ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.143 by jsr166, Fri Nov 9 03:30:03 2012 UTC vs.
Revision 1.318 by jsr166, Sat Aug 10 16:48:05 2019 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 import java.util.concurrent.atomic.LongAdder;
9 import java.util.concurrent.ForkJoinPool;
10 import java.util.concurrent.ForkJoinTask;
8  
9 < import java.util.Comparator;
9 > import java.io.ObjectStreamField;
10 > import java.io.Serializable;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14   import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
15   import java.util.Collection;
16 < import java.util.AbstractMap;
18 < import java.util.AbstractSet;
19 < import java.util.AbstractCollection;
20 < import java.util.Hashtable;
16 > import java.util.Enumeration;
17   import java.util.HashMap;
18 + import java.util.Hashtable;
19   import java.util.Iterator;
20 < import java.util.Enumeration;
24 < import java.util.ConcurrentModificationException;
20 > import java.util.Map;
21   import java.util.NoSuchElementException;
22 < import java.util.concurrent.ConcurrentMap;
23 < import java.util.concurrent.ThreadLocalRandom;
28 < import java.util.concurrent.locks.LockSupport;
29 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24   import java.util.concurrent.atomic.AtomicReference;
25 <
26 < import java.io.Serializable;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42 > import jdk.internal.misc.Unsafe;
43  
44   /**
45   * A hash table supporting full concurrency of retrievals and
# Line 43 | Line 53 | import java.io.Serializable;
53   * interoperable with {@code Hashtable} in programs that rely on its
54   * thread safety but not on its synchronization details.
55   *
56 < * <p> Retrieval operations (including {@code get}) generally do not
56 > * <p>Retrieval operations (including {@code get}) generally do not
57   * block, so may overlap with update operations (including {@code put}
58   * and {@code remove}). Retrievals reflect the results of the most
59   * recently <em>completed</em> update operations holding upon their
# Line 52 | Line 62 | import java.io.Serializable;
62   * that key reporting the updated value.)  For aggregate operations
63   * such as {@code putAll} and {@code clear}, concurrent retrievals may
64   * reflect insertion or removal of only some entries.  Similarly,
65 < * Iterators and Enumerations return elements reflecting the state of
66 < * the hash table at some point at or since the creation of the
65 > * Iterators, Spliterators and Enumerations return elements reflecting the
66 > * state of the hash table at some point at or since the creation of the
67   * iterator/enumeration.  They do <em>not</em> throw {@link
68 < * ConcurrentModificationException}.  However, iterators are designed
69 < * to be used by only one thread at a time.  Bear in mind that the
70 < * results of aggregate status methods including {@code size}, {@code
71 < * isEmpty}, and {@code containsValue} are typically useful only when
72 < * a map is not undergoing concurrent updates in other threads.
68 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
69 > * However, iterators are designed to be used by only one thread at a time.
70 > * Bear in mind that the results of aggregate status methods including
71 > * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 > * useful only when a map is not undergoing concurrent updates in other threads.
73   * Otherwise the results of these methods reflect transient states
74   * that may be adequate for monitoring or estimation purposes, but not
75   * for program control.
76   *
77 < * <p> The table is dynamically expanded when there are too many
77 > * <p>The table is dynamically expanded when there are too many
78   * collisions (i.e., keys that have distinct hash codes but fall into
79   * the same slot modulo the table size), with the expected average
80   * effect of maintaining roughly two bins per mapping (corresponding
# Line 83 | Line 93 | import java.io.Serializable;
93   * expected {@code concurrencyLevel} as an additional hint for
94   * internal sizing.  Note that using many keys with exactly the same
95   * {@code hashCode()} is a sure way to slow down performance of any
96 < * hash table.
96 > * hash table. To ameliorate impact, when keys are {@link Comparable},
97 > * this class may use comparison order among keys to help break ties.
98   *
99 < * <p> A {@link Set} projection of a ConcurrentHashMap may be created
99 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101   * (using {@link #keySet(Object)} when only keys are of interest, and the
102   * mapped values are (perhaps transiently) not used or all take the
103   * same mapping value.
104   *
105 < * <p> A ConcurrentHashMap can be used as scalable frequency map (a
106 < * form of histogram or multiset) by using {@link LongAdder} values
107 < * and initializing via {@link #computeIfAbsent}. For example, to add
108 < * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
109 < * can use {@code freqs.computeIfAbsent(k -> new
110 < * LongAdder()).increment();}
105 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 > * form of histogram or multiset) by using {@link
107 > * java.util.concurrent.atomic.LongAdder} values and initializing via
108 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111   *
112   * <p>This class and its views and iterators implement all of the
113   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114   * interfaces.
115   *
116 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
116 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117   * does <em>not</em> allow {@code null} to be used as a key or value.
118   *
119 < * <p>ConcurrentHashMaps support parallel operations using the {@link
120 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
121 < * are available in class {@link ForkJoinTasks}). These operations are
122 < * designed to be safely, and often sensibly, applied even with maps
123 < * that are being concurrently updated by other threads; for example,
124 < * when computing a snapshot summary of the values in a shared
125 < * registry.  There are three kinds of operation, each with four
126 < * forms, accepting functions with Keys, Values, Entries, and (Key,
116 < * Value) arguments and/or return values. (The first three forms are
117 < * also available via the {@link #keySet()}, {@link #values()} and
118 < * {@link #entrySet()} views). Because the elements of a
119 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 > * operations that, unlike most {@link Stream} methods, are designed
121 > * to be safely, and often sensibly, applied even with maps that are
122 > * being concurrently updated by other threads; for example, when
123 > * computing a snapshot summary of the values in a shared registry.
124 > * There are three kinds of operation, each with four forms, accepting
125 > * functions with keys, values, entries, and (key, value) pairs as
126 > * arguments and/or return values. Because the elements of a
127   * ConcurrentHashMap are not ordered in any particular way, and may be
128   * processed in different orders in different parallel executions, the
129   * correctness of supplied functions should not depend on any
130   * ordering, or on any other objects or values that may transiently
131   * change while computation is in progress; and except for forEach
132 < * actions, should ideally be side-effect-free.
132 > * actions, should ideally be side-effect-free. Bulk operations on
133 > * {@link Map.Entry} objects do not support method {@code setValue}.
134   *
135   * <ul>
136 < * <li> forEach: Perform a given action on each element.
136 > * <li>forEach: Performs a given action on each element.
137   * A variant form applies a given transformation on each element
138 < * before performing the action.</li>
138 > * before performing the action.
139   *
140 < * <li> search: Return the first available non-null result of
140 > * <li>search: Returns the first available non-null result of
141   * applying a given function on each element; skipping further
142 < * search when a result is found.</li>
142 > * search when a result is found.
143   *
144 < * <li> reduce: Accumulate each element.  The supplied reduction
144 > * <li>reduce: Accumulates each element.  The supplied reduction
145   * function cannot rely on ordering (more formally, it should be
146   * both associative and commutative).  There are five variants:
147   *
148   * <ul>
149   *
150 < * <li> Plain reductions. (There is not a form of this method for
150 > * <li>Plain reductions. (There is not a form of this method for
151   * (key, value) function arguments since there is no corresponding
152 < * return type.)</li>
152 > * return type.)
153   *
154 < * <li> Mapped reductions that accumulate the results of a given
155 < * function applied to each element.</li>
154 > * <li>Mapped reductions that accumulate the results of a given
155 > * function applied to each element.
156   *
157 < * <li> Reductions to scalar doubles, longs, and ints, using a
158 < * given basis value.</li>
157 > * <li>Reductions to scalar doubles, longs, and ints, using a
158 > * given basis value.
159   *
151 * </li>
160   * </ul>
161   * </ul>
162   *
163 + * <p>These bulk operations accept a {@code parallelismThreshold}
164 + * argument. Methods proceed sequentially if the current map size is
165 + * estimated to be less than the given threshold. Using a value of
166 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
167 + * of {@code 1} results in maximal parallelism by partitioning into
168 + * enough subtasks to fully utilize the {@link
169 + * ForkJoinPool#commonPool()} that is used for all parallel
170 + * computations. Normally, you would initially choose one of these
171 + * extreme values, and then measure performance of using in-between
172 + * values that trade off overhead versus throughput.
173 + *
174   * <p>The concurrency properties of bulk operations follow
175   * from those of ConcurrentHashMap: Any non-null result returned
176   * from {@code get(key)} and related access methods bears a
# Line 187 | Line 206 | import java.io.Serializable;
206   * arguments can be supplied using {@code new
207   * AbstractMap.SimpleEntry(k,v)}.
208   *
209 < * <p> Bulk operations may complete abruptly, throwing an
209 > * <p>Bulk operations may complete abruptly, throwing an
210   * exception encountered in the application of a supplied
211   * function. Bear in mind when handling such exceptions that other
212   * concurrently executing functions could also have thrown
213   * exceptions, or would have done so if the first exception had
214   * not occurred.
215   *
216 < * <p>Parallel speedups for bulk operations compared to sequential
217 < * processing are common but not guaranteed.  Operations involving
218 < * brief functions on small maps may execute more slowly than
219 < * sequential loops if the underlying work to parallelize the
220 < * computation is more expensive than the computation itself.
221 < * Similarly, parallelization may not lead to much actual parallelism
222 < * if all processors are busy performing unrelated tasks.
216 > * <p>Speedups for parallel compared to sequential forms are common
217 > * but not guaranteed.  Parallel operations involving brief functions
218 > * on small maps may execute more slowly than sequential forms if the
219 > * underlying work to parallelize the computation is more expensive
220 > * than the computation itself.  Similarly, parallelization may not
221 > * lead to much actual parallelism if all processors are busy
222 > * performing unrelated tasks.
223   *
224 < * <p> All arguments to all task methods must be non-null.
206 < *
207 < * <p><em>jsr166e note: During transition, this class
208 < * uses nested functional interfaces with different names but the
209 < * same forms as those expected for JDK8.<em>
224 > * <p>All arguments to all task methods must be non-null.
225   *
226   * <p>This class is a member of the
227 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
227 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
228   * Java Collections Framework</a>.
229   *
230   * @since 1.5
# Line 217 | Line 232 | import java.io.Serializable;
232   * @param <K> the type of keys maintained by this map
233   * @param <V> the type of mapped values
234   */
235 < public class ConcurrentHashMap<K, V>
236 <    implements ConcurrentMap<K, V>, Serializable {
235 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 >    implements ConcurrentMap<K,V>, Serializable {
237      private static final long serialVersionUID = 7249069246763182397L;
238  
224    /**
225     * A partitionable iterator. A Spliterator can be traversed
226     * directly, but can also be partitioned (before traversal) by
227     * creating another Spliterator that covers a non-overlapping
228     * portion of the elements, and so may be amenable to parallel
229     * execution.
230     *
231     * <p> This interface exports a subset of expected JDK8
232     * functionality.
233     *
234     * <p>Sample usage: Here is one (of the several) ways to compute
235     * the sum of the values held in a map using the ForkJoin
236     * framework. As illustrated here, Spliterators are well suited to
237     * designs in which a task repeatedly splits off half its work
238     * into forked subtasks until small enough to process directly,
239     * and then joins these subtasks. Variants of this style can also
240     * be used in completion-based designs.
241     *
242     * <pre>
243     * {@code ConcurrentHashMap<String, Long> m = ...
244     * // split as if have 8 * parallelism, for load balance
245     * int n = m.size();
246     * int p = aForkJoinPool.getParallelism() * 8;
247     * int split = (n < p)? n : p;
248     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
249     * // ...
250     * static class SumValues extends RecursiveTask<Long> {
251     *   final Spliterator<Long> s;
252     *   final int split;             // split while > 1
253     *   final SumValues nextJoin;    // records forked subtasks to join
254     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
255     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
256     *   }
257     *   public Long compute() {
258     *     long sum = 0;
259     *     SumValues subtasks = null; // fork subtasks
260     *     for (int s = split >>> 1; s > 0; s >>>= 1)
261     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
262     *     while (s.hasNext())        // directly process remaining elements
263     *       sum += s.next();
264     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
265     *       sum += t.join();         // collect subtask results
266     *     return sum;
267     *   }
268     * }
269     * }</pre>
270     */
271    public static interface Spliterator<T> extends Iterator<T> {
272        /**
273         * Returns a Spliterator covering approximately half of the
274         * elements, guaranteed not to overlap with those subsequently
275         * returned by this Spliterator.  After invoking this method,
276         * the current Spliterator will <em>not</em> produce any of
277         * the elements of the returned Spliterator, but the two
278         * Spliterators together will produce all of the elements that
279         * would have been produced by this Spliterator had this
280         * method not been called. The exact number of elements
281         * produced by the returned Spliterator is not guaranteed, and
282         * may be zero (i.e., with {@code hasNext()} reporting {@code
283         * false}) if this Spliterator cannot be further split.
284         *
285         * @return a Spliterator covering approximately half of the
286         * elements
287         * @throws IllegalStateException if this Spliterator has
288         * already commenced traversing elements
289         */
290        Spliterator<T> split();
291    }
292
293
239      /*
240       * Overview:
241       *
# Line 301 | Line 246 | public class ConcurrentHashMap<K, V>
246       * the same or better than java.util.HashMap, and to support high
247       * initial insertion rates on an empty table by many threads.
248       *
249 <     * Each key-value mapping is held in a Node.  Because Node fields
250 <     * can contain special values, they are defined using plain Object
251 <     * types. Similarly in turn, all internal methods that use them
252 <     * work off Object types. And similarly, so do the internal
253 <     * methods of auxiliary iterator and view classes.  All public
254 <     * generic typed methods relay in/out of these internal methods,
255 <     * supplying null-checks and casts as needed. This also allows
256 <     * many of the public methods to be factored into a smaller number
257 <     * of internal methods (although sadly not so for the five
258 <     * variants of put-related operations). The validation-based
259 <     * approach explained below leads to a lot of code sprawl because
260 <     * retry-control precludes factoring into smaller methods.
249 >     * This map usually acts as a binned (bucketed) hash table.  Each
250 >     * key-value mapping is held in a Node.  Most nodes are instances
251 >     * of the basic Node class with hash, key, value, and next
252 >     * fields. However, various subclasses exist: TreeNodes are
253 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
254 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 >     * of bins during resizing. ReservationNodes are used as
256 >     * placeholders while establishing values in computeIfAbsent and
257 >     * related methods.  The types TreeBin, ForwardingNode, and
258 >     * ReservationNode do not hold normal user keys, values, or
259 >     * hashes, and are readily distinguishable during search etc
260 >     * because they have negative hash fields and null key and value
261 >     * fields. (These special nodes are either uncommon or transient,
262 >     * so the impact of carrying around some unused fields is
263 >     * insignificant.)
264       *
265       * The table is lazily initialized to a power-of-two size upon the
266       * first insertion.  Each bin in the table normally contains a
# Line 320 | Line 268 | public class ConcurrentHashMap<K, V>
268       * Table accesses require volatile/atomic reads, writes, and
269       * CASes.  Because there is no other way to arrange this without
270       * adding further indirections, we use intrinsics
271 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
272 <     * are always accurately traversable under volatile reads, so long
273 <     * as lookups check hash code and non-nullness of value before
274 <     * checking key equality.
275 <     *
276 <     * We use the top two bits of Node hash fields for control
329 <     * purposes -- they are available anyway because of addressing
330 <     * constraints.  As explained further below, these top bits are
331 <     * used as follows:
332 <     *  00 - Normal
333 <     *  01 - Locked
334 <     *  11 - Locked and may have a thread waiting for lock
335 <     *  10 - Node is a forwarding node
336 <     *
337 <     * The lower 30 bits of each Node's hash field contain a
338 <     * transformation of the key's hash code, except for forwarding
339 <     * nodes, for which the lower bits are zero (and so always have
340 <     * hash field == MOVED).
271 >     * (jdk.internal.misc.Unsafe) operations.
272 >     *
273 >     * We use the top (sign) bit of Node hash fields for control
274 >     * purposes -- it is available anyway because of addressing
275 >     * constraints.  Nodes with negative hash fields are specially
276 >     * handled or ignored in map methods.
277       *
278       * Insertion (via put or its variants) of the first node in an
279       * empty bin is performed by just CASing it to the bin.  This is
# Line 346 | Line 282 | public class ConcurrentHashMap<K, V>
282       * delete, and replace) require locks.  We do not want to waste
283       * the space required to associate a distinct lock object with
284       * each bin, so instead use the first node of a bin list itself as
285 <     * a lock. Blocking support for these locks relies on the builtin
286 <     * "synchronized" monitors.  However, we also need a tryLock
351 <     * construction, so we overlay these by using bits of the Node
352 <     * hash field for lock control (see above), and so normally use
353 <     * builtin monitors only for blocking and signalling using
354 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
285 >     * a lock. Locking support for these locks relies on builtin
286 >     * "synchronized" monitors.
287       *
288       * Using the first node of a list as a lock does not by itself
289       * suffice though: When a node is locked, any update must first
290       * validate that it is still the first node after locking it, and
291       * retry if not. Because new nodes are always appended to lists,
292       * once a node is first in a bin, it remains first until deleted
293 <     * or the bin becomes invalidated (upon resizing).  However,
362 <     * operations that only conditionally update may inspect nodes
363 <     * until the point of update. This is a converse of sorts to the
364 <     * lazy locking technique described by Herlihy & Shavit.
293 >     * or the bin becomes invalidated (upon resizing).
294       *
295       * The main disadvantage of per-bin locks is that other update
296       * operations on other nodes in a bin list protected by the same
# Line 394 | Line 323 | public class ConcurrentHashMap<K, V>
323       * sometimes deviate significantly from uniform randomness.  This
324       * includes the case when N > (1<<30), so some keys MUST collide.
325       * Similarly for dumb or hostile usages in which multiple keys are
326 <     * designed to have identical hash codes. Also, although we guard
327 <     * against the worst effects of this (see method spread), sets of
328 <     * hashes may differ only in bits that do not impact their bin
329 <     * index for a given power-of-two mask.  So we use a secondary
330 <     * strategy that applies when the number of nodes in a bin exceeds
331 <     * a threshold, and at least one of the keys implements
403 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
404 <     * (a specialized form of red-black trees), bounding search time
405 <     * to O(log N).  Each search step in a TreeBin is around twice as
326 >     * designed to have identical hash codes or ones that differs only
327 >     * in masked-out high bits. So we use a secondary strategy that
328 >     * applies when the number of nodes in a bin exceeds a
329 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
330 >     * specialized form of red-black trees), bounding search time to
331 >     * O(log N).  Each search step in a TreeBin is at least twice as
332       * slow as in a regular list, but given that N cannot exceed
333       * (1<<64) (before running out of addresses) this bounds search
334       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 413 | Line 339 | public class ConcurrentHashMap<K, V>
339       * iterators in the same way.
340       *
341       * The table is resized when occupancy exceeds a percentage
342 <     * threshold (nominally, 0.75, but see below).  Only a single
343 <     * thread performs the resize (using field "sizeCtl", to arrange
344 <     * exclusion), but the table otherwise remains usable for reads
345 <     * and updates. Resizing proceeds by transferring bins, one by
346 <     * one, from the table to the next table.  Because we are using
347 <     * power-of-two expansion, the elements from each bin must either
348 <     * stay at same index, or move with a power of two offset. We
349 <     * eliminate unnecessary node creation by catching cases where old
350 <     * nodes can be reused because their next fields won't change.  On
351 <     * average, only about one-sixth of them need cloning when a table
352 <     * doubles. The nodes they replace will be garbage collectable as
353 <     * soon as they are no longer referenced by any reader thread that
354 <     * may be in the midst of concurrently traversing table.  Upon
355 <     * transfer, the old table bin contains only a special forwarding
356 <     * node (with hash field "MOVED") that contains the next table as
357 <     * its key. On encountering a forwarding node, access and update
358 <     * operations restart, using the new table.
359 <     *
360 <     * Each bin transfer requires its bin lock. However, unlike other
361 <     * cases, a transfer can skip a bin if it fails to acquire its
362 <     * lock, and revisit it later (unless it is a TreeBin). Method
363 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
364 <     * have been skipped because of failure to acquire a lock, and
365 <     * blocks only if none are available (i.e., only very rarely).
366 <     * The transfer operation must also ensure that all accessible
367 <     * bins in both the old and new table are usable by any traversal.
368 <     * When there are no lock acquisition failures, this is arranged
369 <     * simply by proceeding from the last bin (table.length - 1) up
370 <     * towards the first.  Upon seeing a forwarding node, traversals
371 <     * (see class Iter) arrange to move to the new table
372 <     * without revisiting nodes.  However, when any node is skipped
373 <     * during a transfer, all earlier table bins may have become
374 <     * visible, so are initialized with a reverse-forwarding node back
375 <     * to the old table until the new ones are established. (This
376 <     * sometimes requires transiently locking a forwarding node, which
377 <     * is possible under the above encoding.) These more expensive
378 <     * mechanics trigger only when necessary.
342 >     * threshold (nominally, 0.75, but see below).  Any thread
343 >     * noticing an overfull bin may assist in resizing after the
344 >     * initiating thread allocates and sets up the replacement array.
345 >     * However, rather than stalling, these other threads may proceed
346 >     * with insertions etc.  The use of TreeBins shields us from the
347 >     * worst case effects of overfilling while resizes are in
348 >     * progress.  Resizing proceeds by transferring bins, one by one,
349 >     * from the table to the next table. However, threads claim small
350 >     * blocks of indices to transfer (via field transferIndex) before
351 >     * doing so, reducing contention.  A generation stamp in field
352 >     * sizeCtl ensures that resizings do not overlap. Because we are
353 >     * using power-of-two expansion, the elements from each bin must
354 >     * either stay at same index, or move with a power of two
355 >     * offset. We eliminate unnecessary node creation by catching
356 >     * cases where old nodes can be reused because their next fields
357 >     * won't change.  On average, only about one-sixth of them need
358 >     * cloning when a table doubles. The nodes they replace will be
359 >     * garbage collectible as soon as they are no longer referenced by
360 >     * any reader thread that may be in the midst of concurrently
361 >     * traversing table.  Upon transfer, the old table bin contains
362 >     * only a special forwarding node (with hash field "MOVED") that
363 >     * contains the next table as its key. On encountering a
364 >     * forwarding node, access and update operations restart, using
365 >     * the new table.
366 >     *
367 >     * Each bin transfer requires its bin lock, which can stall
368 >     * waiting for locks while resizing. However, because other
369 >     * threads can join in and help resize rather than contend for
370 >     * locks, average aggregate waits become shorter as resizing
371 >     * progresses.  The transfer operation must also ensure that all
372 >     * accessible bins in both the old and new table are usable by any
373 >     * traversal.  This is arranged in part by proceeding from the
374 >     * last bin (table.length - 1) up towards the first.  Upon seeing
375 >     * a forwarding node, traversals (see class Traverser) arrange to
376 >     * move to the new table without revisiting nodes.  To ensure that
377 >     * no intervening nodes are skipped even when moved out of order,
378 >     * a stack (see class TableStack) is created on first encounter of
379 >     * a forwarding node during a traversal, to maintain its place if
380 >     * later processing the current table. The need for these
381 >     * save/restore mechanics is relatively rare, but when one
382 >     * forwarding node is encountered, typically many more will be.
383 >     * So Traversers use a simple caching scheme to avoid creating so
384 >     * many new TableStack nodes. (Thanks to Peter Levart for
385 >     * suggesting use of a stack here.)
386       *
387       * The traversal scheme also applies to partial traversals of
388       * ranges of bins (via an alternate Traverser constructor)
# Line 464 | Line 397 | public class ConcurrentHashMap<K, V>
397       * These cases attempt to override the initial capacity settings,
398       * but harmlessly fail to take effect in cases of races.
399       *
400 <     * The element count is maintained using a LongAdder, which avoids
401 <     * contention on updates but can encounter cache thrashing if read
402 <     * too frequently during concurrent access. To avoid reading so
403 <     * often, resizing is attempted either when a bin lock is
404 <     * contended, or upon adding to a bin already holding two or more
405 <     * nodes (checked before adding in the xIfAbsent methods, after
406 <     * adding in others). Under uniform hash distributions, the
407 <     * probability of this occurring at threshold is around 13%,
408 <     * meaning that only about 1 in 8 puts check threshold (and after
409 <     * resizing, many fewer do so). But this approximation has high
410 <     * variance for small table sizes, so we check on any collision
411 <     * for sizes <= 64. The bulk putAll operation further reduces
412 <     * contention by only committing count updates upon these size
413 <     * checks.
400 >     * The element count is maintained using a specialization of
401 >     * LongAdder. We need to incorporate a specialization rather than
402 >     * just use a LongAdder in order to access implicit
403 >     * contention-sensing that leads to creation of multiple
404 >     * CounterCells.  The counter mechanics avoid contention on
405 >     * updates but can encounter cache thrashing if read too
406 >     * frequently during concurrent access. To avoid reading so often,
407 >     * resizing under contention is attempted only upon adding to a
408 >     * bin already holding two or more nodes. Under uniform hash
409 >     * distributions, the probability of this occurring at threshold
410 >     * is around 13%, meaning that only about 1 in 8 puts check
411 >     * threshold (and after resizing, many fewer do so).
412 >     *
413 >     * TreeBins use a special form of comparison for search and
414 >     * related operations (which is the main reason we cannot use
415 >     * existing collections such as TreeMaps). TreeBins contain
416 >     * Comparable elements, but may contain others, as well as
417 >     * elements that are Comparable but not necessarily Comparable for
418 >     * the same T, so we cannot invoke compareTo among them. To handle
419 >     * this, the tree is ordered primarily by hash value, then by
420 >     * Comparable.compareTo order if applicable.  On lookup at a node,
421 >     * if elements are not comparable or compare as 0 then both left
422 >     * and right children may need to be searched in the case of tied
423 >     * hash values. (This corresponds to the full list search that
424 >     * would be necessary if all elements were non-Comparable and had
425 >     * tied hashes.) On insertion, to keep a total ordering (or as
426 >     * close as is required here) across rebalancings, we compare
427 >     * classes and identityHashCodes as tie-breakers. The red-black
428 >     * balancing code is updated from pre-jdk-collections
429 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 >     * Algorithms" (CLR).
432 >     *
433 >     * TreeBins also require an additional locking mechanism.  While
434 >     * list traversal is always possible by readers even during
435 >     * updates, tree traversal is not, mainly because of tree-rotations
436 >     * that may change the root node and/or its linkages.  TreeBins
437 >     * include a simple read-write lock mechanism parasitic on the
438 >     * main bin-synchronization strategy: Structural adjustments
439 >     * associated with an insertion or removal are already bin-locked
440 >     * (and so cannot conflict with other writers) but must wait for
441 >     * ongoing readers to finish. Since there can be only one such
442 >     * waiter, we use a simple scheme using a single "waiter" field to
443 >     * block writers.  However, readers need never block.  If the root
444 >     * lock is held, they proceed along the slow traversal path (via
445 >     * next-pointers) until the lock becomes available or the list is
446 >     * exhausted, whichever comes first. These cases are not fast, but
447 >     * maximize aggregate expected throughput.
448       *
449       * Maintaining API and serialization compatibility with previous
450       * versions of this class introduces several oddities. Mainly: We
451 <     * leave untouched but unused constructor arguments refering to
451 >     * leave untouched but unused constructor arguments referring to
452       * concurrencyLevel. We accept a loadFactor constructor argument,
453       * but apply it only to initial table capacity (which is the only
454       * time that we can guarantee to honor it.) We also declare an
455       * unused "Segment" class that is instantiated in minimal form
456       * only when serializing.
457 +     *
458 +     * Also, solely for compatibility with previous versions of this
459 +     * class, it extends AbstractMap, even though all of its methods
460 +     * are overridden, so it is just useless baggage.
461 +     *
462 +     * This file is organized to make things a little easier to follow
463 +     * while reading than they might otherwise: First the main static
464 +     * declarations and utilities, then fields, then main public
465 +     * methods (with a few factorings of multiple public methods into
466 +     * internal ones), then sizing methods, trees, traversers, and
467 +     * bulk operations.
468       */
469  
470      /* ---------------- Constants -------------- */
# Line 528 | Line 506 | public class ConcurrentHashMap<K, V>
506      private static final float LOAD_FACTOR = 0.75f;
507  
508      /**
509 <     * The buffer size for skipped bins during transfers. The
510 <     * value is arbitrary but should be large enough to avoid
511 <     * most locking stalls during resizes.
509 >     * The bin count threshold for using a tree rather than list for a
510 >     * bin.  Bins are converted to trees when adding an element to a
511 >     * bin with at least this many nodes. The value must be greater
512 >     * than 2, and should be at least 8 to mesh with assumptions in
513 >     * tree removal about conversion back to plain bins upon
514 >     * shrinkage.
515       */
516 <    private static final int TRANSFER_BUFFER_SIZE = 32;
516 >    static final int TREEIFY_THRESHOLD = 8;
517  
518      /**
519 <     * The bin count threshold for using a tree rather than list for a
520 <     * bin.  The value reflects the approximate break-even point for
521 <     * using tree-based operations.
519 >     * The bin count threshold for untreeifying a (split) bin during a
520 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 >     * most 6 to mesh with shrinkage detection under removal.
522       */
523 <    private static final int TREE_THRESHOLD = 8;
523 >    static final int UNTREEIFY_THRESHOLD = 6;
524  
525 <    /*
526 <     * Encodings for special uses of Node hash fields. See above for
527 <     * explanation.
525 >    /**
526 >     * The smallest table capacity for which bins may be treeified.
527 >     * (Otherwise the table is resized if too many nodes in a bin.)
528 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 >     * conflicts between resizing and treeification thresholds.
530       */
531 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
549 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
550 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
551 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
552 <
553 <    /* ---------------- Fields -------------- */
531 >    static final int MIN_TREEIFY_CAPACITY = 64;
532  
533      /**
534 <     * The array of bins. Lazily initialized upon first insertion.
535 <     * Size is always a power of two. Accessed directly by iterators.
534 >     * Minimum number of rebinnings per transfer step. Ranges are
535 >     * subdivided to allow multiple resizer threads.  This value
536 >     * serves as a lower bound to avoid resizers encountering
537 >     * excessive memory contention.  The value should be at least
538 >     * DEFAULT_CAPACITY.
539       */
540 <    transient volatile Node[] table;
540 >    private static final int MIN_TRANSFER_STRIDE = 16;
541  
542      /**
543 <     * The counter maintaining number of elements.
543 >     * The number of bits used for generation stamp in sizeCtl.
544 >     * Must be at least 6 for 32bit arrays.
545       */
546 <    private transient final LongAdder counter;
546 >    private static final int RESIZE_STAMP_BITS = 16;
547  
548      /**
549 <     * Table initialization and resizing control.  When negative, the
550 <     * table is being initialized or resized. Otherwise, when table is
569 <     * null, holds the initial table size to use upon creation, or 0
570 <     * for default. After initialization, holds the next element count
571 <     * value upon which to resize the table.
549 >     * The maximum number of threads that can help resize.
550 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551       */
552 <    private transient volatile int sizeCtl;
574 <
575 <    // views
576 <    private transient KeySetView<K,V> keySet;
577 <    private transient ValuesView<K,V> values;
578 <    private transient EntrySetView<K,V> entrySet;
552 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553  
554 <    /** For serialization compatibility. Null unless serialized; see below */
555 <    private Segment<K,V>[] segments;
556 <
557 <    /* ---------------- Table element access -------------- */
554 >    /**
555 >     * The bit shift for recording size stamp in sizeCtl.
556 >     */
557 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558  
559      /*
560 <     * Volatile access methods are used for table elements as well as
587 <     * elements of in-progress next table while resizing.  Uses are
588 <     * null checked by callers, and implicitly bounds-checked, relying
589 <     * on the invariants that tab arrays have non-zero size, and all
590 <     * indices are masked with (tab.length - 1) which is never
591 <     * negative and always less than length. Note that, to be correct
592 <     * wrt arbitrary concurrency errors by users, bounds checks must
593 <     * operate on local variables, which accounts for some odd-looking
594 <     * inline assignments below.
560 >     * Encodings for Node hash fields. See above for explanation.
561       */
562 <
563 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
564 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
565 <    }
566 <
567 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
568 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
569 <    }
570 <
571 <    private static final void setTabAt(Node[] tab, int i, Node v) {
572 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
573 <    }
562 >    static final int MOVED     = -1; // hash for forwarding nodes
563 >    static final int TREEBIN   = -2; // hash for roots of trees
564 >    static final int RESERVED  = -3; // hash for transient reservations
565 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566 >
567 >    /** Number of CPUS, to place bounds on some sizings */
568 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
569 >
570 >    /**
571 >     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 >     * @serialField segments Segment[]
573 >     *   The segments, each of which is a specialized hash table.
574 >     * @serialField segmentMask int
575 >     *   Mask value for indexing into segments. The upper bits of a
576 >     *   key's hash code are used to choose the segment.
577 >     * @serialField segmentShift int
578 >     *   Shift value for indexing within segments.
579 >     */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE),
584 >    };
585  
586      /* ---------------- Nodes -------------- */
587  
588      /**
589 <     * Key-value entry. Note that this is never exported out as a
590 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
591 <     * field of MOVED are special, and do not contain user keys or
592 <     * values.  Otherwise, keys are never null, and null val fields
593 <     * indicate that a node is in the process of being deleted or
594 <     * created. For purposes of read-only access, a key may be read
595 <     * before a val, but can only be used after checking val to be
596 <     * non-null.
597 <     */
598 <    static class Node {
599 <        volatile int hash;
600 <        final Object key;
624 <        volatile Object val;
625 <        volatile Node next;
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595 >     */
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597 >        final int hash;
598 >        final K key;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601  
602 <        Node(int hash, Object key, Object val, Node next) {
602 >        Node(int hash, K key, V val) {
603              this.hash = hash;
604              this.key = key;
605              this.val = val;
631            this.next = next;
632        }
633
634        /** CompareAndSet the hash field */
635        final boolean casHash(int cmp, int val) {
636            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
637        }
638
639        /** The number of spins before blocking for a lock */
640        static final int MAX_SPINS =
641            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
642
643        /**
644         * Spins a while if LOCKED bit set and this node is the first
645         * of its bin, and then sets WAITING bits on hash field and
646         * blocks (once) if they are still set.  It is OK for this
647         * method to return even if lock is not available upon exit,
648         * which enables these simple single-wait mechanics.
649         *
650         * The corresponding signalling operation is performed within
651         * callers: Upon detecting that WAITING has been set when
652         * unlocking lock (via a failed CAS from non-waiting LOCKED
653         * state), unlockers acquire the sync lock and perform a
654         * notifyAll.
655         *
656         * The initial sanity check on tab and bounds is not currently
657         * necessary in the only usages of this method, but enables
658         * use in other future contexts.
659         */
660        final void tryAwaitLock(Node[] tab, int i) {
661            if (tab != null && i >= 0 && i < tab.length) { // sanity check
662                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
663                int spins = MAX_SPINS, h;
664                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
665                    if (spins >= 0) {
666                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
667                        if (r >= 0 && --spins == 0)
668                            Thread.yield();  // yield before block
669                    }
670                    else if (casHash(h, h | WAITING)) {
671                        synchronized (this) {
672                            if (tabAt(tab, i) == this &&
673                                (hash & WAITING) == WAITING) {
674                                try {
675                                    wait();
676                                } catch (InterruptedException ie) {
677                                    try {
678                                        Thread.currentThread().interrupt();
679                                    } catch (SecurityException ignore) {
680                                    }
681                                }
682                            }
683                            else
684                                notifyAll(); // possibly won race vs signaller
685                        }
686                        break;
687                    }
688                }
689            }
690        }
691
692        // Unsafe mechanics for casHash
693        private static final sun.misc.Unsafe UNSAFE;
694        private static final long hashOffset;
695
696        static {
697            try {
698                UNSAFE = sun.misc.Unsafe.getUnsafe();
699                Class<?> k = Node.class;
700                hashOffset = UNSAFE.objectFieldOffset
701                    (k.getDeclaredField("hash"));
702            } catch (Exception e) {
703                throw new Error(e);
704            }
606          }
706    }
707
708    /* ---------------- TreeBins -------------- */
709
710    /**
711     * Nodes for use in TreeBins
712     */
713    static final class TreeNode extends Node {
714        TreeNode parent;  // red-black tree links
715        TreeNode left;
716        TreeNode right;
717        TreeNode prev;    // needed to unlink next upon deletion
718        boolean red;
607  
608 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
609 <            super(hash, key, val, next);
610 <            this.parent = parent;
723 <        }
724 <    }
725 <
726 <    /**
727 <     * A specialized form of red-black tree for use in bins
728 <     * whose size exceeds a threshold.
729 <     *
730 <     * TreeBins use a special form of comparison for search and
731 <     * related operations (which is the main reason we cannot use
732 <     * existing collections such as TreeMaps). TreeBins contain
733 <     * Comparable elements, but may contain others, as well as
734 <     * elements that are Comparable but not necessarily Comparable<T>
735 <     * for the same T, so we cannot invoke compareTo among them. To
736 <     * handle this, the tree is ordered primarily by hash value, then
737 <     * by getClass().getName() order, and then by Comparator order
738 <     * among elements of the same class.  On lookup at a node, if
739 <     * elements are not comparable or compare as 0, both left and
740 <     * right children may need to be searched in the case of tied hash
741 <     * values. (This corresponds to the full list search that would be
742 <     * necessary if all elements were non-Comparable and had tied
743 <     * hashes.)  The red-black balancing code is updated from
744 <     * pre-jdk-collections
745 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
746 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
747 <     * Algorithms" (CLR).
748 <     *
749 <     * TreeBins also maintain a separate locking discipline than
750 <     * regular bins. Because they are forwarded via special MOVED
751 <     * nodes at bin heads (which can never change once established),
752 <     * we cannot use those nodes as locks. Instead, TreeBin
753 <     * extends AbstractQueuedSynchronizer to support a simple form of
754 <     * read-write lock. For update operations and table validation,
755 <     * the exclusive form of lock behaves in the same way as bin-head
756 <     * locks. However, lookups use shared read-lock mechanics to allow
757 <     * multiple readers in the absence of writers.  Additionally,
758 <     * these lookups do not ever block: While the lock is not
759 <     * available, they proceed along the slow traversal path (via
760 <     * next-pointers) until the lock becomes available or the list is
761 <     * exhausted, whichever comes first. (These cases are not fast,
762 <     * but maximize aggregate expected throughput.)  The AQS mechanics
763 <     * for doing this are straightforward.  The lock state is held as
764 <     * AQS getState().  Read counts are negative; the write count (1)
765 <     * is positive.  There are no signalling preferences among readers
766 <     * and writers. Since we don't need to export full Lock API, we
767 <     * just override the minimal AQS methods and use them directly.
768 <     */
769 <    static final class TreeBin extends AbstractQueuedSynchronizer {
770 <        private static final long serialVersionUID = 2249069246763182397L;
771 <        transient TreeNode root;  // root of tree
772 <        transient TreeNode first; // head of next-pointer list
773 <
774 <        /* AQS overrides */
775 <        public final boolean isHeldExclusively() { return getState() > 0; }
776 <        public final boolean tryAcquire(int ignore) {
777 <            if (compareAndSetState(0, 1)) {
778 <                setExclusiveOwnerThread(Thread.currentThread());
779 <                return true;
780 <            }
781 <            return false;
782 <        }
783 <        public final boolean tryRelease(int ignore) {
784 <            setExclusiveOwnerThread(null);
785 <            setState(0);
786 <            return true;
787 <        }
788 <        public final int tryAcquireShared(int ignore) {
789 <            for (int c;;) {
790 <                if ((c = getState()) > 0)
791 <                    return -1;
792 <                if (compareAndSetState(c, c -1))
793 <                    return 1;
794 <            }
795 <        }
796 <        public final boolean tryReleaseShared(int ignore) {
797 <            int c;
798 <            do {} while (!compareAndSetState(c = getState(), c + 1));
799 <            return c == -1;
800 <        }
801 <
802 <        /** From CLR */
803 <        private void rotateLeft(TreeNode p) {
804 <            if (p != null) {
805 <                TreeNode r = p.right, pp, rl;
806 <                if ((rl = p.right = r.left) != null)
807 <                    rl.parent = p;
808 <                if ((pp = r.parent = p.parent) == null)
809 <                    root = r;
810 <                else if (pp.left == p)
811 <                    pp.left = r;
812 <                else
813 <                    pp.right = r;
814 <                r.left = p;
815 <                p.parent = r;
816 <            }
608 >        Node(int hash, K key, V val, Node<K,V> next) {
609 >            this(hash, key, val);
610 >            this.next = next;
611          }
612  
613 <        /** From CLR */
614 <        private void rotateRight(TreeNode p) {
615 <            if (p != null) {
616 <                TreeNode l = p.left, pp, lr;
617 <                if ((lr = p.left = l.right) != null)
824 <                    lr.parent = p;
825 <                if ((pp = l.parent = p.parent) == null)
826 <                    root = l;
827 <                else if (pp.right == p)
828 <                    pp.right = l;
829 <                else
830 <                    pp.left = l;
831 <                l.right = p;
832 <                p.parent = l;
833 <            }
613 >        public final K getKey()     { return key; }
614 >        public final V getValue()   { return val; }
615 >        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 >        public final String toString() {
617 >            return Helpers.mapEntryToString(key, val);
618          }
619 <
620 <        /**
837 <         * Returns the TreeNode (or null if not found) for the given key
838 <         * starting at given root.
839 <         */
840 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
841 <            (int h, Object k, TreeNode p) {
842 <            Class<?> c = k.getClass();
843 <            while (p != null) {
844 <                int dir, ph;  Object pk; Class<?> pc;
845 <                if ((ph = p.hash) == h) {
846 <                    if ((pk = p.key) == k || k.equals(pk))
847 <                        return p;
848 <                    if (c != (pc = pk.getClass()) ||
849 <                        !(k instanceof Comparable) ||
850 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
851 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
852 <                        TreeNode r = null, s = null, pl, pr;
853 <                        if (dir >= 0) {
854 <                            if ((pl = p.left) != null && h <= pl.hash)
855 <                                s = pl;
856 <                        }
857 <                        else if ((pr = p.right) != null && h >= pr.hash)
858 <                            s = pr;
859 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
860 <                            return r;
861 <                    }
862 <                }
863 <                else
864 <                    dir = (h < ph) ? -1 : 1;
865 <                p = (dir > 0) ? p.right : p.left;
866 <            }
867 <            return null;
619 >        public final V setValue(V value) {
620 >            throw new UnsupportedOperationException();
621          }
622  
623 <        /**
624 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
625 <         * read-lock to call getTreeNode, but during failure to get
626 <         * lock, searches along next links.
627 <         */
628 <        final Object getValue(int h, Object k) {
629 <            Node r = null;
877 <            int c = getState(); // Must read lock state first
878 <            for (Node e = first; e != null; e = e.next) {
879 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
880 <                    try {
881 <                        r = getTreeNode(h, k, root);
882 <                    } finally {
883 <                        releaseShared(0);
884 <                    }
885 <                    break;
886 <                }
887 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
888 <                    r = e;
889 <                    break;
890 <                }
891 <                else
892 <                    c = getState();
893 <            }
894 <            return r == null ? null : r.val;
623 >        public final boolean equals(Object o) {
624 >            Object k, v, u; Map.Entry<?,?> e;
625 >            return ((o instanceof Map.Entry) &&
626 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 >                    (v = e.getValue()) != null &&
628 >                    (k == key || k.equals(key)) &&
629 >                    (v == (u = val) || v.equals(u)));
630          }
631  
632          /**
633 <         * Finds or adds a node.
899 <         * @return null if added
633 >         * Virtualized support for map.get(); overridden in subclasses.
634           */
635 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
636 <            (int h, Object k, Object v) {
637 <            Class<?> c = k.getClass();
638 <            TreeNode pp = root, p = null;
639 <            int dir = 0;
640 <            while (pp != null) { // find existing node or leaf to insert at
641 <                int ph;  Object pk; Class<?> pc;
642 <                p = pp;
643 <                if ((ph = p.hash) == h) {
910 <                    if ((pk = p.key) == k || k.equals(pk))
911 <                        return p;
912 <                    if (c != (pc = pk.getClass()) ||
913 <                        !(k instanceof Comparable) ||
914 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
915 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
916 <                        TreeNode r = null, s = null, pl, pr;
917 <                        if (dir >= 0) {
918 <                            if ((pl = p.left) != null && h <= pl.hash)
919 <                                s = pl;
920 <                        }
921 <                        else if ((pr = p.right) != null && h >= pr.hash)
922 <                            s = pr;
923 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
924 <                            return r;
925 <                    }
926 <                }
927 <                else
928 <                    dir = (h < ph) ? -1 : 1;
929 <                pp = (dir > 0) ? p.right : p.left;
930 <            }
931 <
932 <            TreeNode f = first;
933 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
934 <            if (p == null)
935 <                root = x;
936 <            else { // attach and rebalance; adapted from CLR
937 <                TreeNode xp, xpp;
938 <                if (f != null)
939 <                    f.prev = x;
940 <                if (dir <= 0)
941 <                    p.left = x;
942 <                else
943 <                    p.right = x;
944 <                x.red = true;
945 <                while (x != null && (xp = x.parent) != null && xp.red &&
946 <                       (xpp = xp.parent) != null) {
947 <                    TreeNode xppl = xpp.left;
948 <                    if (xp == xppl) {
949 <                        TreeNode y = xpp.right;
950 <                        if (y != null && y.red) {
951 <                            y.red = false;
952 <                            xp.red = false;
953 <                            xpp.red = true;
954 <                            x = xpp;
955 <                        }
956 <                        else {
957 <                            if (x == xp.right) {
958 <                                rotateLeft(x = xp);
959 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
960 <                            }
961 <                            if (xp != null) {
962 <                                xp.red = false;
963 <                                if (xpp != null) {
964 <                                    xpp.red = true;
965 <                                    rotateRight(xpp);
966 <                                }
967 <                            }
968 <                        }
969 <                    }
970 <                    else {
971 <                        TreeNode y = xppl;
972 <                        if (y != null && y.red) {
973 <                            y.red = false;
974 <                            xp.red = false;
975 <                            xpp.red = true;
976 <                            x = xpp;
977 <                        }
978 <                        else {
979 <                            if (x == xp.left) {
980 <                                rotateRight(x = xp);
981 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
982 <                            }
983 <                            if (xp != null) {
984 <                                xp.red = false;
985 <                                if (xpp != null) {
986 <                                    xpp.red = true;
987 <                                    rotateLeft(xpp);
988 <                                }
989 <                            }
990 <                        }
991 <                    }
992 <                }
993 <                TreeNode r = root;
994 <                if (r != null && r.red)
995 <                    r.red = false;
635 >        Node<K,V> find(int h, Object k) {
636 >            Node<K,V> e = this;
637 >            if (k != null) {
638 >                do {
639 >                    K ek;
640 >                    if (e.hash == h &&
641 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 >                        return e;
643 >                } while ((e = e.next) != null);
644              }
645              return null;
646          }
999
1000        /**
1001         * Removes the given node, that must be present before this
1002         * call.  This is messier than typical red-black deletion code
1003         * because we cannot swap the contents of an interior node
1004         * with a leaf successor that is pinned by "next" pointers
1005         * that are accessible independently of lock. So instead we
1006         * swap the tree linkages.
1007         */
1008        final void deleteTreeNode(TreeNode p) {
1009            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1010            TreeNode pred = p.prev;
1011            if (pred == null)
1012                first = next;
1013            else
1014                pred.next = next;
1015            if (next != null)
1016                next.prev = pred;
1017            TreeNode replacement;
1018            TreeNode pl = p.left;
1019            TreeNode pr = p.right;
1020            if (pl != null && pr != null) {
1021                TreeNode s = pr, sl;
1022                while ((sl = s.left) != null) // find successor
1023                    s = sl;
1024                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1025                TreeNode sr = s.right;
1026                TreeNode pp = p.parent;
1027                if (s == pr) { // p was s's direct parent
1028                    p.parent = s;
1029                    s.right = p;
1030                }
1031                else {
1032                    TreeNode sp = s.parent;
1033                    if ((p.parent = sp) != null) {
1034                        if (s == sp.left)
1035                            sp.left = p;
1036                        else
1037                            sp.right = p;
1038                    }
1039                    if ((s.right = pr) != null)
1040                        pr.parent = s;
1041                }
1042                p.left = null;
1043                if ((p.right = sr) != null)
1044                    sr.parent = p;
1045                if ((s.left = pl) != null)
1046                    pl.parent = s;
1047                if ((s.parent = pp) == null)
1048                    root = s;
1049                else if (p == pp.left)
1050                    pp.left = s;
1051                else
1052                    pp.right = s;
1053                replacement = sr;
1054            }
1055            else
1056                replacement = (pl != null) ? pl : pr;
1057            TreeNode pp = p.parent;
1058            if (replacement == null) {
1059                if (pp == null) {
1060                    root = null;
1061                    return;
1062                }
1063                replacement = p;
1064            }
1065            else {
1066                replacement.parent = pp;
1067                if (pp == null)
1068                    root = replacement;
1069                else if (p == pp.left)
1070                    pp.left = replacement;
1071                else
1072                    pp.right = replacement;
1073                p.left = p.right = p.parent = null;
1074            }
1075            if (!p.red) { // rebalance, from CLR
1076                TreeNode x = replacement;
1077                while (x != null) {
1078                    TreeNode xp, xpl;
1079                    if (x.red || (xp = x.parent) == null) {
1080                        x.red = false;
1081                        break;
1082                    }
1083                    if (x == (xpl = xp.left)) {
1084                        TreeNode sib = xp.right;
1085                        if (sib != null && sib.red) {
1086                            sib.red = false;
1087                            xp.red = true;
1088                            rotateLeft(xp);
1089                            sib = (xp = x.parent) == null ? null : xp.right;
1090                        }
1091                        if (sib == null)
1092                            x = xp;
1093                        else {
1094                            TreeNode sl = sib.left, sr = sib.right;
1095                            if ((sr == null || !sr.red) &&
1096                                (sl == null || !sl.red)) {
1097                                sib.red = true;
1098                                x = xp;
1099                            }
1100                            else {
1101                                if (sr == null || !sr.red) {
1102                                    if (sl != null)
1103                                        sl.red = false;
1104                                    sib.red = true;
1105                                    rotateRight(sib);
1106                                    sib = (xp = x.parent) == null ? null : xp.right;
1107                                }
1108                                if (sib != null) {
1109                                    sib.red = (xp == null) ? false : xp.red;
1110                                    if ((sr = sib.right) != null)
1111                                        sr.red = false;
1112                                }
1113                                if (xp != null) {
1114                                    xp.red = false;
1115                                    rotateLeft(xp);
1116                                }
1117                                x = root;
1118                            }
1119                        }
1120                    }
1121                    else { // symmetric
1122                        TreeNode sib = xpl;
1123                        if (sib != null && sib.red) {
1124                            sib.red = false;
1125                            xp.red = true;
1126                            rotateRight(xp);
1127                            sib = (xp = x.parent) == null ? null : xp.left;
1128                        }
1129                        if (sib == null)
1130                            x = xp;
1131                        else {
1132                            TreeNode sl = sib.left, sr = sib.right;
1133                            if ((sl == null || !sl.red) &&
1134                                (sr == null || !sr.red)) {
1135                                sib.red = true;
1136                                x = xp;
1137                            }
1138                            else {
1139                                if (sl == null || !sl.red) {
1140                                    if (sr != null)
1141                                        sr.red = false;
1142                                    sib.red = true;
1143                                    rotateLeft(sib);
1144                                    sib = (xp = x.parent) == null ? null : xp.left;
1145                                }
1146                                if (sib != null) {
1147                                    sib.red = (xp == null) ? false : xp.red;
1148                                    if ((sl = sib.left) != null)
1149                                        sl.red = false;
1150                                }
1151                                if (xp != null) {
1152                                    xp.red = false;
1153                                    rotateRight(xp);
1154                                }
1155                                x = root;
1156                            }
1157                        }
1158                    }
1159                }
1160            }
1161            if (p == replacement && (pp = p.parent) != null) {
1162                if (p == pp.left) // detach pointers
1163                    pp.left = null;
1164                else if (p == pp.right)
1165                    pp.right = null;
1166                p.parent = null;
1167            }
1168        }
647      }
648  
649 <    /* ---------------- Collision reduction methods -------------- */
649 >    /* ---------------- Static utilities -------------- */
650  
651      /**
652 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
653 <     * Because the table uses power-of-two masking, sets of hashes
654 <     * that vary only in bits above the current mask will always
655 <     * collide. (Among known examples are sets of Float keys holding
656 <     * consecutive whole numbers in small tables.)  To counter this,
657 <     * we apply a transform that spreads the impact of higher bits
652 >     * Spreads (XORs) higher bits of hash to lower and also forces top
653 >     * bit to 0. Because the table uses power-of-two masking, sets of
654 >     * hashes that vary only in bits above the current mask will
655 >     * always collide. (Among known examples are sets of Float keys
656 >     * holding consecutive whole numbers in small tables.)  So we
657 >     * apply a transform that spreads the impact of higher bits
658       * downward. There is a tradeoff between speed, utility, and
659       * quality of bit-spreading. Because many common sets of hashes
660 <     * are already reasonably distributed across bits (so don't benefit
661 <     * from spreading), and because we use trees to handle large sets
662 <     * of collisions in bins, we don't need excessively high quality.
660 >     * are already reasonably distributed (so don't benefit from
661 >     * spreading), and because we use trees to handle large sets of
662 >     * collisions in bins, we just XOR some shifted bits in the
663 >     * cheapest possible way to reduce systematic lossage, as well as
664 >     * to incorporate impact of the highest bits that would otherwise
665 >     * never be used in index calculations because of table bounds.
666       */
667 <    private static final int spread(int h) {
668 <        h ^= (h >>> 18) ^ (h >>> 12);
1188 <        return (h ^ (h >>> 10)) & HASH_BITS;
667 >    static final int spread(int h) {
668 >        return (h ^ (h >>> 16)) & HASH_BITS;
669      }
670  
671      /**
672 <     * Replaces a list bin with a tree bin. Call only when locked.
673 <     * Fails to replace if the given key is non-comparable or table
1194 <     * is, or needs, resizing.
672 >     * Returns a power of two table size for the given desired capacity.
673 >     * See Hackers Delight, sec 3.2
674       */
675 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
676 <        if ((key instanceof Comparable) &&
677 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1199 <            TreeBin t = new TreeBin();
1200 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1201 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1202 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1203 <        }
1204 <    }
1205 <
1206 <    /* ---------------- Internal access and update methods -------------- */
1207 <
1208 <    /** Implementation for get and containsKey */
1209 <    private final Object internalGet(Object k) {
1210 <        int h = spread(k.hashCode());
1211 <        retry: for (Node[] tab = table; tab != null;) {
1212 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1213 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1214 <                if ((eh = e.hash) == MOVED) {
1215 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1216 <                        return ((TreeBin)ek).getValue(h, k);
1217 <                    else {                        // restart with new table
1218 <                        tab = (Node[])ek;
1219 <                        continue retry;
1220 <                    }
1221 <                }
1222 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1223 <                         ((ek = e.key) == k || k.equals(ek)))
1224 <                    return ev;
1225 <            }
1226 <            break;
1227 <        }
1228 <        return null;
675 >    private static final int tableSizeFor(int c) {
676 >        int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678      }
679  
680      /**
681 <     * Implementation for the four public remove/replace methods:
682 <     * Replaces node value with v, conditional upon match of cv if
1234 <     * non-null.  If resulting value is null, delete.
681 >     * Returns x's Class if it is of the form "class C implements
682 >     * Comparable<C>", else null.
683       */
684 <    private final Object internalReplace(Object k, Object v, Object cv) {
685 <        int h = spread(k.hashCode());
686 <        Object oldVal = null;
687 <        for (Node[] tab = table;;) {
688 <            Node f; int i, fh; Object fk;
689 <            if (tab == null ||
690 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
691 <                break;
692 <            else if ((fh = f.hash) == MOVED) {
693 <                if ((fk = f.key) instanceof TreeBin) {
694 <                    TreeBin t = (TreeBin)fk;
695 <                    boolean validated = false;
696 <                    boolean deleted = false;
1249 <                    t.acquire(0);
1250 <                    try {
1251 <                        if (tabAt(tab, i) == f) {
1252 <                            validated = true;
1253 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1254 <                            if (p != null) {
1255 <                                Object pv = p.val;
1256 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1257 <                                    oldVal = pv;
1258 <                                    if ((p.val = v) == null) {
1259 <                                        deleted = true;
1260 <                                        t.deleteTreeNode(p);
1261 <                                    }
1262 <                                }
1263 <                            }
1264 <                        }
1265 <                    } finally {
1266 <                        t.release(0);
1267 <                    }
1268 <                    if (validated) {
1269 <                        if (deleted)
1270 <                            counter.add(-1L);
1271 <                        break;
1272 <                    }
1273 <                }
1274 <                else
1275 <                    tab = (Node[])fk;
1276 <            }
1277 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1278 <                break;                          // rules out possible existence
1279 <            else if ((fh & LOCKED) != 0) {
1280 <                checkForResize();               // try resizing if can't get lock
1281 <                f.tryAwaitLock(tab, i);
1282 <            }
1283 <            else if (f.casHash(fh, fh | LOCKED)) {
1284 <                boolean validated = false;
1285 <                boolean deleted = false;
1286 <                try {
1287 <                    if (tabAt(tab, i) == f) {
1288 <                        validated = true;
1289 <                        for (Node e = f, pred = null;;) {
1290 <                            Object ek, ev;
1291 <                            if ((e.hash & HASH_BITS) == h &&
1292 <                                ((ev = e.val) != null) &&
1293 <                                ((ek = e.key) == k || k.equals(ek))) {
1294 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1295 <                                    oldVal = ev;
1296 <                                    if ((e.val = v) == null) {
1297 <                                        deleted = true;
1298 <                                        Node en = e.next;
1299 <                                        if (pred != null)
1300 <                                            pred.next = en;
1301 <                                        else
1302 <                                            setTabAt(tab, i, en);
1303 <                                    }
1304 <                                }
1305 <                                break;
1306 <                            }
1307 <                            pred = e;
1308 <                            if ((e = e.next) == null)
1309 <                                break;
1310 <                        }
1311 <                    }
1312 <                } finally {
1313 <                    if (!f.casHash(fh | LOCKED, fh)) {
1314 <                        f.hash = fh;
1315 <                        synchronized (f) { f.notifyAll(); };
1316 <                    }
1317 <                }
1318 <                if (validated) {
1319 <                    if (deleted)
1320 <                        counter.add(-1L);
1321 <                    break;
1322 <                }
1323 <            }
1324 <        }
1325 <        return oldVal;
1326 <    }
1327 <
1328 <    /*
1329 <     * Internal versions of the six insertion methods, each a
1330 <     * little more complicated than the last. All have
1331 <     * the same basic structure as the first (internalPut):
1332 <     *  1. If table uninitialized, create
1333 <     *  2. If bin empty, try to CAS new node
1334 <     *  3. If bin stale, use new table
1335 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1336 <     *  5. Lock and validate; if valid, scan and add or update
1337 <     *
1338 <     * The others interweave other checks and/or alternative actions:
1339 <     *  * Plain put checks for and performs resize after insertion.
1340 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1341 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1342 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1343 <     *    mechanics to deal with, calls, potential exceptions and null
1344 <     *    returns from function call.
1345 <     *  * compute uses the same function-call mechanics, but without
1346 <     *    the prescans
1347 <     *  * merge acts as putIfAbsent in the absent case, but invokes the
1348 <     *    update function if present
1349 <     *  * putAll attempts to pre-allocate enough table space
1350 <     *    and more lazily performs count updates and checks.
1351 <     *
1352 <     * Someday when details settle down a bit more, it might be worth
1353 <     * some factoring to reduce sprawl.
1354 <     */
1355 <
1356 <    /** Implementation for put */
1357 <    private final Object internalPut(Object k, Object v) {
1358 <        int h = spread(k.hashCode());
1359 <        int count = 0;
1360 <        for (Node[] tab = table;;) {
1361 <            int i; Node f; int fh; Object fk;
1362 <            if (tab == null)
1363 <                tab = initTable();
1364 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1365 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1366 <                    break;                   // no lock when adding to empty bin
1367 <            }
1368 <            else if ((fh = f.hash) == MOVED) {
1369 <                if ((fk = f.key) instanceof TreeBin) {
1370 <                    TreeBin t = (TreeBin)fk;
1371 <                    Object oldVal = null;
1372 <                    t.acquire(0);
1373 <                    try {
1374 <                        if (tabAt(tab, i) == f) {
1375 <                            count = 2;
1376 <                            TreeNode p = t.putTreeNode(h, k, v);
1377 <                            if (p != null) {
1378 <                                oldVal = p.val;
1379 <                                p.val = v;
1380 <                            }
1381 <                        }
1382 <                    } finally {
1383 <                        t.release(0);
1384 <                    }
1385 <                    if (count != 0) {
1386 <                        if (oldVal != null)
1387 <                            return oldVal;
1388 <                        break;
1389 <                    }
1390 <                }
1391 <                else
1392 <                    tab = (Node[])fk;
1393 <            }
1394 <            else if ((fh & LOCKED) != 0) {
1395 <                checkForResize();
1396 <                f.tryAwaitLock(tab, i);
1397 <            }
1398 <            else if (f.casHash(fh, fh | LOCKED)) {
1399 <                Object oldVal = null;
1400 <                try {                        // needed in case equals() throws
1401 <                    if (tabAt(tab, i) == f) {
1402 <                        count = 1;
1403 <                        for (Node e = f;; ++count) {
1404 <                            Object ek, ev;
1405 <                            if ((e.hash & HASH_BITS) == h &&
1406 <                                (ev = e.val) != null &&
1407 <                                ((ek = e.key) == k || k.equals(ek))) {
1408 <                                oldVal = ev;
1409 <                                e.val = v;
1410 <                                break;
1411 <                            }
1412 <                            Node last = e;
1413 <                            if ((e = e.next) == null) {
1414 <                                last.next = new Node(h, k, v, null);
1415 <                                if (count >= TREE_THRESHOLD)
1416 <                                    replaceWithTreeBin(tab, i, k);
1417 <                                break;
1418 <                            }
1419 <                        }
1420 <                    }
1421 <                } finally {                  // unlock and signal if needed
1422 <                    if (!f.casHash(fh | LOCKED, fh)) {
1423 <                        f.hash = fh;
1424 <                        synchronized (f) { f.notifyAll(); };
1425 <                    }
1426 <                }
1427 <                if (count != 0) {
1428 <                    if (oldVal != null)
1429 <                        return oldVal;
1430 <                    if (tab.length <= 64)
1431 <                        count = 2;
1432 <                    break;
1433 <                }
1434 <            }
1435 <        }
1436 <        counter.add(1L);
1437 <        if (count > 1)
1438 <            checkForResize();
1439 <        return null;
1440 <    }
1441 <
1442 <    /** Implementation for putIfAbsent */
1443 <    private final Object internalPutIfAbsent(Object k, Object v) {
1444 <        int h = spread(k.hashCode());
1445 <        int count = 0;
1446 <        for (Node[] tab = table;;) {
1447 <            int i; Node f; int fh; Object fk, fv;
1448 <            if (tab == null)
1449 <                tab = initTable();
1450 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1451 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1452 <                    break;
1453 <            }
1454 <            else if ((fh = f.hash) == MOVED) {
1455 <                if ((fk = f.key) instanceof TreeBin) {
1456 <                    TreeBin t = (TreeBin)fk;
1457 <                    Object oldVal = null;
1458 <                    t.acquire(0);
1459 <                    try {
1460 <                        if (tabAt(tab, i) == f) {
1461 <                            count = 2;
1462 <                            TreeNode p = t.putTreeNode(h, k, v);
1463 <                            if (p != null)
1464 <                                oldVal = p.val;
1465 <                        }
1466 <                    } finally {
1467 <                        t.release(0);
1468 <                    }
1469 <                    if (count != 0) {
1470 <                        if (oldVal != null)
1471 <                            return oldVal;
1472 <                        break;
1473 <                    }
1474 <                }
1475 <                else
1476 <                    tab = (Node[])fk;
1477 <            }
1478 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1479 <                     ((fk = f.key) == k || k.equals(fk)))
1480 <                return fv;
1481 <            else {
1482 <                Node g = f.next;
1483 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1484 <                    for (Node e = g;;) {
1485 <                        Object ek, ev;
1486 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1487 <                            ((ek = e.key) == k || k.equals(ek)))
1488 <                            return ev;
1489 <                        if ((e = e.next) == null) {
1490 <                            checkForResize();
1491 <                            break;
1492 <                        }
1493 <                    }
1494 <                }
1495 <                if (((fh = f.hash) & LOCKED) != 0) {
1496 <                    checkForResize();
1497 <                    f.tryAwaitLock(tab, i);
1498 <                }
1499 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1500 <                    Object oldVal = null;
1501 <                    try {
1502 <                        if (tabAt(tab, i) == f) {
1503 <                            count = 1;
1504 <                            for (Node e = f;; ++count) {
1505 <                                Object ek, ev;
1506 <                                if ((e.hash & HASH_BITS) == h &&
1507 <                                    (ev = e.val) != null &&
1508 <                                    ((ek = e.key) == k || k.equals(ek))) {
1509 <                                    oldVal = ev;
1510 <                                    break;
1511 <                                }
1512 <                                Node last = e;
1513 <                                if ((e = e.next) == null) {
1514 <                                    last.next = new Node(h, k, v, null);
1515 <                                    if (count >= TREE_THRESHOLD)
1516 <                                        replaceWithTreeBin(tab, i, k);
1517 <                                    break;
1518 <                                }
1519 <                            }
1520 <                        }
1521 <                    } finally {
1522 <                        if (!f.casHash(fh | LOCKED, fh)) {
1523 <                            f.hash = fh;
1524 <                            synchronized (f) { f.notifyAll(); };
1525 <                        }
1526 <                    }
1527 <                    if (count != 0) {
1528 <                        if (oldVal != null)
1529 <                            return oldVal;
1530 <                        if (tab.length <= 64)
1531 <                            count = 2;
1532 <                        break;
1533 <                    }
684 >    static Class<?> comparableClassFor(Object x) {
685 >        if (x instanceof Comparable) {
686 >            Class<?> c; Type[] ts, as; ParameterizedType p;
687 >            if ((c = x.getClass()) == String.class) // bypass checks
688 >                return c;
689 >            if ((ts = c.getGenericInterfaces()) != null) {
690 >                for (Type t : ts) {
691 >                    if ((t instanceof ParameterizedType) &&
692 >                        ((p = (ParameterizedType)t).getRawType() ==
693 >                         Comparable.class) &&
694 >                        (as = p.getActualTypeArguments()) != null &&
695 >                        as.length == 1 && as[0] == c) // type arg is c
696 >                        return c;
697                  }
698              }
699          }
1537        counter.add(1L);
1538        if (count > 1)
1539            checkForResize();
700          return null;
701      }
702  
703 <    /** Implementation for computeIfAbsent */
704 <    private final Object internalComputeIfAbsent(K k,
705 <                                                 Fun<? super K, ?> mf) {
706 <        int h = spread(k.hashCode());
707 <        Object val = null;
708 <        int count = 0;
709 <        for (Node[] tab = table;;) {
710 <            Node f; int i, fh; Object fk, fv;
1551 <            if (tab == null)
1552 <                tab = initTable();
1553 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1554 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1555 <                if (casTabAt(tab, i, null, node)) {
1556 <                    count = 1;
1557 <                    try {
1558 <                        if ((val = mf.apply(k)) != null)
1559 <                            node.val = val;
1560 <                    } finally {
1561 <                        if (val == null)
1562 <                            setTabAt(tab, i, null);
1563 <                        if (!node.casHash(fh, h)) {
1564 <                            node.hash = h;
1565 <                            synchronized (node) { node.notifyAll(); };
1566 <                        }
1567 <                    }
1568 <                }
1569 <                if (count != 0)
1570 <                    break;
1571 <            }
1572 <            else if ((fh = f.hash) == MOVED) {
1573 <                if ((fk = f.key) instanceof TreeBin) {
1574 <                    TreeBin t = (TreeBin)fk;
1575 <                    boolean added = false;
1576 <                    t.acquire(0);
1577 <                    try {
1578 <                        if (tabAt(tab, i) == f) {
1579 <                            count = 1;
1580 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1581 <                            if (p != null)
1582 <                                val = p.val;
1583 <                            else if ((val = mf.apply(k)) != null) {
1584 <                                added = true;
1585 <                                count = 2;
1586 <                                t.putTreeNode(h, k, val);
1587 <                            }
1588 <                        }
1589 <                    } finally {
1590 <                        t.release(0);
1591 <                    }
1592 <                    if (count != 0) {
1593 <                        if (!added)
1594 <                            return val;
1595 <                        break;
1596 <                    }
1597 <                }
1598 <                else
1599 <                    tab = (Node[])fk;
1600 <            }
1601 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1602 <                     ((fk = f.key) == k || k.equals(fk)))
1603 <                return fv;
1604 <            else {
1605 <                Node g = f.next;
1606 <                if (g != null) {
1607 <                    for (Node e = g;;) {
1608 <                        Object ek, ev;
1609 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1610 <                            ((ek = e.key) == k || k.equals(ek)))
1611 <                            return ev;
1612 <                        if ((e = e.next) == null) {
1613 <                            checkForResize();
1614 <                            break;
1615 <                        }
1616 <                    }
1617 <                }
1618 <                if (((fh = f.hash) & LOCKED) != 0) {
1619 <                    checkForResize();
1620 <                    f.tryAwaitLock(tab, i);
1621 <                }
1622 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1623 <                    boolean added = false;
1624 <                    try {
1625 <                        if (tabAt(tab, i) == f) {
1626 <                            count = 1;
1627 <                            for (Node e = f;; ++count) {
1628 <                                Object ek, ev;
1629 <                                if ((e.hash & HASH_BITS) == h &&
1630 <                                    (ev = e.val) != null &&
1631 <                                    ((ek = e.key) == k || k.equals(ek))) {
1632 <                                    val = ev;
1633 <                                    break;
1634 <                                }
1635 <                                Node last = e;
1636 <                                if ((e = e.next) == null) {
1637 <                                    if ((val = mf.apply(k)) != null) {
1638 <                                        added = true;
1639 <                                        last.next = new Node(h, k, val, null);
1640 <                                        if (count >= TREE_THRESHOLD)
1641 <                                            replaceWithTreeBin(tab, i, k);
1642 <                                    }
1643 <                                    break;
1644 <                                }
1645 <                            }
1646 <                        }
1647 <                    } finally {
1648 <                        if (!f.casHash(fh | LOCKED, fh)) {
1649 <                            f.hash = fh;
1650 <                            synchronized (f) { f.notifyAll(); };
1651 <                        }
1652 <                    }
1653 <                    if (count != 0) {
1654 <                        if (!added)
1655 <                            return val;
1656 <                        if (tab.length <= 64)
1657 <                            count = 2;
1658 <                        break;
1659 <                    }
1660 <                }
1661 <            }
1662 <        }
1663 <        if (val != null) {
1664 <            counter.add(1L);
1665 <            if (count > 1)
1666 <                checkForResize();
1667 <        }
1668 <        return val;
703 >    /**
704 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 >     * class), else 0.
706 >     */
707 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 >    static int compareComparables(Class<?> kc, Object k, Object x) {
709 >        return (x == null || x.getClass() != kc ? 0 :
710 >                ((Comparable)k).compareTo(x));
711      }
712  
713 <    /** Implementation for compute */
1672 <    @SuppressWarnings("unchecked") private final Object internalCompute
1673 <        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1674 <        int h = spread(k.hashCode());
1675 <        Object val = null;
1676 <        int delta = 0;
1677 <        int count = 0;
1678 <        for (Node[] tab = table;;) {
1679 <            Node f; int i, fh; Object fk;
1680 <            if (tab == null)
1681 <                tab = initTable();
1682 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1683 <                if (onlyIfPresent)
1684 <                    break;
1685 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1686 <                if (casTabAt(tab, i, null, node)) {
1687 <                    try {
1688 <                        count = 1;
1689 <                        if ((val = mf.apply(k, null)) != null) {
1690 <                            node.val = val;
1691 <                            delta = 1;
1692 <                        }
1693 <                    } finally {
1694 <                        if (delta == 0)
1695 <                            setTabAt(tab, i, null);
1696 <                        if (!node.casHash(fh, h)) {
1697 <                            node.hash = h;
1698 <                            synchronized (node) { node.notifyAll(); };
1699 <                        }
1700 <                    }
1701 <                }
1702 <                if (count != 0)
1703 <                    break;
1704 <            }
1705 <            else if ((fh = f.hash) == MOVED) {
1706 <                if ((fk = f.key) instanceof TreeBin) {
1707 <                    TreeBin t = (TreeBin)fk;
1708 <                    t.acquire(0);
1709 <                    try {
1710 <                        if (tabAt(tab, i) == f) {
1711 <                            count = 1;
1712 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1713 <                            Object pv = (p == null) ? null : p.val;
1714 <                            if ((val = mf.apply(k, (V)pv)) != null) {
1715 <                                if (p != null)
1716 <                                    p.val = val;
1717 <                                else {
1718 <                                    count = 2;
1719 <                                    delta = 1;
1720 <                                    t.putTreeNode(h, k, val);
1721 <                                }
1722 <                            }
1723 <                            else if (p != null) {
1724 <                                delta = -1;
1725 <                                t.deleteTreeNode(p);
1726 <                            }
1727 <                        }
1728 <                    } finally {
1729 <                        t.release(0);
1730 <                    }
1731 <                    if (count != 0)
1732 <                        break;
1733 <                }
1734 <                else
1735 <                    tab = (Node[])fk;
1736 <            }
1737 <            else if ((fh & LOCKED) != 0) {
1738 <                checkForResize();
1739 <                f.tryAwaitLock(tab, i);
1740 <            }
1741 <            else if (f.casHash(fh, fh | LOCKED)) {
1742 <                try {
1743 <                    if (tabAt(tab, i) == f) {
1744 <                        count = 1;
1745 <                        for (Node e = f, pred = null;; ++count) {
1746 <                            Object ek, ev;
1747 <                            if ((e.hash & HASH_BITS) == h &&
1748 <                                (ev = e.val) != null &&
1749 <                                ((ek = e.key) == k || k.equals(ek))) {
1750 <                                val = mf.apply(k, (V)ev);
1751 <                                if (val != null)
1752 <                                    e.val = val;
1753 <                                else {
1754 <                                    delta = -1;
1755 <                                    Node en = e.next;
1756 <                                    if (pred != null)
1757 <                                        pred.next = en;
1758 <                                    else
1759 <                                        setTabAt(tab, i, en);
1760 <                                }
1761 <                                break;
1762 <                            }
1763 <                            pred = e;
1764 <                            if ((e = e.next) == null) {
1765 <                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1766 <                                    pred.next = new Node(h, k, val, null);
1767 <                                    delta = 1;
1768 <                                    if (count >= TREE_THRESHOLD)
1769 <                                        replaceWithTreeBin(tab, i, k);
1770 <                                }
1771 <                                break;
1772 <                            }
1773 <                        }
1774 <                    }
1775 <                } finally {
1776 <                    if (!f.casHash(fh | LOCKED, fh)) {
1777 <                        f.hash = fh;
1778 <                        synchronized (f) { f.notifyAll(); };
1779 <                    }
1780 <                }
1781 <                if (count != 0) {
1782 <                    if (tab.length <= 64)
1783 <                        count = 2;
1784 <                    break;
1785 <                }
1786 <            }
1787 <        }
1788 <        if (delta != 0) {
1789 <            counter.add((long)delta);
1790 <            if (count > 1)
1791 <                checkForResize();
1792 <        }
1793 <        return val;
1794 <    }
713 >    /* ---------------- Table element access -------------- */
714  
715 <    /** Implementation for merge */
716 <    @SuppressWarnings("unchecked") private final Object internalMerge
717 <        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
718 <        int h = spread(k.hashCode());
719 <        Object val = null;
720 <        int delta = 0;
721 <        int count = 0;
722 <        for (Node[] tab = table;;) {
723 <            int i; Node f; int fh; Object fk, fv;
724 <            if (tab == null)
725 <                tab = initTable();
726 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
727 <                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
728 <                    delta = 1;
729 <                    val = v;
730 <                    break;
731 <                }
732 <            }
733 <            else if ((fh = f.hash) == MOVED) {
734 <                if ((fk = f.key) instanceof TreeBin) {
735 <                    TreeBin t = (TreeBin)fk;
736 <                    t.acquire(0);
1818 <                    try {
1819 <                        if (tabAt(tab, i) == f) {
1820 <                            count = 1;
1821 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1822 <                            val = (p == null) ? v : mf.apply((V)p.val, v);
1823 <                            if (val != null) {
1824 <                                if (p != null)
1825 <                                    p.val = val;
1826 <                                else {
1827 <                                    count = 2;
1828 <                                    delta = 1;
1829 <                                    t.putTreeNode(h, k, val);
1830 <                                }
1831 <                            }
1832 <                            else if (p != null) {
1833 <                                delta = -1;
1834 <                                t.deleteTreeNode(p);
1835 <                            }
1836 <                        }
1837 <                    } finally {
1838 <                        t.release(0);
1839 <                    }
1840 <                    if (count != 0)
1841 <                        break;
1842 <                }
1843 <                else
1844 <                    tab = (Node[])fk;
1845 <            }
1846 <            else if ((fh & LOCKED) != 0) {
1847 <                checkForResize();
1848 <                f.tryAwaitLock(tab, i);
1849 <            }
1850 <            else if (f.casHash(fh, fh | LOCKED)) {
1851 <                try {
1852 <                    if (tabAt(tab, i) == f) {
1853 <                        count = 1;
1854 <                        for (Node e = f, pred = null;; ++count) {
1855 <                            Object ek, ev;
1856 <                            if ((e.hash & HASH_BITS) == h &&
1857 <                                (ev = e.val) != null &&
1858 <                                ((ek = e.key) == k || k.equals(ek))) {
1859 <                                val = mf.apply(v, (V)ev);
1860 <                                if (val != null)
1861 <                                    e.val = val;
1862 <                                else {
1863 <                                    delta = -1;
1864 <                                    Node en = e.next;
1865 <                                    if (pred != null)
1866 <                                        pred.next = en;
1867 <                                    else
1868 <                                        setTabAt(tab, i, en);
1869 <                                }
1870 <                                break;
1871 <                            }
1872 <                            pred = e;
1873 <                            if ((e = e.next) == null) {
1874 <                                val = v;
1875 <                                pred.next = new Node(h, k, val, null);
1876 <                                delta = 1;
1877 <                                if (count >= TREE_THRESHOLD)
1878 <                                    replaceWithTreeBin(tab, i, k);
1879 <                                break;
1880 <                            }
1881 <                        }
1882 <                    }
1883 <                } finally {
1884 <                    if (!f.casHash(fh | LOCKED, fh)) {
1885 <                        f.hash = fh;
1886 <                        synchronized (f) { f.notifyAll(); };
1887 <                    }
1888 <                }
1889 <                if (count != 0) {
1890 <                    if (tab.length <= 64)
1891 <                        count = 2;
1892 <                    break;
1893 <                }
1894 <            }
1895 <        }
1896 <        if (delta != 0) {
1897 <            counter.add((long)delta);
1898 <            if (count > 1)
1899 <                checkForResize();
1900 <        }
1901 <        return val;
715 >    /*
716 >     * Atomic access methods are used for table elements as well as
717 >     * elements of in-progress next table while resizing.  All uses of
718 >     * the tab arguments must be null checked by callers.  All callers
719 >     * also paranoically precheck that tab's length is not zero (or an
720 >     * equivalent check), thus ensuring that any index argument taking
721 >     * the form of a hash value anded with (length - 1) is a valid
722 >     * index.  Note that, to be correct wrt arbitrary concurrency
723 >     * errors by users, these checks must operate on local variables,
724 >     * which accounts for some odd-looking inline assignments below.
725 >     * Note that calls to setTabAt always occur within locked regions,
726 >     * and so require only release ordering.
727 >     */
728 >
729 >    @SuppressWarnings("unchecked")
730 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 >        return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 >    }
733 >
734 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 >                                        Node<K,V> c, Node<K,V> v) {
736 >        return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737      }
738  
739 <    /** Implementation for putAll */
740 <    private final void internalPutAll(Map<?, ?> m) {
1906 <        tryPresize(m.size());
1907 <        long delta = 0L;     // number of uncommitted additions
1908 <        boolean npe = false; // to throw exception on exit for nulls
1909 <        try {                // to clean up counts on other exceptions
1910 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1911 <                Object k, v;
1912 <                if (entry == null || (k = entry.getKey()) == null ||
1913 <                    (v = entry.getValue()) == null) {
1914 <                    npe = true;
1915 <                    break;
1916 <                }
1917 <                int h = spread(k.hashCode());
1918 <                for (Node[] tab = table;;) {
1919 <                    int i; Node f; int fh; Object fk;
1920 <                    if (tab == null)
1921 <                        tab = initTable();
1922 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1923 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1924 <                            ++delta;
1925 <                            break;
1926 <                        }
1927 <                    }
1928 <                    else if ((fh = f.hash) == MOVED) {
1929 <                        if ((fk = f.key) instanceof TreeBin) {
1930 <                            TreeBin t = (TreeBin)fk;
1931 <                            boolean validated = false;
1932 <                            t.acquire(0);
1933 <                            try {
1934 <                                if (tabAt(tab, i) == f) {
1935 <                                    validated = true;
1936 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
1937 <                                    if (p != null)
1938 <                                        p.val = v;
1939 <                                    else {
1940 <                                        t.putTreeNode(h, k, v);
1941 <                                        ++delta;
1942 <                                    }
1943 <                                }
1944 <                            } finally {
1945 <                                t.release(0);
1946 <                            }
1947 <                            if (validated)
1948 <                                break;
1949 <                        }
1950 <                        else
1951 <                            tab = (Node[])fk;
1952 <                    }
1953 <                    else if ((fh & LOCKED) != 0) {
1954 <                        counter.add(delta);
1955 <                        delta = 0L;
1956 <                        checkForResize();
1957 <                        f.tryAwaitLock(tab, i);
1958 <                    }
1959 <                    else if (f.casHash(fh, fh | LOCKED)) {
1960 <                        int count = 0;
1961 <                        try {
1962 <                            if (tabAt(tab, i) == f) {
1963 <                                count = 1;
1964 <                                for (Node e = f;; ++count) {
1965 <                                    Object ek, ev;
1966 <                                    if ((e.hash & HASH_BITS) == h &&
1967 <                                        (ev = e.val) != null &&
1968 <                                        ((ek = e.key) == k || k.equals(ek))) {
1969 <                                        e.val = v;
1970 <                                        break;
1971 <                                    }
1972 <                                    Node last = e;
1973 <                                    if ((e = e.next) == null) {
1974 <                                        ++delta;
1975 <                                        last.next = new Node(h, k, v, null);
1976 <                                        if (count >= TREE_THRESHOLD)
1977 <                                            replaceWithTreeBin(tab, i, k);
1978 <                                        break;
1979 <                                    }
1980 <                                }
1981 <                            }
1982 <                        } finally {
1983 <                            if (!f.casHash(fh | LOCKED, fh)) {
1984 <                                f.hash = fh;
1985 <                                synchronized (f) { f.notifyAll(); };
1986 <                            }
1987 <                        }
1988 <                        if (count != 0) {
1989 <                            if (count > 1) {
1990 <                                counter.add(delta);
1991 <                                delta = 0L;
1992 <                                checkForResize();
1993 <                            }
1994 <                            break;
1995 <                        }
1996 <                    }
1997 <                }
1998 <            }
1999 <        } finally {
2000 <            if (delta != 0)
2001 <                counter.add(delta);
2002 <        }
2003 <        if (npe)
2004 <            throw new NullPointerException();
739 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 >        U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741      }
742  
743 <    /* ---------------- Table Initialization and Resizing -------------- */
743 >    /* ---------------- Fields -------------- */
744  
745      /**
746 <     * Returns a power of two table size for the given desired capacity.
747 <     * See Hackers Delight, sec 3.2
746 >     * The array of bins. Lazily initialized upon first insertion.
747 >     * Size is always a power of two. Accessed directly by iterators.
748       */
749 <    private static final int tableSizeFor(int c) {
2014 <        int n = c - 1;
2015 <        n |= n >>> 1;
2016 <        n |= n >>> 2;
2017 <        n |= n >>> 4;
2018 <        n |= n >>> 8;
2019 <        n |= n >>> 16;
2020 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2021 <    }
749 >    transient volatile Node<K,V>[] table;
750  
751      /**
752 <     * Initializes table, using the size recorded in sizeCtl.
752 >     * The next table to use; non-null only while resizing.
753       */
754 <    private final Node[] initTable() {
2027 <        Node[] tab; int sc;
2028 <        while ((tab = table) == null) {
2029 <            if ((sc = sizeCtl) < 0)
2030 <                Thread.yield(); // lost initialization race; just spin
2031 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2032 <                try {
2033 <                    if ((tab = table) == null) {
2034 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2035 <                        tab = table = new Node[n];
2036 <                        sc = n - (n >>> 2);
2037 <                    }
2038 <                } finally {
2039 <                    sizeCtl = sc;
2040 <                }
2041 <                break;
2042 <            }
2043 <        }
2044 <        return tab;
2045 <    }
2046 <
2047 <    /**
2048 <     * If table is too small and not already resizing, creates next
2049 <     * table and transfers bins.  Rechecks occupancy after a transfer
2050 <     * to see if another resize is already needed because resizings
2051 <     * are lagging additions.
2052 <     */
2053 <    private final void checkForResize() {
2054 <        Node[] tab; int n, sc;
2055 <        while ((tab = table) != null &&
2056 <               (n = tab.length) < MAXIMUM_CAPACITY &&
2057 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2058 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2059 <            try {
2060 <                if (tab == table) {
2061 <                    table = rebuild(tab);
2062 <                    sc = (n << 1) - (n >>> 1);
2063 <                }
2064 <            } finally {
2065 <                sizeCtl = sc;
2066 <            }
2067 <        }
2068 <    }
754 >    private transient volatile Node<K,V>[] nextTable;
755  
756      /**
757 <     * Tries to presize table to accommodate the given number of elements.
758 <     *
759 <     * @param size number of elements (doesn't need to be perfectly accurate)
757 >     * Base counter value, used mainly when there is no contention,
758 >     * but also as a fallback during table initialization
759 >     * races. Updated via CAS.
760       */
761 <    private final void tryPresize(int size) {
2076 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2077 <            tableSizeFor(size + (size >>> 1) + 1);
2078 <        int sc;
2079 <        while ((sc = sizeCtl) >= 0) {
2080 <            Node[] tab = table; int n;
2081 <            if (tab == null || (n = tab.length) == 0) {
2082 <                n = (sc > c) ? sc : c;
2083 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2084 <                    try {
2085 <                        if (table == tab) {
2086 <                            table = new Node[n];
2087 <                            sc = n - (n >>> 2);
2088 <                        }
2089 <                    } finally {
2090 <                        sizeCtl = sc;
2091 <                    }
2092 <                }
2093 <            }
2094 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2095 <                break;
2096 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2097 <                try {
2098 <                    if (table == tab) {
2099 <                        table = rebuild(tab);
2100 <                        sc = (n << 1) - (n >>> 1);
2101 <                    }
2102 <                } finally {
2103 <                    sizeCtl = sc;
2104 <                }
2105 <            }
2106 <        }
2107 <    }
2108 <
2109 <    /*
2110 <     * Moves and/or copies the nodes in each bin to new table. See
2111 <     * above for explanation.
2112 <     *
2113 <     * @return the new table
2114 <     */
2115 <    private static final Node[] rebuild(Node[] tab) {
2116 <        int n = tab.length;
2117 <        Node[] nextTab = new Node[n << 1];
2118 <        Node fwd = new Node(MOVED, nextTab, null, null);
2119 <        int[] buffer = null;       // holds bins to revisit; null until needed
2120 <        Node rev = null;           // reverse forwarder; null until needed
2121 <        int nbuffered = 0;         // the number of bins in buffer list
2122 <        int bufferIndex = 0;       // buffer index of current buffered bin
2123 <        int bin = n - 1;           // current non-buffered bin or -1 if none
2124 <
2125 <        for (int i = bin;;) {      // start upwards sweep
2126 <            int fh; Node f;
2127 <            if ((f = tabAt(tab, i)) == null) {
2128 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
2129 <                    if (!casTabAt(tab, i, f, fwd))
2130 <                        continue;
2131 <                }
2132 <                else {             // transiently use a locked forwarding node
2133 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2134 <                    if (!casTabAt(tab, i, f, g))
2135 <                        continue;
2136 <                    setTabAt(nextTab, i, null);
2137 <                    setTabAt(nextTab, i + n, null);
2138 <                    setTabAt(tab, i, fwd);
2139 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2140 <                        g.hash = MOVED;
2141 <                        synchronized (g) { g.notifyAll(); }
2142 <                    }
2143 <                }
2144 <            }
2145 <            else if ((fh = f.hash) == MOVED) {
2146 <                Object fk = f.key;
2147 <                if (fk instanceof TreeBin) {
2148 <                    TreeBin t = (TreeBin)fk;
2149 <                    boolean validated = false;
2150 <                    t.acquire(0);
2151 <                    try {
2152 <                        if (tabAt(tab, i) == f) {
2153 <                            validated = true;
2154 <                            splitTreeBin(nextTab, i, t);
2155 <                            setTabAt(tab, i, fwd);
2156 <                        }
2157 <                    } finally {
2158 <                        t.release(0);
2159 <                    }
2160 <                    if (!validated)
2161 <                        continue;
2162 <                }
2163 <            }
2164 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2165 <                boolean validated = false;
2166 <                try {              // split to lo and hi lists; copying as needed
2167 <                    if (tabAt(tab, i) == f) {
2168 <                        validated = true;
2169 <                        splitBin(nextTab, i, f);
2170 <                        setTabAt(tab, i, fwd);
2171 <                    }
2172 <                } finally {
2173 <                    if (!f.casHash(fh | LOCKED, fh)) {
2174 <                        f.hash = fh;
2175 <                        synchronized (f) { f.notifyAll(); };
2176 <                    }
2177 <                }
2178 <                if (!validated)
2179 <                    continue;
2180 <            }
2181 <            else {
2182 <                if (buffer == null) // initialize buffer for revisits
2183 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2184 <                if (bin < 0 && bufferIndex > 0) {
2185 <                    int j = buffer[--bufferIndex];
2186 <                    buffer[bufferIndex] = i;
2187 <                    i = j;         // swap with another bin
2188 <                    continue;
2189 <                }
2190 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2191 <                    f.tryAwaitLock(tab, i);
2192 <                    continue;      // no other options -- block
2193 <                }
2194 <                if (rev == null)   // initialize reverse-forwarder
2195 <                    rev = new Node(MOVED, tab, null, null);
2196 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2197 <                    continue;      // recheck before adding to list
2198 <                buffer[nbuffered++] = i;
2199 <                setTabAt(nextTab, i, rev);     // install place-holders
2200 <                setTabAt(nextTab, i + n, rev);
2201 <            }
2202 <
2203 <            if (bin > 0)
2204 <                i = --bin;
2205 <            else if (buffer != null && nbuffered > 0) {
2206 <                bin = -1;
2207 <                i = buffer[bufferIndex = --nbuffered];
2208 <            }
2209 <            else
2210 <                return nextTab;
2211 <        }
2212 <    }
761 >    private transient volatile long baseCount;
762  
763      /**
764 <     * Splits a normal bin with list headed by e into lo and hi parts;
765 <     * installs in given table.
764 >     * Table initialization and resizing control.  When negative, the
765 >     * table is being initialized or resized: -1 for initialization,
766 >     * else -(1 + the number of active resizing threads).  Otherwise,
767 >     * when table is null, holds the initial table size to use upon
768 >     * creation, or 0 for default. After initialization, holds the
769 >     * next element count value upon which to resize the table.
770       */
771 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2219 <        int bit = nextTab.length >>> 1; // bit to split on
2220 <        int runBit = e.hash & bit;
2221 <        Node lastRun = e, lo = null, hi = null;
2222 <        for (Node p = e.next; p != null; p = p.next) {
2223 <            int b = p.hash & bit;
2224 <            if (b != runBit) {
2225 <                runBit = b;
2226 <                lastRun = p;
2227 <            }
2228 <        }
2229 <        if (runBit == 0)
2230 <            lo = lastRun;
2231 <        else
2232 <            hi = lastRun;
2233 <        for (Node p = e; p != lastRun; p = p.next) {
2234 <            int ph = p.hash & HASH_BITS;
2235 <            Object pk = p.key, pv = p.val;
2236 <            if ((ph & bit) == 0)
2237 <                lo = new Node(ph, pk, pv, lo);
2238 <            else
2239 <                hi = new Node(ph, pk, pv, hi);
2240 <        }
2241 <        setTabAt(nextTab, i, lo);
2242 <        setTabAt(nextTab, i + bit, hi);
2243 <    }
771 >    private transient volatile int sizeCtl;
772  
773      /**
774 <     * Splits a tree bin into lo and hi parts; installs in given table.
774 >     * The next table index (plus one) to split while resizing.
775       */
776 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2249 <        int bit = nextTab.length >>> 1;
2250 <        TreeBin lt = new TreeBin();
2251 <        TreeBin ht = new TreeBin();
2252 <        int lc = 0, hc = 0;
2253 <        for (Node e = t.first; e != null; e = e.next) {
2254 <            int h = e.hash & HASH_BITS;
2255 <            Object k = e.key, v = e.val;
2256 <            if ((h & bit) == 0) {
2257 <                ++lc;
2258 <                lt.putTreeNode(h, k, v);
2259 <            }
2260 <            else {
2261 <                ++hc;
2262 <                ht.putTreeNode(h, k, v);
2263 <            }
2264 <        }
2265 <        Node ln, hn; // throw away trees if too small
2266 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2267 <            ln = null;
2268 <            for (Node p = lt.first; p != null; p = p.next)
2269 <                ln = new Node(p.hash, p.key, p.val, ln);
2270 <        }
2271 <        else
2272 <            ln = new Node(MOVED, lt, null, null);
2273 <        setTabAt(nextTab, i, ln);
2274 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2275 <            hn = null;
2276 <            for (Node p = ht.first; p != null; p = p.next)
2277 <                hn = new Node(p.hash, p.key, p.val, hn);
2278 <        }
2279 <        else
2280 <            hn = new Node(MOVED, ht, null, null);
2281 <        setTabAt(nextTab, i + bit, hn);
2282 <    }
776 >    private transient volatile int transferIndex;
777  
778      /**
779 <     * Implementation for clear. Steps through each bin, removing all
2286 <     * nodes.
779 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780       */
781 <    private final void internalClear() {
2289 <        long delta = 0L; // negative number of deletions
2290 <        int i = 0;
2291 <        Node[] tab = table;
2292 <        while (tab != null && i < tab.length) {
2293 <            int fh; Object fk;
2294 <            Node f = tabAt(tab, i);
2295 <            if (f == null)
2296 <                ++i;
2297 <            else if ((fh = f.hash) == MOVED) {
2298 <                if ((fk = f.key) instanceof TreeBin) {
2299 <                    TreeBin t = (TreeBin)fk;
2300 <                    t.acquire(0);
2301 <                    try {
2302 <                        if (tabAt(tab, i) == f) {
2303 <                            for (Node p = t.first; p != null; p = p.next) {
2304 <                                if (p.val != null) { // (currently always true)
2305 <                                    p.val = null;
2306 <                                    --delta;
2307 <                                }
2308 <                            }
2309 <                            t.first = null;
2310 <                            t.root = null;
2311 <                            ++i;
2312 <                        }
2313 <                    } finally {
2314 <                        t.release(0);
2315 <                    }
2316 <                }
2317 <                else
2318 <                    tab = (Node[])fk;
2319 <            }
2320 <            else if ((fh & LOCKED) != 0) {
2321 <                counter.add(delta); // opportunistically update count
2322 <                delta = 0L;
2323 <                f.tryAwaitLock(tab, i);
2324 <            }
2325 <            else if (f.casHash(fh, fh | LOCKED)) {
2326 <                try {
2327 <                    if (tabAt(tab, i) == f) {
2328 <                        for (Node e = f; e != null; e = e.next) {
2329 <                            if (e.val != null) {  // (currently always true)
2330 <                                e.val = null;
2331 <                                --delta;
2332 <                            }
2333 <                        }
2334 <                        setTabAt(tab, i, null);
2335 <                        ++i;
2336 <                    }
2337 <                } finally {
2338 <                    if (!f.casHash(fh | LOCKED, fh)) {
2339 <                        f.hash = fh;
2340 <                        synchronized (f) { f.notifyAll(); };
2341 <                    }
2342 <                }
2343 <            }
2344 <        }
2345 <        if (delta != 0)
2346 <            counter.add(delta);
2347 <    }
2348 <
2349 <    /* ----------------Table Traversal -------------- */
781 >    private transient volatile int cellsBusy;
782  
783      /**
784 <     * Encapsulates traversal for methods such as containsValue; also
785 <     * serves as a base class for other iterators and bulk tasks.
786 <     *
2355 <     * At each step, the iterator snapshots the key ("nextKey") and
2356 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2357 <     * snapshot, has a non-null user value). Because val fields can
2358 <     * change (including to null, indicating deletion), field nextVal
2359 <     * might not be accurate at point of use, but still maintains the
2360 <     * weak consistency property of holding a value that was once
2361 <     * valid. To support iterator.remove, the nextKey field is not
2362 <     * updated (nulled out) when the iterator cannot advance.
2363 <     *
2364 <     * Internal traversals directly access these fields, as in:
2365 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2366 <     *
2367 <     * Exported iterators must track whether the iterator has advanced
2368 <     * (in hasNext vs next) (by setting/checking/nulling field
2369 <     * nextVal), and then extract key, value, or key-value pairs as
2370 <     * return values of next().
2371 <     *
2372 <     * The iterator visits once each still-valid node that was
2373 <     * reachable upon iterator construction. It might miss some that
2374 <     * were added to a bin after the bin was visited, which is OK wrt
2375 <     * consistency guarantees. Maintaining this property in the face
2376 <     * of possible ongoing resizes requires a fair amount of
2377 <     * bookkeeping state that is difficult to optimize away amidst
2378 <     * volatile accesses.  Even so, traversal maintains reasonable
2379 <     * throughput.
2380 <     *
2381 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2382 <     * However, if the table has been resized, then all future steps
2383 <     * must traverse both the bin at the current index as well as at
2384 <     * (index + baseSize); and so on for further resizings. To
2385 <     * paranoically cope with potential sharing by users of iterators
2386 <     * across threads, iteration terminates if a bounds checks fails
2387 <     * for a table read.
2388 <     *
2389 <     * This class extends ForkJoinTask to streamline parallel
2390 <     * iteration in bulk operations (see BulkTask). This adds only an
2391 <     * int of space overhead, which is close enough to negligible in
2392 <     * cases where it is not needed to not worry about it.  Because
2393 <     * ForkJoinTask is Serializable, but iterators need not be, we
2394 <     * need to add warning suppressions.
2395 <     */
2396 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2397 <        final ConcurrentHashMap<K, V> map;
2398 <        Node next;           // the next entry to use
2399 <        Object nextKey;      // cached key field of next
2400 <        Object nextVal;      // cached val field of next
2401 <        Node[] tab;          // current table; updated if resized
2402 <        int index;           // index of bin to use next
2403 <        int baseIndex;       // current index of initial table
2404 <        int baseLimit;       // index bound for initial table
2405 <        int baseSize;        // initial table size
2406 <
2407 <        /** Creates iterator for all entries in the table. */
2408 <        Traverser(ConcurrentHashMap<K, V> map) {
2409 <            this.map = map;
2410 <        }
2411 <
2412 <        /** Creates iterator for split() methods */
2413 <        Traverser(Traverser<K,V,?> it) {
2414 <            ConcurrentHashMap<K, V> m; Node[] t;
2415 <            if ((m = this.map = it.map) == null)
2416 <                t = null;
2417 <            else if ((t = it.tab) == null && // force parent tab initialization
2418 <                     (t = it.tab = m.table) != null)
2419 <                it.baseLimit = it.baseSize = t.length;
2420 <            this.tab = t;
2421 <            this.baseSize = it.baseSize;
2422 <            it.baseLimit = this.index = this.baseIndex =
2423 <                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2424 <        }
2425 <
2426 <        /**
2427 <         * Advances next; returns nextVal or null if terminated.
2428 <         * See above for explanation.
2429 <         */
2430 <        final Object advance() {
2431 <            Node e = next;
2432 <            Object ev = null;
2433 <            outer: do {
2434 <                if (e != null)                  // advance past used/skipped node
2435 <                    e = e.next;
2436 <                while (e == null) {             // get to next non-null bin
2437 <                    ConcurrentHashMap<K, V> m;
2438 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2439 <                    if ((t = tab) != null)
2440 <                        n = t.length;
2441 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2442 <                        n = baseLimit = baseSize = t.length;
2443 <                    else
2444 <                        break outer;
2445 <                    if ((b = baseIndex) >= baseLimit ||
2446 <                        (i = index) < 0 || i >= n)
2447 <                        break outer;
2448 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2449 <                        if ((ek = e.key) instanceof TreeBin)
2450 <                            e = ((TreeBin)ek).first;
2451 <                        else {
2452 <                            tab = (Node[])ek;
2453 <                            continue;           // restarts due to null val
2454 <                        }
2455 <                    }                           // visit upper slots if present
2456 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2457 <                }
2458 <                nextKey = e.key;
2459 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2460 <            next = e;
2461 <            return nextVal = ev;
2462 <        }
2463 <
2464 <        public final void remove() {
2465 <            Object k = nextKey;
2466 <            if (k == null && (advance() == null || (k = nextKey) == null))
2467 <                throw new IllegalStateException();
2468 <            map.internalReplace(k, null, null);
2469 <        }
784 >     * Table of counter cells. When non-null, size is a power of 2.
785 >     */
786 >    private transient volatile CounterCell[] counterCells;
787  
788 <        public final boolean hasNext() {
789 <            return nextVal != null || advance() != null;
790 <        }
788 >    // views
789 >    private transient KeySetView<K,V> keySet;
790 >    private transient ValuesView<K,V> values;
791 >    private transient EntrySetView<K,V> entrySet;
792  
2475        public final boolean hasMoreElements() { return hasNext(); }
2476        public final void setRawResult(Object x) { }
2477        public R getRawResult() { return null; }
2478        public boolean exec() { return true; }
2479    }
793  
794      /* ---------------- Public operations -------------- */
795  
# Line 2484 | Line 797 | public class ConcurrentHashMap<K, V>
797       * Creates a new, empty map with the default initial table size (16).
798       */
799      public ConcurrentHashMap() {
2487        this.counter = new LongAdder();
800      }
801  
802      /**
# Line 2498 | Line 810 | public class ConcurrentHashMap<K, V>
810       * elements is negative
811       */
812      public ConcurrentHashMap(int initialCapacity) {
813 <        if (initialCapacity < 0)
2502 <            throw new IllegalArgumentException();
2503 <        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2504 <                   MAXIMUM_CAPACITY :
2505 <                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2506 <        this.counter = new LongAdder();
2507 <        this.sizeCtl = cap;
813 >        this(initialCapacity, LOAD_FACTOR, 1);
814      }
815  
816      /**
# Line 2513 | Line 819 | public class ConcurrentHashMap<K, V>
819       * @param m the map
820       */
821      public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2516        this.counter = new LongAdder();
822          this.sizeCtl = DEFAULT_CAPACITY;
823 <        internalPutAll(m);
823 >        putAll(m);
824      }
825  
826      /**
# Line 2539 | Line 844 | public class ConcurrentHashMap<K, V>
844  
845      /**
846       * Creates a new, empty map with an initial table size based on
847 <     * the given number of elements ({@code initialCapacity}), table
848 <     * density ({@code loadFactor}), and number of concurrently
847 >     * the given number of elements ({@code initialCapacity}), initial
848 >     * table density ({@code loadFactor}), and number of concurrently
849       * updating threads ({@code concurrencyLevel}).
850       *
851       * @param initialCapacity the initial capacity. The implementation
# Line 2556 | Line 861 | public class ConcurrentHashMap<K, V>
861       * nonpositive
862       */
863      public ConcurrentHashMap(int initialCapacity,
864 <                               float loadFactor, int concurrencyLevel) {
864 >                             float loadFactor, int concurrencyLevel) {
865          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866              throw new IllegalArgumentException();
867          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2564 | Line 869 | public class ConcurrentHashMap<K, V>
869          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2567        this.counter = new LongAdder();
872          this.sizeCtl = cap;
873      }
874  
875 <    /**
2572 <     * Creates a new {@link Set} backed by a ConcurrentHashMap
2573 <     * from the given type to {@code Boolean.TRUE}.
2574 <     *
2575 <     * @return the new set
2576 <     */
2577 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2578 <        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2579 <                                      Boolean.TRUE);
2580 <    }
2581 <
2582 <    /**
2583 <     * Creates a new {@link Set} backed by a ConcurrentHashMap
2584 <     * from the given type to {@code Boolean.TRUE}.
2585 <     *
2586 <     * @param initialCapacity The implementation performs internal
2587 <     * sizing to accommodate this many elements.
2588 <     * @throws IllegalArgumentException if the initial capacity of
2589 <     * elements is negative
2590 <     * @return the new set
2591 <     */
2592 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2593 <        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(initialCapacity),
2594 <                                      Boolean.TRUE);
2595 <    }
2596 <
2597 <    /**
2598 <     * {@inheritDoc}
2599 <     */
2600 <    public boolean isEmpty() {
2601 <        return counter.sum() <= 0L; // ignore transient negative values
2602 <    }
875 >    // Original (since JDK1.2) Map methods
876  
877      /**
878       * {@inheritDoc}
879       */
880      public int size() {
881 <        long n = counter.sum();
881 >        long n = sumCount();
882          return ((n < 0L) ? 0 :
883                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884                  (int)n);
885      }
886  
887      /**
888 <     * Returns the number of mappings. This method should be used
2616 <     * instead of {@link #size} because a ConcurrentHashMap may
2617 <     * contain more mappings than can be represented as an int. The
2618 <     * value returned is a snapshot; the actual count may differ if
2619 <     * there are ongoing concurrent insertions or removals.
2620 <     *
2621 <     * @return the number of mappings
888 >     * {@inheritDoc}
889       */
890 <    public long mappingCount() {
891 <        long n = counter.sum();
2625 <        return (n < 0L) ? 0L : n; // ignore transient negative values
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892      }
893  
894      /**
# Line 2636 | Line 902 | public class ConcurrentHashMap<K, V>
902       *
903       * @throws NullPointerException if the specified key is null
904       */
905 <    @SuppressWarnings("unchecked") public V get(Object key) {
906 <        if (key == null)
907 <            throw new NullPointerException();
908 <        return (V)internalGet(key);
909 <    }
910 <
911 <    /**
912 <     * Returns the value to which the specified key is mapped,
913 <     * or the given defaultValue if this map contains no mapping for the key.
914 <     *
915 <     * @param key the key
916 <     * @param defaultValue the value to return if this map contains
917 <     * no mapping for the given key
918 <     * @return the mapping for the key, if present; else the defaultValue
919 <     * @throws NullPointerException if the specified key is null
920 <     */
921 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
922 <        if (key == null)
2657 <            throw new NullPointerException();
2658 <        V v = (V) internalGet(key);
2659 <        return v == null ? defaultValue : v;
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920 >            }
921 >        }
922 >        return null;
923      }
924  
925      /**
926       * Tests if the specified object is a key in this table.
927       *
928 <     * @param  key   possible key
928 >     * @param  key possible key
929       * @return {@code true} if and only if the specified object
930       *         is a key in this table, as determined by the
931       *         {@code equals} method; {@code false} otherwise
932       * @throws NullPointerException if the specified key is null
933       */
934      public boolean containsKey(Object key) {
935 <        if (key == null)
2673 <            throw new NullPointerException();
2674 <        return internalGet(key) != null;
935 >        return get(key) != null;
936      }
937  
938      /**
# Line 2687 | Line 948 | public class ConcurrentHashMap<K, V>
948      public boolean containsValue(Object value) {
949          if (value == null)
950              throw new NullPointerException();
951 <        Object v;
952 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
953 <        while ((v = it.advance()) != null) {
954 <            if (v == value || value.equals(v))
955 <                return true;
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958 >            }
959          }
960          return false;
961      }
962  
963      /**
2700     * Legacy method testing if some key maps into the specified value
2701     * in this table.  This method is identical in functionality to
2702     * {@link #containsValue}, and exists solely to ensure
2703     * full compatibility with class {@link java.util.Hashtable},
2704     * which supported this method prior to introduction of the
2705     * Java Collections framework.
2706     *
2707     * @param  value a value to search for
2708     * @return {@code true} if and only if some key maps to the
2709     *         {@code value} argument in this table as
2710     *         determined by the {@code equals} method;
2711     *         {@code false} otherwise
2712     * @throws NullPointerException if the specified value is null
2713     */
2714    public boolean contains(Object value) {
2715        return containsValue(value);
2716    }
2717
2718    /**
964       * Maps the specified key to the specified value in this table.
965       * Neither the key nor the value can be null.
966       *
967 <     * <p> The value can be retrieved by calling the {@code get} method
967 >     * <p>The value can be retrieved by calling the {@code get} method
968       * with a key that is equal to the original key.
969       *
970       * @param key key with which the specified value is to be associated
# Line 2728 | Line 973 | public class ConcurrentHashMap<K, V>
973       *         {@code null} if there was no mapping for {@code key}
974       * @throws NullPointerException if the specified key or value is null
975       */
976 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
977 <        if (key == null || value == null)
976 >    public V put(K key, V value) {
977 >        return putVal(key, value, false);
978 >    }
979 >
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh; K fk; V fv;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 >                    break;                   // no lock when adding to empty bin
992 >            }
993 >            else if ((fh = f.hash) == MOVED)
994 >                tab = helpTransfer(tab, f);
995 >            else if (onlyIfAbsent // check first node without acquiring lock
996 >                     && fh == hash
997 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998 >                     && (fv = f.val) != null)
999 >                return fv;
1000 >            else {
1001 >                V oldVal = null;
1002 >                synchronized (f) {
1003 >                    if (tabAt(tab, i) == f) {
1004 >                        if (fh >= 0) {
1005 >                            binCount = 1;
1006 >                            for (Node<K,V> e = f;; ++binCount) {
1007 >                                K ek;
1008 >                                if (e.hash == hash &&
1009 >                                    ((ek = e.key) == key ||
1010 >                                     (ek != null && key.equals(ek)))) {
1011 >                                    oldVal = e.val;
1012 >                                    if (!onlyIfAbsent)
1013 >                                        e.val = value;
1014 >                                    break;
1015 >                                }
1016 >                                Node<K,V> pred = e;
1017 >                                if ((e = e.next) == null) {
1018 >                                    pred.next = new Node<K,V>(hash, key, value);
1019 >                                    break;
1020 >                                }
1021 >                            }
1022 >                        }
1023 >                        else if (f instanceof TreeBin) {
1024 >                            Node<K,V> p;
1025 >                            binCount = 2;
1026 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027 >                                                           value)) != null) {
1028 >                                oldVal = p.val;
1029 >                                if (!onlyIfAbsent)
1030 >                                    p.val = value;
1031 >                            }
1032 >                        }
1033 >                        else if (f instanceof ReservationNode)
1034 >                            throw new IllegalStateException("Recursive update");
1035 >                    }
1036 >                }
1037 >                if (binCount != 0) {
1038 >                    if (binCount >= TREEIFY_THRESHOLD)
1039 >                        treeifyBin(tab, i);
1040 >                    if (oldVal != null)
1041 >                        return oldVal;
1042 >                    break;
1043 >                }
1044 >            }
1045 >        }
1046 >        addCount(1L, binCount);
1047 >        return null;
1048 >    }
1049 >
1050 >    /**
1051 >     * Copies all of the mappings from the specified map to this one.
1052 >     * These mappings replace any mappings that this map had for any of the
1053 >     * keys currently in the specified map.
1054 >     *
1055 >     * @param m mappings to be stored in this map
1056 >     */
1057 >    public void putAll(Map<? extends K, ? extends V> m) {
1058 >        tryPresize(m.size());
1059 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060 >            putVal(e.getKey(), e.getValue(), false);
1061 >    }
1062 >
1063 >    /**
1064 >     * Removes the key (and its corresponding value) from this map.
1065 >     * This method does nothing if the key is not in the map.
1066 >     *
1067 >     * @param  key the key that needs to be removed
1068 >     * @return the previous value associated with {@code key}, or
1069 >     *         {@code null} if there was no mapping for {@code key}
1070 >     * @throws NullPointerException if the specified key is null
1071 >     */
1072 >    public V remove(Object key) {
1073 >        return replaceNode(key, null, null);
1074 >    }
1075 >
1076 >    /**
1077 >     * Implementation for the four public remove/replace methods:
1078 >     * Replaces node value with v, conditional upon match of cv if
1079 >     * non-null.  If resulting value is null, delete.
1080 >     */
1081 >    final V replaceNode(Object key, V value, Object cv) {
1082 >        int hash = spread(key.hashCode());
1083 >        for (Node<K,V>[] tab = table;;) {
1084 >            Node<K,V> f; int n, i, fh;
1085 >            if (tab == null || (n = tab.length) == 0 ||
1086 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087 >                break;
1088 >            else if ((fh = f.hash) == MOVED)
1089 >                tab = helpTransfer(tab, f);
1090 >            else {
1091 >                V oldVal = null;
1092 >                boolean validated = false;
1093 >                synchronized (f) {
1094 >                    if (tabAt(tab, i) == f) {
1095 >                        if (fh >= 0) {
1096 >                            validated = true;
1097 >                            for (Node<K,V> e = f, pred = null;;) {
1098 >                                K ek;
1099 >                                if (e.hash == hash &&
1100 >                                    ((ek = e.key) == key ||
1101 >                                     (ek != null && key.equals(ek)))) {
1102 >                                    V ev = e.val;
1103 >                                    if (cv == null || cv == ev ||
1104 >                                        (ev != null && cv.equals(ev))) {
1105 >                                        oldVal = ev;
1106 >                                        if (value != null)
1107 >                                            e.val = value;
1108 >                                        else if (pred != null)
1109 >                                            pred.next = e.next;
1110 >                                        else
1111 >                                            setTabAt(tab, i, e.next);
1112 >                                    }
1113 >                                    break;
1114 >                                }
1115 >                                pred = e;
1116 >                                if ((e = e.next) == null)
1117 >                                    break;
1118 >                            }
1119 >                        }
1120 >                        else if (f instanceof TreeBin) {
1121 >                            validated = true;
1122 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1123 >                            TreeNode<K,V> r, p;
1124 >                            if ((r = t.root) != null &&
1125 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1126 >                                V pv = p.val;
1127 >                                if (cv == null || cv == pv ||
1128 >                                    (pv != null && cv.equals(pv))) {
1129 >                                    oldVal = pv;
1130 >                                    if (value != null)
1131 >                                        p.val = value;
1132 >                                    else if (t.removeTreeNode(p))
1133 >                                        setTabAt(tab, i, untreeify(t.first));
1134 >                                }
1135 >                            }
1136 >                        }
1137 >                        else if (f instanceof ReservationNode)
1138 >                            throw new IllegalStateException("Recursive update");
1139 >                    }
1140 >                }
1141 >                if (validated) {
1142 >                    if (oldVal != null) {
1143 >                        if (value == null)
1144 >                            addCount(-1L, -1);
1145 >                        return oldVal;
1146 >                    }
1147 >                    break;
1148 >                }
1149 >            }
1150 >        }
1151 >        return null;
1152 >    }
1153 >
1154 >    /**
1155 >     * Removes all of the mappings from this map.
1156 >     */
1157 >    public void clear() {
1158 >        long delta = 0L; // negative number of deletions
1159 >        int i = 0;
1160 >        Node<K,V>[] tab = table;
1161 >        while (tab != null && i < tab.length) {
1162 >            int fh;
1163 >            Node<K,V> f = tabAt(tab, i);
1164 >            if (f == null)
1165 >                ++i;
1166 >            else if ((fh = f.hash) == MOVED) {
1167 >                tab = helpTransfer(tab, f);
1168 >                i = 0; // restart
1169 >            }
1170 >            else {
1171 >                synchronized (f) {
1172 >                    if (tabAt(tab, i) == f) {
1173 >                        Node<K,V> p = (fh >= 0 ? f :
1174 >                                       (f instanceof TreeBin) ?
1175 >                                       ((TreeBin<K,V>)f).first : null);
1176 >                        while (p != null) {
1177 >                            --delta;
1178 >                            p = p.next;
1179 >                        }
1180 >                        setTabAt(tab, i++, null);
1181 >                    }
1182 >                }
1183 >            }
1184 >        }
1185 >        if (delta != 0L)
1186 >            addCount(delta, -1);
1187 >    }
1188 >
1189 >    /**
1190 >     * Returns a {@link Set} view of the keys contained in this map.
1191 >     * The set is backed by the map, so changes to the map are
1192 >     * reflected in the set, and vice-versa. The set supports element
1193 >     * removal, which removes the corresponding mapping from this map,
1194 >     * via the {@code Iterator.remove}, {@code Set.remove},
1195 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1196 >     * operations.  It does not support the {@code add} or
1197 >     * {@code addAll} operations.
1198 >     *
1199 >     * <p>The view's iterators and spliterators are
1200 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 >     *
1202 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204 >     *
1205 >     * @return the set view
1206 >     */
1207 >    public KeySetView<K,V> keySet() {
1208 >        KeySetView<K,V> ks;
1209 >        if ((ks = keySet) != null) return ks;
1210 >        return keySet = new KeySetView<K,V>(this, null);
1211 >    }
1212 >
1213 >    /**
1214 >     * Returns a {@link Collection} view of the values contained in this map.
1215 >     * The collection is backed by the map, so changes to the map are
1216 >     * reflected in the collection, and vice-versa.  The collection
1217 >     * supports element removal, which removes the corresponding
1218 >     * mapping from this map, via the {@code Iterator.remove},
1219 >     * {@code Collection.remove}, {@code removeAll},
1220 >     * {@code retainAll}, and {@code clear} operations.  It does not
1221 >     * support the {@code add} or {@code addAll} operations.
1222 >     *
1223 >     * <p>The view's iterators and spliterators are
1224 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 >     *
1226 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227 >     * and {@link Spliterator#NONNULL}.
1228 >     *
1229 >     * @return the collection view
1230 >     */
1231 >    public Collection<V> values() {
1232 >        ValuesView<K,V> vs;
1233 >        if ((vs = values) != null) return vs;
1234 >        return values = new ValuesView<K,V>(this);
1235 >    }
1236 >
1237 >    /**
1238 >     * Returns a {@link Set} view of the mappings contained in this map.
1239 >     * The set is backed by the map, so changes to the map are
1240 >     * reflected in the set, and vice-versa.  The set supports element
1241 >     * removal, which removes the corresponding mapping from the map,
1242 >     * via the {@code Iterator.remove}, {@code Set.remove},
1243 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1244 >     * operations.
1245 >     *
1246 >     * <p>The view's iterators and spliterators are
1247 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 >     *
1249 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251 >     *
1252 >     * @return the set view
1253 >     */
1254 >    public Set<Map.Entry<K,V>> entrySet() {
1255 >        EntrySetView<K,V> es;
1256 >        if ((es = entrySet) != null) return es;
1257 >        return entrySet = new EntrySetView<K,V>(this);
1258 >    }
1259 >
1260 >    /**
1261 >     * Returns the hash code value for this {@link Map}, i.e.,
1262 >     * the sum of, for each key-value pair in the map,
1263 >     * {@code key.hashCode() ^ value.hashCode()}.
1264 >     *
1265 >     * @return the hash code value for this map
1266 >     */
1267 >    public int hashCode() {
1268 >        int h = 0;
1269 >        Node<K,V>[] t;
1270 >        if ((t = table) != null) {
1271 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 >            for (Node<K,V> p; (p = it.advance()) != null; )
1273 >                h += p.key.hashCode() ^ p.val.hashCode();
1274 >        }
1275 >        return h;
1276 >    }
1277 >
1278 >    /**
1279 >     * Returns a string representation of this map.  The string
1280 >     * representation consists of a list of key-value mappings (in no
1281 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1282 >     * mappings are separated by the characters {@code ", "} (comma
1283 >     * and space).  Each key-value mapping is rendered as the key
1284 >     * followed by an equals sign ("{@code =}") followed by the
1285 >     * associated value.
1286 >     *
1287 >     * @return a string representation of this map
1288 >     */
1289 >    public String toString() {
1290 >        Node<K,V>[] t;
1291 >        int f = (t = table) == null ? 0 : t.length;
1292 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 >        StringBuilder sb = new StringBuilder();
1294 >        sb.append('{');
1295 >        Node<K,V> p;
1296 >        if ((p = it.advance()) != null) {
1297 >            for (;;) {
1298 >                K k = p.key;
1299 >                V v = p.val;
1300 >                sb.append(k == this ? "(this Map)" : k);
1301 >                sb.append('=');
1302 >                sb.append(v == this ? "(this Map)" : v);
1303 >                if ((p = it.advance()) == null)
1304 >                    break;
1305 >                sb.append(',').append(' ');
1306 >            }
1307 >        }
1308 >        return sb.append('}').toString();
1309 >    }
1310 >
1311 >    /**
1312 >     * Compares the specified object with this map for equality.
1313 >     * Returns {@code true} if the given object is a map with the same
1314 >     * mappings as this map.  This operation may return misleading
1315 >     * results if either map is concurrently modified during execution
1316 >     * of this method.
1317 >     *
1318 >     * @param o object to be compared for equality with this map
1319 >     * @return {@code true} if the specified object is equal to this map
1320 >     */
1321 >    public boolean equals(Object o) {
1322 >        if (o != this) {
1323 >            if (!(o instanceof Map))
1324 >                return false;
1325 >            Map<?,?> m = (Map<?,?>) o;
1326 >            Node<K,V>[] t;
1327 >            int f = (t = table) == null ? 0 : t.length;
1328 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 >                V val = p.val;
1331 >                Object v = m.get(p.key);
1332 >                if (v == null || (v != val && !v.equals(val)))
1333 >                    return false;
1334 >            }
1335 >            for (Map.Entry<?,?> e : m.entrySet()) {
1336 >                Object mk, mv, v;
1337 >                if ((mk = e.getKey()) == null ||
1338 >                    (mv = e.getValue()) == null ||
1339 >                    (v = get(mk)) == null ||
1340 >                    (mv != v && !mv.equals(v)))
1341 >                    return false;
1342 >            }
1343 >        }
1344 >        return true;
1345 >    }
1346 >
1347 >    /**
1348 >     * Stripped-down version of helper class used in previous version,
1349 >     * declared for the sake of serialization compatibility.
1350 >     */
1351 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 >        private static final long serialVersionUID = 2249069246763182397L;
1353 >        final float loadFactor;
1354 >        Segment(float lf) { this.loadFactor = lf; }
1355 >    }
1356 >
1357 >    /**
1358 >     * Saves this map to a stream (that is, serializes it).
1359 >     *
1360 >     * @param s the stream
1361 >     * @throws java.io.IOException if an I/O error occurs
1362 >     * @serialData
1363 >     * the serialized fields, followed by the key (Object) and value
1364 >     * (Object) for each key-value mapping, followed by a null pair.
1365 >     * The key-value mappings are emitted in no particular order.
1366 >     */
1367 >    private void writeObject(java.io.ObjectOutputStream s)
1368 >        throws java.io.IOException {
1369 >        // For serialization compatibility
1370 >        // Emulate segment calculation from previous version of this class
1371 >        int sshift = 0;
1372 >        int ssize = 1;
1373 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374 >            ++sshift;
1375 >            ssize <<= 1;
1376 >        }
1377 >        int segmentShift = 32 - sshift;
1378 >        int segmentMask = ssize - 1;
1379 >        @SuppressWarnings("unchecked")
1380 >        Segment<K,V>[] segments = (Segment<K,V>[])
1381 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382 >        for (int i = 0; i < segments.length; ++i)
1383 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385 >        streamFields.put("segments", segments);
1386 >        streamFields.put("segmentShift", segmentShift);
1387 >        streamFields.put("segmentMask", segmentMask);
1388 >        s.writeFields();
1389 >
1390 >        Node<K,V>[] t;
1391 >        if ((t = table) != null) {
1392 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1394 >                s.writeObject(p.key);
1395 >                s.writeObject(p.val);
1396 >            }
1397 >        }
1398 >        s.writeObject(null);
1399 >        s.writeObject(null);
1400 >    }
1401 >
1402 >    /**
1403 >     * Reconstitutes this map from a stream (that is, deserializes it).
1404 >     * @param s the stream
1405 >     * @throws ClassNotFoundException if the class of a serialized object
1406 >     *         could not be found
1407 >     * @throws java.io.IOException if an I/O error occurs
1408 >     */
1409 >    private void readObject(java.io.ObjectInputStream s)
1410 >        throws java.io.IOException, ClassNotFoundException {
1411 >        /*
1412 >         * To improve performance in typical cases, we create nodes
1413 >         * while reading, then place in table once size is known.
1414 >         * However, we must also validate uniqueness and deal with
1415 >         * overpopulated bins while doing so, which requires
1416 >         * specialized versions of putVal mechanics.
1417 >         */
1418 >        sizeCtl = -1; // force exclusion for table construction
1419 >        s.defaultReadObject();
1420 >        long size = 0L;
1421 >        Node<K,V> p = null;
1422 >        for (;;) {
1423 >            @SuppressWarnings("unchecked")
1424 >            K k = (K) s.readObject();
1425 >            @SuppressWarnings("unchecked")
1426 >            V v = (V) s.readObject();
1427 >            if (k != null && v != null) {
1428 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429 >                ++size;
1430 >            }
1431 >            else
1432 >                break;
1433 >        }
1434 >        if (size == 0L)
1435 >            sizeCtl = 0;
1436 >        else {
1437 >            long ts = (long)(1.0 + size / LOAD_FACTOR);
1438 >            int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439 >                MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 >            @SuppressWarnings("unchecked")
1441 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 >            int mask = n - 1;
1443 >            long added = 0L;
1444 >            while (p != null) {
1445 >                boolean insertAtFront;
1446 >                Node<K,V> next = p.next, first;
1447 >                int h = p.hash, j = h & mask;
1448 >                if ((first = tabAt(tab, j)) == null)
1449 >                    insertAtFront = true;
1450 >                else {
1451 >                    K k = p.key;
1452 >                    if (first.hash < 0) {
1453 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1454 >                        if (t.putTreeVal(h, k, p.val) == null)
1455 >                            ++added;
1456 >                        insertAtFront = false;
1457 >                    }
1458 >                    else {
1459 >                        int binCount = 0;
1460 >                        insertAtFront = true;
1461 >                        Node<K,V> q; K qk;
1462 >                        for (q = first; q != null; q = q.next) {
1463 >                            if (q.hash == h &&
1464 >                                ((qk = q.key) == k ||
1465 >                                 (qk != null && k.equals(qk)))) {
1466 >                                insertAtFront = false;
1467 >                                break;
1468 >                            }
1469 >                            ++binCount;
1470 >                        }
1471 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472 >                            insertAtFront = false;
1473 >                            ++added;
1474 >                            p.next = first;
1475 >                            TreeNode<K,V> hd = null, tl = null;
1476 >                            for (q = p; q != null; q = q.next) {
1477 >                                TreeNode<K,V> t = new TreeNode<K,V>
1478 >                                    (q.hash, q.key, q.val, null, null);
1479 >                                if ((t.prev = tl) == null)
1480 >                                    hd = t;
1481 >                                else
1482 >                                    tl.next = t;
1483 >                                tl = t;
1484 >                            }
1485 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 >                        }
1487 >                    }
1488 >                }
1489 >                if (insertAtFront) {
1490 >                    ++added;
1491 >                    p.next = first;
1492 >                    setTabAt(tab, j, p);
1493 >                }
1494 >                p = next;
1495 >            }
1496 >            table = tab;
1497 >            sizeCtl = n - (n >>> 2);
1498 >            baseCount = added;
1499 >        }
1500 >    }
1501 >
1502 >    // ConcurrentMap methods
1503 >
1504 >    /**
1505 >     * {@inheritDoc}
1506 >     *
1507 >     * @return the previous value associated with the specified key,
1508 >     *         or {@code null} if there was no mapping for the key
1509 >     * @throws NullPointerException if the specified key or value is null
1510 >     */
1511 >    public V putIfAbsent(K key, V value) {
1512 >        return putVal(key, value, true);
1513 >    }
1514 >
1515 >    /**
1516 >     * {@inheritDoc}
1517 >     *
1518 >     * @throws NullPointerException if the specified key is null
1519 >     */
1520 >    public boolean remove(Object key, Object value) {
1521 >        if (key == null)
1522 >            throw new NullPointerException();
1523 >        return value != null && replaceNode(key, null, value) != null;
1524 >    }
1525 >
1526 >    /**
1527 >     * {@inheritDoc}
1528 >     *
1529 >     * @throws NullPointerException if any of the arguments are null
1530 >     */
1531 >    public boolean replace(K key, V oldValue, V newValue) {
1532 >        if (key == null || oldValue == null || newValue == null)
1533              throw new NullPointerException();
1534 <        return (V)internalPut(key, value);
1534 >        return replaceNode(key, newValue, oldValue) != null;
1535      }
1536  
1537      /**
# Line 2741 | Line 1541 | public class ConcurrentHashMap<K, V>
1541       *         or {@code null} if there was no mapping for the key
1542       * @throws NullPointerException if the specified key or value is null
1543       */
1544 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
1544 >    public V replace(K key, V value) {
1545          if (key == null || value == null)
1546              throw new NullPointerException();
1547 <        return (V)internalPutIfAbsent(key, value);
1547 >        return replaceNode(key, value, null);
1548      }
1549  
1550 +    // Overrides of JDK8+ Map extension method defaults
1551 +
1552      /**
1553 <     * Copies all of the mappings from the specified map to this one.
1554 <     * These mappings replace any mappings that this map had for any of the
1555 <     * keys currently in the specified map.
1553 >     * Returns the value to which the specified key is mapped, or the
1554 >     * given default value if this map contains no mapping for the
1555 >     * key.
1556       *
1557 <     * @param m mappings to be stored in this map
1557 >     * @param key the key whose associated value is to be returned
1558 >     * @param defaultValue the value to return if this map contains
1559 >     * no mapping for the given key
1560 >     * @return the mapping for the key, if present; else the default value
1561 >     * @throws NullPointerException if the specified key is null
1562       */
1563 <    public void putAll(Map<? extends K, ? extends V> m) {
1564 <        internalPutAll(m);
1563 >    public V getOrDefault(Object key, V defaultValue) {
1564 >        V v;
1565 >        return (v = get(key)) == null ? defaultValue : v;
1566 >    }
1567 >
1568 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1569 >        if (action == null) throw new NullPointerException();
1570 >        Node<K,V>[] t;
1571 >        if ((t = table) != null) {
1572 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1574 >                action.accept(p.key, p.val);
1575 >            }
1576 >        }
1577 >    }
1578 >
1579 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580 >        if (function == null) throw new NullPointerException();
1581 >        Node<K,V>[] t;
1582 >        if ((t = table) != null) {
1583 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 >                V oldValue = p.val;
1586 >                for (K key = p.key;;) {
1587 >                    V newValue = function.apply(key, oldValue);
1588 >                    if (newValue == null)
1589 >                        throw new NullPointerException();
1590 >                    if (replaceNode(key, newValue, oldValue) != null ||
1591 >                        (oldValue = get(key)) == null)
1592 >                        break;
1593 >                }
1594 >            }
1595 >        }
1596 >    }
1597 >
1598 >    /**
1599 >     * Helper method for EntrySetView.removeIf.
1600 >     */
1601 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 >        if (function == null) throw new NullPointerException();
1603 >        Node<K,V>[] t;
1604 >        boolean removed = false;
1605 >        if ((t = table) != null) {
1606 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1608 >                K k = p.key;
1609 >                V v = p.val;
1610 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611 >                if (function.test(e) && replaceNode(k, null, v) != null)
1612 >                    removed = true;
1613 >            }
1614 >        }
1615 >        return removed;
1616 >    }
1617 >
1618 >    /**
1619 >     * Helper method for ValuesView.removeIf.
1620 >     */
1621 >    boolean removeValueIf(Predicate<? super V> function) {
1622 >        if (function == null) throw new NullPointerException();
1623 >        Node<K,V>[] t;
1624 >        boolean removed = false;
1625 >        if ((t = table) != null) {
1626 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1628 >                K k = p.key;
1629 >                V v = p.val;
1630 >                if (function.test(v) && replaceNode(k, null, v) != null)
1631 >                    removed = true;
1632 >            }
1633 >        }
1634 >        return removed;
1635      }
1636  
1637      /**
1638       * If the specified key is not already associated with a value,
1639 <     * computes its value using the given mappingFunction and enters
1640 <     * it into the map unless null.  This is equivalent to
1641 <     * <pre> {@code
1642 <     * if (map.containsKey(key))
1643 <     *   return map.get(key);
1644 <     * value = mappingFunction.apply(key);
1645 <     * if (value != null)
2770 <     *   map.put(key, value);
2771 <     * return value;}</pre>
2772 <     *
2773 <     * except that the action is performed atomically.  If the
2774 <     * function returns {@code null} no mapping is recorded. If the
2775 <     * function itself throws an (unchecked) exception, the exception
2776 <     * is rethrown to its caller, and no mapping is recorded.  Some
2777 <     * attempted update operations on this map by other threads may be
2778 <     * blocked while computation is in progress, so the computation
2779 <     * should be short and simple, and must not attempt to update any
2780 <     * other mappings of this Map. The most appropriate usage is to
2781 <     * construct a new object serving as an initial mapped value, or
2782 <     * memoized result, as in:
2783 <     *
2784 <     *  <pre> {@code
2785 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2786 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1639 >     * attempts to compute its value using the given mapping function
1640 >     * and enters it into this map unless {@code null}.  The entire
1641 >     * method invocation is performed atomically, so the function is
1642 >     * applied at most once per key.  Some attempted update operations
1643 >     * on this map by other threads may be blocked while computation
1644 >     * is in progress, so the computation should be short and simple,
1645 >     * and must not attempt to update any other mappings of this map.
1646       *
1647       * @param key key with which the specified value is to be associated
1648       * @param mappingFunction the function to compute a value
# Line 2797 | Line 1656 | public class ConcurrentHashMap<K, V>
1656       * @throws RuntimeException or Error if the mappingFunction does so,
1657       *         in which case the mapping is left unestablished
1658       */
1659 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2801 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
1659 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1660          if (key == null || mappingFunction == null)
1661              throw new NullPointerException();
1662 <        return (V)internalComputeIfAbsent(key, mappingFunction);
1662 >        int h = spread(key.hashCode());
1663 >        V val = null;
1664 >        int binCount = 0;
1665 >        for (Node<K,V>[] tab = table;;) {
1666 >            Node<K,V> f; int n, i, fh; K fk; V fv;
1667 >            if (tab == null || (n = tab.length) == 0)
1668 >                tab = initTable();
1669 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1670 >                Node<K,V> r = new ReservationNode<K,V>();
1671 >                synchronized (r) {
1672 >                    if (casTabAt(tab, i, null, r)) {
1673 >                        binCount = 1;
1674 >                        Node<K,V> node = null;
1675 >                        try {
1676 >                            if ((val = mappingFunction.apply(key)) != null)
1677 >                                node = new Node<K,V>(h, key, val);
1678 >                        } finally {
1679 >                            setTabAt(tab, i, node);
1680 >                        }
1681 >                    }
1682 >                }
1683 >                if (binCount != 0)
1684 >                    break;
1685 >            }
1686 >            else if ((fh = f.hash) == MOVED)
1687 >                tab = helpTransfer(tab, f);
1688 >            else if (fh == h    // check first node without acquiring lock
1689 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1690 >                     && (fv = f.val) != null)
1691 >                return fv;
1692 >            else {
1693 >                boolean added = false;
1694 >                synchronized (f) {
1695 >                    if (tabAt(tab, i) == f) {
1696 >                        if (fh >= 0) {
1697 >                            binCount = 1;
1698 >                            for (Node<K,V> e = f;; ++binCount) {
1699 >                                K ek;
1700 >                                if (e.hash == h &&
1701 >                                    ((ek = e.key) == key ||
1702 >                                     (ek != null && key.equals(ek)))) {
1703 >                                    val = e.val;
1704 >                                    break;
1705 >                                }
1706 >                                Node<K,V> pred = e;
1707 >                                if ((e = e.next) == null) {
1708 >                                    if ((val = mappingFunction.apply(key)) != null) {
1709 >                                        if (pred.next != null)
1710 >                                            throw new IllegalStateException("Recursive update");
1711 >                                        added = true;
1712 >                                        pred.next = new Node<K,V>(h, key, val);
1713 >                                    }
1714 >                                    break;
1715 >                                }
1716 >                            }
1717 >                        }
1718 >                        else if (f instanceof TreeBin) {
1719 >                            binCount = 2;
1720 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1721 >                            TreeNode<K,V> r, p;
1722 >                            if ((r = t.root) != null &&
1723 >                                (p = r.findTreeNode(h, key, null)) != null)
1724 >                                val = p.val;
1725 >                            else if ((val = mappingFunction.apply(key)) != null) {
1726 >                                added = true;
1727 >                                t.putTreeVal(h, key, val);
1728 >                            }
1729 >                        }
1730 >                        else if (f instanceof ReservationNode)
1731 >                            throw new IllegalStateException("Recursive update");
1732 >                    }
1733 >                }
1734 >                if (binCount != 0) {
1735 >                    if (binCount >= TREEIFY_THRESHOLD)
1736 >                        treeifyBin(tab, i);
1737 >                    if (!added)
1738 >                        return val;
1739 >                    break;
1740 >                }
1741 >            }
1742 >        }
1743 >        if (val != null)
1744 >            addCount(1L, binCount);
1745 >        return val;
1746      }
1747  
1748      /**
1749 <     * If the given key is present, computes a new mapping value given a key and
1750 <     * its current mapped value. This is equivalent to
1751 <     *  <pre> {@code
1752 <     *   if (map.containsKey(key)) {
1753 <     *     value = remappingFunction.apply(key, map.get(key));
1754 <     *     if (value != null)
1755 <     *       map.put(key, value);
2815 <     *     else
2816 <     *       map.remove(key);
2817 <     *   }
2818 <     * }</pre>
2819 <     *
2820 <     * except that the action is performed atomically.  If the
2821 <     * function returns {@code null}, the mapping is removed.  If the
2822 <     * function itself throws an (unchecked) exception, the exception
2823 <     * is rethrown to its caller, and the current mapping is left
2824 <     * unchanged.  Some attempted update operations on this map by
2825 <     * other threads may be blocked while computation is in progress,
2826 <     * so the computation should be short and simple, and must not
2827 <     * attempt to update any other mappings of this Map. For example,
2828 <     * to either create or append new messages to a value mapping:
1749 >     * If the value for the specified key is present, attempts to
1750 >     * compute a new mapping given the key and its current mapped
1751 >     * value.  The entire method invocation is performed atomically.
1752 >     * Some attempted update operations on this map by other threads
1753 >     * may be blocked while computation is in progress, so the
1754 >     * computation should be short and simple, and must not attempt to
1755 >     * update any other mappings of this map.
1756       *
1757 <     * @param key key with which the specified value is to be associated
1757 >     * @param key key with which a value may be associated
1758       * @param remappingFunction the function to compute a value
1759       * @return the new value associated with the specified key, or null if none
1760       * @throws NullPointerException if the specified key or remappingFunction
# Line 2838 | Line 1765 | public class ConcurrentHashMap<K, V>
1765       * @throws RuntimeException or Error if the remappingFunction does so,
1766       *         in which case the mapping is unchanged
1767       */
1768 <    @SuppressWarnings("unchecked") public V computeIfPresent
2842 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1768 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1769          if (key == null || remappingFunction == null)
1770              throw new NullPointerException();
1771 <        return (V)internalCompute(key, true, remappingFunction);
1771 >        int h = spread(key.hashCode());
1772 >        V val = null;
1773 >        int delta = 0;
1774 >        int binCount = 0;
1775 >        for (Node<K,V>[] tab = table;;) {
1776 >            Node<K,V> f; int n, i, fh;
1777 >            if (tab == null || (n = tab.length) == 0)
1778 >                tab = initTable();
1779 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1780 >                break;
1781 >            else if ((fh = f.hash) == MOVED)
1782 >                tab = helpTransfer(tab, f);
1783 >            else {
1784 >                synchronized (f) {
1785 >                    if (tabAt(tab, i) == f) {
1786 >                        if (fh >= 0) {
1787 >                            binCount = 1;
1788 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1789 >                                K ek;
1790 >                                if (e.hash == h &&
1791 >                                    ((ek = e.key) == key ||
1792 >                                     (ek != null && key.equals(ek)))) {
1793 >                                    val = remappingFunction.apply(key, e.val);
1794 >                                    if (val != null)
1795 >                                        e.val = val;
1796 >                                    else {
1797 >                                        delta = -1;
1798 >                                        Node<K,V> en = e.next;
1799 >                                        if (pred != null)
1800 >                                            pred.next = en;
1801 >                                        else
1802 >                                            setTabAt(tab, i, en);
1803 >                                    }
1804 >                                    break;
1805 >                                }
1806 >                                pred = e;
1807 >                                if ((e = e.next) == null)
1808 >                                    break;
1809 >                            }
1810 >                        }
1811 >                        else if (f instanceof TreeBin) {
1812 >                            binCount = 2;
1813 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1814 >                            TreeNode<K,V> r, p;
1815 >                            if ((r = t.root) != null &&
1816 >                                (p = r.findTreeNode(h, key, null)) != null) {
1817 >                                val = remappingFunction.apply(key, p.val);
1818 >                                if (val != null)
1819 >                                    p.val = val;
1820 >                                else {
1821 >                                    delta = -1;
1822 >                                    if (t.removeTreeNode(p))
1823 >                                        setTabAt(tab, i, untreeify(t.first));
1824 >                                }
1825 >                            }
1826 >                        }
1827 >                        else if (f instanceof ReservationNode)
1828 >                            throw new IllegalStateException("Recursive update");
1829 >                    }
1830 >                }
1831 >                if (binCount != 0)
1832 >                    break;
1833 >            }
1834 >        }
1835 >        if (delta != 0)
1836 >            addCount((long)delta, binCount);
1837 >        return val;
1838      }
1839  
1840      /**
1841 <     * Computes a new mapping value given a key and
1842 <     * its current mapped value (or {@code null} if there is no current
1843 <     * mapping). This is equivalent to
1844 <     *  <pre> {@code
1845 <     *   value = remappingFunction.apply(key, map.get(key));
1846 <     *   if (value != null)
1847 <     *     map.put(key, value);
2856 <     *   else
2857 <     *     map.remove(key);
2858 <     * }</pre>
2859 <     *
2860 <     * except that the action is performed atomically.  If the
2861 <     * function returns {@code null}, the mapping is removed.  If the
2862 <     * function itself throws an (unchecked) exception, the exception
2863 <     * is rethrown to its caller, and the current mapping is left
2864 <     * unchanged.  Some attempted update operations on this map by
2865 <     * other threads may be blocked while computation is in progress,
2866 <     * so the computation should be short and simple, and must not
2867 <     * attempt to update any other mappings of this Map. For example,
2868 <     * to either create or append new messages to a value mapping:
2869 <     *
2870 <     * <pre> {@code
2871 <     * Map<Key, String> map = ...;
2872 <     * final String msg = ...;
2873 <     * map.compute(key, new BiFun<Key, String, String>() {
2874 <     *   public String apply(Key k, String v) {
2875 <     *    return (v == null) ? msg : v + msg;});}}</pre>
1841 >     * Attempts to compute a mapping for the specified key and its
1842 >     * current mapped value (or {@code null} if there is no current
1843 >     * mapping). The entire method invocation is performed atomically.
1844 >     * Some attempted update operations on this map by other threads
1845 >     * may be blocked while computation is in progress, so the
1846 >     * computation should be short and simple, and must not attempt to
1847 >     * update any other mappings of this Map.
1848       *
1849       * @param key key with which the specified value is to be associated
1850       * @param remappingFunction the function to compute a value
# Line 2885 | Line 1857 | public class ConcurrentHashMap<K, V>
1857       * @throws RuntimeException or Error if the remappingFunction does so,
1858       *         in which case the mapping is unchanged
1859       */
1860 <    @SuppressWarnings("unchecked") public V compute
1861 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1860 >    public V compute(K key,
1861 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1862          if (key == null || remappingFunction == null)
1863              throw new NullPointerException();
1864 <        return (V)internalCompute(key, false, remappingFunction);
1864 >        int h = spread(key.hashCode());
1865 >        V val = null;
1866 >        int delta = 0;
1867 >        int binCount = 0;
1868 >        for (Node<K,V>[] tab = table;;) {
1869 >            Node<K,V> f; int n, i, fh;
1870 >            if (tab == null || (n = tab.length) == 0)
1871 >                tab = initTable();
1872 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1873 >                Node<K,V> r = new ReservationNode<K,V>();
1874 >                synchronized (r) {
1875 >                    if (casTabAt(tab, i, null, r)) {
1876 >                        binCount = 1;
1877 >                        Node<K,V> node = null;
1878 >                        try {
1879 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1880 >                                delta = 1;
1881 >                                node = new Node<K,V>(h, key, val);
1882 >                            }
1883 >                        } finally {
1884 >                            setTabAt(tab, i, node);
1885 >                        }
1886 >                    }
1887 >                }
1888 >                if (binCount != 0)
1889 >                    break;
1890 >            }
1891 >            else if ((fh = f.hash) == MOVED)
1892 >                tab = helpTransfer(tab, f);
1893 >            else {
1894 >                synchronized (f) {
1895 >                    if (tabAt(tab, i) == f) {
1896 >                        if (fh >= 0) {
1897 >                            binCount = 1;
1898 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1899 >                                K ek;
1900 >                                if (e.hash == h &&
1901 >                                    ((ek = e.key) == key ||
1902 >                                     (ek != null && key.equals(ek)))) {
1903 >                                    val = remappingFunction.apply(key, e.val);
1904 >                                    if (val != null)
1905 >                                        e.val = val;
1906 >                                    else {
1907 >                                        delta = -1;
1908 >                                        Node<K,V> en = e.next;
1909 >                                        if (pred != null)
1910 >                                            pred.next = en;
1911 >                                        else
1912 >                                            setTabAt(tab, i, en);
1913 >                                    }
1914 >                                    break;
1915 >                                }
1916 >                                pred = e;
1917 >                                if ((e = e.next) == null) {
1918 >                                    val = remappingFunction.apply(key, null);
1919 >                                    if (val != null) {
1920 >                                        if (pred.next != null)
1921 >                                            throw new IllegalStateException("Recursive update");
1922 >                                        delta = 1;
1923 >                                        pred.next = new Node<K,V>(h, key, val);
1924 >                                    }
1925 >                                    break;
1926 >                                }
1927 >                            }
1928 >                        }
1929 >                        else if (f instanceof TreeBin) {
1930 >                            binCount = 1;
1931 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1932 >                            TreeNode<K,V> r, p;
1933 >                            if ((r = t.root) != null)
1934 >                                p = r.findTreeNode(h, key, null);
1935 >                            else
1936 >                                p = null;
1937 >                            V pv = (p == null) ? null : p.val;
1938 >                            val = remappingFunction.apply(key, pv);
1939 >                            if (val != null) {
1940 >                                if (p != null)
1941 >                                    p.val = val;
1942 >                                else {
1943 >                                    delta = 1;
1944 >                                    t.putTreeVal(h, key, val);
1945 >                                }
1946 >                            }
1947 >                            else if (p != null) {
1948 >                                delta = -1;
1949 >                                if (t.removeTreeNode(p))
1950 >                                    setTabAt(tab, i, untreeify(t.first));
1951 >                            }
1952 >                        }
1953 >                        else if (f instanceof ReservationNode)
1954 >                            throw new IllegalStateException("Recursive update");
1955 >                    }
1956 >                }
1957 >                if (binCount != 0) {
1958 >                    if (binCount >= TREEIFY_THRESHOLD)
1959 >                        treeifyBin(tab, i);
1960 >                    break;
1961 >                }
1962 >            }
1963 >        }
1964 >        if (delta != 0)
1965 >            addCount((long)delta, binCount);
1966 >        return val;
1967      }
1968  
1969      /**
1970 <     * If the specified key is not already associated
1971 <     * with a value, associate it with the given value.
1972 <     * Otherwise, replace the value with the results of
1973 <     * the given remapping function. This is equivalent to:
1974 <     *  <pre> {@code
1975 <     *   if (!map.containsKey(key))
1976 <     *     map.put(value);
1977 <     *   else {
1978 <     *     newValue = remappingFunction.apply(map.get(key), value);
1979 <     *     if (value != null)
1980 <     *       map.put(key, value);
1981 <     *     else
1982 <     *       map.remove(key);
1983 <     *   }
1984 <     * }</pre>
1985 <     * except that the action is performed atomically.  If the
1986 <     * function returns {@code null}, the mapping is removed.  If the
1987 <     * function itself throws an (unchecked) exception, the exception
2914 <     * is rethrown to its caller, and the current mapping is left
2915 <     * unchanged.  Some attempted update operations on this map by
2916 <     * other threads may be blocked while computation is in progress,
2917 <     * so the computation should be short and simple, and must not
2918 <     * attempt to update any other mappings of this Map.
1970 >     * If the specified key is not already associated with a
1971 >     * (non-null) value, associates it with the given value.
1972 >     * Otherwise, replaces the value with the results of the given
1973 >     * remapping function, or removes if {@code null}. The entire
1974 >     * method invocation is performed atomically.  Some attempted
1975 >     * update operations on this map by other threads may be blocked
1976 >     * while computation is in progress, so the computation should be
1977 >     * short and simple, and must not attempt to update any other
1978 >     * mappings of this Map.
1979 >     *
1980 >     * @param key key with which the specified value is to be associated
1981 >     * @param value the value to use if absent
1982 >     * @param remappingFunction the function to recompute a value if present
1983 >     * @return the new value associated with the specified key, or null if none
1984 >     * @throws NullPointerException if the specified key or the
1985 >     *         remappingFunction is null
1986 >     * @throws RuntimeException or Error if the remappingFunction does so,
1987 >     *         in which case the mapping is unchanged
1988       */
1989 <    @SuppressWarnings("unchecked") public V merge
2921 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1989 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1990          if (key == null || value == null || remappingFunction == null)
1991              throw new NullPointerException();
1992 <        return (V)internalMerge(key, value, remappingFunction);
1992 >        int h = spread(key.hashCode());
1993 >        V val = null;
1994 >        int delta = 0;
1995 >        int binCount = 0;
1996 >        for (Node<K,V>[] tab = table;;) {
1997 >            Node<K,V> f; int n, i, fh;
1998 >            if (tab == null || (n = tab.length) == 0)
1999 >                tab = initTable();
2000 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2001 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2002 >                    delta = 1;
2003 >                    val = value;
2004 >                    break;
2005 >                }
2006 >            }
2007 >            else if ((fh = f.hash) == MOVED)
2008 >                tab = helpTransfer(tab, f);
2009 >            else {
2010 >                synchronized (f) {
2011 >                    if (tabAt(tab, i) == f) {
2012 >                        if (fh >= 0) {
2013 >                            binCount = 1;
2014 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2015 >                                K ek;
2016 >                                if (e.hash == h &&
2017 >                                    ((ek = e.key) == key ||
2018 >                                     (ek != null && key.equals(ek)))) {
2019 >                                    val = remappingFunction.apply(e.val, value);
2020 >                                    if (val != null)
2021 >                                        e.val = val;
2022 >                                    else {
2023 >                                        delta = -1;
2024 >                                        Node<K,V> en = e.next;
2025 >                                        if (pred != null)
2026 >                                            pred.next = en;
2027 >                                        else
2028 >                                            setTabAt(tab, i, en);
2029 >                                    }
2030 >                                    break;
2031 >                                }
2032 >                                pred = e;
2033 >                                if ((e = e.next) == null) {
2034 >                                    delta = 1;
2035 >                                    val = value;
2036 >                                    pred.next = new Node<K,V>(h, key, val);
2037 >                                    break;
2038 >                                }
2039 >                            }
2040 >                        }
2041 >                        else if (f instanceof TreeBin) {
2042 >                            binCount = 2;
2043 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2044 >                            TreeNode<K,V> r = t.root;
2045 >                            TreeNode<K,V> p = (r == null) ? null :
2046 >                                r.findTreeNode(h, key, null);
2047 >                            val = (p == null) ? value :
2048 >                                remappingFunction.apply(p.val, value);
2049 >                            if (val != null) {
2050 >                                if (p != null)
2051 >                                    p.val = val;
2052 >                                else {
2053 >                                    delta = 1;
2054 >                                    t.putTreeVal(h, key, val);
2055 >                                }
2056 >                            }
2057 >                            else if (p != null) {
2058 >                                delta = -1;
2059 >                                if (t.removeTreeNode(p))
2060 >                                    setTabAt(tab, i, untreeify(t.first));
2061 >                            }
2062 >                        }
2063 >                        else if (f instanceof ReservationNode)
2064 >                            throw new IllegalStateException("Recursive update");
2065 >                    }
2066 >                }
2067 >                if (binCount != 0) {
2068 >                    if (binCount >= TREEIFY_THRESHOLD)
2069 >                        treeifyBin(tab, i);
2070 >                    break;
2071 >                }
2072 >            }
2073 >        }
2074 >        if (delta != 0)
2075 >            addCount((long)delta, binCount);
2076 >        return val;
2077      }
2078  
2079 +    // Hashtable legacy methods
2080 +
2081      /**
2082 <     * Removes the key (and its corresponding value) from this map.
2929 <     * This method does nothing if the key is not in the map.
2082 >     * Tests if some key maps into the specified value in this table.
2083       *
2084 <     * @param  key the key that needs to be removed
2085 <     * @return the previous value associated with {@code key}, or
2086 <     *         {@code null} if there was no mapping for {@code key}
2087 <     * @throws NullPointerException if the specified key is null
2084 >     * <p>Note that this method is identical in functionality to
2085 >     * {@link #containsValue(Object)}, and exists solely to ensure
2086 >     * full compatibility with class {@link java.util.Hashtable},
2087 >     * which supported this method prior to introduction of the
2088 >     * Java Collections Framework.
2089 >     *
2090 >     * @param  value a value to search for
2091 >     * @return {@code true} if and only if some key maps to the
2092 >     *         {@code value} argument in this table as
2093 >     *         determined by the {@code equals} method;
2094 >     *         {@code false} otherwise
2095 >     * @throws NullPointerException if the specified value is null
2096       */
2097 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2098 <        if (key == null)
2938 <            throw new NullPointerException();
2939 <        return (V)internalReplace(key, null, null);
2097 >    public boolean contains(Object value) {
2098 >        return containsValue(value);
2099      }
2100  
2101      /**
2102 <     * {@inheritDoc}
2102 >     * Returns an enumeration of the keys in this table.
2103       *
2104 <     * @throws NullPointerException if the specified key is null
2104 >     * @return an enumeration of the keys in this table
2105 >     * @see #keySet()
2106       */
2107 <    public boolean remove(Object key, Object value) {
2108 <        if (key == null)
2109 <            throw new NullPointerException();
2110 <        if (value == null)
2951 <            return false;
2952 <        return internalReplace(key, null, value) != null;
2107 >    public Enumeration<K> keys() {
2108 >        Node<K,V>[] t;
2109 >        int f = (t = table) == null ? 0 : t.length;
2110 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2111      }
2112  
2113      /**
2114 <     * {@inheritDoc}
2114 >     * Returns an enumeration of the values in this table.
2115       *
2116 <     * @throws NullPointerException if any of the arguments are null
2116 >     * @return an enumeration of the values in this table
2117 >     * @see #values()
2118       */
2119 <    public boolean replace(K key, V oldValue, V newValue) {
2120 <        if (key == null || oldValue == null || newValue == null)
2121 <            throw new NullPointerException();
2122 <        return internalReplace(key, newValue, oldValue) != null;
2119 >    public Enumeration<V> elements() {
2120 >        Node<K,V>[] t;
2121 >        int f = (t = table) == null ? 0 : t.length;
2122 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2123      }
2124  
2125 +    // ConcurrentHashMap-only methods
2126 +
2127      /**
2128 <     * {@inheritDoc}
2128 >     * Returns the number of mappings. This method should be used
2129 >     * instead of {@link #size} because a ConcurrentHashMap may
2130 >     * contain more mappings than can be represented as an int. The
2131 >     * value returned is an estimate; the actual count may differ if
2132 >     * there are concurrent insertions or removals.
2133       *
2134 <     * @return the previous value associated with the specified key,
2135 <     *         or {@code null} if there was no mapping for the key
2971 <     * @throws NullPointerException if the specified key or value is null
2134 >     * @return the number of mappings
2135 >     * @since 1.8
2136       */
2137 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2138 <        if (key == null || value == null)
2139 <            throw new NullPointerException();
2976 <        return (V)internalReplace(key, value, null);
2137 >    public long mappingCount() {
2138 >        long n = sumCount();
2139 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2140      }
2141  
2142      /**
2143 <     * Removes all of the mappings from this map.
2143 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2144 >     * from the given type to {@code Boolean.TRUE}.
2145 >     *
2146 >     * @param <K> the element type of the returned set
2147 >     * @return the new set
2148 >     * @since 1.8
2149       */
2150 <    public void clear() {
2151 <        internalClear();
2150 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2151 >        return new KeySetView<K,Boolean>
2152 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2153      }
2154  
2155      /**
2156 <     * Returns a {@link Set} view of the keys contained in this map.
2157 <     * The set is backed by the map, so changes to the map are
2989 <     * reflected in the set, and vice-versa.
2156 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2157 >     * from the given type to {@code Boolean.TRUE}.
2158       *
2159 <     * @return the set view
2159 >     * @param initialCapacity The implementation performs internal
2160 >     * sizing to accommodate this many elements.
2161 >     * @param <K> the element type of the returned set
2162 >     * @return the new set
2163 >     * @throws IllegalArgumentException if the initial capacity of
2164 >     * elements is negative
2165 >     * @since 1.8
2166       */
2167 <    public KeySetView<K,V> keySet() {
2168 <        KeySetView<K,V> ks = keySet;
2169 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2167 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2168 >        return new KeySetView<K,Boolean>
2169 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2170      }
2171  
2172      /**
2173       * Returns a {@link Set} view of the keys in this map, using the
2174       * given common mapped value for any additions (i.e., {@link
2175 <     * Collection#add} and {@link Collection#addAll}). This is of
2176 <     * course only appropriate if it is acceptable to use the same
2177 <     * value for all additions from this view.
2175 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2176 >     * This is of course only appropriate if it is acceptable to use
2177 >     * the same value for all additions from this view.
2178       *
2179 <     * @param mappedValue the mapped value to use for any
3006 <     * additions.
2179 >     * @param mappedValue the mapped value to use for any additions
2180       * @return the set view
2181       * @throws NullPointerException if the mappedValue is null
2182       */
# Line 3013 | Line 2186 | public class ConcurrentHashMap<K, V>
2186          return new KeySetView<K,V>(this, mappedValue);
2187      }
2188  
2189 +    /* ---------------- Special Nodes -------------- */
2190 +
2191      /**
2192 <     * Returns a {@link Collection} view of the values contained in this map.
3018 <     * The collection is backed by the map, so changes to the map are
3019 <     * reflected in the collection, and vice-versa.
2192 >     * A node inserted at head of bins during transfer operations.
2193       */
2194 <    public ValuesView<K,V> values() {
2195 <        ValuesView<K,V> vs = values;
2196 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2194 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2195 >        final Node<K,V>[] nextTable;
2196 >        ForwardingNode(Node<K,V>[] tab) {
2197 >            super(MOVED, null, null);
2198 >            this.nextTable = tab;
2199 >        }
2200 >
2201 >        Node<K,V> find(int h, Object k) {
2202 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2203 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2204 >                Node<K,V> e; int n;
2205 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2206 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2207 >                    return null;
2208 >                for (;;) {
2209 >                    int eh; K ek;
2210 >                    if ((eh = e.hash) == h &&
2211 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2212 >                        return e;
2213 >                    if (eh < 0) {
2214 >                        if (e instanceof ForwardingNode) {
2215 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2216 >                            continue outer;
2217 >                        }
2218 >                        else
2219 >                            return e.find(h, k);
2220 >                    }
2221 >                    if ((e = e.next) == null)
2222 >                        return null;
2223 >                }
2224 >            }
2225 >        }
2226      }
2227  
2228      /**
2229 <     * Returns a {@link Set} view of the mappings contained in this map.
3028 <     * The set is backed by the map, so changes to the map are
3029 <     * reflected in the set, and vice-versa.  The set supports element
3030 <     * removal, which removes the corresponding mapping from the map,
3031 <     * via the {@code Iterator.remove}, {@code Set.remove},
3032 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
3033 <     * operations.  It does not support the {@code add} or
3034 <     * {@code addAll} operations.
3035 <     *
3036 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3037 <     * that will never throw {@link ConcurrentModificationException},
3038 <     * and guarantees to traverse elements as they existed upon
3039 <     * construction of the iterator, and may (but is not guaranteed to)
3040 <     * reflect any modifications subsequent to construction.
2229 >     * A place-holder node used in computeIfAbsent and compute.
2230       */
2231 <    public Set<Map.Entry<K,V>> entrySet() {
2232 <        EntrySetView<K,V> es = entrySet;
2233 <        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2231 >    static final class ReservationNode<K,V> extends Node<K,V> {
2232 >        ReservationNode() {
2233 >            super(RESERVED, null, null);
2234 >        }
2235 >
2236 >        Node<K,V> find(int h, Object k) {
2237 >            return null;
2238 >        }
2239      }
2240  
2241 +    /* ---------------- Table Initialization and Resizing -------------- */
2242 +
2243      /**
2244 <     * Returns an enumeration of the keys in this table.
2245 <     *
3050 <     * @return an enumeration of the keys in this table
3051 <     * @see #keySet()
2244 >     * Returns the stamp bits for resizing a table of size n.
2245 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2246       */
2247 <    public Enumeration<K> keys() {
2248 <        return new KeyIterator<K,V>(this);
2247 >    static final int resizeStamp(int n) {
2248 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2249      }
2250  
2251      /**
2252 <     * Returns an enumeration of the values in this table.
3059 <     *
3060 <     * @return an enumeration of the values in this table
3061 <     * @see #values()
2252 >     * Initializes table, using the size recorded in sizeCtl.
2253       */
2254 <    public Enumeration<V> elements() {
2255 <        return new ValueIterator<K,V>(this);
2254 >    private final Node<K,V>[] initTable() {
2255 >        Node<K,V>[] tab; int sc;
2256 >        while ((tab = table) == null || tab.length == 0) {
2257 >            if ((sc = sizeCtl) < 0)
2258 >                Thread.yield(); // lost initialization race; just spin
2259 >            else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2260 >                try {
2261 >                    if ((tab = table) == null || tab.length == 0) {
2262 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2263 >                        @SuppressWarnings("unchecked")
2264 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2265 >                        table = tab = nt;
2266 >                        sc = n - (n >>> 2);
2267 >                    }
2268 >                } finally {
2269 >                    sizeCtl = sc;
2270 >                }
2271 >                break;
2272 >            }
2273 >        }
2274 >        return tab;
2275      }
2276  
2277      /**
2278 <     * Returns a partitionable iterator of the keys in this map.
2279 <     *
2280 <     * @return a partitionable iterator of the keys in this map
2278 >     * Adds to count, and if table is too small and not already
2279 >     * resizing, initiates transfer. If already resizing, helps
2280 >     * perform transfer if work is available.  Rechecks occupancy
2281 >     * after a transfer to see if another resize is already needed
2282 >     * because resizings are lagging additions.
2283 >     *
2284 >     * @param x the count to add
2285 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2286 >     */
2287 >    private final void addCount(long x, int check) {
2288 >        CounterCell[] cs; long b, s;
2289 >        if ((cs = counterCells) != null ||
2290 >            !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2291 >            CounterCell c; long v; int m;
2292 >            boolean uncontended = true;
2293 >            if (cs == null || (m = cs.length - 1) < 0 ||
2294 >                (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2295 >                !(uncontended =
2296 >                  U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2297 >                fullAddCount(x, uncontended);
2298 >                return;
2299 >            }
2300 >            if (check <= 1)
2301 >                return;
2302 >            s = sumCount();
2303 >        }
2304 >        if (check >= 0) {
2305 >            Node<K,V>[] tab, nt; int n, sc;
2306 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2307 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2308 >                int rs = resizeStamp(n) << RESIZE_STAMP_SHIFT;
2309 >                if (sc < 0) {
2310 >                    if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2311 >                        (nt = nextTable) == null || transferIndex <= 0)
2312 >                        break;
2313 >                    if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2314 >                        transfer(tab, nt);
2315 >                }
2316 >                else if (U.compareAndSetInt(this, SIZECTL, sc, rs + 2))
2317 >                    transfer(tab, null);
2318 >                s = sumCount();
2319 >            }
2320 >        }
2321 >    }
2322 >
2323 >    /**
2324 >     * Helps transfer if a resize is in progress.
2325       */
2326 <    public Spliterator<K> keySpliterator() {
2327 <        return new KeyIterator<K,V>(this);
2326 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2327 >        Node<K,V>[] nextTab; int sc;
2328 >        if (tab != null && (f instanceof ForwardingNode) &&
2329 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2330 >            int rs = resizeStamp(tab.length) << RESIZE_STAMP_SHIFT;
2331 >            while (nextTab == nextTable && table == tab &&
2332 >                   (sc = sizeCtl) < 0) {
2333 >                if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2334 >                    transferIndex <= 0)
2335 >                    break;
2336 >                if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2337 >                    transfer(tab, nextTab);
2338 >                    break;
2339 >                }
2340 >            }
2341 >            return nextTab;
2342 >        }
2343 >        return table;
2344      }
2345  
2346      /**
2347 <     * Returns a partitionable iterator of the values in this map.
2347 >     * Tries to presize table to accommodate the given number of elements.
2348       *
2349 <     * @return a partitionable iterator of the values in this map
2349 >     * @param size number of elements (doesn't need to be perfectly accurate)
2350       */
2351 <    public Spliterator<V> valueSpliterator() {
2352 <        return new ValueIterator<K,V>(this);
2351 >    private final void tryPresize(int size) {
2352 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2353 >            tableSizeFor(size + (size >>> 1) + 1);
2354 >        int sc;
2355 >        while ((sc = sizeCtl) >= 0) {
2356 >            Node<K,V>[] tab = table; int n;
2357 >            if (tab == null || (n = tab.length) == 0) {
2358 >                n = (sc > c) ? sc : c;
2359 >                if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2360 >                    try {
2361 >                        if (table == tab) {
2362 >                            @SuppressWarnings("unchecked")
2363 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2364 >                            table = nt;
2365 >                            sc = n - (n >>> 2);
2366 >                        }
2367 >                    } finally {
2368 >                        sizeCtl = sc;
2369 >                    }
2370 >                }
2371 >            }
2372 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2373 >                break;
2374 >            else if (tab == table) {
2375 >                int rs = resizeStamp(n);
2376 >                if (U.compareAndSetInt(this, SIZECTL, sc,
2377 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2378 >                    transfer(tab, null);
2379 >            }
2380 >        }
2381      }
2382  
2383      /**
2384 <     * Returns a partitionable iterator of the entries in this map.
2385 <     *
3088 <     * @return a partitionable iterator of the entries in this map
2384 >     * Moves and/or copies the nodes in each bin to new table. See
2385 >     * above for explanation.
2386       */
2387 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2388 <        return new EntryIterator<K,V>(this);
2387 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2388 >        int n = tab.length, stride;
2389 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2390 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2391 >        if (nextTab == null) {            // initiating
2392 >            try {
2393 >                @SuppressWarnings("unchecked")
2394 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2395 >                nextTab = nt;
2396 >            } catch (Throwable ex) {      // try to cope with OOME
2397 >                sizeCtl = Integer.MAX_VALUE;
2398 >                return;
2399 >            }
2400 >            nextTable = nextTab;
2401 >            transferIndex = n;
2402 >        }
2403 >        int nextn = nextTab.length;
2404 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2405 >        boolean advance = true;
2406 >        boolean finishing = false; // to ensure sweep before committing nextTab
2407 >        for (int i = 0, bound = 0;;) {
2408 >            Node<K,V> f; int fh;
2409 >            while (advance) {
2410 >                int nextIndex, nextBound;
2411 >                if (--i >= bound || finishing)
2412 >                    advance = false;
2413 >                else if ((nextIndex = transferIndex) <= 0) {
2414 >                    i = -1;
2415 >                    advance = false;
2416 >                }
2417 >                else if (U.compareAndSetInt
2418 >                         (this, TRANSFERINDEX, nextIndex,
2419 >                          nextBound = (nextIndex > stride ?
2420 >                                       nextIndex - stride : 0))) {
2421 >                    bound = nextBound;
2422 >                    i = nextIndex - 1;
2423 >                    advance = false;
2424 >                }
2425 >            }
2426 >            if (i < 0 || i >= n || i + n >= nextn) {
2427 >                int sc;
2428 >                if (finishing) {
2429 >                    nextTable = null;
2430 >                    table = nextTab;
2431 >                    sizeCtl = (n << 1) - (n >>> 1);
2432 >                    return;
2433 >                }
2434 >                if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2435 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2436 >                        return;
2437 >                    finishing = advance = true;
2438 >                    i = n; // recheck before commit
2439 >                }
2440 >            }
2441 >            else if ((f = tabAt(tab, i)) == null)
2442 >                advance = casTabAt(tab, i, null, fwd);
2443 >            else if ((fh = f.hash) == MOVED)
2444 >                advance = true; // already processed
2445 >            else {
2446 >                synchronized (f) {
2447 >                    if (tabAt(tab, i) == f) {
2448 >                        Node<K,V> ln, hn;
2449 >                        if (fh >= 0) {
2450 >                            int runBit = fh & n;
2451 >                            Node<K,V> lastRun = f;
2452 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2453 >                                int b = p.hash & n;
2454 >                                if (b != runBit) {
2455 >                                    runBit = b;
2456 >                                    lastRun = p;
2457 >                                }
2458 >                            }
2459 >                            if (runBit == 0) {
2460 >                                ln = lastRun;
2461 >                                hn = null;
2462 >                            }
2463 >                            else {
2464 >                                hn = lastRun;
2465 >                                ln = null;
2466 >                            }
2467 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2468 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2469 >                                if ((ph & n) == 0)
2470 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2471 >                                else
2472 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2473 >                            }
2474 >                            setTabAt(nextTab, i, ln);
2475 >                            setTabAt(nextTab, i + n, hn);
2476 >                            setTabAt(tab, i, fwd);
2477 >                            advance = true;
2478 >                        }
2479 >                        else if (f instanceof TreeBin) {
2480 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2481 >                            TreeNode<K,V> lo = null, loTail = null;
2482 >                            TreeNode<K,V> hi = null, hiTail = null;
2483 >                            int lc = 0, hc = 0;
2484 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2485 >                                int h = e.hash;
2486 >                                TreeNode<K,V> p = new TreeNode<K,V>
2487 >                                    (h, e.key, e.val, null, null);
2488 >                                if ((h & n) == 0) {
2489 >                                    if ((p.prev = loTail) == null)
2490 >                                        lo = p;
2491 >                                    else
2492 >                                        loTail.next = p;
2493 >                                    loTail = p;
2494 >                                    ++lc;
2495 >                                }
2496 >                                else {
2497 >                                    if ((p.prev = hiTail) == null)
2498 >                                        hi = p;
2499 >                                    else
2500 >                                        hiTail.next = p;
2501 >                                    hiTail = p;
2502 >                                    ++hc;
2503 >                                }
2504 >                            }
2505 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2506 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2507 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2508 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2509 >                            setTabAt(nextTab, i, ln);
2510 >                            setTabAt(nextTab, i + n, hn);
2511 >                            setTabAt(tab, i, fwd);
2512 >                            advance = true;
2513 >                        }
2514 >                        else if (f instanceof ReservationNode)
2515 >                            throw new IllegalStateException("Recursive update");
2516 >                    }
2517 >                }
2518 >            }
2519 >        }
2520      }
2521  
2522 +    /* ---------------- Counter support -------------- */
2523 +
2524      /**
2525 <     * Returns the hash code value for this {@link Map}, i.e.,
2526 <     * the sum of, for each key-value pair in the map,
3097 <     * {@code key.hashCode() ^ value.hashCode()}.
3098 <     *
3099 <     * @return the hash code value for this map
2525 >     * A padded cell for distributing counts.  Adapted from LongAdder
2526 >     * and Striped64.  See their internal docs for explanation.
2527       */
2528 <    public int hashCode() {
2529 <        int h = 0;
2530 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2531 <        Object v;
2532 <        while ((v = it.advance()) != null) {
2533 <            h += it.nextKey.hashCode() ^ v.hashCode();
2528 >    @jdk.internal.vm.annotation.Contended static final class CounterCell {
2529 >        volatile long value;
2530 >        CounterCell(long x) { value = x; }
2531 >    }
2532 >
2533 >    final long sumCount() {
2534 >        CounterCell[] cs = counterCells;
2535 >        long sum = baseCount;
2536 >        if (cs != null) {
2537 >            for (CounterCell c : cs)
2538 >                if (c != null)
2539 >                    sum += c.value;
2540 >        }
2541 >        return sum;
2542 >    }
2543 >
2544 >    // See LongAdder version for explanation
2545 >    private final void fullAddCount(long x, boolean wasUncontended) {
2546 >        int h;
2547 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2548 >            ThreadLocalRandom.localInit();      // force initialization
2549 >            h = ThreadLocalRandom.getProbe();
2550 >            wasUncontended = true;
2551 >        }
2552 >        boolean collide = false;                // True if last slot nonempty
2553 >        for (;;) {
2554 >            CounterCell[] cs; CounterCell c; int n; long v;
2555 >            if ((cs = counterCells) != null && (n = cs.length) > 0) {
2556 >                if ((c = cs[(n - 1) & h]) == null) {
2557 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2558 >                        CounterCell r = new CounterCell(x); // Optimistic create
2559 >                        if (cellsBusy == 0 &&
2560 >                            U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2561 >                            boolean created = false;
2562 >                            try {               // Recheck under lock
2563 >                                CounterCell[] rs; int m, j;
2564 >                                if ((rs = counterCells) != null &&
2565 >                                    (m = rs.length) > 0 &&
2566 >                                    rs[j = (m - 1) & h] == null) {
2567 >                                    rs[j] = r;
2568 >                                    created = true;
2569 >                                }
2570 >                            } finally {
2571 >                                cellsBusy = 0;
2572 >                            }
2573 >                            if (created)
2574 >                                break;
2575 >                            continue;           // Slot is now non-empty
2576 >                        }
2577 >                    }
2578 >                    collide = false;
2579 >                }
2580 >                else if (!wasUncontended)       // CAS already known to fail
2581 >                    wasUncontended = true;      // Continue after rehash
2582 >                else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2583 >                    break;
2584 >                else if (counterCells != cs || n >= NCPU)
2585 >                    collide = false;            // At max size or stale
2586 >                else if (!collide)
2587 >                    collide = true;
2588 >                else if (cellsBusy == 0 &&
2589 >                         U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2590 >                    try {
2591 >                        if (counterCells == cs) // Expand table unless stale
2592 >                            counterCells = Arrays.copyOf(cs, n << 1);
2593 >                    } finally {
2594 >                        cellsBusy = 0;
2595 >                    }
2596 >                    collide = false;
2597 >                    continue;                   // Retry with expanded table
2598 >                }
2599 >                h = ThreadLocalRandom.advanceProbe(h);
2600 >            }
2601 >            else if (cellsBusy == 0 && counterCells == cs &&
2602 >                     U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2603 >                boolean init = false;
2604 >                try {                           // Initialize table
2605 >                    if (counterCells == cs) {
2606 >                        CounterCell[] rs = new CounterCell[2];
2607 >                        rs[h & 1] = new CounterCell(x);
2608 >                        counterCells = rs;
2609 >                        init = true;
2610 >                    }
2611 >                } finally {
2612 >                    cellsBusy = 0;
2613 >                }
2614 >                if (init)
2615 >                    break;
2616 >            }
2617 >            else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2618 >                break;                          // Fall back on using base
2619          }
3108        return h;
2620      }
2621  
2622 +    /* ---------------- Conversion from/to TreeBins -------------- */
2623 +
2624      /**
2625 <     * Returns a string representation of this map.  The string
2626 <     * representation consists of a list of key-value mappings (in no
2627 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2628 <     * mappings are separated by the characters {@code ", "} (comma
2629 <     * and space).  Each key-value mapping is rendered as the key
2630 <     * followed by an equals sign ("{@code =}") followed by the
2631 <     * associated value.
2632 <     *
2633 <     * @return a string representation of this map
2625 >     * Replaces all linked nodes in bin at given index unless table is
2626 >     * too small, in which case resizes instead.
2627 >     */
2628 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2629 >        Node<K,V> b; int n;
2630 >        if (tab != null) {
2631 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2632 >                tryPresize(n << 1);
2633 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2634 >                synchronized (b) {
2635 >                    if (tabAt(tab, index) == b) {
2636 >                        TreeNode<K,V> hd = null, tl = null;
2637 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2638 >                            TreeNode<K,V> p =
2639 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2640 >                                                  null, null);
2641 >                            if ((p.prev = tl) == null)
2642 >                                hd = p;
2643 >                            else
2644 >                                tl.next = p;
2645 >                            tl = p;
2646 >                        }
2647 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2648 >                    }
2649 >                }
2650 >            }
2651 >        }
2652 >    }
2653 >
2654 >    /**
2655 >     * Returns a list of non-TreeNodes replacing those in given list.
2656       */
2657 <    public String toString() {
2658 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2659 <        StringBuilder sb = new StringBuilder();
2660 <        sb.append('{');
2661 <        Object v;
2662 <        if ((v = it.advance()) != null) {
2663 <            for (;;) {
2664 <                Object k = it.nextKey;
2665 <                sb.append(k == this ? "(this Map)" : k);
2666 <                sb.append('=');
2667 <                sb.append(v == this ? "(this Map)" : v);
2668 <                if ((v = it.advance()) == null)
2657 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2658 >        Node<K,V> hd = null, tl = null;
2659 >        for (Node<K,V> q = b; q != null; q = q.next) {
2660 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2661 >            if (tl == null)
2662 >                hd = p;
2663 >            else
2664 >                tl.next = p;
2665 >            tl = p;
2666 >        }
2667 >        return hd;
2668 >    }
2669 >
2670 >    /* ---------------- TreeNodes -------------- */
2671 >
2672 >    /**
2673 >     * Nodes for use in TreeBins.
2674 >     */
2675 >    static final class TreeNode<K,V> extends Node<K,V> {
2676 >        TreeNode<K,V> parent;  // red-black tree links
2677 >        TreeNode<K,V> left;
2678 >        TreeNode<K,V> right;
2679 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2680 >        boolean red;
2681 >
2682 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2683 >                 TreeNode<K,V> parent) {
2684 >            super(hash, key, val, next);
2685 >            this.parent = parent;
2686 >        }
2687 >
2688 >        Node<K,V> find(int h, Object k) {
2689 >            return findTreeNode(h, k, null);
2690 >        }
2691 >
2692 >        /**
2693 >         * Returns the TreeNode (or null if not found) for the given key
2694 >         * starting at given root.
2695 >         */
2696 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2697 >            if (k != null) {
2698 >                TreeNode<K,V> p = this;
2699 >                do {
2700 >                    int ph, dir; K pk; TreeNode<K,V> q;
2701 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2702 >                    if ((ph = p.hash) > h)
2703 >                        p = pl;
2704 >                    else if (ph < h)
2705 >                        p = pr;
2706 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707 >                        return p;
2708 >                    else if (pl == null)
2709 >                        p = pr;
2710 >                    else if (pr == null)
2711 >                        p = pl;
2712 >                    else if ((kc != null ||
2713 >                              (kc = comparableClassFor(k)) != null) &&
2714 >                             (dir = compareComparables(kc, k, pk)) != 0)
2715 >                        p = (dir < 0) ? pl : pr;
2716 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2717 >                        return q;
2718 >                    else
2719 >                        p = pl;
2720 >                } while (p != null);
2721 >            }
2722 >            return null;
2723 >        }
2724 >    }
2725 >
2726 >    /* ---------------- TreeBins -------------- */
2727 >
2728 >    /**
2729 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2730 >     * keys or values, but instead point to list of TreeNodes and
2731 >     * their root. They also maintain a parasitic read-write lock
2732 >     * forcing writers (who hold bin lock) to wait for readers (who do
2733 >     * not) to complete before tree restructuring operations.
2734 >     */
2735 >    static final class TreeBin<K,V> extends Node<K,V> {
2736 >        TreeNode<K,V> root;
2737 >        volatile TreeNode<K,V> first;
2738 >        volatile Thread waiter;
2739 >        volatile int lockState;
2740 >        // values for lockState
2741 >        static final int WRITER = 1; // set while holding write lock
2742 >        static final int WAITER = 2; // set when waiting for write lock
2743 >        static final int READER = 4; // increment value for setting read lock
2744 >
2745 >        /**
2746 >         * Tie-breaking utility for ordering insertions when equal
2747 >         * hashCodes and non-comparable. We don't require a total
2748 >         * order, just a consistent insertion rule to maintain
2749 >         * equivalence across rebalancings. Tie-breaking further than
2750 >         * necessary simplifies testing a bit.
2751 >         */
2752 >        static int tieBreakOrder(Object a, Object b) {
2753 >            int d;
2754 >            if (a == null || b == null ||
2755 >                (d = a.getClass().getName().
2756 >                 compareTo(b.getClass().getName())) == 0)
2757 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2758 >                     -1 : 1);
2759 >            return d;
2760 >        }
2761 >
2762 >        /**
2763 >         * Creates bin with initial set of nodes headed by b.
2764 >         */
2765 >        TreeBin(TreeNode<K,V> b) {
2766 >            super(TREEBIN, null, null);
2767 >            this.first = b;
2768 >            TreeNode<K,V> r = null;
2769 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2770 >                next = (TreeNode<K,V>)x.next;
2771 >                x.left = x.right = null;
2772 >                if (r == null) {
2773 >                    x.parent = null;
2774 >                    x.red = false;
2775 >                    r = x;
2776 >                }
2777 >                else {
2778 >                    K k = x.key;
2779 >                    int h = x.hash;
2780 >                    Class<?> kc = null;
2781 >                    for (TreeNode<K,V> p = r;;) {
2782 >                        int dir, ph;
2783 >                        K pk = p.key;
2784 >                        if ((ph = p.hash) > h)
2785 >                            dir = -1;
2786 >                        else if (ph < h)
2787 >                            dir = 1;
2788 >                        else if ((kc == null &&
2789 >                                  (kc = comparableClassFor(k)) == null) ||
2790 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2791 >                            dir = tieBreakOrder(k, pk);
2792 >                        TreeNode<K,V> xp = p;
2793 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2794 >                            x.parent = xp;
2795 >                            if (dir <= 0)
2796 >                                xp.left = x;
2797 >                            else
2798 >                                xp.right = x;
2799 >                            r = balanceInsertion(r, x);
2800 >                            break;
2801 >                        }
2802 >                    }
2803 >                }
2804 >            }
2805 >            this.root = r;
2806 >            assert checkInvariants(root);
2807 >        }
2808 >
2809 >        /**
2810 >         * Acquires write lock for tree restructuring.
2811 >         */
2812 >        private final void lockRoot() {
2813 >            if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2814 >                contendedLock(); // offload to separate method
2815 >        }
2816 >
2817 >        /**
2818 >         * Releases write lock for tree restructuring.
2819 >         */
2820 >        private final void unlockRoot() {
2821 >            lockState = 0;
2822 >        }
2823 >
2824 >        /**
2825 >         * Possibly blocks awaiting root lock.
2826 >         */
2827 >        private final void contendedLock() {
2828 >            boolean waiting = false;
2829 >            for (int s;;) {
2830 >                if (((s = lockState) & ~WAITER) == 0) {
2831 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2832 >                        if (waiting)
2833 >                            waiter = null;
2834 >                        return;
2835 >                    }
2836 >                }
2837 >                else if ((s & WAITER) == 0) {
2838 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2839 >                        waiting = true;
2840 >                        waiter = Thread.currentThread();
2841 >                    }
2842 >                }
2843 >                else if (waiting)
2844 >                    LockSupport.park(this);
2845 >            }
2846 >        }
2847 >
2848 >        /**
2849 >         * Returns matching node or null if none. Tries to search
2850 >         * using tree comparisons from root, but continues linear
2851 >         * search when lock not available.
2852 >         */
2853 >        final Node<K,V> find(int h, Object k) {
2854 >            if (k != null) {
2855 >                for (Node<K,V> e = first; e != null; ) {
2856 >                    int s; K ek;
2857 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2858 >                        if (e.hash == h &&
2859 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2860 >                            return e;
2861 >                        e = e.next;
2862 >                    }
2863 >                    else if (U.compareAndSetInt(this, LOCKSTATE, s,
2864 >                                                 s + READER)) {
2865 >                        TreeNode<K,V> r, p;
2866 >                        try {
2867 >                            p = ((r = root) == null ? null :
2868 >                                 r.findTreeNode(h, k, null));
2869 >                        } finally {
2870 >                            Thread w;
2871 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2872 >                                (READER|WAITER) && (w = waiter) != null)
2873 >                                LockSupport.unpark(w);
2874 >                        }
2875 >                        return p;
2876 >                    }
2877 >                }
2878 >            }
2879 >            return null;
2880 >        }
2881 >
2882 >        /**
2883 >         * Finds or adds a node.
2884 >         * @return null if added
2885 >         */
2886 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2887 >            Class<?> kc = null;
2888 >            boolean searched = false;
2889 >            for (TreeNode<K,V> p = root;;) {
2890 >                int dir, ph; K pk;
2891 >                if (p == null) {
2892 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2893                      break;
2894 <                sb.append(',').append(' ');
2894 >                }
2895 >                else if ((ph = p.hash) > h)
2896 >                    dir = -1;
2897 >                else if (ph < h)
2898 >                    dir = 1;
2899 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2900 >                    return p;
2901 >                else if ((kc == null &&
2902 >                          (kc = comparableClassFor(k)) == null) ||
2903 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2904 >                    if (!searched) {
2905 >                        TreeNode<K,V> q, ch;
2906 >                        searched = true;
2907 >                        if (((ch = p.left) != null &&
2908 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2909 >                            ((ch = p.right) != null &&
2910 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2911 >                            return q;
2912 >                    }
2913 >                    dir = tieBreakOrder(k, pk);
2914 >                }
2915 >
2916 >                TreeNode<K,V> xp = p;
2917 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2918 >                    TreeNode<K,V> x, f = first;
2919 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2920 >                    if (f != null)
2921 >                        f.prev = x;
2922 >                    if (dir <= 0)
2923 >                        xp.left = x;
2924 >                    else
2925 >                        xp.right = x;
2926 >                    if (!xp.red)
2927 >                        x.red = true;
2928 >                    else {
2929 >                        lockRoot();
2930 >                        try {
2931 >                            root = balanceInsertion(root, x);
2932 >                        } finally {
2933 >                            unlockRoot();
2934 >                        }
2935 >                    }
2936 >                    break;
2937 >                }
2938              }
2939 +            assert checkInvariants(root);
2940 +            return null;
2941          }
2942 <        return sb.append('}').toString();
2942 >
2943 >        /**
2944 >         * Removes the given node, that must be present before this
2945 >         * call.  This is messier than typical red-black deletion code
2946 >         * because we cannot swap the contents of an interior node
2947 >         * with a leaf successor that is pinned by "next" pointers
2948 >         * that are accessible independently of lock. So instead we
2949 >         * swap the tree linkages.
2950 >         *
2951 >         * @return true if now too small, so should be untreeified
2952 >         */
2953 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2954 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2955 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2956 >            TreeNode<K,V> r, rl;
2957 >            if (pred == null)
2958 >                first = next;
2959 >            else
2960 >                pred.next = next;
2961 >            if (next != null)
2962 >                next.prev = pred;
2963 >            if (first == null) {
2964 >                root = null;
2965 >                return true;
2966 >            }
2967 >            if ((r = root) == null || r.right == null || // too small
2968 >                (rl = r.left) == null || rl.left == null)
2969 >                return true;
2970 >            lockRoot();
2971 >            try {
2972 >                TreeNode<K,V> replacement;
2973 >                TreeNode<K,V> pl = p.left;
2974 >                TreeNode<K,V> pr = p.right;
2975 >                if (pl != null && pr != null) {
2976 >                    TreeNode<K,V> s = pr, sl;
2977 >                    while ((sl = s.left) != null) // find successor
2978 >                        s = sl;
2979 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2980 >                    TreeNode<K,V> sr = s.right;
2981 >                    TreeNode<K,V> pp = p.parent;
2982 >                    if (s == pr) { // p was s's direct parent
2983 >                        p.parent = s;
2984 >                        s.right = p;
2985 >                    }
2986 >                    else {
2987 >                        TreeNode<K,V> sp = s.parent;
2988 >                        if ((p.parent = sp) != null) {
2989 >                            if (s == sp.left)
2990 >                                sp.left = p;
2991 >                            else
2992 >                                sp.right = p;
2993 >                        }
2994 >                        if ((s.right = pr) != null)
2995 >                            pr.parent = s;
2996 >                    }
2997 >                    p.left = null;
2998 >                    if ((p.right = sr) != null)
2999 >                        sr.parent = p;
3000 >                    if ((s.left = pl) != null)
3001 >                        pl.parent = s;
3002 >                    if ((s.parent = pp) == null)
3003 >                        r = s;
3004 >                    else if (p == pp.left)
3005 >                        pp.left = s;
3006 >                    else
3007 >                        pp.right = s;
3008 >                    if (sr != null)
3009 >                        replacement = sr;
3010 >                    else
3011 >                        replacement = p;
3012 >                }
3013 >                else if (pl != null)
3014 >                    replacement = pl;
3015 >                else if (pr != null)
3016 >                    replacement = pr;
3017 >                else
3018 >                    replacement = p;
3019 >                if (replacement != p) {
3020 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
3021 >                    if (pp == null)
3022 >                        r = replacement;
3023 >                    else if (p == pp.left)
3024 >                        pp.left = replacement;
3025 >                    else
3026 >                        pp.right = replacement;
3027 >                    p.left = p.right = p.parent = null;
3028 >                }
3029 >
3030 >                root = (p.red) ? r : balanceDeletion(r, replacement);
3031 >
3032 >                if (p == replacement) {  // detach pointers
3033 >                    TreeNode<K,V> pp;
3034 >                    if ((pp = p.parent) != null) {
3035 >                        if (p == pp.left)
3036 >                            pp.left = null;
3037 >                        else if (p == pp.right)
3038 >                            pp.right = null;
3039 >                        p.parent = null;
3040 >                    }
3041 >                }
3042 >            } finally {
3043 >                unlockRoot();
3044 >            }
3045 >            assert checkInvariants(root);
3046 >            return false;
3047 >        }
3048 >
3049 >        /* ------------------------------------------------------------ */
3050 >        // Red-black tree methods, all adapted from CLR
3051 >
3052 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3053 >                                              TreeNode<K,V> p) {
3054 >            TreeNode<K,V> r, pp, rl;
3055 >            if (p != null && (r = p.right) != null) {
3056 >                if ((rl = p.right = r.left) != null)
3057 >                    rl.parent = p;
3058 >                if ((pp = r.parent = p.parent) == null)
3059 >                    (root = r).red = false;
3060 >                else if (pp.left == p)
3061 >                    pp.left = r;
3062 >                else
3063 >                    pp.right = r;
3064 >                r.left = p;
3065 >                p.parent = r;
3066 >            }
3067 >            return root;
3068 >        }
3069 >
3070 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3071 >                                               TreeNode<K,V> p) {
3072 >            TreeNode<K,V> l, pp, lr;
3073 >            if (p != null && (l = p.left) != null) {
3074 >                if ((lr = p.left = l.right) != null)
3075 >                    lr.parent = p;
3076 >                if ((pp = l.parent = p.parent) == null)
3077 >                    (root = l).red = false;
3078 >                else if (pp.right == p)
3079 >                    pp.right = l;
3080 >                else
3081 >                    pp.left = l;
3082 >                l.right = p;
3083 >                p.parent = l;
3084 >            }
3085 >            return root;
3086 >        }
3087 >
3088 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3089 >                                                    TreeNode<K,V> x) {
3090 >            x.red = true;
3091 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3092 >                if ((xp = x.parent) == null) {
3093 >                    x.red = false;
3094 >                    return x;
3095 >                }
3096 >                else if (!xp.red || (xpp = xp.parent) == null)
3097 >                    return root;
3098 >                if (xp == (xppl = xpp.left)) {
3099 >                    if ((xppr = xpp.right) != null && xppr.red) {
3100 >                        xppr.red = false;
3101 >                        xp.red = false;
3102 >                        xpp.red = true;
3103 >                        x = xpp;
3104 >                    }
3105 >                    else {
3106 >                        if (x == xp.right) {
3107 >                            root = rotateLeft(root, x = xp);
3108 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3109 >                        }
3110 >                        if (xp != null) {
3111 >                            xp.red = false;
3112 >                            if (xpp != null) {
3113 >                                xpp.red = true;
3114 >                                root = rotateRight(root, xpp);
3115 >                            }
3116 >                        }
3117 >                    }
3118 >                }
3119 >                else {
3120 >                    if (xppl != null && xppl.red) {
3121 >                        xppl.red = false;
3122 >                        xp.red = false;
3123 >                        xpp.red = true;
3124 >                        x = xpp;
3125 >                    }
3126 >                    else {
3127 >                        if (x == xp.left) {
3128 >                            root = rotateRight(root, x = xp);
3129 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3130 >                        }
3131 >                        if (xp != null) {
3132 >                            xp.red = false;
3133 >                            if (xpp != null) {
3134 >                                xpp.red = true;
3135 >                                root = rotateLeft(root, xpp);
3136 >                            }
3137 >                        }
3138 >                    }
3139 >                }
3140 >            }
3141 >        }
3142 >
3143 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3144 >                                                   TreeNode<K,V> x) {
3145 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3146 >                if (x == null || x == root)
3147 >                    return root;
3148 >                else if ((xp = x.parent) == null) {
3149 >                    x.red = false;
3150 >                    return x;
3151 >                }
3152 >                else if (x.red) {
3153 >                    x.red = false;
3154 >                    return root;
3155 >                }
3156 >                else if ((xpl = xp.left) == x) {
3157 >                    if ((xpr = xp.right) != null && xpr.red) {
3158 >                        xpr.red = false;
3159 >                        xp.red = true;
3160 >                        root = rotateLeft(root, xp);
3161 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3162 >                    }
3163 >                    if (xpr == null)
3164 >                        x = xp;
3165 >                    else {
3166 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3167 >                        if ((sr == null || !sr.red) &&
3168 >                            (sl == null || !sl.red)) {
3169 >                            xpr.red = true;
3170 >                            x = xp;
3171 >                        }
3172 >                        else {
3173 >                            if (sr == null || !sr.red) {
3174 >                                if (sl != null)
3175 >                                    sl.red = false;
3176 >                                xpr.red = true;
3177 >                                root = rotateRight(root, xpr);
3178 >                                xpr = (xp = x.parent) == null ?
3179 >                                    null : xp.right;
3180 >                            }
3181 >                            if (xpr != null) {
3182 >                                xpr.red = (xp == null) ? false : xp.red;
3183 >                                if ((sr = xpr.right) != null)
3184 >                                    sr.red = false;
3185 >                            }
3186 >                            if (xp != null) {
3187 >                                xp.red = false;
3188 >                                root = rotateLeft(root, xp);
3189 >                            }
3190 >                            x = root;
3191 >                        }
3192 >                    }
3193 >                }
3194 >                else { // symmetric
3195 >                    if (xpl != null && xpl.red) {
3196 >                        xpl.red = false;
3197 >                        xp.red = true;
3198 >                        root = rotateRight(root, xp);
3199 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3200 >                    }
3201 >                    if (xpl == null)
3202 >                        x = xp;
3203 >                    else {
3204 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3205 >                        if ((sl == null || !sl.red) &&
3206 >                            (sr == null || !sr.red)) {
3207 >                            xpl.red = true;
3208 >                            x = xp;
3209 >                        }
3210 >                        else {
3211 >                            if (sl == null || !sl.red) {
3212 >                                if (sr != null)
3213 >                                    sr.red = false;
3214 >                                xpl.red = true;
3215 >                                root = rotateLeft(root, xpl);
3216 >                                xpl = (xp = x.parent) == null ?
3217 >                                    null : xp.left;
3218 >                            }
3219 >                            if (xpl != null) {
3220 >                                xpl.red = (xp == null) ? false : xp.red;
3221 >                                if ((sl = xpl.left) != null)
3222 >                                    sl.red = false;
3223 >                            }
3224 >                            if (xp != null) {
3225 >                                xp.red = false;
3226 >                                root = rotateRight(root, xp);
3227 >                            }
3228 >                            x = root;
3229 >                        }
3230 >                    }
3231 >                }
3232 >            }
3233 >        }
3234 >
3235 >        /**
3236 >         * Checks invariants recursively for the tree of Nodes rooted at t.
3237 >         */
3238 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3239 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3240 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3241 >            if (tb != null && tb.next != t)
3242 >                return false;
3243 >            if (tn != null && tn.prev != t)
3244 >                return false;
3245 >            if (tp != null && t != tp.left && t != tp.right)
3246 >                return false;
3247 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3248 >                return false;
3249 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3250 >                return false;
3251 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3252 >                return false;
3253 >            if (tl != null && !checkInvariants(tl))
3254 >                return false;
3255 >            if (tr != null && !checkInvariants(tr))
3256 >                return false;
3257 >            return true;
3258 >        }
3259 >
3260 >        private static final Unsafe U = Unsafe.getUnsafe();
3261 >        private static final long LOCKSTATE
3262 >                = U.objectFieldOffset(TreeBin.class, "lockState");
3263      }
3264  
3265 +    /* ----------------Table Traversal -------------- */
3266 +
3267      /**
3268 <     * Compares the specified object with this map for equality.
3269 <     * Returns {@code true} if the given object is a map with the same
3270 <     * mappings as this map.  This operation may return misleading
3271 <     * results if either map is concurrently modified during execution
3272 <     * of this method.
3268 >     * Records the table, its length, and current traversal index for a
3269 >     * traverser that must process a region of a forwarded table before
3270 >     * proceeding with current table.
3271 >     */
3272 >    static final class TableStack<K,V> {
3273 >        int length;
3274 >        int index;
3275 >        Node<K,V>[] tab;
3276 >        TableStack<K,V> next;
3277 >    }
3278 >
3279 >    /**
3280 >     * Encapsulates traversal for methods such as containsValue; also
3281 >     * serves as a base class for other iterators and spliterators.
3282       *
3283 <     * @param o object to be compared for equality with this map
3284 <     * @return {@code true} if the specified object is equal to this map
3283 >     * Method advance visits once each still-valid node that was
3284 >     * reachable upon iterator construction. It might miss some that
3285 >     * were added to a bin after the bin was visited, which is OK wrt
3286 >     * consistency guarantees. Maintaining this property in the face
3287 >     * of possible ongoing resizes requires a fair amount of
3288 >     * bookkeeping state that is difficult to optimize away amidst
3289 >     * volatile accesses.  Even so, traversal maintains reasonable
3290 >     * throughput.
3291 >     *
3292 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3293 >     * However, if the table has been resized, then all future steps
3294 >     * must traverse both the bin at the current index as well as at
3295 >     * (index + baseSize); and so on for further resizings. To
3296 >     * paranoically cope with potential sharing by users of iterators
3297 >     * across threads, iteration terminates if a bounds checks fails
3298 >     * for a table read.
3299       */
3300 <    public boolean equals(Object o) {
3301 <        if (o != this) {
3302 <            if (!(o instanceof Map))
3303 <                return false;
3304 <            Map<?,?> m = (Map<?,?>) o;
3305 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3306 <            Object val;
3307 <            while ((val = it.advance()) != null) {
3308 <                Object v = m.get(it.nextKey);
3309 <                if (v == null || (v != val && !v.equals(val)))
3310 <                    return false;
3300 >    static class Traverser<K,V> {
3301 >        Node<K,V>[] tab;        // current table; updated if resized
3302 >        Node<K,V> next;         // the next entry to use
3303 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3304 >        int index;              // index of bin to use next
3305 >        int baseIndex;          // current index of initial table
3306 >        int baseLimit;          // index bound for initial table
3307 >        final int baseSize;     // initial table size
3308 >
3309 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3310 >            this.tab = tab;
3311 >            this.baseSize = size;
3312 >            this.baseIndex = this.index = index;
3313 >            this.baseLimit = limit;
3314 >            this.next = null;
3315 >        }
3316 >
3317 >        /**
3318 >         * Advances if possible, returning next valid node, or null if none.
3319 >         */
3320 >        final Node<K,V> advance() {
3321 >            Node<K,V> e;
3322 >            if ((e = next) != null)
3323 >                e = e.next;
3324 >            for (;;) {
3325 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3326 >                if (e != null)
3327 >                    return next = e;
3328 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3329 >                    (n = t.length) <= (i = index) || i < 0)
3330 >                    return next = null;
3331 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3332 >                    if (e instanceof ForwardingNode) {
3333 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3334 >                        e = null;
3335 >                        pushState(t, i, n);
3336 >                        continue;
3337 >                    }
3338 >                    else if (e instanceof TreeBin)
3339 >                        e = ((TreeBin<K,V>)e).first;
3340 >                    else
3341 >                        e = null;
3342 >                }
3343 >                if (stack != null)
3344 >                    recoverState(n);
3345 >                else if ((index = i + baseSize) >= n)
3346 >                    index = ++baseIndex; // visit upper slots if present
3347              }
3348 <            for (Map.Entry<?,?> e : m.entrySet()) {
3349 <                Object mk, mv, v;
3350 <                if ((mk = e.getKey()) == null ||
3351 <                    (mv = e.getValue()) == null ||
3352 <                    (v = internalGet(mk)) == null ||
3353 <                    (mv != v && !mv.equals(v)))
3354 <                    return false;
3348 >        }
3349 >
3350 >        /**
3351 >         * Saves traversal state upon encountering a forwarding node.
3352 >         */
3353 >        private void pushState(Node<K,V>[] t, int i, int n) {
3354 >            TableStack<K,V> s = spare;  // reuse if possible
3355 >            if (s != null)
3356 >                spare = s.next;
3357 >            else
3358 >                s = new TableStack<K,V>();
3359 >            s.tab = t;
3360 >            s.length = n;
3361 >            s.index = i;
3362 >            s.next = stack;
3363 >            stack = s;
3364 >        }
3365 >
3366 >        /**
3367 >         * Possibly pops traversal state.
3368 >         *
3369 >         * @param n length of current table
3370 >         */
3371 >        private void recoverState(int n) {
3372 >            TableStack<K,V> s; int len;
3373 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3374 >                n = len;
3375 >                index = s.index;
3376 >                tab = s.tab;
3377 >                s.tab = null;
3378 >                TableStack<K,V> next = s.next;
3379 >                s.next = spare; // save for reuse
3380 >                stack = next;
3381 >                spare = s;
3382              }
3383 +            if (s == null && (index += baseSize) >= n)
3384 +                index = ++baseIndex;
3385          }
3172        return true;
3386      }
3387  
3388 <    /* ----------------Iterators -------------- */
3389 <
3390 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3391 <        implements Spliterator<K>, Enumeration<K> {
3392 <        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3393 <        KeyIterator(Traverser<K,V,Object> it) {
3394 <            super(it);
3388 >    /**
3389 >     * Base of key, value, and entry Iterators. Adds fields to
3390 >     * Traverser to support iterator.remove.
3391 >     */
3392 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3393 >        final ConcurrentHashMap<K,V> map;
3394 >        Node<K,V> lastReturned;
3395 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3396 >                    ConcurrentHashMap<K,V> map) {
3397 >            super(tab, size, index, limit);
3398 >            this.map = map;
3399 >            advance();
3400          }
3401 <        public KeyIterator<K,V> split() {
3402 <            if (nextKey != null)
3401 >
3402 >        public final boolean hasNext() { return next != null; }
3403 >        public final boolean hasMoreElements() { return next != null; }
3404 >
3405 >        public final void remove() {
3406 >            Node<K,V> p;
3407 >            if ((p = lastReturned) == null)
3408                  throw new IllegalStateException();
3409 <            return new KeyIterator<K,V>(this);
3409 >            lastReturned = null;
3410 >            map.replaceNode(p.key, null, null);
3411          }
3412 <        @SuppressWarnings("unchecked") public final K next() {
3413 <            if (nextVal == null && advance() == null)
3412 >    }
3413 >
3414 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3415 >        implements Iterator<K>, Enumeration<K> {
3416 >        KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3417 >                    ConcurrentHashMap<K,V> map) {
3418 >            super(tab, size, index, limit, map);
3419 >        }
3420 >
3421 >        public final K next() {
3422 >            Node<K,V> p;
3423 >            if ((p = next) == null)
3424                  throw new NoSuchElementException();
3425 <            Object k = nextKey;
3426 <            nextVal = null;
3427 <            return (K) k;
3425 >            K k = p.key;
3426 >            lastReturned = p;
3427 >            advance();
3428 >            return k;
3429          }
3430  
3431          public final K nextElement() { return next(); }
3432      }
3433  
3434 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3435 <        implements Spliterator<V>, Enumeration<V> {
3436 <        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3437 <        ValueIterator(Traverser<K,V,Object> it) {
3438 <            super(it);
3204 <        }
3205 <        public ValueIterator<K,V> split() {
3206 <            if (nextKey != null)
3207 <                throw new IllegalStateException();
3208 <            return new ValueIterator<K,V>(this);
3434 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3435 >        implements Iterator<V>, Enumeration<V> {
3436 >        ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3437 >                      ConcurrentHashMap<K,V> map) {
3438 >            super(tab, size, index, limit, map);
3439          }
3440  
3441 <        @SuppressWarnings("unchecked") public final V next() {
3442 <            Object v;
3443 <            if ((v = nextVal) == null && (v = advance()) == null)
3441 >        public final V next() {
3442 >            Node<K,V> p;
3443 >            if ((p = next) == null)
3444                  throw new NoSuchElementException();
3445 <            nextVal = null;
3446 <            return (V) v;
3445 >            V v = p.val;
3446 >            lastReturned = p;
3447 >            advance();
3448 >            return v;
3449          }
3450  
3451          public final V nextElement() { return next(); }
3452      }
3453  
3454 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3455 <        implements Spliterator<Map.Entry<K,V>> {
3456 <        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3457 <        EntryIterator(Traverser<K,V,Object> it) {
3458 <            super(it);
3227 <        }
3228 <        public EntryIterator<K,V> split() {
3229 <            if (nextKey != null)
3230 <                throw new IllegalStateException();
3231 <            return new EntryIterator<K,V>(this);
3454 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3455 >        implements Iterator<Map.Entry<K,V>> {
3456 >        EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3457 >                      ConcurrentHashMap<K,V> map) {
3458 >            super(tab, size, index, limit, map);
3459          }
3460  
3461 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3462 <            Object v;
3463 <            if ((v = nextVal) == null && (v = advance()) == null)
3461 >        public final Map.Entry<K,V> next() {
3462 >            Node<K,V> p;
3463 >            if ((p = next) == null)
3464                  throw new NoSuchElementException();
3465 <            Object k = nextKey;
3466 <            nextVal = null;
3467 <            return new MapEntry<K,V>((K)k, (V)v, map);
3465 >            K k = p.key;
3466 >            V v = p.val;
3467 >            lastReturned = p;
3468 >            advance();
3469 >            return new MapEntry<K,V>(k, v, map);
3470          }
3471      }
3472  
3473      /**
3474 <     * Exported Entry for iterators
3474 >     * Exported Entry for EntryIterator.
3475       */
3476 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3476 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3477          final K key; // non-null
3478          V val;       // non-null
3479 <        final ConcurrentHashMap<K, V> map;
3480 <        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3479 >        final ConcurrentHashMap<K,V> map;
3480 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3481              this.key = key;
3482              this.val = val;
3483              this.map = map;
3484          }
3485 <        public final K getKey()       { return key; }
3486 <        public final V getValue()     { return val; }
3487 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3488 <        public final String toString(){ return key + "=" + val; }
3485 >        public K getKey()        { return key; }
3486 >        public V getValue()      { return val; }
3487 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3488 >        public String toString() {
3489 >            return Helpers.mapEntryToString(key, val);
3490 >        }
3491  
3492 <        public final boolean equals(Object o) {
3492 >        public boolean equals(Object o) {
3493              Object k, v; Map.Entry<?,?> e;
3494              return ((o instanceof Map.Entry) &&
3495                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3272 | Line 3503 | public class ConcurrentHashMap<K, V>
3503           * value to return is somewhat arbitrary here. Since we do not
3504           * necessarily track asynchronous changes, the most recent
3505           * "previous" value could be different from what we return (or
3506 <         * could even have been removed in which case the put will
3506 >         * could even have been removed, in which case the put will
3507           * re-establish). We do not and cannot guarantee more.
3508           */
3509 <        public final V setValue(V value) {
3509 >        public V setValue(V value) {
3510              if (value == null) throw new NullPointerException();
3511              V v = val;
3512              val = value;
# Line 3284 | Line 3515 | public class ConcurrentHashMap<K, V>
3515          }
3516      }
3517  
3518 <    /* ---------------- Serialization Support -------------- */
3518 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3519 >        implements Spliterator<K> {
3520 >        long est;               // size estimate
3521 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3522 >                       long est) {
3523 >            super(tab, size, index, limit);
3524 >            this.est = est;
3525 >        }
3526 >
3527 >        public KeySpliterator<K,V> trySplit() {
3528 >            int i, f, h;
3529 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3530 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3531 >                                        f, est >>>= 1);
3532 >        }
3533  
3534 <    /**
3535 <     * Stripped-down version of helper class used in previous version,
3536 <     * declared for the sake of serialization compatibility
3537 <     */
3538 <    static class Segment<K,V> implements Serializable {
3294 <        private static final long serialVersionUID = 2249069246763182397L;
3295 <        final float loadFactor;
3296 <        Segment(float lf) { this.loadFactor = lf; }
3297 <    }
3534 >        public void forEachRemaining(Consumer<? super K> action) {
3535 >            if (action == null) throw new NullPointerException();
3536 >            for (Node<K,V> p; (p = advance()) != null;)
3537 >                action.accept(p.key);
3538 >        }
3539  
3540 <    /**
3541 <     * Saves the state of the {@code ConcurrentHashMap} instance to a
3542 <     * stream (i.e., serializes it).
3543 <     * @param s the stream
3544 <     * @serialData
3545 <     * the key (Object) and value (Object)
3546 <     * for each key-value mapping, followed by a null pair.
3547 <     * The key-value mappings are emitted in no particular order.
3548 <     */
3549 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3550 <        throws java.io.IOException {
3551 <        if (segments == null) { // for serialization compatibility
3552 <            segments = (Segment<K,V>[])
3553 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3313 <            for (int i = 0; i < segments.length; ++i)
3314 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3315 <        }
3316 <        s.defaultWriteObject();
3317 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3318 <        Object v;
3319 <        while ((v = it.advance()) != null) {
3320 <            s.writeObject(it.nextKey);
3321 <            s.writeObject(v);
3540 >        public boolean tryAdvance(Consumer<? super K> action) {
3541 >            if (action == null) throw new NullPointerException();
3542 >            Node<K,V> p;
3543 >            if ((p = advance()) == null)
3544 >                return false;
3545 >            action.accept(p.key);
3546 >            return true;
3547 >        }
3548 >
3549 >        public long estimateSize() { return est; }
3550 >
3551 >        public int characteristics() {
3552 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3553 >                Spliterator.NONNULL;
3554          }
3323        s.writeObject(null);
3324        s.writeObject(null);
3325        segments = null; // throw away
3555      }
3556  
3557 <    /**
3558 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3559 <     * @param s the stream
3560 <     */
3561 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3562 <        throws java.io.IOException, ClassNotFoundException {
3563 <        s.defaultReadObject();
3564 <        this.segments = null; // unneeded
3336 <        // initialize transient final field
3337 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3557 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3558 >        implements Spliterator<V> {
3559 >        long est;               // size estimate
3560 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3561 >                         long est) {
3562 >            super(tab, size, index, limit);
3563 >            this.est = est;
3564 >        }
3565  
3566 <        // Create all nodes, then place in table once size is known
3567 <        long size = 0L;
3568 <        Node p = null;
3569 <        for (;;) {
3570 <            K k = (K) s.readObject();
3344 <            V v = (V) s.readObject();
3345 <            if (k != null && v != null) {
3346 <                int h = spread(k.hashCode());
3347 <                p = new Node(h, k, v, p);
3348 <                ++size;
3349 <            }
3350 <            else
3351 <                break;
3566 >        public ValueSpliterator<K,V> trySplit() {
3567 >            int i, f, h;
3568 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3569 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3570 >                                          f, est >>>= 1);
3571          }
3572 <        if (p != null) {
3573 <            boolean init = false;
3574 <            int n;
3575 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3576 <                n = MAXIMUM_CAPACITY;
3577 <            else {
3578 <                int sz = (int)size;
3579 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3580 <            }
3581 <            int sc = sizeCtl;
3582 <            boolean collide = false;
3583 <            if (n > sc &&
3584 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3585 <                try {
3586 <                    if (table == null) {
3587 <                        init = true;
3588 <                        Node[] tab = new Node[n];
3589 <                        int mask = n - 1;
3590 <                        while (p != null) {
3591 <                            int j = p.hash & mask;
3373 <                            Node next = p.next;
3374 <                            Node q = p.next = tabAt(tab, j);
3375 <                            setTabAt(tab, j, p);
3376 <                            if (!collide && q != null && q.hash == p.hash)
3377 <                                collide = true;
3378 <                            p = next;
3379 <                        }
3380 <                        table = tab;
3381 <                        counter.add(size);
3382 <                        sc = n - (n >>> 2);
3383 <                    }
3384 <                } finally {
3385 <                    sizeCtl = sc;
3386 <                }
3387 <                if (collide) { // rescan and convert to TreeBins
3388 <                    Node[] tab = table;
3389 <                    for (int i = 0; i < tab.length; ++i) {
3390 <                        int c = 0;
3391 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3392 <                            if (++c > TREE_THRESHOLD &&
3393 <                                (e.key instanceof Comparable)) {
3394 <                                replaceWithTreeBin(tab, i, e.key);
3395 <                                break;
3396 <                            }
3397 <                        }
3398 <                    }
3399 <                }
3400 <            }
3401 <            if (!init) { // Can only happen if unsafely published.
3402 <                while (p != null) {
3403 <                    internalPut(p.key, p.val);
3404 <                    p = p.next;
3405 <                }
3406 <            }
3572 >
3573 >        public void forEachRemaining(Consumer<? super V> action) {
3574 >            if (action == null) throw new NullPointerException();
3575 >            for (Node<K,V> p; (p = advance()) != null;)
3576 >                action.accept(p.val);
3577 >        }
3578 >
3579 >        public boolean tryAdvance(Consumer<? super V> action) {
3580 >            if (action == null) throw new NullPointerException();
3581 >            Node<K,V> p;
3582 >            if ((p = advance()) == null)
3583 >                return false;
3584 >            action.accept(p.val);
3585 >            return true;
3586 >        }
3587 >
3588 >        public long estimateSize() { return est; }
3589 >
3590 >        public int characteristics() {
3591 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3592          }
3593      }
3594  
3595 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3596 +        implements Spliterator<Map.Entry<K,V>> {
3597 +        final ConcurrentHashMap<K,V> map; // To export MapEntry
3598 +        long est;               // size estimate
3599 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3600 +                         long est, ConcurrentHashMap<K,V> map) {
3601 +            super(tab, size, index, limit);
3602 +            this.map = map;
3603 +            this.est = est;
3604 +        }
3605  
3606 <    // -------------------------------------------------------
3606 >        public EntrySpliterator<K,V> trySplit() {
3607 >            int i, f, h;
3608 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3609 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3610 >                                          f, est >>>= 1, map);
3611 >        }
3612  
3613 <    // Sams
3614 <    /** Interface describing a void action of one argument */
3615 <    public interface Action<A> { void apply(A a); }
3616 <    /** Interface describing a void action of two arguments */
3617 <    public interface BiAction<A,B> { void apply(A a, B b); }
3418 <    /** Interface describing a function of one argument */
3419 <    public interface Fun<A,T> { T apply(A a); }
3420 <    /** Interface describing a function of two arguments */
3421 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3422 <    /** Interface describing a function of no arguments */
3423 <    public interface Generator<T> { T apply(); }
3424 <    /** Interface describing a function mapping its argument to a double */
3425 <    public interface ObjectToDouble<A> { double apply(A a); }
3426 <    /** Interface describing a function mapping its argument to a long */
3427 <    public interface ObjectToLong<A> { long apply(A a); }
3428 <    /** Interface describing a function mapping its argument to an int */
3429 <    public interface ObjectToInt<A> {int apply(A a); }
3430 <    /** Interface describing a function mapping two arguments to a double */
3431 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3432 <    /** Interface describing a function mapping two arguments to a long */
3433 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3434 <    /** Interface describing a function mapping two arguments to an int */
3435 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3436 <    /** Interface describing a function mapping a double to a double */
3437 <    public interface DoubleToDouble { double apply(double a); }
3438 <    /** Interface describing a function mapping a long to a long */
3439 <    public interface LongToLong { long apply(long a); }
3440 <    /** Interface describing a function mapping an int to an int */
3441 <    public interface IntToInt { int apply(int a); }
3442 <    /** Interface describing a function mapping two doubles to a double */
3443 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3444 <    /** Interface describing a function mapping two longs to a long */
3445 <    public interface LongByLongToLong { long apply(long a, long b); }
3446 <    /** Interface describing a function mapping two ints to an int */
3447 <    public interface IntByIntToInt { int apply(int a, int b); }
3613 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3614 >            if (action == null) throw new NullPointerException();
3615 >            for (Node<K,V> p; (p = advance()) != null; )
3616 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3617 >        }
3618  
3619 +        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3620 +            if (action == null) throw new NullPointerException();
3621 +            Node<K,V> p;
3622 +            if ((p = advance()) == null)
3623 +                return false;
3624 +            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3625 +            return true;
3626 +        }
3627  
3628 <    // -------------------------------------------------------
3628 >        public long estimateSize() { return est; }
3629 >
3630 >        public int characteristics() {
3631 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3632 >                Spliterator.NONNULL;
3633 >        }
3634 >    }
3635 >
3636 >    // Parallel bulk operations
3637 >
3638 >    /**
3639 >     * Computes initial batch value for bulk tasks. The returned value
3640 >     * is approximately exp2 of the number of times (minus one) to
3641 >     * split task by two before executing leaf action. This value is
3642 >     * faster to compute and more convenient to use as a guide to
3643 >     * splitting than is the depth, since it is used while dividing by
3644 >     * two anyway.
3645 >     */
3646 >    final int batchFor(long b) {
3647 >        long n;
3648 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3649 >            return 0;
3650 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3651 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3652 >    }
3653  
3654      /**
3655       * Performs the given action for each (key, value).
3656       *
3657 +     * @param parallelismThreshold the (estimated) number of elements
3658 +     * needed for this operation to be executed in parallel
3659       * @param action the action
3660 +     * @since 1.8
3661       */
3662 <    public void forEach(BiAction<K,V> action) {
3663 <        ForkJoinTasks.forEach
3664 <            (this, action).invoke();
3662 >    public void forEach(long parallelismThreshold,
3663 >                        BiConsumer<? super K,? super V> action) {
3664 >        if (action == null) throw new NullPointerException();
3665 >        new ForEachMappingTask<K,V>
3666 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3667 >             action).invoke();
3668      }
3669  
3670      /**
3671       * Performs the given action for each non-null transformation
3672       * of each (key, value).
3673       *
3674 +     * @param parallelismThreshold the (estimated) number of elements
3675 +     * needed for this operation to be executed in parallel
3676       * @param transformer a function returning the transformation
3677 <     * for an element, or null of there is no transformation (in
3678 <     * which case the action is not applied).
3677 >     * for an element, or null if there is no transformation (in
3678 >     * which case the action is not applied)
3679       * @param action the action
3680 +     * @param <U> the return type of the transformer
3681 +     * @since 1.8
3682       */
3683 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3684 <                            Action<U> action) {
3685 <        ForkJoinTasks.forEach
3686 <            (this, transformer, action).invoke();
3683 >    public <U> void forEach(long parallelismThreshold,
3684 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3685 >                            Consumer<? super U> action) {
3686 >        if (transformer == null || action == null)
3687 >            throw new NullPointerException();
3688 >        new ForEachTransformedMappingTask<K,V,U>
3689 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3690 >             transformer, action).invoke();
3691      }
3692  
3693      /**
# Line 3481 | Line 3697 | public class ConcurrentHashMap<K, V>
3697       * results of any other parallel invocations of the search
3698       * function are ignored.
3699       *
3700 +     * @param parallelismThreshold the (estimated) number of elements
3701 +     * needed for this operation to be executed in parallel
3702       * @param searchFunction a function returning a non-null
3703       * result on success, else null
3704 +     * @param <U> the return type of the search function
3705       * @return a non-null result from applying the given search
3706       * function on each (key, value), or null if none
3707 +     * @since 1.8
3708       */
3709 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3710 <        return ForkJoinTasks.search
3711 <            (this, searchFunction).invoke();
3709 >    public <U> U search(long parallelismThreshold,
3710 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3711 >        if (searchFunction == null) throw new NullPointerException();
3712 >        return new SearchMappingsTask<K,V,U>
3713 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3714 >             searchFunction, new AtomicReference<U>()).invoke();
3715      }
3716  
3717      /**
# Line 3496 | Line 3719 | public class ConcurrentHashMap<K, V>
3719       * of all (key, value) pairs using the given reducer to
3720       * combine values, or null if none.
3721       *
3722 +     * @param parallelismThreshold the (estimated) number of elements
3723 +     * needed for this operation to be executed in parallel
3724       * @param transformer a function returning the transformation
3725 <     * for an element, or null of there is no transformation (in
3726 <     * which case it is not combined).
3725 >     * for an element, or null if there is no transformation (in
3726 >     * which case it is not combined)
3727       * @param reducer a commutative associative combining function
3728 +     * @param <U> the return type of the transformer
3729       * @return the result of accumulating the given transformation
3730       * of all (key, value) pairs
3731 +     * @since 1.8
3732       */
3733 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3734 <                        BiFun<? super U, ? super U, ? extends U> reducer) {
3735 <        return ForkJoinTasks.reduce
3736 <            (this, transformer, reducer).invoke();
3733 >    public <U> U reduce(long parallelismThreshold,
3734 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3735 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3736 >        if (transformer == null || reducer == null)
3737 >            throw new NullPointerException();
3738 >        return new MapReduceMappingsTask<K,V,U>
3739 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3740 >             null, transformer, reducer).invoke();
3741      }
3742  
3743      /**
# Line 3514 | Line 3745 | public class ConcurrentHashMap<K, V>
3745       * of all (key, value) pairs using the given reducer to
3746       * combine values, and the given basis as an identity value.
3747       *
3748 +     * @param parallelismThreshold the (estimated) number of elements
3749 +     * needed for this operation to be executed in parallel
3750       * @param transformer a function returning the transformation
3751       * for an element
3752       * @param basis the identity (initial default value) for the reduction
3753       * @param reducer a commutative associative combining function
3754       * @return the result of accumulating the given transformation
3755       * of all (key, value) pairs
3756 +     * @since 1.8
3757       */
3758 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3758 >    public double reduceToDouble(long parallelismThreshold,
3759 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3760                                   double basis,
3761 <                                 DoubleByDoubleToDouble reducer) {
3762 <        return ForkJoinTasks.reduceToDouble
3763 <            (this, transformer, basis, reducer).invoke();
3761 >                                 DoubleBinaryOperator reducer) {
3762 >        if (transformer == null || reducer == null)
3763 >            throw new NullPointerException();
3764 >        return new MapReduceMappingsToDoubleTask<K,V>
3765 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3766 >             null, transformer, basis, reducer).invoke();
3767      }
3768  
3769      /**
# Line 3533 | Line 3771 | public class ConcurrentHashMap<K, V>
3771       * of all (key, value) pairs using the given reducer to
3772       * combine values, and the given basis as an identity value.
3773       *
3774 +     * @param parallelismThreshold the (estimated) number of elements
3775 +     * needed for this operation to be executed in parallel
3776       * @param transformer a function returning the transformation
3777       * for an element
3778       * @param basis the identity (initial default value) for the reduction
3779       * @param reducer a commutative associative combining function
3780       * @return the result of accumulating the given transformation
3781       * of all (key, value) pairs
3782 +     * @since 1.8
3783       */
3784 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3784 >    public long reduceToLong(long parallelismThreshold,
3785 >                             ToLongBiFunction<? super K, ? super V> transformer,
3786                               long basis,
3787 <                             LongByLongToLong reducer) {
3788 <        return ForkJoinTasks.reduceToLong
3789 <            (this, transformer, basis, reducer).invoke();
3787 >                             LongBinaryOperator reducer) {
3788 >        if (transformer == null || reducer == null)
3789 >            throw new NullPointerException();
3790 >        return new MapReduceMappingsToLongTask<K,V>
3791 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3792 >             null, transformer, basis, reducer).invoke();
3793      }
3794  
3795      /**
# Line 3552 | Line 3797 | public class ConcurrentHashMap<K, V>
3797       * of all (key, value) pairs using the given reducer to
3798       * combine values, and the given basis as an identity value.
3799       *
3800 +     * @param parallelismThreshold the (estimated) number of elements
3801 +     * needed for this operation to be executed in parallel
3802       * @param transformer a function returning the transformation
3803       * for an element
3804       * @param basis the identity (initial default value) for the reduction
3805       * @param reducer a commutative associative combining function
3806       * @return the result of accumulating the given transformation
3807       * of all (key, value) pairs
3808 +     * @since 1.8
3809       */
3810 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3810 >    public int reduceToInt(long parallelismThreshold,
3811 >                           ToIntBiFunction<? super K, ? super V> transformer,
3812                             int basis,
3813 <                           IntByIntToInt reducer) {
3814 <        return ForkJoinTasks.reduceToInt
3815 <            (this, transformer, basis, reducer).invoke();
3813 >                           IntBinaryOperator reducer) {
3814 >        if (transformer == null || reducer == null)
3815 >            throw new NullPointerException();
3816 >        return new MapReduceMappingsToIntTask<K,V>
3817 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3818 >             null, transformer, basis, reducer).invoke();
3819      }
3820  
3821      /**
3822       * Performs the given action for each key.
3823       *
3824 +     * @param parallelismThreshold the (estimated) number of elements
3825 +     * needed for this operation to be executed in parallel
3826       * @param action the action
3827 +     * @since 1.8
3828       */
3829 <    public void forEachKey(Action<K> action) {
3830 <        ForkJoinTasks.forEachKey
3831 <            (this, action).invoke();
3829 >    public void forEachKey(long parallelismThreshold,
3830 >                           Consumer<? super K> action) {
3831 >        if (action == null) throw new NullPointerException();
3832 >        new ForEachKeyTask<K,V>
3833 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3834 >             action).invoke();
3835      }
3836  
3837      /**
3838       * Performs the given action for each non-null transformation
3839       * of each key.
3840       *
3841 +     * @param parallelismThreshold the (estimated) number of elements
3842 +     * needed for this operation to be executed in parallel
3843       * @param transformer a function returning the transformation
3844 <     * for an element, or null of there is no transformation (in
3845 <     * which case the action is not applied).
3844 >     * for an element, or null if there is no transformation (in
3845 >     * which case the action is not applied)
3846       * @param action the action
3847 +     * @param <U> the return type of the transformer
3848 +     * @since 1.8
3849       */
3850 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3851 <                               Action<U> action) {
3852 <        ForkJoinTasks.forEachKey
3853 <            (this, transformer, action).invoke();
3850 >    public <U> void forEachKey(long parallelismThreshold,
3851 >                               Function<? super K, ? extends U> transformer,
3852 >                               Consumer<? super U> action) {
3853 >        if (transformer == null || action == null)
3854 >            throw new NullPointerException();
3855 >        new ForEachTransformedKeyTask<K,V,U>
3856 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3857 >             transformer, action).invoke();
3858      }
3859  
3860      /**
# Line 3598 | Line 3864 | public class ConcurrentHashMap<K, V>
3864       * any other parallel invocations of the search function are
3865       * ignored.
3866       *
3867 +     * @param parallelismThreshold the (estimated) number of elements
3868 +     * needed for this operation to be executed in parallel
3869       * @param searchFunction a function returning a non-null
3870       * result on success, else null
3871 +     * @param <U> the return type of the search function
3872       * @return a non-null result from applying the given search
3873       * function on each key, or null if none
3874 +     * @since 1.8
3875       */
3876 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3877 <        return ForkJoinTasks.searchKeys
3878 <            (this, searchFunction).invoke();
3876 >    public <U> U searchKeys(long parallelismThreshold,
3877 >                            Function<? super K, ? extends U> searchFunction) {
3878 >        if (searchFunction == null) throw new NullPointerException();
3879 >        return new SearchKeysTask<K,V,U>
3880 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3881 >             searchFunction, new AtomicReference<U>()).invoke();
3882      }
3883  
3884      /**
3885       * Returns the result of accumulating all keys using the given
3886       * reducer to combine values, or null if none.
3887       *
3888 +     * @param parallelismThreshold the (estimated) number of elements
3889 +     * needed for this operation to be executed in parallel
3890       * @param reducer a commutative associative combining function
3891       * @return the result of accumulating all keys using the given
3892       * reducer to combine values, or null if none
3893 +     * @since 1.8
3894       */
3895 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3896 <        return ForkJoinTasks.reduceKeys
3897 <            (this, reducer).invoke();
3895 >    public K reduceKeys(long parallelismThreshold,
3896 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3897 >        if (reducer == null) throw new NullPointerException();
3898 >        return new ReduceKeysTask<K,V>
3899 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3900 >             null, reducer).invoke();
3901      }
3902  
3903      /**
# Line 3626 | Line 3905 | public class ConcurrentHashMap<K, V>
3905       * of all keys using the given reducer to combine values, or
3906       * null if none.
3907       *
3908 +     * @param parallelismThreshold the (estimated) number of elements
3909 +     * needed for this operation to be executed in parallel
3910       * @param transformer a function returning the transformation
3911 <     * for an element, or null of there is no transformation (in
3912 <     * which case it is not combined).
3911 >     * for an element, or null if there is no transformation (in
3912 >     * which case it is not combined)
3913       * @param reducer a commutative associative combining function
3914 +     * @param <U> the return type of the transformer
3915       * @return the result of accumulating the given transformation
3916       * of all keys
3917 +     * @since 1.8
3918       */
3919 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3920 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
3921 <        return ForkJoinTasks.reduceKeys
3922 <            (this, transformer, reducer).invoke();
3919 >    public <U> U reduceKeys(long parallelismThreshold,
3920 >                            Function<? super K, ? extends U> transformer,
3921 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3922 >        if (transformer == null || reducer == null)
3923 >            throw new NullPointerException();
3924 >        return new MapReduceKeysTask<K,V,U>
3925 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3926 >             null, transformer, reducer).invoke();
3927      }
3928  
3929      /**
# Line 3644 | Line 3931 | public class ConcurrentHashMap<K, V>
3931       * of all keys using the given reducer to combine values, and
3932       * the given basis as an identity value.
3933       *
3934 +     * @param parallelismThreshold the (estimated) number of elements
3935 +     * needed for this operation to be executed in parallel
3936       * @param transformer a function returning the transformation
3937       * for an element
3938       * @param basis the identity (initial default value) for the reduction
3939       * @param reducer a commutative associative combining function
3940 <     * @return  the result of accumulating the given transformation
3940 >     * @return the result of accumulating the given transformation
3941       * of all keys
3942 +     * @since 1.8
3943       */
3944 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3944 >    public double reduceKeysToDouble(long parallelismThreshold,
3945 >                                     ToDoubleFunction<? super K> transformer,
3946                                       double basis,
3947 <                                     DoubleByDoubleToDouble reducer) {
3948 <        return ForkJoinTasks.reduceKeysToDouble
3949 <            (this, transformer, basis, reducer).invoke();
3947 >                                     DoubleBinaryOperator reducer) {
3948 >        if (transformer == null || reducer == null)
3949 >            throw new NullPointerException();
3950 >        return new MapReduceKeysToDoubleTask<K,V>
3951 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3952 >             null, transformer, basis, reducer).invoke();
3953      }
3954  
3955      /**
# Line 3663 | Line 3957 | public class ConcurrentHashMap<K, V>
3957       * of all keys using the given reducer to combine values, and
3958       * the given basis as an identity value.
3959       *
3960 +     * @param parallelismThreshold the (estimated) number of elements
3961 +     * needed for this operation to be executed in parallel
3962       * @param transformer a function returning the transformation
3963       * for an element
3964       * @param basis the identity (initial default value) for the reduction
3965       * @param reducer a commutative associative combining function
3966       * @return the result of accumulating the given transformation
3967       * of all keys
3968 +     * @since 1.8
3969       */
3970 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3970 >    public long reduceKeysToLong(long parallelismThreshold,
3971 >                                 ToLongFunction<? super K> transformer,
3972                                   long basis,
3973 <                                 LongByLongToLong reducer) {
3974 <        return ForkJoinTasks.reduceKeysToLong
3975 <            (this, transformer, basis, reducer).invoke();
3973 >                                 LongBinaryOperator reducer) {
3974 >        if (transformer == null || reducer == null)
3975 >            throw new NullPointerException();
3976 >        return new MapReduceKeysToLongTask<K,V>
3977 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3978 >             null, transformer, basis, reducer).invoke();
3979      }
3980  
3981      /**
# Line 3682 | Line 3983 | public class ConcurrentHashMap<K, V>
3983       * of all keys using the given reducer to combine values, and
3984       * the given basis as an identity value.
3985       *
3986 +     * @param parallelismThreshold the (estimated) number of elements
3987 +     * needed for this operation to be executed in parallel
3988       * @param transformer a function returning the transformation
3989       * for an element
3990       * @param basis the identity (initial default value) for the reduction
3991       * @param reducer a commutative associative combining function
3992       * @return the result of accumulating the given transformation
3993       * of all keys
3994 +     * @since 1.8
3995       */
3996 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3996 >    public int reduceKeysToInt(long parallelismThreshold,
3997 >                               ToIntFunction<? super K> transformer,
3998                                 int basis,
3999 <                               IntByIntToInt reducer) {
4000 <        return ForkJoinTasks.reduceKeysToInt
4001 <            (this, transformer, basis, reducer).invoke();
3999 >                               IntBinaryOperator reducer) {
4000 >        if (transformer == null || reducer == null)
4001 >            throw new NullPointerException();
4002 >        return new MapReduceKeysToIntTask<K,V>
4003 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4004 >             null, transformer, basis, reducer).invoke();
4005      }
4006  
4007      /**
4008       * Performs the given action for each value.
4009       *
4010 +     * @param parallelismThreshold the (estimated) number of elements
4011 +     * needed for this operation to be executed in parallel
4012       * @param action the action
4013 +     * @since 1.8
4014       */
4015 <    public void forEachValue(Action<V> action) {
4016 <        ForkJoinTasks.forEachValue
4017 <            (this, action).invoke();
4015 >    public void forEachValue(long parallelismThreshold,
4016 >                             Consumer<? super V> action) {
4017 >        if (action == null)
4018 >            throw new NullPointerException();
4019 >        new ForEachValueTask<K,V>
4020 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4021 >             action).invoke();
4022      }
4023  
4024      /**
4025       * Performs the given action for each non-null transformation
4026       * of each value.
4027       *
4028 +     * @param parallelismThreshold the (estimated) number of elements
4029 +     * needed for this operation to be executed in parallel
4030       * @param transformer a function returning the transformation
4031 <     * for an element, or null of there is no transformation (in
4032 <     * which case the action is not applied).
4031 >     * for an element, or null if there is no transformation (in
4032 >     * which case the action is not applied)
4033 >     * @param action the action
4034 >     * @param <U> the return type of the transformer
4035 >     * @since 1.8
4036       */
4037 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
4038 <                                 Action<U> action) {
4039 <        ForkJoinTasks.forEachValue
4040 <            (this, transformer, action).invoke();
4037 >    public <U> void forEachValue(long parallelismThreshold,
4038 >                                 Function<? super V, ? extends U> transformer,
4039 >                                 Consumer<? super U> action) {
4040 >        if (transformer == null || action == null)
4041 >            throw new NullPointerException();
4042 >        new ForEachTransformedValueTask<K,V,U>
4043 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4044 >             transformer, action).invoke();
4045      }
4046  
4047      /**
# Line 3727 | Line 4051 | public class ConcurrentHashMap<K, V>
4051       * any other parallel invocations of the search function are
4052       * ignored.
4053       *
4054 +     * @param parallelismThreshold the (estimated) number of elements
4055 +     * needed for this operation to be executed in parallel
4056       * @param searchFunction a function returning a non-null
4057       * result on success, else null
4058 +     * @param <U> the return type of the search function
4059       * @return a non-null result from applying the given search
4060       * function on each value, or null if none
4061 <     *
4061 >     * @since 1.8
4062       */
4063 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
4064 <        return ForkJoinTasks.searchValues
4065 <            (this, searchFunction).invoke();
4063 >    public <U> U searchValues(long parallelismThreshold,
4064 >                              Function<? super V, ? extends U> searchFunction) {
4065 >        if (searchFunction == null) throw new NullPointerException();
4066 >        return new SearchValuesTask<K,V,U>
4067 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4068 >             searchFunction, new AtomicReference<U>()).invoke();
4069      }
4070  
4071      /**
4072       * Returns the result of accumulating all values using the
4073       * given reducer to combine values, or null if none.
4074       *
4075 +     * @param parallelismThreshold the (estimated) number of elements
4076 +     * needed for this operation to be executed in parallel
4077       * @param reducer a commutative associative combining function
4078 <     * @return  the result of accumulating all values
4078 >     * @return the result of accumulating all values
4079 >     * @since 1.8
4080       */
4081 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
4082 <        return ForkJoinTasks.reduceValues
4083 <            (this, reducer).invoke();
4081 >    public V reduceValues(long parallelismThreshold,
4082 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4083 >        if (reducer == null) throw new NullPointerException();
4084 >        return new ReduceValuesTask<K,V>
4085 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4086 >             null, reducer).invoke();
4087      }
4088  
4089      /**
# Line 3755 | Line 4091 | public class ConcurrentHashMap<K, V>
4091       * of all values using the given reducer to combine values, or
4092       * null if none.
4093       *
4094 +     * @param parallelismThreshold the (estimated) number of elements
4095 +     * needed for this operation to be executed in parallel
4096       * @param transformer a function returning the transformation
4097 <     * for an element, or null of there is no transformation (in
4098 <     * which case it is not combined).
4097 >     * for an element, or null if there is no transformation (in
4098 >     * which case it is not combined)
4099       * @param reducer a commutative associative combining function
4100 +     * @param <U> the return type of the transformer
4101       * @return the result of accumulating the given transformation
4102       * of all values
4103 +     * @since 1.8
4104       */
4105 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
4106 <                              BiFun<? super U, ? super U, ? extends U> reducer) {
4107 <        return ForkJoinTasks.reduceValues
4108 <            (this, transformer, reducer).invoke();
4105 >    public <U> U reduceValues(long parallelismThreshold,
4106 >                              Function<? super V, ? extends U> transformer,
4107 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4108 >        if (transformer == null || reducer == null)
4109 >            throw new NullPointerException();
4110 >        return new MapReduceValuesTask<K,V,U>
4111 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4112 >             null, transformer, reducer).invoke();
4113      }
4114  
4115      /**
# Line 3773 | Line 4117 | public class ConcurrentHashMap<K, V>
4117       * of all values using the given reducer to combine values,
4118       * and the given basis as an identity value.
4119       *
4120 +     * @param parallelismThreshold the (estimated) number of elements
4121 +     * needed for this operation to be executed in parallel
4122       * @param transformer a function returning the transformation
4123       * for an element
4124       * @param basis the identity (initial default value) for the reduction
4125       * @param reducer a commutative associative combining function
4126       * @return the result of accumulating the given transformation
4127       * of all values
4128 +     * @since 1.8
4129       */
4130 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
4130 >    public double reduceValuesToDouble(long parallelismThreshold,
4131 >                                       ToDoubleFunction<? super V> transformer,
4132                                         double basis,
4133 <                                       DoubleByDoubleToDouble reducer) {
4134 <        return ForkJoinTasks.reduceValuesToDouble
4135 <            (this, transformer, basis, reducer).invoke();
4133 >                                       DoubleBinaryOperator reducer) {
4134 >        if (transformer == null || reducer == null)
4135 >            throw new NullPointerException();
4136 >        return new MapReduceValuesToDoubleTask<K,V>
4137 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4138 >             null, transformer, basis, reducer).invoke();
4139      }
4140  
4141      /**
# Line 3792 | Line 4143 | public class ConcurrentHashMap<K, V>
4143       * of all values using the given reducer to combine values,
4144       * and the given basis as an identity value.
4145       *
4146 +     * @param parallelismThreshold the (estimated) number of elements
4147 +     * needed for this operation to be executed in parallel
4148       * @param transformer a function returning the transformation
4149       * for an element
4150       * @param basis the identity (initial default value) for the reduction
4151       * @param reducer a commutative associative combining function
4152       * @return the result of accumulating the given transformation
4153       * of all values
4154 +     * @since 1.8
4155       */
4156 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4156 >    public long reduceValuesToLong(long parallelismThreshold,
4157 >                                   ToLongFunction<? super V> transformer,
4158                                     long basis,
4159 <                                   LongByLongToLong reducer) {
4160 <        return ForkJoinTasks.reduceValuesToLong
4161 <            (this, transformer, basis, reducer).invoke();
4159 >                                   LongBinaryOperator reducer) {
4160 >        if (transformer == null || reducer == null)
4161 >            throw new NullPointerException();
4162 >        return new MapReduceValuesToLongTask<K,V>
4163 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4164 >             null, transformer, basis, reducer).invoke();
4165      }
4166  
4167      /**
# Line 3811 | Line 4169 | public class ConcurrentHashMap<K, V>
4169       * of all values using the given reducer to combine values,
4170       * and the given basis as an identity value.
4171       *
4172 +     * @param parallelismThreshold the (estimated) number of elements
4173 +     * needed for this operation to be executed in parallel
4174       * @param transformer a function returning the transformation
4175       * for an element
4176       * @param basis the identity (initial default value) for the reduction
4177       * @param reducer a commutative associative combining function
4178       * @return the result of accumulating the given transformation
4179       * of all values
4180 +     * @since 1.8
4181       */
4182 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4182 >    public int reduceValuesToInt(long parallelismThreshold,
4183 >                                 ToIntFunction<? super V> transformer,
4184                                   int basis,
4185 <                                 IntByIntToInt reducer) {
4186 <        return ForkJoinTasks.reduceValuesToInt
4187 <            (this, transformer, basis, reducer).invoke();
4185 >                                 IntBinaryOperator reducer) {
4186 >        if (transformer == null || reducer == null)
4187 >            throw new NullPointerException();
4188 >        return new MapReduceValuesToIntTask<K,V>
4189 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4190 >             null, transformer, basis, reducer).invoke();
4191      }
4192  
4193      /**
4194       * Performs the given action for each entry.
4195       *
4196 +     * @param parallelismThreshold the (estimated) number of elements
4197 +     * needed for this operation to be executed in parallel
4198       * @param action the action
4199 +     * @since 1.8
4200       */
4201 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
4202 <        ForkJoinTasks.forEachEntry
4203 <            (this, action).invoke();
4201 >    public void forEachEntry(long parallelismThreshold,
4202 >                             Consumer<? super Map.Entry<K,V>> action) {
4203 >        if (action == null) throw new NullPointerException();
4204 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4205 >                                  action).invoke();
4206      }
4207  
4208      /**
4209       * Performs the given action for each non-null transformation
4210       * of each entry.
4211       *
4212 +     * @param parallelismThreshold the (estimated) number of elements
4213 +     * needed for this operation to be executed in parallel
4214       * @param transformer a function returning the transformation
4215 <     * for an element, or null of there is no transformation (in
4216 <     * which case the action is not applied).
4215 >     * for an element, or null if there is no transformation (in
4216 >     * which case the action is not applied)
4217       * @param action the action
4218 +     * @param <U> the return type of the transformer
4219 +     * @since 1.8
4220       */
4221 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4222 <                                 Action<U> action) {
4223 <        ForkJoinTasks.forEachEntry
4224 <            (this, transformer, action).invoke();
4221 >    public <U> void forEachEntry(long parallelismThreshold,
4222 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4223 >                                 Consumer<? super U> action) {
4224 >        if (transformer == null || action == null)
4225 >            throw new NullPointerException();
4226 >        new ForEachTransformedEntryTask<K,V,U>
4227 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4228 >             transformer, action).invoke();
4229      }
4230  
4231      /**
# Line 3857 | Line 4235 | public class ConcurrentHashMap<K, V>
4235       * any other parallel invocations of the search function are
4236       * ignored.
4237       *
4238 +     * @param parallelismThreshold the (estimated) number of elements
4239 +     * needed for this operation to be executed in parallel
4240       * @param searchFunction a function returning a non-null
4241       * result on success, else null
4242 +     * @param <U> the return type of the search function
4243       * @return a non-null result from applying the given search
4244       * function on each entry, or null if none
4245 +     * @since 1.8
4246       */
4247 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4248 <        return ForkJoinTasks.searchEntries
4249 <            (this, searchFunction).invoke();
4247 >    public <U> U searchEntries(long parallelismThreshold,
4248 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4249 >        if (searchFunction == null) throw new NullPointerException();
4250 >        return new SearchEntriesTask<K,V,U>
4251 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4252 >             searchFunction, new AtomicReference<U>()).invoke();
4253      }
4254  
4255      /**
4256       * Returns the result of accumulating all entries using the
4257       * given reducer to combine values, or null if none.
4258       *
4259 +     * @param parallelismThreshold the (estimated) number of elements
4260 +     * needed for this operation to be executed in parallel
4261       * @param reducer a commutative associative combining function
4262       * @return the result of accumulating all entries
4263 +     * @since 1.8
4264       */
4265 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4266 <        return ForkJoinTasks.reduceEntries
4267 <            (this, reducer).invoke();
4265 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4266 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4267 >        if (reducer == null) throw new NullPointerException();
4268 >        return new ReduceEntriesTask<K,V>
4269 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4270 >             null, reducer).invoke();
4271      }
4272  
4273      /**
# Line 3884 | Line 4275 | public class ConcurrentHashMap<K, V>
4275       * of all entries using the given reducer to combine values,
4276       * or null if none.
4277       *
4278 +     * @param parallelismThreshold the (estimated) number of elements
4279 +     * needed for this operation to be executed in parallel
4280       * @param transformer a function returning the transformation
4281 <     * for an element, or null of there is no transformation (in
4282 <     * which case it is not combined).
4281 >     * for an element, or null if there is no transformation (in
4282 >     * which case it is not combined)
4283       * @param reducer a commutative associative combining function
4284 +     * @param <U> the return type of the transformer
4285       * @return the result of accumulating the given transformation
4286       * of all entries
4287 +     * @since 1.8
4288       */
4289 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4290 <                               BiFun<? super U, ? super U, ? extends U> reducer) {
4291 <        return ForkJoinTasks.reduceEntries
4292 <            (this, transformer, reducer).invoke();
4289 >    public <U> U reduceEntries(long parallelismThreshold,
4290 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4291 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4292 >        if (transformer == null || reducer == null)
4293 >            throw new NullPointerException();
4294 >        return new MapReduceEntriesTask<K,V,U>
4295 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4296 >             null, transformer, reducer).invoke();
4297      }
4298  
4299      /**
# Line 3902 | Line 4301 | public class ConcurrentHashMap<K, V>
4301       * of all entries using the given reducer to combine values,
4302       * and the given basis as an identity value.
4303       *
4304 +     * @param parallelismThreshold the (estimated) number of elements
4305 +     * needed for this operation to be executed in parallel
4306       * @param transformer a function returning the transformation
4307       * for an element
4308       * @param basis the identity (initial default value) for the reduction
4309       * @param reducer a commutative associative combining function
4310       * @return the result of accumulating the given transformation
4311       * of all entries
4312 +     * @since 1.8
4313       */
4314 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4314 >    public double reduceEntriesToDouble(long parallelismThreshold,
4315 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4316                                          double basis,
4317 <                                        DoubleByDoubleToDouble reducer) {
4318 <        return ForkJoinTasks.reduceEntriesToDouble
4319 <            (this, transformer, basis, reducer).invoke();
4317 >                                        DoubleBinaryOperator reducer) {
4318 >        if (transformer == null || reducer == null)
4319 >            throw new NullPointerException();
4320 >        return new MapReduceEntriesToDoubleTask<K,V>
4321 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4322 >             null, transformer, basis, reducer).invoke();
4323      }
4324  
4325      /**
# Line 3921 | Line 4327 | public class ConcurrentHashMap<K, V>
4327       * of all entries using the given reducer to combine values,
4328       * and the given basis as an identity value.
4329       *
4330 +     * @param parallelismThreshold the (estimated) number of elements
4331 +     * needed for this operation to be executed in parallel
4332       * @param transformer a function returning the transformation
4333       * for an element
4334       * @param basis the identity (initial default value) for the reduction
4335       * @param reducer a commutative associative combining function
4336 <     * @return  the result of accumulating the given transformation
4336 >     * @return the result of accumulating the given transformation
4337       * of all entries
4338 +     * @since 1.8
4339       */
4340 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4340 >    public long reduceEntriesToLong(long parallelismThreshold,
4341 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4342                                      long basis,
4343 <                                    LongByLongToLong reducer) {
4344 <        return ForkJoinTasks.reduceEntriesToLong
4345 <            (this, transformer, basis, reducer).invoke();
4343 >                                    LongBinaryOperator reducer) {
4344 >        if (transformer == null || reducer == null)
4345 >            throw new NullPointerException();
4346 >        return new MapReduceEntriesToLongTask<K,V>
4347 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4348 >             null, transformer, basis, reducer).invoke();
4349      }
4350  
4351      /**
# Line 3940 | Line 4353 | public class ConcurrentHashMap<K, V>
4353       * of all entries using the given reducer to combine values,
4354       * and the given basis as an identity value.
4355       *
4356 +     * @param parallelismThreshold the (estimated) number of elements
4357 +     * needed for this operation to be executed in parallel
4358       * @param transformer a function returning the transformation
4359       * for an element
4360       * @param basis the identity (initial default value) for the reduction
4361       * @param reducer a commutative associative combining function
4362       * @return the result of accumulating the given transformation
4363       * of all entries
4364 +     * @since 1.8
4365       */
4366 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4366 >    public int reduceEntriesToInt(long parallelismThreshold,
4367 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4368                                    int basis,
4369 <                                  IntByIntToInt reducer) {
4370 <        return ForkJoinTasks.reduceEntriesToInt
4371 <            (this, transformer, basis, reducer).invoke();
4369 >                                  IntBinaryOperator reducer) {
4370 >        if (transformer == null || reducer == null)
4371 >            throw new NullPointerException();
4372 >        return new MapReduceEntriesToIntTask<K,V>
4373 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4374 >             null, transformer, basis, reducer).invoke();
4375      }
4376  
4377 +
4378      /* ----------------Views -------------- */
4379  
4380      /**
4381       * Base class for views.
4382       */
4383 <    static abstract class CHMView<K, V> {
4384 <        final ConcurrentHashMap<K, V> map;
4385 <        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
4383 >    abstract static class CollectionView<K,V,E>
4384 >        implements Collection<E>, java.io.Serializable {
4385 >        private static final long serialVersionUID = 7249069246763182397L;
4386 >        final ConcurrentHashMap<K,V> map;
4387 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4388  
4389          /**
4390           * Returns the map backing this view.
# Line 3970 | Line 4393 | public class ConcurrentHashMap<K, V>
4393           */
4394          public ConcurrentHashMap<K,V> getMap() { return map; }
4395  
4396 <        public final int size()                 { return map.size(); }
4397 <        public final boolean isEmpty()          { return map.isEmpty(); }
4398 <        public final void clear()               { map.clear(); }
4396 >        /**
4397 >         * Removes all of the elements from this view, by removing all
4398 >         * the mappings from the map backing this view.
4399 >         */
4400 >        public final void clear()      { map.clear(); }
4401 >        public final int size()        { return map.size(); }
4402 >        public final boolean isEmpty() { return map.isEmpty(); }
4403  
4404          // implementations below rely on concrete classes supplying these
4405 <        abstract public Iterator<?> iterator();
4406 <        abstract public boolean contains(Object o);
4407 <        abstract public boolean remove(Object o);
4405 >        // abstract methods
4406 >        /**
4407 >         * Returns an iterator over the elements in this collection.
4408 >         *
4409 >         * <p>The returned iterator is
4410 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4411 >         *
4412 >         * @return an iterator over the elements in this collection
4413 >         */
4414 >        public abstract Iterator<E> iterator();
4415 >        public abstract boolean contains(Object o);
4416 >        public abstract boolean remove(Object o);
4417  
4418 <        private static final String oomeMsg = "Required array size too large";
4418 >        private static final String OOME_MSG = "Required array size too large";
4419  
4420          public final Object[] toArray() {
4421              long sz = map.mappingCount();
4422 <            if (sz > (long)(MAX_ARRAY_SIZE))
4423 <                throw new OutOfMemoryError(oomeMsg);
4422 >            if (sz > MAX_ARRAY_SIZE)
4423 >                throw new OutOfMemoryError(OOME_MSG);
4424              int n = (int)sz;
4425              Object[] r = new Object[n];
4426              int i = 0;
4427 <            Iterator<?> it = iterator();
3992 <            while (it.hasNext()) {
4427 >            for (E e : this) {
4428                  if (i == n) {
4429                      if (n >= MAX_ARRAY_SIZE)
4430 <                        throw new OutOfMemoryError(oomeMsg);
4430 >                        throw new OutOfMemoryError(OOME_MSG);
4431                      if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4432                          n = MAX_ARRAY_SIZE;
4433                      else
4434                          n += (n >>> 1) + 1;
4435                      r = Arrays.copyOf(r, n);
4436                  }
4437 <                r[i++] = it.next();
4437 >                r[i++] = e;
4438              }
4439              return (i == n) ? r : Arrays.copyOf(r, i);
4440          }
4441  
4442 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4442 >        @SuppressWarnings("unchecked")
4443 >        public final <T> T[] toArray(T[] a) {
4444              long sz = map.mappingCount();
4445 <            if (sz > (long)(MAX_ARRAY_SIZE))
4446 <                throw new OutOfMemoryError(oomeMsg);
4445 >            if (sz > MAX_ARRAY_SIZE)
4446 >                throw new OutOfMemoryError(OOME_MSG);
4447              int m = (int)sz;
4448              T[] r = (a.length >= m) ? a :
4449                  (T[])java.lang.reflect.Array
4450                  .newInstance(a.getClass().getComponentType(), m);
4451              int n = r.length;
4452              int i = 0;
4453 <            Iterator<?> it = iterator();
4018 <            while (it.hasNext()) {
4453 >            for (E e : this) {
4454                  if (i == n) {
4455                      if (n >= MAX_ARRAY_SIZE)
4456 <                        throw new OutOfMemoryError(oomeMsg);
4456 >                        throw new OutOfMemoryError(OOME_MSG);
4457                      if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4458                          n = MAX_ARRAY_SIZE;
4459                      else
4460                          n += (n >>> 1) + 1;
4461                      r = Arrays.copyOf(r, n);
4462                  }
4463 <                r[i++] = (T)it.next();
4463 >                r[i++] = (T)e;
4464              }
4465              if (a == r && i < n) {
4466                  r[i] = null; // null-terminate
# Line 4034 | Line 4469 | public class ConcurrentHashMap<K, V>
4469              return (i == n) ? r : Arrays.copyOf(r, i);
4470          }
4471  
4472 <        public final int hashCode() {
4473 <            int h = 0;
4474 <            for (Iterator<?> it = iterator(); it.hasNext();)
4475 <                h += it.next().hashCode();
4476 <            return h;
4477 <        }
4478 <
4472 >        /**
4473 >         * Returns a string representation of this collection.
4474 >         * The string representation consists of the string representations
4475 >         * of the collection's elements in the order they are returned by
4476 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4477 >         * Adjacent elements are separated by the characters {@code ", "}
4478 >         * (comma and space).  Elements are converted to strings as by
4479 >         * {@link String#valueOf(Object)}.
4480 >         *
4481 >         * @return a string representation of this collection
4482 >         */
4483          public final String toString() {
4484              StringBuilder sb = new StringBuilder();
4485              sb.append('[');
4486 <            Iterator<?> it = iterator();
4486 >            Iterator<E> it = iterator();
4487              if (it.hasNext()) {
4488                  for (;;) {
4489                      Object e = it.next();
# Line 4059 | Line 4498 | public class ConcurrentHashMap<K, V>
4498  
4499          public final boolean containsAll(Collection<?> c) {
4500              if (c != this) {
4501 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4063 <                    Object e = it.next();
4501 >                for (Object e : c) {
4502                      if (e == null || !contains(e))
4503                          return false;
4504                  }
# Line 4068 | Line 4506 | public class ConcurrentHashMap<K, V>
4506              return true;
4507          }
4508  
4509 <        public final boolean removeAll(Collection<?> c) {
4509 >        public boolean removeAll(Collection<?> c) {
4510 >            if (c == null) throw new NullPointerException();
4511              boolean modified = false;
4512 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4513 <                if (c.contains(it.next())) {
4514 <                    it.remove();
4515 <                    modified = true;
4512 >            // Use (c instanceof Set) as a hint that lookup in c is as
4513 >            // efficient as this view
4514 >            Node<K,V>[] t;
4515 >            if ((t = map.table) == null) {
4516 >                return false;
4517 >            } else if (c instanceof Set<?> && c.size() > t.length) {
4518 >                for (Iterator<?> it = iterator(); it.hasNext(); ) {
4519 >                    if (c.contains(it.next())) {
4520 >                        it.remove();
4521 >                        modified = true;
4522 >                    }
4523                  }
4524 +            } else {
4525 +                for (Object e : c)
4526 +                    modified |= remove(e);
4527              }
4528              return modified;
4529          }
4530  
4531          public final boolean retainAll(Collection<?> c) {
4532 +            if (c == null) throw new NullPointerException();
4533              boolean modified = false;
4534 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4534 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4535                  if (!c.contains(it.next())) {
4536                      it.remove();
4537                      modified = true;
# Line 4095 | Line 4545 | public class ConcurrentHashMap<K, V>
4545      /**
4546       * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4547       * which additions may optionally be enabled by mapping to a
4548 <     * common value.  This class cannot be directly instantiated. See
4549 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4550 <     * {@link #newKeySet(int)}.
4548 >     * common value.  This class cannot be directly instantiated.
4549 >     * See {@link #keySet() keySet()},
4550 >     * {@link #keySet(Object) keySet(V)},
4551 >     * {@link #newKeySet() newKeySet()},
4552 >     * {@link #newKeySet(int) newKeySet(int)}.
4553 >     *
4554 >     * @since 1.8
4555       */
4556 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4556 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4557 >        implements Set<K>, java.io.Serializable {
4558          private static final long serialVersionUID = 7249069246763182397L;
4559          private final V value;
4560 <        KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
4560 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4561              super(map);
4562              this.value = value;
4563          }
# Line 4112 | Line 4567 | public class ConcurrentHashMap<K, V>
4567           * or {@code null} if additions are not supported.
4568           *
4569           * @return the default mapped value for additions, or {@code null}
4570 <         * if not supported.
4570 >         * if not supported
4571           */
4572          public V getMappedValue() { return value; }
4573  
4574 <        // implement Set API
4575 <
4574 >        /**
4575 >         * {@inheritDoc}
4576 >         * @throws NullPointerException if the specified key is null
4577 >         */
4578          public boolean contains(Object o) { return map.containsKey(o); }
4122        public boolean remove(Object o)   { return map.remove(o) != null; }
4579  
4580          /**
4581 <         * Returns a "weakly consistent" iterator that will never
4582 <         * throw {@link ConcurrentModificationException}, and
4583 <         * guarantees to traverse elements as they existed upon
4584 <         * construction of the iterator, and may (but is not
4585 <         * guaranteed to) reflect any modifications subsequent to
4586 <         * construction.
4581 >         * Removes the key from this map view, by removing the key (and its
4582 >         * corresponding value) from the backing map.  This method does
4583 >         * nothing if the key is not in the map.
4584 >         *
4585 >         * @param  o the key to be removed from the backing map
4586 >         * @return {@code true} if the backing map contained the specified key
4587 >         * @throws NullPointerException if the specified key is null
4588 >         */
4589 >        public boolean remove(Object o) { return map.remove(o) != null; }
4590 >
4591 >        /**
4592 >         * @return an iterator over the keys of the backing map
4593 >         */
4594 >        public Iterator<K> iterator() {
4595 >            Node<K,V>[] t;
4596 >            ConcurrentHashMap<K,V> m = map;
4597 >            int f = (t = m.table) == null ? 0 : t.length;
4598 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4599 >        }
4600 >
4601 >        /**
4602 >         * Adds the specified key to this set view by mapping the key to
4603 >         * the default mapped value in the backing map, if defined.
4604           *
4605 <         * @return an iterator over the keys of this map
4605 >         * @param e key to be added
4606 >         * @return {@code true} if this set changed as a result of the call
4607 >         * @throws NullPointerException if the specified key is null
4608 >         * @throws UnsupportedOperationException if no default mapped value
4609 >         * for additions was provided
4610           */
4134        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4611          public boolean add(K e) {
4612              V v;
4613              if ((v = value) == null)
4614                  throw new UnsupportedOperationException();
4615 <            if (e == null)
4140 <                throw new NullPointerException();
4141 <            return map.internalPutIfAbsent(e, v) == null;
4615 >            return map.putVal(e, v, true) == null;
4616          }
4617 +
4618 +        /**
4619 +         * Adds all of the elements in the specified collection to this set,
4620 +         * as if by calling {@link #add} on each one.
4621 +         *
4622 +         * @param c the elements to be inserted into this set
4623 +         * @return {@code true} if this set changed as a result of the call
4624 +         * @throws NullPointerException if the collection or any of its
4625 +         * elements are {@code null}
4626 +         * @throws UnsupportedOperationException if no default mapped value
4627 +         * for additions was provided
4628 +         */
4629          public boolean addAll(Collection<? extends K> c) {
4630              boolean added = false;
4631              V v;
4632              if ((v = value) == null)
4633                  throw new UnsupportedOperationException();
4634              for (K e : c) {
4635 <                if (e == null)
4150 <                    throw new NullPointerException();
4151 <                if (map.internalPutIfAbsent(e, v) == null)
4635 >                if (map.putVal(e, v, true) == null)
4636                      added = true;
4637              }
4638              return added;
4639          }
4640 +
4641 +        public int hashCode() {
4642 +            int h = 0;
4643 +            for (K e : this)
4644 +                h += e.hashCode();
4645 +            return h;
4646 +        }
4647 +
4648          public boolean equals(Object o) {
4649              Set<?> c;
4650              return ((o instanceof Set) &&
# Line 4160 | Line 4652 | public class ConcurrentHashMap<K, V>
4652                       (containsAll(c) && c.containsAll(this))));
4653          }
4654  
4655 <        /**
4656 <         * Performs the given action for each key.
4657 <         *
4658 <         * @param action the action
4659 <         */
4660 <        public void forEach(Action<K> action) {
4169 <            ForkJoinTasks.forEachKey
4170 <                (map, action).invoke();
4171 <        }
4172 <
4173 <        /**
4174 <         * Performs the given action for each non-null transformation
4175 <         * of each key.
4176 <         *
4177 <         * @param transformer a function returning the transformation
4178 <         * for an element, or null of there is no transformation (in
4179 <         * which case the action is not applied).
4180 <         * @param action the action
4181 <         */
4182 <        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4183 <                                Action<U> action) {
4184 <            ForkJoinTasks.forEachKey
4185 <                (map, transformer, action).invoke();
4655 >        public Spliterator<K> spliterator() {
4656 >            Node<K,V>[] t;
4657 >            ConcurrentHashMap<K,V> m = map;
4658 >            long n = m.sumCount();
4659 >            int f = (t = m.table) == null ? 0 : t.length;
4660 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4661          }
4662  
4663 <        /**
4664 <         * Returns a non-null result from applying the given search
4665 <         * function on each key, or null if none. Upon success,
4666 <         * further element processing is suppressed and the results of
4667 <         * any other parallel invocations of the search function are
4668 <         * ignored.
4669 <         *
4670 <         * @param searchFunction a function returning a non-null
4196 <         * result on success, else null
4197 <         * @return a non-null result from applying the given search
4198 <         * function on each key, or null if none
4199 <         */
4200 <        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4201 <            return ForkJoinTasks.searchKeys
4202 <                (map, searchFunction).invoke();
4203 <        }
4204 <
4205 <        /**
4206 <         * Returns the result of accumulating all keys using the given
4207 <         * reducer to combine values, or null if none.
4208 <         *
4209 <         * @param reducer a commutative associative combining function
4210 <         * @return the result of accumulating all keys using the given
4211 <         * reducer to combine values, or null if none
4212 <         */
4213 <        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4214 <            return ForkJoinTasks.reduceKeys
4215 <                (map, reducer).invoke();
4216 <        }
4217 <
4218 <        /**
4219 <         * Returns the result of accumulating the given transformation
4220 <         * of all keys using the given reducer to combine values, and
4221 <         * the given basis as an identity value.
4222 <         *
4223 <         * @param transformer a function returning the transformation
4224 <         * for an element
4225 <         * @param basis the identity (initial default value) for the reduction
4226 <         * @param reducer a commutative associative combining function
4227 <         * @return  the result of accumulating the given transformation
4228 <         * of all keys
4229 <         */
4230 <        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4231 <                                     double basis,
4232 <                                     DoubleByDoubleToDouble reducer) {
4233 <            return ForkJoinTasks.reduceKeysToDouble
4234 <                (map, transformer, basis, reducer).invoke();
4235 <        }
4236 <
4237 <
4238 <        /**
4239 <         * Returns the result of accumulating the given transformation
4240 <         * of all keys using the given reducer to combine values, and
4241 <         * the given basis as an identity value.
4242 <         *
4243 <         * @param transformer a function returning the transformation
4244 <         * for an element
4245 <         * @param basis the identity (initial default value) for the reduction
4246 <         * @param reducer a commutative associative combining function
4247 <         * @return the result of accumulating the given transformation
4248 <         * of all keys
4249 <         */
4250 <        public long reduceToLong(ObjectToLong<? super K> transformer,
4251 <                                 long basis,
4252 <                                 LongByLongToLong reducer) {
4253 <            return ForkJoinTasks.reduceKeysToLong
4254 <                (map, transformer, basis, reducer).invoke();
4255 <        }
4256 <
4257 <        /**
4258 <         * Returns the result of accumulating the given transformation
4259 <         * of all keys using the given reducer to combine values, and
4260 <         * the given basis as an identity value.
4261 <         *
4262 <         * @param transformer a function returning the transformation
4263 <         * for an element
4264 <         * @param basis the identity (initial default value) for the reduction
4265 <         * @param reducer a commutative associative combining function
4266 <         * @return the result of accumulating the given transformation
4267 <         * of all keys
4268 <         */
4269 <        public int reduceToInt(ObjectToInt<? super K> transformer,
4270 <                               int basis,
4271 <                               IntByIntToInt reducer) {
4272 <            return ForkJoinTasks.reduceKeysToInt
4273 <                (map, transformer, basis, reducer).invoke();
4663 >        public void forEach(Consumer<? super K> action) {
4664 >            if (action == null) throw new NullPointerException();
4665 >            Node<K,V>[] t;
4666 >            if ((t = map.table) != null) {
4667 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4668 >                for (Node<K,V> p; (p = it.advance()) != null; )
4669 >                    action.accept(p.key);
4670 >            }
4671          }
4275
4672      }
4673  
4674      /**
4675       * A view of a ConcurrentHashMap as a {@link Collection} of
4676       * values, in which additions are disabled. This class cannot be
4677 <     * directly instantiated. See {@link #values},
4678 <     *
4679 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4680 <     * that will never throw {@link ConcurrentModificationException},
4681 <     * and guarantees to traverse elements as they existed upon
4682 <     * construction of the iterator, and may (but is not guaranteed to)
4683 <     * reflect any modifications subsequent to construction.
4684 <     */
4685 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4686 <        implements Collection<V> {
4291 <        ValuesView(ConcurrentHashMap<K, V> map)   { super(map); }
4292 <        public final boolean contains(Object o) { return map.containsValue(o); }
4677 >     * directly instantiated. See {@link #values()}.
4678 >     */
4679 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4680 >        implements Collection<V>, java.io.Serializable {
4681 >        private static final long serialVersionUID = 2249069246763182397L;
4682 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4683 >        public final boolean contains(Object o) {
4684 >            return map.containsValue(o);
4685 >        }
4686 >
4687          public final boolean remove(Object o) {
4688              if (o != null) {
4689 <                Iterator<V> it = new ValueIterator<K,V>(map);
4296 <                while (it.hasNext()) {
4689 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4690                      if (o.equals(it.next())) {
4691                          it.remove();
4692                          return true;
# Line 4303 | Line 4696 | public class ConcurrentHashMap<K, V>
4696              return false;
4697          }
4698  
4306        /**
4307         * Returns a "weakly consistent" iterator that will never
4308         * throw {@link ConcurrentModificationException}, and
4309         * guarantees to traverse elements as they existed upon
4310         * construction of the iterator, and may (but is not
4311         * guaranteed to) reflect any modifications subsequent to
4312         * construction.
4313         *
4314         * @return an iterator over the values of this map
4315         */
4699          public final Iterator<V> iterator() {
4700 <            return new ValueIterator<K,V>(map);
4700 >            ConcurrentHashMap<K,V> m = map;
4701 >            Node<K,V>[] t;
4702 >            int f = (t = m.table) == null ? 0 : t.length;
4703 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4704          }
4705 +
4706          public final boolean add(V e) {
4707              throw new UnsupportedOperationException();
4708          }
# Line 4323 | Line 4710 | public class ConcurrentHashMap<K, V>
4710              throw new UnsupportedOperationException();
4711          }
4712  
4713 <        /**
4714 <         * Performs the given action for each value.
4715 <         *
4716 <         * @param action the action
4717 <         */
4718 <        public void forEach(Action<V> action) {
4719 <            ForkJoinTasks.forEachValue
4720 <                (map, action).invoke();
4721 <        }
4722 <
4336 <        /**
4337 <         * Performs the given action for each non-null transformation
4338 <         * of each value.
4339 <         *
4340 <         * @param transformer a function returning the transformation
4341 <         * for an element, or null of there is no transformation (in
4342 <         * which case the action is not applied).
4343 <         */
4344 <        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4345 <                                     Action<U> action) {
4346 <            ForkJoinTasks.forEachValue
4347 <                (map, transformer, action).invoke();
4348 <        }
4349 <
4350 <        /**
4351 <         * Returns a non-null result from applying the given search
4352 <         * function on each value, or null if none.  Upon success,
4353 <         * further element processing is suppressed and the results of
4354 <         * any other parallel invocations of the search function are
4355 <         * ignored.
4356 <         *
4357 <         * @param searchFunction a function returning a non-null
4358 <         * result on success, else null
4359 <         * @return a non-null result from applying the given search
4360 <         * function on each value, or null if none
4361 <         *
4362 <         */
4363 <        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4364 <            return ForkJoinTasks.searchValues
4365 <                (map, searchFunction).invoke();
4366 <        }
4367 <
4368 <        /**
4369 <         * Returns the result of accumulating all values using the
4370 <         * given reducer to combine values, or null if none.
4371 <         *
4372 <         * @param reducer a commutative associative combining function
4373 <         * @return  the result of accumulating all values
4374 <         */
4375 <        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4376 <            return ForkJoinTasks.reduceValues
4377 <                (map, reducer).invoke();
4378 <        }
4379 <
4380 <        /**
4381 <         * Returns the result of accumulating the given transformation
4382 <         * of all values using the given reducer to combine values, or
4383 <         * null if none.
4384 <         *
4385 <         * @param transformer a function returning the transformation
4386 <         * for an element, or null of there is no transformation (in
4387 <         * which case it is not combined).
4388 <         * @param reducer a commutative associative combining function
4389 <         * @return the result of accumulating the given transformation
4390 <         * of all values
4391 <         */
4392 <        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4393 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4394 <            return ForkJoinTasks.reduceValues
4395 <                (map, transformer, reducer).invoke();
4713 >        @Override public boolean removeAll(Collection<?> c) {
4714 >            if (c == null) throw new NullPointerException();
4715 >            boolean modified = false;
4716 >            for (Iterator<V> it = iterator(); it.hasNext();) {
4717 >                if (c.contains(it.next())) {
4718 >                    it.remove();
4719 >                    modified = true;
4720 >                }
4721 >            }
4722 >            return modified;
4723          }
4724  
4725 <        /**
4726 <         * Returns the result of accumulating the given transformation
4400 <         * of all values using the given reducer to combine values,
4401 <         * and the given basis as an identity value.
4402 <         *
4403 <         * @param transformer a function returning the transformation
4404 <         * for an element
4405 <         * @param basis the identity (initial default value) for the reduction
4406 <         * @param reducer a commutative associative combining function
4407 <         * @return the result of accumulating the given transformation
4408 <         * of all values
4409 <         */
4410 <        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4411 <                                     double basis,
4412 <                                     DoubleByDoubleToDouble reducer) {
4413 <            return ForkJoinTasks.reduceValuesToDouble
4414 <                (map, transformer, basis, reducer).invoke();
4725 >        public boolean removeIf(Predicate<? super V> filter) {
4726 >            return map.removeValueIf(filter);
4727          }
4728  
4729 <        /**
4730 <         * Returns the result of accumulating the given transformation
4731 <         * of all values using the given reducer to combine values,
4732 <         * and the given basis as an identity value.
4733 <         *
4734 <         * @param transformer a function returning the transformation
4423 <         * for an element
4424 <         * @param basis the identity (initial default value) for the reduction
4425 <         * @param reducer a commutative associative combining function
4426 <         * @return the result of accumulating the given transformation
4427 <         * of all values
4428 <         */
4429 <        public long reduceToLong(ObjectToLong<? super V> transformer,
4430 <                                 long basis,
4431 <                                 LongByLongToLong reducer) {
4432 <            return ForkJoinTasks.reduceValuesToLong
4433 <                (map, transformer, basis, reducer).invoke();
4729 >        public Spliterator<V> spliterator() {
4730 >            Node<K,V>[] t;
4731 >            ConcurrentHashMap<K,V> m = map;
4732 >            long n = m.sumCount();
4733 >            int f = (t = m.table) == null ? 0 : t.length;
4734 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4735          }
4736  
4737 <        /**
4738 <         * Returns the result of accumulating the given transformation
4739 <         * of all values using the given reducer to combine values,
4740 <         * and the given basis as an identity value.
4741 <         *
4742 <         * @param transformer a function returning the transformation
4743 <         * for an element
4744 <         * @param basis the identity (initial default value) for the reduction
4444 <         * @param reducer a commutative associative combining function
4445 <         * @return the result of accumulating the given transformation
4446 <         * of all values
4447 <         */
4448 <        public int reduceToInt(ObjectToInt<? super V> transformer,
4449 <                               int basis,
4450 <                               IntByIntToInt reducer) {
4451 <            return ForkJoinTasks.reduceValuesToInt
4452 <                (map, transformer, basis, reducer).invoke();
4737 >        public void forEach(Consumer<? super V> action) {
4738 >            if (action == null) throw new NullPointerException();
4739 >            Node<K,V>[] t;
4740 >            if ((t = map.table) != null) {
4741 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4742 >                for (Node<K,V> p; (p = it.advance()) != null; )
4743 >                    action.accept(p.val);
4744 >            }
4745          }
4454
4746      }
4747  
4748      /**
4749       * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4750       * entries.  This class cannot be directly instantiated. See
4751 <     * {@link #entrySet}.
4751 >     * {@link #entrySet()}.
4752       */
4753 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4754 <        implements Set<Map.Entry<K,V>> {
4755 <        EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4756 <        public final boolean contains(Object o) {
4753 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4754 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4755 >        private static final long serialVersionUID = 2249069246763182397L;
4756 >        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4757 >
4758 >        public boolean contains(Object o) {
4759              Object k, v, r; Map.Entry<?,?> e;
4760              return ((o instanceof Map.Entry) &&
4761                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4470 | Line 4763 | public class ConcurrentHashMap<K, V>
4763                      (v = e.getValue()) != null &&
4764                      (v == r || v.equals(r)));
4765          }
4766 <        public final boolean remove(Object o) {
4766 >
4767 >        public boolean remove(Object o) {
4768              Object k, v; Map.Entry<?,?> e;
4769              return ((o instanceof Map.Entry) &&
4770                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4479 | Line 4773 | public class ConcurrentHashMap<K, V>
4773          }
4774  
4775          /**
4776 <         * Returns a "weakly consistent" iterator that will never
4483 <         * throw {@link ConcurrentModificationException}, and
4484 <         * guarantees to traverse elements as they existed upon
4485 <         * construction of the iterator, and may (but is not
4486 <         * guaranteed to) reflect any modifications subsequent to
4487 <         * construction.
4488 <         *
4489 <         * @return an iterator over the entries of this map
4776 >         * @return an iterator over the entries of the backing map
4777           */
4778 <        public final Iterator<Map.Entry<K,V>> iterator() {
4779 <            return new EntryIterator<K,V>(map);
4778 >        public Iterator<Map.Entry<K,V>> iterator() {
4779 >            ConcurrentHashMap<K,V> m = map;
4780 >            Node<K,V>[] t;
4781 >            int f = (t = m.table) == null ? 0 : t.length;
4782 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4783          }
4784  
4785 <        public final boolean add(Entry<K,V> e) {
4786 <            K key = e.getKey();
4497 <            V value = e.getValue();
4498 <            if (key == null || value == null)
4499 <                throw new NullPointerException();
4500 <            return map.internalPut(key, value) == null;
4785 >        public boolean add(Entry<K,V> e) {
4786 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4787          }
4788 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4788 >
4789 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4790              boolean added = false;
4791              for (Entry<K,V> e : c) {
4792                  if (add(e))
# Line 4507 | Line 4794 | public class ConcurrentHashMap<K, V>
4794              }
4795              return added;
4796          }
4510        public boolean equals(Object o) {
4511            Set<?> c;
4512            return ((o instanceof Set) &&
4513                    ((c = (Set<?>)o) == this ||
4514                     (containsAll(c) && c.containsAll(this))));
4515        }
4516
4517        /**
4518         * Performs the given action for each entry.
4519         *
4520         * @param action the action
4521         */
4522        public void forEach(Action<Map.Entry<K,V>> action) {
4523            ForkJoinTasks.forEachEntry
4524                (map, action).invoke();
4525        }
4526
4527        /**
4528         * Performs the given action for each non-null transformation
4529         * of each entry.
4530         *
4531         * @param transformer a function returning the transformation
4532         * for an element, or null of there is no transformation (in
4533         * which case the action is not applied).
4534         * @param action the action
4535         */
4536        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4537                                Action<U> action) {
4538            ForkJoinTasks.forEachEntry
4539                (map, transformer, action).invoke();
4540        }
4797  
4798 <        /**
4799 <         * Returns a non-null result from applying the given search
4544 <         * function on each entry, or null if none.  Upon success,
4545 <         * further element processing is suppressed and the results of
4546 <         * any other parallel invocations of the search function are
4547 <         * ignored.
4548 <         *
4549 <         * @param searchFunction a function returning a non-null
4550 <         * result on success, else null
4551 <         * @return a non-null result from applying the given search
4552 <         * function on each entry, or null if none
4553 <         */
4554 <        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4555 <            return ForkJoinTasks.searchEntries
4556 <                (map, searchFunction).invoke();
4798 >        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4799 >            return map.removeEntryIf(filter);
4800          }
4801  
4802 <        /**
4803 <         * Returns the result of accumulating all entries using the
4804 <         * given reducer to combine values, or null if none.
4805 <         *
4806 <         * @param reducer a commutative associative combining function
4807 <         * @return the result of accumulating all entries
4808 <         */
4809 <        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4810 <            return ForkJoinTasks.reduceEntries
4811 <                (map, reducer).invoke();
4569 <        }
4570 <
4571 <        /**
4572 <         * Returns the result of accumulating the given transformation
4573 <         * of all entries using the given reducer to combine values,
4574 <         * or null if none.
4575 <         *
4576 <         * @param transformer a function returning the transformation
4577 <         * for an element, or null of there is no transformation (in
4578 <         * which case it is not combined).
4579 <         * @param reducer a commutative associative combining function
4580 <         * @return the result of accumulating the given transformation
4581 <         * of all entries
4582 <         */
4583 <        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4584 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4585 <            return ForkJoinTasks.reduceEntries
4586 <                (map, transformer, reducer).invoke();
4587 <        }
4588 <
4589 <        /**
4590 <         * Returns the result of accumulating the given transformation
4591 <         * of all entries using the given reducer to combine values,
4592 <         * and the given basis as an identity value.
4593 <         *
4594 <         * @param transformer a function returning the transformation
4595 <         * for an element
4596 <         * @param basis the identity (initial default value) for the reduction
4597 <         * @param reducer a commutative associative combining function
4598 <         * @return the result of accumulating the given transformation
4599 <         * of all entries
4600 <         */
4601 <        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4602 <                                     double basis,
4603 <                                     DoubleByDoubleToDouble reducer) {
4604 <            return ForkJoinTasks.reduceEntriesToDouble
4605 <                (map, transformer, basis, reducer).invoke();
4606 <        }
4607 <
4608 <        /**
4609 <         * Returns the result of accumulating the given transformation
4610 <         * of all entries using the given reducer to combine values,
4611 <         * and the given basis as an identity value.
4612 <         *
4613 <         * @param transformer a function returning the transformation
4614 <         * for an element
4615 <         * @param basis the identity (initial default value) for the reduction
4616 <         * @param reducer a commutative associative combining function
4617 <         * @return  the result of accumulating the given transformation
4618 <         * of all entries
4619 <         */
4620 <        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4621 <                                 long basis,
4622 <                                 LongByLongToLong reducer) {
4623 <            return ForkJoinTasks.reduceEntriesToLong
4624 <                (map, transformer, basis, reducer).invoke();
4625 <        }
4626 <
4627 <        /**
4628 <         * Returns the result of accumulating the given transformation
4629 <         * of all entries using the given reducer to combine values,
4630 <         * and the given basis as an identity value.
4631 <         *
4632 <         * @param transformer a function returning the transformation
4633 <         * for an element
4634 <         * @param basis the identity (initial default value) for the reduction
4635 <         * @param reducer a commutative associative combining function
4636 <         * @return the result of accumulating the given transformation
4637 <         * of all entries
4638 <         */
4639 <        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4640 <                               int basis,
4641 <                               IntByIntToInt reducer) {
4642 <            return ForkJoinTasks.reduceEntriesToInt
4643 <                (map, transformer, basis, reducer).invoke();
4644 <        }
4645 <
4646 <    }
4647 <
4648 <    // ---------------------------------------------------------------------
4649 <
4650 <    /**
4651 <     * Predefined tasks for performing bulk parallel operations on
4652 <     * ConcurrentHashMaps. These tasks follow the forms and rules used
4653 <     * for bulk operations. Each method has the same name, but returns
4654 <     * a task rather than invoking it. These methods may be useful in
4655 <     * custom applications such as submitting a task without waiting
4656 <     * for completion, using a custom pool, or combining with other
4657 <     * tasks.
4658 <     */
4659 <    public static class ForkJoinTasks {
4660 <        private ForkJoinTasks() {}
4661 <
4662 <        /**
4663 <         * Returns a task that when invoked, performs the given
4664 <         * action for each (key, value)
4665 <         *
4666 <         * @param map the map
4667 <         * @param action the action
4668 <         * @return the task
4669 <         */
4670 <        public static <K,V> ForkJoinTask<Void> forEach
4671 <            (ConcurrentHashMap<K,V> map,
4672 <             BiAction<K,V> action) {
4673 <            if (action == null) throw new NullPointerException();
4674 <            return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4675 <        }
4676 <
4677 <        /**
4678 <         * Returns a task that when invoked, performs the given
4679 <         * action for each non-null transformation of each (key, value)
4680 <         *
4681 <         * @param map the map
4682 <         * @param transformer a function returning the transformation
4683 <         * for an element, or null if there is no transformation (in
4684 <         * which case the action is not applied)
4685 <         * @param action the action
4686 <         * @return the task
4687 <         */
4688 <        public static <K,V,U> ForkJoinTask<Void> forEach
4689 <            (ConcurrentHashMap<K,V> map,
4690 <             BiFun<? super K, ? super V, ? extends U> transformer,
4691 <             Action<U> action) {
4692 <            if (transformer == null || action == null)
4693 <                throw new NullPointerException();
4694 <            return new ForEachTransformedMappingTask<K,V,U>
4695 <                (map, null, -1, null, transformer, action);
4696 <        }
4697 <
4698 <        /**
4699 <         * Returns a task that when invoked, returns a non-null result
4700 <         * from applying the given search function on each (key,
4701 <         * value), or null if none. Upon success, further element
4702 <         * processing is suppressed and the results of any other
4703 <         * parallel invocations of the search function are ignored.
4704 <         *
4705 <         * @param map the map
4706 <         * @param searchFunction a function returning a non-null
4707 <         * result on success, else null
4708 <         * @return the task
4709 <         */
4710 <        public static <K,V,U> ForkJoinTask<U> search
4711 <            (ConcurrentHashMap<K,V> map,
4712 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4713 <            if (searchFunction == null) throw new NullPointerException();
4714 <            return new SearchMappingsTask<K,V,U>
4715 <                (map, null, -1, null, searchFunction,
4716 <                 new AtomicReference<U>());
4717 <        }
4718 <
4719 <        /**
4720 <         * Returns a task that when invoked, returns the result of
4721 <         * accumulating the given transformation of all (key, value) pairs
4722 <         * using the given reducer to combine values, or null if none.
4723 <         *
4724 <         * @param map the map
4725 <         * @param transformer a function returning the transformation
4726 <         * for an element, or null if there is no transformation (in
4727 <         * which case it is not combined).
4728 <         * @param reducer a commutative associative combining function
4729 <         * @return the task
4730 <         */
4731 <        public static <K,V,U> ForkJoinTask<U> reduce
4732 <            (ConcurrentHashMap<K,V> map,
4733 <             BiFun<? super K, ? super V, ? extends U> transformer,
4734 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4735 <            if (transformer == null || reducer == null)
4736 <                throw new NullPointerException();
4737 <            return new MapReduceMappingsTask<K,V,U>
4738 <                (map, null, -1, null, transformer, reducer);
4739 <        }
4740 <
4741 <        /**
4742 <         * Returns a task that when invoked, returns the result of
4743 <         * accumulating the given transformation of all (key, value) pairs
4744 <         * using the given reducer to combine values, and the given
4745 <         * basis as an identity value.
4746 <         *
4747 <         * @param map the map
4748 <         * @param transformer a function returning the transformation
4749 <         * for an element
4750 <         * @param basis the identity (initial default value) for the reduction
4751 <         * @param reducer a commutative associative combining function
4752 <         * @return the task
4753 <         */
4754 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4755 <            (ConcurrentHashMap<K,V> map,
4756 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4757 <             double basis,
4758 <             DoubleByDoubleToDouble reducer) {
4759 <            if (transformer == null || reducer == null)
4760 <                throw new NullPointerException();
4761 <            return new MapReduceMappingsToDoubleTask<K,V>
4762 <                (map, null, -1, null, transformer, basis, reducer);
4763 <        }
4764 <
4765 <        /**
4766 <         * Returns a task that when invoked, returns the result of
4767 <         * accumulating the given transformation of all (key, value) pairs
4768 <         * using the given reducer to combine values, and the given
4769 <         * basis as an identity value.
4770 <         *
4771 <         * @param map the map
4772 <         * @param transformer a function returning the transformation
4773 <         * for an element
4774 <         * @param basis the identity (initial default value) for the reduction
4775 <         * @param reducer a commutative associative combining function
4776 <         * @return the task
4777 <         */
4778 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4779 <            (ConcurrentHashMap<K,V> map,
4780 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4781 <             long basis,
4782 <             LongByLongToLong reducer) {
4783 <            if (transformer == null || reducer == null)
4784 <                throw new NullPointerException();
4785 <            return new MapReduceMappingsToLongTask<K,V>
4786 <                (map, null, -1, null, transformer, basis, reducer);
4787 <        }
4788 <
4789 <        /**
4790 <         * Returns a task that when invoked, returns the result of
4791 <         * accumulating the given transformation of all (key, value) pairs
4792 <         * using the given reducer to combine values, and the given
4793 <         * basis as an identity value.
4794 <         *
4795 <         * @param transformer a function returning the transformation
4796 <         * for an element
4797 <         * @param basis the identity (initial default value) for the reduction
4798 <         * @param reducer a commutative associative combining function
4799 <         * @return the task
4800 <         */
4801 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4802 <            (ConcurrentHashMap<K,V> map,
4803 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4804 <             int basis,
4805 <             IntByIntToInt reducer) {
4806 <            if (transformer == null || reducer == null)
4807 <                throw new NullPointerException();
4808 <            return new MapReduceMappingsToIntTask<K,V>
4809 <                (map, null, -1, null, transformer, basis, reducer);
4810 <        }
4811 <
4812 <        /**
4813 <         * Returns a task that when invoked, performs the given action
4814 <         * for each key.
4815 <         *
4816 <         * @param map the map
4817 <         * @param action the action
4818 <         * @return the task
4819 <         */
4820 <        public static <K,V> ForkJoinTask<Void> forEachKey
4821 <            (ConcurrentHashMap<K,V> map,
4822 <             Action<K> action) {
4823 <            if (action == null) throw new NullPointerException();
4824 <            return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4825 <        }
4826 <
4827 <        /**
4828 <         * Returns a task that when invoked, performs the given action
4829 <         * for each non-null transformation of each key.
4830 <         *
4831 <         * @param map the map
4832 <         * @param transformer a function returning the transformation
4833 <         * for an element, or null if there is no transformation (in
4834 <         * which case the action is not applied)
4835 <         * @param action the action
4836 <         * @return the task
4837 <         */
4838 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4839 <            (ConcurrentHashMap<K,V> map,
4840 <             Fun<? super K, ? extends U> transformer,
4841 <             Action<U> action) {
4842 <            if (transformer == null || action == null)
4843 <                throw new NullPointerException();
4844 <            return new ForEachTransformedKeyTask<K,V,U>
4845 <                (map, null, -1, null, transformer, action);
4846 <        }
4847 <
4848 <        /**
4849 <         * Returns a task that when invoked, returns a non-null result
4850 <         * from applying the given search function on each key, or
4851 <         * null if none.  Upon success, further element processing is
4852 <         * suppressed and the results of any other parallel
4853 <         * invocations of the search function are ignored.
4854 <         *
4855 <         * @param map the map
4856 <         * @param searchFunction a function returning a non-null
4857 <         * result on success, else null
4858 <         * @return the task
4859 <         */
4860 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4861 <            (ConcurrentHashMap<K,V> map,
4862 <             Fun<? super K, ? extends U> searchFunction) {
4863 <            if (searchFunction == null) throw new NullPointerException();
4864 <            return new SearchKeysTask<K,V,U>
4865 <                (map, null, -1, null, searchFunction,
4866 <                 new AtomicReference<U>());
4867 <        }
4868 <
4869 <        /**
4870 <         * Returns a task that when invoked, returns the result of
4871 <         * accumulating all keys using the given reducer to combine
4872 <         * values, or null if none.
4873 <         *
4874 <         * @param map the map
4875 <         * @param reducer a commutative associative combining function
4876 <         * @return the task
4877 <         */
4878 <        public static <K,V> ForkJoinTask<K> reduceKeys
4879 <            (ConcurrentHashMap<K,V> map,
4880 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4881 <            if (reducer == null) throw new NullPointerException();
4882 <            return new ReduceKeysTask<K,V>
4883 <                (map, null, -1, null, reducer);
4884 <        }
4885 <
4886 <        /**
4887 <         * Returns a task that when invoked, returns the result of
4888 <         * accumulating the given transformation of all keys using the given
4889 <         * reducer to combine values, or null if none.
4890 <         *
4891 <         * @param map the map
4892 <         * @param transformer a function returning the transformation
4893 <         * for an element, or null if there is no transformation (in
4894 <         * which case it is not combined).
4895 <         * @param reducer a commutative associative combining function
4896 <         * @return the task
4897 <         */
4898 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4899 <            (ConcurrentHashMap<K,V> map,
4900 <             Fun<? super K, ? extends U> transformer,
4901 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4902 <            if (transformer == null || reducer == null)
4903 <                throw new NullPointerException();
4904 <            return new MapReduceKeysTask<K,V,U>
4905 <                (map, null, -1, null, transformer, reducer);
4906 <        }
4907 <
4908 <        /**
4909 <         * Returns a task that when invoked, returns the result of
4910 <         * accumulating the given transformation of all keys using the given
4911 <         * reducer to combine values, and the given basis as an
4912 <         * identity value.
4913 <         *
4914 <         * @param map the map
4915 <         * @param transformer a function returning the transformation
4916 <         * for an element
4917 <         * @param basis the identity (initial default value) for the reduction
4918 <         * @param reducer a commutative associative combining function
4919 <         * @return the task
4920 <         */
4921 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4922 <            (ConcurrentHashMap<K,V> map,
4923 <             ObjectToDouble<? super K> transformer,
4924 <             double basis,
4925 <             DoubleByDoubleToDouble reducer) {
4926 <            if (transformer == null || reducer == null)
4927 <                throw new NullPointerException();
4928 <            return new MapReduceKeysToDoubleTask<K,V>
4929 <                (map, null, -1, null, transformer, basis, reducer);
4802 >        public final int hashCode() {
4803 >            int h = 0;
4804 >            Node<K,V>[] t;
4805 >            if ((t = map.table) != null) {
4806 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4807 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4808 >                    h += p.hashCode();
4809 >                }
4810 >            }
4811 >            return h;
4812          }
4813  
4814 <        /**
4815 <         * Returns a task that when invoked, returns the result of
4816 <         * accumulating the given transformation of all keys using the given
4817 <         * reducer to combine values, and the given basis as an
4818 <         * identity value.
4937 <         *
4938 <         * @param map the map
4939 <         * @param transformer a function returning the transformation
4940 <         * for an element
4941 <         * @param basis the identity (initial default value) for the reduction
4942 <         * @param reducer a commutative associative combining function
4943 <         * @return the task
4944 <         */
4945 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4946 <            (ConcurrentHashMap<K,V> map,
4947 <             ObjectToLong<? super K> transformer,
4948 <             long basis,
4949 <             LongByLongToLong reducer) {
4950 <            if (transformer == null || reducer == null)
4951 <                throw new NullPointerException();
4952 <            return new MapReduceKeysToLongTask<K,V>
4953 <                (map, null, -1, null, transformer, basis, reducer);
4814 >        public final boolean equals(Object o) {
4815 >            Set<?> c;
4816 >            return ((o instanceof Set) &&
4817 >                    ((c = (Set<?>)o) == this ||
4818 >                     (containsAll(c) && c.containsAll(this))));
4819          }
4820  
4821 <        /**
4822 <         * Returns a task that when invoked, returns the result of
4823 <         * accumulating the given transformation of all keys using the given
4824 <         * reducer to combine values, and the given basis as an
4825 <         * identity value.
4826 <         *
4962 <         * @param map the map
4963 <         * @param transformer a function returning the transformation
4964 <         * for an element
4965 <         * @param basis the identity (initial default value) for the reduction
4966 <         * @param reducer a commutative associative combining function
4967 <         * @return the task
4968 <         */
4969 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4970 <            (ConcurrentHashMap<K,V> map,
4971 <             ObjectToInt<? super K> transformer,
4972 <             int basis,
4973 <             IntByIntToInt reducer) {
4974 <            if (transformer == null || reducer == null)
4975 <                throw new NullPointerException();
4976 <            return new MapReduceKeysToIntTask<K,V>
4977 <                (map, null, -1, null, transformer, basis, reducer);
4821 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4822 >            Node<K,V>[] t;
4823 >            ConcurrentHashMap<K,V> m = map;
4824 >            long n = m.sumCount();
4825 >            int f = (t = m.table) == null ? 0 : t.length;
4826 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4827          }
4828  
4829 <        /**
4981 <         * Returns a task that when invoked, performs the given action
4982 <         * for each value.
4983 <         *
4984 <         * @param map the map
4985 <         * @param action the action
4986 <         */
4987 <        public static <K,V> ForkJoinTask<Void> forEachValue
4988 <            (ConcurrentHashMap<K,V> map,
4989 <             Action<V> action) {
4829 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4830              if (action == null) throw new NullPointerException();
4831 <            return new ForEachValueTask<K,V>(map, null, -1, null, action);
4832 <        }
4833 <
4834 <        /**
4835 <         * Returns a task that when invoked, performs the given action
4836 <         * for each non-null transformation of each value.
4997 <         *
4998 <         * @param map the map
4999 <         * @param transformer a function returning the transformation
5000 <         * for an element, or null if there is no transformation (in
5001 <         * which case the action is not applied)
5002 <         * @param action the action
5003 <         */
5004 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
5005 <            (ConcurrentHashMap<K,V> map,
5006 <             Fun<? super V, ? extends U> transformer,
5007 <             Action<U> action) {
5008 <            if (transformer == null || action == null)
5009 <                throw new NullPointerException();
5010 <            return new ForEachTransformedValueTask<K,V,U>
5011 <                (map, null, -1, null, transformer, action);
5012 <        }
5013 <
5014 <        /**
5015 <         * Returns a task that when invoked, returns a non-null result
5016 <         * from applying the given search function on each value, or
5017 <         * null if none.  Upon success, further element processing is
5018 <         * suppressed and the results of any other parallel
5019 <         * invocations of the search function are ignored.
5020 <         *
5021 <         * @param map the map
5022 <         * @param searchFunction a function returning a non-null
5023 <         * result on success, else null
5024 <         * @return the task
5025 <         */
5026 <        public static <K,V,U> ForkJoinTask<U> searchValues
5027 <            (ConcurrentHashMap<K,V> map,
5028 <             Fun<? super V, ? extends U> searchFunction) {
5029 <            if (searchFunction == null) throw new NullPointerException();
5030 <            return new SearchValuesTask<K,V,U>
5031 <                (map, null, -1, null, searchFunction,
5032 <                 new AtomicReference<U>());
5033 <        }
5034 <
5035 <        /**
5036 <         * Returns a task that when invoked, returns the result of
5037 <         * accumulating all values using the given reducer to combine
5038 <         * values, or null if none.
5039 <         *
5040 <         * @param map the map
5041 <         * @param reducer a commutative associative combining function
5042 <         * @return the task
5043 <         */
5044 <        public static <K,V> ForkJoinTask<V> reduceValues
5045 <            (ConcurrentHashMap<K,V> map,
5046 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5047 <            if (reducer == null) throw new NullPointerException();
5048 <            return new ReduceValuesTask<K,V>
5049 <                (map, null, -1, null, reducer);
5050 <        }
5051 <
5052 <        /**
5053 <         * Returns a task that when invoked, returns the result of
5054 <         * accumulating the given transformation of all values using the
5055 <         * given reducer to combine values, or null if none.
5056 <         *
5057 <         * @param map the map
5058 <         * @param transformer a function returning the transformation
5059 <         * for an element, or null if there is no transformation (in
5060 <         * which case it is not combined).
5061 <         * @param reducer a commutative associative combining function
5062 <         * @return the task
5063 <         */
5064 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5065 <            (ConcurrentHashMap<K,V> map,
5066 <             Fun<? super V, ? extends U> transformer,
5067 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5068 <            if (transformer == null || reducer == null)
5069 <                throw new NullPointerException();
5070 <            return new MapReduceValuesTask<K,V,U>
5071 <                (map, null, -1, null, transformer, reducer);
5072 <        }
5073 <
5074 <        /**
5075 <         * Returns a task that when invoked, returns the result of
5076 <         * accumulating the given transformation of all values using the
5077 <         * given reducer to combine values, and the given basis as an
5078 <         * identity value.
5079 <         *
5080 <         * @param map the map
5081 <         * @param transformer a function returning the transformation
5082 <         * for an element
5083 <         * @param basis the identity (initial default value) for the reduction
5084 <         * @param reducer a commutative associative combining function
5085 <         * @return the task
5086 <         */
5087 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5088 <            (ConcurrentHashMap<K,V> map,
5089 <             ObjectToDouble<? super V> transformer,
5090 <             double basis,
5091 <             DoubleByDoubleToDouble reducer) {
5092 <            if (transformer == null || reducer == null)
5093 <                throw new NullPointerException();
5094 <            return new MapReduceValuesToDoubleTask<K,V>
5095 <                (map, null, -1, null, transformer, basis, reducer);
5096 <        }
5097 <
5098 <        /**
5099 <         * Returns a task that when invoked, returns the result of
5100 <         * accumulating the given transformation of all values using the
5101 <         * given reducer to combine values, and the given basis as an
5102 <         * identity value.
5103 <         *
5104 <         * @param map the map
5105 <         * @param transformer a function returning the transformation
5106 <         * for an element
5107 <         * @param basis the identity (initial default value) for the reduction
5108 <         * @param reducer a commutative associative combining function
5109 <         * @return the task
5110 <         */
5111 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5112 <            (ConcurrentHashMap<K,V> map,
5113 <             ObjectToLong<? super V> transformer,
5114 <             long basis,
5115 <             LongByLongToLong reducer) {
5116 <            if (transformer == null || reducer == null)
5117 <                throw new NullPointerException();
5118 <            return new MapReduceValuesToLongTask<K,V>
5119 <                (map, null, -1, null, transformer, basis, reducer);
5120 <        }
5121 <
5122 <        /**
5123 <         * Returns a task that when invoked, returns the result of
5124 <         * accumulating the given transformation of all values using the
5125 <         * given reducer to combine values, and the given basis as an
5126 <         * identity value.
5127 <         *
5128 <         * @param map the map
5129 <         * @param transformer a function returning the transformation
5130 <         * for an element
5131 <         * @param basis the identity (initial default value) for the reduction
5132 <         * @param reducer a commutative associative combining function
5133 <         * @return the task
5134 <         */
5135 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5136 <            (ConcurrentHashMap<K,V> map,
5137 <             ObjectToInt<? super V> transformer,
5138 <             int basis,
5139 <             IntByIntToInt reducer) {
5140 <            if (transformer == null || reducer == null)
5141 <                throw new NullPointerException();
5142 <            return new MapReduceValuesToIntTask<K,V>
5143 <                (map, null, -1, null, transformer, basis, reducer);
5144 <        }
5145 <
5146 <        /**
5147 <         * Returns a task that when invoked, perform the given action
5148 <         * for each entry.
5149 <         *
5150 <         * @param map the map
5151 <         * @param action the action
5152 <         */
5153 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5154 <            (ConcurrentHashMap<K,V> map,
5155 <             Action<Map.Entry<K,V>> action) {
5156 <            if (action == null) throw new NullPointerException();
5157 <            return new ForEachEntryTask<K,V>(map, null, -1, null, action);
5158 <        }
5159 <
5160 <        /**
5161 <         * Returns a task that when invoked, perform the given action
5162 <         * for each non-null transformation of each entry.
5163 <         *
5164 <         * @param map the map
5165 <         * @param transformer a function returning the transformation
5166 <         * for an element, or null if there is no transformation (in
5167 <         * which case the action is not applied)
5168 <         * @param action the action
5169 <         */
5170 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5171 <            (ConcurrentHashMap<K,V> map,
5172 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5173 <             Action<U> action) {
5174 <            if (transformer == null || action == null)
5175 <                throw new NullPointerException();
5176 <            return new ForEachTransformedEntryTask<K,V,U>
5177 <                (map, null, -1, null, transformer, action);
5178 <        }
5179 <
5180 <        /**
5181 <         * Returns a task that when invoked, returns a non-null result
5182 <         * from applying the given search function on each entry, or
5183 <         * null if none.  Upon success, further element processing is
5184 <         * suppressed and the results of any other parallel
5185 <         * invocations of the search function are ignored.
5186 <         *
5187 <         * @param map the map
5188 <         * @param searchFunction a function returning a non-null
5189 <         * result on success, else null
5190 <         * @return the task
5191 <         */
5192 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5193 <            (ConcurrentHashMap<K,V> map,
5194 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5195 <            if (searchFunction == null) throw new NullPointerException();
5196 <            return new SearchEntriesTask<K,V,U>
5197 <                (map, null, -1, null, searchFunction,
5198 <                 new AtomicReference<U>());
5199 <        }
5200 <
5201 <        /**
5202 <         * Returns a task that when invoked, returns the result of
5203 <         * accumulating all entries using the given reducer to combine
5204 <         * values, or null if none.
5205 <         *
5206 <         * @param map the map
5207 <         * @param reducer a commutative associative combining function
5208 <         * @return the task
5209 <         */
5210 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5211 <            (ConcurrentHashMap<K,V> map,
5212 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5213 <            if (reducer == null) throw new NullPointerException();
5214 <            return new ReduceEntriesTask<K,V>
5215 <                (map, null, -1, null, reducer);
5216 <        }
5217 <
5218 <        /**
5219 <         * Returns a task that when invoked, returns the result of
5220 <         * accumulating the given transformation of all entries using the
5221 <         * given reducer to combine values, or null if none.
5222 <         *
5223 <         * @param map the map
5224 <         * @param transformer a function returning the transformation
5225 <         * for an element, or null if there is no transformation (in
5226 <         * which case it is not combined).
5227 <         * @param reducer a commutative associative combining function
5228 <         * @return the task
5229 <         */
5230 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5231 <            (ConcurrentHashMap<K,V> map,
5232 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5233 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5234 <            if (transformer == null || reducer == null)
5235 <                throw new NullPointerException();
5236 <            return new MapReduceEntriesTask<K,V,U>
5237 <                (map, null, -1, null, transformer, reducer);
5238 <        }
5239 <
5240 <        /**
5241 <         * Returns a task that when invoked, returns the result of
5242 <         * accumulating the given transformation of all entries using the
5243 <         * given reducer to combine values, and the given basis as an
5244 <         * identity value.
5245 <         *
5246 <         * @param map the map
5247 <         * @param transformer a function returning the transformation
5248 <         * for an element
5249 <         * @param basis the identity (initial default value) for the reduction
5250 <         * @param reducer a commutative associative combining function
5251 <         * @return the task
5252 <         */
5253 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5254 <            (ConcurrentHashMap<K,V> map,
5255 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5256 <             double basis,
5257 <             DoubleByDoubleToDouble reducer) {
5258 <            if (transformer == null || reducer == null)
5259 <                throw new NullPointerException();
5260 <            return new MapReduceEntriesToDoubleTask<K,V>
5261 <                (map, null, -1, null, transformer, basis, reducer);
5262 <        }
5263 <
5264 <        /**
5265 <         * Returns a task that when invoked, returns the result of
5266 <         * accumulating the given transformation of all entries using the
5267 <         * given reducer to combine values, and the given basis as an
5268 <         * identity value.
5269 <         *
5270 <         * @param map the map
5271 <         * @param transformer a function returning the transformation
5272 <         * for an element
5273 <         * @param basis the identity (initial default value) for the reduction
5274 <         * @param reducer a commutative associative combining function
5275 <         * @return the task
5276 <         */
5277 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5278 <            (ConcurrentHashMap<K,V> map,
5279 <             ObjectToLong<Map.Entry<K,V>> transformer,
5280 <             long basis,
5281 <             LongByLongToLong reducer) {
5282 <            if (transformer == null || reducer == null)
5283 <                throw new NullPointerException();
5284 <            return new MapReduceEntriesToLongTask<K,V>
5285 <                (map, null, -1, null, transformer, basis, reducer);
4831 >            Node<K,V>[] t;
4832 >            if ((t = map.table) != null) {
4833 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4834 >                for (Node<K,V> p; (p = it.advance()) != null; )
4835 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4836 >            }
4837          }
4838  
5288        /**
5289         * Returns a task that when invoked, returns the result of
5290         * accumulating the given transformation of all entries using the
5291         * given reducer to combine values, and the given basis as an
5292         * identity value.
5293         *
5294         * @param map the map
5295         * @param transformer a function returning the transformation
5296         * for an element
5297         * @param basis the identity (initial default value) for the reduction
5298         * @param reducer a commutative associative combining function
5299         * @return the task
5300         */
5301        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5302            (ConcurrentHashMap<K,V> map,
5303             ObjectToInt<Map.Entry<K,V>> transformer,
5304             int basis,
5305             IntByIntToInt reducer) {
5306            if (transformer == null || reducer == null)
5307                throw new NullPointerException();
5308            return new MapReduceEntriesToIntTask<K,V>
5309                (map, null, -1, null, transformer, basis, reducer);
5310        }
4839      }
4840  
4841      // -------------------------------------------------------
4842  
4843      /**
4844 <     * Base for FJ tasks for bulk operations. This adds a variant of
4845 <     * CountedCompleters and some split and merge bookkeeping to
4846 <     * iterator functionality. The forEach and reduce methods are
4847 <     * similar to those illustrated in CountedCompleter documentation,
4848 <     * except that bottom-up reduction completions perform them within
4849 <     * their compute methods. The search methods are like forEach
4850 <     * except they continually poll for success and exit early.  Also,
4851 <     * exceptions are handled in a simpler manner, by just trying to
4852 <     * complete root task exceptionally.
4853 <     */
4854 <    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4855 <        final BulkTask<K,V,?> parent;  // completion target
4856 <        int batch;                     // split control; -1 for unknown
4857 <        int pending;                   // completion control
4858 <
4859 <        BulkTask(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
4860 <                 int batch) {
4861 <            super(map);
4862 <            this.parent = parent;
4863 <            this.batch = batch;
4864 <            if (parent != null && map != null) { // split parent
4865 <                Node[] t;
4866 <                if ((t = parent.tab) == null &&
4867 <                    (t = parent.tab = map.table) != null)
4868 <                    parent.baseLimit = parent.baseSize = t.length;
5341 <                this.tab = t;
5342 <                this.baseSize = parent.baseSize;
5343 <                int hi = this.baseLimit = parent.baseLimit;
5344 <                parent.baseLimit = this.index = this.baseIndex =
5345 <                    (hi + parent.baseIndex + 1) >>> 1;
4844 >     * Base class for bulk tasks. Repeats some fields and code from
4845 >     * class Traverser, because we need to subclass CountedCompleter.
4846 >     */
4847 >    @SuppressWarnings("serial")
4848 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4849 >        Node<K,V>[] tab;        // same as Traverser
4850 >        Node<K,V> next;
4851 >        TableStack<K,V> stack, spare;
4852 >        int index;
4853 >        int baseIndex;
4854 >        int baseLimit;
4855 >        final int baseSize;
4856 >        int batch;              // split control
4857 >
4858 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4859 >            super(par);
4860 >            this.batch = b;
4861 >            this.index = this.baseIndex = i;
4862 >            if ((this.tab = t) == null)
4863 >                this.baseSize = this.baseLimit = 0;
4864 >            else if (par == null)
4865 >                this.baseSize = this.baseLimit = t.length;
4866 >            else {
4867 >                this.baseLimit = f;
4868 >                this.baseSize = par.baseSize;
4869              }
4870          }
4871  
4872          /**
4873 <         * Forces root task to complete.
5351 <         * @param ex if null, complete normally, else exceptionally
5352 <         * @return false to simplify use
4873 >         * Same as Traverser version.
4874           */
4875 <        final boolean tryCompleteComputation(Throwable ex) {
4876 <            for (BulkTask<K,V,?> a = this;;) {
4877 <                BulkTask<K,V,?> p = a.parent;
4878 <                if (p == null) {
4879 <                    if (ex != null)
4880 <                        a.completeExceptionally(ex);
4875 >        final Node<K,V> advance() {
4876 >            Node<K,V> e;
4877 >            if ((e = next) != null)
4878 >                e = e.next;
4879 >            for (;;) {
4880 >                Node<K,V>[] t; int i, n;
4881 >                if (e != null)
4882 >                    return next = e;
4883 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4884 >                    (n = t.length) <= (i = index) || i < 0)
4885 >                    return next = null;
4886 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4887 >                    if (e instanceof ForwardingNode) {
4888 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4889 >                        e = null;
4890 >                        pushState(t, i, n);
4891 >                        continue;
4892 >                    }
4893 >                    else if (e instanceof TreeBin)
4894 >                        e = ((TreeBin<K,V>)e).first;
4895                      else
4896 <                        a.quietlyComplete();
5362 <                    return false;
5363 <                }
5364 <                a = p;
5365 <            }
5366 <        }
5367 <
5368 <        /**
5369 <         * Version of tryCompleteComputation for function screening checks
5370 <         */
5371 <        final boolean abortOnNullFunction() {
5372 <            return tryCompleteComputation(new Error("Unexpected null function"));
5373 <        }
5374 <
5375 <        // utilities
5376 <
5377 <        /** CompareAndSet pending count */
5378 <        final boolean casPending(int cmp, int val) {
5379 <            return U.compareAndSwapInt(this, PENDING, cmp, val);
5380 <        }
5381 <
5382 <        /**
5383 <         * Returns approx exp2 of the number of times (minus one) to
5384 <         * split task by two before executing leaf action. This value
5385 <         * is faster to compute and more convenient to use as a guide
5386 <         * to splitting than is the depth, since it is used while
5387 <         * dividing by two anyway.
5388 <         */
5389 <        final int batch() {
5390 <            ConcurrentHashMap<K, V> m; int b; Node[] t;  ForkJoinPool pool;
5391 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
5392 <                if ((t = tab) == null && (t = tab = m.table) != null)
5393 <                    baseLimit = baseSize = t.length;
5394 <                if (t != null) {
5395 <                    long n = m.counter.sum();
5396 <                    int par = ((pool = getPool()) == null) ?
5397 <                        ForkJoinPool.getCommonPoolParallelism() :
5398 <                        pool.getParallelism();
5399 <                    int sp = par << 3; // slack of 8
5400 <                    b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4896 >                        e = null;
4897                  }
4898 +                if (stack != null)
4899 +                    recoverState(n);
4900 +                else if ((index = i + baseSize) >= n)
4901 +                    index = ++baseIndex;
4902              }
5403            return b;
4903          }
4904  
4905 <        /**
4906 <         * Returns exportable snapshot entry.
4907 <         */
4908 <        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4909 <            return new AbstractMap.SimpleEntry<K,V>(k, v);
4910 <        }
4911 <
4912 <        // Unsafe mechanics
4913 <        private static final sun.misc.Unsafe U;
4914 <        private static final long PENDING;
4915 <        static {
4916 <            try {
4917 <                U = sun.misc.Unsafe.getUnsafe();
4918 <                PENDING = U.objectFieldOffset
4919 <                    (BulkTask.class.getDeclaredField("pending"));
4920 <            } catch (Exception e) {
4921 <                throw new Error(e);
4922 <            }
4923 <        }
4924 <    }
4925 <
4926 <    /**
4927 <     * Base class for non-reductive actions
4928 <     */
5430 <    @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
5431 <        BulkAction<K,V,?> nextTask;
5432 <        BulkAction(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5433 <                   int batch, BulkAction<K,V,?> nextTask) {
5434 <            super(map, parent, batch);
5435 <            this.nextTask = nextTask;
5436 <        }
5437 <
5438 <        /**
5439 <         * Try to complete task and upward parents. Upon hitting
5440 <         * non-completed parent, if a non-FJ task, try to help out the
5441 <         * computation.
5442 <         */
5443 <        final void tryComplete(BulkAction<K,V,?> subtasks) {
5444 <            BulkTask<K,V,?> a = this, s = a;
5445 <            for (int c;;) {
5446 <                if ((c = a.pending) == 0) {
5447 <                    if ((a = (s = a).parent) == null) {
5448 <                        s.quietlyComplete();
5449 <                        break;
5450 <                    }
5451 <                }
5452 <                else if (a.casPending(c, c - 1)) {
5453 <                    if (subtasks != null && !inForkJoinPool()) {
5454 <                        while ((s = a.parent) != null)
5455 <                            a = s;
5456 <                        while (!a.isDone()) {
5457 <                            BulkAction<K,V,?> next = subtasks.nextTask;
5458 <                            if (subtasks.tryUnfork())
5459 <                                subtasks.exec();
5460 <                            if ((subtasks = next) == null)
5461 <                                break;
5462 <                        }
5463 <                    }
5464 <                    break;
5465 <                }
4905 >        private void pushState(Node<K,V>[] t, int i, int n) {
4906 >            TableStack<K,V> s = spare;
4907 >            if (s != null)
4908 >                spare = s.next;
4909 >            else
4910 >                s = new TableStack<K,V>();
4911 >            s.tab = t;
4912 >            s.length = n;
4913 >            s.index = i;
4914 >            s.next = stack;
4915 >            stack = s;
4916 >        }
4917 >
4918 >        private void recoverState(int n) {
4919 >            TableStack<K,V> s; int len;
4920 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4921 >                n = len;
4922 >                index = s.index;
4923 >                tab = s.tab;
4924 >                s.tab = null;
4925 >                TableStack<K,V> next = s.next;
4926 >                s.next = spare; // save for reuse
4927 >                stack = next;
4928 >                spare = s;
4929              }
4930 +            if (s == null && (index += baseSize) >= n)
4931 +                index = ++baseIndex;
4932          }
5468
4933      }
4934  
4935      /*
4936       * Task classes. Coded in a regular but ugly format/style to
4937       * simplify checks that each variant differs in the right way from
4938 <     * others.
4939 <     */
4940 <
4941 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4942 <        extends BulkAction<K,V,Void> {
4943 <        final Action<K> action;
4938 >     * others. The null screenings exist because compilers cannot tell
4939 >     * that we've already null-checked task arguments, so we force
4940 >     * simplest hoisted bypass to help avoid convoluted traps.
4941 >     */
4942 >    @SuppressWarnings("serial")
4943 >    static final class ForEachKeyTask<K,V>
4944 >        extends BulkTask<K,V,Void> {
4945 >        final Consumer<? super K> action;
4946          ForEachKeyTask
4947 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
4948 <             ForEachKeyTask<K,V> nextTask,
4949 <             Action<K> action) {
5484 <            super(m, p, b, nextTask);
4947 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4948 >             Consumer<? super K> action) {
4949 >            super(p, b, i, f, t);
4950              this.action = action;
4951          }
4952 <        @SuppressWarnings("unchecked") public final boolean exec() {
4953 <            final Action<K> action = this.action;
4954 <            if (action == null)
4955 <                return abortOnNullFunction();
4956 <            ForEachKeyTask<K,V> subtasks = null;
4957 <            try {
4958 <                int b = batch(), c;
4959 <                while (b > 1 && baseIndex != baseLimit) {
4960 <                    do {} while (!casPending(c = pending, c+1));
4961 <                    (subtasks = new ForEachKeyTask<K,V>
4962 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4963 <                }
4964 <                while (advance() != null)
5500 <                    action.apply((K)nextKey);
5501 <            } catch (Throwable ex) {
5502 <                return tryCompleteComputation(ex);
4952 >        public final void compute() {
4953 >            final Consumer<? super K> action;
4954 >            if ((action = this.action) != null) {
4955 >                for (int i = baseIndex, f, h; batch > 0 &&
4956 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4957 >                    addToPendingCount(1);
4958 >                    new ForEachKeyTask<K,V>
4959 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4960 >                         action).fork();
4961 >                }
4962 >                for (Node<K,V> p; (p = advance()) != null;)
4963 >                    action.accept(p.key);
4964 >                propagateCompletion();
4965              }
5504            tryComplete(subtasks);
5505            return false;
4966          }
4967      }
4968  
4969 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4970 <        extends BulkAction<K,V,Void> {
4971 <        final Action<V> action;
4969 >    @SuppressWarnings("serial")
4970 >    static final class ForEachValueTask<K,V>
4971 >        extends BulkTask<K,V,Void> {
4972 >        final Consumer<? super V> action;
4973          ForEachValueTask
4974 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
4975 <             ForEachValueTask<K,V> nextTask,
4976 <             Action<V> action) {
5516 <            super(m, p, b, nextTask);
4974 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4975 >             Consumer<? super V> action) {
4976 >            super(p, b, i, f, t);
4977              this.action = action;
4978          }
4979 <        @SuppressWarnings("unchecked") public final boolean exec() {
4980 <            final Action<V> action = this.action;
4981 <            if (action == null)
4982 <                return abortOnNullFunction();
4983 <            ForEachValueTask<K,V> subtasks = null;
4984 <            try {
4985 <                int b = batch(), c;
4986 <                while (b > 1 && baseIndex != baseLimit) {
4987 <                    do {} while (!casPending(c = pending, c+1));
4988 <                    (subtasks = new ForEachValueTask<K,V>
4989 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4990 <                }
4991 <                Object v;
5532 <                while ((v = advance()) != null)
5533 <                    action.apply((V)v);
5534 <            } catch (Throwable ex) {
5535 <                return tryCompleteComputation(ex);
4979 >        public final void compute() {
4980 >            final Consumer<? super V> action;
4981 >            if ((action = this.action) != null) {
4982 >                for (int i = baseIndex, f, h; batch > 0 &&
4983 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4984 >                    addToPendingCount(1);
4985 >                    new ForEachValueTask<K,V>
4986 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4987 >                         action).fork();
4988 >                }
4989 >                for (Node<K,V> p; (p = advance()) != null;)
4990 >                    action.accept(p.val);
4991 >                propagateCompletion();
4992              }
5537            tryComplete(subtasks);
5538            return false;
4993          }
4994      }
4995  
4996 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4997 <        extends BulkAction<K,V,Void> {
4998 <        final Action<Entry<K,V>> action;
4996 >    @SuppressWarnings("serial")
4997 >    static final class ForEachEntryTask<K,V>
4998 >        extends BulkTask<K,V,Void> {
4999 >        final Consumer<? super Entry<K,V>> action;
5000          ForEachEntryTask
5001 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5002 <             ForEachEntryTask<K,V> nextTask,
5003 <             Action<Entry<K,V>> action) {
5549 <            super(m, p, b, nextTask);
5001 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5002 >             Consumer<? super Entry<K,V>> action) {
5003 >            super(p, b, i, f, t);
5004              this.action = action;
5005          }
5006 <        @SuppressWarnings("unchecked") public final boolean exec() {
5007 <            final Action<Entry<K,V>> action = this.action;
5008 <            if (action == null)
5009 <                return abortOnNullFunction();
5010 <            ForEachEntryTask<K,V> subtasks = null;
5011 <            try {
5012 <                int b = batch(), c;
5013 <                while (b > 1 && baseIndex != baseLimit) {
5014 <                    do {} while (!casPending(c = pending, c+1));
5015 <                    (subtasks = new ForEachEntryTask<K,V>
5016 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5017 <                }
5018 <                Object v;
5565 <                while ((v = advance()) != null)
5566 <                    action.apply(entryFor((K)nextKey, (V)v));
5567 <            } catch (Throwable ex) {
5568 <                return tryCompleteComputation(ex);
5006 >        public final void compute() {
5007 >            final Consumer<? super Entry<K,V>> action;
5008 >            if ((action = this.action) != null) {
5009 >                for (int i = baseIndex, f, h; batch > 0 &&
5010 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5011 >                    addToPendingCount(1);
5012 >                    new ForEachEntryTask<K,V>
5013 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5014 >                         action).fork();
5015 >                }
5016 >                for (Node<K,V> p; (p = advance()) != null; )
5017 >                    action.accept(p);
5018 >                propagateCompletion();
5019              }
5570            tryComplete(subtasks);
5571            return false;
5020          }
5021      }
5022  
5023 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5024 <        extends BulkAction<K,V,Void> {
5025 <        final BiAction<K,V> action;
5023 >    @SuppressWarnings("serial")
5024 >    static final class ForEachMappingTask<K,V>
5025 >        extends BulkTask<K,V,Void> {
5026 >        final BiConsumer<? super K, ? super V> action;
5027          ForEachMappingTask
5028 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5029 <             ForEachMappingTask<K,V> nextTask,
5030 <             BiAction<K,V> action) {
5582 <            super(m, p, b, nextTask);
5028 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5029 >             BiConsumer<? super K,? super V> action) {
5030 >            super(p, b, i, f, t);
5031              this.action = action;
5032          }
5033 <        @SuppressWarnings("unchecked") public final boolean exec() {
5034 <            final BiAction<K,V> action = this.action;
5035 <            if (action == null)
5036 <                return abortOnNullFunction();
5037 <            ForEachMappingTask<K,V> subtasks = null;
5038 <            try {
5039 <                int b = batch(), c;
5040 <                while (b > 1 && baseIndex != baseLimit) {
5041 <                    do {} while (!casPending(c = pending, c+1));
5042 <                    (subtasks = new ForEachMappingTask<K,V>
5043 <                     (map, this, b >>>= 1, subtasks, action)).fork();
5044 <                }
5045 <                Object v;
5598 <                while ((v = advance()) != null)
5599 <                    action.apply((K)nextKey, (V)v);
5600 <            } catch (Throwable ex) {
5601 <                return tryCompleteComputation(ex);
5033 >        public final void compute() {
5034 >            final BiConsumer<? super K, ? super V> action;
5035 >            if ((action = this.action) != null) {
5036 >                for (int i = baseIndex, f, h; batch > 0 &&
5037 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5038 >                    addToPendingCount(1);
5039 >                    new ForEachMappingTask<K,V>
5040 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5041 >                         action).fork();
5042 >                }
5043 >                for (Node<K,V> p; (p = advance()) != null; )
5044 >                    action.accept(p.key, p.val);
5045 >                propagateCompletion();
5046              }
5603            tryComplete(subtasks);
5604            return false;
5047          }
5048      }
5049  
5050 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5051 <        extends BulkAction<K,V,Void> {
5052 <        final Fun<? super K, ? extends U> transformer;
5053 <        final Action<U> action;
5050 >    @SuppressWarnings("serial")
5051 >    static final class ForEachTransformedKeyTask<K,V,U>
5052 >        extends BulkTask<K,V,Void> {
5053 >        final Function<? super K, ? extends U> transformer;
5054 >        final Consumer<? super U> action;
5055          ForEachTransformedKeyTask
5056 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5057 <             ForEachTransformedKeyTask<K,V,U> nextTask,
5058 <             Fun<? super K, ? extends U> transformer,
5059 <             Action<U> action) {
5060 <            super(m, p, b, nextTask);
5061 <            this.transformer = transformer;
5062 <            this.action = action;
5063 <
5064 <        }
5065 <        @SuppressWarnings("unchecked") public final boolean exec() {
5066 <            final Fun<? super K, ? extends U> transformer =
5067 <                this.transformer;
5068 <            final Action<U> action = this.action;
5069 <            if (transformer == null || action == null)
5070 <                return abortOnNullFunction();
5071 <            ForEachTransformedKeyTask<K,V,U> subtasks = null;
5072 <            try {
5073 <                int b = batch(), c;
5074 <                while (b > 1 && baseIndex != baseLimit) {
5075 <                    do {} while (!casPending(c = pending, c+1));
5076 <                    (subtasks = new ForEachTransformedKeyTask<K,V,U>
5077 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5078 <                }
5636 <                U u;
5637 <                while (advance() != null) {
5638 <                    if ((u = transformer.apply((K)nextKey)) != null)
5639 <                        action.apply(u);
5640 <                }
5641 <            } catch (Throwable ex) {
5642 <                return tryCompleteComputation(ex);
5056 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5057 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5058 >            super(p, b, i, f, t);
5059 >            this.transformer = transformer; this.action = action;
5060 >        }
5061 >        public final void compute() {
5062 >            final Function<? super K, ? extends U> transformer;
5063 >            final Consumer<? super U> action;
5064 >            if ((transformer = this.transformer) != null &&
5065 >                (action = this.action) != null) {
5066 >                for (int i = baseIndex, f, h; batch > 0 &&
5067 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5068 >                    addToPendingCount(1);
5069 >                    new ForEachTransformedKeyTask<K,V,U>
5070 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5071 >                         transformer, action).fork();
5072 >                }
5073 >                for (Node<K,V> p; (p = advance()) != null; ) {
5074 >                    U u;
5075 >                    if ((u = transformer.apply(p.key)) != null)
5076 >                        action.accept(u);
5077 >                }
5078 >                propagateCompletion();
5079              }
5644            tryComplete(subtasks);
5645            return false;
5080          }
5081      }
5082  
5083 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5084 <        extends BulkAction<K,V,Void> {
5085 <        final Fun<? super V, ? extends U> transformer;
5086 <        final Action<U> action;
5083 >    @SuppressWarnings("serial")
5084 >    static final class ForEachTransformedValueTask<K,V,U>
5085 >        extends BulkTask<K,V,Void> {
5086 >        final Function<? super V, ? extends U> transformer;
5087 >        final Consumer<? super U> action;
5088          ForEachTransformedValueTask
5089 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5090 <             ForEachTransformedValueTask<K,V,U> nextTask,
5091 <             Fun<? super V, ? extends U> transformer,
5092 <             Action<U> action) {
5093 <            super(m, p, b, nextTask);
5094 <            this.transformer = transformer;
5095 <            this.action = action;
5096 <
5097 <        }
5098 <        @SuppressWarnings("unchecked") public final boolean exec() {
5099 <            final Fun<? super V, ? extends U> transformer =
5100 <                this.transformer;
5101 <            final Action<U> action = this.action;
5102 <            if (transformer == null || action == null)
5103 <                return abortOnNullFunction();
5104 <            ForEachTransformedValueTask<K,V,U> subtasks = null;
5105 <            try {
5106 <                int b = batch(), c;
5107 <                while (b > 1 && baseIndex != baseLimit) {
5108 <                    do {} while (!casPending(c = pending, c+1));
5109 <                    (subtasks = new ForEachTransformedValueTask<K,V,U>
5110 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5111 <                }
5677 <                Object v; U u;
5678 <                while ((v = advance()) != null) {
5679 <                    if ((u = transformer.apply((V)v)) != null)
5680 <                        action.apply(u);
5681 <                }
5682 <            } catch (Throwable ex) {
5683 <                return tryCompleteComputation(ex);
5089 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5090 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5091 >            super(p, b, i, f, t);
5092 >            this.transformer = transformer; this.action = action;
5093 >        }
5094 >        public final void compute() {
5095 >            final Function<? super V, ? extends U> transformer;
5096 >            final Consumer<? super U> action;
5097 >            if ((transformer = this.transformer) != null &&
5098 >                (action = this.action) != null) {
5099 >                for (int i = baseIndex, f, h; batch > 0 &&
5100 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5101 >                    addToPendingCount(1);
5102 >                    new ForEachTransformedValueTask<K,V,U>
5103 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5104 >                         transformer, action).fork();
5105 >                }
5106 >                for (Node<K,V> p; (p = advance()) != null; ) {
5107 >                    U u;
5108 >                    if ((u = transformer.apply(p.val)) != null)
5109 >                        action.accept(u);
5110 >                }
5111 >                propagateCompletion();
5112              }
5685            tryComplete(subtasks);
5686            return false;
5113          }
5114      }
5115  
5116 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5117 <        extends BulkAction<K,V,Void> {
5118 <        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5119 <        final Action<U> action;
5116 >    @SuppressWarnings("serial")
5117 >    static final class ForEachTransformedEntryTask<K,V,U>
5118 >        extends BulkTask<K,V,Void> {
5119 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5120 >        final Consumer<? super U> action;
5121          ForEachTransformedEntryTask
5122 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5123 <             ForEachTransformedEntryTask<K,V,U> nextTask,
5124 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5125 <             Action<U> action) {
5126 <            super(m, p, b, nextTask);
5127 <            this.transformer = transformer;
5128 <            this.action = action;
5129 <
5130 <        }
5131 <        @SuppressWarnings("unchecked") public final boolean exec() {
5132 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5133 <                this.transformer;
5134 <            final Action<U> action = this.action;
5135 <            if (transformer == null || action == null)
5136 <                return abortOnNullFunction();
5137 <            ForEachTransformedEntryTask<K,V,U> subtasks = null;
5138 <            try {
5139 <                int b = batch(), c;
5140 <                while (b > 1 && baseIndex != baseLimit) {
5141 <                    do {} while (!casPending(c = pending, c+1));
5142 <                    (subtasks = new ForEachTransformedEntryTask<K,V,U>
5143 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5144 <                }
5718 <                Object v; U u;
5719 <                while ((v = advance()) != null) {
5720 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5721 <                        action.apply(u);
5722 <                }
5723 <            } catch (Throwable ex) {
5724 <                return tryCompleteComputation(ex);
5122 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5123 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5124 >            super(p, b, i, f, t);
5125 >            this.transformer = transformer; this.action = action;
5126 >        }
5127 >        public final void compute() {
5128 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5129 >            final Consumer<? super U> action;
5130 >            if ((transformer = this.transformer) != null &&
5131 >                (action = this.action) != null) {
5132 >                for (int i = baseIndex, f, h; batch > 0 &&
5133 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5134 >                    addToPendingCount(1);
5135 >                    new ForEachTransformedEntryTask<K,V,U>
5136 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5137 >                         transformer, action).fork();
5138 >                }
5139 >                for (Node<K,V> p; (p = advance()) != null; ) {
5140 >                    U u;
5141 >                    if ((u = transformer.apply(p)) != null)
5142 >                        action.accept(u);
5143 >                }
5144 >                propagateCompletion();
5145              }
5726            tryComplete(subtasks);
5727            return false;
5146          }
5147      }
5148  
5149 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5150 <        extends BulkAction<K,V,Void> {
5151 <        final BiFun<? super K, ? super V, ? extends U> transformer;
5152 <        final Action<U> action;
5149 >    @SuppressWarnings("serial")
5150 >    static final class ForEachTransformedMappingTask<K,V,U>
5151 >        extends BulkTask<K,V,Void> {
5152 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5153 >        final Consumer<? super U> action;
5154          ForEachTransformedMappingTask
5155 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5156 <             ForEachTransformedMappingTask<K,V,U> nextTask,
5157 <             BiFun<? super K, ? super V, ? extends U> transformer,
5158 <             Action<U> action) {
5159 <            super(m, p, b, nextTask);
5160 <            this.transformer = transformer;
5161 <            this.action = action;
5162 <
5163 <        }
5164 <        @SuppressWarnings("unchecked") public final boolean exec() {
5165 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5166 <                this.transformer;
5167 <            final Action<U> action = this.action;
5168 <            if (transformer == null || action == null)
5169 <                return abortOnNullFunction();
5170 <            ForEachTransformedMappingTask<K,V,U> subtasks = null;
5171 <            try {
5172 <                int b = batch(), c;
5173 <                while (b > 1 && baseIndex != baseLimit) {
5174 <                    do {} while (!casPending(c = pending, c+1));
5175 <                    (subtasks = new ForEachTransformedMappingTask<K,V,U>
5176 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5758 <                }
5759 <                Object v; U u;
5760 <                while ((v = advance()) != null) {
5761 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5762 <                        action.apply(u);
5155 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5156 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5157 >             Consumer<? super U> action) {
5158 >            super(p, b, i, f, t);
5159 >            this.transformer = transformer; this.action = action;
5160 >        }
5161 >        public final void compute() {
5162 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5163 >            final Consumer<? super U> action;
5164 >            if ((transformer = this.transformer) != null &&
5165 >                (action = this.action) != null) {
5166 >                for (int i = baseIndex, f, h; batch > 0 &&
5167 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5168 >                    addToPendingCount(1);
5169 >                    new ForEachTransformedMappingTask<K,V,U>
5170 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5171 >                         transformer, action).fork();
5172 >                }
5173 >                for (Node<K,V> p; (p = advance()) != null; ) {
5174 >                    U u;
5175 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5176 >                        action.accept(u);
5177                  }
5178 <            } catch (Throwable ex) {
5765 <                return tryCompleteComputation(ex);
5178 >                propagateCompletion();
5179              }
5767            tryComplete(subtasks);
5768            return false;
5180          }
5181      }
5182  
5183 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5184 <        extends BulkAction<K,V,U> {
5185 <        final Fun<? super K, ? extends U> searchFunction;
5183 >    @SuppressWarnings("serial")
5184 >    static final class SearchKeysTask<K,V,U>
5185 >        extends BulkTask<K,V,U> {
5186 >        final Function<? super K, ? extends U> searchFunction;
5187          final AtomicReference<U> result;
5188          SearchKeysTask
5189 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5190 <             SearchKeysTask<K,V,U> nextTask,
5779 <             Fun<? super K, ? extends U> searchFunction,
5189 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5190 >             Function<? super K, ? extends U> searchFunction,
5191               AtomicReference<U> result) {
5192 <            super(m, p, b, nextTask);
5192 >            super(p, b, i, f, t);
5193              this.searchFunction = searchFunction; this.result = result;
5194          }
5195 <        @SuppressWarnings("unchecked") public final boolean exec() {
5196 <            AtomicReference<U> result = this.result;
5197 <            final Fun<? super K, ? extends U> searchFunction =
5198 <                this.searchFunction;
5199 <            if (searchFunction == null || result == null)
5200 <                return abortOnNullFunction();
5201 <            SearchKeysTask<K,V,U> subtasks = null;
5202 <            try {
5203 <                int b = batch(), c;
5204 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5205 <                    do {} while (!casPending(c = pending, c+1));
5206 <                    (subtasks = new SearchKeysTask<K,V,U>
5207 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5208 <                }
5209 <                U u;
5210 <                while (result.get() == null && advance() != null) {
5211 <                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5195 >        public final U getRawResult() { return result.get(); }
5196 >        public final void compute() {
5197 >            final Function<? super K, ? extends U> searchFunction;
5198 >            final AtomicReference<U> result;
5199 >            if ((searchFunction = this.searchFunction) != null &&
5200 >                (result = this.result) != null) {
5201 >                for (int i = baseIndex, f, h; batch > 0 &&
5202 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5203 >                    if (result.get() != null)
5204 >                        return;
5205 >                    addToPendingCount(1);
5206 >                    new SearchKeysTask<K,V,U>
5207 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5208 >                         searchFunction, result).fork();
5209 >                }
5210 >                while (result.get() == null) {
5211 >                    U u;
5212 >                    Node<K,V> p;
5213 >                    if ((p = advance()) == null) {
5214 >                        propagateCompletion();
5215 >                        break;
5216 >                    }
5217 >                    if ((u = searchFunction.apply(p.key)) != null) {
5218                          if (result.compareAndSet(null, u))
5219 <                            tryCompleteComputation(null);
5219 >                            quietlyCompleteRoot();
5220                          break;
5221                      }
5222                  }
5806            } catch (Throwable ex) {
5807                return tryCompleteComputation(ex);
5223              }
5809            tryComplete(subtasks);
5810            return false;
5224          }
5812        public final U getRawResult() { return result.get(); }
5225      }
5226  
5227 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5228 <        extends BulkAction<K,V,U> {
5229 <        final Fun<? super V, ? extends U> searchFunction;
5227 >    @SuppressWarnings("serial")
5228 >    static final class SearchValuesTask<K,V,U>
5229 >        extends BulkTask<K,V,U> {
5230 >        final Function<? super V, ? extends U> searchFunction;
5231          final AtomicReference<U> result;
5232          SearchValuesTask
5233 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5234 <             SearchValuesTask<K,V,U> nextTask,
5822 <             Fun<? super V, ? extends U> searchFunction,
5233 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5234 >             Function<? super V, ? extends U> searchFunction,
5235               AtomicReference<U> result) {
5236 <            super(m, p, b, nextTask);
5236 >            super(p, b, i, f, t);
5237              this.searchFunction = searchFunction; this.result = result;
5238          }
5239 <        @SuppressWarnings("unchecked") public final boolean exec() {
5240 <            AtomicReference<U> result = this.result;
5241 <            final Fun<? super V, ? extends U> searchFunction =
5242 <                this.searchFunction;
5243 <            if (searchFunction == null || result == null)
5244 <                return abortOnNullFunction();
5245 <            SearchValuesTask<K,V,U> subtasks = null;
5246 <            try {
5247 <                int b = batch(), c;
5248 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5249 <                    do {} while (!casPending(c = pending, c+1));
5250 <                    (subtasks = new SearchValuesTask<K,V,U>
5251 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5252 <                }
5253 <                Object v; U u;
5254 <                while (result.get() == null && (v = advance()) != null) {
5255 <                    if ((u = searchFunction.apply((V)v)) != null) {
5239 >        public final U getRawResult() { return result.get(); }
5240 >        public final void compute() {
5241 >            final Function<? super V, ? extends U> searchFunction;
5242 >            final AtomicReference<U> result;
5243 >            if ((searchFunction = this.searchFunction) != null &&
5244 >                (result = this.result) != null) {
5245 >                for (int i = baseIndex, f, h; batch > 0 &&
5246 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5247 >                    if (result.get() != null)
5248 >                        return;
5249 >                    addToPendingCount(1);
5250 >                    new SearchValuesTask<K,V,U>
5251 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5252 >                         searchFunction, result).fork();
5253 >                }
5254 >                while (result.get() == null) {
5255 >                    U u;
5256 >                    Node<K,V> p;
5257 >                    if ((p = advance()) == null) {
5258 >                        propagateCompletion();
5259 >                        break;
5260 >                    }
5261 >                    if ((u = searchFunction.apply(p.val)) != null) {
5262                          if (result.compareAndSet(null, u))
5263 <                            tryCompleteComputation(null);
5263 >                            quietlyCompleteRoot();
5264                          break;
5265                      }
5266                  }
5849            } catch (Throwable ex) {
5850                return tryCompleteComputation(ex);
5267              }
5852            tryComplete(subtasks);
5853            return false;
5268          }
5855        public final U getRawResult() { return result.get(); }
5269      }
5270  
5271 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5272 <        extends BulkAction<K,V,U> {
5273 <        final Fun<Entry<K,V>, ? extends U> searchFunction;
5271 >    @SuppressWarnings("serial")
5272 >    static final class SearchEntriesTask<K,V,U>
5273 >        extends BulkTask<K,V,U> {
5274 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5275          final AtomicReference<U> result;
5276          SearchEntriesTask
5277 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5278 <             SearchEntriesTask<K,V,U> nextTask,
5865 <             Fun<Entry<K,V>, ? extends U> searchFunction,
5277 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5278 >             Function<Entry<K,V>, ? extends U> searchFunction,
5279               AtomicReference<U> result) {
5280 <            super(m, p, b, nextTask);
5280 >            super(p, b, i, f, t);
5281              this.searchFunction = searchFunction; this.result = result;
5282          }
5283 <        @SuppressWarnings("unchecked") public final boolean exec() {
5284 <            AtomicReference<U> result = this.result;
5285 <            final Fun<Entry<K,V>, ? extends U> searchFunction =
5286 <                this.searchFunction;
5287 <            if (searchFunction == null || result == null)
5288 <                return abortOnNullFunction();
5289 <            SearchEntriesTask<K,V,U> subtasks = null;
5290 <            try {
5291 <                int b = batch(), c;
5292 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5293 <                    do {} while (!casPending(c = pending, c+1));
5294 <                    (subtasks = new SearchEntriesTask<K,V,U>
5295 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5296 <                }
5297 <                Object v; U u;
5298 <                while (result.get() == null && (v = advance()) != null) {
5299 <                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5300 <                        if (result.compareAndSet(null, u))
5301 <                            tryCompleteComputation(null);
5283 >        public final U getRawResult() { return result.get(); }
5284 >        public final void compute() {
5285 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5286 >            final AtomicReference<U> result;
5287 >            if ((searchFunction = this.searchFunction) != null &&
5288 >                (result = this.result) != null) {
5289 >                for (int i = baseIndex, f, h; batch > 0 &&
5290 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5291 >                    if (result.get() != null)
5292 >                        return;
5293 >                    addToPendingCount(1);
5294 >                    new SearchEntriesTask<K,V,U>
5295 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5296 >                         searchFunction, result).fork();
5297 >                }
5298 >                while (result.get() == null) {
5299 >                    U u;
5300 >                    Node<K,V> p;
5301 >                    if ((p = advance()) == null) {
5302 >                        propagateCompletion();
5303                          break;
5304                      }
5305 +                    if ((u = searchFunction.apply(p)) != null) {
5306 +                        if (result.compareAndSet(null, u))
5307 +                            quietlyCompleteRoot();
5308 +                        return;
5309 +                    }
5310                  }
5892            } catch (Throwable ex) {
5893                return tryCompleteComputation(ex);
5311              }
5895            tryComplete(subtasks);
5896            return false;
5312          }
5898        public final U getRawResult() { return result.get(); }
5313      }
5314  
5315 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5316 <        extends BulkAction<K,V,U> {
5317 <        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5315 >    @SuppressWarnings("serial")
5316 >    static final class SearchMappingsTask<K,V,U>
5317 >        extends BulkTask<K,V,U> {
5318 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5319          final AtomicReference<U> result;
5320          SearchMappingsTask
5321 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5322 <             SearchMappingsTask<K,V,U> nextTask,
5908 <             BiFun<? super K, ? super V, ? extends U> searchFunction,
5321 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5322 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5323               AtomicReference<U> result) {
5324 <            super(m, p, b, nextTask);
5324 >            super(p, b, i, f, t);
5325              this.searchFunction = searchFunction; this.result = result;
5326          }
5327 <        @SuppressWarnings("unchecked") public final boolean exec() {
5328 <            AtomicReference<U> result = this.result;
5329 <            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5330 <                this.searchFunction;
5331 <            if (searchFunction == null || result == null)
5332 <                return abortOnNullFunction();
5333 <            SearchMappingsTask<K,V,U> subtasks = null;
5334 <            try {
5335 <                int b = batch(), c;
5336 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5337 <                    do {} while (!casPending(c = pending, c+1));
5338 <                    (subtasks = new SearchMappingsTask<K,V,U>
5339 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5340 <                }
5341 <                Object v; U u;
5342 <                while (result.get() == null && (v = advance()) != null) {
5343 <                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5327 >        public final U getRawResult() { return result.get(); }
5328 >        public final void compute() {
5329 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5330 >            final AtomicReference<U> result;
5331 >            if ((searchFunction = this.searchFunction) != null &&
5332 >                (result = this.result) != null) {
5333 >                for (int i = baseIndex, f, h; batch > 0 &&
5334 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5335 >                    if (result.get() != null)
5336 >                        return;
5337 >                    addToPendingCount(1);
5338 >                    new SearchMappingsTask<K,V,U>
5339 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5340 >                         searchFunction, result).fork();
5341 >                }
5342 >                while (result.get() == null) {
5343 >                    U u;
5344 >                    Node<K,V> p;
5345 >                    if ((p = advance()) == null) {
5346 >                        propagateCompletion();
5347 >                        break;
5348 >                    }
5349 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5350                          if (result.compareAndSet(null, u))
5351 <                            tryCompleteComputation(null);
5351 >                            quietlyCompleteRoot();
5352                          break;
5353                      }
5354                  }
5935            } catch (Throwable ex) {
5936                return tryCompleteComputation(ex);
5355              }
5938            tryComplete(subtasks);
5939            return false;
5356          }
5941        public final U getRawResult() { return result.get(); }
5357      }
5358  
5359 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5359 >    @SuppressWarnings("serial")
5360 >    static final class ReduceKeysTask<K,V>
5361          extends BulkTask<K,V,K> {
5362 <        final BiFun<? super K, ? super K, ? extends K> reducer;
5362 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5363          K result;
5364          ReduceKeysTask<K,V> rights, nextRight;
5365          ReduceKeysTask
5366 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5366 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5367               ReduceKeysTask<K,V> nextRight,
5368 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5369 <            super(m, p, b); this.nextRight = nextRight;
5368 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5369 >            super(p, b, i, f, t); this.nextRight = nextRight;
5370              this.reducer = reducer;
5371          }
5372 <        @SuppressWarnings("unchecked") public final boolean exec() {
5373 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5374 <                this.reducer;
5375 <            if (reducer == null)
5376 <                return abortOnNullFunction();
5377 <            try {
5378 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5963 <                    do {} while (!casPending(c = pending, c+1));
5372 >        public final K getRawResult() { return result; }
5373 >        public final void compute() {
5374 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5375 >            if ((reducer = this.reducer) != null) {
5376 >                for (int i = baseIndex, f, h; batch > 0 &&
5377 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5378 >                    addToPendingCount(1);
5379                      (rights = new ReduceKeysTask<K,V>
5380 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5380 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5381 >                      rights, reducer)).fork();
5382                  }
5383                  K r = null;
5384 <                while (advance() != null) {
5385 <                    K u = (K)nextKey;
5386 <                    r = (r == null) ? u : reducer.apply(r, u);
5384 >                for (Node<K,V> p; (p = advance()) != null; ) {
5385 >                    K u = p.key;
5386 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5387                  }
5388                  result = r;
5389 <                for (ReduceKeysTask<K,V> t = this, s;;) {
5390 <                    int c; BulkTask<K,V,?> par; K tr, sr;
5391 <                    if ((c = t.pending) == 0) {
5392 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5393 <                            if ((sr = s.result) != null)
5394 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5395 <                        }
5396 <                        if ((par = t.parent) == null ||
5397 <                            !(par instanceof ReduceKeysTask)) {
5398 <                            t.quietlyComplete();
5399 <                            break;
5400 <                        }
5985 <                        t = (ReduceKeysTask<K,V>)par;
5389 >                CountedCompleter<?> c;
5390 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5391 >                    @SuppressWarnings("unchecked")
5392 >                    ReduceKeysTask<K,V>
5393 >                        t = (ReduceKeysTask<K,V>)c,
5394 >                        s = t.rights;
5395 >                    while (s != null) {
5396 >                        K tr, sr;
5397 >                        if ((sr = s.result) != null)
5398 >                            t.result = (((tr = t.result) == null) ? sr :
5399 >                                        reducer.apply(tr, sr));
5400 >                        s = t.rights = s.nextRight;
5401                      }
5987                    else if (t.casPending(c, c - 1))
5988                        break;
5402                  }
5990            } catch (Throwable ex) {
5991                return tryCompleteComputation(ex);
5992            }
5993            ReduceKeysTask<K,V> s = rights;
5994            if (s != null && !inForkJoinPool()) {
5995                do  {
5996                    if (s.tryUnfork())
5997                        s.exec();
5998                } while ((s = s.nextRight) != null);
5403              }
6000            return false;
5404          }
6002        public final K getRawResult() { return result; }
5405      }
5406  
5407 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5407 >    @SuppressWarnings("serial")
5408 >    static final class ReduceValuesTask<K,V>
5409          extends BulkTask<K,V,V> {
5410 <        final BiFun<? super V, ? super V, ? extends V> reducer;
5410 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5411          V result;
5412          ReduceValuesTask<K,V> rights, nextRight;
5413          ReduceValuesTask
5414 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5414 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5415               ReduceValuesTask<K,V> nextRight,
5416 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5417 <            super(m, p, b); this.nextRight = nextRight;
5416 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5417 >            super(p, b, i, f, t); this.nextRight = nextRight;
5418              this.reducer = reducer;
5419          }
5420 <        @SuppressWarnings("unchecked") public final boolean exec() {
5421 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5422 <                this.reducer;
5423 <            if (reducer == null)
5424 <                return abortOnNullFunction();
5425 <            try {
5426 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6024 <                    do {} while (!casPending(c = pending, c+1));
5420 >        public final V getRawResult() { return result; }
5421 >        public final void compute() {
5422 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5423 >            if ((reducer = this.reducer) != null) {
5424 >                for (int i = baseIndex, f, h; batch > 0 &&
5425 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5426 >                    addToPendingCount(1);
5427                      (rights = new ReduceValuesTask<K,V>
5428 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5428 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5429 >                      rights, reducer)).fork();
5430                  }
5431                  V r = null;
5432 <                Object v;
5433 <                while ((v = advance()) != null) {
5434 <                    V u = (V)v;
6032 <                    r = (r == null) ? u : reducer.apply(r, u);
5432 >                for (Node<K,V> p; (p = advance()) != null; ) {
5433 >                    V v = p.val;
5434 >                    r = (r == null) ? v : reducer.apply(r, v);
5435                  }
5436                  result = r;
5437 <                for (ReduceValuesTask<K,V> t = this, s;;) {
5438 <                    int c; BulkTask<K,V,?> par; V tr, sr;
5439 <                    if ((c = t.pending) == 0) {
5440 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5441 <                            if ((sr = s.result) != null)
5442 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5443 <                        }
5444 <                        if ((par = t.parent) == null ||
5445 <                            !(par instanceof ReduceValuesTask)) {
5446 <                            t.quietlyComplete();
5447 <                            break;
5448 <                        }
6047 <                        t = (ReduceValuesTask<K,V>)par;
5437 >                CountedCompleter<?> c;
5438 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5439 >                    @SuppressWarnings("unchecked")
5440 >                    ReduceValuesTask<K,V>
5441 >                        t = (ReduceValuesTask<K,V>)c,
5442 >                        s = t.rights;
5443 >                    while (s != null) {
5444 >                        V tr, sr;
5445 >                        if ((sr = s.result) != null)
5446 >                            t.result = (((tr = t.result) == null) ? sr :
5447 >                                        reducer.apply(tr, sr));
5448 >                        s = t.rights = s.nextRight;
5449                      }
6049                    else if (t.casPending(c, c - 1))
6050                        break;
5450                  }
6052            } catch (Throwable ex) {
6053                return tryCompleteComputation(ex);
6054            }
6055            ReduceValuesTask<K,V> s = rights;
6056            if (s != null && !inForkJoinPool()) {
6057                do  {
6058                    if (s.tryUnfork())
6059                        s.exec();
6060                } while ((s = s.nextRight) != null);
5451              }
6062            return false;
5452          }
6064        public final V getRawResult() { return result; }
5453      }
5454  
5455 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5455 >    @SuppressWarnings("serial")
5456 >    static final class ReduceEntriesTask<K,V>
5457          extends BulkTask<K,V,Map.Entry<K,V>> {
5458 <        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5458 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5459          Map.Entry<K,V> result;
5460          ReduceEntriesTask<K,V> rights, nextRight;
5461          ReduceEntriesTask
5462 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5462 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5463               ReduceEntriesTask<K,V> nextRight,
5464 <             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5465 <            super(m, p, b); this.nextRight = nextRight;
5464 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5465 >            super(p, b, i, f, t); this.nextRight = nextRight;
5466              this.reducer = reducer;
5467          }
5468 <        @SuppressWarnings("unchecked") public final boolean exec() {
5469 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5470 <                this.reducer;
5471 <            if (reducer == null)
5472 <                return abortOnNullFunction();
5473 <            try {
5474 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6086 <                    do {} while (!casPending(c = pending, c+1));
5468 >        public final Map.Entry<K,V> getRawResult() { return result; }
5469 >        public final void compute() {
5470 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5471 >            if ((reducer = this.reducer) != null) {
5472 >                for (int i = baseIndex, f, h; batch > 0 &&
5473 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5474 >                    addToPendingCount(1);
5475                      (rights = new ReduceEntriesTask<K,V>
5476 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5476 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5477 >                      rights, reducer)).fork();
5478                  }
5479                  Map.Entry<K,V> r = null;
5480 <                Object v;
5481 <                while ((v = advance()) != null) {
6093 <                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
6094 <                    r = (r == null) ? u : reducer.apply(r, u);
6095 <                }
5480 >                for (Node<K,V> p; (p = advance()) != null; )
5481 >                    r = (r == null) ? p : reducer.apply(r, p);
5482                  result = r;
5483 <                for (ReduceEntriesTask<K,V> t = this, s;;) {
5484 <                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5485 <                    if ((c = t.pending) == 0) {
5486 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5487 <                            if ((sr = s.result) != null)
5488 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5489 <                        }
5490 <                        if ((par = t.parent) == null ||
5491 <                            !(par instanceof ReduceEntriesTask)) {
5492 <                            t.quietlyComplete();
5493 <                            break;
5494 <                        }
6109 <                        t = (ReduceEntriesTask<K,V>)par;
5483 >                CountedCompleter<?> c;
5484 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5485 >                    @SuppressWarnings("unchecked")
5486 >                    ReduceEntriesTask<K,V>
5487 >                        t = (ReduceEntriesTask<K,V>)c,
5488 >                        s = t.rights;
5489 >                    while (s != null) {
5490 >                        Map.Entry<K,V> tr, sr;
5491 >                        if ((sr = s.result) != null)
5492 >                            t.result = (((tr = t.result) == null) ? sr :
5493 >                                        reducer.apply(tr, sr));
5494 >                        s = t.rights = s.nextRight;
5495                      }
6111                    else if (t.casPending(c, c - 1))
6112                        break;
5496                  }
6114            } catch (Throwable ex) {
6115                return tryCompleteComputation(ex);
6116            }
6117            ReduceEntriesTask<K,V> s = rights;
6118            if (s != null && !inForkJoinPool()) {
6119                do  {
6120                    if (s.tryUnfork())
6121                        s.exec();
6122                } while ((s = s.nextRight) != null);
5497              }
6124            return false;
5498          }
6126        public final Map.Entry<K,V> getRawResult() { return result; }
5499      }
5500  
5501 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5501 >    @SuppressWarnings("serial")
5502 >    static final class MapReduceKeysTask<K,V,U>
5503          extends BulkTask<K,V,U> {
5504 <        final Fun<? super K, ? extends U> transformer;
5505 <        final BiFun<? super U, ? super U, ? extends U> reducer;
5504 >        final Function<? super K, ? extends U> transformer;
5505 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5506          U result;
5507          MapReduceKeysTask<K,V,U> rights, nextRight;
5508          MapReduceKeysTask
5509 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5509 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5510               MapReduceKeysTask<K,V,U> nextRight,
5511 <             Fun<? super K, ? extends U> transformer,
5512 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5513 <            super(m, p, b); this.nextRight = nextRight;
5511 >             Function<? super K, ? extends U> transformer,
5512 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5513 >            super(p, b, i, f, t); this.nextRight = nextRight;
5514              this.transformer = transformer;
5515              this.reducer = reducer;
5516          }
5517 <        @SuppressWarnings("unchecked") public final boolean exec() {
5518 <            final Fun<? super K, ? extends U> transformer =
5519 <                this.transformer;
5520 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5521 <                this.reducer;
5522 <            if (transformer == null || reducer == null)
5523 <                return abortOnNullFunction();
5524 <            try {
5525 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6153 <                    do {} while (!casPending(c = pending, c+1));
5517 >        public final U getRawResult() { return result; }
5518 >        public final void compute() {
5519 >            final Function<? super K, ? extends U> transformer;
5520 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5521 >            if ((transformer = this.transformer) != null &&
5522 >                (reducer = this.reducer) != null) {
5523 >                for (int i = baseIndex, f, h; batch > 0 &&
5524 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5525 >                    addToPendingCount(1);
5526                      (rights = new MapReduceKeysTask<K,V,U>
5527 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5527 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5528 >                      rights, transformer, reducer)).fork();
5529                  }
5530 <                U r = null, u;
5531 <                while (advance() != null) {
5532 <                    if ((u = transformer.apply((K)nextKey)) != null)
5530 >                U r = null;
5531 >                for (Node<K,V> p; (p = advance()) != null; ) {
5532 >                    U u;
5533 >                    if ((u = transformer.apply(p.key)) != null)
5534                          r = (r == null) ? u : reducer.apply(r, u);
5535                  }
5536                  result = r;
5537 <                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5538 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5539 <                    if ((c = t.pending) == 0) {
5540 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5541 <                            if ((sr = s.result) != null)
5542 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5543 <                        }
5544 <                        if ((par = t.parent) == null ||
5545 <                            !(par instanceof MapReduceKeysTask)) {
5546 <                            t.quietlyComplete();
5547 <                            break;
5548 <                        }
6175 <                        t = (MapReduceKeysTask<K,V,U>)par;
5537 >                CountedCompleter<?> c;
5538 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5539 >                    @SuppressWarnings("unchecked")
5540 >                    MapReduceKeysTask<K,V,U>
5541 >                        t = (MapReduceKeysTask<K,V,U>)c,
5542 >                        s = t.rights;
5543 >                    while (s != null) {
5544 >                        U tr, sr;
5545 >                        if ((sr = s.result) != null)
5546 >                            t.result = (((tr = t.result) == null) ? sr :
5547 >                                        reducer.apply(tr, sr));
5548 >                        s = t.rights = s.nextRight;
5549                      }
6177                    else if (t.casPending(c, c - 1))
6178                        break;
5550                  }
6180            } catch (Throwable ex) {
6181                return tryCompleteComputation(ex);
5551              }
6183            MapReduceKeysTask<K,V,U> s = rights;
6184            if (s != null && !inForkJoinPool()) {
6185                do  {
6186                    if (s.tryUnfork())
6187                        s.exec();
6188                } while ((s = s.nextRight) != null);
6189            }
6190            return false;
5552          }
6192        public final U getRawResult() { return result; }
5553      }
5554  
5555 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5555 >    @SuppressWarnings("serial")
5556 >    static final class MapReduceValuesTask<K,V,U>
5557          extends BulkTask<K,V,U> {
5558 <        final Fun<? super V, ? extends U> transformer;
5559 <        final BiFun<? super U, ? super U, ? extends U> reducer;
5558 >        final Function<? super V, ? extends U> transformer;
5559 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5560          U result;
5561          MapReduceValuesTask<K,V,U> rights, nextRight;
5562          MapReduceValuesTask
5563 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5563 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5564               MapReduceValuesTask<K,V,U> nextRight,
5565 <             Fun<? super V, ? extends U> transformer,
5566 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5567 <            super(m, p, b); this.nextRight = nextRight;
5565 >             Function<? super V, ? extends U> transformer,
5566 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5567 >            super(p, b, i, f, t); this.nextRight = nextRight;
5568              this.transformer = transformer;
5569              this.reducer = reducer;
5570          }
5571 <        @SuppressWarnings("unchecked") public final boolean exec() {
5572 <            final Fun<? super V, ? extends U> transformer =
5573 <                this.transformer;
5574 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5575 <                this.reducer;
5576 <            if (transformer == null || reducer == null)
5577 <                return abortOnNullFunction();
5578 <            try {
5579 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6219 <                    do {} while (!casPending(c = pending, c+1));
5571 >        public final U getRawResult() { return result; }
5572 >        public final void compute() {
5573 >            final Function<? super V, ? extends U> transformer;
5574 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5575 >            if ((transformer = this.transformer) != null &&
5576 >                (reducer = this.reducer) != null) {
5577 >                for (int i = baseIndex, f, h; batch > 0 &&
5578 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5579 >                    addToPendingCount(1);
5580                      (rights = new MapReduceValuesTask<K,V,U>
5581 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5581 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5582 >                      rights, transformer, reducer)).fork();
5583                  }
5584 <                U r = null, u;
5585 <                Object v;
5586 <                while ((v = advance()) != null) {
5587 <                    if ((u = transformer.apply((V)v)) != null)
5584 >                U r = null;
5585 >                for (Node<K,V> p; (p = advance()) != null; ) {
5586 >                    U u;
5587 >                    if ((u = transformer.apply(p.val)) != null)
5588                          r = (r == null) ? u : reducer.apply(r, u);
5589                  }
5590                  result = r;
5591 <                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5592 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5593 <                    if ((c = t.pending) == 0) {
5594 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5595 <                            if ((sr = s.result) != null)
5596 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5597 <                        }
5598 <                        if ((par = t.parent) == null ||
5599 <                            !(par instanceof MapReduceValuesTask)) {
5600 <                            t.quietlyComplete();
5601 <                            break;
5602 <                        }
6242 <                        t = (MapReduceValuesTask<K,V,U>)par;
5591 >                CountedCompleter<?> c;
5592 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5593 >                    @SuppressWarnings("unchecked")
5594 >                    MapReduceValuesTask<K,V,U>
5595 >                        t = (MapReduceValuesTask<K,V,U>)c,
5596 >                        s = t.rights;
5597 >                    while (s != null) {
5598 >                        U tr, sr;
5599 >                        if ((sr = s.result) != null)
5600 >                            t.result = (((tr = t.result) == null) ? sr :
5601 >                                        reducer.apply(tr, sr));
5602 >                        s = t.rights = s.nextRight;
5603                      }
6244                    else if (t.casPending(c, c - 1))
6245                        break;
5604                  }
6247            } catch (Throwable ex) {
6248                return tryCompleteComputation(ex);
6249            }
6250            MapReduceValuesTask<K,V,U> s = rights;
6251            if (s != null && !inForkJoinPool()) {
6252                do  {
6253                    if (s.tryUnfork())
6254                        s.exec();
6255                } while ((s = s.nextRight) != null);
5605              }
6257            return false;
5606          }
6259        public final U getRawResult() { return result; }
5607      }
5608  
5609 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5609 >    @SuppressWarnings("serial")
5610 >    static final class MapReduceEntriesTask<K,V,U>
5611          extends BulkTask<K,V,U> {
5612 <        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5613 <        final BiFun<? super U, ? super U, ? extends U> reducer;
5612 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5613 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5614          U result;
5615          MapReduceEntriesTask<K,V,U> rights, nextRight;
5616          MapReduceEntriesTask
5617 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5617 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5618               MapReduceEntriesTask<K,V,U> nextRight,
5619 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5620 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5621 <            super(m, p, b); this.nextRight = nextRight;
5619 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5620 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5621 >            super(p, b, i, f, t); this.nextRight = nextRight;
5622              this.transformer = transformer;
5623              this.reducer = reducer;
5624          }
5625 <        @SuppressWarnings("unchecked") public final boolean exec() {
5626 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5627 <                this.transformer;
5628 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5629 <                this.reducer;
5630 <            if (transformer == null || reducer == null)
5631 <                return abortOnNullFunction();
5632 <            try {
5633 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6286 <                    do {} while (!casPending(c = pending, c+1));
5625 >        public final U getRawResult() { return result; }
5626 >        public final void compute() {
5627 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5628 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5629 >            if ((transformer = this.transformer) != null &&
5630 >                (reducer = this.reducer) != null) {
5631 >                for (int i = baseIndex, f, h; batch > 0 &&
5632 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5633 >                    addToPendingCount(1);
5634                      (rights = new MapReduceEntriesTask<K,V,U>
5635 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5635 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5636 >                      rights, transformer, reducer)).fork();
5637                  }
5638 <                U r = null, u;
5639 <                Object v;
5640 <                while ((v = advance()) != null) {
5641 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5638 >                U r = null;
5639 >                for (Node<K,V> p; (p = advance()) != null; ) {
5640 >                    U u;
5641 >                    if ((u = transformer.apply(p)) != null)
5642                          r = (r == null) ? u : reducer.apply(r, u);
5643                  }
5644                  result = r;
5645 <                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5646 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5647 <                    if ((c = t.pending) == 0) {
5648 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5649 <                            if ((sr = s.result) != null)
5650 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5651 <                        }
5652 <                        if ((par = t.parent) == null ||
5653 <                            !(par instanceof MapReduceEntriesTask)) {
5654 <                            t.quietlyComplete();
5655 <                            break;
5656 <                        }
6309 <                        t = (MapReduceEntriesTask<K,V,U>)par;
5645 >                CountedCompleter<?> c;
5646 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5647 >                    @SuppressWarnings("unchecked")
5648 >                    MapReduceEntriesTask<K,V,U>
5649 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5650 >                        s = t.rights;
5651 >                    while (s != null) {
5652 >                        U tr, sr;
5653 >                        if ((sr = s.result) != null)
5654 >                            t.result = (((tr = t.result) == null) ? sr :
5655 >                                        reducer.apply(tr, sr));
5656 >                        s = t.rights = s.nextRight;
5657                      }
6311                    else if (t.casPending(c, c - 1))
6312                        break;
5658                  }
6314            } catch (Throwable ex) {
6315                return tryCompleteComputation(ex);
6316            }
6317            MapReduceEntriesTask<K,V,U> s = rights;
6318            if (s != null && !inForkJoinPool()) {
6319                do  {
6320                    if (s.tryUnfork())
6321                        s.exec();
6322                } while ((s = s.nextRight) != null);
5659              }
6324            return false;
5660          }
6326        public final U getRawResult() { return result; }
5661      }
5662  
5663 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5663 >    @SuppressWarnings("serial")
5664 >    static final class MapReduceMappingsTask<K,V,U>
5665          extends BulkTask<K,V,U> {
5666 <        final BiFun<? super K, ? super V, ? extends U> transformer;
5667 <        final BiFun<? super U, ? super U, ? extends U> reducer;
5666 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5667 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5668          U result;
5669          MapReduceMappingsTask<K,V,U> rights, nextRight;
5670          MapReduceMappingsTask
5671 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5671 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5672               MapReduceMappingsTask<K,V,U> nextRight,
5673 <             BiFun<? super K, ? super V, ? extends U> transformer,
5674 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5675 <            super(m, p, b); this.nextRight = nextRight;
5673 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5674 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5675 >            super(p, b, i, f, t); this.nextRight = nextRight;
5676              this.transformer = transformer;
5677              this.reducer = reducer;
5678          }
5679 <        @SuppressWarnings("unchecked") public final boolean exec() {
5680 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5681 <                this.transformer;
5682 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5683 <                this.reducer;
5684 <            if (transformer == null || reducer == null)
5685 <                return abortOnNullFunction();
5686 <            try {
5687 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6353 <                    do {} while (!casPending(c = pending, c+1));
5679 >        public final U getRawResult() { return result; }
5680 >        public final void compute() {
5681 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5682 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5683 >            if ((transformer = this.transformer) != null &&
5684 >                (reducer = this.reducer) != null) {
5685 >                for (int i = baseIndex, f, h; batch > 0 &&
5686 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5687 >                    addToPendingCount(1);
5688                      (rights = new MapReduceMappingsTask<K,V,U>
5689 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5689 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5690 >                      rights, transformer, reducer)).fork();
5691                  }
5692 <                U r = null, u;
5693 <                Object v;
5694 <                while ((v = advance()) != null) {
5695 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5692 >                U r = null;
5693 >                for (Node<K,V> p; (p = advance()) != null; ) {
5694 >                    U u;
5695 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5696                          r = (r == null) ? u : reducer.apply(r, u);
5697                  }
5698                  result = r;
5699 <                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5700 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5701 <                    if ((c = t.pending) == 0) {
5702 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5703 <                            if ((sr = s.result) != null)
5704 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5705 <                        }
5706 <                        if ((par = t.parent) == null ||
5707 <                            !(par instanceof MapReduceMappingsTask)) {
5708 <                            t.quietlyComplete();
5709 <                            break;
5710 <                        }
6376 <                        t = (MapReduceMappingsTask<K,V,U>)par;
5699 >                CountedCompleter<?> c;
5700 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5701 >                    @SuppressWarnings("unchecked")
5702 >                    MapReduceMappingsTask<K,V,U>
5703 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5704 >                        s = t.rights;
5705 >                    while (s != null) {
5706 >                        U tr, sr;
5707 >                        if ((sr = s.result) != null)
5708 >                            t.result = (((tr = t.result) == null) ? sr :
5709 >                                        reducer.apply(tr, sr));
5710 >                        s = t.rights = s.nextRight;
5711                      }
6378                    else if (t.casPending(c, c - 1))
6379                        break;
5712                  }
6381            } catch (Throwable ex) {
6382                return tryCompleteComputation(ex);
6383            }
6384            MapReduceMappingsTask<K,V,U> s = rights;
6385            if (s != null && !inForkJoinPool()) {
6386                do  {
6387                    if (s.tryUnfork())
6388                        s.exec();
6389                } while ((s = s.nextRight) != null);
5713              }
6391            return false;
5714          }
6393        public final U getRawResult() { return result; }
5715      }
5716  
5717 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5717 >    @SuppressWarnings("serial")
5718 >    static final class MapReduceKeysToDoubleTask<K,V>
5719          extends BulkTask<K,V,Double> {
5720 <        final ObjectToDouble<? super K> transformer;
5721 <        final DoubleByDoubleToDouble reducer;
5720 >        final ToDoubleFunction<? super K> transformer;
5721 >        final DoubleBinaryOperator reducer;
5722          final double basis;
5723          double result;
5724          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5725          MapReduceKeysToDoubleTask
5726 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5726 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5727               MapReduceKeysToDoubleTask<K,V> nextRight,
5728 <             ObjectToDouble<? super K> transformer,
5728 >             ToDoubleFunction<? super K> transformer,
5729               double basis,
5730 <             DoubleByDoubleToDouble reducer) {
5731 <            super(m, p, b); this.nextRight = nextRight;
5730 >             DoubleBinaryOperator reducer) {
5731 >            super(p, b, i, f, t); this.nextRight = nextRight;
5732              this.transformer = transformer;
5733              this.basis = basis; this.reducer = reducer;
5734          }
5735 <        @SuppressWarnings("unchecked") public final boolean exec() {
5736 <            final ObjectToDouble<? super K> transformer =
5737 <                this.transformer;
5738 <            final DoubleByDoubleToDouble reducer = this.reducer;
5739 <            if (transformer == null || reducer == null)
5740 <                return abortOnNullFunction();
5741 <            try {
5742 <                final double id = this.basis;
5743 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5744 <                    do {} while (!casPending(c = pending, c+1));
5735 >        public final Double getRawResult() { return result; }
5736 >        public final void compute() {
5737 >            final ToDoubleFunction<? super K> transformer;
5738 >            final DoubleBinaryOperator reducer;
5739 >            if ((transformer = this.transformer) != null &&
5740 >                (reducer = this.reducer) != null) {
5741 >                double r = this.basis;
5742 >                for (int i = baseIndex, f, h; batch > 0 &&
5743 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5744 >                    addToPendingCount(1);
5745                      (rights = new MapReduceKeysToDoubleTask<K,V>
5746 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5746 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5747 >                      rights, transformer, r, reducer)).fork();
5748                  }
5749 <                double r = id;
5750 <                while (advance() != null)
6428 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5749 >                for (Node<K,V> p; (p = advance()) != null; )
5750 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5751                  result = r;
5752 <                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
5753 <                    int c; BulkTask<K,V,?> par;
5754 <                    if ((c = t.pending) == 0) {
5755 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5756 <                            t.result = reducer.apply(t.result, s.result);
5757 <                        }
5758 <                        if ((par = t.parent) == null ||
5759 <                            !(par instanceof MapReduceKeysToDoubleTask)) {
5760 <                            t.quietlyComplete();
6439 <                            break;
6440 <                        }
6441 <                        t = (MapReduceKeysToDoubleTask<K,V>)par;
5752 >                CountedCompleter<?> c;
5753 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5754 >                    @SuppressWarnings("unchecked")
5755 >                    MapReduceKeysToDoubleTask<K,V>
5756 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5757 >                        s = t.rights;
5758 >                    while (s != null) {
5759 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5760 >                        s = t.rights = s.nextRight;
5761                      }
6443                    else if (t.casPending(c, c - 1))
6444                        break;
5762                  }
6446            } catch (Throwable ex) {
6447                return tryCompleteComputation(ex);
5763              }
6449            MapReduceKeysToDoubleTask<K,V> s = rights;
6450            if (s != null && !inForkJoinPool()) {
6451                do  {
6452                    if (s.tryUnfork())
6453                        s.exec();
6454                } while ((s = s.nextRight) != null);
6455            }
6456            return false;
5764          }
6458        public final Double getRawResult() { return result; }
5765      }
5766  
5767 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5767 >    @SuppressWarnings("serial")
5768 >    static final class MapReduceValuesToDoubleTask<K,V>
5769          extends BulkTask<K,V,Double> {
5770 <        final ObjectToDouble<? super V> transformer;
5771 <        final DoubleByDoubleToDouble reducer;
5770 >        final ToDoubleFunction<? super V> transformer;
5771 >        final DoubleBinaryOperator reducer;
5772          final double basis;
5773          double result;
5774          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5775          MapReduceValuesToDoubleTask
5776 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5776 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5777               MapReduceValuesToDoubleTask<K,V> nextRight,
5778 <             ObjectToDouble<? super V> transformer,
5778 >             ToDoubleFunction<? super V> transformer,
5779               double basis,
5780 <             DoubleByDoubleToDouble reducer) {
5781 <            super(m, p, b); this.nextRight = nextRight;
5780 >             DoubleBinaryOperator reducer) {
5781 >            super(p, b, i, f, t); this.nextRight = nextRight;
5782              this.transformer = transformer;
5783              this.basis = basis; this.reducer = reducer;
5784          }
5785 <        @SuppressWarnings("unchecked") public final boolean exec() {
5786 <            final ObjectToDouble<? super V> transformer =
5787 <                this.transformer;
5788 <            final DoubleByDoubleToDouble reducer = this.reducer;
5789 <            if (transformer == null || reducer == null)
5790 <                return abortOnNullFunction();
5791 <            try {
5792 <                final double id = this.basis;
5793 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5794 <                    do {} while (!casPending(c = pending, c+1));
5785 >        public final Double getRawResult() { return result; }
5786 >        public final void compute() {
5787 >            final ToDoubleFunction<? super V> transformer;
5788 >            final DoubleBinaryOperator reducer;
5789 >            if ((transformer = this.transformer) != null &&
5790 >                (reducer = this.reducer) != null) {
5791 >                double r = this.basis;
5792 >                for (int i = baseIndex, f, h; batch > 0 &&
5793 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5794 >                    addToPendingCount(1);
5795                      (rights = new MapReduceValuesToDoubleTask<K,V>
5796 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5796 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5797 >                      rights, transformer, r, reducer)).fork();
5798                  }
5799 <                double r = id;
5800 <                Object v;
6493 <                while ((v = advance()) != null)
6494 <                    r = reducer.apply(r, transformer.apply((V)v));
5799 >                for (Node<K,V> p; (p = advance()) != null; )
5800 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5801                  result = r;
5802 <                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
5803 <                    int c; BulkTask<K,V,?> par;
5804 <                    if ((c = t.pending) == 0) {
5805 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5806 <                            t.result = reducer.apply(t.result, s.result);
5807 <                        }
5808 <                        if ((par = t.parent) == null ||
5809 <                            !(par instanceof MapReduceValuesToDoubleTask)) {
5810 <                            t.quietlyComplete();
6505 <                            break;
6506 <                        }
6507 <                        t = (MapReduceValuesToDoubleTask<K,V>)par;
5802 >                CountedCompleter<?> c;
5803 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5804 >                    @SuppressWarnings("unchecked")
5805 >                    MapReduceValuesToDoubleTask<K,V>
5806 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5807 >                        s = t.rights;
5808 >                    while (s != null) {
5809 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5810 >                        s = t.rights = s.nextRight;
5811                      }
6509                    else if (t.casPending(c, c - 1))
6510                        break;
5812                  }
6512            } catch (Throwable ex) {
6513                return tryCompleteComputation(ex);
6514            }
6515            MapReduceValuesToDoubleTask<K,V> s = rights;
6516            if (s != null && !inForkJoinPool()) {
6517                do  {
6518                    if (s.tryUnfork())
6519                        s.exec();
6520                } while ((s = s.nextRight) != null);
5813              }
6522            return false;
5814          }
6524        public final Double getRawResult() { return result; }
5815      }
5816  
5817 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5817 >    @SuppressWarnings("serial")
5818 >    static final class MapReduceEntriesToDoubleTask<K,V>
5819          extends BulkTask<K,V,Double> {
5820 <        final ObjectToDouble<Map.Entry<K,V>> transformer;
5821 <        final DoubleByDoubleToDouble reducer;
5820 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5821 >        final DoubleBinaryOperator reducer;
5822          final double basis;
5823          double result;
5824          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5825          MapReduceEntriesToDoubleTask
5826 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5826 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5827               MapReduceEntriesToDoubleTask<K,V> nextRight,
5828 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5828 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5829               double basis,
5830 <             DoubleByDoubleToDouble reducer) {
5831 <            super(m, p, b); this.nextRight = nextRight;
5830 >             DoubleBinaryOperator reducer) {
5831 >            super(p, b, i, f, t); this.nextRight = nextRight;
5832              this.transformer = transformer;
5833              this.basis = basis; this.reducer = reducer;
5834          }
5835 <        @SuppressWarnings("unchecked") public final boolean exec() {
5836 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
5837 <                this.transformer;
5838 <            final DoubleByDoubleToDouble reducer = this.reducer;
5839 <            if (transformer == null || reducer == null)
5840 <                return abortOnNullFunction();
5841 <            try {
5842 <                final double id = this.basis;
5843 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5844 <                    do {} while (!casPending(c = pending, c+1));
5835 >        public final Double getRawResult() { return result; }
5836 >        public final void compute() {
5837 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5838 >            final DoubleBinaryOperator reducer;
5839 >            if ((transformer = this.transformer) != null &&
5840 >                (reducer = this.reducer) != null) {
5841 >                double r = this.basis;
5842 >                for (int i = baseIndex, f, h; batch > 0 &&
5843 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5844 >                    addToPendingCount(1);
5845                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5846 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5846 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5847 >                      rights, transformer, r, reducer)).fork();
5848                  }
5849 <                double r = id;
5850 <                Object v;
6559 <                while ((v = advance()) != null)
6560 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5849 >                for (Node<K,V> p; (p = advance()) != null; )
5850 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5851                  result = r;
5852 <                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
5853 <                    int c; BulkTask<K,V,?> par;
5854 <                    if ((c = t.pending) == 0) {
5855 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5856 <                            t.result = reducer.apply(t.result, s.result);
5857 <                        }
5858 <                        if ((par = t.parent) == null ||
5859 <                            !(par instanceof MapReduceEntriesToDoubleTask)) {
5860 <                            t.quietlyComplete();
6571 <                            break;
6572 <                        }
6573 <                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
5852 >                CountedCompleter<?> c;
5853 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5854 >                    @SuppressWarnings("unchecked")
5855 >                    MapReduceEntriesToDoubleTask<K,V>
5856 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5857 >                        s = t.rights;
5858 >                    while (s != null) {
5859 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5860 >                        s = t.rights = s.nextRight;
5861                      }
6575                    else if (t.casPending(c, c - 1))
6576                        break;
5862                  }
6578            } catch (Throwable ex) {
6579                return tryCompleteComputation(ex);
6580            }
6581            MapReduceEntriesToDoubleTask<K,V> s = rights;
6582            if (s != null && !inForkJoinPool()) {
6583                do  {
6584                    if (s.tryUnfork())
6585                        s.exec();
6586                } while ((s = s.nextRight) != null);
5863              }
6588            return false;
5864          }
6590        public final Double getRawResult() { return result; }
5865      }
5866  
5867 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5867 >    @SuppressWarnings("serial")
5868 >    static final class MapReduceMappingsToDoubleTask<K,V>
5869          extends BulkTask<K,V,Double> {
5870 <        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5871 <        final DoubleByDoubleToDouble reducer;
5870 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5871 >        final DoubleBinaryOperator reducer;
5872          final double basis;
5873          double result;
5874          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5875          MapReduceMappingsToDoubleTask
5876 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5876 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5877               MapReduceMappingsToDoubleTask<K,V> nextRight,
5878 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
5878 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5879               double basis,
5880 <             DoubleByDoubleToDouble reducer) {
5881 <            super(m, p, b); this.nextRight = nextRight;
5880 >             DoubleBinaryOperator reducer) {
5881 >            super(p, b, i, f, t); this.nextRight = nextRight;
5882              this.transformer = transformer;
5883              this.basis = basis; this.reducer = reducer;
5884          }
5885 <        @SuppressWarnings("unchecked") public final boolean exec() {
5886 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
5887 <                this.transformer;
5888 <            final DoubleByDoubleToDouble reducer = this.reducer;
5889 <            if (transformer == null || reducer == null)
5890 <                return abortOnNullFunction();
5891 <            try {
5892 <                final double id = this.basis;
5893 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5894 <                    do {} while (!casPending(c = pending, c+1));
5885 >        public final Double getRawResult() { return result; }
5886 >        public final void compute() {
5887 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5888 >            final DoubleBinaryOperator reducer;
5889 >            if ((transformer = this.transformer) != null &&
5890 >                (reducer = this.reducer) != null) {
5891 >                double r = this.basis;
5892 >                for (int i = baseIndex, f, h; batch > 0 &&
5893 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5894 >                    addToPendingCount(1);
5895                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5896 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5896 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5897 >                      rights, transformer, r, reducer)).fork();
5898                  }
5899 <                double r = id;
5900 <                Object v;
6625 <                while ((v = advance()) != null)
6626 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5899 >                for (Node<K,V> p; (p = advance()) != null; )
5900 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5901                  result = r;
5902 <                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
5903 <                    int c; BulkTask<K,V,?> par;
5904 <                    if ((c = t.pending) == 0) {
5905 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5906 <                            t.result = reducer.apply(t.result, s.result);
5907 <                        }
5908 <                        if ((par = t.parent) == null ||
5909 <                            !(par instanceof MapReduceMappingsToDoubleTask)) {
5910 <                            t.quietlyComplete();
6637 <                            break;
6638 <                        }
6639 <                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
5902 >                CountedCompleter<?> c;
5903 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5904 >                    @SuppressWarnings("unchecked")
5905 >                    MapReduceMappingsToDoubleTask<K,V>
5906 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5907 >                        s = t.rights;
5908 >                    while (s != null) {
5909 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5910 >                        s = t.rights = s.nextRight;
5911                      }
6641                    else if (t.casPending(c, c - 1))
6642                        break;
5912                  }
6644            } catch (Throwable ex) {
6645                return tryCompleteComputation(ex);
6646            }
6647            MapReduceMappingsToDoubleTask<K,V> s = rights;
6648            if (s != null && !inForkJoinPool()) {
6649                do  {
6650                    if (s.tryUnfork())
6651                        s.exec();
6652                } while ((s = s.nextRight) != null);
5913              }
6654            return false;
5914          }
6656        public final Double getRawResult() { return result; }
5915      }
5916  
5917 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5917 >    @SuppressWarnings("serial")
5918 >    static final class MapReduceKeysToLongTask<K,V>
5919          extends BulkTask<K,V,Long> {
5920 <        final ObjectToLong<? super K> transformer;
5921 <        final LongByLongToLong reducer;
5920 >        final ToLongFunction<? super K> transformer;
5921 >        final LongBinaryOperator reducer;
5922          final long basis;
5923          long result;
5924          MapReduceKeysToLongTask<K,V> rights, nextRight;
5925          MapReduceKeysToLongTask
5926 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5926 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5927               MapReduceKeysToLongTask<K,V> nextRight,
5928 <             ObjectToLong<? super K> transformer,
5928 >             ToLongFunction<? super K> transformer,
5929               long basis,
5930 <             LongByLongToLong reducer) {
5931 <            super(m, p, b); this.nextRight = nextRight;
5930 >             LongBinaryOperator reducer) {
5931 >            super(p, b, i, f, t); this.nextRight = nextRight;
5932              this.transformer = transformer;
5933              this.basis = basis; this.reducer = reducer;
5934          }
5935 <        @SuppressWarnings("unchecked") public final boolean exec() {
5936 <            final ObjectToLong<? super K> transformer =
5937 <                this.transformer;
5938 <            final LongByLongToLong reducer = this.reducer;
5939 <            if (transformer == null || reducer == null)
5940 <                return abortOnNullFunction();
5941 <            try {
5942 <                final long id = this.basis;
5943 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5944 <                    do {} while (!casPending(c = pending, c+1));
5935 >        public final Long getRawResult() { return result; }
5936 >        public final void compute() {
5937 >            final ToLongFunction<? super K> transformer;
5938 >            final LongBinaryOperator reducer;
5939 >            if ((transformer = this.transformer) != null &&
5940 >                (reducer = this.reducer) != null) {
5941 >                long r = this.basis;
5942 >                for (int i = baseIndex, f, h; batch > 0 &&
5943 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5944 >                    addToPendingCount(1);
5945                      (rights = new MapReduceKeysToLongTask<K,V>
5946 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5946 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5947 >                      rights, transformer, r, reducer)).fork();
5948                  }
5949 <                long r = id;
5950 <                while (advance() != null)
6691 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5949 >                for (Node<K,V> p; (p = advance()) != null; )
5950 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5951                  result = r;
5952 <                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
5953 <                    int c; BulkTask<K,V,?> par;
5954 <                    if ((c = t.pending) == 0) {
5955 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5956 <                            t.result = reducer.apply(t.result, s.result);
5957 <                        }
5958 <                        if ((par = t.parent) == null ||
5959 <                            !(par instanceof MapReduceKeysToLongTask)) {
5960 <                            t.quietlyComplete();
6702 <                            break;
6703 <                        }
6704 <                        t = (MapReduceKeysToLongTask<K,V>)par;
5952 >                CountedCompleter<?> c;
5953 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5954 >                    @SuppressWarnings("unchecked")
5955 >                    MapReduceKeysToLongTask<K,V>
5956 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5957 >                        s = t.rights;
5958 >                    while (s != null) {
5959 >                        t.result = reducer.applyAsLong(t.result, s.result);
5960 >                        s = t.rights = s.nextRight;
5961                      }
6706                    else if (t.casPending(c, c - 1))
6707                        break;
5962                  }
6709            } catch (Throwable ex) {
6710                return tryCompleteComputation(ex);
5963              }
6712            MapReduceKeysToLongTask<K,V> s = rights;
6713            if (s != null && !inForkJoinPool()) {
6714                do  {
6715                    if (s.tryUnfork())
6716                        s.exec();
6717                } while ((s = s.nextRight) != null);
6718            }
6719            return false;
5964          }
6721        public final Long getRawResult() { return result; }
5965      }
5966  
5967 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5967 >    @SuppressWarnings("serial")
5968 >    static final class MapReduceValuesToLongTask<K,V>
5969          extends BulkTask<K,V,Long> {
5970 <        final ObjectToLong<? super V> transformer;
5971 <        final LongByLongToLong reducer;
5970 >        final ToLongFunction<? super V> transformer;
5971 >        final LongBinaryOperator reducer;
5972          final long basis;
5973          long result;
5974          MapReduceValuesToLongTask<K,V> rights, nextRight;
5975          MapReduceValuesToLongTask
5976 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5976 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5977               MapReduceValuesToLongTask<K,V> nextRight,
5978 <             ObjectToLong<? super V> transformer,
5978 >             ToLongFunction<? super V> transformer,
5979               long basis,
5980 <             LongByLongToLong reducer) {
5981 <            super(m, p, b); this.nextRight = nextRight;
5980 >             LongBinaryOperator reducer) {
5981 >            super(p, b, i, f, t); this.nextRight = nextRight;
5982              this.transformer = transformer;
5983              this.basis = basis; this.reducer = reducer;
5984          }
5985 <        @SuppressWarnings("unchecked") public final boolean exec() {
5986 <            final ObjectToLong<? super V> transformer =
5987 <                this.transformer;
5988 <            final LongByLongToLong reducer = this.reducer;
5989 <            if (transformer == null || reducer == null)
5990 <                return abortOnNullFunction();
5991 <            try {
5992 <                final long id = this.basis;
5993 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5994 <                    do {} while (!casPending(c = pending, c+1));
5985 >        public final Long getRawResult() { return result; }
5986 >        public final void compute() {
5987 >            final ToLongFunction<? super V> transformer;
5988 >            final LongBinaryOperator reducer;
5989 >            if ((transformer = this.transformer) != null &&
5990 >                (reducer = this.reducer) != null) {
5991 >                long r = this.basis;
5992 >                for (int i = baseIndex, f, h; batch > 0 &&
5993 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5994 >                    addToPendingCount(1);
5995                      (rights = new MapReduceValuesToLongTask<K,V>
5996 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5996 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5997 >                      rights, transformer, r, reducer)).fork();
5998                  }
5999 <                long r = id;
6000 <                Object v;
6756 <                while ((v = advance()) != null)
6757 <                    r = reducer.apply(r, transformer.apply((V)v));
5999 >                for (Node<K,V> p; (p = advance()) != null; )
6000 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6001                  result = r;
6002 <                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6003 <                    int c; BulkTask<K,V,?> par;
6004 <                    if ((c = t.pending) == 0) {
6005 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6006 <                            t.result = reducer.apply(t.result, s.result);
6007 <                        }
6008 <                        if ((par = t.parent) == null ||
6009 <                            !(par instanceof MapReduceValuesToLongTask)) {
6010 <                            t.quietlyComplete();
6768 <                            break;
6769 <                        }
6770 <                        t = (MapReduceValuesToLongTask<K,V>)par;
6002 >                CountedCompleter<?> c;
6003 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6004 >                    @SuppressWarnings("unchecked")
6005 >                    MapReduceValuesToLongTask<K,V>
6006 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6007 >                        s = t.rights;
6008 >                    while (s != null) {
6009 >                        t.result = reducer.applyAsLong(t.result, s.result);
6010 >                        s = t.rights = s.nextRight;
6011                      }
6772                    else if (t.casPending(c, c - 1))
6773                        break;
6012                  }
6775            } catch (Throwable ex) {
6776                return tryCompleteComputation(ex);
6777            }
6778            MapReduceValuesToLongTask<K,V> s = rights;
6779            if (s != null && !inForkJoinPool()) {
6780                do  {
6781                    if (s.tryUnfork())
6782                        s.exec();
6783                } while ((s = s.nextRight) != null);
6013              }
6785            return false;
6014          }
6787        public final Long getRawResult() { return result; }
6015      }
6016  
6017 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6017 >    @SuppressWarnings("serial")
6018 >    static final class MapReduceEntriesToLongTask<K,V>
6019          extends BulkTask<K,V,Long> {
6020 <        final ObjectToLong<Map.Entry<K,V>> transformer;
6021 <        final LongByLongToLong reducer;
6020 >        final ToLongFunction<Map.Entry<K,V>> transformer;
6021 >        final LongBinaryOperator reducer;
6022          final long basis;
6023          long result;
6024          MapReduceEntriesToLongTask<K,V> rights, nextRight;
6025          MapReduceEntriesToLongTask
6026 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6026 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6027               MapReduceEntriesToLongTask<K,V> nextRight,
6028 <             ObjectToLong<Map.Entry<K,V>> transformer,
6028 >             ToLongFunction<Map.Entry<K,V>> transformer,
6029               long basis,
6030 <             LongByLongToLong reducer) {
6031 <            super(m, p, b); this.nextRight = nextRight;
6030 >             LongBinaryOperator reducer) {
6031 >            super(p, b, i, f, t); this.nextRight = nextRight;
6032              this.transformer = transformer;
6033              this.basis = basis; this.reducer = reducer;
6034          }
6035 <        @SuppressWarnings("unchecked") public final boolean exec() {
6036 <            final ObjectToLong<Map.Entry<K,V>> transformer =
6037 <                this.transformer;
6038 <            final LongByLongToLong reducer = this.reducer;
6039 <            if (transformer == null || reducer == null)
6040 <                return abortOnNullFunction();
6041 <            try {
6042 <                final long id = this.basis;
6043 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6044 <                    do {} while (!casPending(c = pending, c+1));
6035 >        public final Long getRawResult() { return result; }
6036 >        public final void compute() {
6037 >            final ToLongFunction<Map.Entry<K,V>> transformer;
6038 >            final LongBinaryOperator reducer;
6039 >            if ((transformer = this.transformer) != null &&
6040 >                (reducer = this.reducer) != null) {
6041 >                long r = this.basis;
6042 >                for (int i = baseIndex, f, h; batch > 0 &&
6043 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6044 >                    addToPendingCount(1);
6045                      (rights = new MapReduceEntriesToLongTask<K,V>
6046 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6046 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6047 >                      rights, transformer, r, reducer)).fork();
6048                  }
6049 <                long r = id;
6050 <                Object v;
6822 <                while ((v = advance()) != null)
6823 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6049 >                for (Node<K,V> p; (p = advance()) != null; )
6050 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6051                  result = r;
6052 <                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6053 <                    int c; BulkTask<K,V,?> par;
6054 <                    if ((c = t.pending) == 0) {
6055 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6056 <                            t.result = reducer.apply(t.result, s.result);
6057 <                        }
6058 <                        if ((par = t.parent) == null ||
6059 <                            !(par instanceof MapReduceEntriesToLongTask)) {
6060 <                            t.quietlyComplete();
6834 <                            break;
6835 <                        }
6836 <                        t = (MapReduceEntriesToLongTask<K,V>)par;
6052 >                CountedCompleter<?> c;
6053 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6054 >                    @SuppressWarnings("unchecked")
6055 >                    MapReduceEntriesToLongTask<K,V>
6056 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6057 >                        s = t.rights;
6058 >                    while (s != null) {
6059 >                        t.result = reducer.applyAsLong(t.result, s.result);
6060 >                        s = t.rights = s.nextRight;
6061                      }
6838                    else if (t.casPending(c, c - 1))
6839                        break;
6062                  }
6841            } catch (Throwable ex) {
6842                return tryCompleteComputation(ex);
6843            }
6844            MapReduceEntriesToLongTask<K,V> s = rights;
6845            if (s != null && !inForkJoinPool()) {
6846                do  {
6847                    if (s.tryUnfork())
6848                        s.exec();
6849                } while ((s = s.nextRight) != null);
6063              }
6851            return false;
6064          }
6853        public final Long getRawResult() { return result; }
6065      }
6066  
6067 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6067 >    @SuppressWarnings("serial")
6068 >    static final class MapReduceMappingsToLongTask<K,V>
6069          extends BulkTask<K,V,Long> {
6070 <        final ObjectByObjectToLong<? super K, ? super V> transformer;
6071 <        final LongByLongToLong reducer;
6070 >        final ToLongBiFunction<? super K, ? super V> transformer;
6071 >        final LongBinaryOperator reducer;
6072          final long basis;
6073          long result;
6074          MapReduceMappingsToLongTask<K,V> rights, nextRight;
6075          MapReduceMappingsToLongTask
6076 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6076 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6077               MapReduceMappingsToLongTask<K,V> nextRight,
6078 <             ObjectByObjectToLong<? super K, ? super V> transformer,
6078 >             ToLongBiFunction<? super K, ? super V> transformer,
6079               long basis,
6080 <             LongByLongToLong reducer) {
6081 <            super(m, p, b); this.nextRight = nextRight;
6080 >             LongBinaryOperator reducer) {
6081 >            super(p, b, i, f, t); this.nextRight = nextRight;
6082              this.transformer = transformer;
6083              this.basis = basis; this.reducer = reducer;
6084          }
6085 <        @SuppressWarnings("unchecked") public final boolean exec() {
6086 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
6087 <                this.transformer;
6088 <            final LongByLongToLong reducer = this.reducer;
6089 <            if (transformer == null || reducer == null)
6090 <                return abortOnNullFunction();
6091 <            try {
6092 <                final long id = this.basis;
6093 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6094 <                    do {} while (!casPending(c = pending, c+1));
6085 >        public final Long getRawResult() { return result; }
6086 >        public final void compute() {
6087 >            final ToLongBiFunction<? super K, ? super V> transformer;
6088 >            final LongBinaryOperator reducer;
6089 >            if ((transformer = this.transformer) != null &&
6090 >                (reducer = this.reducer) != null) {
6091 >                long r = this.basis;
6092 >                for (int i = baseIndex, f, h; batch > 0 &&
6093 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6094 >                    addToPendingCount(1);
6095                      (rights = new MapReduceMappingsToLongTask<K,V>
6096 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6096 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6097 >                      rights, transformer, r, reducer)).fork();
6098                  }
6099 <                long r = id;
6100 <                Object v;
6888 <                while ((v = advance()) != null)
6889 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6099 >                for (Node<K,V> p; (p = advance()) != null; )
6100 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6101                  result = r;
6102 <                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6103 <                    int c; BulkTask<K,V,?> par;
6104 <                    if ((c = t.pending) == 0) {
6105 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6106 <                            t.result = reducer.apply(t.result, s.result);
6107 <                        }
6108 <                        if ((par = t.parent) == null ||
6109 <                            !(par instanceof MapReduceMappingsToLongTask)) {
6110 <                            t.quietlyComplete();
6900 <                            break;
6901 <                        }
6902 <                        t = (MapReduceMappingsToLongTask<K,V>)par;
6102 >                CountedCompleter<?> c;
6103 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6104 >                    @SuppressWarnings("unchecked")
6105 >                    MapReduceMappingsToLongTask<K,V>
6106 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6107 >                        s = t.rights;
6108 >                    while (s != null) {
6109 >                        t.result = reducer.applyAsLong(t.result, s.result);
6110 >                        s = t.rights = s.nextRight;
6111                      }
6904                    else if (t.casPending(c, c - 1))
6905                        break;
6112                  }
6907            } catch (Throwable ex) {
6908                return tryCompleteComputation(ex);
6113              }
6910            MapReduceMappingsToLongTask<K,V> s = rights;
6911            if (s != null && !inForkJoinPool()) {
6912                do  {
6913                    if (s.tryUnfork())
6914                        s.exec();
6915                } while ((s = s.nextRight) != null);
6916            }
6917            return false;
6114          }
6919        public final Long getRawResult() { return result; }
6115      }
6116  
6117 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6117 >    @SuppressWarnings("serial")
6118 >    static final class MapReduceKeysToIntTask<K,V>
6119          extends BulkTask<K,V,Integer> {
6120 <        final ObjectToInt<? super K> transformer;
6121 <        final IntByIntToInt reducer;
6120 >        final ToIntFunction<? super K> transformer;
6121 >        final IntBinaryOperator reducer;
6122          final int basis;
6123          int result;
6124          MapReduceKeysToIntTask<K,V> rights, nextRight;
6125          MapReduceKeysToIntTask
6126 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6126 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6127               MapReduceKeysToIntTask<K,V> nextRight,
6128 <             ObjectToInt<? super K> transformer,
6128 >             ToIntFunction<? super K> transformer,
6129               int basis,
6130 <             IntByIntToInt reducer) {
6131 <            super(m, p, b); this.nextRight = nextRight;
6130 >             IntBinaryOperator reducer) {
6131 >            super(p, b, i, f, t); this.nextRight = nextRight;
6132              this.transformer = transformer;
6133              this.basis = basis; this.reducer = reducer;
6134          }
6135 <        @SuppressWarnings("unchecked") public final boolean exec() {
6136 <            final ObjectToInt<? super K> transformer =
6137 <                this.transformer;
6138 <            final IntByIntToInt reducer = this.reducer;
6139 <            if (transformer == null || reducer == null)
6140 <                return abortOnNullFunction();
6141 <            try {
6142 <                final int id = this.basis;
6143 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6144 <                    do {} while (!casPending(c = pending, c+1));
6135 >        public final Integer getRawResult() { return result; }
6136 >        public final void compute() {
6137 >            final ToIntFunction<? super K> transformer;
6138 >            final IntBinaryOperator reducer;
6139 >            if ((transformer = this.transformer) != null &&
6140 >                (reducer = this.reducer) != null) {
6141 >                int r = this.basis;
6142 >                for (int i = baseIndex, f, h; batch > 0 &&
6143 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6144 >                    addToPendingCount(1);
6145                      (rights = new MapReduceKeysToIntTask<K,V>
6146 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6146 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6147 >                      rights, transformer, r, reducer)).fork();
6148                  }
6149 <                int r = id;
6150 <                while (advance() != null)
6954 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
6149 >                for (Node<K,V> p; (p = advance()) != null; )
6150 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6151                  result = r;
6152 <                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6153 <                    int c; BulkTask<K,V,?> par;
6154 <                    if ((c = t.pending) == 0) {
6155 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6156 <                            t.result = reducer.apply(t.result, s.result);
6157 <                        }
6158 <                        if ((par = t.parent) == null ||
6159 <                            !(par instanceof MapReduceKeysToIntTask)) {
6160 <                            t.quietlyComplete();
6965 <                            break;
6966 <                        }
6967 <                        t = (MapReduceKeysToIntTask<K,V>)par;
6152 >                CountedCompleter<?> c;
6153 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6154 >                    @SuppressWarnings("unchecked")
6155 >                    MapReduceKeysToIntTask<K,V>
6156 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6157 >                        s = t.rights;
6158 >                    while (s != null) {
6159 >                        t.result = reducer.applyAsInt(t.result, s.result);
6160 >                        s = t.rights = s.nextRight;
6161                      }
6969                    else if (t.casPending(c, c - 1))
6970                        break;
6162                  }
6972            } catch (Throwable ex) {
6973                return tryCompleteComputation(ex);
6974            }
6975            MapReduceKeysToIntTask<K,V> s = rights;
6976            if (s != null && !inForkJoinPool()) {
6977                do  {
6978                    if (s.tryUnfork())
6979                        s.exec();
6980                } while ((s = s.nextRight) != null);
6163              }
6982            return false;
6164          }
6984        public final Integer getRawResult() { return result; }
6165      }
6166  
6167 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6167 >    @SuppressWarnings("serial")
6168 >    static final class MapReduceValuesToIntTask<K,V>
6169          extends BulkTask<K,V,Integer> {
6170 <        final ObjectToInt<? super V> transformer;
6171 <        final IntByIntToInt reducer;
6170 >        final ToIntFunction<? super V> transformer;
6171 >        final IntBinaryOperator reducer;
6172          final int basis;
6173          int result;
6174          MapReduceValuesToIntTask<K,V> rights, nextRight;
6175          MapReduceValuesToIntTask
6176 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6176 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6177               MapReduceValuesToIntTask<K,V> nextRight,
6178 <             ObjectToInt<? super V> transformer,
6178 >             ToIntFunction<? super V> transformer,
6179               int basis,
6180 <             IntByIntToInt reducer) {
6181 <            super(m, p, b); this.nextRight = nextRight;
6180 >             IntBinaryOperator reducer) {
6181 >            super(p, b, i, f, t); this.nextRight = nextRight;
6182              this.transformer = transformer;
6183              this.basis = basis; this.reducer = reducer;
6184          }
6185 <        @SuppressWarnings("unchecked") public final boolean exec() {
6186 <            final ObjectToInt<? super V> transformer =
6187 <                this.transformer;
6188 <            final IntByIntToInt reducer = this.reducer;
6189 <            if (transformer == null || reducer == null)
6190 <                return abortOnNullFunction();
6191 <            try {
6192 <                final int id = this.basis;
6193 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6194 <                    do {} while (!casPending(c = pending, c+1));
6185 >        public final Integer getRawResult() { return result; }
6186 >        public final void compute() {
6187 >            final ToIntFunction<? super V> transformer;
6188 >            final IntBinaryOperator reducer;
6189 >            if ((transformer = this.transformer) != null &&
6190 >                (reducer = this.reducer) != null) {
6191 >                int r = this.basis;
6192 >                for (int i = baseIndex, f, h; batch > 0 &&
6193 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6194 >                    addToPendingCount(1);
6195                      (rights = new MapReduceValuesToIntTask<K,V>
6196 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6196 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6197 >                      rights, transformer, r, reducer)).fork();
6198                  }
6199 <                int r = id;
6200 <                Object v;
7019 <                while ((v = advance()) != null)
7020 <                    r = reducer.apply(r, transformer.apply((V)v));
6199 >                for (Node<K,V> p; (p = advance()) != null; )
6200 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6201                  result = r;
6202 <                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6203 <                    int c; BulkTask<K,V,?> par;
6204 <                    if ((c = t.pending) == 0) {
6205 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6206 <                            t.result = reducer.apply(t.result, s.result);
6207 <                        }
6208 <                        if ((par = t.parent) == null ||
6209 <                            !(par instanceof MapReduceValuesToIntTask)) {
6210 <                            t.quietlyComplete();
7031 <                            break;
7032 <                        }
7033 <                        t = (MapReduceValuesToIntTask<K,V>)par;
6202 >                CountedCompleter<?> c;
6203 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6204 >                    @SuppressWarnings("unchecked")
6205 >                    MapReduceValuesToIntTask<K,V>
6206 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6207 >                        s = t.rights;
6208 >                    while (s != null) {
6209 >                        t.result = reducer.applyAsInt(t.result, s.result);
6210 >                        s = t.rights = s.nextRight;
6211                      }
7035                    else if (t.casPending(c, c - 1))
7036                        break;
6212                  }
7038            } catch (Throwable ex) {
7039                return tryCompleteComputation(ex);
6213              }
7041            MapReduceValuesToIntTask<K,V> s = rights;
7042            if (s != null && !inForkJoinPool()) {
7043                do  {
7044                    if (s.tryUnfork())
7045                        s.exec();
7046                } while ((s = s.nextRight) != null);
7047            }
7048            return false;
6214          }
7050        public final Integer getRawResult() { return result; }
6215      }
6216  
6217 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6217 >    @SuppressWarnings("serial")
6218 >    static final class MapReduceEntriesToIntTask<K,V>
6219          extends BulkTask<K,V,Integer> {
6220 <        final ObjectToInt<Map.Entry<K,V>> transformer;
6221 <        final IntByIntToInt reducer;
6220 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6221 >        final IntBinaryOperator reducer;
6222          final int basis;
6223          int result;
6224          MapReduceEntriesToIntTask<K,V> rights, nextRight;
6225          MapReduceEntriesToIntTask
6226 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6226 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6227               MapReduceEntriesToIntTask<K,V> nextRight,
6228 <             ObjectToInt<Map.Entry<K,V>> transformer,
6228 >             ToIntFunction<Map.Entry<K,V>> transformer,
6229               int basis,
6230 <             IntByIntToInt reducer) {
6231 <            super(m, p, b); this.nextRight = nextRight;
6230 >             IntBinaryOperator reducer) {
6231 >            super(p, b, i, f, t); this.nextRight = nextRight;
6232              this.transformer = transformer;
6233              this.basis = basis; this.reducer = reducer;
6234          }
6235 <        @SuppressWarnings("unchecked") public final boolean exec() {
6236 <            final ObjectToInt<Map.Entry<K,V>> transformer =
6237 <                this.transformer;
6238 <            final IntByIntToInt reducer = this.reducer;
6239 <            if (transformer == null || reducer == null)
6240 <                return abortOnNullFunction();
6241 <            try {
6242 <                final int id = this.basis;
6243 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6244 <                    do {} while (!casPending(c = pending, c+1));
6235 >        public final Integer getRawResult() { return result; }
6236 >        public final void compute() {
6237 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6238 >            final IntBinaryOperator reducer;
6239 >            if ((transformer = this.transformer) != null &&
6240 >                (reducer = this.reducer) != null) {
6241 >                int r = this.basis;
6242 >                for (int i = baseIndex, f, h; batch > 0 &&
6243 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6244 >                    addToPendingCount(1);
6245                      (rights = new MapReduceEntriesToIntTask<K,V>
6246 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6246 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6247 >                      rights, transformer, r, reducer)).fork();
6248                  }
6249 <                int r = id;
6250 <                Object v;
7085 <                while ((v = advance()) != null)
7086 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6249 >                for (Node<K,V> p; (p = advance()) != null; )
6250 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6251                  result = r;
6252 <                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6253 <                    int c; BulkTask<K,V,?> par;
6254 <                    if ((c = t.pending) == 0) {
6255 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6256 <                            t.result = reducer.apply(t.result, s.result);
6257 <                        }
6258 <                        if ((par = t.parent) == null ||
6259 <                            !(par instanceof MapReduceEntriesToIntTask)) {
6260 <                            t.quietlyComplete();
7097 <                            break;
7098 <                        }
7099 <                        t = (MapReduceEntriesToIntTask<K,V>)par;
6252 >                CountedCompleter<?> c;
6253 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6254 >                    @SuppressWarnings("unchecked")
6255 >                    MapReduceEntriesToIntTask<K,V>
6256 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6257 >                        s = t.rights;
6258 >                    while (s != null) {
6259 >                        t.result = reducer.applyAsInt(t.result, s.result);
6260 >                        s = t.rights = s.nextRight;
6261                      }
7101                    else if (t.casPending(c, c - 1))
7102                        break;
6262                  }
7104            } catch (Throwable ex) {
7105                return tryCompleteComputation(ex);
7106            }
7107            MapReduceEntriesToIntTask<K,V> s = rights;
7108            if (s != null && !inForkJoinPool()) {
7109                do  {
7110                    if (s.tryUnfork())
7111                        s.exec();
7112                } while ((s = s.nextRight) != null);
6263              }
7114            return false;
6264          }
7116        public final Integer getRawResult() { return result; }
6265      }
6266  
6267 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6267 >    @SuppressWarnings("serial")
6268 >    static final class MapReduceMappingsToIntTask<K,V>
6269          extends BulkTask<K,V,Integer> {
6270 <        final ObjectByObjectToInt<? super K, ? super V> transformer;
6271 <        final IntByIntToInt reducer;
6270 >        final ToIntBiFunction<? super K, ? super V> transformer;
6271 >        final IntBinaryOperator reducer;
6272          final int basis;
6273          int result;
6274          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6275          MapReduceMappingsToIntTask
6276 <            (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6277 <             MapReduceMappingsToIntTask<K,V> rights,
6278 <             ObjectByObjectToInt<? super K, ? super V> transformer,
6276 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6277 >             MapReduceMappingsToIntTask<K,V> nextRight,
6278 >             ToIntBiFunction<? super K, ? super V> transformer,
6279               int basis,
6280 <             IntByIntToInt reducer) {
6281 <            super(m, p, b); this.nextRight = nextRight;
6280 >             IntBinaryOperator reducer) {
6281 >            super(p, b, i, f, t); this.nextRight = nextRight;
6282              this.transformer = transformer;
6283              this.basis = basis; this.reducer = reducer;
6284          }
6285 <        @SuppressWarnings("unchecked") public final boolean exec() {
6286 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
6287 <                this.transformer;
6288 <            final IntByIntToInt reducer = this.reducer;
6289 <            if (transformer == null || reducer == null)
6290 <                return abortOnNullFunction();
6291 <            try {
6292 <                final int id = this.basis;
6293 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6294 <                    do {} while (!casPending(c = pending, c+1));
6285 >        public final Integer getRawResult() { return result; }
6286 >        public final void compute() {
6287 >            final ToIntBiFunction<? super K, ? super V> transformer;
6288 >            final IntBinaryOperator reducer;
6289 >            if ((transformer = this.transformer) != null &&
6290 >                (reducer = this.reducer) != null) {
6291 >                int r = this.basis;
6292 >                for (int i = baseIndex, f, h; batch > 0 &&
6293 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6294 >                    addToPendingCount(1);
6295                      (rights = new MapReduceMappingsToIntTask<K,V>
6296 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6296 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6297 >                      rights, transformer, r, reducer)).fork();
6298                  }
6299 <                int r = id;
6300 <                Object v;
7151 <                while ((v = advance()) != null)
7152 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6299 >                for (Node<K,V> p; (p = advance()) != null; )
6300 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6301                  result = r;
6302 <                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6303 <                    int c; BulkTask<K,V,?> par;
6304 <                    if ((c = t.pending) == 0) {
6305 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6306 <                            t.result = reducer.apply(t.result, s.result);
6307 <                        }
6308 <                        if ((par = t.parent) == null ||
6309 <                            !(par instanceof MapReduceMappingsToIntTask)) {
6310 <                            t.quietlyComplete();
7163 <                            break;
7164 <                        }
7165 <                        t = (MapReduceMappingsToIntTask<K,V>)par;
6302 >                CountedCompleter<?> c;
6303 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6304 >                    @SuppressWarnings("unchecked")
6305 >                    MapReduceMappingsToIntTask<K,V>
6306 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6307 >                        s = t.rights;
6308 >                    while (s != null) {
6309 >                        t.result = reducer.applyAsInt(t.result, s.result);
6310 >                        s = t.rights = s.nextRight;
6311                      }
7167                    else if (t.casPending(c, c - 1))
7168                        break;
6312                  }
7170            } catch (Throwable ex) {
7171                return tryCompleteComputation(ex);
7172            }
7173            MapReduceMappingsToIntTask<K,V> s = rights;
7174            if (s != null && !inForkJoinPool()) {
7175                do  {
7176                    if (s.tryUnfork())
7177                        s.exec();
7178                } while ((s = s.nextRight) != null);
6313              }
7180            return false;
6314          }
7182        public final Integer getRawResult() { return result; }
6315      }
6316  
6317      // Unsafe mechanics
6318 <    private static final sun.misc.Unsafe UNSAFE;
6319 <    private static final long counterOffset;
6320 <    private static final long sizeCtlOffset;
6321 <    private static final long ABASE;
6318 >    private static final Unsafe U = Unsafe.getUnsafe();
6319 >    private static final long SIZECTL;
6320 >    private static final long TRANSFERINDEX;
6321 >    private static final long BASECOUNT;
6322 >    private static final long CELLSBUSY;
6323 >    private static final long CELLVALUE;
6324 >    private static final int ABASE;
6325      private static final int ASHIFT;
6326  
6327      static {
6328 <        int ss;
6329 <        try {
6330 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6331 <            Class<?> k = ConcurrentHashMap.class;
6332 <            counterOffset = UNSAFE.objectFieldOffset
6333 <                (k.getDeclaredField("counter"));
6334 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6335 <                (k.getDeclaredField("sizeCtl"));
6336 <            Class<?> sc = Node[].class;
6337 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6338 <            ss = UNSAFE.arrayIndexScale(sc);
6339 <        } catch (Exception e) {
6340 <            throw new Error(e);
6341 <        }
6342 <        if ((ss & (ss-1)) != 0)
6343 <            throw new Error("data type scale not a power of two");
6344 <        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6328 >        SIZECTL = U.objectFieldOffset
6329 >            (ConcurrentHashMap.class, "sizeCtl");
6330 >        TRANSFERINDEX = U.objectFieldOffset
6331 >            (ConcurrentHashMap.class, "transferIndex");
6332 >        BASECOUNT = U.objectFieldOffset
6333 >            (ConcurrentHashMap.class, "baseCount");
6334 >        CELLSBUSY = U.objectFieldOffset
6335 >            (ConcurrentHashMap.class, "cellsBusy");
6336 >
6337 >        CELLVALUE = U.objectFieldOffset
6338 >            (CounterCell.class, "value");
6339 >
6340 >        ABASE = U.arrayBaseOffset(Node[].class);
6341 >        int scale = U.arrayIndexScale(Node[].class);
6342 >        if ((scale & (scale - 1)) != 0)
6343 >            throw new ExceptionInInitializerError("array index scale not a power of two");
6344 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6345 >
6346 >        // Reduce the risk of rare disastrous classloading in first call to
6347 >        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6348 >        Class<?> ensureLoaded = LockSupport.class;
6349 >
6350 >        // Eager class load observed to help JIT during startup
6351 >        ensureLoaded = ReservationNode.class;
6352      }
6353   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines