {
# Line 4323 | Line 4718 | public class ConcurrentHashMap<K, V>
4718              throw new UnsupportedOperationException();
4719          }
4720  
4721 <        /**
4722 <         * Performs the given action for each value.
4328 <         *
4329 <         * @param action the action
4330 <         */
4331 <        public void forEach(Action<V> action) {
4332 <            ForkJoinTasks.forEachValue
4333 <                (map, action).invoke();
4334 <        }
4335 <
4336 <        /**
4337 <         * Performs the given action for each non-null transformation
4338 <         * of each value.
4339 <         *
4340 <         * @param transformer a function returning the transformation
4341 <         * for an element, or null of there is no transformation (in
4342 <         * which case the action is not applied).
4343 <         */
4344 <        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4345 <                                     Action<U> action) {
4346 <            ForkJoinTasks.forEachValue
4347 <                (map, transformer, action).invoke();
4348 <        }
4349 <
4350 <        /**
4351 <         * Returns a non-null result from applying the given search
4352 <         * function on each value, or null if none.  Upon success,
4353 <         * further element processing is suppressed and the results of
4354 <         * any other parallel invocations of the search function are
4355 <         * ignored.
4356 <         *
4357 <         * @param searchFunction a function returning a non-null
4358 <         * result on success, else null
4359 <         * @return a non-null result from applying the given search
4360 <         * function on each value, or null if none
4361 <         *
4362 <         */
4363 <        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4364 <            return ForkJoinTasks.searchValues
4365 <                (map, searchFunction).invoke();
4721 >        public Stream<V> stream() {
4722 >            return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4723          }
4724  
4725 <        /**
4726 <         * Returns the result of accumulating all values using the
4727 <         * given reducer to combine values, or null if none.
4371 <         *
4372 <         * @param reducer a commutative associative combining function
4373 <         * @return  the result of accumulating all values
4374 <         */
4375 <        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4376 <            return ForkJoinTasks.reduceValues
4377 <                (map, reducer).invoke();
4378 <        }
4379 <
4380 <        /**
4381 <         * Returns the result of accumulating the given transformation
4382 <         * of all values using the given reducer to combine values, or
4383 <         * null if none.
4384 <         *
4385 <         * @param transformer a function returning the transformation
4386 <         * for an element, or null of there is no transformation (in
4387 <         * which case it is not combined).
4388 <         * @param reducer a commutative associative combining function
4389 <         * @return the result of accumulating the given transformation
4390 <         * of all values
4391 <         */
4392 <        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4393 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4394 <            return ForkJoinTasks.reduceValues
4395 <                (map, transformer, reducer).invoke();
4396 <        }
4397 <
4398 <        /**
4399 <         * Returns the result of accumulating the given transformation
4400 <         * of all values using the given reducer to combine values,
4401 <         * and the given basis as an identity value.
4402 <         *
4403 <         * @param transformer a function returning the transformation
4404 <         * for an element
4405 <         * @param basis the identity (initial default value) for the reduction
4406 <         * @param reducer a commutative associative combining function
4407 <         * @return the result of accumulating the given transformation
4408 <         * of all values
4409 <         */
4410 <        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4411 <                                     double basis,
4412 <                                     DoubleByDoubleToDouble reducer) {
4413 <            return ForkJoinTasks.reduceValuesToDouble
4414 <                (map, transformer, basis, reducer).invoke();
4415 <        }
4416 <
4417 <        /**
4418 <         * Returns the result of accumulating the given transformation
4419 <         * of all values using the given reducer to combine values,
4420 <         * and the given basis as an identity value.
4421 <         *
4422 <         * @param transformer a function returning the transformation
4423 <         * for an element
4424 <         * @param basis the identity (initial default value) for the reduction
4425 <         * @param reducer a commutative associative combining function
4426 <         * @return the result of accumulating the given transformation
4427 <         * of all values
4428 <         */
4429 <        public long reduceToLong(ObjectToLong<? super V> transformer,
4430 <                                 long basis,
4431 <                                 LongByLongToLong reducer) {
4432 <            return ForkJoinTasks.reduceValuesToLong
4433 <                (map, transformer, basis, reducer).invoke();
4434 <        }
4435 <
4436 <        /**
4437 <         * Returns the result of accumulating the given transformation
4438 <         * of all values using the given reducer to combine values,
4439 <         * and the given basis as an identity value.
4440 <         *
4441 <         * @param transformer a function returning the transformation
4442 <         * for an element
4443 <         * @param basis the identity (initial default value) for the reduction
4444 <         * @param reducer a commutative associative combining function
4445 <         * @return the result of accumulating the given transformation
4446 <         * of all values
4447 <         */
4448 <        public int reduceToInt(ObjectToInt<? super V> transformer,
4449 <                               int basis,
4450 <                               IntByIntToInt reducer) {
4451 <            return ForkJoinTasks.reduceValuesToInt
4452 <                (map, transformer, basis, reducer).invoke();
4725 >        public Stream<V> parallelStream() {
4726 >            return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4727 >                                          0);
4728          }
4729  
4730      }
# Line 4461 | Line 4736 | public class ConcurrentHashMap<K, V>
4736       */
4737      public static final class EntrySetView<K,V> extends CHMView<K,V>
4738          implements Set<Map.Entry<K,V>> {
4739 +        private static final long serialVersionUID = 2249069246763182397L;
4740          EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4741          public final boolean contains(Object o) {
4742              Object k, v, r; Map.Entry<?,?> e;
# Line 4497 | Line 4773 | public class ConcurrentHashMap<K, V>
4773              V value = e.getValue();
4774              if (key == null || value == null)
4775                  throw new NullPointerException();
4776 <            return map.internalPut(key, value) == null;
4776 >            return map.internalPut(key, value, false) == null;
4777          }
4778          public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4779              boolean added = false;
# Line 4514 | Line 4790 | public class ConcurrentHashMap<K, V>
4790                       (containsAll(c) && c.containsAll(this))));
4791          }
4792  
4793 <        /**
4794 <         * Performs the given action for each entry.
4519 <         *
4520 <         * @param action the action
4521 <         */
4522 <        public void forEach(Action<Map.Entry<K,V>> action) {
4523 <            ForkJoinTasks.forEachEntry
4524 <                (map, action).invoke();
4525 <        }
4526 <
4527 <        /**
4528 <         * Performs the given action for each non-null transformation
4529 <         * of each entry.
4530 <         *
4531 <         * @param transformer a function returning the transformation
4532 <         * for an element, or null of there is no transformation (in
4533 <         * which case the action is not applied).
4534 <         * @param action the action
4535 <         */
4536 <        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4537 <                                Action<U> action) {
4538 <            ForkJoinTasks.forEachEntry
4539 <                (map, transformer, action).invoke();
4793 >        public Stream<Map.Entry<K,V>> stream() {
4794 >            return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4795          }
4796  
4797 <        /**
4798 <         * Returns a non-null result from applying the given search
4799 <         * function on each entry, or null if none.  Upon success,
4545 <         * further element processing is suppressed and the results of
4546 <         * any other parallel invocations of the search function are
4547 <         * ignored.
4548 <         *
4549 <         * @param searchFunction a function returning a non-null
4550 <         * result on success, else null
4551 <         * @return a non-null result from applying the given search
4552 <         * function on each entry, or null if none
4553 <         */
4554 <        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4555 <            return ForkJoinTasks.searchEntries
4556 <                (map, searchFunction).invoke();
4557 <        }
4558 <
4559 <        /**
4560 <         * Returns the result of accumulating all entries using the
4561 <         * given reducer to combine values, or null if none.
4562 <         *
4563 <         * @param reducer a commutative associative combining function
4564 <         * @return the result of accumulating all entries
4565 <         */
4566 <        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4567 <            return ForkJoinTasks.reduceEntries
4568 <                (map, reducer).invoke();
4569 <        }
4570 <
4571 <        /**
4572 <         * Returns the result of accumulating the given transformation
4573 <         * of all entries using the given reducer to combine values,
4574 <         * or null if none.
4575 <         *
4576 <         * @param transformer a function returning the transformation
4577 <         * for an element, or null of there is no transformation (in
4578 <         * which case it is not combined).
4579 <         * @param reducer a commutative associative combining function
4580 <         * @return the result of accumulating the given transformation
4581 <         * of all entries
4582 <         */
4583 <        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4584 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4585 <            return ForkJoinTasks.reduceEntries
4586 <                (map, transformer, reducer).invoke();
4587 <        }
4588 <
4589 <        /**
4590 <         * Returns the result of accumulating the given transformation
4591 <         * of all entries using the given reducer to combine values,
4592 <         * and the given basis as an identity value.
4593 <         *
4594 <         * @param transformer a function returning the transformation
4595 <         * for an element
4596 <         * @param basis the identity (initial default value) for the reduction
4597 <         * @param reducer a commutative associative combining function
4598 <         * @return the result of accumulating the given transformation
4599 <         * of all entries
4600 <         */
4601 <        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4602 <                                     double basis,
4603 <                                     DoubleByDoubleToDouble reducer) {
4604 <            return ForkJoinTasks.reduceEntriesToDouble
4605 <                (map, transformer, basis, reducer).invoke();
4606 <        }
4607 <
4608 <        /**
4609 <         * Returns the result of accumulating the given transformation
4610 <         * of all entries using the given reducer to combine values,
4611 <         * and the given basis as an identity value.
4612 <         *
4613 <         * @param transformer a function returning the transformation
4614 <         * for an element
4615 <         * @param basis the identity (initial default value) for the reduction
4616 <         * @param reducer a commutative associative combining function
4617 <         * @return  the result of accumulating the given transformation
4618 <         * of all entries
4619 <         */
4620 <        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4621 <                                 long basis,
4622 <                                 LongByLongToLong reducer) {
4623 <            return ForkJoinTasks.reduceEntriesToLong
4624 <                (map, transformer, basis, reducer).invoke();
4625 <        }
4626 <
4627 <        /**
4628 <         * Returns the result of accumulating the given transformation
4629 <         * of all entries using the given reducer to combine values,
4630 <         * and the given basis as an identity value.
4631 <         *
4632 <         * @param transformer a function returning the transformation
4633 <         * for an element
4634 <         * @param basis the identity (initial default value) for the reduction
4635 <         * @param reducer a commutative associative combining function
4636 <         * @return the result of accumulating the given transformation
4637 <         * of all entries
4638 <         */
4639 <        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4640 <                               int basis,
4641 <                               IntByIntToInt reducer) {
4642 <            return ForkJoinTasks.reduceEntriesToInt
4643 <                (map, transformer, basis, reducer).invoke();
4797 >        public Stream<Map.Entry<K,V>> parallelStream() {
4798 >            return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4799 >                                          0);
4800          }
4645
4801      }
4802  
4803      // ---------------------------------------------------------------------
# Line 4669 | Line 4824 | public class ConcurrentHashMap<K, V>
4824           */
4825          public static <K,V> ForkJoinTask<Void> forEach
4826              (ConcurrentHashMap<K,V> map,
4827 <             BiAction<K,V> action) {
4827 >             BiBlock<? super K, ? super V> action) {
4828              if (action == null) throw new NullPointerException();
4829 <            return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4829 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4830          }
4831  
4832          /**
# Line 4687 | Line 4842 | public class ConcurrentHashMap<K, V>
4842           */
4843          public static <K,V,U> ForkJoinTask<Void> forEach
4844              (ConcurrentHashMap<K,V> map,
4845 <             BiFun<? super K, ? super V, ? extends U> transformer,
4846 <             Action<U> action) {
4845 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4846 >             Block<? super U> action) {
4847              if (transformer == null || action == null)
4848                  throw new NullPointerException();
4849              return new ForEachTransformedMappingTask<K,V,U>
4850 <                (map, null, -1, null, transformer, action);
4850 >                (map, null, -1, transformer, action);
4851          }
4852  
4853          /**
# Line 4709 | Line 4864 | public class ConcurrentHashMap<K, V>
4864           */
4865          public static <K,V,U> ForkJoinTask<U> search
4866              (ConcurrentHashMap<K,V> map,
4867 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4867 >             BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4868              if (searchFunction == null) throw new NullPointerException();
4869              return new SearchMappingsTask<K,V,U>
4870 <                (map, null, -1, null, searchFunction,
4870 >                (map, null, -1, searchFunction,
4871                   new AtomicReference<U>());
4872          }
4873  
# Line 4730 | Line 4885 | public class ConcurrentHashMap<K, V>
4885           */
4886          public static <K,V,U> ForkJoinTask<U> reduce
4887              (ConcurrentHashMap<K,V> map,
4888 <             BiFun<? super K, ? super V, ? extends U> transformer,
4889 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4888 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4889 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
4890              if (transformer == null || reducer == null)
4891                  throw new NullPointerException();
4892              return new MapReduceMappingsTask<K,V,U>
# Line 4753 | Line 4908 | public class ConcurrentHashMap<K, V>
4908           */
4909          public static <K,V> ForkJoinTask<Double> reduceToDouble
4910              (ConcurrentHashMap<K,V> map,
4911 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4911 >             DoubleBiFunction<? super K, ? super V> transformer,
4912               double basis,
4913 <             DoubleByDoubleToDouble reducer) {
4913 >             DoubleBinaryOperator reducer) {
4914              if (transformer == null || reducer == null)
4915                  throw new NullPointerException();
4916              return new MapReduceMappingsToDoubleTask<K,V>
# Line 4777 | Line 4932 | public class ConcurrentHashMap<K, V>
4932           */
4933          public static <K,V> ForkJoinTask<Long> reduceToLong
4934              (ConcurrentHashMap<K,V> map,
4935 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4935 >             LongBiFunction<? super K, ? super V> transformer,
4936               long basis,
4937 <             LongByLongToLong reducer) {
4937 >             LongBinaryOperator reducer) {
4938              if (transformer == null || reducer == null)
4939                  throw new NullPointerException();
4940              return new MapReduceMappingsToLongTask<K,V>
# Line 4800 | Line 4955 | public class ConcurrentHashMap<K, V>
4955           */
4956          public static <K,V> ForkJoinTask<Integer> reduceToInt
4957              (ConcurrentHashMap<K,V> map,
4958 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4958 >             IntBiFunction<? super K, ? super V> transformer,
4959               int basis,
4960 <             IntByIntToInt reducer) {
4960 >             IntBinaryOperator reducer) {
4961              if (transformer == null || reducer == null)
4962                  throw new NullPointerException();
4963              return new MapReduceMappingsToIntTask<K,V>
# Line 4819 | Line 4974 | public class ConcurrentHashMap<K, V>
4974           */
4975          public static <K,V> ForkJoinTask<Void> forEachKey
4976              (ConcurrentHashMap<K,V> map,
4977 <             Action<K> action) {
4977 >             Block<? super K> action) {
4978              if (action == null) throw new NullPointerException();
4979 <            return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4979 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
4980          }
4981  
4982          /**
# Line 4837 | Line 4992 | public class ConcurrentHashMap<K, V>
4992           */
4993          public static <K,V,U> ForkJoinTask<Void> forEachKey
4994              (ConcurrentHashMap<K,V> map,
4995 <             Fun<? super K, ? extends U> transformer,
4996 <             Action<U> action) {
4995 >             Function<? super K, ? extends U> transformer,
4996 >             Block<? super U> action) {
4997              if (transformer == null || action == null)
4998                  throw new NullPointerException();
4999              return new ForEachTransformedKeyTask<K,V,U>
5000 <                (map, null, -1, null, transformer, action);
5000 >                (map, null, -1, transformer, action);
5001          }
5002  
5003          /**
# Line 4859 | Line 5014 | public class ConcurrentHashMap<K, V>
5014           */
5015          public static <K,V,U> ForkJoinTask<U> searchKeys
5016              (ConcurrentHashMap<K,V> map,
5017 <             Fun<? super K, ? extends U> searchFunction) {
5017 >             Function<? super K, ? extends U> searchFunction) {
5018              if (searchFunction == null) throw new NullPointerException();
5019              return new SearchKeysTask<K,V,U>
5020 <                (map, null, -1, null, searchFunction,
5020 >                (map, null, -1, searchFunction,
5021                   new AtomicReference<U>());
5022          }
5023  
# Line 4877 | Line 5032 | public class ConcurrentHashMap<K, V>
5032           */
5033          public static <K,V> ForkJoinTask<K> reduceKeys
5034              (ConcurrentHashMap<K,V> map,
5035 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5035 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5036              if (reducer == null) throw new NullPointerException();
5037              return new ReduceKeysTask<K,V>
5038                  (map, null, -1, null, reducer);
# Line 4897 | Line 5052 | public class ConcurrentHashMap<K, V>
5052           */
5053          public static <K,V,U> ForkJoinTask<U> reduceKeys
5054              (ConcurrentHashMap<K,V> map,
5055 <             Fun<? super K, ? extends U> transformer,
5056 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5055 >             Function<? super K, ? extends U> transformer,
5056 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5057              if (transformer == null || reducer == null)
5058                  throw new NullPointerException();
5059              return new MapReduceKeysTask<K,V,U>
# Line 4920 | Line 5075 | public class ConcurrentHashMap<K, V>
5075           */
5076          public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5077              (ConcurrentHashMap<K,V> map,
5078 <             ObjectToDouble<? super K> transformer,
5078 >             DoubleFunction<? super K> transformer,
5079               double basis,
5080 <             DoubleByDoubleToDouble reducer) {
5080 >             DoubleBinaryOperator reducer) {
5081              if (transformer == null || reducer == null)
5082                  throw new NullPointerException();
5083              return new MapReduceKeysToDoubleTask<K,V>
# Line 4944 | Line 5099 | public class ConcurrentHashMap<K, V>
5099           */
5100          public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5101              (ConcurrentHashMap<K,V> map,
5102 <             ObjectToLong<? super K> transformer,
5102 >             LongFunction<? super K> transformer,
5103               long basis,
5104 <             LongByLongToLong reducer) {
5104 >             LongBinaryOperator reducer) {
5105              if (transformer == null || reducer == null)
5106                  throw new NullPointerException();
5107              return new MapReduceKeysToLongTask<K,V>
# Line 4968 | Line 5123 | public class ConcurrentHashMap<K, V>
5123           */
5124          public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5125              (ConcurrentHashMap<K,V> map,
5126 <             ObjectToInt<? super K> transformer,
5126 >             IntFunction<? super K> transformer,
5127               int basis,
5128 <             IntByIntToInt reducer) {
5128 >             IntBinaryOperator reducer) {
5129              if (transformer == null || reducer == null)
5130                  throw new NullPointerException();
5131              return new MapReduceKeysToIntTask<K,V>
# Line 4986 | Line 5141 | public class ConcurrentHashMap<K, V>
5141           */
5142          public static <K,V> ForkJoinTask<Void> forEachValue
5143              (ConcurrentHashMap<K,V> map,
5144 <             Action<V> action) {
5144 >             Block<? super V> action) {
5145              if (action == null) throw new NullPointerException();
5146 <            return new ForEachValueTask<K,V>(map, null, -1, null, action);
5146 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5147          }
5148  
5149          /**
# Line 5003 | Line 5158 | public class ConcurrentHashMap<K, V>
5158           */
5159          public static <K,V,U> ForkJoinTask<Void> forEachValue
5160              (ConcurrentHashMap<K,V> map,
5161 <             Fun<? super V, ? extends U> transformer,
5162 <             Action<U> action) {
5161 >             Function<? super V, ? extends U> transformer,
5162 >             Block<? super U> action) {
5163              if (transformer == null || action == null)
5164                  throw new NullPointerException();
5165              return new ForEachTransformedValueTask<K,V,U>
5166 <                (map, null, -1, null, transformer, action);
5166 >                (map, null, -1, transformer, action);
5167          }
5168  
5169          /**
# Line 5025 | Line 5180 | public class ConcurrentHashMap<K, V>
5180           */
5181          public static <K,V,U> ForkJoinTask<U> searchValues
5182              (ConcurrentHashMap<K,V> map,
5183 <             Fun<? super V, ? extends U> searchFunction) {
5183 >             Function<? super V, ? extends U> searchFunction) {
5184              if (searchFunction == null) throw new NullPointerException();
5185              return new SearchValuesTask<K,V,U>
5186 <                (map, null, -1, null, searchFunction,
5186 >                (map, null, -1, searchFunction,
5187                   new AtomicReference<U>());
5188          }
5189  
# Line 5043 | Line 5198 | public class ConcurrentHashMap<K, V>
5198           */
5199          public static <K,V> ForkJoinTask<V> reduceValues
5200              (ConcurrentHashMap<K,V> map,
5201 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5201 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5202              if (reducer == null) throw new NullPointerException();
5203              return new ReduceValuesTask<K,V>
5204                  (map, null, -1, null, reducer);
# Line 5063 | Line 5218 | public class ConcurrentHashMap<K, V>
5218           */
5219          public static <K,V,U> ForkJoinTask<U> reduceValues
5220              (ConcurrentHashMap<K,V> map,
5221 <             Fun<? super V, ? extends U> transformer,
5222 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5221 >             Function<? super V, ? extends U> transformer,
5222 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5223              if (transformer == null || reducer == null)
5224                  throw new NullPointerException();
5225              return new MapReduceValuesTask<K,V,U>
# Line 5086 | Line 5241 | public class ConcurrentHashMap<K, V>
5241           */
5242          public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5243              (ConcurrentHashMap<K,V> map,
5244 <             ObjectToDouble<? super V> transformer,
5244 >             DoubleFunction<? super V> transformer,
5245               double basis,
5246 <             DoubleByDoubleToDouble reducer) {
5246 >             DoubleBinaryOperator reducer) {
5247              if (transformer == null || reducer == null)
5248                  throw new NullPointerException();
5249              return new MapReduceValuesToDoubleTask<K,V>
# Line 5110 | Line 5265 | public class ConcurrentHashMap<K, V>
5265           */
5266          public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5267              (ConcurrentHashMap<K,V> map,
5268 <             ObjectToLong<? super V> transformer,
5268 >             LongFunction<? super V> transformer,
5269               long basis,
5270 <             LongByLongToLong reducer) {
5270 >             LongBinaryOperator reducer) {
5271              if (transformer == null || reducer == null)
5272                  throw new NullPointerException();
5273              return new MapReduceValuesToLongTask<K,V>
# Line 5134 | Line 5289 | public class ConcurrentHashMap<K, V>
5289           */
5290          public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5291              (ConcurrentHashMap<K,V> map,
5292 <             ObjectToInt<? super V> transformer,
5292 >             IntFunction<? super V> transformer,
5293               int basis,
5294 <             IntByIntToInt reducer) {
5294 >             IntBinaryOperator reducer) {
5295              if (transformer == null || reducer == null)
5296                  throw new NullPointerException();
5297              return new MapReduceValuesToIntTask<K,V>
# Line 5152 | Line 5307 | public class ConcurrentHashMap<K, V>
5307           */
5308          public static <K,V> ForkJoinTask<Void> forEachEntry
5309              (ConcurrentHashMap<K,V> map,
5310 <             Action<Map.Entry<K,V>> action) {
5310 >             Block<? super Map.Entry<K,V>> action) {
5311              if (action == null) throw new NullPointerException();
5312 <            return new ForEachEntryTask<K,V>(map, null, -1, null, action);
5312 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5313          }
5314  
5315          /**
# Line 5169 | Line 5324 | public class ConcurrentHashMap<K, V>
5324           */
5325          public static <K,V,U> ForkJoinTask<Void> forEachEntry
5326              (ConcurrentHashMap<K,V> map,
5327 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5328 <             Action<U> action) {
5327 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5328 >             Block<? super U> action) {
5329              if (transformer == null || action == null)
5330                  throw new NullPointerException();
5331              return new ForEachTransformedEntryTask<K,V,U>
5332 <                (map, null, -1, null, transformer, action);
5332 >                (map, null, -1, transformer, action);
5333          }
5334  
5335          /**
# Line 5191 | Line 5346 | public class ConcurrentHashMap<K, V>
5346           */
5347          public static <K,V,U> ForkJoinTask<U> searchEntries
5348              (ConcurrentHashMap<K,V> map,
5349 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5349 >             Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5350              if (searchFunction == null) throw new NullPointerException();
5351              return new SearchEntriesTask<K,V,U>
5352 <                (map, null, -1, null, searchFunction,
5352 >                (map, null, -1, searchFunction,
5353                   new AtomicReference<U>());
5354          }
5355  
# Line 5209 | Line 5364 | public class ConcurrentHashMap<K, V>
5364           */
5365          public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5366              (ConcurrentHashMap<K,V> map,
5367 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5367 >             BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5368              if (reducer == null) throw new NullPointerException();
5369              return new ReduceEntriesTask<K,V>
5370                  (map, null, -1, null, reducer);
# Line 5229 | Line 5384 | public class ConcurrentHashMap<K, V>
5384           */
5385          public static <K,V,U> ForkJoinTask<U> reduceEntries
5386              (ConcurrentHashMap<K,V> map,
5387 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5388 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5387 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5388 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5389              if (transformer == null || reducer == null)
5390                  throw new NullPointerException();
5391              return new MapReduceEntriesTask<K,V,U>
# Line 5252 | Line 5407 | public class ConcurrentHashMap<K, V>
5407           */
5408          public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5409              (ConcurrentHashMap<K,V> map,
5410 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5410 >             DoubleFunction<Map.Entry<K,V>> transformer,
5411               double basis,
5412 <             DoubleByDoubleToDouble reducer) {
5412 >             DoubleBinaryOperator reducer) {
5413              if (transformer == null || reducer == null)
5414                  throw new NullPointerException();
5415              return new MapReduceEntriesToDoubleTask<K,V>
# Line 5276 | Line 5431 | public class ConcurrentHashMap<K, V>
5431           */
5432          public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5433              (ConcurrentHashMap<K,V> map,
5434 <             ObjectToLong<Map.Entry<K,V>> transformer,
5434 >             LongFunction<Map.Entry<K,V>> transformer,
5435               long basis,
5436 <             LongByLongToLong reducer) {
5436 >             LongBinaryOperator reducer) {
5437              if (transformer == null || reducer == null)
5438                  throw new NullPointerException();
5439              return new MapReduceEntriesToLongTask<K,V>
# Line 5300 | Line 5455 | public class ConcurrentHashMap<K, V>
5455           */
5456          public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5457              (ConcurrentHashMap<K,V> map,
5458 <             ObjectToInt<Map.Entry<K,V>> transformer,
5458 >             IntFunction<Map.Entry<K,V>> transformer,
5459               int basis,
5460 <             IntByIntToInt reducer) {
5460 >             IntBinaryOperator reducer) {
5461              if (transformer == null || reducer == null)
5462                  throw new NullPointerException();
5463              return new MapReduceEntriesToIntTask<K,V>
# Line 5312 | Line 5467 | public class ConcurrentHashMap<K, V>
5467  
5468      // -------------------------------------------------------
5469  
5315    /**
5316     * Base for FJ tasks for bulk operations. This adds a variant of
5317     * CountedCompleters and some split and merge bookkeeping to
5318     * iterator functionality. The forEach and reduce methods are
5319     * similar to those illustrated in CountedCompleter documentation,
5320     * except that bottom-up reduction completions perform them within
5321     * their compute methods. The search methods are like forEach
5322     * except they continually poll for success and exit early.  Also,
5323     * exceptions are handled in a simpler manner, by just trying to
5324     * complete root task exceptionally.
5325     */
5326    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
5327        final BulkTask<K,V,?> parent;  // completion target
5328        int batch;                     // split control; -1 for unknown
5329        int pending;                   // completion control
5330
5331        BulkTask(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5332                 int batch) {
5333            super(map);
5334            this.parent = parent;
5335            this.batch = batch;
5336            if (parent != null && map != null) { // split parent
5337                Node[] t;
5338                if ((t = parent.tab) == null &&
5339                    (t = parent.tab = map.table) != null)
5340                    parent.baseLimit = parent.baseSize = t.length;
5341                this.tab = t;
5342                this.baseSize = parent.baseSize;
5343                int hi = this.baseLimit = parent.baseLimit;
5344                parent.baseLimit = this.index = this.baseIndex =
5345                    (hi + parent.baseIndex + 1) >>> 1;
5346            }
5347        }
5348
5349        /**
5350         * Forces root task to complete.
5351         * @param ex if null, complete normally, else exceptionally
5352         * @return false to simplify use
5353         */
5354        final boolean tryCompleteComputation(Throwable ex) {
5355            for (BulkTask<K,V,?> a = this;;) {
5356                BulkTask<K,V,?> p = a.parent;
5357                if (p == null) {
5358                    if (ex != null)
5359                        a.completeExceptionally(ex);
5360                    else
5361                        a.quietlyComplete();
5362                    return false;
5363                }
5364                a = p;
5365            }
5366        }
5367
5368        /**
5369         * Version of tryCompleteComputation for function screening checks
5370         */
5371        final boolean abortOnNullFunction() {
5372            return tryCompleteComputation(new Error("Unexpected null function"));
5373        }
5374
5375        // utilities
5376
5377        /** CompareAndSet pending count */
5378        final boolean casPending(int cmp, int val) {
5379            return U.compareAndSwapInt(this, PENDING, cmp, val);
5380        }
5381
5382        /**
5383         * Returns approx exp2 of the number of times (minus one) to
5384         * split task by two before executing leaf action. This value
5385         * is faster to compute and more convenient to use as a guide
5386         * to splitting than is the depth, since it is used while
5387         * dividing by two anyway.
5388         */
5389        final int batch() {
5390            ConcurrentHashMap<K, V> m; int b; Node[] t;  ForkJoinPool pool;
5391            if ((b = batch) < 0 && (m = map) != null) { // force initialization
5392                if ((t = tab) == null && (t = tab = m.table) != null)
5393                    baseLimit = baseSize = t.length;
5394                if (t != null) {
5395                    long n = m.counter.sum();
5396                    int par = ((pool = getPool()) == null) ?
5397                        ForkJoinPool.getCommonPoolParallelism() :
5398                        pool.getParallelism();
5399                    int sp = par << 3; // slack of 8
5400                    b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
5401                }
5402            }
5403            return b;
5404        }
5405
5406        /**
5407         * Returns exportable snapshot entry.
5408         */
5409        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
5410            return new AbstractMap.SimpleEntry<K,V>(k, v);
5411        }
5412
5413        // Unsafe mechanics
5414        private static final sun.misc.Unsafe U;
5415        private static final long PENDING;
5416        static {
5417            try {
5418                U = sun.misc.Unsafe.getUnsafe();
5419                PENDING = U.objectFieldOffset
5420                    (BulkTask.class.getDeclaredField("pending"));
5421            } catch (Exception e) {
5422                throw new Error(e);
5423            }
5424        }
5425    }
5426
5427    /**
5428     * Base class for non-reductive actions
5429     */
5430    @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
5431        BulkAction<K,V,?> nextTask;
5432        BulkAction(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5433                   int batch, BulkAction<K,V,?> nextTask) {
5434            super(map, parent, batch);
5435            this.nextTask = nextTask;
5436        }
5437
5438        /**
5439         * Try to complete task and upward parents. Upon hitting
5440         * non-completed parent, if a non-FJ task, try to help out the
5441         * computation.
5442         */
5443        final void tryComplete(BulkAction<K,V,?> subtasks) {
5444            BulkTask<K,V,?> a = this, s = a;
5445            for (int c;;) {
5446                if ((c = a.pending) == 0) {
5447                    if ((a = (s = a).parent) == null) {
5448                        s.quietlyComplete();
5449                        break;
5450                    }
5451                }
5452                else if (a.casPending(c, c - 1)) {
5453                    if (subtasks != null && !inForkJoinPool()) {
5454                        while ((s = a.parent) != null)
5455                            a = s;
5456                        while (!a.isDone()) {
5457                            BulkAction<K,V,?> next = subtasks.nextTask;
5458                            if (subtasks.tryUnfork())
5459                                subtasks.exec();
5460                            if ((subtasks = next) == null)
5461                                break;
5462                        }
5463                    }
5464                    break;
5465                }
5466            }
5467        }
5468
5469    }
5470
5470      /*
5471       * Task classes. Coded in a regular but ugly format/style to
5472       * simplify checks that each variant differs in the right way from
5473 <     * others.
5473 >     * others. The null screenings exist because compilers cannot tell
5474 >     * that we've already null-checked task arguments, so we force
5475 >     * simplest hoisted bypass to help avoid convoluted traps.
5476       */
5477  
5478      @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5479 <        extends BulkAction<K,V,Void> {
5480 <        final Action<K> action;
5479 >        extends Traverser<K,V,Void> {
5480 >        final Block<? super K> action;
5481          ForEachKeyTask
5482 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5483 <             ForEachKeyTask<K,V> nextTask,
5484 <             Action<K> action) {
5484 <            super(m, p, b, nextTask);
5482 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5483 >             Block<? super K> action) {
5484 >            super(m, p, b);
5485              this.action = action;
5486          }
5487 <        @SuppressWarnings("unchecked") public final boolean exec() {
5488 <            final Action<K> action = this.action;
5489 <            if (action == null)
5490 <                return abortOnNullFunction();
5491 <            ForEachKeyTask<K,V> subtasks = null;
5492 <            try {
5493 <                int b = batch(), c;
5494 <                while (b > 1 && baseIndex != baseLimit) {
5495 <                    do {} while (!casPending(c = pending, c+1));
5496 <                    (subtasks = new ForEachKeyTask<K,V>
5497 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5498 <                }
5487 >        public final void compute() {
5488 >            final Block<? super K> action;
5489 >            if ((action = this.action) != null) {
5490 >                for (int b; (b = preSplit()) > 0;)
5491 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5492                  while (advance() != null)
5493 <                    action.apply((K)nextKey);
5494 <            } catch (Throwable ex) {
5502 <                return tryCompleteComputation(ex);
5493 >                    action.accept(nextKey);
5494 >                propagateCompletion();
5495              }
5504            tryComplete(subtasks);
5505            return false;
5496          }
5497      }
5498  
5499      @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5500 <        extends BulkAction<K,V,Void> {
5501 <        final Action<V> action;
5500 >        extends Traverser<K,V,Void> {
5501 >        final Block<? super V> action;
5502          ForEachValueTask
5503 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5504 <             ForEachValueTask<K,V> nextTask,
5505 <             Action<V> action) {
5516 <            super(m, p, b, nextTask);
5503 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5504 >             Block<? super V> action) {
5505 >            super(m, p, b);
5506              this.action = action;
5507          }
5508 <        @SuppressWarnings("unchecked") public final boolean exec() {
5509 <            final Action<V> action = this.action;
5510 <            if (action == null)
5511 <                return abortOnNullFunction();
5512 <            ForEachValueTask<K,V> subtasks = null;
5513 <            try {
5525 <                int b = batch(), c;
5526 <                while (b > 1 && baseIndex != baseLimit) {
5527 <                    do {} while (!casPending(c = pending, c+1));
5528 <                    (subtasks = new ForEachValueTask<K,V>
5529 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5530 <                }
5531 <                Object v;
5508 >        public final void compute() {
5509 >            final Block<? super V> action;
5510 >            if ((action = this.action) != null) {
5511 >                for (int b; (b = preSplit()) > 0;)
5512 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5513 >                V v;
5514                  while ((v = advance()) != null)
5515 <                    action.apply((V)v);
5516 <            } catch (Throwable ex) {
5535 <                return tryCompleteComputation(ex);
5515 >                    action.accept(v);
5516 >                propagateCompletion();
5517              }
5537            tryComplete(subtasks);
5538            return false;
5518          }
5519      }
5520  
5521      @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5522 <        extends BulkAction<K,V,Void> {
5523 <        final Action<Entry<K,V>> action;
5522 >        extends Traverser<K,V,Void> {
5523 >        final Block<? super Entry<K,V>> action;
5524          ForEachEntryTask
5525 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5526 <             ForEachEntryTask<K,V> nextTask,
5527 <             Action<Entry<K,V>> action) {
5549 <            super(m, p, b, nextTask);
5525 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5526 >             Block<? super Entry<K,V>> action) {
5527 >            super(m, p, b);
5528              this.action = action;
5529          }
5530 <        @SuppressWarnings("unchecked") public final boolean exec() {
5531 <            final Action<Entry<K,V>> action = this.action;
5532 <            if (action == null)
5533 <                return abortOnNullFunction();
5534 <            ForEachEntryTask<K,V> subtasks = null;
5535 <            try {
5558 <                int b = batch(), c;
5559 <                while (b > 1 && baseIndex != baseLimit) {
5560 <                    do {} while (!casPending(c = pending, c+1));
5561 <                    (subtasks = new ForEachEntryTask<K,V>
5562 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5563 <                }
5564 <                Object v;
5530 >        public final void compute() {
5531 >            final Block<? super Entry<K,V>> action;
5532 >            if ((action = this.action) != null) {
5533 >                for (int b; (b = preSplit()) > 0;)
5534 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5535 >                V v;
5536                  while ((v = advance()) != null)
5537 <                    action.apply(entryFor((K)nextKey, (V)v));
5538 <            } catch (Throwable ex) {
5568 <                return tryCompleteComputation(ex);
5537 >                    action.accept(entryFor(nextKey, v));
5538 >                propagateCompletion();
5539              }
5570            tryComplete(subtasks);
5571            return false;
5540          }
5541      }
5542  
5543      @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5544 <        extends BulkAction<K,V,Void> {
5545 <        final BiAction<K,V> action;
5544 >        extends Traverser<K,V,Void> {
5545 >        final BiBlock<? super K, ? super V> action;
5546          ForEachMappingTask
5547 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5548 <             ForEachMappingTask<K,V> nextTask,
5549 <             BiAction<K,V> action) {
5582 <            super(m, p, b, nextTask);
5547 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5548 >             BiBlock<? super K,? super V> action) {
5549 >            super(m, p, b);
5550              this.action = action;
5551          }
5552 <        @SuppressWarnings("unchecked") public final boolean exec() {
5553 <            final BiAction<K,V> action = this.action;
5554 <            if (action == null)
5555 <                return abortOnNullFunction();
5556 <            ForEachMappingTask<K,V> subtasks = null;
5557 <            try {
5591 <                int b = batch(), c;
5592 <                while (b > 1 && baseIndex != baseLimit) {
5593 <                    do {} while (!casPending(c = pending, c+1));
5594 <                    (subtasks = new ForEachMappingTask<K,V>
5595 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5596 <                }
5597 <                Object v;
5552 >        public final void compute() {
5553 >            final BiBlock<? super K, ? super V> action;
5554 >            if ((action = this.action) != null) {
5555 >                for (int b; (b = preSplit()) > 0;)
5556 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5557 >                V v;
5558                  while ((v = advance()) != null)
5559 <                    action.apply((K)nextKey, (V)v);
5560 <            } catch (Throwable ex) {
5601 <                return tryCompleteComputation(ex);
5559 >                    action.accept(nextKey, v);
5560 >                propagateCompletion();
5561              }
5603            tryComplete(subtasks);
5604            return false;
5562          }
5563      }
5564  
5565      @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5566 <        extends BulkAction<K,V,Void> {
5567 <        final Fun<? super K, ? extends U> transformer;
5568 <        final Action<U> action;
5566 >        extends Traverser<K,V,Void> {
5567 >        final Function<? super K, ? extends U> transformer;
5568 >        final Block<? super U> action;
5569          ForEachTransformedKeyTask
5570 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5571 <             ForEachTransformedKeyTask<K,V,U> nextTask,
5572 <             Fun<? super K, ? extends U> transformer,
5573 <             Action<U> action) {
5574 <            super(m, p, b, nextTask);
5575 <            this.transformer = transformer;
5576 <            this.action = action;
5577 <
5578 <        }
5579 <        @SuppressWarnings("unchecked") public final boolean exec() {
5580 <            final Fun<? super K, ? extends U> transformer =
5581 <                this.transformer;
5582 <            final Action<U> action = this.action;
5626 <            if (transformer == null || action == null)
5627 <                return abortOnNullFunction();
5628 <            ForEachTransformedKeyTask<K,V,U> subtasks = null;
5629 <            try {
5630 <                int b = batch(), c;
5631 <                while (b > 1 && baseIndex != baseLimit) {
5632 <                    do {} while (!casPending(c = pending, c+1));
5633 <                    (subtasks = new ForEachTransformedKeyTask<K,V,U>
5634 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5635 <                }
5570 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5571 >             Function<? super K, ? extends U> transformer, Block<? super U> action) {
5572 >            super(m, p, b);
5573 >            this.transformer = transformer; this.action = action;
5574 >        }
5575 >        public final void compute() {
5576 >            final Function<? super K, ? extends U> transformer;
5577 >            final Block<? super U> action;
5578 >            if ((transformer = this.transformer) != null &&
5579 >                (action = this.action) != null) {
5580 >                for (int b; (b = preSplit()) > 0;)
5581 >                    new ForEachTransformedKeyTask<K,V,U>
5582 >                        (map, this, b, transformer, action).fork();
5583                  U u;
5584                  while (advance() != null) {
5585 <                    if ((u = transformer.apply((K)nextKey)) != null)
5586 <                        action.apply(u);
5585 >                    if ((u = transformer.apply(nextKey)) != null)
5586 >                        action.accept(u);
5587                  }
5588 <            } catch (Throwable ex) {
5642 <                return tryCompleteComputation(ex);
5588 >                propagateCompletion();
5589              }
5644            tryComplete(subtasks);
5645            return false;
5590          }
5591      }
5592  
5593      @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5594 <        extends BulkAction<K,V,Void> {
5595 <        final Fun<? super V, ? extends U> transformer;
5596 <        final Action<U> action;
5594 >        extends Traverser<K,V,Void> {
5595 >        final Function<? super V, ? extends U> transformer;
5596 >        final Block<? super U> action;
5597          ForEachTransformedValueTask
5598 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5599 <             ForEachTransformedValueTask<K,V,U> nextTask,
5600 <             Fun<? super V, ? extends U> transformer,
5601 <             Action<U> action) {
5602 <            super(m, p, b, nextTask);
5603 <            this.transformer = transformer;
5604 <            this.action = action;
5605 <
5606 <        }
5607 <        @SuppressWarnings("unchecked") public final boolean exec() {
5608 <            final Fun<? super V, ? extends U> transformer =
5609 <                this.transformer;
5610 <            final Action<U> action = this.action;
5611 <            if (transformer == null || action == null)
5668 <                return abortOnNullFunction();
5669 <            ForEachTransformedValueTask<K,V,U> subtasks = null;
5670 <            try {
5671 <                int b = batch(), c;
5672 <                while (b > 1 && baseIndex != baseLimit) {
5673 <                    do {} while (!casPending(c = pending, c+1));
5674 <                    (subtasks = new ForEachTransformedValueTask<K,V,U>
5675 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5676 <                }
5677 <                Object v; U u;
5598 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5599 >             Function<? super V, ? extends U> transformer, Block<? super U> action) {
5600 >            super(m, p, b);
5601 >            this.transformer = transformer; this.action = action;
5602 >        }
5603 >        public final void compute() {
5604 >            final Function<? super V, ? extends U> transformer;
5605 >            final Block<? super U> action;
5606 >            if ((transformer = this.transformer) != null &&
5607 >                (action = this.action) != null) {
5608 >                for (int b; (b = preSplit()) > 0;)
5609 >                    new ForEachTransformedValueTask<K,V,U>
5610 >                        (map, this, b, transformer, action).fork();
5611 >                V v; U u;
5612                  while ((v = advance()) != null) {
5613 <                    if ((u = transformer.apply((V)v)) != null)
5614 <                        action.apply(u);
5613 >                    if ((u = transformer.apply(v)) != null)
5614 >                        action.accept(u);
5615                  }
5616 <            } catch (Throwable ex) {
5683 <                return tryCompleteComputation(ex);
5616 >                propagateCompletion();
5617              }
5685            tryComplete(subtasks);
5686            return false;
5618          }
5619      }
5620  
5621      @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5622 <        extends BulkAction<K,V,Void> {
5623 <        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5624 <        final Action<U> action;
5622 >        extends Traverser<K,V,Void> {
5623 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5624 >        final Block<? super U> action;
5625          ForEachTransformedEntryTask
5626 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5627 <             ForEachTransformedEntryTask<K,V,U> nextTask,
5628 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5629 <             Action<U> action) {
5630 <            super(m, p, b, nextTask);
5631 <            this.transformer = transformer;
5632 <            this.action = action;
5633 <
5634 <        }
5635 <        @SuppressWarnings("unchecked") public final boolean exec() {
5636 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5637 <                this.transformer;
5638 <            final Action<U> action = this.action;
5639 <            if (transformer == null || action == null)
5709 <                return abortOnNullFunction();
5710 <            ForEachTransformedEntryTask<K,V,U> subtasks = null;
5711 <            try {
5712 <                int b = batch(), c;
5713 <                while (b > 1 && baseIndex != baseLimit) {
5714 <                    do {} while (!casPending(c = pending, c+1));
5715 <                    (subtasks = new ForEachTransformedEntryTask<K,V,U>
5716 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5717 <                }
5718 <                Object v; U u;
5626 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5627 >             Function<Map.Entry<K,V>, ? extends U> transformer, Block<? super U> action) {
5628 >            super(m, p, b);
5629 >            this.transformer = transformer; this.action = action;
5630 >        }
5631 >        public final void compute() {
5632 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5633 >            final Block<? super U> action;
5634 >            if ((transformer = this.transformer) != null &&
5635 >                (action = this.action) != null) {
5636 >                for (int b; (b = preSplit()) > 0;)
5637 >                    new ForEachTransformedEntryTask<K,V,U>
5638 >                        (map, this, b, transformer, action).fork();
5639 >                V v; U u;
5640                  while ((v = advance()) != null) {
5641 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5642 <                        action.apply(u);
5641 >                    if ((u = transformer.apply(entryFor(nextKey,
5642 >                                                        v))) != null)
5643 >                        action.accept(u);
5644                  }
5645 <            } catch (Throwable ex) {
5724 <                return tryCompleteComputation(ex);
5645 >                propagateCompletion();
5646              }
5726            tryComplete(subtasks);
5727            return false;
5647          }
5648      }
5649  
5650      @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5651 <        extends BulkAction<K,V,Void> {
5652 <        final BiFun<? super K, ? super V, ? extends U> transformer;
5653 <        final Action<U> action;
5651 >        extends Traverser<K,V,Void> {
5652 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5653 >        final Block<? super U> action;
5654          ForEachTransformedMappingTask
5655 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5656 <             ForEachTransformedMappingTask<K,V,U> nextTask,
5657 <             BiFun<? super K, ? super V, ? extends U> transformer,
5658 <             Action<U> action) {
5659 <            super(m, p, b, nextTask);
5660 <            this.transformer = transformer;
5661 <            this.action = action;
5662 <
5663 <        }
5664 <        @SuppressWarnings("unchecked") public final boolean exec() {
5665 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5666 <                this.transformer;
5667 <            final Action<U> action = this.action;
5668 <            if (transformer == null || action == null)
5669 <                return abortOnNullFunction();
5751 <            ForEachTransformedMappingTask<K,V,U> subtasks = null;
5752 <            try {
5753 <                int b = batch(), c;
5754 <                while (b > 1 && baseIndex != baseLimit) {
5755 <                    do {} while (!casPending(c = pending, c+1));
5756 <                    (subtasks = new ForEachTransformedMappingTask<K,V,U>
5757 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5758 <                }
5759 <                Object v; U u;
5655 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5656 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5657 >             Block<? super U> action) {
5658 >            super(m, p, b);
5659 >            this.transformer = transformer; this.action = action;
5660 >        }
5661 >        public final void compute() {
5662 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5663 >            final Block<? super U> action;
5664 >            if ((transformer = this.transformer) != null &&
5665 >                (action = this.action) != null) {
5666 >                for (int b; (b = preSplit()) > 0;)
5667 >                    new ForEachTransformedMappingTask<K,V,U>
5668 >                        (map, this, b, transformer, action).fork();
5669 >                V v; U u;
5670                  while ((v = advance()) != null) {
5671 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5672 <                        action.apply(u);
5671 >                    if ((u = transformer.apply(nextKey, v)) != null)
5672 >                        action.accept(u);
5673                  }
5674 <            } catch (Throwable ex) {
5765 <                return tryCompleteComputation(ex);
5674 >                propagateCompletion();
5675              }
5767            tryComplete(subtasks);
5768            return false;
5676          }
5677      }
5678  
5679      @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5680 <        extends BulkAction<K,V,U> {
5681 <        final Fun<? super K, ? extends U> searchFunction;
5680 >        extends Traverser<K,V,U> {
5681 >        final Function<? super K, ? extends U> searchFunction;
5682          final AtomicReference<U> result;
5683          SearchKeysTask
5684 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5685 <             SearchKeysTask<K,V,U> nextTask,
5779 <             Fun<? super K, ? extends U> searchFunction,
5684 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5685 >             Function<? super K, ? extends U> searchFunction,
5686               AtomicReference<U> result) {
5687 <            super(m, p, b, nextTask);
5687 >            super(m, p, b);
5688              this.searchFunction = searchFunction; this.result = result;
5689          }
5690 <        @SuppressWarnings("unchecked") public final boolean exec() {
5691 <            AtomicReference<U> result = this.result;
5692 <            final Fun<? super K, ? extends U> searchFunction =
5693 <                this.searchFunction;
5694 <            if (searchFunction == null || result == null)
5695 <                return abortOnNullFunction();
5696 <            SearchKeysTask<K,V,U> subtasks = null;
5697 <            try {
5698 <                int b = batch(), c;
5699 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5700 <                    do {} while (!casPending(c = pending, c+1));
5701 <                    (subtasks = new SearchKeysTask<K,V,U>
5702 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5690 >        public final U getRawResult() { return result.get(); }
5691 >        public final void compute() {
5692 >            final Function<? super K, ? extends U> searchFunction;
5693 >            final AtomicReference<U> result;
5694 >            if ((searchFunction = this.searchFunction) != null &&
5695 >                (result = this.result) != null) {
5696 >                for (int b;;) {
5697 >                    if (result.get() != null)
5698 >                        return;
5699 >                    if ((b = preSplit()) <= 0)
5700 >                        break;
5701 >                    new SearchKeysTask<K,V,U>
5702 >                        (map, this, b, searchFunction, result).fork();
5703                  }
5704 <                U u;
5705 <                while (result.get() == null && advance() != null) {
5706 <                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5704 >                while (result.get() == null) {
5705 >                    U u;
5706 >                    if (advance() == null) {
5707 >                        propagateCompletion();
5708 >                        break;
5709 >                    }
5710 >                    if ((u = searchFunction.apply(nextKey)) != null) {
5711                          if (result.compareAndSet(null, u))
5712 <                            tryCompleteComputation(null);
5712 >                            quietlyCompleteRoot();
5713                          break;
5714                      }
5715                  }
5806            } catch (Throwable ex) {
5807                return tryCompleteComputation(ex);
5716              }
5809            tryComplete(subtasks);
5810            return false;
5717          }
5812        public final U getRawResult() { return result.get(); }
5718      }
5719  
5720      @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5721 <        extends BulkAction<K,V,U> {
5722 <        final Fun<? super V, ? extends U> searchFunction;
5721 >        extends Traverser<K,V,U> {
5722 >        final Function<? super V, ? extends U> searchFunction;
5723          final AtomicReference<U> result;
5724          SearchValuesTask
5725 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5726 <             SearchValuesTask<K,V,U> nextTask,
5822 <             Fun<? super V, ? extends U> searchFunction,
5725 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5726 >             Function<? super V, ? extends U> searchFunction,
5727               AtomicReference<U> result) {
5728 <            super(m, p, b, nextTask);
5728 >            super(m, p, b);
5729              this.searchFunction = searchFunction; this.result = result;
5730          }
5731 <        @SuppressWarnings("unchecked") public final boolean exec() {
5732 <            AtomicReference<U> result = this.result;
5733 <            final Fun<? super V, ? extends U> searchFunction =
5734 <                this.searchFunction;
5735 <            if (searchFunction == null || result == null)
5736 <                return abortOnNullFunction();
5737 <            SearchValuesTask<K,V,U> subtasks = null;
5738 <            try {
5739 <                int b = batch(), c;
5740 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5741 <                    do {} while (!casPending(c = pending, c+1));
5742 <                    (subtasks = new SearchValuesTask<K,V,U>
5743 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5744 <                }
5745 <                Object v; U u;
5746 <                while (result.get() == null && (v = advance()) != null) {
5747 <                    if ((u = searchFunction.apply((V)v)) != null) {
5731 >        public final U getRawResult() { return result.get(); }
5732 >        public final void compute() {
5733 >            final Function<? super V, ? extends U> searchFunction;
5734 >            final AtomicReference<U> result;
5735 >            if ((searchFunction = this.searchFunction) != null &&
5736 >                (result = this.result) != null) {
5737 >                for (int b;;) {
5738 >                    if (result.get() != null)
5739 >                        return;
5740 >                    if ((b = preSplit()) <= 0)
5741 >                        break;
5742 >                    new SearchValuesTask<K,V,U>
5743 >                        (map, this, b, searchFunction, result).fork();
5744 >                }
5745 >                while (result.get() == null) {
5746 >                    V v; U u;
5747 >                    if ((v = advance()) == null) {
5748 >                        propagateCompletion();
5749 >                        break;
5750 >                    }
5751 >                    if ((u = searchFunction.apply(v)) != null) {
5752                          if (result.compareAndSet(null, u))
5753 <                            tryCompleteComputation(null);
5753 >                            quietlyCompleteRoot();
5754                          break;
5755                      }
5756                  }
5849            } catch (Throwable ex) {
5850                return tryCompleteComputation(ex);
5757              }
5852            tryComplete(subtasks);
5853            return false;
5758          }
5855        public final U getRawResult() { return result.get(); }
5759      }
5760  
5761      @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5762 <        extends BulkAction<K,V,U> {
5763 <        final Fun<Entry<K,V>, ? extends U> searchFunction;
5762 >        extends Traverser<K,V,U> {
5763 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5764          final AtomicReference<U> result;
5765          SearchEntriesTask
5766 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5767 <             SearchEntriesTask<K,V,U> nextTask,
5865 <             Fun<Entry<K,V>, ? extends U> searchFunction,
5766 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5767 >             Function<Entry<K,V>, ? extends U> searchFunction,
5768               AtomicReference<U> result) {
5769 <            super(m, p, b, nextTask);
5769 >            super(m, p, b);
5770              this.searchFunction = searchFunction; this.result = result;
5771          }
5772 <        @SuppressWarnings("unchecked") public final boolean exec() {
5773 <            AtomicReference<U> result = this.result;
5774 <            final Fun<Entry<K,V>, ? extends U> searchFunction =
5775 <                this.searchFunction;
5776 <            if (searchFunction == null || result == null)
5777 <                return abortOnNullFunction();
5778 <            SearchEntriesTask<K,V,U> subtasks = null;
5779 <            try {
5780 <                int b = batch(), c;
5781 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5782 <                    do {} while (!casPending(c = pending, c+1));
5783 <                    (subtasks = new SearchEntriesTask<K,V,U>
5784 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5785 <                }
5786 <                Object v; U u;
5787 <                while (result.get() == null && (v = advance()) != null) {
5788 <                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5789 <                        if (result.compareAndSet(null, u))
5888 <                            tryCompleteComputation(null);
5772 >        public final U getRawResult() { return result.get(); }
5773 >        public final void compute() {
5774 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5775 >            final AtomicReference<U> result;
5776 >            if ((searchFunction = this.searchFunction) != null &&
5777 >                (result = this.result) != null) {
5778 >                for (int b;;) {
5779 >                    if (result.get() != null)
5780 >                        return;
5781 >                    if ((b = preSplit()) <= 0)
5782 >                        break;
5783 >                    new SearchEntriesTask<K,V,U>
5784 >                        (map, this, b, searchFunction, result).fork();
5785 >                }
5786 >                while (result.get() == null) {
5787 >                    V v; U u;
5788 >                    if ((v = advance()) == null) {
5789 >                        propagateCompletion();
5790                          break;
5791                      }
5792 +                    if ((u = searchFunction.apply(entryFor(nextKey,
5793 +                                                           v))) != null) {
5794 +                        if (result.compareAndSet(null, u))
5795 +                            quietlyCompleteRoot();
5796 +                        return;
5797 +                    }
5798                  }
5892            } catch (Throwable ex) {
5893                return tryCompleteComputation(ex);
5799              }
5895            tryComplete(subtasks);
5896            return false;
5800          }
5898        public final U getRawResult() { return result.get(); }
5801      }
5802  
5803      @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5804 <        extends BulkAction<K,V,U> {
5805 <        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5804 >        extends Traverser<K,V,U> {
5805 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5806          final AtomicReference<U> result;
5807          SearchMappingsTask
5808 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5809 <             SearchMappingsTask<K,V,U> nextTask,
5908 <             BiFun<? super K, ? super V, ? extends U> searchFunction,
5808 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5809 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5810               AtomicReference<U> result) {
5811 <            super(m, p, b, nextTask);
5811 >            super(m, p, b);
5812              this.searchFunction = searchFunction; this.result = result;
5813          }
5814 <        @SuppressWarnings("unchecked") public final boolean exec() {
5815 <            AtomicReference<U> result = this.result;
5816 <            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5817 <                this.searchFunction;
5818 <            if (searchFunction == null || result == null)
5819 <                return abortOnNullFunction();
5820 <            SearchMappingsTask<K,V,U> subtasks = null;
5821 <            try {
5822 <                int b = batch(), c;
5823 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5824 <                    do {} while (!casPending(c = pending, c+1));
5825 <                    (subtasks = new SearchMappingsTask<K,V,U>
5826 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5827 <                }
5828 <                Object v; U u;
5829 <                while (result.get() == null && (v = advance()) != null) {
5830 <                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5814 >        public final U getRawResult() { return result.get(); }
5815 >        public final void compute() {
5816 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5817 >            final AtomicReference<U> result;
5818 >            if ((searchFunction = this.searchFunction) != null &&
5819 >                (result = this.result) != null) {
5820 >                for (int b;;) {
5821 >                    if (result.get() != null)
5822 >                        return;
5823 >                    if ((b = preSplit()) <= 0)
5824 >                        break;
5825 >                    new SearchMappingsTask<K,V,U>
5826 >                        (map, this, b, searchFunction, result).fork();
5827 >                }
5828 >                while (result.get() == null) {
5829 >                    V v; U u;
5830 >                    if ((v = advance()) == null) {
5831 >                        propagateCompletion();
5832 >                        break;
5833 >                    }
5834 >                    if ((u = searchFunction.apply(nextKey, v)) != null) {
5835                          if (result.compareAndSet(null, u))
5836 <                            tryCompleteComputation(null);
5836 >                            quietlyCompleteRoot();
5837                          break;
5838                      }
5839                  }
5935            } catch (Throwable ex) {
5936                return tryCompleteComputation(ex);
5840              }
5938            tryComplete(subtasks);
5939            return false;
5841          }
5941        public final U getRawResult() { return result.get(); }
5842      }
5843  
5844      @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5845 <        extends BulkTask<K,V,K> {
5846 <        final BiFun<? super K, ? super K, ? extends K> reducer;
5845 >        extends Traverser<K,V,K> {
5846 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5847          K result;
5848          ReduceKeysTask<K,V> rights, nextRight;
5849          ReduceKeysTask
5850 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5850 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5851               ReduceKeysTask<K,V> nextRight,
5852 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5852 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5853              super(m, p, b); this.nextRight = nextRight;
5854              this.reducer = reducer;
5855          }
5856 <        @SuppressWarnings("unchecked") public final boolean exec() {
5857 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5858 <                this.reducer;
5859 <            if (reducer == null)
5860 <                return abortOnNullFunction();
5961 <            try {
5962 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5963 <                    do {} while (!casPending(c = pending, c+1));
5856 >        public final K getRawResult() { return result; }
5857 >        @SuppressWarnings("unchecked") public final void compute() {
5858 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5859 >            if ((reducer = this.reducer) != null) {
5860 >                for (int b; (b = preSplit()) > 0;)
5861                      (rights = new ReduceKeysTask<K,V>
5862 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5966 <                }
5862 >                     (map, this, b, rights, reducer)).fork();
5863                  K r = null;
5864                  while (advance() != null) {
5865 <                    K u = (K)nextKey;
5866 <                    r = (r == null) ? u : reducer.apply(r, u);
5865 >                    K u = nextKey;
5866 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5867                  }
5868                  result = r;
5869 <                for (ReduceKeysTask<K,V> t = this, s;;) {
5870 <                    int c; BulkTask<K,V,?> par; K tr, sr;
5871 <                    if ((c = t.pending) == 0) {
5872 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5873 <                            if ((sr = s.result) != null)
5874 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5875 <                        }
5876 <                        if ((par = t.parent) == null ||
5877 <                            !(par instanceof ReduceKeysTask)) {
5878 <                            t.quietlyComplete();
5879 <                            break;
5984 <                        }
5985 <                        t = (ReduceKeysTask<K,V>)par;
5869 >                CountedCompleter<?> c;
5870 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5871 >                    ReduceKeysTask<K,V>
5872 >                        t = (ReduceKeysTask<K,V>)c,
5873 >                        s = t.rights;
5874 >                    while (s != null) {
5875 >                        K tr, sr;
5876 >                        if ((sr = s.result) != null)
5877 >                            t.result = (((tr = t.result) == null) ? sr :
5878 >                                        reducer.apply(tr, sr));
5879 >                        s = t.rights = s.nextRight;
5880                      }
5987                    else if (t.casPending(c, c - 1))
5988                        break;
5881                  }
5990            } catch (Throwable ex) {
5991                return tryCompleteComputation(ex);
5882              }
5993            ReduceKeysTask<K,V> s = rights;
5994            if (s != null && !inForkJoinPool()) {
5995                do  {
5996                    if (s.tryUnfork())
5997                        s.exec();
5998                } while ((s = s.nextRight) != null);
5999            }
6000            return false;
5883          }
6002        public final K getRawResult() { return result; }
5884      }
5885  
5886      @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5887 <        extends BulkTask<K,V,V> {
5888 <        final BiFun<? super V, ? super V, ? extends V> reducer;
5887 >        extends Traverser<K,V,V> {
5888 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5889          V result;
5890          ReduceValuesTask<K,V> rights, nextRight;
5891          ReduceValuesTask
5892 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5892 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5893               ReduceValuesTask<K,V> nextRight,
5894 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5894 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5895              super(m, p, b); this.nextRight = nextRight;
5896              this.reducer = reducer;
5897          }
5898 <        @SuppressWarnings("unchecked") public final boolean exec() {
5899 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5900 <                this.reducer;
5901 <            if (reducer == null)
5902 <                return abortOnNullFunction();
6022 <            try {
6023 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6024 <                    do {} while (!casPending(c = pending, c+1));
5898 >        public final V getRawResult() { return result; }
5899 >        @SuppressWarnings("unchecked") public final void compute() {
5900 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5901 >            if ((reducer = this.reducer) != null) {
5902 >                for (int b; (b = preSplit()) > 0;)
5903                      (rights = new ReduceValuesTask<K,V>
5904 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5905 <                }
5906 <                V r = null;
5907 <                Object v;
6030 <                while ((v = advance()) != null) {
6031 <                    V u = (V)v;
6032 <                    r = (r == null) ? u : reducer.apply(r, u);
6033 <                }
5904 >                     (map, this, b, rights, reducer)).fork();
5905 >                V r = null, v;
5906 >                while ((v = advance()) != null)
5907 >                    r = (r == null) ? v : reducer.apply(r, v);
5908                  result = r;
5909 <                for (ReduceValuesTask<K,V> t = this, s;;) {
5910 <                    int c; BulkTask<K,V,?> par; V tr, sr;
5911 <                    if ((c = t.pending) == 0) {
5912 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5913 <                            if ((sr = s.result) != null)
5914 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5915 <                        }
5916 <                        if ((par = t.parent) == null ||
5917 <                            !(par instanceof ReduceValuesTask)) {
5918 <                            t.quietlyComplete();
5919 <                            break;
6046 <                        }
6047 <                        t = (ReduceValuesTask<K,V>)par;
5909 >                CountedCompleter<?> c;
5910 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5911 >                    ReduceValuesTask<K,V>
5912 >                        t = (ReduceValuesTask<K,V>)c,
5913 >                        s = t.rights;
5914 >                    while (s != null) {
5915 >                        V tr, sr;
5916 >                        if ((sr = s.result) != null)
5917 >                            t.result = (((tr = t.result) == null) ? sr :
5918 >                                        reducer.apply(tr, sr));
5919 >                        s = t.rights = s.nextRight;
5920                      }
6049                    else if (t.casPending(c, c - 1))
6050                        break;
5921                  }
6052            } catch (Throwable ex) {
6053                return tryCompleteComputation(ex);
5922              }
6055            ReduceValuesTask<K,V> s = rights;
6056            if (s != null && !inForkJoinPool()) {
6057                do  {
6058                    if (s.tryUnfork())
6059                        s.exec();
6060                } while ((s = s.nextRight) != null);
6061            }
6062            return false;
5923          }
6064        public final V getRawResult() { return result; }
5924      }
5925  
5926      @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5927 <        extends BulkTask<K,V,Map.Entry<K,V>> {
5928 <        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5927 >        extends Traverser<K,V,Map.Entry<K,V>> {
5928 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5929          Map.Entry<K,V> result;
5930          ReduceEntriesTask<K,V> rights, nextRight;
5931          ReduceEntriesTask
5932 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5932 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5933               ReduceEntriesTask<K,V> nextRight,
5934 <             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5934 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5935              super(m, p, b); this.nextRight = nextRight;
5936              this.reducer = reducer;
5937          }
5938 <        @SuppressWarnings("unchecked") public final boolean exec() {
5939 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5940 <                this.reducer;
5941 <            if (reducer == null)
5942 <                return abortOnNullFunction();
6084 <            try {
6085 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6086 <                    do {} while (!casPending(c = pending, c+1));
5938 >        public final Map.Entry<K,V> getRawResult() { return result; }
5939 >        @SuppressWarnings("unchecked") public final void compute() {
5940 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5941 >            if ((reducer = this.reducer) != null) {
5942 >                for (int b; (b = preSplit()) > 0;)
5943                      (rights = new ReduceEntriesTask<K,V>
5944 <                     (map, this, b >>>= 1, rights, reducer)).fork();
6089 <                }
5944 >                     (map, this, b, rights, reducer)).fork();
5945                  Map.Entry<K,V> r = null;
5946 <                Object v;
5946 >                V v;
5947                  while ((v = advance()) != null) {
5948 <                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5948 >                    Map.Entry<K,V> u = entryFor(nextKey, v);
5949                      r = (r == null) ? u : reducer.apply(r, u);
5950                  }
5951                  result = r;
5952 <                for (ReduceEntriesTask<K,V> t = this, s;;) {
5953 <                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5954 <                    if ((c = t.pending) == 0) {
5955 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5956 <                            if ((sr = s.result) != null)
5957 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5958 <                        }
5959 <                        if ((par = t.parent) == null ||
5960 <                            !(par instanceof ReduceEntriesTask)) {
5961 <                            t.quietlyComplete();
5962 <                            break;
6108 <                        }
6109 <                        t = (ReduceEntriesTask<K,V>)par;
5952 >                CountedCompleter<?> c;
5953 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5954 >                    ReduceEntriesTask<K,V>
5955 >                        t = (ReduceEntriesTask<K,V>)c,
5956 >                        s = t.rights;
5957 >                    while (s != null) {
5958 >                        Map.Entry<K,V> tr, sr;
5959 >                        if ((sr = s.result) != null)
5960 >                            t.result = (((tr = t.result) == null) ? sr :
5961 >                                        reducer.apply(tr, sr));
5962 >                        s = t.rights = s.nextRight;
5963                      }
6111                    else if (t.casPending(c, c - 1))
6112                        break;
5964                  }
6114            } catch (Throwable ex) {
6115                return tryCompleteComputation(ex);
5965              }
6117            ReduceEntriesTask<K,V> s = rights;
6118            if (s != null && !inForkJoinPool()) {
6119                do  {
6120                    if (s.tryUnfork())
6121                        s.exec();
6122                } while ((s = s.nextRight) != null);
6123            }
6124            return false;
5966          }
6126        public final Map.Entry<K,V> getRawResult() { return result; }
5967      }
5968  
5969      @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5970 <        extends BulkTask<K,V,U> {
5971 <        final Fun<? super K, ? extends U> transformer;
5972 <        final BiFun<? super U, ? super U, ? extends U> reducer;
5970 >        extends Traverser<K,V,U> {
5971 >        final Function<? super K, ? extends U> transformer;
5972 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5973          U result;
5974          MapReduceKeysTask<K,V,U> rights, nextRight;
5975          MapReduceKeysTask
5976 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5976 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5977               MapReduceKeysTask<K,V,U> nextRight,
5978 <             Fun<? super K, ? extends U> transformer,
5979 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5978 >             Function<? super K, ? extends U> transformer,
5979 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5980              super(m, p, b); this.nextRight = nextRight;
5981              this.transformer = transformer;
5982              this.reducer = reducer;
5983          }
5984 <        @SuppressWarnings("unchecked") public final boolean exec() {
5985 <            final Fun<? super K, ? extends U> transformer =
5986 <                this.transformer;
5987 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5988 <                this.reducer;
5989 <            if (transformer == null || reducer == null)
5990 <                return abortOnNullFunction();
6151 <            try {
6152 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6153 <                    do {} while (!casPending(c = pending, c+1));
5984 >        public final U getRawResult() { return result; }
5985 >        @SuppressWarnings("unchecked") public final void compute() {
5986 >            final Function<? super K, ? extends U> transformer;
5987 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5988 >            if ((transformer = this.transformer) != null &&
5989 >                (reducer = this.reducer) != null) {
5990 >                for (int b; (b = preSplit()) > 0;)
5991                      (rights = new MapReduceKeysTask<K,V,U>
5992 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6156 <                }
5992 >                     (map, this, b, rights, transformer, reducer)).fork();
5993                  U r = null, u;
5994                  while (advance() != null) {
5995 <                    if ((u = transformer.apply((K)nextKey)) != null)
5995 >                    if ((u = transformer.apply(nextKey)) != null)
5996                          r = (r == null) ? u : reducer.apply(r, u);
5997                  }
5998                  result = r;
5999 <                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
6000 <                    int c; BulkTask<K,V,?> par; U tr, sr;
6001 <                    if ((c = t.pending) == 0) {
6002 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6003 <                            if ((sr = s.result) != null)
6004 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6005 <                        }
6006 <                        if ((par = t.parent) == null ||
6007 <                            !(par instanceof MapReduceKeysTask)) {
6008 <                            t.quietlyComplete();
6009 <                            break;
6174 <                        }
6175 <                        t = (MapReduceKeysTask<K,V,U>)par;
5999 >                CountedCompleter<?> c;
6000 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6001 >                    MapReduceKeysTask<K,V,U>
6002 >                        t = (MapReduceKeysTask<K,V,U>)c,
6003 >                        s = t.rights;
6004 >                    while (s != null) {
6005 >                        U tr, sr;
6006 >                        if ((sr = s.result) != null)
6007 >                            t.result = (((tr = t.result) == null) ? sr :
6008 >                                        reducer.apply(tr, sr));
6009 >                        s = t.rights = s.nextRight;
6010                      }
6177                    else if (t.casPending(c, c - 1))
6178                        break;
6011                  }
6180            } catch (Throwable ex) {
6181                return tryCompleteComputation(ex);
6012              }
6183            MapReduceKeysTask<K,V,U> s = rights;
6184            if (s != null && !inForkJoinPool()) {
6185                do  {
6186                    if (s.tryUnfork())
6187                        s.exec();
6188                } while ((s = s.nextRight) != null);
6189            }
6190            return false;
6013          }
6192        public final U getRawResult() { return result; }
6014      }
6015  
6016      @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6017 <        extends BulkTask<K,V,U> {
6018 <        final Fun<? super V, ? extends U> transformer;
6019 <        final BiFun<? super U, ? super U, ? extends U> reducer;
6017 >        extends Traverser<K,V,U> {
6018 >        final Function<? super V, ? extends U> transformer;
6019 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6020          U result;
6021          MapReduceValuesTask<K,V,U> rights, nextRight;
6022          MapReduceValuesTask
6023 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6023 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6024               MapReduceValuesTask<K,V,U> nextRight,
6025 <             Fun<? super V, ? extends U> transformer,
6026 <             BiFun<? super U, ? super U, ? extends U> reducer) {
6025 >             Function<? super V, ? extends U> transformer,
6026 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6027              super(m, p, b); this.nextRight = nextRight;
6028              this.transformer = transformer;
6029              this.reducer = reducer;
6030          }
6031 <        @SuppressWarnings("unchecked") public final boolean exec() {
6032 <            final Fun<? super V, ? extends U> transformer =
6033 <                this.transformer;
6034 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6035 <                this.reducer;
6036 <            if (transformer == null || reducer == null)
6037 <                return abortOnNullFunction();
6217 <            try {
6218 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6219 <                    do {} while (!casPending(c = pending, c+1));
6031 >        public final U getRawResult() { return result; }
6032 >        @SuppressWarnings("unchecked") public final void compute() {
6033 >            final Function<? super V, ? extends U> transformer;
6034 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6035 >            if ((transformer = this.transformer) != null &&
6036 >                (reducer = this.reducer) != null) {
6037 >                for (int b; (b = preSplit()) > 0;)
6038                      (rights = new MapReduceValuesTask<K,V,U>
6039 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6222 <                }
6039 >                     (map, this, b, rights, transformer, reducer)).fork();
6040                  U r = null, u;
6041 <                Object v;
6041 >                V v;
6042                  while ((v = advance()) != null) {
6043 <                    if ((u = transformer.apply((V)v)) != null)
6043 >                    if ((u = transformer.apply(v)) != null)
6044                          r = (r == null) ? u : reducer.apply(r, u);
6045                  }
6046                  result = r;
6047 <                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
6048 <                    int c; BulkTask<K,V,?> par; U tr, sr;
6049 <                    if ((c = t.pending) == 0) {
6050 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6051 <                            if ((sr = s.result) != null)
6052 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6053 <                        }
6054 <                        if ((par = t.parent) == null ||
6055 <                            !(par instanceof MapReduceValuesTask)) {
6056 <                            t.quietlyComplete();
6057 <                            break;
6241 <                        }
6242 <                        t = (MapReduceValuesTask<K,V,U>)par;
6047 >                CountedCompleter<?> c;
6048 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6049 >                    MapReduceValuesTask<K,V,U>
6050 >                        t = (MapReduceValuesTask<K,V,U>)c,
6051 >                        s = t.rights;
6052 >                    while (s != null) {
6053 >                        U tr, sr;
6054 >                        if ((sr = s.result) != null)
6055 >                            t.result = (((tr = t.result) == null) ? sr :
6056 >                                        reducer.apply(tr, sr));
6057 >                        s = t.rights = s.nextRight;
6058                      }
6244                    else if (t.casPending(c, c - 1))
6245                        break;
6059                  }
6247            } catch (Throwable ex) {
6248                return tryCompleteComputation(ex);
6060              }
6250            MapReduceValuesTask<K,V,U> s = rights;
6251            if (s != null && !inForkJoinPool()) {
6252                do  {
6253                    if (s.tryUnfork())
6254                        s.exec();
6255                } while ((s = s.nextRight) != null);
6256            }
6257            return false;
6061          }
6259        public final U getRawResult() { return result; }
6062      }
6063  
6064      @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6065 <        extends BulkTask<K,V,U> {
6066 <        final Fun<Map.Entry<K,V>, ? extends U> transformer;
6067 <        final BiFun<? super U, ? super U, ? extends U> reducer;
6065 >        extends Traverser<K,V,U> {
6066 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
6067 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6068          U result;
6069          MapReduceEntriesTask<K,V,U> rights, nextRight;
6070          MapReduceEntriesTask
6071 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6071 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6072               MapReduceEntriesTask<K,V,U> nextRight,
6073 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
6074 <             BiFun<? super U, ? super U, ? extends U> reducer) {
6073 >             Function<Map.Entry<K,V>, ? extends U> transformer,
6074 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6075              super(m, p, b); this.nextRight = nextRight;
6076              this.transformer = transformer;
6077              this.reducer = reducer;
6078          }
6079 <        @SuppressWarnings("unchecked") public final boolean exec() {
6080 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
6081 <                this.transformer;
6082 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6083 <                this.reducer;
6084 <            if (transformer == null || reducer == null)
6085 <                return abortOnNullFunction();
6284 <            try {
6285 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6286 <                    do {} while (!casPending(c = pending, c+1));
6079 >        public final U getRawResult() { return result; }
6080 >        @SuppressWarnings("unchecked") public final void compute() {
6081 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
6082 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6083 >            if ((transformer = this.transformer) != null &&
6084 >                (reducer = this.reducer) != null) {
6085 >                for (int b; (b = preSplit()) > 0;)
6086                      (rights = new MapReduceEntriesTask<K,V,U>
6087 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6289 <                }
6087 >                     (map, this, b, rights, transformer, reducer)).fork();
6088                  U r = null, u;
6089 <                Object v;
6089 >                V v;
6090                  while ((v = advance()) != null) {
6091 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6091 >                    if ((u = transformer.apply(entryFor(nextKey,
6092 >                                                        v))) != null)
6093                          r = (r == null) ? u : reducer.apply(r, u);
6094                  }
6095                  result = r;
6096 <                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
6097 <                    int c; BulkTask<K,V,?> par; U tr, sr;
6098 <                    if ((c = t.pending) == 0) {
6099 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6100 <                            if ((sr = s.result) != null)
6101 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6102 <                        }
6103 <                        if ((par = t.parent) == null ||
6104 <                            !(par instanceof MapReduceEntriesTask)) {
6105 <                            t.quietlyComplete();
6106 <                            break;
6308 <                        }
6309 <                        t = (MapReduceEntriesTask<K,V,U>)par;
6096 >                CountedCompleter<?> c;
6097 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6098 >                    MapReduceEntriesTask<K,V,U>
6099 >                        t = (MapReduceEntriesTask<K,V,U>)c,
6100 >                        s = t.rights;
6101 >                    while (s != null) {
6102 >                        U tr, sr;
6103 >                        if ((sr = s.result) != null)
6104 >                            t.result = (((tr = t.result) == null) ? sr :
6105 >                                        reducer.apply(tr, sr));
6106 >                        s = t.rights = s.nextRight;
6107                      }
6311                    else if (t.casPending(c, c - 1))
6312                        break;
6108                  }
6314            } catch (Throwable ex) {
6315                return tryCompleteComputation(ex);
6109              }
6317            MapReduceEntriesTask<K,V,U> s = rights;
6318            if (s != null && !inForkJoinPool()) {
6319                do  {
6320                    if (s.tryUnfork())
6321                        s.exec();
6322                } while ((s = s.nextRight) != null);
6323            }
6324            return false;
6110          }
6326        public final U getRawResult() { return result; }
6111      }
6112  
6113      @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6114 <        extends BulkTask<K,V,U> {
6115 <        final BiFun<? super K, ? super V, ? extends U> transformer;
6116 <        final BiFun<? super U, ? super U, ? extends U> reducer;
6114 >        extends Traverser<K,V,U> {
6115 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
6116 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6117          U result;
6118          MapReduceMappingsTask<K,V,U> rights, nextRight;
6119          MapReduceMappingsTask
6120 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6120 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6121               MapReduceMappingsTask<K,V,U> nextRight,
6122 <             BiFun<? super K, ? super V, ? extends U> transformer,
6123 <             BiFun<? super U, ? super U, ? extends U> reducer) {
6122 >             BiFunction<? super K, ? super V, ? extends U> transformer,
6123 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6124              super(m, p, b); this.nextRight = nextRight;
6125              this.transformer = transformer;
6126              this.reducer = reducer;
6127          }
6128 <        @SuppressWarnings("unchecked") public final boolean exec() {
6129 <            final BiFun<? super K, ? super V, ? extends U> transformer =
6130 <                this.transformer;
6131 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6132 <                this.reducer;
6133 <            if (transformer == null || reducer == null)
6134 <                return abortOnNullFunction();
6351 <            try {
6352 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6353 <                    do {} while (!casPending(c = pending, c+1));
6128 >        public final U getRawResult() { return result; }
6129 >        @SuppressWarnings("unchecked") public final void compute() {
6130 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
6131 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6132 >            if ((transformer = this.transformer) != null &&
6133 >                (reducer = this.reducer) != null) {
6134 >                for (int b; (b = preSplit()) > 0;)
6135                      (rights = new MapReduceMappingsTask<K,V,U>
6136 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6356 <                }
6136 >                     (map, this, b, rights, transformer, reducer)).fork();
6137                  U r = null, u;
6138 <                Object v;
6138 >                V v;
6139                  while ((v = advance()) != null) {
6140 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6140 >                    if ((u = transformer.apply(nextKey, v)) != null)
6141                          r = (r == null) ? u : reducer.apply(r, u);
6142                  }
6143                  result = r;
6144 <                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
6145 <                    int c; BulkTask<K,V,?> par; U tr, sr;
6146 <                    if ((c = t.pending) == 0) {
6147 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6148 <                            if ((sr = s.result) != null)
6149 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6150 <                        }
6151 <                        if ((par = t.parent) == null ||
6152 <                            !(par instanceof MapReduceMappingsTask)) {
6153 <                            t.quietlyComplete();
6154 <                            break;
6375 <                        }
6376 <                        t = (MapReduceMappingsTask<K,V,U>)par;
6144 >                CountedCompleter<?> c;
6145 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6146 >                    MapReduceMappingsTask<K,V,U>
6147 >                        t = (MapReduceMappingsTask<K,V,U>)c,
6148 >                        s = t.rights;
6149 >                    while (s != null) {
6150 >                        U tr, sr;
6151 >                        if ((sr = s.result) != null)
6152 >                            t.result = (((tr = t.result) == null) ? sr :
6153 >                                        reducer.apply(tr, sr));
6154 >                        s = t.rights = s.nextRight;
6155                      }
6378                    else if (t.casPending(c, c - 1))
6379                        break;
6156                  }
6381            } catch (Throwable ex) {
6382                return tryCompleteComputation(ex);
6157              }
6384            MapReduceMappingsTask<K,V,U> s = rights;
6385            if (s != null && !inForkJoinPool()) {
6386                do  {
6387                    if (s.tryUnfork())
6388                        s.exec();
6389                } while ((s = s.nextRight) != null);
6390            }
6391            return false;
6158          }
6393        public final U getRawResult() { return result; }
6159      }
6160  
6161      @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6162 <        extends BulkTask<K,V,Double> {
6163 <        final ObjectToDouble<? super K> transformer;
6164 <        final DoubleByDoubleToDouble reducer;
6162 >        extends Traverser<K,V,Double> {
6163 >        final DoubleFunction<? super K> transformer;
6164 >        final DoubleBinaryOperator reducer;
6165          final double basis;
6166          double result;
6167          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6168          MapReduceKeysToDoubleTask
6169 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6169 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6170               MapReduceKeysToDoubleTask<K,V> nextRight,
6171 <             ObjectToDouble<? super K> transformer,
6171 >             DoubleFunction<? super K> transformer,
6172               double basis,
6173 <             DoubleByDoubleToDouble reducer) {
6173 >             DoubleBinaryOperator reducer) {
6174              super(m, p, b); this.nextRight = nextRight;
6175              this.transformer = transformer;
6176              this.basis = basis; this.reducer = reducer;
6177          }
6178 <        @SuppressWarnings("unchecked") public final boolean exec() {
6179 <            final ObjectToDouble<? super K> transformer =
6180 <                this.transformer;
6181 <            final DoubleByDoubleToDouble reducer = this.reducer;
6182 <            if (transformer == null || reducer == null)
6183 <                return abortOnNullFunction();
6184 <            try {
6185 <                final double id = this.basis;
6421 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6422 <                    do {} while (!casPending(c = pending, c+1));
6178 >        public final Double getRawResult() { return result; }
6179 >        @SuppressWarnings("unchecked") public final void compute() {
6180 >            final DoubleFunction<? super K> transformer;
6181 >            final DoubleBinaryOperator reducer;
6182 >            if ((transformer = this.transformer) != null &&
6183 >                (reducer = this.reducer) != null) {
6184 >                double r = this.basis;
6185 >                for (int b; (b = preSplit()) > 0;)
6186                      (rights = new MapReduceKeysToDoubleTask<K,V>
6187 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6425 <                }
6426 <                double r = id;
6187 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6188                  while (advance() != null)
6189 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
6189 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6190                  result = r;
6191 <                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
6192 <                    int c; BulkTask<K,V,?> par;
6193 <                    if ((c = t.pending) == 0) {
6194 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6195 <                            t.result = reducer.apply(t.result, s.result);
6196 <                        }
6197 <                        if ((par = t.parent) == null ||
6198 <                            !(par instanceof MapReduceKeysToDoubleTask)) {
6438 <                            t.quietlyComplete();
6439 <                            break;
6440 <                        }
6441 <                        t = (MapReduceKeysToDoubleTask<K,V>)par;
6191 >                CountedCompleter<?> c;
6192 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6193 >                    MapReduceKeysToDoubleTask<K,V>
6194 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6195 >                        s = t.rights;
6196 >                    while (s != null) {
6197 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6198 >                        s = t.rights = s.nextRight;
6199                      }
6443                    else if (t.casPending(c, c - 1))
6444                        break;
6200                  }
6446            } catch (Throwable ex) {
6447                return tryCompleteComputation(ex);
6201              }
6449            MapReduceKeysToDoubleTask<K,V> s = rights;
6450            if (s != null && !inForkJoinPool()) {
6451                do  {
6452                    if (s.tryUnfork())
6453                        s.exec();
6454                } while ((s = s.nextRight) != null);
6455            }
6456            return false;
6202          }
6458        public final Double getRawResult() { return result; }
6203      }
6204  
6205      @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6206 <        extends BulkTask<K,V,Double> {
6207 <        final ObjectToDouble<? super V> transformer;
6208 <        final DoubleByDoubleToDouble reducer;
6206 >        extends Traverser<K,V,Double> {
6207 >        final DoubleFunction<? super V> transformer;
6208 >        final DoubleBinaryOperator reducer;
6209          final double basis;
6210          double result;
6211          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6212          MapReduceValuesToDoubleTask
6213 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6213 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6214               MapReduceValuesToDoubleTask<K,V> nextRight,
6215 <             ObjectToDouble<? super V> transformer,
6215 >             DoubleFunction<? super V> transformer,
6216               double basis,
6217 <             DoubleByDoubleToDouble reducer) {
6217 >             DoubleBinaryOperator reducer) {
6218              super(m, p, b); this.nextRight = nextRight;
6219              this.transformer = transformer;
6220              this.basis = basis; this.reducer = reducer;
6221          }
6222 <        @SuppressWarnings("unchecked") public final boolean exec() {
6223 <            final ObjectToDouble<? super V> transformer =
6224 <                this.transformer;
6225 <            final DoubleByDoubleToDouble reducer = this.reducer;
6226 <            if (transformer == null || reducer == null)
6227 <                return abortOnNullFunction();
6228 <            try {
6229 <                final double id = this.basis;
6486 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6487 <                    do {} while (!casPending(c = pending, c+1));
6222 >        public final Double getRawResult() { return result; }
6223 >        @SuppressWarnings("unchecked") public final void compute() {
6224 >            final DoubleFunction<? super V> transformer;
6225 >            final DoubleBinaryOperator reducer;
6226 >            if ((transformer = this.transformer) != null &&
6227 >                (reducer = this.reducer) != null) {
6228 >                double r = this.basis;
6229 >                for (int b; (b = preSplit()) > 0;)
6230                      (rights = new MapReduceValuesToDoubleTask<K,V>
6231 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6232 <                }
6491 <                double r = id;
6492 <                Object v;
6231 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6232 >                V v;
6233                  while ((v = advance()) != null)
6234 <                    r = reducer.apply(r, transformer.apply((V)v));
6234 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6235                  result = r;
6236 <                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6237 <                    int c; BulkTask<K,V,?> par;
6238 <                    if ((c = t.pending) == 0) {
6239 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6240 <                            t.result = reducer.apply(t.result, s.result);
6241 <                        }
6242 <                        if ((par = t.parent) == null ||
6243 <                            !(par instanceof MapReduceValuesToDoubleTask)) {
6504 <                            t.quietlyComplete();
6505 <                            break;
6506 <                        }
6507 <                        t = (MapReduceValuesToDoubleTask<K,V>)par;
6236 >                CountedCompleter<?> c;
6237 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6238 >                    MapReduceValuesToDoubleTask<K,V>
6239 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6240 >                        s = t.rights;
6241 >                    while (s != null) {
6242 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6243 >                        s = t.rights = s.nextRight;
6244                      }
6509                    else if (t.casPending(c, c - 1))
6510                        break;
6245                  }
6512            } catch (Throwable ex) {
6513                return tryCompleteComputation(ex);
6246              }
6515            MapReduceValuesToDoubleTask<K,V> s = rights;
6516            if (s != null && !inForkJoinPool()) {
6517                do  {
6518                    if (s.tryUnfork())
6519                        s.exec();
6520                } while ((s = s.nextRight) != null);
6521            }
6522            return false;
6247          }
6524        public final Double getRawResult() { return result; }
6248      }
6249  
6250      @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6251 <        extends BulkTask<K,V,Double> {
6252 <        final ObjectToDouble<Map.Entry<K,V>> transformer;
6253 <        final DoubleByDoubleToDouble reducer;
6251 >        extends Traverser<K,V,Double> {
6252 >        final DoubleFunction<Map.Entry<K,V>> transformer;
6253 >        final DoubleBinaryOperator reducer;
6254          final double basis;
6255          double result;
6256          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6257          MapReduceEntriesToDoubleTask
6258 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6258 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6259               MapReduceEntriesToDoubleTask<K,V> nextRight,
6260 <             ObjectToDouble<Map.Entry<K,V>> transformer,
6260 >             DoubleFunction<Map.Entry<K,V>> transformer,
6261               double basis,
6262 <             DoubleByDoubleToDouble reducer) {
6262 >             DoubleBinaryOperator reducer) {
6263              super(m, p, b); this.nextRight = nextRight;
6264              this.transformer = transformer;
6265              this.basis = basis; this.reducer = reducer;
6266          }
6267 <        @SuppressWarnings("unchecked") public final boolean exec() {
6268 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
6269 <                this.transformer;
6270 <            final DoubleByDoubleToDouble reducer = this.reducer;
6271 <            if (transformer == null || reducer == null)
6272 <                return abortOnNullFunction();
6273 <            try {
6274 <                final double id = this.basis;
6552 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6553 <                    do {} while (!casPending(c = pending, c+1));
6267 >        public final Double getRawResult() { return result; }
6268 >        @SuppressWarnings("unchecked") public final void compute() {
6269 >            final DoubleFunction<Map.Entry<K,V>> transformer;
6270 >            final DoubleBinaryOperator reducer;
6271 >            if ((transformer = this.transformer) != null &&
6272 >                (reducer = this.reducer) != null) {
6273 >                double r = this.basis;
6274 >                for (int b; (b = preSplit()) > 0;)
6275                      (rights = new MapReduceEntriesToDoubleTask<K,V>
6276 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6277 <                }
6557 <                double r = id;
6558 <                Object v;
6276 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6277 >                V v;
6278                  while ((v = advance()) != null)
6279 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6279 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6280 >                                                                    v)));
6281                  result = r;
6282 <                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6283 <                    int c; BulkTask<K,V,?> par;
6284 <                    if ((c = t.pending) == 0) {
6285 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6286 <                            t.result = reducer.apply(t.result, s.result);
6287 <                        }
6288 <                        if ((par = t.parent) == null ||
6289 <                            !(par instanceof MapReduceEntriesToDoubleTask)) {
6570 <                            t.quietlyComplete();
6571 <                            break;
6572 <                        }
6573 <                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
6282 >                CountedCompleter<?> c;
6283 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6284 >                    MapReduceEntriesToDoubleTask<K,V>
6285 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6286 >                        s = t.rights;
6287 >                    while (s != null) {
6288 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6289 >                        s = t.rights = s.nextRight;
6290                      }
6575                    else if (t.casPending(c, c - 1))
6576                        break;
6291                  }
6578            } catch (Throwable ex) {
6579                return tryCompleteComputation(ex);
6292              }
6581            MapReduceEntriesToDoubleTask<K,V> s = rights;
6582            if (s != null && !inForkJoinPool()) {
6583                do  {
6584                    if (s.tryUnfork())
6585                        s.exec();
6586                } while ((s = s.nextRight) != null);
6587            }
6588            return false;
6293          }
6590        public final Double getRawResult() { return result; }
6294      }
6295  
6296      @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6297 <        extends BulkTask<K,V,Double> {
6298 <        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6299 <        final DoubleByDoubleToDouble reducer;
6297 >        extends Traverser<K,V,Double> {
6298 >        final DoubleBiFunction<? super K, ? super V> transformer;
6299 >        final DoubleBinaryOperator reducer;
6300          final double basis;
6301          double result;
6302          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6303          MapReduceMappingsToDoubleTask
6304 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6304 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6305               MapReduceMappingsToDoubleTask<K,V> nextRight,
6306 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
6306 >             DoubleBiFunction<? super K, ? super V> transformer,
6307               double basis,
6308 <             DoubleByDoubleToDouble reducer) {
6308 >             DoubleBinaryOperator reducer) {
6309              super(m, p, b); this.nextRight = nextRight;
6310              this.transformer = transformer;
6311              this.basis = basis; this.reducer = reducer;
6312          }
6313 <        @SuppressWarnings("unchecked") public final boolean exec() {
6314 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
6315 <                this.transformer;
6316 <            final DoubleByDoubleToDouble reducer = this.reducer;
6317 <            if (transformer == null || reducer == null)
6318 <                return abortOnNullFunction();
6319 <            try {
6320 <                final double id = this.basis;
6618 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6619 <                    do {} while (!casPending(c = pending, c+1));
6313 >        public final Double getRawResult() { return result; }
6314 >        @SuppressWarnings("unchecked") public final void compute() {
6315 >            final DoubleBiFunction<? super K, ? super V> transformer;
6316 >            final DoubleBinaryOperator reducer;
6317 >            if ((transformer = this.transformer) != null &&
6318 >                (reducer = this.reducer) != null) {
6319 >                double r = this.basis;
6320 >                for (int b; (b = preSplit()) > 0;)
6321                      (rights = new MapReduceMappingsToDoubleTask<K,V>
6322 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6323 <                }
6623 <                double r = id;
6624 <                Object v;
6322 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6323 >                V v;
6324                  while ((v = advance()) != null)
6325 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6325 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6326                  result = r;
6327 <                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6328 <                    int c; BulkTask<K,V,?> par;
6329 <                    if ((c = t.pending) == 0) {
6330 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6331 <                            t.result = reducer.apply(t.result, s.result);
6332 <                        }
6333 <                        if ((par = t.parent) == null ||
6334 <                            !(par instanceof MapReduceMappingsToDoubleTask)) {
6636 <                            t.quietlyComplete();
6637 <                            break;
6638 <                        }
6639 <                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
6327 >                CountedCompleter<?> c;
6328 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6329 >                    MapReduceMappingsToDoubleTask<K,V>
6330 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6331 >                        s = t.rights;
6332 >                    while (s != null) {
6333 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6334 >                        s = t.rights = s.nextRight;
6335                      }
6641                    else if (t.casPending(c, c - 1))
6642                        break;
6336                  }
6644            } catch (Throwable ex) {
6645                return tryCompleteComputation(ex);
6337              }
6647            MapReduceMappingsToDoubleTask<K,V> s = rights;
6648            if (s != null && !inForkJoinPool()) {
6649                do  {
6650                    if (s.tryUnfork())
6651                        s.exec();
6652                } while ((s = s.nextRight) != null);
6653            }
6654            return false;
6338          }
6656        public final Double getRawResult() { return result; }
6339      }
6340  
6341      @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6342 <        extends BulkTask<K,V,Long> {
6343 <        final ObjectToLong<? super K> transformer;
6344 <        final LongByLongToLong reducer;
6342 >        extends Traverser<K,V,Long> {
6343 >        final LongFunction<? super K> transformer;
6344 >        final LongBinaryOperator reducer;
6345          final long basis;
6346          long result;
6347          MapReduceKeysToLongTask<K,V> rights, nextRight;
6348          MapReduceKeysToLongTask
6349 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6349 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6350               MapReduceKeysToLongTask<K,V> nextRight,
6351 <             ObjectToLong<? super K> transformer,
6351 >             LongFunction<? super K> transformer,
6352               long basis,
6353 <             LongByLongToLong reducer) {
6353 >             LongBinaryOperator reducer) {
6354              super(m, p, b); this.nextRight = nextRight;
6355              this.transformer = transformer;
6356              this.basis = basis; this.reducer = reducer;
6357          }
6358 <        @SuppressWarnings("unchecked") public final boolean exec() {
6359 <            final ObjectToLong<? super K> transformer =
6360 <                this.transformer;
6361 <            final LongByLongToLong reducer = this.reducer;
6362 <            if (transformer == null || reducer == null)
6363 <                return abortOnNullFunction();
6364 <            try {
6365 <                final long id = this.basis;
6684 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6685 <                    do {} while (!casPending(c = pending, c+1));
6358 >        public final Long getRawResult() { return result; }
6359 >        @SuppressWarnings("unchecked") public final void compute() {
6360 >            final LongFunction<? super K> transformer;
6361 >            final LongBinaryOperator reducer;
6362 >            if ((transformer = this.transformer) != null &&
6363 >                (reducer = this.reducer) != null) {
6364 >                long r = this.basis;
6365 >                for (int b; (b = preSplit()) > 0;)
6366                      (rights = new MapReduceKeysToLongTask<K,V>
6367 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6688 <                }
6689 <                long r = id;
6367 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6368                  while (advance() != null)
6369 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
6369 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6370                  result = r;
6371 <                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6372 <                    int c; BulkTask<K,V,?> par;
6373 <                    if ((c = t.pending) == 0) {
6374 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6375 <                            t.result = reducer.apply(t.result, s.result);
6376 <                        }
6377 <                        if ((par = t.parent) == null ||
6378 <                            !(par instanceof MapReduceKeysToLongTask)) {
6701 <                            t.quietlyComplete();
6702 <                            break;
6703 <                        }
6704 <                        t = (MapReduceKeysToLongTask<K,V>)par;
6371 >                CountedCompleter<?> c;
6372 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6373 >                    MapReduceKeysToLongTask<K,V>
6374 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6375 >                        s = t.rights;
6376 >                    while (s != null) {
6377 >                        t.result = reducer.applyAsLong(t.result, s.result);
6378 >                        s = t.rights = s.nextRight;
6379                      }
6706                    else if (t.casPending(c, c - 1))
6707                        break;
6380                  }
6709            } catch (Throwable ex) {
6710                return tryCompleteComputation(ex);
6381              }
6712            MapReduceKeysToLongTask<K,V> s = rights;
6713            if (s != null && !inForkJoinPool()) {
6714                do  {
6715                    if (s.tryUnfork())
6716                        s.exec();
6717                } while ((s = s.nextRight) != null);
6718            }
6719            return false;
6382          }
6721        public final Long getRawResult() { return result; }
6383      }
6384  
6385      @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6386 <        extends BulkTask<K,V,Long> {
6387 <        final ObjectToLong<? super V> transformer;
6388 <        final LongByLongToLong reducer;
6386 >        extends Traverser<K,V,Long> {
6387 >        final LongFunction<? super V> transformer;
6388 >        final LongBinaryOperator reducer;
6389          final long basis;
6390          long result;
6391          MapReduceValuesToLongTask<K,V> rights, nextRight;
6392          MapReduceValuesToLongTask
6393 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6393 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6394               MapReduceValuesToLongTask<K,V> nextRight,
6395 <             ObjectToLong<? super V> transformer,
6395 >             LongFunction<? super V> transformer,
6396               long basis,
6397 <             LongByLongToLong reducer) {
6397 >             LongBinaryOperator reducer) {
6398              super(m, p, b); this.nextRight = nextRight;
6399              this.transformer = transformer;
6400              this.basis = basis; this.reducer = reducer;
6401          }
6402 <        @SuppressWarnings("unchecked") public final boolean exec() {
6403 <            final ObjectToLong<? super V> transformer =
6404 <                this.transformer;
6405 <            final LongByLongToLong reducer = this.reducer;
6406 <            if (transformer == null || reducer == null)
6407 <                return abortOnNullFunction();
6408 <            try {
6409 <                final long id = this.basis;
6749 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6750 <                    do {} while (!casPending(c = pending, c+1));
6402 >        public final Long getRawResult() { return result; }
6403 >        @SuppressWarnings("unchecked") public final void compute() {
6404 >            final LongFunction<? super V> transformer;
6405 >            final LongBinaryOperator reducer;
6406 >            if ((transformer = this.transformer) != null &&
6407 >                (reducer = this.reducer) != null) {
6408 >                long r = this.basis;
6409 >                for (int b; (b = preSplit()) > 0;)
6410                      (rights = new MapReduceValuesToLongTask<K,V>
6411 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6412 <                }
6754 <                long r = id;
6755 <                Object v;
6411 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6412 >                V v;
6413                  while ((v = advance()) != null)
6414 <                    r = reducer.apply(r, transformer.apply((V)v));
6414 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6415                  result = r;
6416 <                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6417 <                    int c; BulkTask<K,V,?> par;
6418 <                    if ((c = t.pending) == 0) {
6419 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6420 <                            t.result = reducer.apply(t.result, s.result);
6421 <                        }
6422 <                        if ((par = t.parent) == null ||
6423 <                            !(par instanceof MapReduceValuesToLongTask)) {
6767 <                            t.quietlyComplete();
6768 <                            break;
6769 <                        }
6770 <                        t = (MapReduceValuesToLongTask<K,V>)par;
6416 >                CountedCompleter<?> c;
6417 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6418 >                    MapReduceValuesToLongTask<K,V>
6419 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6420 >                        s = t.rights;
6421 >                    while (s != null) {
6422 >                        t.result = reducer.applyAsLong(t.result, s.result);
6423 >                        s = t.rights = s.nextRight;
6424                      }
6772                    else if (t.casPending(c, c - 1))
6773                        break;
6425                  }
6775            } catch (Throwable ex) {
6776                return tryCompleteComputation(ex);
6426              }
6778            MapReduceValuesToLongTask<K,V> s = rights;
6779            if (s != null && !inForkJoinPool()) {
6780                do  {
6781                    if (s.tryUnfork())
6782                        s.exec();
6783                } while ((s = s.nextRight) != null);
6784            }
6785            return false;
6427          }
6787        public final Long getRawResult() { return result; }
6428      }
6429  
6430      @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6431 <        extends BulkTask<K,V,Long> {
6432 <        final ObjectToLong<Map.Entry<K,V>> transformer;
6433 <        final LongByLongToLong reducer;
6431 >        extends Traverser<K,V,Long> {
6432 >        final LongFunction<Map.Entry<K,V>> transformer;
6433 >        final LongBinaryOperator reducer;
6434          final long basis;
6435          long result;
6436          MapReduceEntriesToLongTask<K,V> rights, nextRight;
6437          MapReduceEntriesToLongTask
6438 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6438 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6439               MapReduceEntriesToLongTask<K,V> nextRight,
6440 <             ObjectToLong<Map.Entry<K,V>> transformer,
6440 >             LongFunction<Map.Entry<K,V>> transformer,
6441               long basis,
6442 <             LongByLongToLong reducer) {
6442 >             LongBinaryOperator reducer) {
6443              super(m, p, b); this.nextRight = nextRight;
6444              this.transformer = transformer;
6445              this.basis = basis; this.reducer = reducer;
6446          }
6447 <        @SuppressWarnings("unchecked") public final boolean exec() {
6448 <            final ObjectToLong<Map.Entry<K,V>> transformer =
6449 <                this.transformer;
6450 <            final LongByLongToLong reducer = this.reducer;
6451 <            if (transformer == null || reducer == null)
6452 <                return abortOnNullFunction();
6453 <            try {
6454 <                final long id = this.basis;
6815 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6816 <                    do {} while (!casPending(c = pending, c+1));
6447 >        public final Long getRawResult() { return result; }
6448 >        @SuppressWarnings("unchecked") public final void compute() {
6449 >            final LongFunction<Map.Entry<K,V>> transformer;
6450 >            final LongBinaryOperator reducer;
6451 >            if ((transformer = this.transformer) != null &&
6452 >                (reducer = this.reducer) != null) {
6453 >                long r = this.basis;
6454 >                for (int b; (b = preSplit()) > 0;)
6455                      (rights = new MapReduceEntriesToLongTask<K,V>
6456 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6457 <                }
6820 <                long r = id;
6821 <                Object v;
6456 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6457 >                V v;
6458                  while ((v = advance()) != null)
6459 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6459 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6460                  result = r;
6461 <                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6462 <                    int c; BulkTask<K,V,?> par;
6463 <                    if ((c = t.pending) == 0) {
6464 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6465 <                            t.result = reducer.apply(t.result, s.result);
6466 <                        }
6467 <                        if ((par = t.parent) == null ||
6468 <                            !(par instanceof MapReduceEntriesToLongTask)) {
6833 <                            t.quietlyComplete();
6834 <                            break;
6835 <                        }
6836 <                        t = (MapReduceEntriesToLongTask<K,V>)par;
6461 >                CountedCompleter<?> c;
6462 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6463 >                    MapReduceEntriesToLongTask<K,V>
6464 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6465 >                        s = t.rights;
6466 >                    while (s != null) {
6467 >                        t.result = reducer.applyAsLong(t.result, s.result);
6468 >                        s = t.rights = s.nextRight;
6469                      }
6838                    else if (t.casPending(c, c - 1))
6839                        break;
6470                  }
6841            } catch (Throwable ex) {
6842                return tryCompleteComputation(ex);
6471              }
6844            MapReduceEntriesToLongTask<K,V> s = rights;
6845            if (s != null && !inForkJoinPool()) {
6846                do  {
6847                    if (s.tryUnfork())
6848                        s.exec();
6849                } while ((s = s.nextRight) != null);
6850            }
6851            return false;
6472          }
6853        public final Long getRawResult() { return result; }
6473      }
6474  
6475      @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6476 <        extends BulkTask<K,V,Long> {
6477 <        final ObjectByObjectToLong<? super K, ? super V> transformer;
6478 <        final LongByLongToLong reducer;
6476 >        extends Traverser<K,V,Long> {
6477 >        final LongBiFunction<? super K, ? super V> transformer;
6478 >        final LongBinaryOperator reducer;
6479          final long basis;
6480          long result;
6481          MapReduceMappingsToLongTask<K,V> rights, nextRight;
6482          MapReduceMappingsToLongTask
6483 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6483 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6484               MapReduceMappingsToLongTask<K,V> nextRight,
6485 <             ObjectByObjectToLong<? super K, ? super V> transformer,
6485 >             LongBiFunction<? super K, ? super V> transformer,
6486               long basis,
6487 <             LongByLongToLong reducer) {
6487 >             LongBinaryOperator reducer) {
6488              super(m, p, b); this.nextRight = nextRight;
6489              this.transformer = transformer;
6490              this.basis = basis; this.reducer = reducer;
6491          }
6492 <        @SuppressWarnings("unchecked") public final boolean exec() {
6493 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
6494 <                this.transformer;
6495 <            final LongByLongToLong reducer = this.reducer;
6496 <            if (transformer == null || reducer == null)
6497 <                return abortOnNullFunction();
6498 <            try {
6499 <                final long id = this.basis;
6881 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6882 <                    do {} while (!casPending(c = pending, c+1));
6492 >        public final Long getRawResult() { return result; }
6493 >        @SuppressWarnings("unchecked") public final void compute() {
6494 >            final LongBiFunction<? super K, ? super V> transformer;
6495 >            final LongBinaryOperator reducer;
6496 >            if ((transformer = this.transformer) != null &&
6497 >                (reducer = this.reducer) != null) {
6498 >                long r = this.basis;
6499 >                for (int b; (b = preSplit()) > 0;)
6500                      (rights = new MapReduceMappingsToLongTask<K,V>
6501 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6502 <                }
6886 <                long r = id;
6887 <                Object v;
6501 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6502 >                V v;
6503                  while ((v = advance()) != null)
6504 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6504 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6505                  result = r;
6506 <                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6507 <                    int c; BulkTask<K,V,?> par;
6508 <                    if ((c = t.pending) == 0) {
6509 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6510 <                            t.result = reducer.apply(t.result, s.result);
6511 <                        }
6512 <                        if ((par = t.parent) == null ||
6513 <                            !(par instanceof MapReduceMappingsToLongTask)) {
6899 <                            t.quietlyComplete();
6900 <                            break;
6901 <                        }
6902 <                        t = (MapReduceMappingsToLongTask<K,V>)par;
6506 >                CountedCompleter<?> c;
6507 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6508 >                    MapReduceMappingsToLongTask<K,V>
6509 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6510 >                        s = t.rights;
6511 >                    while (s != null) {
6512 >                        t.result = reducer.applyAsLong(t.result, s.result);
6513 >                        s = t.rights = s.nextRight;
6514                      }
6904                    else if (t.casPending(c, c - 1))
6905                        break;
6515                  }
6907            } catch (Throwable ex) {
6908                return tryCompleteComputation(ex);
6516              }
6910            MapReduceMappingsToLongTask<K,V> s = rights;
6911            if (s != null && !inForkJoinPool()) {
6912                do  {
6913                    if (s.tryUnfork())
6914                        s.exec();
6915                } while ((s = s.nextRight) != null);
6916            }
6917            return false;
6517          }
6919        public final Long getRawResult() { return result; }
6518      }
6519  
6520      @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6521 <        extends BulkTask<K,V,Integer> {
6522 <        final ObjectToInt<? super K> transformer;
6523 <        final IntByIntToInt reducer;
6521 >        extends Traverser<K,V,Integer> {
6522 >        final IntFunction<? super K> transformer;
6523 >        final IntBinaryOperator reducer;
6524          final int basis;
6525          int result;
6526          MapReduceKeysToIntTask<K,V> rights, nextRight;
6527          MapReduceKeysToIntTask
6528 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6528 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6529               MapReduceKeysToIntTask<K,V> nextRight,
6530 <             ObjectToInt<? super K> transformer,
6530 >             IntFunction<? super K> transformer,
6531               int basis,
6532 <             IntByIntToInt reducer) {
6532 >             IntBinaryOperator reducer) {
6533              super(m, p, b); this.nextRight = nextRight;
6534              this.transformer = transformer;
6535              this.basis = basis; this.reducer = reducer;
6536          }
6537 <        @SuppressWarnings("unchecked") public final boolean exec() {
6538 <            final ObjectToInt<? super K> transformer =
6539 <                this.transformer;
6540 <            final IntByIntToInt reducer = this.reducer;
6541 <            if (transformer == null || reducer == null)
6542 <                return abortOnNullFunction();
6543 <            try {
6544 <                final int id = this.basis;
6947 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6948 <                    do {} while (!casPending(c = pending, c+1));
6537 >        public final Integer getRawResult() { return result; }
6538 >        @SuppressWarnings("unchecked") public final void compute() {
6539 >            final IntFunction<? super K> transformer;
6540 >            final IntBinaryOperator reducer;
6541 >            if ((transformer = this.transformer) != null &&
6542 >                (reducer = this.reducer) != null) {
6543 >                int r = this.basis;
6544 >                for (int b; (b = preSplit()) > 0;)
6545                      (rights = new MapReduceKeysToIntTask<K,V>
6546 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6951 <                }
6952 <                int r = id;
6546 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6547                  while (advance() != null)
6548 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
6548 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6549                  result = r;
6550 <                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6551 <                    int c; BulkTask<K,V,?> par;
6552 <                    if ((c = t.pending) == 0) {
6553 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6554 <                            t.result = reducer.apply(t.result, s.result);
6555 <                        }
6556 <                        if ((par = t.parent) == null ||
6557 <                            !(par instanceof MapReduceKeysToIntTask)) {
6964 <                            t.quietlyComplete();
6965 <                            break;
6966 <                        }
6967 <                        t = (MapReduceKeysToIntTask<K,V>)par;
6550 >                CountedCompleter<?> c;
6551 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6552 >                    MapReduceKeysToIntTask<K,V>
6553 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6554 >                        s = t.rights;
6555 >                    while (s != null) {
6556 >                        t.result = reducer.applyAsInt(t.result, s.result);
6557 >                        s = t.rights = s.nextRight;
6558                      }
6969                    else if (t.casPending(c, c - 1))
6970                        break;
6559                  }
6972            } catch (Throwable ex) {
6973                return tryCompleteComputation(ex);
6560              }
6975            MapReduceKeysToIntTask<K,V> s = rights;
6976            if (s != null && !inForkJoinPool()) {
6977                do  {
6978                    if (s.tryUnfork())
6979                        s.exec();
6980                } while ((s = s.nextRight) != null);
6981            }
6982            return false;
6561          }
6984        public final Integer getRawResult() { return result; }
6562      }
6563  
6564      @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6565 <        extends BulkTask<K,V,Integer> {
6566 <        final ObjectToInt<? super V> transformer;
6567 <        final IntByIntToInt reducer;
6565 >        extends Traverser<K,V,Integer> {
6566 >        final IntFunction<? super V> transformer;
6567 >        final IntBinaryOperator reducer;
6568          final int basis;
6569          int result;
6570          MapReduceValuesToIntTask<K,V> rights, nextRight;
6571          MapReduceValuesToIntTask
6572 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6572 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6573               MapReduceValuesToIntTask<K,V> nextRight,
6574 <             ObjectToInt<? super V> transformer,
6574 >             IntFunction<? super V> transformer,
6575               int basis,
6576 <             IntByIntToInt reducer) {
6576 >             IntBinaryOperator reducer) {
6577              super(m, p, b); this.nextRight = nextRight;
6578              this.transformer = transformer;
6579              this.basis = basis; this.reducer = reducer;
6580          }
6581 <        @SuppressWarnings("unchecked") public final boolean exec() {
6582 <            final ObjectToInt<? super V> transformer =
6583 <                this.transformer;
6584 <            final IntByIntToInt reducer = this.reducer;
6585 <            if (transformer == null || reducer == null)
6586 <                return abortOnNullFunction();
6587 <            try {
6588 <                final int id = this.basis;
7012 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7013 <                    do {} while (!casPending(c = pending, c+1));
6581 >        public final Integer getRawResult() { return result; }
6582 >        @SuppressWarnings("unchecked") public final void compute() {
6583 >            final IntFunction<? super V> transformer;
6584 >            final IntBinaryOperator reducer;
6585 >            if ((transformer = this.transformer) != null &&
6586 >                (reducer = this.reducer) != null) {
6587 >                int r = this.basis;
6588 >                for (int b; (b = preSplit()) > 0;)
6589                      (rights = new MapReduceValuesToIntTask<K,V>
6590 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6591 <                }
7017 <                int r = id;
7018 <                Object v;
6590 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6591 >                V v;
6592                  while ((v = advance()) != null)
6593 <                    r = reducer.apply(r, transformer.apply((V)v));
6593 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6594                  result = r;
6595 <                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6596 <                    int c; BulkTask<K,V,?> par;
6597 <                    if ((c = t.pending) == 0) {
6598 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6599 <                            t.result = reducer.apply(t.result, s.result);
6600 <                        }
6601 <                        if ((par = t.parent) == null ||
6602 <                            !(par instanceof MapReduceValuesToIntTask)) {
7030 <                            t.quietlyComplete();
7031 <                            break;
7032 <                        }
7033 <                        t = (MapReduceValuesToIntTask<K,V>)par;
6595 >                CountedCompleter<?> c;
6596 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6597 >                    MapReduceValuesToIntTask<K,V>
6598 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6599 >                        s = t.rights;
6600 >                    while (s != null) {
6601 >                        t.result = reducer.applyAsInt(t.result, s.result);
6602 >                        s = t.rights = s.nextRight;
6603                      }
7035                    else if (t.casPending(c, c - 1))
7036                        break;
6604                  }
7038            } catch (Throwable ex) {
7039                return tryCompleteComputation(ex);
6605              }
7041            MapReduceValuesToIntTask<K,V> s = rights;
7042            if (s != null && !inForkJoinPool()) {
7043                do  {
7044                    if (s.tryUnfork())
7045                        s.exec();
7046                } while ((s = s.nextRight) != null);
7047            }
7048            return false;
6606          }
7050        public final Integer getRawResult() { return result; }
6607      }
6608  
6609      @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6610 <        extends BulkTask<K,V,Integer> {
6611 <        final ObjectToInt<Map.Entry<K,V>> transformer;
6612 <        final IntByIntToInt reducer;
6610 >        extends Traverser<K,V,Integer> {
6611 >        final IntFunction<Map.Entry<K,V>> transformer;
6612 >        final IntBinaryOperator reducer;
6613          final int basis;
6614          int result;
6615          MapReduceEntriesToIntTask<K,V> rights, nextRight;
6616          MapReduceEntriesToIntTask
6617 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6617 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6618               MapReduceEntriesToIntTask<K,V> nextRight,
6619 <             ObjectToInt<Map.Entry<K,V>> transformer,
6619 >             IntFunction<Map.Entry<K,V>> transformer,
6620               int basis,
6621 <             IntByIntToInt reducer) {
6621 >             IntBinaryOperator reducer) {
6622              super(m, p, b); this.nextRight = nextRight;
6623              this.transformer = transformer;
6624              this.basis = basis; this.reducer = reducer;
6625          }
6626 <        @SuppressWarnings("unchecked") public final boolean exec() {
6627 <            final ObjectToInt<Map.Entry<K,V>> transformer =
6628 <                this.transformer;
6629 <            final IntByIntToInt reducer = this.reducer;
6630 <            if (transformer == null || reducer == null)
6631 <                return abortOnNullFunction();
6632 <            try {
6633 <                final int id = this.basis;
7078 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7079 <                    do {} while (!casPending(c = pending, c+1));
6626 >        public final Integer getRawResult() { return result; }
6627 >        @SuppressWarnings("unchecked") public final void compute() {
6628 >            final IntFunction<Map.Entry<K,V>> transformer;
6629 >            final IntBinaryOperator reducer;
6630 >            if ((transformer = this.transformer) != null &&
6631 >                (reducer = this.reducer) != null) {
6632 >                int r = this.basis;
6633 >                for (int b; (b = preSplit()) > 0;)
6634                      (rights = new MapReduceEntriesToIntTask<K,V>
6635 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6636 <                }
7083 <                int r = id;
7084 <                Object v;
6635 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6636 >                V v;
6637                  while ((v = advance()) != null)
6638 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6638 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6639 >                                                                    v)));
6640                  result = r;
6641 <                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6642 <                    int c; BulkTask<K,V,?> par;
6643 <                    if ((c = t.pending) == 0) {
6644 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6645 <                            t.result = reducer.apply(t.result, s.result);
6646 <                        }
6647 <                        if ((par = t.parent) == null ||
6648 <                            !(par instanceof MapReduceEntriesToIntTask)) {
7096 <                            t.quietlyComplete();
7097 <                            break;
7098 <                        }
7099 <                        t = (MapReduceEntriesToIntTask<K,V>)par;
6641 >                CountedCompleter<?> c;
6642 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6643 >                    MapReduceEntriesToIntTask<K,V>
6644 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6645 >                        s = t.rights;
6646 >                    while (s != null) {
6647 >                        t.result = reducer.applyAsInt(t.result, s.result);
6648 >                        s = t.rights = s.nextRight;
6649                      }
7101                    else if (t.casPending(c, c - 1))
7102                        break;
6650                  }
7104            } catch (Throwable ex) {
7105                return tryCompleteComputation(ex);
6651              }
7107            MapReduceEntriesToIntTask<K,V> s = rights;
7108            if (s != null && !inForkJoinPool()) {
7109                do  {
7110                    if (s.tryUnfork())
7111                        s.exec();
7112                } while ((s = s.nextRight) != null);
7113            }
7114            return false;
6652          }
7116        public final Integer getRawResult() { return result; }
6653      }
6654  
6655      @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6656 <        extends BulkTask<K,V,Integer> {
6657 <        final ObjectByObjectToInt<? super K, ? super V> transformer;
6658 <        final IntByIntToInt reducer;
6656 >        extends Traverser<K,V,Integer> {
6657 >        final IntBiFunction<? super K, ? super V> transformer;
6658 >        final IntBinaryOperator reducer;
6659          final int basis;
6660          int result;
6661          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6662          MapReduceMappingsToIntTask
6663 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6664 <             MapReduceMappingsToIntTask<K,V> rights,
6665 <             ObjectByObjectToInt<? super K, ? super V> transformer,
6663 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6664 >             MapReduceMappingsToIntTask<K,V> nextRight,
6665 >             IntBiFunction<? super K, ? super V> transformer,
6666               int basis,
6667 <             IntByIntToInt reducer) {
6667 >             IntBinaryOperator reducer) {
6668              super(m, p, b); this.nextRight = nextRight;
6669              this.transformer = transformer;
6670              this.basis = basis; this.reducer = reducer;
6671          }
6672 <        @SuppressWarnings("unchecked") public final boolean exec() {
6673 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
6674 <                this.transformer;
6675 <            final IntByIntToInt reducer = this.reducer;
6676 <            if (transformer == null || reducer == null)
6677 <                return abortOnNullFunction();
6678 <            try {
6679 <                final int id = this.basis;
7144 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7145 <                    do {} while (!casPending(c = pending, c+1));
6672 >        public final Integer getRawResult() { return result; }
6673 >        @SuppressWarnings("unchecked") public final void compute() {
6674 >            final IntBiFunction<? super K, ? super V> transformer;
6675 >            final IntBinaryOperator reducer;
6676 >            if ((transformer = this.transformer) != null &&
6677 >                (reducer = this.reducer) != null) {
6678 >                int r = this.basis;
6679 >                for (int b; (b = preSplit()) > 0;)
6680                      (rights = new MapReduceMappingsToIntTask<K,V>
6681 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6682 <                }
7149 <                int r = id;
7150 <                Object v;
6681 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6682 >                V v;
6683                  while ((v = advance()) != null)
6684 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6684 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6685                  result = r;
6686 <                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6687 <                    int c; BulkTask<K,V,?> par;
6688 <                    if ((c = t.pending) == 0) {
6689 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6690 <                            t.result = reducer.apply(t.result, s.result);
6691 <                        }
6692 <                        if ((par = t.parent) == null ||
6693 <                            !(par instanceof MapReduceMappingsToIntTask)) {
7162 <                            t.quietlyComplete();
7163 <                            break;
7164 <                        }
7165 <                        t = (MapReduceMappingsToIntTask<K,V>)par;
6686 >                CountedCompleter<?> c;
6687 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6688 >                    MapReduceMappingsToIntTask<K,V>
6689 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6690 >                        s = t.rights;
6691 >                    while (s != null) {
6692 >                        t.result = reducer.applyAsInt(t.result, s.result);
6693 >                        s = t.rights = s.nextRight;
6694                      }
7167                    else if (t.casPending(c, c - 1))
7168                        break;
6695                  }
7170            } catch (Throwable ex) {
7171                return tryCompleteComputation(ex);
7172            }
7173            MapReduceMappingsToIntTask<K,V> s = rights;
7174            if (s != null && !inForkJoinPool()) {
7175                do  {
7176                    if (s.tryUnfork())
7177                        s.exec();
7178                } while ((s = s.nextRight) != null);
6696              }
7180            return false;
6697          }
7182        public final Integer getRawResult() { return result; }
6698      }
6699  
6700      // Unsafe mechanics
6701 <    private static final sun.misc.Unsafe UNSAFE;
6702 <    private static final long counterOffset;
6703 <    private static final long sizeCtlOffset;
6701 >    private static final sun.misc.Unsafe U;
6702 >    private static final long SIZECTL;
6703 >    private static final long TRANSFERINDEX;
6704 >    private static final long TRANSFERORIGIN;
6705 >    private static final long BASECOUNT;
6706 >    private static final long CELLSBUSY;
6707 >    private static final long CELLVALUE;
6708      private static final long ABASE;
6709      private static final int ASHIFT;
6710  
6711      static {
7193        int ss;
6712          try {
6713 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6713 >            U = sun.misc.Unsafe.getUnsafe();
6714              Class<?> k = ConcurrentHashMap.class;
6715 <            counterOffset = UNSAFE.objectFieldOffset
7198 <                (k.getDeclaredField("counter"));
7199 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6715 >            SIZECTL = U.objectFieldOffset
6716                  (k.getDeclaredField("sizeCtl"));
6717 +            TRANSFERINDEX = U.objectFieldOffset
6718 +                (k.getDeclaredField("transferIndex"));
6719 +            TRANSFERORIGIN = U.objectFieldOffset
6720 +                (k.getDeclaredField("transferOrigin"));
6721 +            BASECOUNT = U.objectFieldOffset
6722 +                (k.getDeclaredField("baseCount"));
6723 +            CELLSBUSY = U.objectFieldOffset
6724 +                (k.getDeclaredField("cellsBusy"));
6725 +            Class<?> ck = Cell.class;
6726 +            CELLVALUE = U.objectFieldOffset
6727 +                (ck.getDeclaredField("value"));
6728              Class<?> sc = Node[].class;
6729 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6730 <            ss = UNSAFE.arrayIndexScale(sc);
6729 >            ABASE = U.arrayBaseOffset(sc);
6730 >            int scale = U.arrayIndexScale(sc);
6731 >            if ((scale & (scale - 1)) != 0)
6732 >                throw new Error("data type scale not a power of two");
6733 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6734          } catch (Exception e) {
6735              throw new Error(e);
6736          }
7207        if ((ss & (ss-1)) != 0)
7208            throw new Error("data type scale not a power of two");
7209        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6737      }
6738 +
6739   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines