ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.143 by jsr166, Fri Nov 9 03:30:03 2012 UTC vs.
Revision 1.184 by jsr166, Fri Feb 15 21:45:40 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 import java.util.concurrent.atomic.LongAdder;
8   import java.util.concurrent.ForkJoinPool;
9 < import java.util.concurrent.ForkJoinTask;
9 > import java.util.concurrent.CountedCompleter;
10 > import java.util.function.*;
11 > import java.util.Spliterator;
12 > import java.util.stream.Stream;
13 > import java.util.stream.Streams;
14  
15   import java.util.Comparator;
16   import java.util.Arrays;
# Line 24 | Line 27 | import java.util.Enumeration;
27   import java.util.ConcurrentModificationException;
28   import java.util.NoSuchElementException;
29   import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
30   import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 + import java.util.concurrent.atomic.AtomicInteger;
32   import java.util.concurrent.atomic.AtomicReference;
31
33   import java.io.Serializable;
34  
35   /**
# Line 43 | Line 44 | import java.io.Serializable;
44   * interoperable with {@code Hashtable} in programs that rely on its
45   * thread safety but not on its synchronization details.
46   *
47 < * <p> Retrieval operations (including {@code get}) generally do not
47 > * <p>Retrieval operations (including {@code get}) generally do not
48   * block, so may overlap with update operations (including {@code put}
49   * and {@code remove}). Retrievals reflect the results of the most
50   * recently <em>completed</em> update operations holding upon their
# Line 64 | Line 65 | import java.io.Serializable;
65   * that may be adequate for monitoring or estimation purposes, but not
66   * for program control.
67   *
68 < * <p> The table is dynamically expanded when there are too many
68 > * <p>The table is dynamically expanded when there are too many
69   * collisions (i.e., keys that have distinct hash codes but fall into
70   * the same slot modulo the table size), with the expected average
71   * effect of maintaining roughly two bins per mapping (corresponding
# Line 85 | Line 86 | import java.io.Serializable;
86   * {@code hashCode()} is a sure way to slow down performance of any
87   * hash table.
88   *
89 < * <p> A {@link Set} projection of a ConcurrentHashMap may be created
89 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91   * (using {@link #keySet(Object)} when only keys are of interest, and the
92   * mapped values are (perhaps transiently) not used or all take the
93   * same mapping value.
94   *
95 < * <p> A ConcurrentHashMap can be used as scalable frequency map (a
96 < * form of histogram or multiset) by using {@link LongAdder} values
97 < * and initializing via {@link #computeIfAbsent}. For example, to add
98 < * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
99 < * can use {@code freqs.computeIfAbsent(k -> new
100 < * LongAdder()).increment();}
95 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 > * form of histogram or multiset) by using {@link
97 > * java.util.concurrent.atomic.LongAdder} values and initializing via
98 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101   *
102   * <p>This class and its views and iterators implement all of the
103   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104   * interfaces.
105   *
106 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
106 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107   * does <em>not</em> allow {@code null} to be used as a key or value.
108   *
109 < * <p>ConcurrentHashMaps support parallel operations using the {@link
110 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
111 < * are available in class {@link ForkJoinTasks}). These operations are
112 < * designed to be safely, and often sensibly, applied even with maps
113 < * that are being concurrently updated by other threads; for example,
114 < * when computing a snapshot summary of the values in a shared
115 < * registry.  There are three kinds of operation, each with four
116 < * forms, accepting functions with Keys, Values, Entries, and (Key,
117 < * Value) arguments and/or return values. (The first three forms are
118 < * also available via the {@link #keySet()}, {@link #values()} and
119 < * {@link #entrySet()} views). Because the elements of a
120 < * ConcurrentHashMap are not ordered in any particular way, and may be
121 < * processed in different orders in different parallel executions, the
122 < * correctness of supplied functions should not depend on any
123 < * ordering, or on any other objects or values that may transiently
124 < * change while computation is in progress; and except for forEach
125 < * actions, should ideally be side-effect-free.
109 > * <p>ConcurrentHashMaps support sequential and parallel operations
110 > * bulk operations. (Parallel forms use the {@link
111 > * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 > * contexts are available in class {@link ForkJoinTasks}. These
113 > * operations are designed to be safely, and often sensibly, applied
114 > * even with maps that are being concurrently updated by other
115 > * threads; for example, when computing a snapshot summary of the
116 > * values in a shared registry.  There are three kinds of operation,
117 > * each with four forms, accepting functions with Keys, Values,
118 > * Entries, and (Key, Value) arguments and/or return values. Because
119 > * the elements of a ConcurrentHashMap are not ordered in any
120 > * particular way, and may be processed in different orders in
121 > * different parallel executions, the correctness of supplied
122 > * functions should not depend on any ordering, or on any other
123 > * objects or values that may transiently change while computation is
124 > * in progress; and except for forEach actions, should ideally be
125 > * side-effect-free.
126   *
127   * <ul>
128   * <li> forEach: Perform a given action on each element.
# Line 148 | Line 149 | import java.io.Serializable;
149   * <li> Reductions to scalar doubles, longs, and ints, using a
150   * given basis value.</li>
151   *
151 * </li>
152   * </ul>
153 + * </li>
154   * </ul>
155   *
156   * <p>The concurrency properties of bulk operations follow
# Line 187 | Line 188 | import java.io.Serializable;
188   * arguments can be supplied using {@code new
189   * AbstractMap.SimpleEntry(k,v)}.
190   *
191 < * <p> Bulk operations may complete abruptly, throwing an
191 > * <p>Bulk operations may complete abruptly, throwing an
192   * exception encountered in the application of a supplied
193   * function. Bear in mind when handling such exceptions that other
194   * concurrently executing functions could also have thrown
195   * exceptions, or would have done so if the first exception had
196   * not occurred.
197   *
198 < * <p>Parallel speedups for bulk operations compared to sequential
199 < * processing are common but not guaranteed.  Operations involving
200 < * brief functions on small maps may execute more slowly than
201 < * sequential loops if the underlying work to parallelize the
202 < * computation is more expensive than the computation itself.
203 < * Similarly, parallelization may not lead to much actual parallelism
204 < * if all processors are busy performing unrelated tasks.
198 > * <p>Speedups for parallel compared to sequential forms are common
199 > * but not guaranteed.  Parallel operations involving brief functions
200 > * on small maps may execute more slowly than sequential forms if the
201 > * underlying work to parallelize the computation is more expensive
202 > * than the computation itself.  Similarly, parallelization may not
203 > * lead to much actual parallelism if all processors are busy
204 > * performing unrelated tasks.
205   *
206 < * <p> All arguments to all task methods must be non-null.
206 < *
207 < * <p><em>jsr166e note: During transition, this class
208 < * uses nested functional interfaces with different names but the
209 < * same forms as those expected for JDK8.<em>
206 > * <p>All arguments to all task methods must be non-null.
207   *
208   * <p>This class is a member of the
209   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 221 | Line 218 | public class ConcurrentHashMap<K, V>
218      implements ConcurrentMap<K, V>, Serializable {
219      private static final long serialVersionUID = 7249069246763182397L;
220  
224    /**
225     * A partitionable iterator. A Spliterator can be traversed
226     * directly, but can also be partitioned (before traversal) by
227     * creating another Spliterator that covers a non-overlapping
228     * portion of the elements, and so may be amenable to parallel
229     * execution.
230     *
231     * <p> This interface exports a subset of expected JDK8
232     * functionality.
233     *
234     * <p>Sample usage: Here is one (of the several) ways to compute
235     * the sum of the values held in a map using the ForkJoin
236     * framework. As illustrated here, Spliterators are well suited to
237     * designs in which a task repeatedly splits off half its work
238     * into forked subtasks until small enough to process directly,
239     * and then joins these subtasks. Variants of this style can also
240     * be used in completion-based designs.
241     *
242     * <pre>
243     * {@code ConcurrentHashMap<String, Long> m = ...
244     * // split as if have 8 * parallelism, for load balance
245     * int n = m.size();
246     * int p = aForkJoinPool.getParallelism() * 8;
247     * int split = (n < p)? n : p;
248     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
249     * // ...
250     * static class SumValues extends RecursiveTask<Long> {
251     *   final Spliterator<Long> s;
252     *   final int split;             // split while > 1
253     *   final SumValues nextJoin;    // records forked subtasks to join
254     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
255     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
256     *   }
257     *   public Long compute() {
258     *     long sum = 0;
259     *     SumValues subtasks = null; // fork subtasks
260     *     for (int s = split >>> 1; s > 0; s >>>= 1)
261     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
262     *     while (s.hasNext())        // directly process remaining elements
263     *       sum += s.next();
264     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
265     *       sum += t.join();         // collect subtask results
266     *     return sum;
267     *   }
268     * }
269     * }</pre>
270     */
271    public static interface Spliterator<T> extends Iterator<T> {
272        /**
273         * Returns a Spliterator covering approximately half of the
274         * elements, guaranteed not to overlap with those subsequently
275         * returned by this Spliterator.  After invoking this method,
276         * the current Spliterator will <em>not</em> produce any of
277         * the elements of the returned Spliterator, but the two
278         * Spliterators together will produce all of the elements that
279         * would have been produced by this Spliterator had this
280         * method not been called. The exact number of elements
281         * produced by the returned Spliterator is not guaranteed, and
282         * may be zero (i.e., with {@code hasNext()} reporting {@code
283         * false}) if this Spliterator cannot be further split.
284         *
285         * @return a Spliterator covering approximately half of the
286         * elements
287         * @throws IllegalStateException if this Spliterator has
288         * already commenced traversing elements
289         */
290        Spliterator<T> split();
291    }
292
293
221      /*
222       * Overview:
223       *
# Line 301 | Line 228 | public class ConcurrentHashMap<K, V>
228       * the same or better than java.util.HashMap, and to support high
229       * initial insertion rates on an empty table by many threads.
230       *
231 <     * Each key-value mapping is held in a Node.  Because Node fields
232 <     * can contain special values, they are defined using plain Object
233 <     * types. Similarly in turn, all internal methods that use them
234 <     * work off Object types. And similarly, so do the internal
235 <     * methods of auxiliary iterator and view classes.  All public
236 <     * generic typed methods relay in/out of these internal methods,
237 <     * supplying null-checks and casts as needed. This also allows
238 <     * many of the public methods to be factored into a smaller number
239 <     * of internal methods (although sadly not so for the five
313 <     * variants of put-related operations). The validation-based
314 <     * approach explained below leads to a lot of code sprawl because
231 >     * Each key-value mapping is held in a Node.  Because Node key
232 >     * fields can contain special values, they are defined using plain
233 >     * Object types (not type "K"). This leads to a lot of explicit
234 >     * casting (and many explicit warning suppressions to tell
235 >     * compilers not to complain about it). It also allows some of the
236 >     * public methods to be factored into a smaller number of internal
237 >     * methods (although sadly not so for the five variants of
238 >     * put-related operations). The validation-based approach
239 >     * explained below leads to a lot of code sprawl because
240       * retry-control precludes factoring into smaller methods.
241       *
242       * The table is lazily initialized to a power-of-two size upon the
# Line 325 | Line 250 | public class ConcurrentHashMap<K, V>
250       * as lookups check hash code and non-nullness of value before
251       * checking key equality.
252       *
253 <     * We use the top two bits of Node hash fields for control
254 <     * purposes -- they are available anyway because of addressing
255 <     * constraints.  As explained further below, these top bits are
256 <     * used as follows:
257 <     *  00 - Normal
258 <     *  01 - Locked
334 <     *  11 - Locked and may have a thread waiting for lock
335 <     *  10 - Node is a forwarding node
336 <     *
337 <     * The lower 30 bits of each Node's hash field contain a
338 <     * transformation of the key's hash code, except for forwarding
339 <     * nodes, for which the lower bits are zero (and so always have
340 <     * hash field == MOVED).
253 >     * We use the top (sign) bit of Node hash fields for control
254 >     * purposes -- it is available anyway because of addressing
255 >     * constraints.  Nodes with negative hash fields are forwarding
256 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
257 >     * of each normal Node's hash field contain a transformation of
258 >     * the key's hash code.
259       *
260       * Insertion (via put or its variants) of the first node in an
261       * empty bin is performed by just CASing it to the bin.  This is
# Line 346 | Line 264 | public class ConcurrentHashMap<K, V>
264       * delete, and replace) require locks.  We do not want to waste
265       * the space required to associate a distinct lock object with
266       * each bin, so instead use the first node of a bin list itself as
267 <     * a lock. Blocking support for these locks relies on the builtin
268 <     * "synchronized" monitors.  However, we also need a tryLock
351 <     * construction, so we overlay these by using bits of the Node
352 <     * hash field for lock control (see above), and so normally use
353 <     * builtin monitors only for blocking and signalling using
354 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
267 >     * a lock. Locking support for these locks relies on builtin
268 >     * "synchronized" monitors.
269       *
270       * Using the first node of a list as a lock does not by itself
271       * suffice though: When a node is locked, any update must first
# Line 413 | Line 327 | public class ConcurrentHashMap<K, V>
327       * iterators in the same way.
328       *
329       * The table is resized when occupancy exceeds a percentage
330 <     * threshold (nominally, 0.75, but see below).  Only a single
331 <     * thread performs the resize (using field "sizeCtl", to arrange
332 <     * exclusion), but the table otherwise remains usable for reads
333 <     * and updates. Resizing proceeds by transferring bins, one by
334 <     * one, from the table to the next table.  Because we are using
335 <     * power-of-two expansion, the elements from each bin must either
336 <     * stay at same index, or move with a power of two offset. We
337 <     * eliminate unnecessary node creation by catching cases where old
338 <     * nodes can be reused because their next fields won't change.  On
339 <     * average, only about one-sixth of them need cloning when a table
340 <     * doubles. The nodes they replace will be garbage collectable as
341 <     * soon as they are no longer referenced by any reader thread that
342 <     * may be in the midst of concurrently traversing table.  Upon
343 <     * transfer, the old table bin contains only a special forwarding
344 <     * node (with hash field "MOVED") that contains the next table as
345 <     * its key. On encountering a forwarding node, access and update
346 <     * operations restart, using the new table.
347 <     *
348 <     * Each bin transfer requires its bin lock. However, unlike other
349 <     * cases, a transfer can skip a bin if it fails to acquire its
350 <     * lock, and revisit it later (unless it is a TreeBin). Method
351 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
352 <     * have been skipped because of failure to acquire a lock, and
353 <     * blocks only if none are available (i.e., only very rarely).
354 <     * The transfer operation must also ensure that all accessible
355 <     * bins in both the old and new table are usable by any traversal.
356 <     * When there are no lock acquisition failures, this is arranged
357 <     * simply by proceeding from the last bin (table.length - 1) up
358 <     * towards the first.  Upon seeing a forwarding node, traversals
359 <     * (see class Iter) arrange to move to the new table
360 <     * without revisiting nodes.  However, when any node is skipped
361 <     * during a transfer, all earlier table bins may have become
362 <     * visible, so are initialized with a reverse-forwarding node back
363 <     * to the old table until the new ones are established. (This
364 <     * sometimes requires transiently locking a forwarding node, which
365 <     * is possible under the above encoding.) These more expensive
366 <     * mechanics trigger only when necessary.
330 >     * threshold (nominally, 0.75, but see below).  Any thread
331 >     * noticing an overfull bin may assist in resizing after the
332 >     * initiating thread allocates and sets up the replacement
333 >     * array. However, rather than stalling, these other threads may
334 >     * proceed with insertions etc.  The use of TreeBins shields us
335 >     * from the worst case effects of overfilling while resizes are in
336 >     * progress.  Resizing proceeds by transferring bins, one by one,
337 >     * from the table to the next table. To enable concurrency, the
338 >     * next table must be (incrementally) prefilled with place-holders
339 >     * serving as reverse forwarders to the old table.  Because we are
340 >     * using power-of-two expansion, the elements from each bin must
341 >     * either stay at same index, or move with a power of two
342 >     * offset. We eliminate unnecessary node creation by catching
343 >     * cases where old nodes can be reused because their next fields
344 >     * won't change.  On average, only about one-sixth of them need
345 >     * cloning when a table doubles. The nodes they replace will be
346 >     * garbage collectable as soon as they are no longer referenced by
347 >     * any reader thread that may be in the midst of concurrently
348 >     * traversing table.  Upon transfer, the old table bin contains
349 >     * only a special forwarding node (with hash field "MOVED") that
350 >     * contains the next table as its key. On encountering a
351 >     * forwarding node, access and update operations restart, using
352 >     * the new table.
353 >     *
354 >     * Each bin transfer requires its bin lock, which can stall
355 >     * waiting for locks while resizing. However, because other
356 >     * threads can join in and help resize rather than contend for
357 >     * locks, average aggregate waits become shorter as resizing
358 >     * progresses.  The transfer operation must also ensure that all
359 >     * accessible bins in both the old and new table are usable by any
360 >     * traversal.  This is arranged by proceeding from the last bin
361 >     * (table.length - 1) up towards the first.  Upon seeing a
362 >     * forwarding node, traversals (see class Traverser) arrange to
363 >     * move to the new table without revisiting nodes.  However, to
364 >     * ensure that no intervening nodes are skipped, bin splitting can
365 >     * only begin after the associated reverse-forwarders are in
366 >     * place.
367       *
368       * The traversal scheme also applies to partial traversals of
369       * ranges of bins (via an alternate Traverser constructor)
# Line 464 | Line 378 | public class ConcurrentHashMap<K, V>
378       * These cases attempt to override the initial capacity settings,
379       * but harmlessly fail to take effect in cases of races.
380       *
381 <     * The element count is maintained using a LongAdder, which avoids
382 <     * contention on updates but can encounter cache thrashing if read
383 <     * too frequently during concurrent access. To avoid reading so
384 <     * often, resizing is attempted either when a bin lock is
385 <     * contended, or upon adding to a bin already holding two or more
386 <     * nodes (checked before adding in the xIfAbsent methods, after
387 <     * adding in others). Under uniform hash distributions, the
388 <     * probability of this occurring at threshold is around 13%,
389 <     * meaning that only about 1 in 8 puts check threshold (and after
390 <     * resizing, many fewer do so). But this approximation has high
391 <     * variance for small table sizes, so we check on any collision
392 <     * for sizes <= 64. The bulk putAll operation further reduces
393 <     * contention by only committing count updates upon these size
394 <     * checks.
381 >     * The element count is maintained using a specialization of
382 >     * LongAdder. We need to incorporate a specialization rather than
383 >     * just use a LongAdder in order to access implicit
384 >     * contention-sensing that leads to creation of multiple
385 >     * Cells.  The counter mechanics avoid contention on
386 >     * updates but can encounter cache thrashing if read too
387 >     * frequently during concurrent access. To avoid reading so often,
388 >     * resizing under contention is attempted only upon adding to a
389 >     * bin already holding two or more nodes. Under uniform hash
390 >     * distributions, the probability of this occurring at threshold
391 >     * is around 13%, meaning that only about 1 in 8 puts check
392 >     * threshold (and after resizing, many fewer do so). The bulk
393 >     * putAll operation further reduces contention by only committing
394 >     * count updates upon these size checks.
395       *
396       * Maintaining API and serialization compatibility with previous
397       * versions of this class introduces several oddities. Mainly: We
# Line 528 | Line 442 | public class ConcurrentHashMap<K, V>
442      private static final float LOAD_FACTOR = 0.75f;
443  
444      /**
531     * The buffer size for skipped bins during transfers. The
532     * value is arbitrary but should be large enough to avoid
533     * most locking stalls during resizes.
534     */
535    private static final int TRANSFER_BUFFER_SIZE = 32;
536
537    /**
445       * The bin count threshold for using a tree rather than list for a
446       * bin.  The value reflects the approximate break-even point for
447       * using tree-based operations.
448       */
449      private static final int TREE_THRESHOLD = 8;
450  
451 +    /**
452 +     * Minimum number of rebinnings per transfer step. Ranges are
453 +     * subdivided to allow multiple resizer threads.  This value
454 +     * serves as a lower bound to avoid resizers encountering
455 +     * excessive memory contention.  The value should be at least
456 +     * DEFAULT_CAPACITY.
457 +     */
458 +    private static final int MIN_TRANSFER_STRIDE = 16;
459 +
460      /*
461 <     * Encodings for special uses of Node hash fields. See above for
546 <     * explanation.
461 >     * Encodings for Node hash fields. See above for explanation.
462       */
463      static final int MOVED     = 0x80000000; // hash field for forwarding nodes
464 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
465 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
466 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
464 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465 >
466 >    /** Number of CPUS, to place bounds on some sizings */
467 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
468 >
469 >    /* ---------------- Counters -------------- */
470 >
471 >    // Adapted from LongAdder and Striped64.
472 >    // See their internal docs for explanation.
473 >
474 >    // A padded cell for distributing counts
475 >    static final class Cell {
476 >        volatile long p0, p1, p2, p3, p4, p5, p6;
477 >        volatile long value;
478 >        volatile long q0, q1, q2, q3, q4, q5, q6;
479 >        Cell(long x) { value = x; }
480 >    }
481  
482      /* ---------------- Fields -------------- */
483  
# Line 556 | Line 485 | public class ConcurrentHashMap<K, V>
485       * The array of bins. Lazily initialized upon first insertion.
486       * Size is always a power of two. Accessed directly by iterators.
487       */
488 <    transient volatile Node[] table;
488 >    transient volatile Node<V>[] table;
489 >
490 >    /**
491 >     * The next table to use; non-null only while resizing.
492 >     */
493 >    private transient volatile Node<V>[] nextTable;
494  
495      /**
496 <     * The counter maintaining number of elements.
496 >     * Base counter value, used mainly when there is no contention,
497 >     * but also as a fallback during table initialization
498 >     * races. Updated via CAS.
499       */
500 <    private transient final LongAdder counter;
500 >    private transient volatile long baseCount;
501  
502      /**
503       * Table initialization and resizing control.  When negative, the
504 <     * table is being initialized or resized. Otherwise, when table is
505 <     * null, holds the initial table size to use upon creation, or 0
506 <     * for default. After initialization, holds the next element count
507 <     * value upon which to resize the table.
504 >     * table is being initialized or resized: -1 for initialization,
505 >     * else -(1 + the number of active resizing threads).  Otherwise,
506 >     * when table is null, holds the initial table size to use upon
507 >     * creation, or 0 for default. After initialization, holds the
508 >     * next element count value upon which to resize the table.
509       */
510      private transient volatile int sizeCtl;
511  
512 +    /**
513 +     * The next table index (plus one) to split while resizing.
514 +     */
515 +    private transient volatile int transferIndex;
516 +
517 +    /**
518 +     * The least available table index to split while resizing.
519 +     */
520 +    private transient volatile int transferOrigin;
521 +
522 +    /**
523 +     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 +     */
525 +    private transient volatile int cellsBusy;
526 +
527 +    /**
528 +     * Table of counter cells. When non-null, size is a power of 2.
529 +     */
530 +    private transient volatile Cell[] counterCells;
531 +
532      // views
533      private transient KeySetView<K,V> keySet;
534      private transient ValuesView<K,V> values;
# Line 594 | Line 551 | public class ConcurrentHashMap<K, V>
551       * inline assignments below.
552       */
553  
554 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
555 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
554 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 >        (Node<V>[] tab, int i) { // used by Traverser
556 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557      }
558  
559 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
560 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
559 >    private static final <V> boolean casTabAt
560 >        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562      }
563  
564 <    private static final void setTabAt(Node[] tab, int i, Node v) {
565 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
564 >    private static final <V> void setTabAt
565 >        (Node<V>[] tab, int i, Node<V> v) {
566 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567      }
568  
569      /* ---------------- Nodes -------------- */
# Line 618 | Line 578 | public class ConcurrentHashMap<K, V>
578       * before a val, but can only be used after checking val to be
579       * non-null.
580       */
581 <    static class Node {
582 <        volatile int hash;
581 >    static class Node<V> {
582 >        final int hash;
583          final Object key;
584 <        volatile Object val;
585 <        volatile Node next;
584 >        volatile V val;
585 >        volatile Node<V> next;
586  
587 <        Node(int hash, Object key, Object val, Node next) {
587 >        Node(int hash, Object key, V val, Node<V> next) {
588              this.hash = hash;
589              this.key = key;
590              this.val = val;
591              this.next = next;
592          }
633
634        /** CompareAndSet the hash field */
635        final boolean casHash(int cmp, int val) {
636            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
637        }
638
639        /** The number of spins before blocking for a lock */
640        static final int MAX_SPINS =
641            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
642
643        /**
644         * Spins a while if LOCKED bit set and this node is the first
645         * of its bin, and then sets WAITING bits on hash field and
646         * blocks (once) if they are still set.  It is OK for this
647         * method to return even if lock is not available upon exit,
648         * which enables these simple single-wait mechanics.
649         *
650         * The corresponding signalling operation is performed within
651         * callers: Upon detecting that WAITING has been set when
652         * unlocking lock (via a failed CAS from non-waiting LOCKED
653         * state), unlockers acquire the sync lock and perform a
654         * notifyAll.
655         *
656         * The initial sanity check on tab and bounds is not currently
657         * necessary in the only usages of this method, but enables
658         * use in other future contexts.
659         */
660        final void tryAwaitLock(Node[] tab, int i) {
661            if (tab != null && i >= 0 && i < tab.length) { // sanity check
662                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
663                int spins = MAX_SPINS, h;
664                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
665                    if (spins >= 0) {
666                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
667                        if (r >= 0 && --spins == 0)
668                            Thread.yield();  // yield before block
669                    }
670                    else if (casHash(h, h | WAITING)) {
671                        synchronized (this) {
672                            if (tabAt(tab, i) == this &&
673                                (hash & WAITING) == WAITING) {
674                                try {
675                                    wait();
676                                } catch (InterruptedException ie) {
677                                    try {
678                                        Thread.currentThread().interrupt();
679                                    } catch (SecurityException ignore) {
680                                    }
681                                }
682                            }
683                            else
684                                notifyAll(); // possibly won race vs signaller
685                        }
686                        break;
687                    }
688                }
689            }
690        }
691
692        // Unsafe mechanics for casHash
693        private static final sun.misc.Unsafe UNSAFE;
694        private static final long hashOffset;
695
696        static {
697            try {
698                UNSAFE = sun.misc.Unsafe.getUnsafe();
699                Class<?> k = Node.class;
700                hashOffset = UNSAFE.objectFieldOffset
701                    (k.getDeclaredField("hash"));
702            } catch (Exception e) {
703                throw new Error(e);
704            }
705        }
593      }
594  
595      /* ---------------- TreeBins -------------- */
# Line 710 | Line 597 | public class ConcurrentHashMap<K, V>
597      /**
598       * Nodes for use in TreeBins
599       */
600 <    static final class TreeNode extends Node {
601 <        TreeNode parent;  // red-black tree links
602 <        TreeNode left;
603 <        TreeNode right;
604 <        TreeNode prev;    // needed to unlink next upon deletion
600 >    static final class TreeNode<V> extends Node<V> {
601 >        TreeNode<V> parent;  // red-black tree links
602 >        TreeNode<V> left;
603 >        TreeNode<V> right;
604 >        TreeNode<V> prev;    // needed to unlink next upon deletion
605          boolean red;
606  
607 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
607 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608              super(hash, key, val, next);
609              this.parent = parent;
610          }
# Line 766 | Line 653 | public class ConcurrentHashMap<K, V>
653       * and writers. Since we don't need to export full Lock API, we
654       * just override the minimal AQS methods and use them directly.
655       */
656 <    static final class TreeBin extends AbstractQueuedSynchronizer {
656 >    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657          private static final long serialVersionUID = 2249069246763182397L;
658 <        transient TreeNode root;  // root of tree
659 <        transient TreeNode first; // head of next-pointer list
658 >        transient TreeNode<V> root;  // root of tree
659 >        transient TreeNode<V> first; // head of next-pointer list
660  
661          /* AQS overrides */
662          public final boolean isHeldExclusively() { return getState() > 0; }
# Line 800 | Line 687 | public class ConcurrentHashMap<K, V>
687          }
688  
689          /** From CLR */
690 <        private void rotateLeft(TreeNode p) {
690 >        private void rotateLeft(TreeNode<V> p) {
691              if (p != null) {
692 <                TreeNode r = p.right, pp, rl;
692 >                TreeNode<V> r = p.right, pp, rl;
693                  if ((rl = p.right = r.left) != null)
694                      rl.parent = p;
695                  if ((pp = r.parent = p.parent) == null)
# Line 817 | Line 704 | public class ConcurrentHashMap<K, V>
704          }
705  
706          /** From CLR */
707 <        private void rotateRight(TreeNode p) {
707 >        private void rotateRight(TreeNode<V> p) {
708              if (p != null) {
709 <                TreeNode l = p.left, pp, lr;
709 >                TreeNode<V> l = p.left, pp, lr;
710                  if ((lr = p.left = l.right) != null)
711                      lr.parent = p;
712                  if ((pp = l.parent = p.parent) == null)
# Line 837 | Line 724 | public class ConcurrentHashMap<K, V>
724           * Returns the TreeNode (or null if not found) for the given key
725           * starting at given root.
726           */
727 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
728 <            (int h, Object k, TreeNode p) {
727 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 >            (int h, Object k, TreeNode<V> p) {
729              Class<?> c = k.getClass();
730              while (p != null) {
731                  int dir, ph;  Object pk; Class<?> pc;
# Line 848 | Line 735 | public class ConcurrentHashMap<K, V>
735                      if (c != (pc = pk.getClass()) ||
736                          !(k instanceof Comparable) ||
737                          (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
739 <                        TreeNode r = null, s = null, pl, pr;
740 <                        if (dir >= 0) {
741 <                            if ((pl = p.left) != null && h <= pl.hash)
742 <                                s = pl;
738 >                        if ((dir = (c == pc) ? 0 :
739 >                             c.getName().compareTo(pc.getName())) == 0) {
740 >                            TreeNode<V> r = null, pl, pr; // check both sides
741 >                            if ((pr = p.right) != null && h >= pr.hash &&
742 >                                (r = getTreeNode(h, k, pr)) != null)
743 >                                return r;
744 >                            else if ((pl = p.left) != null && h <= pl.hash)
745 >                                dir = -1;
746 >                            else // nothing there
747 >                                return null;
748                          }
857                        else if ((pr = p.right) != null && h >= pr.hash)
858                            s = pr;
859                        if (s != null && (r = getTreeNode(h, k, s)) != null)
860                            return r;
749                      }
750                  }
751                  else
# Line 872 | Line 760 | public class ConcurrentHashMap<K, V>
760           * read-lock to call getTreeNode, but during failure to get
761           * lock, searches along next links.
762           */
763 <        final Object getValue(int h, Object k) {
764 <            Node r = null;
763 >        final V getValue(int h, Object k) {
764 >            Node<V> r = null;
765              int c = getState(); // Must read lock state first
766 <            for (Node e = first; e != null; e = e.next) {
766 >            for (Node<V> e = first; e != null; e = e.next) {
767                  if (c <= 0 && compareAndSetState(c, c - 1)) {
768                      try {
769                          r = getTreeNode(h, k, root);
# Line 884 | Line 772 | public class ConcurrentHashMap<K, V>
772                      }
773                      break;
774                  }
775 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
775 >                else if (e.hash == h && k.equals(e.key)) {
776                      r = e;
777                      break;
778                  }
# Line 898 | Line 786 | public class ConcurrentHashMap<K, V>
786           * Finds or adds a node.
787           * @return null if added
788           */
789 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
790 <            (int h, Object k, Object v) {
789 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 >            (int h, Object k, V v) {
791              Class<?> c = k.getClass();
792 <            TreeNode pp = root, p = null;
792 >            TreeNode<V> pp = root, p = null;
793              int dir = 0;
794              while (pp != null) { // find existing node or leaf to insert at
795                  int ph;  Object pk; Class<?> pc;
# Line 912 | Line 800 | public class ConcurrentHashMap<K, V>
800                      if (c != (pc = pk.getClass()) ||
801                          !(k instanceof Comparable) ||
802                          (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
804 <                        TreeNode r = null, s = null, pl, pr;
805 <                        if (dir >= 0) {
806 <                            if ((pl = p.left) != null && h <= pl.hash)
807 <                                s = pl;
803 >                        TreeNode<V> s = null, r = null, pr;
804 >                        if ((dir = (c == pc) ? 0 :
805 >                             c.getName().compareTo(pc.getName())) == 0) {
806 >                            if ((pr = p.right) != null && h >= pr.hash &&
807 >                                (r = getTreeNode(h, k, pr)) != null)
808 >                                return r;
809 >                            else // continue left
810 >                                dir = -1;
811                          }
812                          else if ((pr = p.right) != null && h >= pr.hash)
813                              s = pr;
# Line 929 | Line 820 | public class ConcurrentHashMap<K, V>
820                  pp = (dir > 0) ? p.right : p.left;
821              }
822  
823 <            TreeNode f = first;
824 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
823 >            TreeNode<V> f = first;
824 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825              if (p == null)
826                  root = x;
827              else { // attach and rebalance; adapted from CLR
828 <                TreeNode xp, xpp;
828 >                TreeNode<V> xp, xpp;
829                  if (f != null)
830                      f.prev = x;
831                  if (dir <= 0)
# Line 944 | Line 835 | public class ConcurrentHashMap<K, V>
835                  x.red = true;
836                  while (x != null && (xp = x.parent) != null && xp.red &&
837                         (xpp = xp.parent) != null) {
838 <                    TreeNode xppl = xpp.left;
838 >                    TreeNode<V> xppl = xpp.left;
839                      if (xp == xppl) {
840 <                        TreeNode y = xpp.right;
840 >                        TreeNode<V> y = xpp.right;
841                          if (y != null && y.red) {
842                              y.red = false;
843                              xp.red = false;
# Line 968 | Line 859 | public class ConcurrentHashMap<K, V>
859                          }
860                      }
861                      else {
862 <                        TreeNode y = xppl;
862 >                        TreeNode<V> y = xppl;
863                          if (y != null && y.red) {
864                              y.red = false;
865                              xp.red = false;
# Line 990 | Line 881 | public class ConcurrentHashMap<K, V>
881                          }
882                      }
883                  }
884 <                TreeNode r = root;
884 >                TreeNode<V> r = root;
885                  if (r != null && r.red)
886                      r.red = false;
887              }
# Line 1005 | Line 896 | public class ConcurrentHashMap<K, V>
896           * that are accessible independently of lock. So instead we
897           * swap the tree linkages.
898           */
899 <        final void deleteTreeNode(TreeNode p) {
900 <            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
901 <            TreeNode pred = p.prev;
899 >        final void deleteTreeNode(TreeNode<V> p) {
900 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 >            TreeNode<V> pred = p.prev;
902              if (pred == null)
903                  first = next;
904              else
905                  pred.next = next;
906              if (next != null)
907                  next.prev = pred;
908 <            TreeNode replacement;
909 <            TreeNode pl = p.left;
910 <            TreeNode pr = p.right;
908 >            TreeNode<V> replacement;
909 >            TreeNode<V> pl = p.left;
910 >            TreeNode<V> pr = p.right;
911              if (pl != null && pr != null) {
912 <                TreeNode s = pr, sl;
912 >                TreeNode<V> s = pr, sl;
913                  while ((sl = s.left) != null) // find successor
914                      s = sl;
915                  boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 <                TreeNode sr = s.right;
917 <                TreeNode pp = p.parent;
916 >                TreeNode<V> sr = s.right;
917 >                TreeNode<V> pp = p.parent;
918                  if (s == pr) { // p was s's direct parent
919                      p.parent = s;
920                      s.right = p;
921                  }
922                  else {
923 <                    TreeNode sp = s.parent;
923 >                    TreeNode<V> sp = s.parent;
924                      if ((p.parent = sp) != null) {
925                          if (s == sp.left)
926                              sp.left = p;
# Line 1054 | Line 945 | public class ConcurrentHashMap<K, V>
945              }
946              else
947                  replacement = (pl != null) ? pl : pr;
948 <            TreeNode pp = p.parent;
948 >            TreeNode<V> pp = p.parent;
949              if (replacement == null) {
950                  if (pp == null) {
951                      root = null;
# Line 1073 | Line 964 | public class ConcurrentHashMap<K, V>
964                  p.left = p.right = p.parent = null;
965              }
966              if (!p.red) { // rebalance, from CLR
967 <                TreeNode x = replacement;
967 >                TreeNode<V> x = replacement;
968                  while (x != null) {
969 <                    TreeNode xp, xpl;
969 >                    TreeNode<V> xp, xpl;
970                      if (x.red || (xp = x.parent) == null) {
971                          x.red = false;
972                          break;
973                      }
974                      if (x == (xpl = xp.left)) {
975 <                        TreeNode sib = xp.right;
975 >                        TreeNode<V> sib = xp.right;
976                          if (sib != null && sib.red) {
977                              sib.red = false;
978                              xp.red = true;
# Line 1091 | Line 982 | public class ConcurrentHashMap<K, V>
982                          if (sib == null)
983                              x = xp;
984                          else {
985 <                            TreeNode sl = sib.left, sr = sib.right;
985 >                            TreeNode<V> sl = sib.left, sr = sib.right;
986                              if ((sr == null || !sr.red) &&
987                                  (sl == null || !sl.red)) {
988                                  sib.red = true;
# Line 1103 | Line 994 | public class ConcurrentHashMap<K, V>
994                                          sl.red = false;
995                                      sib.red = true;
996                                      rotateRight(sib);
997 <                                    sib = (xp = x.parent) == null ? null : xp.right;
997 >                                    sib = (xp = x.parent) == null ?
998 >                                        null : xp.right;
999                                  }
1000                                  if (sib != null) {
1001                                      sib.red = (xp == null) ? false : xp.red;
# Line 1119 | Line 1011 | public class ConcurrentHashMap<K, V>
1011                          }
1012                      }
1013                      else { // symmetric
1014 <                        TreeNode sib = xpl;
1014 >                        TreeNode<V> sib = xpl;
1015                          if (sib != null && sib.red) {
1016                              sib.red = false;
1017                              xp.red = true;
# Line 1129 | Line 1021 | public class ConcurrentHashMap<K, V>
1021                          if (sib == null)
1022                              x = xp;
1023                          else {
1024 <                            TreeNode sl = sib.left, sr = sib.right;
1024 >                            TreeNode<V> sl = sib.left, sr = sib.right;
1025                              if ((sl == null || !sl.red) &&
1026                                  (sr == null || !sr.red)) {
1027                                  sib.red = true;
# Line 1141 | Line 1033 | public class ConcurrentHashMap<K, V>
1033                                          sr.red = false;
1034                                      sib.red = true;
1035                                      rotateLeft(sib);
1036 <                                    sib = (xp = x.parent) == null ? null : xp.left;
1036 >                                    sib = (xp = x.parent) == null ?
1037 >                                        null : xp.left;
1038                                  }
1039                                  if (sib != null) {
1040                                      sib.red = (xp == null) ? false : xp.red;
# Line 1171 | Line 1064 | public class ConcurrentHashMap<K, V>
1064      /* ---------------- Collision reduction methods -------------- */
1065  
1066      /**
1067 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1067 >     * Spreads higher bits to lower, and also forces top bit to 0.
1068       * Because the table uses power-of-two masking, sets of hashes
1069       * that vary only in bits above the current mask will always
1070       * collide. (Among known examples are sets of Float keys holding
# Line 1189 | Line 1082 | public class ConcurrentHashMap<K, V>
1082      }
1083  
1084      /**
1085 <     * Replaces a list bin with a tree bin. Call only when locked.
1086 <     * Fails to replace if the given key is non-comparable or table
1087 <     * is, or needs, resizing.
1088 <     */
1089 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1090 <        if ((key instanceof Comparable) &&
1091 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1092 <            TreeBin t = new TreeBin();
1093 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1201 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1202 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1085 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1086 >     * only when locked.
1087 >     */
1088 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 >        if (key instanceof Comparable) {
1090 >            TreeBin<V> t = new TreeBin<V>();
1091 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 >                t.putTreeNode(e.hash, e.key, e.val);
1093 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094          }
1095      }
1096  
1097      /* ---------------- Internal access and update methods -------------- */
1098  
1099      /** Implementation for get and containsKey */
1100 <    private final Object internalGet(Object k) {
1100 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101          int h = spread(k.hashCode());
1102 <        retry: for (Node[] tab = table; tab != null;) {
1103 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1102 >        retry: for (Node<V>[] tab = table; tab != null;) {
1103 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 <                if ((eh = e.hash) == MOVED) {
1105 >                if ((eh = e.hash) < 0) {
1106                      if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1107 <                        return ((TreeBin)ek).getValue(h, k);
1108 <                    else {                        // restart with new table
1109 <                        tab = (Node[])ek;
1107 >                        return ((TreeBin<V>)ek).getValue(h, k);
1108 >                    else {                      // restart with new table
1109 >                        tab = (Node<V>[])ek;
1110                          continue retry;
1111                      }
1112                  }
1113 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1113 >                else if (eh == h && (ev = e.val) != null &&
1114                           ((ek = e.key) == k || k.equals(ek)))
1115                      return ev;
1116              }
# Line 1233 | Line 1124 | public class ConcurrentHashMap<K, V>
1124       * Replaces node value with v, conditional upon match of cv if
1125       * non-null.  If resulting value is null, delete.
1126       */
1127 <    private final Object internalReplace(Object k, Object v, Object cv) {
1127 >    @SuppressWarnings("unchecked") private final V internalReplace
1128 >        (Object k, V v, Object cv) {
1129          int h = spread(k.hashCode());
1130 <        Object oldVal = null;
1131 <        for (Node[] tab = table;;) {
1132 <            Node f; int i, fh; Object fk;
1130 >        V oldVal = null;
1131 >        for (Node<V>[] tab = table;;) {
1132 >            Node<V> f; int i, fh; Object fk;
1133              if (tab == null ||
1134                  (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135                  break;
1136 <            else if ((fh = f.hash) == MOVED) {
1136 >            else if ((fh = f.hash) < 0) {
1137                  if ((fk = f.key) instanceof TreeBin) {
1138 <                    TreeBin t = (TreeBin)fk;
1138 >                    TreeBin<V> t = (TreeBin<V>)fk;
1139                      boolean validated = false;
1140                      boolean deleted = false;
1141                      t.acquire(0);
1142                      try {
1143                          if (tabAt(tab, i) == f) {
1144                              validated = true;
1145 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1145 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146                              if (p != null) {
1147 <                                Object pv = p.val;
1147 >                                V pv = p.val;
1148                                  if (cv == null || cv == pv || cv.equals(pv)) {
1149                                      oldVal = pv;
1150                                      if ((p.val = v) == null) {
# Line 1267 | Line 1159 | public class ConcurrentHashMap<K, V>
1159                      }
1160                      if (validated) {
1161                          if (deleted)
1162 <                            counter.add(-1L);
1162 >                            addCount(-1L, -1);
1163                          break;
1164                      }
1165                  }
1166                  else
1167 <                    tab = (Node[])fk;
1167 >                    tab = (Node<V>[])fk;
1168              }
1169 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1169 >            else if (fh != h && f.next == null) // precheck
1170                  break;                          // rules out possible existence
1171 <            else if ((fh & LOCKED) != 0) {
1280 <                checkForResize();               // try resizing if can't get lock
1281 <                f.tryAwaitLock(tab, i);
1282 <            }
1283 <            else if (f.casHash(fh, fh | LOCKED)) {
1171 >            else {
1172                  boolean validated = false;
1173                  boolean deleted = false;
1174 <                try {
1174 >                synchronized (f) {
1175                      if (tabAt(tab, i) == f) {
1176                          validated = true;
1177 <                        for (Node e = f, pred = null;;) {
1178 <                            Object ek, ev;
1179 <                            if ((e.hash & HASH_BITS) == h &&
1177 >                        for (Node<V> e = f, pred = null;;) {
1178 >                            Object ek; V ev;
1179 >                            if (e.hash == h &&
1180                                  ((ev = e.val) != null) &&
1181                                  ((ek = e.key) == k || k.equals(ek))) {
1182                                  if (cv == null || cv == ev || cv.equals(ev)) {
1183                                      oldVal = ev;
1184                                      if ((e.val = v) == null) {
1185                                          deleted = true;
1186 <                                        Node en = e.next;
1186 >                                        Node<V> en = e.next;
1187                                          if (pred != null)
1188                                              pred.next = en;
1189                                          else
# Line 1309 | Line 1197 | public class ConcurrentHashMap<K, V>
1197                                  break;
1198                          }
1199                      }
1312                } finally {
1313                    if (!f.casHash(fh | LOCKED, fh)) {
1314                        f.hash = fh;
1315                        synchronized (f) { f.notifyAll(); };
1316                    }
1200                  }
1201                  if (validated) {
1202                      if (deleted)
1203 <                        counter.add(-1L);
1203 >                        addCount(-1L, -1);
1204                      break;
1205                  }
1206              }
# Line 1326 | Line 1209 | public class ConcurrentHashMap<K, V>
1209      }
1210  
1211      /*
1212 <     * Internal versions of the six insertion methods, each a
1213 <     * little more complicated than the last. All have
1331 <     * the same basic structure as the first (internalPut):
1212 >     * Internal versions of insertion methods
1213 >     * All have the same basic structure as the first (internalPut):
1214       *  1. If table uninitialized, create
1215       *  2. If bin empty, try to CAS new node
1216       *  3. If bin stale, use new table
1217       *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218       *  5. Lock and validate; if valid, scan and add or update
1219       *
1220 <     * The others interweave other checks and/or alternative actions:
1221 <     *  * Plain put checks for and performs resize after insertion.
1222 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1223 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1224 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1225 <     *    mechanics to deal with, calls, potential exceptions and null
1226 <     *    returns from function call.
1345 <     *  * compute uses the same function-call mechanics, but without
1346 <     *    the prescans
1347 <     *  * merge acts as putIfAbsent in the absent case, but invokes the
1348 <     *    update function if present
1349 <     *  * putAll attempts to pre-allocate enough table space
1350 <     *    and more lazily performs count updates and checks.
1351 <     *
1352 <     * Someday when details settle down a bit more, it might be worth
1353 <     * some factoring to reduce sprawl.
1220 >     * The putAll method differs mainly in attempting to pre-allocate
1221 >     * enough table space, and also more lazily performs count updates
1222 >     * and checks.
1223 >     *
1224 >     * Most of the function-accepting methods can't be factored nicely
1225 >     * because they require different functional forms, so instead
1226 >     * sprawl out similar mechanics.
1227       */
1228  
1229 <    /** Implementation for put */
1230 <    private final Object internalPut(Object k, Object v) {
1229 >    /** Implementation for put and putIfAbsent */
1230 >    @SuppressWarnings("unchecked") private final V internalPut
1231 >        (K k, V v, boolean onlyIfAbsent) {
1232 >        if (k == null || v == null) throw new NullPointerException();
1233          int h = spread(k.hashCode());
1234 <        int count = 0;
1235 <        for (Node[] tab = table;;) {
1236 <            int i; Node f; int fh; Object fk;
1234 >        int len = 0;
1235 >        for (Node<V>[] tab = table;;) {
1236 >            int i, fh; Node<V> f; Object fk; V fv;
1237              if (tab == null)
1238                  tab = initTable();
1239              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1240 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241                      break;                   // no lock when adding to empty bin
1242              }
1243 <            else if ((fh = f.hash) == MOVED) {
1243 >            else if ((fh = f.hash) < 0) {
1244                  if ((fk = f.key) instanceof TreeBin) {
1245 <                    TreeBin t = (TreeBin)fk;
1246 <                    Object oldVal = null;
1245 >                    TreeBin<V> t = (TreeBin<V>)fk;
1246 >                    V oldVal = null;
1247                      t.acquire(0);
1248                      try {
1249                          if (tabAt(tab, i) == f) {
1250 <                            count = 2;
1251 <                            TreeNode p = t.putTreeNode(h, k, v);
1250 >                            len = 2;
1251 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1252                              if (p != null) {
1253                                  oldVal = p.val;
1254 <                                p.val = v;
1254 >                                if (!onlyIfAbsent)
1255 >                                    p.val = v;
1256                              }
1257                          }
1258                      } finally {
1259                          t.release(0);
1260                      }
1261 <                    if (count != 0) {
1261 >                    if (len != 0) {
1262                          if (oldVal != null)
1263                              return oldVal;
1264                          break;
1265                      }
1266                  }
1267                  else
1268 <                    tab = (Node[])fk;
1268 >                    tab = (Node<V>[])fk;
1269              }
1270 <            else if ((fh & LOCKED) != 0) {
1271 <                checkForResize();
1272 <                f.tryAwaitLock(tab, i);
1273 <            }
1274 <            else if (f.casHash(fh, fh | LOCKED)) {
1275 <                Object oldVal = null;
1400 <                try {                        // needed in case equals() throws
1270 >            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 >                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 >                return fv;
1273 >            else {
1274 >                V oldVal = null;
1275 >                synchronized (f) {
1276                      if (tabAt(tab, i) == f) {
1277 <                        count = 1;
1278 <                        for (Node e = f;; ++count) {
1279 <                            Object ek, ev;
1280 <                            if ((e.hash & HASH_BITS) == h &&
1277 >                        len = 1;
1278 >                        for (Node<V> e = f;; ++len) {
1279 >                            Object ek; V ev;
1280 >                            if (e.hash == h &&
1281                                  (ev = e.val) != null &&
1282                                  ((ek = e.key) == k || k.equals(ek))) {
1283                                  oldVal = ev;
1284 <                                e.val = v;
1284 >                                if (!onlyIfAbsent)
1285 >                                    e.val = v;
1286                                  break;
1287                              }
1288 <                            Node last = e;
1288 >                            Node<V> last = e;
1289                              if ((e = e.next) == null) {
1290 <                                last.next = new Node(h, k, v, null);
1291 <                                if (count >= TREE_THRESHOLD)
1290 >                                last.next = new Node<V>(h, k, v, null);
1291 >                                if (len >= TREE_THRESHOLD)
1292                                      replaceWithTreeBin(tab, i, k);
1293                                  break;
1294                              }
1295                          }
1296                      }
1421                } finally {                  // unlock and signal if needed
1422                    if (!f.casHash(fh | LOCKED, fh)) {
1423                        f.hash = fh;
1424                        synchronized (f) { f.notifyAll(); };
1425                    }
1297                  }
1298 <                if (count != 0) {
1298 >                if (len != 0) {
1299                      if (oldVal != null)
1300                          return oldVal;
1430                    if (tab.length <= 64)
1431                        count = 2;
1301                      break;
1302                  }
1303              }
1304          }
1305 <        counter.add(1L);
1437 <        if (count > 1)
1438 <            checkForResize();
1439 <        return null;
1440 <    }
1441 <
1442 <    /** Implementation for putIfAbsent */
1443 <    private final Object internalPutIfAbsent(Object k, Object v) {
1444 <        int h = spread(k.hashCode());
1445 <        int count = 0;
1446 <        for (Node[] tab = table;;) {
1447 <            int i; Node f; int fh; Object fk, fv;
1448 <            if (tab == null)
1449 <                tab = initTable();
1450 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1451 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1452 <                    break;
1453 <            }
1454 <            else if ((fh = f.hash) == MOVED) {
1455 <                if ((fk = f.key) instanceof TreeBin) {
1456 <                    TreeBin t = (TreeBin)fk;
1457 <                    Object oldVal = null;
1458 <                    t.acquire(0);
1459 <                    try {
1460 <                        if (tabAt(tab, i) == f) {
1461 <                            count = 2;
1462 <                            TreeNode p = t.putTreeNode(h, k, v);
1463 <                            if (p != null)
1464 <                                oldVal = p.val;
1465 <                        }
1466 <                    } finally {
1467 <                        t.release(0);
1468 <                    }
1469 <                    if (count != 0) {
1470 <                        if (oldVal != null)
1471 <                            return oldVal;
1472 <                        break;
1473 <                    }
1474 <                }
1475 <                else
1476 <                    tab = (Node[])fk;
1477 <            }
1478 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1479 <                     ((fk = f.key) == k || k.equals(fk)))
1480 <                return fv;
1481 <            else {
1482 <                Node g = f.next;
1483 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1484 <                    for (Node e = g;;) {
1485 <                        Object ek, ev;
1486 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1487 <                            ((ek = e.key) == k || k.equals(ek)))
1488 <                            return ev;
1489 <                        if ((e = e.next) == null) {
1490 <                            checkForResize();
1491 <                            break;
1492 <                        }
1493 <                    }
1494 <                }
1495 <                if (((fh = f.hash) & LOCKED) != 0) {
1496 <                    checkForResize();
1497 <                    f.tryAwaitLock(tab, i);
1498 <                }
1499 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1500 <                    Object oldVal = null;
1501 <                    try {
1502 <                        if (tabAt(tab, i) == f) {
1503 <                            count = 1;
1504 <                            for (Node e = f;; ++count) {
1505 <                                Object ek, ev;
1506 <                                if ((e.hash & HASH_BITS) == h &&
1507 <                                    (ev = e.val) != null &&
1508 <                                    ((ek = e.key) == k || k.equals(ek))) {
1509 <                                    oldVal = ev;
1510 <                                    break;
1511 <                                }
1512 <                                Node last = e;
1513 <                                if ((e = e.next) == null) {
1514 <                                    last.next = new Node(h, k, v, null);
1515 <                                    if (count >= TREE_THRESHOLD)
1516 <                                        replaceWithTreeBin(tab, i, k);
1517 <                                    break;
1518 <                                }
1519 <                            }
1520 <                        }
1521 <                    } finally {
1522 <                        if (!f.casHash(fh | LOCKED, fh)) {
1523 <                            f.hash = fh;
1524 <                            synchronized (f) { f.notifyAll(); };
1525 <                        }
1526 <                    }
1527 <                    if (count != 0) {
1528 <                        if (oldVal != null)
1529 <                            return oldVal;
1530 <                        if (tab.length <= 64)
1531 <                            count = 2;
1532 <                        break;
1533 <                    }
1534 <                }
1535 <            }
1536 <        }
1537 <        counter.add(1L);
1538 <        if (count > 1)
1539 <            checkForResize();
1305 >        addCount(1L, len);
1306          return null;
1307      }
1308  
1309      /** Implementation for computeIfAbsent */
1310 <    private final Object internalComputeIfAbsent(K k,
1311 <                                                 Fun<? super K, ?> mf) {
1310 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 >        (K k, Function<? super K, ? extends V> mf) {
1312 >        if (k == null || mf == null)
1313 >            throw new NullPointerException();
1314          int h = spread(k.hashCode());
1315 <        Object val = null;
1316 <        int count = 0;
1317 <        for (Node[] tab = table;;) {
1318 <            Node f; int i, fh; Object fk, fv;
1315 >        V val = null;
1316 >        int len = 0;
1317 >        for (Node<V>[] tab = table;;) {
1318 >            Node<V> f; int i; Object fk;
1319              if (tab == null)
1320                  tab = initTable();
1321              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1323 <                if (casTabAt(tab, i, null, node)) {
1324 <                    count = 1;
1325 <                    try {
1326 <                        if ((val = mf.apply(k)) != null)
1327 <                            node.val = val;
1328 <                    } finally {
1329 <                        if (val == null)
1330 <                            setTabAt(tab, i, null);
1331 <                        if (!node.casHash(fh, h)) {
1564 <                            node.hash = h;
1565 <                            synchronized (node) { node.notifyAll(); };
1322 >                Node<V> node = new Node<V>(h, k, null, null);
1323 >                synchronized (node) {
1324 >                    if (casTabAt(tab, i, null, node)) {
1325 >                        len = 1;
1326 >                        try {
1327 >                            if ((val = mf.apply(k)) != null)
1328 >                                node.val = val;
1329 >                        } finally {
1330 >                            if (val == null)
1331 >                                setTabAt(tab, i, null);
1332                          }
1333                      }
1334                  }
1335 <                if (count != 0)
1335 >                if (len != 0)
1336                      break;
1337              }
1338 <            else if ((fh = f.hash) == MOVED) {
1338 >            else if (f.hash < 0) {
1339                  if ((fk = f.key) instanceof TreeBin) {
1340 <                    TreeBin t = (TreeBin)fk;
1340 >                    TreeBin<V> t = (TreeBin<V>)fk;
1341                      boolean added = false;
1342                      t.acquire(0);
1343                      try {
1344                          if (tabAt(tab, i) == f) {
1345 <                            count = 1;
1346 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1345 >                            len = 1;
1346 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347                              if (p != null)
1348                                  val = p.val;
1349                              else if ((val = mf.apply(k)) != null) {
1350                                  added = true;
1351 <                                count = 2;
1351 >                                len = 2;
1352                                  t.putTreeNode(h, k, val);
1353                              }
1354                          }
1355                      } finally {
1356                          t.release(0);
1357                      }
1358 <                    if (count != 0) {
1358 >                    if (len != 0) {
1359                          if (!added)
1360                              return val;
1361                          break;
1362                      }
1363                  }
1364                  else
1365 <                    tab = (Node[])fk;
1365 >                    tab = (Node<V>[])fk;
1366              }
1601            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1602                     ((fk = f.key) == k || k.equals(fk)))
1603                return fv;
1367              else {
1368 <                Node g = f.next;
1369 <                if (g != null) {
1370 <                    for (Node e = g;;) {
1371 <                        Object ek, ev;
1372 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1610 <                            ((ek = e.key) == k || k.equals(ek)))
1611 <                            return ev;
1612 <                        if ((e = e.next) == null) {
1613 <                            checkForResize();
1614 <                            break;
1615 <                        }
1616 <                    }
1617 <                }
1618 <                if (((fh = f.hash) & LOCKED) != 0) {
1619 <                    checkForResize();
1620 <                    f.tryAwaitLock(tab, i);
1368 >                for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 >                    Object ek; V ev;
1370 >                    if (e.hash == h && (ev = e.val) != null &&
1371 >                        ((ek = e.key) == k || k.equals(ek)))
1372 >                        return ev;
1373                  }
1374 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1375 <                    boolean added = false;
1376 <                    try {
1377 <                        if (tabAt(tab, i) == f) {
1378 <                            count = 1;
1379 <                            for (Node e = f;; ++count) {
1380 <                                Object ek, ev;
1381 <                                if ((e.hash & HASH_BITS) == h &&
1382 <                                    (ev = e.val) != null &&
1383 <                                    ((ek = e.key) == k || k.equals(ek))) {
1384 <                                    val = ev;
1385 <                                    break;
1386 <                                }
1387 <                                Node last = e;
1388 <                                if ((e = e.next) == null) {
1389 <                                    if ((val = mf.apply(k)) != null) {
1390 <                                        added = true;
1391 <                                        last.next = new Node(h, k, val, null);
1392 <                                        if (count >= TREE_THRESHOLD)
1641 <                                            replaceWithTreeBin(tab, i, k);
1642 <                                    }
1643 <                                    break;
1374 >                boolean added = false;
1375 >                synchronized (f) {
1376 >                    if (tabAt(tab, i) == f) {
1377 >                        len = 1;
1378 >                        for (Node<V> e = f;; ++len) {
1379 >                            Object ek; V ev;
1380 >                            if (e.hash == h &&
1381 >                                (ev = e.val) != null &&
1382 >                                ((ek = e.key) == k || k.equals(ek))) {
1383 >                                val = ev;
1384 >                                break;
1385 >                            }
1386 >                            Node<V> last = e;
1387 >                            if ((e = e.next) == null) {
1388 >                                if ((val = mf.apply(k)) != null) {
1389 >                                    added = true;
1390 >                                    last.next = new Node<V>(h, k, val, null);
1391 >                                    if (len >= TREE_THRESHOLD)
1392 >                                        replaceWithTreeBin(tab, i, k);
1393                                  }
1394 +                                break;
1395                              }
1396                          }
1647                    } finally {
1648                        if (!f.casHash(fh | LOCKED, fh)) {
1649                            f.hash = fh;
1650                            synchronized (f) { f.notifyAll(); };
1651                        }
1652                    }
1653                    if (count != 0) {
1654                        if (!added)
1655                            return val;
1656                        if (tab.length <= 64)
1657                            count = 2;
1658                        break;
1397                      }
1398                  }
1399 +                if (len != 0) {
1400 +                    if (!added)
1401 +                        return val;
1402 +                    break;
1403 +                }
1404              }
1405          }
1406 <        if (val != null) {
1407 <            counter.add(1L);
1665 <            if (count > 1)
1666 <                checkForResize();
1667 <        }
1406 >        if (val != null)
1407 >            addCount(1L, len);
1408          return val;
1409      }
1410  
1411      /** Implementation for compute */
1412 <    @SuppressWarnings("unchecked") private final Object internalCompute
1413 <        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1412 >    @SuppressWarnings("unchecked") private final V internalCompute
1413 >        (K k, boolean onlyIfPresent,
1414 >         BiFunction<? super K, ? super V, ? extends V> mf) {
1415 >        if (k == null || mf == null)
1416 >            throw new NullPointerException();
1417          int h = spread(k.hashCode());
1418 <        Object val = null;
1418 >        V val = null;
1419          int delta = 0;
1420 <        int count = 0;
1421 <        for (Node[] tab = table;;) {
1422 <            Node f; int i, fh; Object fk;
1420 >        int len = 0;
1421 >        for (Node<V>[] tab = table;;) {
1422 >            Node<V> f; int i, fh; Object fk;
1423              if (tab == null)
1424                  tab = initTable();
1425              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426                  if (onlyIfPresent)
1427                      break;
1428 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1429 <                if (casTabAt(tab, i, null, node)) {
1430 <                    try {
1431 <                        count = 1;
1432 <                        if ((val = mf.apply(k, null)) != null) {
1433 <                            node.val = val;
1434 <                            delta = 1;
1435 <                        }
1436 <                    } finally {
1437 <                        if (delta == 0)
1438 <                            setTabAt(tab, i, null);
1439 <                        if (!node.casHash(fh, h)) {
1697 <                            node.hash = h;
1698 <                            synchronized (node) { node.notifyAll(); };
1428 >                Node<V> node = new Node<V>(h, k, null, null);
1429 >                synchronized (node) {
1430 >                    if (casTabAt(tab, i, null, node)) {
1431 >                        try {
1432 >                            len = 1;
1433 >                            if ((val = mf.apply(k, null)) != null) {
1434 >                                node.val = val;
1435 >                                delta = 1;
1436 >                            }
1437 >                        } finally {
1438 >                            if (delta == 0)
1439 >                                setTabAt(tab, i, null);
1440                          }
1441                      }
1442                  }
1443 <                if (count != 0)
1443 >                if (len != 0)
1444                      break;
1445              }
1446 <            else if ((fh = f.hash) == MOVED) {
1446 >            else if ((fh = f.hash) < 0) {
1447                  if ((fk = f.key) instanceof TreeBin) {
1448 <                    TreeBin t = (TreeBin)fk;
1448 >                    TreeBin<V> t = (TreeBin<V>)fk;
1449                      t.acquire(0);
1450                      try {
1451                          if (tabAt(tab, i) == f) {
1452 <                            count = 1;
1453 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1454 <                            Object pv = (p == null) ? null : p.val;
1455 <                            if ((val = mf.apply(k, (V)pv)) != null) {
1452 >                            len = 1;
1453 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 >                            if (p == null && onlyIfPresent)
1455 >                                break;
1456 >                            V pv = (p == null) ? null : p.val;
1457 >                            if ((val = mf.apply(k, pv)) != null) {
1458                                  if (p != null)
1459                                      p.val = val;
1460                                  else {
1461 <                                    count = 2;
1461 >                                    len = 2;
1462                                      delta = 1;
1463                                      t.putTreeNode(h, k, val);
1464                                  }
# Line 1728 | Line 1471 | public class ConcurrentHashMap<K, V>
1471                      } finally {
1472                          t.release(0);
1473                      }
1474 <                    if (count != 0)
1474 >                    if (len != 0)
1475                          break;
1476                  }
1477                  else
1478 <                    tab = (Node[])fk;
1736 <            }
1737 <            else if ((fh & LOCKED) != 0) {
1738 <                checkForResize();
1739 <                f.tryAwaitLock(tab, i);
1478 >                    tab = (Node<V>[])fk;
1479              }
1480 <            else if (f.casHash(fh, fh | LOCKED)) {
1481 <                try {
1480 >            else {
1481 >                synchronized (f) {
1482                      if (tabAt(tab, i) == f) {
1483 <                        count = 1;
1484 <                        for (Node e = f, pred = null;; ++count) {
1485 <                            Object ek, ev;
1486 <                            if ((e.hash & HASH_BITS) == h &&
1483 >                        len = 1;
1484 >                        for (Node<V> e = f, pred = null;; ++len) {
1485 >                            Object ek; V ev;
1486 >                            if (e.hash == h &&
1487                                  (ev = e.val) != null &&
1488                                  ((ek = e.key) == k || k.equals(ek))) {
1489 <                                val = mf.apply(k, (V)ev);
1489 >                                val = mf.apply(k, ev);
1490                                  if (val != null)
1491                                      e.val = val;
1492                                  else {
1493                                      delta = -1;
1494 <                                    Node en = e.next;
1494 >                                    Node<V> en = e.next;
1495                                      if (pred != null)
1496                                          pred.next = en;
1497                                      else
# Line 1762 | Line 1501 | public class ConcurrentHashMap<K, V>
1501                              }
1502                              pred = e;
1503                              if ((e = e.next) == null) {
1504 <                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1505 <                                    pred.next = new Node(h, k, val, null);
1504 >                                if (!onlyIfPresent &&
1505 >                                    (val = mf.apply(k, null)) != null) {
1506 >                                    pred.next = new Node<V>(h, k, val, null);
1507                                      delta = 1;
1508 <                                    if (count >= TREE_THRESHOLD)
1508 >                                    if (len >= TREE_THRESHOLD)
1509                                          replaceWithTreeBin(tab, i, k);
1510                                  }
1511                                  break;
1512                              }
1513                          }
1514                      }
1775                } finally {
1776                    if (!f.casHash(fh | LOCKED, fh)) {
1777                        f.hash = fh;
1778                        synchronized (f) { f.notifyAll(); };
1779                    }
1515                  }
1516 <                if (count != 0) {
1782 <                    if (tab.length <= 64)
1783 <                        count = 2;
1516 >                if (len != 0)
1517                      break;
1785                }
1518              }
1519          }
1520 <        if (delta != 0) {
1521 <            counter.add((long)delta);
1790 <            if (count > 1)
1791 <                checkForResize();
1792 <        }
1520 >        if (delta != 0)
1521 >            addCount((long)delta, len);
1522          return val;
1523      }
1524  
1525      /** Implementation for merge */
1526 <    @SuppressWarnings("unchecked") private final Object internalMerge
1527 <        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1526 >    @SuppressWarnings("unchecked") private final V internalMerge
1527 >        (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 >        if (k == null || v == null || mf == null)
1529 >            throw new NullPointerException();
1530          int h = spread(k.hashCode());
1531 <        Object val = null;
1531 >        V val = null;
1532          int delta = 0;
1533 <        int count = 0;
1534 <        for (Node[] tab = table;;) {
1535 <            int i; Node f; int fh; Object fk, fv;
1533 >        int len = 0;
1534 >        for (Node<V>[] tab = table;;) {
1535 >            int i; Node<V> f; Object fk; V fv;
1536              if (tab == null)
1537                  tab = initTable();
1538              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 <                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1539 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540                      delta = 1;
1541                      val = v;
1542                      break;
1543                  }
1544              }
1545 <            else if ((fh = f.hash) == MOVED) {
1545 >            else if (f.hash < 0) {
1546                  if ((fk = f.key) instanceof TreeBin) {
1547 <                    TreeBin t = (TreeBin)fk;
1547 >                    TreeBin<V> t = (TreeBin<V>)fk;
1548                      t.acquire(0);
1549                      try {
1550                          if (tabAt(tab, i) == f) {
1551 <                            count = 1;
1552 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1553 <                            val = (p == null) ? v : mf.apply((V)p.val, v);
1551 >                            len = 1;
1552 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 >                            val = (p == null) ? v : mf.apply(p.val, v);
1554                              if (val != null) {
1555                                  if (p != null)
1556                                      p.val = val;
1557                                  else {
1558 <                                    count = 2;
1558 >                                    len = 2;
1559                                      delta = 1;
1560                                      t.putTreeNode(h, k, val);
1561                                  }
# Line 1837 | Line 1568 | public class ConcurrentHashMap<K, V>
1568                      } finally {
1569                          t.release(0);
1570                      }
1571 <                    if (count != 0)
1571 >                    if (len != 0)
1572                          break;
1573                  }
1574                  else
1575 <                    tab = (Node[])fk;
1845 <            }
1846 <            else if ((fh & LOCKED) != 0) {
1847 <                checkForResize();
1848 <                f.tryAwaitLock(tab, i);
1575 >                    tab = (Node<V>[])fk;
1576              }
1577 <            else if (f.casHash(fh, fh | LOCKED)) {
1578 <                try {
1577 >            else {
1578 >                synchronized (f) {
1579                      if (tabAt(tab, i) == f) {
1580 <                        count = 1;
1581 <                        for (Node e = f, pred = null;; ++count) {
1582 <                            Object ek, ev;
1583 <                            if ((e.hash & HASH_BITS) == h &&
1580 >                        len = 1;
1581 >                        for (Node<V> e = f, pred = null;; ++len) {
1582 >                            Object ek; V ev;
1583 >                            if (e.hash == h &&
1584                                  (ev = e.val) != null &&
1585                                  ((ek = e.key) == k || k.equals(ek))) {
1586 <                                val = mf.apply(v, (V)ev);
1586 >                                val = mf.apply(ev, v);
1587                                  if (val != null)
1588                                      e.val = val;
1589                                  else {
1590                                      delta = -1;
1591 <                                    Node en = e.next;
1591 >                                    Node<V> en = e.next;
1592                                      if (pred != null)
1593                                          pred.next = en;
1594                                      else
# Line 1872 | Line 1599 | public class ConcurrentHashMap<K, V>
1599                              pred = e;
1600                              if ((e = e.next) == null) {
1601                                  val = v;
1602 <                                pred.next = new Node(h, k, val, null);
1602 >                                pred.next = new Node<V>(h, k, val, null);
1603                                  delta = 1;
1604 <                                if (count >= TREE_THRESHOLD)
1604 >                                if (len >= TREE_THRESHOLD)
1605                                      replaceWithTreeBin(tab, i, k);
1606                                  break;
1607                              }
1608                          }
1609                      }
1883                } finally {
1884                    if (!f.casHash(fh | LOCKED, fh)) {
1885                        f.hash = fh;
1886                        synchronized (f) { f.notifyAll(); };
1887                    }
1610                  }
1611 <                if (count != 0) {
1890 <                    if (tab.length <= 64)
1891 <                        count = 2;
1611 >                if (len != 0)
1612                      break;
1893                }
1613              }
1614          }
1615 <        if (delta != 0) {
1616 <            counter.add((long)delta);
1898 <            if (count > 1)
1899 <                checkForResize();
1900 <        }
1615 >        if (delta != 0)
1616 >            addCount((long)delta, len);
1617          return val;
1618      }
1619  
1620      /** Implementation for putAll */
1621 <    private final void internalPutAll(Map<?, ?> m) {
1621 >    @SuppressWarnings("unchecked") private final void internalPutAll
1622 >        (Map<? extends K, ? extends V> m) {
1623          tryPresize(m.size());
1624          long delta = 0L;     // number of uncommitted additions
1625          boolean npe = false; // to throw exception on exit for nulls
1626          try {                // to clean up counts on other exceptions
1627 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1628 <                Object k, v;
1627 >            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 >                Object k; V v;
1629                  if (entry == null || (k = entry.getKey()) == null ||
1630                      (v = entry.getValue()) == null) {
1631                      npe = true;
1632                      break;
1633                  }
1634                  int h = spread(k.hashCode());
1635 <                for (Node[] tab = table;;) {
1636 <                    int i; Node f; int fh; Object fk;
1635 >                for (Node<V>[] tab = table;;) {
1636 >                    int i; Node<V> f; int fh; Object fk;
1637                      if (tab == null)
1638                          tab = initTable();
1639                      else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1640 >                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641                              ++delta;
1642                              break;
1643                          }
1644                      }
1645 <                    else if ((fh = f.hash) == MOVED) {
1645 >                    else if ((fh = f.hash) < 0) {
1646                          if ((fk = f.key) instanceof TreeBin) {
1647 <                            TreeBin t = (TreeBin)fk;
1647 >                            TreeBin<V> t = (TreeBin<V>)fk;
1648                              boolean validated = false;
1649                              t.acquire(0);
1650                              try {
1651                                  if (tabAt(tab, i) == f) {
1652                                      validated = true;
1653 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
1653 >                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654                                      if (p != null)
1655                                          p.val = v;
1656                                      else {
# Line 1948 | Line 1665 | public class ConcurrentHashMap<K, V>
1665                                  break;
1666                          }
1667                          else
1668 <                            tab = (Node[])fk;
1952 <                    }
1953 <                    else if ((fh & LOCKED) != 0) {
1954 <                        counter.add(delta);
1955 <                        delta = 0L;
1956 <                        checkForResize();
1957 <                        f.tryAwaitLock(tab, i);
1668 >                            tab = (Node<V>[])fk;
1669                      }
1670 <                    else if (f.casHash(fh, fh | LOCKED)) {
1671 <                        int count = 0;
1672 <                        try {
1670 >                    else {
1671 >                        int len = 0;
1672 >                        synchronized (f) {
1673                              if (tabAt(tab, i) == f) {
1674 <                                count = 1;
1675 <                                for (Node e = f;; ++count) {
1676 <                                    Object ek, ev;
1677 <                                    if ((e.hash & HASH_BITS) == h &&
1674 >                                len = 1;
1675 >                                for (Node<V> e = f;; ++len) {
1676 >                                    Object ek; V ev;
1677 >                                    if (e.hash == h &&
1678                                          (ev = e.val) != null &&
1679                                          ((ek = e.key) == k || k.equals(ek))) {
1680                                          e.val = v;
1681                                          break;
1682                                      }
1683 <                                    Node last = e;
1683 >                                    Node<V> last = e;
1684                                      if ((e = e.next) == null) {
1685                                          ++delta;
1686 <                                        last.next = new Node(h, k, v, null);
1687 <                                        if (count >= TREE_THRESHOLD)
1686 >                                        last.next = new Node<V>(h, k, v, null);
1687 >                                        if (len >= TREE_THRESHOLD)
1688                                              replaceWithTreeBin(tab, i, k);
1689                                          break;
1690                                      }
1691                                  }
1692                              }
1982                        } finally {
1983                            if (!f.casHash(fh | LOCKED, fh)) {
1984                                f.hash = fh;
1985                                synchronized (f) { f.notifyAll(); };
1986                            }
1693                          }
1694 <                        if (count != 0) {
1695 <                            if (count > 1) {
1696 <                                counter.add(delta);
1694 >                        if (len != 0) {
1695 >                            if (len > 1) {
1696 >                                addCount(delta, len);
1697                                  delta = 0L;
1992                                checkForResize();
1698                              }
1699                              break;
1700                          }
# Line 1997 | Line 1702 | public class ConcurrentHashMap<K, V>
1702                  }
1703              }
1704          } finally {
1705 <            if (delta != 0)
1706 <                counter.add(delta);
1705 >            if (delta != 0L)
1706 >                addCount(delta, 2);
1707          }
1708          if (npe)
1709              throw new NullPointerException();
1710      }
1711  
1712 +    /**
1713 +     * Implementation for clear. Steps through each bin, removing all
1714 +     * nodes.
1715 +     */
1716 +    @SuppressWarnings("unchecked") private final void internalClear() {
1717 +        long delta = 0L; // negative number of deletions
1718 +        int i = 0;
1719 +        Node<V>[] tab = table;
1720 +        while (tab != null && i < tab.length) {
1721 +            Node<V> f = tabAt(tab, i);
1722 +            if (f == null)
1723 +                ++i;
1724 +            else if (f.hash < 0) {
1725 +                Object fk;
1726 +                if ((fk = f.key) instanceof TreeBin) {
1727 +                    TreeBin<V> t = (TreeBin<V>)fk;
1728 +                    t.acquire(0);
1729 +                    try {
1730 +                        if (tabAt(tab, i) == f) {
1731 +                            for (Node<V> p = t.first; p != null; p = p.next) {
1732 +                                if (p.val != null) { // (currently always true)
1733 +                                    p.val = null;
1734 +                                    --delta;
1735 +                                }
1736 +                            }
1737 +                            t.first = null;
1738 +                            t.root = null;
1739 +                            ++i;
1740 +                        }
1741 +                    } finally {
1742 +                        t.release(0);
1743 +                    }
1744 +                }
1745 +                else
1746 +                    tab = (Node<V>[])fk;
1747 +            }
1748 +            else {
1749 +                synchronized (f) {
1750 +                    if (tabAt(tab, i) == f) {
1751 +                        for (Node<V> e = f; e != null; e = e.next) {
1752 +                            if (e.val != null) {  // (currently always true)
1753 +                                e.val = null;
1754 +                                --delta;
1755 +                            }
1756 +                        }
1757 +                        setTabAt(tab, i, null);
1758 +                        ++i;
1759 +                    }
1760 +                }
1761 +            }
1762 +        }
1763 +        if (delta != 0L)
1764 +            addCount(delta, -1);
1765 +    }
1766 +
1767      /* ---------------- Table Initialization and Resizing -------------- */
1768  
1769      /**
# Line 2023 | Line 1783 | public class ConcurrentHashMap<K, V>
1783      /**
1784       * Initializes table, using the size recorded in sizeCtl.
1785       */
1786 <    private final Node[] initTable() {
1787 <        Node[] tab; int sc;
1786 >    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 >        Node<V>[] tab; int sc;
1788          while ((tab = table) == null) {
1789              if ((sc = sizeCtl) < 0)
1790                  Thread.yield(); // lost initialization race; just spin
1791 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1791 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792                  try {
1793                      if ((tab = table) == null) {
1794                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 <                        tab = table = new Node[n];
1795 >                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 >                        table = tab = (Node<V>[])tb;
1797                          sc = n - (n >>> 2);
1798                      }
1799                  } finally {
# Line 2045 | Line 1806 | public class ConcurrentHashMap<K, V>
1806      }
1807  
1808      /**
1809 <     * If table is too small and not already resizing, creates next
1810 <     * table and transfers bins.  Rechecks occupancy after a transfer
1811 <     * to see if another resize is already needed because resizings
1812 <     * are lagging additions.
1813 <     */
1814 <    private final void checkForResize() {
1815 <        Node[] tab; int n, sc;
1816 <        while ((tab = table) != null &&
1817 <               (n = tab.length) < MAXIMUM_CAPACITY &&
1818 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1819 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1820 <            try {
1821 <                if (tab == table) {
1822 <                    table = rebuild(tab);
1823 <                    sc = (n << 1) - (n >>> 1);
1809 >     * Adds to count, and if table is too small and not already
1810 >     * resizing, initiates transfer. If already resizing, helps
1811 >     * perform transfer if work is available.  Rechecks occupancy
1812 >     * after a transfer to see if another resize is already needed
1813 >     * because resizings are lagging additions.
1814 >     *
1815 >     * @param x the count to add
1816 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 >     */
1818 >    private final void addCount(long x, int check) {
1819 >        Cell[] as; long b, s;
1820 >        if ((as = counterCells) != null ||
1821 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 >            Cell a; long v; int m;
1823 >            boolean uncontended = true;
1824 >            if (as == null || (m = as.length - 1) < 0 ||
1825 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 >                !(uncontended =
1827 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 >                fullAddCount(x, uncontended);
1829 >                return;
1830 >            }
1831 >            if (check <= 1)
1832 >                return;
1833 >            s = sumCount();
1834 >        }
1835 >        if (check >= 0) {
1836 >            Node<V>[] tab, nt; int sc;
1837 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 >                   tab.length < MAXIMUM_CAPACITY) {
1839 >                if (sc < 0) {
1840 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1841 >                        (nt = nextTable) == null)
1842 >                        break;
1843 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 >                        transfer(tab, nt);
1845                  }
1846 <            } finally {
1847 <                sizeCtl = sc;
1846 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 >                    transfer(tab, null);
1848 >                s = sumCount();
1849              }
1850          }
1851      }
# Line 2072 | Line 1855 | public class ConcurrentHashMap<K, V>
1855       *
1856       * @param size number of elements (doesn't need to be perfectly accurate)
1857       */
1858 <    private final void tryPresize(int size) {
1858 >    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859          int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860              tableSizeFor(size + (size >>> 1) + 1);
1861          int sc;
1862          while ((sc = sizeCtl) >= 0) {
1863 <            Node[] tab = table; int n;
1863 >            Node<V>[] tab = table; int n;
1864              if (tab == null || (n = tab.length) == 0) {
1865                  n = (sc > c) ? sc : c;
1866 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1866 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867                      try {
1868                          if (table == tab) {
1869 <                            table = new Node[n];
1869 >                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 >                            table = (Node<V>[])tb;
1871                              sc = n - (n >>> 2);
1872                          }
1873                      } finally {
# Line 2093 | Line 1877 | public class ConcurrentHashMap<K, V>
1877              }
1878              else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879                  break;
1880 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1881 <                try {
1882 <                    if (table == tab) {
2099 <                        table = rebuild(tab);
2100 <                        sc = (n << 1) - (n >>> 1);
2101 <                    }
2102 <                } finally {
2103 <                    sizeCtl = sc;
2104 <                }
2105 <            }
1880 >            else if (tab == table &&
1881 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 >                transfer(tab, null);
1883          }
1884      }
1885  
1886 <    /*
1886 >    /**
1887       * Moves and/or copies the nodes in each bin to new table. See
1888       * above for explanation.
2112     *
2113     * @return the new table
1889       */
1890 <    private static final Node[] rebuild(Node[] tab) {
1891 <        int n = tab.length;
1892 <        Node[] nextTab = new Node[n << 1];
1893 <        Node fwd = new Node(MOVED, nextTab, null, null);
1894 <        int[] buffer = null;       // holds bins to revisit; null until needed
1895 <        Node rev = null;           // reverse forwarder; null until needed
1896 <        int nbuffered = 0;         // the number of bins in buffer list
1897 <        int bufferIndex = 0;       // buffer index of current buffered bin
1898 <        int bin = n - 1;           // current non-buffered bin or -1 if none
1899 <
1900 <        for (int i = bin;;) {      // start upwards sweep
1901 <            int fh; Node f;
1902 <            if ((f = tabAt(tab, i)) == null) {
1903 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
1904 <                    if (!casTabAt(tab, i, f, fwd))
1905 <                        continue;
1906 <                }
1907 <                else {             // transiently use a locked forwarding node
1908 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1909 <                    if (!casTabAt(tab, i, f, g))
1910 <                        continue;
1890 >    @SuppressWarnings("unchecked") private final void transfer
1891 >        (Node<V>[] tab, Node<V>[] nextTab) {
1892 >        int n = tab.length, stride;
1893 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 >        if (nextTab == null) {            // initiating
1896 >            try {
1897 >                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 >                nextTab = (Node<V>[])tb;
1899 >            } catch (Throwable ex) {      // try to cope with OOME
1900 >                sizeCtl = Integer.MAX_VALUE;
1901 >                return;
1902 >            }
1903 >            nextTable = nextTab;
1904 >            transferOrigin = n;
1905 >            transferIndex = n;
1906 >            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
1908 >                int nextk = (k > stride) ? k - stride : 0;
1909 >                for (int m = nextk; m < k; ++m)
1910 >                    nextTab[m] = rev;
1911 >                for (int m = n + nextk; m < n + k; ++m)
1912 >                    nextTab[m] = rev;
1913 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914 >            }
1915 >        }
1916 >        int nextn = nextTab.length;
1917 >        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 >        boolean advance = true;
1919 >        for (int i = 0, bound = 0;;) {
1920 >            int nextIndex, nextBound; Node<V> f; Object fk;
1921 >            while (advance) {
1922 >                if (--i >= bound)
1923 >                    advance = false;
1924 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 >                    i = -1;
1926 >                    advance = false;
1927 >                }
1928 >                else if (U.compareAndSwapInt
1929 >                         (this, TRANSFERINDEX, nextIndex,
1930 >                          nextBound = (nextIndex > stride ?
1931 >                                       nextIndex - stride : 0))) {
1932 >                    bound = nextBound;
1933 >                    i = nextIndex - 1;
1934 >                    advance = false;
1935 >                }
1936 >            }
1937 >            if (i < 0 || i >= n || i + n >= nextn) {
1938 >                for (int sc;;) {
1939 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 >                        if (sc == -1) {
1941 >                            nextTable = null;
1942 >                            table = nextTab;
1943 >                            sizeCtl = (n << 1) - (n >>> 1);
1944 >                        }
1945 >                        return;
1946 >                    }
1947 >                }
1948 >            }
1949 >            else if ((f = tabAt(tab, i)) == null) {
1950 >                if (casTabAt(tab, i, null, fwd)) {
1951                      setTabAt(nextTab, i, null);
1952                      setTabAt(nextTab, i + n, null);
1953 <                    setTabAt(tab, i, fwd);
2139 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2140 <                        g.hash = MOVED;
2141 <                        synchronized (g) { g.notifyAll(); }
2142 <                    }
1953 >                    advance = true;
1954                  }
1955              }
1956 <            else if ((fh = f.hash) == MOVED) {
1957 <                Object fk = f.key;
1958 <                if (fk instanceof TreeBin) {
1959 <                    TreeBin t = (TreeBin)fk;
1960 <                    boolean validated = false;
1961 <                    t.acquire(0);
1962 <                    try {
1963 <                        if (tabAt(tab, i) == f) {
1964 <                            validated = true;
1965 <                            splitTreeBin(nextTab, i, t);
1966 <                            setTabAt(tab, i, fwd);
1956 >            else if (f.hash >= 0) {
1957 >                synchronized (f) {
1958 >                    if (tabAt(tab, i) == f) {
1959 >                        int runBit = f.hash & n;
1960 >                        Node<V> lastRun = f, lo = null, hi = null;
1961 >                        for (Node<V> p = f.next; p != null; p = p.next) {
1962 >                            int b = p.hash & n;
1963 >                            if (b != runBit) {
1964 >                                runBit = b;
1965 >                                lastRun = p;
1966 >                            }
1967                          }
1968 <                    } finally {
1969 <                        t.release(0);
1968 >                        if (runBit == 0)
1969 >                            lo = lastRun;
1970 >                        else
1971 >                            hi = lastRun;
1972 >                        for (Node<V> p = f; p != lastRun; p = p.next) {
1973 >                            int ph = p.hash;
1974 >                            Object pk = p.key; V pv = p.val;
1975 >                            if ((ph & n) == 0)
1976 >                                lo = new Node<V>(ph, pk, pv, lo);
1977 >                            else
1978 >                                hi = new Node<V>(ph, pk, pv, hi);
1979 >                        }
1980 >                        setTabAt(nextTab, i, lo);
1981 >                        setTabAt(nextTab, i + n, hi);
1982 >                        setTabAt(tab, i, fwd);
1983 >                        advance = true;
1984                      }
2160                    if (!validated)
2161                        continue;
1985                  }
1986              }
1987 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1988 <                boolean validated = false;
1989 <                try {              // split to lo and hi lists; copying as needed
1987 >            else if ((fk = f.key) instanceof TreeBin) {
1988 >                TreeBin<V> t = (TreeBin<V>)fk;
1989 >                t.acquire(0);
1990 >                try {
1991                      if (tabAt(tab, i) == f) {
1992 <                        validated = true;
1993 <                        splitBin(nextTab, i, f);
1992 >                        TreeBin<V> lt = new TreeBin<V>();
1993 >                        TreeBin<V> ht = new TreeBin<V>();
1994 >                        int lc = 0, hc = 0;
1995 >                        for (Node<V> e = t.first; e != null; e = e.next) {
1996 >                            int h = e.hash;
1997 >                            Object k = e.key; V v = e.val;
1998 >                            if ((h & n) == 0) {
1999 >                                ++lc;
2000 >                                lt.putTreeNode(h, k, v);
2001 >                            }
2002 >                            else {
2003 >                                ++hc;
2004 >                                ht.putTreeNode(h, k, v);
2005 >                            }
2006 >                        }
2007 >                        Node<V> ln, hn; // throw away trees if too small
2008 >                        if (lc < TREE_THRESHOLD) {
2009 >                            ln = null;
2010 >                            for (Node<V> p = lt.first; p != null; p = p.next)
2011 >                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 >                        }
2013 >                        else
2014 >                            ln = new Node<V>(MOVED, lt, null, null);
2015 >                        setTabAt(nextTab, i, ln);
2016 >                        if (hc < TREE_THRESHOLD) {
2017 >                            hn = null;
2018 >                            for (Node<V> p = ht.first; p != null; p = p.next)
2019 >                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 >                        }
2021 >                        else
2022 >                            hn = new Node<V>(MOVED, ht, null, null);
2023 >                        setTabAt(nextTab, i + n, hn);
2024                          setTabAt(tab, i, fwd);
2025 +                        advance = true;
2026                      }
2027                  } finally {
2028 <                    if (!f.casHash(fh | LOCKED, fh)) {
2174 <                        f.hash = fh;
2175 <                        synchronized (f) { f.notifyAll(); };
2176 <                    }
2028 >                    t.release(0);
2029                  }
2178                if (!validated)
2179                    continue;
2180            }
2181            else {
2182                if (buffer == null) // initialize buffer for revisits
2183                    buffer = new int[TRANSFER_BUFFER_SIZE];
2184                if (bin < 0 && bufferIndex > 0) {
2185                    int j = buffer[--bufferIndex];
2186                    buffer[bufferIndex] = i;
2187                    i = j;         // swap with another bin
2188                    continue;
2189                }
2190                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2191                    f.tryAwaitLock(tab, i);
2192                    continue;      // no other options -- block
2193                }
2194                if (rev == null)   // initialize reverse-forwarder
2195                    rev = new Node(MOVED, tab, null, null);
2196                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2197                    continue;      // recheck before adding to list
2198                buffer[nbuffered++] = i;
2199                setTabAt(nextTab, i, rev);     // install place-holders
2200                setTabAt(nextTab, i + n, rev);
2201            }
2202
2203            if (bin > 0)
2204                i = --bin;
2205            else if (buffer != null && nbuffered > 0) {
2206                bin = -1;
2207                i = buffer[bufferIndex = --nbuffered];
2030              }
2031              else
2032 <                return nextTab;
2032 >                advance = true; // already processed
2033          }
2034      }
2035  
2036 <    /**
2215 <     * Splits a normal bin with list headed by e into lo and hi parts;
2216 <     * installs in given table.
2217 <     */
2218 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2219 <        int bit = nextTab.length >>> 1; // bit to split on
2220 <        int runBit = e.hash & bit;
2221 <        Node lastRun = e, lo = null, hi = null;
2222 <        for (Node p = e.next; p != null; p = p.next) {
2223 <            int b = p.hash & bit;
2224 <            if (b != runBit) {
2225 <                runBit = b;
2226 <                lastRun = p;
2227 <            }
2228 <        }
2229 <        if (runBit == 0)
2230 <            lo = lastRun;
2231 <        else
2232 <            hi = lastRun;
2233 <        for (Node p = e; p != lastRun; p = p.next) {
2234 <            int ph = p.hash & HASH_BITS;
2235 <            Object pk = p.key, pv = p.val;
2236 <            if ((ph & bit) == 0)
2237 <                lo = new Node(ph, pk, pv, lo);
2238 <            else
2239 <                hi = new Node(ph, pk, pv, hi);
2240 <        }
2241 <        setTabAt(nextTab, i, lo);
2242 <        setTabAt(nextTab, i + bit, hi);
2243 <    }
2036 >    /* ---------------- Counter support -------------- */
2037  
2038 <    /**
2039 <     * Splits a tree bin into lo and hi parts; installs in given table.
2040 <     */
2041 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2042 <        int bit = nextTab.length >>> 1;
2043 <        TreeBin lt = new TreeBin();
2044 <        TreeBin ht = new TreeBin();
2252 <        int lc = 0, hc = 0;
2253 <        for (Node e = t.first; e != null; e = e.next) {
2254 <            int h = e.hash & HASH_BITS;
2255 <            Object k = e.key, v = e.val;
2256 <            if ((h & bit) == 0) {
2257 <                ++lc;
2258 <                lt.putTreeNode(h, k, v);
2259 <            }
2260 <            else {
2261 <                ++hc;
2262 <                ht.putTreeNode(h, k, v);
2038 >    final long sumCount() {
2039 >        Cell[] as = counterCells; Cell a;
2040 >        long sum = baseCount;
2041 >        if (as != null) {
2042 >            for (int i = 0; i < as.length; ++i) {
2043 >                if ((a = as[i]) != null)
2044 >                    sum += a.value;
2045              }
2046          }
2047 <        Node ln, hn; // throw away trees if too small
2266 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2267 <            ln = null;
2268 <            for (Node p = lt.first; p != null; p = p.next)
2269 <                ln = new Node(p.hash, p.key, p.val, ln);
2270 <        }
2271 <        else
2272 <            ln = new Node(MOVED, lt, null, null);
2273 <        setTabAt(nextTab, i, ln);
2274 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2275 <            hn = null;
2276 <            for (Node p = ht.first; p != null; p = p.next)
2277 <                hn = new Node(p.hash, p.key, p.val, hn);
2278 <        }
2279 <        else
2280 <            hn = new Node(MOVED, ht, null, null);
2281 <        setTabAt(nextTab, i + bit, hn);
2047 >        return sum;
2048      }
2049  
2050 <    /**
2051 <     * Implementation for clear. Steps through each bin, removing all
2052 <     * nodes.
2053 <     */
2054 <    private final void internalClear() {
2055 <        long delta = 0L; // negative number of deletions
2056 <        int i = 0;
2057 <        Node[] tab = table;
2058 <        while (tab != null && i < tab.length) {
2059 <            int fh; Object fk;
2060 <            Node f = tabAt(tab, i);
2061 <            if (f == null)
2062 <                ++i;
2063 <            else if ((fh = f.hash) == MOVED) {
2064 <                if ((fk = f.key) instanceof TreeBin) {
2065 <                    TreeBin t = (TreeBin)fk;
2066 <                    t.acquire(0);
2067 <                    try {
2068 <                        if (tabAt(tab, i) == f) {
2069 <                            for (Node p = t.first; p != null; p = p.next) {
2070 <                                if (p.val != null) { // (currently always true)
2071 <                                    p.val = null;
2072 <                                    --delta;
2050 >    // See LongAdder version for explanation
2051 >    private final void fullAddCount(long x, boolean wasUncontended) {
2052 >        int h;
2053 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 >            ThreadLocalRandom.localInit();      // force initialization
2055 >            h = ThreadLocalRandom.getProbe();
2056 >            wasUncontended = true;
2057 >        }
2058 >        boolean collide = false;                // True if last slot nonempty
2059 >        for (;;) {
2060 >            Cell[] as; Cell a; int n; long v;
2061 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2062 >                if ((a = as[(n - 1) & h]) == null) {
2063 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2064 >                        Cell r = new Cell(x); // Optimistic create
2065 >                        if (cellsBusy == 0 &&
2066 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 >                            boolean created = false;
2068 >                            try {               // Recheck under lock
2069 >                                Cell[] rs; int m, j;
2070 >                                if ((rs = counterCells) != null &&
2071 >                                    (m = rs.length) > 0 &&
2072 >                                    rs[j = (m - 1) & h] == null) {
2073 >                                    rs[j] = r;
2074 >                                    created = true;
2075                                  }
2076 +                            } finally {
2077 +                                cellsBusy = 0;
2078                              }
2079 <                            t.first = null;
2080 <                            t.root = null;
2081 <                            ++i;
2079 >                            if (created)
2080 >                                break;
2081 >                            continue;           // Slot is now non-empty
2082 >                        }
2083 >                    }
2084 >                    collide = false;
2085 >                }
2086 >                else if (!wasUncontended)       // CAS already known to fail
2087 >                    wasUncontended = true;      // Continue after rehash
2088 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 >                    break;
2090 >                else if (counterCells != as || n >= NCPU)
2091 >                    collide = false;            // At max size or stale
2092 >                else if (!collide)
2093 >                    collide = true;
2094 >                else if (cellsBusy == 0 &&
2095 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 >                    try {
2097 >                        if (counterCells == as) {// Expand table unless stale
2098 >                            Cell[] rs = new Cell[n << 1];
2099 >                            for (int i = 0; i < n; ++i)
2100 >                                rs[i] = as[i];
2101 >                            counterCells = rs;
2102                          }
2103                      } finally {
2104 <                        t.release(0);
2104 >                        cellsBusy = 0;
2105                      }
2106 +                    collide = false;
2107 +                    continue;                   // Retry with expanded table
2108                  }
2109 <                else
2318 <                    tab = (Node[])fk;
2109 >                h = ThreadLocalRandom.advanceProbe(h);
2110              }
2111 <            else if ((fh & LOCKED) != 0) {
2112 <                counter.add(delta); // opportunistically update count
2113 <                delta = 0L;
2114 <                f.tryAwaitLock(tab, i);
2115 <            }
2116 <            else if (f.casHash(fh, fh | LOCKED)) {
2117 <                try {
2118 <                    if (tabAt(tab, i) == f) {
2119 <                        for (Node e = f; e != null; e = e.next) {
2329 <                            if (e.val != null) {  // (currently always true)
2330 <                                e.val = null;
2331 <                                --delta;
2332 <                            }
2333 <                        }
2334 <                        setTabAt(tab, i, null);
2335 <                        ++i;
2111 >            else if (cellsBusy == 0 && counterCells == as &&
2112 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 >                boolean init = false;
2114 >                try {                           // Initialize table
2115 >                    if (counterCells == as) {
2116 >                        Cell[] rs = new Cell[2];
2117 >                        rs[h & 1] = new Cell(x);
2118 >                        counterCells = rs;
2119 >                        init = true;
2120                      }
2121                  } finally {
2122 <                    if (!f.casHash(fh | LOCKED, fh)) {
2339 <                        f.hash = fh;
2340 <                        synchronized (f) { f.notifyAll(); };
2341 <                    }
2122 >                    cellsBusy = 0;
2123                  }
2124 +                if (init)
2125 +                    break;
2126              }
2127 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 +                break;                          // Fall back on using base
2129          }
2345        if (delta != 0)
2346            counter.add(delta);
2130      }
2131  
2132      /* ----------------Table Traversal -------------- */
# Line 2386 | Line 2169 | public class ConcurrentHashMap<K, V>
2169       * across threads, iteration terminates if a bounds checks fails
2170       * for a table read.
2171       *
2172 <     * This class extends ForkJoinTask to streamline parallel
2173 <     * iteration in bulk operations (see BulkTask). This adds only an
2174 <     * int of space overhead, which is close enough to negligible in
2175 <     * cases where it is not needed to not worry about it.  Because
2176 <     * ForkJoinTask is Serializable, but iterators need not be, we
2177 <     * need to add warning suppressions.
2172 >     * This class supports both Spliterator-based traversal and
2173 >     * CountedCompleter-based bulk tasks. The same "batch" field is
2174 >     * used, but in slightly different ways, in the two cases.  For
2175 >     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 >     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 >     * size that halves down to zero for leaf tasks, that is only
2178 >     * computed upon execution of the task. (Tasks can be submitted to
2179 >     * any pool, of any size, so we don't know scale factors until
2180 >     * running.)
2181 >     *
2182 >     * This class extends CountedCompleter to streamline parallel
2183 >     * iteration in bulk operations. This adds only a few fields of
2184 >     * space overhead, which is small enough in cases where it is not
2185 >     * needed to not worry about it.  Because CountedCompleter is
2186 >     * Serializable, but iterators need not be, we need to add warning
2187 >     * suppressions.
2188       */
2189 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2189 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 >        extends CountedCompleter<R> {
2191          final ConcurrentHashMap<K, V> map;
2192 <        Node next;           // the next entry to use
2193 <        Object nextKey;      // cached key field of next
2194 <        Object nextVal;      // cached val field of next
2195 <        Node[] tab;          // current table; updated if resized
2192 >        Node<V> next;        // the next entry to use
2193 >        K nextKey;           // cached key field of next
2194 >        V nextVal;           // cached val field of next
2195 >        Node<V>[] tab;       // current table; updated if resized
2196          int index;           // index of bin to use next
2197          int baseIndex;       // current index of initial table
2198          int baseLimit;       // index bound for initial table
2199          int baseSize;        // initial table size
2200 <
2200 >        int batch;           // split control
2201          /** Creates iterator for all entries in the table. */
2202          Traverser(ConcurrentHashMap<K, V> map) {
2203              this.map = map;
2204 +            Node<V>[] t;
2205 +            if ((t = tab = map.table) != null)
2206 +                baseLimit = baseSize = t.length;
2207          }
2208  
2209 <        /** Creates iterator for split() methods */
2210 <        Traverser(Traverser<K,V,?> it) {
2211 <            ConcurrentHashMap<K, V> m; Node[] t;
2212 <            if ((m = this.map = it.map) == null)
2213 <                t = null;
2214 <            else if ((t = it.tab) == null && // force parent tab initialization
2215 <                     (t = it.tab = m.table) != null)
2216 <                it.baseLimit = it.baseSize = t.length;
2217 <            this.tab = t;
2218 <            this.baseSize = it.baseSize;
2219 <            it.baseLimit = this.index = this.baseIndex =
2220 <                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2209 >        /** Task constructor */
2210 >        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 >            super(it);
2212 >            this.map = map;
2213 >            this.batch = batch; // -1 if unknown
2214 >            if (it == null) {
2215 >                Node<V>[] t;
2216 >                if ((t = tab = map.table) != null)
2217 >                    baseLimit = baseSize = t.length;
2218 >            }
2219 >            else { // split parent
2220 >                this.tab = it.tab;
2221 >                this.baseSize = it.baseSize;
2222 >                int hi = this.baseLimit = it.baseLimit;
2223 >                it.baseLimit = this.index = this.baseIndex =
2224 >                    (hi + it.baseIndex + 1) >>> 1;
2225 >            }
2226 >        }
2227 >
2228 >        /** Spliterator constructor */
2229 >        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 >            super(it);
2231 >            this.map = map;
2232 >            if (it == null) {
2233 >                Node<V>[] t;
2234 >                if ((t = tab = map.table) != null)
2235 >                    baseLimit = baseSize = t.length;
2236 >                long n = map.sumCount();
2237 >                batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 >                         (int)n);
2239 >            }
2240 >            else {
2241 >                this.tab = it.tab;
2242 >                this.baseSize = it.baseSize;
2243 >                int hi = this.baseLimit = it.baseLimit;
2244 >                it.baseLimit = this.index = this.baseIndex =
2245 >                    (hi + it.baseIndex + 1) >>> 1;
2246 >                this.batch = it.batch >>>= 1;
2247 >            }
2248          }
2249  
2250          /**
2251           * Advances next; returns nextVal or null if terminated.
2252           * See above for explanation.
2253           */
2254 <        final Object advance() {
2255 <            Node e = next;
2256 <            Object ev = null;
2254 >        @SuppressWarnings("unchecked") final V advance() {
2255 >            Node<V> e = next;
2256 >            V ev = null;
2257              outer: do {
2258                  if (e != null)                  // advance past used/skipped node
2259                      e = e.next;
2260                  while (e == null) {             // get to next non-null bin
2261                      ConcurrentHashMap<K, V> m;
2262 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2262 >                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2263                      if ((t = tab) != null)
2264                          n = t.length;
2265                      else if ((m = map) != null && (t = tab = m.table) != null)
# Line 2445 | Line 2269 | public class ConcurrentHashMap<K, V>
2269                      if ((b = baseIndex) >= baseLimit ||
2270                          (i = index) < 0 || i >= n)
2271                          break outer;
2272 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2272 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273                          if ((ek = e.key) instanceof TreeBin)
2274 <                            e = ((TreeBin)ek).first;
2274 >                            e = ((TreeBin<V>)ek).first;
2275                          else {
2276 <                            tab = (Node[])ek;
2276 >                            tab = (Node<V>[])ek;
2277                              continue;           // restarts due to null val
2278                          }
2279                      }                           // visit upper slots if present
2280                      index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281                  }
2282 <                nextKey = e.key;
2282 >                nextKey = (K)e.key;
2283              } while ((ev = e.val) == null);    // skip deleted or special nodes
2284              next = e;
2285              return nextVal = ev;
2286          }
2287  
2288          public final void remove() {
2289 <            Object k = nextKey;
2289 >            K k = nextKey;
2290              if (k == null && (advance() == null || (k = nextKey) == null))
2291                  throw new IllegalStateException();
2292              map.internalReplace(k, null, null);
# Line 2473 | Line 2297 | public class ConcurrentHashMap<K, V>
2297          }
2298  
2299          public final boolean hasMoreElements() { return hasNext(); }
2300 <        public final void setRawResult(Object x) { }
2301 <        public R getRawResult() { return null; }
2302 <        public boolean exec() { return true; }
2300 >
2301 >        public void compute() { } // default no-op CountedCompleter body
2302 >
2303 >        /**
2304 >         * Returns a batch value > 0 if this task should (and must) be
2305 >         * split, if so, adding to pending count, and in any case
2306 >         * updating batch value. The initial batch value is approx
2307 >         * exp2 of the number of times (minus one) to split task by
2308 >         * two before executing leaf action. This value is faster to
2309 >         * compute and more convenient to use as a guide to splitting
2310 >         * than is the depth, since it is used while dividing by two
2311 >         * anyway.
2312 >         */
2313 >        final int preSplit() {
2314 >            int b;  ForkJoinPool pool;
2315 >            if ((b = batch) < 0) { // force initialization
2316 >                int sp = (((pool = getPool()) == null) ?
2317 >                          ForkJoinPool.getCommonPoolParallelism() :
2318 >                          pool.getParallelism()) << 3; // slack of 8
2319 >                long n = map.sumCount();
2320 >                b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 >            }
2322 >            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 >            if ((batch = b) > 0)
2324 >                addToPendingCount(1);
2325 >            return b;
2326 >        }
2327 >
2328 >        // spliterator support
2329 >
2330 >        public boolean hasExactSize() {
2331 >            return false;
2332 >        }
2333 >
2334 >        public boolean hasExactSplits() {
2335 >            return false;
2336 >        }
2337 >
2338 >        public long estimateSize() {
2339 >            return batch;
2340 >        }
2341      }
2342  
2343      /* ---------------- Public operations -------------- */
# Line 2484 | Line 2346 | public class ConcurrentHashMap<K, V>
2346       * Creates a new, empty map with the default initial table size (16).
2347       */
2348      public ConcurrentHashMap() {
2487        this.counter = new LongAdder();
2349      }
2350  
2351      /**
# Line 2503 | Line 2364 | public class ConcurrentHashMap<K, V>
2364          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365                     MAXIMUM_CAPACITY :
2366                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2506        this.counter = new LongAdder();
2367          this.sizeCtl = cap;
2368      }
2369  
# Line 2513 | Line 2373 | public class ConcurrentHashMap<K, V>
2373       * @param m the map
2374       */
2375      public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2516        this.counter = new LongAdder();
2376          this.sizeCtl = DEFAULT_CAPACITY;
2377          internalPutAll(m);
2378      }
# Line 2564 | Line 2423 | public class ConcurrentHashMap<K, V>
2423          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2567        this.counter = new LongAdder();
2426          this.sizeCtl = cap;
2427      }
2428  
# Line 2575 | Line 2433 | public class ConcurrentHashMap<K, V>
2433       * @return the new set
2434       */
2435      public static <K> KeySetView<K,Boolean> newKeySet() {
2436 <        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2437 <                                      Boolean.TRUE);
2436 >        return new KeySetView<K,Boolean>
2437 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2438      }
2439  
2440      /**
# Line 2590 | Line 2448 | public class ConcurrentHashMap<K, V>
2448       * @return the new set
2449       */
2450      public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 <        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(initialCapacity),
2452 <                                      Boolean.TRUE);
2451 >        return new KeySetView<K,Boolean>
2452 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453      }
2454  
2455      /**
2456       * {@inheritDoc}
2457       */
2458      public boolean isEmpty() {
2459 <        return counter.sum() <= 0L; // ignore transient negative values
2459 >        return sumCount() <= 0L; // ignore transient negative values
2460      }
2461  
2462      /**
2463       * {@inheritDoc}
2464       */
2465      public int size() {
2466 <        long n = counter.sum();
2466 >        long n = sumCount();
2467          return ((n < 0L) ? 0 :
2468                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469                  (int)n);
# Line 2615 | Line 2473 | public class ConcurrentHashMap<K, V>
2473       * Returns the number of mappings. This method should be used
2474       * instead of {@link #size} because a ConcurrentHashMap may
2475       * contain more mappings than can be represented as an int. The
2476 <     * value returned is a snapshot; the actual count may differ if
2477 <     * there are ongoing concurrent insertions or removals.
2476 >     * value returned is an estimate; the actual count may differ if
2477 >     * there are concurrent insertions or removals.
2478       *
2479       * @return the number of mappings
2480       */
2481      public long mappingCount() {
2482 <        long n = counter.sum();
2482 >        long n = sumCount();
2483          return (n < 0L) ? 0L : n; // ignore transient negative values
2484      }
2485  
# Line 2636 | Line 2494 | public class ConcurrentHashMap<K, V>
2494       *
2495       * @throws NullPointerException if the specified key is null
2496       */
2497 <    @SuppressWarnings("unchecked") public V get(Object key) {
2498 <        if (key == null)
2641 <            throw new NullPointerException();
2642 <        return (V)internalGet(key);
2497 >    public V get(Object key) {
2498 >        return internalGet(key);
2499      }
2500  
2501      /**
# Line 2652 | Line 2508 | public class ConcurrentHashMap<K, V>
2508       * @return the mapping for the key, if present; else the defaultValue
2509       * @throws NullPointerException if the specified key is null
2510       */
2511 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2512 <        if (key == null)
2513 <            throw new NullPointerException();
2658 <        V v = (V) internalGet(key);
2659 <        return v == null ? defaultValue : v;
2511 >    public V getValueOrDefault(Object key, V defaultValue) {
2512 >        V v;
2513 >        return (v = internalGet(key)) == null ? defaultValue : v;
2514      }
2515  
2516      /**
# Line 2669 | Line 2523 | public class ConcurrentHashMap<K, V>
2523       * @throws NullPointerException if the specified key is null
2524       */
2525      public boolean containsKey(Object key) {
2672        if (key == null)
2673            throw new NullPointerException();
2526          return internalGet(key) != null;
2527      }
2528  
# Line 2687 | Line 2539 | public class ConcurrentHashMap<K, V>
2539      public boolean containsValue(Object value) {
2540          if (value == null)
2541              throw new NullPointerException();
2542 <        Object v;
2542 >        V v;
2543          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544          while ((v = it.advance()) != null) {
2545              if (v == value || value.equals(v))
# Line 2699 | Line 2551 | public class ConcurrentHashMap<K, V>
2551      /**
2552       * Legacy method testing if some key maps into the specified value
2553       * in this table.  This method is identical in functionality to
2554 <     * {@link #containsValue}, and exists solely to ensure
2554 >     * {@link #containsValue(Object)}, and exists solely to ensure
2555       * full compatibility with class {@link java.util.Hashtable},
2556       * which supported this method prior to introduction of the
2557       * Java Collections framework.
# Line 2711 | Line 2563 | public class ConcurrentHashMap<K, V>
2563       *         {@code false} otherwise
2564       * @throws NullPointerException if the specified value is null
2565       */
2566 <    public boolean contains(Object value) {
2566 >    @Deprecated public boolean contains(Object value) {
2567          return containsValue(value);
2568      }
2569  
# Line 2719 | Line 2571 | public class ConcurrentHashMap<K, V>
2571       * Maps the specified key to the specified value in this table.
2572       * Neither the key nor the value can be null.
2573       *
2574 <     * <p> The value can be retrieved by calling the {@code get} method
2574 >     * <p>The value can be retrieved by calling the {@code get} method
2575       * with a key that is equal to the original key.
2576       *
2577       * @param key key with which the specified value is to be associated
# Line 2728 | Line 2580 | public class ConcurrentHashMap<K, V>
2580       *         {@code null} if there was no mapping for {@code key}
2581       * @throws NullPointerException if the specified key or value is null
2582       */
2583 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
2584 <        if (key == null || value == null)
2733 <            throw new NullPointerException();
2734 <        return (V)internalPut(key, value);
2583 >    public V put(K key, V value) {
2584 >        return internalPut(key, value, false);
2585      }
2586  
2587      /**
# Line 2741 | Line 2591 | public class ConcurrentHashMap<K, V>
2591       *         or {@code null} if there was no mapping for the key
2592       * @throws NullPointerException if the specified key or value is null
2593       */
2594 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2595 <        if (key == null || value == null)
2746 <            throw new NullPointerException();
2747 <        return (V)internalPutIfAbsent(key, value);
2594 >    public V putIfAbsent(K key, V value) {
2595 >        return internalPut(key, value, true);
2596      }
2597  
2598      /**
# Line 2759 | Line 2607 | public class ConcurrentHashMap<K, V>
2607      }
2608  
2609      /**
2610 <     * If the specified key is not already associated with a value,
2611 <     * computes its value using the given mappingFunction and enters
2612 <     * it into the map unless null.  This is equivalent to
2613 <     * <pre> {@code
2614 <     * if (map.containsKey(key))
2615 <     *   return map.get(key);
2616 <     * value = mappingFunction.apply(key);
2617 <     * if (value != null)
2618 <     *   map.put(key, value);
2771 <     * return value;}</pre>
2772 <     *
2773 <     * except that the action is performed atomically.  If the
2774 <     * function returns {@code null} no mapping is recorded. If the
2775 <     * function itself throws an (unchecked) exception, the exception
2776 <     * is rethrown to its caller, and no mapping is recorded.  Some
2777 <     * attempted update operations on this map by other threads may be
2778 <     * blocked while computation is in progress, so the computation
2779 <     * should be short and simple, and must not attempt to update any
2780 <     * other mappings of this Map. The most appropriate usage is to
2781 <     * construct a new object serving as an initial mapped value, or
2782 <     * memoized result, as in:
2783 <     *
2784 <     *  <pre> {@code
2785 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2786 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2610 >     * If the specified key is not already associated with a value (or
2611 >     * is mapped to {@code null}), attempts to compute its value using
2612 >     * the given mapping function and enters it into this map unless
2613 >     * {@code null}. The entire method invocation is performed
2614 >     * atomically, so the function is applied at most once per key.
2615 >     * Some attempted update operations on this map by other threads
2616 >     * may be blocked while computation is in progress, so the
2617 >     * computation should be short and simple, and must not attempt to
2618 >     * update any other mappings of this Map.
2619       *
2620       * @param key key with which the specified value is to be associated
2621       * @param mappingFunction the function to compute a value
# Line 2797 | Line 2629 | public class ConcurrentHashMap<K, V>
2629       * @throws RuntimeException or Error if the mappingFunction does so,
2630       *         in which case the mapping is left unestablished
2631       */
2632 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2633 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
2634 <        if (key == null || mappingFunction == null)
2803 <            throw new NullPointerException();
2804 <        return (V)internalComputeIfAbsent(key, mappingFunction);
2632 >    public V computeIfAbsent
2633 >        (K key, Function<? super K, ? extends V> mappingFunction) {
2634 >        return internalComputeIfAbsent(key, mappingFunction);
2635      }
2636  
2637      /**
2638 <     * If the given key is present, computes a new mapping value given a key and
2639 <     * its current mapped value. This is equivalent to
2640 <     *  <pre> {@code
2641 <     *   if (map.containsKey(key)) {
2812 <     *     value = remappingFunction.apply(key, map.get(key));
2813 <     *     if (value != null)
2814 <     *       map.put(key, value);
2815 <     *     else
2816 <     *       map.remove(key);
2817 <     *   }
2818 <     * }</pre>
2819 <     *
2820 <     * except that the action is performed atomically.  If the
2821 <     * function returns {@code null}, the mapping is removed.  If the
2822 <     * function itself throws an (unchecked) exception, the exception
2823 <     * is rethrown to its caller, and the current mapping is left
2824 <     * unchanged.  Some attempted update operations on this map by
2638 >     * If the value for the specified key is present and non-null,
2639 >     * attempts to compute a new mapping given the key and its current
2640 >     * mapped value.  The entire method invocation is performed
2641 >     * atomically.  Some attempted update operations on this map by
2642       * other threads may be blocked while computation is in progress,
2643       * so the computation should be short and simple, and must not
2644 <     * attempt to update any other mappings of this Map. For example,
2828 <     * to either create or append new messages to a value mapping:
2644 >     * attempt to update any other mappings of this Map.
2645       *
2646       * @param key key with which the specified value is to be associated
2647       * @param remappingFunction the function to compute a value
# Line 2838 | Line 2654 | public class ConcurrentHashMap<K, V>
2654       * @throws RuntimeException or Error if the remappingFunction does so,
2655       *         in which case the mapping is unchanged
2656       */
2657 <    @SuppressWarnings("unchecked") public V computeIfPresent
2658 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2659 <        if (key == null || remappingFunction == null)
2844 <            throw new NullPointerException();
2845 <        return (V)internalCompute(key, true, remappingFunction);
2657 >    public V computeIfPresent
2658 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 >        return internalCompute(key, true, remappingFunction);
2660      }
2661  
2662      /**
2663 <     * Computes a new mapping value given a key and
2664 <     * its current mapped value (or {@code null} if there is no current
2665 <     * mapping). This is equivalent to
2666 <     *  <pre> {@code
2667 <     *   value = remappingFunction.apply(key, map.get(key));
2668 <     *   if (value != null)
2669 <     *     map.put(key, value);
2856 <     *   else
2857 <     *     map.remove(key);
2858 <     * }</pre>
2859 <     *
2860 <     * except that the action is performed atomically.  If the
2861 <     * function returns {@code null}, the mapping is removed.  If the
2862 <     * function itself throws an (unchecked) exception, the exception
2863 <     * is rethrown to its caller, and the current mapping is left
2864 <     * unchanged.  Some attempted update operations on this map by
2865 <     * other threads may be blocked while computation is in progress,
2866 <     * so the computation should be short and simple, and must not
2867 <     * attempt to update any other mappings of this Map. For example,
2868 <     * to either create or append new messages to a value mapping:
2869 <     *
2870 <     * <pre> {@code
2871 <     * Map<Key, String> map = ...;
2872 <     * final String msg = ...;
2873 <     * map.compute(key, new BiFun<Key, String, String>() {
2874 <     *   public String apply(Key k, String v) {
2875 <     *    return (v == null) ? msg : v + msg;});}}</pre>
2663 >     * Attempts to compute a mapping for the specified key and its
2664 >     * current mapped value (or {@code null} if there is no current
2665 >     * mapping). The entire method invocation is performed atomically.
2666 >     * Some attempted update operations on this map by other threads
2667 >     * may be blocked while computation is in progress, so the
2668 >     * computation should be short and simple, and must not attempt to
2669 >     * update any other mappings of this Map.
2670       *
2671       * @param key key with which the specified value is to be associated
2672       * @param remappingFunction the function to compute a value
# Line 2885 | Line 2679 | public class ConcurrentHashMap<K, V>
2679       * @throws RuntimeException or Error if the remappingFunction does so,
2680       *         in which case the mapping is unchanged
2681       */
2682 <    @SuppressWarnings("unchecked") public V compute
2683 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2684 <        if (key == null || remappingFunction == null)
2891 <            throw new NullPointerException();
2892 <        return (V)internalCompute(key, false, remappingFunction);
2682 >    public V compute
2683 >        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 >        return internalCompute(key, false, remappingFunction);
2685      }
2686  
2687      /**
2688 <     * If the specified key is not already associated
2689 <     * with a value, associate it with the given value.
2690 <     * Otherwise, replace the value with the results of
2691 <     * the given remapping function. This is equivalent to:
2692 <     *  <pre> {@code
2693 <     *   if (!map.containsKey(key))
2694 <     *     map.put(value);
2695 <     *   else {
2696 <     *     newValue = remappingFunction.apply(map.get(key), value);
2697 <     *     if (value != null)
2698 <     *       map.put(key, value);
2699 <     *     else
2700 <     *       map.remove(key);
2701 <     *   }
2702 <     * }</pre>
2703 <     * except that the action is performed atomically.  If the
2704 <     * function returns {@code null}, the mapping is removed.  If the
2705 <     * function itself throws an (unchecked) exception, the exception
2914 <     * is rethrown to its caller, and the current mapping is left
2915 <     * unchanged.  Some attempted update operations on this map by
2916 <     * other threads may be blocked while computation is in progress,
2917 <     * so the computation should be short and simple, and must not
2918 <     * attempt to update any other mappings of this Map.
2688 >     * If the specified key is not already associated with a
2689 >     * (non-null) value, associates it with the given value.
2690 >     * Otherwise, replaces the value with the results of the given
2691 >     * remapping function, or removes if {@code null}. The entire
2692 >     * method invocation is performed atomically.  Some attempted
2693 >     * update operations on this map by other threads may be blocked
2694 >     * while computation is in progress, so the computation should be
2695 >     * short and simple, and must not attempt to update any other
2696 >     * mappings of this Map.
2697 >     *
2698 >     * @param key key with which the specified value is to be associated
2699 >     * @param value the value to use if absent
2700 >     * @param remappingFunction the function to recompute a value if present
2701 >     * @return the new value associated with the specified key, or null if none
2702 >     * @throws NullPointerException if the specified key or the
2703 >     *         remappingFunction is null
2704 >     * @throws RuntimeException or Error if the remappingFunction does so,
2705 >     *         in which case the mapping is unchanged
2706       */
2707 <    @SuppressWarnings("unchecked") public V merge
2708 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2709 <        if (key == null || value == null || remappingFunction == null)
2710 <            throw new NullPointerException();
2924 <        return (V)internalMerge(key, value, remappingFunction);
2707 >    public V merge
2708 >        (K key, V value,
2709 >         BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 >        return internalMerge(key, value, remappingFunction);
2711      }
2712  
2713      /**
# Line 2933 | Line 2719 | public class ConcurrentHashMap<K, V>
2719       *         {@code null} if there was no mapping for {@code key}
2720       * @throws NullPointerException if the specified key is null
2721       */
2722 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2723 <        if (key == null)
2938 <            throw new NullPointerException();
2939 <        return (V)internalReplace(key, null, null);
2722 >    public V remove(Object key) {
2723 >        return internalReplace(key, null, null);
2724      }
2725  
2726      /**
# Line 2947 | Line 2731 | public class ConcurrentHashMap<K, V>
2731      public boolean remove(Object key, Object value) {
2732          if (key == null)
2733              throw new NullPointerException();
2734 <        if (value == null)
2951 <            return false;
2952 <        return internalReplace(key, null, value) != null;
2734 >        return value != null && internalReplace(key, null, value) != null;
2735      }
2736  
2737      /**
# Line 2970 | Line 2752 | public class ConcurrentHashMap<K, V>
2752       *         or {@code null} if there was no mapping for the key
2753       * @throws NullPointerException if the specified key or value is null
2754       */
2755 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2755 >    public V replace(K key, V value) {
2756          if (key == null || value == null)
2757              throw new NullPointerException();
2758 <        return (V)internalReplace(key, value, null);
2758 >        return internalReplace(key, value, null);
2759      }
2760  
2761      /**
# Line 2998 | Line 2780 | public class ConcurrentHashMap<K, V>
2780      /**
2781       * Returns a {@link Set} view of the keys in this map, using the
2782       * given common mapped value for any additions (i.e., {@link
2783 <     * Collection#add} and {@link Collection#addAll}). This is of
2784 <     * course only appropriate if it is acceptable to use the same
2785 <     * value for all additions from this view.
2783 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2784 >     * This is of course only appropriate if it is acceptable to use
2785 >     * the same value for all additions from this view.
2786       *
2787 <     * @param mappedValue the mapped value to use for any
3006 <     * additions.
2787 >     * @param mappedValue the mapped value to use for any additions
2788       * @return the set view
2789       * @throws NullPointerException if the mappedValue is null
2790       */
# Line 3017 | Line 2798 | public class ConcurrentHashMap<K, V>
2798       * Returns a {@link Collection} view of the values contained in this map.
2799       * The collection is backed by the map, so changes to the map are
2800       * reflected in the collection, and vice-versa.
2801 +     *
2802 +     * @return the collection view
2803       */
2804      public ValuesView<K,V> values() {
2805          ValuesView<K,V> vs = values;
# Line 3038 | Line 2821 | public class ConcurrentHashMap<K, V>
2821       * and guarantees to traverse elements as they existed upon
2822       * construction of the iterator, and may (but is not guaranteed to)
2823       * reflect any modifications subsequent to construction.
2824 +     *
2825 +     * @return the set view
2826       */
2827      public Set<Map.Entry<K,V>> entrySet() {
2828          EntrySetView<K,V> es = entrySet;
# Line 3065 | Line 2850 | public class ConcurrentHashMap<K, V>
2850      }
2851  
2852      /**
3068     * Returns a partitionable iterator of the keys in this map.
3069     *
3070     * @return a partitionable iterator of the keys in this map
3071     */
3072    public Spliterator<K> keySpliterator() {
3073        return new KeyIterator<K,V>(this);
3074    }
3075
3076    /**
3077     * Returns a partitionable iterator of the values in this map.
3078     *
3079     * @return a partitionable iterator of the values in this map
3080     */
3081    public Spliterator<V> valueSpliterator() {
3082        return new ValueIterator<K,V>(this);
3083    }
3084
3085    /**
3086     * Returns a partitionable iterator of the entries in this map.
3087     *
3088     * @return a partitionable iterator of the entries in this map
3089     */
3090    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3091        return new EntryIterator<K,V>(this);
3092    }
3093
3094    /**
2853       * Returns the hash code value for this {@link Map}, i.e.,
2854       * the sum of, for each key-value pair in the map,
2855       * {@code key.hashCode() ^ value.hashCode()}.
# Line 3101 | Line 2859 | public class ConcurrentHashMap<K, V>
2859      public int hashCode() {
2860          int h = 0;
2861          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2862 <        Object v;
2862 >        V v;
2863          while ((v = it.advance()) != null) {
2864              h += it.nextKey.hashCode() ^ v.hashCode();
2865          }
# Line 3123 | Line 2881 | public class ConcurrentHashMap<K, V>
2881          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2882          StringBuilder sb = new StringBuilder();
2883          sb.append('{');
2884 <        Object v;
2884 >        V v;
2885          if ((v = it.advance()) != null) {
2886              for (;;) {
2887 <                Object k = it.nextKey;
2887 >                K k = it.nextKey;
2888                  sb.append(k == this ? "(this Map)" : k);
2889                  sb.append('=');
2890                  sb.append(v == this ? "(this Map)" : v);
# Line 3154 | Line 2912 | public class ConcurrentHashMap<K, V>
2912                  return false;
2913              Map<?,?> m = (Map<?,?>) o;
2914              Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2915 <            Object val;
2915 >            V val;
2916              while ((val = it.advance()) != null) {
2917                  Object v = m.get(it.nextKey);
2918                  if (v == null || (v != val && !v.equals(val)))
# Line 3174 | Line 2932 | public class ConcurrentHashMap<K, V>
2932  
2933      /* ----------------Iterators -------------- */
2934  
2935 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
2936 <        implements Spliterator<K>, Enumeration<K> {
2935 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
2936 >        extends Traverser<K,V,Object>
2937 >        implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2938          KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2939 <        KeyIterator(Traverser<K,V,Object> it) {
2940 <            super(it);
2939 >        KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2940 >            super(map, it);
2941          }
2942 <        public KeyIterator<K,V> split() {
2943 <            if (nextKey != null)
2944 <                throw new IllegalStateException();
2945 <            return new KeyIterator<K,V>(this);
2942 >        public KeyIterator<K,V> trySplit() {
2943 >            if (tab != null && baseIndex == baseLimit)
2944 >                return null;
2945 >            return new KeyIterator<K,V>(map, this);
2946          }
2947 <        @SuppressWarnings("unchecked") public final K next() {
2947 >        public final K next() {
2948              if (nextVal == null && advance() == null)
2949                  throw new NoSuchElementException();
2950 <            Object k = nextKey;
2950 >            K k = nextKey;
2951              nextVal = null;
2952 <            return (K) k;
2952 >            return k;
2953          }
2954  
2955          public final K nextElement() { return next(); }
2956 +
2957 +        public Iterator<K> iterator() { return this; }
2958 +
2959 +        public void forEach(Consumer<? super K> action) {
2960 +            if (action == null) throw new NullPointerException();
2961 +            while (advance() != null)
2962 +                action.accept(nextKey);
2963 +        }
2964 +
2965 +        public boolean tryAdvance(Consumer<? super K> block) {
2966 +            if (block == null) throw new NullPointerException();
2967 +            if (advance() == null)
2968 +                return false;
2969 +            block.accept(nextKey);
2970 +            return true;
2971 +        }
2972      }
2973  
2974 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
2975 <        implements Spliterator<V>, Enumeration<V> {
2974 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
2975 >        extends Traverser<K,V,Object>
2976 >        implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2977          ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2978 <        ValueIterator(Traverser<K,V,Object> it) {
2979 <            super(it);
2978 >        ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2979 >            super(map, it);
2980          }
2981 <        public ValueIterator<K,V> split() {
2982 <            if (nextKey != null)
2983 <                throw new IllegalStateException();
2984 <            return new ValueIterator<K,V>(this);
2981 >        public ValueIterator<K,V> trySplit() {
2982 >            if (tab != null && baseIndex == baseLimit)
2983 >                return null;
2984 >            return new ValueIterator<K,V>(map, this);
2985          }
2986  
2987 <        @SuppressWarnings("unchecked") public final V next() {
2988 <            Object v;
2987 >        public final V next() {
2988 >            V v;
2989              if ((v = nextVal) == null && (v = advance()) == null)
2990                  throw new NoSuchElementException();
2991              nextVal = null;
2992 <            return (V) v;
2992 >            return v;
2993          }
2994  
2995          public final V nextElement() { return next(); }
2996 +
2997 +        public Iterator<V> iterator() { return this; }
2998 +
2999 +        public void forEach(Consumer<? super V> action) {
3000 +            if (action == null) throw new NullPointerException();
3001 +            V v;
3002 +            while ((v = advance()) != null)
3003 +                action.accept(v);
3004 +        }
3005 +
3006 +        public boolean tryAdvance(Consumer<? super V> block) {
3007 +            V v;
3008 +            if (block == null) throw new NullPointerException();
3009 +            if ((v = advance()) == null)
3010 +                return false;
3011 +            block.accept(v);
3012 +            return true;
3013 +        }
3014 +
3015      }
3016  
3017 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3018 <        implements Spliterator<Map.Entry<K,V>> {
3017 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3018 >        extends Traverser<K,V,Object>
3019 >        implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3020          EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3021 <        EntryIterator(Traverser<K,V,Object> it) {
3022 <            super(it);
3021 >        EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3022 >            super(map, it);
3023          }
3024 <        public EntryIterator<K,V> split() {
3025 <            if (nextKey != null)
3026 <                throw new IllegalStateException();
3027 <            return new EntryIterator<K,V>(this);
3024 >        public EntryIterator<K,V> trySplit() {
3025 >            if (tab != null && baseIndex == baseLimit)
3026 >                return null;
3027 >            return new EntryIterator<K,V>(map, this);
3028          }
3029  
3030 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3031 <            Object v;
3030 >        public final Map.Entry<K,V> next() {
3031 >            V v;
3032              if ((v = nextVal) == null && (v = advance()) == null)
3033                  throw new NoSuchElementException();
3034 <            Object k = nextKey;
3034 >            K k = nextKey;
3035              nextVal = null;
3036 <            return new MapEntry<K,V>((K)k, (V)v, map);
3036 >            return new MapEntry<K,V>(k, v, map);
3037 >        }
3038 >
3039 >        public Iterator<Map.Entry<K,V>> iterator() { return this; }
3040 >
3041 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3042 >            if (action == null) throw new NullPointerException();
3043 >            V v;
3044 >            while ((v = advance()) != null)
3045 >                action.accept(entryFor(nextKey, v));
3046 >        }
3047 >
3048 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3049 >            V v;
3050 >            if (block == null) throw new NullPointerException();
3051 >            if ((v = advance()) == null)
3052 >                return false;
3053 >            block.accept(entryFor(nextKey, v));
3054 >            return true;
3055          }
3056 +
3057      }
3058  
3059      /**
# Line 3284 | Line 3099 | public class ConcurrentHashMap<K, V>
3099          }
3100      }
3101  
3102 +    /**
3103 +     * Returns exportable snapshot entry for the given key and value
3104 +     * when write-through can't or shouldn't be used.
3105 +     */
3106 +    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3107 +        return new AbstractMap.SimpleEntry<K,V>(k, v);
3108 +    }
3109 +
3110      /* ---------------- Serialization Support -------------- */
3111  
3112      /**
# Line 3305 | Line 3128 | public class ConcurrentHashMap<K, V>
3128       * for each key-value mapping, followed by a null pair.
3129       * The key-value mappings are emitted in no particular order.
3130       */
3131 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3131 >    @SuppressWarnings("unchecked") private void writeObject
3132 >        (java.io.ObjectOutputStream s)
3133          throws java.io.IOException {
3134          if (segments == null) { // for serialization compatibility
3135              segments = (Segment<K,V>[])
# Line 3315 | Line 3139 | public class ConcurrentHashMap<K, V>
3139          }
3140          s.defaultWriteObject();
3141          Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3142 <        Object v;
3142 >        V v;
3143          while ((v = it.advance()) != null) {
3144              s.writeObject(it.nextKey);
3145              s.writeObject(v);
# Line 3329 | Line 3153 | public class ConcurrentHashMap<K, V>
3153       * Reconstitutes the instance from a stream (that is, deserializes it).
3154       * @param s the stream
3155       */
3156 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3156 >    @SuppressWarnings("unchecked") private void readObject
3157 >        (java.io.ObjectInputStream s)
3158          throws java.io.IOException, ClassNotFoundException {
3159          s.defaultReadObject();
3160          this.segments = null; // unneeded
3336        // initialize transient final field
3337        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3161  
3162          // Create all nodes, then place in table once size is known
3163          long size = 0L;
3164 <        Node p = null;
3164 >        Node<V> p = null;
3165          for (;;) {
3166              K k = (K) s.readObject();
3167              V v = (V) s.readObject();
3168              if (k != null && v != null) {
3169                  int h = spread(k.hashCode());
3170 <                p = new Node(h, k, v, p);
3170 >                p = new Node<V>(h, k, v, p);
3171                  ++size;
3172              }
3173              else
# Line 3362 | Line 3185 | public class ConcurrentHashMap<K, V>
3185              int sc = sizeCtl;
3186              boolean collide = false;
3187              if (n > sc &&
3188 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3188 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3189                  try {
3190                      if (table == null) {
3191                          init = true;
3192 <                        Node[] tab = new Node[n];
3192 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3193 >                        Node<V>[] tab = (Node<V>[])rt;
3194                          int mask = n - 1;
3195                          while (p != null) {
3196                              int j = p.hash & mask;
3197 <                            Node next = p.next;
3198 <                            Node q = p.next = tabAt(tab, j);
3197 >                            Node<V> next = p.next;
3198 >                            Node<V> q = p.next = tabAt(tab, j);
3199                              setTabAt(tab, j, p);
3200                              if (!collide && q != null && q.hash == p.hash)
3201                                  collide = true;
3202                              p = next;
3203                          }
3204                          table = tab;
3205 <                        counter.add(size);
3205 >                        addCount(size, -1);
3206                          sc = n - (n >>> 2);
3207                      }
3208                  } finally {
3209                      sizeCtl = sc;
3210                  }
3211                  if (collide) { // rescan and convert to TreeBins
3212 <                    Node[] tab = table;
3212 >                    Node<V>[] tab = table;
3213                      for (int i = 0; i < tab.length; ++i) {
3214                          int c = 0;
3215 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3215 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3216                              if (++c > TREE_THRESHOLD &&
3217                                  (e.key instanceof Comparable)) {
3218                                  replaceWithTreeBin(tab, i, e.key);
# Line 3400 | Line 3224 | public class ConcurrentHashMap<K, V>
3224              }
3225              if (!init) { // Can only happen if unsafely published.
3226                  while (p != null) {
3227 <                    internalPut(p.key, p.val);
3227 >                    internalPut((K)p.key, p.val, false);
3228                      p = p.next;
3229                  }
3230              }
3231          }
3232      }
3233  
3410
3234      // -------------------------------------------------------
3235  
3236 <    // Sams
3414 <    /** Interface describing a void action of one argument */
3415 <    public interface Action<A> { void apply(A a); }
3416 <    /** Interface describing a void action of two arguments */
3417 <    public interface BiAction<A,B> { void apply(A a, B b); }
3418 <    /** Interface describing a function of one argument */
3419 <    public interface Fun<A,T> { T apply(A a); }
3420 <    /** Interface describing a function of two arguments */
3421 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3422 <    /** Interface describing a function of no arguments */
3423 <    public interface Generator<T> { T apply(); }
3424 <    /** Interface describing a function mapping its argument to a double */
3425 <    public interface ObjectToDouble<A> { double apply(A a); }
3426 <    /** Interface describing a function mapping its argument to a long */
3427 <    public interface ObjectToLong<A> { long apply(A a); }
3428 <    /** Interface describing a function mapping its argument to an int */
3429 <    public interface ObjectToInt<A> {int apply(A a); }
3430 <    /** Interface describing a function mapping two arguments to a double */
3431 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3432 <    /** Interface describing a function mapping two arguments to a long */
3433 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3434 <    /** Interface describing a function mapping two arguments to an int */
3435 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3436 <    /** Interface describing a function mapping a double to a double */
3437 <    public interface DoubleToDouble { double apply(double a); }
3438 <    /** Interface describing a function mapping a long to a long */
3439 <    public interface LongToLong { long apply(long a); }
3440 <    /** Interface describing a function mapping an int to an int */
3441 <    public interface IntToInt { int apply(int a); }
3442 <    /** Interface describing a function mapping two doubles to a double */
3443 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3444 <    /** Interface describing a function mapping two longs to a long */
3445 <    public interface LongByLongToLong { long apply(long a, long b); }
3446 <    /** Interface describing a function mapping two ints to an int */
3447 <    public interface IntByIntToInt { int apply(int a, int b); }
3236 >    // Sequential bulk operations
3237  
3238 +    /**
3239 +     * Performs the given action for each (key, value).
3240 +     *
3241 +     * @param action the action
3242 +     */
3243 +    public void forEachSequentially
3244 +        (BiConsumer<? super K, ? super V> action) {
3245 +        if (action == null) throw new NullPointerException();
3246 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3247 +        V v;
3248 +        while ((v = it.advance()) != null)
3249 +            action.accept(it.nextKey, v);
3250 +    }
3251  
3252 <    // -------------------------------------------------------
3252 >    /**
3253 >     * Performs the given action for each non-null transformation
3254 >     * of each (key, value).
3255 >     *
3256 >     * @param transformer a function returning the transformation
3257 >     * for an element, or null if there is no transformation (in
3258 >     * which case the action is not applied)
3259 >     * @param action the action
3260 >     */
3261 >    public <U> void forEachSequentially
3262 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3263 >         Consumer<? super U> action) {
3264 >        if (transformer == null || action == null)
3265 >            throw new NullPointerException();
3266 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3267 >        V v; U u;
3268 >        while ((v = it.advance()) != null) {
3269 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3270 >                action.accept(u);
3271 >        }
3272 >    }
3273 >
3274 >    /**
3275 >     * Returns a non-null result from applying the given search
3276 >     * function on each (key, value), or null if none.
3277 >     *
3278 >     * @param searchFunction a function returning a non-null
3279 >     * result on success, else null
3280 >     * @return a non-null result from applying the given search
3281 >     * function on each (key, value), or null if none
3282 >     */
3283 >    public <U> U searchSequentially
3284 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3285 >        if (searchFunction == null) throw new NullPointerException();
3286 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3287 >        V v; U u;
3288 >        while ((v = it.advance()) != null) {
3289 >            if ((u = searchFunction.apply(it.nextKey, v)) != null)
3290 >                return u;
3291 >        }
3292 >        return null;
3293 >    }
3294 >
3295 >    /**
3296 >     * Returns the result of accumulating the given transformation
3297 >     * of all (key, value) pairs using the given reducer to
3298 >     * combine values, or null if none.
3299 >     *
3300 >     * @param transformer a function returning the transformation
3301 >     * for an element, or null if there is no transformation (in
3302 >     * which case it is not combined)
3303 >     * @param reducer a commutative associative combining function
3304 >     * @return the result of accumulating the given transformation
3305 >     * of all (key, value) pairs
3306 >     */
3307 >    public <U> U reduceSequentially
3308 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3309 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3310 >        if (transformer == null || reducer == null)
3311 >            throw new NullPointerException();
3312 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3313 >        U r = null, u; V v;
3314 >        while ((v = it.advance()) != null) {
3315 >            if ((u = transformer.apply(it.nextKey, v)) != null)
3316 >                r = (r == null) ? u : reducer.apply(r, u);
3317 >        }
3318 >        return r;
3319 >    }
3320 >
3321 >    /**
3322 >     * Returns the result of accumulating the given transformation
3323 >     * of all (key, value) pairs using the given reducer to
3324 >     * combine values, and the given basis as an identity value.
3325 >     *
3326 >     * @param transformer a function returning the transformation
3327 >     * for an element
3328 >     * @param basis the identity (initial default value) for the reduction
3329 >     * @param reducer a commutative associative combining function
3330 >     * @return the result of accumulating the given transformation
3331 >     * of all (key, value) pairs
3332 >     */
3333 >    public double reduceToDoubleSequentially
3334 >        (ToDoubleBiFunction<? super K, ? super V> transformer,
3335 >         double basis,
3336 >         DoubleBinaryOperator reducer) {
3337 >        if (transformer == null || reducer == null)
3338 >            throw new NullPointerException();
3339 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3340 >        double r = basis; V v;
3341 >        while ((v = it.advance()) != null)
3342 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3343 >        return r;
3344 >    }
3345 >
3346 >    /**
3347 >     * Returns the result of accumulating the given transformation
3348 >     * of all (key, value) pairs using the given reducer to
3349 >     * combine values, and the given basis as an identity value.
3350 >     *
3351 >     * @param transformer a function returning the transformation
3352 >     * for an element
3353 >     * @param basis the identity (initial default value) for the reduction
3354 >     * @param reducer a commutative associative combining function
3355 >     * @return the result of accumulating the given transformation
3356 >     * of all (key, value) pairs
3357 >     */
3358 >    public long reduceToLongSequentially
3359 >        (ToLongBiFunction<? super K, ? super V> transformer,
3360 >         long basis,
3361 >         LongBinaryOperator reducer) {
3362 >        if (transformer == null || reducer == null)
3363 >            throw new NullPointerException();
3364 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3365 >        long r = basis; V v;
3366 >        while ((v = it.advance()) != null)
3367 >            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3368 >        return r;
3369 >    }
3370 >
3371 >    /**
3372 >     * Returns the result of accumulating the given transformation
3373 >     * of all (key, value) pairs using the given reducer to
3374 >     * combine values, and the given basis as an identity value.
3375 >     *
3376 >     * @param transformer a function returning the transformation
3377 >     * for an element
3378 >     * @param basis the identity (initial default value) for the reduction
3379 >     * @param reducer a commutative associative combining function
3380 >     * @return the result of accumulating the given transformation
3381 >     * of all (key, value) pairs
3382 >     */
3383 >    public int reduceToIntSequentially
3384 >        (ToIntBiFunction<? super K, ? super V> transformer,
3385 >         int basis,
3386 >         IntBinaryOperator reducer) {
3387 >        if (transformer == null || reducer == null)
3388 >            throw new NullPointerException();
3389 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3390 >        int r = basis; V v;
3391 >        while ((v = it.advance()) != null)
3392 >            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3393 >        return r;
3394 >    }
3395 >
3396 >    /**
3397 >     * Performs the given action for each key.
3398 >     *
3399 >     * @param action the action
3400 >     */
3401 >    public void forEachKeySequentially
3402 >        (Consumer<? super K> action) {
3403 >        if (action == null) throw new NullPointerException();
3404 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3405 >        while (it.advance() != null)
3406 >            action.accept(it.nextKey);
3407 >    }
3408 >
3409 >    /**
3410 >     * Performs the given action for each non-null transformation
3411 >     * of each key.
3412 >     *
3413 >     * @param transformer a function returning the transformation
3414 >     * for an element, or null if there is no transformation (in
3415 >     * which case the action is not applied)
3416 >     * @param action the action
3417 >     */
3418 >    public <U> void forEachKeySequentially
3419 >        (Function<? super K, ? extends U> transformer,
3420 >         Consumer<? super U> action) {
3421 >        if (transformer == null || action == null)
3422 >            throw new NullPointerException();
3423 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3424 >        U u;
3425 >        while (it.advance() != null) {
3426 >            if ((u = transformer.apply(it.nextKey)) != null)
3427 >                action.accept(u);
3428 >        }
3429 >        ForkJoinTasks.forEachKey
3430 >            (this, transformer, action).invoke();
3431 >    }
3432 >
3433 >    /**
3434 >     * Returns a non-null result from applying the given search
3435 >     * function on each key, or null if none.
3436 >     *
3437 >     * @param searchFunction a function returning a non-null
3438 >     * result on success, else null
3439 >     * @return a non-null result from applying the given search
3440 >     * function on each key, or null if none
3441 >     */
3442 >    public <U> U searchKeysSequentially
3443 >        (Function<? super K, ? extends U> searchFunction) {
3444 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3445 >        U u;
3446 >        while (it.advance() != null) {
3447 >            if ((u = searchFunction.apply(it.nextKey)) != null)
3448 >                return u;
3449 >        }
3450 >        return null;
3451 >    }
3452 >
3453 >    /**
3454 >     * Returns the result of accumulating all keys using the given
3455 >     * reducer to combine values, or null if none.
3456 >     *
3457 >     * @param reducer a commutative associative combining function
3458 >     * @return the result of accumulating all keys using the given
3459 >     * reducer to combine values, or null if none
3460 >     */
3461 >    public K reduceKeysSequentially
3462 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
3463 >        if (reducer == null) throw new NullPointerException();
3464 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3465 >        K r = null;
3466 >        while (it.advance() != null) {
3467 >            K u = it.nextKey;
3468 >            r = (r == null) ? u : reducer.apply(r, u);
3469 >        }
3470 >        return r;
3471 >    }
3472 >
3473 >    /**
3474 >     * Returns the result of accumulating the given transformation
3475 >     * of all keys using the given reducer to combine values, or
3476 >     * null if none.
3477 >     *
3478 >     * @param transformer a function returning the transformation
3479 >     * for an element, or null if there is no transformation (in
3480 >     * which case it is not combined)
3481 >     * @param reducer a commutative associative combining function
3482 >     * @return the result of accumulating the given transformation
3483 >     * of all keys
3484 >     */
3485 >    public <U> U reduceKeysSequentially
3486 >        (Function<? super K, ? extends U> transformer,
3487 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3488 >        if (transformer == null || reducer == null)
3489 >            throw new NullPointerException();
3490 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3491 >        U r = null, u;
3492 >        while (it.advance() != null) {
3493 >            if ((u = transformer.apply(it.nextKey)) != null)
3494 >                r = (r == null) ? u : reducer.apply(r, u);
3495 >        }
3496 >        return r;
3497 >    }
3498 >
3499 >    /**
3500 >     * Returns the result of accumulating the given transformation
3501 >     * of all keys using the given reducer to combine values, and
3502 >     * the given basis as an identity value.
3503 >     *
3504 >     * @param transformer a function returning the transformation
3505 >     * for an element
3506 >     * @param basis the identity (initial default value) for the reduction
3507 >     * @param reducer a commutative associative combining function
3508 >     * @return the result of accumulating the given transformation
3509 >     * of all keys
3510 >     */
3511 >    public double reduceKeysToDoubleSequentially
3512 >        (ToDoubleFunction<? super K> transformer,
3513 >         double basis,
3514 >         DoubleBinaryOperator reducer) {
3515 >        if (transformer == null || reducer == null)
3516 >            throw new NullPointerException();
3517 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3518 >        double r = basis;
3519 >        while (it.advance() != null)
3520 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3521 >        return r;
3522 >    }
3523 >
3524 >    /**
3525 >     * Returns the result of accumulating the given transformation
3526 >     * of all keys using the given reducer to combine values, and
3527 >     * the given basis as an identity value.
3528 >     *
3529 >     * @param transformer a function returning the transformation
3530 >     * for an element
3531 >     * @param basis the identity (initial default value) for the reduction
3532 >     * @param reducer a commutative associative combining function
3533 >     * @return the result of accumulating the given transformation
3534 >     * of all keys
3535 >     */
3536 >    public long reduceKeysToLongSequentially
3537 >        (ToLongFunction<? super K> transformer,
3538 >         long basis,
3539 >         LongBinaryOperator reducer) {
3540 >        if (transformer == null || reducer == null)
3541 >            throw new NullPointerException();
3542 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3543 >        long r = basis;
3544 >        while (it.advance() != null)
3545 >            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3546 >        return r;
3547 >    }
3548 >
3549 >    /**
3550 >     * Returns the result of accumulating the given transformation
3551 >     * of all keys using the given reducer to combine values, and
3552 >     * the given basis as an identity value.
3553 >     *
3554 >     * @param transformer a function returning the transformation
3555 >     * for an element
3556 >     * @param basis the identity (initial default value) for the reduction
3557 >     * @param reducer a commutative associative combining function
3558 >     * @return the result of accumulating the given transformation
3559 >     * of all keys
3560 >     */
3561 >    public int reduceKeysToIntSequentially
3562 >        (ToIntFunction<? super K> transformer,
3563 >         int basis,
3564 >         IntBinaryOperator reducer) {
3565 >        if (transformer == null || reducer == null)
3566 >            throw new NullPointerException();
3567 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3568 >        int r = basis;
3569 >        while (it.advance() != null)
3570 >            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3571 >        return r;
3572 >    }
3573 >
3574 >    /**
3575 >     * Performs the given action for each value.
3576 >     *
3577 >     * @param action the action
3578 >     */
3579 >    public void forEachValueSequentially(Consumer<? super V> action) {
3580 >        if (action == null) throw new NullPointerException();
3581 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582 >        V v;
3583 >        while ((v = it.advance()) != null)
3584 >            action.accept(v);
3585 >    }
3586 >
3587 >    /**
3588 >     * Performs the given action for each non-null transformation
3589 >     * of each value.
3590 >     *
3591 >     * @param transformer a function returning the transformation
3592 >     * for an element, or null if there is no transformation (in
3593 >     * which case the action is not applied)
3594 >     * @param action the action
3595 >     */
3596 >    public <U> void forEachValueSequentially
3597 >        (Function<? super V, ? extends U> transformer,
3598 >         Consumer<? super U> action) {
3599 >        if (transformer == null || action == null)
3600 >            throw new NullPointerException();
3601 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3602 >        V v; U u;
3603 >        while ((v = it.advance()) != null) {
3604 >            if ((u = transformer.apply(v)) != null)
3605 >                action.accept(u);
3606 >        }
3607 >    }
3608 >
3609 >    /**
3610 >     * Returns a non-null result from applying the given search
3611 >     * function on each value, or null if none.
3612 >     *
3613 >     * @param searchFunction a function returning a non-null
3614 >     * result on success, else null
3615 >     * @return a non-null result from applying the given search
3616 >     * function on each value, or null if none
3617 >     */
3618 >    public <U> U searchValuesSequentially
3619 >        (Function<? super V, ? extends U> searchFunction) {
3620 >        if (searchFunction == null) throw new NullPointerException();
3621 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3622 >        V v; U u;
3623 >        while ((v = it.advance()) != null) {
3624 >            if ((u = searchFunction.apply(v)) != null)
3625 >                return u;
3626 >        }
3627 >        return null;
3628 >    }
3629 >
3630 >    /**
3631 >     * Returns the result of accumulating all values using the
3632 >     * given reducer to combine values, or null if none.
3633 >     *
3634 >     * @param reducer a commutative associative combining function
3635 >     * @return the result of accumulating all values
3636 >     */
3637 >    public V reduceValuesSequentially
3638 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
3639 >        if (reducer == null) throw new NullPointerException();
3640 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3641 >        V r = null; V v;
3642 >        while ((v = it.advance()) != null)
3643 >            r = (r == null) ? v : reducer.apply(r, v);
3644 >        return r;
3645 >    }
3646 >
3647 >    /**
3648 >     * Returns the result of accumulating the given transformation
3649 >     * of all values using the given reducer to combine values, or
3650 >     * null if none.
3651 >     *
3652 >     * @param transformer a function returning the transformation
3653 >     * for an element, or null if there is no transformation (in
3654 >     * which case it is not combined)
3655 >     * @param reducer a commutative associative combining function
3656 >     * @return the result of accumulating the given transformation
3657 >     * of all values
3658 >     */
3659 >    public <U> U reduceValuesSequentially
3660 >        (Function<? super V, ? extends U> transformer,
3661 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3662 >        if (transformer == null || reducer == null)
3663 >            throw new NullPointerException();
3664 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3665 >        U r = null, u; V v;
3666 >        while ((v = it.advance()) != null) {
3667 >            if ((u = transformer.apply(v)) != null)
3668 >                r = (r == null) ? u : reducer.apply(r, u);
3669 >        }
3670 >        return r;
3671 >    }
3672 >
3673 >    /**
3674 >     * Returns the result of accumulating the given transformation
3675 >     * of all values using the given reducer to combine values,
3676 >     * and the given basis as an identity value.
3677 >     *
3678 >     * @param transformer a function returning the transformation
3679 >     * for an element
3680 >     * @param basis the identity (initial default value) for the reduction
3681 >     * @param reducer a commutative associative combining function
3682 >     * @return the result of accumulating the given transformation
3683 >     * of all values
3684 >     */
3685 >    public double reduceValuesToDoubleSequentially
3686 >        (ToDoubleFunction<? super V> transformer,
3687 >         double basis,
3688 >         DoubleBinaryOperator reducer) {
3689 >        if (transformer == null || reducer == null)
3690 >            throw new NullPointerException();
3691 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3692 >        double r = basis; V v;
3693 >        while ((v = it.advance()) != null)
3694 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3695 >        return r;
3696 >    }
3697 >
3698 >    /**
3699 >     * Returns the result of accumulating the given transformation
3700 >     * of all values using the given reducer to combine values,
3701 >     * and the given basis as an identity value.
3702 >     *
3703 >     * @param transformer a function returning the transformation
3704 >     * for an element
3705 >     * @param basis the identity (initial default value) for the reduction
3706 >     * @param reducer a commutative associative combining function
3707 >     * @return the result of accumulating the given transformation
3708 >     * of all values
3709 >     */
3710 >    public long reduceValuesToLongSequentially
3711 >        (ToLongFunction<? super V> transformer,
3712 >         long basis,
3713 >         LongBinaryOperator reducer) {
3714 >        if (transformer == null || reducer == null)
3715 >            throw new NullPointerException();
3716 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3717 >        long r = basis; V v;
3718 >        while ((v = it.advance()) != null)
3719 >            r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3720 >        return r;
3721 >    }
3722 >
3723 >    /**
3724 >     * Returns the result of accumulating the given transformation
3725 >     * of all values using the given reducer to combine values,
3726 >     * and the given basis as an identity value.
3727 >     *
3728 >     * @param transformer a function returning the transformation
3729 >     * for an element
3730 >     * @param basis the identity (initial default value) for the reduction
3731 >     * @param reducer a commutative associative combining function
3732 >     * @return the result of accumulating the given transformation
3733 >     * of all values
3734 >     */
3735 >    public int reduceValuesToIntSequentially
3736 >        (ToIntFunction<? super V> transformer,
3737 >         int basis,
3738 >         IntBinaryOperator reducer) {
3739 >        if (transformer == null || reducer == null)
3740 >            throw new NullPointerException();
3741 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3742 >        int r = basis; V v;
3743 >        while ((v = it.advance()) != null)
3744 >            r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3745 >        return r;
3746 >    }
3747 >
3748 >    /**
3749 >     * Performs the given action for each entry.
3750 >     *
3751 >     * @param action the action
3752 >     */
3753 >    public void forEachEntrySequentially
3754 >        (Consumer<? super Map.Entry<K,V>> action) {
3755 >        if (action == null) throw new NullPointerException();
3756 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757 >        V v;
3758 >        while ((v = it.advance()) != null)
3759 >            action.accept(entryFor(it.nextKey, v));
3760 >    }
3761 >
3762 >    /**
3763 >     * Performs the given action for each non-null transformation
3764 >     * of each entry.
3765 >     *
3766 >     * @param transformer a function returning the transformation
3767 >     * for an element, or null if there is no transformation (in
3768 >     * which case the action is not applied)
3769 >     * @param action the action
3770 >     */
3771 >    public <U> void forEachEntrySequentially
3772 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3773 >         Consumer<? super U> action) {
3774 >        if (transformer == null || action == null)
3775 >            throw new NullPointerException();
3776 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3777 >        V v; U u;
3778 >        while ((v = it.advance()) != null) {
3779 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3780 >                action.accept(u);
3781 >        }
3782 >    }
3783 >
3784 >    /**
3785 >     * Returns a non-null result from applying the given search
3786 >     * function on each entry, or null if none.
3787 >     *
3788 >     * @param searchFunction a function returning a non-null
3789 >     * result on success, else null
3790 >     * @return a non-null result from applying the given search
3791 >     * function on each entry, or null if none
3792 >     */
3793 >    public <U> U searchEntriesSequentially
3794 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3795 >        if (searchFunction == null) throw new NullPointerException();
3796 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3797 >        V v; U u;
3798 >        while ((v = it.advance()) != null) {
3799 >            if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3800 >                return u;
3801 >        }
3802 >        return null;
3803 >    }
3804 >
3805 >    /**
3806 >     * Returns the result of accumulating all entries using the
3807 >     * given reducer to combine values, or null if none.
3808 >     *
3809 >     * @param reducer a commutative associative combining function
3810 >     * @return the result of accumulating all entries
3811 >     */
3812 >    public Map.Entry<K,V> reduceEntriesSequentially
3813 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3814 >        if (reducer == null) throw new NullPointerException();
3815 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3816 >        Map.Entry<K,V> r = null; V v;
3817 >        while ((v = it.advance()) != null) {
3818 >            Map.Entry<K,V> u = entryFor(it.nextKey, v);
3819 >            r = (r == null) ? u : reducer.apply(r, u);
3820 >        }
3821 >        return r;
3822 >    }
3823 >
3824 >    /**
3825 >     * Returns the result of accumulating the given transformation
3826 >     * of all entries using the given reducer to combine values,
3827 >     * or null if none.
3828 >     *
3829 >     * @param transformer a function returning the transformation
3830 >     * for an element, or null if there is no transformation (in
3831 >     * which case it is not combined)
3832 >     * @param reducer a commutative associative combining function
3833 >     * @return the result of accumulating the given transformation
3834 >     * of all entries
3835 >     */
3836 >    public <U> U reduceEntriesSequentially
3837 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
3838 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3839 >        if (transformer == null || reducer == null)
3840 >            throw new NullPointerException();
3841 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3842 >        U r = null, u; V v;
3843 >        while ((v = it.advance()) != null) {
3844 >            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3845 >                r = (r == null) ? u : reducer.apply(r, u);
3846 >        }
3847 >        return r;
3848 >    }
3849 >
3850 >    /**
3851 >     * Returns the result of accumulating the given transformation
3852 >     * of all entries using the given reducer to combine values,
3853 >     * and the given basis as an identity value.
3854 >     *
3855 >     * @param transformer a function returning the transformation
3856 >     * for an element
3857 >     * @param basis the identity (initial default value) for the reduction
3858 >     * @param reducer a commutative associative combining function
3859 >     * @return the result of accumulating the given transformation
3860 >     * of all entries
3861 >     */
3862 >    public double reduceEntriesToDoubleSequentially
3863 >        (ToDoubleFunction<Map.Entry<K,V>> transformer,
3864 >         double basis,
3865 >         DoubleBinaryOperator reducer) {
3866 >        if (transformer == null || reducer == null)
3867 >            throw new NullPointerException();
3868 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3869 >        double r = basis; V v;
3870 >        while ((v = it.advance()) != null)
3871 >            r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3872 >        return r;
3873 >    }
3874 >
3875 >    /**
3876 >     * Returns the result of accumulating the given transformation
3877 >     * of all entries using the given reducer to combine values,
3878 >     * and the given basis as an identity value.
3879 >     *
3880 >     * @param transformer a function returning the transformation
3881 >     * for an element
3882 >     * @param basis the identity (initial default value) for the reduction
3883 >     * @param reducer a commutative associative combining function
3884 >     * @return the result of accumulating the given transformation
3885 >     * of all entries
3886 >     */
3887 >    public long reduceEntriesToLongSequentially
3888 >        (ToLongFunction<Map.Entry<K,V>> transformer,
3889 >         long basis,
3890 >         LongBinaryOperator reducer) {
3891 >        if (transformer == null || reducer == null)
3892 >            throw new NullPointerException();
3893 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3894 >        long r = basis; V v;
3895 >        while ((v = it.advance()) != null)
3896 >            r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3897 >        return r;
3898 >    }
3899 >
3900 >    /**
3901 >     * Returns the result of accumulating the given transformation
3902 >     * of all entries using the given reducer to combine values,
3903 >     * and the given basis as an identity value.
3904 >     *
3905 >     * @param transformer a function returning the transformation
3906 >     * for an element
3907 >     * @param basis the identity (initial default value) for the reduction
3908 >     * @param reducer a commutative associative combining function
3909 >     * @return the result of accumulating the given transformation
3910 >     * of all entries
3911 >     */
3912 >    public int reduceEntriesToIntSequentially
3913 >        (ToIntFunction<Map.Entry<K,V>> transformer,
3914 >         int basis,
3915 >         IntBinaryOperator reducer) {
3916 >        if (transformer == null || reducer == null)
3917 >            throw new NullPointerException();
3918 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3919 >        int r = basis; V v;
3920 >        while ((v = it.advance()) != null)
3921 >            r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3922 >        return r;
3923 >    }
3924 >
3925 >    // Parallel bulk operations
3926  
3927      /**
3928       * Performs the given action for each (key, value).
3929       *
3930       * @param action the action
3931       */
3932 <    public void forEach(BiAction<K,V> action) {
3932 >    public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3933          ForkJoinTasks.forEach
3934              (this, action).invoke();
3935      }
# Line 3464 | Line 3939 | public class ConcurrentHashMap<K, V>
3939       * of each (key, value).
3940       *
3941       * @param transformer a function returning the transformation
3942 <     * for an element, or null of there is no transformation (in
3943 <     * which case the action is not applied).
3942 >     * for an element, or null if there is no transformation (in
3943 >     * which case the action is not applied)
3944       * @param action the action
3945       */
3946 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3947 <                            Action<U> action) {
3946 >    public <U> void forEachInParallel
3947 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3948 >                            Consumer<? super U> action) {
3949          ForkJoinTasks.forEach
3950              (this, transformer, action).invoke();
3951      }
# Line 3486 | Line 3962 | public class ConcurrentHashMap<K, V>
3962       * @return a non-null result from applying the given search
3963       * function on each (key, value), or null if none
3964       */
3965 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3965 >    public <U> U searchInParallel
3966 >        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3967          return ForkJoinTasks.search
3968              (this, searchFunction).invoke();
3969      }
# Line 3497 | Line 3974 | public class ConcurrentHashMap<K, V>
3974       * combine values, or null if none.
3975       *
3976       * @param transformer a function returning the transformation
3977 <     * for an element, or null of there is no transformation (in
3978 <     * which case it is not combined).
3977 >     * for an element, or null if there is no transformation (in
3978 >     * which case it is not combined)
3979       * @param reducer a commutative associative combining function
3980       * @return the result of accumulating the given transformation
3981       * of all (key, value) pairs
3982       */
3983 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3984 <                        BiFun<? super U, ? super U, ? extends U> reducer) {
3983 >    public <U> U reduceInParallel
3984 >        (BiFunction<? super K, ? super V, ? extends U> transformer,
3985 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3986          return ForkJoinTasks.reduce
3987              (this, transformer, reducer).invoke();
3988      }
# Line 3521 | Line 3999 | public class ConcurrentHashMap<K, V>
3999       * @return the result of accumulating the given transformation
4000       * of all (key, value) pairs
4001       */
4002 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
4003 <                                 double basis,
4004 <                                 DoubleByDoubleToDouble reducer) {
4002 >    public double reduceToDoubleInParallel
4003 >        (ToDoubleBiFunction<? super K, ? super V> transformer,
4004 >         double basis,
4005 >         DoubleBinaryOperator reducer) {
4006          return ForkJoinTasks.reduceToDouble
4007              (this, transformer, basis, reducer).invoke();
4008      }
# Line 3540 | Line 4019 | public class ConcurrentHashMap<K, V>
4019       * @return the result of accumulating the given transformation
4020       * of all (key, value) pairs
4021       */
4022 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
4023 <                             long basis,
4024 <                             LongByLongToLong reducer) {
4022 >    public long reduceToLongInParallel
4023 >        (ToLongBiFunction<? super K, ? super V> transformer,
4024 >         long basis,
4025 >         LongBinaryOperator reducer) {
4026          return ForkJoinTasks.reduceToLong
4027              (this, transformer, basis, reducer).invoke();
4028      }
# Line 3559 | Line 4039 | public class ConcurrentHashMap<K, V>
4039       * @return the result of accumulating the given transformation
4040       * of all (key, value) pairs
4041       */
4042 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
4043 <                           int basis,
4044 <                           IntByIntToInt reducer) {
4042 >    public int reduceToIntInParallel
4043 >        (ToIntBiFunction<? super K, ? super V> transformer,
4044 >         int basis,
4045 >         IntBinaryOperator reducer) {
4046          return ForkJoinTasks.reduceToInt
4047              (this, transformer, basis, reducer).invoke();
4048      }
# Line 3571 | Line 4052 | public class ConcurrentHashMap<K, V>
4052       *
4053       * @param action the action
4054       */
4055 <    public void forEachKey(Action<K> action) {
4055 >    public void forEachKeyInParallel(Consumer<? super K> action) {
4056          ForkJoinTasks.forEachKey
4057              (this, action).invoke();
4058      }
# Line 3581 | Line 4062 | public class ConcurrentHashMap<K, V>
4062       * of each key.
4063       *
4064       * @param transformer a function returning the transformation
4065 <     * for an element, or null of there is no transformation (in
4066 <     * which case the action is not applied).
4065 >     * for an element, or null if there is no transformation (in
4066 >     * which case the action is not applied)
4067       * @param action the action
4068       */
4069 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
4070 <                               Action<U> action) {
4069 >    public <U> void forEachKeyInParallel
4070 >        (Function<? super K, ? extends U> transformer,
4071 >         Consumer<? super U> action) {
4072          ForkJoinTasks.forEachKey
4073              (this, transformer, action).invoke();
4074      }
# Line 3603 | Line 4085 | public class ConcurrentHashMap<K, V>
4085       * @return a non-null result from applying the given search
4086       * function on each key, or null if none
4087       */
4088 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
4088 >    public <U> U searchKeysInParallel
4089 >        (Function<? super K, ? extends U> searchFunction) {
4090          return ForkJoinTasks.searchKeys
4091              (this, searchFunction).invoke();
4092      }
# Line 3616 | Line 4099 | public class ConcurrentHashMap<K, V>
4099       * @return the result of accumulating all keys using the given
4100       * reducer to combine values, or null if none
4101       */
4102 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
4102 >    public K reduceKeysInParallel
4103 >        (BiFunction<? super K, ? super K, ? extends K> reducer) {
4104          return ForkJoinTasks.reduceKeys
4105              (this, reducer).invoke();
4106      }
# Line 3627 | Line 4111 | public class ConcurrentHashMap<K, V>
4111       * null if none.
4112       *
4113       * @param transformer a function returning the transformation
4114 <     * for an element, or null of there is no transformation (in
4115 <     * which case it is not combined).
4114 >     * for an element, or null if there is no transformation (in
4115 >     * which case it is not combined)
4116       * @param reducer a commutative associative combining function
4117       * @return the result of accumulating the given transformation
4118       * of all keys
4119       */
4120 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
4121 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4120 >    public <U> U reduceKeysInParallel
4121 >        (Function<? super K, ? extends U> transformer,
4122 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4123          return ForkJoinTasks.reduceKeys
4124              (this, transformer, reducer).invoke();
4125      }
# Line 3648 | Line 4133 | public class ConcurrentHashMap<K, V>
4133       * for an element
4134       * @param basis the identity (initial default value) for the reduction
4135       * @param reducer a commutative associative combining function
4136 <     * @return  the result of accumulating the given transformation
4136 >     * @return the result of accumulating the given transformation
4137       * of all keys
4138       */
4139 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
4140 <                                     double basis,
4141 <                                     DoubleByDoubleToDouble reducer) {
4139 >    public double reduceKeysToDoubleInParallel
4140 >        (ToDoubleFunction<? super K> transformer,
4141 >         double basis,
4142 >         DoubleBinaryOperator reducer) {
4143          return ForkJoinTasks.reduceKeysToDouble
4144              (this, transformer, basis, reducer).invoke();
4145      }
# Line 3670 | Line 4156 | public class ConcurrentHashMap<K, V>
4156       * @return the result of accumulating the given transformation
4157       * of all keys
4158       */
4159 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
4160 <                                 long basis,
4161 <                                 LongByLongToLong reducer) {
4159 >    public long reduceKeysToLongInParallel
4160 >        (ToLongFunction<? super K> transformer,
4161 >         long basis,
4162 >         LongBinaryOperator reducer) {
4163          return ForkJoinTasks.reduceKeysToLong
4164              (this, transformer, basis, reducer).invoke();
4165      }
# Line 3689 | Line 4176 | public class ConcurrentHashMap<K, V>
4176       * @return the result of accumulating the given transformation
4177       * of all keys
4178       */
4179 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
4180 <                               int basis,
4181 <                               IntByIntToInt reducer) {
4179 >    public int reduceKeysToIntInParallel
4180 >        (ToIntFunction<? super K> transformer,
4181 >         int basis,
4182 >         IntBinaryOperator reducer) {
4183          return ForkJoinTasks.reduceKeysToInt
4184              (this, transformer, basis, reducer).invoke();
4185      }
# Line 3701 | Line 4189 | public class ConcurrentHashMap<K, V>
4189       *
4190       * @param action the action
4191       */
4192 <    public void forEachValue(Action<V> action) {
4192 >    public void forEachValueInParallel(Consumer<? super V> action) {
4193          ForkJoinTasks.forEachValue
4194              (this, action).invoke();
4195      }
# Line 3711 | Line 4199 | public class ConcurrentHashMap<K, V>
4199       * of each value.
4200       *
4201       * @param transformer a function returning the transformation
4202 <     * for an element, or null of there is no transformation (in
4203 <     * which case the action is not applied).
4202 >     * for an element, or null if there is no transformation (in
4203 >     * which case the action is not applied)
4204 >     * @param action the action
4205       */
4206 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
4207 <                                 Action<U> action) {
4206 >    public <U> void forEachValueInParallel
4207 >        (Function<? super V, ? extends U> transformer,
4208 >         Consumer<? super U> action) {
4209          ForkJoinTasks.forEachValue
4210              (this, transformer, action).invoke();
4211      }
# Line 3731 | Line 4221 | public class ConcurrentHashMap<K, V>
4221       * result on success, else null
4222       * @return a non-null result from applying the given search
4223       * function on each value, or null if none
3734     *
4224       */
4225 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
4225 >    public <U> U searchValuesInParallel
4226 >        (Function<? super V, ? extends U> searchFunction) {
4227          return ForkJoinTasks.searchValues
4228              (this, searchFunction).invoke();
4229      }
# Line 3743 | Line 4233 | public class ConcurrentHashMap<K, V>
4233       * given reducer to combine values, or null if none.
4234       *
4235       * @param reducer a commutative associative combining function
4236 <     * @return  the result of accumulating all values
4236 >     * @return the result of accumulating all values
4237       */
4238 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
4238 >    public V reduceValuesInParallel
4239 >        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4240          return ForkJoinTasks.reduceValues
4241              (this, reducer).invoke();
4242      }
# Line 3756 | Line 4247 | public class ConcurrentHashMap<K, V>
4247       * null if none.
4248       *
4249       * @param transformer a function returning the transformation
4250 <     * for an element, or null of there is no transformation (in
4251 <     * which case it is not combined).
4250 >     * for an element, or null if there is no transformation (in
4251 >     * which case it is not combined)
4252       * @param reducer a commutative associative combining function
4253       * @return the result of accumulating the given transformation
4254       * of all values
4255       */
4256 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
4257 <                              BiFun<? super U, ? super U, ? extends U> reducer) {
4256 >    public <U> U reduceValuesInParallel
4257 >        (Function<? super V, ? extends U> transformer,
4258 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4259          return ForkJoinTasks.reduceValues
4260              (this, transformer, reducer).invoke();
4261      }
# Line 3780 | Line 4272 | public class ConcurrentHashMap<K, V>
4272       * @return the result of accumulating the given transformation
4273       * of all values
4274       */
4275 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
4276 <                                       double basis,
4277 <                                       DoubleByDoubleToDouble reducer) {
4275 >    public double reduceValuesToDoubleInParallel
4276 >        (ToDoubleFunction<? super V> transformer,
4277 >         double basis,
4278 >         DoubleBinaryOperator reducer) {
4279          return ForkJoinTasks.reduceValuesToDouble
4280              (this, transformer, basis, reducer).invoke();
4281      }
# Line 3799 | Line 4292 | public class ConcurrentHashMap<K, V>
4292       * @return the result of accumulating the given transformation
4293       * of all values
4294       */
4295 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4296 <                                   long basis,
4297 <                                   LongByLongToLong reducer) {
4295 >    public long reduceValuesToLongInParallel
4296 >        (ToLongFunction<? super V> transformer,
4297 >         long basis,
4298 >         LongBinaryOperator reducer) {
4299          return ForkJoinTasks.reduceValuesToLong
4300              (this, transformer, basis, reducer).invoke();
4301      }
# Line 3818 | Line 4312 | public class ConcurrentHashMap<K, V>
4312       * @return the result of accumulating the given transformation
4313       * of all values
4314       */
4315 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4316 <                                 int basis,
4317 <                                 IntByIntToInt reducer) {
4315 >    public int reduceValuesToIntInParallel
4316 >        (ToIntFunction<? super V> transformer,
4317 >         int basis,
4318 >         IntBinaryOperator reducer) {
4319          return ForkJoinTasks.reduceValuesToInt
4320              (this, transformer, basis, reducer).invoke();
4321      }
# Line 3830 | Line 4325 | public class ConcurrentHashMap<K, V>
4325       *
4326       * @param action the action
4327       */
4328 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
4328 >    public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4329          ForkJoinTasks.forEachEntry
4330              (this, action).invoke();
4331      }
# Line 3840 | Line 4335 | public class ConcurrentHashMap<K, V>
4335       * of each entry.
4336       *
4337       * @param transformer a function returning the transformation
4338 <     * for an element, or null of there is no transformation (in
4339 <     * which case the action is not applied).
4338 >     * for an element, or null if there is no transformation (in
4339 >     * which case the action is not applied)
4340       * @param action the action
4341       */
4342 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4343 <                                 Action<U> action) {
4342 >    public <U> void forEachEntryInParallel
4343 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4344 >         Consumer<? super U> action) {
4345          ForkJoinTasks.forEachEntry
4346              (this, transformer, action).invoke();
4347      }
# Line 3862 | Line 4358 | public class ConcurrentHashMap<K, V>
4358       * @return a non-null result from applying the given search
4359       * function on each entry, or null if none
4360       */
4361 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4361 >    public <U> U searchEntriesInParallel
4362 >        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4363          return ForkJoinTasks.searchEntries
4364              (this, searchFunction).invoke();
4365      }
# Line 3874 | Line 4371 | public class ConcurrentHashMap<K, V>
4371       * @param reducer a commutative associative combining function
4372       * @return the result of accumulating all entries
4373       */
4374 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4374 >    public Map.Entry<K,V> reduceEntriesInParallel
4375 >        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4376          return ForkJoinTasks.reduceEntries
4377              (this, reducer).invoke();
4378      }
# Line 3885 | Line 4383 | public class ConcurrentHashMap<K, V>
4383       * or null if none.
4384       *
4385       * @param transformer a function returning the transformation
4386 <     * for an element, or null of there is no transformation (in
4387 <     * which case it is not combined).
4386 >     * for an element, or null if there is no transformation (in
4387 >     * which case it is not combined)
4388       * @param reducer a commutative associative combining function
4389       * @return the result of accumulating the given transformation
4390       * of all entries
4391       */
4392 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4393 <                               BiFun<? super U, ? super U, ? extends U> reducer) {
4392 >    public <U> U reduceEntriesInParallel
4393 >        (Function<Map.Entry<K,V>, ? extends U> transformer,
4394 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
4395          return ForkJoinTasks.reduceEntries
4396              (this, transformer, reducer).invoke();
4397      }
# Line 3909 | Line 4408 | public class ConcurrentHashMap<K, V>
4408       * @return the result of accumulating the given transformation
4409       * of all entries
4410       */
4411 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4412 <                                        double basis,
4413 <                                        DoubleByDoubleToDouble reducer) {
4411 >    public double reduceEntriesToDoubleInParallel
4412 >        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4413 >         double basis,
4414 >         DoubleBinaryOperator reducer) {
4415          return ForkJoinTasks.reduceEntriesToDouble
4416              (this, transformer, basis, reducer).invoke();
4417      }
# Line 3925 | Line 4425 | public class ConcurrentHashMap<K, V>
4425       * for an element
4426       * @param basis the identity (initial default value) for the reduction
4427       * @param reducer a commutative associative combining function
4428 <     * @return  the result of accumulating the given transformation
4428 >     * @return the result of accumulating the given transformation
4429       * of all entries
4430       */
4431 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4432 <                                    long basis,
4433 <                                    LongByLongToLong reducer) {
4431 >    public long reduceEntriesToLongInParallel
4432 >        (ToLongFunction<Map.Entry<K,V>> transformer,
4433 >         long basis,
4434 >         LongBinaryOperator reducer) {
4435          return ForkJoinTasks.reduceEntriesToLong
4436              (this, transformer, basis, reducer).invoke();
4437      }
# Line 3947 | Line 4448 | public class ConcurrentHashMap<K, V>
4448       * @return the result of accumulating the given transformation
4449       * of all entries
4450       */
4451 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4452 <                                  int basis,
4453 <                                  IntByIntToInt reducer) {
4451 >    public int reduceEntriesToIntInParallel
4452 >        (ToIntFunction<Map.Entry<K,V>> transformer,
4453 >         int basis,
4454 >         IntBinaryOperator reducer) {
4455          return ForkJoinTasks.reduceEntriesToInt
4456              (this, transformer, basis, reducer).invoke();
4457      }
4458  
4459 +
4460      /* ----------------Views -------------- */
4461  
4462      /**
4463       * Base class for views.
4464       */
4465 <    static abstract class CHMView<K, V> {
4465 >    abstract static class CHMCollectionView<K, V, E>
4466 >            implements Collection<E>, java.io.Serializable {
4467 >        private static final long serialVersionUID = 7249069246763182397L;
4468          final ConcurrentHashMap<K, V> map;
4469 <        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
4469 >        CHMCollectionView(ConcurrentHashMap<K, V> map)  { this.map = map; }
4470  
4471          /**
4472           * Returns the map backing this view.
# Line 3970 | Line 4475 | public class ConcurrentHashMap<K, V>
4475           */
4476          public ConcurrentHashMap<K,V> getMap() { return map; }
4477  
4478 <        public final int size()                 { return map.size(); }
4479 <        public final boolean isEmpty()          { return map.isEmpty(); }
4480 <        public final void clear()               { map.clear(); }
4478 >        /**
4479 >         * Removes all of the elements from this view, by removing all
4480 >         * the mappings from the map backing this view.
4481 >         */
4482 >        public final void clear()      { map.clear(); }
4483 >        public final int size()        { return map.size(); }
4484 >        public final boolean isEmpty() { return map.isEmpty(); }
4485  
4486          // implementations below rely on concrete classes supplying these
4487 <        abstract public Iterator<?> iterator();
4488 <        abstract public boolean contains(Object o);
4489 <        abstract public boolean remove(Object o);
4487 >        // abstract methods
4488 >        /**
4489 >         * Returns a "weakly consistent" iterator that will never
4490 >         * throw {@link ConcurrentModificationException}, and
4491 >         * guarantees to traverse elements as they existed upon
4492 >         * construction of the iterator, and may (but is not
4493 >         * guaranteed to) reflect any modifications subsequent to
4494 >         * construction.
4495 >         */
4496 >        public abstract Iterator<E> iterator();
4497 >        public abstract boolean contains(Object o);
4498 >        public abstract boolean remove(Object o);
4499  
4500          private static final String oomeMsg = "Required array size too large";
4501  
4502          public final Object[] toArray() {
4503              long sz = map.mappingCount();
4504 <            if (sz > (long)(MAX_ARRAY_SIZE))
4504 >            if (sz > MAX_ARRAY_SIZE)
4505                  throw new OutOfMemoryError(oomeMsg);
4506              int n = (int)sz;
4507              Object[] r = new Object[n];
4508              int i = 0;
4509 <            Iterator<?> it = iterator();
3992 <            while (it.hasNext()) {
4509 >            for (E e : this) {
4510                  if (i == n) {
4511                      if (n >= MAX_ARRAY_SIZE)
4512                          throw new OutOfMemoryError(oomeMsg);
# Line 3999 | Line 4516 | public class ConcurrentHashMap<K, V>
4516                          n += (n >>> 1) + 1;
4517                      r = Arrays.copyOf(r, n);
4518                  }
4519 <                r[i++] = it.next();
4519 >                r[i++] = e;
4520              }
4521              return (i == n) ? r : Arrays.copyOf(r, i);
4522          }
4523  
4524 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4524 >        @SuppressWarnings("unchecked")
4525 >        public final <T> T[] toArray(T[] a) {
4526              long sz = map.mappingCount();
4527 <            if (sz > (long)(MAX_ARRAY_SIZE))
4527 >            if (sz > MAX_ARRAY_SIZE)
4528                  throw new OutOfMemoryError(oomeMsg);
4529              int m = (int)sz;
4530              T[] r = (a.length >= m) ? a :
# Line 4014 | Line 4532 | public class ConcurrentHashMap<K, V>
4532                  .newInstance(a.getClass().getComponentType(), m);
4533              int n = r.length;
4534              int i = 0;
4535 <            Iterator<?> it = iterator();
4018 <            while (it.hasNext()) {
4535 >            for (E e : this) {
4536                  if (i == n) {
4537                      if (n >= MAX_ARRAY_SIZE)
4538                          throw new OutOfMemoryError(oomeMsg);
# Line 4025 | Line 4542 | public class ConcurrentHashMap<K, V>
4542                          n += (n >>> 1) + 1;
4543                      r = Arrays.copyOf(r, n);
4544                  }
4545 <                r[i++] = (T)it.next();
4545 >                r[i++] = (T)e;
4546              }
4547              if (a == r && i < n) {
4548                  r[i] = null; // null-terminate
# Line 4034 | Line 4551 | public class ConcurrentHashMap<K, V>
4551              return (i == n) ? r : Arrays.copyOf(r, i);
4552          }
4553  
4554 <        public final int hashCode() {
4555 <            int h = 0;
4556 <            for (Iterator<?> it = iterator(); it.hasNext();)
4557 <                h += it.next().hashCode();
4558 <            return h;
4559 <        }
4560 <
4554 >        /**
4555 >         * Returns a string representation of this collection.
4556 >         * The string representation consists of the string representations
4557 >         * of the collection's elements in the order they are returned by
4558 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4559 >         * Adjacent elements are separated by the characters {@code ", "}
4560 >         * (comma and space).  Elements are converted to strings as by
4561 >         * {@link String#valueOf(Object)}.
4562 >         *
4563 >         * @return a string representation of this collection
4564 >         */
4565          public final String toString() {
4566              StringBuilder sb = new StringBuilder();
4567              sb.append('[');
4568 <            Iterator<?> it = iterator();
4568 >            Iterator<E> it = iterator();
4569              if (it.hasNext()) {
4570                  for (;;) {
4571                      Object e = it.next();
# Line 4059 | Line 4580 | public class ConcurrentHashMap<K, V>
4580  
4581          public final boolean containsAll(Collection<?> c) {
4582              if (c != this) {
4583 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4063 <                    Object e = it.next();
4583 >                for (Object e : c) {
4584                      if (e == null || !contains(e))
4585                          return false;
4586                  }
# Line 4070 | Line 4590 | public class ConcurrentHashMap<K, V>
4590  
4591          public final boolean removeAll(Collection<?> c) {
4592              boolean modified = false;
4593 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4593 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4594                  if (c.contains(it.next())) {
4595                      it.remove();
4596                      modified = true;
# Line 4081 | Line 4601 | public class ConcurrentHashMap<K, V>
4601  
4602          public final boolean retainAll(Collection<?> c) {
4603              boolean modified = false;
4604 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4604 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4605                  if (!c.contains(it.next())) {
4606                      it.remove();
4607                      modified = true;
# Line 4092 | Line 4612 | public class ConcurrentHashMap<K, V>
4612  
4613      }
4614  
4615 +    abstract static class CHMSetView<K, V, E>
4616 +            extends CHMCollectionView<K, V, E>
4617 +            implements Set<E>, java.io.Serializable {
4618 +        private static final long serialVersionUID = 7249069246763182397L;
4619 +        CHMSetView(ConcurrentHashMap<K, V> map) { super(map); }
4620 +
4621 +        // Implement Set API
4622 +
4623 +        /**
4624 +         * Implements {@link Set#hashCode()}.
4625 +         * @return the hash code value for this set
4626 +         */
4627 +        public final int hashCode() {
4628 +            int h = 0;
4629 +            for (E e : this)
4630 +                h += e.hashCode();
4631 +            return h;
4632 +        }
4633 +
4634 +        /**
4635 +         * Implements {@link Set#equals(Object)}.
4636 +         * @param o object to be compared for equality with this set
4637 +         * @return {@code true} if the specified object is equal to this set
4638 +        */
4639 +        public final boolean equals(Object o) {
4640 +            Set<?> c;
4641 +            return ((o instanceof Set) &&
4642 +                    ((c = (Set<?>)o) == this ||
4643 +                     (containsAll(c) && c.containsAll(this))));
4644 +        }
4645 +    }
4646 +
4647      /**
4648       * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4649       * which additions may optionally be enabled by mapping to a
4650       * common value.  This class cannot be directly instantiated. See
4651 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4651 >     * {@link #keySet()}, {@link #keySet(Object)}, {@link #newKeySet()},
4652       * {@link #newKeySet(int)}.
4653       */
4654 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4654 >    public static class KeySetView<K,V>
4655 >            extends CHMSetView<K,V,K>
4656 >            implements Set<K>, java.io.Serializable {
4657          private static final long serialVersionUID = 7249069246763182397L;
4658          private final V value;
4659          KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
# Line 4112 | Line 4666 | public class ConcurrentHashMap<K, V>
4666           * or {@code null} if additions are not supported.
4667           *
4668           * @return the default mapped value for additions, or {@code null}
4669 <         * if not supported.
4669 >         * if not supported
4670           */
4671          public V getMappedValue() { return value; }
4672  
4673 <        // implement Set API
4674 <
4673 >        /**
4674 >         * {@inheritDoc}
4675 >         * @throws NullPointerException if the specified key is null
4676 >         */
4677          public boolean contains(Object o) { return map.containsKey(o); }
4122        public boolean remove(Object o)   { return map.remove(o) != null; }
4678  
4679          /**
4680 <         * Returns a "weakly consistent" iterator that will never
4681 <         * throw {@link ConcurrentModificationException}, and
4682 <         * guarantees to traverse elements as they existed upon
4683 <         * construction of the iterator, and may (but is not
4684 <         * guaranteed to) reflect any modifications subsequent to
4685 <         * construction.
4680 >         * Removes the key from this map view, by removing the key (and its
4681 >         * corresponding value) from the backing map.  This method does
4682 >         * nothing if the key is not in the map.
4683 >         *
4684 >         * @param  o the key to be removed from the backing map
4685 >         * @return {@code true} if the backing map contained the specified key
4686 >         * @throws NullPointerException if the specified key is null
4687 >         */
4688 >        public boolean remove(Object o) { return map.remove(o) != null; }
4689 >
4690 >        /**
4691 >         * @return an iterator over the keys of the backing map
4692 >         */
4693 >        public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4694 >
4695 >        /**
4696 >         * Adds the specified key to this set view by mapping the key to
4697 >         * the default mapped value in the backing map, if defined.
4698           *
4699 <         * @return an iterator over the keys of this map
4699 >         * @param e key to be added
4700 >         * @return {@code true} if this set changed as a result of the call
4701 >         * @throws NullPointerException if the specified key is null
4702 >         * @throws UnsupportedOperationException if no default mapped value
4703 >         * for additions was provided
4704           */
4134        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4705          public boolean add(K e) {
4706              V v;
4707              if ((v = value) == null)
4708                  throw new UnsupportedOperationException();
4709 <            if (e == null)
4140 <                throw new NullPointerException();
4141 <            return map.internalPutIfAbsent(e, v) == null;
4709 >            return map.internalPut(e, v, true) == null;
4710          }
4711 +
4712 +        /**
4713 +         * Adds all of the elements in the specified collection to this set,
4714 +         * as if by calling {@link #add} on each one.
4715 +         *
4716 +         * @param c the elements to be inserted into this set
4717 +         * @return {@code true} if this set changed as a result of the call
4718 +         * @throws NullPointerException if the collection or any of its
4719 +         * elements are {@code null}
4720 +         * @throws UnsupportedOperationException if no default mapped value
4721 +         * for additions was provided
4722 +         */
4723          public boolean addAll(Collection<? extends K> c) {
4724              boolean added = false;
4725              V v;
4726              if ((v = value) == null)
4727                  throw new UnsupportedOperationException();
4728              for (K e : c) {
4729 <                if (e == null)
4150 <                    throw new NullPointerException();
4151 <                if (map.internalPutIfAbsent(e, v) == null)
4729 >                if (map.internalPut(e, v, true) == null)
4730                      added = true;
4731              }
4732              return added;
4733          }
4156        public boolean equals(Object o) {
4157            Set<?> c;
4158            return ((o instanceof Set) &&
4159                    ((c = (Set<?>)o) == this ||
4160                     (containsAll(c) && c.containsAll(this))));
4161        }
4162
4163        /**
4164         * Performs the given action for each key.
4165         *
4166         * @param action the action
4167         */
4168        public void forEach(Action<K> action) {
4169            ForkJoinTasks.forEachKey
4170                (map, action).invoke();
4171        }
4172
4173        /**
4174         * Performs the given action for each non-null transformation
4175         * of each key.
4176         *
4177         * @param transformer a function returning the transformation
4178         * for an element, or null of there is no transformation (in
4179         * which case the action is not applied).
4180         * @param action the action
4181         */
4182        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4183                                Action<U> action) {
4184            ForkJoinTasks.forEachKey
4185                (map, transformer, action).invoke();
4186        }
4187
4188        /**
4189         * Returns a non-null result from applying the given search
4190         * function on each key, or null if none. Upon success,
4191         * further element processing is suppressed and the results of
4192         * any other parallel invocations of the search function are
4193         * ignored.
4194         *
4195         * @param searchFunction a function returning a non-null
4196         * result on success, else null
4197         * @return a non-null result from applying the given search
4198         * function on each key, or null if none
4199         */
4200        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4201            return ForkJoinTasks.searchKeys
4202                (map, searchFunction).invoke();
4203        }
4204
4205        /**
4206         * Returns the result of accumulating all keys using the given
4207         * reducer to combine values, or null if none.
4208         *
4209         * @param reducer a commutative associative combining function
4210         * @return the result of accumulating all keys using the given
4211         * reducer to combine values, or null if none
4212         */
4213        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4214            return ForkJoinTasks.reduceKeys
4215                (map, reducer).invoke();
4216        }
4217
4218        /**
4219         * Returns the result of accumulating the given transformation
4220         * of all keys using the given reducer to combine values, and
4221         * the given basis as an identity value.
4222         *
4223         * @param transformer a function returning the transformation
4224         * for an element
4225         * @param basis the identity (initial default value) for the reduction
4226         * @param reducer a commutative associative combining function
4227         * @return  the result of accumulating the given transformation
4228         * of all keys
4229         */
4230        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4231                                     double basis,
4232                                     DoubleByDoubleToDouble reducer) {
4233            return ForkJoinTasks.reduceKeysToDouble
4234                (map, transformer, basis, reducer).invoke();
4235        }
4236
4734  
4735 <        /**
4736 <         * Returns the result of accumulating the given transformation
4240 <         * of all keys using the given reducer to combine values, and
4241 <         * the given basis as an identity value.
4242 <         *
4243 <         * @param transformer a function returning the transformation
4244 <         * for an element
4245 <         * @param basis the identity (initial default value) for the reduction
4246 <         * @param reducer a commutative associative combining function
4247 <         * @return the result of accumulating the given transformation
4248 <         * of all keys
4249 <         */
4250 <        public long reduceToLong(ObjectToLong<? super K> transformer,
4251 <                                 long basis,
4252 <                                 LongByLongToLong reducer) {
4253 <            return ForkJoinTasks.reduceKeysToLong
4254 <                (map, transformer, basis, reducer).invoke();
4735 >        public Stream<K> stream() {
4736 >            return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4737          }
4738 <
4739 <        /**
4740 <         * Returns the result of accumulating the given transformation
4259 <         * of all keys using the given reducer to combine values, and
4260 <         * the given basis as an identity value.
4261 <         *
4262 <         * @param transformer a function returning the transformation
4263 <         * for an element
4264 <         * @param basis the identity (initial default value) for the reduction
4265 <         * @param reducer a commutative associative combining function
4266 <         * @return the result of accumulating the given transformation
4267 <         * of all keys
4268 <         */
4269 <        public int reduceToInt(ObjectToInt<? super K> transformer,
4270 <                               int basis,
4271 <                               IntByIntToInt reducer) {
4272 <            return ForkJoinTasks.reduceKeysToInt
4273 <                (map, transformer, basis, reducer).invoke();
4738 >        public Stream<K> parallelStream() {
4739 >            return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4740 >                                          0);
4741          }
4275
4742      }
4743  
4744      /**
4745       * A view of a ConcurrentHashMap as a {@link Collection} of
4746       * values, in which additions are disabled. This class cannot be
4747 <     * directly instantiated. See {@link #values},
4747 >     * directly instantiated. See {@link #values()}.
4748       *
4749       * <p>The view's {@code iterator} is a "weakly consistent" iterator
4750       * that will never throw {@link ConcurrentModificationException},
# Line 4286 | Line 4752 | public class ConcurrentHashMap<K, V>
4752       * construction of the iterator, and may (but is not guaranteed to)
4753       * reflect any modifications subsequent to construction.
4754       */
4755 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4756 <        implements Collection<V> {
4757 <        ValuesView(ConcurrentHashMap<K, V> map)   { super(map); }
4758 <        public final boolean contains(Object o) { return map.containsValue(o); }
4755 >    public static final class ValuesView<K,V>
4756 >            extends CHMCollectionView<K,V,V>
4757 >            implements Collection<V>, java.io.Serializable {
4758 >        private static final long serialVersionUID = 2249069246763182397L;
4759 >        ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4760 >        public final boolean contains(Object o) {
4761 >            return map.containsValue(o);
4762 >        }
4763          public final boolean remove(Object o) {
4764              if (o != null) {
4765 <                Iterator<V> it = new ValueIterator<K,V>(map);
4296 <                while (it.hasNext()) {
4765 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4766                      if (o.equals(it.next())) {
4767                          it.remove();
4768                          return true;
# Line 4304 | Line 4773 | public class ConcurrentHashMap<K, V>
4773          }
4774  
4775          /**
4776 <         * Returns a "weakly consistent" iterator that will never
4308 <         * throw {@link ConcurrentModificationException}, and
4309 <         * guarantees to traverse elements as they existed upon
4310 <         * construction of the iterator, and may (but is not
4311 <         * guaranteed to) reflect any modifications subsequent to
4312 <         * construction.
4313 <         *
4314 <         * @return an iterator over the values of this map
4776 >         * @return an iterator over the values of the backing map
4777           */
4778          public final Iterator<V> iterator() {
4779              return new ValueIterator<K,V>(map);
4780          }
4781 +
4782 +        /** Always throws {@link UnsupportedOperationException}. */
4783          public final boolean add(V e) {
4784              throw new UnsupportedOperationException();
4785          }
4786 +        /** Always throws {@link UnsupportedOperationException}. */
4787          public final boolean addAll(Collection<? extends V> c) {
4788              throw new UnsupportedOperationException();
4789          }
4790  
4791 <        /**
4792 <         * Performs the given action for each value.
4328 <         *
4329 <         * @param action the action
4330 <         */
4331 <        public void forEach(Action<V> action) {
4332 <            ForkJoinTasks.forEachValue
4333 <                (map, action).invoke();
4791 >        public Stream<V> stream() {
4792 >            return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4793          }
4794  
4795 <        /**
4796 <         * Performs the given action for each non-null transformation
4797 <         * of each value.
4339 <         *
4340 <         * @param transformer a function returning the transformation
4341 <         * for an element, or null of there is no transformation (in
4342 <         * which case the action is not applied).
4343 <         */
4344 <        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4345 <                                     Action<U> action) {
4346 <            ForkJoinTasks.forEachValue
4347 <                (map, transformer, action).invoke();
4348 <        }
4349 <
4350 <        /**
4351 <         * Returns a non-null result from applying the given search
4352 <         * function on each value, or null if none.  Upon success,
4353 <         * further element processing is suppressed and the results of
4354 <         * any other parallel invocations of the search function are
4355 <         * ignored.
4356 <         *
4357 <         * @param searchFunction a function returning a non-null
4358 <         * result on success, else null
4359 <         * @return a non-null result from applying the given search
4360 <         * function on each value, or null if none
4361 <         *
4362 <         */
4363 <        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4364 <            return ForkJoinTasks.searchValues
4365 <                (map, searchFunction).invoke();
4366 <        }
4367 <
4368 <        /**
4369 <         * Returns the result of accumulating all values using the
4370 <         * given reducer to combine values, or null if none.
4371 <         *
4372 <         * @param reducer a commutative associative combining function
4373 <         * @return  the result of accumulating all values
4374 <         */
4375 <        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4376 <            return ForkJoinTasks.reduceValues
4377 <                (map, reducer).invoke();
4378 <        }
4379 <
4380 <        /**
4381 <         * Returns the result of accumulating the given transformation
4382 <         * of all values using the given reducer to combine values, or
4383 <         * null if none.
4384 <         *
4385 <         * @param transformer a function returning the transformation
4386 <         * for an element, or null of there is no transformation (in
4387 <         * which case it is not combined).
4388 <         * @param reducer a commutative associative combining function
4389 <         * @return the result of accumulating the given transformation
4390 <         * of all values
4391 <         */
4392 <        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4393 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4394 <            return ForkJoinTasks.reduceValues
4395 <                (map, transformer, reducer).invoke();
4396 <        }
4397 <
4398 <        /**
4399 <         * Returns the result of accumulating the given transformation
4400 <         * of all values using the given reducer to combine values,
4401 <         * and the given basis as an identity value.
4402 <         *
4403 <         * @param transformer a function returning the transformation
4404 <         * for an element
4405 <         * @param basis the identity (initial default value) for the reduction
4406 <         * @param reducer a commutative associative combining function
4407 <         * @return the result of accumulating the given transformation
4408 <         * of all values
4409 <         */
4410 <        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4411 <                                     double basis,
4412 <                                     DoubleByDoubleToDouble reducer) {
4413 <            return ForkJoinTasks.reduceValuesToDouble
4414 <                (map, transformer, basis, reducer).invoke();
4415 <        }
4416 <
4417 <        /**
4418 <         * Returns the result of accumulating the given transformation
4419 <         * of all values using the given reducer to combine values,
4420 <         * and the given basis as an identity value.
4421 <         *
4422 <         * @param transformer a function returning the transformation
4423 <         * for an element
4424 <         * @param basis the identity (initial default value) for the reduction
4425 <         * @param reducer a commutative associative combining function
4426 <         * @return the result of accumulating the given transformation
4427 <         * of all values
4428 <         */
4429 <        public long reduceToLong(ObjectToLong<? super V> transformer,
4430 <                                 long basis,
4431 <                                 LongByLongToLong reducer) {
4432 <            return ForkJoinTasks.reduceValuesToLong
4433 <                (map, transformer, basis, reducer).invoke();
4434 <        }
4435 <
4436 <        /**
4437 <         * Returns the result of accumulating the given transformation
4438 <         * of all values using the given reducer to combine values,
4439 <         * and the given basis as an identity value.
4440 <         *
4441 <         * @param transformer a function returning the transformation
4442 <         * for an element
4443 <         * @param basis the identity (initial default value) for the reduction
4444 <         * @param reducer a commutative associative combining function
4445 <         * @return the result of accumulating the given transformation
4446 <         * of all values
4447 <         */
4448 <        public int reduceToInt(ObjectToInt<? super V> transformer,
4449 <                               int basis,
4450 <                               IntByIntToInt reducer) {
4451 <            return ForkJoinTasks.reduceValuesToInt
4452 <                (map, transformer, basis, reducer).invoke();
4795 >        public Stream<V> parallelStream() {
4796 >            return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4797 >                                          0);
4798          }
4799  
4800      }
# Line 4457 | Line 4802 | public class ConcurrentHashMap<K, V>
4802      /**
4803       * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4804       * entries.  This class cannot be directly instantiated. See
4805 <     * {@link #entrySet}.
4805 >     * {@link #entrySet()}.
4806       */
4807 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4808 <        implements Set<Map.Entry<K,V>> {
4807 >    public static final class EntrySetView<K,V>
4808 >            extends CHMSetView<K,V,Map.Entry<K,V>>
4809 >            implements Set<Map.Entry<K,V>>, java.io.Serializable {
4810 >        private static final long serialVersionUID = 2249069246763182397L;
4811          EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4812 +
4813          public final boolean contains(Object o) {
4814              Object k, v, r; Map.Entry<?,?> e;
4815              return ((o instanceof Map.Entry) &&
# Line 4479 | Line 4827 | public class ConcurrentHashMap<K, V>
4827          }
4828  
4829          /**
4830 <         * Returns a "weakly consistent" iterator that will never
4483 <         * throw {@link ConcurrentModificationException}, and
4484 <         * guarantees to traverse elements as they existed upon
4485 <         * construction of the iterator, and may (but is not
4486 <         * guaranteed to) reflect any modifications subsequent to
4487 <         * construction.
4488 <         *
4489 <         * @return an iterator over the entries of this map
4830 >         * @return an iterator over the entries of the backing map
4831           */
4832          public final Iterator<Map.Entry<K,V>> iterator() {
4833              return new EntryIterator<K,V>(map);
4834          }
4835  
4836 +        /**
4837 +         * Adds the specified mapping to this view.
4838 +         *
4839 +         * @param e mapping to be added
4840 +         * @return {@code true} if this set changed as a result of the call
4841 +         * @throws NullPointerException if the entry, its key, or its
4842 +         * value is null
4843 +         */
4844          public final boolean add(Entry<K,V> e) {
4845 <            K key = e.getKey();
4497 <            V value = e.getValue();
4498 <            if (key == null || value == null)
4499 <                throw new NullPointerException();
4500 <            return map.internalPut(key, value) == null;
4845 >            return map.internalPut(e.getKey(), e.getValue(), false) == null;
4846          }
4847 +        /**
4848 +         * Adds all of the mappings in the specified collection to this
4849 +         * set, as if by calling {@link #add(Map.Entry)} on each one.
4850 +         * @param c the mappings to be inserted into this set
4851 +         * @return {@code true} if this set changed as a result of the call
4852 +         * @throws NullPointerException if the collection or any of its
4853 +         * entries, keys, or values are null
4854 +         */
4855          public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4856              boolean added = false;
4857              for (Entry<K,V> e : c) {
# Line 4507 | Line 4860 | public class ConcurrentHashMap<K, V>
4860              }
4861              return added;
4862          }
4510        public boolean equals(Object o) {
4511            Set<?> c;
4512            return ((o instanceof Set) &&
4513                    ((c = (Set<?>)o) == this ||
4514                     (containsAll(c) && c.containsAll(this))));
4515        }
4516
4517        /**
4518         * Performs the given action for each entry.
4519         *
4520         * @param action the action
4521         */
4522        public void forEach(Action<Map.Entry<K,V>> action) {
4523            ForkJoinTasks.forEachEntry
4524                (map, action).invoke();
4525        }
4526
4527        /**
4528         * Performs the given action for each non-null transformation
4529         * of each entry.
4530         *
4531         * @param transformer a function returning the transformation
4532         * for an element, or null of there is no transformation (in
4533         * which case the action is not applied).
4534         * @param action the action
4535         */
4536        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4537                                Action<U> action) {
4538            ForkJoinTasks.forEachEntry
4539                (map, transformer, action).invoke();
4540        }
4541
4542        /**
4543         * Returns a non-null result from applying the given search
4544         * function on each entry, or null if none.  Upon success,
4545         * further element processing is suppressed and the results of
4546         * any other parallel invocations of the search function are
4547         * ignored.
4548         *
4549         * @param searchFunction a function returning a non-null
4550         * result on success, else null
4551         * @return a non-null result from applying the given search
4552         * function on each entry, or null if none
4553         */
4554        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4555            return ForkJoinTasks.searchEntries
4556                (map, searchFunction).invoke();
4557        }
4558
4559        /**
4560         * Returns the result of accumulating all entries using the
4561         * given reducer to combine values, or null if none.
4562         *
4563         * @param reducer a commutative associative combining function
4564         * @return the result of accumulating all entries
4565         */
4566        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4567            return ForkJoinTasks.reduceEntries
4568                (map, reducer).invoke();
4569        }
4570
4571        /**
4572         * Returns the result of accumulating the given transformation
4573         * of all entries using the given reducer to combine values,
4574         * or null if none.
4575         *
4576         * @param transformer a function returning the transformation
4577         * for an element, or null of there is no transformation (in
4578         * which case it is not combined).
4579         * @param reducer a commutative associative combining function
4580         * @return the result of accumulating the given transformation
4581         * of all entries
4582         */
4583        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4584                            BiFun<? super U, ? super U, ? extends U> reducer) {
4585            return ForkJoinTasks.reduceEntries
4586                (map, transformer, reducer).invoke();
4587        }
4588
4589        /**
4590         * Returns the result of accumulating the given transformation
4591         * of all entries using the given reducer to combine values,
4592         * and the given basis as an identity value.
4593         *
4594         * @param transformer a function returning the transformation
4595         * for an element
4596         * @param basis the identity (initial default value) for the reduction
4597         * @param reducer a commutative associative combining function
4598         * @return the result of accumulating the given transformation
4599         * of all entries
4600         */
4601        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4602                                     double basis,
4603                                     DoubleByDoubleToDouble reducer) {
4604            return ForkJoinTasks.reduceEntriesToDouble
4605                (map, transformer, basis, reducer).invoke();
4606        }
4863  
4864 <        /**
4865 <         * Returns the result of accumulating the given transformation
4610 <         * of all entries using the given reducer to combine values,
4611 <         * and the given basis as an identity value.
4612 <         *
4613 <         * @param transformer a function returning the transformation
4614 <         * for an element
4615 <         * @param basis the identity (initial default value) for the reduction
4616 <         * @param reducer a commutative associative combining function
4617 <         * @return  the result of accumulating the given transformation
4618 <         * of all entries
4619 <         */
4620 <        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4621 <                                 long basis,
4622 <                                 LongByLongToLong reducer) {
4623 <            return ForkJoinTasks.reduceEntriesToLong
4624 <                (map, transformer, basis, reducer).invoke();
4864 >        public Stream<Map.Entry<K,V>> stream() {
4865 >            return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4866          }
4867  
4868 <        /**
4869 <         * Returns the result of accumulating the given transformation
4870 <         * of all entries using the given reducer to combine values,
4630 <         * and the given basis as an identity value.
4631 <         *
4632 <         * @param transformer a function returning the transformation
4633 <         * for an element
4634 <         * @param basis the identity (initial default value) for the reduction
4635 <         * @param reducer a commutative associative combining function
4636 <         * @return the result of accumulating the given transformation
4637 <         * of all entries
4638 <         */
4639 <        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4640 <                               int basis,
4641 <                               IntByIntToInt reducer) {
4642 <            return ForkJoinTasks.reduceEntriesToInt
4643 <                (map, transformer, basis, reducer).invoke();
4868 >        public Stream<Map.Entry<K,V>> parallelStream() {
4869 >            return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4870 >                                          0);
4871          }
4645
4872      }
4873  
4874      // ---------------------------------------------------------------------
# Line 4669 | Line 4895 | public class ConcurrentHashMap<K, V>
4895           */
4896          public static <K,V> ForkJoinTask<Void> forEach
4897              (ConcurrentHashMap<K,V> map,
4898 <             BiAction<K,V> action) {
4898 >             BiConsumer<? super K, ? super V> action) {
4899              if (action == null) throw new NullPointerException();
4900 <            return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4900 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4901          }
4902  
4903          /**
# Line 4687 | Line 4913 | public class ConcurrentHashMap<K, V>
4913           */
4914          public static <K,V,U> ForkJoinTask<Void> forEach
4915              (ConcurrentHashMap<K,V> map,
4916 <             BiFun<? super K, ? super V, ? extends U> transformer,
4917 <             Action<U> action) {
4916 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4917 >             Consumer<? super U> action) {
4918              if (transformer == null || action == null)
4919                  throw new NullPointerException();
4920              return new ForEachTransformedMappingTask<K,V,U>
4921 <                (map, null, -1, null, transformer, action);
4921 >                (map, null, -1, transformer, action);
4922          }
4923  
4924          /**
# Line 4709 | Line 4935 | public class ConcurrentHashMap<K, V>
4935           */
4936          public static <K,V,U> ForkJoinTask<U> search
4937              (ConcurrentHashMap<K,V> map,
4938 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4938 >             BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4939              if (searchFunction == null) throw new NullPointerException();
4940              return new SearchMappingsTask<K,V,U>
4941 <                (map, null, -1, null, searchFunction,
4941 >                (map, null, -1, searchFunction,
4942                   new AtomicReference<U>());
4943          }
4944  
# Line 4724 | Line 4950 | public class ConcurrentHashMap<K, V>
4950           * @param map the map
4951           * @param transformer a function returning the transformation
4952           * for an element, or null if there is no transformation (in
4953 <         * which case it is not combined).
4953 >         * which case it is not combined)
4954           * @param reducer a commutative associative combining function
4955           * @return the task
4956           */
4957          public static <K,V,U> ForkJoinTask<U> reduce
4958              (ConcurrentHashMap<K,V> map,
4959 <             BiFun<? super K, ? super V, ? extends U> transformer,
4960 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4959 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4960 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
4961              if (transformer == null || reducer == null)
4962                  throw new NullPointerException();
4963              return new MapReduceMappingsTask<K,V,U>
# Line 4753 | Line 4979 | public class ConcurrentHashMap<K, V>
4979           */
4980          public static <K,V> ForkJoinTask<Double> reduceToDouble
4981              (ConcurrentHashMap<K,V> map,
4982 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4982 >             ToDoubleBiFunction<? super K, ? super V> transformer,
4983               double basis,
4984 <             DoubleByDoubleToDouble reducer) {
4984 >             DoubleBinaryOperator reducer) {
4985              if (transformer == null || reducer == null)
4986                  throw new NullPointerException();
4987              return new MapReduceMappingsToDoubleTask<K,V>
# Line 4777 | Line 5003 | public class ConcurrentHashMap<K, V>
5003           */
5004          public static <K,V> ForkJoinTask<Long> reduceToLong
5005              (ConcurrentHashMap<K,V> map,
5006 <             ObjectByObjectToLong<? super K, ? super V> transformer,
5006 >             ToLongBiFunction<? super K, ? super V> transformer,
5007               long basis,
5008 <             LongByLongToLong reducer) {
5008 >             LongBinaryOperator reducer) {
5009              if (transformer == null || reducer == null)
5010                  throw new NullPointerException();
5011              return new MapReduceMappingsToLongTask<K,V>
# Line 4792 | Line 5018 | public class ConcurrentHashMap<K, V>
5018           * using the given reducer to combine values, and the given
5019           * basis as an identity value.
5020           *
5021 +         * @param map the map
5022           * @param transformer a function returning the transformation
5023           * for an element
5024           * @param basis the identity (initial default value) for the reduction
# Line 4800 | Line 5027 | public class ConcurrentHashMap<K, V>
5027           */
5028          public static <K,V> ForkJoinTask<Integer> reduceToInt
5029              (ConcurrentHashMap<K,V> map,
5030 <             ObjectByObjectToInt<? super K, ? super V> transformer,
5030 >             ToIntBiFunction<? super K, ? super V> transformer,
5031               int basis,
5032 <             IntByIntToInt reducer) {
5032 >             IntBinaryOperator reducer) {
5033              if (transformer == null || reducer == null)
5034                  throw new NullPointerException();
5035              return new MapReduceMappingsToIntTask<K,V>
# Line 4819 | Line 5046 | public class ConcurrentHashMap<K, V>
5046           */
5047          public static <K,V> ForkJoinTask<Void> forEachKey
5048              (ConcurrentHashMap<K,V> map,
5049 <             Action<K> action) {
5049 >             Consumer<? super K> action) {
5050              if (action == null) throw new NullPointerException();
5051 <            return new ForEachKeyTask<K,V>(map, null, -1, null, action);
5051 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
5052          }
5053  
5054          /**
# Line 4837 | Line 5064 | public class ConcurrentHashMap<K, V>
5064           */
5065          public static <K,V,U> ForkJoinTask<Void> forEachKey
5066              (ConcurrentHashMap<K,V> map,
5067 <             Fun<? super K, ? extends U> transformer,
5068 <             Action<U> action) {
5067 >             Function<? super K, ? extends U> transformer,
5068 >             Consumer<? super U> action) {
5069              if (transformer == null || action == null)
5070                  throw new NullPointerException();
5071              return new ForEachTransformedKeyTask<K,V,U>
5072 <                (map, null, -1, null, transformer, action);
5072 >                (map, null, -1, transformer, action);
5073          }
5074  
5075          /**
# Line 4859 | Line 5086 | public class ConcurrentHashMap<K, V>
5086           */
5087          public static <K,V,U> ForkJoinTask<U> searchKeys
5088              (ConcurrentHashMap<K,V> map,
5089 <             Fun<? super K, ? extends U> searchFunction) {
5089 >             Function<? super K, ? extends U> searchFunction) {
5090              if (searchFunction == null) throw new NullPointerException();
5091              return new SearchKeysTask<K,V,U>
5092 <                (map, null, -1, null, searchFunction,
5092 >                (map, null, -1, searchFunction,
5093                   new AtomicReference<U>());
5094          }
5095  
# Line 4877 | Line 5104 | public class ConcurrentHashMap<K, V>
5104           */
5105          public static <K,V> ForkJoinTask<K> reduceKeys
5106              (ConcurrentHashMap<K,V> map,
5107 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5107 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5108              if (reducer == null) throw new NullPointerException();
5109              return new ReduceKeysTask<K,V>
5110                  (map, null, -1, null, reducer);
# Line 4891 | Line 5118 | public class ConcurrentHashMap<K, V>
5118           * @param map the map
5119           * @param transformer a function returning the transformation
5120           * for an element, or null if there is no transformation (in
5121 <         * which case it is not combined).
5121 >         * which case it is not combined)
5122           * @param reducer a commutative associative combining function
5123           * @return the task
5124           */
5125          public static <K,V,U> ForkJoinTask<U> reduceKeys
5126              (ConcurrentHashMap<K,V> map,
5127 <             Fun<? super K, ? extends U> transformer,
5128 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5127 >             Function<? super K, ? extends U> transformer,
5128 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5129              if (transformer == null || reducer == null)
5130                  throw new NullPointerException();
5131              return new MapReduceKeysTask<K,V,U>
# Line 4920 | Line 5147 | public class ConcurrentHashMap<K, V>
5147           */
5148          public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5149              (ConcurrentHashMap<K,V> map,
5150 <             ObjectToDouble<? super K> transformer,
5150 >             ToDoubleFunction<? super K> transformer,
5151               double basis,
5152 <             DoubleByDoubleToDouble reducer) {
5152 >             DoubleBinaryOperator reducer) {
5153              if (transformer == null || reducer == null)
5154                  throw new NullPointerException();
5155              return new MapReduceKeysToDoubleTask<K,V>
# Line 4944 | Line 5171 | public class ConcurrentHashMap<K, V>
5171           */
5172          public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5173              (ConcurrentHashMap<K,V> map,
5174 <             ObjectToLong<? super K> transformer,
5174 >             ToLongFunction<? super K> transformer,
5175               long basis,
5176 <             LongByLongToLong reducer) {
5176 >             LongBinaryOperator reducer) {
5177              if (transformer == null || reducer == null)
5178                  throw new NullPointerException();
5179              return new MapReduceKeysToLongTask<K,V>
# Line 4968 | Line 5195 | public class ConcurrentHashMap<K, V>
5195           */
5196          public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5197              (ConcurrentHashMap<K,V> map,
5198 <             ObjectToInt<? super K> transformer,
5198 >             ToIntFunction<? super K> transformer,
5199               int basis,
5200 <             IntByIntToInt reducer) {
5200 >             IntBinaryOperator reducer) {
5201              if (transformer == null || reducer == null)
5202                  throw new NullPointerException();
5203              return new MapReduceKeysToIntTask<K,V>
# Line 4983 | Line 5210 | public class ConcurrentHashMap<K, V>
5210           *
5211           * @param map the map
5212           * @param action the action
5213 +         * @return the task
5214           */
5215          public static <K,V> ForkJoinTask<Void> forEachValue
5216              (ConcurrentHashMap<K,V> map,
5217 <             Action<V> action) {
5217 >             Consumer<? super V> action) {
5218              if (action == null) throw new NullPointerException();
5219 <            return new ForEachValueTask<K,V>(map, null, -1, null, action);
5219 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5220          }
5221  
5222          /**
# Line 5000 | Line 5228 | public class ConcurrentHashMap<K, V>
5228           * for an element, or null if there is no transformation (in
5229           * which case the action is not applied)
5230           * @param action the action
5231 +         * @return the task
5232           */
5233          public static <K,V,U> ForkJoinTask<Void> forEachValue
5234              (ConcurrentHashMap<K,V> map,
5235 <             Fun<? super V, ? extends U> transformer,
5236 <             Action<U> action) {
5235 >             Function<? super V, ? extends U> transformer,
5236 >             Consumer<? super U> action) {
5237              if (transformer == null || action == null)
5238                  throw new NullPointerException();
5239              return new ForEachTransformedValueTask<K,V,U>
5240 <                (map, null, -1, null, transformer, action);
5240 >                (map, null, -1, transformer, action);
5241          }
5242  
5243          /**
# Line 5025 | Line 5254 | public class ConcurrentHashMap<K, V>
5254           */
5255          public static <K,V,U> ForkJoinTask<U> searchValues
5256              (ConcurrentHashMap<K,V> map,
5257 <             Fun<? super V, ? extends U> searchFunction) {
5257 >             Function<? super V, ? extends U> searchFunction) {
5258              if (searchFunction == null) throw new NullPointerException();
5259              return new SearchValuesTask<K,V,U>
5260 <                (map, null, -1, null, searchFunction,
5260 >                (map, null, -1, searchFunction,
5261                   new AtomicReference<U>());
5262          }
5263  
# Line 5043 | Line 5272 | public class ConcurrentHashMap<K, V>
5272           */
5273          public static <K,V> ForkJoinTask<V> reduceValues
5274              (ConcurrentHashMap<K,V> map,
5275 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5275 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5276              if (reducer == null) throw new NullPointerException();
5277              return new ReduceValuesTask<K,V>
5278                  (map, null, -1, null, reducer);
# Line 5057 | Line 5286 | public class ConcurrentHashMap<K, V>
5286           * @param map the map
5287           * @param transformer a function returning the transformation
5288           * for an element, or null if there is no transformation (in
5289 <         * which case it is not combined).
5289 >         * which case it is not combined)
5290           * @param reducer a commutative associative combining function
5291           * @return the task
5292           */
5293          public static <K,V,U> ForkJoinTask<U> reduceValues
5294              (ConcurrentHashMap<K,V> map,
5295 <             Fun<? super V, ? extends U> transformer,
5296 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5295 >             Function<? super V, ? extends U> transformer,
5296 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5297              if (transformer == null || reducer == null)
5298                  throw new NullPointerException();
5299              return new MapReduceValuesTask<K,V,U>
# Line 5086 | Line 5315 | public class ConcurrentHashMap<K, V>
5315           */
5316          public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5317              (ConcurrentHashMap<K,V> map,
5318 <             ObjectToDouble<? super V> transformer,
5318 >             ToDoubleFunction<? super V> transformer,
5319               double basis,
5320 <             DoubleByDoubleToDouble reducer) {
5320 >             DoubleBinaryOperator reducer) {
5321              if (transformer == null || reducer == null)
5322                  throw new NullPointerException();
5323              return new MapReduceValuesToDoubleTask<K,V>
# Line 5110 | Line 5339 | public class ConcurrentHashMap<K, V>
5339           */
5340          public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5341              (ConcurrentHashMap<K,V> map,
5342 <             ObjectToLong<? super V> transformer,
5342 >             ToLongFunction<? super V> transformer,
5343               long basis,
5344 <             LongByLongToLong reducer) {
5344 >             LongBinaryOperator reducer) {
5345              if (transformer == null || reducer == null)
5346                  throw new NullPointerException();
5347              return new MapReduceValuesToLongTask<K,V>
# Line 5134 | Line 5363 | public class ConcurrentHashMap<K, V>
5363           */
5364          public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5365              (ConcurrentHashMap<K,V> map,
5366 <             ObjectToInt<? super V> transformer,
5366 >             ToIntFunction<? super V> transformer,
5367               int basis,
5368 <             IntByIntToInt reducer) {
5368 >             IntBinaryOperator reducer) {
5369              if (transformer == null || reducer == null)
5370                  throw new NullPointerException();
5371              return new MapReduceValuesToIntTask<K,V>
# Line 5149 | Line 5378 | public class ConcurrentHashMap<K, V>
5378           *
5379           * @param map the map
5380           * @param action the action
5381 +         * @return the task
5382           */
5383          public static <K,V> ForkJoinTask<Void> forEachEntry
5384              (ConcurrentHashMap<K,V> map,
5385 <             Action<Map.Entry<K,V>> action) {
5385 >             Consumer<? super Map.Entry<K,V>> action) {
5386              if (action == null) throw new NullPointerException();
5387 <            return new ForEachEntryTask<K,V>(map, null, -1, null, action);
5387 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5388          }
5389  
5390          /**
# Line 5166 | Line 5396 | public class ConcurrentHashMap<K, V>
5396           * for an element, or null if there is no transformation (in
5397           * which case the action is not applied)
5398           * @param action the action
5399 +         * @return the task
5400           */
5401          public static <K,V,U> ForkJoinTask<Void> forEachEntry
5402              (ConcurrentHashMap<K,V> map,
5403 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5404 <             Action<U> action) {
5403 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5404 >             Consumer<? super U> action) {
5405              if (transformer == null || action == null)
5406                  throw new NullPointerException();
5407              return new ForEachTransformedEntryTask<K,V,U>
5408 <                (map, null, -1, null, transformer, action);
5408 >                (map, null, -1, transformer, action);
5409          }
5410  
5411          /**
# Line 5191 | Line 5422 | public class ConcurrentHashMap<K, V>
5422           */
5423          public static <K,V,U> ForkJoinTask<U> searchEntries
5424              (ConcurrentHashMap<K,V> map,
5425 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5425 >             Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5426              if (searchFunction == null) throw new NullPointerException();
5427              return new SearchEntriesTask<K,V,U>
5428 <                (map, null, -1, null, searchFunction,
5428 >                (map, null, -1, searchFunction,
5429                   new AtomicReference<U>());
5430          }
5431  
# Line 5209 | Line 5440 | public class ConcurrentHashMap<K, V>
5440           */
5441          public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5442              (ConcurrentHashMap<K,V> map,
5443 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5443 >             BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5444              if (reducer == null) throw new NullPointerException();
5445              return new ReduceEntriesTask<K,V>
5446                  (map, null, -1, null, reducer);
# Line 5223 | Line 5454 | public class ConcurrentHashMap<K, V>
5454           * @param map the map
5455           * @param transformer a function returning the transformation
5456           * for an element, or null if there is no transformation (in
5457 <         * which case it is not combined).
5457 >         * which case it is not combined)
5458           * @param reducer a commutative associative combining function
5459           * @return the task
5460           */
5461          public static <K,V,U> ForkJoinTask<U> reduceEntries
5462              (ConcurrentHashMap<K,V> map,
5463 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5464 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5463 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5464 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5465              if (transformer == null || reducer == null)
5466                  throw new NullPointerException();
5467              return new MapReduceEntriesTask<K,V,U>
# Line 5252 | Line 5483 | public class ConcurrentHashMap<K, V>
5483           */
5484          public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5485              (ConcurrentHashMap<K,V> map,
5486 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5486 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5487               double basis,
5488 <             DoubleByDoubleToDouble reducer) {
5488 >             DoubleBinaryOperator reducer) {
5489              if (transformer == null || reducer == null)
5490                  throw new NullPointerException();
5491              return new MapReduceEntriesToDoubleTask<K,V>
# Line 5276 | Line 5507 | public class ConcurrentHashMap<K, V>
5507           */
5508          public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5509              (ConcurrentHashMap<K,V> map,
5510 <             ObjectToLong<Map.Entry<K,V>> transformer,
5510 >             ToLongFunction<Map.Entry<K,V>> transformer,
5511               long basis,
5512 <             LongByLongToLong reducer) {
5512 >             LongBinaryOperator reducer) {
5513              if (transformer == null || reducer == null)
5514                  throw new NullPointerException();
5515              return new MapReduceEntriesToLongTask<K,V>
# Line 5300 | Line 5531 | public class ConcurrentHashMap<K, V>
5531           */
5532          public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5533              (ConcurrentHashMap<K,V> map,
5534 <             ObjectToInt<Map.Entry<K,V>> transformer,
5534 >             ToIntFunction<Map.Entry<K,V>> transformer,
5535               int basis,
5536 <             IntByIntToInt reducer) {
5536 >             IntBinaryOperator reducer) {
5537              if (transformer == null || reducer == null)
5538                  throw new NullPointerException();
5539              return new MapReduceEntriesToIntTask<K,V>
# Line 5312 | Line 5543 | public class ConcurrentHashMap<K, V>
5543  
5544      // -------------------------------------------------------
5545  
5315    /**
5316     * Base for FJ tasks for bulk operations. This adds a variant of
5317     * CountedCompleters and some split and merge bookkeeping to
5318     * iterator functionality. The forEach and reduce methods are
5319     * similar to those illustrated in CountedCompleter documentation,
5320     * except that bottom-up reduction completions perform them within
5321     * their compute methods. The search methods are like forEach
5322     * except they continually poll for success and exit early.  Also,
5323     * exceptions are handled in a simpler manner, by just trying to
5324     * complete root task exceptionally.
5325     */
5326    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
5327        final BulkTask<K,V,?> parent;  // completion target
5328        int batch;                     // split control; -1 for unknown
5329        int pending;                   // completion control
5330
5331        BulkTask(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5332                 int batch) {
5333            super(map);
5334            this.parent = parent;
5335            this.batch = batch;
5336            if (parent != null && map != null) { // split parent
5337                Node[] t;
5338                if ((t = parent.tab) == null &&
5339                    (t = parent.tab = map.table) != null)
5340                    parent.baseLimit = parent.baseSize = t.length;
5341                this.tab = t;
5342                this.baseSize = parent.baseSize;
5343                int hi = this.baseLimit = parent.baseLimit;
5344                parent.baseLimit = this.index = this.baseIndex =
5345                    (hi + parent.baseIndex + 1) >>> 1;
5346            }
5347        }
5348
5349        /**
5350         * Forces root task to complete.
5351         * @param ex if null, complete normally, else exceptionally
5352         * @return false to simplify use
5353         */
5354        final boolean tryCompleteComputation(Throwable ex) {
5355            for (BulkTask<K,V,?> a = this;;) {
5356                BulkTask<K,V,?> p = a.parent;
5357                if (p == null) {
5358                    if (ex != null)
5359                        a.completeExceptionally(ex);
5360                    else
5361                        a.quietlyComplete();
5362                    return false;
5363                }
5364                a = p;
5365            }
5366        }
5367
5368        /**
5369         * Version of tryCompleteComputation for function screening checks
5370         */
5371        final boolean abortOnNullFunction() {
5372            return tryCompleteComputation(new Error("Unexpected null function"));
5373        }
5374
5375        // utilities
5376
5377        /** CompareAndSet pending count */
5378        final boolean casPending(int cmp, int val) {
5379            return U.compareAndSwapInt(this, PENDING, cmp, val);
5380        }
5381
5382        /**
5383         * Returns approx exp2 of the number of times (minus one) to
5384         * split task by two before executing leaf action. This value
5385         * is faster to compute and more convenient to use as a guide
5386         * to splitting than is the depth, since it is used while
5387         * dividing by two anyway.
5388         */
5389        final int batch() {
5390            ConcurrentHashMap<K, V> m; int b; Node[] t;  ForkJoinPool pool;
5391            if ((b = batch) < 0 && (m = map) != null) { // force initialization
5392                if ((t = tab) == null && (t = tab = m.table) != null)
5393                    baseLimit = baseSize = t.length;
5394                if (t != null) {
5395                    long n = m.counter.sum();
5396                    int par = ((pool = getPool()) == null) ?
5397                        ForkJoinPool.getCommonPoolParallelism() :
5398                        pool.getParallelism();
5399                    int sp = par << 3; // slack of 8
5400                    b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
5401                }
5402            }
5403            return b;
5404        }
5405
5406        /**
5407         * Returns exportable snapshot entry.
5408         */
5409        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
5410            return new AbstractMap.SimpleEntry<K,V>(k, v);
5411        }
5412
5413        // Unsafe mechanics
5414        private static final sun.misc.Unsafe U;
5415        private static final long PENDING;
5416        static {
5417            try {
5418                U = sun.misc.Unsafe.getUnsafe();
5419                PENDING = U.objectFieldOffset
5420                    (BulkTask.class.getDeclaredField("pending"));
5421            } catch (Exception e) {
5422                throw new Error(e);
5423            }
5424        }
5425    }
5426
5427    /**
5428     * Base class for non-reductive actions
5429     */
5430    @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
5431        BulkAction<K,V,?> nextTask;
5432        BulkAction(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5433                   int batch, BulkAction<K,V,?> nextTask) {
5434            super(map, parent, batch);
5435            this.nextTask = nextTask;
5436        }
5437
5438        /**
5439         * Try to complete task and upward parents. Upon hitting
5440         * non-completed parent, if a non-FJ task, try to help out the
5441         * computation.
5442         */
5443        final void tryComplete(BulkAction<K,V,?> subtasks) {
5444            BulkTask<K,V,?> a = this, s = a;
5445            for (int c;;) {
5446                if ((c = a.pending) == 0) {
5447                    if ((a = (s = a).parent) == null) {
5448                        s.quietlyComplete();
5449                        break;
5450                    }
5451                }
5452                else if (a.casPending(c, c - 1)) {
5453                    if (subtasks != null && !inForkJoinPool()) {
5454                        while ((s = a.parent) != null)
5455                            a = s;
5456                        while (!a.isDone()) {
5457                            BulkAction<K,V,?> next = subtasks.nextTask;
5458                            if (subtasks.tryUnfork())
5459                                subtasks.exec();
5460                            if ((subtasks = next) == null)
5461                                break;
5462                        }
5463                    }
5464                    break;
5465                }
5466            }
5467        }
5468
5469    }
5470
5546      /*
5547       * Task classes. Coded in a regular but ugly format/style to
5548       * simplify checks that each variant differs in the right way from
5549 <     * others.
5549 >     * others. The null screenings exist because compilers cannot tell
5550 >     * that we've already null-checked task arguments, so we force
5551 >     * simplest hoisted bypass to help avoid convoluted traps.
5552       */
5553  
5554      @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5555 <        extends BulkAction<K,V,Void> {
5556 <        final Action<K> action;
5555 >        extends Traverser<K,V,Void> {
5556 >        final Consumer<? super K> action;
5557          ForEachKeyTask
5558 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5559 <             ForEachKeyTask<K,V> nextTask,
5560 <             Action<K> action) {
5484 <            super(m, p, b, nextTask);
5558 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5559 >             Consumer<? super K> action) {
5560 >            super(m, p, b);
5561              this.action = action;
5562          }
5563 <        @SuppressWarnings("unchecked") public final boolean exec() {
5564 <            final Action<K> action = this.action;
5565 <            if (action == null)
5566 <                return abortOnNullFunction();
5567 <            ForEachKeyTask<K,V> subtasks = null;
5492 <            try {
5493 <                int b = batch(), c;
5494 <                while (b > 1 && baseIndex != baseLimit) {
5495 <                    do {} while (!casPending(c = pending, c+1));
5496 <                    (subtasks = new ForEachKeyTask<K,V>
5497 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5498 <                }
5563 >        public final void compute() {
5564 >            final Consumer<? super K> action;
5565 >            if ((action = this.action) != null) {
5566 >                for (int b; (b = preSplit()) > 0;)
5567 >                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5568                  while (advance() != null)
5569 <                    action.apply((K)nextKey);
5570 <            } catch (Throwable ex) {
5502 <                return tryCompleteComputation(ex);
5569 >                    action.accept(nextKey);
5570 >                propagateCompletion();
5571              }
5504            tryComplete(subtasks);
5505            return false;
5572          }
5573      }
5574  
5575      @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5576 <        extends BulkAction<K,V,Void> {
5577 <        final Action<V> action;
5576 >        extends Traverser<K,V,Void> {
5577 >        final Consumer<? super V> action;
5578          ForEachValueTask
5579 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5580 <             ForEachValueTask<K,V> nextTask,
5581 <             Action<V> action) {
5516 <            super(m, p, b, nextTask);
5579 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5580 >             Consumer<? super V> action) {
5581 >            super(m, p, b);
5582              this.action = action;
5583          }
5584 <        @SuppressWarnings("unchecked") public final boolean exec() {
5585 <            final Action<V> action = this.action;
5586 <            if (action == null)
5587 <                return abortOnNullFunction();
5588 <            ForEachValueTask<K,V> subtasks = null;
5589 <            try {
5525 <                int b = batch(), c;
5526 <                while (b > 1 && baseIndex != baseLimit) {
5527 <                    do {} while (!casPending(c = pending, c+1));
5528 <                    (subtasks = new ForEachValueTask<K,V>
5529 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5530 <                }
5531 <                Object v;
5584 >        public final void compute() {
5585 >            final Consumer<? super V> action;
5586 >            if ((action = this.action) != null) {
5587 >                for (int b; (b = preSplit()) > 0;)
5588 >                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5589 >                V v;
5590                  while ((v = advance()) != null)
5591 <                    action.apply((V)v);
5592 <            } catch (Throwable ex) {
5535 <                return tryCompleteComputation(ex);
5591 >                    action.accept(v);
5592 >                propagateCompletion();
5593              }
5537            tryComplete(subtasks);
5538            return false;
5594          }
5595      }
5596  
5597      @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5598 <        extends BulkAction<K,V,Void> {
5599 <        final Action<Entry<K,V>> action;
5598 >        extends Traverser<K,V,Void> {
5599 >        final Consumer<? super Entry<K,V>> action;
5600          ForEachEntryTask
5601 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5602 <             ForEachEntryTask<K,V> nextTask,
5603 <             Action<Entry<K,V>> action) {
5549 <            super(m, p, b, nextTask);
5601 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5602 >             Consumer<? super Entry<K,V>> action) {
5603 >            super(m, p, b);
5604              this.action = action;
5605          }
5606 <        @SuppressWarnings("unchecked") public final boolean exec() {
5607 <            final Action<Entry<K,V>> action = this.action;
5608 <            if (action == null)
5609 <                return abortOnNullFunction();
5610 <            ForEachEntryTask<K,V> subtasks = null;
5611 <            try {
5558 <                int b = batch(), c;
5559 <                while (b > 1 && baseIndex != baseLimit) {
5560 <                    do {} while (!casPending(c = pending, c+1));
5561 <                    (subtasks = new ForEachEntryTask<K,V>
5562 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5563 <                }
5564 <                Object v;
5606 >        public final void compute() {
5607 >            final Consumer<? super Entry<K,V>> action;
5608 >            if ((action = this.action) != null) {
5609 >                for (int b; (b = preSplit()) > 0;)
5610 >                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5611 >                V v;
5612                  while ((v = advance()) != null)
5613 <                    action.apply(entryFor((K)nextKey, (V)v));
5614 <            } catch (Throwable ex) {
5568 <                return tryCompleteComputation(ex);
5613 >                    action.accept(entryFor(nextKey, v));
5614 >                propagateCompletion();
5615              }
5570            tryComplete(subtasks);
5571            return false;
5616          }
5617      }
5618  
5619      @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5620 <        extends BulkAction<K,V,Void> {
5621 <        final BiAction<K,V> action;
5620 >        extends Traverser<K,V,Void> {
5621 >        final BiConsumer<? super K, ? super V> action;
5622          ForEachMappingTask
5623 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5624 <             ForEachMappingTask<K,V> nextTask,
5625 <             BiAction<K,V> action) {
5582 <            super(m, p, b, nextTask);
5623 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5624 >             BiConsumer<? super K,? super V> action) {
5625 >            super(m, p, b);
5626              this.action = action;
5627          }
5628 <        @SuppressWarnings("unchecked") public final boolean exec() {
5629 <            final BiAction<K,V> action = this.action;
5630 <            if (action == null)
5631 <                return abortOnNullFunction();
5632 <            ForEachMappingTask<K,V> subtasks = null;
5633 <            try {
5591 <                int b = batch(), c;
5592 <                while (b > 1 && baseIndex != baseLimit) {
5593 <                    do {} while (!casPending(c = pending, c+1));
5594 <                    (subtasks = new ForEachMappingTask<K,V>
5595 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5596 <                }
5597 <                Object v;
5628 >        public final void compute() {
5629 >            final BiConsumer<? super K, ? super V> action;
5630 >            if ((action = this.action) != null) {
5631 >                for (int b; (b = preSplit()) > 0;)
5632 >                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5633 >                V v;
5634                  while ((v = advance()) != null)
5635 <                    action.apply((K)nextKey, (V)v);
5636 <            } catch (Throwable ex) {
5601 <                return tryCompleteComputation(ex);
5635 >                    action.accept(nextKey, v);
5636 >                propagateCompletion();
5637              }
5603            tryComplete(subtasks);
5604            return false;
5638          }
5639      }
5640  
5641      @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5642 <        extends BulkAction<K,V,Void> {
5643 <        final Fun<? super K, ? extends U> transformer;
5644 <        final Action<U> action;
5642 >        extends Traverser<K,V,Void> {
5643 >        final Function<? super K, ? extends U> transformer;
5644 >        final Consumer<? super U> action;
5645          ForEachTransformedKeyTask
5646 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5647 <             ForEachTransformedKeyTask<K,V,U> nextTask,
5648 <             Fun<? super K, ? extends U> transformer,
5649 <             Action<U> action) {
5650 <            super(m, p, b, nextTask);
5651 <            this.transformer = transformer;
5652 <            this.action = action;
5653 <
5654 <        }
5655 <        @SuppressWarnings("unchecked") public final boolean exec() {
5656 <            final Fun<? super K, ? extends U> transformer =
5657 <                this.transformer;
5658 <            final Action<U> action = this.action;
5626 <            if (transformer == null || action == null)
5627 <                return abortOnNullFunction();
5628 <            ForEachTransformedKeyTask<K,V,U> subtasks = null;
5629 <            try {
5630 <                int b = batch(), c;
5631 <                while (b > 1 && baseIndex != baseLimit) {
5632 <                    do {} while (!casPending(c = pending, c+1));
5633 <                    (subtasks = new ForEachTransformedKeyTask<K,V,U>
5634 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5635 <                }
5646 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5647 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5648 >            super(m, p, b);
5649 >            this.transformer = transformer; this.action = action;
5650 >        }
5651 >        public final void compute() {
5652 >            final Function<? super K, ? extends U> transformer;
5653 >            final Consumer<? super U> action;
5654 >            if ((transformer = this.transformer) != null &&
5655 >                (action = this.action) != null) {
5656 >                for (int b; (b = preSplit()) > 0;)
5657 >                    new ForEachTransformedKeyTask<K,V,U>
5658 >                        (map, this, b, transformer, action).fork();
5659                  U u;
5660                  while (advance() != null) {
5661 <                    if ((u = transformer.apply((K)nextKey)) != null)
5662 <                        action.apply(u);
5661 >                    if ((u = transformer.apply(nextKey)) != null)
5662 >                        action.accept(u);
5663                  }
5664 <            } catch (Throwable ex) {
5642 <                return tryCompleteComputation(ex);
5664 >                propagateCompletion();
5665              }
5644            tryComplete(subtasks);
5645            return false;
5666          }
5667      }
5668  
5669      @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5670 <        extends BulkAction<K,V,Void> {
5671 <        final Fun<? super V, ? extends U> transformer;
5672 <        final Action<U> action;
5670 >        extends Traverser<K,V,Void> {
5671 >        final Function<? super V, ? extends U> transformer;
5672 >        final Consumer<? super U> action;
5673          ForEachTransformedValueTask
5674 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5675 <             ForEachTransformedValueTask<K,V,U> nextTask,
5676 <             Fun<? super V, ? extends U> transformer,
5677 <             Action<U> action) {
5678 <            super(m, p, b, nextTask);
5679 <            this.transformer = transformer;
5680 <            this.action = action;
5681 <
5682 <        }
5683 <        @SuppressWarnings("unchecked") public final boolean exec() {
5684 <            final Fun<? super V, ? extends U> transformer =
5685 <                this.transformer;
5686 <            final Action<U> action = this.action;
5687 <            if (transformer == null || action == null)
5668 <                return abortOnNullFunction();
5669 <            ForEachTransformedValueTask<K,V,U> subtasks = null;
5670 <            try {
5671 <                int b = batch(), c;
5672 <                while (b > 1 && baseIndex != baseLimit) {
5673 <                    do {} while (!casPending(c = pending, c+1));
5674 <                    (subtasks = new ForEachTransformedValueTask<K,V,U>
5675 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5676 <                }
5677 <                Object v; U u;
5674 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5675 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5676 >            super(m, p, b);
5677 >            this.transformer = transformer; this.action = action;
5678 >        }
5679 >        public final void compute() {
5680 >            final Function<? super V, ? extends U> transformer;
5681 >            final Consumer<? super U> action;
5682 >            if ((transformer = this.transformer) != null &&
5683 >                (action = this.action) != null) {
5684 >                for (int b; (b = preSplit()) > 0;)
5685 >                    new ForEachTransformedValueTask<K,V,U>
5686 >                        (map, this, b, transformer, action).fork();
5687 >                V v; U u;
5688                  while ((v = advance()) != null) {
5689 <                    if ((u = transformer.apply((V)v)) != null)
5690 <                        action.apply(u);
5689 >                    if ((u = transformer.apply(v)) != null)
5690 >                        action.accept(u);
5691                  }
5692 <            } catch (Throwable ex) {
5683 <                return tryCompleteComputation(ex);
5692 >                propagateCompletion();
5693              }
5685            tryComplete(subtasks);
5686            return false;
5694          }
5695      }
5696  
5697      @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5698 <        extends BulkAction<K,V,Void> {
5699 <        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5700 <        final Action<U> action;
5698 >        extends Traverser<K,V,Void> {
5699 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5700 >        final Consumer<? super U> action;
5701          ForEachTransformedEntryTask
5702 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5703 <             ForEachTransformedEntryTask<K,V,U> nextTask,
5704 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5705 <             Action<U> action) {
5706 <            super(m, p, b, nextTask);
5707 <            this.transformer = transformer;
5708 <            this.action = action;
5709 <
5710 <        }
5711 <        @SuppressWarnings("unchecked") public final boolean exec() {
5712 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5713 <                this.transformer;
5714 <            final Action<U> action = this.action;
5715 <            if (transformer == null || action == null)
5709 <                return abortOnNullFunction();
5710 <            ForEachTransformedEntryTask<K,V,U> subtasks = null;
5711 <            try {
5712 <                int b = batch(), c;
5713 <                while (b > 1 && baseIndex != baseLimit) {
5714 <                    do {} while (!casPending(c = pending, c+1));
5715 <                    (subtasks = new ForEachTransformedEntryTask<K,V,U>
5716 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5717 <                }
5718 <                Object v; U u;
5702 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5703 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5704 >            super(m, p, b);
5705 >            this.transformer = transformer; this.action = action;
5706 >        }
5707 >        public final void compute() {
5708 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5709 >            final Consumer<? super U> action;
5710 >            if ((transformer = this.transformer) != null &&
5711 >                (action = this.action) != null) {
5712 >                for (int b; (b = preSplit()) > 0;)
5713 >                    new ForEachTransformedEntryTask<K,V,U>
5714 >                        (map, this, b, transformer, action).fork();
5715 >                V v; U u;
5716                  while ((v = advance()) != null) {
5717 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5718 <                        action.apply(u);
5717 >                    if ((u = transformer.apply(entryFor(nextKey,
5718 >                                                        v))) != null)
5719 >                        action.accept(u);
5720                  }
5721 <            } catch (Throwable ex) {
5724 <                return tryCompleteComputation(ex);
5721 >                propagateCompletion();
5722              }
5726            tryComplete(subtasks);
5727            return false;
5723          }
5724      }
5725  
5726      @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5727 <        extends BulkAction<K,V,Void> {
5728 <        final BiFun<? super K, ? super V, ? extends U> transformer;
5729 <        final Action<U> action;
5727 >        extends Traverser<K,V,Void> {
5728 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5729 >        final Consumer<? super U> action;
5730          ForEachTransformedMappingTask
5731 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5732 <             ForEachTransformedMappingTask<K,V,U> nextTask,
5733 <             BiFun<? super K, ? super V, ? extends U> transformer,
5734 <             Action<U> action) {
5735 <            super(m, p, b, nextTask);
5736 <            this.transformer = transformer;
5737 <            this.action = action;
5738 <
5739 <        }
5740 <        @SuppressWarnings("unchecked") public final boolean exec() {
5741 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5742 <                this.transformer;
5743 <            final Action<U> action = this.action;
5744 <            if (transformer == null || action == null)
5745 <                return abortOnNullFunction();
5751 <            ForEachTransformedMappingTask<K,V,U> subtasks = null;
5752 <            try {
5753 <                int b = batch(), c;
5754 <                while (b > 1 && baseIndex != baseLimit) {
5755 <                    do {} while (!casPending(c = pending, c+1));
5756 <                    (subtasks = new ForEachTransformedMappingTask<K,V,U>
5757 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5758 <                }
5759 <                Object v; U u;
5731 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5732 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5733 >             Consumer<? super U> action) {
5734 >            super(m, p, b);
5735 >            this.transformer = transformer; this.action = action;
5736 >        }
5737 >        public final void compute() {
5738 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5739 >            final Consumer<? super U> action;
5740 >            if ((transformer = this.transformer) != null &&
5741 >                (action = this.action) != null) {
5742 >                for (int b; (b = preSplit()) > 0;)
5743 >                    new ForEachTransformedMappingTask<K,V,U>
5744 >                        (map, this, b, transformer, action).fork();
5745 >                V v; U u;
5746                  while ((v = advance()) != null) {
5747 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5748 <                        action.apply(u);
5747 >                    if ((u = transformer.apply(nextKey, v)) != null)
5748 >                        action.accept(u);
5749                  }
5750 <            } catch (Throwable ex) {
5765 <                return tryCompleteComputation(ex);
5750 >                propagateCompletion();
5751              }
5767            tryComplete(subtasks);
5768            return false;
5752          }
5753      }
5754  
5755      @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5756 <        extends BulkAction<K,V,U> {
5757 <        final Fun<? super K, ? extends U> searchFunction;
5756 >        extends Traverser<K,V,U> {
5757 >        final Function<? super K, ? extends U> searchFunction;
5758          final AtomicReference<U> result;
5759          SearchKeysTask
5760 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5761 <             SearchKeysTask<K,V,U> nextTask,
5779 <             Fun<? super K, ? extends U> searchFunction,
5760 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5761 >             Function<? super K, ? extends U> searchFunction,
5762               AtomicReference<U> result) {
5763 <            super(m, p, b, nextTask);
5763 >            super(m, p, b);
5764              this.searchFunction = searchFunction; this.result = result;
5765          }
5766 <        @SuppressWarnings("unchecked") public final boolean exec() {
5767 <            AtomicReference<U> result = this.result;
5768 <            final Fun<? super K, ? extends U> searchFunction =
5769 <                this.searchFunction;
5770 <            if (searchFunction == null || result == null)
5771 <                return abortOnNullFunction();
5772 <            SearchKeysTask<K,V,U> subtasks = null;
5773 <            try {
5774 <                int b = batch(), c;
5775 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5776 <                    do {} while (!casPending(c = pending, c+1));
5777 <                    (subtasks = new SearchKeysTask<K,V,U>
5778 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5766 >        public final U getRawResult() { return result.get(); }
5767 >        public final void compute() {
5768 >            final Function<? super K, ? extends U> searchFunction;
5769 >            final AtomicReference<U> result;
5770 >            if ((searchFunction = this.searchFunction) != null &&
5771 >                (result = this.result) != null) {
5772 >                for (int b;;) {
5773 >                    if (result.get() != null)
5774 >                        return;
5775 >                    if ((b = preSplit()) <= 0)
5776 >                        break;
5777 >                    new SearchKeysTask<K,V,U>
5778 >                        (map, this, b, searchFunction, result).fork();
5779                  }
5780 <                U u;
5781 <                while (result.get() == null && advance() != null) {
5782 <                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5780 >                while (result.get() == null) {
5781 >                    U u;
5782 >                    if (advance() == null) {
5783 >                        propagateCompletion();
5784 >                        break;
5785 >                    }
5786 >                    if ((u = searchFunction.apply(nextKey)) != null) {
5787                          if (result.compareAndSet(null, u))
5788 <                            tryCompleteComputation(null);
5788 >                            quietlyCompleteRoot();
5789                          break;
5790                      }
5791                  }
5806            } catch (Throwable ex) {
5807                return tryCompleteComputation(ex);
5792              }
5809            tryComplete(subtasks);
5810            return false;
5793          }
5812        public final U getRawResult() { return result.get(); }
5794      }
5795  
5796      @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5797 <        extends BulkAction<K,V,U> {
5798 <        final Fun<? super V, ? extends U> searchFunction;
5797 >        extends Traverser<K,V,U> {
5798 >        final Function<? super V, ? extends U> searchFunction;
5799          final AtomicReference<U> result;
5800          SearchValuesTask
5801 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5802 <             SearchValuesTask<K,V,U> nextTask,
5822 <             Fun<? super V, ? extends U> searchFunction,
5801 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5802 >             Function<? super V, ? extends U> searchFunction,
5803               AtomicReference<U> result) {
5804 <            super(m, p, b, nextTask);
5804 >            super(m, p, b);
5805              this.searchFunction = searchFunction; this.result = result;
5806          }
5807 <        @SuppressWarnings("unchecked") public final boolean exec() {
5808 <            AtomicReference<U> result = this.result;
5809 <            final Fun<? super V, ? extends U> searchFunction =
5810 <                this.searchFunction;
5811 <            if (searchFunction == null || result == null)
5812 <                return abortOnNullFunction();
5813 <            SearchValuesTask<K,V,U> subtasks = null;
5814 <            try {
5815 <                int b = batch(), c;
5816 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5817 <                    do {} while (!casPending(c = pending, c+1));
5818 <                    (subtasks = new SearchValuesTask<K,V,U>
5819 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5820 <                }
5821 <                Object v; U u;
5822 <                while (result.get() == null && (v = advance()) != null) {
5823 <                    if ((u = searchFunction.apply((V)v)) != null) {
5807 >        public final U getRawResult() { return result.get(); }
5808 >        public final void compute() {
5809 >            final Function<? super V, ? extends U> searchFunction;
5810 >            final AtomicReference<U> result;
5811 >            if ((searchFunction = this.searchFunction) != null &&
5812 >                (result = this.result) != null) {
5813 >                for (int b;;) {
5814 >                    if (result.get() != null)
5815 >                        return;
5816 >                    if ((b = preSplit()) <= 0)
5817 >                        break;
5818 >                    new SearchValuesTask<K,V,U>
5819 >                        (map, this, b, searchFunction, result).fork();
5820 >                }
5821 >                while (result.get() == null) {
5822 >                    V v; U u;
5823 >                    if ((v = advance()) == null) {
5824 >                        propagateCompletion();
5825 >                        break;
5826 >                    }
5827 >                    if ((u = searchFunction.apply(v)) != null) {
5828                          if (result.compareAndSet(null, u))
5829 <                            tryCompleteComputation(null);
5829 >                            quietlyCompleteRoot();
5830                          break;
5831                      }
5832                  }
5849            } catch (Throwable ex) {
5850                return tryCompleteComputation(ex);
5833              }
5852            tryComplete(subtasks);
5853            return false;
5834          }
5855        public final U getRawResult() { return result.get(); }
5835      }
5836  
5837      @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5838 <        extends BulkAction<K,V,U> {
5839 <        final Fun<Entry<K,V>, ? extends U> searchFunction;
5838 >        extends Traverser<K,V,U> {
5839 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5840          final AtomicReference<U> result;
5841          SearchEntriesTask
5842 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5843 <             SearchEntriesTask<K,V,U> nextTask,
5865 <             Fun<Entry<K,V>, ? extends U> searchFunction,
5842 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5843 >             Function<Entry<K,V>, ? extends U> searchFunction,
5844               AtomicReference<U> result) {
5845 <            super(m, p, b, nextTask);
5845 >            super(m, p, b);
5846              this.searchFunction = searchFunction; this.result = result;
5847          }
5848 <        @SuppressWarnings("unchecked") public final boolean exec() {
5849 <            AtomicReference<U> result = this.result;
5850 <            final Fun<Entry<K,V>, ? extends U> searchFunction =
5851 <                this.searchFunction;
5852 <            if (searchFunction == null || result == null)
5853 <                return abortOnNullFunction();
5854 <            SearchEntriesTask<K,V,U> subtasks = null;
5855 <            try {
5856 <                int b = batch(), c;
5857 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5858 <                    do {} while (!casPending(c = pending, c+1));
5859 <                    (subtasks = new SearchEntriesTask<K,V,U>
5860 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5861 <                }
5862 <                Object v; U u;
5863 <                while (result.get() == null && (v = advance()) != null) {
5864 <                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5865 <                        if (result.compareAndSet(null, u))
5888 <                            tryCompleteComputation(null);
5848 >        public final U getRawResult() { return result.get(); }
5849 >        public final void compute() {
5850 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5851 >            final AtomicReference<U> result;
5852 >            if ((searchFunction = this.searchFunction) != null &&
5853 >                (result = this.result) != null) {
5854 >                for (int b;;) {
5855 >                    if (result.get() != null)
5856 >                        return;
5857 >                    if ((b = preSplit()) <= 0)
5858 >                        break;
5859 >                    new SearchEntriesTask<K,V,U>
5860 >                        (map, this, b, searchFunction, result).fork();
5861 >                }
5862 >                while (result.get() == null) {
5863 >                    V v; U u;
5864 >                    if ((v = advance()) == null) {
5865 >                        propagateCompletion();
5866                          break;
5867                      }
5868 +                    if ((u = searchFunction.apply(entryFor(nextKey,
5869 +                                                           v))) != null) {
5870 +                        if (result.compareAndSet(null, u))
5871 +                            quietlyCompleteRoot();
5872 +                        return;
5873 +                    }
5874                  }
5892            } catch (Throwable ex) {
5893                return tryCompleteComputation(ex);
5875              }
5895            tryComplete(subtasks);
5896            return false;
5876          }
5898        public final U getRawResult() { return result.get(); }
5877      }
5878  
5879      @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5880 <        extends BulkAction<K,V,U> {
5881 <        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5880 >        extends Traverser<K,V,U> {
5881 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5882          final AtomicReference<U> result;
5883          SearchMappingsTask
5884 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5885 <             SearchMappingsTask<K,V,U> nextTask,
5908 <             BiFun<? super K, ? super V, ? extends U> searchFunction,
5884 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5885 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5886               AtomicReference<U> result) {
5887 <            super(m, p, b, nextTask);
5887 >            super(m, p, b);
5888              this.searchFunction = searchFunction; this.result = result;
5889          }
5890 <        @SuppressWarnings("unchecked") public final boolean exec() {
5891 <            AtomicReference<U> result = this.result;
5892 <            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5893 <                this.searchFunction;
5894 <            if (searchFunction == null || result == null)
5895 <                return abortOnNullFunction();
5896 <            SearchMappingsTask<K,V,U> subtasks = null;
5897 <            try {
5898 <                int b = batch(), c;
5899 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5900 <                    do {} while (!casPending(c = pending, c+1));
5901 <                    (subtasks = new SearchMappingsTask<K,V,U>
5902 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5903 <                }
5904 <                Object v; U u;
5905 <                while (result.get() == null && (v = advance()) != null) {
5906 <                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5890 >        public final U getRawResult() { return result.get(); }
5891 >        public final void compute() {
5892 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5893 >            final AtomicReference<U> result;
5894 >            if ((searchFunction = this.searchFunction) != null &&
5895 >                (result = this.result) != null) {
5896 >                for (int b;;) {
5897 >                    if (result.get() != null)
5898 >                        return;
5899 >                    if ((b = preSplit()) <= 0)
5900 >                        break;
5901 >                    new SearchMappingsTask<K,V,U>
5902 >                        (map, this, b, searchFunction, result).fork();
5903 >                }
5904 >                while (result.get() == null) {
5905 >                    V v; U u;
5906 >                    if ((v = advance()) == null) {
5907 >                        propagateCompletion();
5908 >                        break;
5909 >                    }
5910 >                    if ((u = searchFunction.apply(nextKey, v)) != null) {
5911                          if (result.compareAndSet(null, u))
5912 <                            tryCompleteComputation(null);
5912 >                            quietlyCompleteRoot();
5913                          break;
5914                      }
5915                  }
5935            } catch (Throwable ex) {
5936                return tryCompleteComputation(ex);
5916              }
5938            tryComplete(subtasks);
5939            return false;
5917          }
5941        public final U getRawResult() { return result.get(); }
5918      }
5919  
5920      @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5921 <        extends BulkTask<K,V,K> {
5922 <        final BiFun<? super K, ? super K, ? extends K> reducer;
5921 >        extends Traverser<K,V,K> {
5922 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5923          K result;
5924          ReduceKeysTask<K,V> rights, nextRight;
5925          ReduceKeysTask
5926 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5926 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5927               ReduceKeysTask<K,V> nextRight,
5928 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5928 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5929              super(m, p, b); this.nextRight = nextRight;
5930              this.reducer = reducer;
5931          }
5932 <        @SuppressWarnings("unchecked") public final boolean exec() {
5933 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5934 <                this.reducer;
5935 <            if (reducer == null)
5936 <                return abortOnNullFunction();
5961 <            try {
5962 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5963 <                    do {} while (!casPending(c = pending, c+1));
5932 >        public final K getRawResult() { return result; }
5933 >        @SuppressWarnings("unchecked") public final void compute() {
5934 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5935 >            if ((reducer = this.reducer) != null) {
5936 >                for (int b; (b = preSplit()) > 0;)
5937                      (rights = new ReduceKeysTask<K,V>
5938 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5966 <                }
5938 >                     (map, this, b, rights, reducer)).fork();
5939                  K r = null;
5940                  while (advance() != null) {
5941 <                    K u = (K)nextKey;
5942 <                    r = (r == null) ? u : reducer.apply(r, u);
5941 >                    K u = nextKey;
5942 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5943                  }
5944                  result = r;
5945 <                for (ReduceKeysTask<K,V> t = this, s;;) {
5946 <                    int c; BulkTask<K,V,?> par; K tr, sr;
5947 <                    if ((c = t.pending) == 0) {
5948 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5949 <                            if ((sr = s.result) != null)
5950 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5951 <                        }
5952 <                        if ((par = t.parent) == null ||
5953 <                            !(par instanceof ReduceKeysTask)) {
5954 <                            t.quietlyComplete();
5955 <                            break;
5984 <                        }
5985 <                        t = (ReduceKeysTask<K,V>)par;
5945 >                CountedCompleter<?> c;
5946 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5947 >                    ReduceKeysTask<K,V>
5948 >                        t = (ReduceKeysTask<K,V>)c,
5949 >                        s = t.rights;
5950 >                    while (s != null) {
5951 >                        K tr, sr;
5952 >                        if ((sr = s.result) != null)
5953 >                            t.result = (((tr = t.result) == null) ? sr :
5954 >                                        reducer.apply(tr, sr));
5955 >                        s = t.rights = s.nextRight;
5956                      }
5987                    else if (t.casPending(c, c - 1))
5988                        break;
5957                  }
5990            } catch (Throwable ex) {
5991                return tryCompleteComputation(ex);
5958              }
5993            ReduceKeysTask<K,V> s = rights;
5994            if (s != null && !inForkJoinPool()) {
5995                do  {
5996                    if (s.tryUnfork())
5997                        s.exec();
5998                } while ((s = s.nextRight) != null);
5999            }
6000            return false;
5959          }
6002        public final K getRawResult() { return result; }
5960      }
5961  
5962      @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5963 <        extends BulkTask<K,V,V> {
5964 <        final BiFun<? super V, ? super V, ? extends V> reducer;
5963 >        extends Traverser<K,V,V> {
5964 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5965          V result;
5966          ReduceValuesTask<K,V> rights, nextRight;
5967          ReduceValuesTask
5968 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5968 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5969               ReduceValuesTask<K,V> nextRight,
5970 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5970 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5971              super(m, p, b); this.nextRight = nextRight;
5972              this.reducer = reducer;
5973          }
5974 <        @SuppressWarnings("unchecked") public final boolean exec() {
5975 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5976 <                this.reducer;
5977 <            if (reducer == null)
5978 <                return abortOnNullFunction();
6022 <            try {
6023 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6024 <                    do {} while (!casPending(c = pending, c+1));
5974 >        public final V getRawResult() { return result; }
5975 >        @SuppressWarnings("unchecked") public final void compute() {
5976 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5977 >            if ((reducer = this.reducer) != null) {
5978 >                for (int b; (b = preSplit()) > 0;)
5979                      (rights = new ReduceValuesTask<K,V>
5980 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5981 <                }
5982 <                V r = null;
5983 <                Object v;
6030 <                while ((v = advance()) != null) {
6031 <                    V u = (V)v;
6032 <                    r = (r == null) ? u : reducer.apply(r, u);
6033 <                }
5980 >                     (map, this, b, rights, reducer)).fork();
5981 >                V r = null, v;
5982 >                while ((v = advance()) != null)
5983 >                    r = (r == null) ? v : reducer.apply(r, v);
5984                  result = r;
5985 <                for (ReduceValuesTask<K,V> t = this, s;;) {
5986 <                    int c; BulkTask<K,V,?> par; V tr, sr;
5987 <                    if ((c = t.pending) == 0) {
5988 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5989 <                            if ((sr = s.result) != null)
5990 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5991 <                        }
5992 <                        if ((par = t.parent) == null ||
5993 <                            !(par instanceof ReduceValuesTask)) {
5994 <                            t.quietlyComplete();
5995 <                            break;
6046 <                        }
6047 <                        t = (ReduceValuesTask<K,V>)par;
5985 >                CountedCompleter<?> c;
5986 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5987 >                    ReduceValuesTask<K,V>
5988 >                        t = (ReduceValuesTask<K,V>)c,
5989 >                        s = t.rights;
5990 >                    while (s != null) {
5991 >                        V tr, sr;
5992 >                        if ((sr = s.result) != null)
5993 >                            t.result = (((tr = t.result) == null) ? sr :
5994 >                                        reducer.apply(tr, sr));
5995 >                        s = t.rights = s.nextRight;
5996                      }
6049                    else if (t.casPending(c, c - 1))
6050                        break;
5997                  }
6052            } catch (Throwable ex) {
6053                return tryCompleteComputation(ex);
6054            }
6055            ReduceValuesTask<K,V> s = rights;
6056            if (s != null && !inForkJoinPool()) {
6057                do  {
6058                    if (s.tryUnfork())
6059                        s.exec();
6060                } while ((s = s.nextRight) != null);
5998              }
6062            return false;
5999          }
6064        public final V getRawResult() { return result; }
6000      }
6001  
6002      @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6003 <        extends BulkTask<K,V,Map.Entry<K,V>> {
6004 <        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6003 >        extends Traverser<K,V,Map.Entry<K,V>> {
6004 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6005          Map.Entry<K,V> result;
6006          ReduceEntriesTask<K,V> rights, nextRight;
6007          ReduceEntriesTask
6008 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6008 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6009               ReduceEntriesTask<K,V> nextRight,
6010 <             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6010 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6011              super(m, p, b); this.nextRight = nextRight;
6012              this.reducer = reducer;
6013          }
6014 <        @SuppressWarnings("unchecked") public final boolean exec() {
6015 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
6016 <                this.reducer;
6017 <            if (reducer == null)
6018 <                return abortOnNullFunction();
6084 <            try {
6085 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6086 <                    do {} while (!casPending(c = pending, c+1));
6014 >        public final Map.Entry<K,V> getRawResult() { return result; }
6015 >        @SuppressWarnings("unchecked") public final void compute() {
6016 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6017 >            if ((reducer = this.reducer) != null) {
6018 >                for (int b; (b = preSplit()) > 0;)
6019                      (rights = new ReduceEntriesTask<K,V>
6020 <                     (map, this, b >>>= 1, rights, reducer)).fork();
6089 <                }
6020 >                     (map, this, b, rights, reducer)).fork();
6021                  Map.Entry<K,V> r = null;
6022 <                Object v;
6022 >                V v;
6023                  while ((v = advance()) != null) {
6024 <                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
6024 >                    Map.Entry<K,V> u = entryFor(nextKey, v);
6025                      r = (r == null) ? u : reducer.apply(r, u);
6026                  }
6027                  result = r;
6028 <                for (ReduceEntriesTask<K,V> t = this, s;;) {
6029 <                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
6030 <                    if ((c = t.pending) == 0) {
6031 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6032 <                            if ((sr = s.result) != null)
6033 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6034 <                        }
6035 <                        if ((par = t.parent) == null ||
6036 <                            !(par instanceof ReduceEntriesTask)) {
6037 <                            t.quietlyComplete();
6038 <                            break;
6108 <                        }
6109 <                        t = (ReduceEntriesTask<K,V>)par;
6028 >                CountedCompleter<?> c;
6029 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6030 >                    ReduceEntriesTask<K,V>
6031 >                        t = (ReduceEntriesTask<K,V>)c,
6032 >                        s = t.rights;
6033 >                    while (s != null) {
6034 >                        Map.Entry<K,V> tr, sr;
6035 >                        if ((sr = s.result) != null)
6036 >                            t.result = (((tr = t.result) == null) ? sr :
6037 >                                        reducer.apply(tr, sr));
6038 >                        s = t.rights = s.nextRight;
6039                      }
6111                    else if (t.casPending(c, c - 1))
6112                        break;
6040                  }
6114            } catch (Throwable ex) {
6115                return tryCompleteComputation(ex);
6116            }
6117            ReduceEntriesTask<K,V> s = rights;
6118            if (s != null && !inForkJoinPool()) {
6119                do  {
6120                    if (s.tryUnfork())
6121                        s.exec();
6122                } while ((s = s.nextRight) != null);
6041              }
6124            return false;
6042          }
6126        public final Map.Entry<K,V> getRawResult() { return result; }
6043      }
6044  
6045      @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6046 <        extends BulkTask<K,V,U> {
6047 <        final Fun<? super K, ? extends U> transformer;
6048 <        final BiFun<? super U, ? super U, ? extends U> reducer;
6046 >        extends Traverser<K,V,U> {
6047 >        final Function<? super K, ? extends U> transformer;
6048 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6049          U result;
6050          MapReduceKeysTask<K,V,U> rights, nextRight;
6051          MapReduceKeysTask
6052 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6052 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6053               MapReduceKeysTask<K,V,U> nextRight,
6054 <             Fun<? super K, ? extends U> transformer,
6055 <             BiFun<? super U, ? super U, ? extends U> reducer) {
6054 >             Function<? super K, ? extends U> transformer,
6055 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6056              super(m, p, b); this.nextRight = nextRight;
6057              this.transformer = transformer;
6058              this.reducer = reducer;
6059          }
6060 <        @SuppressWarnings("unchecked") public final boolean exec() {
6061 <            final Fun<? super K, ? extends U> transformer =
6062 <                this.transformer;
6063 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6064 <                this.reducer;
6065 <            if (transformer == null || reducer == null)
6066 <                return abortOnNullFunction();
6151 <            try {
6152 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6153 <                    do {} while (!casPending(c = pending, c+1));
6060 >        public final U getRawResult() { return result; }
6061 >        @SuppressWarnings("unchecked") public final void compute() {
6062 >            final Function<? super K, ? extends U> transformer;
6063 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6064 >            if ((transformer = this.transformer) != null &&
6065 >                (reducer = this.reducer) != null) {
6066 >                for (int b; (b = preSplit()) > 0;)
6067                      (rights = new MapReduceKeysTask<K,V,U>
6068 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6156 <                }
6068 >                     (map, this, b, rights, transformer, reducer)).fork();
6069                  U r = null, u;
6070                  while (advance() != null) {
6071 <                    if ((u = transformer.apply((K)nextKey)) != null)
6071 >                    if ((u = transformer.apply(nextKey)) != null)
6072                          r = (r == null) ? u : reducer.apply(r, u);
6073                  }
6074                  result = r;
6075 <                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
6076 <                    int c; BulkTask<K,V,?> par; U tr, sr;
6077 <                    if ((c = t.pending) == 0) {
6078 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6079 <                            if ((sr = s.result) != null)
6080 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6081 <                        }
6082 <                        if ((par = t.parent) == null ||
6083 <                            !(par instanceof MapReduceKeysTask)) {
6084 <                            t.quietlyComplete();
6085 <                            break;
6174 <                        }
6175 <                        t = (MapReduceKeysTask<K,V,U>)par;
6075 >                CountedCompleter<?> c;
6076 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6077 >                    MapReduceKeysTask<K,V,U>
6078 >                        t = (MapReduceKeysTask<K,V,U>)c,
6079 >                        s = t.rights;
6080 >                    while (s != null) {
6081 >                        U tr, sr;
6082 >                        if ((sr = s.result) != null)
6083 >                            t.result = (((tr = t.result) == null) ? sr :
6084 >                                        reducer.apply(tr, sr));
6085 >                        s = t.rights = s.nextRight;
6086                      }
6177                    else if (t.casPending(c, c - 1))
6178                        break;
6087                  }
6180            } catch (Throwable ex) {
6181                return tryCompleteComputation(ex);
6088              }
6183            MapReduceKeysTask<K,V,U> s = rights;
6184            if (s != null && !inForkJoinPool()) {
6185                do  {
6186                    if (s.tryUnfork())
6187                        s.exec();
6188                } while ((s = s.nextRight) != null);
6189            }
6190            return false;
6089          }
6192        public final U getRawResult() { return result; }
6090      }
6091  
6092      @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6093 <        extends BulkTask<K,V,U> {
6094 <        final Fun<? super V, ? extends U> transformer;
6095 <        final BiFun<? super U, ? super U, ? extends U> reducer;
6093 >        extends Traverser<K,V,U> {
6094 >        final Function<? super V, ? extends U> transformer;
6095 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6096          U result;
6097          MapReduceValuesTask<K,V,U> rights, nextRight;
6098          MapReduceValuesTask
6099 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6099 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6100               MapReduceValuesTask<K,V,U> nextRight,
6101 <             Fun<? super V, ? extends U> transformer,
6102 <             BiFun<? super U, ? super U, ? extends U> reducer) {
6101 >             Function<? super V, ? extends U> transformer,
6102 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6103              super(m, p, b); this.nextRight = nextRight;
6104              this.transformer = transformer;
6105              this.reducer = reducer;
6106          }
6107 <        @SuppressWarnings("unchecked") public final boolean exec() {
6108 <            final Fun<? super V, ? extends U> transformer =
6109 <                this.transformer;
6110 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6111 <                this.reducer;
6112 <            if (transformer == null || reducer == null)
6113 <                return abortOnNullFunction();
6217 <            try {
6218 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6219 <                    do {} while (!casPending(c = pending, c+1));
6107 >        public final U getRawResult() { return result; }
6108 >        @SuppressWarnings("unchecked") public final void compute() {
6109 >            final Function<? super V, ? extends U> transformer;
6110 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6111 >            if ((transformer = this.transformer) != null &&
6112 >                (reducer = this.reducer) != null) {
6113 >                for (int b; (b = preSplit()) > 0;)
6114                      (rights = new MapReduceValuesTask<K,V,U>
6115 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6222 <                }
6115 >                     (map, this, b, rights, transformer, reducer)).fork();
6116                  U r = null, u;
6117 <                Object v;
6117 >                V v;
6118                  while ((v = advance()) != null) {
6119 <                    if ((u = transformer.apply((V)v)) != null)
6119 >                    if ((u = transformer.apply(v)) != null)
6120                          r = (r == null) ? u : reducer.apply(r, u);
6121                  }
6122                  result = r;
6123 <                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
6124 <                    int c; BulkTask<K,V,?> par; U tr, sr;
6125 <                    if ((c = t.pending) == 0) {
6126 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6127 <                            if ((sr = s.result) != null)
6128 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6129 <                        }
6130 <                        if ((par = t.parent) == null ||
6131 <                            !(par instanceof MapReduceValuesTask)) {
6132 <                            t.quietlyComplete();
6133 <                            break;
6241 <                        }
6242 <                        t = (MapReduceValuesTask<K,V,U>)par;
6123 >                CountedCompleter<?> c;
6124 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6125 >                    MapReduceValuesTask<K,V,U>
6126 >                        t = (MapReduceValuesTask<K,V,U>)c,
6127 >                        s = t.rights;
6128 >                    while (s != null) {
6129 >                        U tr, sr;
6130 >                        if ((sr = s.result) != null)
6131 >                            t.result = (((tr = t.result) == null) ? sr :
6132 >                                        reducer.apply(tr, sr));
6133 >                        s = t.rights = s.nextRight;
6134                      }
6244                    else if (t.casPending(c, c - 1))
6245                        break;
6135                  }
6247            } catch (Throwable ex) {
6248                return tryCompleteComputation(ex);
6249            }
6250            MapReduceValuesTask<K,V,U> s = rights;
6251            if (s != null && !inForkJoinPool()) {
6252                do  {
6253                    if (s.tryUnfork())
6254                        s.exec();
6255                } while ((s = s.nextRight) != null);
6136              }
6257            return false;
6137          }
6259        public final U getRawResult() { return result; }
6138      }
6139  
6140      @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6141 <        extends BulkTask<K,V,U> {
6142 <        final Fun<Map.Entry<K,V>, ? extends U> transformer;
6143 <        final BiFun<? super U, ? super U, ? extends U> reducer;
6141 >        extends Traverser<K,V,U> {
6142 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
6143 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6144          U result;
6145          MapReduceEntriesTask<K,V,U> rights, nextRight;
6146          MapReduceEntriesTask
6147 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6147 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6148               MapReduceEntriesTask<K,V,U> nextRight,
6149 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
6150 <             BiFun<? super U, ? super U, ? extends U> reducer) {
6149 >             Function<Map.Entry<K,V>, ? extends U> transformer,
6150 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6151              super(m, p, b); this.nextRight = nextRight;
6152              this.transformer = transformer;
6153              this.reducer = reducer;
6154          }
6155 <        @SuppressWarnings("unchecked") public final boolean exec() {
6156 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
6157 <                this.transformer;
6158 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6159 <                this.reducer;
6160 <            if (transformer == null || reducer == null)
6161 <                return abortOnNullFunction();
6284 <            try {
6285 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6286 <                    do {} while (!casPending(c = pending, c+1));
6155 >        public final U getRawResult() { return result; }
6156 >        @SuppressWarnings("unchecked") public final void compute() {
6157 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
6158 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6159 >            if ((transformer = this.transformer) != null &&
6160 >                (reducer = this.reducer) != null) {
6161 >                for (int b; (b = preSplit()) > 0;)
6162                      (rights = new MapReduceEntriesTask<K,V,U>
6163 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6289 <                }
6163 >                     (map, this, b, rights, transformer, reducer)).fork();
6164                  U r = null, u;
6165 <                Object v;
6165 >                V v;
6166                  while ((v = advance()) != null) {
6167 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6167 >                    if ((u = transformer.apply(entryFor(nextKey,
6168 >                                                        v))) != null)
6169                          r = (r == null) ? u : reducer.apply(r, u);
6170                  }
6171                  result = r;
6172 <                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
6173 <                    int c; BulkTask<K,V,?> par; U tr, sr;
6174 <                    if ((c = t.pending) == 0) {
6175 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6176 <                            if ((sr = s.result) != null)
6177 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6178 <                        }
6179 <                        if ((par = t.parent) == null ||
6180 <                            !(par instanceof MapReduceEntriesTask)) {
6181 <                            t.quietlyComplete();
6182 <                            break;
6308 <                        }
6309 <                        t = (MapReduceEntriesTask<K,V,U>)par;
6172 >                CountedCompleter<?> c;
6173 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6174 >                    MapReduceEntriesTask<K,V,U>
6175 >                        t = (MapReduceEntriesTask<K,V,U>)c,
6176 >                        s = t.rights;
6177 >                    while (s != null) {
6178 >                        U tr, sr;
6179 >                        if ((sr = s.result) != null)
6180 >                            t.result = (((tr = t.result) == null) ? sr :
6181 >                                        reducer.apply(tr, sr));
6182 >                        s = t.rights = s.nextRight;
6183                      }
6311                    else if (t.casPending(c, c - 1))
6312                        break;
6184                  }
6314            } catch (Throwable ex) {
6315                return tryCompleteComputation(ex);
6316            }
6317            MapReduceEntriesTask<K,V,U> s = rights;
6318            if (s != null && !inForkJoinPool()) {
6319                do  {
6320                    if (s.tryUnfork())
6321                        s.exec();
6322                } while ((s = s.nextRight) != null);
6185              }
6324            return false;
6186          }
6326        public final U getRawResult() { return result; }
6187      }
6188  
6189      @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6190 <        extends BulkTask<K,V,U> {
6191 <        final BiFun<? super K, ? super V, ? extends U> transformer;
6192 <        final BiFun<? super U, ? super U, ? extends U> reducer;
6190 >        extends Traverser<K,V,U> {
6191 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
6192 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
6193          U result;
6194          MapReduceMappingsTask<K,V,U> rights, nextRight;
6195          MapReduceMappingsTask
6196 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6196 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6197               MapReduceMappingsTask<K,V,U> nextRight,
6198 <             BiFun<? super K, ? super V, ? extends U> transformer,
6199 <             BiFun<? super U, ? super U, ? extends U> reducer) {
6198 >             BiFunction<? super K, ? super V, ? extends U> transformer,
6199 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
6200              super(m, p, b); this.nextRight = nextRight;
6201              this.transformer = transformer;
6202              this.reducer = reducer;
6203          }
6204 <        @SuppressWarnings("unchecked") public final boolean exec() {
6205 <            final BiFun<? super K, ? super V, ? extends U> transformer =
6206 <                this.transformer;
6207 <            final BiFun<? super U, ? super U, ? extends U> reducer =
6208 <                this.reducer;
6209 <            if (transformer == null || reducer == null)
6210 <                return abortOnNullFunction();
6351 <            try {
6352 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6353 <                    do {} while (!casPending(c = pending, c+1));
6204 >        public final U getRawResult() { return result; }
6205 >        @SuppressWarnings("unchecked") public final void compute() {
6206 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
6207 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
6208 >            if ((transformer = this.transformer) != null &&
6209 >                (reducer = this.reducer) != null) {
6210 >                for (int b; (b = preSplit()) > 0;)
6211                      (rights = new MapReduceMappingsTask<K,V,U>
6212 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6356 <                }
6212 >                     (map, this, b, rights, transformer, reducer)).fork();
6213                  U r = null, u;
6214 <                Object v;
6214 >                V v;
6215                  while ((v = advance()) != null) {
6216 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6216 >                    if ((u = transformer.apply(nextKey, v)) != null)
6217                          r = (r == null) ? u : reducer.apply(r, u);
6218                  }
6219                  result = r;
6220 <                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
6221 <                    int c; BulkTask<K,V,?> par; U tr, sr;
6222 <                    if ((c = t.pending) == 0) {
6223 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6224 <                            if ((sr = s.result) != null)
6225 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6226 <                        }
6227 <                        if ((par = t.parent) == null ||
6228 <                            !(par instanceof MapReduceMappingsTask)) {
6229 <                            t.quietlyComplete();
6230 <                            break;
6375 <                        }
6376 <                        t = (MapReduceMappingsTask<K,V,U>)par;
6220 >                CountedCompleter<?> c;
6221 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6222 >                    MapReduceMappingsTask<K,V,U>
6223 >                        t = (MapReduceMappingsTask<K,V,U>)c,
6224 >                        s = t.rights;
6225 >                    while (s != null) {
6226 >                        U tr, sr;
6227 >                        if ((sr = s.result) != null)
6228 >                            t.result = (((tr = t.result) == null) ? sr :
6229 >                                        reducer.apply(tr, sr));
6230 >                        s = t.rights = s.nextRight;
6231                      }
6378                    else if (t.casPending(c, c - 1))
6379                        break;
6232                  }
6381            } catch (Throwable ex) {
6382                return tryCompleteComputation(ex);
6383            }
6384            MapReduceMappingsTask<K,V,U> s = rights;
6385            if (s != null && !inForkJoinPool()) {
6386                do  {
6387                    if (s.tryUnfork())
6388                        s.exec();
6389                } while ((s = s.nextRight) != null);
6233              }
6391            return false;
6234          }
6393        public final U getRawResult() { return result; }
6235      }
6236  
6237      @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6238 <        extends BulkTask<K,V,Double> {
6239 <        final ObjectToDouble<? super K> transformer;
6240 <        final DoubleByDoubleToDouble reducer;
6238 >        extends Traverser<K,V,Double> {
6239 >        final ToDoubleFunction<? super K> transformer;
6240 >        final DoubleBinaryOperator reducer;
6241          final double basis;
6242          double result;
6243          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6244          MapReduceKeysToDoubleTask
6245 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6245 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6246               MapReduceKeysToDoubleTask<K,V> nextRight,
6247 <             ObjectToDouble<? super K> transformer,
6247 >             ToDoubleFunction<? super K> transformer,
6248               double basis,
6249 <             DoubleByDoubleToDouble reducer) {
6249 >             DoubleBinaryOperator reducer) {
6250              super(m, p, b); this.nextRight = nextRight;
6251              this.transformer = transformer;
6252              this.basis = basis; this.reducer = reducer;
6253          }
6254 <        @SuppressWarnings("unchecked") public final boolean exec() {
6255 <            final ObjectToDouble<? super K> transformer =
6256 <                this.transformer;
6257 <            final DoubleByDoubleToDouble reducer = this.reducer;
6258 <            if (transformer == null || reducer == null)
6259 <                return abortOnNullFunction();
6260 <            try {
6261 <                final double id = this.basis;
6421 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6422 <                    do {} while (!casPending(c = pending, c+1));
6254 >        public final Double getRawResult() { return result; }
6255 >        @SuppressWarnings("unchecked") public final void compute() {
6256 >            final ToDoubleFunction<? super K> transformer;
6257 >            final DoubleBinaryOperator reducer;
6258 >            if ((transformer = this.transformer) != null &&
6259 >                (reducer = this.reducer) != null) {
6260 >                double r = this.basis;
6261 >                for (int b; (b = preSplit()) > 0;)
6262                      (rights = new MapReduceKeysToDoubleTask<K,V>
6263 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6425 <                }
6426 <                double r = id;
6263 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6264                  while (advance() != null)
6265 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
6265 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6266                  result = r;
6267 <                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
6268 <                    int c; BulkTask<K,V,?> par;
6269 <                    if ((c = t.pending) == 0) {
6270 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6271 <                            t.result = reducer.apply(t.result, s.result);
6272 <                        }
6273 <                        if ((par = t.parent) == null ||
6274 <                            !(par instanceof MapReduceKeysToDoubleTask)) {
6438 <                            t.quietlyComplete();
6439 <                            break;
6440 <                        }
6441 <                        t = (MapReduceKeysToDoubleTask<K,V>)par;
6267 >                CountedCompleter<?> c;
6268 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6269 >                    MapReduceKeysToDoubleTask<K,V>
6270 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6271 >                        s = t.rights;
6272 >                    while (s != null) {
6273 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6274 >                        s = t.rights = s.nextRight;
6275                      }
6443                    else if (t.casPending(c, c - 1))
6444                        break;
6276                  }
6446            } catch (Throwable ex) {
6447                return tryCompleteComputation(ex);
6277              }
6449            MapReduceKeysToDoubleTask<K,V> s = rights;
6450            if (s != null && !inForkJoinPool()) {
6451                do  {
6452                    if (s.tryUnfork())
6453                        s.exec();
6454                } while ((s = s.nextRight) != null);
6455            }
6456            return false;
6278          }
6458        public final Double getRawResult() { return result; }
6279      }
6280  
6281      @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6282 <        extends BulkTask<K,V,Double> {
6283 <        final ObjectToDouble<? super V> transformer;
6284 <        final DoubleByDoubleToDouble reducer;
6282 >        extends Traverser<K,V,Double> {
6283 >        final ToDoubleFunction<? super V> transformer;
6284 >        final DoubleBinaryOperator reducer;
6285          final double basis;
6286          double result;
6287          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6288          MapReduceValuesToDoubleTask
6289 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6289 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6290               MapReduceValuesToDoubleTask<K,V> nextRight,
6291 <             ObjectToDouble<? super V> transformer,
6291 >             ToDoubleFunction<? super V> transformer,
6292               double basis,
6293 <             DoubleByDoubleToDouble reducer) {
6293 >             DoubleBinaryOperator reducer) {
6294              super(m, p, b); this.nextRight = nextRight;
6295              this.transformer = transformer;
6296              this.basis = basis; this.reducer = reducer;
6297          }
6298 <        @SuppressWarnings("unchecked") public final boolean exec() {
6299 <            final ObjectToDouble<? super V> transformer =
6300 <                this.transformer;
6301 <            final DoubleByDoubleToDouble reducer = this.reducer;
6302 <            if (transformer == null || reducer == null)
6303 <                return abortOnNullFunction();
6304 <            try {
6305 <                final double id = this.basis;
6486 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6487 <                    do {} while (!casPending(c = pending, c+1));
6298 >        public final Double getRawResult() { return result; }
6299 >        @SuppressWarnings("unchecked") public final void compute() {
6300 >            final ToDoubleFunction<? super V> transformer;
6301 >            final DoubleBinaryOperator reducer;
6302 >            if ((transformer = this.transformer) != null &&
6303 >                (reducer = this.reducer) != null) {
6304 >                double r = this.basis;
6305 >                for (int b; (b = preSplit()) > 0;)
6306                      (rights = new MapReduceValuesToDoubleTask<K,V>
6307 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6308 <                }
6491 <                double r = id;
6492 <                Object v;
6307 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6308 >                V v;
6309                  while ((v = advance()) != null)
6310 <                    r = reducer.apply(r, transformer.apply((V)v));
6310 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6311                  result = r;
6312 <                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6313 <                    int c; BulkTask<K,V,?> par;
6314 <                    if ((c = t.pending) == 0) {
6315 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6316 <                            t.result = reducer.apply(t.result, s.result);
6317 <                        }
6318 <                        if ((par = t.parent) == null ||
6319 <                            !(par instanceof MapReduceValuesToDoubleTask)) {
6504 <                            t.quietlyComplete();
6505 <                            break;
6506 <                        }
6507 <                        t = (MapReduceValuesToDoubleTask<K,V>)par;
6312 >                CountedCompleter<?> c;
6313 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6314 >                    MapReduceValuesToDoubleTask<K,V>
6315 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6316 >                        s = t.rights;
6317 >                    while (s != null) {
6318 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6319 >                        s = t.rights = s.nextRight;
6320                      }
6509                    else if (t.casPending(c, c - 1))
6510                        break;
6321                  }
6512            } catch (Throwable ex) {
6513                return tryCompleteComputation(ex);
6514            }
6515            MapReduceValuesToDoubleTask<K,V> s = rights;
6516            if (s != null && !inForkJoinPool()) {
6517                do  {
6518                    if (s.tryUnfork())
6519                        s.exec();
6520                } while ((s = s.nextRight) != null);
6322              }
6522            return false;
6323          }
6524        public final Double getRawResult() { return result; }
6324      }
6325  
6326      @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6327 <        extends BulkTask<K,V,Double> {
6328 <        final ObjectToDouble<Map.Entry<K,V>> transformer;
6329 <        final DoubleByDoubleToDouble reducer;
6327 >        extends Traverser<K,V,Double> {
6328 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
6329 >        final DoubleBinaryOperator reducer;
6330          final double basis;
6331          double result;
6332          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6333          MapReduceEntriesToDoubleTask
6334 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6334 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6335               MapReduceEntriesToDoubleTask<K,V> nextRight,
6336 <             ObjectToDouble<Map.Entry<K,V>> transformer,
6336 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
6337               double basis,
6338 <             DoubleByDoubleToDouble reducer) {
6338 >             DoubleBinaryOperator reducer) {
6339              super(m, p, b); this.nextRight = nextRight;
6340              this.transformer = transformer;
6341              this.basis = basis; this.reducer = reducer;
6342          }
6343 <        @SuppressWarnings("unchecked") public final boolean exec() {
6344 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
6345 <                this.transformer;
6346 <            final DoubleByDoubleToDouble reducer = this.reducer;
6347 <            if (transformer == null || reducer == null)
6348 <                return abortOnNullFunction();
6349 <            try {
6350 <                final double id = this.basis;
6552 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6553 <                    do {} while (!casPending(c = pending, c+1));
6343 >        public final Double getRawResult() { return result; }
6344 >        @SuppressWarnings("unchecked") public final void compute() {
6345 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
6346 >            final DoubleBinaryOperator reducer;
6347 >            if ((transformer = this.transformer) != null &&
6348 >                (reducer = this.reducer) != null) {
6349 >                double r = this.basis;
6350 >                for (int b; (b = preSplit()) > 0;)
6351                      (rights = new MapReduceEntriesToDoubleTask<K,V>
6352 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6353 <                }
6557 <                double r = id;
6558 <                Object v;
6352 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6353 >                V v;
6354                  while ((v = advance()) != null)
6355 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6355 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6356 >                                                                    v)));
6357                  result = r;
6358 <                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6359 <                    int c; BulkTask<K,V,?> par;
6360 <                    if ((c = t.pending) == 0) {
6361 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6362 <                            t.result = reducer.apply(t.result, s.result);
6363 <                        }
6364 <                        if ((par = t.parent) == null ||
6365 <                            !(par instanceof MapReduceEntriesToDoubleTask)) {
6570 <                            t.quietlyComplete();
6571 <                            break;
6572 <                        }
6573 <                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
6358 >                CountedCompleter<?> c;
6359 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6360 >                    MapReduceEntriesToDoubleTask<K,V>
6361 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6362 >                        s = t.rights;
6363 >                    while (s != null) {
6364 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6365 >                        s = t.rights = s.nextRight;
6366                      }
6575                    else if (t.casPending(c, c - 1))
6576                        break;
6367                  }
6578            } catch (Throwable ex) {
6579                return tryCompleteComputation(ex);
6580            }
6581            MapReduceEntriesToDoubleTask<K,V> s = rights;
6582            if (s != null && !inForkJoinPool()) {
6583                do  {
6584                    if (s.tryUnfork())
6585                        s.exec();
6586                } while ((s = s.nextRight) != null);
6368              }
6588            return false;
6369          }
6590        public final Double getRawResult() { return result; }
6370      }
6371  
6372      @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6373 <        extends BulkTask<K,V,Double> {
6374 <        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6375 <        final DoubleByDoubleToDouble reducer;
6373 >        extends Traverser<K,V,Double> {
6374 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
6375 >        final DoubleBinaryOperator reducer;
6376          final double basis;
6377          double result;
6378          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6379          MapReduceMappingsToDoubleTask
6380 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6380 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6381               MapReduceMappingsToDoubleTask<K,V> nextRight,
6382 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
6382 >             ToDoubleBiFunction<? super K, ? super V> transformer,
6383               double basis,
6384 <             DoubleByDoubleToDouble reducer) {
6384 >             DoubleBinaryOperator reducer) {
6385              super(m, p, b); this.nextRight = nextRight;
6386              this.transformer = transformer;
6387              this.basis = basis; this.reducer = reducer;
6388          }
6389 <        @SuppressWarnings("unchecked") public final boolean exec() {
6390 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
6391 <                this.transformer;
6392 <            final DoubleByDoubleToDouble reducer = this.reducer;
6393 <            if (transformer == null || reducer == null)
6394 <                return abortOnNullFunction();
6395 <            try {
6396 <                final double id = this.basis;
6618 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6619 <                    do {} while (!casPending(c = pending, c+1));
6389 >        public final Double getRawResult() { return result; }
6390 >        @SuppressWarnings("unchecked") public final void compute() {
6391 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
6392 >            final DoubleBinaryOperator reducer;
6393 >            if ((transformer = this.transformer) != null &&
6394 >                (reducer = this.reducer) != null) {
6395 >                double r = this.basis;
6396 >                for (int b; (b = preSplit()) > 0;)
6397                      (rights = new MapReduceMappingsToDoubleTask<K,V>
6398 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6399 <                }
6623 <                double r = id;
6624 <                Object v;
6398 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6399 >                V v;
6400                  while ((v = advance()) != null)
6401 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6401 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6402                  result = r;
6403 <                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6404 <                    int c; BulkTask<K,V,?> par;
6405 <                    if ((c = t.pending) == 0) {
6406 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6407 <                            t.result = reducer.apply(t.result, s.result);
6408 <                        }
6409 <                        if ((par = t.parent) == null ||
6410 <                            !(par instanceof MapReduceMappingsToDoubleTask)) {
6636 <                            t.quietlyComplete();
6637 <                            break;
6638 <                        }
6639 <                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
6403 >                CountedCompleter<?> c;
6404 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6405 >                    MapReduceMappingsToDoubleTask<K,V>
6406 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6407 >                        s = t.rights;
6408 >                    while (s != null) {
6409 >                        t.result = reducer.applyAsDouble(t.result, s.result);
6410 >                        s = t.rights = s.nextRight;
6411                      }
6641                    else if (t.casPending(c, c - 1))
6642                        break;
6412                  }
6644            } catch (Throwable ex) {
6645                return tryCompleteComputation(ex);
6646            }
6647            MapReduceMappingsToDoubleTask<K,V> s = rights;
6648            if (s != null && !inForkJoinPool()) {
6649                do  {
6650                    if (s.tryUnfork())
6651                        s.exec();
6652                } while ((s = s.nextRight) != null);
6413              }
6654            return false;
6414          }
6656        public final Double getRawResult() { return result; }
6415      }
6416  
6417      @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6418 <        extends BulkTask<K,V,Long> {
6419 <        final ObjectToLong<? super K> transformer;
6420 <        final LongByLongToLong reducer;
6418 >        extends Traverser<K,V,Long> {
6419 >        final ToLongFunction<? super K> transformer;
6420 >        final LongBinaryOperator reducer;
6421          final long basis;
6422          long result;
6423          MapReduceKeysToLongTask<K,V> rights, nextRight;
6424          MapReduceKeysToLongTask
6425 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6425 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6426               MapReduceKeysToLongTask<K,V> nextRight,
6427 <             ObjectToLong<? super K> transformer,
6427 >             ToLongFunction<? super K> transformer,
6428               long basis,
6429 <             LongByLongToLong reducer) {
6429 >             LongBinaryOperator reducer) {
6430              super(m, p, b); this.nextRight = nextRight;
6431              this.transformer = transformer;
6432              this.basis = basis; this.reducer = reducer;
6433          }
6434 <        @SuppressWarnings("unchecked") public final boolean exec() {
6435 <            final ObjectToLong<? super K> transformer =
6436 <                this.transformer;
6437 <            final LongByLongToLong reducer = this.reducer;
6438 <            if (transformer == null || reducer == null)
6439 <                return abortOnNullFunction();
6440 <            try {
6441 <                final long id = this.basis;
6684 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6685 <                    do {} while (!casPending(c = pending, c+1));
6434 >        public final Long getRawResult() { return result; }
6435 >        @SuppressWarnings("unchecked") public final void compute() {
6436 >            final ToLongFunction<? super K> transformer;
6437 >            final LongBinaryOperator reducer;
6438 >            if ((transformer = this.transformer) != null &&
6439 >                (reducer = this.reducer) != null) {
6440 >                long r = this.basis;
6441 >                for (int b; (b = preSplit()) > 0;)
6442                      (rights = new MapReduceKeysToLongTask<K,V>
6443 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6688 <                }
6689 <                long r = id;
6443 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6444                  while (advance() != null)
6445 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
6445 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6446                  result = r;
6447 <                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6448 <                    int c; BulkTask<K,V,?> par;
6449 <                    if ((c = t.pending) == 0) {
6450 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6451 <                            t.result = reducer.apply(t.result, s.result);
6452 <                        }
6453 <                        if ((par = t.parent) == null ||
6454 <                            !(par instanceof MapReduceKeysToLongTask)) {
6701 <                            t.quietlyComplete();
6702 <                            break;
6703 <                        }
6704 <                        t = (MapReduceKeysToLongTask<K,V>)par;
6447 >                CountedCompleter<?> c;
6448 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6449 >                    MapReduceKeysToLongTask<K,V>
6450 >                        t = (MapReduceKeysToLongTask<K,V>)c,
6451 >                        s = t.rights;
6452 >                    while (s != null) {
6453 >                        t.result = reducer.applyAsLong(t.result, s.result);
6454 >                        s = t.rights = s.nextRight;
6455                      }
6706                    else if (t.casPending(c, c - 1))
6707                        break;
6456                  }
6709            } catch (Throwable ex) {
6710                return tryCompleteComputation(ex);
6457              }
6712            MapReduceKeysToLongTask<K,V> s = rights;
6713            if (s != null && !inForkJoinPool()) {
6714                do  {
6715                    if (s.tryUnfork())
6716                        s.exec();
6717                } while ((s = s.nextRight) != null);
6718            }
6719            return false;
6458          }
6721        public final Long getRawResult() { return result; }
6459      }
6460  
6461      @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6462 <        extends BulkTask<K,V,Long> {
6463 <        final ObjectToLong<? super V> transformer;
6464 <        final LongByLongToLong reducer;
6462 >        extends Traverser<K,V,Long> {
6463 >        final ToLongFunction<? super V> transformer;
6464 >        final LongBinaryOperator reducer;
6465          final long basis;
6466          long result;
6467          MapReduceValuesToLongTask<K,V> rights, nextRight;
6468          MapReduceValuesToLongTask
6469 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6469 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6470               MapReduceValuesToLongTask<K,V> nextRight,
6471 <             ObjectToLong<? super V> transformer,
6471 >             ToLongFunction<? super V> transformer,
6472               long basis,
6473 <             LongByLongToLong reducer) {
6473 >             LongBinaryOperator reducer) {
6474              super(m, p, b); this.nextRight = nextRight;
6475              this.transformer = transformer;
6476              this.basis = basis; this.reducer = reducer;
6477          }
6478 <        @SuppressWarnings("unchecked") public final boolean exec() {
6479 <            final ObjectToLong<? super V> transformer =
6480 <                this.transformer;
6481 <            final LongByLongToLong reducer = this.reducer;
6482 <            if (transformer == null || reducer == null)
6483 <                return abortOnNullFunction();
6484 <            try {
6485 <                final long id = this.basis;
6749 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6750 <                    do {} while (!casPending(c = pending, c+1));
6478 >        public final Long getRawResult() { return result; }
6479 >        @SuppressWarnings("unchecked") public final void compute() {
6480 >            final ToLongFunction<? super V> transformer;
6481 >            final LongBinaryOperator reducer;
6482 >            if ((transformer = this.transformer) != null &&
6483 >                (reducer = this.reducer) != null) {
6484 >                long r = this.basis;
6485 >                for (int b; (b = preSplit()) > 0;)
6486                      (rights = new MapReduceValuesToLongTask<K,V>
6487 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6488 <                }
6754 <                long r = id;
6755 <                Object v;
6487 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6488 >                V v;
6489                  while ((v = advance()) != null)
6490 <                    r = reducer.apply(r, transformer.apply((V)v));
6490 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6491                  result = r;
6492 <                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6493 <                    int c; BulkTask<K,V,?> par;
6494 <                    if ((c = t.pending) == 0) {
6495 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6496 <                            t.result = reducer.apply(t.result, s.result);
6497 <                        }
6498 <                        if ((par = t.parent) == null ||
6499 <                            !(par instanceof MapReduceValuesToLongTask)) {
6767 <                            t.quietlyComplete();
6768 <                            break;
6769 <                        }
6770 <                        t = (MapReduceValuesToLongTask<K,V>)par;
6492 >                CountedCompleter<?> c;
6493 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6494 >                    MapReduceValuesToLongTask<K,V>
6495 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6496 >                        s = t.rights;
6497 >                    while (s != null) {
6498 >                        t.result = reducer.applyAsLong(t.result, s.result);
6499 >                        s = t.rights = s.nextRight;
6500                      }
6772                    else if (t.casPending(c, c - 1))
6773                        break;
6501                  }
6775            } catch (Throwable ex) {
6776                return tryCompleteComputation(ex);
6777            }
6778            MapReduceValuesToLongTask<K,V> s = rights;
6779            if (s != null && !inForkJoinPool()) {
6780                do  {
6781                    if (s.tryUnfork())
6782                        s.exec();
6783                } while ((s = s.nextRight) != null);
6502              }
6785            return false;
6503          }
6787        public final Long getRawResult() { return result; }
6504      }
6505  
6506      @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6507 <        extends BulkTask<K,V,Long> {
6508 <        final ObjectToLong<Map.Entry<K,V>> transformer;
6509 <        final LongByLongToLong reducer;
6507 >        extends Traverser<K,V,Long> {
6508 >        final ToLongFunction<Map.Entry<K,V>> transformer;
6509 >        final LongBinaryOperator reducer;
6510          final long basis;
6511          long result;
6512          MapReduceEntriesToLongTask<K,V> rights, nextRight;
6513          MapReduceEntriesToLongTask
6514 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6514 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6515               MapReduceEntriesToLongTask<K,V> nextRight,
6516 <             ObjectToLong<Map.Entry<K,V>> transformer,
6516 >             ToLongFunction<Map.Entry<K,V>> transformer,
6517               long basis,
6518 <             LongByLongToLong reducer) {
6518 >             LongBinaryOperator reducer) {
6519              super(m, p, b); this.nextRight = nextRight;
6520              this.transformer = transformer;
6521              this.basis = basis; this.reducer = reducer;
6522          }
6523 <        @SuppressWarnings("unchecked") public final boolean exec() {
6524 <            final ObjectToLong<Map.Entry<K,V>> transformer =
6525 <                this.transformer;
6526 <            final LongByLongToLong reducer = this.reducer;
6527 <            if (transformer == null || reducer == null)
6528 <                return abortOnNullFunction();
6529 <            try {
6530 <                final long id = this.basis;
6815 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6816 <                    do {} while (!casPending(c = pending, c+1));
6523 >        public final Long getRawResult() { return result; }
6524 >        @SuppressWarnings("unchecked") public final void compute() {
6525 >            final ToLongFunction<Map.Entry<K,V>> transformer;
6526 >            final LongBinaryOperator reducer;
6527 >            if ((transformer = this.transformer) != null &&
6528 >                (reducer = this.reducer) != null) {
6529 >                long r = this.basis;
6530 >                for (int b; (b = preSplit()) > 0;)
6531                      (rights = new MapReduceEntriesToLongTask<K,V>
6532 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6533 <                }
6820 <                long r = id;
6821 <                Object v;
6532 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6533 >                V v;
6534                  while ((v = advance()) != null)
6535 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6535 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6536                  result = r;
6537 <                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6538 <                    int c; BulkTask<K,V,?> par;
6539 <                    if ((c = t.pending) == 0) {
6540 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6541 <                            t.result = reducer.apply(t.result, s.result);
6542 <                        }
6543 <                        if ((par = t.parent) == null ||
6544 <                            !(par instanceof MapReduceEntriesToLongTask)) {
6833 <                            t.quietlyComplete();
6834 <                            break;
6835 <                        }
6836 <                        t = (MapReduceEntriesToLongTask<K,V>)par;
6537 >                CountedCompleter<?> c;
6538 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6539 >                    MapReduceEntriesToLongTask<K,V>
6540 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6541 >                        s = t.rights;
6542 >                    while (s != null) {
6543 >                        t.result = reducer.applyAsLong(t.result, s.result);
6544 >                        s = t.rights = s.nextRight;
6545                      }
6838                    else if (t.casPending(c, c - 1))
6839                        break;
6546                  }
6841            } catch (Throwable ex) {
6842                return tryCompleteComputation(ex);
6843            }
6844            MapReduceEntriesToLongTask<K,V> s = rights;
6845            if (s != null && !inForkJoinPool()) {
6846                do  {
6847                    if (s.tryUnfork())
6848                        s.exec();
6849                } while ((s = s.nextRight) != null);
6547              }
6851            return false;
6548          }
6853        public final Long getRawResult() { return result; }
6549      }
6550  
6551      @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6552 <        extends BulkTask<K,V,Long> {
6553 <        final ObjectByObjectToLong<? super K, ? super V> transformer;
6554 <        final LongByLongToLong reducer;
6552 >        extends Traverser<K,V,Long> {
6553 >        final ToLongBiFunction<? super K, ? super V> transformer;
6554 >        final LongBinaryOperator reducer;
6555          final long basis;
6556          long result;
6557          MapReduceMappingsToLongTask<K,V> rights, nextRight;
6558          MapReduceMappingsToLongTask
6559 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6559 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6560               MapReduceMappingsToLongTask<K,V> nextRight,
6561 <             ObjectByObjectToLong<? super K, ? super V> transformer,
6561 >             ToLongBiFunction<? super K, ? super V> transformer,
6562               long basis,
6563 <             LongByLongToLong reducer) {
6563 >             LongBinaryOperator reducer) {
6564              super(m, p, b); this.nextRight = nextRight;
6565              this.transformer = transformer;
6566              this.basis = basis; this.reducer = reducer;
6567          }
6568 <        @SuppressWarnings("unchecked") public final boolean exec() {
6569 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
6570 <                this.transformer;
6571 <            final LongByLongToLong reducer = this.reducer;
6572 <            if (transformer == null || reducer == null)
6573 <                return abortOnNullFunction();
6574 <            try {
6575 <                final long id = this.basis;
6881 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6882 <                    do {} while (!casPending(c = pending, c+1));
6568 >        public final Long getRawResult() { return result; }
6569 >        @SuppressWarnings("unchecked") public final void compute() {
6570 >            final ToLongBiFunction<? super K, ? super V> transformer;
6571 >            final LongBinaryOperator reducer;
6572 >            if ((transformer = this.transformer) != null &&
6573 >                (reducer = this.reducer) != null) {
6574 >                long r = this.basis;
6575 >                for (int b; (b = preSplit()) > 0;)
6576                      (rights = new MapReduceMappingsToLongTask<K,V>
6577 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6578 <                }
6886 <                long r = id;
6887 <                Object v;
6577 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6578 >                V v;
6579                  while ((v = advance()) != null)
6580 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6580 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6581                  result = r;
6582 <                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6583 <                    int c; BulkTask<K,V,?> par;
6584 <                    if ((c = t.pending) == 0) {
6585 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6586 <                            t.result = reducer.apply(t.result, s.result);
6587 <                        }
6588 <                        if ((par = t.parent) == null ||
6589 <                            !(par instanceof MapReduceMappingsToLongTask)) {
6899 <                            t.quietlyComplete();
6900 <                            break;
6901 <                        }
6902 <                        t = (MapReduceMappingsToLongTask<K,V>)par;
6582 >                CountedCompleter<?> c;
6583 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6584 >                    MapReduceMappingsToLongTask<K,V>
6585 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6586 >                        s = t.rights;
6587 >                    while (s != null) {
6588 >                        t.result = reducer.applyAsLong(t.result, s.result);
6589 >                        s = t.rights = s.nextRight;
6590                      }
6904                    else if (t.casPending(c, c - 1))
6905                        break;
6591                  }
6907            } catch (Throwable ex) {
6908                return tryCompleteComputation(ex);
6592              }
6910            MapReduceMappingsToLongTask<K,V> s = rights;
6911            if (s != null && !inForkJoinPool()) {
6912                do  {
6913                    if (s.tryUnfork())
6914                        s.exec();
6915                } while ((s = s.nextRight) != null);
6916            }
6917            return false;
6593          }
6919        public final Long getRawResult() { return result; }
6594      }
6595  
6596      @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6597 <        extends BulkTask<K,V,Integer> {
6598 <        final ObjectToInt<? super K> transformer;
6599 <        final IntByIntToInt reducer;
6597 >        extends Traverser<K,V,Integer> {
6598 >        final ToIntFunction<? super K> transformer;
6599 >        final IntBinaryOperator reducer;
6600          final int basis;
6601          int result;
6602          MapReduceKeysToIntTask<K,V> rights, nextRight;
6603          MapReduceKeysToIntTask
6604 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6604 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6605               MapReduceKeysToIntTask<K,V> nextRight,
6606 <             ObjectToInt<? super K> transformer,
6606 >             ToIntFunction<? super K> transformer,
6607               int basis,
6608 <             IntByIntToInt reducer) {
6608 >             IntBinaryOperator reducer) {
6609              super(m, p, b); this.nextRight = nextRight;
6610              this.transformer = transformer;
6611              this.basis = basis; this.reducer = reducer;
6612          }
6613 <        @SuppressWarnings("unchecked") public final boolean exec() {
6614 <            final ObjectToInt<? super K> transformer =
6615 <                this.transformer;
6616 <            final IntByIntToInt reducer = this.reducer;
6617 <            if (transformer == null || reducer == null)
6618 <                return abortOnNullFunction();
6619 <            try {
6620 <                final int id = this.basis;
6947 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6948 <                    do {} while (!casPending(c = pending, c+1));
6613 >        public final Integer getRawResult() { return result; }
6614 >        @SuppressWarnings("unchecked") public final void compute() {
6615 >            final ToIntFunction<? super K> transformer;
6616 >            final IntBinaryOperator reducer;
6617 >            if ((transformer = this.transformer) != null &&
6618 >                (reducer = this.reducer) != null) {
6619 >                int r = this.basis;
6620 >                for (int b; (b = preSplit()) > 0;)
6621                      (rights = new MapReduceKeysToIntTask<K,V>
6622 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6951 <                }
6952 <                int r = id;
6622 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6623                  while (advance() != null)
6624 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
6624 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6625                  result = r;
6626 <                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6627 <                    int c; BulkTask<K,V,?> par;
6628 <                    if ((c = t.pending) == 0) {
6629 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6630 <                            t.result = reducer.apply(t.result, s.result);
6631 <                        }
6632 <                        if ((par = t.parent) == null ||
6633 <                            !(par instanceof MapReduceKeysToIntTask)) {
6964 <                            t.quietlyComplete();
6965 <                            break;
6966 <                        }
6967 <                        t = (MapReduceKeysToIntTask<K,V>)par;
6626 >                CountedCompleter<?> c;
6627 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6628 >                    MapReduceKeysToIntTask<K,V>
6629 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6630 >                        s = t.rights;
6631 >                    while (s != null) {
6632 >                        t.result = reducer.applyAsInt(t.result, s.result);
6633 >                        s = t.rights = s.nextRight;
6634                      }
6969                    else if (t.casPending(c, c - 1))
6970                        break;
6635                  }
6972            } catch (Throwable ex) {
6973                return tryCompleteComputation(ex);
6636              }
6975            MapReduceKeysToIntTask<K,V> s = rights;
6976            if (s != null && !inForkJoinPool()) {
6977                do  {
6978                    if (s.tryUnfork())
6979                        s.exec();
6980                } while ((s = s.nextRight) != null);
6981            }
6982            return false;
6637          }
6984        public final Integer getRawResult() { return result; }
6638      }
6639  
6640      @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6641 <        extends BulkTask<K,V,Integer> {
6642 <        final ObjectToInt<? super V> transformer;
6643 <        final IntByIntToInt reducer;
6641 >        extends Traverser<K,V,Integer> {
6642 >        final ToIntFunction<? super V> transformer;
6643 >        final IntBinaryOperator reducer;
6644          final int basis;
6645          int result;
6646          MapReduceValuesToIntTask<K,V> rights, nextRight;
6647          MapReduceValuesToIntTask
6648 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6648 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6649               MapReduceValuesToIntTask<K,V> nextRight,
6650 <             ObjectToInt<? super V> transformer,
6650 >             ToIntFunction<? super V> transformer,
6651               int basis,
6652 <             IntByIntToInt reducer) {
6652 >             IntBinaryOperator reducer) {
6653              super(m, p, b); this.nextRight = nextRight;
6654              this.transformer = transformer;
6655              this.basis = basis; this.reducer = reducer;
6656          }
6657 <        @SuppressWarnings("unchecked") public final boolean exec() {
6658 <            final ObjectToInt<? super V> transformer =
6659 <                this.transformer;
6660 <            final IntByIntToInt reducer = this.reducer;
6661 <            if (transformer == null || reducer == null)
6662 <                return abortOnNullFunction();
6663 <            try {
6664 <                final int id = this.basis;
7012 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7013 <                    do {} while (!casPending(c = pending, c+1));
6657 >        public final Integer getRawResult() { return result; }
6658 >        @SuppressWarnings("unchecked") public final void compute() {
6659 >            final ToIntFunction<? super V> transformer;
6660 >            final IntBinaryOperator reducer;
6661 >            if ((transformer = this.transformer) != null &&
6662 >                (reducer = this.reducer) != null) {
6663 >                int r = this.basis;
6664 >                for (int b; (b = preSplit()) > 0;)
6665                      (rights = new MapReduceValuesToIntTask<K,V>
6666 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6667 <                }
7017 <                int r = id;
7018 <                Object v;
6666 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6667 >                V v;
6668                  while ((v = advance()) != null)
6669 <                    r = reducer.apply(r, transformer.apply((V)v));
6669 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6670                  result = r;
6671 <                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6672 <                    int c; BulkTask<K,V,?> par;
6673 <                    if ((c = t.pending) == 0) {
6674 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6675 <                            t.result = reducer.apply(t.result, s.result);
6676 <                        }
6677 <                        if ((par = t.parent) == null ||
6678 <                            !(par instanceof MapReduceValuesToIntTask)) {
7030 <                            t.quietlyComplete();
7031 <                            break;
7032 <                        }
7033 <                        t = (MapReduceValuesToIntTask<K,V>)par;
6671 >                CountedCompleter<?> c;
6672 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6673 >                    MapReduceValuesToIntTask<K,V>
6674 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6675 >                        s = t.rights;
6676 >                    while (s != null) {
6677 >                        t.result = reducer.applyAsInt(t.result, s.result);
6678 >                        s = t.rights = s.nextRight;
6679                      }
7035                    else if (t.casPending(c, c - 1))
7036                        break;
6680                  }
7038            } catch (Throwable ex) {
7039                return tryCompleteComputation(ex);
7040            }
7041            MapReduceValuesToIntTask<K,V> s = rights;
7042            if (s != null && !inForkJoinPool()) {
7043                do  {
7044                    if (s.tryUnfork())
7045                        s.exec();
7046                } while ((s = s.nextRight) != null);
6681              }
7048            return false;
6682          }
7050        public final Integer getRawResult() { return result; }
6683      }
6684  
6685      @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6686 <        extends BulkTask<K,V,Integer> {
6687 <        final ObjectToInt<Map.Entry<K,V>> transformer;
6688 <        final IntByIntToInt reducer;
6686 >        extends Traverser<K,V,Integer> {
6687 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6688 >        final IntBinaryOperator reducer;
6689          final int basis;
6690          int result;
6691          MapReduceEntriesToIntTask<K,V> rights, nextRight;
6692          MapReduceEntriesToIntTask
6693 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6693 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6694               MapReduceEntriesToIntTask<K,V> nextRight,
6695 <             ObjectToInt<Map.Entry<K,V>> transformer,
6695 >             ToIntFunction<Map.Entry<K,V>> transformer,
6696               int basis,
6697 <             IntByIntToInt reducer) {
6697 >             IntBinaryOperator reducer) {
6698              super(m, p, b); this.nextRight = nextRight;
6699              this.transformer = transformer;
6700              this.basis = basis; this.reducer = reducer;
6701          }
6702 <        @SuppressWarnings("unchecked") public final boolean exec() {
6703 <            final ObjectToInt<Map.Entry<K,V>> transformer =
6704 <                this.transformer;
6705 <            final IntByIntToInt reducer = this.reducer;
6706 <            if (transformer == null || reducer == null)
6707 <                return abortOnNullFunction();
6708 <            try {
6709 <                final int id = this.basis;
7078 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7079 <                    do {} while (!casPending(c = pending, c+1));
6702 >        public final Integer getRawResult() { return result; }
6703 >        @SuppressWarnings("unchecked") public final void compute() {
6704 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6705 >            final IntBinaryOperator reducer;
6706 >            if ((transformer = this.transformer) != null &&
6707 >                (reducer = this.reducer) != null) {
6708 >                int r = this.basis;
6709 >                for (int b; (b = preSplit()) > 0;)
6710                      (rights = new MapReduceEntriesToIntTask<K,V>
6711 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6712 <                }
7083 <                int r = id;
7084 <                Object v;
6711 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6712 >                V v;
6713                  while ((v = advance()) != null)
6714 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6714 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6715 >                                                                    v)));
6716                  result = r;
6717 <                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6718 <                    int c; BulkTask<K,V,?> par;
6719 <                    if ((c = t.pending) == 0) {
6720 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6721 <                            t.result = reducer.apply(t.result, s.result);
6722 <                        }
6723 <                        if ((par = t.parent) == null ||
6724 <                            !(par instanceof MapReduceEntriesToIntTask)) {
7096 <                            t.quietlyComplete();
7097 <                            break;
7098 <                        }
7099 <                        t = (MapReduceEntriesToIntTask<K,V>)par;
6717 >                CountedCompleter<?> c;
6718 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6719 >                    MapReduceEntriesToIntTask<K,V>
6720 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6721 >                        s = t.rights;
6722 >                    while (s != null) {
6723 >                        t.result = reducer.applyAsInt(t.result, s.result);
6724 >                        s = t.rights = s.nextRight;
6725                      }
7101                    else if (t.casPending(c, c - 1))
7102                        break;
6726                  }
7104            } catch (Throwable ex) {
7105                return tryCompleteComputation(ex);
7106            }
7107            MapReduceEntriesToIntTask<K,V> s = rights;
7108            if (s != null && !inForkJoinPool()) {
7109                do  {
7110                    if (s.tryUnfork())
7111                        s.exec();
7112                } while ((s = s.nextRight) != null);
6727              }
7114            return false;
6728          }
7116        public final Integer getRawResult() { return result; }
6729      }
6730  
6731      @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6732 <        extends BulkTask<K,V,Integer> {
6733 <        final ObjectByObjectToInt<? super K, ? super V> transformer;
6734 <        final IntByIntToInt reducer;
6732 >        extends Traverser<K,V,Integer> {
6733 >        final ToIntBiFunction<? super K, ? super V> transformer;
6734 >        final IntBinaryOperator reducer;
6735          final int basis;
6736          int result;
6737          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6738          MapReduceMappingsToIntTask
6739 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6740 <             MapReduceMappingsToIntTask<K,V> rights,
6741 <             ObjectByObjectToInt<? super K, ? super V> transformer,
6739 >            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6740 >             MapReduceMappingsToIntTask<K,V> nextRight,
6741 >             ToIntBiFunction<? super K, ? super V> transformer,
6742               int basis,
6743 <             IntByIntToInt reducer) {
6743 >             IntBinaryOperator reducer) {
6744              super(m, p, b); this.nextRight = nextRight;
6745              this.transformer = transformer;
6746              this.basis = basis; this.reducer = reducer;
6747          }
6748 <        @SuppressWarnings("unchecked") public final boolean exec() {
6749 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
6750 <                this.transformer;
6751 <            final IntByIntToInt reducer = this.reducer;
6752 <            if (transformer == null || reducer == null)
6753 <                return abortOnNullFunction();
6754 <            try {
6755 <                final int id = this.basis;
7144 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7145 <                    do {} while (!casPending(c = pending, c+1));
6748 >        public final Integer getRawResult() { return result; }
6749 >        @SuppressWarnings("unchecked") public final void compute() {
6750 >            final ToIntBiFunction<? super K, ? super V> transformer;
6751 >            final IntBinaryOperator reducer;
6752 >            if ((transformer = this.transformer) != null &&
6753 >                (reducer = this.reducer) != null) {
6754 >                int r = this.basis;
6755 >                for (int b; (b = preSplit()) > 0;)
6756                      (rights = new MapReduceMappingsToIntTask<K,V>
6757 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6758 <                }
7149 <                int r = id;
7150 <                Object v;
6757 >                     (map, this, b, rights, transformer, r, reducer)).fork();
6758 >                V v;
6759                  while ((v = advance()) != null)
6760 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6760 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6761                  result = r;
6762 <                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6763 <                    int c; BulkTask<K,V,?> par;
6764 <                    if ((c = t.pending) == 0) {
6765 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6766 <                            t.result = reducer.apply(t.result, s.result);
6767 <                        }
6768 <                        if ((par = t.parent) == null ||
6769 <                            !(par instanceof MapReduceMappingsToIntTask)) {
7162 <                            t.quietlyComplete();
7163 <                            break;
7164 <                        }
7165 <                        t = (MapReduceMappingsToIntTask<K,V>)par;
6762 >                CountedCompleter<?> c;
6763 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6764 >                    MapReduceMappingsToIntTask<K,V>
6765 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6766 >                        s = t.rights;
6767 >                    while (s != null) {
6768 >                        t.result = reducer.applyAsInt(t.result, s.result);
6769 >                        s = t.rights = s.nextRight;
6770                      }
7167                    else if (t.casPending(c, c - 1))
7168                        break;
6771                  }
7170            } catch (Throwable ex) {
7171                return tryCompleteComputation(ex);
7172            }
7173            MapReduceMappingsToIntTask<K,V> s = rights;
7174            if (s != null && !inForkJoinPool()) {
7175                do  {
7176                    if (s.tryUnfork())
7177                        s.exec();
7178                } while ((s = s.nextRight) != null);
6772              }
7180            return false;
6773          }
7182        public final Integer getRawResult() { return result; }
6774      }
6775  
6776      // Unsafe mechanics
6777 <    private static final sun.misc.Unsafe UNSAFE;
6778 <    private static final long counterOffset;
6779 <    private static final long sizeCtlOffset;
6777 >    private static final sun.misc.Unsafe U;
6778 >    private static final long SIZECTL;
6779 >    private static final long TRANSFERINDEX;
6780 >    private static final long TRANSFERORIGIN;
6781 >    private static final long BASECOUNT;
6782 >    private static final long CELLSBUSY;
6783 >    private static final long CELLVALUE;
6784      private static final long ABASE;
6785      private static final int ASHIFT;
6786  
6787      static {
7193        int ss;
6788          try {
6789 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6789 >            U = sun.misc.Unsafe.getUnsafe();
6790              Class<?> k = ConcurrentHashMap.class;
6791 <            counterOffset = UNSAFE.objectFieldOffset
7198 <                (k.getDeclaredField("counter"));
7199 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6791 >            SIZECTL = U.objectFieldOffset
6792                  (k.getDeclaredField("sizeCtl"));
6793 +            TRANSFERINDEX = U.objectFieldOffset
6794 +                (k.getDeclaredField("transferIndex"));
6795 +            TRANSFERORIGIN = U.objectFieldOffset
6796 +                (k.getDeclaredField("transferOrigin"));
6797 +            BASECOUNT = U.objectFieldOffset
6798 +                (k.getDeclaredField("baseCount"));
6799 +            CELLSBUSY = U.objectFieldOffset
6800 +                (k.getDeclaredField("cellsBusy"));
6801 +            Class<?> ck = Cell.class;
6802 +            CELLVALUE = U.objectFieldOffset
6803 +                (ck.getDeclaredField("value"));
6804              Class<?> sc = Node[].class;
6805 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6806 <            ss = UNSAFE.arrayIndexScale(sc);
6805 >            ABASE = U.arrayBaseOffset(sc);
6806 >            int scale = U.arrayIndexScale(sc);
6807 >            if ((scale & (scale - 1)) != 0)
6808 >                throw new Error("data type scale not a power of two");
6809 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6810          } catch (Exception e) {
6811              throw new Error(e);
6812          }
7207        if ((ss & (ss-1)) != 0)
7208            throw new Error("data type scale not a power of two");
7209        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6813      }
6814 +
6815   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines