ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.210 by dl, Tue May 21 19:10:43 2013 UTC vs.
Revision 1.228 by jsr166, Tue Jun 18 18:39:14 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 < import java.io.Serializable;
8 >
9   import java.io.ObjectStreamField;
10 + import java.io.Serializable;
11   import java.lang.reflect.ParameterizedType;
12   import java.lang.reflect.Type;
13   import java.util.Arrays;
# Line 24 | Line 25 | import java.util.Spliterator;
25   import java.util.concurrent.ConcurrentMap;
26   import java.util.concurrent.ForkJoinPool;
27   import java.util.concurrent.atomic.AtomicReference;
28 + import java.util.concurrent.locks.LockSupport;
29   import java.util.concurrent.locks.ReentrantLock;
28 import java.util.concurrent.locks.StampedLock;
30   import java.util.function.BiConsumer;
31   import java.util.function.BiFunction;
32   import java.util.function.BinaryOperator;
# Line 166 | Line 167 | import java.util.stream.Stream;
167   * argument. Methods proceed sequentially if the current map size is
168   * estimated to be less than the given threshold. Using a value of
169   * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
170 < * of {@code 1} results in maximal parallelism.  In-between values can
171 < * be used to trade off overhead versus throughput. Parallel forms use
172 < * the {@link ForkJoinPool#commonPool()}.
170 > * of {@code 1} results in maximal parallelism by partitioning into
171 > * enough subtasks to fully utilize the {@link
172 > * ForkJoinPool#commonPool()} that is used for all parallel
173 > * computations. Normally, you would initially choose one of these
174 > * extreme values, and then measure performance of using in-between
175 > * values that trade off overhead versus throughput.
176   *
177   * <p>The concurrency properties of bulk operations follow
178   * from those of ConcurrentHashMap: Any non-null result returned
# Line 231 | Line 235 | import java.util.stream.Stream;
235   * @param <K> the type of keys maintained by this map
236   * @param <V> the type of mapped values
237   */
234 @SuppressWarnings({"unchecked", "rawtypes", "serial"})
238   public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239      private static final long serialVersionUID = 7249069246763182397L;
240  
# Line 245 | Line 248 | public class ConcurrentHashMap<K,V> impl
248       * the same or better than java.util.HashMap, and to support high
249       * initial insertion rates on an empty table by many threads.
250       *
251 <     * Each key-value mapping is held in a Node.  Because Node key
252 <     * fields can contain special values, they are defined using plain
253 <     * Object types (not type "K"). This leads to a lot of explicit
254 <     * casting (and the use of class-wide warning suppressions).  It
255 <     * also allows some of the public methods to be factored into a
256 <     * smaller number of internal methods (although sadly not so for
257 <     * the five variants of put-related operations). The
258 <     * validation-based approach explained below leads to a lot of
259 <     * code sprawl because retry-control precludes factoring into
260 <     * smaller methods.
251 >     * This map usually acts as a binned (bucketed) hash table.  Each
252 >     * key-value mapping is held in a Node.  Most nodes are instances
253 >     * of the basic Node class with hash, key, value, and next
254 >     * fields. However, various subclasses exist: TreeNodes are
255 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
256 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
257 >     * of bins during resizing. ReservationNodes are used as
258 >     * placeholders while establishing values in computeIfAbsent and
259 >     * related methods.  The types TreeBin, ForwardingNode, and
260 >     * ReservationNode do not hold normal user keys, values, or
261 >     * hashes, and are readily distinguishable during search etc
262 >     * because they have negative hash fields and null key and value
263 >     * fields. (These special nodes are either uncommon or transient,
264 >     * so the impact of carrying around some unused fields is
265 >     * insignficant.)
266       *
267       * The table is lazily initialized to a power-of-two size upon the
268       * first insertion.  Each bin in the table normally contains a
# Line 266 | Line 274 | public class ConcurrentHashMap<K,V> impl
274       *
275       * We use the top (sign) bit of Node hash fields for control
276       * purposes -- it is available anyway because of addressing
277 <     * constraints.  Nodes with negative hash fields are forwarding
278 <     * nodes to either TreeBins or resized tables.  The lower 31 bits
271 <     * of each normal Node's hash field contain a transformation of
272 <     * the key's hash code.
277 >     * constraints.  Nodes with negative hash fields are specially
278 >     * handled or ignored in map methods.
279       *
280       * Insertion (via put or its variants) of the first node in an
281       * empty bin is performed by just CASing it to the bin.  This is
# Line 319 | Line 325 | public class ConcurrentHashMap<K,V> impl
325       * sometimes deviate significantly from uniform randomness.  This
326       * includes the case when N > (1<<30), so some keys MUST collide.
327       * Similarly for dumb or hostile usages in which multiple keys are
328 <     * designed to have identical hash codes. Also, although we guard
329 <     * against the worst effects of this (see method spread), sets of
330 <     * hashes may differ only in bits that do not impact their bin
331 <     * index for a given power-of-two mask.  So we use a secondary
332 <     * strategy that applies when the number of nodes in a bin exceeds
333 <     * a threshold, and at least one of the keys implements
328 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
329 <     * (a specialized form of red-black trees), bounding search time
330 <     * to O(log N).  Each search step in a TreeBin is at least twice as
328 >     * designed to have identical hash codes or ones that differs only
329 >     * in masked-out high bits. So we use a secondary strategy that
330 >     * applies when the number of nodes in a bin exceeds a
331 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
332 >     * specialized form of red-black trees), bounding search time to
333 >     * O(log N).  Each search step in a TreeBin is at least twice as
334       * slow as in a regular list, but given that N cannot exceed
335       * (1<<64) (before running out of addresses) this bounds search
336       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 393 | Line 396 | public class ConcurrentHashMap<K,V> impl
396       * LongAdder. We need to incorporate a specialization rather than
397       * just use a LongAdder in order to access implicit
398       * contention-sensing that leads to creation of multiple
399 <     * Cells.  The counter mechanics avoid contention on
399 >     * CounterCells.  The counter mechanics avoid contention on
400       * updates but can encounter cache thrashing if read too
401       * frequently during concurrent access. To avoid reading so often,
402       * resizing under contention is attempted only upon adding to a
403       * bin already holding two or more nodes. Under uniform hash
404       * distributions, the probability of this occurring at threshold
405       * is around 13%, meaning that only about 1 in 8 puts check
406 <     * threshold (and after resizing, many fewer do so). The bulk
407 <     * putAll operation further reduces contention by only committing
408 <     * count updates upon these size checks.
406 >     * threshold (and after resizing, many fewer do so).
407 >     *
408 >     * TreeBins use a special form of comparison for search and
409 >     * related operations (which is the main reason we cannot use
410 >     * existing collections such as TreeMaps). TreeBins contain
411 >     * Comparable elements, but may contain others, as well as
412 >     * elements that are Comparable but not necessarily Comparable
413 >     * for the same T, so we cannot invoke compareTo among them. To
414 >     * handle this, the tree is ordered primarily by hash value, then
415 >     * by Comparable.compareTo order if applicable.  On lookup at a
416 >     * node, if elements are not comparable or compare as 0 then both
417 >     * left and right children may need to be searched in the case of
418 >     * tied hash values. (This corresponds to the full list search
419 >     * that would be necessary if all elements were non-Comparable and
420 >     * had tied hashes.)  The red-black balancing code is updated from
421 >     * pre-jdk-collections
422 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
423 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
424 >     * Algorithms" (CLR).
425 >     *
426 >     * TreeBins also require an additional locking mechanism.  While
427 >     * list traversal is always possible by readers even during
428 >     * updates, tree traversal is not, mainly beause of tree-rotations
429 >     * that may change the root node and/or its linkages.  TreeBins
430 >     * include a simple read-write lock mechanism parasitic on the
431 >     * main bin-synchronization strategy: Structural adjustments
432 >     * associated with an insertion or removal are already bin-locked
433 >     * (and so cannot conflict with other writers) but must wait for
434 >     * ongoing readers to finish. Since there can be only one such
435 >     * waiter, we use a simple scheme using a single "waiter" field to
436 >     * block writers.  However, readers need never block.  If the root
437 >     * lock is held, they proceed along the slow traversal path (via
438 >     * next-pointers) until the lock becomes available or the list is
439 >     * exhausted, whichever comes first. These cases are not fast, but
440 >     * maximize aggregate expected throughput.
441       *
442       * Maintaining API and serialization compatibility with previous
443       * versions of this class introduces several oddities. Mainly: We
# Line 412 | Line 447 | public class ConcurrentHashMap<K,V> impl
447       * time that we can guarantee to honor it.) We also declare an
448       * unused "Segment" class that is instantiated in minimal form
449       * only when serializing.
450 +     *
451 +     * This file is organized to make things a little easier to follow
452 +     * while reading than they might otherwise: First the main static
453 +     * declarations and utilities, then fields, then main public
454 +     * methods (with a few factorings of multiple public methods into
455 +     * internal ones), then sizing methods, trees, traversers, and
456 +     * bulk operations.
457       */
458  
459      /* ---------------- Constants -------------- */
# Line 454 | Line 496 | public class ConcurrentHashMap<K,V> impl
496  
497      /**
498       * The bin count threshold for using a tree rather than list for a
499 <     * bin.  The value reflects the approximate break-even point for
500 <     * using tree-based operations.
499 >     * bin.  Bins are converted to trees when adding an element to a
500 >     * bin with at least this many nodes. The value must be greater
501 >     * than 2, and should be at least 8 to mesh with assumptions in
502 >     * tree removal about conversion back to plain bins upon
503 >     * shrinkage.
504 >     */
505 >    static final int TREEIFY_THRESHOLD = 8;
506 >
507 >    /**
508 >     * The bin count threshold for untreeifying a (split) bin during a
509 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
510 >     * most 6 to mesh with shrinkage detection under removal.
511 >     */
512 >    static final int UNTREEIFY_THRESHOLD = 6;
513 >
514 >    /**
515 >     * The smallest table capacity for which bins may be treeified.
516 >     * (Otherwise the table is resized if too many nodes in a bin.)
517 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
518 >     * conflicts between resizing and treeification thresholds.
519       */
520 <    private static final int TREE_THRESHOLD = 8;
520 >    static final int MIN_TREEIFY_CAPACITY = 64;
521  
522      /**
523       * Minimum number of rebinnings per transfer step. Ranges are
# Line 471 | Line 531 | public class ConcurrentHashMap<K,V> impl
531      /*
532       * Encodings for Node hash fields. See above for explanation.
533       */
534 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
534 >    static final int MOVED     = 0x8fffffff; // (-1) hash for forwarding nodes
535 >    static final int TREEBIN   = 0x80000000; // hash for heads of treea
536 >    static final int RESERVED  = 0x80000001; // hash for transient reservations
537      static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
538  
539      /** Number of CPUS, to place bounds on some sizings */
# Line 484 | Line 546 | public class ConcurrentHashMap<K,V> impl
546          new ObjectStreamField("segmentShift", Integer.TYPE)
547      };
548  
549 +    /* ---------------- Nodes -------------- */
550 +
551      /**
552 <     * A padded cell for distributing counts.  Adapted from LongAdder
553 <     * and Striped64.  See their internal docs for explanation.
552 >     * Key-value entry.  This class is never exported out as a
553 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
554 >     * MapEntry below), but can be used for read-only traversals used
555 >     * in bulk tasks.  Subclasses of Node with a negativehash field
556 >     * are special, and contain null keys and values (but are never
557 >     * exported).  Otherwise, keys and vals are never null.
558       */
559 <    @sun.misc.Contended static final class Cell {
560 <        volatile long value;
561 <        Cell(long x) { value = x; }
559 >    static class Node<K,V> implements Map.Entry<K,V> {
560 >        final int hash;
561 >        final K key;
562 >        volatile V val;
563 >        Node<K,V> next;
564 >
565 >        Node(int hash, K key, V val, Node<K,V> next) {
566 >            this.hash = hash;
567 >            this.key = key;
568 >            this.val = val;
569 >            this.next = next;
570 >        }
571 >
572 >        public final K getKey()       { return key; }
573 >        public final V getValue()     { return val; }
574 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
575 >        public final String toString(){ return key + "=" + val; }
576 >        public final V setValue(V value) {
577 >            throw new UnsupportedOperationException();
578 >        }
579 >
580 >        public final boolean equals(Object o) {
581 >            Object k, v, u; Map.Entry<?,?> e;
582 >            return ((o instanceof Map.Entry) &&
583 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
584 >                    (v = e.getValue()) != null &&
585 >                    (k == key || k.equals(key)) &&
586 >                    (v == (u = val) || v.equals(u)));
587 >        }
588 >
589 >        /**
590 >         * Virtualized support for map.get(); overridden in subclasses.
591 >         */
592 >        Node<K,V> find(int h, Object k) {
593 >            Node<K,V> e = this;
594 >            if (k != null) {
595 >                do {
596 >                    K ek;
597 >                    if (e.hash == h &&
598 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
599 >                        return e;
600 >                } while ((e = e.next) != null);
601 >            }
602 >            return null;
603 >        }
604 >    }
605 >
606 >    /* ---------------- Static utilities -------------- */
607 >
608 >    /**
609 >     * Spreads (XORs) higher bits of hash to lower and also forces top
610 >     * bit to 0. Because the table uses power-of-two masking, sets of
611 >     * hashes that vary only in bits above the current mask will
612 >     * always collide. (Among known examples are sets of Float keys
613 >     * holding consecutive whole numbers in small tables.)  So we
614 >     * apply a transform that spreads the impact of higher bits
615 >     * downward. There is a tradeoff between speed, utility, and
616 >     * quality of bit-spreading. Because many common sets of hashes
617 >     * are already reasonably distributed (so don't benefit from
618 >     * spreading), and because we use trees to handle large sets of
619 >     * collisions in bins, we just XOR some shifted bits in the
620 >     * cheapest possible way to reduce systematic lossage, as well as
621 >     * to incorporate impact of the highest bits that would otherwise
622 >     * never be used in index calculations because of table bounds.
623 >     */
624 >    static final int spread(int h) {
625 >        return (h ^ (h >>> 16)) & HASH_BITS;
626 >    }
627 >
628 >    /**
629 >     * Returns a power of two table size for the given desired capacity.
630 >     * See Hackers Delight, sec 3.2
631 >     */
632 >    private static final int tableSizeFor(int c) {
633 >        int n = c - 1;
634 >        n |= n >>> 1;
635 >        n |= n >>> 2;
636 >        n |= n >>> 4;
637 >        n |= n >>> 8;
638 >        n |= n >>> 16;
639 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
640 >    }
641 >
642 >    /**
643 >     * Returns x's Class if it is of the form "class C implements
644 >     * Comparable<C>", else null.
645 >     */
646 >    static Class<?> comparableClassFor(Object x) {
647 >        if (x instanceof Comparable) {
648 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
649 >            if ((c = x.getClass()) == String.class) // bypass checks
650 >                return c;
651 >            if ((ts = c.getGenericInterfaces()) != null) {
652 >                for (int i = 0; i < ts.length; ++i) {
653 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
654 >                        ((p = (ParameterizedType)t).getRawType() ==
655 >                         Comparable.class) &&
656 >                        (as = p.getActualTypeArguments()) != null &&
657 >                        as.length == 1 && as[0] == c) // type arg is c
658 >                        return c;
659 >                }
660 >            }
661 >        }
662 >        return null;
663 >    }
664 >
665 >    /**
666 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
667 >     * class), else 0.
668 >     */
669 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
670 >    static int compareComparables(Class<?> kc, Object k, Object x) {
671 >        return (x == null || x.getClass() != kc ? 0 :
672 >                ((Comparable)k).compareTo(x));
673 >    }
674 >
675 >    /* ---------------- Table element access -------------- */
676 >
677 >    /*
678 >     * Volatile access methods are used for table elements as well as
679 >     * elements of in-progress next table while resizing.  All uses of
680 >     * the tab arguments must be null checked by callers.  All callers
681 >     * also paranoically precheck that tab's length is not zero (or an
682 >     * equivalent check), thus ensuring that any index argument taking
683 >     * the form of a hash value anded with (length - 1) is a valid
684 >     * index.  Note that, to be correct wrt arbitrary concurrency
685 >     * errors by users, these checks must operate on local variables,
686 >     * which accounts for some odd-looking inline assignments below.
687 >     * Note that calls to setTabAt always occur within locked regions,
688 >     * and so do not need full volatile semantics, but still require
689 >     * ordering to maintain concurrent readability.
690 >     */
691 >
692 >    @SuppressWarnings("unchecked")
693 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
694 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
695 >    }
696 >
697 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
698 >                                        Node<K,V> c, Node<K,V> v) {
699 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
700 >    }
701 >
702 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
703 >        U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
704      }
705  
706      /* ---------------- Fields -------------- */
# Line 534 | Line 744 | public class ConcurrentHashMap<K,V> impl
744      private transient volatile int transferOrigin;
745  
746      /**
747 <     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
747 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
748       */
749      private transient volatile int cellsBusy;
750  
751      /**
752       * Table of counter cells. When non-null, size is a power of 2.
753       */
754 <    private transient volatile Cell[] counterCells;
754 >    private transient volatile CounterCell[] counterCells;
755  
756      // views
757      private transient KeySetView<K,V> keySet;
758      private transient ValuesView<K,V> values;
759      private transient EntrySetView<K,V> entrySet;
760  
551    /* ---------------- Table element access -------------- */
761  
762 <    /*
554 <     * Volatile access methods are used for table elements as well as
555 <     * elements of in-progress next table while resizing.  Uses are
556 <     * null checked by callers, and implicitly bounds-checked, relying
557 <     * on the invariants that tab arrays have non-zero size, and all
558 <     * indices are masked with (tab.length - 1) which is never
559 <     * negative and always less than length. Note that, to be correct
560 <     * wrt arbitrary concurrency errors by users, bounds checks must
561 <     * operate on local variables, which accounts for some odd-looking
562 <     * inline assignments below.
563 <     */
762 >    /* ---------------- Public operations -------------- */
763  
764 <    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
765 <        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
764 >    /**
765 >     * Creates a new, empty map with the default initial table size (16).
766 >     */
767 >    public ConcurrentHashMap() {
768      }
769  
770 <    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
771 <                                        Node<K,V> c, Node<K,V> v) {
772 <        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
770 >    /**
771 >     * Creates a new, empty map with an initial table size
772 >     * accommodating the specified number of elements without the need
773 >     * to dynamically resize.
774 >     *
775 >     * @param initialCapacity The implementation performs internal
776 >     * sizing to accommodate this many elements.
777 >     * @throws IllegalArgumentException if the initial capacity of
778 >     * elements is negative
779 >     */
780 >    public ConcurrentHashMap(int initialCapacity) {
781 >        if (initialCapacity < 0)
782 >            throw new IllegalArgumentException();
783 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
784 >                   MAXIMUM_CAPACITY :
785 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
786 >        this.sizeCtl = cap;
787      }
788  
789 <    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
790 <        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
789 >    /**
790 >     * Creates a new map with the same mappings as the given map.
791 >     *
792 >     * @param m the map
793 >     */
794 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
795 >        this.sizeCtl = DEFAULT_CAPACITY;
796 >        putAll(m);
797      }
798  
578    /* ---------------- Nodes -------------- */
579
799      /**
800 <     * Key-value entry.  This class is never exported out as a
801 <     * user-mutable Map.Entry (i.e., one supporting setValue; see
802 <     * MapEntry below), but can be used for read-only traversals used
803 <     * in curom bulk tasks.  Nodes with a hash field of MOVED are
804 <     * special, and do not contain user keys or values (and are never
805 <     * exported).  Otherwise, keys and vals are never null.
800 >     * Creates a new, empty map with an initial table size based on
801 >     * the given number of elements ({@code initialCapacity}) and
802 >     * initial table density ({@code loadFactor}).
803 >     *
804 >     * @param initialCapacity the initial capacity. The implementation
805 >     * performs internal sizing to accommodate this many elements,
806 >     * given the specified load factor.
807 >     * @param loadFactor the load factor (table density) for
808 >     * establishing the initial table size
809 >     * @throws IllegalArgumentException if the initial capacity of
810 >     * elements is negative or the load factor is nonpositive
811 >     *
812 >     * @since 1.6
813       */
814 <    static class Node<K,V> implements Map.Entry<K,V> {
815 <        final int hash;
590 <        final Object key;
591 <        volatile V val;
592 <        Node<K,V> next;
593 <
594 <        Node(int hash, Object key, V val, Node<K,V> next) {
595 <            this.hash = hash;
596 <            this.key = key;
597 <            this.val = val;
598 <            this.next = next;
599 <        }
600 <
601 <        public final K getKey()       { return (K)key; }
602 <        public final V getValue()     { return val; }
603 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
604 <        public final String toString(){ return key + "=" + val; }
605 <        public final V setValue(V value) {
606 <            throw new UnsupportedOperationException();
607 <        }
608 <
609 <        public final boolean equals(Object o) {
610 <            Object k, v, u; Map.Entry<?,?> e;
611 <            return ((o instanceof Map.Entry) &&
612 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
613 <                    (v = e.getValue()) != null &&
614 <                    (k == key || k.equals(key)) &&
615 <                    (v == (u = val) || v.equals(u)));
616 <        }
814 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
815 >        this(initialCapacity, loadFactor, 1);
816      }
817  
818      /**
819 <     * Exported Entry for EntryIterator
819 >     * Creates a new, empty map with an initial table size based on
820 >     * the given number of elements ({@code initialCapacity}), table
821 >     * density ({@code loadFactor}), and number of concurrently
822 >     * updating threads ({@code concurrencyLevel}).
823 >     *
824 >     * @param initialCapacity the initial capacity. The implementation
825 >     * performs internal sizing to accommodate this many elements,
826 >     * given the specified load factor.
827 >     * @param loadFactor the load factor (table density) for
828 >     * establishing the initial table size
829 >     * @param concurrencyLevel the estimated number of concurrently
830 >     * updating threads. The implementation may use this value as
831 >     * a sizing hint.
832 >     * @throws IllegalArgumentException if the initial capacity is
833 >     * negative or the load factor or concurrencyLevel are
834 >     * nonpositive
835       */
836 <    static final class MapEntry<K,V> implements Map.Entry<K,V> {
837 <        final K key; // non-null
838 <        V val;       // non-null
839 <        final ConcurrentHashMap<K,V> map;
840 <        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
841 <            this.key = key;
842 <            this.val = val;
843 <            this.map = map;
844 <        }
845 <        public K getKey()        { return key; }
632 <        public V getValue()      { return val; }
633 <        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
634 <        public String toString() { return key + "=" + val; }
635 <
636 <        public boolean equals(Object o) {
637 <            Object k, v; Map.Entry<?,?> e;
638 <            return ((o instanceof Map.Entry) &&
639 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
640 <                    (v = e.getValue()) != null &&
641 <                    (k == key || k.equals(key)) &&
642 <                    (v == val || v.equals(val)));
643 <        }
644 <
645 <        /**
646 <         * Sets our entry's value and writes through to the map. The
647 <         * value to return is somewhat arbitrary here. Since we do not
648 <         * necessarily track asynchronous changes, the most recent
649 <         * "previous" value could be different from what we return (or
650 <         * could even have been removed in which case the put will
651 <         * re-establish). We do not and cannot guarantee more.
652 <         */
653 <        public V setValue(V value) {
654 <            if (value == null) throw new NullPointerException();
655 <            V v = val;
656 <            val = value;
657 <            map.put(key, value);
658 <            return v;
659 <        }
836 >    public ConcurrentHashMap(int initialCapacity,
837 >                             float loadFactor, int concurrencyLevel) {
838 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
839 >            throw new IllegalArgumentException();
840 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
841 >            initialCapacity = concurrencyLevel;   // as estimated threads
842 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
843 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
844 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
845 >        this.sizeCtl = cap;
846      }
847  
848 <
663 <    /* ---------------- TreeBins -------------- */
848 >    // Original (since JDK1.2) Map methods
849  
850      /**
851 <     * Nodes for use in TreeBins
851 >     * {@inheritDoc}
852       */
853 <    static final class TreeNode<K,V> extends Node<K,V> {
854 <        TreeNode<K,V> parent;  // red-black tree links
855 <        TreeNode<K,V> left;
856 <        TreeNode<K,V> right;
857 <        TreeNode<K,V> prev;    // needed to unlink next upon deletion
858 <        boolean red;
853 >    public int size() {
854 >        long n = sumCount();
855 >        return ((n < 0L) ? 0 :
856 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
857 >                (int)n);
858 >    }
859  
860 <        TreeNode(int hash, Object key, V val, Node<K,V> next,
861 <                 TreeNode<K,V> parent) {
862 <            super(hash, key, val, next);
863 <            this.parent = parent;
864 <        }
860 >    /**
861 >     * {@inheritDoc}
862 >     */
863 >    public boolean isEmpty() {
864 >        return sumCount() <= 0L; // ignore transient negative values
865      }
866  
867      /**
868 <     * Returns a Class for the given object of the form "class C
869 <     * implements Comparable<C>", if one exists, else null.  See below
870 <     * for explanation.
868 >     * Returns the value to which the specified key is mapped,
869 >     * or {@code null} if this map contains no mapping for the key.
870 >     *
871 >     * <p>More formally, if this map contains a mapping from a key
872 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
873 >     * then this method returns {@code v}; otherwise it returns
874 >     * {@code null}.  (There can be at most one such mapping.)
875 >     *
876 >     * @throws NullPointerException if the specified key is null
877       */
878 <    static Class<?> comparableClassFor(Object x) {
879 <        Class<?> c, s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
880 <        if ((c = x.getClass()) == String.class) // bypass checks
881 <            return c;
882 <        if ((cmpc = Comparable.class).isAssignableFrom(c)) {
883 <            while (cmpc.isAssignableFrom(s = c.getSuperclass()))
884 <                c = s; // find topmost comparable class
885 <            if ((ts = c.getGenericInterfaces()) != null) {
886 <                for (int i = 0; i < ts.length; ++i) {
887 <                    if (((t = ts[i]) instanceof ParameterizedType) &&
888 <                        ((p = (ParameterizedType)t).getRawType() == cmpc) &&
889 <                        (as = p.getActualTypeArguments()) != null &&
890 <                        as.length == 1 && as[0] == c) // type arg is c
891 <                        return c;
892 <                }
878 >    public V get(Object key) {
879 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
880 >        int h = spread(key.hashCode());
881 >        if ((tab = table) != null && (n = tab.length) > 0 &&
882 >            (e = tabAt(tab, (n - 1) & h)) != null) {
883 >            if ((eh = e.hash) == h) {
884 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
885 >                    return e.val;
886 >            }
887 >            else if (eh < 0)
888 >                return (p = e.find(h, key)) != null ? p.val : null;
889 >            while ((e = e.next) != null) {
890 >                if (e.hash == h &&
891 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
892 >                    return e.val;
893              }
894          }
895          return null;
896      }
897  
898      /**
899 <     * A specialized form of red-black tree for use in bins
709 <     * whose size exceeds a threshold.
710 <     *
711 <     * TreeBins use a special form of comparison for search and
712 <     * related operations (which is the main reason we cannot use
713 <     * existing collections such as TreeMaps). TreeBins contain
714 <     * Comparable elements, but may contain others, as well as
715 <     * elements that are Comparable but not necessarily Comparable
716 <     * for the same T, so we cannot invoke compareTo among them. To
717 <     * handle this, the tree is ordered primarily by hash value, then
718 <     * by Comparable.compareTo order if applicable.  On lookup at a
719 <     * node, if elements are not comparable or compare as 0 then both
720 <     * left and right children may need to be searched in the case of
721 <     * tied hash values. (This corresponds to the full list search
722 <     * that would be necessary if all elements were non-Comparable and
723 <     * had tied hashes.)  The red-black balancing code is updated from
724 <     * pre-jdk-collections
725 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 <     * Algorithms" (CLR).
899 >     * Tests if the specified object is a key in this table.
900       *
901 <     * TreeBins also maintain a separate locking discipline than
902 <     * regular bins. Because they are forwarded via special MOVED
903 <     * nodes at bin heads (which can never change once established),
904 <     * we cannot use those nodes as locks. Instead, TreeBin extends
905 <     * StampedLock to support a form of read-write lock. For update
734 <     * operations and table validation, the exclusive form of lock
735 <     * behaves in the same way as bin-head locks. However, lookups use
736 <     * shared read-lock mechanics to allow multiple readers in the
737 <     * absence of writers.  Additionally, these lookups do not ever
738 <     * block: While the lock is not available, they proceed along the
739 <     * slow traversal path (via next-pointers) until the lock becomes
740 <     * available or the list is exhausted, whichever comes
741 <     * first. These cases are not fast, but maximize aggregate
742 <     * expected throughput.
901 >     * @param  key possible key
902 >     * @return {@code true} if and only if the specified object
903 >     *         is a key in this table, as determined by the
904 >     *         {@code equals} method; {@code false} otherwise
905 >     * @throws NullPointerException if the specified key is null
906       */
907 <    static final class TreeBin<K,V> extends StampedLock {
908 <        private static final long serialVersionUID = 2249069246763182397L;
909 <        transient TreeNode<K,V> root;  // root of tree
747 <        transient TreeNode<K,V> first; // head of next-pointer list
907 >    public boolean containsKey(Object key) {
908 >        return get(key) != null;
909 >    }
910  
911 <        /** From CLR */
912 <        private void rotateLeft(TreeNode<K,V> p) {
913 <            if (p != null) {
914 <                TreeNode<K,V> r = p.right, pp, rl;
915 <                if ((rl = p.right = r.left) != null)
916 <                    rl.parent = p;
917 <                if ((pp = r.parent = p.parent) == null)
918 <                    root = r;
919 <                else if (pp.left == p)
920 <                    pp.left = r;
921 <                else
922 <                    pp.right = r;
923 <                r.left = p;
924 <                p.parent = r;
911 >    /**
912 >     * Returns {@code true} if this map maps one or more keys to the
913 >     * specified value. Note: This method may require a full traversal
914 >     * of the map, and is much slower than method {@code containsKey}.
915 >     *
916 >     * @param value value whose presence in this map is to be tested
917 >     * @return {@code true} if this map maps one or more keys to the
918 >     *         specified value
919 >     * @throws NullPointerException if the specified value is null
920 >     */
921 >    public boolean containsValue(Object value) {
922 >        if (value == null)
923 >            throw new NullPointerException();
924 >        Node<K,V>[] t;
925 >        if ((t = table) != null) {
926 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
927 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
928 >                V v;
929 >                if ((v = p.val) == value || (v != null && value.equals(v)))
930 >                    return true;
931              }
932          }
933 +        return false;
934 +    }
935  
936 <        /** From CLR */
937 <        private void rotateRight(TreeNode<K,V> p) {
938 <            if (p != null) {
939 <                TreeNode<K,V> l = p.left, pp, lr;
940 <                if ((lr = p.left = l.right) != null)
941 <                    lr.parent = p;
942 <                if ((pp = l.parent = p.parent) == null)
943 <                    root = l;
944 <                else if (pp.right == p)
945 <                    pp.right = l;
946 <                else
947 <                    pp.left = l;
948 <                l.right = p;
949 <                p.parent = l;
950 <            }
951 <        }
936 >    /**
937 >     * Maps the specified key to the specified value in this table.
938 >     * Neither the key nor the value can be null.
939 >     *
940 >     * <p>The value can be retrieved by calling the {@code get} method
941 >     * with a key that is equal to the original key.
942 >     *
943 >     * @param key key with which the specified value is to be associated
944 >     * @param value value to be associated with the specified key
945 >     * @return the previous value associated with {@code key}, or
946 >     *         {@code null} if there was no mapping for {@code key}
947 >     * @throws NullPointerException if the specified key or value is null
948 >     */
949 >    public V put(K key, V value) {
950 >        return putVal(key, value, false);
951 >    }
952  
953 <        /**
954 <         * Returns the TreeNode (or null if not found) for the given key
955 <         * starting at given root.
956 <         */
957 <        final TreeNode<K,V> getTreeNode(int h, Object k, TreeNode<K,V> p,
958 <                                        Class<?> cc) {
959 <            while (p != null) {
960 <                int dir, ph; Object pk;
961 <                if ((ph = p.hash) != h)
962 <                    dir = (h < ph) ? -1 : 1;
963 <                else if ((pk = p.key) == k || k.equals(pk))
964 <                    return p;
965 <                else if (cc == null || comparableClassFor(pk) != cc ||
796 <                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
797 <                    TreeNode<K,V> r, pr; // check both sides
798 <                    if ((pr = p.right) != null && h >= pr.hash &&
799 <                        (r = getTreeNode(h, k, pr, cc)) != null)
800 <                        return r;
801 <                    else // continue left
802 <                        dir = -1;
803 <                }
804 <                p = (dir > 0) ? p.right : p.left;
953 >    /** Implementation for put and putIfAbsent */
954 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
955 >        if (key == null || value == null) throw new NullPointerException();
956 >        int hash = spread(key.hashCode());
957 >        int binCount = 0;
958 >        for (Node<K,V>[] tab = table;;) {
959 >            Node<K,V> f; int n, i, fh;
960 >            if (tab == null || (n = tab.length) == 0)
961 >                tab = initTable();
962 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
963 >                if (casTabAt(tab, i, null,
964 >                             new Node<K,V>(hash, key, value, null)))
965 >                    break;                   // no lock when adding to empty bin
966              }
967 <            return null;
968 <        }
969 <
970 <        /**
971 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
972 <         * read-lock to call getTreeNode, but during failure to get
973 <         * lock, searches along next links.
974 <         */
975 <        final V getValue(int h, Object k) {
976 <            Class<?> cc = comparableClassFor(k);
977 <            Node<K,V> r = null;
978 <            for (Node<K,V> e = first; e != null; e = e.next) {
979 <                long s;
980 <                if ((s = tryReadLock()) != 0L) {
981 <                    try {
982 <                        r = getTreeNode(h, k, root, cc);
983 <                    } finally {
984 <                        unlockRead(s);
967 >            else if ((fh = f.hash) == MOVED)
968 >                tab = helpTransfer(tab, f);
969 >            else {
970 >                V oldVal = null;
971 >                synchronized (f) {
972 >                    if (tabAt(tab, i) == f) {
973 >                        if (fh >= 0) {
974 >                            binCount = 1;
975 >                            for (Node<K,V> e = f;; ++binCount) {
976 >                                K ek;
977 >                                if (e.hash == hash &&
978 >                                    ((ek = e.key) == key ||
979 >                                     (ek != null && key.equals(ek)))) {
980 >                                    oldVal = e.val;
981 >                                    if (!onlyIfAbsent)
982 >                                        e.val = value;
983 >                                    break;
984 >                                }
985 >                                Node<K,V> pred = e;
986 >                                if ((e = e.next) == null) {
987 >                                    pred.next = new Node<K,V>(hash, key,
988 >                                                              value, null);
989 >                                    break;
990 >                                }
991 >                            }
992 >                        }
993 >                        else if (f instanceof TreeBin) {
994 >                            Node<K,V> p;
995 >                            binCount = 2;
996 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
997 >                                                           value)) != null) {
998 >                                oldVal = p.val;
999 >                                if (!onlyIfAbsent)
1000 >                                    p.val = value;
1001 >                            }
1002 >                        }
1003                      }
825                    break;
1004                  }
1005 <                else if (e.hash == h && k.equals(e.key)) {
1006 <                    r = e;
1005 >                if (binCount != 0) {
1006 >                    if (binCount >= TREEIFY_THRESHOLD)
1007 >                        treeifyBin(tab, i);
1008 >                    if (oldVal != null)
1009 >                        return oldVal;
1010                      break;
1011                  }
1012              }
832            return r == null ? null : r.val;
1013          }
1014 +        addCount(1L, binCount);
1015 +        return null;
1016 +    }
1017  
1018 <        /**
1019 <         * Finds or adds a node.
1020 <         * @return null if added
1021 <         */
1022 <        final TreeNode<K,V> putTreeNode(int h, Object k, V v) {
1023 <            Class<?> cc = comparableClassFor(k);
1024 <            TreeNode<K,V> pp = root, p = null;
1025 <            int dir = 0;
1026 <            while (pp != null) { // find existing node or leaf to insert at
1027 <                int ph; Object pk;
1028 <                p = pp;
1029 <                if ((ph = p.hash) != h)
847 <                    dir = (h < ph) ? -1 : 1;
848 <                else if ((pk = p.key) == k || k.equals(pk))
849 <                    return p;
850 <                else if (cc == null || comparableClassFor(pk) != cc ||
851 <                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
852 <                    TreeNode<K,V> r, pr;
853 <                    if ((pr = p.right) != null && h >= pr.hash &&
854 <                        (r = getTreeNode(h, k, pr, cc)) != null)
855 <                        return r;
856 <                    else // continue left
857 <                        dir = -1;
858 <                }
859 <                pp = (dir > 0) ? p.right : p.left;
860 <            }
1018 >    /**
1019 >     * Copies all of the mappings from the specified map to this one.
1020 >     * These mappings replace any mappings that this map had for any of the
1021 >     * keys currently in the specified map.
1022 >     *
1023 >     * @param m mappings to be stored in this map
1024 >     */
1025 >    public void putAll(Map<? extends K, ? extends V> m) {
1026 >        tryPresize(m.size());
1027 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1028 >            putVal(e.getKey(), e.getValue(), false);
1029 >    }
1030  
1031 <            TreeNode<K,V> f = first;
1032 <            TreeNode<K,V> x = first = new TreeNode<K,V>(h, k, v, f, p);
1033 <            if (p == null)
1034 <                root = x;
1035 <            else { // attach and rebalance; adapted from CLR
1036 <                TreeNode<K,V> xp, xpp;
1037 <                if (f != null)
1038 <                    f.prev = x;
1039 <                if (dir <= 0)
1040 <                    p.left = x;
1041 <                else
1042 <                    p.right = x;
1043 <                x.red = true;
1044 <                while (x != null && (xp = x.parent) != null && xp.red &&
1045 <                       (xpp = xp.parent) != null) {
1046 <                    TreeNode<K,V> xppl = xpp.left;
1047 <                    if (xp == xppl) {
1048 <                        TreeNode<K,V> y = xpp.right;
1049 <                        if (y != null && y.red) {
1050 <                            y.red = false;
1051 <                            xp.red = false;
1052 <                            xpp.red = true;
1053 <                            x = xpp;
1054 <                        }
1055 <                        else {
1056 <                            if (x == xp.right) {
1057 <                                rotateLeft(x = xp);
1058 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1059 <                            }
1060 <                            if (xp != null) {
1061 <                                xp.red = false;
1062 <                                if (xpp != null) {
1063 <                                    xpp.red = true;
1064 <                                    rotateRight(xpp);
1031 >    /**
1032 >     * Removes the key (and its corresponding value) from this map.
1033 >     * This method does nothing if the key is not in the map.
1034 >     *
1035 >     * @param  key the key that needs to be removed
1036 >     * @return the previous value associated with {@code key}, or
1037 >     *         {@code null} if there was no mapping for {@code key}
1038 >     * @throws NullPointerException if the specified key is null
1039 >     */
1040 >    public V remove(Object key) {
1041 >        return replaceNode(key, null, null);
1042 >    }
1043 >
1044 >    /**
1045 >     * Implementation for the four public remove/replace methods:
1046 >     * Replaces node value with v, conditional upon match of cv if
1047 >     * non-null.  If resulting value is null, delete.
1048 >     */
1049 >    final V replaceNode(Object key, V value, Object cv) {
1050 >        int hash = spread(key.hashCode());
1051 >        for (Node<K,V>[] tab = table;;) {
1052 >            Node<K,V> f; int n, i, fh;
1053 >            if (tab == null || (n = tab.length) == 0 ||
1054 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1055 >                break;
1056 >            else if ((fh = f.hash) == MOVED)
1057 >                tab = helpTransfer(tab, f);
1058 >            else {
1059 >                V oldVal = null;
1060 >                boolean validated = false;
1061 >                synchronized (f) {
1062 >                    if (tabAt(tab, i) == f) {
1063 >                        if (fh >= 0) {
1064 >                            validated = true;
1065 >                            for (Node<K,V> e = f, pred = null;;) {
1066 >                                K ek;
1067 >                                if (e.hash == hash &&
1068 >                                    ((ek = e.key) == key ||
1069 >                                     (ek != null && key.equals(ek)))) {
1070 >                                    V ev = e.val;
1071 >                                    if (cv == null || cv == ev ||
1072 >                                        (ev != null && cv.equals(ev))) {
1073 >                                        oldVal = ev;
1074 >                                        if (value != null)
1075 >                                            e.val = value;
1076 >                                        else if (pred != null)
1077 >                                            pred.next = e.next;
1078 >                                        else
1079 >                                            setTabAt(tab, i, e.next);
1080 >                                    }
1081 >                                    break;
1082                                  }
1083 +                                pred = e;
1084 +                                if ((e = e.next) == null)
1085 +                                    break;
1086                              }
1087                          }
1088 <                    }
1089 <                    else {
1090 <                        TreeNode<K,V> y = xppl;
1091 <                        if (y != null && y.red) {
1092 <                            y.red = false;
1093 <                            xp.red = false;
1094 <                            xpp.red = true;
1095 <                            x = xpp;
1096 <                        }
1097 <                        else {
1098 <                            if (x == xp.left) {
1099 <                                rotateRight(x = xp);
1100 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1101 <                            }
913 <                            if (xp != null) {
914 <                                xp.red = false;
915 <                                if (xpp != null) {
916 <                                    xpp.red = true;
917 <                                    rotateLeft(xpp);
1088 >                        else if (f instanceof TreeBin) {
1089 >                            validated = true;
1090 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1091 >                            TreeNode<K,V> r, p;
1092 >                            if ((r = t.root) != null &&
1093 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1094 >                                V pv = p.val;
1095 >                                if (cv == null || cv == pv ||
1096 >                                    (pv != null && cv.equals(pv))) {
1097 >                                    oldVal = pv;
1098 >                                    if (value != null)
1099 >                                        p.val = value;
1100 >                                    else if (t.removeTreeNode(p))
1101 >                                        setTabAt(tab, i, untreeify(t.first));
1102                                  }
1103                              }
1104                          }
1105                      }
1106                  }
1107 <                TreeNode<K,V> r = root;
1108 <                if (r != null && r.red)
1109 <                    r.red = false;
1110 <            }
1111 <            return null;
928 <        }
929 <
930 <        /**
931 <         * Removes the given node, that must be present before this
932 <         * call.  This is messier than typical red-black deletion code
933 <         * because we cannot swap the contents of an interior node
934 <         * with a leaf successor that is pinned by "next" pointers
935 <         * that are accessible independently of lock. So instead we
936 <         * swap the tree linkages.
937 <         */
938 <        final void deleteTreeNode(TreeNode<K,V> p) {
939 <            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
940 <            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
941 <            if (pred == null)
942 <                first = next;
943 <            else
944 <                pred.next = next;
945 <            if (next != null)
946 <                next.prev = pred;
947 <            TreeNode<K,V> replacement;
948 <            TreeNode<K,V> pl = p.left;
949 <            TreeNode<K,V> pr = p.right;
950 <            if (pl != null && pr != null) {
951 <                TreeNode<K,V> s = pr, sl;
952 <                while ((sl = s.left) != null) // find successor
953 <                    s = sl;
954 <                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
955 <                TreeNode<K,V> sr = s.right;
956 <                TreeNode<K,V> pp = p.parent;
957 <                if (s == pr) { // p was s's direct parent
958 <                    p.parent = s;
959 <                    s.right = p;
960 <                }
961 <                else {
962 <                    TreeNode<K,V> sp = s.parent;
963 <                    if ((p.parent = sp) != null) {
964 <                        if (s == sp.left)
965 <                            sp.left = p;
966 <                        else
967 <                            sp.right = p;
1107 >                if (validated) {
1108 >                    if (oldVal != null) {
1109 >                        if (value == null)
1110 >                            addCount(-1L, -1);
1111 >                        return oldVal;
1112                      }
1113 <                    if ((s.right = pr) != null)
970 <                        pr.parent = s;
1113 >                    break;
1114                  }
972                p.left = null;
973                if ((p.right = sr) != null)
974                    sr.parent = p;
975                if ((s.left = pl) != null)
976                    pl.parent = s;
977                if ((s.parent = pp) == null)
978                    root = s;
979                else if (p == pp.left)
980                    pp.left = s;
981                else
982                    pp.right = s;
983                replacement = sr;
1115              }
1116 <            else
1117 <                replacement = (pl != null) ? pl : pr;
1118 <            TreeNode<K,V> pp = p.parent;
1119 <            if (replacement == null) {
1120 <                if (pp == null) {
1121 <                    root = null;
1122 <                    return;
1123 <                }
1124 <                replacement = p;
1116 >        }
1117 >        return null;
1118 >    }
1119 >
1120 >    /**
1121 >     * Removes all of the mappings from this map.
1122 >     */
1123 >    public void clear() {
1124 >        long delta = 0L; // negative number of deletions
1125 >        int i = 0;
1126 >        Node<K,V>[] tab = table;
1127 >        while (tab != null && i < tab.length) {
1128 >            int fh;
1129 >            Node<K,V> f = tabAt(tab, i);
1130 >            if (f == null)
1131 >                ++i;
1132 >            else if ((fh = f.hash) == MOVED) {
1133 >                tab = helpTransfer(tab, f);
1134 >                i = 0; // restart
1135              }
1136              else {
1137 <                replacement.parent = pp;
1138 <                if (pp == null)
1139 <                    root = replacement;
1140 <                else if (p == pp.left)
1141 <                    pp.left = replacement;
1142 <                else
1143 <                    pp.right = replacement;
1144 <                p.left = p.right = p.parent = null;
1004 <            }
1005 <            if (!p.red) { // rebalance, from CLR
1006 <                TreeNode<K,V> x = replacement;
1007 <                while (x != null) {
1008 <                    TreeNode<K,V> xp, xpl;
1009 <                    if (x.red || (xp = x.parent) == null) {
1010 <                        x.red = false;
1011 <                        break;
1012 <                    }
1013 <                    if (x == (xpl = xp.left)) {
1014 <                        TreeNode<K,V> sib = xp.right;
1015 <                        if (sib != null && sib.red) {
1016 <                            sib.red = false;
1017 <                            xp.red = true;
1018 <                            rotateLeft(xp);
1019 <                            sib = (xp = x.parent) == null ? null : xp.right;
1020 <                        }
1021 <                        if (sib == null)
1022 <                            x = xp;
1023 <                        else {
1024 <                            TreeNode<K,V> sl = sib.left, sr = sib.right;
1025 <                            if ((sr == null || !sr.red) &&
1026 <                                (sl == null || !sl.red)) {
1027 <                                sib.red = true;
1028 <                                x = xp;
1029 <                            }
1030 <                            else {
1031 <                                if (sr == null || !sr.red) {
1032 <                                    if (sl != null)
1033 <                                        sl.red = false;
1034 <                                    sib.red = true;
1035 <                                    rotateRight(sib);
1036 <                                    sib = (xp = x.parent) == null ?
1037 <                                        null : xp.right;
1038 <                                }
1039 <                                if (sib != null) {
1040 <                                    sib.red = (xp == null) ? false : xp.red;
1041 <                                    if ((sr = sib.right) != null)
1042 <                                        sr.red = false;
1043 <                                }
1044 <                                if (xp != null) {
1045 <                                    xp.red = false;
1046 <                                    rotateLeft(xp);
1047 <                                }
1048 <                                x = root;
1049 <                            }
1050 <                        }
1051 <                    }
1052 <                    else { // symmetric
1053 <                        TreeNode<K,V> sib = xpl;
1054 <                        if (sib != null && sib.red) {
1055 <                            sib.red = false;
1056 <                            xp.red = true;
1057 <                            rotateRight(xp);
1058 <                            sib = (xp = x.parent) == null ? null : xp.left;
1059 <                        }
1060 <                        if (sib == null)
1061 <                            x = xp;
1062 <                        else {
1063 <                            TreeNode<K,V> sl = sib.left, sr = sib.right;
1064 <                            if ((sl == null || !sl.red) &&
1065 <                                (sr == null || !sr.red)) {
1066 <                                sib.red = true;
1067 <                                x = xp;
1068 <                            }
1069 <                            else {
1070 <                                if (sl == null || !sl.red) {
1071 <                                    if (sr != null)
1072 <                                        sr.red = false;
1073 <                                    sib.red = true;
1074 <                                    rotateLeft(sib);
1075 <                                    sib = (xp = x.parent) == null ?
1076 <                                        null : xp.left;
1077 <                                }
1078 <                                if (sib != null) {
1079 <                                    sib.red = (xp == null) ? false : xp.red;
1080 <                                    if ((sl = sib.left) != null)
1081 <                                        sl.red = false;
1082 <                                }
1083 <                                if (xp != null) {
1084 <                                    xp.red = false;
1085 <                                    rotateRight(xp);
1086 <                                }
1087 <                                x = root;
1088 <                            }
1137 >                synchronized (f) {
1138 >                    if (tabAt(tab, i) == f) {
1139 >                        Node<K,V> p = (fh >= 0 ? f :
1140 >                                       (f instanceof TreeBin) ?
1141 >                                       ((TreeBin<K,V>)f).first : null);
1142 >                        while (p != null) {
1143 >                            --delta;
1144 >                            p = p.next;
1145                          }
1146 +                        setTabAt(tab, i++, null);
1147                      }
1148                  }
1149              }
1093            if (p == replacement && (pp = p.parent) != null) {
1094                if (p == pp.left) // detach pointers
1095                    pp.left = null;
1096                else if (p == pp.right)
1097                    pp.right = null;
1098                p.parent = null;
1099            }
1150          }
1151 +        if (delta != 0L)
1152 +            addCount(delta, -1);
1153      }
1154  
1155 <    /* ---------------- Collision reduction methods -------------- */
1155 >    /**
1156 >     * Returns a {@link Set} view of the keys contained in this map.
1157 >     * The set is backed by the map, so changes to the map are
1158 >     * reflected in the set, and vice-versa. The set supports element
1159 >     * removal, which removes the corresponding mapping from this map,
1160 >     * via the {@code Iterator.remove}, {@code Set.remove},
1161 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1162 >     * operations.  It does not support the {@code add} or
1163 >     * {@code addAll} operations.
1164 >     *
1165 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1166 >     * that will never throw {@link ConcurrentModificationException},
1167 >     * and guarantees to traverse elements as they existed upon
1168 >     * construction of the iterator, and may (but is not guaranteed to)
1169 >     * reflect any modifications subsequent to construction.
1170 >     *
1171 >     * @return the set view
1172 >     */
1173 >    public KeySetView<K,V> keySet() {
1174 >        KeySetView<K,V> ks;
1175 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1176 >    }
1177  
1178      /**
1179 <     * Spreads higher bits to lower, and also forces top bit to 0.
1180 <     * Because the table uses power-of-two masking, sets of hashes
1181 <     * that vary only in bits above the current mask will always
1182 <     * collide. (Among known examples are sets of Float keys holding
1183 <     * consecutive whole numbers in small tables.)  To counter this,
1184 <     * we apply a transform that spreads the impact of higher bits
1185 <     * downward. There is a tradeoff between speed, utility, and
1186 <     * quality of bit-spreading. Because many common sets of hashes
1187 <     * are already reasonably distributed across bits (so don't benefit
1188 <     * from spreading), and because we use trees to handle large sets
1189 <     * of collisions in bins, we don't need excessively high quality.
1179 >     * Returns a {@link Collection} view of the values contained in this map.
1180 >     * The collection is backed by the map, so changes to the map are
1181 >     * reflected in the collection, and vice-versa.  The collection
1182 >     * supports element removal, which removes the corresponding
1183 >     * mapping from this map, via the {@code Iterator.remove},
1184 >     * {@code Collection.remove}, {@code removeAll},
1185 >     * {@code retainAll}, and {@code clear} operations.  It does not
1186 >     * support the {@code add} or {@code addAll} operations.
1187 >     *
1188 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1189 >     * that will never throw {@link ConcurrentModificationException},
1190 >     * and guarantees to traverse elements as they existed upon
1191 >     * construction of the iterator, and may (but is not guaranteed to)
1192 >     * reflect any modifications subsequent to construction.
1193 >     *
1194 >     * @return the collection view
1195       */
1196 <    private static final int spread(int h) {
1197 <        h ^= (h >>> 18) ^ (h >>> 12);
1198 <        return (h ^ (h >>> 10)) & HASH_BITS;
1196 >    public Collection<V> values() {
1197 >        ValuesView<K,V> vs;
1198 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1199      }
1200  
1201      /**
1202 <     * Replaces a list bin with a tree bin if key is comparable.  Call
1203 <     * only when locked.
1202 >     * Returns a {@link Set} view of the mappings contained in this map.
1203 >     * The set is backed by the map, so changes to the map are
1204 >     * reflected in the set, and vice-versa.  The set supports element
1205 >     * removal, which removes the corresponding mapping from the map,
1206 >     * via the {@code Iterator.remove}, {@code Set.remove},
1207 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1208 >     * operations.
1209 >     *
1210 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211 >     * that will never throw {@link ConcurrentModificationException},
1212 >     * and guarantees to traverse elements as they existed upon
1213 >     * construction of the iterator, and may (but is not guaranteed to)
1214 >     * reflect any modifications subsequent to construction.
1215 >     *
1216 >     * @return the set view
1217       */
1218 <    private final void replaceWithTreeBin(Node<K,V>[] tab, int index, Object key) {
1219 <        if (tab != null && comparableClassFor(key) != null) {
1220 <            TreeBin<K,V> t = new TreeBin<K,V>();
1130 <            for (Node<K,V> e = tabAt(tab, index); e != null; e = e.next)
1131 <                t.putTreeNode(e.hash, e.key, e.val);
1132 <            setTabAt(tab, index, new Node<K,V>(MOVED, t, null, null));
1133 <        }
1218 >    public Set<Map.Entry<K,V>> entrySet() {
1219 >        EntrySetView<K,V> es;
1220 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1221      }
1222  
1223 <    /* ---------------- Internal access and update methods -------------- */
1223 >    /**
1224 >     * Returns the hash code value for this {@link Map}, i.e.,
1225 >     * the sum of, for each key-value pair in the map,
1226 >     * {@code key.hashCode() ^ value.hashCode()}.
1227 >     *
1228 >     * @return the hash code value for this map
1229 >     */
1230 >    public int hashCode() {
1231 >        int h = 0;
1232 >        Node<K,V>[] t;
1233 >        if ((t = table) != null) {
1234 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1235 >            for (Node<K,V> p; (p = it.advance()) != null; )
1236 >                h += p.key.hashCode() ^ p.val.hashCode();
1237 >        }
1238 >        return h;
1239 >    }
1240  
1241 <    /** Implementation for get and containsKey */
1242 <    private final V internalGet(Object k) {
1243 <        int h = spread(k.hashCode());
1244 <        V v = null;
1245 <        Node<K,V>[] tab; Node<K,V> e;
1246 <        if ((tab = table) != null &&
1247 <            (e = tabAt(tab, (tab.length - 1) & h)) != null) {
1241 >    /**
1242 >     * Returns a string representation of this map.  The string
1243 >     * representation consists of a list of key-value mappings (in no
1244 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1245 >     * mappings are separated by the characters {@code ", "} (comma
1246 >     * and space).  Each key-value mapping is rendered as the key
1247 >     * followed by an equals sign ("{@code =}") followed by the
1248 >     * associated value.
1249 >     *
1250 >     * @return a string representation of this map
1251 >     */
1252 >    public String toString() {
1253 >        Node<K,V>[] t;
1254 >        int f = (t = table) == null ? 0 : t.length;
1255 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1256 >        StringBuilder sb = new StringBuilder();
1257 >        sb.append('{');
1258 >        Node<K,V> p;
1259 >        if ((p = it.advance()) != null) {
1260              for (;;) {
1261 <                int eh; Object ek;
1262 <                if ((eh = e.hash) < 0) {
1263 <                    if ((ek = e.key) instanceof TreeBin) { // search TreeBin
1264 <                        v = ((TreeBin<K,V>)ek).getValue(h, k);
1265 <                        break;
1266 <                    }
1152 <                    else if (!(ek instanceof Node[]) ||    // try new table
1153 <                             (e = tabAt(tab = (Node<K,V>[])ek,
1154 <                                        (tab.length - 1) & h)) == null)
1155 <                        break;
1156 <                }
1157 <                else if (eh == h && ((ek = e.key) == k || k.equals(ek))) {
1158 <                    v = e.val;
1159 <                    break;
1160 <                }
1161 <                else if ((e = e.next) == null)
1261 >                K k = p.key;
1262 >                V v = p.val;
1263 >                sb.append(k == this ? "(this Map)" : k);
1264 >                sb.append('=');
1265 >                sb.append(v == this ? "(this Map)" : v);
1266 >                if ((p = it.advance()) == null)
1267                      break;
1268 +                sb.append(',').append(' ');
1269              }
1270          }
1271 <        return v;
1271 >        return sb.append('}').toString();
1272      }
1273  
1274      /**
1275 <     * Implementation for the four public remove/replace methods:
1276 <     * Replaces node value with v, conditional upon match of cv if
1277 <     * non-null.  If resulting value is null, delete.
1275 >     * Compares the specified object with this map for equality.
1276 >     * Returns {@code true} if the given object is a map with the same
1277 >     * mappings as this map.  This operation may return misleading
1278 >     * results if either map is concurrently modified during execution
1279 >     * of this method.
1280 >     *
1281 >     * @param o object to be compared for equality with this map
1282 >     * @return {@code true} if the specified object is equal to this map
1283       */
1284 <    private final V internalReplace(Object k, V v, Object cv) {
1285 <        int h = spread(k.hashCode());
1286 <        V oldVal = null;
1287 <        for (Node<K,V>[] tab = table;;) {
1288 <            Node<K,V> f; int i, fh; Object fk;
1289 <            if (tab == null ||
1290 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1291 <                break;
1292 <            else if ((fh = f.hash) < 0) {
1293 <                if ((fk = f.key) instanceof TreeBin) {
1294 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1295 <                    long stamp = t.writeLock();
1296 <                    boolean validated = false;
1186 <                    boolean deleted = false;
1187 <                    try {
1188 <                        if (tabAt(tab, i) == f) {
1189 <                            validated = true;
1190 <                            Class<?> cc = comparableClassFor(k);
1191 <                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1192 <                            if (p != null) {
1193 <                                V pv = p.val;
1194 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1195 <                                    oldVal = pv;
1196 <                                    if (v != null)
1197 <                                        p.val = v;
1198 <                                    else {
1199 <                                        deleted = true;
1200 <                                        t.deleteTreeNode(p);
1201 <                                    }
1202 <                                }
1203 <                            }
1204 <                        }
1205 <                    } finally {
1206 <                        t.unlockWrite(stamp);
1207 <                    }
1208 <                    if (validated) {
1209 <                        if (deleted)
1210 <                            addCount(-1L, -1);
1211 <                        break;
1212 <                    }
1213 <                }
1214 <                else
1215 <                    tab = (Node<K,V>[])fk;
1284 >    public boolean equals(Object o) {
1285 >        if (o != this) {
1286 >            if (!(o instanceof Map))
1287 >                return false;
1288 >            Map<?,?> m = (Map<?,?>) o;
1289 >            Node<K,V>[] t;
1290 >            int f = (t = table) == null ? 0 : t.length;
1291 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1292 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1293 >                V val = p.val;
1294 >                Object v = m.get(p.key);
1295 >                if (v == null || (v != val && !v.equals(val)))
1296 >                    return false;
1297              }
1298 <            else {
1299 <                boolean validated = false;
1300 <                boolean deleted = false;
1301 <                synchronized (f) {
1302 <                    if (tabAt(tab, i) == f) {
1303 <                        validated = true;
1304 <                        for (Node<K,V> e = f, pred = null;;) {
1224 <                            Object ek;
1225 <                            if (e.hash == h &&
1226 <                                ((ek = e.key) == k || k.equals(ek))) {
1227 <                                V ev = e.val;
1228 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1229 <                                    oldVal = ev;
1230 <                                    if (v != null)
1231 <                                        e.val = v;
1232 <                                    else {
1233 <                                        deleted = true;
1234 <                                        Node<K,V> en = e.next;
1235 <                                        if (pred != null)
1236 <                                            pred.next = en;
1237 <                                        else
1238 <                                            setTabAt(tab, i, en);
1239 <                                    }
1240 <                                }
1241 <                                break;
1242 <                            }
1243 <                            pred = e;
1244 <                            if ((e = e.next) == null)
1245 <                                break;
1246 <                        }
1247 <                    }
1248 <                }
1249 <                if (validated) {
1250 <                    if (deleted)
1251 <                        addCount(-1L, -1);
1252 <                    break;
1253 <                }
1298 >            for (Map.Entry<?,?> e : m.entrySet()) {
1299 >                Object mk, mv, v;
1300 >                if ((mk = e.getKey()) == null ||
1301 >                    (mv = e.getValue()) == null ||
1302 >                    (v = get(mk)) == null ||
1303 >                    (mv != v && !mv.equals(v)))
1304 >                    return false;
1305              }
1306          }
1307 <        return oldVal;
1307 >        return true;
1308      }
1309  
1310 <    /*
1311 <     * Internal versions of insertion methods
1312 <     * All have the same basic structure as the first (internalPut):
1262 <     *  1. If table uninitialized, create
1263 <     *  2. If bin empty, try to CAS new node
1264 <     *  3. If bin stale, use new table
1265 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1266 <     *  5. Lock and validate; if valid, scan and add or update
1267 <     *
1268 <     * The putAll method differs mainly in attempting to pre-allocate
1269 <     * enough table space, and also more lazily performs count updates
1270 <     * and checks.
1271 <     *
1272 <     * Most of the function-accepting methods can't be factored nicely
1273 <     * because they require different functional forms, so instead
1274 <     * sprawl out similar mechanics.
1310 >    /**
1311 >     * Stripped-down version of helper class used in previous version,
1312 >     * declared for the sake of serialization compatibility
1313       */
1314 +    static class Segment<K,V> extends ReentrantLock implements Serializable {
1315 +        private static final long serialVersionUID = 2249069246763182397L;
1316 +        final float loadFactor;
1317 +        Segment(float lf) { this.loadFactor = lf; }
1318 +    }
1319  
1320 <    /** Implementation for put and putIfAbsent */
1321 <    private final V internalPut(K k, V v, boolean onlyIfAbsent) {
1322 <        if (k == null || v == null) throw new NullPointerException();
1323 <        int h = spread(k.hashCode());
1324 <        int len = 0;
1325 <        for (Node<K,V>[] tab = table;;) {
1326 <            int i, fh; Node<K,V> f; Object fk;
1327 <            if (tab == null)
1328 <                tab = initTable();
1329 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1330 <                if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null)))
1331 <                    break;                   // no lock when adding to empty bin
1320 >    /**
1321 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1322 >     * stream (i.e., serializes it).
1323 >     * @param s the stream
1324 >     * @serialData
1325 >     * the key (Object) and value (Object)
1326 >     * for each key-value mapping, followed by a null pair.
1327 >     * The key-value mappings are emitted in no particular order.
1328 >     */
1329 >    private void writeObject(java.io.ObjectOutputStream s)
1330 >        throws java.io.IOException {
1331 >        // For serialization compatibility
1332 >        // Emulate segment calculation from previous version of this class
1333 >        int sshift = 0;
1334 >        int ssize = 1;
1335 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1336 >            ++sshift;
1337 >            ssize <<= 1;
1338 >        }
1339 >        int segmentShift = 32 - sshift;
1340 >        int segmentMask = ssize - 1;
1341 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1342 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1343 >        for (int i = 0; i < segments.length; ++i)
1344 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1345 >        s.putFields().put("segments", segments);
1346 >        s.putFields().put("segmentShift", segmentShift);
1347 >        s.putFields().put("segmentMask", segmentMask);
1348 >        s.writeFields();
1349 >
1350 >        Node<K,V>[] t;
1351 >        if ((t = table) != null) {
1352 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1353 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1354 >                s.writeObject(p.key);
1355 >                s.writeObject(p.val);
1356              }
1357 <            else if ((fh = f.hash) < 0) {
1358 <                if ((fk = f.key) instanceof TreeBin) {
1359 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1360 <                    long stamp = t.writeLock();
1361 <                    V oldVal = null;
1362 <                    try {
1363 <                        if (tabAt(tab, i) == f) {
1364 <                            len = 2;
1365 <                            TreeNode<K,V> p = t.putTreeNode(h, k, v);
1366 <                            if (p != null) {
1367 <                                oldVal = p.val;
1368 <                                if (!onlyIfAbsent)
1369 <                                    p.val = v;
1370 <                            }
1371 <                        }
1372 <                    } finally {
1373 <                        t.unlockWrite(stamp);
1374 <                    }
1375 <                    if (len != 0) {
1376 <                        if (oldVal != null)
1377 <                            return oldVal;
1378 <                        break;
1379 <                    }
1380 <                }
1381 <                else
1382 <                    tab = (Node<K,V>[])fk;
1357 >        }
1358 >        s.writeObject(null);
1359 >        s.writeObject(null);
1360 >        segments = null; // throw away
1361 >    }
1362 >
1363 >    /**
1364 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1365 >     * @param s the stream
1366 >     */
1367 >    private void readObject(java.io.ObjectInputStream s)
1368 >        throws java.io.IOException, ClassNotFoundException {
1369 >        /*
1370 >         * To improve performance in typical cases, we create nodes
1371 >         * while reading, then place in table once size is known.
1372 >         * However, we must also validate uniqueness and deal with
1373 >         * overpopulated bins while doing so, which requires
1374 >         * specialized versions of putVal mechanics.
1375 >         */
1376 >        sizeCtl = -1; // force exclusion for table construction
1377 >        s.defaultReadObject();
1378 >        long size = 0L;
1379 >        Node<K,V> p = null;
1380 >        for (;;) {
1381 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1382 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1383 >            if (k != null && v != null) {
1384 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1385 >                ++size;
1386              }
1387 +            else
1388 +                break;
1389 +        }
1390 +        if (size == 0L)
1391 +            sizeCtl = 0;
1392 +        else {
1393 +            int n;
1394 +            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1395 +                n = MAXIMUM_CAPACITY;
1396              else {
1397 <                V oldVal = null;
1398 <                synchronized (f) {
1399 <                    if (tabAt(tab, i) == f) {
1400 <                        len = 1;
1401 <                        for (Node<K,V> e = f;; ++len) {
1402 <                            Object ek;
1403 <                            if (e.hash == h &&
1404 <                                ((ek = e.key) == k || k.equals(ek))) {
1405 <                                oldVal = e.val;
1406 <                                if (!onlyIfAbsent)
1407 <                                    e.val = v;
1397 >                int sz = (int)size;
1398 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1399 >            }
1400 >            @SuppressWarnings({"rawtypes","unchecked"})
1401 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1402 >            int mask = n - 1;
1403 >            long added = 0L;
1404 >            while (p != null) {
1405 >                boolean insertAtFront;
1406 >                Node<K,V> next = p.next, first;
1407 >                int h = p.hash, j = h & mask;
1408 >                if ((first = tabAt(tab, j)) == null)
1409 >                    insertAtFront = true;
1410 >                else {
1411 >                    K k = p.key;
1412 >                    if (first.hash < 0) {
1413 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1414 >                        if (t.putTreeVal(h, k, p.val) == null)
1415 >                            ++added;
1416 >                        insertAtFront = false;
1417 >                    }
1418 >                    else {
1419 >                        int binCount = 0;
1420 >                        insertAtFront = true;
1421 >                        Node<K,V> q; K qk;
1422 >                        for (q = first; q != null; q = q.next) {
1423 >                            if (q.hash == h &&
1424 >                                ((qk = q.key) == k ||
1425 >                                 (qk != null && k.equals(qk)))) {
1426 >                                insertAtFront = false;
1427                                  break;
1428                              }
1429 <                            Node<K,V> last = e;
1430 <                            if ((e = e.next) == null) {
1431 <                                last.next = new Node<K,V>(h, k, v, null);
1432 <                                if (len > TREE_THRESHOLD)
1433 <                                    replaceWithTreeBin(tab, i, k);
1434 <                                break;
1429 >                            ++binCount;
1430 >                        }
1431 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1432 >                            insertAtFront = false;
1433 >                            ++added;
1434 >                            p.next = first;
1435 >                            TreeNode<K,V> hd = null, tl = null;
1436 >                            for (q = p; q != null; q = q.next) {
1437 >                                TreeNode<K,V> t = new TreeNode<K,V>
1438 >                                    (q.hash, q.key, q.val, null, null);
1439 >                                if ((t.prev = tl) == null)
1440 >                                    hd = t;
1441 >                                else
1442 >                                    tl.next = t;
1443 >                                tl = t;
1444                              }
1445 +                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1446                          }
1447                      }
1448                  }
1449 <                if (len != 0) {
1450 <                    if (oldVal != null)
1451 <                        return oldVal;
1452 <                    break;
1449 >                if (insertAtFront) {
1450 >                    ++added;
1451 >                    p.next = first;
1452 >                    setTabAt(tab, j, p);
1453                  }
1454 +                p = next;
1455              }
1456 +            table = tab;
1457 +            sizeCtl = n - (n >>> 2);
1458 +            baseCount = added;
1459          }
1348        addCount(1L, len);
1349        return null;
1460      }
1461  
1462 <    /** Implementation for computeIfAbsent */
1463 <    private final V internalComputeIfAbsent(K k, Function<? super K, ? extends V> mf) {
1464 <        if (k == null || mf == null)
1462 >    // ConcurrentMap methods
1463 >
1464 >    /**
1465 >     * {@inheritDoc}
1466 >     *
1467 >     * @return the previous value associated with the specified key,
1468 >     *         or {@code null} if there was no mapping for the key
1469 >     * @throws NullPointerException if the specified key or value is null
1470 >     */
1471 >    public V putIfAbsent(K key, V value) {
1472 >        return putVal(key, value, true);
1473 >    }
1474 >
1475 >    /**
1476 >     * {@inheritDoc}
1477 >     *
1478 >     * @throws NullPointerException if the specified key is null
1479 >     */
1480 >    public boolean remove(Object key, Object value) {
1481 >        if (key == null)
1482 >            throw new NullPointerException();
1483 >        return value != null && replaceNode(key, null, value) != null;
1484 >    }
1485 >
1486 >    /**
1487 >     * {@inheritDoc}
1488 >     *
1489 >     * @throws NullPointerException if any of the arguments are null
1490 >     */
1491 >    public boolean replace(K key, V oldValue, V newValue) {
1492 >        if (key == null || oldValue == null || newValue == null)
1493 >            throw new NullPointerException();
1494 >        return replaceNode(key, newValue, oldValue) != null;
1495 >    }
1496 >
1497 >    /**
1498 >     * {@inheritDoc}
1499 >     *
1500 >     * @return the previous value associated with the specified key,
1501 >     *         or {@code null} if there was no mapping for the key
1502 >     * @throws NullPointerException if the specified key or value is null
1503 >     */
1504 >    public V replace(K key, V value) {
1505 >        if (key == null || value == null)
1506              throw new NullPointerException();
1507 <        int h = spread(k.hashCode());
1507 >        return replaceNode(key, value, null);
1508 >    }
1509 >
1510 >    // Overrides of JDK8+ Map extension method defaults
1511 >
1512 >    /**
1513 >     * Returns the value to which the specified key is mapped, or the
1514 >     * given default value if this map contains no mapping for the
1515 >     * key.
1516 >     *
1517 >     * @param key the key whose associated value is to be returned
1518 >     * @param defaultValue the value to return if this map contains
1519 >     * no mapping for the given key
1520 >     * @return the mapping for the key, if present; else the default value
1521 >     * @throws NullPointerException if the specified key is null
1522 >     */
1523 >    public V getOrDefault(Object key, V defaultValue) {
1524 >        V v;
1525 >        return (v = get(key)) == null ? defaultValue : v;
1526 >    }
1527 >
1528 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1529 >        if (action == null) throw new NullPointerException();
1530 >        Node<K,V>[] t;
1531 >        if ((t = table) != null) {
1532 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1533 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1534 >                action.accept(p.key, p.val);
1535 >            }
1536 >        }
1537 >    }
1538 >
1539 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1540 >        if (function == null) throw new NullPointerException();
1541 >        Node<K,V>[] t;
1542 >        if ((t = table) != null) {
1543 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1544 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1545 >                V oldValue = p.val;
1546 >                for (K key = p.key;;) {
1547 >                    V newValue = function.apply(key, oldValue);
1548 >                    if (newValue == null)
1549 >                        throw new NullPointerException();
1550 >                    if (replaceNode(key, newValue, oldValue) != null ||
1551 >                        (oldValue = get(key)) == null)
1552 >                        break;
1553 >                }
1554 >            }
1555 >        }
1556 >    }
1557 >
1558 >    /**
1559 >     * If the specified key is not already associated with a value,
1560 >     * attempts to compute its value using the given mapping function
1561 >     * and enters it into this map unless {@code null}.  The entire
1562 >     * method invocation is performed atomically, so the function is
1563 >     * applied at most once per key.  Some attempted update operations
1564 >     * on this map by other threads may be blocked while computation
1565 >     * is in progress, so the computation should be short and simple,
1566 >     * and must not attempt to update any other mappings of this map.
1567 >     *
1568 >     * @param key key with which the specified value is to be associated
1569 >     * @param mappingFunction the function to compute a value
1570 >     * @return the current (existing or computed) value associated with
1571 >     *         the specified key, or null if the computed value is null
1572 >     * @throws NullPointerException if the specified key or mappingFunction
1573 >     *         is null
1574 >     * @throws IllegalStateException if the computation detectably
1575 >     *         attempts a recursive update to this map that would
1576 >     *         otherwise never complete
1577 >     * @throws RuntimeException or Error if the mappingFunction does so,
1578 >     *         in which case the mapping is left unestablished
1579 >     */
1580 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1581 >        if (key == null || mappingFunction == null)
1582 >            throw new NullPointerException();
1583 >        int h = spread(key.hashCode());
1584          V val = null;
1585 <        int len = 0;
1585 >        int binCount = 0;
1586          for (Node<K,V>[] tab = table;;) {
1587 <            Node<K,V> f; int i; Object fk;
1588 <            if (tab == null)
1587 >            Node<K,V> f; int n, i, fh;
1588 >            if (tab == null || (n = tab.length) == 0)
1589                  tab = initTable();
1590 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1591 <                Node<K,V> node = new Node<K,V>(h, k, null, null);
1592 <                synchronized (node) {
1593 <                    if (casTabAt(tab, i, null, node)) {
1594 <                        len = 1;
1590 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1591 >                Node<K,V> r = new ReservationNode<K,V>();
1592 >                synchronized (r) {
1593 >                    if (casTabAt(tab, i, null, r)) {
1594 >                        binCount = 1;
1595 >                        Node<K,V> node = null;
1596                          try {
1597 <                            if ((val = mf.apply(k)) != null)
1598 <                                node.val = val;
1597 >                            if ((val = mappingFunction.apply(key)) != null)
1598 >                                node = new Node<K,V>(h, key, val, null);
1599                          } finally {
1600 <                            if (val == null)
1373 <                                setTabAt(tab, i, null);
1600 >                            setTabAt(tab, i, node);
1601                          }
1602                      }
1603                  }
1604 <                if (len != 0)
1604 >                if (binCount != 0)
1605                      break;
1606              }
1607 <            else if (f.hash < 0) {
1608 <                if ((fk = f.key) instanceof TreeBin) {
1382 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1383 <                    long stamp = t.writeLock();
1384 <                    boolean added = false;
1385 <                    try {
1386 <                        if (tabAt(tab, i) == f) {
1387 <                            len = 2;
1388 <                            Class<?> cc = comparableClassFor(k);
1389 <                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1390 <                            if (p != null)
1391 <                                val = p.val;
1392 <                            else if ((val = mf.apply(k)) != null) {
1393 <                                added = true;
1394 <                                t.putTreeNode(h, k, val);
1395 <                            }
1396 <                        }
1397 <                    } finally {
1398 <                        t.unlockWrite(stamp);
1399 <                    }
1400 <                    if (len != 0) {
1401 <                        if (!added)
1402 <                            return val;
1403 <                        break;
1404 <                    }
1405 <                }
1406 <                else
1407 <                    tab = (Node<K,V>[])fk;
1408 <            }
1607 >            else if ((fh = f.hash) == MOVED)
1608 >                tab = helpTransfer(tab, f);
1609              else {
1610                  boolean added = false;
1611                  synchronized (f) {
1612                      if (tabAt(tab, i) == f) {
1613 <                        len = 1;
1614 <                        for (Node<K,V> e = f;; ++len) {
1615 <                            Object ek; V ev;
1616 <                            if (e.hash == h &&
1617 <                                ((ek = e.key) == k || k.equals(ek))) {
1618 <                                val = e.val;
1619 <                                break;
1620 <                            }
1621 <                            Node<K,V> last = e;
1422 <                            if ((e = e.next) == null) {
1423 <                                if ((val = mf.apply(k)) != null) {
1424 <                                    added = true;
1425 <                                    last.next = new Node<K,V>(h, k, val, null);
1426 <                                    if (len > TREE_THRESHOLD)
1427 <                                        replaceWithTreeBin(tab, i, k);
1613 >                        if (fh >= 0) {
1614 >                            binCount = 1;
1615 >                            for (Node<K,V> e = f;; ++binCount) {
1616 >                                K ek; V ev;
1617 >                                if (e.hash == h &&
1618 >                                    ((ek = e.key) == key ||
1619 >                                     (ek != null && key.equals(ek)))) {
1620 >                                    val = e.val;
1621 >                                    break;
1622                                  }
1623 <                                break;
1623 >                                Node<K,V> pred = e;
1624 >                                if ((e = e.next) == null) {
1625 >                                    if ((val = mappingFunction.apply(key)) != null) {
1626 >                                        added = true;
1627 >                                        pred.next = new Node<K,V>(h, key, val, null);
1628 >                                    }
1629 >                                    break;
1630 >                                }
1631 >                            }
1632 >                        }
1633 >                        else if (f instanceof TreeBin) {
1634 >                            binCount = 2;
1635 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1636 >                            TreeNode<K,V> r, p;
1637 >                            if ((r = t.root) != null &&
1638 >                                (p = r.findTreeNode(h, key, null)) != null)
1639 >                                val = p.val;
1640 >                            else if ((val = mappingFunction.apply(key)) != null) {
1641 >                                added = true;
1642 >                                t.putTreeVal(h, key, val);
1643                              }
1644                          }
1645                      }
1646                  }
1647 <                if (len != 0) {
1647 >                if (binCount != 0) {
1648 >                    if (binCount >= TREEIFY_THRESHOLD)
1649 >                        treeifyBin(tab, i);
1650                      if (!added)
1651                          return val;
1652                      break;
# Line 1439 | Line 1654 | public class ConcurrentHashMap<K,V> impl
1654              }
1655          }
1656          if (val != null)
1657 <            addCount(1L, len);
1657 >            addCount(1L, binCount);
1658          return val;
1659      }
1660  
1661 <    /** Implementation for compute */
1662 <    private final V internalCompute(K k, boolean onlyIfPresent,
1663 <                                    BiFunction<? super K, ? super V, ? extends V> mf) {
1664 <        if (k == null || mf == null)
1661 >    /**
1662 >     * If the value for the specified key is present, attempts to
1663 >     * compute a new mapping given the key and its current mapped
1664 >     * value.  The entire method invocation is performed atomically.
1665 >     * Some attempted update operations on this map by other threads
1666 >     * may be blocked while computation is in progress, so the
1667 >     * computation should be short and simple, and must not attempt to
1668 >     * update any other mappings of this map.
1669 >     *
1670 >     * @param key key with which a value may be associated
1671 >     * @param remappingFunction the function to compute a value
1672 >     * @return the new value associated with the specified key, or null if none
1673 >     * @throws NullPointerException if the specified key or remappingFunction
1674 >     *         is null
1675 >     * @throws IllegalStateException if the computation detectably
1676 >     *         attempts a recursive update to this map that would
1677 >     *         otherwise never complete
1678 >     * @throws RuntimeException or Error if the remappingFunction does so,
1679 >     *         in which case the mapping is unchanged
1680 >     */
1681 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1682 >        if (key == null || remappingFunction == null)
1683              throw new NullPointerException();
1684 <        int h = spread(k.hashCode());
1684 >        int h = spread(key.hashCode());
1685          V val = null;
1686          int delta = 0;
1687 <        int len = 0;
1687 >        int binCount = 0;
1688          for (Node<K,V>[] tab = table;;) {
1689 <            Node<K,V> f; int i, fh; Object fk;
1690 <            if (tab == null)
1689 >            Node<K,V> f; int n, i, fh;
1690 >            if (tab == null || (n = tab.length) == 0)
1691                  tab = initTable();
1692 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1693 <                if (onlyIfPresent)
1694 <                    break;
1695 <                Node<K,V> node = new Node<K,V>(h, k, null, null);
1696 <                synchronized (node) {
1697 <                    if (casTabAt(tab, i, null, node)) {
1698 <                        try {
1699 <                            len = 1;
1700 <                            if ((val = mf.apply(k, null)) != null) {
1701 <                                node.val = val;
1702 <                                delta = 1;
1703 <                            }
1704 <                        } finally {
1705 <                            if (delta == 0)
1706 <                                setTabAt(tab, i, null);
1707 <                        }
1708 <                    }
1476 <                }
1477 <                if (len != 0)
1478 <                    break;
1479 <            }
1480 <            else if ((fh = f.hash) < 0) {
1481 <                if ((fk = f.key) instanceof TreeBin) {
1482 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1483 <                    long stamp = t.writeLock();
1484 <                    try {
1485 <                        if (tabAt(tab, i) == f) {
1486 <                            len = 2;
1487 <                            Class<?> cc = comparableClassFor(k);
1488 <                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1489 <                            if (p != null || !onlyIfPresent) {
1490 <                                V pv = (p == null) ? null : p.val;
1491 <                                if ((val = mf.apply(k, pv)) != null) {
1492 <                                    if (p != null)
1493 <                                        p.val = val;
1692 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1693 >                break;
1694 >            else if ((fh = f.hash) == MOVED)
1695 >                tab = helpTransfer(tab, f);
1696 >            else {
1697 >                synchronized (f) {
1698 >                    if (tabAt(tab, i) == f) {
1699 >                        if (fh >= 0) {
1700 >                            binCount = 1;
1701 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1702 >                                K ek;
1703 >                                if (e.hash == h &&
1704 >                                    ((ek = e.key) == key ||
1705 >                                     (ek != null && key.equals(ek)))) {
1706 >                                    val = remappingFunction.apply(key, e.val);
1707 >                                    if (val != null)
1708 >                                        e.val = val;
1709                                      else {
1710 <                                        delta = 1;
1711 <                                        t.putTreeNode(h, k, val);
1710 >                                        delta = -1;
1711 >                                        Node<K,V> en = e.next;
1712 >                                        if (pred != null)
1713 >                                            pred.next = en;
1714 >                                        else
1715 >                                            setTabAt(tab, i, en);
1716                                      }
1717 +                                    break;
1718                                  }
1719 <                                else if (p != null) {
1720 <                                    delta = -1;
1721 <                                    t.deleteTreeNode(p);
1502 <                                }
1719 >                                pred = e;
1720 >                                if ((e = e.next) == null)
1721 >                                    break;
1722                              }
1723                          }
1724 <                    } finally {
1725 <                        t.unlockWrite(stamp);
1726 <                    }
1727 <                    if (len != 0)
1728 <                        break;
1729 <                }
1730 <                else
1512 <                    tab = (Node<K,V>[])fk;
1513 <            }
1514 <            else {
1515 <                synchronized (f) {
1516 <                    if (tabAt(tab, i) == f) {
1517 <                        len = 1;
1518 <                        for (Node<K,V> e = f, pred = null;; ++len) {
1519 <                            Object ek;
1520 <                            if (e.hash == h &&
1521 <                                ((ek = e.key) == k || k.equals(ek))) {
1522 <                                val = mf.apply(k, e.val);
1724 >                        else if (f instanceof TreeBin) {
1725 >                            binCount = 2;
1726 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1727 >                            TreeNode<K,V> r, p;
1728 >                            if ((r = t.root) != null &&
1729 >                                (p = r.findTreeNode(h, key, null)) != null) {
1730 >                                val = remappingFunction.apply(key, p.val);
1731                                  if (val != null)
1732 <                                    e.val = val;
1732 >                                    p.val = val;
1733                                  else {
1734                                      delta = -1;
1735 <                                    Node<K,V> en = e.next;
1736 <                                    if (pred != null)
1529 <                                        pred.next = en;
1530 <                                    else
1531 <                                        setTabAt(tab, i, en);
1532 <                                }
1533 <                                break;
1534 <                            }
1535 <                            pred = e;
1536 <                            if ((e = e.next) == null) {
1537 <                                if (!onlyIfPresent &&
1538 <                                    (val = mf.apply(k, null)) != null) {
1539 <                                    pred.next = new Node<K,V>(h, k, val, null);
1540 <                                    delta = 1;
1541 <                                    if (len > TREE_THRESHOLD)
1542 <                                        replaceWithTreeBin(tab, i, k);
1735 >                                    if (t.removeTreeNode(p))
1736 >                                        setTabAt(tab, i, untreeify(t.first));
1737                                  }
1544                                break;
1738                              }
1739                          }
1740                      }
1741                  }
1742 <                if (len != 0)
1742 >                if (binCount != 0)
1743                      break;
1744              }
1745          }
1746          if (delta != 0)
1747 <            addCount((long)delta, len);
1747 >            addCount((long)delta, binCount);
1748          return val;
1749      }
1750  
1751 <    /** Implementation for merge */
1752 <    private final V internalMerge(K k, V v,
1753 <                                  BiFunction<? super V, ? super V, ? extends V> mf) {
1754 <        if (k == null || v == null || mf == null)
1751 >    /**
1752 >     * Attempts to compute a mapping for the specified key and its
1753 >     * current mapped value (or {@code null} if there is no current
1754 >     * mapping). The entire method invocation is performed atomically.
1755 >     * Some attempted update operations on this map by other threads
1756 >     * may be blocked while computation is in progress, so the
1757 >     * computation should be short and simple, and must not attempt to
1758 >     * update any other mappings of this Map.
1759 >     *
1760 >     * @param key key with which the specified value is to be associated
1761 >     * @param remappingFunction the function to compute a value
1762 >     * @return the new value associated with the specified key, or null if none
1763 >     * @throws NullPointerException if the specified key or remappingFunction
1764 >     *         is null
1765 >     * @throws IllegalStateException if the computation detectably
1766 >     *         attempts a recursive update to this map that would
1767 >     *         otherwise never complete
1768 >     * @throws RuntimeException or Error if the remappingFunction does so,
1769 >     *         in which case the mapping is unchanged
1770 >     */
1771 >    public V compute(K key,
1772 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1773 >        if (key == null || remappingFunction == null)
1774              throw new NullPointerException();
1775 <        int h = spread(k.hashCode());
1775 >        int h = spread(key.hashCode());
1776          V val = null;
1777          int delta = 0;
1778 <        int len = 0;
1778 >        int binCount = 0;
1779          for (Node<K,V>[] tab = table;;) {
1780 <            int i; Node<K,V> f; Object fk;
1781 <            if (tab == null)
1780 >            Node<K,V> f; int n, i, fh;
1781 >            if (tab == null || (n = tab.length) == 0)
1782                  tab = initTable();
1783 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1784 <                if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1785 <                    delta = 1;
1786 <                    val = v;
1787 <                    break;
1788 <                }
1789 <            }
1790 <            else if (f.hash < 0) {
1791 <                if ((fk = f.key) instanceof TreeBin) {
1792 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1581 <                    long stamp = t.writeLock();
1582 <                    try {
1583 <                        if (tabAt(tab, i) == f) {
1584 <                            len = 2;
1585 <                            Class<?> cc = comparableClassFor(k);
1586 <                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1587 <                            val = (p == null) ? v : mf.apply(p.val, v);
1588 <                            if (val != null) {
1589 <                                if (p != null)
1590 <                                    p.val = val;
1591 <                                else {
1592 <                                    delta = 1;
1593 <                                    t.putTreeNode(h, k, val);
1594 <                                }
1595 <                            }
1596 <                            else if (p != null) {
1597 <                                delta = -1;
1598 <                                t.deleteTreeNode(p);
1783 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1784 >                Node<K,V> r = new ReservationNode<K,V>();
1785 >                synchronized (r) {
1786 >                    if (casTabAt(tab, i, null, r)) {
1787 >                        binCount = 1;
1788 >                        Node<K,V> node = null;
1789 >                        try {
1790 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1791 >                                delta = 1;
1792 >                                node = new Node<K,V>(h, key, val, null);
1793                              }
1794 +                        } finally {
1795 +                            setTabAt(tab, i, node);
1796                          }
1601                    } finally {
1602                        t.unlockWrite(stamp);
1797                      }
1604                    if (len != 0)
1605                        break;
1798                  }
1799 <                else
1800 <                    tab = (Node<K,V>[])fk;
1799 >                if (binCount != 0)
1800 >                    break;
1801              }
1802 +            else if ((fh = f.hash) == MOVED)
1803 +                tab = helpTransfer(tab, f);
1804              else {
1805                  synchronized (f) {
1806                      if (tabAt(tab, i) == f) {
1807 <                        len = 1;
1808 <                        for (Node<K,V> e = f, pred = null;; ++len) {
1809 <                            Object ek;
1810 <                            if (e.hash == h &&
1811 <                                ((ek = e.key) == k || k.equals(ek))) {
1812 <                                val = mf.apply(e.val, v);
1813 <                                if (val != null)
1814 <                                    e.val = val;
1807 >                        if (fh >= 0) {
1808 >                            binCount = 1;
1809 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1810 >                                K ek;
1811 >                                if (e.hash == h &&
1812 >                                    ((ek = e.key) == key ||
1813 >                                     (ek != null && key.equals(ek)))) {
1814 >                                    val = remappingFunction.apply(key, e.val);
1815 >                                    if (val != null)
1816 >                                        e.val = val;
1817 >                                    else {
1818 >                                        delta = -1;
1819 >                                        Node<K,V> en = e.next;
1820 >                                        if (pred != null)
1821 >                                            pred.next = en;
1822 >                                        else
1823 >                                            setTabAt(tab, i, en);
1824 >                                    }
1825 >                                    break;
1826 >                                }
1827 >                                pred = e;
1828 >                                if ((e = e.next) == null) {
1829 >                                    val = remappingFunction.apply(key, null);
1830 >                                    if (val != null) {
1831 >                                        delta = 1;
1832 >                                        pred.next =
1833 >                                            new Node<K,V>(h, key, val, null);
1834 >                                    }
1835 >                                    break;
1836 >                                }
1837 >                            }
1838 >                        }
1839 >                        else if (f instanceof TreeBin) {
1840 >                            binCount = 1;
1841 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1842 >                            TreeNode<K,V> r, p;
1843 >                            if ((r = t.root) != null)
1844 >                                p = r.findTreeNode(h, key, null);
1845 >                            else
1846 >                                p = null;
1847 >                            V pv = (p == null) ? null : p.val;
1848 >                            val = remappingFunction.apply(key, pv);
1849 >                            if (val != null) {
1850 >                                if (p != null)
1851 >                                    p.val = val;
1852                                  else {
1853 <                                    delta = -1;
1854 <                                    Node<K,V> en = e.next;
1624 <                                    if (pred != null)
1625 <                                        pred.next = en;
1626 <                                    else
1627 <                                        setTabAt(tab, i, en);
1853 >                                    delta = 1;
1854 >                                    t.putTreeVal(h, key, val);
1855                                  }
1629                                break;
1856                              }
1857 <                            pred = e;
1858 <                            if ((e = e.next) == null) {
1859 <                                delta = 1;
1860 <                                val = v;
1635 <                                pred.next = new Node<K,V>(h, k, val, null);
1636 <                                if (len > TREE_THRESHOLD)
1637 <                                    replaceWithTreeBin(tab, i, k);
1638 <                                break;
1857 >                            else if (p != null) {
1858 >                                delta = -1;
1859 >                                if (t.removeTreeNode(p))
1860 >                                    setTabAt(tab, i, untreeify(t.first));
1861                              }
1862                          }
1863                      }
1864                  }
1865 <                if (len != 0)
1865 >                if (binCount != 0) {
1866 >                    if (binCount >= TREEIFY_THRESHOLD)
1867 >                        treeifyBin(tab, i);
1868                      break;
1869 +                }
1870              }
1871          }
1872          if (delta != 0)
1873 <            addCount((long)delta, len);
1873 >            addCount((long)delta, binCount);
1874          return val;
1875      }
1876  
1877 <    /** Implementation for putAll */
1878 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
1879 <        tryPresize(m.size());
1880 <        long delta = 0L;     // number of uncommitted additions
1881 <        boolean npe = false; // to throw exception on exit for nulls
1882 <        try {                // to clean up counts on other exceptions
1883 <            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1884 <                Object k; V v;
1885 <                if (entry == null || (k = entry.getKey()) == null ||
1886 <                    (v = entry.getValue()) == null) {
1887 <                    npe = true;
1877 >    /**
1878 >     * If the specified key is not already associated with a
1879 >     * (non-null) value, associates it with the given value.
1880 >     * Otherwise, replaces the value with the results of the given
1881 >     * remapping function, or removes if {@code null}. The entire
1882 >     * method invocation is performed atomically.  Some attempted
1883 >     * update operations on this map by other threads may be blocked
1884 >     * while computation is in progress, so the computation should be
1885 >     * short and simple, and must not attempt to update any other
1886 >     * mappings of this Map.
1887 >     *
1888 >     * @param key key with which the specified value is to be associated
1889 >     * @param value the value to use if absent
1890 >     * @param remappingFunction the function to recompute a value if present
1891 >     * @return the new value associated with the specified key, or null if none
1892 >     * @throws NullPointerException if the specified key or the
1893 >     *         remappingFunction is null
1894 >     * @throws RuntimeException or Error if the remappingFunction does so,
1895 >     *         in which case the mapping is unchanged
1896 >     */
1897 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1898 >        if (key == null || value == null || remappingFunction == null)
1899 >            throw new NullPointerException();
1900 >        int h = spread(key.hashCode());
1901 >        V val = null;
1902 >        int delta = 0;
1903 >        int binCount = 0;
1904 >        for (Node<K,V>[] tab = table;;) {
1905 >            Node<K,V> f; int n, i, fh;
1906 >            if (tab == null || (n = tab.length) == 0)
1907 >                tab = initTable();
1908 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1909 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1910 >                    delta = 1;
1911 >                    val = value;
1912                      break;
1913                  }
1914 <                int h = spread(k.hashCode());
1915 <                for (Node<K,V>[] tab = table;;) {
1916 <                    int i; Node<K,V> f; int fh; Object fk;
1917 <                    if (tab == null)
1918 <                        tab = initTable();
1919 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1920 <                        if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1921 <                            ++delta;
1922 <                            break;
1923 <                        }
1924 <                    }
1925 <                    else if ((fh = f.hash) < 0) {
1926 <                        if ((fk = f.key) instanceof TreeBin) {
1927 <                            TreeBin<K,V> t = (TreeBin<K,V>)fk;
1928 <                            long stamp = t.writeLock();
1929 <                            boolean validated = false;
1681 <                            try {
1682 <                                if (tabAt(tab, i) == f) {
1683 <                                    validated = true;
1684 <                                    Class<?> cc = comparableClassFor(k);
1685 <                                    TreeNode<K,V> p = t.getTreeNode(h, k,
1686 <                                                                    t.root, cc);
1687 <                                    if (p != null)
1688 <                                        p.val = v;
1914 >            }
1915 >            else if ((fh = f.hash) == MOVED)
1916 >                tab = helpTransfer(tab, f);
1917 >            else {
1918 >                synchronized (f) {
1919 >                    if (tabAt(tab, i) == f) {
1920 >                        if (fh >= 0) {
1921 >                            binCount = 1;
1922 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1923 >                                K ek;
1924 >                                if (e.hash == h &&
1925 >                                    ((ek = e.key) == key ||
1926 >                                     (ek != null && key.equals(ek)))) {
1927 >                                    val = remappingFunction.apply(e.val, value);
1928 >                                    if (val != null)
1929 >                                        e.val = val;
1930                                      else {
1931 <                                        ++delta;
1932 <                                        t.putTreeNode(h, k, v);
1931 >                                        delta = -1;
1932 >                                        Node<K,V> en = e.next;
1933 >                                        if (pred != null)
1934 >                                            pred.next = en;
1935 >                                        else
1936 >                                            setTabAt(tab, i, en);
1937                                      }
1938 +                                    break;
1939 +                                }
1940 +                                pred = e;
1941 +                                if ((e = e.next) == null) {
1942 +                                    delta = 1;
1943 +                                    val = value;
1944 +                                    pred.next =
1945 +                                        new Node<K,V>(h, key, val, null);
1946 +                                    break;
1947                                  }
1694                            } finally {
1695                                t.unlockWrite(stamp);
1948                              }
1697                            if (validated)
1698                                break;
1949                          }
1950 <                        else
1951 <                            tab = (Node<K,V>[])fk;
1952 <                    }
1953 <                    else {
1954 <                        int len = 0;
1955 <                        synchronized (f) {
1956 <                            if (tabAt(tab, i) == f) {
1957 <                                len = 1;
1958 <                                for (Node<K,V> e = f;; ++len) {
1959 <                                    Object ek;
1960 <                                    if (e.hash == h &&
1961 <                                        ((ek = e.key) == k || k.equals(ek))) {
1962 <                                        e.val = v;
1963 <                                        break;
1714 <                                    }
1715 <                                    Node<K,V> last = e;
1716 <                                    if ((e = e.next) == null) {
1717 <                                        ++delta;
1718 <                                        last.next = new Node<K,V>(h, k, v, null);
1719 <                                        if (len > TREE_THRESHOLD)
1720 <                                            replaceWithTreeBin(tab, i, k);
1721 <                                        break;
1722 <                                    }
1950 >                        else if (f instanceof TreeBin) {
1951 >                            binCount = 2;
1952 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1953 >                            TreeNode<K,V> r = t.root;
1954 >                            TreeNode<K,V> p = (r == null) ? null :
1955 >                                r.findTreeNode(h, key, null);
1956 >                            val = (p == null) ? value :
1957 >                                remappingFunction.apply(p.val, value);
1958 >                            if (val != null) {
1959 >                                if (p != null)
1960 >                                    p.val = val;
1961 >                                else {
1962 >                                    delta = 1;
1963 >                                    t.putTreeVal(h, key, val);
1964                                  }
1965                              }
1966 <                        }
1967 <                        if (len != 0) {
1968 <                            if (len > 1) {
1969 <                                addCount(delta, len);
1729 <                                delta = 0L;
1966 >                            else if (p != null) {
1967 >                                delta = -1;
1968 >                                if (t.removeTreeNode(p))
1969 >                                    setTabAt(tab, i, untreeify(t.first));
1970                              }
1731                            break;
1971                          }
1972                      }
1973                  }
1974 +                if (binCount != 0) {
1975 +                    if (binCount >= TREEIFY_THRESHOLD)
1976 +                        treeifyBin(tab, i);
1977 +                    break;
1978 +                }
1979              }
1736        } finally {
1737            if (delta != 0L)
1738                addCount(delta, 2);
1980          }
1981 <        if (npe)
1981 >        if (delta != 0)
1982 >            addCount((long)delta, binCount);
1983 >        return val;
1984 >    }
1985 >
1986 >    // Hashtable legacy methods
1987 >
1988 >    /**
1989 >     * Legacy method testing if some key maps into the specified value
1990 >     * in this table.  This method is identical in functionality to
1991 >     * {@link #containsValue(Object)}, and exists solely to ensure
1992 >     * full compatibility with class {@link java.util.Hashtable},
1993 >     * which supported this method prior to introduction of the
1994 >     * Java Collections framework.
1995 >     *
1996 >     * @param  value a value to search for
1997 >     * @return {@code true} if and only if some key maps to the
1998 >     *         {@code value} argument in this table as
1999 >     *         determined by the {@code equals} method;
2000 >     *         {@code false} otherwise
2001 >     * @throws NullPointerException if the specified value is null
2002 >     */
2003 >    @Deprecated public boolean contains(Object value) {
2004 >        return containsValue(value);
2005 >    }
2006 >
2007 >    /**
2008 >     * Returns an enumeration of the keys in this table.
2009 >     *
2010 >     * @return an enumeration of the keys in this table
2011 >     * @see #keySet()
2012 >     */
2013 >    public Enumeration<K> keys() {
2014 >        Node<K,V>[] t;
2015 >        int f = (t = table) == null ? 0 : t.length;
2016 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2017 >    }
2018 >
2019 >    /**
2020 >     * Returns an enumeration of the values in this table.
2021 >     *
2022 >     * @return an enumeration of the values in this table
2023 >     * @see #values()
2024 >     */
2025 >    public Enumeration<V> elements() {
2026 >        Node<K,V>[] t;
2027 >        int f = (t = table) == null ? 0 : t.length;
2028 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2029 >    }
2030 >
2031 >    // ConcurrentHashMap-only methods
2032 >
2033 >    /**
2034 >     * Returns the number of mappings. This method should be used
2035 >     * instead of {@link #size} because a ConcurrentHashMap may
2036 >     * contain more mappings than can be represented as an int. The
2037 >     * value returned is an estimate; the actual count may differ if
2038 >     * there are concurrent insertions or removals.
2039 >     *
2040 >     * @return the number of mappings
2041 >     * @since 1.8
2042 >     */
2043 >    public long mappingCount() {
2044 >        long n = sumCount();
2045 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2046 >    }
2047 >
2048 >    /**
2049 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2050 >     * from the given type to {@code Boolean.TRUE}.
2051 >     *
2052 >     * @return the new set
2053 >     * @since 1.8
2054 >     */
2055 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2056 >        return new KeySetView<K,Boolean>
2057 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2058 >    }
2059 >
2060 >    /**
2061 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2062 >     * from the given type to {@code Boolean.TRUE}.
2063 >     *
2064 >     * @param initialCapacity The implementation performs internal
2065 >     * sizing to accommodate this many elements.
2066 >     * @throws IllegalArgumentException if the initial capacity of
2067 >     * elements is negative
2068 >     * @return the new set
2069 >     * @since 1.8
2070 >     */
2071 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2072 >        return new KeySetView<K,Boolean>
2073 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2074 >    }
2075 >
2076 >    /**
2077 >     * Returns a {@link Set} view of the keys in this map, using the
2078 >     * given common mapped value for any additions (i.e., {@link
2079 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2080 >     * This is of course only appropriate if it is acceptable to use
2081 >     * the same value for all additions from this view.
2082 >     *
2083 >     * @param mappedValue the mapped value to use for any additions
2084 >     * @return the set view
2085 >     * @throws NullPointerException if the mappedValue is null
2086 >     */
2087 >    public KeySetView<K,V> keySet(V mappedValue) {
2088 >        if (mappedValue == null)
2089              throw new NullPointerException();
2090 +        return new KeySetView<K,V>(this, mappedValue);
2091      }
2092  
2093 +    /* ---------------- Special Nodes -------------- */
2094 +
2095      /**
2096 <     * Implementation for clear. Steps through each bin, removing all
1746 <     * nodes.
2096 >     * A node inserted at head of bins during transfer operations.
2097       */
2098 <    private final void internalClear() {
2099 <        long delta = 0L; // negative number of deletions
2100 <        int i = 0;
2101 <        Node<K,V>[] tab = table;
2102 <        while (tab != null && i < tab.length) {
2103 <            Node<K,V> f = tabAt(tab, i);
2104 <            if (f == null)
2105 <                ++i;
2106 <            else if (f.hash < 0) {
2107 <                Object fk;
2108 <                if ((fk = f.key) instanceof TreeBin) {
2109 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
2110 <                    long stamp = t.writeLock();
2111 <                    try {
2112 <                        if (tabAt(tab, i) == f) {
2113 <                            for (Node<K,V> p = t.first; p != null; p = p.next)
2114 <                                --delta;
2115 <                            t.first = null;
2116 <                            t.root = null;
2117 <                            ++i;
1768 <                        }
1769 <                    } finally {
1770 <                        t.unlockWrite(stamp);
1771 <                    }
1772 <                }
1773 <                else
1774 <                    tab = (Node<K,V>[])fk;
1775 <            }
1776 <            else {
1777 <                synchronized (f) {
1778 <                    if (tabAt(tab, i) == f) {
1779 <                        for (Node<K,V> e = f; e != null; e = e.next)
1780 <                            --delta;
1781 <                        setTabAt(tab, i, null);
1782 <                        ++i;
1783 <                    }
1784 <                }
2098 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2099 >        final Node<K,V>[] nextTable;
2100 >        ForwardingNode(Node<K,V>[] tab) {
2101 >            super(MOVED, null, null, null);
2102 >            this.nextTable = tab;
2103 >        }
2104 >
2105 >        Node<K,V> find(int h, Object k) {
2106 >            Node<K,V> e; int n;
2107 >            Node<K,V>[] tab = nextTable;
2108 >            if (k != null && tab != null && (n = tab.length) > 0 &&
2109 >                (e = tabAt(tab, (n - 1) & h)) != null) {
2110 >                do {
2111 >                    int eh; K ek;
2112 >                    if ((eh = e.hash) == h &&
2113 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2114 >                        return e;
2115 >                    if (eh < 0)
2116 >                        return e.find(h, k);
2117 >                } while ((e = e.next) != null);
2118              }
2119 +            return null;
2120          }
1787        if (delta != 0L)
1788            addCount(delta, -1);
2121      }
2122  
1791    /* ---------------- Table Initialization and Resizing -------------- */
1792
2123      /**
2124 <     * Returns a power of two table size for the given desired capacity.
1795 <     * See Hackers Delight, sec 3.2
2124 >     * A place-holder node used in computeIfAbsent and compute
2125       */
2126 <    private static final int tableSizeFor(int c) {
2127 <        int n = c - 1;
2128 <        n |= n >>> 1;
2129 <        n |= n >>> 2;
2130 <        n |= n >>> 4;
2131 <        n |= n >>> 8;
2132 <        n |= n >>> 16;
2133 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2126 >    static final class ReservationNode<K,V> extends Node<K,V> {
2127 >        ReservationNode() {
2128 >            super(RESERVED, null, null, null);
2129 >        }
2130 >
2131 >        Node<K,V> find(int h, Object k) {
2132 >            return null;
2133 >        }
2134      }
2135  
2136 +    /* ---------------- Table Initialization and Resizing -------------- */
2137 +
2138      /**
2139       * Initializes table, using the size recorded in sizeCtl.
2140       */
2141      private final Node<K,V>[] initTable() {
2142          Node<K,V>[] tab; int sc;
2143 <        while ((tab = table) == null) {
2143 >        while ((tab = table) == null || tab.length == 0) {
2144              if ((sc = sizeCtl) < 0)
2145                  Thread.yield(); // lost initialization race; just spin
2146              else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2147                  try {
2148 <                    if ((tab = table) == null) {
2148 >                    if ((tab = table) == null || tab.length == 0) {
2149                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2150 <                        table = tab = (Node<K,V>[])new Node[n];
2150 >                        @SuppressWarnings({"rawtypes","unchecked"})
2151 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2152 >                        table = tab = nt;
2153                          sc = n - (n >>> 2);
2154                      }
2155                  } finally {
# Line 1839 | Line 2172 | public class ConcurrentHashMap<K,V> impl
2172       * @param check if <0, don't check resize, if <= 1 only check if uncontended
2173       */
2174      private final void addCount(long x, int check) {
2175 <        Cell[] as; long b, s;
2175 >        CounterCell[] as; long b, s;
2176          if ((as = counterCells) != null ||
2177              !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2178 <            Cell a; long v; int m;
2178 >            CounterCell a; long v; int m;
2179              boolean uncontended = true;
2180              if (as == null || (m = as.length - 1) < 0 ||
2181                  (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
# Line 1874 | Line 2207 | public class ConcurrentHashMap<K,V> impl
2207      }
2208  
2209      /**
2210 +     * Helps transfer if a resize is in progress.
2211 +     */
2212 +    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2213 +        Node<K,V>[] nextTab; int sc;
2214 +        if ((f instanceof ForwardingNode) &&
2215 +            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2216 +            if (nextTab == nextTable && tab == table &&
2217 +                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2218 +                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2219 +                transfer(tab, nextTab);
2220 +            return nextTab;
2221 +        }
2222 +        return table;
2223 +    }
2224 +
2225 +    /**
2226       * Tries to presize table to accommodate the given number of elements.
2227       *
2228       * @param size number of elements (doesn't need to be perfectly accurate)
# Line 1889 | Line 2238 | public class ConcurrentHashMap<K,V> impl
2238                  if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2239                      try {
2240                          if (table == tab) {
2241 <                            table = (Node<K,V>[])new Node[n];
2241 >                            @SuppressWarnings({"rawtypes","unchecked"})
2242 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2243 >                            table = nt;
2244                              sc = n - (n >>> 2);
2245                          }
2246                      } finally {
# Line 1915 | Line 2266 | public class ConcurrentHashMap<K,V> impl
2266              stride = MIN_TRANSFER_STRIDE; // subdivide range
2267          if (nextTab == null) {            // initiating
2268              try {
2269 <                nextTab = (Node<K,V>[])new Node[n << 1];
2269 >                @SuppressWarnings({"rawtypes","unchecked"})
2270 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2271 >                nextTab = nt;
2272              } catch (Throwable ex) {      // try to cope with OOME
2273                  sizeCtl = Integer.MAX_VALUE;
2274                  return;
# Line 1923 | Line 2276 | public class ConcurrentHashMap<K,V> impl
2276              nextTable = nextTab;
2277              transferOrigin = n;
2278              transferIndex = n;
2279 <            Node<K,V> rev = new Node<K,V>(MOVED, tab, null, null);
2279 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2280              for (int k = n; k > 0;) {    // progressively reveal ready slots
2281                  int nextk = (k > stride) ? k - stride : 0;
2282                  for (int m = nextk; m < k; ++m)
# Line 1934 | Line 2287 | public class ConcurrentHashMap<K,V> impl
2287              }
2288          }
2289          int nextn = nextTab.length;
2290 <        Node<K,V> fwd = new Node<K,V>(MOVED, nextTab, null, null);
2290 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2291          boolean advance = true;
2292          for (int i = 0, bound = 0;;) {
2293 <            int nextIndex, nextBound; Node<K,V> f; Object fk;
2293 >            int nextIndex, nextBound, fh; Node<K,V> f;
2294              while (advance) {
2295                  if (--i >= bound)
2296                      advance = false;
# Line 1973 | Line 2326 | public class ConcurrentHashMap<K,V> impl
2326                      advance = true;
2327                  }
2328              }
2329 <            else if (f.hash >= 0) {
2329 >            else if ((fh = f.hash) == MOVED)
2330 >                advance = true; // already processed
2331 >            else {
2332                  synchronized (f) {
2333                      if (tabAt(tab, i) == f) {
2334 <                        int runBit = f.hash & n;
2335 <                        Node<K,V> lastRun = f, lo = null, hi = null;
2336 <                        for (Node<K,V> p = f.next; p != null; p = p.next) {
2337 <                            int b = p.hash & n;
2338 <                            if (b != runBit) {
2339 <                                runBit = b;
2340 <                                lastRun = p;
2334 >                        Node<K,V> ln, hn;
2335 >                        if (fh >= 0) {
2336 >                            int runBit = fh & n;
2337 >                            Node<K,V> lastRun = f;
2338 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2339 >                                int b = p.hash & n;
2340 >                                if (b != runBit) {
2341 >                                    runBit = b;
2342 >                                    lastRun = p;
2343 >                                }
2344                              }
2345 <                        }
2346 <                        if (runBit == 0)
2347 <                            lo = lastRun;
1990 <                        else
1991 <                            hi = lastRun;
1992 <                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
1993 <                            int ph = p.hash; Object pk = p.key; V pv = p.val;
1994 <                            if ((ph & n) == 0)
1995 <                                lo = new Node<K,V>(ph, pk, pv, lo);
1996 <                            else
1997 <                                hi = new Node<K,V>(ph, pk, pv, hi);
1998 <                        }
1999 <                        setTabAt(nextTab, i, lo);
2000 <                        setTabAt(nextTab, i + n, hi);
2001 <                        setTabAt(tab, i, fwd);
2002 <                        advance = true;
2003 <                    }
2004 <                }
2005 <            }
2006 <            else if ((fk = f.key) instanceof TreeBin) {
2007 <                TreeBin<K,V> t = (TreeBin<K,V>)fk;
2008 <                long stamp = t.writeLock();
2009 <                try {
2010 <                    if (tabAt(tab, i) == f) {
2011 <                        TreeNode<K,V> root;
2012 <                        Node<K,V> ln = null, hn = null;
2013 <                        if ((root = t.root) != null) {
2014 <                            Node<K,V> e, p; TreeNode<K,V> lr, rr; int lh;
2015 <                            TreeBin<K,V> lt = null, ht = null;
2016 <                            for (lr = root; lr.left != null; lr = lr.left);
2017 <                            for (rr = root; rr.right != null; rr = rr.right);
2018 <                            if ((lh = lr.hash) == rr.hash) { // move entire tree
2019 <                                if ((lh & n) == 0)
2020 <                                    lt = t;
2021 <                                else
2022 <                                    ht = t;
2345 >                            if (runBit == 0) {
2346 >                                ln = lastRun;
2347 >                                hn = null;
2348                              }
2349                              else {
2350 <                                lt = new TreeBin<K,V>();
2351 <                                ht = new TreeBin<K,V>();
2352 <                                int lc = 0, hc = 0;
2353 <                                for (e = t.first; e != null; e = e.next) {
2354 <                                    int h = e.hash;
2355 <                                    Object k = e.key; V v = e.val;
2356 <                                    if ((h & n) == 0) {
2357 <                                        ++lc;
2358 <                                        lt.putTreeNode(h, k, v);
2359 <                                    }
2360 <                                    else {
2361 <                                        ++hc;
2362 <                                        ht.putTreeNode(h, k, v);
2363 <                                    }
2364 <                                }
2365 <                                if (lc < TREE_THRESHOLD) { // throw away
2366 <                                    for (p = lt.first; p != null; p = p.next)
2367 <                                        ln = new Node<K,V>(p.hash, p.key,
2368 <                                                           p.val, ln);
2369 <                                    lt = null;
2350 >                                hn = lastRun;
2351 >                                ln = null;
2352 >                            }
2353 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2354 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2355 >                                if ((ph & n) == 0)
2356 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2357 >                                else
2358 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2359 >                            }
2360 >                        }
2361 >                        else if (f instanceof TreeBin) {
2362 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2363 >                            TreeNode<K,V> lo = null, loTail = null;
2364 >                            TreeNode<K,V> hi = null, hiTail = null;
2365 >                            int lc = 0, hc = 0;
2366 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2367 >                                int h = e.hash;
2368 >                                TreeNode<K,V> p = new TreeNode<K,V>
2369 >                                    (h, e.key, e.val, null, null);
2370 >                                if ((h & n) == 0) {
2371 >                                    if ((p.prev = loTail) == null)
2372 >                                        lo = p;
2373 >                                    else
2374 >                                        loTail.next = p;
2375 >                                    loTail = p;
2376 >                                    ++lc;
2377                                  }
2378 <                                if (hc < TREE_THRESHOLD) {
2379 <                                    for (p = ht.first; p != null; p = p.next)
2380 <                                        hn = new Node<K,V>(p.hash, p.key,
2381 <                                                           p.val, hn);
2382 <                                    ht = null;
2378 >                                else {
2379 >                                    if ((p.prev = hiTail) == null)
2380 >                                        hi = p;
2381 >                                    else
2382 >                                        hiTail.next = p;
2383 >                                    hiTail = p;
2384 >                                    ++hc;
2385                                  }
2386                              }
2387 <                            if (ln == null && lt != null)
2388 <                                ln = new Node<K,V>(MOVED, lt, null, null);
2389 <                            if (hn == null && ht != null)
2390 <                                hn = new Node<K,V>(MOVED, ht, null, null);
2387 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2388 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2389 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2390 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2391                          }
2392 +                        else
2393 +                            ln = hn = null;
2394                          setTabAt(nextTab, i, ln);
2395                          setTabAt(nextTab, i + n, hn);
2396                          setTabAt(tab, i, fwd);
2397                          advance = true;
2398                      }
2063                } finally {
2064                    t.unlockWrite(stamp);
2399                  }
2400              }
2067            else
2068                advance = true; // already processed
2401          }
2402      }
2403  
2404      /* ---------------- Counter support -------------- */
2405  
2406 +    /**
2407 +     * A padded cell for distributing counts.  Adapted from LongAdder
2408 +     * and Striped64.  See their internal docs for explanation.
2409 +     */
2410 +    @sun.misc.Contended static final class CounterCell {
2411 +        volatile long value;
2412 +        CounterCell(long x) { value = x; }
2413 +    }
2414 +
2415      final long sumCount() {
2416 <        Cell[] as = counterCells; Cell a;
2416 >        CounterCell[] as = counterCells; CounterCell a;
2417          long sum = baseCount;
2418          if (as != null) {
2419              for (int i = 0; i < as.length; ++i) {
# Line 2093 | Line 2434 | public class ConcurrentHashMap<K,V> impl
2434          }
2435          boolean collide = false;                // True if last slot nonempty
2436          for (;;) {
2437 <            Cell[] as; Cell a; int n; long v;
2437 >            CounterCell[] as; CounterCell a; int n; long v;
2438              if ((as = counterCells) != null && (n = as.length) > 0) {
2439                  if ((a = as[(n - 1) & h]) == null) {
2440                      if (cellsBusy == 0) {            // Try to attach new Cell
2441 <                        Cell r = new Cell(x); // Optimistic create
2441 >                        CounterCell r = new CounterCell(x); // Optimistic create
2442                          if (cellsBusy == 0 &&
2443                              U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2444                              boolean created = false;
2445                              try {               // Recheck under lock
2446 <                                Cell[] rs; int m, j;
2446 >                                CounterCell[] rs; int m, j;
2447                                  if ((rs = counterCells) != null &&
2448                                      (m = rs.length) > 0 &&
2449                                      rs[j = (m - 1) & h] == null) {
# Line 2131 | Line 2472 | public class ConcurrentHashMap<K,V> impl
2472                           U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2473                      try {
2474                          if (counterCells == as) {// Expand table unless stale
2475 <                            Cell[] rs = new Cell[n << 1];
2475 >                            CounterCell[] rs = new CounterCell[n << 1];
2476                              for (int i = 0; i < n; ++i)
2477                                  rs[i] = as[i];
2478                              counterCells = rs;
# Line 2149 | Line 2490 | public class ConcurrentHashMap<K,V> impl
2490                  boolean init = false;
2491                  try {                           // Initialize table
2492                      if (counterCells == as) {
2493 <                        Cell[] rs = new Cell[2];
2494 <                        rs[h & 1] = new Cell(x);
2493 >                        CounterCell[] rs = new CounterCell[2];
2494 >                        rs[h & 1] = new CounterCell(x);
2495                          counterCells = rs;
2496                          init = true;
2497                      }
# Line 2165 | Line 2506 | public class ConcurrentHashMap<K,V> impl
2506          }
2507      }
2508  
2509 +    /* ---------------- Conversion from/to TreeBins -------------- */
2510 +
2511 +    /**
2512 +     * Replaces all linked nodes in bin at given index unless table is
2513 +     * too small, in which case resizes instead.
2514 +     */
2515 +    private final void treeifyBin(Node<K,V>[] tab, int index) {
2516 +        Node<K,V> b; int n, sc;
2517 +        if (tab != null) {
2518 +            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2519 +                if (tab == table && (sc = sizeCtl) >= 0 &&
2520 +                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2521 +                    transfer(tab, null);
2522 +            }
2523 +            else if ((b = tabAt(tab, index)) != null) {
2524 +                synchronized (b) {
2525 +                    if (tabAt(tab, index) == b) {
2526 +                        TreeNode<K,V> hd = null, tl = null;
2527 +                        for (Node<K,V> e = b; e != null; e = e.next) {
2528 +                            TreeNode<K,V> p =
2529 +                                new TreeNode<K,V>(e.hash, e.key, e.val,
2530 +                                                  null, null);
2531 +                            if ((p.prev = tl) == null)
2532 +                                hd = p;
2533 +                            else
2534 +                                tl.next = p;
2535 +                            tl = p;
2536 +                        }
2537 +                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2538 +                    }
2539 +                }
2540 +            }
2541 +        }
2542 +    }
2543 +
2544 +    /**
2545 +     * Returns a list on non-TreeNodes replacing those in given list
2546 +     */
2547 +    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2548 +        Node<K,V> hd = null, tl = null;
2549 +        for (Node<K,V> q = b; q != null; q = q.next) {
2550 +            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2551 +            if (tl == null)
2552 +                hd = p;
2553 +            else
2554 +                tl.next = p;
2555 +            tl = p;
2556 +        }
2557 +        return hd;
2558 +    }
2559 +
2560 +    /* ---------------- TreeNodes -------------- */
2561 +
2562 +    /**
2563 +     * Nodes for use in TreeBins
2564 +     */
2565 +    static final class TreeNode<K,V> extends Node<K,V> {
2566 +        TreeNode<K,V> parent;  // red-black tree links
2567 +        TreeNode<K,V> left;
2568 +        TreeNode<K,V> right;
2569 +        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2570 +        boolean red;
2571 +
2572 +        TreeNode(int hash, K key, V val, Node<K,V> next,
2573 +                 TreeNode<K,V> parent) {
2574 +            super(hash, key, val, next);
2575 +            this.parent = parent;
2576 +        }
2577 +
2578 +        Node<K,V> find(int h, Object k) {
2579 +            return findTreeNode(h, k, null);
2580 +        }
2581 +
2582 +        /**
2583 +         * Returns the TreeNode (or null if not found) for the given key
2584 +         * starting at given root.
2585 +         */
2586 +        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2587 +            if (k != null) {
2588 +                TreeNode<K,V> p = this;
2589 +                do  {
2590 +                    int ph, dir; K pk; TreeNode<K,V> q;
2591 +                    TreeNode<K,V> pl = p.left, pr = p.right;
2592 +                    if ((ph = p.hash) > h)
2593 +                        p = pl;
2594 +                    else if (ph < h)
2595 +                        p = pr;
2596 +                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2597 +                        return p;
2598 +                    else if (pl == null && pr == null)
2599 +                        break;
2600 +                    else if ((kc != null ||
2601 +                              (kc = comparableClassFor(k)) != null) &&
2602 +                             (dir = compareComparables(kc, k, pk)) != 0)
2603 +                        p = (dir < 0) ? pl : pr;
2604 +                    else if (pl == null)
2605 +                        p = pr;
2606 +                    else if (pr == null ||
2607 +                             (q = pr.findTreeNode(h, k, kc)) == null)
2608 +                        p = pl;
2609 +                    else
2610 +                        return q;
2611 +                } while (p != null);
2612 +            }
2613 +            return null;
2614 +        }
2615 +    }
2616 +
2617 +    /* ---------------- TreeBins -------------- */
2618 +
2619 +    /**
2620 +     * TreeNodes used at the heads of bins. TreeBins do not hold user
2621 +     * keys or values, but instead point to list of TreeNodes and
2622 +     * their root. They also maintain a parasitic read-write lock
2623 +     * forcing writers (who hold bin lock) to wait for readers (who do
2624 +     * not) to complete before tree restructuring operations.
2625 +     */
2626 +    static final class TreeBin<K,V> extends Node<K,V> {
2627 +        TreeNode<K,V> root;
2628 +        volatile TreeNode<K,V> first;
2629 +        volatile Thread waiter;
2630 +        volatile int lockState;
2631 +        // values for lockState
2632 +        static final int WRITER = 1; // set while holding write lock
2633 +        static final int WAITER = 2; // set when waiting for write lock
2634 +        static final int READER = 4; // increment value for setting read lock
2635 +
2636 +        /**
2637 +         * Creates bin with initial set of nodes headed by b.
2638 +         */
2639 +        TreeBin(TreeNode<K,V> b) {
2640 +            super(TREEBIN, null, null, null);
2641 +            this.first = b;
2642 +            TreeNode<K,V> r = null;
2643 +            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2644 +                next = (TreeNode<K,V>)x.next;
2645 +                x.left = x.right = null;
2646 +                if (r == null) {
2647 +                    x.parent = null;
2648 +                    x.red = false;
2649 +                    r = x;
2650 +                }
2651 +                else {
2652 +                    Object key = x.key;
2653 +                    int hash = x.hash;
2654 +                    Class<?> kc = null;
2655 +                    for (TreeNode<K,V> p = r;;) {
2656 +                        int dir, ph;
2657 +                        if ((ph = p.hash) > hash)
2658 +                            dir = -1;
2659 +                        else if (ph < hash)
2660 +                            dir = 1;
2661 +                        else if ((kc != null ||
2662 +                                  (kc = comparableClassFor(key)) != null))
2663 +                            dir = compareComparables(kc, key, p.key);
2664 +                        else
2665 +                            dir = 0;
2666 +                        TreeNode<K,V> xp = p;
2667 +                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2668 +                            x.parent = xp;
2669 +                            if (dir <= 0)
2670 +                                xp.left = x;
2671 +                            else
2672 +                                xp.right = x;
2673 +                            r = balanceInsertion(r, x);
2674 +                            break;
2675 +                        }
2676 +                    }
2677 +                }
2678 +            }
2679 +            this.root = r;
2680 +        }
2681 +
2682 +        /**
2683 +         * Acquires write lock for tree restructuring
2684 +         */
2685 +        private final void lockRoot() {
2686 +            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2687 +                contendedLock(); // offload to separate method
2688 +        }
2689 +
2690 +        /**
2691 +         * Releases write lock for tree restructuring
2692 +         */
2693 +        private final void unlockRoot() {
2694 +            lockState = 0;
2695 +        }
2696 +
2697 +        /**
2698 +         * Possibly blocks awaiting root lock
2699 +         */
2700 +        private final void contendedLock() {
2701 +            boolean waiting = false;
2702 +            for (int s;;) {
2703 +                if (((s = lockState) & WRITER) == 0) {
2704 +                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2705 +                        if (waiting)
2706 +                            waiter = null;
2707 +                        return;
2708 +                    }
2709 +                }
2710 +                else if ((s | WAITER) == 0) {
2711 +                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2712 +                        waiting = true;
2713 +                        waiter = Thread.currentThread();
2714 +                    }
2715 +                }
2716 +                else if (waiting)
2717 +                    LockSupport.park(this);
2718 +            }
2719 +        }
2720 +
2721 +        /**
2722 +         * Returns matching node or null if none. Tries to search
2723 +         * using tree compareisons from root, but continues linear
2724 +         * search when lock not available.
2725 +         */
2726 +        final Node<K,V> find(int h, Object k) {
2727 +            if (k != null) {
2728 +                for (Node<K,V> e = first; e != null; e = e.next) {
2729 +                    int s; K ek;
2730 +                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2731 +                        if (e.hash == h &&
2732 +                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2733 +                            return e;
2734 +                    }
2735 +                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2736 +                                                 s + READER)) {
2737 +                        TreeNode<K,V> r, p;
2738 +                        try {
2739 +                            p = ((r = root) == null ? null :
2740 +                                 r.findTreeNode(h, k, null));
2741 +                        } finally {
2742 +                            Thread w;
2743 +                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2744 +                                (READER|WAITER) && (w = waiter) != null)
2745 +                                LockSupport.unpark(w);
2746 +                        }
2747 +                        return p;
2748 +                    }
2749 +                }
2750 +            }
2751 +            return null;
2752 +        }
2753 +
2754 +        /**
2755 +         * Finds or adds a node.
2756 +         * @return null if added
2757 +         */
2758 +        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2759 +            Class<?> kc = null;
2760 +            for (TreeNode<K,V> p = root;;) {
2761 +                int dir, ph; K pk; TreeNode<K,V> q, pr;
2762 +                if (p == null) {
2763 +                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2764 +                    break;
2765 +                }
2766 +                else if ((ph = p.hash) > h)
2767 +                    dir = -1;
2768 +                else if (ph < h)
2769 +                    dir = 1;
2770 +                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2771 +                    return p;
2772 +                else if ((kc == null &&
2773 +                          (kc = comparableClassFor(k)) == null) ||
2774 +                         (dir = compareComparables(kc, k, pk)) == 0) {
2775 +                    if (p.left == null)
2776 +                        dir = 1;
2777 +                    else if ((pr = p.right) == null ||
2778 +                             (q = pr.findTreeNode(h, k, kc)) == null)
2779 +                        dir = -1;
2780 +                    else
2781 +                        return q;
2782 +                }
2783 +                TreeNode<K,V> xp = p;
2784 +                if ((p = (dir < 0) ? p.left : p.right) == null) {
2785 +                    TreeNode<K,V> x, f = first;
2786 +                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2787 +                    if (f != null)
2788 +                        f.prev = x;
2789 +                    if (dir < 0)
2790 +                        xp.left = x;
2791 +                    else
2792 +                        xp.right = x;
2793 +                    if (!xp.red)
2794 +                        x.red = true;
2795 +                    else {
2796 +                        lockRoot();
2797 +                        try {
2798 +                            root = balanceInsertion(root, x);
2799 +                        } finally {
2800 +                            unlockRoot();
2801 +                        }
2802 +                    }
2803 +                    break;
2804 +                }
2805 +            }
2806 +            assert checkInvariants(root);
2807 +            return null;
2808 +        }
2809 +
2810 +        /**
2811 +         * Removes the given node, that must be present before this
2812 +         * call.  This is messier than typical red-black deletion code
2813 +         * because we cannot swap the contents of an interior node
2814 +         * with a leaf successor that is pinned by "next" pointers
2815 +         * that are accessible independently of lock. So instead we
2816 +         * swap the tree linkages.
2817 +         *
2818 +         * @return true if now too small so should be untreeified.
2819 +         */
2820 +        final boolean removeTreeNode(TreeNode<K,V> p) {
2821 +            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2822 +            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2823 +            TreeNode<K,V> r, rl;
2824 +            if (pred == null)
2825 +                first = next;
2826 +            else
2827 +                pred.next = next;
2828 +            if (next != null)
2829 +                next.prev = pred;
2830 +            if (first == null) {
2831 +                root = null;
2832 +                return true;
2833 +            }
2834 +            if ((r = root) == null || r.right == null || // too small
2835 +                (rl = r.left) == null || rl.left == null)
2836 +                return true;
2837 +            lockRoot();
2838 +            try {
2839 +                TreeNode<K,V> replacement;
2840 +                TreeNode<K,V> pl = p.left;
2841 +                TreeNode<K,V> pr = p.right;
2842 +                if (pl != null && pr != null) {
2843 +                    TreeNode<K,V> s = pr, sl;
2844 +                    while ((sl = s.left) != null) // find successor
2845 +                        s = sl;
2846 +                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2847 +                    TreeNode<K,V> sr = s.right;
2848 +                    TreeNode<K,V> pp = p.parent;
2849 +                    if (s == pr) { // p was s's direct parent
2850 +                        p.parent = s;
2851 +                        s.right = p;
2852 +                    }
2853 +                    else {
2854 +                        TreeNode<K,V> sp = s.parent;
2855 +                        if ((p.parent = sp) != null) {
2856 +                            if (s == sp.left)
2857 +                                sp.left = p;
2858 +                            else
2859 +                                sp.right = p;
2860 +                        }
2861 +                        if ((s.right = pr) != null)
2862 +                            pr.parent = s;
2863 +                    }
2864 +                    p.left = null;
2865 +                    if ((p.right = sr) != null)
2866 +                        sr.parent = p;
2867 +                    if ((s.left = pl) != null)
2868 +                        pl.parent = s;
2869 +                    if ((s.parent = pp) == null)
2870 +                        r = s;
2871 +                    else if (p == pp.left)
2872 +                        pp.left = s;
2873 +                    else
2874 +                        pp.right = s;
2875 +                    if (sr != null)
2876 +                        replacement = sr;
2877 +                    else
2878 +                        replacement = p;
2879 +                }
2880 +                else if (pl != null)
2881 +                    replacement = pl;
2882 +                else if (pr != null)
2883 +                    replacement = pr;
2884 +                else
2885 +                    replacement = p;
2886 +                if (replacement != p) {
2887 +                    TreeNode<K,V> pp = replacement.parent = p.parent;
2888 +                    if (pp == null)
2889 +                        r = replacement;
2890 +                    else if (p == pp.left)
2891 +                        pp.left = replacement;
2892 +                    else
2893 +                        pp.right = replacement;
2894 +                    p.left = p.right = p.parent = null;
2895 +                }
2896 +
2897 +                root = (p.red) ? r : balanceDeletion(r, replacement);
2898 +
2899 +                if (p == replacement) {  // detach pointers
2900 +                    TreeNode<K,V> pp;
2901 +                    if ((pp = p.parent) != null) {
2902 +                        if (p == pp.left)
2903 +                            pp.left = null;
2904 +                        else if (p == pp.right)
2905 +                            pp.right = null;
2906 +                        p.parent = null;
2907 +                    }
2908 +                }
2909 +            } finally {
2910 +                unlockRoot();
2911 +            }
2912 +            assert checkInvariants(root);
2913 +            return false;
2914 +        }
2915 +
2916 +        /* ------------------------------------------------------------ */
2917 +        // Red-black tree methods, all adapted from CLR
2918 +
2919 +        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2920 +                                              TreeNode<K,V> p) {
2921 +            TreeNode<K,V> r, pp, rl;
2922 +            if (p != null && (r = p.right) != null) {
2923 +                if ((rl = p.right = r.left) != null)
2924 +                    rl.parent = p;
2925 +                if ((pp = r.parent = p.parent) == null)
2926 +                    (root = r).red = false;
2927 +                else if (pp.left == p)
2928 +                    pp.left = r;
2929 +                else
2930 +                    pp.right = r;
2931 +                r.left = p;
2932 +                p.parent = r;
2933 +            }
2934 +            return root;
2935 +        }
2936 +
2937 +        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2938 +                                               TreeNode<K,V> p) {
2939 +            TreeNode<K,V> l, pp, lr;
2940 +            if (p != null && (l = p.left) != null) {
2941 +                if ((lr = p.left = l.right) != null)
2942 +                    lr.parent = p;
2943 +                if ((pp = l.parent = p.parent) == null)
2944 +                    (root = l).red = false;
2945 +                else if (pp.right == p)
2946 +                    pp.right = l;
2947 +                else
2948 +                    pp.left = l;
2949 +                l.right = p;
2950 +                p.parent = l;
2951 +            }
2952 +            return root;
2953 +        }
2954 +
2955 +        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2956 +                                                    TreeNode<K,V> x) {
2957 +            x.red = true;
2958 +            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2959 +                if ((xp = x.parent) == null) {
2960 +                    x.red = false;
2961 +                    return x;
2962 +                }
2963 +                else if (!xp.red || (xpp = xp.parent) == null)
2964 +                    return root;
2965 +                if (xp == (xppl = xpp.left)) {
2966 +                    if ((xppr = xpp.right) != null && xppr.red) {
2967 +                        xppr.red = false;
2968 +                        xp.red = false;
2969 +                        xpp.red = true;
2970 +                        x = xpp;
2971 +                    }
2972 +                    else {
2973 +                        if (x == xp.right) {
2974 +                            root = rotateLeft(root, x = xp);
2975 +                            xpp = (xp = x.parent) == null ? null : xp.parent;
2976 +                        }
2977 +                        if (xp != null) {
2978 +                            xp.red = false;
2979 +                            if (xpp != null) {
2980 +                                xpp.red = true;
2981 +                                root = rotateRight(root, xpp);
2982 +                            }
2983 +                        }
2984 +                    }
2985 +                }
2986 +                else {
2987 +                    if (xppl != null && xppl.red) {
2988 +                        xppl.red = false;
2989 +                        xp.red = false;
2990 +                        xpp.red = true;
2991 +                        x = xpp;
2992 +                    }
2993 +                    else {
2994 +                        if (x == xp.left) {
2995 +                            root = rotateRight(root, x = xp);
2996 +                            xpp = (xp = x.parent) == null ? null : xp.parent;
2997 +                        }
2998 +                        if (xp != null) {
2999 +                            xp.red = false;
3000 +                            if (xpp != null) {
3001 +                                xpp.red = true;
3002 +                                root = rotateLeft(root, xpp);
3003 +                            }
3004 +                        }
3005 +                    }
3006 +                }
3007 +            }
3008 +        }
3009 +
3010 +        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3011 +                                                   TreeNode<K,V> x) {
3012 +            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3013 +                if (x == null || x == root)
3014 +                    return root;
3015 +                else if ((xp = x.parent) == null) {
3016 +                    x.red = false;
3017 +                    return x;
3018 +                }
3019 +                else if (x.red) {
3020 +                    x.red = false;
3021 +                    return root;
3022 +                }
3023 +                else if ((xpl = xp.left) == x) {
3024 +                    if ((xpr = xp.right) != null && xpr.red) {
3025 +                        xpr.red = false;
3026 +                        xp.red = true;
3027 +                        root = rotateLeft(root, xp);
3028 +                        xpr = (xp = x.parent) == null ? null : xp.right;
3029 +                    }
3030 +                    if (xpr == null)
3031 +                        x = xp;
3032 +                    else {
3033 +                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3034 +                        if ((sr == null || !sr.red) &&
3035 +                            (sl == null || !sl.red)) {
3036 +                            xpr.red = true;
3037 +                            x = xp;
3038 +                        }
3039 +                        else {
3040 +                            if (sr == null || !sr.red) {
3041 +                                if (sl != null)
3042 +                                    sl.red = false;
3043 +                                xpr.red = true;
3044 +                                root = rotateRight(root, xpr);
3045 +                                xpr = (xp = x.parent) == null ?
3046 +                                    null : xp.right;
3047 +                            }
3048 +                            if (xpr != null) {
3049 +                                xpr.red = (xp == null) ? false : xp.red;
3050 +                                if ((sr = xpr.right) != null)
3051 +                                    sr.red = false;
3052 +                            }
3053 +                            if (xp != null) {
3054 +                                xp.red = false;
3055 +                                root = rotateLeft(root, xp);
3056 +                            }
3057 +                            x = root;
3058 +                        }
3059 +                    }
3060 +                }
3061 +                else { // symmetric
3062 +                    if (xpl != null && xpl.red) {
3063 +                        xpl.red = false;
3064 +                        xp.red = true;
3065 +                        root = rotateRight(root, xp);
3066 +                        xpl = (xp = x.parent) == null ? null : xp.left;
3067 +                    }
3068 +                    if (xpl == null)
3069 +                        x = xp;
3070 +                    else {
3071 +                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3072 +                        if ((sl == null || !sl.red) &&
3073 +                            (sr == null || !sr.red)) {
3074 +                            xpl.red = true;
3075 +                            x = xp;
3076 +                        }
3077 +                        else {
3078 +                            if (sl == null || !sl.red) {
3079 +                                if (sr != null)
3080 +                                    sr.red = false;
3081 +                                xpl.red = true;
3082 +                                root = rotateLeft(root, xpl);
3083 +                                xpl = (xp = x.parent) == null ?
3084 +                                    null : xp.left;
3085 +                            }
3086 +                            if (xpl != null) {
3087 +                                xpl.red = (xp == null) ? false : xp.red;
3088 +                                if ((sl = xpl.left) != null)
3089 +                                    sl.red = false;
3090 +                            }
3091 +                            if (xp != null) {
3092 +                                xp.red = false;
3093 +                                root = rotateRight(root, xp);
3094 +                            }
3095 +                            x = root;
3096 +                        }
3097 +                    }
3098 +                }
3099 +            }
3100 +        }
3101 +
3102 +        /**
3103 +         * Recursive invariant check
3104 +         */
3105 +        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3106 +            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3107 +                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3108 +            if (tb != null && tb.next != t)
3109 +                return false;
3110 +            if (tn != null && tn.prev != t)
3111 +                return false;
3112 +            if (tp != null && t != tp.left && t != tp.right)
3113 +                return false;
3114 +            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3115 +                return false;
3116 +            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3117 +                return false;
3118 +            if (t.red && tl != null && tl.red && tr != null && tr.red)
3119 +                return false;
3120 +            if (tl != null && !checkInvariants(tl))
3121 +                return false;
3122 +            if (tr != null && !checkInvariants(tr))
3123 +                return false;
3124 +            return true;
3125 +        }
3126 +
3127 +        private static final sun.misc.Unsafe U;
3128 +        private static final long LOCKSTATE;
3129 +        static {
3130 +            try {
3131 +                U = sun.misc.Unsafe.getUnsafe();
3132 +                Class<?> k = TreeBin.class;
3133 +                LOCKSTATE = U.objectFieldOffset
3134 +                    (k.getDeclaredField("lockState"));
3135 +            } catch (Exception e) {
3136 +                throw new Error(e);
3137 +            }
3138 +        }
3139 +    }
3140 +
3141      /* ----------------Table Traversal -------------- */
3142  
3143      /**
# Line 2187 | Line 3160 | public class ConcurrentHashMap<K,V> impl
3160       * paranoically cope with potential sharing by users of iterators
3161       * across threads, iteration terminates if a bounds checks fails
3162       * for a table read.
2190     *
3163       */
3164      static class Traverser<K,V> {
3165          Node<K,V>[] tab;        // current table; updated if resized
# Line 2213 | Line 3185 | public class ConcurrentHashMap<K,V> impl
3185              if ((e = next) != null)
3186                  e = e.next;
3187              for (;;) {
3188 <                Node<K,V>[] t; int i, n; Object ek;  // must use locals in checks
3188 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3189                  if (e != null)
3190                      return next = e;
3191                  if (baseIndex >= baseLimit || (t = tab) == null ||
3192                      (n = t.length) <= (i = index) || i < 0)
3193                      return next = null;
3194                  if ((e = tabAt(t, index)) != null && e.hash < 0) {
3195 <                    if ((ek = e.key) instanceof TreeBin)
3196 <                        e = ((TreeBin<K,V>)ek).first;
2225 <                    else {
2226 <                        tab = (Node<K,V>[])ek;
3195 >                    if (e instanceof ForwardingNode) {
3196 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3197                          e = null;
3198                          continue;
3199                      }
3200 +                    else if (e instanceof TreeBin)
3201 +                        e = ((TreeBin<K,V>)e).first;
3202 +                    else
3203 +                        e = null;
3204                  }
3205                  if ((index += baseSize) >= n)
3206                      index = ++baseIndex;    // visit upper slots if present
# Line 2256 | Line 3230 | public class ConcurrentHashMap<K,V> impl
3230              if ((p = lastReturned) == null)
3231                  throw new IllegalStateException();
3232              lastReturned = null;
3233 <            map.internalReplace((K)p.key, null, null);
3233 >            map.replaceNode(p.key, null, null);
3234          }
3235      }
3236  
# Line 2271 | Line 3245 | public class ConcurrentHashMap<K,V> impl
3245              Node<K,V> p;
3246              if ((p = next) == null)
3247                  throw new NoSuchElementException();
3248 <            K k = (K)p.key;
3248 >            K k = p.key;
3249              lastReturned = p;
3250              advance();
3251              return k;
# Line 2311 | Line 3285 | public class ConcurrentHashMap<K,V> impl
3285              Node<K,V> p;
3286              if ((p = next) == null)
3287                  throw new NoSuchElementException();
3288 <            K k = (K)p.key;
3288 >            K k = p.key;
3289              V v = p.val;
3290              lastReturned = p;
3291              advance();
# Line 2319 | Line 3293 | public class ConcurrentHashMap<K,V> impl
3293          }
3294      }
3295  
3296 +    /**
3297 +     * Exported Entry for EntryIterator
3298 +     */
3299 +    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3300 +        final K key; // non-null
3301 +        V val;       // non-null
3302 +        final ConcurrentHashMap<K,V> map;
3303 +        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3304 +            this.key = key;
3305 +            this.val = val;
3306 +            this.map = map;
3307 +        }
3308 +        public K getKey()        { return key; }
3309 +        public V getValue()      { return val; }
3310 +        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3311 +        public String toString() { return key + "=" + val; }
3312 +
3313 +        public boolean equals(Object o) {
3314 +            Object k, v; Map.Entry<?,?> e;
3315 +            return ((o instanceof Map.Entry) &&
3316 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3317 +                    (v = e.getValue()) != null &&
3318 +                    (k == key || k.equals(key)) &&
3319 +                    (v == val || v.equals(val)));
3320 +        }
3321 +
3322 +        /**
3323 +         * Sets our entry's value and writes through to the map. The
3324 +         * value to return is somewhat arbitrary here. Since we do not
3325 +         * necessarily track asynchronous changes, the most recent
3326 +         * "previous" value could be different from what we return (or
3327 +         * could even have been removed, in which case the put will
3328 +         * re-establish). We do not and cannot guarantee more.
3329 +         */
3330 +        public V setValue(V value) {
3331 +            if (value == null) throw new NullPointerException();
3332 +            V v = val;
3333 +            val = value;
3334 +            map.put(key, value);
3335 +            return v;
3336 +        }
3337 +    }
3338 +
3339      static final class KeySpliterator<K,V> extends Traverser<K,V>
3340          implements Spliterator<K> {
3341          long est;               // size estimate
# Line 2338 | Line 3355 | public class ConcurrentHashMap<K,V> impl
3355          public void forEachRemaining(Consumer<? super K> action) {
3356              if (action == null) throw new NullPointerException();
3357              for (Node<K,V> p; (p = advance()) != null;)
3358 <                action.accept((K)p.key);
3358 >                action.accept(p.key);
3359          }
3360  
3361          public boolean tryAdvance(Consumer<? super K> action) {
# Line 2346 | Line 3363 | public class ConcurrentHashMap<K,V> impl
3363              Node<K,V> p;
3364              if ((p = advance()) == null)
3365                  return false;
3366 <            action.accept((K)p.key);
3366 >            action.accept(p.key);
3367              return true;
3368          }
3369  
# Line 2417 | Line 3434 | public class ConcurrentHashMap<K,V> impl
3434          public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3435              if (action == null) throw new NullPointerException();
3436              for (Node<K,V> p; (p = advance()) != null; )
3437 <                action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
3437 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3438          }
3439  
3440          public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
# Line 2425 | Line 3442 | public class ConcurrentHashMap<K,V> impl
3442              Node<K,V> p;
3443              if ((p = advance()) == null)
3444                  return false;
3445 <            action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
3445 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3446              return true;
3447          }
3448  
# Line 2437 | Line 3454 | public class ConcurrentHashMap<K,V> impl
3454          }
3455      }
3456  
2440
2441    /* ---------------- Public operations -------------- */
2442
2443    /**
2444     * Creates a new, empty map with the default initial table size (16).
2445     */
2446    public ConcurrentHashMap() {
2447    }
2448
2449    /**
2450     * Creates a new, empty map with an initial table size
2451     * accommodating the specified number of elements without the need
2452     * to dynamically resize.
2453     *
2454     * @param initialCapacity The implementation performs internal
2455     * sizing to accommodate this many elements.
2456     * @throws IllegalArgumentException if the initial capacity of
2457     * elements is negative
2458     */
2459    public ConcurrentHashMap(int initialCapacity) {
2460        if (initialCapacity < 0)
2461            throw new IllegalArgumentException();
2462        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2463                   MAXIMUM_CAPACITY :
2464                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2465        this.sizeCtl = cap;
2466    }
2467
2468    /**
2469     * Creates a new map with the same mappings as the given map.
2470     *
2471     * @param m the map
2472     */
2473    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2474        this.sizeCtl = DEFAULT_CAPACITY;
2475        internalPutAll(m);
2476    }
2477
2478    /**
2479     * Creates a new, empty map with an initial table size based on
2480     * the given number of elements ({@code initialCapacity}) and
2481     * initial table density ({@code loadFactor}).
2482     *
2483     * @param initialCapacity the initial capacity. The implementation
2484     * performs internal sizing to accommodate this many elements,
2485     * given the specified load factor.
2486     * @param loadFactor the load factor (table density) for
2487     * establishing the initial table size
2488     * @throws IllegalArgumentException if the initial capacity of
2489     * elements is negative or the load factor is nonpositive
2490     *
2491     * @since 1.6
2492     */
2493    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2494        this(initialCapacity, loadFactor, 1);
2495    }
2496
2497    /**
2498     * Creates a new, empty map with an initial table size based on
2499     * the given number of elements ({@code initialCapacity}), table
2500     * density ({@code loadFactor}), and number of concurrently
2501     * updating threads ({@code concurrencyLevel}).
2502     *
2503     * @param initialCapacity the initial capacity. The implementation
2504     * performs internal sizing to accommodate this many elements,
2505     * given the specified load factor.
2506     * @param loadFactor the load factor (table density) for
2507     * establishing the initial table size
2508     * @param concurrencyLevel the estimated number of concurrently
2509     * updating threads. The implementation may use this value as
2510     * a sizing hint.
2511     * @throws IllegalArgumentException if the initial capacity is
2512     * negative or the load factor or concurrencyLevel are
2513     * nonpositive
2514     */
2515    public ConcurrentHashMap(int initialCapacity,
2516                             float loadFactor, int concurrencyLevel) {
2517        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2518            throw new IllegalArgumentException();
2519        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2520            initialCapacity = concurrencyLevel;   // as estimated threads
2521        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2522        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2523            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2524        this.sizeCtl = cap;
2525    }
2526
2527    /**
2528     * Creates a new {@link Set} backed by a ConcurrentHashMap
2529     * from the given type to {@code Boolean.TRUE}.
2530     *
2531     * @return the new set
2532     */
2533    public static <K> KeySetView<K,Boolean> newKeySet() {
2534        return new KeySetView<K,Boolean>
2535            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2536    }
2537
2538    /**
2539     * Creates a new {@link Set} backed by a ConcurrentHashMap
2540     * from the given type to {@code Boolean.TRUE}.
2541     *
2542     * @param initialCapacity The implementation performs internal
2543     * sizing to accommodate this many elements.
2544     * @throws IllegalArgumentException if the initial capacity of
2545     * elements is negative
2546     * @return the new set
2547     */
2548    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2549        return new KeySetView<K,Boolean>
2550            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2551    }
2552
2553    /**
2554     * {@inheritDoc}
2555     */
2556    public boolean isEmpty() {
2557        return sumCount() <= 0L; // ignore transient negative values
2558    }
2559
2560    /**
2561     * {@inheritDoc}
2562     */
2563    public int size() {
2564        long n = sumCount();
2565        return ((n < 0L) ? 0 :
2566                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2567                (int)n);
2568    }
2569
2570    /**
2571     * Returns the number of mappings. This method should be used
2572     * instead of {@link #size} because a ConcurrentHashMap may
2573     * contain more mappings than can be represented as an int. The
2574     * value returned is an estimate; the actual count may differ if
2575     * there are concurrent insertions or removals.
2576     *
2577     * @return the number of mappings
2578     */
2579    public long mappingCount() {
2580        long n = sumCount();
2581        return (n < 0L) ? 0L : n; // ignore transient negative values
2582    }
2583
2584    /**
2585     * Returns the value to which the specified key is mapped,
2586     * or {@code null} if this map contains no mapping for the key.
2587     *
2588     * <p>More formally, if this map contains a mapping from a key
2589     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2590     * then this method returns {@code v}; otherwise it returns
2591     * {@code null}.  (There can be at most one such mapping.)
2592     *
2593     * @throws NullPointerException if the specified key is null
2594     */
2595    public V get(Object key) {
2596        return internalGet(key);
2597    }
2598
2599    /**
2600     * Returns the value to which the specified key is mapped,
2601     * or the given defaultValue if this map contains no mapping for the key.
2602     *
2603     * @param key the key
2604     * @param defaultValue the value to return if this map contains
2605     * no mapping for the given key
2606     * @return the mapping for the key, if present; else the defaultValue
2607     * @throws NullPointerException if the specified key is null
2608     */
2609    public V getOrDefault(Object key, V defaultValue) {
2610        V v;
2611        return (v = internalGet(key)) == null ? defaultValue : v;
2612    }
2613
2614    /**
2615     * Tests if the specified object is a key in this table.
2616     *
2617     * @param  key possible key
2618     * @return {@code true} if and only if the specified object
2619     *         is a key in this table, as determined by the
2620     *         {@code equals} method; {@code false} otherwise
2621     * @throws NullPointerException if the specified key is null
2622     */
2623    public boolean containsKey(Object key) {
2624        return internalGet(key) != null;
2625    }
2626
2627    /**
2628     * Returns {@code true} if this map maps one or more keys to the
2629     * specified value. Note: This method may require a full traversal
2630     * of the map, and is much slower than method {@code containsKey}.
2631     *
2632     * @param value value whose presence in this map is to be tested
2633     * @return {@code true} if this map maps one or more keys to the
2634     *         specified value
2635     * @throws NullPointerException if the specified value is null
2636     */
2637    public boolean containsValue(Object value) {
2638        if (value == null)
2639            throw new NullPointerException();
2640        Node<K,V>[] t;
2641        if ((t = table) != null) {
2642            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2643            for (Node<K,V> p; (p = it.advance()) != null; ) {
2644                V v;
2645                if ((v = p.val) == value || value.equals(v))
2646                    return true;
2647            }
2648        }
2649        return false;
2650    }
2651
2652    /**
2653     * Legacy method testing if some key maps into the specified value
2654     * in this table.  This method is identical in functionality to
2655     * {@link #containsValue(Object)}, and exists solely to ensure
2656     * full compatibility with class {@link java.util.Hashtable},
2657     * which supported this method prior to introduction of the
2658     * Java Collections framework.
2659     *
2660     * @param  value a value to search for
2661     * @return {@code true} if and only if some key maps to the
2662     *         {@code value} argument in this table as
2663     *         determined by the {@code equals} method;
2664     *         {@code false} otherwise
2665     * @throws NullPointerException if the specified value is null
2666     */
2667    @Deprecated public boolean contains(Object value) {
2668        return containsValue(value);
2669    }
2670
2671    /**
2672     * Maps the specified key to the specified value in this table.
2673     * Neither the key nor the value can be null.
2674     *
2675     * <p>The value can be retrieved by calling the {@code get} method
2676     * with a key that is equal to the original key.
2677     *
2678     * @param key key with which the specified value is to be associated
2679     * @param value value to be associated with the specified key
2680     * @return the previous value associated with {@code key}, or
2681     *         {@code null} if there was no mapping for {@code key}
2682     * @throws NullPointerException if the specified key or value is null
2683     */
2684    public V put(K key, V value) {
2685        return internalPut(key, value, false);
2686    }
2687
2688    /**
2689     * {@inheritDoc}
2690     *
2691     * @return the previous value associated with the specified key,
2692     *         or {@code null} if there was no mapping for the key
2693     * @throws NullPointerException if the specified key or value is null
2694     */
2695    public V putIfAbsent(K key, V value) {
2696        return internalPut(key, value, true);
2697    }
2698
2699    /**
2700     * Copies all of the mappings from the specified map to this one.
2701     * These mappings replace any mappings that this map had for any of the
2702     * keys currently in the specified map.
2703     *
2704     * @param m mappings to be stored in this map
2705     */
2706    public void putAll(Map<? extends K, ? extends V> m) {
2707        internalPutAll(m);
2708    }
2709
2710    /**
2711     * If the specified key is not already associated with a value (or
2712     * is mapped to {@code null}), attempts to compute its value using
2713     * the given mapping function and enters it into this map unless
2714     * {@code null}. The entire method invocation is performed
2715     * atomically, so the function is applied at most once per key.
2716     * Some attempted update operations on this map by other threads
2717     * may be blocked while computation is in progress, so the
2718     * computation should be short and simple, and must not attempt to
2719     * update any other mappings of this Map.
2720     *
2721     * @param key key with which the specified value is to be associated
2722     * @param mappingFunction the function to compute a value
2723     * @return the current (existing or computed) value associated with
2724     *         the specified key, or null if the computed value is null
2725     * @throws NullPointerException if the specified key or mappingFunction
2726     *         is null
2727     * @throws IllegalStateException if the computation detectably
2728     *         attempts a recursive update to this map that would
2729     *         otherwise never complete
2730     * @throws RuntimeException or Error if the mappingFunction does so,
2731     *         in which case the mapping is left unestablished
2732     */
2733    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
2734        return internalComputeIfAbsent(key, mappingFunction);
2735    }
2736
2737    /**
2738     * If the value for the specified key is present and non-null,
2739     * attempts to compute a new mapping given the key and its current
2740     * mapped value.  The entire method invocation is performed
2741     * atomically.  Some attempted update operations on this map by
2742     * other threads may be blocked while computation is in progress,
2743     * so the computation should be short and simple, and must not
2744     * attempt to update any other mappings of this Map.
2745     *
2746     * @param key key with which a value may be associated
2747     * @param remappingFunction the function to compute a value
2748     * @return the new value associated with the specified key, or null if none
2749     * @throws NullPointerException if the specified key or remappingFunction
2750     *         is null
2751     * @throws IllegalStateException if the computation detectably
2752     *         attempts a recursive update to this map that would
2753     *         otherwise never complete
2754     * @throws RuntimeException or Error if the remappingFunction does so,
2755     *         in which case the mapping is unchanged
2756     */
2757    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2758        return internalCompute(key, true, remappingFunction);
2759    }
2760
2761    /**
2762     * Attempts to compute a mapping for the specified key and its
2763     * current mapped value (or {@code null} if there is no current
2764     * mapping). The entire method invocation is performed atomically.
2765     * Some attempted update operations on this map by other threads
2766     * may be blocked while computation is in progress, so the
2767     * computation should be short and simple, and must not attempt to
2768     * update any other mappings of this Map.
2769     *
2770     * @param key key with which the specified value is to be associated
2771     * @param remappingFunction the function to compute a value
2772     * @return the new value associated with the specified key, or null if none
2773     * @throws NullPointerException if the specified key or remappingFunction
2774     *         is null
2775     * @throws IllegalStateException if the computation detectably
2776     *         attempts a recursive update to this map that would
2777     *         otherwise never complete
2778     * @throws RuntimeException or Error if the remappingFunction does so,
2779     *         in which case the mapping is unchanged
2780     */
2781    public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2782        return internalCompute(key, false, remappingFunction);
2783    }
2784
2785    /**
2786     * If the specified key is not already associated with a
2787     * (non-null) value, associates it with the given value.
2788     * Otherwise, replaces the value with the results of the given
2789     * remapping function, or removes if {@code null}. The entire
2790     * method invocation is performed atomically.  Some attempted
2791     * update operations on this map by other threads may be blocked
2792     * while computation is in progress, so the computation should be
2793     * short and simple, and must not attempt to update any other
2794     * mappings of this Map.
2795     *
2796     * @param key key with which the specified value is to be associated
2797     * @param value the value to use if absent
2798     * @param remappingFunction the function to recompute a value if present
2799     * @return the new value associated with the specified key, or null if none
2800     * @throws NullPointerException if the specified key or the
2801     *         remappingFunction is null
2802     * @throws RuntimeException or Error if the remappingFunction does so,
2803     *         in which case the mapping is unchanged
2804     */
2805    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2806        return internalMerge(key, value, remappingFunction);
2807    }
2808
2809    /**
2810     * Removes the key (and its corresponding value) from this map.
2811     * This method does nothing if the key is not in the map.
2812     *
2813     * @param  key the key that needs to be removed
2814     * @return the previous value associated with {@code key}, or
2815     *         {@code null} if there was no mapping for {@code key}
2816     * @throws NullPointerException if the specified key is null
2817     */
2818    public V remove(Object key) {
2819        return internalReplace(key, null, null);
2820    }
2821
2822    /**
2823     * {@inheritDoc}
2824     *
2825     * @throws NullPointerException if the specified key is null
2826     */
2827    public boolean remove(Object key, Object value) {
2828        if (key == null)
2829            throw new NullPointerException();
2830        return value != null && internalReplace(key, null, value) != null;
2831    }
2832
2833    /**
2834     * {@inheritDoc}
2835     *
2836     * @throws NullPointerException if any of the arguments are null
2837     */
2838    public boolean replace(K key, V oldValue, V newValue) {
2839        if (key == null || oldValue == null || newValue == null)
2840            throw new NullPointerException();
2841        return internalReplace(key, newValue, oldValue) != null;
2842    }
2843
2844    /**
2845     * {@inheritDoc}
2846     *
2847     * @return the previous value associated with the specified key,
2848     *         or {@code null} if there was no mapping for the key
2849     * @throws NullPointerException if the specified key or value is null
2850     */
2851    public V replace(K key, V value) {
2852        if (key == null || value == null)
2853            throw new NullPointerException();
2854        return internalReplace(key, value, null);
2855    }
2856
2857    /**
2858     * Removes all of the mappings from this map.
2859     */
2860    public void clear() {
2861        internalClear();
2862    }
2863
2864    /**
2865     * Returns a {@link Set} view of the keys contained in this map.
2866     * The set is backed by the map, so changes to the map are
2867     * reflected in the set, and vice-versa. The set supports element
2868     * removal, which removes the corresponding mapping from this map,
2869     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2870     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2871     * operations.  It does not support the <tt>add</tt> or
2872     * <tt>addAll</tt> operations.
2873     *
2874     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2875     * that will never throw {@link ConcurrentModificationException},
2876     * and guarantees to traverse elements as they existed upon
2877     * construction of the iterator, and may (but is not guaranteed to)
2878     * reflect any modifications subsequent to construction.
2879     *
2880     * @return the set view
2881     */
2882    public KeySetView<K,V> keySet() {
2883        KeySetView<K,V> ks = keySet;
2884        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2885    }
2886
2887    /**
2888     * Returns a {@link Set} view of the keys in this map, using the
2889     * given common mapped value for any additions (i.e., {@link
2890     * Collection#add} and {@link Collection#addAll(Collection)}).
2891     * This is of course only appropriate if it is acceptable to use
2892     * the same value for all additions from this view.
2893     *
2894     * @param mappedValue the mapped value to use for any additions
2895     * @return the set view
2896     * @throws NullPointerException if the mappedValue is null
2897     */
2898    public KeySetView<K,V> keySet(V mappedValue) {
2899        if (mappedValue == null)
2900            throw new NullPointerException();
2901        return new KeySetView<K,V>(this, mappedValue);
2902    }
2903
2904    /**
2905     * Returns a {@link Collection} view of the values contained in this map.
2906     * The collection is backed by the map, so changes to the map are
2907     * reflected in the collection, and vice-versa.  The collection
2908     * supports element removal, which removes the corresponding
2909     * mapping from this map, via the <tt>Iterator.remove</tt>,
2910     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
2911     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
2912     * support the <tt>add</tt> or <tt>addAll</tt> operations.
2913     *
2914     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2915     * that will never throw {@link ConcurrentModificationException},
2916     * and guarantees to traverse elements as they existed upon
2917     * construction of the iterator, and may (but is not guaranteed to)
2918     * reflect any modifications subsequent to construction.
2919     *
2920     * @return the collection view
2921     */
2922    public Collection<V> values() {
2923        ValuesView<K,V> vs = values;
2924        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2925    }
2926
2927    /**
2928     * Returns a {@link Set} view of the mappings contained in this map.
2929     * The set is backed by the map, so changes to the map are
2930     * reflected in the set, and vice-versa.  The set supports element
2931     * removal, which removes the corresponding mapping from the map,
2932     * via the {@code Iterator.remove}, {@code Set.remove},
2933     * {@code removeAll}, {@code retainAll}, and {@code clear}
2934     * operations.
2935     *
2936     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2937     * that will never throw {@link ConcurrentModificationException},
2938     * and guarantees to traverse elements as they existed upon
2939     * construction of the iterator, and may (but is not guaranteed to)
2940     * reflect any modifications subsequent to construction.
2941     *
2942     * @return the set view
2943     */
2944    public Set<Map.Entry<K,V>> entrySet() {
2945        EntrySetView<K,V> es = entrySet;
2946        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2947    }
2948
2949    /**
2950     * Returns an enumeration of the keys in this table.
2951     *
2952     * @return an enumeration of the keys in this table
2953     * @see #keySet()
2954     */
2955    public Enumeration<K> keys() {
2956        Node<K,V>[] t;
2957        int f = (t = table) == null ? 0 : t.length;
2958        return new KeyIterator<K,V>(t, f, 0, f, this);
2959    }
2960
2961    /**
2962     * Returns an enumeration of the values in this table.
2963     *
2964     * @return an enumeration of the values in this table
2965     * @see #values()
2966     */
2967    public Enumeration<V> elements() {
2968        Node<K,V>[] t;
2969        int f = (t = table) == null ? 0 : t.length;
2970        return new ValueIterator<K,V>(t, f, 0, f, this);
2971    }
2972
2973    /**
2974     * Returns the hash code value for this {@link Map}, i.e.,
2975     * the sum of, for each key-value pair in the map,
2976     * {@code key.hashCode() ^ value.hashCode()}.
2977     *
2978     * @return the hash code value for this map
2979     */
2980    public int hashCode() {
2981        int h = 0;
2982        Node<K,V>[] t;
2983        if ((t = table) != null) {
2984            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2985            for (Node<K,V> p; (p = it.advance()) != null; )
2986                h += p.key.hashCode() ^ p.val.hashCode();
2987        }
2988        return h;
2989    }
2990
2991    /**
2992     * Returns a string representation of this map.  The string
2993     * representation consists of a list of key-value mappings (in no
2994     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2995     * mappings are separated by the characters {@code ", "} (comma
2996     * and space).  Each key-value mapping is rendered as the key
2997     * followed by an equals sign ("{@code =}") followed by the
2998     * associated value.
2999     *
3000     * @return a string representation of this map
3001     */
3002    public String toString() {
3003        Node<K,V>[] t;
3004        int f = (t = table) == null ? 0 : t.length;
3005        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3006        StringBuilder sb = new StringBuilder();
3007        sb.append('{');
3008        Node<K,V> p;
3009        if ((p = it.advance()) != null) {
3010            for (;;) {
3011                K k = (K)p.key;
3012                V v = p.val;
3013                sb.append(k == this ? "(this Map)" : k);
3014                sb.append('=');
3015                sb.append(v == this ? "(this Map)" : v);
3016                if ((p = it.advance()) == null)
3017                    break;
3018                sb.append(',').append(' ');
3019            }
3020        }
3021        return sb.append('}').toString();
3022    }
3023
3024    /**
3025     * Compares the specified object with this map for equality.
3026     * Returns {@code true} if the given object is a map with the same
3027     * mappings as this map.  This operation may return misleading
3028     * results if either map is concurrently modified during execution
3029     * of this method.
3030     *
3031     * @param o object to be compared for equality with this map
3032     * @return {@code true} if the specified object is equal to this map
3033     */
3034    public boolean equals(Object o) {
3035        if (o != this) {
3036            if (!(o instanceof Map))
3037                return false;
3038            Map<?,?> m = (Map<?,?>) o;
3039            Node<K,V>[] t;
3040            int f = (t = table) == null ? 0 : t.length;
3041            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3042            for (Node<K,V> p; (p = it.advance()) != null; ) {
3043                V val = p.val;
3044                Object v = m.get(p.key);
3045                if (v == null || (v != val && !v.equals(val)))
3046                    return false;
3047            }
3048            for (Map.Entry<?,?> e : m.entrySet()) {
3049                Object mk, mv, v;
3050                if ((mk = e.getKey()) == null ||
3051                    (mv = e.getValue()) == null ||
3052                    (v = internalGet(mk)) == null ||
3053                    (mv != v && !mv.equals(v)))
3054                    return false;
3055            }
3056        }
3057        return true;
3058    }
3059
3060    /* ---------------- Serialization Support -------------- */
3061
3062    /**
3063     * Stripped-down version of helper class used in previous version,
3064     * declared for the sake of serialization compatibility
3065     */
3066    static class Segment<K,V> extends ReentrantLock implements Serializable {
3067        private static final long serialVersionUID = 2249069246763182397L;
3068        final float loadFactor;
3069        Segment(float lf) { this.loadFactor = lf; }
3070    }
3071
3072    /**
3073     * Saves the state of the {@code ConcurrentHashMap} instance to a
3074     * stream (i.e., serializes it).
3075     * @param s the stream
3076     * @serialData
3077     * the key (Object) and value (Object)
3078     * for each key-value mapping, followed by a null pair.
3079     * The key-value mappings are emitted in no particular order.
3080     */
3081    private void writeObject(java.io.ObjectOutputStream s)
3082        throws java.io.IOException {
3083        // For serialization compatibility
3084        // Emulate segment calculation from previous version of this class
3085        int sshift = 0;
3086        int ssize = 1;
3087        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
3088            ++sshift;
3089            ssize <<= 1;
3090        }
3091        int segmentShift = 32 - sshift;
3092        int segmentMask = ssize - 1;
3093        Segment<K,V>[] segments = (Segment<K,V>[])
3094            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3095        for (int i = 0; i < segments.length; ++i)
3096            segments[i] = new Segment<K,V>(LOAD_FACTOR);
3097        s.putFields().put("segments", segments);
3098        s.putFields().put("segmentShift", segmentShift);
3099        s.putFields().put("segmentMask", segmentMask);
3100        s.writeFields();
3101
3102        Node<K,V>[] t;
3103        if ((t = table) != null) {
3104            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3105            for (Node<K,V> p; (p = it.advance()) != null; ) {
3106                s.writeObject(p.key);
3107                s.writeObject(p.val);
3108            }
3109        }
3110        s.writeObject(null);
3111        s.writeObject(null);
3112        segments = null; // throw away
3113    }
3114
3115    /**
3116     * Reconstitutes the instance from a stream (that is, deserializes it).
3117     * @param s the stream
3118     */
3119    private void readObject(java.io.ObjectInputStream s)
3120        throws java.io.IOException, ClassNotFoundException {
3121        s.defaultReadObject();
3122
3123        // Create all nodes, then place in table once size is known
3124        long size = 0L;
3125        Node<K,V> p = null;
3126        for (;;) {
3127            K k = (K) s.readObject();
3128            V v = (V) s.readObject();
3129            if (k != null && v != null) {
3130                int h = spread(k.hashCode());
3131                p = new Node<K,V>(h, k, v, p);
3132                ++size;
3133            }
3134            else
3135                break;
3136        }
3137        if (p != null) {
3138            boolean init = false;
3139            int n;
3140            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3141                n = MAXIMUM_CAPACITY;
3142            else {
3143                int sz = (int)size;
3144                n = tableSizeFor(sz + (sz >>> 1) + 1);
3145            }
3146            int sc = sizeCtl;
3147            boolean collide = false;
3148            if (n > sc &&
3149                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3150                try {
3151                    if (table == null) {
3152                        init = true;
3153                        Node<K,V>[] tab = (Node<K,V>[])new Node[n];
3154                        int mask = n - 1;
3155                        while (p != null) {
3156                            int j = p.hash & mask;
3157                            Node<K,V> next = p.next;
3158                            Node<K,V> q = p.next = tabAt(tab, j);
3159                            setTabAt(tab, j, p);
3160                            if (!collide && q != null && q.hash == p.hash)
3161                                collide = true;
3162                            p = next;
3163                        }
3164                        table = tab;
3165                        addCount(size, -1);
3166                        sc = n - (n >>> 2);
3167                    }
3168                } finally {
3169                    sizeCtl = sc;
3170                }
3171                if (collide) { // rescan and convert to TreeBins
3172                    Node<K,V>[] tab = table;
3173                    for (int i = 0; i < tab.length; ++i) {
3174                        int c = 0;
3175                        for (Node<K,V> e = tabAt(tab, i); e != null; e = e.next) {
3176                            if (++c > TREE_THRESHOLD &&
3177                                (e.key instanceof Comparable)) {
3178                                replaceWithTreeBin(tab, i, e.key);
3179                                break;
3180                            }
3181                        }
3182                    }
3183                }
3184            }
3185            if (!init) { // Can only happen if unsafely published.
3186                while (p != null) {
3187                    internalPut((K)p.key, p.val, false);
3188                    p = p.next;
3189                }
3190            }
3191        }
3192    }
3193
3194    // -------------------------------------------------------
3195
3196    // Overrides of other default Map methods
3197
3198    public void forEach(BiConsumer<? super K, ? super V> action) {
3199        if (action == null) throw new NullPointerException();
3200        Node<K,V>[] t;
3201        if ((t = table) != null) {
3202            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3203            for (Node<K,V> p; (p = it.advance()) != null; ) {
3204                action.accept((K)p.key, p.val);
3205            }
3206        }
3207    }
3208
3209    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3210        if (function == null) throw new NullPointerException();
3211        Node<K,V>[] t;
3212        if ((t = table) != null) {
3213            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3214            for (Node<K,V> p; (p = it.advance()) != null; ) {
3215                K k = (K)p.key;
3216                internalPut(k, function.apply(k, p.val), false);
3217            }
3218        }
3219    }
3220
3221    // -------------------------------------------------------
3222
3457      // Parallel bulk operations
3458  
3459      /**
# Line 3242 | Line 3476 | public class ConcurrentHashMap<K,V> impl
3476       * Performs the given action for each (key, value).
3477       *
3478       * @param parallelismThreshold the (estimated) number of elements
3479 <     * needed for this operation to be executed in parallel.
3479 >     * needed for this operation to be executed in parallel
3480       * @param action the action
3481 +     * @since 1.8
3482       */
3483      public void forEach(long parallelismThreshold,
3484                          BiConsumer<? super K,? super V> action) {
# Line 3258 | Line 3493 | public class ConcurrentHashMap<K,V> impl
3493       * of each (key, value).
3494       *
3495       * @param parallelismThreshold the (estimated) number of elements
3496 <     * needed for this operation to be executed in parallel.
3496 >     * needed for this operation to be executed in parallel
3497       * @param transformer a function returning the transformation
3498       * for an element, or null if there is no transformation (in
3499       * which case the action is not applied)
3500       * @param action the action
3501 +     * @since 1.8
3502       */
3503      public <U> void forEach(long parallelismThreshold,
3504                              BiFunction<? super K, ? super V, ? extends U> transformer,
# Line 3282 | Line 3518 | public class ConcurrentHashMap<K,V> impl
3518       * function are ignored.
3519       *
3520       * @param parallelismThreshold the (estimated) number of elements
3521 <     * needed for this operation to be executed in parallel.
3521 >     * needed for this operation to be executed in parallel
3522       * @param searchFunction a function returning a non-null
3523       * result on success, else null
3524       * @return a non-null result from applying the given search
3525       * function on each (key, value), or null if none
3526 +     * @since 1.8
3527       */
3528      public <U> U search(long parallelismThreshold,
3529                          BiFunction<? super K, ? super V, ? extends U> searchFunction) {
# Line 3302 | Line 3539 | public class ConcurrentHashMap<K,V> impl
3539       * combine values, or null if none.
3540       *
3541       * @param parallelismThreshold the (estimated) number of elements
3542 <     * needed for this operation to be executed in parallel.
3542 >     * needed for this operation to be executed in parallel
3543       * @param transformer a function returning the transformation
3544       * for an element, or null if there is no transformation (in
3545       * which case it is not combined)
3546       * @param reducer a commutative associative combining function
3547       * @return the result of accumulating the given transformation
3548       * of all (key, value) pairs
3549 +     * @since 1.8
3550       */
3551      public <U> U reduce(long parallelismThreshold,
3552                          BiFunction<? super K, ? super V, ? extends U> transformer,
# Line 3326 | Line 3564 | public class ConcurrentHashMap<K,V> impl
3564       * combine values, and the given basis as an identity value.
3565       *
3566       * @param parallelismThreshold the (estimated) number of elements
3567 <     * needed for this operation to be executed in parallel.
3567 >     * needed for this operation to be executed in parallel
3568       * @param transformer a function returning the transformation
3569       * for an element
3570       * @param basis the identity (initial default value) for the reduction
3571       * @param reducer a commutative associative combining function
3572       * @return the result of accumulating the given transformation
3573       * of all (key, value) pairs
3574 +     * @since 1.8
3575       */
3576      public double reduceToDoubleIn(long parallelismThreshold,
3577                                     ToDoubleBiFunction<? super K, ? super V> transformer,
# Line 3351 | Line 3590 | public class ConcurrentHashMap<K,V> impl
3590       * combine values, and the given basis as an identity value.
3591       *
3592       * @param parallelismThreshold the (estimated) number of elements
3593 <     * needed for this operation to be executed in parallel.
3593 >     * needed for this operation to be executed in parallel
3594       * @param transformer a function returning the transformation
3595       * for an element
3596       * @param basis the identity (initial default value) for the reduction
3597       * @param reducer a commutative associative combining function
3598       * @return the result of accumulating the given transformation
3599       * of all (key, value) pairs
3600 +     * @since 1.8
3601       */
3602      public long reduceToLong(long parallelismThreshold,
3603                               ToLongBiFunction<? super K, ? super V> transformer,
# Line 3376 | Line 3616 | public class ConcurrentHashMap<K,V> impl
3616       * combine values, and the given basis as an identity value.
3617       *
3618       * @param parallelismThreshold the (estimated) number of elements
3619 <     * needed for this operation to be executed in parallel.
3619 >     * needed for this operation to be executed in parallel
3620       * @param transformer a function returning the transformation
3621       * for an element
3622       * @param basis the identity (initial default value) for the reduction
3623       * @param reducer a commutative associative combining function
3624       * @return the result of accumulating the given transformation
3625       * of all (key, value) pairs
3626 +     * @since 1.8
3627       */
3628      public int reduceToInt(long parallelismThreshold,
3629                             ToIntBiFunction<? super K, ? super V> transformer,
# Line 3399 | Line 3640 | public class ConcurrentHashMap<K,V> impl
3640       * Performs the given action for each key.
3641       *
3642       * @param parallelismThreshold the (estimated) number of elements
3643 <     * needed for this operation to be executed in parallel.
3643 >     * needed for this operation to be executed in parallel
3644       * @param action the action
3645 +     * @since 1.8
3646       */
3647      public void forEachKey(long parallelismThreshold,
3648                             Consumer<? super K> action) {
# Line 3415 | Line 3657 | public class ConcurrentHashMap<K,V> impl
3657       * of each key.
3658       *
3659       * @param parallelismThreshold the (estimated) number of elements
3660 <     * needed for this operation to be executed in parallel.
3660 >     * needed for this operation to be executed in parallel
3661       * @param transformer a function returning the transformation
3662       * for an element, or null if there is no transformation (in
3663       * which case the action is not applied)
3664       * @param action the action
3665 +     * @since 1.8
3666       */
3667      public <U> void forEachKey(long parallelismThreshold,
3668                                 Function<? super K, ? extends U> transformer,
# Line 3439 | Line 3682 | public class ConcurrentHashMap<K,V> impl
3682       * ignored.
3683       *
3684       * @param parallelismThreshold the (estimated) number of elements
3685 <     * needed for this operation to be executed in parallel.
3685 >     * needed for this operation to be executed in parallel
3686       * @param searchFunction a function returning a non-null
3687       * result on success, else null
3688       * @return a non-null result from applying the given search
3689       * function on each key, or null if none
3690 +     * @since 1.8
3691       */
3692      public <U> U searchKeys(long parallelismThreshold,
3693                              Function<? super K, ? extends U> searchFunction) {
# Line 3458 | Line 3702 | public class ConcurrentHashMap<K,V> impl
3702       * reducer to combine values, or null if none.
3703       *
3704       * @param parallelismThreshold the (estimated) number of elements
3705 <     * needed for this operation to be executed in parallel.
3705 >     * needed for this operation to be executed in parallel
3706       * @param reducer a commutative associative combining function
3707       * @return the result of accumulating all keys using the given
3708       * reducer to combine values, or null if none
3709 +     * @since 1.8
3710       */
3711      public K reduceKeys(long parallelismThreshold,
3712                          BiFunction<? super K, ? super K, ? extends K> reducer) {
# Line 3477 | Line 3722 | public class ConcurrentHashMap<K,V> impl
3722       * null if none.
3723       *
3724       * @param parallelismThreshold the (estimated) number of elements
3725 <     * needed for this operation to be executed in parallel.
3725 >     * needed for this operation to be executed in parallel
3726       * @param transformer a function returning the transformation
3727       * for an element, or null if there is no transformation (in
3728       * which case it is not combined)
3729       * @param reducer a commutative associative combining function
3730       * @return the result of accumulating the given transformation
3731       * of all keys
3732 +     * @since 1.8
3733       */
3734      public <U> U reduceKeys(long parallelismThreshold,
3735                              Function<? super K, ? extends U> transformer,
# Line 3501 | Line 3747 | public class ConcurrentHashMap<K,V> impl
3747       * the given basis as an identity value.
3748       *
3749       * @param parallelismThreshold the (estimated) number of elements
3750 <     * needed for this operation to be executed in parallel.
3750 >     * needed for this operation to be executed in parallel
3751       * @param transformer a function returning the transformation
3752       * for an element
3753       * @param basis the identity (initial default value) for the reduction
3754       * @param reducer a commutative associative combining function
3755       * @return the result of accumulating the given transformation
3756       * of all keys
3757 +     * @since 1.8
3758       */
3759      public double reduceKeysToDouble(long parallelismThreshold,
3760                                       ToDoubleFunction<? super K> transformer,
# Line 3526 | Line 3773 | public class ConcurrentHashMap<K,V> impl
3773       * the given basis as an identity value.
3774       *
3775       * @param parallelismThreshold the (estimated) number of elements
3776 <     * needed for this operation to be executed in parallel.
3776 >     * needed for this operation to be executed in parallel
3777       * @param transformer a function returning the transformation
3778       * for an element
3779       * @param basis the identity (initial default value) for the reduction
3780       * @param reducer a commutative associative combining function
3781       * @return the result of accumulating the given transformation
3782       * of all keys
3783 +     * @since 1.8
3784       */
3785      public long reduceKeysToLong(long parallelismThreshold,
3786                                   ToLongFunction<? super K> transformer,
# Line 3551 | Line 3799 | public class ConcurrentHashMap<K,V> impl
3799       * the given basis as an identity value.
3800       *
3801       * @param parallelismThreshold the (estimated) number of elements
3802 <     * needed for this operation to be executed in parallel.
3802 >     * needed for this operation to be executed in parallel
3803       * @param transformer a function returning the transformation
3804       * for an element
3805       * @param basis the identity (initial default value) for the reduction
3806       * @param reducer a commutative associative combining function
3807       * @return the result of accumulating the given transformation
3808       * of all keys
3809 +     * @since 1.8
3810       */
3811      public int reduceKeysToInt(long parallelismThreshold,
3812                                 ToIntFunction<? super K> transformer,
# Line 3574 | Line 3823 | public class ConcurrentHashMap<K,V> impl
3823       * Performs the given action for each value.
3824       *
3825       * @param parallelismThreshold the (estimated) number of elements
3826 <     * needed for this operation to be executed in parallel.
3826 >     * needed for this operation to be executed in parallel
3827       * @param action the action
3828 +     * @since 1.8
3829       */
3830      public void forEachValue(long parallelismThreshold,
3831                               Consumer<? super V> action) {
# Line 3591 | Line 3841 | public class ConcurrentHashMap<K,V> impl
3841       * of each value.
3842       *
3843       * @param parallelismThreshold the (estimated) number of elements
3844 <     * needed for this operation to be executed in parallel.
3844 >     * needed for this operation to be executed in parallel
3845       * @param transformer a function returning the transformation
3846       * for an element, or null if there is no transformation (in
3847       * which case the action is not applied)
3848       * @param action the action
3849 +     * @since 1.8
3850       */
3851      public <U> void forEachValue(long parallelismThreshold,
3852                                   Function<? super V, ? extends U> transformer,
# Line 3615 | Line 3866 | public class ConcurrentHashMap<K,V> impl
3866       * ignored.
3867       *
3868       * @param parallelismThreshold the (estimated) number of elements
3869 <     * needed for this operation to be executed in parallel.
3869 >     * needed for this operation to be executed in parallel
3870       * @param searchFunction a function returning a non-null
3871       * result on success, else null
3872       * @return a non-null result from applying the given search
3873       * function on each value, or null if none
3874 +     * @since 1.8
3875       */
3876      public <U> U searchValues(long parallelismThreshold,
3877                                Function<? super V, ? extends U> searchFunction) {
# Line 3634 | Line 3886 | public class ConcurrentHashMap<K,V> impl
3886       * given reducer to combine values, or null if none.
3887       *
3888       * @param parallelismThreshold the (estimated) number of elements
3889 <     * needed for this operation to be executed in parallel.
3889 >     * needed for this operation to be executed in parallel
3890       * @param reducer a commutative associative combining function
3891       * @return the result of accumulating all values
3892 +     * @since 1.8
3893       */
3894      public V reduceValues(long parallelismThreshold,
3895                            BiFunction<? super V, ? super V, ? extends V> reducer) {
# Line 3652 | Line 3905 | public class ConcurrentHashMap<K,V> impl
3905       * null if none.
3906       *
3907       * @param parallelismThreshold the (estimated) number of elements
3908 <     * needed for this operation to be executed in parallel.
3908 >     * needed for this operation to be executed in parallel
3909       * @param transformer a function returning the transformation
3910       * for an element, or null if there is no transformation (in
3911       * which case it is not combined)
3912       * @param reducer a commutative associative combining function
3913       * @return the result of accumulating the given transformation
3914       * of all values
3915 +     * @since 1.8
3916       */
3917      public <U> U reduceValues(long parallelismThreshold,
3918                                Function<? super V, ? extends U> transformer,
# Line 3676 | Line 3930 | public class ConcurrentHashMap<K,V> impl
3930       * and the given basis as an identity value.
3931       *
3932       * @param parallelismThreshold the (estimated) number of elements
3933 <     * needed for this operation to be executed in parallel.
3933 >     * needed for this operation to be executed in parallel
3934       * @param transformer a function returning the transformation
3935       * for an element
3936       * @param basis the identity (initial default value) for the reduction
3937       * @param reducer a commutative associative combining function
3938       * @return the result of accumulating the given transformation
3939       * of all values
3940 +     * @since 1.8
3941       */
3942      public double reduceValuesToDouble(long parallelismThreshold,
3943                                         ToDoubleFunction<? super V> transformer,
# Line 3701 | Line 3956 | public class ConcurrentHashMap<K,V> impl
3956       * and the given basis as an identity value.
3957       *
3958       * @param parallelismThreshold the (estimated) number of elements
3959 <     * needed for this operation to be executed in parallel.
3959 >     * needed for this operation to be executed in parallel
3960       * @param transformer a function returning the transformation
3961       * for an element
3962       * @param basis the identity (initial default value) for the reduction
3963       * @param reducer a commutative associative combining function
3964       * @return the result of accumulating the given transformation
3965       * of all values
3966 +     * @since 1.8
3967       */
3968      public long reduceValuesToLong(long parallelismThreshold,
3969                                     ToLongFunction<? super V> transformer,
# Line 3726 | Line 3982 | public class ConcurrentHashMap<K,V> impl
3982       * and the given basis as an identity value.
3983       *
3984       * @param parallelismThreshold the (estimated) number of elements
3985 <     * needed for this operation to be executed in parallel.
3985 >     * needed for this operation to be executed in parallel
3986       * @param transformer a function returning the transformation
3987       * for an element
3988       * @param basis the identity (initial default value) for the reduction
3989       * @param reducer a commutative associative combining function
3990       * @return the result of accumulating the given transformation
3991       * of all values
3992 +     * @since 1.8
3993       */
3994      public int reduceValuesToInt(long parallelismThreshold,
3995                                   ToIntFunction<? super V> transformer,
# Line 3749 | Line 4006 | public class ConcurrentHashMap<K,V> impl
4006       * Performs the given action for each entry.
4007       *
4008       * @param parallelismThreshold the (estimated) number of elements
4009 <     * needed for this operation to be executed in parallel.
4009 >     * needed for this operation to be executed in parallel
4010       * @param action the action
4011 +     * @since 1.8
4012       */
4013      public void forEachEntry(long parallelismThreshold,
4014                               Consumer<? super Map.Entry<K,V>> action) {
# Line 3764 | Line 4022 | public class ConcurrentHashMap<K,V> impl
4022       * of each entry.
4023       *
4024       * @param parallelismThreshold the (estimated) number of elements
4025 <     * needed for this operation to be executed in parallel.
4025 >     * needed for this operation to be executed in parallel
4026       * @param transformer a function returning the transformation
4027       * for an element, or null if there is no transformation (in
4028       * which case the action is not applied)
4029       * @param action the action
4030 +     * @since 1.8
4031       */
4032      public <U> void forEachEntry(long parallelismThreshold,
4033                                   Function<Map.Entry<K,V>, ? extends U> transformer,
# Line 3788 | Line 4047 | public class ConcurrentHashMap<K,V> impl
4047       * ignored.
4048       *
4049       * @param parallelismThreshold the (estimated) number of elements
4050 <     * needed for this operation to be executed in parallel.
4050 >     * needed for this operation to be executed in parallel
4051       * @param searchFunction a function returning a non-null
4052       * result on success, else null
4053       * @return a non-null result from applying the given search
4054       * function on each entry, or null if none
4055 +     * @since 1.8
4056       */
4057      public <U> U searchEntries(long parallelismThreshold,
4058                                 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
# Line 3807 | Line 4067 | public class ConcurrentHashMap<K,V> impl
4067       * given reducer to combine values, or null if none.
4068       *
4069       * @param parallelismThreshold the (estimated) number of elements
4070 <     * needed for this operation to be executed in parallel.
4070 >     * needed for this operation to be executed in parallel
4071       * @param reducer a commutative associative combining function
4072       * @return the result of accumulating all entries
4073 +     * @since 1.8
4074       */
4075      public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4076                                          BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
# Line 3825 | Line 4086 | public class ConcurrentHashMap<K,V> impl
4086       * or null if none.
4087       *
4088       * @param parallelismThreshold the (estimated) number of elements
4089 <     * needed for this operation to be executed in parallel.
4089 >     * needed for this operation to be executed in parallel
4090       * @param transformer a function returning the transformation
4091       * for an element, or null if there is no transformation (in
4092       * which case it is not combined)
4093       * @param reducer a commutative associative combining function
4094       * @return the result of accumulating the given transformation
4095       * of all entries
4096 +     * @since 1.8
4097       */
4098      public <U> U reduceEntries(long parallelismThreshold,
4099                                 Function<Map.Entry<K,V>, ? extends U> transformer,
# Line 3849 | Line 4111 | public class ConcurrentHashMap<K,V> impl
4111       * and the given basis as an identity value.
4112       *
4113       * @param parallelismThreshold the (estimated) number of elements
4114 <     * needed for this operation to be executed in parallel.
4114 >     * needed for this operation to be executed in parallel
4115       * @param transformer a function returning the transformation
4116       * for an element
4117       * @param basis the identity (initial default value) for the reduction
4118       * @param reducer a commutative associative combining function
4119       * @return the result of accumulating the given transformation
4120       * of all entries
4121 +     * @since 1.8
4122       */
4123      public double reduceEntriesToDouble(long parallelismThreshold,
4124                                          ToDoubleFunction<Map.Entry<K,V>> transformer,
# Line 3874 | Line 4137 | public class ConcurrentHashMap<K,V> impl
4137       * and the given basis as an identity value.
4138       *
4139       * @param parallelismThreshold the (estimated) number of elements
4140 <     * needed for this operation to be executed in parallel.
4140 >     * needed for this operation to be executed in parallel
4141       * @param transformer a function returning the transformation
4142       * for an element
4143       * @param basis the identity (initial default value) for the reduction
4144       * @param reducer a commutative associative combining function
4145       * @return the result of accumulating the given transformation
4146       * of all entries
4147 +     * @since 1.8
4148       */
4149      public long reduceEntriesToLong(long parallelismThreshold,
4150                                      ToLongFunction<Map.Entry<K,V>> transformer,
# Line 3899 | Line 4163 | public class ConcurrentHashMap<K,V> impl
4163       * and the given basis as an identity value.
4164       *
4165       * @param parallelismThreshold the (estimated) number of elements
4166 <     * needed for this operation to be executed in parallel.
4166 >     * needed for this operation to be executed in parallel
4167       * @param transformer a function returning the transformation
4168       * for an element
4169       * @param basis the identity (initial default value) for the reduction
4170       * @param reducer a commutative associative combining function
4171       * @return the result of accumulating the given transformation
4172       * of all entries
4173 +     * @since 1.8
4174       */
4175      public int reduceEntriesToInt(long parallelismThreshold,
4176                                    ToIntFunction<Map.Entry<K,V>> transformer,
# Line 3983 | Line 4248 | public class ConcurrentHashMap<K,V> impl
4248              return (i == n) ? r : Arrays.copyOf(r, i);
4249          }
4250  
4251 +        @SuppressWarnings("unchecked")
4252          public final <T> T[] toArray(T[] a) {
4253              long sz = map.mappingCount();
4254              if (sz > MAX_ARRAY_SIZE)
# Line 4081 | Line 4347 | public class ConcurrentHashMap<K,V> impl
4347       * {@link #keySet(Object) keySet(V)},
4348       * {@link #newKeySet() newKeySet()},
4349       * {@link #newKeySet(int) newKeySet(int)}.
4350 +     *
4351 +     * @since 1.8
4352       */
4353      public static class KeySetView<K,V> extends CollectionView<K,V,K>
4354          implements Set<K>, java.io.Serializable {
# Line 4141 | Line 4409 | public class ConcurrentHashMap<K,V> impl
4409              V v;
4410              if ((v = value) == null)
4411                  throw new UnsupportedOperationException();
4412 <            return map.internalPut(e, v, true) == null;
4412 >            return map.putVal(e, v, true) == null;
4413          }
4414  
4415          /**
# Line 4161 | Line 4429 | public class ConcurrentHashMap<K,V> impl
4429              if ((v = value) == null)
4430                  throw new UnsupportedOperationException();
4431              for (K e : c) {
4432 <                if (map.internalPut(e, v, true) == null)
4432 >                if (map.putVal(e, v, true) == null)
4433                      added = true;
4434              }
4435              return added;
# Line 4195 | Line 4463 | public class ConcurrentHashMap<K,V> impl
4463              if ((t = map.table) != null) {
4464                  Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4465                  for (Node<K,V> p; (p = it.advance()) != null; )
4466 <                    action.accept((K)p.key);
4466 >                    action.accept(p.key);
4467              }
4468          }
4469      }
# Line 4296 | Line 4564 | public class ConcurrentHashMap<K,V> impl
4564          }
4565  
4566          public boolean add(Entry<K,V> e) {
4567 <            return map.internalPut(e.getKey(), e.getValue(), false) == null;
4567 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4568          }
4569  
4570          public boolean addAll(Collection<? extends Entry<K,V>> c) {
# Line 4341 | Line 4609 | public class ConcurrentHashMap<K,V> impl
4609              if ((t = map.table) != null) {
4610                  Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4611                  for (Node<K,V> p; (p = it.advance()) != null; )
4612 <                    action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
4612 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4613              }
4614          }
4615  
# Line 4353 | Line 4621 | public class ConcurrentHashMap<K,V> impl
4621       * Base class for bulk tasks. Repeats some fields and code from
4622       * class Traverser, because we need to subclass CountedCompleter.
4623       */
4624 <    static abstract class BulkTask<K,V,R> extends CountedCompleter<R> {
4624 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4625          Node<K,V>[] tab;        // same as Traverser
4626          Node<K,V> next;
4627          int index;
# Line 4384 | Line 4652 | public class ConcurrentHashMap<K,V> impl
4652              if ((e = next) != null)
4653                  e = e.next;
4654              for (;;) {
4655 <                Node<K,V>[] t; int i, n; Object ek;
4655 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4656                  if (e != null)
4657                      return next = e;
4658                  if (baseIndex >= baseLimit || (t = tab) == null ||
4659                      (n = t.length) <= (i = index) || i < 0)
4660                      return next = null;
4661                  if ((e = tabAt(t, index)) != null && e.hash < 0) {
4662 <                    if ((ek = e.key) instanceof TreeBin)
4663 <                        e = ((TreeBin<K,V>)ek).first;
4396 <                    else {
4397 <                        tab = (Node<K,V>[])ek;
4662 >                    if (e instanceof ForwardingNode) {
4663 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4664                          e = null;
4665                          continue;
4666                      }
4667 +                    else if (e instanceof TreeBin)
4668 +                        e = ((TreeBin<K,V>)e).first;
4669 +                    else
4670 +                        e = null;
4671                  }
4672                  if ((index += baseSize) >= n)
4673 <                    index = ++baseIndex;
4673 >                    index = ++baseIndex;    // visit upper slots if present
4674              }
4675          }
4676      }
# Line 4412 | Line 4682 | public class ConcurrentHashMap<K,V> impl
4682       * that we've already null-checked task arguments, so we force
4683       * simplest hoisted bypass to help avoid convoluted traps.
4684       */
4685 <
4685 >    @SuppressWarnings("serial")
4686      static final class ForEachKeyTask<K,V>
4687          extends BulkTask<K,V,Void> {
4688          final Consumer<? super K> action;
# Line 4433 | Line 4703 | public class ConcurrentHashMap<K,V> impl
4703                           action).fork();
4704                  }
4705                  for (Node<K,V> p; (p = advance()) != null;)
4706 <                    action.accept((K)p.key);
4706 >                    action.accept(p.key);
4707                  propagateCompletion();
4708              }
4709          }
4710      }
4711  
4712 +    @SuppressWarnings("serial")
4713      static final class ForEachValueTask<K,V>
4714          extends BulkTask<K,V,Void> {
4715          final Consumer<? super V> action;
# Line 4465 | Line 4736 | public class ConcurrentHashMap<K,V> impl
4736          }
4737      }
4738  
4739 +    @SuppressWarnings("serial")
4740      static final class ForEachEntryTask<K,V>
4741          extends BulkTask<K,V,Void> {
4742          final Consumer<? super Entry<K,V>> action;
# Line 4491 | Line 4763 | public class ConcurrentHashMap<K,V> impl
4763          }
4764      }
4765  
4766 +    @SuppressWarnings("serial")
4767      static final class ForEachMappingTask<K,V>
4768          extends BulkTask<K,V,Void> {
4769          final BiConsumer<? super K, ? super V> action;
# Line 4511 | Line 4784 | public class ConcurrentHashMap<K,V> impl
4784                           action).fork();
4785                  }
4786                  for (Node<K,V> p; (p = advance()) != null; )
4787 <                    action.accept((K)p.key, p.val);
4787 >                    action.accept(p.key, p.val);
4788                  propagateCompletion();
4789              }
4790          }
4791      }
4792  
4793 +    @SuppressWarnings("serial")
4794      static final class ForEachTransformedKeyTask<K,V,U>
4795          extends BulkTask<K,V,Void> {
4796          final Function<? super K, ? extends U> transformer;
# Line 4541 | Line 4815 | public class ConcurrentHashMap<K,V> impl
4815                  }
4816                  for (Node<K,V> p; (p = advance()) != null; ) {
4817                      U u;
4818 <                    if ((u = transformer.apply((K)p.key)) != null)
4818 >                    if ((u = transformer.apply(p.key)) != null)
4819                          action.accept(u);
4820                  }
4821                  propagateCompletion();
# Line 4549 | Line 4823 | public class ConcurrentHashMap<K,V> impl
4823          }
4824      }
4825  
4826 +    @SuppressWarnings("serial")
4827      static final class ForEachTransformedValueTask<K,V,U>
4828          extends BulkTask<K,V,Void> {
4829          final Function<? super V, ? extends U> transformer;
# Line 4581 | Line 4856 | public class ConcurrentHashMap<K,V> impl
4856          }
4857      }
4858  
4859 +    @SuppressWarnings("serial")
4860      static final class ForEachTransformedEntryTask<K,V,U>
4861          extends BulkTask<K,V,Void> {
4862          final Function<Map.Entry<K,V>, ? extends U> transformer;
# Line 4613 | Line 4889 | public class ConcurrentHashMap<K,V> impl
4889          }
4890      }
4891  
4892 +    @SuppressWarnings("serial")
4893      static final class ForEachTransformedMappingTask<K,V,U>
4894          extends BulkTask<K,V,Void> {
4895          final BiFunction<? super K, ? super V, ? extends U> transformer;
# Line 4638 | Line 4915 | public class ConcurrentHashMap<K,V> impl
4915                  }
4916                  for (Node<K,V> p; (p = advance()) != null; ) {
4917                      U u;
4918 <                    if ((u = transformer.apply((K)p.key, p.val)) != null)
4918 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4919                          action.accept(u);
4920                  }
4921                  propagateCompletion();
# Line 4646 | Line 4923 | public class ConcurrentHashMap<K,V> impl
4923          }
4924      }
4925  
4926 +    @SuppressWarnings("serial")
4927      static final class SearchKeysTask<K,V,U>
4928          extends BulkTask<K,V,U> {
4929          final Function<? super K, ? extends U> searchFunction;
# Line 4679 | Line 4957 | public class ConcurrentHashMap<K,V> impl
4957                          propagateCompletion();
4958                          break;
4959                      }
4960 <                    if ((u = searchFunction.apply((K)p.key)) != null) {
4960 >                    if ((u = searchFunction.apply(p.key)) != null) {
4961                          if (result.compareAndSet(null, u))
4962                              quietlyCompleteRoot();
4963                          break;
# Line 4689 | Line 4967 | public class ConcurrentHashMap<K,V> impl
4967          }
4968      }
4969  
4970 +    @SuppressWarnings("serial")
4971      static final class SearchValuesTask<K,V,U>
4972          extends BulkTask<K,V,U> {
4973          final Function<? super V, ? extends U> searchFunction;
# Line 4732 | Line 5011 | public class ConcurrentHashMap<K,V> impl
5011          }
5012      }
5013  
5014 +    @SuppressWarnings("serial")
5015      static final class SearchEntriesTask<K,V,U>
5016          extends BulkTask<K,V,U> {
5017          final Function<Entry<K,V>, ? extends U> searchFunction;
# Line 4775 | Line 5055 | public class ConcurrentHashMap<K,V> impl
5055          }
5056      }
5057  
5058 +    @SuppressWarnings("serial")
5059      static final class SearchMappingsTask<K,V,U>
5060          extends BulkTask<K,V,U> {
5061          final BiFunction<? super K, ? super V, ? extends U> searchFunction;
# Line 4808 | Line 5089 | public class ConcurrentHashMap<K,V> impl
5089                          propagateCompletion();
5090                          break;
5091                      }
5092 <                    if ((u = searchFunction.apply((K)p.key, p.val)) != null) {
5092 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5093                          if (result.compareAndSet(null, u))
5094                              quietlyCompleteRoot();
5095                          break;
# Line 4818 | Line 5099 | public class ConcurrentHashMap<K,V> impl
5099          }
5100      }
5101  
5102 +    @SuppressWarnings("serial")
5103      static final class ReduceKeysTask<K,V>
5104          extends BulkTask<K,V,K> {
5105          final BiFunction<? super K, ? super K, ? extends K> reducer;
# Line 4843 | Line 5125 | public class ConcurrentHashMap<K,V> impl
5125                  }
5126                  K r = null;
5127                  for (Node<K,V> p; (p = advance()) != null; ) {
5128 <                    K u = (K)p.key;
5128 >                    K u = p.key;
5129                      r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5130                  }
5131                  result = r;
5132                  CountedCompleter<?> c;
5133                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5134 <                    ReduceKeysTask<K,V>
5134 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5135                          t = (ReduceKeysTask<K,V>)c,
5136                          s = t.rights;
5137                      while (s != null) {
# Line 4864 | Line 5146 | public class ConcurrentHashMap<K,V> impl
5146          }
5147      }
5148  
5149 +    @SuppressWarnings("serial")
5150      static final class ReduceValuesTask<K,V>
5151          extends BulkTask<K,V,V> {
5152          final BiFunction<? super V, ? super V, ? extends V> reducer;
# Line 4895 | Line 5178 | public class ConcurrentHashMap<K,V> impl
5178                  result = r;
5179                  CountedCompleter<?> c;
5180                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5181 <                    ReduceValuesTask<K,V>
5181 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5182                          t = (ReduceValuesTask<K,V>)c,
5183                          s = t.rights;
5184                      while (s != null) {
# Line 4910 | Line 5193 | public class ConcurrentHashMap<K,V> impl
5193          }
5194      }
5195  
5196 +    @SuppressWarnings("serial")
5197      static final class ReduceEntriesTask<K,V>
5198          extends BulkTask<K,V,Map.Entry<K,V>> {
5199          final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
# Line 4939 | Line 5223 | public class ConcurrentHashMap<K,V> impl
5223                  result = r;
5224                  CountedCompleter<?> c;
5225                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5226 <                    ReduceEntriesTask<K,V>
5226 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5227                          t = (ReduceEntriesTask<K,V>)c,
5228                          s = t.rights;
5229                      while (s != null) {
# Line 4954 | Line 5238 | public class ConcurrentHashMap<K,V> impl
5238          }
5239      }
5240  
5241 +    @SuppressWarnings("serial")
5242      static final class MapReduceKeysTask<K,V,U>
5243          extends BulkTask<K,V,U> {
5244          final Function<? super K, ? extends U> transformer;
# Line 4985 | Line 5270 | public class ConcurrentHashMap<K,V> impl
5270                  U r = null;
5271                  for (Node<K,V> p; (p = advance()) != null; ) {
5272                      U u;
5273 <                    if ((u = transformer.apply((K)p.key)) != null)
5273 >                    if ((u = transformer.apply(p.key)) != null)
5274                          r = (r == null) ? u : reducer.apply(r, u);
5275                  }
5276                  result = r;
5277                  CountedCompleter<?> c;
5278                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5279 <                    MapReduceKeysTask<K,V,U>
5279 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5280                          t = (MapReduceKeysTask<K,V,U>)c,
5281                          s = t.rights;
5282                      while (s != null) {
# Line 5006 | Line 5291 | public class ConcurrentHashMap<K,V> impl
5291          }
5292      }
5293  
5294 +    @SuppressWarnings("serial")
5295      static final class MapReduceValuesTask<K,V,U>
5296          extends BulkTask<K,V,U> {
5297          final Function<? super V, ? extends U> transformer;
# Line 5043 | Line 5329 | public class ConcurrentHashMap<K,V> impl
5329                  result = r;
5330                  CountedCompleter<?> c;
5331                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5332 <                    MapReduceValuesTask<K,V,U>
5332 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5333                          t = (MapReduceValuesTask<K,V,U>)c,
5334                          s = t.rights;
5335                      while (s != null) {
# Line 5058 | Line 5344 | public class ConcurrentHashMap<K,V> impl
5344          }
5345      }
5346  
5347 +    @SuppressWarnings("serial")
5348      static final class MapReduceEntriesTask<K,V,U>
5349          extends BulkTask<K,V,U> {
5350          final Function<Map.Entry<K,V>, ? extends U> transformer;
# Line 5095 | Line 5382 | public class ConcurrentHashMap<K,V> impl
5382                  result = r;
5383                  CountedCompleter<?> c;
5384                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5385 <                    MapReduceEntriesTask<K,V,U>
5385 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5386                          t = (MapReduceEntriesTask<K,V,U>)c,
5387                          s = t.rights;
5388                      while (s != null) {
# Line 5110 | Line 5397 | public class ConcurrentHashMap<K,V> impl
5397          }
5398      }
5399  
5400 +    @SuppressWarnings("serial")
5401      static final class MapReduceMappingsTask<K,V,U>
5402          extends BulkTask<K,V,U> {
5403          final BiFunction<? super K, ? super V, ? extends U> transformer;
# Line 5141 | Line 5429 | public class ConcurrentHashMap<K,V> impl
5429                  U r = null;
5430                  for (Node<K,V> p; (p = advance()) != null; ) {
5431                      U u;
5432 <                    if ((u = transformer.apply((K)p.key, p.val)) != null)
5432 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5433                          r = (r == null) ? u : reducer.apply(r, u);
5434                  }
5435                  result = r;
5436                  CountedCompleter<?> c;
5437                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5438 <                    MapReduceMappingsTask<K,V,U>
5438 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5439                          t = (MapReduceMappingsTask<K,V,U>)c,
5440                          s = t.rights;
5441                      while (s != null) {
# Line 5162 | Line 5450 | public class ConcurrentHashMap<K,V> impl
5450          }
5451      }
5452  
5453 +    @SuppressWarnings("serial")
5454      static final class MapReduceKeysToDoubleTask<K,V>
5455          extends BulkTask<K,V,Double> {
5456          final ToDoubleFunction<? super K> transformer;
# Line 5194 | Line 5483 | public class ConcurrentHashMap<K,V> impl
5483                        rights, transformer, r, reducer)).fork();
5484                  }
5485                  for (Node<K,V> p; (p = advance()) != null; )
5486 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key));
5486 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5487                  result = r;
5488                  CountedCompleter<?> c;
5489                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5490 <                    MapReduceKeysToDoubleTask<K,V>
5490 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5491                          t = (MapReduceKeysToDoubleTask<K,V>)c,
5492                          s = t.rights;
5493                      while (s != null) {
# Line 5210 | Line 5499 | public class ConcurrentHashMap<K,V> impl
5499          }
5500      }
5501  
5502 +    @SuppressWarnings("serial")
5503      static final class MapReduceValuesToDoubleTask<K,V>
5504          extends BulkTask<K,V,Double> {
5505          final ToDoubleFunction<? super V> transformer;
# Line 5246 | Line 5536 | public class ConcurrentHashMap<K,V> impl
5536                  result = r;
5537                  CountedCompleter<?> c;
5538                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5539 <                    MapReduceValuesToDoubleTask<K,V>
5539 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5540                          t = (MapReduceValuesToDoubleTask<K,V>)c,
5541                          s = t.rights;
5542                      while (s != null) {
# Line 5258 | Line 5548 | public class ConcurrentHashMap<K,V> impl
5548          }
5549      }
5550  
5551 +    @SuppressWarnings("serial")
5552      static final class MapReduceEntriesToDoubleTask<K,V>
5553          extends BulkTask<K,V,Double> {
5554          final ToDoubleFunction<Map.Entry<K,V>> transformer;
# Line 5294 | Line 5585 | public class ConcurrentHashMap<K,V> impl
5585                  result = r;
5586                  CountedCompleter<?> c;
5587                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5588 <                    MapReduceEntriesToDoubleTask<K,V>
5588 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5589                          t = (MapReduceEntriesToDoubleTask<K,V>)c,
5590                          s = t.rights;
5591                      while (s != null) {
# Line 5306 | Line 5597 | public class ConcurrentHashMap<K,V> impl
5597          }
5598      }
5599  
5600 +    @SuppressWarnings("serial")
5601      static final class MapReduceMappingsToDoubleTask<K,V>
5602          extends BulkTask<K,V,Double> {
5603          final ToDoubleBiFunction<? super K, ? super V> transformer;
# Line 5338 | Line 5630 | public class ConcurrentHashMap<K,V> impl
5630                        rights, transformer, r, reducer)).fork();
5631                  }
5632                  for (Node<K,V> p; (p = advance()) != null; )
5633 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key, p.val));
5633 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5634                  result = r;
5635                  CountedCompleter<?> c;
5636                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5637 <                    MapReduceMappingsToDoubleTask<K,V>
5637 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5638                          t = (MapReduceMappingsToDoubleTask<K,V>)c,
5639                          s = t.rights;
5640                      while (s != null) {
# Line 5354 | Line 5646 | public class ConcurrentHashMap<K,V> impl
5646          }
5647      }
5648  
5649 +    @SuppressWarnings("serial")
5650      static final class MapReduceKeysToLongTask<K,V>
5651          extends BulkTask<K,V,Long> {
5652          final ToLongFunction<? super K> transformer;
# Line 5386 | Line 5679 | public class ConcurrentHashMap<K,V> impl
5679                        rights, transformer, r, reducer)).fork();
5680                  }
5681                  for (Node<K,V> p; (p = advance()) != null; )
5682 <                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key));
5682 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5683                  result = r;
5684                  CountedCompleter<?> c;
5685                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5686 <                    MapReduceKeysToLongTask<K,V>
5686 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5687                          t = (MapReduceKeysToLongTask<K,V>)c,
5688                          s = t.rights;
5689                      while (s != null) {
# Line 5402 | Line 5695 | public class ConcurrentHashMap<K,V> impl
5695          }
5696      }
5697  
5698 +    @SuppressWarnings("serial")
5699      static final class MapReduceValuesToLongTask<K,V>
5700          extends BulkTask<K,V,Long> {
5701          final ToLongFunction<? super V> transformer;
# Line 5438 | Line 5732 | public class ConcurrentHashMap<K,V> impl
5732                  result = r;
5733                  CountedCompleter<?> c;
5734                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5735 <                    MapReduceValuesToLongTask<K,V>
5735 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5736                          t = (MapReduceValuesToLongTask<K,V>)c,
5737                          s = t.rights;
5738                      while (s != null) {
# Line 5450 | Line 5744 | public class ConcurrentHashMap<K,V> impl
5744          }
5745      }
5746  
5747 +    @SuppressWarnings("serial")
5748      static final class MapReduceEntriesToLongTask<K,V>
5749          extends BulkTask<K,V,Long> {
5750          final ToLongFunction<Map.Entry<K,V>> transformer;
# Line 5486 | Line 5781 | public class ConcurrentHashMap<K,V> impl
5781                  result = r;
5782                  CountedCompleter<?> c;
5783                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5784 <                    MapReduceEntriesToLongTask<K,V>
5784 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5785                          t = (MapReduceEntriesToLongTask<K,V>)c,
5786                          s = t.rights;
5787                      while (s != null) {
# Line 5498 | Line 5793 | public class ConcurrentHashMap<K,V> impl
5793          }
5794      }
5795  
5796 +    @SuppressWarnings("serial")
5797      static final class MapReduceMappingsToLongTask<K,V>
5798          extends BulkTask<K,V,Long> {
5799          final ToLongBiFunction<? super K, ? super V> transformer;
# Line 5530 | Line 5826 | public class ConcurrentHashMap<K,V> impl
5826                        rights, transformer, r, reducer)).fork();
5827                  }
5828                  for (Node<K,V> p; (p = advance()) != null; )
5829 <                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key, p.val));
5829 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5830                  result = r;
5831                  CountedCompleter<?> c;
5832                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5833 <                    MapReduceMappingsToLongTask<K,V>
5833 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5834                          t = (MapReduceMappingsToLongTask<K,V>)c,
5835                          s = t.rights;
5836                      while (s != null) {
# Line 5546 | Line 5842 | public class ConcurrentHashMap<K,V> impl
5842          }
5843      }
5844  
5845 +    @SuppressWarnings("serial")
5846      static final class MapReduceKeysToIntTask<K,V>
5847          extends BulkTask<K,V,Integer> {
5848          final ToIntFunction<? super K> transformer;
# Line 5578 | Line 5875 | public class ConcurrentHashMap<K,V> impl
5875                        rights, transformer, r, reducer)).fork();
5876                  }
5877                  for (Node<K,V> p; (p = advance()) != null; )
5878 <                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key));
5878 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5879                  result = r;
5880                  CountedCompleter<?> c;
5881                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5882 <                    MapReduceKeysToIntTask<K,V>
5882 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5883                          t = (MapReduceKeysToIntTask<K,V>)c,
5884                          s = t.rights;
5885                      while (s != null) {
# Line 5594 | Line 5891 | public class ConcurrentHashMap<K,V> impl
5891          }
5892      }
5893  
5894 +    @SuppressWarnings("serial")
5895      static final class MapReduceValuesToIntTask<K,V>
5896          extends BulkTask<K,V,Integer> {
5897          final ToIntFunction<? super V> transformer;
# Line 5630 | Line 5928 | public class ConcurrentHashMap<K,V> impl
5928                  result = r;
5929                  CountedCompleter<?> c;
5930                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5931 <                    MapReduceValuesToIntTask<K,V>
5931 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5932                          t = (MapReduceValuesToIntTask<K,V>)c,
5933                          s = t.rights;
5934                      while (s != null) {
# Line 5642 | Line 5940 | public class ConcurrentHashMap<K,V> impl
5940          }
5941      }
5942  
5943 +    @SuppressWarnings("serial")
5944      static final class MapReduceEntriesToIntTask<K,V>
5945          extends BulkTask<K,V,Integer> {
5946          final ToIntFunction<Map.Entry<K,V>> transformer;
# Line 5678 | Line 5977 | public class ConcurrentHashMap<K,V> impl
5977                  result = r;
5978                  CountedCompleter<?> c;
5979                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5980 <                    MapReduceEntriesToIntTask<K,V>
5980 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5981                          t = (MapReduceEntriesToIntTask<K,V>)c,
5982                          s = t.rights;
5983                      while (s != null) {
# Line 5690 | Line 5989 | public class ConcurrentHashMap<K,V> impl
5989          }
5990      }
5991  
5992 +    @SuppressWarnings("serial")
5993      static final class MapReduceMappingsToIntTask<K,V>
5994          extends BulkTask<K,V,Integer> {
5995          final ToIntBiFunction<? super K, ? super V> transformer;
# Line 5722 | Line 6022 | public class ConcurrentHashMap<K,V> impl
6022                        rights, transformer, r, reducer)).fork();
6023                  }
6024                  for (Node<K,V> p; (p = advance()) != null; )
6025 <                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key, p.val));
6025 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6026                  result = r;
6027                  CountedCompleter<?> c;
6028                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6029 <                    MapReduceMappingsToIntTask<K,V>
6029 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6030                          t = (MapReduceMappingsToIntTask<K,V>)c,
6031                          s = t.rights;
6032                      while (s != null) {
# Line 5763 | Line 6063 | public class ConcurrentHashMap<K,V> impl
6063                  (k.getDeclaredField("baseCount"));
6064              CELLSBUSY = U.objectFieldOffset
6065                  (k.getDeclaredField("cellsBusy"));
6066 <            Class<?> ck = Cell.class;
6066 >            Class<?> ck = CounterCell.class;
6067              CELLVALUE = U.objectFieldOffset
6068                  (ck.getDeclaredField("value"));
6069 <            Class<?> sc = Node[].class;
6070 <            ABASE = U.arrayBaseOffset(sc);
6071 <            int scale = U.arrayIndexScale(sc);
6069 >            Class<?> ak = Node[].class;
6070 >            ABASE = U.arrayBaseOffset(ak);
6071 >            int scale = U.arrayIndexScale(ak);
6072              if ((scale & (scale - 1)) != 0)
6073                  throw new Error("data type scale not a power of two");
6074              ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines