ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.15 by tim, Wed Aug 6 18:22:09 2003 UTC vs.
Revision 1.290 by jsr166, Tue Mar 8 00:27:35 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3 < * Expert Group and released to the public domain. Use, modify, and
4 < * redistribute this code in any way without acknowledgement.
3 > * Expert Group and released to the public domain, as explained at
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.atomic.AtomicReference;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42  
43   /**
44   * A hash table supporting full concurrency of retrievals and
45 < * adjustable expected concurrency for updates. This class obeys the
46 < * same functional specification as
47 < * <tt>java.util.Hashtable</tt>. However, even though all operations
48 < * are thread-safe, retrieval operations do <em>not</em> entail
49 < * locking, and there is <em>not</em> any support for locking the
50 < * entire table in a way that prevents all access.  This class is
51 < * fully interoperable with Hashtable in programs that rely on its
45 > * high expected concurrency for updates. This class obeys the
46 > * same functional specification as {@link java.util.Hashtable}, and
47 > * includes versions of methods corresponding to each method of
48 > * {@code Hashtable}. However, even though all operations are
49 > * thread-safe, retrieval operations do <em>not</em> entail locking,
50 > * and there is <em>not</em> any support for locking the entire table
51 > * in a way that prevents all access.  This class is fully
52 > * interoperable with {@code Hashtable} in programs that rely on its
53   * thread safety but not on its synchronization details.
54   *
55 < * <p> Retrieval operations (including <tt>get</tt>) ordinarily
56 < * overlap with update operations (including <tt>put</tt> and
57 < * <tt>remove</tt>). Retrievals reflect the results of the most
55 > * <p>Retrieval operations (including {@code get}) generally do not
56 > * block, so may overlap with update operations (including {@code put}
57 > * and {@code remove}). Retrievals reflect the results of the most
58   * recently <em>completed</em> update operations holding upon their
59 < * onset.  For aggregate operations such as <tt>putAll</tt> and
60 < * <tt>clear</tt>, concurrent retrievals may reflect insertion or
61 < * removal of only some entries.  Similarly, Iterators and
62 < * Enumerations return elements reflecting the state of the hash table
63 < * at some point at or since the creation of the iterator/enumeration.
64 < * They do <em>not</em> throw ConcurrentModificationException.
65 < * However, Iterators are designed to be used by only one thread at a
66 < * time.
67 < *
68 < * <p> The allowed concurrency among update operations is controlled
69 < * by the optional <tt>segments</tt> constructor argument (default
70 < * 16). The table is divided into this many independent parts, each of
71 < * which can be updated concurrently. Because placement in hash tables
72 < * is essentially random, the actual concurrency will vary. As a rough
73 < * rule of thumb, you should choose at least as many segments as you
74 < * expect concurrent threads. However, using more segments than you
75 < * need can waste space and time. Using a value of 1 for
76 < * <tt>segments</tt> results in a table that is concurrently readable
77 < * but can only be updated by one thread at a time.
59 > * onset. (More formally, an update operation for a given key bears a
60 > * <em>happens-before</em> relation with any (non-null) retrieval for
61 > * that key reporting the updated value.)  For aggregate operations
62 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 > * reflect insertion or removal of only some entries.  Similarly,
64 > * Iterators, Spliterators and Enumerations return elements reflecting the
65 > * state of the hash table at some point at or since the creation of the
66 > * iterator/enumeration.  They do <em>not</em> throw {@link
67 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
68 > * However, iterators are designed to be used by only one thread at a time.
69 > * Bear in mind that the results of aggregate status methods including
70 > * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 > * useful only when a map is not undergoing concurrent updates in other threads.
72 > * Otherwise the results of these methods reflect transient states
73 > * that may be adequate for monitoring or estimation purposes, but not
74 > * for program control.
75 > *
76 > * <p>The table is dynamically expanded when there are too many
77 > * collisions (i.e., keys that have distinct hash codes but fall into
78 > * the same slot modulo the table size), with the expected average
79 > * effect of maintaining roughly two bins per mapping (corresponding
80 > * to a 0.75 load factor threshold for resizing). There may be much
81 > * variance around this average as mappings are added and removed, but
82 > * overall, this maintains a commonly accepted time/space tradeoff for
83 > * hash tables.  However, resizing this or any other kind of hash
84 > * table may be a relatively slow operation. When possible, it is a
85 > * good idea to provide a size estimate as an optional {@code
86 > * initialCapacity} constructor argument. An additional optional
87 > * {@code loadFactor} constructor argument provides a further means of
88 > * customizing initial table capacity by specifying the table density
89 > * to be used in calculating the amount of space to allocate for the
90 > * given number of elements.  Also, for compatibility with previous
91 > * versions of this class, constructors may optionally specify an
92 > * expected {@code concurrencyLevel} as an additional hint for
93 > * internal sizing.  Note that using many keys with exactly the same
94 > * {@code hashCode()} is a sure way to slow down performance of any
95 > * hash table. To ameliorate impact, when keys are {@link Comparable},
96 > * this class may use comparison order among keys to help break ties.
97 > *
98 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 > * (using {@link #keySet(Object)} when only keys are of interest, and the
101 > * mapped values are (perhaps transiently) not used or all take the
102 > * same mapping value.
103 > *
104 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 > * form of histogram or multiset) by using {@link
106 > * java.util.concurrent.atomic.LongAdder} values and initializing via
107 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110 > *
111 > * <p>This class and its views and iterators implement all of the
112 > * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113 > * interfaces.
114 > *
115 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 > * does <em>not</em> allow {@code null} to be used as a key or value.
117 > *
118 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 > * operations that, unlike most {@link Stream} methods, are designed
120 > * to be safely, and often sensibly, applied even with maps that are
121 > * being concurrently updated by other threads; for example, when
122 > * computing a snapshot summary of the values in a shared registry.
123 > * There are three kinds of operation, each with four forms, accepting
124 > * functions with keys, values, entries, and (key, value) pairs as
125 > * arguments and/or return values. Because the elements of a
126 > * ConcurrentHashMap are not ordered in any particular way, and may be
127 > * processed in different orders in different parallel executions, the
128 > * correctness of supplied functions should not depend on any
129 > * ordering, or on any other objects or values that may transiently
130 > * change while computation is in progress; and except for forEach
131 > * actions, should ideally be side-effect-free. Bulk operations on
132 > * {@link java.util.Map.Entry} objects do not support method {@code
133 > * setValue}.
134 > *
135 > * <ul>
136 > * <li>forEach: Performs a given action on each element.
137 > * A variant form applies a given transformation on each element
138 > * before performing the action.
139 > *
140 > * <li>search: Returns the first available non-null result of
141 > * applying a given function on each element; skipping further
142 > * search when a result is found.
143 > *
144 > * <li>reduce: Accumulates each element.  The supplied reduction
145 > * function cannot rely on ordering (more formally, it should be
146 > * both associative and commutative).  There are five variants:
147 > *
148 > * <ul>
149 > *
150 > * <li>Plain reductions. (There is not a form of this method for
151 > * (key, value) function arguments since there is no corresponding
152 > * return type.)
153 > *
154 > * <li>Mapped reductions that accumulate the results of a given
155 > * function applied to each element.
156 > *
157 > * <li>Reductions to scalar doubles, longs, and ints, using a
158 > * given basis value.
159 > *
160 > * </ul>
161 > * </ul>
162 > *
163 > * <p>These bulk operations accept a {@code parallelismThreshold}
164 > * argument. Methods proceed sequentially if the current map size is
165 > * estimated to be less than the given threshold. Using a value of
166 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
167 > * of {@code 1} results in maximal parallelism by partitioning into
168 > * enough subtasks to fully utilize the {@link
169 > * ForkJoinPool#commonPool()} that is used for all parallel
170 > * computations. Normally, you would initially choose one of these
171 > * extreme values, and then measure performance of using in-between
172 > * values that trade off overhead versus throughput.
173 > *
174 > * <p>The concurrency properties of bulk operations follow
175 > * from those of ConcurrentHashMap: Any non-null result returned
176 > * from {@code get(key)} and related access methods bears a
177 > * happens-before relation with the associated insertion or
178 > * update.  The result of any bulk operation reflects the
179 > * composition of these per-element relations (but is not
180 > * necessarily atomic with respect to the map as a whole unless it
181 > * is somehow known to be quiescent).  Conversely, because keys
182 > * and values in the map are never null, null serves as a reliable
183 > * atomic indicator of the current lack of any result.  To
184 > * maintain this property, null serves as an implicit basis for
185 > * all non-scalar reduction operations. For the double, long, and
186 > * int versions, the basis should be one that, when combined with
187 > * any other value, returns that other value (more formally, it
188 > * should be the identity element for the reduction). Most common
189 > * reductions have these properties; for example, computing a sum
190 > * with basis 0 or a minimum with basis MAX_VALUE.
191 > *
192 > * <p>Search and transformation functions provided as arguments
193 > * should similarly return null to indicate the lack of any result
194 > * (in which case it is not used). In the case of mapped
195 > * reductions, this also enables transformations to serve as
196 > * filters, returning null (or, in the case of primitive
197 > * specializations, the identity basis) if the element should not
198 > * be combined. You can create compound transformations and
199 > * filterings by composing them yourself under this "null means
200 > * there is nothing there now" rule before using them in search or
201 > * reduce operations.
202 > *
203 > * <p>Methods accepting and/or returning Entry arguments maintain
204 > * key-value associations. They may be useful for example when
205 > * finding the key for the greatest value. Note that "plain" Entry
206 > * arguments can be supplied using {@code new
207 > * AbstractMap.SimpleEntry(k,v)}.
208 > *
209 > * <p>Bulk operations may complete abruptly, throwing an
210 > * exception encountered in the application of a supplied
211 > * function. Bear in mind when handling such exceptions that other
212 > * concurrently executing functions could also have thrown
213 > * exceptions, or would have done so if the first exception had
214 > * not occurred.
215 > *
216 > * <p>Speedups for parallel compared to sequential forms are common
217 > * but not guaranteed.  Parallel operations involving brief functions
218 > * on small maps may execute more slowly than sequential forms if the
219 > * underlying work to parallelize the computation is more expensive
220 > * than the computation itself.  Similarly, parallelization may not
221 > * lead to much actual parallelism if all processors are busy
222 > * performing unrelated tasks.
223 > *
224 > * <p>All arguments to all task methods must be non-null.
225   *
226 < * <p> Like Hashtable but unlike java.util.HashMap, this class does
227 < * NOT allow <tt>null</tt> to be used as a key or value.
226 > * <p>This class is a member of the
227 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
228 > * Java Collections Framework</a>.
229   *
230   * @since 1.5
231   * @author Doug Lea
232 + * @param <K> the type of keys maintained by this map
233 + * @param <V> the type of mapped values
234   */
235 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
236 <        implements ConcurrentMap<K, V>, Cloneable, Serializable {
235 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 >    implements ConcurrentMap<K,V>, Serializable {
237 >    private static final long serialVersionUID = 7249069246763182397L;
238  
239      /*
240 <     * The basic strategy is to subdivide the table among Segments,
241 <     * each of which itself is a concurrently readable hash table.
240 >     * Overview:
241 >     *
242 >     * The primary design goal of this hash table is to maintain
243 >     * concurrent readability (typically method get(), but also
244 >     * iterators and related methods) while minimizing update
245 >     * contention. Secondary goals are to keep space consumption about
246 >     * the same or better than java.util.HashMap, and to support high
247 >     * initial insertion rates on an empty table by many threads.
248 >     *
249 >     * This map usually acts as a binned (bucketed) hash table.  Each
250 >     * key-value mapping is held in a Node.  Most nodes are instances
251 >     * of the basic Node class with hash, key, value, and next
252 >     * fields. However, various subclasses exist: TreeNodes are
253 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
254 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 >     * of bins during resizing. ReservationNodes are used as
256 >     * placeholders while establishing values in computeIfAbsent and
257 >     * related methods.  The types TreeBin, ForwardingNode, and
258 >     * ReservationNode do not hold normal user keys, values, or
259 >     * hashes, and are readily distinguishable during search etc
260 >     * because they have negative hash fields and null key and value
261 >     * fields. (These special nodes are either uncommon or transient,
262 >     * so the impact of carrying around some unused fields is
263 >     * insignificant.)
264 >     *
265 >     * The table is lazily initialized to a power-of-two size upon the
266 >     * first insertion.  Each bin in the table normally contains a
267 >     * list of Nodes (most often, the list has only zero or one Node).
268 >     * Table accesses require volatile/atomic reads, writes, and
269 >     * CASes.  Because there is no other way to arrange this without
270 >     * adding further indirections, we use intrinsics
271 >     * (sun.misc.Unsafe) operations.
272 >     *
273 >     * We use the top (sign) bit of Node hash fields for control
274 >     * purposes -- it is available anyway because of addressing
275 >     * constraints.  Nodes with negative hash fields are specially
276 >     * handled or ignored in map methods.
277 >     *
278 >     * Insertion (via put or its variants) of the first node in an
279 >     * empty bin is performed by just CASing it to the bin.  This is
280 >     * by far the most common case for put operations under most
281 >     * key/hash distributions.  Other update operations (insert,
282 >     * delete, and replace) require locks.  We do not want to waste
283 >     * the space required to associate a distinct lock object with
284 >     * each bin, so instead use the first node of a bin list itself as
285 >     * a lock. Locking support for these locks relies on builtin
286 >     * "synchronized" monitors.
287 >     *
288 >     * Using the first node of a list as a lock does not by itself
289 >     * suffice though: When a node is locked, any update must first
290 >     * validate that it is still the first node after locking it, and
291 >     * retry if not. Because new nodes are always appended to lists,
292 >     * once a node is first in a bin, it remains first until deleted
293 >     * or the bin becomes invalidated (upon resizing).
294 >     *
295 >     * The main disadvantage of per-bin locks is that other update
296 >     * operations on other nodes in a bin list protected by the same
297 >     * lock can stall, for example when user equals() or mapping
298 >     * functions take a long time.  However, statistically, under
299 >     * random hash codes, this is not a common problem.  Ideally, the
300 >     * frequency of nodes in bins follows a Poisson distribution
301 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 >     * parameter of about 0.5 on average, given the resizing threshold
303 >     * of 0.75, although with a large variance because of resizing
304 >     * granularity. Ignoring variance, the expected occurrences of
305 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 >     * first values are:
307 >     *
308 >     * 0:    0.60653066
309 >     * 1:    0.30326533
310 >     * 2:    0.07581633
311 >     * 3:    0.01263606
312 >     * 4:    0.00157952
313 >     * 5:    0.00015795
314 >     * 6:    0.00001316
315 >     * 7:    0.00000094
316 >     * 8:    0.00000006
317 >     * more: less than 1 in ten million
318 >     *
319 >     * Lock contention probability for two threads accessing distinct
320 >     * elements is roughly 1 / (8 * #elements) under random hashes.
321 >     *
322 >     * Actual hash code distributions encountered in practice
323 >     * sometimes deviate significantly from uniform randomness.  This
324 >     * includes the case when N > (1<<30), so some keys MUST collide.
325 >     * Similarly for dumb or hostile usages in which multiple keys are
326 >     * designed to have identical hash codes or ones that differs only
327 >     * in masked-out high bits. So we use a secondary strategy that
328 >     * applies when the number of nodes in a bin exceeds a
329 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
330 >     * specialized form of red-black trees), bounding search time to
331 >     * O(log N).  Each search step in a TreeBin is at least twice as
332 >     * slow as in a regular list, but given that N cannot exceed
333 >     * (1<<64) (before running out of addresses) this bounds search
334 >     * steps, lock hold times, etc, to reasonable constants (roughly
335 >     * 100 nodes inspected per operation worst case) so long as keys
336 >     * are Comparable (which is very common -- String, Long, etc).
337 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
338 >     * traversal pointers as regular nodes, so can be traversed in
339 >     * iterators in the same way.
340 >     *
341 >     * The table is resized when occupancy exceeds a percentage
342 >     * threshold (nominally, 0.75, but see below).  Any thread
343 >     * noticing an overfull bin may assist in resizing after the
344 >     * initiating thread allocates and sets up the replacement array.
345 >     * However, rather than stalling, these other threads may proceed
346 >     * with insertions etc.  The use of TreeBins shields us from the
347 >     * worst case effects of overfilling while resizes are in
348 >     * progress.  Resizing proceeds by transferring bins, one by one,
349 >     * from the table to the next table. However, threads claim small
350 >     * blocks of indices to transfer (via field transferIndex) before
351 >     * doing so, reducing contention.  A generation stamp in field
352 >     * sizeCtl ensures that resizings do not overlap. Because we are
353 >     * using power-of-two expansion, the elements from each bin must
354 >     * either stay at same index, or move with a power of two
355 >     * offset. We eliminate unnecessary node creation by catching
356 >     * cases where old nodes can be reused because their next fields
357 >     * won't change.  On average, only about one-sixth of them need
358 >     * cloning when a table doubles. The nodes they replace will be
359 >     * garbage collectable as soon as they are no longer referenced by
360 >     * any reader thread that may be in the midst of concurrently
361 >     * traversing table.  Upon transfer, the old table bin contains
362 >     * only a special forwarding node (with hash field "MOVED") that
363 >     * contains the next table as its key. On encountering a
364 >     * forwarding node, access and update operations restart, using
365 >     * the new table.
366 >     *
367 >     * Each bin transfer requires its bin lock, which can stall
368 >     * waiting for locks while resizing. However, because other
369 >     * threads can join in and help resize rather than contend for
370 >     * locks, average aggregate waits become shorter as resizing
371 >     * progresses.  The transfer operation must also ensure that all
372 >     * accessible bins in both the old and new table are usable by any
373 >     * traversal.  This is arranged in part by proceeding from the
374 >     * last bin (table.length - 1) up towards the first.  Upon seeing
375 >     * a forwarding node, traversals (see class Traverser) arrange to
376 >     * move to the new table without revisiting nodes.  To ensure that
377 >     * no intervening nodes are skipped even when moved out of order,
378 >     * a stack (see class TableStack) is created on first encounter of
379 >     * a forwarding node during a traversal, to maintain its place if
380 >     * later processing the current table. The need for these
381 >     * save/restore mechanics is relatively rare, but when one
382 >     * forwarding node is encountered, typically many more will be.
383 >     * So Traversers use a simple caching scheme to avoid creating so
384 >     * many new TableStack nodes. (Thanks to Peter Levart for
385 >     * suggesting use of a stack here.)
386 >     *
387 >     * The traversal scheme also applies to partial traversals of
388 >     * ranges of bins (via an alternate Traverser constructor)
389 >     * to support partitioned aggregate operations.  Also, read-only
390 >     * operations give up if ever forwarded to a null table, which
391 >     * provides support for shutdown-style clearing, which is also not
392 >     * currently implemented.
393 >     *
394 >     * Lazy table initialization minimizes footprint until first use,
395 >     * and also avoids resizings when the first operation is from a
396 >     * putAll, constructor with map argument, or deserialization.
397 >     * These cases attempt to override the initial capacity settings,
398 >     * but harmlessly fail to take effect in cases of races.
399 >     *
400 >     * The element count is maintained using a specialization of
401 >     * LongAdder. We need to incorporate a specialization rather than
402 >     * just use a LongAdder in order to access implicit
403 >     * contention-sensing that leads to creation of multiple
404 >     * CounterCells.  The counter mechanics avoid contention on
405 >     * updates but can encounter cache thrashing if read too
406 >     * frequently during concurrent access. To avoid reading so often,
407 >     * resizing under contention is attempted only upon adding to a
408 >     * bin already holding two or more nodes. Under uniform hash
409 >     * distributions, the probability of this occurring at threshold
410 >     * is around 13%, meaning that only about 1 in 8 puts check
411 >     * threshold (and after resizing, many fewer do so).
412 >     *
413 >     * TreeBins use a special form of comparison for search and
414 >     * related operations (which is the main reason we cannot use
415 >     * existing collections such as TreeMaps). TreeBins contain
416 >     * Comparable elements, but may contain others, as well as
417 >     * elements that are Comparable but not necessarily Comparable for
418 >     * the same T, so we cannot invoke compareTo among them. To handle
419 >     * this, the tree is ordered primarily by hash value, then by
420 >     * Comparable.compareTo order if applicable.  On lookup at a node,
421 >     * if elements are not comparable or compare as 0 then both left
422 >     * and right children may need to be searched in the case of tied
423 >     * hash values. (This corresponds to the full list search that
424 >     * would be necessary if all elements were non-Comparable and had
425 >     * tied hashes.) On insertion, to keep a total ordering (or as
426 >     * close as is required here) across rebalancings, we compare
427 >     * classes and identityHashCodes as tie-breakers. The red-black
428 >     * balancing code is updated from pre-jdk-collections
429 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 >     * Algorithms" (CLR).
432 >     *
433 >     * TreeBins also require an additional locking mechanism.  While
434 >     * list traversal is always possible by readers even during
435 >     * updates, tree traversal is not, mainly because of tree-rotations
436 >     * that may change the root node and/or its linkages.  TreeBins
437 >     * include a simple read-write lock mechanism parasitic on the
438 >     * main bin-synchronization strategy: Structural adjustments
439 >     * associated with an insertion or removal are already bin-locked
440 >     * (and so cannot conflict with other writers) but must wait for
441 >     * ongoing readers to finish. Since there can be only one such
442 >     * waiter, we use a simple scheme using a single "waiter" field to
443 >     * block writers.  However, readers need never block.  If the root
444 >     * lock is held, they proceed along the slow traversal path (via
445 >     * next-pointers) until the lock becomes available or the list is
446 >     * exhausted, whichever comes first. These cases are not fast, but
447 >     * maximize aggregate expected throughput.
448 >     *
449 >     * Maintaining API and serialization compatibility with previous
450 >     * versions of this class introduces several oddities. Mainly: We
451 >     * leave untouched but unused constructor arguments referring to
452 >     * concurrencyLevel. We accept a loadFactor constructor argument,
453 >     * but apply it only to initial table capacity (which is the only
454 >     * time that we can guarantee to honor it.) We also declare an
455 >     * unused "Segment" class that is instantiated in minimal form
456 >     * only when serializing.
457 >     *
458 >     * Also, solely for compatibility with previous versions of this
459 >     * class, it extends AbstractMap, even though all of its methods
460 >     * are overridden, so it is just useless baggage.
461 >     *
462 >     * This file is organized to make things a little easier to follow
463 >     * while reading than they might otherwise: First the main static
464 >     * declarations and utilities, then fields, then main public
465 >     * methods (with a few factorings of multiple public methods into
466 >     * internal ones), then sizing methods, trees, traversers, and
467 >     * bulk operations.
468       */
469  
470      /* ---------------- Constants -------------- */
471  
472      /**
473 <     * The default initial number of table slots for this table (32).
474 <     * Used when not otherwise specified in constructor.
473 >     * The largest possible table capacity.  This value must be
474 >     * exactly 1<<30 to stay within Java array allocation and indexing
475 >     * bounds for power of two table sizes, and is further required
476 >     * because the top two bits of 32bit hash fields are used for
477 >     * control purposes.
478 >     */
479 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
480 >
481 >    /**
482 >     * The default initial table capacity.  Must be a power of 2
483 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 >     */
485 >    private static final int DEFAULT_CAPACITY = 16;
486 >
487 >    /**
488 >     * The largest possible (non-power of two) array size.
489 >     * Needed by toArray and related methods.
490 >     */
491 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492 >
493 >    /**
494 >     * The default concurrency level for this table. Unused but
495 >     * defined for compatibility with previous versions of this class.
496 >     */
497 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498 >
499 >    /**
500 >     * The load factor for this table. Overrides of this value in
501 >     * constructors affect only the initial table capacity.  The
502 >     * actual floating point value isn't normally used -- it is
503 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
504 >     * the associated resizing threshold.
505 >     */
506 >    private static final float LOAD_FACTOR = 0.75f;
507 >
508 >    /**
509 >     * The bin count threshold for using a tree rather than list for a
510 >     * bin.  Bins are converted to trees when adding an element to a
511 >     * bin with at least this many nodes. The value must be greater
512 >     * than 2, and should be at least 8 to mesh with assumptions in
513 >     * tree removal about conversion back to plain bins upon
514 >     * shrinkage.
515 >     */
516 >    static final int TREEIFY_THRESHOLD = 8;
517 >
518 >    /**
519 >     * The bin count threshold for untreeifying a (split) bin during a
520 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 >     * most 6 to mesh with shrinkage detection under removal.
522 >     */
523 >    static final int UNTREEIFY_THRESHOLD = 6;
524 >
525 >    /**
526 >     * The smallest table capacity for which bins may be treeified.
527 >     * (Otherwise the table is resized if too many nodes in a bin.)
528 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 >     * conflicts between resizing and treeification thresholds.
530 >     */
531 >    static final int MIN_TREEIFY_CAPACITY = 64;
532 >
533 >    /**
534 >     * Minimum number of rebinnings per transfer step. Ranges are
535 >     * subdivided to allow multiple resizer threads.  This value
536 >     * serves as a lower bound to avoid resizers encountering
537 >     * excessive memory contention.  The value should be at least
538 >     * DEFAULT_CAPACITY.
539 >     */
540 >    private static final int MIN_TRANSFER_STRIDE = 16;
541 >
542 >    /**
543 >     * The number of bits used for generation stamp in sizeCtl.
544 >     * Must be at least 6 for 32bit arrays.
545 >     */
546 >    private static final int RESIZE_STAMP_BITS = 16;
547 >
548 >    /**
549 >     * The maximum number of threads that can help resize.
550 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 >     */
552 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553 >
554 >    /**
555 >     * The bit shift for recording size stamp in sizeCtl.
556 >     */
557 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558 >
559 >    /*
560 >     * Encodings for Node hash fields. See above for explanation.
561 >     */
562 >    static final int MOVED     = -1; // hash for forwarding nodes
563 >    static final int TREEBIN   = -2; // hash for roots of trees
564 >    static final int RESERVED  = -3; // hash for transient reservations
565 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566 >
567 >    /** Number of CPUS, to place bounds on some sizings */
568 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
569 >
570 >    /**
571 >     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 >     * @serialField segments Segment[]
573 >     *   The segments, each of which is a specialized hash table.
574 >     * @serialField segmentMask int
575 >     *   Mask value for indexing into segments. The upper bits of a
576 >     *   key's hash code are used to choose the segment.
577 >     * @serialField segmentShift int
578 >     *   Shift value for indexing within segments.
579 >     */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE),
584 >    };
585 >
586 >    /* ---------------- Nodes -------------- */
587 >
588 >    /**
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595 >     */
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597 >        final int hash;
598 >        final K key;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601 >
602 >        Node(int hash, K key, V val) {
603 >            this.hash = hash;
604 >            this.key = key;
605 >            this.val = val;
606 >        }
607 >
608 >        Node(int hash, K key, V val, Node<K,V> next) {
609 >            this(hash, key, val);
610 >            this.next = next;
611 >        }
612 >
613 >        public final K getKey()     { return key; }
614 >        public final V getValue()   { return val; }
615 >        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 >        public final String toString() {
617 >            return Helpers.mapEntryToString(key, val);
618 >        }
619 >        public final V setValue(V value) {
620 >            throw new UnsupportedOperationException();
621 >        }
622 >
623 >        public final boolean equals(Object o) {
624 >            Object k, v, u; Map.Entry<?,?> e;
625 >            return ((o instanceof Map.Entry) &&
626 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 >                    (v = e.getValue()) != null &&
628 >                    (k == key || k.equals(key)) &&
629 >                    (v == (u = val) || v.equals(u)));
630 >        }
631 >
632 >        /**
633 >         * Virtualized support for map.get(); overridden in subclasses.
634 >         */
635 >        Node<K,V> find(int h, Object k) {
636 >            Node<K,V> e = this;
637 >            if (k != null) {
638 >                do {
639 >                    K ek;
640 >                    if (e.hash == h &&
641 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 >                        return e;
643 >                } while ((e = e.next) != null);
644 >            }
645 >            return null;
646 >        }
647 >    }
648 >
649 >    /* ---------------- Static utilities -------------- */
650 >
651 >    /**
652 >     * Spreads (XORs) higher bits of hash to lower and also forces top
653 >     * bit to 0. Because the table uses power-of-two masking, sets of
654 >     * hashes that vary only in bits above the current mask will
655 >     * always collide. (Among known examples are sets of Float keys
656 >     * holding consecutive whole numbers in small tables.)  So we
657 >     * apply a transform that spreads the impact of higher bits
658 >     * downward. There is a tradeoff between speed, utility, and
659 >     * quality of bit-spreading. Because many common sets of hashes
660 >     * are already reasonably distributed (so don't benefit from
661 >     * spreading), and because we use trees to handle large sets of
662 >     * collisions in bins, we just XOR some shifted bits in the
663 >     * cheapest possible way to reduce systematic lossage, as well as
664 >     * to incorporate impact of the highest bits that would otherwise
665 >     * never be used in index calculations because of table bounds.
666       */
667 <    private static int DEFAULT_INITIAL_CAPACITY = 16;
667 >    static final int spread(int h) {
668 >        return (h ^ (h >>> 16)) & HASH_BITS;
669 >    }
670  
671      /**
672 <     * The maximum capacity, used if a higher value is implicitly
673 <     * specified by either of the constructors with arguments.  MUST
75 <     * be a power of two <= 1<<30.
672 >     * Returns a power of two table size for the given desired capacity.
673 >     * See Hackers Delight, sec 3.2
674       */
675 <    static final int MAXIMUM_CAPACITY = 1 << 30;
675 >    private static final int tableSizeFor(int c) {
676 >        int n = c - 1;
677 >        n |= n >>> 1;
678 >        n |= n >>> 2;
679 >        n |= n >>> 4;
680 >        n |= n >>> 8;
681 >        n |= n >>> 16;
682 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
683 >    }
684  
685      /**
686 <     * The default load factor for this table.  Used when not
687 <     * otherwise specified in constructor.
686 >     * Returns x's Class if it is of the form "class C implements
687 >     * Comparable<C>", else null.
688       */
689 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
689 >    static Class<?> comparableClassFor(Object x) {
690 >        if (x instanceof Comparable) {
691 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
692 >            if ((c = x.getClass()) == String.class) // bypass checks
693 >                return c;
694 >            if ((ts = c.getGenericInterfaces()) != null) {
695 >                for (int i = 0; i < ts.length; ++i) {
696 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
697 >                        ((p = (ParameterizedType)t).getRawType() ==
698 >                         Comparable.class) &&
699 >                        (as = p.getActualTypeArguments()) != null &&
700 >                        as.length == 1 && as[0] == c) // type arg is c
701 >                        return c;
702 >                }
703 >            }
704 >        }
705 >        return null;
706 >    }
707  
708      /**
709 <     * The default number of concurrency control segments.
710 <     **/
711 <    private static final int DEFAULT_SEGMENTS = 16;
709 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
710 >     * class), else 0.
711 >     */
712 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
713 >    static int compareComparables(Class<?> kc, Object k, Object x) {
714 >        return (x == null || x.getClass() != kc ? 0 :
715 >                ((Comparable)k).compareTo(x));
716 >    }
717 >
718 >    /* ---------------- Table element access -------------- */
719 >
720 >    /*
721 >     * Volatile access methods are used for table elements as well as
722 >     * elements of in-progress next table while resizing.  All uses of
723 >     * the tab arguments must be null checked by callers.  All callers
724 >     * also paranoically precheck that tab's length is not zero (or an
725 >     * equivalent check), thus ensuring that any index argument taking
726 >     * the form of a hash value anded with (length - 1) is a valid
727 >     * index.  Note that, to be correct wrt arbitrary concurrency
728 >     * errors by users, these checks must operate on local variables,
729 >     * which accounts for some odd-looking inline assignments below.
730 >     * Note that calls to setTabAt always occur within locked regions,
731 >     * and so in principle require only release ordering, not
732 >     * full volatile semantics, but are currently coded as volatile
733 >     * writes to be conservative.
734 >     */
735 >
736 >    @SuppressWarnings("unchecked")
737 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
738 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
739 >    }
740 >
741 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
742 >                                        Node<K,V> c, Node<K,V> v) {
743 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
744 >    }
745 >
746 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
747 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
748 >    }
749  
750      /* ---------------- Fields -------------- */
751  
752      /**
753 <     * Mask value for indexing into segments. The upper bits of a
754 <     * key's hash code are used to choose the segment.
755 <     **/
756 <    private final int segmentMask;
753 >     * The array of bins. Lazily initialized upon first insertion.
754 >     * Size is always a power of two. Accessed directly by iterators.
755 >     */
756 >    transient volatile Node<K,V>[] table;
757 >
758 >    /**
759 >     * The next table to use; non-null only while resizing.
760 >     */
761 >    private transient volatile Node<K,V>[] nextTable;
762 >
763 >    /**
764 >     * Base counter value, used mainly when there is no contention,
765 >     * but also as a fallback during table initialization
766 >     * races. Updated via CAS.
767 >     */
768 >    private transient volatile long baseCount;
769 >
770 >    /**
771 >     * Table initialization and resizing control.  When negative, the
772 >     * table is being initialized or resized: -1 for initialization,
773 >     * else -(1 + the number of active resizing threads).  Otherwise,
774 >     * when table is null, holds the initial table size to use upon
775 >     * creation, or 0 for default. After initialization, holds the
776 >     * next element count value upon which to resize the table.
777 >     */
778 >    private transient volatile int sizeCtl;
779 >
780 >    /**
781 >     * The next table index (plus one) to split while resizing.
782 >     */
783 >    private transient volatile int transferIndex;
784 >
785 >    /**
786 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
787 >     */
788 >    private transient volatile int cellsBusy;
789 >
790 >    /**
791 >     * Table of counter cells. When non-null, size is a power of 2.
792 >     */
793 >    private transient volatile CounterCell[] counterCells;
794 >
795 >    // views
796 >    private transient KeySetView<K,V> keySet;
797 >    private transient ValuesView<K,V> values;
798 >    private transient EntrySetView<K,V> entrySet;
799 >
800 >
801 >    /* ---------------- Public operations -------------- */
802  
803      /**
804 <     * Shift value for indexing within segments.
805 <     **/
806 <    private final int segmentShift;
804 >     * Creates a new, empty map with the default initial table size (16).
805 >     */
806 >    public ConcurrentHashMap() {
807 >    }
808  
809      /**
810 <     * The segments, each of which is a specialized hash table
810 >     * Creates a new, empty map with an initial table size
811 >     * accommodating the specified number of elements without the need
812 >     * to dynamically resize.
813 >     *
814 >     * @param initialCapacity The implementation performs internal
815 >     * sizing to accommodate this many elements.
816 >     * @throws IllegalArgumentException if the initial capacity of
817 >     * elements is negative
818       */
819 <    private final Segment[] segments;
819 >    public ConcurrentHashMap(int initialCapacity) {
820 >        if (initialCapacity < 0)
821 >            throw new IllegalArgumentException();
822 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
823 >                   MAXIMUM_CAPACITY :
824 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
825 >        this.sizeCtl = cap;
826 >    }
827  
828 <    private transient Set<K> keySet;
829 <    private transient Set<Map.Entry<K,V>> entrySet;
830 <    private transient Collection<V> values;
828 >    /**
829 >     * Creates a new map with the same mappings as the given map.
830 >     *
831 >     * @param m the map
832 >     */
833 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
834 >        this.sizeCtl = DEFAULT_CAPACITY;
835 >        putAll(m);
836 >    }
837  
838 <    /* ---------------- Small Utilities -------------- */
838 >    /**
839 >     * Creates a new, empty map with an initial table size based on
840 >     * the given number of elements ({@code initialCapacity}) and
841 >     * initial table density ({@code loadFactor}).
842 >     *
843 >     * @param initialCapacity the initial capacity. The implementation
844 >     * performs internal sizing to accommodate this many elements,
845 >     * given the specified load factor.
846 >     * @param loadFactor the load factor (table density) for
847 >     * establishing the initial table size
848 >     * @throws IllegalArgumentException if the initial capacity of
849 >     * elements is negative or the load factor is nonpositive
850 >     *
851 >     * @since 1.6
852 >     */
853 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
854 >        this(initialCapacity, loadFactor, 1);
855 >    }
856  
857      /**
858 <     * Return a hash code for non-null Object x.
859 <     * Uses the same hash code spreader as most other j.u hash tables.
860 <     * @param x the object serving as a key
861 <     * @return the hash code
858 >     * Creates a new, empty map with an initial table size based on
859 >     * the given number of elements ({@code initialCapacity}), table
860 >     * density ({@code loadFactor}), and number of concurrently
861 >     * updating threads ({@code concurrencyLevel}).
862 >     *
863 >     * @param initialCapacity the initial capacity. The implementation
864 >     * performs internal sizing to accommodate this many elements,
865 >     * given the specified load factor.
866 >     * @param loadFactor the load factor (table density) for
867 >     * establishing the initial table size
868 >     * @param concurrencyLevel the estimated number of concurrently
869 >     * updating threads. The implementation may use this value as
870 >     * a sizing hint.
871 >     * @throws IllegalArgumentException if the initial capacity is
872 >     * negative or the load factor or concurrencyLevel are
873 >     * nonpositive
874       */
875 <    private static int hash(Object x) {
876 <        int h = x.hashCode();
877 <        h += ~(h << 9);
878 <        h ^=  (h >>> 14);
879 <        h +=  (h << 4);
880 <        h ^=  (h >>> 10);
875 >    public ConcurrentHashMap(int initialCapacity,
876 >                             float loadFactor, int concurrencyLevel) {
877 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
878 >            throw new IllegalArgumentException();
879 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
880 >            initialCapacity = concurrencyLevel;   // as estimated threads
881 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
882 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
883 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
884 >        this.sizeCtl = cap;
885 >    }
886 >
887 >    // Original (since JDK1.2) Map methods
888 >
889 >    /**
890 >     * {@inheritDoc}
891 >     */
892 >    public int size() {
893 >        long n = sumCount();
894 >        return ((n < 0L) ? 0 :
895 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
896 >                (int)n);
897 >    }
898 >
899 >    /**
900 >     * {@inheritDoc}
901 >     */
902 >    public boolean isEmpty() {
903 >        return sumCount() <= 0L; // ignore transient negative values
904 >    }
905 >
906 >    /**
907 >     * Returns the value to which the specified key is mapped,
908 >     * or {@code null} if this map contains no mapping for the key.
909 >     *
910 >     * <p>More formally, if this map contains a mapping from a key
911 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
912 >     * then this method returns {@code v}; otherwise it returns
913 >     * {@code null}.  (There can be at most one such mapping.)
914 >     *
915 >     * @throws NullPointerException if the specified key is null
916 >     */
917 >    public V get(Object key) {
918 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
919 >        int h = spread(key.hashCode());
920 >        if ((tab = table) != null && (n = tab.length) > 0 &&
921 >            (e = tabAt(tab, (n - 1) & h)) != null) {
922 >            if ((eh = e.hash) == h) {
923 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
924 >                    return e.val;
925 >            }
926 >            else if (eh < 0)
927 >                return (p = e.find(h, key)) != null ? p.val : null;
928 >            while ((e = e.next) != null) {
929 >                if (e.hash == h &&
930 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
931 >                    return e.val;
932 >            }
933 >        }
934 >        return null;
935 >    }
936 >
937 >    /**
938 >     * Tests if the specified object is a key in this table.
939 >     *
940 >     * @param  key possible key
941 >     * @return {@code true} if and only if the specified object
942 >     *         is a key in this table, as determined by the
943 >     *         {@code equals} method; {@code false} otherwise
944 >     * @throws NullPointerException if the specified key is null
945 >     */
946 >    public boolean containsKey(Object key) {
947 >        return get(key) != null;
948 >    }
949 >
950 >    /**
951 >     * Returns {@code true} if this map maps one or more keys to the
952 >     * specified value. Note: This method may require a full traversal
953 >     * of the map, and is much slower than method {@code containsKey}.
954 >     *
955 >     * @param value value whose presence in this map is to be tested
956 >     * @return {@code true} if this map maps one or more keys to the
957 >     *         specified value
958 >     * @throws NullPointerException if the specified value is null
959 >     */
960 >    public boolean containsValue(Object value) {
961 >        if (value == null)
962 >            throw new NullPointerException();
963 >        Node<K,V>[] t;
964 >        if ((t = table) != null) {
965 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
966 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
967 >                V v;
968 >                if ((v = p.val) == value || (v != null && value.equals(v)))
969 >                    return true;
970 >            }
971 >        }
972 >        return false;
973 >    }
974 >
975 >    /**
976 >     * Maps the specified key to the specified value in this table.
977 >     * Neither the key nor the value can be null.
978 >     *
979 >     * <p>The value can be retrieved by calling the {@code get} method
980 >     * with a key that is equal to the original key.
981 >     *
982 >     * @param key key with which the specified value is to be associated
983 >     * @param value value to be associated with the specified key
984 >     * @return the previous value associated with {@code key}, or
985 >     *         {@code null} if there was no mapping for {@code key}
986 >     * @throws NullPointerException if the specified key or value is null
987 >     */
988 >    public V put(K key, V value) {
989 >        return putVal(key, value, false);
990 >    }
991 >
992 >    /** Implementation for put and putIfAbsent */
993 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
994 >        if (key == null || value == null) throw new NullPointerException();
995 >        int hash = spread(key.hashCode());
996 >        int binCount = 0;
997 >        for (Node<K,V>[] tab = table;;) {
998 >            Node<K,V> f; int n, i, fh;
999 >            if (tab == null || (n = tab.length) == 0)
1000 >                tab = initTable();
1001 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1002 >                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1003 >                    break;                   // no lock when adding to empty bin
1004 >            }
1005 >            else if ((fh = f.hash) == MOVED)
1006 >                tab = helpTransfer(tab, f);
1007 >            else {
1008 >                V oldVal = null;
1009 >                synchronized (f) {
1010 >                    if (tabAt(tab, i) == f) {
1011 >                        if (fh >= 0) {
1012 >                            binCount = 1;
1013 >                            for (Node<K,V> e = f;; ++binCount) {
1014 >                                K ek;
1015 >                                if (e.hash == hash &&
1016 >                                    ((ek = e.key) == key ||
1017 >                                     (ek != null && key.equals(ek)))) {
1018 >                                    oldVal = e.val;
1019 >                                    if (!onlyIfAbsent)
1020 >                                        e.val = value;
1021 >                                    break;
1022 >                                }
1023 >                                Node<K,V> pred = e;
1024 >                                if ((e = e.next) == null) {
1025 >                                    pred.next = new Node<K,V>(hash, key, value);
1026 >                                    break;
1027 >                                }
1028 >                            }
1029 >                        }
1030 >                        else if (f instanceof TreeBin) {
1031 >                            Node<K,V> p;
1032 >                            binCount = 2;
1033 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1034 >                                                           value)) != null) {
1035 >                                oldVal = p.val;
1036 >                                if (!onlyIfAbsent)
1037 >                                    p.val = value;
1038 >                            }
1039 >                        }
1040 >                        else if (f instanceof ReservationNode)
1041 >                            throw new IllegalStateException("Recursive update");
1042 >                    }
1043 >                }
1044 >                if (binCount != 0) {
1045 >                    if (binCount >= TREEIFY_THRESHOLD)
1046 >                        treeifyBin(tab, i);
1047 >                    if (oldVal != null)
1048 >                        return oldVal;
1049 >                    break;
1050 >                }
1051 >            }
1052 >        }
1053 >        addCount(1L, binCount);
1054 >        return null;
1055 >    }
1056 >
1057 >    /**
1058 >     * Copies all of the mappings from the specified map to this one.
1059 >     * These mappings replace any mappings that this map had for any of the
1060 >     * keys currently in the specified map.
1061 >     *
1062 >     * @param m mappings to be stored in this map
1063 >     */
1064 >    public void putAll(Map<? extends K, ? extends V> m) {
1065 >        tryPresize(m.size());
1066 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1067 >            putVal(e.getKey(), e.getValue(), false);
1068 >    }
1069 >
1070 >    /**
1071 >     * Removes the key (and its corresponding value) from this map.
1072 >     * This method does nothing if the key is not in the map.
1073 >     *
1074 >     * @param  key the key that needs to be removed
1075 >     * @return the previous value associated with {@code key}, or
1076 >     *         {@code null} if there was no mapping for {@code key}
1077 >     * @throws NullPointerException if the specified key is null
1078 >     */
1079 >    public V remove(Object key) {
1080 >        return replaceNode(key, null, null);
1081 >    }
1082 >
1083 >    /**
1084 >     * Implementation for the four public remove/replace methods:
1085 >     * Replaces node value with v, conditional upon match of cv if
1086 >     * non-null.  If resulting value is null, delete.
1087 >     */
1088 >    final V replaceNode(Object key, V value, Object cv) {
1089 >        int hash = spread(key.hashCode());
1090 >        for (Node<K,V>[] tab = table;;) {
1091 >            Node<K,V> f; int n, i, fh;
1092 >            if (tab == null || (n = tab.length) == 0 ||
1093 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1094 >                break;
1095 >            else if ((fh = f.hash) == MOVED)
1096 >                tab = helpTransfer(tab, f);
1097 >            else {
1098 >                V oldVal = null;
1099 >                boolean validated = false;
1100 >                synchronized (f) {
1101 >                    if (tabAt(tab, i) == f) {
1102 >                        if (fh >= 0) {
1103 >                            validated = true;
1104 >                            for (Node<K,V> e = f, pred = null;;) {
1105 >                                K ek;
1106 >                                if (e.hash == hash &&
1107 >                                    ((ek = e.key) == key ||
1108 >                                     (ek != null && key.equals(ek)))) {
1109 >                                    V ev = e.val;
1110 >                                    if (cv == null || cv == ev ||
1111 >                                        (ev != null && cv.equals(ev))) {
1112 >                                        oldVal = ev;
1113 >                                        if (value != null)
1114 >                                            e.val = value;
1115 >                                        else if (pred != null)
1116 >                                            pred.next = e.next;
1117 >                                        else
1118 >                                            setTabAt(tab, i, e.next);
1119 >                                    }
1120 >                                    break;
1121 >                                }
1122 >                                pred = e;
1123 >                                if ((e = e.next) == null)
1124 >                                    break;
1125 >                            }
1126 >                        }
1127 >                        else if (f instanceof TreeBin) {
1128 >                            validated = true;
1129 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1130 >                            TreeNode<K,V> r, p;
1131 >                            if ((r = t.root) != null &&
1132 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1133 >                                V pv = p.val;
1134 >                                if (cv == null || cv == pv ||
1135 >                                    (pv != null && cv.equals(pv))) {
1136 >                                    oldVal = pv;
1137 >                                    if (value != null)
1138 >                                        p.val = value;
1139 >                                    else if (t.removeTreeNode(p))
1140 >                                        setTabAt(tab, i, untreeify(t.first));
1141 >                                }
1142 >                            }
1143 >                        }
1144 >                        else if (f instanceof ReservationNode)
1145 >                            throw new IllegalStateException("Recursive update");
1146 >                    }
1147 >                }
1148 >                if (validated) {
1149 >                    if (oldVal != null) {
1150 >                        if (value == null)
1151 >                            addCount(-1L, -1);
1152 >                        return oldVal;
1153 >                    }
1154 >                    break;
1155 >                }
1156 >            }
1157 >        }
1158 >        return null;
1159 >    }
1160 >
1161 >    /**
1162 >     * Removes all of the mappings from this map.
1163 >     */
1164 >    public void clear() {
1165 >        long delta = 0L; // negative number of deletions
1166 >        int i = 0;
1167 >        Node<K,V>[] tab = table;
1168 >        while (tab != null && i < tab.length) {
1169 >            int fh;
1170 >            Node<K,V> f = tabAt(tab, i);
1171 >            if (f == null)
1172 >                ++i;
1173 >            else if ((fh = f.hash) == MOVED) {
1174 >                tab = helpTransfer(tab, f);
1175 >                i = 0; // restart
1176 >            }
1177 >            else {
1178 >                synchronized (f) {
1179 >                    if (tabAt(tab, i) == f) {
1180 >                        Node<K,V> p = (fh >= 0 ? f :
1181 >                                       (f instanceof TreeBin) ?
1182 >                                       ((TreeBin<K,V>)f).first : null);
1183 >                        while (p != null) {
1184 >                            --delta;
1185 >                            p = p.next;
1186 >                        }
1187 >                        setTabAt(tab, i++, null);
1188 >                    }
1189 >                }
1190 >            }
1191 >        }
1192 >        if (delta != 0L)
1193 >            addCount(delta, -1);
1194 >    }
1195 >
1196 >    /**
1197 >     * Returns a {@link Set} view of the keys contained in this map.
1198 >     * The set is backed by the map, so changes to the map are
1199 >     * reflected in the set, and vice-versa. The set supports element
1200 >     * removal, which removes the corresponding mapping from this map,
1201 >     * via the {@code Iterator.remove}, {@code Set.remove},
1202 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1203 >     * operations.  It does not support the {@code add} or
1204 >     * {@code addAll} operations.
1205 >     *
1206 >     * <p>The view's iterators and spliterators are
1207 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1208 >     *
1209 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1210 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1211 >     *
1212 >     * @return the set view
1213 >     */
1214 >    public KeySetView<K,V> keySet() {
1215 >        KeySetView<K,V> ks;
1216 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1217 >    }
1218 >
1219 >    /**
1220 >     * Returns a {@link Collection} view of the values contained in this map.
1221 >     * The collection is backed by the map, so changes to the map are
1222 >     * reflected in the collection, and vice-versa.  The collection
1223 >     * supports element removal, which removes the corresponding
1224 >     * mapping from this map, via the {@code Iterator.remove},
1225 >     * {@code Collection.remove}, {@code removeAll},
1226 >     * {@code retainAll}, and {@code clear} operations.  It does not
1227 >     * support the {@code add} or {@code addAll} operations.
1228 >     *
1229 >     * <p>The view's iterators and spliterators are
1230 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1231 >     *
1232 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1233 >     * and {@link Spliterator#NONNULL}.
1234 >     *
1235 >     * @return the collection view
1236 >     */
1237 >    public Collection<V> values() {
1238 >        ValuesView<K,V> vs;
1239 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1240 >    }
1241 >
1242 >    /**
1243 >     * Returns a {@link Set} view of the mappings contained in this map.
1244 >     * The set is backed by the map, so changes to the map are
1245 >     * reflected in the set, and vice-versa.  The set supports element
1246 >     * removal, which removes the corresponding mapping from the map,
1247 >     * via the {@code Iterator.remove}, {@code Set.remove},
1248 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1249 >     * operations.
1250 >     *
1251 >     * <p>The view's iterators and spliterators are
1252 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1253 >     *
1254 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1255 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1256 >     *
1257 >     * @return the set view
1258 >     */
1259 >    public Set<Map.Entry<K,V>> entrySet() {
1260 >        EntrySetView<K,V> es;
1261 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1262 >    }
1263 >
1264 >    /**
1265 >     * Returns the hash code value for this {@link Map}, i.e.,
1266 >     * the sum of, for each key-value pair in the map,
1267 >     * {@code key.hashCode() ^ value.hashCode()}.
1268 >     *
1269 >     * @return the hash code value for this map
1270 >     */
1271 >    public int hashCode() {
1272 >        int h = 0;
1273 >        Node<K,V>[] t;
1274 >        if ((t = table) != null) {
1275 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1276 >            for (Node<K,V> p; (p = it.advance()) != null; )
1277 >                h += p.key.hashCode() ^ p.val.hashCode();
1278 >        }
1279          return h;
1280      }
1281  
1282      /**
1283 <     * Return the segment that should be used for key with given hash
1283 >     * Returns a string representation of this map.  The string
1284 >     * representation consists of a list of key-value mappings (in no
1285 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1286 >     * mappings are separated by the characters {@code ", "} (comma
1287 >     * and space).  Each key-value mapping is rendered as the key
1288 >     * followed by an equals sign ("{@code =}") followed by the
1289 >     * associated value.
1290 >     *
1291 >     * @return a string representation of this map
1292       */
1293 <    private Segment<K,V> segmentFor(int hash) {
1294 <        return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
1293 >    public String toString() {
1294 >        Node<K,V>[] t;
1295 >        int f = (t = table) == null ? 0 : t.length;
1296 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1297 >        StringBuilder sb = new StringBuilder();
1298 >        sb.append('{');
1299 >        Node<K,V> p;
1300 >        if ((p = it.advance()) != null) {
1301 >            for (;;) {
1302 >                K k = p.key;
1303 >                V v = p.val;
1304 >                sb.append(k == this ? "(this Map)" : k);
1305 >                sb.append('=');
1306 >                sb.append(v == this ? "(this Map)" : v);
1307 >                if ((p = it.advance()) == null)
1308 >                    break;
1309 >                sb.append(',').append(' ');
1310 >            }
1311 >        }
1312 >        return sb.append('}').toString();
1313      }
1314  
1315 <    /* ---------------- Inner Classes -------------- */
1315 >    /**
1316 >     * Compares the specified object with this map for equality.
1317 >     * Returns {@code true} if the given object is a map with the same
1318 >     * mappings as this map.  This operation may return misleading
1319 >     * results if either map is concurrently modified during execution
1320 >     * of this method.
1321 >     *
1322 >     * @param o object to be compared for equality with this map
1323 >     * @return {@code true} if the specified object is equal to this map
1324 >     */
1325 >    public boolean equals(Object o) {
1326 >        if (o != this) {
1327 >            if (!(o instanceof Map))
1328 >                return false;
1329 >            Map<?,?> m = (Map<?,?>) o;
1330 >            Node<K,V>[] t;
1331 >            int f = (t = table) == null ? 0 : t.length;
1332 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1333 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1334 >                V val = p.val;
1335 >                Object v = m.get(p.key);
1336 >                if (v == null || (v != val && !v.equals(val)))
1337 >                    return false;
1338 >            }
1339 >            for (Map.Entry<?,?> e : m.entrySet()) {
1340 >                Object mk, mv, v;
1341 >                if ((mk = e.getKey()) == null ||
1342 >                    (mv = e.getValue()) == null ||
1343 >                    (v = get(mk)) == null ||
1344 >                    (mv != v && !mv.equals(v)))
1345 >                    return false;
1346 >            }
1347 >        }
1348 >        return true;
1349 >    }
1350  
1351      /**
1352 <     * Segments are specialized versions of hash tables.  This
1353 <     * subclasses from ReentrantLock opportunistically, just to
1354 <     * simplify some locking and avoid separate construction.
1355 <     **/
1356 <    private static final class Segment<K,V> extends ReentrantLock implements Serializable {
1352 >     * Stripped-down version of helper class used in previous version,
1353 >     * declared for the sake of serialization compatibility.
1354 >     */
1355 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1356 >        private static final long serialVersionUID = 2249069246763182397L;
1357 >        final float loadFactor;
1358 >        Segment(float lf) { this.loadFactor = lf; }
1359 >    }
1360 >
1361 >    /**
1362 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1363 >     * stream (i.e., serializes it).
1364 >     * @param s the stream
1365 >     * @throws java.io.IOException if an I/O error occurs
1366 >     * @serialData
1367 >     * the serialized fields, followed by the key (Object) and value
1368 >     * (Object) for each key-value mapping, followed by a null pair.
1369 >     * The key-value mappings are emitted in no particular order.
1370 >     */
1371 >    private void writeObject(java.io.ObjectOutputStream s)
1372 >        throws java.io.IOException {
1373 >        // For serialization compatibility
1374 >        // Emulate segment calculation from previous version of this class
1375 >        int sshift = 0;
1376 >        int ssize = 1;
1377 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1378 >            ++sshift;
1379 >            ssize <<= 1;
1380 >        }
1381 >        int segmentShift = 32 - sshift;
1382 >        int segmentMask = ssize - 1;
1383 >        @SuppressWarnings("unchecked")
1384 >        Segment<K,V>[] segments = (Segment<K,V>[])
1385 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1386 >        for (int i = 0; i < segments.length; ++i)
1387 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1388 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1389 >        streamFields.put("segments", segments);
1390 >        streamFields.put("segmentShift", segmentShift);
1391 >        streamFields.put("segmentMask", segmentMask);
1392 >        s.writeFields();
1393 >
1394 >        Node<K,V>[] t;
1395 >        if ((t = table) != null) {
1396 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1397 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1398 >                s.writeObject(p.key);
1399 >                s.writeObject(p.val);
1400 >            }
1401 >        }
1402 >        s.writeObject(null);
1403 >        s.writeObject(null);
1404 >    }
1405 >
1406 >    /**
1407 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1408 >     * @param s the stream
1409 >     * @throws ClassNotFoundException if the class of a serialized object
1410 >     *         could not be found
1411 >     * @throws java.io.IOException if an I/O error occurs
1412 >     */
1413 >    private void readObject(java.io.ObjectInputStream s)
1414 >        throws java.io.IOException, ClassNotFoundException {
1415          /*
1416 <         * Segments maintain a table of entry lists that are ALWAYS
1417 <         * kept in a consistent state, so can be read without locking.
1418 <         * Next fields of nodes are immutable (final).  All list
1419 <         * additions are performed at the front of each bin. This
1420 <         * makes it easy to check changes, and also fast to traverse.
150 <         * When nodes would otherwise be changed, new nodes are
151 <         * created to replace them. This works well for hash tables
152 <         * since the bin lists tend to be short. (The average length
153 <         * is less than two for the default load factor threshold.)
154 <         *
155 <         * Read operations can thus proceed without locking, but rely
156 <         * on a memory barrier to ensure that completed write
157 <         * operations performed by other threads are
158 <         * noticed. Conveniently, the "count" field, tracking the
159 <         * number of elements, can also serve as the volatile variable
160 <         * providing proper read/write barriers. This is convenient
161 <         * because this field needs to be read in many read operations
162 <         * anyway. The use of volatiles for this purpose is only
163 <         * guaranteed to work in accord with reuirements in
164 <         * multithreaded environments when run on JVMs conforming to
165 <         * the clarified JSR133 memory model specification.  This true
166 <         * for hotspot as of release 1.4.
167 <         *
168 <         * Implementors note. The basic rules for all this are:
169 <         *
170 <         *   - All unsynchronized read operations must first read the
171 <         *     "count" field, and should not look at table entries if
172 <         *     it is 0.
173 <         *
174 <         *   - All synchronized write operations should write to
175 <         *     the "count" field after updating. The operations must not
176 <         *     take any action that could even momentarily cause
177 <         *     a concurrent read operation to see inconsistent
178 <         *     data. This is made easier by the nature of the read
179 <         *     operations in Map. For example, no operation
180 <         *     can reveal that the table has grown but the threshold
181 <         *     has not yet been updated, so there are no atomicity
182 <         *     requirements for this with respect to reads.
183 <         *
184 <         * As a guide, all critical volatile reads and writes are marked
185 <         * in code comments.
1416 >         * To improve performance in typical cases, we create nodes
1417 >         * while reading, then place in table once size is known.
1418 >         * However, we must also validate uniqueness and deal with
1419 >         * overpopulated bins while doing so, which requires
1420 >         * specialized versions of putVal mechanics.
1421           */
1422 +        sizeCtl = -1; // force exclusion for table construction
1423 +        s.defaultReadObject();
1424 +        long size = 0L;
1425 +        Node<K,V> p = null;
1426 +        for (;;) {
1427 +            @SuppressWarnings("unchecked")
1428 +            K k = (K) s.readObject();
1429 +            @SuppressWarnings("unchecked")
1430 +            V v = (V) s.readObject();
1431 +            if (k != null && v != null) {
1432 +                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1433 +                ++size;
1434 +            }
1435 +            else
1436 +                break;
1437 +        }
1438 +        if (size == 0L)
1439 +            sizeCtl = 0;
1440 +        else {
1441 +            int n;
1442 +            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1443 +                n = MAXIMUM_CAPACITY;
1444 +            else {
1445 +                int sz = (int)size;
1446 +                n = tableSizeFor(sz + (sz >>> 1) + 1);
1447 +            }
1448 +            @SuppressWarnings("unchecked")
1449 +            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1450 +            int mask = n - 1;
1451 +            long added = 0L;
1452 +            while (p != null) {
1453 +                boolean insertAtFront;
1454 +                Node<K,V> next = p.next, first;
1455 +                int h = p.hash, j = h & mask;
1456 +                if ((first = tabAt(tab, j)) == null)
1457 +                    insertAtFront = true;
1458 +                else {
1459 +                    K k = p.key;
1460 +                    if (first.hash < 0) {
1461 +                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1462 +                        if (t.putTreeVal(h, k, p.val) == null)
1463 +                            ++added;
1464 +                        insertAtFront = false;
1465 +                    }
1466 +                    else {
1467 +                        int binCount = 0;
1468 +                        insertAtFront = true;
1469 +                        Node<K,V> q; K qk;
1470 +                        for (q = first; q != null; q = q.next) {
1471 +                            if (q.hash == h &&
1472 +                                ((qk = q.key) == k ||
1473 +                                 (qk != null && k.equals(qk)))) {
1474 +                                insertAtFront = false;
1475 +                                break;
1476 +                            }
1477 +                            ++binCount;
1478 +                        }
1479 +                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1480 +                            insertAtFront = false;
1481 +                            ++added;
1482 +                            p.next = first;
1483 +                            TreeNode<K,V> hd = null, tl = null;
1484 +                            for (q = p; q != null; q = q.next) {
1485 +                                TreeNode<K,V> t = new TreeNode<K,V>
1486 +                                    (q.hash, q.key, q.val, null, null);
1487 +                                if ((t.prev = tl) == null)
1488 +                                    hd = t;
1489 +                                else
1490 +                                    tl.next = t;
1491 +                                tl = t;
1492 +                            }
1493 +                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1494 +                        }
1495 +                    }
1496 +                }
1497 +                if (insertAtFront) {
1498 +                    ++added;
1499 +                    p.next = first;
1500 +                    setTabAt(tab, j, p);
1501 +                }
1502 +                p = next;
1503 +            }
1504 +            table = tab;
1505 +            sizeCtl = n - (n >>> 2);
1506 +            baseCount = added;
1507 +        }
1508 +    }
1509  
1510 <        /**
1511 <         * The number of elements in this segment's region.
1512 <         **/
1513 <        transient volatile int count;
1510 >    // ConcurrentMap methods
1511 >
1512 >    /**
1513 >     * {@inheritDoc}
1514 >     *
1515 >     * @return the previous value associated with the specified key,
1516 >     *         or {@code null} if there was no mapping for the key
1517 >     * @throws NullPointerException if the specified key or value is null
1518 >     */
1519 >    public V putIfAbsent(K key, V value) {
1520 >        return putVal(key, value, true);
1521 >    }
1522 >
1523 >    /**
1524 >     * {@inheritDoc}
1525 >     *
1526 >     * @throws NullPointerException if the specified key is null
1527 >     */
1528 >    public boolean remove(Object key, Object value) {
1529 >        if (key == null)
1530 >            throw new NullPointerException();
1531 >        return value != null && replaceNode(key, null, value) != null;
1532 >    }
1533 >
1534 >    /**
1535 >     * {@inheritDoc}
1536 >     *
1537 >     * @throws NullPointerException if any of the arguments are null
1538 >     */
1539 >    public boolean replace(K key, V oldValue, V newValue) {
1540 >        if (key == null || oldValue == null || newValue == null)
1541 >            throw new NullPointerException();
1542 >        return replaceNode(key, newValue, oldValue) != null;
1543 >    }
1544 >
1545 >    /**
1546 >     * {@inheritDoc}
1547 >     *
1548 >     * @return the previous value associated with the specified key,
1549 >     *         or {@code null} if there was no mapping for the key
1550 >     * @throws NullPointerException if the specified key or value is null
1551 >     */
1552 >    public V replace(K key, V value) {
1553 >        if (key == null || value == null)
1554 >            throw new NullPointerException();
1555 >        return replaceNode(key, value, null);
1556 >    }
1557 >
1558 >    // Overrides of JDK8+ Map extension method defaults
1559 >
1560 >    /**
1561 >     * Returns the value to which the specified key is mapped, or the
1562 >     * given default value if this map contains no mapping for the
1563 >     * key.
1564 >     *
1565 >     * @param key the key whose associated value is to be returned
1566 >     * @param defaultValue the value to return if this map contains
1567 >     * no mapping for the given key
1568 >     * @return the mapping for the key, if present; else the default value
1569 >     * @throws NullPointerException if the specified key is null
1570 >     */
1571 >    public V getOrDefault(Object key, V defaultValue) {
1572 >        V v;
1573 >        return (v = get(key)) == null ? defaultValue : v;
1574 >    }
1575 >
1576 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1577 >        if (action == null) throw new NullPointerException();
1578 >        Node<K,V>[] t;
1579 >        if ((t = table) != null) {
1580 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1581 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1582 >                action.accept(p.key, p.val);
1583 >            }
1584 >        }
1585 >    }
1586 >
1587 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1588 >        if (function == null) throw new NullPointerException();
1589 >        Node<K,V>[] t;
1590 >        if ((t = table) != null) {
1591 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1592 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1593 >                V oldValue = p.val;
1594 >                for (K key = p.key;;) {
1595 >                    V newValue = function.apply(key, oldValue);
1596 >                    if (newValue == null)
1597 >                        throw new NullPointerException();
1598 >                    if (replaceNode(key, newValue, oldValue) != null ||
1599 >                        (oldValue = get(key)) == null)
1600 >                        break;
1601 >                }
1602 >            }
1603 >        }
1604 >    }
1605 >
1606 >    /**
1607 >     * Helper method for EntrySetView.removeIf.
1608 >     */
1609 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1610 >        if (function == null) throw new NullPointerException();
1611 >        Node<K,V>[] t;
1612 >        boolean removed = false;
1613 >        if ((t = table) != null) {
1614 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1615 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1616 >                K k = p.key;
1617 >                V v = p.val;
1618 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1619 >                if (function.test(e) && replaceNode(k, null, v) != null)
1620 >                    removed = true;
1621 >            }
1622 >        }
1623 >        return removed;
1624 >    }
1625 >
1626 >    /**
1627 >     * Helper method for ValuesView.removeIf.
1628 >     */
1629 >    boolean removeValueIf(Predicate<? super V> function) {
1630 >        if (function == null) throw new NullPointerException();
1631 >        Node<K,V>[] t;
1632 >        boolean removed = false;
1633 >        if ((t = table) != null) {
1634 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1635 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1636 >                K k = p.key;
1637 >                V v = p.val;
1638 >                if (function.test(v) && replaceNode(k, null, v) != null)
1639 >                    removed = true;
1640 >            }
1641 >        }
1642 >        return removed;
1643 >    }
1644 >
1645 >    /**
1646 >     * If the specified key is not already associated with a value,
1647 >     * attempts to compute its value using the given mapping function
1648 >     * and enters it into this map unless {@code null}.  The entire
1649 >     * method invocation is performed atomically, so the function is
1650 >     * applied at most once per key.  Some attempted update operations
1651 >     * on this map by other threads may be blocked while computation
1652 >     * is in progress, so the computation should be short and simple,
1653 >     * and must not attempt to update any other mappings of this map.
1654 >     *
1655 >     * @param key key with which the specified value is to be associated
1656 >     * @param mappingFunction the function to compute a value
1657 >     * @return the current (existing or computed) value associated with
1658 >     *         the specified key, or null if the computed value is null
1659 >     * @throws NullPointerException if the specified key or mappingFunction
1660 >     *         is null
1661 >     * @throws IllegalStateException if the computation detectably
1662 >     *         attempts a recursive update to this map that would
1663 >     *         otherwise never complete
1664 >     * @throws RuntimeException or Error if the mappingFunction does so,
1665 >     *         in which case the mapping is left unestablished
1666 >     */
1667 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1668 >        if (key == null || mappingFunction == null)
1669 >            throw new NullPointerException();
1670 >        int h = spread(key.hashCode());
1671 >        V val = null;
1672 >        int binCount = 0;
1673 >        for (Node<K,V>[] tab = table;;) {
1674 >            Node<K,V> f; int n, i, fh;
1675 >            if (tab == null || (n = tab.length) == 0)
1676 >                tab = initTable();
1677 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1678 >                Node<K,V> r = new ReservationNode<K,V>();
1679 >                synchronized (r) {
1680 >                    if (casTabAt(tab, i, null, r)) {
1681 >                        binCount = 1;
1682 >                        Node<K,V> node = null;
1683 >                        try {
1684 >                            if ((val = mappingFunction.apply(key)) != null)
1685 >                                node = new Node<K,V>(h, key, val);
1686 >                        } finally {
1687 >                            setTabAt(tab, i, node);
1688 >                        }
1689 >                    }
1690 >                }
1691 >                if (binCount != 0)
1692 >                    break;
1693 >            }
1694 >            else if ((fh = f.hash) == MOVED)
1695 >                tab = helpTransfer(tab, f);
1696 >            else {
1697 >                boolean added = false;
1698 >                synchronized (f) {
1699 >                    if (tabAt(tab, i) == f) {
1700 >                        if (fh >= 0) {
1701 >                            binCount = 1;
1702 >                            for (Node<K,V> e = f;; ++binCount) {
1703 >                                K ek;
1704 >                                if (e.hash == h &&
1705 >                                    ((ek = e.key) == key ||
1706 >                                     (ek != null && key.equals(ek)))) {
1707 >                                    val = e.val;
1708 >                                    break;
1709 >                                }
1710 >                                Node<K,V> pred = e;
1711 >                                if ((e = e.next) == null) {
1712 >                                    if ((val = mappingFunction.apply(key)) != null) {
1713 >                                        if (pred.next != null)
1714 >                                            throw new IllegalStateException("Recursive update");
1715 >                                        added = true;
1716 >                                        pred.next = new Node<K,V>(h, key, val);
1717 >                                    }
1718 >                                    break;
1719 >                                }
1720 >                            }
1721 >                        }
1722 >                        else if (f instanceof TreeBin) {
1723 >                            binCount = 2;
1724 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1725 >                            TreeNode<K,V> r, p;
1726 >                            if ((r = t.root) != null &&
1727 >                                (p = r.findTreeNode(h, key, null)) != null)
1728 >                                val = p.val;
1729 >                            else if ((val = mappingFunction.apply(key)) != null) {
1730 >                                added = true;
1731 >                                t.putTreeVal(h, key, val);
1732 >                            }
1733 >                        }
1734 >                        else if (f instanceof ReservationNode)
1735 >                            throw new IllegalStateException("Recursive update");
1736 >                    }
1737 >                }
1738 >                if (binCount != 0) {
1739 >                    if (binCount >= TREEIFY_THRESHOLD)
1740 >                        treeifyBin(tab, i);
1741 >                    if (!added)
1742 >                        return val;
1743 >                    break;
1744 >                }
1745 >            }
1746 >        }
1747 >        if (val != null)
1748 >            addCount(1L, binCount);
1749 >        return val;
1750 >    }
1751 >
1752 >    /**
1753 >     * If the value for the specified key is present, attempts to
1754 >     * compute a new mapping given the key and its current mapped
1755 >     * value.  The entire method invocation is performed atomically.
1756 >     * Some attempted update operations on this map by other threads
1757 >     * may be blocked while computation is in progress, so the
1758 >     * computation should be short and simple, and must not attempt to
1759 >     * update any other mappings of this map.
1760 >     *
1761 >     * @param key key with which a value may be associated
1762 >     * @param remappingFunction the function to compute a value
1763 >     * @return the new value associated with the specified key, or null if none
1764 >     * @throws NullPointerException if the specified key or remappingFunction
1765 >     *         is null
1766 >     * @throws IllegalStateException if the computation detectably
1767 >     *         attempts a recursive update to this map that would
1768 >     *         otherwise never complete
1769 >     * @throws RuntimeException or Error if the remappingFunction does so,
1770 >     *         in which case the mapping is unchanged
1771 >     */
1772 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1773 >        if (key == null || remappingFunction == null)
1774 >            throw new NullPointerException();
1775 >        int h = spread(key.hashCode());
1776 >        V val = null;
1777 >        int delta = 0;
1778 >        int binCount = 0;
1779 >        for (Node<K,V>[] tab = table;;) {
1780 >            Node<K,V> f; int n, i, fh;
1781 >            if (tab == null || (n = tab.length) == 0)
1782 >                tab = initTable();
1783 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1784 >                break;
1785 >            else if ((fh = f.hash) == MOVED)
1786 >                tab = helpTransfer(tab, f);
1787 >            else {
1788 >                synchronized (f) {
1789 >                    if (tabAt(tab, i) == f) {
1790 >                        if (fh >= 0) {
1791 >                            binCount = 1;
1792 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1793 >                                K ek;
1794 >                                if (e.hash == h &&
1795 >                                    ((ek = e.key) == key ||
1796 >                                     (ek != null && key.equals(ek)))) {
1797 >                                    val = remappingFunction.apply(key, e.val);
1798 >                                    if (val != null)
1799 >                                        e.val = val;
1800 >                                    else {
1801 >                                        delta = -1;
1802 >                                        Node<K,V> en = e.next;
1803 >                                        if (pred != null)
1804 >                                            pred.next = en;
1805 >                                        else
1806 >                                            setTabAt(tab, i, en);
1807 >                                    }
1808 >                                    break;
1809 >                                }
1810 >                                pred = e;
1811 >                                if ((e = e.next) == null)
1812 >                                    break;
1813 >                            }
1814 >                        }
1815 >                        else if (f instanceof TreeBin) {
1816 >                            binCount = 2;
1817 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1818 >                            TreeNode<K,V> r, p;
1819 >                            if ((r = t.root) != null &&
1820 >                                (p = r.findTreeNode(h, key, null)) != null) {
1821 >                                val = remappingFunction.apply(key, p.val);
1822 >                                if (val != null)
1823 >                                    p.val = val;
1824 >                                else {
1825 >                                    delta = -1;
1826 >                                    if (t.removeTreeNode(p))
1827 >                                        setTabAt(tab, i, untreeify(t.first));
1828 >                                }
1829 >                            }
1830 >                        }
1831 >                        else if (f instanceof ReservationNode)
1832 >                            throw new IllegalStateException("Recursive update");
1833 >                    }
1834 >                }
1835 >                if (binCount != 0)
1836 >                    break;
1837 >            }
1838 >        }
1839 >        if (delta != 0)
1840 >            addCount((long)delta, binCount);
1841 >        return val;
1842 >    }
1843 >
1844 >    /**
1845 >     * Attempts to compute a mapping for the specified key and its
1846 >     * current mapped value (or {@code null} if there is no current
1847 >     * mapping). The entire method invocation is performed atomically.
1848 >     * Some attempted update operations on this map by other threads
1849 >     * may be blocked while computation is in progress, so the
1850 >     * computation should be short and simple, and must not attempt to
1851 >     * update any other mappings of this Map.
1852 >     *
1853 >     * @param key key with which the specified value is to be associated
1854 >     * @param remappingFunction the function to compute a value
1855 >     * @return the new value associated with the specified key, or null if none
1856 >     * @throws NullPointerException if the specified key or remappingFunction
1857 >     *         is null
1858 >     * @throws IllegalStateException if the computation detectably
1859 >     *         attempts a recursive update to this map that would
1860 >     *         otherwise never complete
1861 >     * @throws RuntimeException or Error if the remappingFunction does so,
1862 >     *         in which case the mapping is unchanged
1863 >     */
1864 >    public V compute(K key,
1865 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1866 >        if (key == null || remappingFunction == null)
1867 >            throw new NullPointerException();
1868 >        int h = spread(key.hashCode());
1869 >        V val = null;
1870 >        int delta = 0;
1871 >        int binCount = 0;
1872 >        for (Node<K,V>[] tab = table;;) {
1873 >            Node<K,V> f; int n, i, fh;
1874 >            if (tab == null || (n = tab.length) == 0)
1875 >                tab = initTable();
1876 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1877 >                Node<K,V> r = new ReservationNode<K,V>();
1878 >                synchronized (r) {
1879 >                    if (casTabAt(tab, i, null, r)) {
1880 >                        binCount = 1;
1881 >                        Node<K,V> node = null;
1882 >                        try {
1883 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1884 >                                delta = 1;
1885 >                                node = new Node<K,V>(h, key, val);
1886 >                            }
1887 >                        } finally {
1888 >                            setTabAt(tab, i, node);
1889 >                        }
1890 >                    }
1891 >                }
1892 >                if (binCount != 0)
1893 >                    break;
1894 >            }
1895 >            else if ((fh = f.hash) == MOVED)
1896 >                tab = helpTransfer(tab, f);
1897 >            else {
1898 >                synchronized (f) {
1899 >                    if (tabAt(tab, i) == f) {
1900 >                        if (fh >= 0) {
1901 >                            binCount = 1;
1902 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1903 >                                K ek;
1904 >                                if (e.hash == h &&
1905 >                                    ((ek = e.key) == key ||
1906 >                                     (ek != null && key.equals(ek)))) {
1907 >                                    val = remappingFunction.apply(key, e.val);
1908 >                                    if (val != null)
1909 >                                        e.val = val;
1910 >                                    else {
1911 >                                        delta = -1;
1912 >                                        Node<K,V> en = e.next;
1913 >                                        if (pred != null)
1914 >                                            pred.next = en;
1915 >                                        else
1916 >                                            setTabAt(tab, i, en);
1917 >                                    }
1918 >                                    break;
1919 >                                }
1920 >                                pred = e;
1921 >                                if ((e = e.next) == null) {
1922 >                                    val = remappingFunction.apply(key, null);
1923 >                                    if (val != null) {
1924 >                                        if (pred.next != null)
1925 >                                            throw new IllegalStateException("Recursive update");
1926 >                                        delta = 1;
1927 >                                        pred.next = new Node<K,V>(h, key, val);
1928 >                                    }
1929 >                                    break;
1930 >                                }
1931 >                            }
1932 >                        }
1933 >                        else if (f instanceof TreeBin) {
1934 >                            binCount = 1;
1935 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1936 >                            TreeNode<K,V> r, p;
1937 >                            if ((r = t.root) != null)
1938 >                                p = r.findTreeNode(h, key, null);
1939 >                            else
1940 >                                p = null;
1941 >                            V pv = (p == null) ? null : p.val;
1942 >                            val = remappingFunction.apply(key, pv);
1943 >                            if (val != null) {
1944 >                                if (p != null)
1945 >                                    p.val = val;
1946 >                                else {
1947 >                                    delta = 1;
1948 >                                    t.putTreeVal(h, key, val);
1949 >                                }
1950 >                            }
1951 >                            else if (p != null) {
1952 >                                delta = -1;
1953 >                                if (t.removeTreeNode(p))
1954 >                                    setTabAt(tab, i, untreeify(t.first));
1955 >                            }
1956 >                        }
1957 >                        else if (f instanceof ReservationNode)
1958 >                            throw new IllegalStateException("Recursive update");
1959 >                    }
1960 >                }
1961 >                if (binCount != 0) {
1962 >                    if (binCount >= TREEIFY_THRESHOLD)
1963 >                        treeifyBin(tab, i);
1964 >                    break;
1965 >                }
1966 >            }
1967 >        }
1968 >        if (delta != 0)
1969 >            addCount((long)delta, binCount);
1970 >        return val;
1971 >    }
1972 >
1973 >    /**
1974 >     * If the specified key is not already associated with a
1975 >     * (non-null) value, associates it with the given value.
1976 >     * Otherwise, replaces the value with the results of the given
1977 >     * remapping function, or removes if {@code null}. The entire
1978 >     * method invocation is performed atomically.  Some attempted
1979 >     * update operations on this map by other threads may be blocked
1980 >     * while computation is in progress, so the computation should be
1981 >     * short and simple, and must not attempt to update any other
1982 >     * mappings of this Map.
1983 >     *
1984 >     * @param key key with which the specified value is to be associated
1985 >     * @param value the value to use if absent
1986 >     * @param remappingFunction the function to recompute a value if present
1987 >     * @return the new value associated with the specified key, or null if none
1988 >     * @throws NullPointerException if the specified key or the
1989 >     *         remappingFunction is null
1990 >     * @throws RuntimeException or Error if the remappingFunction does so,
1991 >     *         in which case the mapping is unchanged
1992 >     */
1993 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1994 >        if (key == null || value == null || remappingFunction == null)
1995 >            throw new NullPointerException();
1996 >        int h = spread(key.hashCode());
1997 >        V val = null;
1998 >        int delta = 0;
1999 >        int binCount = 0;
2000 >        for (Node<K,V>[] tab = table;;) {
2001 >            Node<K,V> f; int n, i, fh;
2002 >            if (tab == null || (n = tab.length) == 0)
2003 >                tab = initTable();
2004 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2005 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2006 >                    delta = 1;
2007 >                    val = value;
2008 >                    break;
2009 >                }
2010 >            }
2011 >            else if ((fh = f.hash) == MOVED)
2012 >                tab = helpTransfer(tab, f);
2013 >            else {
2014 >                synchronized (f) {
2015 >                    if (tabAt(tab, i) == f) {
2016 >                        if (fh >= 0) {
2017 >                            binCount = 1;
2018 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2019 >                                K ek;
2020 >                                if (e.hash == h &&
2021 >                                    ((ek = e.key) == key ||
2022 >                                     (ek != null && key.equals(ek)))) {
2023 >                                    val = remappingFunction.apply(e.val, value);
2024 >                                    if (val != null)
2025 >                                        e.val = val;
2026 >                                    else {
2027 >                                        delta = -1;
2028 >                                        Node<K,V> en = e.next;
2029 >                                        if (pred != null)
2030 >                                            pred.next = en;
2031 >                                        else
2032 >                                            setTabAt(tab, i, en);
2033 >                                    }
2034 >                                    break;
2035 >                                }
2036 >                                pred = e;
2037 >                                if ((e = e.next) == null) {
2038 >                                    delta = 1;
2039 >                                    val = value;
2040 >                                    pred.next = new Node<K,V>(h, key, val);
2041 >                                    break;
2042 >                                }
2043 >                            }
2044 >                        }
2045 >                        else if (f instanceof TreeBin) {
2046 >                            binCount = 2;
2047 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2048 >                            TreeNode<K,V> r = t.root;
2049 >                            TreeNode<K,V> p = (r == null) ? null :
2050 >                                r.findTreeNode(h, key, null);
2051 >                            val = (p == null) ? value :
2052 >                                remappingFunction.apply(p.val, value);
2053 >                            if (val != null) {
2054 >                                if (p != null)
2055 >                                    p.val = val;
2056 >                                else {
2057 >                                    delta = 1;
2058 >                                    t.putTreeVal(h, key, val);
2059 >                                }
2060 >                            }
2061 >                            else if (p != null) {
2062 >                                delta = -1;
2063 >                                if (t.removeTreeNode(p))
2064 >                                    setTabAt(tab, i, untreeify(t.first));
2065 >                            }
2066 >                        }
2067 >                        else if (f instanceof ReservationNode)
2068 >                            throw new IllegalStateException("Recursive update");
2069 >                    }
2070 >                }
2071 >                if (binCount != 0) {
2072 >                    if (binCount >= TREEIFY_THRESHOLD)
2073 >                        treeifyBin(tab, i);
2074 >                    break;
2075 >                }
2076 >            }
2077 >        }
2078 >        if (delta != 0)
2079 >            addCount((long)delta, binCount);
2080 >        return val;
2081 >    }
2082 >
2083 >    // Hashtable legacy methods
2084 >
2085 >    /**
2086 >     * Tests if some key maps into the specified value in this table.
2087 >     *
2088 >     * <p>Note that this method is identical in functionality to
2089 >     * {@link #containsValue(Object)}, and exists solely to ensure
2090 >     * full compatibility with class {@link java.util.Hashtable},
2091 >     * which supported this method prior to introduction of the
2092 >     * Java Collections Framework.
2093 >     *
2094 >     * @param  value a value to search for
2095 >     * @return {@code true} if and only if some key maps to the
2096 >     *         {@code value} argument in this table as
2097 >     *         determined by the {@code equals} method;
2098 >     *         {@code false} otherwise
2099 >     * @throws NullPointerException if the specified value is null
2100 >     */
2101 >    public boolean contains(Object value) {
2102 >        return containsValue(value);
2103 >    }
2104 >
2105 >    /**
2106 >     * Returns an enumeration of the keys in this table.
2107 >     *
2108 >     * @return an enumeration of the keys in this table
2109 >     * @see #keySet()
2110 >     */
2111 >    public Enumeration<K> keys() {
2112 >        Node<K,V>[] t;
2113 >        int f = (t = table) == null ? 0 : t.length;
2114 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2115 >    }
2116 >
2117 >    /**
2118 >     * Returns an enumeration of the values in this table.
2119 >     *
2120 >     * @return an enumeration of the values in this table
2121 >     * @see #values()
2122 >     */
2123 >    public Enumeration<V> elements() {
2124 >        Node<K,V>[] t;
2125 >        int f = (t = table) == null ? 0 : t.length;
2126 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2127 >    }
2128 >
2129 >    // ConcurrentHashMap-only methods
2130 >
2131 >    /**
2132 >     * Returns the number of mappings. This method should be used
2133 >     * instead of {@link #size} because a ConcurrentHashMap may
2134 >     * contain more mappings than can be represented as an int. The
2135 >     * value returned is an estimate; the actual count may differ if
2136 >     * there are concurrent insertions or removals.
2137 >     *
2138 >     * @return the number of mappings
2139 >     * @since 1.8
2140 >     */
2141 >    public long mappingCount() {
2142 >        long n = sumCount();
2143 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2144 >    }
2145 >
2146 >    /**
2147 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2148 >     * from the given type to {@code Boolean.TRUE}.
2149 >     *
2150 >     * @param <K> the element type of the returned set
2151 >     * @return the new set
2152 >     * @since 1.8
2153 >     */
2154 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2155 >        return new KeySetView<K,Boolean>
2156 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2157 >    }
2158 >
2159 >    /**
2160 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2161 >     * from the given type to {@code Boolean.TRUE}.
2162 >     *
2163 >     * @param initialCapacity The implementation performs internal
2164 >     * sizing to accommodate this many elements.
2165 >     * @param <K> the element type of the returned set
2166 >     * @return the new set
2167 >     * @throws IllegalArgumentException if the initial capacity of
2168 >     * elements is negative
2169 >     * @since 1.8
2170 >     */
2171 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2172 >        return new KeySetView<K,Boolean>
2173 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2174 >    }
2175 >
2176 >    /**
2177 >     * Returns a {@link Set} view of the keys in this map, using the
2178 >     * given common mapped value for any additions (i.e., {@link
2179 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2180 >     * This is of course only appropriate if it is acceptable to use
2181 >     * the same value for all additions from this view.
2182 >     *
2183 >     * @param mappedValue the mapped value to use for any additions
2184 >     * @return the set view
2185 >     * @throws NullPointerException if the mappedValue is null
2186 >     */
2187 >    public KeySetView<K,V> keySet(V mappedValue) {
2188 >        if (mappedValue == null)
2189 >            throw new NullPointerException();
2190 >        return new KeySetView<K,V>(this, mappedValue);
2191 >    }
2192 >
2193 >    /* ---------------- Special Nodes -------------- */
2194 >
2195 >    /**
2196 >     * A node inserted at head of bins during transfer operations.
2197 >     */
2198 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2199 >        final Node<K,V>[] nextTable;
2200 >        ForwardingNode(Node<K,V>[] tab) {
2201 >            super(MOVED, null, null);
2202 >            this.nextTable = tab;
2203 >        }
2204 >
2205 >        Node<K,V> find(int h, Object k) {
2206 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2207 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2208 >                Node<K,V> e; int n;
2209 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2210 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2211 >                    return null;
2212 >                for (;;) {
2213 >                    int eh; K ek;
2214 >                    if ((eh = e.hash) == h &&
2215 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2216 >                        return e;
2217 >                    if (eh < 0) {
2218 >                        if (e instanceof ForwardingNode) {
2219 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2220 >                            continue outer;
2221 >                        }
2222 >                        else
2223 >                            return e.find(h, k);
2224 >                    }
2225 >                    if ((e = e.next) == null)
2226 >                        return null;
2227 >                }
2228 >            }
2229 >        }
2230 >    }
2231 >
2232 >    /**
2233 >     * A place-holder node used in computeIfAbsent and compute.
2234 >     */
2235 >    static final class ReservationNode<K,V> extends Node<K,V> {
2236 >        ReservationNode() {
2237 >            super(RESERVED, null, null);
2238 >        }
2239 >
2240 >        Node<K,V> find(int h, Object k) {
2241 >            return null;
2242 >        }
2243 >    }
2244 >
2245 >    /* ---------------- Table Initialization and Resizing -------------- */
2246 >
2247 >    /**
2248 >     * Returns the stamp bits for resizing a table of size n.
2249 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2250 >     */
2251 >    static final int resizeStamp(int n) {
2252 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2253 >    }
2254 >
2255 >    /**
2256 >     * Initializes table, using the size recorded in sizeCtl.
2257 >     */
2258 >    private final Node<K,V>[] initTable() {
2259 >        Node<K,V>[] tab; int sc;
2260 >        while ((tab = table) == null || tab.length == 0) {
2261 >            if ((sc = sizeCtl) < 0)
2262 >                Thread.yield(); // lost initialization race; just spin
2263 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2264 >                try {
2265 >                    if ((tab = table) == null || tab.length == 0) {
2266 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2267 >                        @SuppressWarnings("unchecked")
2268 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2269 >                        table = tab = nt;
2270 >                        sc = n - (n >>> 2);
2271 >                    }
2272 >                } finally {
2273 >                    sizeCtl = sc;
2274 >                }
2275 >                break;
2276 >            }
2277 >        }
2278 >        return tab;
2279 >    }
2280 >
2281 >    /**
2282 >     * Adds to count, and if table is too small and not already
2283 >     * resizing, initiates transfer. If already resizing, helps
2284 >     * perform transfer if work is available.  Rechecks occupancy
2285 >     * after a transfer to see if another resize is already needed
2286 >     * because resizings are lagging additions.
2287 >     *
2288 >     * @param x the count to add
2289 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2290 >     */
2291 >    private final void addCount(long x, int check) {
2292 >        CounterCell[] as; long b, s;
2293 >        if ((as = counterCells) != null ||
2294 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2295 >            CounterCell a; long v; int m;
2296 >            boolean uncontended = true;
2297 >            if (as == null || (m = as.length - 1) < 0 ||
2298 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2299 >                !(uncontended =
2300 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2301 >                fullAddCount(x, uncontended);
2302 >                return;
2303 >            }
2304 >            if (check <= 1)
2305 >                return;
2306 >            s = sumCount();
2307 >        }
2308 >        if (check >= 0) {
2309 >            Node<K,V>[] tab, nt; int n, sc;
2310 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2311 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2312 >                int rs = resizeStamp(n);
2313 >                if (sc < 0) {
2314 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2315 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2316 >                        transferIndex <= 0)
2317 >                        break;
2318 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2319 >                        transfer(tab, nt);
2320 >                }
2321 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2322 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2323 >                    transfer(tab, null);
2324 >                s = sumCount();
2325 >            }
2326 >        }
2327 >    }
2328 >
2329 >    /**
2330 >     * Helps transfer if a resize is in progress.
2331 >     */
2332 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2333 >        Node<K,V>[] nextTab; int sc;
2334 >        if (tab != null && (f instanceof ForwardingNode) &&
2335 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2336 >            int rs = resizeStamp(tab.length);
2337 >            while (nextTab == nextTable && table == tab &&
2338 >                   (sc = sizeCtl) < 0) {
2339 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2340 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2341 >                    break;
2342 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2343 >                    transfer(tab, nextTab);
2344 >                    break;
2345 >                }
2346 >            }
2347 >            return nextTab;
2348 >        }
2349 >        return table;
2350 >    }
2351 >
2352 >    /**
2353 >     * Tries to presize table to accommodate the given number of elements.
2354 >     *
2355 >     * @param size number of elements (doesn't need to be perfectly accurate)
2356 >     */
2357 >    private final void tryPresize(int size) {
2358 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2359 >            tableSizeFor(size + (size >>> 1) + 1);
2360 >        int sc;
2361 >        while ((sc = sizeCtl) >= 0) {
2362 >            Node<K,V>[] tab = table; int n;
2363 >            if (tab == null || (n = tab.length) == 0) {
2364 >                n = (sc > c) ? sc : c;
2365 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2366 >                    try {
2367 >                        if (table == tab) {
2368 >                            @SuppressWarnings("unchecked")
2369 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2370 >                            table = nt;
2371 >                            sc = n - (n >>> 2);
2372 >                        }
2373 >                    } finally {
2374 >                        sizeCtl = sc;
2375 >                    }
2376 >                }
2377 >            }
2378 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2379 >                break;
2380 >            else if (tab == table) {
2381 >                int rs = resizeStamp(n);
2382 >                if (U.compareAndSwapInt(this, SIZECTL, sc,
2383 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2384 >                    transfer(tab, null);
2385 >            }
2386 >        }
2387 >    }
2388 >
2389 >    /**
2390 >     * Moves and/or copies the nodes in each bin to new table. See
2391 >     * above for explanation.
2392 >     */
2393 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2394 >        int n = tab.length, stride;
2395 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2396 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2397 >        if (nextTab == null) {            // initiating
2398 >            try {
2399 >                @SuppressWarnings("unchecked")
2400 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2401 >                nextTab = nt;
2402 >            } catch (Throwable ex) {      // try to cope with OOME
2403 >                sizeCtl = Integer.MAX_VALUE;
2404 >                return;
2405 >            }
2406 >            nextTable = nextTab;
2407 >            transferIndex = n;
2408 >        }
2409 >        int nextn = nextTab.length;
2410 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2411 >        boolean advance = true;
2412 >        boolean finishing = false; // to ensure sweep before committing nextTab
2413 >        for (int i = 0, bound = 0;;) {
2414 >            Node<K,V> f; int fh;
2415 >            while (advance) {
2416 >                int nextIndex, nextBound;
2417 >                if (--i >= bound || finishing)
2418 >                    advance = false;
2419 >                else if ((nextIndex = transferIndex) <= 0) {
2420 >                    i = -1;
2421 >                    advance = false;
2422 >                }
2423 >                else if (U.compareAndSwapInt
2424 >                         (this, TRANSFERINDEX, nextIndex,
2425 >                          nextBound = (nextIndex > stride ?
2426 >                                       nextIndex - stride : 0))) {
2427 >                    bound = nextBound;
2428 >                    i = nextIndex - 1;
2429 >                    advance = false;
2430 >                }
2431 >            }
2432 >            if (i < 0 || i >= n || i + n >= nextn) {
2433 >                int sc;
2434 >                if (finishing) {
2435 >                    nextTable = null;
2436 >                    table = nextTab;
2437 >                    sizeCtl = (n << 1) - (n >>> 1);
2438 >                    return;
2439 >                }
2440 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2441 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2442 >                        return;
2443 >                    finishing = advance = true;
2444 >                    i = n; // recheck before commit
2445 >                }
2446 >            }
2447 >            else if ((f = tabAt(tab, i)) == null)
2448 >                advance = casTabAt(tab, i, null, fwd);
2449 >            else if ((fh = f.hash) == MOVED)
2450 >                advance = true; // already processed
2451 >            else {
2452 >                synchronized (f) {
2453 >                    if (tabAt(tab, i) == f) {
2454 >                        Node<K,V> ln, hn;
2455 >                        if (fh >= 0) {
2456 >                            int runBit = fh & n;
2457 >                            Node<K,V> lastRun = f;
2458 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2459 >                                int b = p.hash & n;
2460 >                                if (b != runBit) {
2461 >                                    runBit = b;
2462 >                                    lastRun = p;
2463 >                                }
2464 >                            }
2465 >                            if (runBit == 0) {
2466 >                                ln = lastRun;
2467 >                                hn = null;
2468 >                            }
2469 >                            else {
2470 >                                hn = lastRun;
2471 >                                ln = null;
2472 >                            }
2473 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2474 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2475 >                                if ((ph & n) == 0)
2476 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2477 >                                else
2478 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2479 >                            }
2480 >                            setTabAt(nextTab, i, ln);
2481 >                            setTabAt(nextTab, i + n, hn);
2482 >                            setTabAt(tab, i, fwd);
2483 >                            advance = true;
2484 >                        }
2485 >                        else if (f instanceof TreeBin) {
2486 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2487 >                            TreeNode<K,V> lo = null, loTail = null;
2488 >                            TreeNode<K,V> hi = null, hiTail = null;
2489 >                            int lc = 0, hc = 0;
2490 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2491 >                                int h = e.hash;
2492 >                                TreeNode<K,V> p = new TreeNode<K,V>
2493 >                                    (h, e.key, e.val, null, null);
2494 >                                if ((h & n) == 0) {
2495 >                                    if ((p.prev = loTail) == null)
2496 >                                        lo = p;
2497 >                                    else
2498 >                                        loTail.next = p;
2499 >                                    loTail = p;
2500 >                                    ++lc;
2501 >                                }
2502 >                                else {
2503 >                                    if ((p.prev = hiTail) == null)
2504 >                                        hi = p;
2505 >                                    else
2506 >                                        hiTail.next = p;
2507 >                                    hiTail = p;
2508 >                                    ++hc;
2509 >                                }
2510 >                            }
2511 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2512 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2513 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2514 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2515 >                            setTabAt(nextTab, i, ln);
2516 >                            setTabAt(nextTab, i + n, hn);
2517 >                            setTabAt(tab, i, fwd);
2518 >                            advance = true;
2519 >                        }
2520 >                    }
2521 >                }
2522 >            }
2523 >        }
2524 >    }
2525 >
2526 >    /* ---------------- Counter support -------------- */
2527 >
2528 >    /**
2529 >     * A padded cell for distributing counts.  Adapted from LongAdder
2530 >     * and Striped64.  See their internal docs for explanation.
2531 >     */
2532 >    @jdk.internal.vm.annotation.Contended static final class CounterCell {
2533 >        volatile long value;
2534 >        CounterCell(long x) { value = x; }
2535 >    }
2536 >
2537 >    final long sumCount() {
2538 >        CounterCell[] as = counterCells; CounterCell a;
2539 >        long sum = baseCount;
2540 >        if (as != null) {
2541 >            for (int i = 0; i < as.length; ++i) {
2542 >                if ((a = as[i]) != null)
2543 >                    sum += a.value;
2544 >            }
2545 >        }
2546 >        return sum;
2547 >    }
2548 >
2549 >    // See LongAdder version for explanation
2550 >    private final void fullAddCount(long x, boolean wasUncontended) {
2551 >        int h;
2552 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2553 >            ThreadLocalRandom.localInit();      // force initialization
2554 >            h = ThreadLocalRandom.getProbe();
2555 >            wasUncontended = true;
2556 >        }
2557 >        boolean collide = false;                // True if last slot nonempty
2558 >        for (;;) {
2559 >            CounterCell[] as; CounterCell a; int n; long v;
2560 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2561 >                if ((a = as[(n - 1) & h]) == null) {
2562 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2563 >                        CounterCell r = new CounterCell(x); // Optimistic create
2564 >                        if (cellsBusy == 0 &&
2565 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2566 >                            boolean created = false;
2567 >                            try {               // Recheck under lock
2568 >                                CounterCell[] rs; int m, j;
2569 >                                if ((rs = counterCells) != null &&
2570 >                                    (m = rs.length) > 0 &&
2571 >                                    rs[j = (m - 1) & h] == null) {
2572 >                                    rs[j] = r;
2573 >                                    created = true;
2574 >                                }
2575 >                            } finally {
2576 >                                cellsBusy = 0;
2577 >                            }
2578 >                            if (created)
2579 >                                break;
2580 >                            continue;           // Slot is now non-empty
2581 >                        }
2582 >                    }
2583 >                    collide = false;
2584 >                }
2585 >                else if (!wasUncontended)       // CAS already known to fail
2586 >                    wasUncontended = true;      // Continue after rehash
2587 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2588 >                    break;
2589 >                else if (counterCells != as || n >= NCPU)
2590 >                    collide = false;            // At max size or stale
2591 >                else if (!collide)
2592 >                    collide = true;
2593 >                else if (cellsBusy == 0 &&
2594 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2595 >                    try {
2596 >                        if (counterCells == as) {// Expand table unless stale
2597 >                            CounterCell[] rs = new CounterCell[n << 1];
2598 >                            for (int i = 0; i < n; ++i)
2599 >                                rs[i] = as[i];
2600 >                            counterCells = rs;
2601 >                        }
2602 >                    } finally {
2603 >                        cellsBusy = 0;
2604 >                    }
2605 >                    collide = false;
2606 >                    continue;                   // Retry with expanded table
2607 >                }
2608 >                h = ThreadLocalRandom.advanceProbe(h);
2609 >            }
2610 >            else if (cellsBusy == 0 && counterCells == as &&
2611 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2612 >                boolean init = false;
2613 >                try {                           // Initialize table
2614 >                    if (counterCells == as) {
2615 >                        CounterCell[] rs = new CounterCell[2];
2616 >                        rs[h & 1] = new CounterCell(x);
2617 >                        counterCells = rs;
2618 >                        init = true;
2619 >                    }
2620 >                } finally {
2621 >                    cellsBusy = 0;
2622 >                }
2623 >                if (init)
2624 >                    break;
2625 >            }
2626 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2627 >                break;                          // Fall back on using base
2628 >        }
2629 >    }
2630 >
2631 >    /* ---------------- Conversion from/to TreeBins -------------- */
2632 >
2633 >    /**
2634 >     * Replaces all linked nodes in bin at given index unless table is
2635 >     * too small, in which case resizes instead.
2636 >     */
2637 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2638 >        Node<K,V> b; int n;
2639 >        if (tab != null) {
2640 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2641 >                tryPresize(n << 1);
2642 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2643 >                synchronized (b) {
2644 >                    if (tabAt(tab, index) == b) {
2645 >                        TreeNode<K,V> hd = null, tl = null;
2646 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2647 >                            TreeNode<K,V> p =
2648 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2649 >                                                  null, null);
2650 >                            if ((p.prev = tl) == null)
2651 >                                hd = p;
2652 >                            else
2653 >                                tl.next = p;
2654 >                            tl = p;
2655 >                        }
2656 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2657 >                    }
2658 >                }
2659 >            }
2660 >        }
2661 >    }
2662 >
2663 >    /**
2664 >     * Returns a list of non-TreeNodes replacing those in given list.
2665 >     */
2666 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2667 >        Node<K,V> hd = null, tl = null;
2668 >        for (Node<K,V> q = b; q != null; q = q.next) {
2669 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2670 >            if (tl == null)
2671 >                hd = p;
2672 >            else
2673 >                tl.next = p;
2674 >            tl = p;
2675 >        }
2676 >        return hd;
2677 >    }
2678 >
2679 >    /* ---------------- TreeNodes -------------- */
2680 >
2681 >    /**
2682 >     * Nodes for use in TreeBins.
2683 >     */
2684 >    static final class TreeNode<K,V> extends Node<K,V> {
2685 >        TreeNode<K,V> parent;  // red-black tree links
2686 >        TreeNode<K,V> left;
2687 >        TreeNode<K,V> right;
2688 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2689 >        boolean red;
2690 >
2691 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2692 >                 TreeNode<K,V> parent) {
2693 >            super(hash, key, val, next);
2694 >            this.parent = parent;
2695 >        }
2696 >
2697 >        Node<K,V> find(int h, Object k) {
2698 >            return findTreeNode(h, k, null);
2699 >        }
2700  
2701          /**
2702 <         * The table is rehashed when its size exceeds this threshold.
2703 <         * (The value of this field is always (int)(capacity *
196 <         * loadFactor).)
2702 >         * Returns the TreeNode (or null if not found) for the given key
2703 >         * starting at given root.
2704           */
2705 <        private transient int threshold;
2705 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2706 >            if (k != null) {
2707 >                TreeNode<K,V> p = this;
2708 >                do {
2709 >                    int ph, dir; K pk; TreeNode<K,V> q;
2710 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2711 >                    if ((ph = p.hash) > h)
2712 >                        p = pl;
2713 >                    else if (ph < h)
2714 >                        p = pr;
2715 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2716 >                        return p;
2717 >                    else if (pl == null)
2718 >                        p = pr;
2719 >                    else if (pr == null)
2720 >                        p = pl;
2721 >                    else if ((kc != null ||
2722 >                              (kc = comparableClassFor(k)) != null) &&
2723 >                             (dir = compareComparables(kc, k, pk)) != 0)
2724 >                        p = (dir < 0) ? pl : pr;
2725 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2726 >                        return q;
2727 >                    else
2728 >                        p = pl;
2729 >                } while (p != null);
2730 >            }
2731 >            return null;
2732 >        }
2733 >    }
2734 >
2735 >    /* ---------------- TreeBins -------------- */
2736 >
2737 >    /**
2738 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2739 >     * keys or values, but instead point to list of TreeNodes and
2740 >     * their root. They also maintain a parasitic read-write lock
2741 >     * forcing writers (who hold bin lock) to wait for readers (who do
2742 >     * not) to complete before tree restructuring operations.
2743 >     */
2744 >    static final class TreeBin<K,V> extends Node<K,V> {
2745 >        TreeNode<K,V> root;
2746 >        volatile TreeNode<K,V> first;
2747 >        volatile Thread waiter;
2748 >        volatile int lockState;
2749 >        // values for lockState
2750 >        static final int WRITER = 1; // set while holding write lock
2751 >        static final int WAITER = 2; // set when waiting for write lock
2752 >        static final int READER = 4; // increment value for setting read lock
2753  
2754          /**
2755 <         * The per-segment table
2755 >         * Tie-breaking utility for ordering insertions when equal
2756 >         * hashCodes and non-comparable. We don't require a total
2757 >         * order, just a consistent insertion rule to maintain
2758 >         * equivalence across rebalancings. Tie-breaking further than
2759 >         * necessary simplifies testing a bit.
2760           */
2761 <        transient HashEntry[] table;
2761 >        static int tieBreakOrder(Object a, Object b) {
2762 >            int d;
2763 >            if (a == null || b == null ||
2764 >                (d = a.getClass().getName().
2765 >                 compareTo(b.getClass().getName())) == 0)
2766 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2767 >                     -1 : 1);
2768 >            return d;
2769 >        }
2770  
2771          /**
2772 <         * The load factor for the hash table.  Even though this value
207 <         * is same for all segments, it is replicated to avoid needing
208 <         * links to outer object.
209 <         * @serial
2772 >         * Creates bin with initial set of nodes headed by b.
2773           */
2774 <        private final float loadFactor;
2775 <
2776 <        Segment(int initialCapacity, float lf) {
2777 <            loadFactor = lf;
2778 <            setTable(new HashEntry[initialCapacity]);
2774 >        TreeBin(TreeNode<K,V> b) {
2775 >            super(TREEBIN, null, null);
2776 >            this.first = b;
2777 >            TreeNode<K,V> r = null;
2778 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2779 >                next = (TreeNode<K,V>)x.next;
2780 >                x.left = x.right = null;
2781 >                if (r == null) {
2782 >                    x.parent = null;
2783 >                    x.red = false;
2784 >                    r = x;
2785 >                }
2786 >                else {
2787 >                    K k = x.key;
2788 >                    int h = x.hash;
2789 >                    Class<?> kc = null;
2790 >                    for (TreeNode<K,V> p = r;;) {
2791 >                        int dir, ph;
2792 >                        K pk = p.key;
2793 >                        if ((ph = p.hash) > h)
2794 >                            dir = -1;
2795 >                        else if (ph < h)
2796 >                            dir = 1;
2797 >                        else if ((kc == null &&
2798 >                                  (kc = comparableClassFor(k)) == null) ||
2799 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2800 >                            dir = tieBreakOrder(k, pk);
2801 >                        TreeNode<K,V> xp = p;
2802 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2803 >                            x.parent = xp;
2804 >                            if (dir <= 0)
2805 >                                xp.left = x;
2806 >                            else
2807 >                                xp.right = x;
2808 >                            r = balanceInsertion(r, x);
2809 >                            break;
2810 >                        }
2811 >                    }
2812 >                }
2813 >            }
2814 >            this.root = r;
2815 >            assert checkInvariants(root);
2816          }
2817  
2818          /**
2819 <         * Set table to new HashEntry array.
2820 <         * Call only while holding lock or in constructor.
2821 <         **/
2822 <        private void setTable(HashEntry[] newTable) {
2823 <            table = newTable;
224 <            threshold = (int)(newTable.length * loadFactor);
225 <            count = count; // write-volatile
2819 >         * Acquires write lock for tree restructuring.
2820 >         */
2821 >        private final void lockRoot() {
2822 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2823 >                contendedLock(); // offload to separate method
2824          }
2825  
2826 <        /* Specialized implementations of map methods */
2826 >        /**
2827 >         * Releases write lock for tree restructuring.
2828 >         */
2829 >        private final void unlockRoot() {
2830 >            lockState = 0;
2831 >        }
2832  
2833 <        V get(K key, int hash) {
2834 <            if (count != 0) { // read-volatile
2835 <                HashEntry[] tab = table;
2836 <                int index = hash & (tab.length - 1);
2837 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
2838 <                while (e != null) {
2839 <                    if (e.hash == hash && key.equals(e.key))
2840 <                        return e.value;
2841 <                    e = e.next;
2833 >        /**
2834 >         * Possibly blocks awaiting root lock.
2835 >         */
2836 >        private final void contendedLock() {
2837 >            boolean waiting = false;
2838 >            for (int s;;) {
2839 >                if (((s = lockState) & ~WAITER) == 0) {
2840 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2841 >                        if (waiting)
2842 >                            waiter = null;
2843 >                        return;
2844 >                    }
2845 >                }
2846 >                else if ((s & WAITER) == 0) {
2847 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2848 >                        waiting = true;
2849 >                        waiter = Thread.currentThread();
2850 >                    }
2851                  }
2852 +                else if (waiting)
2853 +                    LockSupport.park(this);
2854              }
241            return null;
2855          }
2856  
2857 <        boolean containsKey(Object key, int hash) {
2858 <            if (count != 0) { // read-volatile
2859 <                HashEntry[] tab = table;
2860 <                int index = hash & (tab.length - 1);
2861 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
2862 <                while (e != null) {
2863 <                    if (e.hash == hash && key.equals(e.key))
2864 <                        return true;
2865 <                    e = e.next;
2857 >        /**
2858 >         * Returns matching node or null if none. Tries to search
2859 >         * using tree comparisons from root, but continues linear
2860 >         * search when lock not available.
2861 >         */
2862 >        final Node<K,V> find(int h, Object k) {
2863 >            if (k != null) {
2864 >                for (Node<K,V> e = first; e != null; ) {
2865 >                    int s; K ek;
2866 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2867 >                        if (e.hash == h &&
2868 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2869 >                            return e;
2870 >                        e = e.next;
2871 >                    }
2872 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2873 >                                                 s + READER)) {
2874 >                        TreeNode<K,V> r, p;
2875 >                        try {
2876 >                            p = ((r = root) == null ? null :
2877 >                                 r.findTreeNode(h, k, null));
2878 >                        } finally {
2879 >                            Thread w;
2880 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2881 >                                (READER|WAITER) && (w = waiter) != null)
2882 >                                LockSupport.unpark(w);
2883 >                        }
2884 >                        return p;
2885 >                    }
2886                  }
2887              }
2888 <            return false;
2888 >            return null;
2889          }
2890  
2891 <        boolean containsValue(Object value) {
2892 <            if (count != 0) { // read-volatile
2893 <                HashEntry[] tab = table;
2894 <                int len = tab.length;
2895 <                for (int i = 0 ; i < len; i++)
2896 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
2897 <                        if (value.equals(e.value))
2898 <                            return true;
2891 >        /**
2892 >         * Finds or adds a node.
2893 >         * @return null if added
2894 >         */
2895 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2896 >            Class<?> kc = null;
2897 >            boolean searched = false;
2898 >            for (TreeNode<K,V> p = root;;) {
2899 >                int dir, ph; K pk;
2900 >                if (p == null) {
2901 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2902 >                    break;
2903 >                }
2904 >                else if ((ph = p.hash) > h)
2905 >                    dir = -1;
2906 >                else if (ph < h)
2907 >                    dir = 1;
2908 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2909 >                    return p;
2910 >                else if ((kc == null &&
2911 >                          (kc = comparableClassFor(k)) == null) ||
2912 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2913 >                    if (!searched) {
2914 >                        TreeNode<K,V> q, ch;
2915 >                        searched = true;
2916 >                        if (((ch = p.left) != null &&
2917 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2918 >                            ((ch = p.right) != null &&
2919 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2920 >                            return q;
2921 >                    }
2922 >                    dir = tieBreakOrder(k, pk);
2923 >                }
2924 >
2925 >                TreeNode<K,V> xp = p;
2926 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2927 >                    TreeNode<K,V> x, f = first;
2928 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2929 >                    if (f != null)
2930 >                        f.prev = x;
2931 >                    if (dir <= 0)
2932 >                        xp.left = x;
2933 >                    else
2934 >                        xp.right = x;
2935 >                    if (!xp.red)
2936 >                        x.red = true;
2937 >                    else {
2938 >                        lockRoot();
2939 >                        try {
2940 >                            root = balanceInsertion(root, x);
2941 >                        } finally {
2942 >                            unlockRoot();
2943 >                        }
2944 >                    }
2945 >                    break;
2946 >                }
2947              }
2948 <            return false;
2948 >            assert checkInvariants(root);
2949 >            return null;
2950          }
2951  
2952 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
2953 <            lock();
2952 >        /**
2953 >         * Removes the given node, that must be present before this
2954 >         * call.  This is messier than typical red-black deletion code
2955 >         * because we cannot swap the contents of an interior node
2956 >         * with a leaf successor that is pinned by "next" pointers
2957 >         * that are accessible independently of lock. So instead we
2958 >         * swap the tree linkages.
2959 >         *
2960 >         * @return true if now too small, so should be untreeified
2961 >         */
2962 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2963 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2964 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2965 >            TreeNode<K,V> r, rl;
2966 >            if (pred == null)
2967 >                first = next;
2968 >            else
2969 >                pred.next = next;
2970 >            if (next != null)
2971 >                next.prev = pred;
2972 >            if (first == null) {
2973 >                root = null;
2974 >                return true;
2975 >            }
2976 >            if ((r = root) == null || r.right == null || // too small
2977 >                (rl = r.left) == null || rl.left == null)
2978 >                return true;
2979 >            lockRoot();
2980              try {
2981 <                int c = count;
2982 <                HashEntry[] tab = table;
2983 <                int index = hash & (tab.length - 1);
2984 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
2985 <
2986 <                for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
2987 <                    if (e.hash == hash && key.equals(e.key)) {
2988 <                        V oldValue = e.value;
2989 <                        if (!onlyIfAbsent)
2990 <                            e.value = value;
2991 <                        count = c; // write-volatile
2992 <                        return oldValue;
2981 >                TreeNode<K,V> replacement;
2982 >                TreeNode<K,V> pl = p.left;
2983 >                TreeNode<K,V> pr = p.right;
2984 >                if (pl != null && pr != null) {
2985 >                    TreeNode<K,V> s = pr, sl;
2986 >                    while ((sl = s.left) != null) // find successor
2987 >                        s = sl;
2988 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2989 >                    TreeNode<K,V> sr = s.right;
2990 >                    TreeNode<K,V> pp = p.parent;
2991 >                    if (s == pr) { // p was s's direct parent
2992 >                        p.parent = s;
2993 >                        s.right = p;
2994 >                    }
2995 >                    else {
2996 >                        TreeNode<K,V> sp = s.parent;
2997 >                        if ((p.parent = sp) != null) {
2998 >                            if (s == sp.left)
2999 >                                sp.left = p;
3000 >                            else
3001 >                                sp.right = p;
3002 >                        }
3003 >                        if ((s.right = pr) != null)
3004 >                            pr.parent = s;
3005                      }
3006 +                    p.left = null;
3007 +                    if ((p.right = sr) != null)
3008 +                        sr.parent = p;
3009 +                    if ((s.left = pl) != null)
3010 +                        pl.parent = s;
3011 +                    if ((s.parent = pp) == null)
3012 +                        r = s;
3013 +                    else if (p == pp.left)
3014 +                        pp.left = s;
3015 +                    else
3016 +                        pp.right = s;
3017 +                    if (sr != null)
3018 +                        replacement = sr;
3019 +                    else
3020 +                        replacement = p;
3021 +                }
3022 +                else if (pl != null)
3023 +                    replacement = pl;
3024 +                else if (pr != null)
3025 +                    replacement = pr;
3026 +                else
3027 +                    replacement = p;
3028 +                if (replacement != p) {
3029 +                    TreeNode<K,V> pp = replacement.parent = p.parent;
3030 +                    if (pp == null)
3031 +                        r = replacement;
3032 +                    else if (p == pp.left)
3033 +                        pp.left = replacement;
3034 +                    else
3035 +                        pp.right = replacement;
3036 +                    p.left = p.right = p.parent = null;
3037                  }
3038  
3039 <                tab[index] = new HashEntry<K,V>(hash, key, value, first);
3040 <                ++c;
3041 <                count = c; // write-volatile
3042 <                if (c > threshold)
3043 <                    setTable(rehash(tab));
3044 <                return null;
3045 <            }
3046 <            finally {
3047 <                unlock();
3039 >                root = (p.red) ? r : balanceDeletion(r, replacement);
3040 >
3041 >                if (p == replacement) {  // detach pointers
3042 >                    TreeNode<K,V> pp;
3043 >                    if ((pp = p.parent) != null) {
3044 >                        if (p == pp.left)
3045 >                            pp.left = null;
3046 >                        else if (p == pp.right)
3047 >                            pp.right = null;
3048 >                        p.parent = null;
3049 >                    }
3050 >                }
3051 >            } finally {
3052 >                unlockRoot();
3053 >            }
3054 >            assert checkInvariants(root);
3055 >            return false;
3056 >        }
3057 >
3058 >        /* ------------------------------------------------------------ */
3059 >        // Red-black tree methods, all adapted from CLR
3060 >
3061 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3062 >                                              TreeNode<K,V> p) {
3063 >            TreeNode<K,V> r, pp, rl;
3064 >            if (p != null && (r = p.right) != null) {
3065 >                if ((rl = p.right = r.left) != null)
3066 >                    rl.parent = p;
3067 >                if ((pp = r.parent = p.parent) == null)
3068 >                    (root = r).red = false;
3069 >                else if (pp.left == p)
3070 >                    pp.left = r;
3071 >                else
3072 >                    pp.right = r;
3073 >                r.left = p;
3074 >                p.parent = r;
3075              }
3076 +            return root;
3077          }
3078  
3079 <        private HashEntry[] rehash(HashEntry[] oldTable) {
3080 <            int oldCapacity = oldTable.length;
3081 <            if (oldCapacity >= MAXIMUM_CAPACITY)
3082 <                return oldTable;
3083 <
3084 <            /*
3085 <             * Reclassify nodes in each list to new Map.  Because we are
3086 <             * using power-of-two expansion, the elements from each bin
3087 <             * must either stay at same index, or move with a power of two
3088 <             * offset. We eliminate unnecessary node creation by catching
3089 <             * cases where old nodes can be reused because their next
3090 <             * fields won't change. Statistically, at the default
3091 <             * threshhold, only about one-sixth of them need cloning when
3092 <             * a table doubles. The nodes they replace will be garbage
3093 <             * collectable as soon as they are no longer referenced by any
3094 <             * reader thread that may be in the midst of traversing table
3095 <             * right now.
317 <             */
318 <
319 <            HashEntry[] newTable = new HashEntry[oldCapacity << 1];
320 <            int sizeMask = newTable.length - 1;
321 <            for (int i = 0; i < oldCapacity ; i++) {
322 <                // We need to guarantee that any existing reads of old Map can
323 <                //  proceed. So we cannot yet null out each bin.
324 <                HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
325 <
326 <                if (e != null) {
327 <                    HashEntry<K,V> next = e.next;
328 <                    int idx = e.hash & sizeMask;
329 <
330 <                    //  Single node on list
331 <                    if (next == null)
332 <                        newTable[idx] = e;
3079 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3080 >                                               TreeNode<K,V> p) {
3081 >            TreeNode<K,V> l, pp, lr;
3082 >            if (p != null && (l = p.left) != null) {
3083 >                if ((lr = p.left = l.right) != null)
3084 >                    lr.parent = p;
3085 >                if ((pp = l.parent = p.parent) == null)
3086 >                    (root = l).red = false;
3087 >                else if (pp.right == p)
3088 >                    pp.right = l;
3089 >                else
3090 >                    pp.left = l;
3091 >                l.right = p;
3092 >                p.parent = l;
3093 >            }
3094 >            return root;
3095 >        }
3096  
3097 +        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3098 +                                                    TreeNode<K,V> x) {
3099 +            x.red = true;
3100 +            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3101 +                if ((xp = x.parent) == null) {
3102 +                    x.red = false;
3103 +                    return x;
3104 +                }
3105 +                else if (!xp.red || (xpp = xp.parent) == null)
3106 +                    return root;
3107 +                if (xp == (xppl = xpp.left)) {
3108 +                    if ((xppr = xpp.right) != null && xppr.red) {
3109 +                        xppr.red = false;
3110 +                        xp.red = false;
3111 +                        xpp.red = true;
3112 +                        x = xpp;
3113 +                    }
3114 +                    else {
3115 +                        if (x == xp.right) {
3116 +                            root = rotateLeft(root, x = xp);
3117 +                            xpp = (xp = x.parent) == null ? null : xp.parent;
3118 +                        }
3119 +                        if (xp != null) {
3120 +                            xp.red = false;
3121 +                            if (xpp != null) {
3122 +                                xpp.red = true;
3123 +                                root = rotateRight(root, xpp);
3124 +                            }
3125 +                        }
3126 +                    }
3127 +                }
3128 +                else {
3129 +                    if (xppl != null && xppl.red) {
3130 +                        xppl.red = false;
3131 +                        xp.red = false;
3132 +                        xpp.red = true;
3133 +                        x = xpp;
3134 +                    }
3135                      else {
3136 <                        // Reuse trailing consecutive sequence at same slot
3137 <                        HashEntry<K,V> lastRun = e;
3138 <                        int lastIdx = idx;
3139 <                        for (HashEntry<K,V> last = next;
3140 <                             last != null;
3141 <                             last = last.next) {
3142 <                            int k = last.hash & sizeMask;
3143 <                            if (k != lastIdx) {
3144 <                                lastIdx = k;
344 <                                lastRun = last;
3136 >                        if (x == xp.left) {
3137 >                            root = rotateRight(root, x = xp);
3138 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3139 >                        }
3140 >                        if (xp != null) {
3141 >                            xp.red = false;
3142 >                            if (xpp != null) {
3143 >                                xpp.red = true;
3144 >                                root = rotateLeft(root, xpp);
3145                              }
3146                          }
3147 <                        newTable[lastIdx] = lastRun;
3147 >                    }
3148 >                }
3149 >            }
3150 >        }
3151  
3152 <                        // Clone all remaining nodes
3153 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
3154 <                            int k = p.hash & sizeMask;
3155 <                            newTable[k] = new HashEntry<K,V>(p.hash,
3156 <                                                             p.key,
3157 <                                                             p.value,
3158 <                                                             (HashEntry<K,V>) newTable[k]);
3152 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3153 >                                                   TreeNode<K,V> x) {
3154 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3155 >                if (x == null || x == root)
3156 >                    return root;
3157 >                else if ((xp = x.parent) == null) {
3158 >                    x.red = false;
3159 >                    return x;
3160 >                }
3161 >                else if (x.red) {
3162 >                    x.red = false;
3163 >                    return root;
3164 >                }
3165 >                else if ((xpl = xp.left) == x) {
3166 >                    if ((xpr = xp.right) != null && xpr.red) {
3167 >                        xpr.red = false;
3168 >                        xp.red = true;
3169 >                        root = rotateLeft(root, xp);
3170 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3171 >                    }
3172 >                    if (xpr == null)
3173 >                        x = xp;
3174 >                    else {
3175 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3176 >                        if ((sr == null || !sr.red) &&
3177 >                            (sl == null || !sl.red)) {
3178 >                            xpr.red = true;
3179 >                            x = xp;
3180 >                        }
3181 >                        else {
3182 >                            if (sr == null || !sr.red) {
3183 >                                if (sl != null)
3184 >                                    sl.red = false;
3185 >                                xpr.red = true;
3186 >                                root = rotateRight(root, xpr);
3187 >                                xpr = (xp = x.parent) == null ?
3188 >                                    null : xp.right;
3189 >                            }
3190 >                            if (xpr != null) {
3191 >                                xpr.red = (xp == null) ? false : xp.red;
3192 >                                if ((sr = xpr.right) != null)
3193 >                                    sr.red = false;
3194 >                            }
3195 >                            if (xp != null) {
3196 >                                xp.red = false;
3197 >                                root = rotateLeft(root, xp);
3198 >                            }
3199 >                            x = root;
3200 >                        }
3201 >                    }
3202 >                }
3203 >                else { // symmetric
3204 >                    if (xpl != null && xpl.red) {
3205 >                        xpl.red = false;
3206 >                        xp.red = true;
3207 >                        root = rotateRight(root, xp);
3208 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3209 >                    }
3210 >                    if (xpl == null)
3211 >                        x = xp;
3212 >                    else {
3213 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3214 >                        if ((sl == null || !sl.red) &&
3215 >                            (sr == null || !sr.red)) {
3216 >                            xpl.red = true;
3217 >                            x = xp;
3218 >                        }
3219 >                        else {
3220 >                            if (sl == null || !sl.red) {
3221 >                                if (sr != null)
3222 >                                    sr.red = false;
3223 >                                xpl.red = true;
3224 >                                root = rotateLeft(root, xpl);
3225 >                                xpl = (xp = x.parent) == null ?
3226 >                                    null : xp.left;
3227 >                            }
3228 >                            if (xpl != null) {
3229 >                                xpl.red = (xp == null) ? false : xp.red;
3230 >                                if ((sl = xpl.left) != null)
3231 >                                    sl.red = false;
3232 >                            }
3233 >                            if (xp != null) {
3234 >                                xp.red = false;
3235 >                                root = rotateRight(root, xp);
3236 >                            }
3237 >                            x = root;
3238                          }
3239                      }
3240                  }
3241              }
360            return newTable;
3242          }
3243  
3244          /**
3245 <         * Remove; match on key only if value null, else match both.
3245 >         * Checks invariants recursively for the tree of Nodes rooted at t.
3246           */
3247 <        V remove(Object key, int hash, Object value) {
3248 <            lock();
3247 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3248 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3249 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3250 >            if (tb != null && tb.next != t)
3251 >                return false;
3252 >            if (tn != null && tn.prev != t)
3253 >                return false;
3254 >            if (tp != null && t != tp.left && t != tp.right)
3255 >                return false;
3256 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3257 >                return false;
3258 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3259 >                return false;
3260 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3261 >                return false;
3262 >            if (tl != null && !checkInvariants(tl))
3263 >                return false;
3264 >            if (tr != null && !checkInvariants(tr))
3265 >                return false;
3266 >            return true;
3267 >        }
3268 >
3269 >        private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3270 >        private static final long LOCKSTATE;
3271 >        static {
3272              try {
3273 <                int c = count;
3274 <                HashEntry[] tab = table;
3275 <                int index = hash & (tab.length - 1);
3276 <                HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
3273 >                LOCKSTATE = U.objectFieldOffset
3274 >                    (TreeBin.class.getDeclaredField("lockState"));
3275 >            } catch (ReflectiveOperationException e) {
3276 >                throw new Error(e);
3277 >            }
3278 >        }
3279 >    }
3280  
3281 <                HashEntry<K,V> e = first;
375 <                for (;;) {
376 <                    if (e == null)
377 <                        return null;
378 <                    if (e.hash == hash && key.equals(e.key))
379 <                        break;
380 <                    e = e.next;
381 <                }
3281 >    /* ----------------Table Traversal -------------- */
3282  
3283 <                V oldValue = e.value;
3284 <                if (value != null && !value.equals(oldValue))
3285 <                    return null;
3283 >    /**
3284 >     * Records the table, its length, and current traversal index for a
3285 >     * traverser that must process a region of a forwarded table before
3286 >     * proceeding with current table.
3287 >     */
3288 >    static final class TableStack<K,V> {
3289 >        int length;
3290 >        int index;
3291 >        Node<K,V>[] tab;
3292 >        TableStack<K,V> next;
3293 >    }
3294  
3295 <                // All entries following removed node can stay in list, but
3296 <                // all preceeding ones need to be cloned.
3297 <                HashEntry<K,V> newFirst = e.next;
3298 <                for (HashEntry<K,V> p = first; p != e; p = p.next)
3299 <                    newFirst = new HashEntry<K,V>(p.hash, p.key,
3300 <                                                  p.value, newFirst);
3301 <                tab[index] = newFirst;
3302 <                count = c-1; // write-volatile
3303 <                return oldValue;
3304 <            }
3305 <            finally {
3306 <                unlock();
3307 <            }
3295 >    /**
3296 >     * Encapsulates traversal for methods such as containsValue; also
3297 >     * serves as a base class for other iterators and spliterators.
3298 >     *
3299 >     * Method advance visits once each still-valid node that was
3300 >     * reachable upon iterator construction. It might miss some that
3301 >     * were added to a bin after the bin was visited, which is OK wrt
3302 >     * consistency guarantees. Maintaining this property in the face
3303 >     * of possible ongoing resizes requires a fair amount of
3304 >     * bookkeeping state that is difficult to optimize away amidst
3305 >     * volatile accesses.  Even so, traversal maintains reasonable
3306 >     * throughput.
3307 >     *
3308 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3309 >     * However, if the table has been resized, then all future steps
3310 >     * must traverse both the bin at the current index as well as at
3311 >     * (index + baseSize); and so on for further resizings. To
3312 >     * paranoically cope with potential sharing by users of iterators
3313 >     * across threads, iteration terminates if a bounds checks fails
3314 >     * for a table read.
3315 >     */
3316 >    static class Traverser<K,V> {
3317 >        Node<K,V>[] tab;        // current table; updated if resized
3318 >        Node<K,V> next;         // the next entry to use
3319 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3320 >        int index;              // index of bin to use next
3321 >        int baseIndex;          // current index of initial table
3322 >        int baseLimit;          // index bound for initial table
3323 >        final int baseSize;     // initial table size
3324 >
3325 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3326 >            this.tab = tab;
3327 >            this.baseSize = size;
3328 >            this.baseIndex = this.index = index;
3329 >            this.baseLimit = limit;
3330 >            this.next = null;
3331          }
3332  
3333 <        void clear() {
3334 <            lock();
3335 <            try {
3336 <                HashEntry[] tab = table;
3337 <                for (int i = 0; i < tab.length ; i++)
3338 <                    tab[i] = null;
3339 <                count = 0; // write-volatile
3333 >        /**
3334 >         * Advances if possible, returning next valid node, or null if none.
3335 >         */
3336 >        final Node<K,V> advance() {
3337 >            Node<K,V> e;
3338 >            if ((e = next) != null)
3339 >                e = e.next;
3340 >            for (;;) {
3341 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3342 >                if (e != null)
3343 >                    return next = e;
3344 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3345 >                    (n = t.length) <= (i = index) || i < 0)
3346 >                    return next = null;
3347 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3348 >                    if (e instanceof ForwardingNode) {
3349 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3350 >                        e = null;
3351 >                        pushState(t, i, n);
3352 >                        continue;
3353 >                    }
3354 >                    else if (e instanceof TreeBin)
3355 >                        e = ((TreeBin<K,V>)e).first;
3356 >                    else
3357 >                        e = null;
3358 >                }
3359 >                if (stack != null)
3360 >                    recoverState(n);
3361 >                else if ((index = i + baseSize) >= n)
3362 >                    index = ++baseIndex; // visit upper slots if present
3363              }
3364 <            finally {
3365 <                unlock();
3364 >        }
3365 >
3366 >        /**
3367 >         * Saves traversal state upon encountering a forwarding node.
3368 >         */
3369 >        private void pushState(Node<K,V>[] t, int i, int n) {
3370 >            TableStack<K,V> s = spare;  // reuse if possible
3371 >            if (s != null)
3372 >                spare = s.next;
3373 >            else
3374 >                s = new TableStack<K,V>();
3375 >            s.tab = t;
3376 >            s.length = n;
3377 >            s.index = i;
3378 >            s.next = stack;
3379 >            stack = s;
3380 >        }
3381 >
3382 >        /**
3383 >         * Possibly pops traversal state.
3384 >         *
3385 >         * @param n length of current table
3386 >         */
3387 >        private void recoverState(int n) {
3388 >            TableStack<K,V> s; int len;
3389 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3390 >                n = len;
3391 >                index = s.index;
3392 >                tab = s.tab;
3393 >                s.tab = null;
3394 >                TableStack<K,V> next = s.next;
3395 >                s.next = spare; // save for reuse
3396 >                stack = next;
3397 >                spare = s;
3398              }
3399 +            if (s == null && (index += baseSize) >= n)
3400 +                index = ++baseIndex;
3401          }
3402      }
3403  
3404      /**
3405 <     * ConcurrentReaderHashMap list entry.
3405 >     * Base of key, value, and entry Iterators. Adds fields to
3406 >     * Traverser to support iterator.remove.
3407       */
3408 <    private static class HashEntry<K,V> implements Entry<K,V> {
3409 <        private final K key;
3410 <        private V value;
3411 <        private final int hash;
3412 <        private final HashEntry<K,V> next;
3408 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3409 >        final ConcurrentHashMap<K,V> map;
3410 >        Node<K,V> lastReturned;
3411 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3412 >                    ConcurrentHashMap<K,V> map) {
3413 >            super(tab, size, index, limit);
3414 >            this.map = map;
3415 >            advance();
3416 >        }
3417  
3418 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
3419 <            this.value = value;
3420 <            this.hash = hash;
3421 <            this.key = key;
3422 <            this.next = next;
3418 >        public final boolean hasNext() { return next != null; }
3419 >        public final boolean hasMoreElements() { return next != null; }
3420 >
3421 >        public final void remove() {
3422 >            Node<K,V> p;
3423 >            if ((p = lastReturned) == null)
3424 >                throw new IllegalStateException();
3425 >            lastReturned = null;
3426 >            map.replaceNode(p.key, null, null);
3427 >        }
3428 >    }
3429 >
3430 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3431 >        implements Iterator<K>, Enumeration<K> {
3432 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3433 >                    ConcurrentHashMap<K,V> map) {
3434 >            super(tab, index, size, limit, map);
3435 >        }
3436 >
3437 >        public final K next() {
3438 >            Node<K,V> p;
3439 >            if ((p = next) == null)
3440 >                throw new NoSuchElementException();
3441 >            K k = p.key;
3442 >            lastReturned = p;
3443 >            advance();
3444 >            return k;
3445 >        }
3446 >
3447 >        public final K nextElement() { return next(); }
3448 >    }
3449 >
3450 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3451 >        implements Iterator<V>, Enumeration<V> {
3452 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3453 >                      ConcurrentHashMap<K,V> map) {
3454 >            super(tab, index, size, limit, map);
3455 >        }
3456 >
3457 >        public final V next() {
3458 >            Node<K,V> p;
3459 >            if ((p = next) == null)
3460 >                throw new NoSuchElementException();
3461 >            V v = p.val;
3462 >            lastReturned = p;
3463 >            advance();
3464 >            return v;
3465          }
3466  
3467 <        public K getKey() {
3468 <            return key;
3467 >        public final V nextElement() { return next(); }
3468 >    }
3469 >
3470 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3471 >        implements Iterator<Map.Entry<K,V>> {
3472 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3473 >                      ConcurrentHashMap<K,V> map) {
3474 >            super(tab, index, size, limit, map);
3475          }
3476  
3477 <        public V getValue() {
3478 <            return value;
3477 >        public final Map.Entry<K,V> next() {
3478 >            Node<K,V> p;
3479 >            if ((p = next) == null)
3480 >                throw new NoSuchElementException();
3481 >            K k = p.key;
3482 >            V v = p.val;
3483 >            lastReturned = p;
3484 >            advance();
3485 >            return new MapEntry<K,V>(k, v, map);
3486          }
3487 +    }
3488  
3489 <        public V setValue(V newValue) {
3490 <            // We aren't required to, and don't provide any
3491 <            // visibility barriers for setting value.
3492 <            if (newValue == null)
3493 <                throw new NullPointerException();
3494 <            V oldValue = this.value;
3495 <            this.value = newValue;
3496 <            return oldValue;
3489 >    /**
3490 >     * Exported Entry for EntryIterator.
3491 >     */
3492 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3493 >        final K key; // non-null
3494 >        V val;       // non-null
3495 >        final ConcurrentHashMap<K,V> map;
3496 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3497 >            this.key = key;
3498 >            this.val = val;
3499 >            this.map = map;
3500 >        }
3501 >        public K getKey()        { return key; }
3502 >        public V getValue()      { return val; }
3503 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3504 >        public String toString() {
3505 >            return Helpers.mapEntryToString(key, val);
3506          }
3507  
3508          public boolean equals(Object o) {
3509 <            if (!(o instanceof Entry))
3509 >            Object k, v; Map.Entry<?,?> e;
3510 >            return ((o instanceof Map.Entry) &&
3511 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3512 >                    (v = e.getValue()) != null &&
3513 >                    (k == key || k.equals(key)) &&
3514 >                    (v == val || v.equals(val)));
3515 >        }
3516 >
3517 >        /**
3518 >         * Sets our entry's value and writes through to the map. The
3519 >         * value to return is somewhat arbitrary here. Since we do not
3520 >         * necessarily track asynchronous changes, the most recent
3521 >         * "previous" value could be different from what we return (or
3522 >         * could even have been removed, in which case the put will
3523 >         * re-establish). We do not and cannot guarantee more.
3524 >         */
3525 >        public V setValue(V value) {
3526 >            if (value == null) throw new NullPointerException();
3527 >            V v = val;
3528 >            val = value;
3529 >            map.put(key, value);
3530 >            return v;
3531 >        }
3532 >    }
3533 >
3534 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3535 >        implements Spliterator<K> {
3536 >        long est;               // size estimate
3537 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3538 >                       long est) {
3539 >            super(tab, size, index, limit);
3540 >            this.est = est;
3541 >        }
3542 >
3543 >        public KeySpliterator<K,V> trySplit() {
3544 >            int i, f, h;
3545 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3546 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3547 >                                        f, est >>>= 1);
3548 >        }
3549 >
3550 >        public void forEachRemaining(Consumer<? super K> action) {
3551 >            if (action == null) throw new NullPointerException();
3552 >            for (Node<K,V> p; (p = advance()) != null;)
3553 >                action.accept(p.key);
3554 >        }
3555 >
3556 >        public boolean tryAdvance(Consumer<? super K> action) {
3557 >            if (action == null) throw new NullPointerException();
3558 >            Node<K,V> p;
3559 >            if ((p = advance()) == null)
3560                  return false;
3561 <            Entry<K,V> e = (Entry<K,V>)o;
3562 <            return (key.equals(e.getKey()) && value.equals(e.getValue()));
3561 >            action.accept(p.key);
3562 >            return true;
3563          }
3564  
3565 <        public int hashCode() {
3566 <            return  key.hashCode() ^ value.hashCode();
3565 >        public long estimateSize() { return est; }
3566 >
3567 >        public int characteristics() {
3568 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3569 >                Spliterator.NONNULL;
3570          }
3571 +    }
3572  
3573 <        public String toString() {
3574 <            return key + "=" + value;
3573 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3574 >        implements Spliterator<V> {
3575 >        long est;               // size estimate
3576 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3577 >                         long est) {
3578 >            super(tab, size, index, limit);
3579 >            this.est = est;
3580 >        }
3581 >
3582 >        public ValueSpliterator<K,V> trySplit() {
3583 >            int i, f, h;
3584 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3585 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3586 >                                          f, est >>>= 1);
3587 >        }
3588 >
3589 >        public void forEachRemaining(Consumer<? super V> action) {
3590 >            if (action == null) throw new NullPointerException();
3591 >            for (Node<K,V> p; (p = advance()) != null;)
3592 >                action.accept(p.val);
3593 >        }
3594 >
3595 >        public boolean tryAdvance(Consumer<? super V> action) {
3596 >            if (action == null) throw new NullPointerException();
3597 >            Node<K,V> p;
3598 >            if ((p = advance()) == null)
3599 >                return false;
3600 >            action.accept(p.val);
3601 >            return true;
3602 >        }
3603 >
3604 >        public long estimateSize() { return est; }
3605 >
3606 >        public int characteristics() {
3607 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3608          }
3609      }
3610  
3611 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3612 +        implements Spliterator<Map.Entry<K,V>> {
3613 +        final ConcurrentHashMap<K,V> map; // To export MapEntry
3614 +        long est;               // size estimate
3615 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3616 +                         long est, ConcurrentHashMap<K,V> map) {
3617 +            super(tab, size, index, limit);
3618 +            this.map = map;
3619 +            this.est = est;
3620 +        }
3621  
3622 <    /* ---------------- Public operations -------------- */
3622 >        public EntrySpliterator<K,V> trySplit() {
3623 >            int i, f, h;
3624 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3625 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3626 >                                          f, est >>>= 1, map);
3627 >        }
3628  
3629 <    /**
3630 <     * Constructs a new, empty map with the specified initial
3631 <     * capacity and the specified load factor.
3632 <     *
3633 <     * @param initialCapacity the initial capacity.  The actual
474 <     * initial capacity is rounded up to the nearest power of two.
475 <     * @param loadFactor  the load factor threshold, used to control resizing.
476 <     * @param segments the number of concurrently accessible segments. the
477 <     * actual number of segments is rounded to the next power of two.
478 <     * @throws IllegalArgumentException if the initial capacity is
479 <     * negative or the load factor or number of segments are
480 <     * nonpositive.
481 <     */
482 <    public ConcurrentHashMap(int initialCapacity,
483 <                             float loadFactor, int segments) {
484 <        if (!(loadFactor > 0) || initialCapacity < 0 || segments <= 0)
485 <            throw new IllegalArgumentException();
3629 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3630 >            if (action == null) throw new NullPointerException();
3631 >            for (Node<K,V> p; (p = advance()) != null; )
3632 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3633 >        }
3634  
3635 <        // Find power-of-two sizes best matching arguments
3636 <        int sshift = 0;
3637 <        int ssize = 1;
3638 <        while (ssize < segments) {
3639 <            ++sshift;
3640 <            ssize <<= 1;
3635 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3636 >            if (action == null) throw new NullPointerException();
3637 >            Node<K,V> p;
3638 >            if ((p = advance()) == null)
3639 >                return false;
3640 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3641 >            return true;
3642 >        }
3643 >
3644 >        public long estimateSize() { return est; }
3645 >
3646 >        public int characteristics() {
3647 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3648 >                Spliterator.NONNULL;
3649          }
3650 <        segmentShift = 32 - sshift;
495 <        segmentMask = ssize - 1;
496 <        this.segments = new Segment[ssize];
3650 >    }
3651  
3652 <        if (initialCapacity > MAXIMUM_CAPACITY)
499 <            initialCapacity = MAXIMUM_CAPACITY;
500 <        int c = initialCapacity / ssize;
501 <        if (c * ssize < initialCapacity)
502 <            ++c;
503 <        int cap = 1;
504 <        while (cap < c)
505 <            cap <<= 1;
3652 >    // Parallel bulk operations
3653  
3654 <        for (int i = 0; i < this.segments.length; ++i)
3655 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
3654 >    /**
3655 >     * Computes initial batch value for bulk tasks. The returned value
3656 >     * is approximately exp2 of the number of times (minus one) to
3657 >     * split task by two before executing leaf action. This value is
3658 >     * faster to compute and more convenient to use as a guide to
3659 >     * splitting than is the depth, since it is used while dividing by
3660 >     * two anyway.
3661 >     */
3662 >    final int batchFor(long b) {
3663 >        long n;
3664 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3665 >            return 0;
3666 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3667 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3668      }
3669  
3670      /**
3671 <     * Constructs a new, empty map with the specified initial
513 <     * capacity,  and with default load factor and segments.
3671 >     * Performs the given action for each (key, value).
3672       *
3673 <     * @param initialCapacity the initial capacity of the
3674 <     * ConcurrentHashMap.
3675 <     * @throws IllegalArgumentException if the initial capacity of
3676 <     * elements is negative.
3673 >     * @param parallelismThreshold the (estimated) number of elements
3674 >     * needed for this operation to be executed in parallel
3675 >     * @param action the action
3676 >     * @since 1.8
3677       */
3678 <    public ConcurrentHashMap(int initialCapacity) {
3679 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
3678 >    public void forEach(long parallelismThreshold,
3679 >                        BiConsumer<? super K,? super V> action) {
3680 >        if (action == null) throw new NullPointerException();
3681 >        new ForEachMappingTask<K,V>
3682 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3683 >             action).invoke();
3684      }
3685  
3686      /**
3687 <     * Constructs a new, empty map with a default initial capacity,
3688 <     * load factor, and number of segments.
3687 >     * Performs the given action for each non-null transformation
3688 >     * of each (key, value).
3689 >     *
3690 >     * @param parallelismThreshold the (estimated) number of elements
3691 >     * needed for this operation to be executed in parallel
3692 >     * @param transformer a function returning the transformation
3693 >     * for an element, or null if there is no transformation (in
3694 >     * which case the action is not applied)
3695 >     * @param action the action
3696 >     * @param <U> the return type of the transformer
3697 >     * @since 1.8
3698       */
3699 <    public ConcurrentHashMap() {
3700 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
3699 >    public <U> void forEach(long parallelismThreshold,
3700 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3701 >                            Consumer<? super U> action) {
3702 >        if (transformer == null || action == null)
3703 >            throw new NullPointerException();
3704 >        new ForEachTransformedMappingTask<K,V,U>
3705 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3706 >             transformer, action).invoke();
3707      }
3708  
3709      /**
3710 <     * Constructs a new map with the same mappings as the given map.  The
3711 <     * map is created with a capacity of twice the number of mappings in
3712 <     * the given map or 11 (whichever is greater), and a default load factor.
3710 >     * Returns a non-null result from applying the given search
3711 >     * function on each (key, value), or null if none.  Upon
3712 >     * success, further element processing is suppressed and the
3713 >     * results of any other parallel invocations of the search
3714 >     * function are ignored.
3715 >     *
3716 >     * @param parallelismThreshold the (estimated) number of elements
3717 >     * needed for this operation to be executed in parallel
3718 >     * @param searchFunction a function returning a non-null
3719 >     * result on success, else null
3720 >     * @param <U> the return type of the search function
3721 >     * @return a non-null result from applying the given search
3722 >     * function on each (key, value), or null if none
3723 >     * @since 1.8
3724       */
3725 <    public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
3726 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
3727 <                      11),
3728 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
3729 <        putAll(t);
3725 >    public <U> U search(long parallelismThreshold,
3726 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3727 >        if (searchFunction == null) throw new NullPointerException();
3728 >        return new SearchMappingsTask<K,V,U>
3729 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3730 >             searchFunction, new AtomicReference<U>()).invoke();
3731      }
3732  
3733 <    // inherit Map javadoc
3734 <    public int size() {
3735 <        int c = 0;
3736 <        for (int i = 0; i < segments.length; ++i)
3737 <            c += segments[i].count;
3738 <        return c;
3733 >    /**
3734 >     * Returns the result of accumulating the given transformation
3735 >     * of all (key, value) pairs using the given reducer to
3736 >     * combine values, or null if none.
3737 >     *
3738 >     * @param parallelismThreshold the (estimated) number of elements
3739 >     * needed for this operation to be executed in parallel
3740 >     * @param transformer a function returning the transformation
3741 >     * for an element, or null if there is no transformation (in
3742 >     * which case it is not combined)
3743 >     * @param reducer a commutative associative combining function
3744 >     * @param <U> the return type of the transformer
3745 >     * @return the result of accumulating the given transformation
3746 >     * of all (key, value) pairs
3747 >     * @since 1.8
3748 >     */
3749 >    public <U> U reduce(long parallelismThreshold,
3750 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3751 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3752 >        if (transformer == null || reducer == null)
3753 >            throw new NullPointerException();
3754 >        return new MapReduceMappingsTask<K,V,U>
3755 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3756 >             null, transformer, reducer).invoke();
3757      }
3758  
3759 <    // inherit Map javadoc
3760 <    public boolean isEmpty() {
3761 <        for (int i = 0; i < segments.length; ++i)
3762 <            if (segments[i].count != 0)
3763 <                return false;
3764 <        return true;
3759 >    /**
3760 >     * Returns the result of accumulating the given transformation
3761 >     * of all (key, value) pairs using the given reducer to
3762 >     * combine values, and the given basis as an identity value.
3763 >     *
3764 >     * @param parallelismThreshold the (estimated) number of elements
3765 >     * needed for this operation to be executed in parallel
3766 >     * @param transformer a function returning the transformation
3767 >     * for an element
3768 >     * @param basis the identity (initial default value) for the reduction
3769 >     * @param reducer a commutative associative combining function
3770 >     * @return the result of accumulating the given transformation
3771 >     * of all (key, value) pairs
3772 >     * @since 1.8
3773 >     */
3774 >    public double reduceToDouble(long parallelismThreshold,
3775 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3776 >                                 double basis,
3777 >                                 DoubleBinaryOperator reducer) {
3778 >        if (transformer == null || reducer == null)
3779 >            throw new NullPointerException();
3780 >        return new MapReduceMappingsToDoubleTask<K,V>
3781 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3782 >             null, transformer, basis, reducer).invoke();
3783      }
3784  
3785      /**
3786 <     * Returns the value to which the specified key is mapped in this table.
3786 >     * Returns the result of accumulating the given transformation
3787 >     * of all (key, value) pairs using the given reducer to
3788 >     * combine values, and the given basis as an identity value.
3789       *
3790 <     * @param   key   a key in the table.
3791 <     * @return  the value to which the key is mapped in this table;
3792 <     *          <code>null</code> if the key is not mapped to any value in
3793 <     *          this table.
3794 <     * @throws  NullPointerException  if the key is
3795 <     *               <code>null</code>.
3796 <     * @see     #put(Object, Object)
3790 >     * @param parallelismThreshold the (estimated) number of elements
3791 >     * needed for this operation to be executed in parallel
3792 >     * @param transformer a function returning the transformation
3793 >     * for an element
3794 >     * @param basis the identity (initial default value) for the reduction
3795 >     * @param reducer a commutative associative combining function
3796 >     * @return the result of accumulating the given transformation
3797 >     * of all (key, value) pairs
3798 >     * @since 1.8
3799       */
3800 <    public V get(Object key) {
3801 <        int hash = hash(key); // throws NullPointerException if key null
3802 <        return segmentFor(hash).get((K) key, hash);
3800 >    public long reduceToLong(long parallelismThreshold,
3801 >                             ToLongBiFunction<? super K, ? super V> transformer,
3802 >                             long basis,
3803 >                             LongBinaryOperator reducer) {
3804 >        if (transformer == null || reducer == null)
3805 >            throw new NullPointerException();
3806 >        return new MapReduceMappingsToLongTask<K,V>
3807 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3808 >             null, transformer, basis, reducer).invoke();
3809      }
3810  
3811      /**
3812 <     * Tests if the specified object is a key in this table.
3812 >     * Returns the result of accumulating the given transformation
3813 >     * of all (key, value) pairs using the given reducer to
3814 >     * combine values, and the given basis as an identity value.
3815       *
3816 <     * @param   key   possible key.
3817 <     * @return  <code>true</code> if and only if the specified object
3818 <     *          is a key in this table, as determined by the
3819 <     *          <tt>equals</tt> method; <code>false</code> otherwise.
3820 <     * @throws  NullPointerException  if the key is
3821 <     *               <code>null</code>.
3822 <     * @see     #contains(Object)
3816 >     * @param parallelismThreshold the (estimated) number of elements
3817 >     * needed for this operation to be executed in parallel
3818 >     * @param transformer a function returning the transformation
3819 >     * for an element
3820 >     * @param basis the identity (initial default value) for the reduction
3821 >     * @param reducer a commutative associative combining function
3822 >     * @return the result of accumulating the given transformation
3823 >     * of all (key, value) pairs
3824 >     * @since 1.8
3825       */
3826 <    public boolean containsKey(Object key) {
3827 <        int hash = hash(key); // throws NullPointerException if key null
3828 <        return segmentFor(hash).containsKey(key, hash);
3826 >    public int reduceToInt(long parallelismThreshold,
3827 >                           ToIntBiFunction<? super K, ? super V> transformer,
3828 >                           int basis,
3829 >                           IntBinaryOperator reducer) {
3830 >        if (transformer == null || reducer == null)
3831 >            throw new NullPointerException();
3832 >        return new MapReduceMappingsToIntTask<K,V>
3833 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3834 >             null, transformer, basis, reducer).invoke();
3835      }
3836  
3837      /**
3838 <     * Returns <tt>true</tt> if this map maps one or more keys to the
594 <     * specified value. Note: This method requires a full internal
595 <     * traversal of the hash table, and so is much slower than
596 <     * method <tt>containsKey</tt>.
3838 >     * Performs the given action for each key.
3839       *
3840 <     * @param value value whose presence in this map is to be tested.
3841 <     * @return <tt>true</tt> if this map maps one or more keys to the
3842 <     * specified value.
3843 <     * @throws  NullPointerException  if the value is <code>null</code>.
3840 >     * @param parallelismThreshold the (estimated) number of elements
3841 >     * needed for this operation to be executed in parallel
3842 >     * @param action the action
3843 >     * @since 1.8
3844       */
3845 <    public boolean containsValue(Object value) {
3846 <        if (value == null)
3845 >    public void forEachKey(long parallelismThreshold,
3846 >                           Consumer<? super K> action) {
3847 >        if (action == null) throw new NullPointerException();
3848 >        new ForEachKeyTask<K,V>
3849 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3850 >             action).invoke();
3851 >    }
3852 >
3853 >    /**
3854 >     * Performs the given action for each non-null transformation
3855 >     * of each key.
3856 >     *
3857 >     * @param parallelismThreshold the (estimated) number of elements
3858 >     * needed for this operation to be executed in parallel
3859 >     * @param transformer a function returning the transformation
3860 >     * for an element, or null if there is no transformation (in
3861 >     * which case the action is not applied)
3862 >     * @param action the action
3863 >     * @param <U> the return type of the transformer
3864 >     * @since 1.8
3865 >     */
3866 >    public <U> void forEachKey(long parallelismThreshold,
3867 >                               Function<? super K, ? extends U> transformer,
3868 >                               Consumer<? super U> action) {
3869 >        if (transformer == null || action == null)
3870              throw new NullPointerException();
3871 +        new ForEachTransformedKeyTask<K,V,U>
3872 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3873 +             transformer, action).invoke();
3874 +    }
3875  
3876 <        for (int i = 0; i < segments.length; ++i) {
3877 <            if (segments[i].containsValue(value))
3878 <                return true;
3879 <        }
3880 <        return false;
3876 >    /**
3877 >     * Returns a non-null result from applying the given search
3878 >     * function on each key, or null if none. Upon success,
3879 >     * further element processing is suppressed and the results of
3880 >     * any other parallel invocations of the search function are
3881 >     * ignored.
3882 >     *
3883 >     * @param parallelismThreshold the (estimated) number of elements
3884 >     * needed for this operation to be executed in parallel
3885 >     * @param searchFunction a function returning a non-null
3886 >     * result on success, else null
3887 >     * @param <U> the return type of the search function
3888 >     * @return a non-null result from applying the given search
3889 >     * function on each key, or null if none
3890 >     * @since 1.8
3891 >     */
3892 >    public <U> U searchKeys(long parallelismThreshold,
3893 >                            Function<? super K, ? extends U> searchFunction) {
3894 >        if (searchFunction == null) throw new NullPointerException();
3895 >        return new SearchKeysTask<K,V,U>
3896 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3897 >             searchFunction, new AtomicReference<U>()).invoke();
3898      }
3899 +
3900      /**
3901 <     * Tests if some key maps into the specified value in this table.
3902 <     * This operation is more expensive than the <code>containsKey</code>
616 <     * method.<p>
3901 >     * Returns the result of accumulating all keys using the given
3902 >     * reducer to combine values, or null if none.
3903       *
3904 <     * Note that this method is identical in functionality to containsValue,
3905 <     * (which is part of the Map interface in the collections framework).
3904 >     * @param parallelismThreshold the (estimated) number of elements
3905 >     * needed for this operation to be executed in parallel
3906 >     * @param reducer a commutative associative combining function
3907 >     * @return the result of accumulating all keys using the given
3908 >     * reducer to combine values, or null if none
3909 >     * @since 1.8
3910 >     */
3911 >    public K reduceKeys(long parallelismThreshold,
3912 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3913 >        if (reducer == null) throw new NullPointerException();
3914 >        return new ReduceKeysTask<K,V>
3915 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3916 >             null, reducer).invoke();
3917 >    }
3918 >
3919 >    /**
3920 >     * Returns the result of accumulating the given transformation
3921 >     * of all keys using the given reducer to combine values, or
3922 >     * null if none.
3923       *
3924 <     * @param      value   a value to search for.
3925 <     * @return     <code>true</code> if and only if some key maps to the
3926 <     *             <code>value</code> argument in this table as
3927 <     *             determined by the <tt>equals</tt> method;
3928 <     *             <code>false</code> otherwise.
3929 <     * @throws  NullPointerException  if the value is <code>null</code>.
3930 <     * @see        #containsKey(Object)
3931 <     * @see        #containsValue(Object)
3932 <     * @see   Map
3924 >     * @param parallelismThreshold the (estimated) number of elements
3925 >     * needed for this operation to be executed in parallel
3926 >     * @param transformer a function returning the transformation
3927 >     * for an element, or null if there is no transformation (in
3928 >     * which case it is not combined)
3929 >     * @param reducer a commutative associative combining function
3930 >     * @param <U> the return type of the transformer
3931 >     * @return the result of accumulating the given transformation
3932 >     * of all keys
3933 >     * @since 1.8
3934       */
3935 <    public boolean contains(Object value) {
3936 <        return containsValue(value);
3935 >    public <U> U reduceKeys(long parallelismThreshold,
3936 >                            Function<? super K, ? extends U> transformer,
3937 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3938 >        if (transformer == null || reducer == null)
3939 >            throw new NullPointerException();
3940 >        return new MapReduceKeysTask<K,V,U>
3941 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3942 >             null, transformer, reducer).invoke();
3943      }
3944  
3945      /**
3946 <     * Maps the specified <code>key</code> to the specified
3947 <     * <code>value</code> in this table. Neither the key nor the
3948 <     * value can be <code>null</code>. <p>
3946 >     * Returns the result of accumulating the given transformation
3947 >     * of all keys using the given reducer to combine values, and
3948 >     * the given basis as an identity value.
3949       *
3950 <     * The value can be retrieved by calling the <code>get</code> method
3951 <     * with a key that is equal to the original key.
3950 >     * @param parallelismThreshold the (estimated) number of elements
3951 >     * needed for this operation to be executed in parallel
3952 >     * @param transformer a function returning the transformation
3953 >     * for an element
3954 >     * @param basis the identity (initial default value) for the reduction
3955 >     * @param reducer a commutative associative combining function
3956 >     * @return the result of accumulating the given transformation
3957 >     * of all keys
3958 >     * @since 1.8
3959 >     */
3960 >    public double reduceKeysToDouble(long parallelismThreshold,
3961 >                                     ToDoubleFunction<? super K> transformer,
3962 >                                     double basis,
3963 >                                     DoubleBinaryOperator reducer) {
3964 >        if (transformer == null || reducer == null)
3965 >            throw new NullPointerException();
3966 >        return new MapReduceKeysToDoubleTask<K,V>
3967 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3968 >             null, transformer, basis, reducer).invoke();
3969 >    }
3970 >
3971 >    /**
3972 >     * Returns the result of accumulating the given transformation
3973 >     * of all keys using the given reducer to combine values, and
3974 >     * the given basis as an identity value.
3975       *
3976 <     * @param      key     the table key.
3977 <     * @param      value   the value.
3978 <     * @return     the previous value of the specified key in this table,
3979 <     *             or <code>null</code> if it did not have one.
3980 <     * @throws  NullPointerException  if the key or value is
3981 <     *               <code>null</code>.
3982 <     * @see     Object#equals(Object)
3983 <     * @see     #get(Object)
3976 >     * @param parallelismThreshold the (estimated) number of elements
3977 >     * needed for this operation to be executed in parallel
3978 >     * @param transformer a function returning the transformation
3979 >     * for an element
3980 >     * @param basis the identity (initial default value) for the reduction
3981 >     * @param reducer a commutative associative combining function
3982 >     * @return the result of accumulating the given transformation
3983 >     * of all keys
3984 >     * @since 1.8
3985       */
3986 <    public V put(K key, V value) {
3987 <        if (value == null)
3986 >    public long reduceKeysToLong(long parallelismThreshold,
3987 >                                 ToLongFunction<? super K> transformer,
3988 >                                 long basis,
3989 >                                 LongBinaryOperator reducer) {
3990 >        if (transformer == null || reducer == null)
3991              throw new NullPointerException();
3992 <        int hash = hash(key);
3993 <        return segmentFor(hash).put(key, hash, value, false);
3992 >        return new MapReduceKeysToLongTask<K,V>
3993 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3994 >             null, transformer, basis, reducer).invoke();
3995      }
3996  
3997      /**
3998 <     * If the specified key is not already associated
3999 <     * with a value, associate it with the given value.
4000 <     * This is equivalent to
663 <     * <pre>
664 <     *   if (!map.containsKey(key)) map.put(key, value);
665 <     *   return get(key);
666 <     * </pre>
667 <     * Except that the action is performed atomically.
668 <     * @param key key with which the specified value is to be associated.
669 <     * @param value value to be associated with the specified key.
670 <     * @return previous value associated with specified key, or <tt>null</tt>
671 <     *         if there was no mapping for key.  A <tt>null</tt> return can
672 <     *         also indicate that the map previously associated <tt>null</tt>
673 <     *         with the specified key, if the implementation supports
674 <     *         <tt>null</tt> values.
675 <     *
676 <     * @throws NullPointerException this map does not permit <tt>null</tt>
677 <     *            keys or values, and the specified key or value is
678 <     *            <tt>null</tt>.
3998 >     * Returns the result of accumulating the given transformation
3999 >     * of all keys using the given reducer to combine values, and
4000 >     * the given basis as an identity value.
4001       *
4002 <     **/
4003 <    public V putIfAbsent(K key, V value) {
4004 <        if (value == null)
4002 >     * @param parallelismThreshold the (estimated) number of elements
4003 >     * needed for this operation to be executed in parallel
4004 >     * @param transformer a function returning the transformation
4005 >     * for an element
4006 >     * @param basis the identity (initial default value) for the reduction
4007 >     * @param reducer a commutative associative combining function
4008 >     * @return the result of accumulating the given transformation
4009 >     * of all keys
4010 >     * @since 1.8
4011 >     */
4012 >    public int reduceKeysToInt(long parallelismThreshold,
4013 >                               ToIntFunction<? super K> transformer,
4014 >                               int basis,
4015 >                               IntBinaryOperator reducer) {
4016 >        if (transformer == null || reducer == null)
4017              throw new NullPointerException();
4018 <        int hash = hash(key);
4019 <        return segmentFor(hash).put(key, hash, value, true);
4018 >        return new MapReduceKeysToIntTask<K,V>
4019 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4020 >             null, transformer, basis, reducer).invoke();
4021      }
4022  
4023 +    /**
4024 +     * Performs the given action for each value.
4025 +     *
4026 +     * @param parallelismThreshold the (estimated) number of elements
4027 +     * needed for this operation to be executed in parallel
4028 +     * @param action the action
4029 +     * @since 1.8
4030 +     */
4031 +    public void forEachValue(long parallelismThreshold,
4032 +                             Consumer<? super V> action) {
4033 +        if (action == null)
4034 +            throw new NullPointerException();
4035 +        new ForEachValueTask<K,V>
4036 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4037 +             action).invoke();
4038 +    }
4039  
4040      /**
4041 <     * Copies all of the mappings from the specified map to this one.
4041 >     * Performs the given action for each non-null transformation
4042 >     * of each value.
4043       *
4044 <     * These mappings replace any mappings that this map had for any of the
4045 <     * keys currently in the specified Map.
4044 >     * @param parallelismThreshold the (estimated) number of elements
4045 >     * needed for this operation to be executed in parallel
4046 >     * @param transformer a function returning the transformation
4047 >     * for an element, or null if there is no transformation (in
4048 >     * which case the action is not applied)
4049 >     * @param action the action
4050 >     * @param <U> the return type of the transformer
4051 >     * @since 1.8
4052 >     */
4053 >    public <U> void forEachValue(long parallelismThreshold,
4054 >                                 Function<? super V, ? extends U> transformer,
4055 >                                 Consumer<? super U> action) {
4056 >        if (transformer == null || action == null)
4057 >            throw new NullPointerException();
4058 >        new ForEachTransformedValueTask<K,V,U>
4059 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4060 >             transformer, action).invoke();
4061 >    }
4062 >
4063 >    /**
4064 >     * Returns a non-null result from applying the given search
4065 >     * function on each value, or null if none.  Upon success,
4066 >     * further element processing is suppressed and the results of
4067 >     * any other parallel invocations of the search function are
4068 >     * ignored.
4069       *
4070 <     * @param t Mappings to be stored in this map.
4070 >     * @param parallelismThreshold the (estimated) number of elements
4071 >     * needed for this operation to be executed in parallel
4072 >     * @param searchFunction a function returning a non-null
4073 >     * result on success, else null
4074 >     * @param <U> the return type of the search function
4075 >     * @return a non-null result from applying the given search
4076 >     * function on each value, or null if none
4077 >     * @since 1.8
4078       */
4079 <    public void putAll(Map<? extends K, ? extends V> t) {
4080 <        Iterator<Map.Entry<? extends K, ? extends V>> it = t.entrySet().iterator();
4081 <        while (it.hasNext()) {
4082 <            Entry<? extends K, ? extends V> e = it.next();
4083 <            put(e.getKey(), e.getValue());
4084 <        }
4079 >    public <U> U searchValues(long parallelismThreshold,
4080 >                              Function<? super V, ? extends U> searchFunction) {
4081 >        if (searchFunction == null) throw new NullPointerException();
4082 >        return new SearchValuesTask<K,V,U>
4083 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4084 >             searchFunction, new AtomicReference<U>()).invoke();
4085      }
4086  
4087      /**
4088 <     * Removes the key (and its corresponding value) from this
4089 <     * table. This method does nothing if the key is not in the table.
4088 >     * Returns the result of accumulating all values using the
4089 >     * given reducer to combine values, or null if none.
4090       *
4091 <     * @param   key   the key that needs to be removed.
4092 <     * @return  the value to which the key had been mapped in this table,
4093 <     *          or <code>null</code> if the key did not have a mapping.
4094 <     * @throws  NullPointerException  if the key is
4095 <     *               <code>null</code>.
4091 >     * @param parallelismThreshold the (estimated) number of elements
4092 >     * needed for this operation to be executed in parallel
4093 >     * @param reducer a commutative associative combining function
4094 >     * @return the result of accumulating all values
4095 >     * @since 1.8
4096       */
4097 <    public V remove(Object key) {
4098 <        int hash = hash(key);
4099 <        return segmentFor(hash).remove(key, hash, null);
4097 >    public V reduceValues(long parallelismThreshold,
4098 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4099 >        if (reducer == null) throw new NullPointerException();
4100 >        return new ReduceValuesTask<K,V>
4101 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4102 >             null, reducer).invoke();
4103      }
4104  
4105      /**
4106 <     * Removes the (key, value) pair from this
4107 <     * table. This method does nothing if the key is not in the table,
4108 <     * or if the key is associated with a different value.
4109 <     *
4110 <     * @param   key   the key that needs to be removed.
4111 <     * @param   value   the associated value. If the value is null,
4112 <     *                   it means "any value".
4113 <     * @return  the value to which the key had been mapped in this table,
4114 <     *          or <code>null</code> if the key did not have a mapping.
4115 <     * @throws  NullPointerException  if the key is
4116 <     *               <code>null</code>.
4106 >     * Returns the result of accumulating the given transformation
4107 >     * of all values using the given reducer to combine values, or
4108 >     * null if none.
4109 >     *
4110 >     * @param parallelismThreshold the (estimated) number of elements
4111 >     * needed for this operation to be executed in parallel
4112 >     * @param transformer a function returning the transformation
4113 >     * for an element, or null if there is no transformation (in
4114 >     * which case it is not combined)
4115 >     * @param reducer a commutative associative combining function
4116 >     * @param <U> the return type of the transformer
4117 >     * @return the result of accumulating the given transformation
4118 >     * of all values
4119 >     * @since 1.8
4120       */
4121 <    public boolean remove(Object key, Object value) {
4122 <        int hash = hash(key);
4123 <        return segmentFor(hash).remove(key, hash, value) != null;
4121 >    public <U> U reduceValues(long parallelismThreshold,
4122 >                              Function<? super V, ? extends U> transformer,
4123 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4124 >        if (transformer == null || reducer == null)
4125 >            throw new NullPointerException();
4126 >        return new MapReduceValuesTask<K,V,U>
4127 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4128 >             null, transformer, reducer).invoke();
4129      }
4130  
4131      /**
4132 <     * Removes all mappings from this map.
4132 >     * Returns the result of accumulating the given transformation
4133 >     * of all values using the given reducer to combine values,
4134 >     * and the given basis as an identity value.
4135 >     *
4136 >     * @param parallelismThreshold the (estimated) number of elements
4137 >     * needed for this operation to be executed in parallel
4138 >     * @param transformer a function returning the transformation
4139 >     * for an element
4140 >     * @param basis the identity (initial default value) for the reduction
4141 >     * @param reducer a commutative associative combining function
4142 >     * @return the result of accumulating the given transformation
4143 >     * of all values
4144 >     * @since 1.8
4145       */
4146 <    public void clear() {
4147 <        for (int i = 0; i < segments.length; ++i)
4148 <            segments[i].clear();
4146 >    public double reduceValuesToDouble(long parallelismThreshold,
4147 >                                       ToDoubleFunction<? super V> transformer,
4148 >                                       double basis,
4149 >                                       DoubleBinaryOperator reducer) {
4150 >        if (transformer == null || reducer == null)
4151 >            throw new NullPointerException();
4152 >        return new MapReduceValuesToDoubleTask<K,V>
4153 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4154 >             null, transformer, basis, reducer).invoke();
4155      }
4156  
4157 +    /**
4158 +     * Returns the result of accumulating the given transformation
4159 +     * of all values using the given reducer to combine values,
4160 +     * and the given basis as an identity value.
4161 +     *
4162 +     * @param parallelismThreshold the (estimated) number of elements
4163 +     * needed for this operation to be executed in parallel
4164 +     * @param transformer a function returning the transformation
4165 +     * for an element
4166 +     * @param basis the identity (initial default value) for the reduction
4167 +     * @param reducer a commutative associative combining function
4168 +     * @return the result of accumulating the given transformation
4169 +     * of all values
4170 +     * @since 1.8
4171 +     */
4172 +    public long reduceValuesToLong(long parallelismThreshold,
4173 +                                   ToLongFunction<? super V> transformer,
4174 +                                   long basis,
4175 +                                   LongBinaryOperator reducer) {
4176 +        if (transformer == null || reducer == null)
4177 +            throw new NullPointerException();
4178 +        return new MapReduceValuesToLongTask<K,V>
4179 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4180 +             null, transformer, basis, reducer).invoke();
4181 +    }
4182  
4183      /**
4184 <     * Returns a shallow copy of this
4185 <     * <tt>ConcurrentHashMap</tt> instance: the keys and
4186 <     * values themselves are not cloned.
4184 >     * Returns the result of accumulating the given transformation
4185 >     * of all values using the given reducer to combine values,
4186 >     * and the given basis as an identity value.
4187       *
4188 <     * @return a shallow copy of this map.
4188 >     * @param parallelismThreshold the (estimated) number of elements
4189 >     * needed for this operation to be executed in parallel
4190 >     * @param transformer a function returning the transformation
4191 >     * for an element
4192 >     * @param basis the identity (initial default value) for the reduction
4193 >     * @param reducer a commutative associative combining function
4194 >     * @return the result of accumulating the given transformation
4195 >     * of all values
4196 >     * @since 1.8
4197       */
4198 <    public Object clone() {
4199 <        // We cannot call super.clone, since it would share final
4200 <        // segments array, and there's no way to reassign finals.
4198 >    public int reduceValuesToInt(long parallelismThreshold,
4199 >                                 ToIntFunction<? super V> transformer,
4200 >                                 int basis,
4201 >                                 IntBinaryOperator reducer) {
4202 >        if (transformer == null || reducer == null)
4203 >            throw new NullPointerException();
4204 >        return new MapReduceValuesToIntTask<K,V>
4205 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4206 >             null, transformer, basis, reducer).invoke();
4207 >    }
4208  
4209 <        float lf = segments[0].loadFactor;
4210 <        int segs = segments.length;
4211 <        int cap = (int)(size() / lf);
4212 <        if (cap < segs) cap = segs;
4213 <        ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
4214 <        t.putAll(this);
4215 <        return t;
4209 >    /**
4210 >     * Performs the given action for each entry.
4211 >     *
4212 >     * @param parallelismThreshold the (estimated) number of elements
4213 >     * needed for this operation to be executed in parallel
4214 >     * @param action the action
4215 >     * @since 1.8
4216 >     */
4217 >    public void forEachEntry(long parallelismThreshold,
4218 >                             Consumer<? super Map.Entry<K,V>> action) {
4219 >        if (action == null) throw new NullPointerException();
4220 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4221 >                                  action).invoke();
4222      }
4223  
4224      /**
4225 <     * Returns a set view of the keys contained in this map.  The set is
4226 <     * backed by the map, so changes to the map are reflected in the set, and
770 <     * vice-versa.  The set supports element removal, which removes the
771 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
772 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
773 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
774 <     * <tt>addAll</tt> operations.
775 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
776 <     * will never throw {@link java.util.ConcurrentModificationException},
777 <     * and guarantees to traverse elements as they existed upon
778 <     * construction of the iterator, and may (but is not guaranteed to)
779 <     * reflect any modifications subsequent to construction.
4225 >     * Performs the given action for each non-null transformation
4226 >     * of each entry.
4227       *
4228 <     * @return a set view of the keys contained in this map.
4228 >     * @param parallelismThreshold the (estimated) number of elements
4229 >     * needed for this operation to be executed in parallel
4230 >     * @param transformer a function returning the transformation
4231 >     * for an element, or null if there is no transformation (in
4232 >     * which case the action is not applied)
4233 >     * @param action the action
4234 >     * @param <U> the return type of the transformer
4235 >     * @since 1.8
4236       */
4237 <    public Set<K> keySet() {
4238 <        Set<K> ks = keySet;
4239 <        return (ks != null) ? ks : (keySet = new KeySet());
4237 >    public <U> void forEachEntry(long parallelismThreshold,
4238 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4239 >                                 Consumer<? super U> action) {
4240 >        if (transformer == null || action == null)
4241 >            throw new NullPointerException();
4242 >        new ForEachTransformedEntryTask<K,V,U>
4243 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4244 >             transformer, action).invoke();
4245      }
4246  
4247 +    /**
4248 +     * Returns a non-null result from applying the given search
4249 +     * function on each entry, or null if none.  Upon success,
4250 +     * further element processing is suppressed and the results of
4251 +     * any other parallel invocations of the search function are
4252 +     * ignored.
4253 +     *
4254 +     * @param parallelismThreshold the (estimated) number of elements
4255 +     * needed for this operation to be executed in parallel
4256 +     * @param searchFunction a function returning a non-null
4257 +     * result on success, else null
4258 +     * @param <U> the return type of the search function
4259 +     * @return a non-null result from applying the given search
4260 +     * function on each entry, or null if none
4261 +     * @since 1.8
4262 +     */
4263 +    public <U> U searchEntries(long parallelismThreshold,
4264 +                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4265 +        if (searchFunction == null) throw new NullPointerException();
4266 +        return new SearchEntriesTask<K,V,U>
4267 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4268 +             searchFunction, new AtomicReference<U>()).invoke();
4269 +    }
4270  
4271      /**
4272 <     * Returns a collection view of the values contained in this map.  The
4273 <     * collection is backed by the map, so changes to the map are reflected in
792 <     * the collection, and vice-versa.  The collection supports element
793 <     * removal, which removes the corresponding mapping from this map, via the
794 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
795 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
796 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
797 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
798 <     * will never throw {@link java.util.ConcurrentModificationException},
799 <     * and guarantees to traverse elements as they existed upon
800 <     * construction of the iterator, and may (but is not guaranteed to)
801 <     * reflect any modifications subsequent to construction.
4272 >     * Returns the result of accumulating all entries using the
4273 >     * given reducer to combine values, or null if none.
4274       *
4275 <     * @return a collection view of the values contained in this map.
4275 >     * @param parallelismThreshold the (estimated) number of elements
4276 >     * needed for this operation to be executed in parallel
4277 >     * @param reducer a commutative associative combining function
4278 >     * @return the result of accumulating all entries
4279 >     * @since 1.8
4280       */
4281 <    public Collection<V> values() {
4282 <        Collection<V> vs = values;
4283 <        return (vs != null) ? vs : (values = new Values());
4281 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4282 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4283 >        if (reducer == null) throw new NullPointerException();
4284 >        return new ReduceEntriesTask<K,V>
4285 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4286 >             null, reducer).invoke();
4287      }
4288  
4289 +    /**
4290 +     * Returns the result of accumulating the given transformation
4291 +     * of all entries using the given reducer to combine values,
4292 +     * or null if none.
4293 +     *
4294 +     * @param parallelismThreshold the (estimated) number of elements
4295 +     * needed for this operation to be executed in parallel
4296 +     * @param transformer a function returning the transformation
4297 +     * for an element, or null if there is no transformation (in
4298 +     * which case it is not combined)
4299 +     * @param reducer a commutative associative combining function
4300 +     * @param <U> the return type of the transformer
4301 +     * @return the result of accumulating the given transformation
4302 +     * of all entries
4303 +     * @since 1.8
4304 +     */
4305 +    public <U> U reduceEntries(long parallelismThreshold,
4306 +                               Function<Map.Entry<K,V>, ? extends U> transformer,
4307 +                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4308 +        if (transformer == null || reducer == null)
4309 +            throw new NullPointerException();
4310 +        return new MapReduceEntriesTask<K,V,U>
4311 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4312 +             null, transformer, reducer).invoke();
4313 +    }
4314  
4315      /**
4316 <     * Returns a collection view of the mappings contained in this map.  Each
4317 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
4318 <     * collection is backed by the map, so changes to the map are reflected in
815 <     * the collection, and vice-versa.  The collection supports element
816 <     * removal, which removes the corresponding mapping from the map, via the
817 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
818 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
819 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
820 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
821 <     * will never throw {@link java.util.ConcurrentModificationException},
822 <     * and guarantees to traverse elements as they existed upon
823 <     * construction of the iterator, and may (but is not guaranteed to)
824 <     * reflect any modifications subsequent to construction.
4316 >     * Returns the result of accumulating the given transformation
4317 >     * of all entries using the given reducer to combine values,
4318 >     * and the given basis as an identity value.
4319       *
4320 <     * @return a collection view of the mappings contained in this map.
4320 >     * @param parallelismThreshold the (estimated) number of elements
4321 >     * needed for this operation to be executed in parallel
4322 >     * @param transformer a function returning the transformation
4323 >     * for an element
4324 >     * @param basis the identity (initial default value) for the reduction
4325 >     * @param reducer a commutative associative combining function
4326 >     * @return the result of accumulating the given transformation
4327 >     * of all entries
4328 >     * @since 1.8
4329       */
4330 <    public Set<Map.Entry<K,V>> entrySet() {
4331 <        Set<Map.Entry<K,V>> es = entrySet;
4332 <        return (es != null) ? es : (entrySet = new EntrySet());
4330 >    public double reduceEntriesToDouble(long parallelismThreshold,
4331 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4332 >                                        double basis,
4333 >                                        DoubleBinaryOperator reducer) {
4334 >        if (transformer == null || reducer == null)
4335 >            throw new NullPointerException();
4336 >        return new MapReduceEntriesToDoubleTask<K,V>
4337 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4338 >             null, transformer, basis, reducer).invoke();
4339      }
4340  
4341 +    /**
4342 +     * Returns the result of accumulating the given transformation
4343 +     * of all entries using the given reducer to combine values,
4344 +     * and the given basis as an identity value.
4345 +     *
4346 +     * @param parallelismThreshold the (estimated) number of elements
4347 +     * needed for this operation to be executed in parallel
4348 +     * @param transformer a function returning the transformation
4349 +     * for an element
4350 +     * @param basis the identity (initial default value) for the reduction
4351 +     * @param reducer a commutative associative combining function
4352 +     * @return the result of accumulating the given transformation
4353 +     * of all entries
4354 +     * @since 1.8
4355 +     */
4356 +    public long reduceEntriesToLong(long parallelismThreshold,
4357 +                                    ToLongFunction<Map.Entry<K,V>> transformer,
4358 +                                    long basis,
4359 +                                    LongBinaryOperator reducer) {
4360 +        if (transformer == null || reducer == null)
4361 +            throw new NullPointerException();
4362 +        return new MapReduceEntriesToLongTask<K,V>
4363 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4364 +             null, transformer, basis, reducer).invoke();
4365 +    }
4366  
4367      /**
4368 <     * Returns an enumeration of the keys in this table.
4368 >     * Returns the result of accumulating the given transformation
4369 >     * of all entries using the given reducer to combine values,
4370 >     * and the given basis as an identity value.
4371       *
4372 <     * @return  an enumeration of the keys in this table.
4373 <     * @see     Enumeration
4374 <     * @see     #elements()
4375 <     * @see     #keySet()
4376 <     * @see     Map
4372 >     * @param parallelismThreshold the (estimated) number of elements
4373 >     * needed for this operation to be executed in parallel
4374 >     * @param transformer a function returning the transformation
4375 >     * for an element
4376 >     * @param basis the identity (initial default value) for the reduction
4377 >     * @param reducer a commutative associative combining function
4378 >     * @return the result of accumulating the given transformation
4379 >     * of all entries
4380 >     * @since 1.8
4381       */
4382 <    public Enumeration<K> keys() {
4383 <        return new KeyIterator();
4382 >    public int reduceEntriesToInt(long parallelismThreshold,
4383 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4384 >                                  int basis,
4385 >                                  IntBinaryOperator reducer) {
4386 >        if (transformer == null || reducer == null)
4387 >            throw new NullPointerException();
4388 >        return new MapReduceEntriesToIntTask<K,V>
4389 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4390 >             null, transformer, basis, reducer).invoke();
4391      }
4392  
4393 +
4394 +    /* ----------------Views -------------- */
4395 +
4396      /**
4397 <     * Returns an enumeration of the values in this table.
4398 <     * Use the Enumeration methods on the returned object to fetch the elements
4399 <     * sequentially.
4397 >     * Base class for views.
4398 >     */
4399 >    abstract static class CollectionView<K,V,E>
4400 >        implements Collection<E>, java.io.Serializable {
4401 >        private static final long serialVersionUID = 7249069246763182397L;
4402 >        final ConcurrentHashMap<K,V> map;
4403 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4404 >
4405 >        /**
4406 >         * Returns the map backing this view.
4407 >         *
4408 >         * @return the map backing this view
4409 >         */
4410 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4411 >
4412 >        /**
4413 >         * Removes all of the elements from this view, by removing all
4414 >         * the mappings from the map backing this view.
4415 >         */
4416 >        public final void clear()      { map.clear(); }
4417 >        public final int size()        { return map.size(); }
4418 >        public final boolean isEmpty() { return map.isEmpty(); }
4419 >
4420 >        // implementations below rely on concrete classes supplying these
4421 >        // abstract methods
4422 >        /**
4423 >         * Returns an iterator over the elements in this collection.
4424 >         *
4425 >         * <p>The returned iterator is
4426 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4427 >         *
4428 >         * @return an iterator over the elements in this collection
4429 >         */
4430 >        public abstract Iterator<E> iterator();
4431 >        public abstract boolean contains(Object o);
4432 >        public abstract boolean remove(Object o);
4433 >
4434 >        private static final String OOME_MSG = "Required array size too large";
4435 >
4436 >        public final Object[] toArray() {
4437 >            long sz = map.mappingCount();
4438 >            if (sz > MAX_ARRAY_SIZE)
4439 >                throw new OutOfMemoryError(OOME_MSG);
4440 >            int n = (int)sz;
4441 >            Object[] r = new Object[n];
4442 >            int i = 0;
4443 >            for (E e : this) {
4444 >                if (i == n) {
4445 >                    if (n >= MAX_ARRAY_SIZE)
4446 >                        throw new OutOfMemoryError(OOME_MSG);
4447 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4448 >                        n = MAX_ARRAY_SIZE;
4449 >                    else
4450 >                        n += (n >>> 1) + 1;
4451 >                    r = Arrays.copyOf(r, n);
4452 >                }
4453 >                r[i++] = e;
4454 >            }
4455 >            return (i == n) ? r : Arrays.copyOf(r, i);
4456 >        }
4457 >
4458 >        @SuppressWarnings("unchecked")
4459 >        public final <T> T[] toArray(T[] a) {
4460 >            long sz = map.mappingCount();
4461 >            if (sz > MAX_ARRAY_SIZE)
4462 >                throw new OutOfMemoryError(OOME_MSG);
4463 >            int m = (int)sz;
4464 >            T[] r = (a.length >= m) ? a :
4465 >                (T[])java.lang.reflect.Array
4466 >                .newInstance(a.getClass().getComponentType(), m);
4467 >            int n = r.length;
4468 >            int i = 0;
4469 >            for (E e : this) {
4470 >                if (i == n) {
4471 >                    if (n >= MAX_ARRAY_SIZE)
4472 >                        throw new OutOfMemoryError(OOME_MSG);
4473 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4474 >                        n = MAX_ARRAY_SIZE;
4475 >                    else
4476 >                        n += (n >>> 1) + 1;
4477 >                    r = Arrays.copyOf(r, n);
4478 >                }
4479 >                r[i++] = (T)e;
4480 >            }
4481 >            if (a == r && i < n) {
4482 >                r[i] = null; // null-terminate
4483 >                return r;
4484 >            }
4485 >            return (i == n) ? r : Arrays.copyOf(r, i);
4486 >        }
4487 >
4488 >        /**
4489 >         * Returns a string representation of this collection.
4490 >         * The string representation consists of the string representations
4491 >         * of the collection's elements in the order they are returned by
4492 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4493 >         * Adjacent elements are separated by the characters {@code ", "}
4494 >         * (comma and space).  Elements are converted to strings as by
4495 >         * {@link String#valueOf(Object)}.
4496 >         *
4497 >         * @return a string representation of this collection
4498 >         */
4499 >        public final String toString() {
4500 >            StringBuilder sb = new StringBuilder();
4501 >            sb.append('[');
4502 >            Iterator<E> it = iterator();
4503 >            if (it.hasNext()) {
4504 >                for (;;) {
4505 >                    Object e = it.next();
4506 >                    sb.append(e == this ? "(this Collection)" : e);
4507 >                    if (!it.hasNext())
4508 >                        break;
4509 >                    sb.append(',').append(' ');
4510 >                }
4511 >            }
4512 >            return sb.append(']').toString();
4513 >        }
4514 >
4515 >        public final boolean containsAll(Collection<?> c) {
4516 >            if (c != this) {
4517 >                for (Object e : c) {
4518 >                    if (e == null || !contains(e))
4519 >                        return false;
4520 >                }
4521 >            }
4522 >            return true;
4523 >        }
4524 >
4525 >        public final boolean removeAll(Collection<?> c) {
4526 >            if (c == null) throw new NullPointerException();
4527 >            boolean modified = false;
4528 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4529 >                if (c.contains(it.next())) {
4530 >                    it.remove();
4531 >                    modified = true;
4532 >                }
4533 >            }
4534 >            return modified;
4535 >        }
4536 >
4537 >        public final boolean retainAll(Collection<?> c) {
4538 >            if (c == null) throw new NullPointerException();
4539 >            boolean modified = false;
4540 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4541 >                if (!c.contains(it.next())) {
4542 >                    it.remove();
4543 >                    modified = true;
4544 >                }
4545 >            }
4546 >            return modified;
4547 >        }
4548 >
4549 >    }
4550 >
4551 >    /**
4552 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4553 >     * which additions may optionally be enabled by mapping to a
4554 >     * common value.  This class cannot be directly instantiated.
4555 >     * See {@link #keySet() keySet()},
4556 >     * {@link #keySet(Object) keySet(V)},
4557 >     * {@link #newKeySet() newKeySet()},
4558 >     * {@link #newKeySet(int) newKeySet(int)}.
4559       *
4560 <     * @return  an enumeration of the values in this table.
853 <     * @see     java.util.Enumeration
854 <     * @see     #keys()
855 <     * @see     #values()
856 <     * @see     Map
4560 >     * @since 1.8
4561       */
4562 <    public Enumeration<V> elements() {
4563 <        return new ValueIterator();
4562 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4563 >        implements Set<K>, java.io.Serializable {
4564 >        private static final long serialVersionUID = 7249069246763182397L;
4565 >        private final V value;
4566 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4567 >            super(map);
4568 >            this.value = value;
4569 >        }
4570 >
4571 >        /**
4572 >         * Returns the default mapped value for additions,
4573 >         * or {@code null} if additions are not supported.
4574 >         *
4575 >         * @return the default mapped value for additions, or {@code null}
4576 >         * if not supported
4577 >         */
4578 >        public V getMappedValue() { return value; }
4579 >
4580 >        /**
4581 >         * {@inheritDoc}
4582 >         * @throws NullPointerException if the specified key is null
4583 >         */
4584 >        public boolean contains(Object o) { return map.containsKey(o); }
4585 >
4586 >        /**
4587 >         * Removes the key from this map view, by removing the key (and its
4588 >         * corresponding value) from the backing map.  This method does
4589 >         * nothing if the key is not in the map.
4590 >         *
4591 >         * @param  o the key to be removed from the backing map
4592 >         * @return {@code true} if the backing map contained the specified key
4593 >         * @throws NullPointerException if the specified key is null
4594 >         */
4595 >        public boolean remove(Object o) { return map.remove(o) != null; }
4596 >
4597 >        /**
4598 >         * @return an iterator over the keys of the backing map
4599 >         */
4600 >        public Iterator<K> iterator() {
4601 >            Node<K,V>[] t;
4602 >            ConcurrentHashMap<K,V> m = map;
4603 >            int f = (t = m.table) == null ? 0 : t.length;
4604 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4605 >        }
4606 >
4607 >        /**
4608 >         * Adds the specified key to this set view by mapping the key to
4609 >         * the default mapped value in the backing map, if defined.
4610 >         *
4611 >         * @param e key to be added
4612 >         * @return {@code true} if this set changed as a result of the call
4613 >         * @throws NullPointerException if the specified key is null
4614 >         * @throws UnsupportedOperationException if no default mapped value
4615 >         * for additions was provided
4616 >         */
4617 >        public boolean add(K e) {
4618 >            V v;
4619 >            if ((v = value) == null)
4620 >                throw new UnsupportedOperationException();
4621 >            return map.putVal(e, v, true) == null;
4622 >        }
4623 >
4624 >        /**
4625 >         * Adds all of the elements in the specified collection to this set,
4626 >         * as if by calling {@link #add} on each one.
4627 >         *
4628 >         * @param c the elements to be inserted into this set
4629 >         * @return {@code true} if this set changed as a result of the call
4630 >         * @throws NullPointerException if the collection or any of its
4631 >         * elements are {@code null}
4632 >         * @throws UnsupportedOperationException if no default mapped value
4633 >         * for additions was provided
4634 >         */
4635 >        public boolean addAll(Collection<? extends K> c) {
4636 >            boolean added = false;
4637 >            V v;
4638 >            if ((v = value) == null)
4639 >                throw new UnsupportedOperationException();
4640 >            for (K e : c) {
4641 >                if (map.putVal(e, v, true) == null)
4642 >                    added = true;
4643 >            }
4644 >            return added;
4645 >        }
4646 >
4647 >        public int hashCode() {
4648 >            int h = 0;
4649 >            for (K e : this)
4650 >                h += e.hashCode();
4651 >            return h;
4652 >        }
4653 >
4654 >        public boolean equals(Object o) {
4655 >            Set<?> c;
4656 >            return ((o instanceof Set) &&
4657 >                    ((c = (Set<?>)o) == this ||
4658 >                     (containsAll(c) && c.containsAll(this))));
4659 >        }
4660 >
4661 >        public Spliterator<K> spliterator() {
4662 >            Node<K,V>[] t;
4663 >            ConcurrentHashMap<K,V> m = map;
4664 >            long n = m.sumCount();
4665 >            int f = (t = m.table) == null ? 0 : t.length;
4666 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4667 >        }
4668 >
4669 >        public void forEach(Consumer<? super K> action) {
4670 >            if (action == null) throw new NullPointerException();
4671 >            Node<K,V>[] t;
4672 >            if ((t = map.table) != null) {
4673 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4674 >                for (Node<K,V> p; (p = it.advance()) != null; )
4675 >                    action.accept(p.key);
4676 >            }
4677 >        }
4678 >    }
4679 >
4680 >    /**
4681 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4682 >     * values, in which additions are disabled. This class cannot be
4683 >     * directly instantiated. See {@link #values()}.
4684 >     */
4685 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4686 >        implements Collection<V>, java.io.Serializable {
4687 >        private static final long serialVersionUID = 2249069246763182397L;
4688 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4689 >        public final boolean contains(Object o) {
4690 >            return map.containsValue(o);
4691 >        }
4692 >
4693 >        public final boolean remove(Object o) {
4694 >            if (o != null) {
4695 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4696 >                    if (o.equals(it.next())) {
4697 >                        it.remove();
4698 >                        return true;
4699 >                    }
4700 >                }
4701 >            }
4702 >            return false;
4703 >        }
4704 >
4705 >        public final Iterator<V> iterator() {
4706 >            ConcurrentHashMap<K,V> m = map;
4707 >            Node<K,V>[] t;
4708 >            int f = (t = m.table) == null ? 0 : t.length;
4709 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4710 >        }
4711 >
4712 >        public final boolean add(V e) {
4713 >            throw new UnsupportedOperationException();
4714 >        }
4715 >        public final boolean addAll(Collection<? extends V> c) {
4716 >            throw new UnsupportedOperationException();
4717 >        }
4718 >
4719 >        public boolean removeIf(Predicate<? super V> filter) {
4720 >            return map.removeValueIf(filter);
4721 >        }
4722 >
4723 >        public Spliterator<V> spliterator() {
4724 >            Node<K,V>[] t;
4725 >            ConcurrentHashMap<K,V> m = map;
4726 >            long n = m.sumCount();
4727 >            int f = (t = m.table) == null ? 0 : t.length;
4728 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4729 >        }
4730 >
4731 >        public void forEach(Consumer<? super V> action) {
4732 >            if (action == null) throw new NullPointerException();
4733 >            Node<K,V>[] t;
4734 >            if ((t = map.table) != null) {
4735 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4736 >                for (Node<K,V> p; (p = it.advance()) != null; )
4737 >                    action.accept(p.val);
4738 >            }
4739 >        }
4740      }
4741  
4742 <    /* ---------------- Iterator Support -------------- */
4742 >    /**
4743 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4744 >     * entries.  This class cannot be directly instantiated. See
4745 >     * {@link #entrySet()}.
4746 >     */
4747 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4748 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4749 >        private static final long serialVersionUID = 2249069246763182397L;
4750 >        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4751 >
4752 >        public boolean contains(Object o) {
4753 >            Object k, v, r; Map.Entry<?,?> e;
4754 >            return ((o instanceof Map.Entry) &&
4755 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4756 >                    (r = map.get(k)) != null &&
4757 >                    (v = e.getValue()) != null &&
4758 >                    (v == r || v.equals(r)));
4759 >        }
4760  
4761 <    private abstract class HashIterator {
4762 <        private int nextSegmentIndex;
4763 <        private int nextTableIndex;
4764 <        private HashEntry[] currentTable;
4765 <        private HashEntry<K, V> nextEntry;
4766 <        private HashEntry<K, V> lastReturned;
4761 >        public boolean remove(Object o) {
4762 >            Object k, v; Map.Entry<?,?> e;
4763 >            return ((o instanceof Map.Entry) &&
4764 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4765 >                    (v = e.getValue()) != null &&
4766 >                    map.remove(k, v));
4767 >        }
4768  
4769 <        private HashIterator() {
4770 <            nextSegmentIndex = segments.length - 1;
4771 <            nextTableIndex = -1;
4772 <            advance();
4769 >        /**
4770 >         * @return an iterator over the entries of the backing map
4771 >         */
4772 >        public Iterator<Map.Entry<K,V>> iterator() {
4773 >            ConcurrentHashMap<K,V> m = map;
4774 >            Node<K,V>[] t;
4775 >            int f = (t = m.table) == null ? 0 : t.length;
4776 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4777 >        }
4778 >
4779 >        public boolean add(Entry<K,V> e) {
4780 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4781          }
4782  
4783 <        public boolean hasMoreElements() { return hasNext(); }
4783 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4784 >            boolean added = false;
4785 >            for (Entry<K,V> e : c) {
4786 >                if (add(e))
4787 >                    added = true;
4788 >            }
4789 >            return added;
4790 >        }
4791  
4792 <        private void advance() {
4793 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
4794 <                return;
4792 >        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4793 >            return map.removeEntryIf(filter);
4794 >        }
4795  
4796 <            while (nextTableIndex >= 0) {
4797 <                if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
4798 <                    return;
4796 >        public final int hashCode() {
4797 >            int h = 0;
4798 >            Node<K,V>[] t;
4799 >            if ((t = map.table) != null) {
4800 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4801 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4802 >                    h += p.hashCode();
4803 >                }
4804              }
4805 +            return h;
4806 +        }
4807  
4808 <            while (nextSegmentIndex >= 0) {
4809 <                Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
4810 <                if (seg.count != 0) {
4811 <                    currentTable = seg.table;
4812 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
4813 <                        if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
4814 <                            nextTableIndex = j - 1;
4815 <                            return;
4816 <                        }
4808 >        public final boolean equals(Object o) {
4809 >            Set<?> c;
4810 >            return ((o instanceof Set) &&
4811 >                    ((c = (Set<?>)o) == this ||
4812 >                     (containsAll(c) && c.containsAll(this))));
4813 >        }
4814 >
4815 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4816 >            Node<K,V>[] t;
4817 >            ConcurrentHashMap<K,V> m = map;
4818 >            long n = m.sumCount();
4819 >            int f = (t = m.table) == null ? 0 : t.length;
4820 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4821 >        }
4822 >
4823 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4824 >            if (action == null) throw new NullPointerException();
4825 >            Node<K,V>[] t;
4826 >            if ((t = map.table) != null) {
4827 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4828 >                for (Node<K,V> p; (p = it.advance()) != null; )
4829 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4830 >            }
4831 >        }
4832 >
4833 >    }
4834 >
4835 >    // -------------------------------------------------------
4836 >
4837 >    /**
4838 >     * Base class for bulk tasks. Repeats some fields and code from
4839 >     * class Traverser, because we need to subclass CountedCompleter.
4840 >     */
4841 >    @SuppressWarnings("serial")
4842 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4843 >        Node<K,V>[] tab;        // same as Traverser
4844 >        Node<K,V> next;
4845 >        TableStack<K,V> stack, spare;
4846 >        int index;
4847 >        int baseIndex;
4848 >        int baseLimit;
4849 >        final int baseSize;
4850 >        int batch;              // split control
4851 >
4852 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4853 >            super(par);
4854 >            this.batch = b;
4855 >            this.index = this.baseIndex = i;
4856 >            if ((this.tab = t) == null)
4857 >                this.baseSize = this.baseLimit = 0;
4858 >            else if (par == null)
4859 >                this.baseSize = this.baseLimit = t.length;
4860 >            else {
4861 >                this.baseLimit = f;
4862 >                this.baseSize = par.baseSize;
4863 >            }
4864 >        }
4865 >
4866 >        /**
4867 >         * Same as Traverser version.
4868 >         */
4869 >        final Node<K,V> advance() {
4870 >            Node<K,V> e;
4871 >            if ((e = next) != null)
4872 >                e = e.next;
4873 >            for (;;) {
4874 >                Node<K,V>[] t; int i, n;
4875 >                if (e != null)
4876 >                    return next = e;
4877 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4878 >                    (n = t.length) <= (i = index) || i < 0)
4879 >                    return next = null;
4880 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4881 >                    if (e instanceof ForwardingNode) {
4882 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4883 >                        e = null;
4884 >                        pushState(t, i, n);
4885 >                        continue;
4886                      }
4887 +                    else if (e instanceof TreeBin)
4888 +                        e = ((TreeBin<K,V>)e).first;
4889 +                    else
4890 +                        e = null;
4891                  }
4892 +                if (stack != null)
4893 +                    recoverState(n);
4894 +                else if ((index = i + baseSize) >= n)
4895 +                    index = ++baseIndex;
4896              }
4897          }
4898  
4899 <        public boolean hasNext() { return nextEntry != null; }
4899 >        private void pushState(Node<K,V>[] t, int i, int n) {
4900 >            TableStack<K,V> s = spare;
4901 >            if (s != null)
4902 >                spare = s.next;
4903 >            else
4904 >                s = new TableStack<K,V>();
4905 >            s.tab = t;
4906 >            s.length = n;
4907 >            s.index = i;
4908 >            s.next = stack;
4909 >            stack = s;
4910 >        }
4911  
4912 <        HashEntry<K,V> nextEntry() {
4913 <            if (nextEntry == null)
4914 <                throw new NoSuchElementException();
4915 <            lastReturned = nextEntry;
4916 <            advance();
4917 <            return lastReturned;
4912 >        private void recoverState(int n) {
4913 >            TableStack<K,V> s; int len;
4914 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4915 >                n = len;
4916 >                index = s.index;
4917 >                tab = s.tab;
4918 >                s.tab = null;
4919 >                TableStack<K,V> next = s.next;
4920 >                s.next = spare; // save for reuse
4921 >                stack = next;
4922 >                spare = s;
4923 >            }
4924 >            if (s == null && (index += baseSize) >= n)
4925 >                index = ++baseIndex;
4926          }
4927 +    }
4928  
4929 <        public void remove() {
4930 <            if (lastReturned == null)
4931 <                throw new IllegalStateException();
4932 <            ConcurrentHashMap.this.remove(lastReturned.key);
4933 <            lastReturned = null;
4929 >    /*
4930 >     * Task classes. Coded in a regular but ugly format/style to
4931 >     * simplify checks that each variant differs in the right way from
4932 >     * others. The null screenings exist because compilers cannot tell
4933 >     * that we've already null-checked task arguments, so we force
4934 >     * simplest hoisted bypass to help avoid convoluted traps.
4935 >     */
4936 >    @SuppressWarnings("serial")
4937 >    static final class ForEachKeyTask<K,V>
4938 >        extends BulkTask<K,V,Void> {
4939 >        final Consumer<? super K> action;
4940 >        ForEachKeyTask
4941 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4942 >             Consumer<? super K> action) {
4943 >            super(p, b, i, f, t);
4944 >            this.action = action;
4945 >        }
4946 >        public final void compute() {
4947 >            final Consumer<? super K> action;
4948 >            if ((action = this.action) != null) {
4949 >                for (int i = baseIndex, f, h; batch > 0 &&
4950 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4951 >                    addToPendingCount(1);
4952 >                    new ForEachKeyTask<K,V>
4953 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4954 >                         action).fork();
4955 >                }
4956 >                for (Node<K,V> p; (p = advance()) != null;)
4957 >                    action.accept(p.key);
4958 >                propagateCompletion();
4959 >            }
4960          }
4961      }
4962  
4963 <    private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
4964 <        public K next() { return super.nextEntry().key; }
4965 <        public K nextElement() { return super.nextEntry().key; }
4963 >    @SuppressWarnings("serial")
4964 >    static final class ForEachValueTask<K,V>
4965 >        extends BulkTask<K,V,Void> {
4966 >        final Consumer<? super V> action;
4967 >        ForEachValueTask
4968 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4969 >             Consumer<? super V> action) {
4970 >            super(p, b, i, f, t);
4971 >            this.action = action;
4972 >        }
4973 >        public final void compute() {
4974 >            final Consumer<? super V> action;
4975 >            if ((action = this.action) != null) {
4976 >                for (int i = baseIndex, f, h; batch > 0 &&
4977 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4978 >                    addToPendingCount(1);
4979 >                    new ForEachValueTask<K,V>
4980 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4981 >                         action).fork();
4982 >                }
4983 >                for (Node<K,V> p; (p = advance()) != null;)
4984 >                    action.accept(p.val);
4985 >                propagateCompletion();
4986 >            }
4987 >        }
4988      }
4989  
4990 <    private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
4991 <        public V next() { return super.nextEntry().value; }
4992 <        public V nextElement() { return super.nextEntry().value; }
4990 >    @SuppressWarnings("serial")
4991 >    static final class ForEachEntryTask<K,V>
4992 >        extends BulkTask<K,V,Void> {
4993 >        final Consumer<? super Entry<K,V>> action;
4994 >        ForEachEntryTask
4995 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4996 >             Consumer<? super Entry<K,V>> action) {
4997 >            super(p, b, i, f, t);
4998 >            this.action = action;
4999 >        }
5000 >        public final void compute() {
5001 >            final Consumer<? super Entry<K,V>> action;
5002 >            if ((action = this.action) != null) {
5003 >                for (int i = baseIndex, f, h; batch > 0 &&
5004 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5005 >                    addToPendingCount(1);
5006 >                    new ForEachEntryTask<K,V>
5007 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5008 >                         action).fork();
5009 >                }
5010 >                for (Node<K,V> p; (p = advance()) != null; )
5011 >                    action.accept(p);
5012 >                propagateCompletion();
5013 >            }
5014 >        }
5015      }
5016  
5017 <    private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
5018 <        public Map.Entry<K,V> next() { return super.nextEntry(); }
5017 >    @SuppressWarnings("serial")
5018 >    static final class ForEachMappingTask<K,V>
5019 >        extends BulkTask<K,V,Void> {
5020 >        final BiConsumer<? super K, ? super V> action;
5021 >        ForEachMappingTask
5022 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5023 >             BiConsumer<? super K,? super V> action) {
5024 >            super(p, b, i, f, t);
5025 >            this.action = action;
5026 >        }
5027 >        public final void compute() {
5028 >            final BiConsumer<? super K, ? super V> action;
5029 >            if ((action = this.action) != null) {
5030 >                for (int i = baseIndex, f, h; batch > 0 &&
5031 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5032 >                    addToPendingCount(1);
5033 >                    new ForEachMappingTask<K,V>
5034 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5035 >                         action).fork();
5036 >                }
5037 >                for (Node<K,V> p; (p = advance()) != null; )
5038 >                    action.accept(p.key, p.val);
5039 >                propagateCompletion();
5040 >            }
5041 >        }
5042      }
5043  
5044 <    private class KeySet extends AbstractSet<K> {
5045 <        public Iterator<K> iterator() {
5046 <            return new KeyIterator();
5044 >    @SuppressWarnings("serial")
5045 >    static final class ForEachTransformedKeyTask<K,V,U>
5046 >        extends BulkTask<K,V,Void> {
5047 >        final Function<? super K, ? extends U> transformer;
5048 >        final Consumer<? super U> action;
5049 >        ForEachTransformedKeyTask
5050 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5051 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5052 >            super(p, b, i, f, t);
5053 >            this.transformer = transformer; this.action = action;
5054          }
5055 <        public int size() {
5056 <            return ConcurrentHashMap.this.size();
5055 >        public final void compute() {
5056 >            final Function<? super K, ? extends U> transformer;
5057 >            final Consumer<? super U> action;
5058 >            if ((transformer = this.transformer) != null &&
5059 >                (action = this.action) != null) {
5060 >                for (int i = baseIndex, f, h; batch > 0 &&
5061 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5062 >                    addToPendingCount(1);
5063 >                    new ForEachTransformedKeyTask<K,V,U>
5064 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5065 >                         transformer, action).fork();
5066 >                }
5067 >                for (Node<K,V> p; (p = advance()) != null; ) {
5068 >                    U u;
5069 >                    if ((u = transformer.apply(p.key)) != null)
5070 >                        action.accept(u);
5071 >                }
5072 >                propagateCompletion();
5073 >            }
5074          }
5075 <        public boolean contains(Object o) {
5076 <            return ConcurrentHashMap.this.containsKey(o);
5075 >    }
5076 >
5077 >    @SuppressWarnings("serial")
5078 >    static final class ForEachTransformedValueTask<K,V,U>
5079 >        extends BulkTask<K,V,Void> {
5080 >        final Function<? super V, ? extends U> transformer;
5081 >        final Consumer<? super U> action;
5082 >        ForEachTransformedValueTask
5083 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5084 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5085 >            super(p, b, i, f, t);
5086 >            this.transformer = transformer; this.action = action;
5087          }
5088 <        public boolean remove(Object o) {
5089 <            return ConcurrentHashMap.this.remove(o) != null;
5088 >        public final void compute() {
5089 >            final Function<? super V, ? extends U> transformer;
5090 >            final Consumer<? super U> action;
5091 >            if ((transformer = this.transformer) != null &&
5092 >                (action = this.action) != null) {
5093 >                for (int i = baseIndex, f, h; batch > 0 &&
5094 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5095 >                    addToPendingCount(1);
5096 >                    new ForEachTransformedValueTask<K,V,U>
5097 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5098 >                         transformer, action).fork();
5099 >                }
5100 >                for (Node<K,V> p; (p = advance()) != null; ) {
5101 >                    U u;
5102 >                    if ((u = transformer.apply(p.val)) != null)
5103 >                        action.accept(u);
5104 >                }
5105 >                propagateCompletion();
5106 >            }
5107          }
5108 <        public void clear() {
5109 <            ConcurrentHashMap.this.clear();
5108 >    }
5109 >
5110 >    @SuppressWarnings("serial")
5111 >    static final class ForEachTransformedEntryTask<K,V,U>
5112 >        extends BulkTask<K,V,Void> {
5113 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5114 >        final Consumer<? super U> action;
5115 >        ForEachTransformedEntryTask
5116 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5117 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5118 >            super(p, b, i, f, t);
5119 >            this.transformer = transformer; this.action = action;
5120 >        }
5121 >        public final void compute() {
5122 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5123 >            final Consumer<? super U> action;
5124 >            if ((transformer = this.transformer) != null &&
5125 >                (action = this.action) != null) {
5126 >                for (int i = baseIndex, f, h; batch > 0 &&
5127 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5128 >                    addToPendingCount(1);
5129 >                    new ForEachTransformedEntryTask<K,V,U>
5130 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5131 >                         transformer, action).fork();
5132 >                }
5133 >                for (Node<K,V> p; (p = advance()) != null; ) {
5134 >                    U u;
5135 >                    if ((u = transformer.apply(p)) != null)
5136 >                        action.accept(u);
5137 >                }
5138 >                propagateCompletion();
5139 >            }
5140          }
5141      }
5142  
5143 <    private class Values extends AbstractCollection<V> {
5144 <        public Iterator<V> iterator() {
5145 <            return new ValueIterator();
5143 >    @SuppressWarnings("serial")
5144 >    static final class ForEachTransformedMappingTask<K,V,U>
5145 >        extends BulkTask<K,V,Void> {
5146 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5147 >        final Consumer<? super U> action;
5148 >        ForEachTransformedMappingTask
5149 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5150 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5151 >             Consumer<? super U> action) {
5152 >            super(p, b, i, f, t);
5153 >            this.transformer = transformer; this.action = action;
5154          }
5155 <        public int size() {
5156 <            return ConcurrentHashMap.this.size();
5155 >        public final void compute() {
5156 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5157 >            final Consumer<? super U> action;
5158 >            if ((transformer = this.transformer) != null &&
5159 >                (action = this.action) != null) {
5160 >                for (int i = baseIndex, f, h; batch > 0 &&
5161 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5162 >                    addToPendingCount(1);
5163 >                    new ForEachTransformedMappingTask<K,V,U>
5164 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5165 >                         transformer, action).fork();
5166 >                }
5167 >                for (Node<K,V> p; (p = advance()) != null; ) {
5168 >                    U u;
5169 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5170 >                        action.accept(u);
5171 >                }
5172 >                propagateCompletion();
5173 >            }
5174          }
5175 <        public boolean contains(Object o) {
5176 <            return ConcurrentHashMap.this.containsValue(o);
5175 >    }
5176 >
5177 >    @SuppressWarnings("serial")
5178 >    static final class SearchKeysTask<K,V,U>
5179 >        extends BulkTask<K,V,U> {
5180 >        final Function<? super K, ? extends U> searchFunction;
5181 >        final AtomicReference<U> result;
5182 >        SearchKeysTask
5183 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5184 >             Function<? super K, ? extends U> searchFunction,
5185 >             AtomicReference<U> result) {
5186 >            super(p, b, i, f, t);
5187 >            this.searchFunction = searchFunction; this.result = result;
5188          }
5189 <        public void clear() {
5190 <            ConcurrentHashMap.this.clear();
5189 >        public final U getRawResult() { return result.get(); }
5190 >        public final void compute() {
5191 >            final Function<? super K, ? extends U> searchFunction;
5192 >            final AtomicReference<U> result;
5193 >            if ((searchFunction = this.searchFunction) != null &&
5194 >                (result = this.result) != null) {
5195 >                for (int i = baseIndex, f, h; batch > 0 &&
5196 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5197 >                    if (result.get() != null)
5198 >                        return;
5199 >                    addToPendingCount(1);
5200 >                    new SearchKeysTask<K,V,U>
5201 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5202 >                         searchFunction, result).fork();
5203 >                }
5204 >                while (result.get() == null) {
5205 >                    U u;
5206 >                    Node<K,V> p;
5207 >                    if ((p = advance()) == null) {
5208 >                        propagateCompletion();
5209 >                        break;
5210 >                    }
5211 >                    if ((u = searchFunction.apply(p.key)) != null) {
5212 >                        if (result.compareAndSet(null, u))
5213 >                            quietlyCompleteRoot();
5214 >                        break;
5215 >                    }
5216 >                }
5217 >            }
5218          }
5219      }
5220  
5221 <    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
5222 <        public Iterator<Map.Entry<K,V>> iterator() {
5223 <            return new EntryIterator();
5221 >    @SuppressWarnings("serial")
5222 >    static final class SearchValuesTask<K,V,U>
5223 >        extends BulkTask<K,V,U> {
5224 >        final Function<? super V, ? extends U> searchFunction;
5225 >        final AtomicReference<U> result;
5226 >        SearchValuesTask
5227 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5228 >             Function<? super V, ? extends U> searchFunction,
5229 >             AtomicReference<U> result) {
5230 >            super(p, b, i, f, t);
5231 >            this.searchFunction = searchFunction; this.result = result;
5232          }
5233 <        public boolean contains(Object o) {
5234 <            if (!(o instanceof Map.Entry))
5235 <                return false;
5236 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
5237 <            V v = ConcurrentHashMap.this.get(e.getKey());
5238 <            return v != null && v.equals(e.getValue());
5233 >        public final U getRawResult() { return result.get(); }
5234 >        public final void compute() {
5235 >            final Function<? super V, ? extends U> searchFunction;
5236 >            final AtomicReference<U> result;
5237 >            if ((searchFunction = this.searchFunction) != null &&
5238 >                (result = this.result) != null) {
5239 >                for (int i = baseIndex, f, h; batch > 0 &&
5240 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5241 >                    if (result.get() != null)
5242 >                        return;
5243 >                    addToPendingCount(1);
5244 >                    new SearchValuesTask<K,V,U>
5245 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5246 >                         searchFunction, result).fork();
5247 >                }
5248 >                while (result.get() == null) {
5249 >                    U u;
5250 >                    Node<K,V> p;
5251 >                    if ((p = advance()) == null) {
5252 >                        propagateCompletion();
5253 >                        break;
5254 >                    }
5255 >                    if ((u = searchFunction.apply(p.val)) != null) {
5256 >                        if (result.compareAndSet(null, u))
5257 >                            quietlyCompleteRoot();
5258 >                        break;
5259 >                    }
5260 >                }
5261 >            }
5262          }
5263 <        public boolean remove(Object o) {
5264 <            if (!(o instanceof Map.Entry))
5265 <                return false;
5266 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
5267 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
5263 >    }
5264 >
5265 >    @SuppressWarnings("serial")
5266 >    static final class SearchEntriesTask<K,V,U>
5267 >        extends BulkTask<K,V,U> {
5268 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5269 >        final AtomicReference<U> result;
5270 >        SearchEntriesTask
5271 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5272 >             Function<Entry<K,V>, ? extends U> searchFunction,
5273 >             AtomicReference<U> result) {
5274 >            super(p, b, i, f, t);
5275 >            this.searchFunction = searchFunction; this.result = result;
5276 >        }
5277 >        public final U getRawResult() { return result.get(); }
5278 >        public final void compute() {
5279 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5280 >            final AtomicReference<U> result;
5281 >            if ((searchFunction = this.searchFunction) != null &&
5282 >                (result = this.result) != null) {
5283 >                for (int i = baseIndex, f, h; batch > 0 &&
5284 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5285 >                    if (result.get() != null)
5286 >                        return;
5287 >                    addToPendingCount(1);
5288 >                    new SearchEntriesTask<K,V,U>
5289 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5290 >                         searchFunction, result).fork();
5291 >                }
5292 >                while (result.get() == null) {
5293 >                    U u;
5294 >                    Node<K,V> p;
5295 >                    if ((p = advance()) == null) {
5296 >                        propagateCompletion();
5297 >                        break;
5298 >                    }
5299 >                    if ((u = searchFunction.apply(p)) != null) {
5300 >                        if (result.compareAndSet(null, u))
5301 >                            quietlyCompleteRoot();
5302 >                        return;
5303 >                    }
5304 >                }
5305 >            }
5306          }
5307 <        public int size() {
5308 <            return ConcurrentHashMap.this.size();
5307 >    }
5308 >
5309 >    @SuppressWarnings("serial")
5310 >    static final class SearchMappingsTask<K,V,U>
5311 >        extends BulkTask<K,V,U> {
5312 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5313 >        final AtomicReference<U> result;
5314 >        SearchMappingsTask
5315 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5316 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5317 >             AtomicReference<U> result) {
5318 >            super(p, b, i, f, t);
5319 >            this.searchFunction = searchFunction; this.result = result;
5320          }
5321 <        public void clear() {
5322 <            ConcurrentHashMap.this.clear();
5321 >        public final U getRawResult() { return result.get(); }
5322 >        public final void compute() {
5323 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5324 >            final AtomicReference<U> result;
5325 >            if ((searchFunction = this.searchFunction) != null &&
5326 >                (result = this.result) != null) {
5327 >                for (int i = baseIndex, f, h; batch > 0 &&
5328 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5329 >                    if (result.get() != null)
5330 >                        return;
5331 >                    addToPendingCount(1);
5332 >                    new SearchMappingsTask<K,V,U>
5333 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5334 >                         searchFunction, result).fork();
5335 >                }
5336 >                while (result.get() == null) {
5337 >                    U u;
5338 >                    Node<K,V> p;
5339 >                    if ((p = advance()) == null) {
5340 >                        propagateCompletion();
5341 >                        break;
5342 >                    }
5343 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5344 >                        if (result.compareAndSet(null, u))
5345 >                            quietlyCompleteRoot();
5346 >                        break;
5347 >                    }
5348 >                }
5349 >            }
5350          }
5351      }
5352  
5353 <    /* ---------------- Serialization Support -------------- */
5353 >    @SuppressWarnings("serial")
5354 >    static final class ReduceKeysTask<K,V>
5355 >        extends BulkTask<K,V,K> {
5356 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5357 >        K result;
5358 >        ReduceKeysTask<K,V> rights, nextRight;
5359 >        ReduceKeysTask
5360 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5361 >             ReduceKeysTask<K,V> nextRight,
5362 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5363 >            super(p, b, i, f, t); this.nextRight = nextRight;
5364 >            this.reducer = reducer;
5365 >        }
5366 >        public final K getRawResult() { return result; }
5367 >        public final void compute() {
5368 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5369 >            if ((reducer = this.reducer) != null) {
5370 >                for (int i = baseIndex, f, h; batch > 0 &&
5371 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5372 >                    addToPendingCount(1);
5373 >                    (rights = new ReduceKeysTask<K,V>
5374 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5375 >                      rights, reducer)).fork();
5376 >                }
5377 >                K r = null;
5378 >                for (Node<K,V> p; (p = advance()) != null; ) {
5379 >                    K u = p.key;
5380 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5381 >                }
5382 >                result = r;
5383 >                CountedCompleter<?> c;
5384 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5385 >                    @SuppressWarnings("unchecked")
5386 >                    ReduceKeysTask<K,V>
5387 >                        t = (ReduceKeysTask<K,V>)c,
5388 >                        s = t.rights;
5389 >                    while (s != null) {
5390 >                        K tr, sr;
5391 >                        if ((sr = s.result) != null)
5392 >                            t.result = (((tr = t.result) == null) ? sr :
5393 >                                        reducer.apply(tr, sr));
5394 >                        s = t.rights = s.nextRight;
5395 >                    }
5396 >                }
5397 >            }
5398 >        }
5399 >    }
5400  
5401 <    /**
5402 <     * Save the state of the <tt>ConcurrentHashMap</tt>
5403 <     * instance to a stream (i.e.,
5404 <     * serialize it).
5405 <     * @param s the stream
5406 <     * @serialData
5407 <     * the key (Object) and value (Object)
5408 <     * for each key-value mapping, followed by a null pair.
5409 <     * The key-value mappings are emitted in no particular order.
5410 <     */
5411 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
5412 <        s.defaultWriteObject();
5401 >    @SuppressWarnings("serial")
5402 >    static final class ReduceValuesTask<K,V>
5403 >        extends BulkTask<K,V,V> {
5404 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5405 >        V result;
5406 >        ReduceValuesTask<K,V> rights, nextRight;
5407 >        ReduceValuesTask
5408 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5409 >             ReduceValuesTask<K,V> nextRight,
5410 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5411 >            super(p, b, i, f, t); this.nextRight = nextRight;
5412 >            this.reducer = reducer;
5413 >        }
5414 >        public final V getRawResult() { return result; }
5415 >        public final void compute() {
5416 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5417 >            if ((reducer = this.reducer) != null) {
5418 >                for (int i = baseIndex, f, h; batch > 0 &&
5419 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5420 >                    addToPendingCount(1);
5421 >                    (rights = new ReduceValuesTask<K,V>
5422 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5423 >                      rights, reducer)).fork();
5424 >                }
5425 >                V r = null;
5426 >                for (Node<K,V> p; (p = advance()) != null; ) {
5427 >                    V v = p.val;
5428 >                    r = (r == null) ? v : reducer.apply(r, v);
5429 >                }
5430 >                result = r;
5431 >                CountedCompleter<?> c;
5432 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5433 >                    @SuppressWarnings("unchecked")
5434 >                    ReduceValuesTask<K,V>
5435 >                        t = (ReduceValuesTask<K,V>)c,
5436 >                        s = t.rights;
5437 >                    while (s != null) {
5438 >                        V tr, sr;
5439 >                        if ((sr = s.result) != null)
5440 >                            t.result = (((tr = t.result) == null) ? sr :
5441 >                                        reducer.apply(tr, sr));
5442 >                        s = t.rights = s.nextRight;
5443 >                    }
5444 >                }
5445 >            }
5446 >        }
5447 >    }
5448  
5449 <        for (int k = 0; k < segments.length; ++k) {
5450 <            Segment<K,V> seg = (Segment<K,V>)segments[k];
5451 <            seg.lock();
5452 <            try {
5453 <                HashEntry[] tab = seg.table;
5454 <                for (int i = 0; i < tab.length; ++i) {
5455 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
5456 <                        s.writeObject(e.key);
5457 <                        s.writeObject(e.value);
5449 >    @SuppressWarnings("serial")
5450 >    static final class ReduceEntriesTask<K,V>
5451 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5452 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5453 >        Map.Entry<K,V> result;
5454 >        ReduceEntriesTask<K,V> rights, nextRight;
5455 >        ReduceEntriesTask
5456 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5457 >             ReduceEntriesTask<K,V> nextRight,
5458 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5459 >            super(p, b, i, f, t); this.nextRight = nextRight;
5460 >            this.reducer = reducer;
5461 >        }
5462 >        public final Map.Entry<K,V> getRawResult() { return result; }
5463 >        public final void compute() {
5464 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5465 >            if ((reducer = this.reducer) != null) {
5466 >                for (int i = baseIndex, f, h; batch > 0 &&
5467 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5468 >                    addToPendingCount(1);
5469 >                    (rights = new ReduceEntriesTask<K,V>
5470 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5471 >                      rights, reducer)).fork();
5472 >                }
5473 >                Map.Entry<K,V> r = null;
5474 >                for (Node<K,V> p; (p = advance()) != null; )
5475 >                    r = (r == null) ? p : reducer.apply(r, p);
5476 >                result = r;
5477 >                CountedCompleter<?> c;
5478 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5479 >                    @SuppressWarnings("unchecked")
5480 >                    ReduceEntriesTask<K,V>
5481 >                        t = (ReduceEntriesTask<K,V>)c,
5482 >                        s = t.rights;
5483 >                    while (s != null) {
5484 >                        Map.Entry<K,V> tr, sr;
5485 >                        if ((sr = s.result) != null)
5486 >                            t.result = (((tr = t.result) == null) ? sr :
5487 >                                        reducer.apply(tr, sr));
5488 >                        s = t.rights = s.nextRight;
5489 >                    }
5490 >                }
5491 >            }
5492 >        }
5493 >    }
5494 >
5495 >    @SuppressWarnings("serial")
5496 >    static final class MapReduceKeysTask<K,V,U>
5497 >        extends BulkTask<K,V,U> {
5498 >        final Function<? super K, ? extends U> transformer;
5499 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5500 >        U result;
5501 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5502 >        MapReduceKeysTask
5503 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5504 >             MapReduceKeysTask<K,V,U> nextRight,
5505 >             Function<? super K, ? extends U> transformer,
5506 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5507 >            super(p, b, i, f, t); this.nextRight = nextRight;
5508 >            this.transformer = transformer;
5509 >            this.reducer = reducer;
5510 >        }
5511 >        public final U getRawResult() { return result; }
5512 >        public final void compute() {
5513 >            final Function<? super K, ? extends U> transformer;
5514 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5515 >            if ((transformer = this.transformer) != null &&
5516 >                (reducer = this.reducer) != null) {
5517 >                for (int i = baseIndex, f, h; batch > 0 &&
5518 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5519 >                    addToPendingCount(1);
5520 >                    (rights = new MapReduceKeysTask<K,V,U>
5521 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5522 >                      rights, transformer, reducer)).fork();
5523 >                }
5524 >                U r = null;
5525 >                for (Node<K,V> p; (p = advance()) != null; ) {
5526 >                    U u;
5527 >                    if ((u = transformer.apply(p.key)) != null)
5528 >                        r = (r == null) ? u : reducer.apply(r, u);
5529 >                }
5530 >                result = r;
5531 >                CountedCompleter<?> c;
5532 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5533 >                    @SuppressWarnings("unchecked")
5534 >                    MapReduceKeysTask<K,V,U>
5535 >                        t = (MapReduceKeysTask<K,V,U>)c,
5536 >                        s = t.rights;
5537 >                    while (s != null) {
5538 >                        U tr, sr;
5539 >                        if ((sr = s.result) != null)
5540 >                            t.result = (((tr = t.result) == null) ? sr :
5541 >                                        reducer.apply(tr, sr));
5542 >                        s = t.rights = s.nextRight;
5543                      }
5544                  }
5545              }
5546 <            finally {
5547 <                seg.unlock();
5546 >        }
5547 >    }
5548 >
5549 >    @SuppressWarnings("serial")
5550 >    static final class MapReduceValuesTask<K,V,U>
5551 >        extends BulkTask<K,V,U> {
5552 >        final Function<? super V, ? extends U> transformer;
5553 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5554 >        U result;
5555 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5556 >        MapReduceValuesTask
5557 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5558 >             MapReduceValuesTask<K,V,U> nextRight,
5559 >             Function<? super V, ? extends U> transformer,
5560 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5561 >            super(p, b, i, f, t); this.nextRight = nextRight;
5562 >            this.transformer = transformer;
5563 >            this.reducer = reducer;
5564 >        }
5565 >        public final U getRawResult() { return result; }
5566 >        public final void compute() {
5567 >            final Function<? super V, ? extends U> transformer;
5568 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5569 >            if ((transformer = this.transformer) != null &&
5570 >                (reducer = this.reducer) != null) {
5571 >                for (int i = baseIndex, f, h; batch > 0 &&
5572 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5573 >                    addToPendingCount(1);
5574 >                    (rights = new MapReduceValuesTask<K,V,U>
5575 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5576 >                      rights, transformer, reducer)).fork();
5577 >                }
5578 >                U r = null;
5579 >                for (Node<K,V> p; (p = advance()) != null; ) {
5580 >                    U u;
5581 >                    if ((u = transformer.apply(p.val)) != null)
5582 >                        r = (r == null) ? u : reducer.apply(r, u);
5583 >                }
5584 >                result = r;
5585 >                CountedCompleter<?> c;
5586 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5587 >                    @SuppressWarnings("unchecked")
5588 >                    MapReduceValuesTask<K,V,U>
5589 >                        t = (MapReduceValuesTask<K,V,U>)c,
5590 >                        s = t.rights;
5591 >                    while (s != null) {
5592 >                        U tr, sr;
5593 >                        if ((sr = s.result) != null)
5594 >                            t.result = (((tr = t.result) == null) ? sr :
5595 >                                        reducer.apply(tr, sr));
5596 >                        s = t.rights = s.nextRight;
5597 >                    }
5598 >                }
5599              }
5600          }
1023        s.writeObject(null);
1024        s.writeObject(null);
5601      }
5602  
5603 <    /**
5604 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
5605 <     * instance from a stream (i.e.,
5606 <     * deserialize it).
5607 <     * @param s the stream
5608 <     */
5609 <    private void readObject(java.io.ObjectInputStream s)
5610 <        throws IOException, ClassNotFoundException  {
5611 <        s.defaultReadObject();
5603 >    @SuppressWarnings("serial")
5604 >    static final class MapReduceEntriesTask<K,V,U>
5605 >        extends BulkTask<K,V,U> {
5606 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5607 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5608 >        U result;
5609 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5610 >        MapReduceEntriesTask
5611 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5612 >             MapReduceEntriesTask<K,V,U> nextRight,
5613 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5614 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5615 >            super(p, b, i, f, t); this.nextRight = nextRight;
5616 >            this.transformer = transformer;
5617 >            this.reducer = reducer;
5618 >        }
5619 >        public final U getRawResult() { return result; }
5620 >        public final void compute() {
5621 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5622 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5623 >            if ((transformer = this.transformer) != null &&
5624 >                (reducer = this.reducer) != null) {
5625 >                for (int i = baseIndex, f, h; batch > 0 &&
5626 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5627 >                    addToPendingCount(1);
5628 >                    (rights = new MapReduceEntriesTask<K,V,U>
5629 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5630 >                      rights, transformer, reducer)).fork();
5631 >                }
5632 >                U r = null;
5633 >                for (Node<K,V> p; (p = advance()) != null; ) {
5634 >                    U u;
5635 >                    if ((u = transformer.apply(p)) != null)
5636 >                        r = (r == null) ? u : reducer.apply(r, u);
5637 >                }
5638 >                result = r;
5639 >                CountedCompleter<?> c;
5640 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5641 >                    @SuppressWarnings("unchecked")
5642 >                    MapReduceEntriesTask<K,V,U>
5643 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5644 >                        s = t.rights;
5645 >                    while (s != null) {
5646 >                        U tr, sr;
5647 >                        if ((sr = s.result) != null)
5648 >                            t.result = (((tr = t.result) == null) ? sr :
5649 >                                        reducer.apply(tr, sr));
5650 >                        s = t.rights = s.nextRight;
5651 >                    }
5652 >                }
5653 >            }
5654 >        }
5655 >    }
5656  
5657 <        // Initialize each segment to be minimally sized, and let grow.
5658 <        for (int i = 0; i < segments.length; ++i) {
5659 <            segments[i].setTable(new HashEntry[1]);
5657 >    @SuppressWarnings("serial")
5658 >    static final class MapReduceMappingsTask<K,V,U>
5659 >        extends BulkTask<K,V,U> {
5660 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5661 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5662 >        U result;
5663 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5664 >        MapReduceMappingsTask
5665 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5666 >             MapReduceMappingsTask<K,V,U> nextRight,
5667 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5668 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5669 >            super(p, b, i, f, t); this.nextRight = nextRight;
5670 >            this.transformer = transformer;
5671 >            this.reducer = reducer;
5672          }
5673 +        public final U getRawResult() { return result; }
5674 +        public final void compute() {
5675 +            final BiFunction<? super K, ? super V, ? extends U> transformer;
5676 +            final BiFunction<? super U, ? super U, ? extends U> reducer;
5677 +            if ((transformer = this.transformer) != null &&
5678 +                (reducer = this.reducer) != null) {
5679 +                for (int i = baseIndex, f, h; batch > 0 &&
5680 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5681 +                    addToPendingCount(1);
5682 +                    (rights = new MapReduceMappingsTask<K,V,U>
5683 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5684 +                      rights, transformer, reducer)).fork();
5685 +                }
5686 +                U r = null;
5687 +                for (Node<K,V> p; (p = advance()) != null; ) {
5688 +                    U u;
5689 +                    if ((u = transformer.apply(p.key, p.val)) != null)
5690 +                        r = (r == null) ? u : reducer.apply(r, u);
5691 +                }
5692 +                result = r;
5693 +                CountedCompleter<?> c;
5694 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5695 +                    @SuppressWarnings("unchecked")
5696 +                    MapReduceMappingsTask<K,V,U>
5697 +                        t = (MapReduceMappingsTask<K,V,U>)c,
5698 +                        s = t.rights;
5699 +                    while (s != null) {
5700 +                        U tr, sr;
5701 +                        if ((sr = s.result) != null)
5702 +                            t.result = (((tr = t.result) == null) ? sr :
5703 +                                        reducer.apply(tr, sr));
5704 +                        s = t.rights = s.nextRight;
5705 +                    }
5706 +                }
5707 +            }
5708 +        }
5709 +    }
5710  
5711 <        // Read the keys and values, and put the mappings in the table
5712 <        for (;;) {
5713 <            K key = (K) s.readObject();
5714 <            V value = (V) s.readObject();
5715 <            if (key == null)
5716 <                break;
5717 <            put(key, value);
5711 >    @SuppressWarnings("serial")
5712 >    static final class MapReduceKeysToDoubleTask<K,V>
5713 >        extends BulkTask<K,V,Double> {
5714 >        final ToDoubleFunction<? super K> transformer;
5715 >        final DoubleBinaryOperator reducer;
5716 >        final double basis;
5717 >        double result;
5718 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5719 >        MapReduceKeysToDoubleTask
5720 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5721 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5722 >             ToDoubleFunction<? super K> transformer,
5723 >             double basis,
5724 >             DoubleBinaryOperator reducer) {
5725 >            super(p, b, i, f, t); this.nextRight = nextRight;
5726 >            this.transformer = transformer;
5727 >            this.basis = basis; this.reducer = reducer;
5728 >        }
5729 >        public final Double getRawResult() { return result; }
5730 >        public final void compute() {
5731 >            final ToDoubleFunction<? super K> transformer;
5732 >            final DoubleBinaryOperator reducer;
5733 >            if ((transformer = this.transformer) != null &&
5734 >                (reducer = this.reducer) != null) {
5735 >                double r = this.basis;
5736 >                for (int i = baseIndex, f, h; batch > 0 &&
5737 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5738 >                    addToPendingCount(1);
5739 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5740 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5741 >                      rights, transformer, r, reducer)).fork();
5742 >                }
5743 >                for (Node<K,V> p; (p = advance()) != null; )
5744 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5745 >                result = r;
5746 >                CountedCompleter<?> c;
5747 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5748 >                    @SuppressWarnings("unchecked")
5749 >                    MapReduceKeysToDoubleTask<K,V>
5750 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5751 >                        s = t.rights;
5752 >                    while (s != null) {
5753 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5754 >                        s = t.rights = s.nextRight;
5755 >                    }
5756 >                }
5757 >            }
5758          }
5759      }
1051 }
5760  
5761 +    @SuppressWarnings("serial")
5762 +    static final class MapReduceValuesToDoubleTask<K,V>
5763 +        extends BulkTask<K,V,Double> {
5764 +        final ToDoubleFunction<? super V> transformer;
5765 +        final DoubleBinaryOperator reducer;
5766 +        final double basis;
5767 +        double result;
5768 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5769 +        MapReduceValuesToDoubleTask
5770 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5771 +             MapReduceValuesToDoubleTask<K,V> nextRight,
5772 +             ToDoubleFunction<? super V> transformer,
5773 +             double basis,
5774 +             DoubleBinaryOperator reducer) {
5775 +            super(p, b, i, f, t); this.nextRight = nextRight;
5776 +            this.transformer = transformer;
5777 +            this.basis = basis; this.reducer = reducer;
5778 +        }
5779 +        public final Double getRawResult() { return result; }
5780 +        public final void compute() {
5781 +            final ToDoubleFunction<? super V> transformer;
5782 +            final DoubleBinaryOperator reducer;
5783 +            if ((transformer = this.transformer) != null &&
5784 +                (reducer = this.reducer) != null) {
5785 +                double r = this.basis;
5786 +                for (int i = baseIndex, f, h; batch > 0 &&
5787 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5788 +                    addToPendingCount(1);
5789 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
5790 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5791 +                      rights, transformer, r, reducer)).fork();
5792 +                }
5793 +                for (Node<K,V> p; (p = advance()) != null; )
5794 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5795 +                result = r;
5796 +                CountedCompleter<?> c;
5797 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5798 +                    @SuppressWarnings("unchecked")
5799 +                    MapReduceValuesToDoubleTask<K,V>
5800 +                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5801 +                        s = t.rights;
5802 +                    while (s != null) {
5803 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5804 +                        s = t.rights = s.nextRight;
5805 +                    }
5806 +                }
5807 +            }
5808 +        }
5809 +    }
5810 +
5811 +    @SuppressWarnings("serial")
5812 +    static final class MapReduceEntriesToDoubleTask<K,V>
5813 +        extends BulkTask<K,V,Double> {
5814 +        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5815 +        final DoubleBinaryOperator reducer;
5816 +        final double basis;
5817 +        double result;
5818 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5819 +        MapReduceEntriesToDoubleTask
5820 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5821 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
5822 +             ToDoubleFunction<Map.Entry<K,V>> transformer,
5823 +             double basis,
5824 +             DoubleBinaryOperator reducer) {
5825 +            super(p, b, i, f, t); this.nextRight = nextRight;
5826 +            this.transformer = transformer;
5827 +            this.basis = basis; this.reducer = reducer;
5828 +        }
5829 +        public final Double getRawResult() { return result; }
5830 +        public final void compute() {
5831 +            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5832 +            final DoubleBinaryOperator reducer;
5833 +            if ((transformer = this.transformer) != null &&
5834 +                (reducer = this.reducer) != null) {
5835 +                double r = this.basis;
5836 +                for (int i = baseIndex, f, h; batch > 0 &&
5837 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5838 +                    addToPendingCount(1);
5839 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5840 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5841 +                      rights, transformer, r, reducer)).fork();
5842 +                }
5843 +                for (Node<K,V> p; (p = advance()) != null; )
5844 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5845 +                result = r;
5846 +                CountedCompleter<?> c;
5847 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5848 +                    @SuppressWarnings("unchecked")
5849 +                    MapReduceEntriesToDoubleTask<K,V>
5850 +                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5851 +                        s = t.rights;
5852 +                    while (s != null) {
5853 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5854 +                        s = t.rights = s.nextRight;
5855 +                    }
5856 +                }
5857 +            }
5858 +        }
5859 +    }
5860 +
5861 +    @SuppressWarnings("serial")
5862 +    static final class MapReduceMappingsToDoubleTask<K,V>
5863 +        extends BulkTask<K,V,Double> {
5864 +        final ToDoubleBiFunction<? super K, ? super V> transformer;
5865 +        final DoubleBinaryOperator reducer;
5866 +        final double basis;
5867 +        double result;
5868 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5869 +        MapReduceMappingsToDoubleTask
5870 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5871 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
5872 +             ToDoubleBiFunction<? super K, ? super V> transformer,
5873 +             double basis,
5874 +             DoubleBinaryOperator reducer) {
5875 +            super(p, b, i, f, t); this.nextRight = nextRight;
5876 +            this.transformer = transformer;
5877 +            this.basis = basis; this.reducer = reducer;
5878 +        }
5879 +        public final Double getRawResult() { return result; }
5880 +        public final void compute() {
5881 +            final ToDoubleBiFunction<? super K, ? super V> transformer;
5882 +            final DoubleBinaryOperator reducer;
5883 +            if ((transformer = this.transformer) != null &&
5884 +                (reducer = this.reducer) != null) {
5885 +                double r = this.basis;
5886 +                for (int i = baseIndex, f, h; batch > 0 &&
5887 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5888 +                    addToPendingCount(1);
5889 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5890 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5891 +                      rights, transformer, r, reducer)).fork();
5892 +                }
5893 +                for (Node<K,V> p; (p = advance()) != null; )
5894 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5895 +                result = r;
5896 +                CountedCompleter<?> c;
5897 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5898 +                    @SuppressWarnings("unchecked")
5899 +                    MapReduceMappingsToDoubleTask<K,V>
5900 +                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5901 +                        s = t.rights;
5902 +                    while (s != null) {
5903 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5904 +                        s = t.rights = s.nextRight;
5905 +                    }
5906 +                }
5907 +            }
5908 +        }
5909 +    }
5910 +
5911 +    @SuppressWarnings("serial")
5912 +    static final class MapReduceKeysToLongTask<K,V>
5913 +        extends BulkTask<K,V,Long> {
5914 +        final ToLongFunction<? super K> transformer;
5915 +        final LongBinaryOperator reducer;
5916 +        final long basis;
5917 +        long result;
5918 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
5919 +        MapReduceKeysToLongTask
5920 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5921 +             MapReduceKeysToLongTask<K,V> nextRight,
5922 +             ToLongFunction<? super K> transformer,
5923 +             long basis,
5924 +             LongBinaryOperator reducer) {
5925 +            super(p, b, i, f, t); this.nextRight = nextRight;
5926 +            this.transformer = transformer;
5927 +            this.basis = basis; this.reducer = reducer;
5928 +        }
5929 +        public final Long getRawResult() { return result; }
5930 +        public final void compute() {
5931 +            final ToLongFunction<? super K> transformer;
5932 +            final LongBinaryOperator reducer;
5933 +            if ((transformer = this.transformer) != null &&
5934 +                (reducer = this.reducer) != null) {
5935 +                long r = this.basis;
5936 +                for (int i = baseIndex, f, h; batch > 0 &&
5937 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5938 +                    addToPendingCount(1);
5939 +                    (rights = new MapReduceKeysToLongTask<K,V>
5940 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5941 +                      rights, transformer, r, reducer)).fork();
5942 +                }
5943 +                for (Node<K,V> p; (p = advance()) != null; )
5944 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5945 +                result = r;
5946 +                CountedCompleter<?> c;
5947 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5948 +                    @SuppressWarnings("unchecked")
5949 +                    MapReduceKeysToLongTask<K,V>
5950 +                        t = (MapReduceKeysToLongTask<K,V>)c,
5951 +                        s = t.rights;
5952 +                    while (s != null) {
5953 +                        t.result = reducer.applyAsLong(t.result, s.result);
5954 +                        s = t.rights = s.nextRight;
5955 +                    }
5956 +                }
5957 +            }
5958 +        }
5959 +    }
5960 +
5961 +    @SuppressWarnings("serial")
5962 +    static final class MapReduceValuesToLongTask<K,V>
5963 +        extends BulkTask<K,V,Long> {
5964 +        final ToLongFunction<? super V> transformer;
5965 +        final LongBinaryOperator reducer;
5966 +        final long basis;
5967 +        long result;
5968 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
5969 +        MapReduceValuesToLongTask
5970 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5971 +             MapReduceValuesToLongTask<K,V> nextRight,
5972 +             ToLongFunction<? super V> transformer,
5973 +             long basis,
5974 +             LongBinaryOperator reducer) {
5975 +            super(p, b, i, f, t); this.nextRight = nextRight;
5976 +            this.transformer = transformer;
5977 +            this.basis = basis; this.reducer = reducer;
5978 +        }
5979 +        public final Long getRawResult() { return result; }
5980 +        public final void compute() {
5981 +            final ToLongFunction<? super V> transformer;
5982 +            final LongBinaryOperator reducer;
5983 +            if ((transformer = this.transformer) != null &&
5984 +                (reducer = this.reducer) != null) {
5985 +                long r = this.basis;
5986 +                for (int i = baseIndex, f, h; batch > 0 &&
5987 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5988 +                    addToPendingCount(1);
5989 +                    (rights = new MapReduceValuesToLongTask<K,V>
5990 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5991 +                      rights, transformer, r, reducer)).fork();
5992 +                }
5993 +                for (Node<K,V> p; (p = advance()) != null; )
5994 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5995 +                result = r;
5996 +                CountedCompleter<?> c;
5997 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5998 +                    @SuppressWarnings("unchecked")
5999 +                    MapReduceValuesToLongTask<K,V>
6000 +                        t = (MapReduceValuesToLongTask<K,V>)c,
6001 +                        s = t.rights;
6002 +                    while (s != null) {
6003 +                        t.result = reducer.applyAsLong(t.result, s.result);
6004 +                        s = t.rights = s.nextRight;
6005 +                    }
6006 +                }
6007 +            }
6008 +        }
6009 +    }
6010 +
6011 +    @SuppressWarnings("serial")
6012 +    static final class MapReduceEntriesToLongTask<K,V>
6013 +        extends BulkTask<K,V,Long> {
6014 +        final ToLongFunction<Map.Entry<K,V>> transformer;
6015 +        final LongBinaryOperator reducer;
6016 +        final long basis;
6017 +        long result;
6018 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6019 +        MapReduceEntriesToLongTask
6020 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6021 +             MapReduceEntriesToLongTask<K,V> nextRight,
6022 +             ToLongFunction<Map.Entry<K,V>> transformer,
6023 +             long basis,
6024 +             LongBinaryOperator reducer) {
6025 +            super(p, b, i, f, t); this.nextRight = nextRight;
6026 +            this.transformer = transformer;
6027 +            this.basis = basis; this.reducer = reducer;
6028 +        }
6029 +        public final Long getRawResult() { return result; }
6030 +        public final void compute() {
6031 +            final ToLongFunction<Map.Entry<K,V>> transformer;
6032 +            final LongBinaryOperator reducer;
6033 +            if ((transformer = this.transformer) != null &&
6034 +                (reducer = this.reducer) != null) {
6035 +                long r = this.basis;
6036 +                for (int i = baseIndex, f, h; batch > 0 &&
6037 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6038 +                    addToPendingCount(1);
6039 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6040 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6041 +                      rights, transformer, r, reducer)).fork();
6042 +                }
6043 +                for (Node<K,V> p; (p = advance()) != null; )
6044 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6045 +                result = r;
6046 +                CountedCompleter<?> c;
6047 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6048 +                    @SuppressWarnings("unchecked")
6049 +                    MapReduceEntriesToLongTask<K,V>
6050 +                        t = (MapReduceEntriesToLongTask<K,V>)c,
6051 +                        s = t.rights;
6052 +                    while (s != null) {
6053 +                        t.result = reducer.applyAsLong(t.result, s.result);
6054 +                        s = t.rights = s.nextRight;
6055 +                    }
6056 +                }
6057 +            }
6058 +        }
6059 +    }
6060 +
6061 +    @SuppressWarnings("serial")
6062 +    static final class MapReduceMappingsToLongTask<K,V>
6063 +        extends BulkTask<K,V,Long> {
6064 +        final ToLongBiFunction<? super K, ? super V> transformer;
6065 +        final LongBinaryOperator reducer;
6066 +        final long basis;
6067 +        long result;
6068 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6069 +        MapReduceMappingsToLongTask
6070 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6071 +             MapReduceMappingsToLongTask<K,V> nextRight,
6072 +             ToLongBiFunction<? super K, ? super V> transformer,
6073 +             long basis,
6074 +             LongBinaryOperator reducer) {
6075 +            super(p, b, i, f, t); this.nextRight = nextRight;
6076 +            this.transformer = transformer;
6077 +            this.basis = basis; this.reducer = reducer;
6078 +        }
6079 +        public final Long getRawResult() { return result; }
6080 +        public final void compute() {
6081 +            final ToLongBiFunction<? super K, ? super V> transformer;
6082 +            final LongBinaryOperator reducer;
6083 +            if ((transformer = this.transformer) != null &&
6084 +                (reducer = this.reducer) != null) {
6085 +                long r = this.basis;
6086 +                for (int i = baseIndex, f, h; batch > 0 &&
6087 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6088 +                    addToPendingCount(1);
6089 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6090 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6091 +                      rights, transformer, r, reducer)).fork();
6092 +                }
6093 +                for (Node<K,V> p; (p = advance()) != null; )
6094 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6095 +                result = r;
6096 +                CountedCompleter<?> c;
6097 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6098 +                    @SuppressWarnings("unchecked")
6099 +                    MapReduceMappingsToLongTask<K,V>
6100 +                        t = (MapReduceMappingsToLongTask<K,V>)c,
6101 +                        s = t.rights;
6102 +                    while (s != null) {
6103 +                        t.result = reducer.applyAsLong(t.result, s.result);
6104 +                        s = t.rights = s.nextRight;
6105 +                    }
6106 +                }
6107 +            }
6108 +        }
6109 +    }
6110 +
6111 +    @SuppressWarnings("serial")
6112 +    static final class MapReduceKeysToIntTask<K,V>
6113 +        extends BulkTask<K,V,Integer> {
6114 +        final ToIntFunction<? super K> transformer;
6115 +        final IntBinaryOperator reducer;
6116 +        final int basis;
6117 +        int result;
6118 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6119 +        MapReduceKeysToIntTask
6120 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6121 +             MapReduceKeysToIntTask<K,V> nextRight,
6122 +             ToIntFunction<? super K> transformer,
6123 +             int basis,
6124 +             IntBinaryOperator reducer) {
6125 +            super(p, b, i, f, t); this.nextRight = nextRight;
6126 +            this.transformer = transformer;
6127 +            this.basis = basis; this.reducer = reducer;
6128 +        }
6129 +        public final Integer getRawResult() { return result; }
6130 +        public final void compute() {
6131 +            final ToIntFunction<? super K> transformer;
6132 +            final IntBinaryOperator reducer;
6133 +            if ((transformer = this.transformer) != null &&
6134 +                (reducer = this.reducer) != null) {
6135 +                int r = this.basis;
6136 +                for (int i = baseIndex, f, h; batch > 0 &&
6137 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6138 +                    addToPendingCount(1);
6139 +                    (rights = new MapReduceKeysToIntTask<K,V>
6140 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6141 +                      rights, transformer, r, reducer)).fork();
6142 +                }
6143 +                for (Node<K,V> p; (p = advance()) != null; )
6144 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6145 +                result = r;
6146 +                CountedCompleter<?> c;
6147 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6148 +                    @SuppressWarnings("unchecked")
6149 +                    MapReduceKeysToIntTask<K,V>
6150 +                        t = (MapReduceKeysToIntTask<K,V>)c,
6151 +                        s = t.rights;
6152 +                    while (s != null) {
6153 +                        t.result = reducer.applyAsInt(t.result, s.result);
6154 +                        s = t.rights = s.nextRight;
6155 +                    }
6156 +                }
6157 +            }
6158 +        }
6159 +    }
6160 +
6161 +    @SuppressWarnings("serial")
6162 +    static final class MapReduceValuesToIntTask<K,V>
6163 +        extends BulkTask<K,V,Integer> {
6164 +        final ToIntFunction<? super V> transformer;
6165 +        final IntBinaryOperator reducer;
6166 +        final int basis;
6167 +        int result;
6168 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6169 +        MapReduceValuesToIntTask
6170 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6171 +             MapReduceValuesToIntTask<K,V> nextRight,
6172 +             ToIntFunction<? super V> transformer,
6173 +             int basis,
6174 +             IntBinaryOperator reducer) {
6175 +            super(p, b, i, f, t); this.nextRight = nextRight;
6176 +            this.transformer = transformer;
6177 +            this.basis = basis; this.reducer = reducer;
6178 +        }
6179 +        public final Integer getRawResult() { return result; }
6180 +        public final void compute() {
6181 +            final ToIntFunction<? super V> transformer;
6182 +            final IntBinaryOperator reducer;
6183 +            if ((transformer = this.transformer) != null &&
6184 +                (reducer = this.reducer) != null) {
6185 +                int r = this.basis;
6186 +                for (int i = baseIndex, f, h; batch > 0 &&
6187 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6188 +                    addToPendingCount(1);
6189 +                    (rights = new MapReduceValuesToIntTask<K,V>
6190 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6191 +                      rights, transformer, r, reducer)).fork();
6192 +                }
6193 +                for (Node<K,V> p; (p = advance()) != null; )
6194 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6195 +                result = r;
6196 +                CountedCompleter<?> c;
6197 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6198 +                    @SuppressWarnings("unchecked")
6199 +                    MapReduceValuesToIntTask<K,V>
6200 +                        t = (MapReduceValuesToIntTask<K,V>)c,
6201 +                        s = t.rights;
6202 +                    while (s != null) {
6203 +                        t.result = reducer.applyAsInt(t.result, s.result);
6204 +                        s = t.rights = s.nextRight;
6205 +                    }
6206 +                }
6207 +            }
6208 +        }
6209 +    }
6210 +
6211 +    @SuppressWarnings("serial")
6212 +    static final class MapReduceEntriesToIntTask<K,V>
6213 +        extends BulkTask<K,V,Integer> {
6214 +        final ToIntFunction<Map.Entry<K,V>> transformer;
6215 +        final IntBinaryOperator reducer;
6216 +        final int basis;
6217 +        int result;
6218 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6219 +        MapReduceEntriesToIntTask
6220 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6221 +             MapReduceEntriesToIntTask<K,V> nextRight,
6222 +             ToIntFunction<Map.Entry<K,V>> transformer,
6223 +             int basis,
6224 +             IntBinaryOperator reducer) {
6225 +            super(p, b, i, f, t); this.nextRight = nextRight;
6226 +            this.transformer = transformer;
6227 +            this.basis = basis; this.reducer = reducer;
6228 +        }
6229 +        public final Integer getRawResult() { return result; }
6230 +        public final void compute() {
6231 +            final ToIntFunction<Map.Entry<K,V>> transformer;
6232 +            final IntBinaryOperator reducer;
6233 +            if ((transformer = this.transformer) != null &&
6234 +                (reducer = this.reducer) != null) {
6235 +                int r = this.basis;
6236 +                for (int i = baseIndex, f, h; batch > 0 &&
6237 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6238 +                    addToPendingCount(1);
6239 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6240 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6241 +                      rights, transformer, r, reducer)).fork();
6242 +                }
6243 +                for (Node<K,V> p; (p = advance()) != null; )
6244 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6245 +                result = r;
6246 +                CountedCompleter<?> c;
6247 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6248 +                    @SuppressWarnings("unchecked")
6249 +                    MapReduceEntriesToIntTask<K,V>
6250 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
6251 +                        s = t.rights;
6252 +                    while (s != null) {
6253 +                        t.result = reducer.applyAsInt(t.result, s.result);
6254 +                        s = t.rights = s.nextRight;
6255 +                    }
6256 +                }
6257 +            }
6258 +        }
6259 +    }
6260 +
6261 +    @SuppressWarnings("serial")
6262 +    static final class MapReduceMappingsToIntTask<K,V>
6263 +        extends BulkTask<K,V,Integer> {
6264 +        final ToIntBiFunction<? super K, ? super V> transformer;
6265 +        final IntBinaryOperator reducer;
6266 +        final int basis;
6267 +        int result;
6268 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6269 +        MapReduceMappingsToIntTask
6270 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6271 +             MapReduceMappingsToIntTask<K,V> nextRight,
6272 +             ToIntBiFunction<? super K, ? super V> transformer,
6273 +             int basis,
6274 +             IntBinaryOperator reducer) {
6275 +            super(p, b, i, f, t); this.nextRight = nextRight;
6276 +            this.transformer = transformer;
6277 +            this.basis = basis; this.reducer = reducer;
6278 +        }
6279 +        public final Integer getRawResult() { return result; }
6280 +        public final void compute() {
6281 +            final ToIntBiFunction<? super K, ? super V> transformer;
6282 +            final IntBinaryOperator reducer;
6283 +            if ((transformer = this.transformer) != null &&
6284 +                (reducer = this.reducer) != null) {
6285 +                int r = this.basis;
6286 +                for (int i = baseIndex, f, h; batch > 0 &&
6287 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6288 +                    addToPendingCount(1);
6289 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6290 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6291 +                      rights, transformer, r, reducer)).fork();
6292 +                }
6293 +                for (Node<K,V> p; (p = advance()) != null; )
6294 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6295 +                result = r;
6296 +                CountedCompleter<?> c;
6297 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6298 +                    @SuppressWarnings("unchecked")
6299 +                    MapReduceMappingsToIntTask<K,V>
6300 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6301 +                        s = t.rights;
6302 +                    while (s != null) {
6303 +                        t.result = reducer.applyAsInt(t.result, s.result);
6304 +                        s = t.rights = s.nextRight;
6305 +                    }
6306 +                }
6307 +            }
6308 +        }
6309 +    }
6310 +
6311 +    // Unsafe mechanics
6312 +    private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6313 +    private static final long SIZECTL;
6314 +    private static final long TRANSFERINDEX;
6315 +    private static final long BASECOUNT;
6316 +    private static final long CELLSBUSY;
6317 +    private static final long CELLVALUE;
6318 +    private static final int ABASE;
6319 +    private static final int ASHIFT;
6320 +
6321 +    static {
6322 +        try {
6323 +            SIZECTL = U.objectFieldOffset
6324 +                (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6325 +            TRANSFERINDEX = U.objectFieldOffset
6326 +                (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6327 +            BASECOUNT = U.objectFieldOffset
6328 +                (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6329 +            CELLSBUSY = U.objectFieldOffset
6330 +                (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6331 +
6332 +            CELLVALUE = U.objectFieldOffset
6333 +                (CounterCell.class.getDeclaredField("value"));
6334 +
6335 +            ABASE = U.arrayBaseOffset(Node[].class);
6336 +            int scale = U.arrayIndexScale(Node[].class);
6337 +            if ((scale & (scale - 1)) != 0)
6338 +                throw new Error("array index scale not a power of two");
6339 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6340 +        } catch (ReflectiveOperationException e) {
6341 +            throw new Error(e);
6342 +        }
6343 +
6344 +        // Reduce the risk of rare disastrous classloading in first call to
6345 +        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6346 +        Class<?> ensureLoaded = LockSupport.class;
6347 +    }
6348 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines