ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.171 by dl, Fri Feb 1 01:02:37 2013 UTC vs.
Revision 1.238 by jsr166, Thu Jul 18 18:21:22 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.function.*;
11 import java.util.Spliterator;
12 import java.util.stream.Stream;
13 import java.util.stream.Streams;
8  
9 < import java.util.Comparator;
9 > import java.io.ObjectStreamField;
10 > import java.io.Serializable;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14   import java.util.Arrays;
17 import java.util.Map;
18 import java.util.Set;
15   import java.util.Collection;
16 < import java.util.AbstractMap;
17 < import java.util.AbstractSet;
18 < import java.util.AbstractCollection;
23 < import java.util.Hashtable;
16 > import java.util.Comparator;
17 > import java.util.ConcurrentModificationException;
18 > import java.util.Enumeration;
19   import java.util.HashMap;
20 + import java.util.Hashtable;
21   import java.util.Iterator;
22 < import java.util.Enumeration;
27 < import java.util.ConcurrentModificationException;
22 > import java.util.Map;
23   import java.util.NoSuchElementException;
24 + import java.util.Set;
25 + import java.util.Spliterator;
26   import java.util.concurrent.ConcurrentMap;
27 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 < import java.util.concurrent.atomic.AtomicInteger;
27 > import java.util.concurrent.ForkJoinPool;
28   import java.util.concurrent.atomic.AtomicReference;
29 < import java.io.Serializable;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31 > import java.util.function.BiConsumer;
32 > import java.util.function.BiFunction;
33 > import java.util.function.BinaryOperator;
34 > import java.util.function.Consumer;
35 > import java.util.function.DoubleBinaryOperator;
36 > import java.util.function.Function;
37 > import java.util.function.IntBinaryOperator;
38 > import java.util.function.LongBinaryOperator;
39 > import java.util.function.ToDoubleBiFunction;
40 > import java.util.function.ToDoubleFunction;
41 > import java.util.function.ToIntBiFunction;
42 > import java.util.function.ToIntFunction;
43 > import java.util.function.ToLongBiFunction;
44 > import java.util.function.ToLongFunction;
45 > import java.util.stream.Stream;
46  
47   /**
48   * A hash table supporting full concurrency of retrievals and
# Line 84 | Line 96 | import java.io.Serializable;
96   * expected {@code concurrencyLevel} as an additional hint for
97   * internal sizing.  Note that using many keys with exactly the same
98   * {@code hashCode()} is a sure way to slow down performance of any
99 < * hash table.
99 > * hash table. To ameliorate impact, when keys are {@link Comparable},
100 > * this class may use comparison order among keys to help break ties.
101   *
102   * <p>A {@link Set} projection of a ConcurrentHashMap may be created
103   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 95 | Line 108 | import java.io.Serializable;
108   * <p>A ConcurrentHashMap can be used as scalable frequency map (a
109   * form of histogram or multiset) by using {@link
110   * java.util.concurrent.atomic.LongAdder} values and initializing via
111 < * {@link #computeIfAbsent}. For example, to add a count to a {@code
112 < * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
113 < * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
111 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
112 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
113 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
114   *
115   * <p>This class and its views and iterators implement all of the
116   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
# Line 106 | Line 119 | import java.io.Serializable;
119   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
120   * does <em>not</em> allow {@code null} to be used as a key or value.
121   *
122 < * <p>ConcurrentHashMaps support sequential and parallel operations
123 < * bulk operations. (Parallel forms use the {@link
124 < * ForkJoinPool#commonPool()}). Tasks that may be used in other
125 < * contexts are available in class {@link ForkJoinTasks}. These
126 < * operations are designed to be safely, and often sensibly, applied
127 < * even with maps that are being concurrently updated by other
128 < * threads; for example, when computing a snapshot summary of the
129 < * values in a shared registry.  There are three kinds of operation,
130 < * each with four forms, accepting functions with Keys, Values,
131 < * Entries, and (Key, Value) arguments and/or return values. Because
132 < * the elements of a ConcurrentHashMap are not ordered in any
133 < * particular way, and may be processed in different orders in
134 < * different parallel executions, the correctness of supplied
135 < * functions should not depend on any ordering, or on any other
136 < * objects or values that may transiently change while computation is
124 < * in progress; and except for forEach actions, should ideally be
125 < * side-effect-free.
122 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
123 > * operations that, unlike most {@link Stream} methods, are designed
124 > * to be safely, and often sensibly, applied even with maps that are
125 > * being concurrently updated by other threads; for example, when
126 > * computing a snapshot summary of the values in a shared registry.
127 > * There are three kinds of operation, each with four forms, accepting
128 > * functions with Keys, Values, Entries, and (Key, Value) arguments
129 > * and/or return values. Because the elements of a ConcurrentHashMap
130 > * are not ordered in any particular way, and may be processed in
131 > * different orders in different parallel executions, the correctness
132 > * of supplied functions should not depend on any ordering, or on any
133 > * other objects or values that may transiently change while
134 > * computation is in progress; and except for forEach actions, should
135 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
136 > * objects do not support method {@code setValue}.
137   *
138   * <ul>
139   * <li> forEach: Perform a given action on each element.
# Line 149 | Line 160 | import java.io.Serializable;
160   * <li> Reductions to scalar doubles, longs, and ints, using a
161   * given basis value.</li>
162   *
152 * </li>
163   * </ul>
164 + * </li>
165   * </ul>
166   *
167 + * <p>These bulk operations accept a {@code parallelismThreshold}
168 + * argument. Methods proceed sequentially if the current map size is
169 + * estimated to be less than the given threshold. Using a value of
170 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
171 + * of {@code 1} results in maximal parallelism by partitioning into
172 + * enough subtasks to fully utilize the {@link
173 + * ForkJoinPool#commonPool()} that is used for all parallel
174 + * computations. Normally, you would initially choose one of these
175 + * extreme values, and then measure performance of using in-between
176 + * values that trade off overhead versus throughput.
177 + *
178   * <p>The concurrency properties of bulk operations follow
179   * from those of ConcurrentHashMap: Any non-null result returned
180   * from {@code get(key)} and related access methods bears a
# Line 214 | Line 236 | import java.io.Serializable;
236   * @param <K> the type of keys maintained by this map
237   * @param <V> the type of mapped values
238   */
239 < public class ConcurrentHashMap<K, V>
218 <    implements ConcurrentMap<K, V>, Serializable {
239 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> implements ConcurrentMap<K,V>, Serializable {
240      private static final long serialVersionUID = 7249069246763182397L;
241  
242      /*
# Line 228 | Line 249 | public class ConcurrentHashMap<K, V>
249       * the same or better than java.util.HashMap, and to support high
250       * initial insertion rates on an empty table by many threads.
251       *
252 <     * Each key-value mapping is held in a Node.  Because Node key
253 <     * fields can contain special values, they are defined using plain
254 <     * Object types (not type "K"). This leads to a lot of explicit
255 <     * casting (and many explicit warning suppressions to tell
256 <     * compilers not to complain about it). It also allows some of the
257 <     * public methods to be factored into a smaller number of internal
258 <     * methods (although sadly not so for the five variants of
259 <     * put-related operations). The validation-based approach
260 <     * explained below leads to a lot of code sprawl because
261 <     * retry-control precludes factoring into smaller methods.
252 >     * This map usually acts as a binned (bucketed) hash table.  Each
253 >     * key-value mapping is held in a Node.  Most nodes are instances
254 >     * of the basic Node class with hash, key, value, and next
255 >     * fields. However, various subclasses exist: TreeNodes are
256 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
257 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 >     * of bins during resizing. ReservationNodes are used as
259 >     * placeholders while establishing values in computeIfAbsent and
260 >     * related methods.  The types TreeBin, ForwardingNode, and
261 >     * ReservationNode do not hold normal user keys, values, or
262 >     * hashes, and are readily distinguishable during search etc
263 >     * because they have negative hash fields and null key and value
264 >     * fields. (These special nodes are either uncommon or transient,
265 >     * so the impact of carrying around some unused fields is
266 >     * insignificant.)
267       *
268       * The table is lazily initialized to a power-of-two size upon the
269       * first insertion.  Each bin in the table normally contains a
# Line 245 | Line 271 | public class ConcurrentHashMap<K, V>
271       * Table accesses require volatile/atomic reads, writes, and
272       * CASes.  Because there is no other way to arrange this without
273       * adding further indirections, we use intrinsics
274 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
249 <     * are always accurately traversable under volatile reads, so long
250 <     * as lookups check hash code and non-nullness of value before
251 <     * checking key equality.
274 >     * (sun.misc.Unsafe) operations.
275       *
276       * We use the top (sign) bit of Node hash fields for control
277       * purposes -- it is available anyway because of addressing
278 <     * constraints.  Nodes with negative hash fields are forwarding
279 <     * nodes to either TreeBins or resized tables.  The lower 31 bits
257 <     * of each normal Node's hash field contain a transformation of
258 <     * the key's hash code.
278 >     * constraints.  Nodes with negative hash fields are specially
279 >     * handled or ignored in map methods.
280       *
281       * Insertion (via put or its variants) of the first node in an
282       * empty bin is performed by just CASing it to the bin.  This is
# Line 272 | Line 293 | public class ConcurrentHashMap<K, V>
293       * validate that it is still the first node after locking it, and
294       * retry if not. Because new nodes are always appended to lists,
295       * once a node is first in a bin, it remains first until deleted
296 <     * or the bin becomes invalidated (upon resizing).  However,
276 <     * operations that only conditionally update may inspect nodes
277 <     * until the point of update. This is a converse of sorts to the
278 <     * lazy locking technique described by Herlihy & Shavit.
296 >     * or the bin becomes invalidated (upon resizing).
297       *
298       * The main disadvantage of per-bin locks is that other update
299       * operations on other nodes in a bin list protected by the same
# Line 308 | Line 326 | public class ConcurrentHashMap<K, V>
326       * sometimes deviate significantly from uniform randomness.  This
327       * includes the case when N > (1<<30), so some keys MUST collide.
328       * Similarly for dumb or hostile usages in which multiple keys are
329 <     * designed to have identical hash codes. Also, although we guard
330 <     * against the worst effects of this (see method spread), sets of
331 <     * hashes may differ only in bits that do not impact their bin
332 <     * index for a given power-of-two mask.  So we use a secondary
333 <     * strategy that applies when the number of nodes in a bin exceeds
334 <     * a threshold, and at least one of the keys implements
317 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
318 <     * (a specialized form of red-black trees), bounding search time
319 <     * to O(log N).  Each search step in a TreeBin is around twice as
329 >     * designed to have identical hash codes or ones that differs only
330 >     * in masked-out high bits. So we use a secondary strategy that
331 >     * applies when the number of nodes in a bin exceeds a
332 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
333 >     * specialized form of red-black trees), bounding search time to
334 >     * O(log N).  Each search step in a TreeBin is at least twice as
335       * slow as in a regular list, but given that N cannot exceed
336       * (1<<64) (before running out of addresses) this bounds search
337       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 382 | Line 397 | public class ConcurrentHashMap<K, V>
397       * LongAdder. We need to incorporate a specialization rather than
398       * just use a LongAdder in order to access implicit
399       * contention-sensing that leads to creation of multiple
400 <     * Cells.  The counter mechanics avoid contention on
400 >     * CounterCells.  The counter mechanics avoid contention on
401       * updates but can encounter cache thrashing if read too
402       * frequently during concurrent access. To avoid reading so often,
403       * resizing under contention is attempted only upon adding to a
404       * bin already holding two or more nodes. Under uniform hash
405       * distributions, the probability of this occurring at threshold
406       * is around 13%, meaning that only about 1 in 8 puts check
407 <     * threshold (and after resizing, many fewer do so). The bulk
408 <     * putAll operation further reduces contention by only committing
409 <     * count updates upon these size checks.
407 >     * threshold (and after resizing, many fewer do so).
408 >     *
409 >     * TreeBins use a special form of comparison for search and
410 >     * related operations (which is the main reason we cannot use
411 >     * existing collections such as TreeMaps). TreeBins contain
412 >     * Comparable elements, but may contain others, as well as
413 >     * elements that are Comparable but not necessarily Comparable
414 >     * for the same T, so we cannot invoke compareTo among them. To
415 >     * handle this, the tree is ordered primarily by hash value, then
416 >     * by Comparable.compareTo order if applicable.  On lookup at a
417 >     * node, if elements are not comparable or compare as 0 then both
418 >     * left and right children may need to be searched in the case of
419 >     * tied hash values. (This corresponds to the full list search
420 >     * that would be necessary if all elements were non-Comparable and
421 >     * had tied hashes.)  The red-black balancing code is updated from
422 >     * pre-jdk-collections
423 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
424 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
425 >     * Algorithms" (CLR).
426 >     *
427 >     * TreeBins also require an additional locking mechanism.  While
428 >     * list traversal is always possible by readers even during
429 >     * updates, tree traversal is not, mainly because of tree-rotations
430 >     * that may change the root node and/or its linkages.  TreeBins
431 >     * include a simple read-write lock mechanism parasitic on the
432 >     * main bin-synchronization strategy: Structural adjustments
433 >     * associated with an insertion or removal are already bin-locked
434 >     * (and so cannot conflict with other writers) but must wait for
435 >     * ongoing readers to finish. Since there can be only one such
436 >     * waiter, we use a simple scheme using a single "waiter" field to
437 >     * block writers.  However, readers need never block.  If the root
438 >     * lock is held, they proceed along the slow traversal path (via
439 >     * next-pointers) until the lock becomes available or the list is
440 >     * exhausted, whichever comes first. These cases are not fast, but
441 >     * maximize aggregate expected throughput.
442       *
443       * Maintaining API and serialization compatibility with previous
444       * versions of this class introduces several oddities. Mainly: We
# Line 401 | Line 448 | public class ConcurrentHashMap<K, V>
448       * time that we can guarantee to honor it.) We also declare an
449       * unused "Segment" class that is instantiated in minimal form
450       * only when serializing.
451 +     *
452 +     * This file is organized to make things a little easier to follow
453 +     * while reading than they might otherwise: First the main static
454 +     * declarations and utilities, then fields, then main public
455 +     * methods (with a few factorings of multiple public methods into
456 +     * internal ones), then sizing methods, trees, traversers, and
457 +     * bulk operations.
458       */
459  
460      /* ---------------- Constants -------------- */
# Line 443 | Line 497 | public class ConcurrentHashMap<K, V>
497  
498      /**
499       * The bin count threshold for using a tree rather than list for a
500 <     * bin.  The value reflects the approximate break-even point for
501 <     * using tree-based operations.
500 >     * bin.  Bins are converted to trees when adding an element to a
501 >     * bin with at least this many nodes. The value must be greater
502 >     * than 2, and should be at least 8 to mesh with assumptions in
503 >     * tree removal about conversion back to plain bins upon
504 >     * shrinkage.
505 >     */
506 >    static final int TREEIFY_THRESHOLD = 8;
507 >
508 >    /**
509 >     * The bin count threshold for untreeifying a (split) bin during a
510 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
511 >     * most 6 to mesh with shrinkage detection under removal.
512 >     */
513 >    static final int UNTREEIFY_THRESHOLD = 6;
514 >
515 >    /**
516 >     * The smallest table capacity for which bins may be treeified.
517 >     * (Otherwise the table is resized if too many nodes in a bin.)
518 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
519 >     * conflicts between resizing and treeification thresholds.
520       */
521 <    private static final int TREE_THRESHOLD = 8;
521 >    static final int MIN_TREEIFY_CAPACITY = 64;
522  
523      /**
524       * Minimum number of rebinnings per transfer step. Ranges are
# Line 460 | Line 532 | public class ConcurrentHashMap<K, V>
532      /*
533       * Encodings for Node hash fields. See above for explanation.
534       */
535 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
535 >    static final int MOVED     = -1; // hash for forwarding nodes
536 >    static final int TREEBIN   = -2; // hash for roots of trees
537 >    static final int RESERVED  = -3; // hash for transient reservations
538      static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
539  
540      /** Number of CPUS, to place bounds on some sizings */
541      static final int NCPU = Runtime.getRuntime().availableProcessors();
542  
543 <    /* ---------------- Counters -------------- */
543 >    /** For serialization compatibility. */
544 >    private static final ObjectStreamField[] serialPersistentFields = {
545 >        new ObjectStreamField("segments", Segment[].class),
546 >        new ObjectStreamField("segmentMask", Integer.TYPE),
547 >        new ObjectStreamField("segmentShift", Integer.TYPE)
548 >    };
549  
550 <    // Adapted from LongAdder and Striped64.
472 <    // See their internal docs for explanation.
550 >    /* ---------------- Nodes -------------- */
551  
552 <    // A padded cell for distributing counts
553 <    static final class Cell {
554 <        volatile long p0, p1, p2, p3, p4, p5, p6;
555 <        volatile long value;
556 <        volatile long q0, q1, q2, q3, q4, q5, q6;
557 <        Cell(long x) { value = x; }
552 >    /**
553 >     * Key-value entry.  This class is never exported out as a
554 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
555 >     * MapEntry below), but can be used for read-only traversals used
556 >     * in bulk tasks.  Subclasses of Node with a negative hash field
557 >     * are special, and contain null keys and values (but are never
558 >     * exported).  Otherwise, keys and vals are never null.
559 >     */
560 >    static class Node<K,V> implements Map.Entry<K,V> {
561 >        final int hash;
562 >        final K key;
563 >        volatile V val;
564 >        volatile Node<K,V> next;
565 >
566 >        Node(int hash, K key, V val, Node<K,V> next) {
567 >            this.hash = hash;
568 >            this.key = key;
569 >            this.val = val;
570 >            this.next = next;
571 >        }
572 >
573 >        public final K getKey()       { return key; }
574 >        public final V getValue()     { return val; }
575 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
576 >        public final String toString(){ return key + "=" + val; }
577 >        public final V setValue(V value) {
578 >            throw new UnsupportedOperationException();
579 >        }
580 >
581 >        public final boolean equals(Object o) {
582 >            Object k, v, u; Map.Entry<?,?> e;
583 >            return ((o instanceof Map.Entry) &&
584 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
585 >                    (v = e.getValue()) != null &&
586 >                    (k == key || k.equals(key)) &&
587 >                    (v == (u = val) || v.equals(u)));
588 >        }
589 >
590 >        /**
591 >         * Virtualized support for map.get(); overridden in subclasses.
592 >         */
593 >        Node<K,V> find(int h, Object k) {
594 >            Node<K,V> e = this;
595 >            if (k != null) {
596 >                do {
597 >                    K ek;
598 >                    if (e.hash == h &&
599 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
600 >                        return e;
601 >                } while ((e = e.next) != null);
602 >            }
603 >            return null;
604 >        }
605 >    }
606 >
607 >    /* ---------------- Static utilities -------------- */
608 >
609 >    /**
610 >     * Spreads (XORs) higher bits of hash to lower and also forces top
611 >     * bit to 0. Because the table uses power-of-two masking, sets of
612 >     * hashes that vary only in bits above the current mask will
613 >     * always collide. (Among known examples are sets of Float keys
614 >     * holding consecutive whole numbers in small tables.)  So we
615 >     * apply a transform that spreads the impact of higher bits
616 >     * downward. There is a tradeoff between speed, utility, and
617 >     * quality of bit-spreading. Because many common sets of hashes
618 >     * are already reasonably distributed (so don't benefit from
619 >     * spreading), and because we use trees to handle large sets of
620 >     * collisions in bins, we just XOR some shifted bits in the
621 >     * cheapest possible way to reduce systematic lossage, as well as
622 >     * to incorporate impact of the highest bits that would otherwise
623 >     * never be used in index calculations because of table bounds.
624 >     */
625 >    static final int spread(int h) {
626 >        return (h ^ (h >>> 16)) & HASH_BITS;
627 >    }
628 >
629 >    /**
630 >     * Returns a power of two table size for the given desired capacity.
631 >     * See Hackers Delight, sec 3.2
632 >     */
633 >    private static final int tableSizeFor(int c) {
634 >        int n = c - 1;
635 >        n |= n >>> 1;
636 >        n |= n >>> 2;
637 >        n |= n >>> 4;
638 >        n |= n >>> 8;
639 >        n |= n >>> 16;
640 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
641 >    }
642 >
643 >    /**
644 >     * Returns x's Class if it is of the form "class C implements
645 >     * Comparable<C>", else null.
646 >     */
647 >    static Class<?> comparableClassFor(Object x) {
648 >        if (x instanceof Comparable) {
649 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
650 >            if ((c = x.getClass()) == String.class) // bypass checks
651 >                return c;
652 >            if ((ts = c.getGenericInterfaces()) != null) {
653 >                for (int i = 0; i < ts.length; ++i) {
654 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
655 >                        ((p = (ParameterizedType)t).getRawType() ==
656 >                         Comparable.class) &&
657 >                        (as = p.getActualTypeArguments()) != null &&
658 >                        as.length == 1 && as[0] == c) // type arg is c
659 >                        return c;
660 >                }
661 >            }
662 >        }
663 >        return null;
664 >    }
665 >
666 >    /**
667 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
668 >     * class), else 0.
669 >     */
670 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
671 >    static int compareComparables(Class<?> kc, Object k, Object x) {
672 >        return (x == null || x.getClass() != kc ? 0 :
673 >                ((Comparable)k).compareTo(x));
674 >    }
675 >
676 >    /* ---------------- Table element access -------------- */
677 >
678 >    /*
679 >     * Volatile access methods are used for table elements as well as
680 >     * elements of in-progress next table while resizing.  All uses of
681 >     * the tab arguments must be null checked by callers.  All callers
682 >     * also paranoically precheck that tab's length is not zero (or an
683 >     * equivalent check), thus ensuring that any index argument taking
684 >     * the form of a hash value anded with (length - 1) is a valid
685 >     * index.  Note that, to be correct wrt arbitrary concurrency
686 >     * errors by users, these checks must operate on local variables,
687 >     * which accounts for some odd-looking inline assignments below.
688 >     * Note that calls to setTabAt always occur within locked regions,
689 >     * and so in principle require only release ordering, not need
690 >     * full volatile semantics, but are currently coded as volatile
691 >     * writes to be conservative.
692 >     */
693 >
694 >    @SuppressWarnings("unchecked")
695 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
696 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
697 >    }
698 >
699 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
700 >                                        Node<K,V> c, Node<K,V> v) {
701 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
702 >    }
703 >
704 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
705 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
706      }
707  
708      /* ---------------- Fields -------------- */
# Line 485 | Line 711 | public class ConcurrentHashMap<K, V>
711       * The array of bins. Lazily initialized upon first insertion.
712       * Size is always a power of two. Accessed directly by iterators.
713       */
714 <    transient volatile Node<V>[] table;
714 >    transient volatile Node<K,V>[] table;
715  
716      /**
717       * The next table to use; non-null only while resizing.
718       */
719 <    private transient volatile Node<V>[] nextTable;
719 >    private transient volatile Node<K,V>[] nextTable;
720  
721      /**
722       * Base counter value, used mainly when there is no contention,
# Line 520 | Line 746 | public class ConcurrentHashMap<K, V>
746      private transient volatile int transferOrigin;
747  
748      /**
749 <     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
749 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
750       */
751      private transient volatile int cellsBusy;
752  
753      /**
754       * Table of counter cells. When non-null, size is a power of 2.
755       */
756 <    private transient volatile Cell[] counterCells;
756 >    private transient volatile CounterCell[] counterCells;
757  
758      // views
759      private transient KeySetView<K,V> keySet;
760      private transient ValuesView<K,V> values;
761      private transient EntrySetView<K,V> entrySet;
762  
537    /** For serialization compatibility. Null unless serialized; see below */
538    private Segment<K,V>[] segments;
763  
764 <    /* ---------------- Table element access -------------- */
764 >    /* ---------------- Public operations -------------- */
765  
766 <    /*
767 <     * Volatile access methods are used for table elements as well as
768 <     * elements of in-progress next table while resizing.  Uses are
769 <     * null checked by callers, and implicitly bounds-checked, relying
546 <     * on the invariants that tab arrays have non-zero size, and all
547 <     * indices are masked with (tab.length - 1) which is never
548 <     * negative and always less than length. Note that, to be correct
549 <     * wrt arbitrary concurrency errors by users, bounds checks must
550 <     * operate on local variables, which accounts for some odd-looking
551 <     * inline assignments below.
552 <     */
553 <
554 <    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 <        (Node<V>[] tab, int i) { // used by Traverser
556 <        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
766 >    /**
767 >     * Creates a new, empty map with the default initial table size (16).
768 >     */
769 >    public ConcurrentHashMap() {
770      }
771  
772 <    private static final <V> boolean casTabAt
773 <        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
774 <        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
772 >    /**
773 >     * Creates a new, empty map with an initial table size
774 >     * accommodating the specified number of elements without the need
775 >     * to dynamically resize.
776 >     *
777 >     * @param initialCapacity The implementation performs internal
778 >     * sizing to accommodate this many elements.
779 >     * @throws IllegalArgumentException if the initial capacity of
780 >     * elements is negative
781 >     */
782 >    public ConcurrentHashMap(int initialCapacity) {
783 >        if (initialCapacity < 0)
784 >            throw new IllegalArgumentException();
785 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
786 >                   MAXIMUM_CAPACITY :
787 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
788 >        this.sizeCtl = cap;
789      }
790  
791 <    private static final <V> void setTabAt
792 <        (Node<V>[] tab, int i, Node<V> v) {
793 <        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
791 >    /**
792 >     * Creates a new map with the same mappings as the given map.
793 >     *
794 >     * @param m the map
795 >     */
796 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
797 >        this.sizeCtl = DEFAULT_CAPACITY;
798 >        putAll(m);
799      }
800  
569    /* ---------------- Nodes -------------- */
570
801      /**
802 <     * Key-value entry. Note that this is never exported out as a
803 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
804 <     * field of MOVED are special, and do not contain user keys or
805 <     * values.  Otherwise, keys are never null, and null val fields
806 <     * indicate that a node is in the process of being deleted or
807 <     * created. For purposes of read-only access, a key may be read
808 <     * before a val, but can only be used after checking val to be
809 <     * non-null.
802 >     * Creates a new, empty map with an initial table size based on
803 >     * the given number of elements ({@code initialCapacity}) and
804 >     * initial table density ({@code loadFactor}).
805 >     *
806 >     * @param initialCapacity the initial capacity. The implementation
807 >     * performs internal sizing to accommodate this many elements,
808 >     * given the specified load factor.
809 >     * @param loadFactor the load factor (table density) for
810 >     * establishing the initial table size
811 >     * @throws IllegalArgumentException if the initial capacity of
812 >     * elements is negative or the load factor is nonpositive
813 >     *
814 >     * @since 1.6
815       */
816 <    static class Node<V> {
817 <        final int hash;
818 <        final Object key;
584 <        volatile V val;
585 <        volatile Node<V> next;
816 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
817 >        this(initialCapacity, loadFactor, 1);
818 >    }
819  
820 <        Node(int hash, Object key, V val, Node<V> next) {
821 <            this.hash = hash;
822 <            this.key = key;
823 <            this.val = val;
824 <            this.next = next;
825 <        }
820 >    /**
821 >     * Creates a new, empty map with an initial table size based on
822 >     * the given number of elements ({@code initialCapacity}), table
823 >     * density ({@code loadFactor}), and number of concurrently
824 >     * updating threads ({@code concurrencyLevel}).
825 >     *
826 >     * @param initialCapacity the initial capacity. The implementation
827 >     * performs internal sizing to accommodate this many elements,
828 >     * given the specified load factor.
829 >     * @param loadFactor the load factor (table density) for
830 >     * establishing the initial table size
831 >     * @param concurrencyLevel the estimated number of concurrently
832 >     * updating threads. The implementation may use this value as
833 >     * a sizing hint.
834 >     * @throws IllegalArgumentException if the initial capacity is
835 >     * negative or the load factor or concurrencyLevel are
836 >     * nonpositive
837 >     */
838 >    public ConcurrentHashMap(int initialCapacity,
839 >                             float loadFactor, int concurrencyLevel) {
840 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
841 >            throw new IllegalArgumentException();
842 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
843 >            initialCapacity = concurrencyLevel;   // as estimated threads
844 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
845 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
846 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
847 >        this.sizeCtl = cap;
848      }
849  
850 <    /* ---------------- TreeBins -------------- */
850 >    // Original (since JDK1.2) Map methods
851  
852      /**
853 <     * Nodes for use in TreeBins
853 >     * {@inheritDoc}
854       */
855 <    static final class TreeNode<V> extends Node<V> {
856 <        TreeNode<V> parent;  // red-black tree links
857 <        TreeNode<V> left;
858 <        TreeNode<V> right;
859 <        TreeNode<V> prev;    // needed to unlink next upon deletion
860 <        boolean red;
855 >    public int size() {
856 >        long n = sumCount();
857 >        return ((n < 0L) ? 0 :
858 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
859 >                (int)n);
860 >    }
861  
862 <        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
863 <            super(hash, key, val, next);
864 <            this.parent = parent;
865 <        }
862 >    /**
863 >     * {@inheritDoc}
864 >     */
865 >    public boolean isEmpty() {
866 >        return sumCount() <= 0L; // ignore transient negative values
867      }
868  
869      /**
870 <     * A specialized form of red-black tree for use in bins
871 <     * whose size exceeds a threshold.
870 >     * Returns the value to which the specified key is mapped,
871 >     * or {@code null} if this map contains no mapping for the key.
872       *
873 <     * TreeBins use a special form of comparison for search and
874 <     * related operations (which is the main reason we cannot use
875 <     * existing collections such as TreeMaps). TreeBins contain
876 <     * Comparable elements, but may contain others, as well as
621 <     * elements that are Comparable but not necessarily Comparable<T>
622 <     * for the same T, so we cannot invoke compareTo among them. To
623 <     * handle this, the tree is ordered primarily by hash value, then
624 <     * by getClass().getName() order, and then by Comparator order
625 <     * among elements of the same class.  On lookup at a node, if
626 <     * elements are not comparable or compare as 0, both left and
627 <     * right children may need to be searched in the case of tied hash
628 <     * values. (This corresponds to the full list search that would be
629 <     * necessary if all elements were non-Comparable and had tied
630 <     * hashes.)  The red-black balancing code is updated from
631 <     * pre-jdk-collections
632 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 <     * Algorithms" (CLR).
873 >     * <p>More formally, if this map contains a mapping from a key
874 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
875 >     * then this method returns {@code v}; otherwise it returns
876 >     * {@code null}.  (There can be at most one such mapping.)
877       *
878 <     * TreeBins also maintain a separate locking discipline than
637 <     * regular bins. Because they are forwarded via special MOVED
638 <     * nodes at bin heads (which can never change once established),
639 <     * we cannot use those nodes as locks. Instead, TreeBin
640 <     * extends AbstractQueuedSynchronizer to support a simple form of
641 <     * read-write lock. For update operations and table validation,
642 <     * the exclusive form of lock behaves in the same way as bin-head
643 <     * locks. However, lookups use shared read-lock mechanics to allow
644 <     * multiple readers in the absence of writers.  Additionally,
645 <     * these lookups do not ever block: While the lock is not
646 <     * available, they proceed along the slow traversal path (via
647 <     * next-pointers) until the lock becomes available or the list is
648 <     * exhausted, whichever comes first. (These cases are not fast,
649 <     * but maximize aggregate expected throughput.)  The AQS mechanics
650 <     * for doing this are straightforward.  The lock state is held as
651 <     * AQS getState().  Read counts are negative; the write count (1)
652 <     * is positive.  There are no signalling preferences among readers
653 <     * and writers. Since we don't need to export full Lock API, we
654 <     * just override the minimal AQS methods and use them directly.
878 >     * @throws NullPointerException if the specified key is null
879       */
880 <    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
881 <        private static final long serialVersionUID = 2249069246763182397L;
882 <        transient TreeNode<V> root;  // root of tree
883 <        transient TreeNode<V> first; // head of next-pointer list
884 <
885 <        /* AQS overrides */
886 <        public final boolean isHeldExclusively() { return getState() > 0; }
887 <        public final boolean tryAcquire(int ignore) {
888 <            if (compareAndSetState(0, 1)) {
889 <                setExclusiveOwnerThread(Thread.currentThread());
890 <                return true;
891 <            }
892 <            return false;
893 <        }
894 <        public final boolean tryRelease(int ignore) {
671 <            setExclusiveOwnerThread(null);
672 <            setState(0);
673 <            return true;
674 <        }
675 <        public final int tryAcquireShared(int ignore) {
676 <            for (int c;;) {
677 <                if ((c = getState()) > 0)
678 <                    return -1;
679 <                if (compareAndSetState(c, c -1))
680 <                    return 1;
681 <            }
682 <        }
683 <        public final boolean tryReleaseShared(int ignore) {
684 <            int c;
685 <            do {} while (!compareAndSetState(c = getState(), c + 1));
686 <            return c == -1;
687 <        }
688 <
689 <        /** From CLR */
690 <        private void rotateLeft(TreeNode<V> p) {
691 <            if (p != null) {
692 <                TreeNode<V> r = p.right, pp, rl;
693 <                if ((rl = p.right = r.left) != null)
694 <                    rl.parent = p;
695 <                if ((pp = r.parent = p.parent) == null)
696 <                    root = r;
697 <                else if (pp.left == p)
698 <                    pp.left = r;
699 <                else
700 <                    pp.right = r;
701 <                r.left = p;
702 <                p.parent = r;
703 <            }
704 <        }
705 <
706 <        /** From CLR */
707 <        private void rotateRight(TreeNode<V> p) {
708 <            if (p != null) {
709 <                TreeNode<V> l = p.left, pp, lr;
710 <                if ((lr = p.left = l.right) != null)
711 <                    lr.parent = p;
712 <                if ((pp = l.parent = p.parent) == null)
713 <                    root = l;
714 <                else if (pp.right == p)
715 <                    pp.right = l;
716 <                else
717 <                    pp.left = l;
718 <                l.right = p;
719 <                p.parent = l;
880 >    public V get(Object key) {
881 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
882 >        int h = spread(key.hashCode());
883 >        if ((tab = table) != null && (n = tab.length) > 0 &&
884 >            (e = tabAt(tab, (n - 1) & h)) != null) {
885 >            if ((eh = e.hash) == h) {
886 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
887 >                    return e.val;
888 >            }
889 >            else if (eh < 0)
890 >                return (p = e.find(h, key)) != null ? p.val : null;
891 >            while ((e = e.next) != null) {
892 >                if (e.hash == h &&
893 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
894 >                    return e.val;
895              }
896          }
897 +        return null;
898 +    }
899  
900 <        /**
901 <         * Returns the TreeNode (or null if not found) for the given key
902 <         * starting at given root.
903 <         */
904 <        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
905 <            (int h, Object k, TreeNode<V> p) {
906 <            Class<?> c = k.getClass();
907 <            while (p != null) {
908 <                int dir, ph;  Object pk; Class<?> pc;
909 <                if ((ph = p.hash) == h) {
910 <                    if ((pk = p.key) == k || k.equals(pk))
911 <                        return p;
735 <                    if (c != (pc = pk.getClass()) ||
736 <                        !(k instanceof Comparable) ||
737 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 <                        if ((dir = (c == pc) ? 0 :
739 <                             c.getName().compareTo(pc.getName())) == 0) {
740 <                            TreeNode<V> r = null, pl, pr; // check both sides
741 <                            if ((pr = p.right) != null && h >= pr.hash &&
742 <                                (r = getTreeNode(h, k, pr)) != null)
743 <                                return r;
744 <                            else if ((pl = p.left) != null && h <= pl.hash)
745 <                                dir = -1;
746 <                            else // nothing there
747 <                                return null;
748 <                        }
749 <                    }
750 <                }
751 <                else
752 <                    dir = (h < ph) ? -1 : 1;
753 <                p = (dir > 0) ? p.right : p.left;
754 <            }
755 <            return null;
756 <        }
900 >    /**
901 >     * Tests if the specified object is a key in this table.
902 >     *
903 >     * @param  key possible key
904 >     * @return {@code true} if and only if the specified object
905 >     *         is a key in this table, as determined by the
906 >     *         {@code equals} method; {@code false} otherwise
907 >     * @throws NullPointerException if the specified key is null
908 >     */
909 >    public boolean containsKey(Object key) {
910 >        return get(key) != null;
911 >    }
912  
913 <        /**
914 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
915 <         * read-lock to call getTreeNode, but during failure to get
916 <         * lock, searches along next links.
917 <         */
918 <        final V getValue(int h, Object k) {
919 <            Node<V> r = null;
920 <            int c = getState(); // Must read lock state first
921 <            for (Node<V> e = first; e != null; e = e.next) {
922 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
923 <                    try {
924 <                        r = getTreeNode(h, k, root);
925 <                    } finally {
926 <                        releaseShared(0);
927 <                    }
928 <                    break;
929 <                }
930 <                else if (e.hash == h && k.equals(e.key)) {
931 <                    r = e;
932 <                    break;
778 <                }
779 <                else
780 <                    c = getState();
913 >    /**
914 >     * Returns {@code true} if this map maps one or more keys to the
915 >     * specified value. Note: This method may require a full traversal
916 >     * of the map, and is much slower than method {@code containsKey}.
917 >     *
918 >     * @param value value whose presence in this map is to be tested
919 >     * @return {@code true} if this map maps one or more keys to the
920 >     *         specified value
921 >     * @throws NullPointerException if the specified value is null
922 >     */
923 >    public boolean containsValue(Object value) {
924 >        if (value == null)
925 >            throw new NullPointerException();
926 >        Node<K,V>[] t;
927 >        if ((t = table) != null) {
928 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
929 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
930 >                V v;
931 >                if ((v = p.val) == value || (v != null && value.equals(v)))
932 >                    return true;
933              }
782            return r == null ? null : r.val;
934          }
935 +        return false;
936 +    }
937  
938 <        /**
939 <         * Finds or adds a node.
940 <         * @return null if added
941 <         */
942 <        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
943 <            (int h, Object k, V v) {
944 <            Class<?> c = k.getClass();
945 <            TreeNode<V> pp = root, p = null;
946 <            int dir = 0;
947 <            while (pp != null) { // find existing node or leaf to insert at
948 <                int ph;  Object pk; Class<?> pc;
949 <                p = pp;
950 <                if ((ph = p.hash) == h) {
951 <                    if ((pk = p.key) == k || k.equals(pk))
952 <                        return p;
953 <                    if (c != (pc = pk.getClass()) ||
801 <                        !(k instanceof Comparable) ||
802 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 <                        TreeNode<V> s = null, r = null, pr;
804 <                        if ((dir = (c == pc) ? 0 :
805 <                             c.getName().compareTo(pc.getName())) == 0) {
806 <                            if ((pr = p.right) != null && h >= pr.hash &&
807 <                                (r = getTreeNode(h, k, pr)) != null)
808 <                                return r;
809 <                            else // continue left
810 <                                dir = -1;
811 <                        }
812 <                        else if ((pr = p.right) != null && h >= pr.hash)
813 <                            s = pr;
814 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
815 <                            return r;
816 <                    }
817 <                }
818 <                else
819 <                    dir = (h < ph) ? -1 : 1;
820 <                pp = (dir > 0) ? p.right : p.left;
821 <            }
822 <
823 <            TreeNode<V> f = first;
824 <            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 <            if (p == null)
826 <                root = x;
827 <            else { // attach and rebalance; adapted from CLR
828 <                TreeNode<V> xp, xpp;
829 <                if (f != null)
830 <                    f.prev = x;
831 <                if (dir <= 0)
832 <                    p.left = x;
833 <                else
834 <                    p.right = x;
835 <                x.red = true;
836 <                while (x != null && (xp = x.parent) != null && xp.red &&
837 <                       (xpp = xp.parent) != null) {
838 <                    TreeNode<V> xppl = xpp.left;
839 <                    if (xp == xppl) {
840 <                        TreeNode<V> y = xpp.right;
841 <                        if (y != null && y.red) {
842 <                            y.red = false;
843 <                            xp.red = false;
844 <                            xpp.red = true;
845 <                            x = xpp;
846 <                        }
847 <                        else {
848 <                            if (x == xp.right) {
849 <                                rotateLeft(x = xp);
850 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
851 <                            }
852 <                            if (xp != null) {
853 <                                xp.red = false;
854 <                                if (xpp != null) {
855 <                                    xpp.red = true;
856 <                                    rotateRight(xpp);
857 <                                }
858 <                            }
859 <                        }
860 <                    }
861 <                    else {
862 <                        TreeNode<V> y = xppl;
863 <                        if (y != null && y.red) {
864 <                            y.red = false;
865 <                            xp.red = false;
866 <                            xpp.red = true;
867 <                            x = xpp;
868 <                        }
869 <                        else {
870 <                            if (x == xp.left) {
871 <                                rotateRight(x = xp);
872 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
873 <                            }
874 <                            if (xp != null) {
875 <                                xp.red = false;
876 <                                if (xpp != null) {
877 <                                    xpp.red = true;
878 <                                    rotateLeft(xpp);
879 <                                }
880 <                            }
881 <                        }
882 <                    }
883 <                }
884 <                TreeNode<V> r = root;
885 <                if (r != null && r.red)
886 <                    r.red = false;
887 <            }
888 <            return null;
889 <        }
938 >    /**
939 >     * Maps the specified key to the specified value in this table.
940 >     * Neither the key nor the value can be null.
941 >     *
942 >     * <p>The value can be retrieved by calling the {@code get} method
943 >     * with a key that is equal to the original key.
944 >     *
945 >     * @param key key with which the specified value is to be associated
946 >     * @param value value to be associated with the specified key
947 >     * @return the previous value associated with {@code key}, or
948 >     *         {@code null} if there was no mapping for {@code key}
949 >     * @throws NullPointerException if the specified key or value is null
950 >     */
951 >    public V put(K key, V value) {
952 >        return putVal(key, value, false);
953 >    }
954  
955 <        /**
956 <         * Removes the given node, that must be present before this
957 <         * call.  This is messier than typical red-black deletion code
958 <         * because we cannot swap the contents of an interior node
959 <         * with a leaf successor that is pinned by "next" pointers
960 <         * that are accessible independently of lock. So instead we
961 <         * swap the tree linkages.
962 <         */
963 <        final void deleteTreeNode(TreeNode<V> p) {
964 <            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
965 <            TreeNode<V> pred = p.prev;
966 <            if (pred == null)
967 <                first = next;
904 <            else
905 <                pred.next = next;
906 <            if (next != null)
907 <                next.prev = pred;
908 <            TreeNode<V> replacement;
909 <            TreeNode<V> pl = p.left;
910 <            TreeNode<V> pr = p.right;
911 <            if (pl != null && pr != null) {
912 <                TreeNode<V> s = pr, sl;
913 <                while ((sl = s.left) != null) // find successor
914 <                    s = sl;
915 <                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 <                TreeNode<V> sr = s.right;
917 <                TreeNode<V> pp = p.parent;
918 <                if (s == pr) { // p was s's direct parent
919 <                    p.parent = s;
920 <                    s.right = p;
921 <                }
922 <                else {
923 <                    TreeNode<V> sp = s.parent;
924 <                    if ((p.parent = sp) != null) {
925 <                        if (s == sp.left)
926 <                            sp.left = p;
927 <                        else
928 <                            sp.right = p;
929 <                    }
930 <                    if ((s.right = pr) != null)
931 <                        pr.parent = s;
932 <                }
933 <                p.left = null;
934 <                if ((p.right = sr) != null)
935 <                    sr.parent = p;
936 <                if ((s.left = pl) != null)
937 <                    pl.parent = s;
938 <                if ((s.parent = pp) == null)
939 <                    root = s;
940 <                else if (p == pp.left)
941 <                    pp.left = s;
942 <                else
943 <                    pp.right = s;
944 <                replacement = sr;
945 <            }
946 <            else
947 <                replacement = (pl != null) ? pl : pr;
948 <            TreeNode<V> pp = p.parent;
949 <            if (replacement == null) {
950 <                if (pp == null) {
951 <                    root = null;
952 <                    return;
953 <                }
954 <                replacement = p;
955 >    /** Implementation for put and putIfAbsent */
956 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
957 >        if (key == null || value == null) throw new NullPointerException();
958 >        int hash = spread(key.hashCode());
959 >        int binCount = 0;
960 >        for (Node<K,V>[] tab = table;;) {
961 >            Node<K,V> f; int n, i, fh;
962 >            if (tab == null || (n = tab.length) == 0)
963 >                tab = initTable();
964 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
965 >                if (casTabAt(tab, i, null,
966 >                             new Node<K,V>(hash, key, value, null)))
967 >                    break;                   // no lock when adding to empty bin
968              }
969 +            else if ((fh = f.hash) == MOVED)
970 +                tab = helpTransfer(tab, f);
971              else {
972 <                replacement.parent = pp;
973 <                if (pp == null)
974 <                    root = replacement;
975 <                else if (p == pp.left)
976 <                    pp.left = replacement;
977 <                else
978 <                    pp.right = replacement;
979 <                p.left = p.right = p.parent = null;
980 <            }
981 <            if (!p.red) { // rebalance, from CLR
982 <                TreeNode<V> x = replacement;
983 <                while (x != null) {
984 <                    TreeNode<V> xp, xpl;
985 <                    if (x.red || (xp = x.parent) == null) {
971 <                        x.red = false;
972 <                        break;
973 <                    }
974 <                    if (x == (xpl = xp.left)) {
975 <                        TreeNode<V> sib = xp.right;
976 <                        if (sib != null && sib.red) {
977 <                            sib.red = false;
978 <                            xp.red = true;
979 <                            rotateLeft(xp);
980 <                            sib = (xp = x.parent) == null ? null : xp.right;
981 <                        }
982 <                        if (sib == null)
983 <                            x = xp;
984 <                        else {
985 <                            TreeNode<V> sl = sib.left, sr = sib.right;
986 <                            if ((sr == null || !sr.red) &&
987 <                                (sl == null || !sl.red)) {
988 <                                sib.red = true;
989 <                                x = xp;
990 <                            }
991 <                            else {
992 <                                if (sr == null || !sr.red) {
993 <                                    if (sl != null)
994 <                                        sl.red = false;
995 <                                    sib.red = true;
996 <                                    rotateRight(sib);
997 <                                    sib = (xp = x.parent) == null ?
998 <                                        null : xp.right;
999 <                                }
1000 <                                if (sib != null) {
1001 <                                    sib.red = (xp == null) ? false : xp.red;
1002 <                                    if ((sr = sib.right) != null)
1003 <                                        sr.red = false;
972 >                V oldVal = null;
973 >                synchronized (f) {
974 >                    if (tabAt(tab, i) == f) {
975 >                        if (fh >= 0) {
976 >                            binCount = 1;
977 >                            for (Node<K,V> e = f;; ++binCount) {
978 >                                K ek;
979 >                                if (e.hash == hash &&
980 >                                    ((ek = e.key) == key ||
981 >                                     (ek != null && key.equals(ek)))) {
982 >                                    oldVal = e.val;
983 >                                    if (!onlyIfAbsent)
984 >                                        e.val = value;
985 >                                    break;
986                                  }
987 <                                if (xp != null) {
988 <                                    xp.red = false;
989 <                                    rotateLeft(xp);
987 >                                Node<K,V> pred = e;
988 >                                if ((e = e.next) == null) {
989 >                                    pred.next = new Node<K,V>(hash, key,
990 >                                                              value, null);
991 >                                    break;
992                                  }
1009                                x = root;
993                              }
994                          }
995 <                    }
996 <                    else { // symmetric
997 <                        TreeNode<V> sib = xpl;
998 <                        if (sib != null && sib.red) {
999 <                            sib.red = false;
1000 <                            xp.red = true;
1001 <                            rotateRight(xp);
1002 <                            sib = (xp = x.parent) == null ? null : xp.left;
1020 <                        }
1021 <                        if (sib == null)
1022 <                            x = xp;
1023 <                        else {
1024 <                            TreeNode<V> sl = sib.left, sr = sib.right;
1025 <                            if ((sl == null || !sl.red) &&
1026 <                                (sr == null || !sr.red)) {
1027 <                                sib.red = true;
1028 <                                x = xp;
1029 <                            }
1030 <                            else {
1031 <                                if (sl == null || !sl.red) {
1032 <                                    if (sr != null)
1033 <                                        sr.red = false;
1034 <                                    sib.red = true;
1035 <                                    rotateLeft(sib);
1036 <                                    sib = (xp = x.parent) == null ?
1037 <                                        null : xp.left;
1038 <                                }
1039 <                                if (sib != null) {
1040 <                                    sib.red = (xp == null) ? false : xp.red;
1041 <                                    if ((sl = sib.left) != null)
1042 <                                        sl.red = false;
1043 <                                }
1044 <                                if (xp != null) {
1045 <                                    xp.red = false;
1046 <                                    rotateRight(xp);
1047 <                                }
1048 <                                x = root;
995 >                        else if (f instanceof TreeBin) {
996 >                            Node<K,V> p;
997 >                            binCount = 2;
998 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
999 >                                                           value)) != null) {
1000 >                                oldVal = p.val;
1001 >                                if (!onlyIfAbsent)
1002 >                                    p.val = value;
1003                              }
1004                          }
1005                      }
1006                  }
1007 <            }
1008 <            if (p == replacement && (pp = p.parent) != null) {
1009 <                if (p == pp.left) // detach pointers
1010 <                    pp.left = null;
1011 <                else if (p == pp.right)
1012 <                    pp.right = null;
1013 <                p.parent = null;
1007 >                if (binCount != 0) {
1008 >                    if (binCount >= TREEIFY_THRESHOLD)
1009 >                        treeifyBin(tab, i);
1010 >                    if (oldVal != null)
1011 >                        return oldVal;
1012 >                    break;
1013 >                }
1014              }
1015          }
1016 +        addCount(1L, binCount);
1017 +        return null;
1018      }
1019  
1064    /* ---------------- Collision reduction methods -------------- */
1065
1020      /**
1021 <     * Spreads higher bits to lower, and also forces top bit to 0.
1022 <     * Because the table uses power-of-two masking, sets of hashes
1023 <     * that vary only in bits above the current mask will always
1024 <     * collide. (Among known examples are sets of Float keys holding
1025 <     * consecutive whole numbers in small tables.)  To counter this,
1072 <     * we apply a transform that spreads the impact of higher bits
1073 <     * downward. There is a tradeoff between speed, utility, and
1074 <     * quality of bit-spreading. Because many common sets of hashes
1075 <     * are already reasonably distributed across bits (so don't benefit
1076 <     * from spreading), and because we use trees to handle large sets
1077 <     * of collisions in bins, we don't need excessively high quality.
1021 >     * Copies all of the mappings from the specified map to this one.
1022 >     * These mappings replace any mappings that this map had for any of the
1023 >     * keys currently in the specified map.
1024 >     *
1025 >     * @param m mappings to be stored in this map
1026       */
1027 <    private static final int spread(int h) {
1028 <        h ^= (h >>> 18) ^ (h >>> 12);
1029 <        return (h ^ (h >>> 10)) & HASH_BITS;
1027 >    public void putAll(Map<? extends K, ? extends V> m) {
1028 >        tryPresize(m.size());
1029 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1030 >            putVal(e.getKey(), e.getValue(), false);
1031      }
1032  
1033      /**
1034 <     * Replaces a list bin with a tree bin if key is comparable.  Call
1035 <     * only when locked.
1034 >     * Removes the key (and its corresponding value) from this map.
1035 >     * This method does nothing if the key is not in the map.
1036 >     *
1037 >     * @param  key the key that needs to be removed
1038 >     * @return the previous value associated with {@code key}, or
1039 >     *         {@code null} if there was no mapping for {@code key}
1040 >     * @throws NullPointerException if the specified key is null
1041       */
1042 <    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1043 <        if (key instanceof Comparable) {
1090 <            TreeBin<V> t = new TreeBin<V>();
1091 <            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 <                t.putTreeNode(e.hash, e.key, e.val);
1093 <            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 <        }
1095 <    }
1096 <
1097 <    /* ---------------- Internal access and update methods -------------- */
1098 <
1099 <    /** Implementation for get and containsKey */
1100 <    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 <        int h = spread(k.hashCode());
1102 <        retry: for (Node<V>[] tab = table; tab != null;) {
1103 <            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 <                if ((eh = e.hash) < 0) {
1106 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1107 <                        return ((TreeBin<V>)ek).getValue(h, k);
1108 <                    else {                      // restart with new table
1109 <                        tab = (Node<V>[])ek;
1110 <                        continue retry;
1111 <                    }
1112 <                }
1113 <                else if (eh == h && (ev = e.val) != null &&
1114 <                         ((ek = e.key) == k || k.equals(ek)))
1115 <                    return ev;
1116 <            }
1117 <            break;
1118 <        }
1119 <        return null;
1042 >    public V remove(Object key) {
1043 >        return replaceNode(key, null, null);
1044      }
1045  
1046      /**
# Line 1124 | Line 1048 | public class ConcurrentHashMap<K, V>
1048       * Replaces node value with v, conditional upon match of cv if
1049       * non-null.  If resulting value is null, delete.
1050       */
1051 <    @SuppressWarnings("unchecked") private final V internalReplace
1052 <        (Object k, V v, Object cv) {
1053 <        int h = spread(k.hashCode());
1054 <        V oldVal = null;
1055 <        for (Node<V>[] tab = table;;) {
1056 <            Node<V> f; int i, fh; Object fk;
1133 <            if (tab == null ||
1134 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1051 >    final V replaceNode(Object key, V value, Object cv) {
1052 >        int hash = spread(key.hashCode());
1053 >        for (Node<K,V>[] tab = table;;) {
1054 >            Node<K,V> f; int n, i, fh;
1055 >            if (tab == null || (n = tab.length) == 0 ||
1056 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1057                  break;
1058 <            else if ((fh = f.hash) < 0) {
1059 <                if ((fk = f.key) instanceof TreeBin) {
1060 <                    TreeBin<V> t = (TreeBin<V>)fk;
1061 <                    boolean validated = false;
1062 <                    boolean deleted = false;
1063 <                    t.acquire(0);
1064 <                    try {
1065 <                        if (tabAt(tab, i) == f) {
1058 >            else if ((fh = f.hash) == MOVED)
1059 >                tab = helpTransfer(tab, f);
1060 >            else {
1061 >                V oldVal = null;
1062 >                boolean validated = false;
1063 >                synchronized (f) {
1064 >                    if (tabAt(tab, i) == f) {
1065 >                        if (fh >= 0) {
1066                              validated = true;
1067 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1068 <                            if (p != null) {
1067 >                            for (Node<K,V> e = f, pred = null;;) {
1068 >                                K ek;
1069 >                                if (e.hash == hash &&
1070 >                                    ((ek = e.key) == key ||
1071 >                                     (ek != null && key.equals(ek)))) {
1072 >                                    V ev = e.val;
1073 >                                    if (cv == null || cv == ev ||
1074 >                                        (ev != null && cv.equals(ev))) {
1075 >                                        oldVal = ev;
1076 >                                        if (value != null)
1077 >                                            e.val = value;
1078 >                                        else if (pred != null)
1079 >                                            pred.next = e.next;
1080 >                                        else
1081 >                                            setTabAt(tab, i, e.next);
1082 >                                    }
1083 >                                    break;
1084 >                                }
1085 >                                pred = e;
1086 >                                if ((e = e.next) == null)
1087 >                                    break;
1088 >                            }
1089 >                        }
1090 >                        else if (f instanceof TreeBin) {
1091 >                            validated = true;
1092 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1093 >                            TreeNode<K,V> r, p;
1094 >                            if ((r = t.root) != null &&
1095 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1096                                  V pv = p.val;
1097 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1097 >                                if (cv == null || cv == pv ||
1098 >                                    (pv != null && cv.equals(pv))) {
1099                                      oldVal = pv;
1100 <                                    if ((p.val = v) == null) {
1101 <                                        deleted = true;
1102 <                                        t.deleteTreeNode(p);
1103 <                                    }
1100 >                                    if (value != null)
1101 >                                        p.val = value;
1102 >                                    else if (t.removeTreeNode(p))
1103 >                                        setTabAt(tab, i, untreeify(t.first));
1104                                  }
1105                              }
1106                          }
1157                    } finally {
1158                        t.release(0);
1107                      }
1108 <                    if (validated) {
1109 <                        if (deleted)
1108 >                }
1109 >                if (validated) {
1110 >                    if (oldVal != null) {
1111 >                        if (value == null)
1112                              addCount(-1L, -1);
1113 <                        break;
1113 >                        return oldVal;
1114                      }
1115 +                    break;
1116                  }
1166                else
1167                    tab = (Node<V>[])fk;
1117              }
1118 <            else if (fh != h && f.next == null) // precheck
1119 <                break;                          // rules out possible existence
1118 >        }
1119 >        return null;
1120 >    }
1121 >
1122 >    /**
1123 >     * Removes all of the mappings from this map.
1124 >     */
1125 >    public void clear() {
1126 >        long delta = 0L; // negative number of deletions
1127 >        int i = 0;
1128 >        Node<K,V>[] tab = table;
1129 >        while (tab != null && i < tab.length) {
1130 >            int fh;
1131 >            Node<K,V> f = tabAt(tab, i);
1132 >            if (f == null)
1133 >                ++i;
1134 >            else if ((fh = f.hash) == MOVED) {
1135 >                tab = helpTransfer(tab, f);
1136 >                i = 0; // restart
1137 >            }
1138              else {
1172                boolean validated = false;
1173                boolean deleted = false;
1139                  synchronized (f) {
1140                      if (tabAt(tab, i) == f) {
1141 <                        validated = true;
1142 <                        for (Node<V> e = f, pred = null;;) {
1143 <                            Object ek; V ev;
1144 <                            if (e.hash == h &&
1145 <                                ((ev = e.val) != null) &&
1146 <                                ((ek = e.key) == k || k.equals(ek))) {
1182 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1183 <                                    oldVal = ev;
1184 <                                    if ((e.val = v) == null) {
1185 <                                        deleted = true;
1186 <                                        Node<V> en = e.next;
1187 <                                        if (pred != null)
1188 <                                            pred.next = en;
1189 <                                        else
1190 <                                            setTabAt(tab, i, en);
1191 <                                    }
1192 <                                }
1193 <                                break;
1194 <                            }
1195 <                            pred = e;
1196 <                            if ((e = e.next) == null)
1197 <                                break;
1141 >                        Node<K,V> p = (fh >= 0 ? f :
1142 >                                       (f instanceof TreeBin) ?
1143 >                                       ((TreeBin<K,V>)f).first : null);
1144 >                        while (p != null) {
1145 >                            --delta;
1146 >                            p = p.next;
1147                          }
1148 +                        setTabAt(tab, i++, null);
1149                      }
1150                  }
1151 <                if (validated) {
1152 <                    if (deleted)
1153 <                        addCount(-1L, -1);
1151 >            }
1152 >        }
1153 >        if (delta != 0L)
1154 >            addCount(delta, -1);
1155 >    }
1156 >
1157 >    /**
1158 >     * Returns a {@link Set} view of the keys contained in this map.
1159 >     * The set is backed by the map, so changes to the map are
1160 >     * reflected in the set, and vice-versa. The set supports element
1161 >     * removal, which removes the corresponding mapping from this map,
1162 >     * via the {@code Iterator.remove}, {@code Set.remove},
1163 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1164 >     * operations.  It does not support the {@code add} or
1165 >     * {@code addAll} operations.
1166 >     *
1167 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1168 >     * that will never throw {@link ConcurrentModificationException},
1169 >     * and guarantees to traverse elements as they existed upon
1170 >     * construction of the iterator, and may (but is not guaranteed to)
1171 >     * reflect any modifications subsequent to construction.
1172 >     *
1173 >     * @return the set view
1174 >     */
1175 >    public KeySetView<K,V> keySet() {
1176 >        KeySetView<K,V> ks;
1177 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1178 >    }
1179 >
1180 >    /**
1181 >     * Returns a {@link Collection} view of the values contained in this map.
1182 >     * The collection is backed by the map, so changes to the map are
1183 >     * reflected in the collection, and vice-versa.  The collection
1184 >     * supports element removal, which removes the corresponding
1185 >     * mapping from this map, via the {@code Iterator.remove},
1186 >     * {@code Collection.remove}, {@code removeAll},
1187 >     * {@code retainAll}, and {@code clear} operations.  It does not
1188 >     * support the {@code add} or {@code addAll} operations.
1189 >     *
1190 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1191 >     * that will never throw {@link ConcurrentModificationException},
1192 >     * and guarantees to traverse elements as they existed upon
1193 >     * construction of the iterator, and may (but is not guaranteed to)
1194 >     * reflect any modifications subsequent to construction.
1195 >     *
1196 >     * @return the collection view
1197 >     */
1198 >    public Collection<V> values() {
1199 >        ValuesView<K,V> vs;
1200 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1201 >    }
1202 >
1203 >    /**
1204 >     * Returns a {@link Set} view of the mappings contained in this map.
1205 >     * The set is backed by the map, so changes to the map are
1206 >     * reflected in the set, and vice-versa.  The set supports element
1207 >     * removal, which removes the corresponding mapping from the map,
1208 >     * via the {@code Iterator.remove}, {@code Set.remove},
1209 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1210 >     * operations.
1211 >     *
1212 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1213 >     * that will never throw {@link ConcurrentModificationException},
1214 >     * and guarantees to traverse elements as they existed upon
1215 >     * construction of the iterator, and may (but is not guaranteed to)
1216 >     * reflect any modifications subsequent to construction.
1217 >     *
1218 >     * @return the set view
1219 >     */
1220 >    public Set<Map.Entry<K,V>> entrySet() {
1221 >        EntrySetView<K,V> es;
1222 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1223 >    }
1224 >
1225 >    /**
1226 >     * Returns the hash code value for this {@link Map}, i.e.,
1227 >     * the sum of, for each key-value pair in the map,
1228 >     * {@code key.hashCode() ^ value.hashCode()}.
1229 >     *
1230 >     * @return the hash code value for this map
1231 >     */
1232 >    public int hashCode() {
1233 >        int h = 0;
1234 >        Node<K,V>[] t;
1235 >        if ((t = table) != null) {
1236 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1237 >            for (Node<K,V> p; (p = it.advance()) != null; )
1238 >                h += p.key.hashCode() ^ p.val.hashCode();
1239 >        }
1240 >        return h;
1241 >    }
1242 >
1243 >    /**
1244 >     * Returns a string representation of this map.  The string
1245 >     * representation consists of a list of key-value mappings (in no
1246 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1247 >     * mappings are separated by the characters {@code ", "} (comma
1248 >     * and space).  Each key-value mapping is rendered as the key
1249 >     * followed by an equals sign ("{@code =}") followed by the
1250 >     * associated value.
1251 >     *
1252 >     * @return a string representation of this map
1253 >     */
1254 >    public String toString() {
1255 >        Node<K,V>[] t;
1256 >        int f = (t = table) == null ? 0 : t.length;
1257 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1258 >        StringBuilder sb = new StringBuilder();
1259 >        sb.append('{');
1260 >        Node<K,V> p;
1261 >        if ((p = it.advance()) != null) {
1262 >            for (;;) {
1263 >                K k = p.key;
1264 >                V v = p.val;
1265 >                sb.append(k == this ? "(this Map)" : k);
1266 >                sb.append('=');
1267 >                sb.append(v == this ? "(this Map)" : v);
1268 >                if ((p = it.advance()) == null)
1269                      break;
1270 <                }
1270 >                sb.append(',').append(' ');
1271              }
1272          }
1273 <        return oldVal;
1273 >        return sb.append('}').toString();
1274      }
1275  
1276 <    /*
1277 <     * Internal versions of insertion methods
1278 <     * All have the same basic structure as the first (internalPut):
1279 <     *  1. If table uninitialized, create
1280 <     *  2. If bin empty, try to CAS new node
1281 <     *  3. If bin stale, use new table
1282 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1283 <     *  5. Lock and validate; if valid, scan and add or update
1284 <     *
1220 <     * The putAll method differs mainly in attempting to pre-allocate
1221 <     * enough table space, and also more lazily performs count updates
1222 <     * and checks.
1223 <     *
1224 <     * Most of the function-accepting methods can't be factored nicely
1225 <     * because they require different functional forms, so instead
1226 <     * sprawl out similar mechanics.
1276 >    /**
1277 >     * Compares the specified object with this map for equality.
1278 >     * Returns {@code true} if the given object is a map with the same
1279 >     * mappings as this map.  This operation may return misleading
1280 >     * results if either map is concurrently modified during execution
1281 >     * of this method.
1282 >     *
1283 >     * @param o object to be compared for equality with this map
1284 >     * @return {@code true} if the specified object is equal to this map
1285       */
1286 +    public boolean equals(Object o) {
1287 +        if (o != this) {
1288 +            if (!(o instanceof Map))
1289 +                return false;
1290 +            Map<?,?> m = (Map<?,?>) o;
1291 +            Node<K,V>[] t;
1292 +            int f = (t = table) == null ? 0 : t.length;
1293 +            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1294 +            for (Node<K,V> p; (p = it.advance()) != null; ) {
1295 +                V val = p.val;
1296 +                Object v = m.get(p.key);
1297 +                if (v == null || (v != val && !v.equals(val)))
1298 +                    return false;
1299 +            }
1300 +            for (Map.Entry<?,?> e : m.entrySet()) {
1301 +                Object mk, mv, v;
1302 +                if ((mk = e.getKey()) == null ||
1303 +                    (mv = e.getValue()) == null ||
1304 +                    (v = get(mk)) == null ||
1305 +                    (mv != v && !mv.equals(v)))
1306 +                    return false;
1307 +            }
1308 +        }
1309 +        return true;
1310 +    }
1311  
1312 <    /** Implementation for put and putIfAbsent */
1313 <    @SuppressWarnings("unchecked") private final V internalPut
1314 <        (K k, V v, boolean onlyIfAbsent) {
1315 <        if (k == null || v == null) throw new NullPointerException();
1316 <        int h = spread(k.hashCode());
1317 <        int len = 0;
1318 <        for (Node<V>[] tab = table;;) {
1319 <            int i, fh; Node<V> f; Object fk; V fv;
1320 <            if (tab == null)
1321 <                tab = initTable();
1322 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1323 <                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1324 <                    break;                   // no lock when adding to empty bin
1312 >    /**
1313 >     * Stripped-down version of helper class used in previous version,
1314 >     * declared for the sake of serialization compatibility
1315 >     */
1316 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1317 >        private static final long serialVersionUID = 2249069246763182397L;
1318 >        final float loadFactor;
1319 >        Segment(float lf) { this.loadFactor = lf; }
1320 >    }
1321 >
1322 >    /**
1323 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1324 >     * stream (i.e., serializes it).
1325 >     * @param s the stream
1326 >     * @throws java.io.IOException if an I/O error occurs
1327 >     * @serialData
1328 >     * the key (Object) and value (Object)
1329 >     * for each key-value mapping, followed by a null pair.
1330 >     * The key-value mappings are emitted in no particular order.
1331 >     */
1332 >    private void writeObject(java.io.ObjectOutputStream s)
1333 >        throws java.io.IOException {
1334 >        // For serialization compatibility
1335 >        // Emulate segment calculation from previous version of this class
1336 >        int sshift = 0;
1337 >        int ssize = 1;
1338 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1339 >            ++sshift;
1340 >            ssize <<= 1;
1341 >        }
1342 >        int segmentShift = 32 - sshift;
1343 >        int segmentMask = ssize - 1;
1344 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1345 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1346 >        for (int i = 0; i < segments.length; ++i)
1347 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1348 >        s.putFields().put("segments", segments);
1349 >        s.putFields().put("segmentShift", segmentShift);
1350 >        s.putFields().put("segmentMask", segmentMask);
1351 >        s.writeFields();
1352 >
1353 >        Node<K,V>[] t;
1354 >        if ((t = table) != null) {
1355 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1356 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1357 >                s.writeObject(p.key);
1358 >                s.writeObject(p.val);
1359              }
1360 <            else if ((fh = f.hash) < 0) {
1361 <                if ((fk = f.key) instanceof TreeBin) {
1362 <                    TreeBin<V> t = (TreeBin<V>)fk;
1363 <                    V oldVal = null;
1364 <                    t.acquire(0);
1365 <                    try {
1366 <                        if (tabAt(tab, i) == f) {
1367 <                            len = 2;
1368 <                            TreeNode<V> p = t.putTreeNode(h, k, v);
1369 <                            if (p != null) {
1370 <                                oldVal = p.val;
1371 <                                if (!onlyIfAbsent)
1372 <                                    p.val = v;
1373 <                            }
1374 <                        }
1375 <                    } finally {
1376 <                        t.release(0);
1377 <                    }
1378 <                    if (len != 0) {
1379 <                        if (oldVal != null)
1380 <                            return oldVal;
1381 <                        break;
1382 <                    }
1383 <                }
1384 <                else
1385 <                    tab = (Node<V>[])fk;
1360 >        }
1361 >        s.writeObject(null);
1362 >        s.writeObject(null);
1363 >        segments = null; // throw away
1364 >    }
1365 >
1366 >    /**
1367 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1368 >     * @param s the stream
1369 >     * @throws ClassNotFoundException if the class of a serialized object
1370 >     *         could not be found
1371 >     * @throws java.io.IOException if an I/O error occurs
1372 >     */
1373 >    private void readObject(java.io.ObjectInputStream s)
1374 >        throws java.io.IOException, ClassNotFoundException {
1375 >        /*
1376 >         * To improve performance in typical cases, we create nodes
1377 >         * while reading, then place in table once size is known.
1378 >         * However, we must also validate uniqueness and deal with
1379 >         * overpopulated bins while doing so, which requires
1380 >         * specialized versions of putVal mechanics.
1381 >         */
1382 >        sizeCtl = -1; // force exclusion for table construction
1383 >        s.defaultReadObject();
1384 >        long size = 0L;
1385 >        Node<K,V> p = null;
1386 >        for (;;) {
1387 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1388 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1389 >            if (k != null && v != null) {
1390 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1391 >                ++size;
1392              }
1393 <            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1394 <                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1395 <                return fv;
1393 >            else
1394 >                break;
1395 >        }
1396 >        if (size == 0L)
1397 >            sizeCtl = 0;
1398 >        else {
1399 >            int n;
1400 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1401 >                n = MAXIMUM_CAPACITY;
1402              else {
1403 <                V oldVal = null;
1404 <                synchronized (f) {
1405 <                    if (tabAt(tab, i) == f) {
1406 <                        len = 1;
1407 <                        for (Node<V> e = f;; ++len) {
1408 <                            Object ek; V ev;
1409 <                            if (e.hash == h &&
1410 <                                (ev = e.val) != null &&
1411 <                                ((ek = e.key) == k || k.equals(ek))) {
1412 <                                oldVal = ev;
1413 <                                if (!onlyIfAbsent)
1414 <                                    e.val = v;
1403 >                int sz = (int)size;
1404 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1405 >            }
1406 >            @SuppressWarnings({"rawtypes","unchecked"})
1407 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1408 >            int mask = n - 1;
1409 >            long added = 0L;
1410 >            while (p != null) {
1411 >                boolean insertAtFront;
1412 >                Node<K,V> next = p.next, first;
1413 >                int h = p.hash, j = h & mask;
1414 >                if ((first = tabAt(tab, j)) == null)
1415 >                    insertAtFront = true;
1416 >                else {
1417 >                    K k = p.key;
1418 >                    if (first.hash < 0) {
1419 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1420 >                        if (t.putTreeVal(h, k, p.val) == null)
1421 >                            ++added;
1422 >                        insertAtFront = false;
1423 >                    }
1424 >                    else {
1425 >                        int binCount = 0;
1426 >                        insertAtFront = true;
1427 >                        Node<K,V> q; K qk;
1428 >                        for (q = first; q != null; q = q.next) {
1429 >                            if (q.hash == h &&
1430 >                                ((qk = q.key) == k ||
1431 >                                 (qk != null && k.equals(qk)))) {
1432 >                                insertAtFront = false;
1433                                  break;
1434                              }
1435 <                            Node<V> last = e;
1436 <                            if ((e = e.next) == null) {
1437 <                                last.next = new Node<V>(h, k, v, null);
1438 <                                if (len >= TREE_THRESHOLD)
1439 <                                    replaceWithTreeBin(tab, i, k);
1440 <                                break;
1435 >                            ++binCount;
1436 >                        }
1437 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1438 >                            insertAtFront = false;
1439 >                            ++added;
1440 >                            p.next = first;
1441 >                            TreeNode<K,V> hd = null, tl = null;
1442 >                            for (q = p; q != null; q = q.next) {
1443 >                                TreeNode<K,V> t = new TreeNode<K,V>
1444 >                                    (q.hash, q.key, q.val, null, null);
1445 >                                if ((t.prev = tl) == null)
1446 >                                    hd = t;
1447 >                                else
1448 >                                    tl.next = t;
1449 >                                tl = t;
1450                              }
1451 +                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1452                          }
1453                      }
1454                  }
1455 <                if (len != 0) {
1456 <                    if (oldVal != null)
1457 <                        return oldVal;
1458 <                    break;
1455 >                if (insertAtFront) {
1456 >                    ++added;
1457 >                    p.next = first;
1458 >                    setTabAt(tab, j, p);
1459                  }
1460 +                p = next;
1461              }
1462 +            table = tab;
1463 +            sizeCtl = n - (n >>> 2);
1464 +            baseCount = added;
1465          }
1305        addCount(1L, len);
1306        return null;
1466      }
1467  
1468 <    /** Implementation for computeIfAbsent */
1469 <    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1470 <        (K k, Function<? super K, ? extends V> mf) {
1471 <        if (k == null || mf == null)
1468 >    // ConcurrentMap methods
1469 >
1470 >    /**
1471 >     * {@inheritDoc}
1472 >     *
1473 >     * @return the previous value associated with the specified key,
1474 >     *         or {@code null} if there was no mapping for the key
1475 >     * @throws NullPointerException if the specified key or value is null
1476 >     */
1477 >    public V putIfAbsent(K key, V value) {
1478 >        return putVal(key, value, true);
1479 >    }
1480 >
1481 >    /**
1482 >     * {@inheritDoc}
1483 >     *
1484 >     * @throws NullPointerException if the specified key is null
1485 >     */
1486 >    public boolean remove(Object key, Object value) {
1487 >        if (key == null)
1488 >            throw new NullPointerException();
1489 >        return value != null && replaceNode(key, null, value) != null;
1490 >    }
1491 >
1492 >    /**
1493 >     * {@inheritDoc}
1494 >     *
1495 >     * @throws NullPointerException if any of the arguments are null
1496 >     */
1497 >    public boolean replace(K key, V oldValue, V newValue) {
1498 >        if (key == null || oldValue == null || newValue == null)
1499 >            throw new NullPointerException();
1500 >        return replaceNode(key, newValue, oldValue) != null;
1501 >    }
1502 >
1503 >    /**
1504 >     * {@inheritDoc}
1505 >     *
1506 >     * @return the previous value associated with the specified key,
1507 >     *         or {@code null} if there was no mapping for the key
1508 >     * @throws NullPointerException if the specified key or value is null
1509 >     */
1510 >    public V replace(K key, V value) {
1511 >        if (key == null || value == null)
1512 >            throw new NullPointerException();
1513 >        return replaceNode(key, value, null);
1514 >    }
1515 >
1516 >    // Overrides of JDK8+ Map extension method defaults
1517 >
1518 >    /**
1519 >     * Returns the value to which the specified key is mapped, or the
1520 >     * given default value if this map contains no mapping for the
1521 >     * key.
1522 >     *
1523 >     * @param key the key whose associated value is to be returned
1524 >     * @param defaultValue the value to return if this map contains
1525 >     * no mapping for the given key
1526 >     * @return the mapping for the key, if present; else the default value
1527 >     * @throws NullPointerException if the specified key is null
1528 >     */
1529 >    public V getOrDefault(Object key, V defaultValue) {
1530 >        V v;
1531 >        return (v = get(key)) == null ? defaultValue : v;
1532 >    }
1533 >
1534 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1535 >        if (action == null) throw new NullPointerException();
1536 >        Node<K,V>[] t;
1537 >        if ((t = table) != null) {
1538 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1539 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1540 >                action.accept(p.key, p.val);
1541 >            }
1542 >        }
1543 >    }
1544 >
1545 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1546 >        if (function == null) throw new NullPointerException();
1547 >        Node<K,V>[] t;
1548 >        if ((t = table) != null) {
1549 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1550 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1551 >                V oldValue = p.val;
1552 >                for (K key = p.key;;) {
1553 >                    V newValue = function.apply(key, oldValue);
1554 >                    if (newValue == null)
1555 >                        throw new NullPointerException();
1556 >                    if (replaceNode(key, newValue, oldValue) != null ||
1557 >                        (oldValue = get(key)) == null)
1558 >                        break;
1559 >                }
1560 >            }
1561 >        }
1562 >    }
1563 >
1564 >    /**
1565 >     * If the specified key is not already associated with a value,
1566 >     * attempts to compute its value using the given mapping function
1567 >     * and enters it into this map unless {@code null}.  The entire
1568 >     * method invocation is performed atomically, so the function is
1569 >     * applied at most once per key.  Some attempted update operations
1570 >     * on this map by other threads may be blocked while computation
1571 >     * is in progress, so the computation should be short and simple,
1572 >     * and must not attempt to update any other mappings of this map.
1573 >     *
1574 >     * @param key key with which the specified value is to be associated
1575 >     * @param mappingFunction the function to compute a value
1576 >     * @return the current (existing or computed) value associated with
1577 >     *         the specified key, or null if the computed value is null
1578 >     * @throws NullPointerException if the specified key or mappingFunction
1579 >     *         is null
1580 >     * @throws IllegalStateException if the computation detectably
1581 >     *         attempts a recursive update to this map that would
1582 >     *         otherwise never complete
1583 >     * @throws RuntimeException or Error if the mappingFunction does so,
1584 >     *         in which case the mapping is left unestablished
1585 >     */
1586 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1587 >        if (key == null || mappingFunction == null)
1588              throw new NullPointerException();
1589 <        int h = spread(k.hashCode());
1589 >        int h = spread(key.hashCode());
1590          V val = null;
1591 <        int len = 0;
1592 <        for (Node<V>[] tab = table;;) {
1593 <            Node<V> f; int i; Object fk;
1594 <            if (tab == null)
1591 >        int binCount = 0;
1592 >        for (Node<K,V>[] tab = table;;) {
1593 >            Node<K,V> f; int n, i, fh;
1594 >            if (tab == null || (n = tab.length) == 0)
1595                  tab = initTable();
1596 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1597 <                Node<V> node = new Node<V>(h, k, null, null);
1598 <                synchronized (node) {
1599 <                    if (casTabAt(tab, i, null, node)) {
1600 <                        len = 1;
1596 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1597 >                Node<K,V> r = new ReservationNode<K,V>();
1598 >                synchronized (r) {
1599 >                    if (casTabAt(tab, i, null, r)) {
1600 >                        binCount = 1;
1601 >                        Node<K,V> node = null;
1602                          try {
1603 <                            if ((val = mf.apply(k)) != null)
1604 <                                node.val = val;
1603 >                            if ((val = mappingFunction.apply(key)) != null)
1604 >                                node = new Node<K,V>(h, key, val, null);
1605                          } finally {
1606 <                            if (val == null)
1331 <                                setTabAt(tab, i, null);
1606 >                            setTabAt(tab, i, node);
1607                          }
1608                      }
1609                  }
1610 <                if (len != 0)
1610 >                if (binCount != 0)
1611                      break;
1612              }
1613 <            else if (f.hash < 0) {
1614 <                if ((fk = f.key) instanceof TreeBin) {
1615 <                    TreeBin<V> t = (TreeBin<V>)fk;
1616 <                    boolean added = false;
1617 <                    t.acquire(0);
1618 <                    try {
1619 <                        if (tabAt(tab, i) == f) {
1620 <                            len = 1;
1621 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1622 <                            if (p != null)
1613 >            else if ((fh = f.hash) == MOVED)
1614 >                tab = helpTransfer(tab, f);
1615 >            else {
1616 >                boolean added = false;
1617 >                synchronized (f) {
1618 >                    if (tabAt(tab, i) == f) {
1619 >                        if (fh >= 0) {
1620 >                            binCount = 1;
1621 >                            for (Node<K,V> e = f;; ++binCount) {
1622 >                                K ek; V ev;
1623 >                                if (e.hash == h &&
1624 >                                    ((ek = e.key) == key ||
1625 >                                     (ek != null && key.equals(ek)))) {
1626 >                                    val = e.val;
1627 >                                    break;
1628 >                                }
1629 >                                Node<K,V> pred = e;
1630 >                                if ((e = e.next) == null) {
1631 >                                    if ((val = mappingFunction.apply(key)) != null) {
1632 >                                        added = true;
1633 >                                        pred.next = new Node<K,V>(h, key, val, null);
1634 >                                    }
1635 >                                    break;
1636 >                                }
1637 >                            }
1638 >                        }
1639 >                        else if (f instanceof TreeBin) {
1640 >                            binCount = 2;
1641 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1642 >                            TreeNode<K,V> r, p;
1643 >                            if ((r = t.root) != null &&
1644 >                                (p = r.findTreeNode(h, key, null)) != null)
1645                                  val = p.val;
1646 <                            else if ((val = mf.apply(k)) != null) {
1646 >                            else if ((val = mappingFunction.apply(key)) != null) {
1647                                  added = true;
1648 <                                len = 2;
1352 <                                t.putTreeNode(h, k, val);
1648 >                                t.putTreeVal(h, key, val);
1649                              }
1650                          }
1355                    } finally {
1356                        t.release(0);
1357                    }
1358                    if (len != 0) {
1359                        if (!added)
1360                            return val;
1361                        break;
1651                      }
1652                  }
1653 <                else
1654 <                    tab = (Node<V>[])fk;
1653 >                if (binCount != 0) {
1654 >                    if (binCount >= TREEIFY_THRESHOLD)
1655 >                        treeifyBin(tab, i);
1656 >                    if (!added)
1657 >                        return val;
1658 >                    break;
1659 >                }
1660              }
1661 +        }
1662 +        if (val != null)
1663 +            addCount(1L, binCount);
1664 +        return val;
1665 +    }
1666 +
1667 +    /**
1668 +     * If the value for the specified key is present, attempts to
1669 +     * compute a new mapping given the key and its current mapped
1670 +     * value.  The entire method invocation is performed atomically.
1671 +     * Some attempted update operations on this map by other threads
1672 +     * may be blocked while computation is in progress, so the
1673 +     * computation should be short and simple, and must not attempt to
1674 +     * update any other mappings of this map.
1675 +     *
1676 +     * @param key key with which a value may be associated
1677 +     * @param remappingFunction the function to compute a value
1678 +     * @return the new value associated with the specified key, or null if none
1679 +     * @throws NullPointerException if the specified key or remappingFunction
1680 +     *         is null
1681 +     * @throws IllegalStateException if the computation detectably
1682 +     *         attempts a recursive update to this map that would
1683 +     *         otherwise never complete
1684 +     * @throws RuntimeException or Error if the remappingFunction does so,
1685 +     *         in which case the mapping is unchanged
1686 +     */
1687 +    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1688 +        if (key == null || remappingFunction == null)
1689 +            throw new NullPointerException();
1690 +        int h = spread(key.hashCode());
1691 +        V val = null;
1692 +        int delta = 0;
1693 +        int binCount = 0;
1694 +        for (Node<K,V>[] tab = table;;) {
1695 +            Node<K,V> f; int n, i, fh;
1696 +            if (tab == null || (n = tab.length) == 0)
1697 +                tab = initTable();
1698 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1699 +                break;
1700 +            else if ((fh = f.hash) == MOVED)
1701 +                tab = helpTransfer(tab, f);
1702              else {
1368                for (Node<V> e = f; e != null; e = e.next) { // prescan
1369                    Object ek; V ev;
1370                    if (e.hash == h && (ev = e.val) != null &&
1371                        ((ek = e.key) == k || k.equals(ek)))
1372                        return ev;
1373                }
1374                boolean added = false;
1703                  synchronized (f) {
1704                      if (tabAt(tab, i) == f) {
1705 <                        len = 1;
1706 <                        for (Node<V> e = f;; ++len) {
1707 <                            Object ek; V ev;
1708 <                            if (e.hash == h &&
1709 <                                (ev = e.val) != null &&
1710 <                                ((ek = e.key) == k || k.equals(ek))) {
1711 <                                val = ev;
1712 <                                break;
1705 >                        if (fh >= 0) {
1706 >                            binCount = 1;
1707 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1708 >                                K ek;
1709 >                                if (e.hash == h &&
1710 >                                    ((ek = e.key) == key ||
1711 >                                     (ek != null && key.equals(ek)))) {
1712 >                                    val = remappingFunction.apply(key, e.val);
1713 >                                    if (val != null)
1714 >                                        e.val = val;
1715 >                                    else {
1716 >                                        delta = -1;
1717 >                                        Node<K,V> en = e.next;
1718 >                                        if (pred != null)
1719 >                                            pred.next = en;
1720 >                                        else
1721 >                                            setTabAt(tab, i, en);
1722 >                                    }
1723 >                                    break;
1724 >                                }
1725 >                                pred = e;
1726 >                                if ((e = e.next) == null)
1727 >                                    break;
1728                              }
1729 <                            Node<V> last = e;
1730 <                            if ((e = e.next) == null) {
1731 <                                if ((val = mf.apply(k)) != null) {
1732 <                                    added = true;
1733 <                                    last.next = new Node<V>(h, k, val, null);
1734 <                                    if (len >= TREE_THRESHOLD)
1735 <                                        replaceWithTreeBin(tab, i, k);
1729 >                        }
1730 >                        else if (f instanceof TreeBin) {
1731 >                            binCount = 2;
1732 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1733 >                            TreeNode<K,V> r, p;
1734 >                            if ((r = t.root) != null &&
1735 >                                (p = r.findTreeNode(h, key, null)) != null) {
1736 >                                val = remappingFunction.apply(key, p.val);
1737 >                                if (val != null)
1738 >                                    p.val = val;
1739 >                                else {
1740 >                                    delta = -1;
1741 >                                    if (t.removeTreeNode(p))
1742 >                                        setTabAt(tab, i, untreeify(t.first));
1743                                  }
1394                                break;
1744                              }
1745                          }
1746                      }
1747                  }
1748 <                if (len != 0) {
1400 <                    if (!added)
1401 <                        return val;
1748 >                if (binCount != 0)
1749                      break;
1403                }
1750              }
1751          }
1752 <        if (val != null)
1753 <            addCount(1L, len);
1752 >        if (delta != 0)
1753 >            addCount((long)delta, binCount);
1754          return val;
1755      }
1756  
1757 <    /** Implementation for compute */
1758 <    @SuppressWarnings("unchecked") private final V internalCompute
1759 <        (K k, boolean onlyIfPresent,
1760 <         BiFunction<? super K, ? super V, ? extends V> mf) {
1761 <        if (k == null || mf == null)
1757 >    /**
1758 >     * Attempts to compute a mapping for the specified key and its
1759 >     * current mapped value (or {@code null} if there is no current
1760 >     * mapping). The entire method invocation is performed atomically.
1761 >     * Some attempted update operations on this map by other threads
1762 >     * may be blocked while computation is in progress, so the
1763 >     * computation should be short and simple, and must not attempt to
1764 >     * update any other mappings of this Map.
1765 >     *
1766 >     * @param key key with which the specified value is to be associated
1767 >     * @param remappingFunction the function to compute a value
1768 >     * @return the new value associated with the specified key, or null if none
1769 >     * @throws NullPointerException if the specified key or remappingFunction
1770 >     *         is null
1771 >     * @throws IllegalStateException if the computation detectably
1772 >     *         attempts a recursive update to this map that would
1773 >     *         otherwise never complete
1774 >     * @throws RuntimeException or Error if the remappingFunction does so,
1775 >     *         in which case the mapping is unchanged
1776 >     */
1777 >    public V compute(K key,
1778 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1779 >        if (key == null || remappingFunction == null)
1780              throw new NullPointerException();
1781 <        int h = spread(k.hashCode());
1781 >        int h = spread(key.hashCode());
1782          V val = null;
1783          int delta = 0;
1784 <        int len = 0;
1785 <        for (Node<V>[] tab = table;;) {
1786 <            Node<V> f; int i, fh; Object fk;
1787 <            if (tab == null)
1784 >        int binCount = 0;
1785 >        for (Node<K,V>[] tab = table;;) {
1786 >            Node<K,V> f; int n, i, fh;
1787 >            if (tab == null || (n = tab.length) == 0)
1788                  tab = initTable();
1789 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1790 <                if (onlyIfPresent)
1791 <                    break;
1792 <                Node<V> node = new Node<V>(h, k, null, null);
1793 <                synchronized (node) {
1794 <                    if (casTabAt(tab, i, null, node)) {
1789 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1790 >                Node<K,V> r = new ReservationNode<K,V>();
1791 >                synchronized (r) {
1792 >                    if (casTabAt(tab, i, null, r)) {
1793 >                        binCount = 1;
1794 >                        Node<K,V> node = null;
1795                          try {
1796 <                            len = 1;
1433 <                            if ((val = mf.apply(k, null)) != null) {
1434 <                                node.val = val;
1796 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1797                                  delta = 1;
1798 +                                node = new Node<K,V>(h, key, val, null);
1799                              }
1800                          } finally {
1801 <                            if (delta == 0)
1439 <                                setTabAt(tab, i, null);
1801 >                            setTabAt(tab, i, node);
1802                          }
1803                      }
1804                  }
1805 <                if (len != 0)
1805 >                if (binCount != 0)
1806                      break;
1807              }
1808 <            else if ((fh = f.hash) < 0) {
1809 <                if ((fk = f.key) instanceof TreeBin) {
1810 <                    TreeBin<V> t = (TreeBin<V>)fk;
1811 <                    t.acquire(0);
1812 <                    try {
1813 <                        if (tabAt(tab, i) == f) {
1814 <                            len = 1;
1815 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1816 <                            if (p == null && onlyIfPresent)
1817 <                                break;
1808 >            else if ((fh = f.hash) == MOVED)
1809 >                tab = helpTransfer(tab, f);
1810 >            else {
1811 >                synchronized (f) {
1812 >                    if (tabAt(tab, i) == f) {
1813 >                        if (fh >= 0) {
1814 >                            binCount = 1;
1815 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1816 >                                K ek;
1817 >                                if (e.hash == h &&
1818 >                                    ((ek = e.key) == key ||
1819 >                                     (ek != null && key.equals(ek)))) {
1820 >                                    val = remappingFunction.apply(key, e.val);
1821 >                                    if (val != null)
1822 >                                        e.val = val;
1823 >                                    else {
1824 >                                        delta = -1;
1825 >                                        Node<K,V> en = e.next;
1826 >                                        if (pred != null)
1827 >                                            pred.next = en;
1828 >                                        else
1829 >                                            setTabAt(tab, i, en);
1830 >                                    }
1831 >                                    break;
1832 >                                }
1833 >                                pred = e;
1834 >                                if ((e = e.next) == null) {
1835 >                                    val = remappingFunction.apply(key, null);
1836 >                                    if (val != null) {
1837 >                                        delta = 1;
1838 >                                        pred.next =
1839 >                                            new Node<K,V>(h, key, val, null);
1840 >                                    }
1841 >                                    break;
1842 >                                }
1843 >                            }
1844 >                        }
1845 >                        else if (f instanceof TreeBin) {
1846 >                            binCount = 1;
1847 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1848 >                            TreeNode<K,V> r, p;
1849 >                            if ((r = t.root) != null)
1850 >                                p = r.findTreeNode(h, key, null);
1851 >                            else
1852 >                                p = null;
1853                              V pv = (p == null) ? null : p.val;
1854 <                            if ((val = mf.apply(k, pv)) != null) {
1854 >                            val = remappingFunction.apply(key, pv);
1855 >                            if (val != null) {
1856                                  if (p != null)
1857                                      p.val = val;
1858                                  else {
1461                                    len = 2;
1859                                      delta = 1;
1860 <                                    t.putTreeNode(h, k, val);
1860 >                                    t.putTreeVal(h, key, val);
1861                                  }
1862                              }
1863                              else if (p != null) {
1864                                  delta = -1;
1865 <                                t.deleteTreeNode(p);
1866 <                            }
1470 <                        }
1471 <                    } finally {
1472 <                        t.release(0);
1473 <                    }
1474 <                    if (len != 0)
1475 <                        break;
1476 <                }
1477 <                else
1478 <                    tab = (Node<V>[])fk;
1479 <            }
1480 <            else {
1481 <                synchronized (f) {
1482 <                    if (tabAt(tab, i) == f) {
1483 <                        len = 1;
1484 <                        for (Node<V> e = f, pred = null;; ++len) {
1485 <                            Object ek; V ev;
1486 <                            if (e.hash == h &&
1487 <                                (ev = e.val) != null &&
1488 <                                ((ek = e.key) == k || k.equals(ek))) {
1489 <                                val = mf.apply(k, ev);
1490 <                                if (val != null)
1491 <                                    e.val = val;
1492 <                                else {
1493 <                                    delta = -1;
1494 <                                    Node<V> en = e.next;
1495 <                                    if (pred != null)
1496 <                                        pred.next = en;
1497 <                                    else
1498 <                                        setTabAt(tab, i, en);
1499 <                                }
1500 <                                break;
1501 <                            }
1502 <                            pred = e;
1503 <                            if ((e = e.next) == null) {
1504 <                                if (!onlyIfPresent &&
1505 <                                    (val = mf.apply(k, null)) != null) {
1506 <                                    pred.next = new Node<V>(h, k, val, null);
1507 <                                    delta = 1;
1508 <                                    if (len >= TREE_THRESHOLD)
1509 <                                        replaceWithTreeBin(tab, i, k);
1510 <                                }
1511 <                                break;
1865 >                                if (t.removeTreeNode(p))
1866 >                                    setTabAt(tab, i, untreeify(t.first));
1867                              }
1868                          }
1869                      }
1870                  }
1871 <                if (len != 0)
1871 >                if (binCount != 0) {
1872 >                    if (binCount >= TREEIFY_THRESHOLD)
1873 >                        treeifyBin(tab, i);
1874                      break;
1875 +                }
1876              }
1877          }
1878          if (delta != 0)
1879 <            addCount((long)delta, len);
1879 >            addCount((long)delta, binCount);
1880          return val;
1881      }
1882  
1883 <    /** Implementation for merge */
1884 <    @SuppressWarnings("unchecked") private final V internalMerge
1885 <        (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1886 <        if (k == null || v == null || mf == null)
1883 >    /**
1884 >     * If the specified key is not already associated with a
1885 >     * (non-null) value, associates it with the given value.
1886 >     * Otherwise, replaces the value with the results of the given
1887 >     * remapping function, or removes if {@code null}. The entire
1888 >     * method invocation is performed atomically.  Some attempted
1889 >     * update operations on this map by other threads may be blocked
1890 >     * while computation is in progress, so the computation should be
1891 >     * short and simple, and must not attempt to update any other
1892 >     * mappings of this Map.
1893 >     *
1894 >     * @param key key with which the specified value is to be associated
1895 >     * @param value the value to use if absent
1896 >     * @param remappingFunction the function to recompute a value if present
1897 >     * @return the new value associated with the specified key, or null if none
1898 >     * @throws NullPointerException if the specified key or the
1899 >     *         remappingFunction is null
1900 >     * @throws RuntimeException or Error if the remappingFunction does so,
1901 >     *         in which case the mapping is unchanged
1902 >     */
1903 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1904 >        if (key == null || value == null || remappingFunction == null)
1905              throw new NullPointerException();
1906 <        int h = spread(k.hashCode());
1906 >        int h = spread(key.hashCode());
1907          V val = null;
1908          int delta = 0;
1909 <        int len = 0;
1910 <        for (Node<V>[] tab = table;;) {
1911 <            int i; Node<V> f; Object fk; V fv;
1912 <            if (tab == null)
1909 >        int binCount = 0;
1910 >        for (Node<K,V>[] tab = table;;) {
1911 >            Node<K,V> f; int n, i, fh;
1912 >            if (tab == null || (n = tab.length) == 0)
1913                  tab = initTable();
1914 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1915 <                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1914 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1915 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1916                      delta = 1;
1917 <                    val = v;
1917 >                    val = value;
1918                      break;
1919                  }
1920              }
1921 <            else if (f.hash < 0) {
1922 <                if ((fk = f.key) instanceof TreeBin) {
1923 <                    TreeBin<V> t = (TreeBin<V>)fk;
1924 <                    t.acquire(0);
1925 <                    try {
1926 <                        if (tabAt(tab, i) == f) {
1927 <                            len = 1;
1928 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1929 <                            val = (p == null) ? v : mf.apply(p.val, v);
1921 >            else if ((fh = f.hash) == MOVED)
1922 >                tab = helpTransfer(tab, f);
1923 >            else {
1924 >                synchronized (f) {
1925 >                    if (tabAt(tab, i) == f) {
1926 >                        if (fh >= 0) {
1927 >                            binCount = 1;
1928 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1929 >                                K ek;
1930 >                                if (e.hash == h &&
1931 >                                    ((ek = e.key) == key ||
1932 >                                     (ek != null && key.equals(ek)))) {
1933 >                                    val = remappingFunction.apply(e.val, value);
1934 >                                    if (val != null)
1935 >                                        e.val = val;
1936 >                                    else {
1937 >                                        delta = -1;
1938 >                                        Node<K,V> en = e.next;
1939 >                                        if (pred != null)
1940 >                                            pred.next = en;
1941 >                                        else
1942 >                                            setTabAt(tab, i, en);
1943 >                                    }
1944 >                                    break;
1945 >                                }
1946 >                                pred = e;
1947 >                                if ((e = e.next) == null) {
1948 >                                    delta = 1;
1949 >                                    val = value;
1950 >                                    pred.next =
1951 >                                        new Node<K,V>(h, key, val, null);
1952 >                                    break;
1953 >                                }
1954 >                            }
1955 >                        }
1956 >                        else if (f instanceof TreeBin) {
1957 >                            binCount = 2;
1958 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1959 >                            TreeNode<K,V> r = t.root;
1960 >                            TreeNode<K,V> p = (r == null) ? null :
1961 >                                r.findTreeNode(h, key, null);
1962 >                            val = (p == null) ? value :
1963 >                                remappingFunction.apply(p.val, value);
1964                              if (val != null) {
1965                                  if (p != null)
1966                                      p.val = val;
1967                                  else {
1558                                    len = 2;
1968                                      delta = 1;
1969 <                                    t.putTreeNode(h, k, val);
1969 >                                    t.putTreeVal(h, key, val);
1970                                  }
1971                              }
1972                              else if (p != null) {
1973                                  delta = -1;
1974 <                                t.deleteTreeNode(p);
1975 <                            }
1567 <                        }
1568 <                    } finally {
1569 <                        t.release(0);
1570 <                    }
1571 <                    if (len != 0)
1572 <                        break;
1573 <                }
1574 <                else
1575 <                    tab = (Node<V>[])fk;
1576 <            }
1577 <            else {
1578 <                synchronized (f) {
1579 <                    if (tabAt(tab, i) == f) {
1580 <                        len = 1;
1581 <                        for (Node<V> e = f, pred = null;; ++len) {
1582 <                            Object ek; V ev;
1583 <                            if (e.hash == h &&
1584 <                                (ev = e.val) != null &&
1585 <                                ((ek = e.key) == k || k.equals(ek))) {
1586 <                                val = mf.apply(ev, v);
1587 <                                if (val != null)
1588 <                                    e.val = val;
1589 <                                else {
1590 <                                    delta = -1;
1591 <                                    Node<V> en = e.next;
1592 <                                    if (pred != null)
1593 <                                        pred.next = en;
1594 <                                    else
1595 <                                        setTabAt(tab, i, en);
1596 <                                }
1597 <                                break;
1598 <                            }
1599 <                            pred = e;
1600 <                            if ((e = e.next) == null) {
1601 <                                val = v;
1602 <                                pred.next = new Node<V>(h, k, val, null);
1603 <                                delta = 1;
1604 <                                if (len >= TREE_THRESHOLD)
1605 <                                    replaceWithTreeBin(tab, i, k);
1606 <                                break;
1974 >                                if (t.removeTreeNode(p))
1975 >                                    setTabAt(tab, i, untreeify(t.first));
1976                              }
1977                          }
1978                      }
1979                  }
1980 <                if (len != 0)
1980 >                if (binCount != 0) {
1981 >                    if (binCount >= TREEIFY_THRESHOLD)
1982 >                        treeifyBin(tab, i);
1983                      break;
1984 +                }
1985              }
1986          }
1987          if (delta != 0)
1988 <            addCount((long)delta, len);
1988 >            addCount((long)delta, binCount);
1989          return val;
1990      }
1991  
1992 <    /** Implementation for putAll */
1993 <    @SuppressWarnings("unchecked") private final void internalPutAll
1994 <        (Map<? extends K, ? extends V> m) {
1995 <        tryPresize(m.size());
1996 <        long delta = 0L;     // number of uncommitted additions
1997 <        boolean npe = false; // to throw exception on exit for nulls
1998 <        try {                // to clean up counts on other exceptions
1999 <            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
2000 <                Object k; V v;
2001 <                if (entry == null || (k = entry.getKey()) == null ||
2002 <                    (v = entry.getValue()) == null) {
2003 <                    npe = true;
2004 <                    break;
2005 <                }
2006 <                int h = spread(k.hashCode());
2007 <                for (Node<V>[] tab = table;;) {
2008 <                    int i; Node<V> f; int fh; Object fk;
2009 <                    if (tab == null)
2010 <                        tab = initTable();
2011 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
2012 <                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
2013 <                            ++delta;
2014 <                            break;
2015 <                        }
2016 <                    }
2017 <                    else if ((fh = f.hash) < 0) {
2018 <                        if ((fk = f.key) instanceof TreeBin) {
2019 <                            TreeBin<V> t = (TreeBin<V>)fk;
2020 <                            boolean validated = false;
2021 <                            t.acquire(0);
2022 <                            try {
2023 <                                if (tabAt(tab, i) == f) {
2024 <                                    validated = true;
2025 <                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
2026 <                                    if (p != null)
2027 <                                        p.val = v;
2028 <                                    else {
2029 <                                        t.putTreeNode(h, k, v);
2030 <                                        ++delta;
2031 <                                    }
2032 <                                }
2033 <                            } finally {
2034 <                                t.release(0);
2035 <                            }
2036 <                            if (validated)
2037 <                                break;
2038 <                        }
2039 <                        else
2040 <                            tab = (Node<V>[])fk;
2041 <                    }
2042 <                    else {
2043 <                        int len = 0;
2044 <                        synchronized (f) {
2045 <                            if (tabAt(tab, i) == f) {
2046 <                                len = 1;
2047 <                                for (Node<V> e = f;; ++len) {
2048 <                                    Object ek; V ev;
2049 <                                    if (e.hash == h &&
2050 <                                        (ev = e.val) != null &&
2051 <                                        ((ek = e.key) == k || k.equals(ek))) {
2052 <                                        e.val = v;
2053 <                                        break;
2054 <                                    }
2055 <                                    Node<V> last = e;
2056 <                                    if ((e = e.next) == null) {
2057 <                                        ++delta;
2058 <                                        last.next = new Node<V>(h, k, v, null);
2059 <                                        if (len >= TREE_THRESHOLD)
2060 <                                            replaceWithTreeBin(tab, i, k);
2061 <                                        break;
2062 <                                    }
2063 <                                }
2064 <                            }
2065 <                        }
2066 <                        if (len != 0) {
2067 <                            if (len > 1) {
2068 <                                addCount(delta, len);
2069 <                                delta = 0L;
2070 <                            }
2071 <                            break;
2072 <                        }
2073 <                    }
2074 <                }
2075 <            }
2076 <        } finally {
2077 <            if (delta != 0L)
2078 <                addCount(delta, 2);
2079 <        }
2080 <        if (npe)
1992 >    // Hashtable legacy methods
1993 >
1994 >    /**
1995 >     * Legacy method testing if some key maps into the specified value
1996 >     * in this table.  This method is identical in functionality to
1997 >     * {@link #containsValue(Object)}, and exists solely to ensure
1998 >     * full compatibility with class {@link java.util.Hashtable},
1999 >     * which supported this method prior to introduction of the
2000 >     * Java Collections framework.
2001 >     *
2002 >     * @param  value a value to search for
2003 >     * @return {@code true} if and only if some key maps to the
2004 >     *         {@code value} argument in this table as
2005 >     *         determined by the {@code equals} method;
2006 >     *         {@code false} otherwise
2007 >     * @throws NullPointerException if the specified value is null
2008 >     */
2009 >    @Deprecated public boolean contains(Object value) {
2010 >        return containsValue(value);
2011 >    }
2012 >
2013 >    /**
2014 >     * Returns an enumeration of the keys in this table.
2015 >     *
2016 >     * @return an enumeration of the keys in this table
2017 >     * @see #keySet()
2018 >     */
2019 >    public Enumeration<K> keys() {
2020 >        Node<K,V>[] t;
2021 >        int f = (t = table) == null ? 0 : t.length;
2022 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2023 >    }
2024 >
2025 >    /**
2026 >     * Returns an enumeration of the values in this table.
2027 >     *
2028 >     * @return an enumeration of the values in this table
2029 >     * @see #values()
2030 >     */
2031 >    public Enumeration<V> elements() {
2032 >        Node<K,V>[] t;
2033 >        int f = (t = table) == null ? 0 : t.length;
2034 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2035 >    }
2036 >
2037 >    // ConcurrentHashMap-only methods
2038 >
2039 >    /**
2040 >     * Returns the number of mappings. This method should be used
2041 >     * instead of {@link #size} because a ConcurrentHashMap may
2042 >     * contain more mappings than can be represented as an int. The
2043 >     * value returned is an estimate; the actual count may differ if
2044 >     * there are concurrent insertions or removals.
2045 >     *
2046 >     * @return the number of mappings
2047 >     * @since 1.8
2048 >     */
2049 >    public long mappingCount() {
2050 >        long n = sumCount();
2051 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2052 >    }
2053 >
2054 >    /**
2055 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2056 >     * from the given type to {@code Boolean.TRUE}.
2057 >     *
2058 >     * @param <K> the element type of the returned set
2059 >     * @return the new set
2060 >     * @since 1.8
2061 >     */
2062 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2063 >        return new KeySetView<K,Boolean>
2064 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2065 >    }
2066 >
2067 >    /**
2068 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2069 >     * from the given type to {@code Boolean.TRUE}.
2070 >     *
2071 >     * @param initialCapacity The implementation performs internal
2072 >     * sizing to accommodate this many elements.
2073 >     * @param <K> the element type of the returned set
2074 >     * @throws IllegalArgumentException if the initial capacity of
2075 >     * elements is negative
2076 >     * @return the new set
2077 >     * @since 1.8
2078 >     */
2079 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2080 >        return new KeySetView<K,Boolean>
2081 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2082 >    }
2083 >
2084 >    /**
2085 >     * Returns a {@link Set} view of the keys in this map, using the
2086 >     * given common mapped value for any additions (i.e., {@link
2087 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2088 >     * This is of course only appropriate if it is acceptable to use
2089 >     * the same value for all additions from this view.
2090 >     *
2091 >     * @param mappedValue the mapped value to use for any additions
2092 >     * @return the set view
2093 >     * @throws NullPointerException if the mappedValue is null
2094 >     */
2095 >    public KeySetView<K,V> keySet(V mappedValue) {
2096 >        if (mappedValue == null)
2097              throw new NullPointerException();
2098 +        return new KeySetView<K,V>(this, mappedValue);
2099      }
2100  
2101 +    /* ---------------- Special Nodes -------------- */
2102 +
2103      /**
2104 <     * Implementation for clear. Steps through each bin, removing all
1714 <     * nodes.
2104 >     * A node inserted at head of bins during transfer operations.
2105       */
2106 <    @SuppressWarnings("unchecked") private final void internalClear() {
2107 <        long delta = 0L; // negative number of deletions
2108 <        int i = 0;
2109 <        Node<V>[] tab = table;
2110 <        while (tab != null && i < tab.length) {
2111 <            Node<V> f = tabAt(tab, i);
2112 <            if (f == null)
2113 <                ++i;
2114 <            else if (f.hash < 0) {
2115 <                Object fk;
2116 <                if ((fk = f.key) instanceof TreeBin) {
2117 <                    TreeBin<V> t = (TreeBin<V>)fk;
2118 <                    t.acquire(0);
2119 <                    try {
2120 <                        if (tabAt(tab, i) == f) {
2121 <                            for (Node<V> p = t.first; p != null; p = p.next) {
2122 <                                if (p.val != null) { // (currently always true)
2123 <                                    p.val = null;
2124 <                                    --delta;
2125 <                                }
2126 <                            }
2127 <                            t.first = null;
2128 <                            t.root = null;
1739 <                            ++i;
1740 <                        }
1741 <                    } finally {
1742 <                        t.release(0);
1743 <                    }
1744 <                }
1745 <                else
1746 <                    tab = (Node<V>[])fk;
1747 <            }
1748 <            else {
1749 <                synchronized (f) {
1750 <                    if (tabAt(tab, i) == f) {
1751 <                        for (Node<V> e = f; e != null; e = e.next) {
1752 <                            if (e.val != null) {  // (currently always true)
1753 <                                e.val = null;
1754 <                                --delta;
1755 <                            }
2106 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2107 >        final Node<K,V>[] nextTable;
2108 >        ForwardingNode(Node<K,V>[] tab) {
2109 >            super(MOVED, null, null, null);
2110 >            this.nextTable = tab;
2111 >        }
2112 >
2113 >        Node<K,V> find(int h, Object k) {
2114 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2115 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2116 >                Node<K,V> e; int n;
2117 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2118 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2119 >                    return null;
2120 >                for (;;) {
2121 >                    int eh; K ek;
2122 >                    if ((eh = e.hash) == h &&
2123 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2124 >                        return e;
2125 >                    if (eh < 0) {
2126 >                        if (e instanceof ForwardingNode) {
2127 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2128 >                            continue outer;
2129                          }
2130 <                        setTabAt(tab, i, null);
2131 <                        ++i;
2130 >                        else
2131 >                            return e.find(h, k);
2132                      }
2133 +                    if ((e = e.next) == null)
2134 +                        return null;
2135                  }
2136              }
2137          }
1763        if (delta != 0L)
1764            addCount(delta, -1);
2138      }
2139  
1767    /* ---------------- Table Initialization and Resizing -------------- */
1768
2140      /**
2141 <     * Returns a power of two table size for the given desired capacity.
1771 <     * See Hackers Delight, sec 3.2
2141 >     * A place-holder node used in computeIfAbsent and compute
2142       */
2143 <    private static final int tableSizeFor(int c) {
2144 <        int n = c - 1;
2145 <        n |= n >>> 1;
2146 <        n |= n >>> 2;
2147 <        n |= n >>> 4;
2148 <        n |= n >>> 8;
2149 <        n |= n >>> 16;
2150 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2143 >    static final class ReservationNode<K,V> extends Node<K,V> {
2144 >        ReservationNode() {
2145 >            super(RESERVED, null, null, null);
2146 >        }
2147 >
2148 >        Node<K,V> find(int h, Object k) {
2149 >            return null;
2150 >        }
2151      }
2152  
2153 +    /* ---------------- Table Initialization and Resizing -------------- */
2154 +
2155      /**
2156       * Initializes table, using the size recorded in sizeCtl.
2157       */
2158 <    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
2159 <        Node<V>[] tab; int sc;
2160 <        while ((tab = table) == null) {
2158 >    private final Node<K,V>[] initTable() {
2159 >        Node<K,V>[] tab; int sc;
2160 >        while ((tab = table) == null || tab.length == 0) {
2161              if ((sc = sizeCtl) < 0)
2162                  Thread.yield(); // lost initialization race; just spin
2163              else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2164                  try {
2165 <                    if ((tab = table) == null) {
2165 >                    if ((tab = table) == null || tab.length == 0) {
2166                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2167 <                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
2168 <                        table = tab = (Node<V>[])tb;
2167 >                        @SuppressWarnings({"rawtypes","unchecked"})
2168 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2169 >                        table = tab = nt;
2170                          sc = n - (n >>> 2);
2171                      }
2172                  } finally {
# Line 1816 | Line 2189 | public class ConcurrentHashMap<K, V>
2189       * @param check if <0, don't check resize, if <= 1 only check if uncontended
2190       */
2191      private final void addCount(long x, int check) {
2192 <        Cell[] as; long b, s;
2192 >        CounterCell[] as; long b, s;
2193          if ((as = counterCells) != null ||
2194              !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2195 <            Cell a; long v; int m;
2195 >            CounterCell a; long v; int m;
2196              boolean uncontended = true;
2197              if (as == null || (m = as.length - 1) < 0 ||
2198                  (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
# Line 1833 | Line 2206 | public class ConcurrentHashMap<K, V>
2206              s = sumCount();
2207          }
2208          if (check >= 0) {
2209 <            Node<V>[] tab, nt; int sc;
2209 >            Node<K,V>[] tab, nt; int sc;
2210              while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2211                     tab.length < MAXIMUM_CAPACITY) {
2212                  if (sc < 0) {
# Line 1851 | Line 2224 | public class ConcurrentHashMap<K, V>
2224      }
2225  
2226      /**
2227 +     * Helps transfer if a resize is in progress.
2228 +     */
2229 +    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2230 +        Node<K,V>[] nextTab; int sc;
2231 +        if ((f instanceof ForwardingNode) &&
2232 +            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2233 +            if (nextTab == nextTable && tab == table &&
2234 +                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2235 +                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2236 +                transfer(tab, nextTab);
2237 +            return nextTab;
2238 +        }
2239 +        return table;
2240 +    }
2241 +
2242 +    /**
2243       * Tries to presize table to accommodate the given number of elements.
2244       *
2245       * @param size number of elements (doesn't need to be perfectly accurate)
2246       */
2247 <    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
2247 >    private final void tryPresize(int size) {
2248          int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2249              tableSizeFor(size + (size >>> 1) + 1);
2250          int sc;
2251          while ((sc = sizeCtl) >= 0) {
2252 <            Node<V>[] tab = table; int n;
2252 >            Node<K,V>[] tab = table; int n;
2253              if (tab == null || (n = tab.length) == 0) {
2254                  n = (sc > c) ? sc : c;
2255                  if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2256                      try {
2257                          if (table == tab) {
2258 <                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
2259 <                            table = (Node<V>[])tb;
2258 >                            @SuppressWarnings({"rawtypes","unchecked"})
2259 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2260 >                            table = nt;
2261                              sc = n - (n >>> 2);
2262                          }
2263                      } finally {
# Line 1887 | Line 2277 | public class ConcurrentHashMap<K, V>
2277       * Moves and/or copies the nodes in each bin to new table. See
2278       * above for explanation.
2279       */
2280 <    @SuppressWarnings("unchecked") private final void transfer
1891 <        (Node<V>[] tab, Node<V>[] nextTab) {
2280 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2281          int n = tab.length, stride;
2282          if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2283              stride = MIN_TRANSFER_STRIDE; // subdivide range
2284          if (nextTab == null) {            // initiating
2285              try {
2286 <                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
2287 <                nextTab = (Node<V>[])tb;
2286 >                @SuppressWarnings({"rawtypes","unchecked"})
2287 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2288 >                nextTab = nt;
2289              } catch (Throwable ex) {      // try to cope with OOME
2290                  sizeCtl = Integer.MAX_VALUE;
2291                  return;
# Line 1903 | Line 2293 | public class ConcurrentHashMap<K, V>
2293              nextTable = nextTab;
2294              transferOrigin = n;
2295              transferIndex = n;
2296 <            Node<V> rev = new Node<V>(MOVED, tab, null, null);
2296 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2297              for (int k = n; k > 0;) {    // progressively reveal ready slots
2298                  int nextk = (k > stride) ? k - stride : 0;
2299                  for (int m = nextk; m < k; ++m)
# Line 1914 | Line 2304 | public class ConcurrentHashMap<K, V>
2304              }
2305          }
2306          int nextn = nextTab.length;
2307 <        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2307 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2308          boolean advance = true;
2309 +        boolean finishing = false; // to ensure sweep before committing nextTab
2310          for (int i = 0, bound = 0;;) {
2311 <            int nextIndex, nextBound; Node<V> f; Object fk;
2311 >            int nextIndex, nextBound, fh; Node<K,V> f;
2312              while (advance) {
2313 <                if (--i >= bound)
2313 >                if (--i >= bound || finishing)
2314                      advance = false;
2315                  else if ((nextIndex = transferIndex) <= transferOrigin) {
2316                      i = -1;
# Line 1935 | Line 2326 | public class ConcurrentHashMap<K, V>
2326                  }
2327              }
2328              if (i < 0 || i >= n || i + n >= nextn) {
2329 +                if (finishing) {
2330 +                    nextTable = null;
2331 +                    table = nextTab;
2332 +                    sizeCtl = (n << 1) - (n >>> 1);
2333 +                    return;
2334 +                }
2335                  for (int sc;;) {
2336                      if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2337 <                        if (sc == -1) {
2338 <                            nextTable = null;
2339 <                            table = nextTab;
2340 <                            sizeCtl = (n << 1) - (n >>> 1);
2341 <                        }
1945 <                        return;
2337 >                        if (sc != -1)
2338 >                            return;
2339 >                        finishing = advance = true;
2340 >                        i = n; // recheck before commit
2341 >                        break;
2342                      }
2343                  }
2344              }
# Line 1953 | Line 2349 | public class ConcurrentHashMap<K, V>
2349                      advance = true;
2350                  }
2351              }
2352 <            else if (f.hash >= 0) {
2352 >            else if ((fh = f.hash) == MOVED)
2353 >                advance = true; // already processed
2354 >            else {
2355                  synchronized (f) {
2356                      if (tabAt(tab, i) == f) {
2357 <                        int runBit = f.hash & n;
2358 <                        Node<V> lastRun = f, lo = null, hi = null;
2359 <                        for (Node<V> p = f.next; p != null; p = p.next) {
2360 <                            int b = p.hash & n;
2361 <                            if (b != runBit) {
2362 <                                runBit = b;
2363 <                                lastRun = p;
2357 >                        Node<K,V> ln, hn;
2358 >                        if (fh >= 0) {
2359 >                            int runBit = fh & n;
2360 >                            Node<K,V> lastRun = f;
2361 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2362 >                                int b = p.hash & n;
2363 >                                if (b != runBit) {
2364 >                                    runBit = b;
2365 >                                    lastRun = p;
2366 >                                }
2367                              }
2368 <                        }
2369 <                        if (runBit == 0)
2370 <                            lo = lastRun;
1970 <                        else
1971 <                            hi = lastRun;
1972 <                        for (Node<V> p = f; p != lastRun; p = p.next) {
1973 <                            int ph = p.hash;
1974 <                            Object pk = p.key; V pv = p.val;
1975 <                            if ((ph & n) == 0)
1976 <                                lo = new Node<V>(ph, pk, pv, lo);
1977 <                            else
1978 <                                hi = new Node<V>(ph, pk, pv, hi);
1979 <                        }
1980 <                        setTabAt(nextTab, i, lo);
1981 <                        setTabAt(nextTab, i + n, hi);
1982 <                        setTabAt(tab, i, fwd);
1983 <                        advance = true;
1984 <                    }
1985 <                }
1986 <            }
1987 <            else if ((fk = f.key) instanceof TreeBin) {
1988 <                TreeBin<V> t = (TreeBin<V>)fk;
1989 <                t.acquire(0);
1990 <                try {
1991 <                    if (tabAt(tab, i) == f) {
1992 <                        TreeBin<V> lt = new TreeBin<V>();
1993 <                        TreeBin<V> ht = new TreeBin<V>();
1994 <                        int lc = 0, hc = 0;
1995 <                        for (Node<V> e = t.first; e != null; e = e.next) {
1996 <                            int h = e.hash;
1997 <                            Object k = e.key; V v = e.val;
1998 <                            if ((h & n) == 0) {
1999 <                                ++lc;
2000 <                                lt.putTreeNode(h, k, v);
2368 >                            if (runBit == 0) {
2369 >                                ln = lastRun;
2370 >                                hn = null;
2371                              }
2372                              else {
2373 <                                ++hc;
2374 <                                ht.putTreeNode(h, k, v);
2373 >                                hn = lastRun;
2374 >                                ln = null;
2375                              }
2376 +                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2377 +                                int ph = p.hash; K pk = p.key; V pv = p.val;
2378 +                                if ((ph & n) == 0)
2379 +                                    ln = new Node<K,V>(ph, pk, pv, ln);
2380 +                                else
2381 +                                    hn = new Node<K,V>(ph, pk, pv, hn);
2382 +                            }
2383 +                            setTabAt(nextTab, i, ln);
2384 +                            setTabAt(nextTab, i + n, hn);
2385 +                            setTabAt(tab, i, fwd);
2386 +                            advance = true;
2387                          }
2388 <                        Node<V> ln, hn; // throw away trees if too small
2389 <                        if (lc < TREE_THRESHOLD) {
2390 <                            ln = null;
2391 <                            for (Node<V> p = lt.first; p != null; p = p.next)
2392 <                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2393 <                        }
2394 <                        else
2395 <                            ln = new Node<V>(MOVED, lt, null, null);
2396 <                        setTabAt(nextTab, i, ln);
2397 <                        if (hc < TREE_THRESHOLD) {
2398 <                            hn = null;
2399 <                            for (Node<V> p = ht.first; p != null; p = p.next)
2400 <                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2388 >                        else if (f instanceof TreeBin) {
2389 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2390 >                            TreeNode<K,V> lo = null, loTail = null;
2391 >                            TreeNode<K,V> hi = null, hiTail = null;
2392 >                            int lc = 0, hc = 0;
2393 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2394 >                                int h = e.hash;
2395 >                                TreeNode<K,V> p = new TreeNode<K,V>
2396 >                                    (h, e.key, e.val, null, null);
2397 >                                if ((h & n) == 0) {
2398 >                                    if ((p.prev = loTail) == null)
2399 >                                        lo = p;
2400 >                                    else
2401 >                                        loTail.next = p;
2402 >                                    loTail = p;
2403 >                                    ++lc;
2404 >                                }
2405 >                                else {
2406 >                                    if ((p.prev = hiTail) == null)
2407 >                                        hi = p;
2408 >                                    else
2409 >                                        hiTail.next = p;
2410 >                                    hiTail = p;
2411 >                                    ++hc;
2412 >                                }
2413 >                            }
2414 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2415 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2416 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2417 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2418 >                            setTabAt(nextTab, i, ln);
2419 >                            setTabAt(nextTab, i + n, hn);
2420 >                            setTabAt(tab, i, fwd);
2421 >                            advance = true;
2422                          }
2021                        else
2022                            hn = new Node<V>(MOVED, ht, null, null);
2023                        setTabAt(nextTab, i + n, hn);
2024                        setTabAt(tab, i, fwd);
2025                        advance = true;
2423                      }
2027                } finally {
2028                    t.release(0);
2424                  }
2425              }
2031            else
2032                advance = true; // already processed
2426          }
2427      }
2428  
2429      /* ---------------- Counter support -------------- */
2430  
2431 +    /**
2432 +     * A padded cell for distributing counts.  Adapted from LongAdder
2433 +     * and Striped64.  See their internal docs for explanation.
2434 +     */
2435 +    @sun.misc.Contended static final class CounterCell {
2436 +        volatile long value;
2437 +        CounterCell(long x) { value = x; }
2438 +    }
2439 +
2440      final long sumCount() {
2441 <        Cell[] as = counterCells; Cell a;
2441 >        CounterCell[] as = counterCells; CounterCell a;
2442          long sum = baseCount;
2443          if (as != null) {
2444              for (int i = 0; i < as.length; ++i) {
# Line 2057 | Line 2459 | public class ConcurrentHashMap<K, V>
2459          }
2460          boolean collide = false;                // True if last slot nonempty
2461          for (;;) {
2462 <            Cell[] as; Cell a; int n; long v;
2462 >            CounterCell[] as; CounterCell a; int n; long v;
2463              if ((as = counterCells) != null && (n = as.length) > 0) {
2464                  if ((a = as[(n - 1) & h]) == null) {
2465                      if (cellsBusy == 0) {            // Try to attach new Cell
2466 <                        Cell r = new Cell(x); // Optimistic create
2466 >                        CounterCell r = new CounterCell(x); // Optimistic create
2467                          if (cellsBusy == 0 &&
2468                              U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2469                              boolean created = false;
2470                              try {               // Recheck under lock
2471 <                                Cell[] rs; int m, j;
2471 >                                CounterCell[] rs; int m, j;
2472                                  if ((rs = counterCells) != null &&
2473                                      (m = rs.length) > 0 &&
2474                                      rs[j = (m - 1) & h] == null) {
# Line 2095 | Line 2497 | public class ConcurrentHashMap<K, V>
2497                           U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2498                      try {
2499                          if (counterCells == as) {// Expand table unless stale
2500 <                            Cell[] rs = new Cell[n << 1];
2500 >                            CounterCell[] rs = new CounterCell[n << 1];
2501                              for (int i = 0; i < n; ++i)
2502                                  rs[i] = as[i];
2503                              counterCells = rs;
# Line 2113 | Line 2515 | public class ConcurrentHashMap<K, V>
2515                  boolean init = false;
2516                  try {                           // Initialize table
2517                      if (counterCells == as) {
2518 <                        Cell[] rs = new Cell[2];
2519 <                        rs[h & 1] = new Cell(x);
2518 >                        CounterCell[] rs = new CounterCell[2];
2519 >                        rs[h & 1] = new CounterCell(x);
2520                          counterCells = rs;
2521                          init = true;
2522                      }
# Line 2129 | Line 2531 | public class ConcurrentHashMap<K, V>
2531          }
2532      }
2533  
2534 <    /* ----------------Table Traversal -------------- */
2534 >    /* ---------------- Conversion from/to TreeBins -------------- */
2535  
2536      /**
2537 <     * Encapsulates traversal for methods such as containsValue; also
2538 <     * serves as a base class for other iterators and bulk tasks.
2539 <     *
2540 <     * At each step, the iterator snapshots the key ("nextKey") and
2541 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2542 <     * snapshot, has a non-null user value). Because val fields can
2543 <     * change (including to null, indicating deletion), field nextVal
2544 <     * might not be accurate at point of use, but still maintains the
2545 <     * weak consistency property of holding a value that was once
2546 <     * valid. To support iterator.remove, the nextKey field is not
2145 <     * updated (nulled out) when the iterator cannot advance.
2146 <     *
2147 <     * Internal traversals directly access these fields, as in:
2148 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2149 <     *
2150 <     * Exported iterators must track whether the iterator has advanced
2151 <     * (in hasNext vs next) (by setting/checking/nulling field
2152 <     * nextVal), and then extract key, value, or key-value pairs as
2153 <     * return values of next().
2154 <     *
2155 <     * The iterator visits once each still-valid node that was
2156 <     * reachable upon iterator construction. It might miss some that
2157 <     * were added to a bin after the bin was visited, which is OK wrt
2158 <     * consistency guarantees. Maintaining this property in the face
2159 <     * of possible ongoing resizes requires a fair amount of
2160 <     * bookkeeping state that is difficult to optimize away amidst
2161 <     * volatile accesses.  Even so, traversal maintains reasonable
2162 <     * throughput.
2163 <     *
2164 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2165 <     * However, if the table has been resized, then all future steps
2166 <     * must traverse both the bin at the current index as well as at
2167 <     * (index + baseSize); and so on for further resizings. To
2168 <     * paranoically cope with potential sharing by users of iterators
2169 <     * across threads, iteration terminates if a bounds checks fails
2170 <     * for a table read.
2171 <     *
2172 <     * This class supports both Spliterator-based traversal and
2173 <     * CountedCompleter-based bulk tasks. The same "batch" field is
2174 <     * used, but in slightly different ways, in the two cases.  For
2175 <     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 <     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 <     * size that halves down to zero for leaf tasks, that is only
2178 <     * computed upon execution of the task. (Tasks can be submitted to
2179 <     * any pool, of any size, so we don't know scale factors until
2180 <     * running.)
2181 <     *
2182 <     * This class extends CountedCompleter to streamline parallel
2183 <     * iteration in bulk operations. This adds only a few fields of
2184 <     * space overhead, which is small enough in cases where it is not
2185 <     * needed to not worry about it.  Because CountedCompleter is
2186 <     * Serializable, but iterators need not be, we need to add warning
2187 <     * suppressions.
2188 <     */
2189 <    @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 <        extends CountedCompleter<R> {
2191 <        final ConcurrentHashMap<K, V> map;
2192 <        Node<V> next;        // the next entry to use
2193 <        K nextKey;           // cached key field of next
2194 <        V nextVal;           // cached val field of next
2195 <        Node<V>[] tab;       // current table; updated if resized
2196 <        int index;           // index of bin to use next
2197 <        int baseIndex;       // current index of initial table
2198 <        int baseLimit;       // index bound for initial table
2199 <        int baseSize;        // initial table size
2200 <        int batch;           // split control
2201 <        /** Creates iterator for all entries in the table. */
2202 <        Traverser(ConcurrentHashMap<K, V> map) {
2203 <            this.map = map;
2204 <            Node<V>[] t;
2205 <            if ((t = tab = map.table) != null)
2206 <                baseLimit = baseSize = t.length;
2207 <        }
2208 <
2209 <        /** Task constructor */
2210 <        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 <            super(it);
2212 <            this.map = map;
2213 <            this.batch = batch; // -1 if unknown
2214 <            if (it == null) {
2215 <                Node<V>[] t;
2216 <                if ((t = tab = map.table) != null)
2217 <                    baseLimit = baseSize = t.length;
2218 <            }
2219 <            else { // split parent
2220 <                this.tab = it.tab;
2221 <                this.baseSize = it.baseSize;
2222 <                int hi = this.baseLimit = it.baseLimit;
2223 <                it.baseLimit = this.index = this.baseIndex =
2224 <                    (hi + it.baseIndex + 1) >>> 1;
2225 <            }
2226 <        }
2227 <
2228 <        /** Spliterator constructor */
2229 <        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 <            super(it);
2231 <            this.map = map;
2232 <            if (it == null) {
2233 <                Node<V>[] t;
2234 <                if ((t = tab = map.table) != null)
2235 <                    baseLimit = baseSize = t.length;
2236 <                long n = map.sumCount();
2237 <                batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 <                         (int)n);
2239 <            }
2240 <            else {
2241 <                this.tab = it.tab;
2242 <                this.baseSize = it.baseSize;
2243 <                int hi = this.baseLimit = it.baseLimit;
2244 <                it.baseLimit = this.index = this.baseIndex =
2245 <                    (hi + it.baseIndex + 1) >>> 1;
2246 <                this.batch = it.batch >>>= 1;
2537 >     * Replaces all linked nodes in bin at given index unless table is
2538 >     * too small, in which case resizes instead.
2539 >     */
2540 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2541 >        Node<K,V> b; int n, sc;
2542 >        if (tab != null) {
2543 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2544 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2545 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2546 >                    transfer(tab, null);
2547              }
2548 <        }
2549 <
2550 <        /**
2551 <         * Advances next; returns nextVal or null if terminated.
2552 <         * See above for explanation.
2553 <         */
2554 <        @SuppressWarnings("unchecked") final V advance() {
2555 <            Node<V> e = next;
2556 <            V ev = null;
2557 <            outer: do {
2558 <                if (e != null)                  // advance past used/skipped node
2559 <                    e = e.next;
2560 <                while (e == null) {             // get to next non-null bin
2261 <                    ConcurrentHashMap<K, V> m;
2262 <                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2263 <                    if ((t = tab) != null)
2264 <                        n = t.length;
2265 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2266 <                        n = baseLimit = baseSize = t.length;
2267 <                    else
2268 <                        break outer;
2269 <                    if ((b = baseIndex) >= baseLimit ||
2270 <                        (i = index) < 0 || i >= n)
2271 <                        break outer;
2272 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 <                        if ((ek = e.key) instanceof TreeBin)
2274 <                            e = ((TreeBin<V>)ek).first;
2275 <                        else {
2276 <                            tab = (Node<V>[])ek;
2277 <                            continue;           // restarts due to null val
2548 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2549 >                synchronized (b) {
2550 >                    if (tabAt(tab, index) == b) {
2551 >                        TreeNode<K,V> hd = null, tl = null;
2552 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2553 >                            TreeNode<K,V> p =
2554 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2555 >                                                  null, null);
2556 >                            if ((p.prev = tl) == null)
2557 >                                hd = p;
2558 >                            else
2559 >                                tl.next = p;
2560 >                            tl = p;
2561                          }
2562 <                    }                           // visit upper slots if present
2563 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2562 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2563 >                    }
2564                  }
2565 <                nextKey = (K)e.key;
2283 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2284 <            next = e;
2285 <            return nextVal = ev;
2286 <        }
2287 <
2288 <        public final void remove() {
2289 <            K k = nextKey;
2290 <            if (k == null && (advance() == null || (k = nextKey) == null))
2291 <                throw new IllegalStateException();
2292 <            map.internalReplace(k, null, null);
2293 <        }
2294 <
2295 <        public final boolean hasNext() {
2296 <            return nextVal != null || advance() != null;
2297 <        }
2298 <
2299 <        public final boolean hasMoreElements() { return hasNext(); }
2300 <
2301 <        public void compute() { } // default no-op CountedCompleter body
2302 <
2303 <        /**
2304 <         * Returns a batch value > 0 if this task should (and must) be
2305 <         * split, if so, adding to pending count, and in any case
2306 <         * updating batch value. The initial batch value is approx
2307 <         * exp2 of the number of times (minus one) to split task by
2308 <         * two before executing leaf action. This value is faster to
2309 <         * compute and more convenient to use as a guide to splitting
2310 <         * than is the depth, since it is used while dividing by two
2311 <         * anyway.
2312 <         */
2313 <        final int preSplit() {
2314 <            int b;  ForkJoinPool pool;
2315 <            if ((b = batch) < 0) { // force initialization
2316 <                int sp = (((pool = getPool()) == null) ?
2317 <                          ForkJoinPool.getCommonPoolParallelism() :
2318 <                          pool.getParallelism()) << 3; // slack of 8
2319 <                long n = map.sumCount();
2320 <                b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 <            }
2322 <            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 <            if ((batch = b) > 0)
2324 <                addToPendingCount(1);
2325 <            return b;
2326 <        }
2327 <
2328 <        // spliterator support
2329 <
2330 <        public boolean hasExactSize() {
2331 <            return false;
2332 <        }
2333 <
2334 <        public boolean hasExactSplits() {
2335 <            return false;
2336 <        }
2337 <
2338 <        public long estimateSize() {
2339 <            return batch;
2565 >            }
2566          }
2567      }
2568  
2343    /* ---------------- Public operations -------------- */
2344
2345    /**
2346     * Creates a new, empty map with the default initial table size (16).
2347     */
2348    public ConcurrentHashMap() {
2349    }
2350
2351    /**
2352     * Creates a new, empty map with an initial table size
2353     * accommodating the specified number of elements without the need
2354     * to dynamically resize.
2355     *
2356     * @param initialCapacity The implementation performs internal
2357     * sizing to accommodate this many elements.
2358     * @throws IllegalArgumentException if the initial capacity of
2359     * elements is negative
2360     */
2361    public ConcurrentHashMap(int initialCapacity) {
2362        if (initialCapacity < 0)
2363            throw new IllegalArgumentException();
2364        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365                   MAXIMUM_CAPACITY :
2366                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367        this.sizeCtl = cap;
2368    }
2369
2370    /**
2371     * Creates a new map with the same mappings as the given map.
2372     *
2373     * @param m the map
2374     */
2375    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376        this.sizeCtl = DEFAULT_CAPACITY;
2377        internalPutAll(m);
2378    }
2379
2380    /**
2381     * Creates a new, empty map with an initial table size based on
2382     * the given number of elements ({@code initialCapacity}) and
2383     * initial table density ({@code loadFactor}).
2384     *
2385     * @param initialCapacity the initial capacity. The implementation
2386     * performs internal sizing to accommodate this many elements,
2387     * given the specified load factor.
2388     * @param loadFactor the load factor (table density) for
2389     * establishing the initial table size
2390     * @throws IllegalArgumentException if the initial capacity of
2391     * elements is negative or the load factor is nonpositive
2392     *
2393     * @since 1.6
2394     */
2395    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396        this(initialCapacity, loadFactor, 1);
2397    }
2398
2399    /**
2400     * Creates a new, empty map with an initial table size based on
2401     * the given number of elements ({@code initialCapacity}), table
2402     * density ({@code loadFactor}), and number of concurrently
2403     * updating threads ({@code concurrencyLevel}).
2404     *
2405     * @param initialCapacity the initial capacity. The implementation
2406     * performs internal sizing to accommodate this many elements,
2407     * given the specified load factor.
2408     * @param loadFactor the load factor (table density) for
2409     * establishing the initial table size
2410     * @param concurrencyLevel the estimated number of concurrently
2411     * updating threads. The implementation may use this value as
2412     * a sizing hint.
2413     * @throws IllegalArgumentException if the initial capacity is
2414     * negative or the load factor or concurrencyLevel are
2415     * nonpositive
2416     */
2417    public ConcurrentHashMap(int initialCapacity,
2418                               float loadFactor, int concurrencyLevel) {
2419        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420            throw new IllegalArgumentException();
2421        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2422            initialCapacity = concurrencyLevel;   // as estimated threads
2423        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426        this.sizeCtl = cap;
2427    }
2428
2569      /**
2570 <     * Creates a new {@link Set} backed by a ConcurrentHashMap
2431 <     * from the given type to {@code Boolean.TRUE}.
2432 <     *
2433 <     * @return the new set
2570 >     * Returns a list on non-TreeNodes replacing those in given list.
2571       */
2572 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2573 <        return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2574 <                                      Boolean.TRUE);
2575 <    }
2576 <
2577 <    /**
2578 <     * Creates a new {@link Set} backed by a ConcurrentHashMap
2579 <     * from the given type to {@code Boolean.TRUE}.
2580 <     *
2581 <     * @param initialCapacity The implementation performs internal
2582 <     * sizing to accommodate this many elements.
2446 <     * @throws IllegalArgumentException if the initial capacity of
2447 <     * elements is negative
2448 <     * @return the new set
2449 <     */
2450 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 <        return new KeySetView<K,Boolean>
2452 <            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453 <    }
2454 <
2455 <    /**
2456 <     * {@inheritDoc}
2457 <     */
2458 <    public boolean isEmpty() {
2459 <        return sumCount() <= 0L; // ignore transient negative values
2572 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2573 >        Node<K,V> hd = null, tl = null;
2574 >        for (Node<K,V> q = b; q != null; q = q.next) {
2575 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2576 >            if (tl == null)
2577 >                hd = p;
2578 >            else
2579 >                tl.next = p;
2580 >            tl = p;
2581 >        }
2582 >        return hd;
2583      }
2584  
2585 <    /**
2463 <     * {@inheritDoc}
2464 <     */
2465 <    public int size() {
2466 <        long n = sumCount();
2467 <        return ((n < 0L) ? 0 :
2468 <                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469 <                (int)n);
2470 <    }
2585 >    /* ---------------- TreeNodes -------------- */
2586  
2587      /**
2588 <     * Returns the number of mappings. This method should be used
2474 <     * instead of {@link #size} because a ConcurrentHashMap may
2475 <     * contain more mappings than can be represented as an int. The
2476 <     * value returned is an estimate; the actual count may differ if
2477 <     * there are concurrent insertions or removals.
2478 <     *
2479 <     * @return the number of mappings
2480 <     */
2481 <    public long mappingCount() {
2482 <        long n = sumCount();
2483 <        return (n < 0L) ? 0L : n; // ignore transient negative values
2484 <    }
2485 <
2486 <    /**
2487 <     * Returns the value to which the specified key is mapped,
2488 <     * or {@code null} if this map contains no mapping for the key.
2489 <     *
2490 <     * <p>More formally, if this map contains a mapping from a key
2491 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2492 <     * then this method returns {@code v}; otherwise it returns
2493 <     * {@code null}.  (There can be at most one such mapping.)
2494 <     *
2495 <     * @throws NullPointerException if the specified key is null
2588 >     * Nodes for use in TreeBins
2589       */
2590 <    public V get(Object key) {
2591 <        return internalGet(key);
2592 <    }
2590 >    static final class TreeNode<K,V> extends Node<K,V> {
2591 >        TreeNode<K,V> parent;  // red-black tree links
2592 >        TreeNode<K,V> left;
2593 >        TreeNode<K,V> right;
2594 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2595 >        boolean red;
2596  
2597 <    /**
2598 <     * Returns the value to which the specified key is mapped,
2599 <     * or the given defaultValue if this map contains no mapping for the key.
2600 <     *
2601 <     * @param key the key
2506 <     * @param defaultValue the value to return if this map contains
2507 <     * no mapping for the given key
2508 <     * @return the mapping for the key, if present; else the defaultValue
2509 <     * @throws NullPointerException if the specified key is null
2510 <     */
2511 <    public V getValueOrDefault(Object key, V defaultValue) {
2512 <        V v;
2513 <        return (v = internalGet(key)) == null ? defaultValue : v;
2514 <    }
2597 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2598 >                 TreeNode<K,V> parent) {
2599 >            super(hash, key, val, next);
2600 >            this.parent = parent;
2601 >        }
2602  
2603 <    /**
2604 <     * Tests if the specified object is a key in this table.
2605 <     *
2519 <     * @param  key   possible key
2520 <     * @return {@code true} if and only if the specified object
2521 <     *         is a key in this table, as determined by the
2522 <     *         {@code equals} method; {@code false} otherwise
2523 <     * @throws NullPointerException if the specified key is null
2524 <     */
2525 <    public boolean containsKey(Object key) {
2526 <        return internalGet(key) != null;
2527 <    }
2603 >        Node<K,V> find(int h, Object k) {
2604 >            return findTreeNode(h, k, null);
2605 >        }
2606  
2607 <    /**
2608 <     * Returns {@code true} if this map maps one or more keys to the
2609 <     * specified value. Note: This method may require a full traversal
2610 <     * of the map, and is much slower than method {@code containsKey}.
2611 <     *
2612 <     * @param value value whose presence in this map is to be tested
2613 <     * @return {@code true} if this map maps one or more keys to the
2614 <     *         specified value
2615 <     * @throws NullPointerException if the specified value is null
2616 <     */
2617 <    public boolean containsValue(Object value) {
2618 <        if (value == null)
2619 <            throw new NullPointerException();
2620 <        V v;
2621 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2622 <        while ((v = it.advance()) != null) {
2623 <            if (v == value || value.equals(v))
2624 <                return true;
2607 >        /**
2608 >         * Returns the TreeNode (or null if not found) for the given key
2609 >         * starting at given root.
2610 >         */
2611 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2612 >            if (k != null) {
2613 >                TreeNode<K,V> p = this;
2614 >                do  {
2615 >                    int ph, dir; K pk; TreeNode<K,V> q;
2616 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2617 >                    if ((ph = p.hash) > h)
2618 >                        p = pl;
2619 >                    else if (ph < h)
2620 >                        p = pr;
2621 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2622 >                        return p;
2623 >                    else if (pl == null && pr == null)
2624 >                        break;
2625 >                    else if ((kc != null ||
2626 >                              (kc = comparableClassFor(k)) != null) &&
2627 >                             (dir = compareComparables(kc, k, pk)) != 0)
2628 >                        p = (dir < 0) ? pl : pr;
2629 >                    else if (pl == null)
2630 >                        p = pr;
2631 >                    else if (pr == null ||
2632 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2633 >                        p = pl;
2634 >                    else
2635 >                        return q;
2636 >                } while (p != null);
2637 >            }
2638 >            return null;
2639          }
2548        return false;
2640      }
2641  
2642 <    /**
2552 <     * Legacy method testing if some key maps into the specified value
2553 <     * in this table.  This method is identical in functionality to
2554 <     * {@link #containsValue}, and exists solely to ensure
2555 <     * full compatibility with class {@link java.util.Hashtable},
2556 <     * which supported this method prior to introduction of the
2557 <     * Java Collections framework.
2558 <     *
2559 <     * @param  value a value to search for
2560 <     * @return {@code true} if and only if some key maps to the
2561 <     *         {@code value} argument in this table as
2562 <     *         determined by the {@code equals} method;
2563 <     *         {@code false} otherwise
2564 <     * @throws NullPointerException if the specified value is null
2565 <     */
2566 <    @Deprecated public boolean contains(Object value) {
2567 <        return containsValue(value);
2568 <    }
2642 >    /* ---------------- TreeBins -------------- */
2643  
2644      /**
2645 <     * Maps the specified key to the specified value in this table.
2646 <     * Neither the key nor the value can be null.
2647 <     *
2648 <     * <p>The value can be retrieved by calling the {@code get} method
2649 <     * with a key that is equal to the original key.
2650 <     *
2651 <     * @param key key with which the specified value is to be associated
2652 <     * @param value value to be associated with the specified key
2653 <     * @return the previous value associated with {@code key}, or
2654 <     *         {@code null} if there was no mapping for {@code key}
2655 <     * @throws NullPointerException if the specified key or value is null
2656 <     */
2657 <    public V put(K key, V value) {
2658 <        return internalPut(key, value, false);
2659 <    }
2645 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2646 >     * keys or values, but instead point to list of TreeNodes and
2647 >     * their root. They also maintain a parasitic read-write lock
2648 >     * forcing writers (who hold bin lock) to wait for readers (who do
2649 >     * not) to complete before tree restructuring operations.
2650 >     */
2651 >    static final class TreeBin<K,V> extends Node<K,V> {
2652 >        TreeNode<K,V> root;
2653 >        volatile TreeNode<K,V> first;
2654 >        volatile Thread waiter;
2655 >        volatile int lockState;
2656 >        // values for lockState
2657 >        static final int WRITER = 1; // set while holding write lock
2658 >        static final int WAITER = 2; // set when waiting for write lock
2659 >        static final int READER = 4; // increment value for setting read lock
2660 >
2661 >        /**
2662 >         * Creates bin with initial set of nodes headed by b.
2663 >         */
2664 >        TreeBin(TreeNode<K,V> b) {
2665 >            super(TREEBIN, null, null, null);
2666 >            this.first = b;
2667 >            TreeNode<K,V> r = null;
2668 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2669 >                next = (TreeNode<K,V>)x.next;
2670 >                x.left = x.right = null;
2671 >                if (r == null) {
2672 >                    x.parent = null;
2673 >                    x.red = false;
2674 >                    r = x;
2675 >                }
2676 >                else {
2677 >                    Object key = x.key;
2678 >                    int hash = x.hash;
2679 >                    Class<?> kc = null;
2680 >                    for (TreeNode<K,V> p = r;;) {
2681 >                        int dir, ph;
2682 >                        if ((ph = p.hash) > hash)
2683 >                            dir = -1;
2684 >                        else if (ph < hash)
2685 >                            dir = 1;
2686 >                        else if ((kc != null ||
2687 >                                  (kc = comparableClassFor(key)) != null))
2688 >                            dir = compareComparables(kc, key, p.key);
2689 >                        else
2690 >                            dir = 0;
2691 >                        TreeNode<K,V> xp = p;
2692 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2693 >                            x.parent = xp;
2694 >                            if (dir <= 0)
2695 >                                xp.left = x;
2696 >                            else
2697 >                                xp.right = x;
2698 >                            r = balanceInsertion(r, x);
2699 >                            break;
2700 >                        }
2701 >                    }
2702 >                }
2703 >            }
2704 >            this.root = r;
2705 >        }
2706  
2707 <    /**
2708 <     * {@inheritDoc}
2709 <     *
2710 <     * @return the previous value associated with the specified key,
2711 <     *         or {@code null} if there was no mapping for the key
2712 <     * @throws NullPointerException if the specified key or value is null
2713 <     */
2594 <    public V putIfAbsent(K key, V value) {
2595 <        return internalPut(key, value, true);
2596 <    }
2707 >        /**
2708 >         * Acquires write lock for tree restructuring.
2709 >         */
2710 >        private final void lockRoot() {
2711 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2712 >                contendedLock(); // offload to separate method
2713 >        }
2714  
2715 <    /**
2716 <     * Copies all of the mappings from the specified map to this one.
2717 <     * These mappings replace any mappings that this map had for any of the
2718 <     * keys currently in the specified map.
2719 <     *
2720 <     * @param m mappings to be stored in this map
2604 <     */
2605 <    public void putAll(Map<? extends K, ? extends V> m) {
2606 <        internalPutAll(m);
2607 <    }
2715 >        /**
2716 >         * Releases write lock for tree restructuring.
2717 >         */
2718 >        private final void unlockRoot() {
2719 >            lockState = 0;
2720 >        }
2721  
2722 <    /**
2723 <     * If the specified key is not already associated with a value (or
2724 <     * is mapped to {@code null}), attempts to compute its value using
2725 <     * the given mapping function and enters it into this map unless
2726 <     * {@code null}. The entire method invocation is performed
2727 <     * atomically, so the function is applied at most once per key.
2728 <     * Some attempted update operations on this map by other threads
2729 <     * may be blocked while computation is in progress, so the
2730 <     * computation should be short and simple, and must not attempt to
2731 <     * update any other mappings of this Map.
2732 <     *
2733 <     * @param key key with which the specified value is to be associated
2734 <     * @param mappingFunction the function to compute a value
2735 <     * @return the current (existing or computed) value associated with
2736 <     *         the specified key, or null if the computed value is null
2737 <     * @throws NullPointerException if the specified key or mappingFunction
2738 <     *         is null
2739 <     * @throws IllegalStateException if the computation detectably
2740 <     *         attempts a recursive update to this map that would
2741 <     *         otherwise never complete
2742 <     * @throws RuntimeException or Error if the mappingFunction does so,
2743 <     *         in which case the mapping is left unestablished
2744 <     */
2632 <    public V computeIfAbsent
2633 <        (K key, Function<? super K, ? extends V> mappingFunction) {
2634 <        return internalComputeIfAbsent(key, mappingFunction);
2635 <    }
2722 >        /**
2723 >         * Possibly blocks awaiting root lock.
2724 >         */
2725 >        private final void contendedLock() {
2726 >            boolean waiting = false;
2727 >            for (int s;;) {
2728 >                if (((s = lockState) & WRITER) == 0) {
2729 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2730 >                        if (waiting)
2731 >                            waiter = null;
2732 >                        return;
2733 >                    }
2734 >                }
2735 >                else if ((s | WAITER) == 0) {
2736 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2737 >                        waiting = true;
2738 >                        waiter = Thread.currentThread();
2739 >                    }
2740 >                }
2741 >                else if (waiting)
2742 >                    LockSupport.park(this);
2743 >            }
2744 >        }
2745  
2746 <    /**
2747 <     * If the value for the specified key is present and non-null,
2748 <     * attempts to compute a new mapping given the key and its current
2749 <     * mapped value.  The entire method invocation is performed
2750 <     * atomically.  Some attempted update operations on this map by
2751 <     * other threads may be blocked while computation is in progress,
2752 <     * so the computation should be short and simple, and must not
2753 <     * attempt to update any other mappings of this Map.
2754 <     *
2755 <     * @param key key with which the specified value is to be associated
2756 <     * @param remappingFunction the function to compute a value
2757 <     * @return the new value associated with the specified key, or null if none
2758 <     * @throws NullPointerException if the specified key or remappingFunction
2759 <     *         is null
2760 <     * @throws IllegalStateException if the computation detectably
2761 <     *         attempts a recursive update to this map that would
2762 <     *         otherwise never complete
2763 <     * @throws RuntimeException or Error if the remappingFunction does so,
2764 <     *         in which case the mapping is unchanged
2765 <     */
2766 <    public V computeIfPresent
2767 <        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2768 <        return internalCompute(key, true, remappingFunction);
2769 <    }
2746 >        /**
2747 >         * Returns matching node or null if none. Tries to search
2748 >         * using tree comparisons from root, but continues linear
2749 >         * search when lock not available.
2750 >         */
2751 >        final Node<K,V> find(int h, Object k) {
2752 >            if (k != null) {
2753 >                for (Node<K,V> e = first; e != null; e = e.next) {
2754 >                    int s; K ek;
2755 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2756 >                        if (e.hash == h &&
2757 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2758 >                            return e;
2759 >                    }
2760 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2761 >                                                 s + READER)) {
2762 >                        TreeNode<K,V> r, p;
2763 >                        try {
2764 >                            p = ((r = root) == null ? null :
2765 >                                 r.findTreeNode(h, k, null));
2766 >                        } finally {
2767 >                            Thread w;
2768 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2769 >                                (READER|WAITER) && (w = waiter) != null)
2770 >                                LockSupport.unpark(w);
2771 >                        }
2772 >                        return p;
2773 >                    }
2774 >                }
2775 >            }
2776 >            return null;
2777 >        }
2778  
2779 <    /**
2780 <     * Attempts to compute a mapping for the specified key and its
2781 <     * current mapped value (or {@code null} if there is no current
2782 <     * mapping). The entire method invocation is performed atomically.
2783 <     * Some attempted update operations on this map by other threads
2784 <     * may be blocked while computation is in progress, so the
2785 <     * computation should be short and simple, and must not attempt to
2786 <     * update any other mappings of this Map.
2787 <     *
2788 <     * @param key key with which the specified value is to be associated
2789 <     * @param remappingFunction the function to compute a value
2790 <     * @return the new value associated with the specified key, or null if none
2791 <     * @throws NullPointerException if the specified key or remappingFunction
2792 <     *         is null
2793 <     * @throws IllegalStateException if the computation detectably
2794 <     *         attempts a recursive update to this map that would
2795 <     *         otherwise never complete
2796 <     * @throws RuntimeException or Error if the remappingFunction does so,
2797 <     *         in which case the mapping is unchanged
2798 <     */
2799 <    public V compute
2800 <        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2801 <        return internalCompute(key, false, remappingFunction);
2802 <    }
2779 >        /**
2780 >         * Finds or adds a node.
2781 >         * @return null if added
2782 >         */
2783 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2784 >            Class<?> kc = null;
2785 >            for (TreeNode<K,V> p = root;;) {
2786 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2787 >                if (p == null) {
2788 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2789 >                    break;
2790 >                }
2791 >                else if ((ph = p.hash) > h)
2792 >                    dir = -1;
2793 >                else if (ph < h)
2794 >                    dir = 1;
2795 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2796 >                    return p;
2797 >                else if ((kc == null &&
2798 >                          (kc = comparableClassFor(k)) == null) ||
2799 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2800 >                    if (p.left == null)
2801 >                        dir = 1;
2802 >                    else if ((pr = p.right) == null ||
2803 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2804 >                        dir = -1;
2805 >                    else
2806 >                        return q;
2807 >                }
2808 >                TreeNode<K,V> xp = p;
2809 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2810 >                    TreeNode<K,V> x, f = first;
2811 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2812 >                    if (f != null)
2813 >                        f.prev = x;
2814 >                    if (dir < 0)
2815 >                        xp.left = x;
2816 >                    else
2817 >                        xp.right = x;
2818 >                    if (!xp.red)
2819 >                        x.red = true;
2820 >                    else {
2821 >                        lockRoot();
2822 >                        try {
2823 >                            root = balanceInsertion(root, x);
2824 >                        } finally {
2825 >                            unlockRoot();
2826 >                        }
2827 >                    }
2828 >                    break;
2829 >                }
2830 >            }
2831 >            assert checkInvariants(root);
2832 >            return null;
2833 >        }
2834  
2835 <    /**
2836 <     * If the specified key is not already associated with a
2837 <     * (non-null) value, associates it with the given value.
2838 <     * Otherwise, replaces the value with the results of the given
2839 <     * remapping function, or removes if {@code null}. The entire
2840 <     * method invocation is performed atomically.  Some attempted
2841 <     * update operations on this map by other threads may be blocked
2842 <     * while computation is in progress, so the computation should be
2843 <     * short and simple, and must not attempt to update any other
2844 <     * mappings of this Map.
2845 <     *
2846 <     * @param key key with which the specified value is to be associated
2847 <     * @param value the value to use if absent
2848 <     * @param remappingFunction the function to recompute a value if present
2849 <     * @return the new value associated with the specified key, or null if none
2850 <     * @throws NullPointerException if the specified key or the
2851 <     *         remappingFunction is null
2852 <     * @throws RuntimeException or Error if the remappingFunction does so,
2853 <     *         in which case the mapping is unchanged
2854 <     */
2855 <    public V merge
2856 <        (K key, V value,
2857 <         BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2858 <        return internalMerge(key, value, remappingFunction);
2859 <    }
2835 >        /**
2836 >         * Removes the given node, that must be present before this
2837 >         * call.  This is messier than typical red-black deletion code
2838 >         * because we cannot swap the contents of an interior node
2839 >         * with a leaf successor that is pinned by "next" pointers
2840 >         * that are accessible independently of lock. So instead we
2841 >         * swap the tree linkages.
2842 >         *
2843 >         * @return true if now too small, so should be untreeified
2844 >         */
2845 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2846 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2847 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2848 >            TreeNode<K,V> r, rl;
2849 >            if (pred == null)
2850 >                first = next;
2851 >            else
2852 >                pred.next = next;
2853 >            if (next != null)
2854 >                next.prev = pred;
2855 >            if (first == null) {
2856 >                root = null;
2857 >                return true;
2858 >            }
2859 >            if ((r = root) == null || r.right == null || // too small
2860 >                (rl = r.left) == null || rl.left == null)
2861 >                return true;
2862 >            lockRoot();
2863 >            try {
2864 >                TreeNode<K,V> replacement;
2865 >                TreeNode<K,V> pl = p.left;
2866 >                TreeNode<K,V> pr = p.right;
2867 >                if (pl != null && pr != null) {
2868 >                    TreeNode<K,V> s = pr, sl;
2869 >                    while ((sl = s.left) != null) // find successor
2870 >                        s = sl;
2871 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2872 >                    TreeNode<K,V> sr = s.right;
2873 >                    TreeNode<K,V> pp = p.parent;
2874 >                    if (s == pr) { // p was s's direct parent
2875 >                        p.parent = s;
2876 >                        s.right = p;
2877 >                    }
2878 >                    else {
2879 >                        TreeNode<K,V> sp = s.parent;
2880 >                        if ((p.parent = sp) != null) {
2881 >                            if (s == sp.left)
2882 >                                sp.left = p;
2883 >                            else
2884 >                                sp.right = p;
2885 >                        }
2886 >                        if ((s.right = pr) != null)
2887 >                            pr.parent = s;
2888 >                    }
2889 >                    p.left = null;
2890 >                    if ((p.right = sr) != null)
2891 >                        sr.parent = p;
2892 >                    if ((s.left = pl) != null)
2893 >                        pl.parent = s;
2894 >                    if ((s.parent = pp) == null)
2895 >                        r = s;
2896 >                    else if (p == pp.left)
2897 >                        pp.left = s;
2898 >                    else
2899 >                        pp.right = s;
2900 >                    if (sr != null)
2901 >                        replacement = sr;
2902 >                    else
2903 >                        replacement = p;
2904 >                }
2905 >                else if (pl != null)
2906 >                    replacement = pl;
2907 >                else if (pr != null)
2908 >                    replacement = pr;
2909 >                else
2910 >                    replacement = p;
2911 >                if (replacement != p) {
2912 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2913 >                    if (pp == null)
2914 >                        r = replacement;
2915 >                    else if (p == pp.left)
2916 >                        pp.left = replacement;
2917 >                    else
2918 >                        pp.right = replacement;
2919 >                    p.left = p.right = p.parent = null;
2920 >                }
2921  
2922 <    /**
2714 <     * Removes the key (and its corresponding value) from this map.
2715 <     * This method does nothing if the key is not in the map.
2716 <     *
2717 <     * @param  key the key that needs to be removed
2718 <     * @return the previous value associated with {@code key}, or
2719 <     *         {@code null} if there was no mapping for {@code key}
2720 <     * @throws NullPointerException if the specified key is null
2721 <     */
2722 <    public V remove(Object key) {
2723 <        return internalReplace(key, null, null);
2724 <    }
2922 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2923  
2924 <    /**
2925 <     * {@inheritDoc}
2926 <     *
2927 <     * @throws NullPointerException if the specified key is null
2928 <     */
2929 <    public boolean remove(Object key, Object value) {
2930 <        if (key == null)
2931 <            throw new NullPointerException();
2932 <        return value != null && internalReplace(key, null, value) != null;
2933 <    }
2924 >                if (p == replacement) {  // detach pointers
2925 >                    TreeNode<K,V> pp;
2926 >                    if ((pp = p.parent) != null) {
2927 >                        if (p == pp.left)
2928 >                            pp.left = null;
2929 >                        else if (p == pp.right)
2930 >                            pp.right = null;
2931 >                        p.parent = null;
2932 >                    }
2933 >                }
2934 >            } finally {
2935 >                unlockRoot();
2936 >            }
2937 >            assert checkInvariants(root);
2938 >            return false;
2939 >        }
2940  
2941 <    /**
2942 <     * {@inheritDoc}
2739 <     *
2740 <     * @throws NullPointerException if any of the arguments are null
2741 <     */
2742 <    public boolean replace(K key, V oldValue, V newValue) {
2743 <        if (key == null || oldValue == null || newValue == null)
2744 <            throw new NullPointerException();
2745 <        return internalReplace(key, newValue, oldValue) != null;
2746 <    }
2941 >        /* ------------------------------------------------------------ */
2942 >        // Red-black tree methods, all adapted from CLR
2943  
2944 <    /**
2945 <     * {@inheritDoc}
2946 <     *
2947 <     * @return the previous value associated with the specified key,
2948 <     *         or {@code null} if there was no mapping for the key
2949 <     * @throws NullPointerException if the specified key or value is null
2950 <     */
2951 <    public V replace(K key, V value) {
2952 <        if (key == null || value == null)
2953 <            throw new NullPointerException();
2954 <        return internalReplace(key, value, null);
2955 <    }
2944 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2945 >                                              TreeNode<K,V> p) {
2946 >            TreeNode<K,V> r, pp, rl;
2947 >            if (p != null && (r = p.right) != null) {
2948 >                if ((rl = p.right = r.left) != null)
2949 >                    rl.parent = p;
2950 >                if ((pp = r.parent = p.parent) == null)
2951 >                    (root = r).red = false;
2952 >                else if (pp.left == p)
2953 >                    pp.left = r;
2954 >                else
2955 >                    pp.right = r;
2956 >                r.left = p;
2957 >                p.parent = r;
2958 >            }
2959 >            return root;
2960 >        }
2961  
2962 <    /**
2963 <     * Removes all of the mappings from this map.
2964 <     */
2965 <    public void clear() {
2966 <        internalClear();
2967 <    }
2962 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2963 >                                               TreeNode<K,V> p) {
2964 >            TreeNode<K,V> l, pp, lr;
2965 >            if (p != null && (l = p.left) != null) {
2966 >                if ((lr = p.left = l.right) != null)
2967 >                    lr.parent = p;
2968 >                if ((pp = l.parent = p.parent) == null)
2969 >                    (root = l).red = false;
2970 >                else if (pp.right == p)
2971 >                    pp.right = l;
2972 >                else
2973 >                    pp.left = l;
2974 >                l.right = p;
2975 >                p.parent = l;
2976 >            }
2977 >            return root;
2978 >        }
2979  
2980 <    /**
2981 <     * Returns a {@link Set} view of the keys contained in this map.
2982 <     * The set is backed by the map, so changes to the map are
2983 <     * reflected in the set, and vice-versa.
2984 <     *
2985 <     * @return the set view
2986 <     */
2987 <    public KeySetView<K,V> keySet() {
2988 <        KeySetView<K,V> ks = keySet;
2989 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2990 <    }
2980 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2981 >                                                    TreeNode<K,V> x) {
2982 >            x.red = true;
2983 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2984 >                if ((xp = x.parent) == null) {
2985 >                    x.red = false;
2986 >                    return x;
2987 >                }
2988 >                else if (!xp.red || (xpp = xp.parent) == null)
2989 >                    return root;
2990 >                if (xp == (xppl = xpp.left)) {
2991 >                    if ((xppr = xpp.right) != null && xppr.red) {
2992 >                        xppr.red = false;
2993 >                        xp.red = false;
2994 >                        xpp.red = true;
2995 >                        x = xpp;
2996 >                    }
2997 >                    else {
2998 >                        if (x == xp.right) {
2999 >                            root = rotateLeft(root, x = xp);
3000 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3001 >                        }
3002 >                        if (xp != null) {
3003 >                            xp.red = false;
3004 >                            if (xpp != null) {
3005 >                                xpp.red = true;
3006 >                                root = rotateRight(root, xpp);
3007 >                            }
3008 >                        }
3009 >                    }
3010 >                }
3011 >                else {
3012 >                    if (xppl != null && xppl.red) {
3013 >                        xppl.red = false;
3014 >                        xp.red = false;
3015 >                        xpp.red = true;
3016 >                        x = xpp;
3017 >                    }
3018 >                    else {
3019 >                        if (x == xp.left) {
3020 >                            root = rotateRight(root, x = xp);
3021 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3022 >                        }
3023 >                        if (xp != null) {
3024 >                            xp.red = false;
3025 >                            if (xpp != null) {
3026 >                                xpp.red = true;
3027 >                                root = rotateLeft(root, xpp);
3028 >                            }
3029 >                        }
3030 >                    }
3031 >                }
3032 >            }
3033 >        }
3034  
3035 <    /**
3036 <     * Returns a {@link Set} view of the keys in this map, using the
3037 <     * given common mapped value for any additions (i.e., {@link
3038 <     * Collection#add} and {@link Collection#addAll}). This is of
3039 <     * course only appropriate if it is acceptable to use the same
3040 <     * value for all additions from this view.
3041 <     *
3042 <     * @param mappedValue the mapped value to use for any
3043 <     * additions.
3044 <     * @return the set view
3045 <     * @throws NullPointerException if the mappedValue is null
3046 <     */
3047 <    public KeySetView<K,V> keySet(V mappedValue) {
3048 <        if (mappedValue == null)
3049 <            throw new NullPointerException();
3050 <        return new KeySetView<K,V>(this, mappedValue);
3051 <    }
3035 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3036 >                                                   TreeNode<K,V> x) {
3037 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3038 >                if (x == null || x == root)
3039 >                    return root;
3040 >                else if ((xp = x.parent) == null) {
3041 >                    x.red = false;
3042 >                    return x;
3043 >                }
3044 >                else if (x.red) {
3045 >                    x.red = false;
3046 >                    return root;
3047 >                }
3048 >                else if ((xpl = xp.left) == x) {
3049 >                    if ((xpr = xp.right) != null && xpr.red) {
3050 >                        xpr.red = false;
3051 >                        xp.red = true;
3052 >                        root = rotateLeft(root, xp);
3053 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3054 >                    }
3055 >                    if (xpr == null)
3056 >                        x = xp;
3057 >                    else {
3058 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3059 >                        if ((sr == null || !sr.red) &&
3060 >                            (sl == null || !sl.red)) {
3061 >                            xpr.red = true;
3062 >                            x = xp;
3063 >                        }
3064 >                        else {
3065 >                            if (sr == null || !sr.red) {
3066 >                                if (sl != null)
3067 >                                    sl.red = false;
3068 >                                xpr.red = true;
3069 >                                root = rotateRight(root, xpr);
3070 >                                xpr = (xp = x.parent) == null ?
3071 >                                    null : xp.right;
3072 >                            }
3073 >                            if (xpr != null) {
3074 >                                xpr.red = (xp == null) ? false : xp.red;
3075 >                                if ((sr = xpr.right) != null)
3076 >                                    sr.red = false;
3077 >                            }
3078 >                            if (xp != null) {
3079 >                                xp.red = false;
3080 >                                root = rotateLeft(root, xp);
3081 >                            }
3082 >                            x = root;
3083 >                        }
3084 >                    }
3085 >                }
3086 >                else { // symmetric
3087 >                    if (xpl != null && xpl.red) {
3088 >                        xpl.red = false;
3089 >                        xp.red = true;
3090 >                        root = rotateRight(root, xp);
3091 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3092 >                    }
3093 >                    if (xpl == null)
3094 >                        x = xp;
3095 >                    else {
3096 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3097 >                        if ((sl == null || !sl.red) &&
3098 >                            (sr == null || !sr.red)) {
3099 >                            xpl.red = true;
3100 >                            x = xp;
3101 >                        }
3102 >                        else {
3103 >                            if (sl == null || !sl.red) {
3104 >                                if (sr != null)
3105 >                                    sr.red = false;
3106 >                                xpl.red = true;
3107 >                                root = rotateLeft(root, xpl);
3108 >                                xpl = (xp = x.parent) == null ?
3109 >                                    null : xp.left;
3110 >                            }
3111 >                            if (xpl != null) {
3112 >                                xpl.red = (xp == null) ? false : xp.red;
3113 >                                if ((sl = xpl.left) != null)
3114 >                                    sl.red = false;
3115 >                            }
3116 >                            if (xp != null) {
3117 >                                xp.red = false;
3118 >                                root = rotateRight(root, xp);
3119 >                            }
3120 >                            x = root;
3121 >                        }
3122 >                    }
3123 >                }
3124 >            }
3125 >        }
3126  
3127 <    /**
3128 <     * Returns a {@link Collection} view of the values contained in this map.
3129 <     * The collection is backed by the map, so changes to the map are
3130 <     * reflected in the collection, and vice-versa.
3131 <     */
3132 <    public ValuesView<K,V> values() {
3133 <        ValuesView<K,V> vs = values;
3134 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3135 <    }
3127 >        /**
3128 >         * Recursive invariant check
3129 >         */
3130 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3131 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3132 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3133 >            if (tb != null && tb.next != t)
3134 >                return false;
3135 >            if (tn != null && tn.prev != t)
3136 >                return false;
3137 >            if (tp != null && t != tp.left && t != tp.right)
3138 >                return false;
3139 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3140 >                return false;
3141 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3142 >                return false;
3143 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3144 >                return false;
3145 >            if (tl != null && !checkInvariants(tl))
3146 >                return false;
3147 >            if (tr != null && !checkInvariants(tr))
3148 >                return false;
3149 >            return true;
3150 >        }
3151  
3152 <    /**
3153 <     * Returns a {@link Set} view of the mappings contained in this map.
3154 <     * The set is backed by the map, so changes to the map are
3155 <     * reflected in the set, and vice-versa.  The set supports element
3156 <     * removal, which removes the corresponding mapping from the map,
3157 <     * via the {@code Iterator.remove}, {@code Set.remove},
3158 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
3159 <     * operations.  It does not support the {@code add} or
3160 <     * {@code addAll} operations.
3161 <     *
3162 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3163 <     * that will never throw {@link ConcurrentModificationException},
2820 <     * and guarantees to traverse elements as they existed upon
2821 <     * construction of the iterator, and may (but is not guaranteed to)
2822 <     * reflect any modifications subsequent to construction.
2823 <     */
2824 <    public Set<Map.Entry<K,V>> entrySet() {
2825 <        EntrySetView<K,V> es = entrySet;
2826 <        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3152 >        private static final sun.misc.Unsafe U;
3153 >        private static final long LOCKSTATE;
3154 >        static {
3155 >            try {
3156 >                U = sun.misc.Unsafe.getUnsafe();
3157 >                Class<?> k = TreeBin.class;
3158 >                LOCKSTATE = U.objectFieldOffset
3159 >                    (k.getDeclaredField("lockState"));
3160 >            } catch (Exception e) {
3161 >                throw new Error(e);
3162 >            }
3163 >        }
3164      }
3165  
3166 <    /**
2830 <     * Returns an enumeration of the keys in this table.
2831 <     *
2832 <     * @return an enumeration of the keys in this table
2833 <     * @see #keySet()
2834 <     */
2835 <    public Enumeration<K> keys() {
2836 <        return new KeyIterator<K,V>(this);
2837 <    }
3166 >    /* ----------------Table Traversal -------------- */
3167  
3168      /**
3169 <     * Returns an enumeration of the values in this table.
3169 >     * Encapsulates traversal for methods such as containsValue; also
3170 >     * serves as a base class for other iterators and spliterators.
3171       *
3172 <     * @return an enumeration of the values in this table
3173 <     * @see #values()
3174 <     */
3175 <    public Enumeration<V> elements() {
3176 <        return new ValueIterator<K,V>(this);
3177 <    }
3178 <
3179 <    /**
2850 <     * Returns the hash code value for this {@link Map}, i.e.,
2851 <     * the sum of, for each key-value pair in the map,
2852 <     * {@code key.hashCode() ^ value.hashCode()}.
3172 >     * Method advance visits once each still-valid node that was
3173 >     * reachable upon iterator construction. It might miss some that
3174 >     * were added to a bin after the bin was visited, which is OK wrt
3175 >     * consistency guarantees. Maintaining this property in the face
3176 >     * of possible ongoing resizes requires a fair amount of
3177 >     * bookkeeping state that is difficult to optimize away amidst
3178 >     * volatile accesses.  Even so, traversal maintains reasonable
3179 >     * throughput.
3180       *
3181 <     * @return the hash code value for this map
3181 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3182 >     * However, if the table has been resized, then all future steps
3183 >     * must traverse both the bin at the current index as well as at
3184 >     * (index + baseSize); and so on for further resizings. To
3185 >     * paranoically cope with potential sharing by users of iterators
3186 >     * across threads, iteration terminates if a bounds checks fails
3187 >     * for a table read.
3188       */
3189 <    public int hashCode() {
3190 <        int h = 0;
3191 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3192 <        V v;
3193 <        while ((v = it.advance()) != null) {
3194 <            h += it.nextKey.hashCode() ^ v.hashCode();
3189 >    static class Traverser<K,V> {
3190 >        Node<K,V>[] tab;        // current table; updated if resized
3191 >        Node<K,V> next;         // the next entry to use
3192 >        int index;              // index of bin to use next
3193 >        int baseIndex;          // current index of initial table
3194 >        int baseLimit;          // index bound for initial table
3195 >        final int baseSize;     // initial table size
3196 >
3197 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3198 >            this.tab = tab;
3199 >            this.baseSize = size;
3200 >            this.baseIndex = this.index = index;
3201 >            this.baseLimit = limit;
3202 >            this.next = null;
3203          }
2863        return h;
2864    }
3204  
3205 <    /**
3206 <     * Returns a string representation of this map.  The string
3207 <     * representation consists of a list of key-value mappings (in no
3208 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3209 <     * mappings are separated by the characters {@code ", "} (comma
3210 <     * and space).  Each key-value mapping is rendered as the key
3211 <     * followed by an equals sign ("{@code =}") followed by the
2873 <     * associated value.
2874 <     *
2875 <     * @return a string representation of this map
2876 <     */
2877 <    public String toString() {
2878 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2879 <        StringBuilder sb = new StringBuilder();
2880 <        sb.append('{');
2881 <        V v;
2882 <        if ((v = it.advance()) != null) {
3205 >        /**
3206 >         * Advances if possible, returning next valid node, or null if none.
3207 >         */
3208 >        final Node<K,V> advance() {
3209 >            Node<K,V> e;
3210 >            if ((e = next) != null)
3211 >                e = e.next;
3212              for (;;) {
3213 <                K k = it.nextKey;
3214 <                sb.append(k == this ? "(this Map)" : k);
3215 <                sb.append('=');
3216 <                sb.append(v == this ? "(this Map)" : v);
3217 <                if ((v = it.advance()) == null)
3218 <                    break;
3219 <                sb.append(',').append(' ');
3213 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3214 >                if (e != null)
3215 >                    return next = e;
3216 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3217 >                    (n = t.length) <= (i = index) || i < 0)
3218 >                    return next = null;
3219 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3220 >                    if (e instanceof ForwardingNode) {
3221 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3222 >                        e = null;
3223 >                        continue;
3224 >                    }
3225 >                    else if (e instanceof TreeBin)
3226 >                        e = ((TreeBin<K,V>)e).first;
3227 >                    else
3228 >                        e = null;
3229 >                }
3230 >                if ((index += baseSize) >= n)
3231 >                    index = ++baseIndex;    // visit upper slots if present
3232              }
3233          }
2893        return sb.append('}').toString();
3234      }
3235  
3236      /**
3237 <     * Compares the specified object with this map for equality.
3238 <     * Returns {@code true} if the given object is a map with the same
2899 <     * mappings as this map.  This operation may return misleading
2900 <     * results if either map is concurrently modified during execution
2901 <     * of this method.
2902 <     *
2903 <     * @param o object to be compared for equality with this map
2904 <     * @return {@code true} if the specified object is equal to this map
3237 >     * Base of key, value, and entry Iterators. Adds fields to
3238 >     * Traverser to support iterator.remove.
3239       */
3240 <    public boolean equals(Object o) {
3241 <        if (o != this) {
3242 <            if (!(o instanceof Map))
3243 <                return false;
3244 <            Map<?,?> m = (Map<?,?>) o;
3245 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3246 <            V val;
3247 <            while ((val = it.advance()) != null) {
2914 <                Object v = m.get(it.nextKey);
2915 <                if (v == null || (v != val && !v.equals(val)))
2916 <                    return false;
2917 <            }
2918 <            for (Map.Entry<?,?> e : m.entrySet()) {
2919 <                Object mk, mv, v;
2920 <                if ((mk = e.getKey()) == null ||
2921 <                    (mv = e.getValue()) == null ||
2922 <                    (v = internalGet(mk)) == null ||
2923 <                    (mv != v && !mv.equals(v)))
2924 <                    return false;
2925 <            }
3240 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3241 >        final ConcurrentHashMap<K,V> map;
3242 >        Node<K,V> lastReturned;
3243 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3244 >                    ConcurrentHashMap<K,V> map) {
3245 >            super(tab, size, index, limit);
3246 >            this.map = map;
3247 >            advance();
3248          }
2927        return true;
2928    }
3249  
3250 <    /* ----------------Iterators -------------- */
3250 >        public final boolean hasNext() { return next != null; }
3251 >        public final boolean hasMoreElements() { return next != null; }
3252  
3253 <    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3254 <        extends Traverser<K,V,Object>
3255 <        implements Spliterator<K>, Iterator<K>, Enumeration<K> {
3256 <        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3257 <        KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3258 <            super(map, it);
2938 <        }
2939 <        public KeyIterator<K,V> trySplit() {
2940 <            if (tab != null && baseIndex == baseLimit)
2941 <                return null;
2942 <            return new KeyIterator<K,V>(map, this);
3253 >        public final void remove() {
3254 >            Node<K,V> p;
3255 >            if ((p = lastReturned) == null)
3256 >                throw new IllegalStateException();
3257 >            lastReturned = null;
3258 >            map.replaceNode(p.key, null, null);
3259          }
3260 +    }
3261 +
3262 +    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3263 +        implements Iterator<K>, Enumeration<K> {
3264 +        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3265 +                    ConcurrentHashMap<K,V> map) {
3266 +            super(tab, index, size, limit, map);
3267 +        }
3268 +
3269          public final K next() {
3270 <            if (nextVal == null && advance() == null)
3270 >            Node<K,V> p;
3271 >            if ((p = next) == null)
3272                  throw new NoSuchElementException();
3273 <            K k = nextKey;
3274 <            nextVal = null;
3273 >            K k = p.key;
3274 >            lastReturned = p;
3275 >            advance();
3276              return k;
3277          }
3278  
3279          public final K nextElement() { return next(); }
2953
2954        public Iterator<K> iterator() { return this; }
2955
2956        public void forEach(Consumer<? super K> action) {
2957            if (action == null) throw new NullPointerException();
2958            while (advance() != null)
2959                action.accept(nextKey);
2960        }
2961
2962        public boolean tryAdvance(Consumer<? super K> block) {
2963            if (block == null) throw new NullPointerException();
2964            if (advance() == null)
2965                return false;
2966            block.accept(nextKey);
2967            return true;
2968        }
3280      }
3281  
3282 <    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3283 <        extends Traverser<K,V,Object>
3284 <        implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3285 <        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3286 <        ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2976 <            super(map, it);
2977 <        }
2978 <        public ValueIterator<K,V> trySplit() {
2979 <            if (tab != null && baseIndex == baseLimit)
2980 <                return null;
2981 <            return new ValueIterator<K,V>(map, this);
3282 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3283 >        implements Iterator<V>, Enumeration<V> {
3284 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3285 >                      ConcurrentHashMap<K,V> map) {
3286 >            super(tab, index, size, limit, map);
3287          }
3288  
3289          public final V next() {
3290 <            V v;
3291 <            if ((v = nextVal) == null && (v = advance()) == null)
3290 >            Node<K,V> p;
3291 >            if ((p = next) == null)
3292                  throw new NoSuchElementException();
3293 <            nextVal = null;
3293 >            V v = p.val;
3294 >            lastReturned = p;
3295 >            advance();
3296              return v;
3297          }
3298  
3299          public final V nextElement() { return next(); }
2993
2994        public Iterator<V> iterator() { return this; }
2995
2996        public void forEach(Consumer<? super V> action) {
2997            if (action == null) throw new NullPointerException();
2998            V v;
2999            while ((v = advance()) != null)
3000                action.accept(v);
3001        }
3002
3003        public boolean tryAdvance(Consumer<? super V> block) {
3004            V v;
3005            if (block == null) throw new NullPointerException();
3006            if ((v = advance()) == null)
3007                return false;
3008            block.accept(v);
3009            return true;
3010        }
3011
3300      }
3301  
3302 <    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3303 <        extends Traverser<K,V,Object>
3304 <        implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3305 <        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3306 <        EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3019 <            super(map, it);
3020 <        }
3021 <        public EntryIterator<K,V> trySplit() {
3022 <            if (tab != null && baseIndex == baseLimit)
3023 <                return null;
3024 <            return new EntryIterator<K,V>(map, this);
3302 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3303 >        implements Iterator<Map.Entry<K,V>> {
3304 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3305 >                      ConcurrentHashMap<K,V> map) {
3306 >            super(tab, index, size, limit, map);
3307          }
3308  
3309          public final Map.Entry<K,V> next() {
3310 <            V v;
3311 <            if ((v = nextVal) == null && (v = advance()) == null)
3310 >            Node<K,V> p;
3311 >            if ((p = next) == null)
3312                  throw new NoSuchElementException();
3313 <            K k = nextKey;
3314 <            nextVal = null;
3313 >            K k = p.key;
3314 >            V v = p.val;
3315 >            lastReturned = p;
3316 >            advance();
3317              return new MapEntry<K,V>(k, v, map);
3318          }
3035
3036        public Iterator<Map.Entry<K,V>> iterator() { return this; }
3037
3038        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3039            if (action == null) throw new NullPointerException();
3040            V v;
3041            while ((v = advance()) != null)
3042                action.accept(entryFor(nextKey, v));
3043        }
3044
3045        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3046            V v;
3047            if (block == null) throw new NullPointerException();
3048            if ((v = advance()) == null)
3049                return false;
3050            block.accept(entryFor(nextKey, v));
3051            return true;
3052        }
3053
3319      }
3320  
3321      /**
3322 <     * Exported Entry for iterators
3322 >     * Exported Entry for EntryIterator
3323       */
3324 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3324 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3325          final K key; // non-null
3326          V val;       // non-null
3327 <        final ConcurrentHashMap<K, V> map;
3328 <        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3327 >        final ConcurrentHashMap<K,V> map;
3328 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3329              this.key = key;
3330              this.val = val;
3331              this.map = map;
3332          }
3333 <        public final K getKey()       { return key; }
3334 <        public final V getValue()     { return val; }
3335 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3336 <        public final String toString(){ return key + "=" + val; }
3333 >        public K getKey()        { return key; }
3334 >        public V getValue()      { return val; }
3335 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3336 >        public String toString() { return key + "=" + val; }
3337  
3338 <        public final boolean equals(Object o) {
3338 >        public boolean equals(Object o) {
3339              Object k, v; Map.Entry<?,?> e;
3340              return ((o instanceof Map.Entry) &&
3341                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3084 | Line 3349 | public class ConcurrentHashMap<K, V>
3349           * value to return is somewhat arbitrary here. Since we do not
3350           * necessarily track asynchronous changes, the most recent
3351           * "previous" value could be different from what we return (or
3352 <         * could even have been removed in which case the put will
3352 >         * could even have been removed, in which case the put will
3353           * re-establish). We do not and cannot guarantee more.
3354           */
3355 <        public final V setValue(V value) {
3355 >        public V setValue(V value) {
3356              if (value == null) throw new NullPointerException();
3357              V v = val;
3358              val = value;
# Line 3096 | Line 3361 | public class ConcurrentHashMap<K, V>
3361          }
3362      }
3363  
3364 <    /**
3365 <     * Returns exportable snapshot entry for the given key and value
3366 <     * when write-through can't or shouldn't be used.
3367 <     */
3368 <    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3369 <        return new AbstractMap.SimpleEntry<K,V>(k, v);
3370 <    }
3364 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3365 >        implements Spliterator<K> {
3366 >        long est;               // size estimate
3367 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3368 >                       long est) {
3369 >            super(tab, size, index, limit);
3370 >            this.est = est;
3371 >        }
3372 >
3373 >        public Spliterator<K> trySplit() {
3374 >            int i, f, h;
3375 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3376 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3377 >                                        f, est >>>= 1);
3378 >        }
3379 >
3380 >        public void forEachRemaining(Consumer<? super K> action) {
3381 >            if (action == null) throw new NullPointerException();
3382 >            for (Node<K,V> p; (p = advance()) != null;)
3383 >                action.accept(p.key);
3384 >        }
3385  
3386 <    /* ---------------- Serialization Support -------------- */
3386 >        public boolean tryAdvance(Consumer<? super K> action) {
3387 >            if (action == null) throw new NullPointerException();
3388 >            Node<K,V> p;
3389 >            if ((p = advance()) == null)
3390 >                return false;
3391 >            action.accept(p.key);
3392 >            return true;
3393 >        }
3394  
3395 <    /**
3396 <     * Stripped-down version of helper class used in previous version,
3397 <     * declared for the sake of serialization compatibility
3398 <     */
3399 <    static class Segment<K,V> implements Serializable {
3400 <        private static final long serialVersionUID = 2249069246763182397L;
3115 <        final float loadFactor;
3116 <        Segment(float lf) { this.loadFactor = lf; }
3395 >        public long estimateSize() { return est; }
3396 >
3397 >        public int characteristics() {
3398 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3399 >                Spliterator.NONNULL;
3400 >        }
3401      }
3402  
3403 <    /**
3404 <     * Saves the state of the {@code ConcurrentHashMap} instance to a
3405 <     * stream (i.e., serializes it).
3406 <     * @param s the stream
3407 <     * @serialData
3408 <     * the key (Object) and value (Object)
3409 <     * for each key-value mapping, followed by a null pair.
3126 <     * The key-value mappings are emitted in no particular order.
3127 <     */
3128 <    @SuppressWarnings("unchecked") private void writeObject
3129 <        (java.io.ObjectOutputStream s)
3130 <        throws java.io.IOException {
3131 <        if (segments == null) { // for serialization compatibility
3132 <            segments = (Segment<K,V>[])
3133 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3134 <            for (int i = 0; i < segments.length; ++i)
3135 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3403 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3404 >        implements Spliterator<V> {
3405 >        long est;               // size estimate
3406 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3407 >                         long est) {
3408 >            super(tab, size, index, limit);
3409 >            this.est = est;
3410          }
3411 <        s.defaultWriteObject();
3412 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3413 <        V v;
3414 <        while ((v = it.advance()) != null) {
3415 <            s.writeObject(it.nextKey);
3416 <            s.writeObject(v);
3411 >
3412 >        public Spliterator<V> trySplit() {
3413 >            int i, f, h;
3414 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3415 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3416 >                                          f, est >>>= 1);
3417 >        }
3418 >
3419 >        public void forEachRemaining(Consumer<? super V> action) {
3420 >            if (action == null) throw new NullPointerException();
3421 >            for (Node<K,V> p; (p = advance()) != null;)
3422 >                action.accept(p.val);
3423 >        }
3424 >
3425 >        public boolean tryAdvance(Consumer<? super V> action) {
3426 >            if (action == null) throw new NullPointerException();
3427 >            Node<K,V> p;
3428 >            if ((p = advance()) == null)
3429 >                return false;
3430 >            action.accept(p.val);
3431 >            return true;
3432 >        }
3433 >
3434 >        public long estimateSize() { return est; }
3435 >
3436 >        public int characteristics() {
3437 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3438          }
3144        s.writeObject(null);
3145        s.writeObject(null);
3146        segments = null; // throw away
3439      }
3440  
3441 <    /**
3442 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3443 <     * @param s the stream
3444 <     */
3445 <    @SuppressWarnings("unchecked") private void readObject
3446 <        (java.io.ObjectInputStream s)
3447 <        throws java.io.IOException, ClassNotFoundException {
3448 <        s.defaultReadObject();
3449 <        this.segments = null; // unneeded
3441 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3442 >        implements Spliterator<Map.Entry<K,V>> {
3443 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3444 >        long est;               // size estimate
3445 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3446 >                         long est, ConcurrentHashMap<K,V> map) {
3447 >            super(tab, size, index, limit);
3448 >            this.map = map;
3449 >            this.est = est;
3450 >        }
3451  
3452 <        // Create all nodes, then place in table once size is known
3453 <        long size = 0L;
3454 <        Node<V> p = null;
3455 <        for (;;) {
3456 <            K k = (K) s.readObject();
3164 <            V v = (V) s.readObject();
3165 <            if (k != null && v != null) {
3166 <                int h = spread(k.hashCode());
3167 <                p = new Node<V>(h, k, v, p);
3168 <                ++size;
3169 <            }
3170 <            else
3171 <                break;
3452 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3453 >            int i, f, h;
3454 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3455 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3456 >                                          f, est >>>= 1, map);
3457          }
3458 <        if (p != null) {
3459 <            boolean init = false;
3460 <            int n;
3461 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3462 <                n = MAXIMUM_CAPACITY;
3463 <            else {
3464 <                int sz = (int)size;
3465 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3466 <            }
3467 <            int sc = sizeCtl;
3468 <            boolean collide = false;
3469 <            if (n > sc &&
3470 <                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3471 <                try {
3472 <                    if (table == null) {
3473 <                        init = true;
3474 <                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3475 <                        Node<V>[] tab = (Node<V>[])rt;
3476 <                        int mask = n - 1;
3477 <                        while (p != null) {
3478 <                            int j = p.hash & mask;
3194 <                            Node<V> next = p.next;
3195 <                            Node<V> q = p.next = tabAt(tab, j);
3196 <                            setTabAt(tab, j, p);
3197 <                            if (!collide && q != null && q.hash == p.hash)
3198 <                                collide = true;
3199 <                            p = next;
3200 <                        }
3201 <                        table = tab;
3202 <                        addCount(size, -1);
3203 <                        sc = n - (n >>> 2);
3204 <                    }
3205 <                } finally {
3206 <                    sizeCtl = sc;
3207 <                }
3208 <                if (collide) { // rescan and convert to TreeBins
3209 <                    Node<V>[] tab = table;
3210 <                    for (int i = 0; i < tab.length; ++i) {
3211 <                        int c = 0;
3212 <                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3213 <                            if (++c > TREE_THRESHOLD &&
3214 <                                (e.key instanceof Comparable)) {
3215 <                                replaceWithTreeBin(tab, i, e.key);
3216 <                                break;
3217 <                            }
3218 <                        }
3219 <                    }
3220 <                }
3221 <            }
3222 <            if (!init) { // Can only happen if unsafely published.
3223 <                while (p != null) {
3224 <                    internalPut((K)p.key, p.val, false);
3225 <                    p = p.next;
3226 <                }
3227 <            }
3458 >
3459 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3460 >            if (action == null) throw new NullPointerException();
3461 >            for (Node<K,V> p; (p = advance()) != null; )
3462 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3463 >        }
3464 >
3465 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3466 >            if (action == null) throw new NullPointerException();
3467 >            Node<K,V> p;
3468 >            if ((p = advance()) == null)
3469 >                return false;
3470 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3471 >            return true;
3472 >        }
3473 >
3474 >        public long estimateSize() { return est; }
3475 >
3476 >        public int characteristics() {
3477 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3478 >                Spliterator.NONNULL;
3479          }
3480      }
3481  
3482 <    // -------------------------------------------------------
3482 >    // Parallel bulk operations
3483  
3484 <    // Sequential bulk operations
3484 >    /**
3485 >     * Computes initial batch value for bulk tasks. The returned value
3486 >     * is approximately exp2 of the number of times (minus one) to
3487 >     * split task by two before executing leaf action. This value is
3488 >     * faster to compute and more convenient to use as a guide to
3489 >     * splitting than is the depth, since it is used while dividing by
3490 >     * two anyway.
3491 >     */
3492 >    final int batchFor(long b) {
3493 >        long n;
3494 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3495 >            return 0;
3496 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3497 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3498 >    }
3499  
3500      /**
3501       * Performs the given action for each (key, value).
3502       *
3503 +     * @param parallelismThreshold the (estimated) number of elements
3504 +     * needed for this operation to be executed in parallel
3505       * @param action the action
3506 +     * @since 1.8
3507       */
3508 <    public void forEachSequentially
3509 <        (BiConsumer<? super K, ? super V> action) {
3508 >    public void forEach(long parallelismThreshold,
3509 >                        BiConsumer<? super K,? super V> action) {
3510          if (action == null) throw new NullPointerException();
3511 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3512 <        V v;
3513 <        while ((v = it.advance()) != null)
3246 <            action.accept(it.nextKey, v);
3511 >        new ForEachMappingTask<K,V>
3512 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3513 >             action).invoke();
3514      }
3515  
3516      /**
3517       * Performs the given action for each non-null transformation
3518       * of each (key, value).
3519       *
3520 +     * @param parallelismThreshold the (estimated) number of elements
3521 +     * needed for this operation to be executed in parallel
3522       * @param transformer a function returning the transformation
3523       * for an element, or null if there is no transformation (in
3524 <     * which case the action is not applied).
3524 >     * which case the action is not applied)
3525       * @param action the action
3526 +     * @param <U> the return type of the transformer
3527 +     * @since 1.8
3528       */
3529 <    public <U> void forEachSequentially
3530 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
3531 <         Consumer<? super U> action) {
3529 >    public <U> void forEach(long parallelismThreshold,
3530 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3531 >                            Consumer<? super U> action) {
3532          if (transformer == null || action == null)
3533              throw new NullPointerException();
3534 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3535 <        V v; U u;
3536 <        while ((v = it.advance()) != null) {
3266 <            if ((u = transformer.apply(it.nextKey, v)) != null)
3267 <                action.accept(u);
3268 <        }
3534 >        new ForEachTransformedMappingTask<K,V,U>
3535 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3536 >             transformer, action).invoke();
3537      }
3538  
3539      /**
3540       * Returns a non-null result from applying the given search
3541 <     * function on each (key, value), or null if none.
3541 >     * function on each (key, value), or null if none.  Upon
3542 >     * success, further element processing is suppressed and the
3543 >     * results of any other parallel invocations of the search
3544 >     * function are ignored.
3545       *
3546 +     * @param parallelismThreshold the (estimated) number of elements
3547 +     * needed for this operation to be executed in parallel
3548       * @param searchFunction a function returning a non-null
3549       * result on success, else null
3550 +     * @param <U> the return type of the search function
3551       * @return a non-null result from applying the given search
3552       * function on each (key, value), or null if none
3553 +     * @since 1.8
3554       */
3555 <    public <U> U searchSequentially
3556 <        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3555 >    public <U> U search(long parallelismThreshold,
3556 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3557          if (searchFunction == null) throw new NullPointerException();
3558 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3559 <        V v; U u;
3560 <        while ((v = it.advance()) != null) {
3286 <            if ((u = searchFunction.apply(it.nextKey, v)) != null)
3287 <                return u;
3288 <        }
3289 <        return null;
3558 >        return new SearchMappingsTask<K,V,U>
3559 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3560 >             searchFunction, new AtomicReference<U>()).invoke();
3561      }
3562  
3563      /**
# Line 3294 | Line 3565 | public class ConcurrentHashMap<K, V>
3565       * of all (key, value) pairs using the given reducer to
3566       * combine values, or null if none.
3567       *
3568 +     * @param parallelismThreshold the (estimated) number of elements
3569 +     * needed for this operation to be executed in parallel
3570       * @param transformer a function returning the transformation
3571       * for an element, or null if there is no transformation (in
3572 <     * which case it is not combined).
3572 >     * which case it is not combined)
3573       * @param reducer a commutative associative combining function
3574 +     * @param <U> the return type of the transformer
3575       * @return the result of accumulating the given transformation
3576       * of all (key, value) pairs
3577 +     * @since 1.8
3578       */
3579 <    public <U> U reduceSequentially
3580 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
3581 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
3579 >    public <U> U reduce(long parallelismThreshold,
3580 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3581 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3582          if (transformer == null || reducer == null)
3583              throw new NullPointerException();
3584 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3585 <        U r = null, u; V v;
3586 <        while ((v = it.advance()) != null) {
3312 <            if ((u = transformer.apply(it.nextKey, v)) != null)
3313 <                r = (r == null) ? u : reducer.apply(r, u);
3314 <        }
3315 <        return r;
3584 >        return new MapReduceMappingsTask<K,V,U>
3585 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3586 >             null, transformer, reducer).invoke();
3587      }
3588  
3589      /**
# Line 3320 | Line 3591 | public class ConcurrentHashMap<K, V>
3591       * of all (key, value) pairs using the given reducer to
3592       * combine values, and the given basis as an identity value.
3593       *
3594 +     * @param parallelismThreshold the (estimated) number of elements
3595 +     * needed for this operation to be executed in parallel
3596       * @param transformer a function returning the transformation
3597       * for an element
3598       * @param basis the identity (initial default value) for the reduction
3599       * @param reducer a commutative associative combining function
3600       * @return the result of accumulating the given transformation
3601       * of all (key, value) pairs
3602 +     * @since 1.8
3603       */
3604 <    public double reduceToDoubleSequentially
3605 <        (ToDoubleBiFunction<? super K, ? super V> transformer,
3606 <         double basis,
3607 <         DoubleBinaryOperator reducer) {
3604 >    public double reduceToDouble(long parallelismThreshold,
3605 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3606 >                                 double basis,
3607 >                                 DoubleBinaryOperator reducer) {
3608          if (transformer == null || reducer == null)
3609              throw new NullPointerException();
3610 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3611 <        double r = basis; V v;
3612 <        while ((v = it.advance()) != null)
3339 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3340 <        return r;
3610 >        return new MapReduceMappingsToDoubleTask<K,V>
3611 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3612 >             null, transformer, basis, reducer).invoke();
3613      }
3614  
3615      /**
# Line 3345 | Line 3617 | public class ConcurrentHashMap<K, V>
3617       * of all (key, value) pairs using the given reducer to
3618       * combine values, and the given basis as an identity value.
3619       *
3620 +     * @param parallelismThreshold the (estimated) number of elements
3621 +     * needed for this operation to be executed in parallel
3622       * @param transformer a function returning the transformation
3623       * for an element
3624       * @param basis the identity (initial default value) for the reduction
3625       * @param reducer a commutative associative combining function
3626       * @return the result of accumulating the given transformation
3627       * of all (key, value) pairs
3628 +     * @since 1.8
3629       */
3630 <    public long reduceToLongSequentially
3631 <        (ToLongBiFunction<? super K, ? super V> transformer,
3632 <         long basis,
3633 <         LongBinaryOperator reducer) {
3630 >    public long reduceToLong(long parallelismThreshold,
3631 >                             ToLongBiFunction<? super K, ? super V> transformer,
3632 >                             long basis,
3633 >                             LongBinaryOperator reducer) {
3634          if (transformer == null || reducer == null)
3635              throw new NullPointerException();
3636 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637 <        long r = basis; V v;
3638 <        while ((v = it.advance()) != null)
3364 <            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3365 <        return r;
3636 >        return new MapReduceMappingsToLongTask<K,V>
3637 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3638 >             null, transformer, basis, reducer).invoke();
3639      }
3640  
3641      /**
# Line 3370 | Line 3643 | public class ConcurrentHashMap<K, V>
3643       * of all (key, value) pairs using the given reducer to
3644       * combine values, and the given basis as an identity value.
3645       *
3646 +     * @param parallelismThreshold the (estimated) number of elements
3647 +     * needed for this operation to be executed in parallel
3648       * @param transformer a function returning the transformation
3649       * for an element
3650       * @param basis the identity (initial default value) for the reduction
3651       * @param reducer a commutative associative combining function
3652       * @return the result of accumulating the given transformation
3653       * of all (key, value) pairs
3654 +     * @since 1.8
3655       */
3656 <    public int reduceToIntSequentially
3657 <        (ToIntBiFunction<? super K, ? super V> transformer,
3658 <         int basis,
3659 <         IntBinaryOperator reducer) {
3656 >    public int reduceToInt(long parallelismThreshold,
3657 >                           ToIntBiFunction<? super K, ? super V> transformer,
3658 >                           int basis,
3659 >                           IntBinaryOperator reducer) {
3660          if (transformer == null || reducer == null)
3661              throw new NullPointerException();
3662 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3663 <        int r = basis; V v;
3664 <        while ((v = it.advance()) != null)
3389 <            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3390 <        return r;
3662 >        return new MapReduceMappingsToIntTask<K,V>
3663 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3664 >             null, transformer, basis, reducer).invoke();
3665      }
3666  
3667      /**
3668       * Performs the given action for each key.
3669       *
3670 +     * @param parallelismThreshold the (estimated) number of elements
3671 +     * needed for this operation to be executed in parallel
3672       * @param action the action
3673 +     * @since 1.8
3674       */
3675 <    public void forEachKeySequentially
3676 <        (Consumer<? super K> action) {
3675 >    public void forEachKey(long parallelismThreshold,
3676 >                           Consumer<? super K> action) {
3677          if (action == null) throw new NullPointerException();
3678 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3679 <        while (it.advance() != null)
3680 <            action.accept(it.nextKey);
3678 >        new ForEachKeyTask<K,V>
3679 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3680 >             action).invoke();
3681      }
3682  
3683      /**
3684       * Performs the given action for each non-null transformation
3685       * of each key.
3686       *
3687 +     * @param parallelismThreshold the (estimated) number of elements
3688 +     * needed for this operation to be executed in parallel
3689       * @param transformer a function returning the transformation
3690       * for an element, or null if there is no transformation (in
3691 <     * which case the action is not applied).
3691 >     * which case the action is not applied)
3692       * @param action the action
3693 +     * @param <U> the return type of the transformer
3694 +     * @since 1.8
3695       */
3696 <    public <U> void forEachKeySequentially
3697 <        (Function<? super K, ? extends U> transformer,
3698 <         Consumer<? super U> action) {
3696 >    public <U> void forEachKey(long parallelismThreshold,
3697 >                               Function<? super K, ? extends U> transformer,
3698 >                               Consumer<? super U> action) {
3699          if (transformer == null || action == null)
3700              throw new NullPointerException();
3701 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3702 <        U u;
3703 <        while (it.advance() != null) {
3423 <            if ((u = transformer.apply(it.nextKey)) != null)
3424 <                action.accept(u);
3425 <        }
3426 <        ForkJoinTasks.forEachKey
3427 <            (this, transformer, action).invoke();
3701 >        new ForEachTransformedKeyTask<K,V,U>
3702 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3703 >             transformer, action).invoke();
3704      }
3705  
3706      /**
3707       * Returns a non-null result from applying the given search
3708 <     * function on each key, or null if none.
3708 >     * function on each key, or null if none. Upon success,
3709 >     * further element processing is suppressed and the results of
3710 >     * any other parallel invocations of the search function are
3711 >     * ignored.
3712       *
3713 +     * @param parallelismThreshold the (estimated) number of elements
3714 +     * needed for this operation to be executed in parallel
3715       * @param searchFunction a function returning a non-null
3716       * result on success, else null
3717 +     * @param <U> the return type of the search function
3718       * @return a non-null result from applying the given search
3719       * function on each key, or null if none
3720 +     * @since 1.8
3721       */
3722 <    public <U> U searchKeysSequentially
3723 <        (Function<? super K, ? extends U> searchFunction) {
3724 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3725 <        U u;
3726 <        while (it.advance() != null) {
3727 <            if ((u = searchFunction.apply(it.nextKey)) != null)
3445 <                return u;
3446 <        }
3447 <        return null;
3722 >    public <U> U searchKeys(long parallelismThreshold,
3723 >                            Function<? super K, ? extends U> searchFunction) {
3724 >        if (searchFunction == null) throw new NullPointerException();
3725 >        return new SearchKeysTask<K,V,U>
3726 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3727 >             searchFunction, new AtomicReference<U>()).invoke();
3728      }
3729  
3730      /**
3731       * Returns the result of accumulating all keys using the given
3732       * reducer to combine values, or null if none.
3733       *
3734 +     * @param parallelismThreshold the (estimated) number of elements
3735 +     * needed for this operation to be executed in parallel
3736       * @param reducer a commutative associative combining function
3737       * @return the result of accumulating all keys using the given
3738       * reducer to combine values, or null if none
3739 +     * @since 1.8
3740       */
3741 <    public K reduceKeysSequentially
3742 <        (BiFunction<? super K, ? super K, ? extends K> reducer) {
3741 >    public K reduceKeys(long parallelismThreshold,
3742 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3743          if (reducer == null) throw new NullPointerException();
3744 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3745 <        K r = null;
3746 <        while (it.advance() != null) {
3464 <            K u = it.nextKey;
3465 <            r = (r == null) ? u : reducer.apply(r, u);
3466 <        }
3467 <        return r;
3744 >        return new ReduceKeysTask<K,V>
3745 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3746 >             null, reducer).invoke();
3747      }
3748  
3749      /**
# Line 3472 | Line 3751 | public class ConcurrentHashMap<K, V>
3751       * of all keys using the given reducer to combine values, or
3752       * null if none.
3753       *
3754 +     * @param parallelismThreshold the (estimated) number of elements
3755 +     * needed for this operation to be executed in parallel
3756       * @param transformer a function returning the transformation
3757       * for an element, or null if there is no transformation (in
3758 <     * which case it is not combined).
3758 >     * which case it is not combined)
3759       * @param reducer a commutative associative combining function
3760 +     * @param <U> the return type of the transformer
3761       * @return the result of accumulating the given transformation
3762       * of all keys
3763 +     * @since 1.8
3764       */
3765 <    public <U> U reduceKeysSequentially
3766 <        (Function<? super K, ? extends U> transformer,
3765 >    public <U> U reduceKeys(long parallelismThreshold,
3766 >                            Function<? super K, ? extends U> transformer,
3767           BiFunction<? super U, ? super U, ? extends U> reducer) {
3768          if (transformer == null || reducer == null)
3769              throw new NullPointerException();
3770 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3771 <        U r = null, u;
3772 <        while (it.advance() != null) {
3490 <            if ((u = transformer.apply(it.nextKey)) != null)
3491 <                r = (r == null) ? u : reducer.apply(r, u);
3492 <        }
3493 <        return r;
3770 >        return new MapReduceKeysTask<K,V,U>
3771 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3772 >             null, transformer, reducer).invoke();
3773      }
3774  
3775      /**
# Line 3498 | Line 3777 | public class ConcurrentHashMap<K, V>
3777       * of all keys using the given reducer to combine values, and
3778       * the given basis as an identity value.
3779       *
3780 +     * @param parallelismThreshold the (estimated) number of elements
3781 +     * needed for this operation to be executed in parallel
3782       * @param transformer a function returning the transformation
3783       * for an element
3784       * @param basis the identity (initial default value) for the reduction
3785       * @param reducer a commutative associative combining function
3786       * @return the result of accumulating the given transformation
3787       * of all keys
3788 +     * @since 1.8
3789       */
3790 <    public double reduceKeysToDoubleSequentially
3791 <        (ToDoubleFunction<? super K> transformer,
3792 <         double basis,
3793 <         DoubleBinaryOperator reducer) {
3790 >    public double reduceKeysToDouble(long parallelismThreshold,
3791 >                                     ToDoubleFunction<? super K> transformer,
3792 >                                     double basis,
3793 >                                     DoubleBinaryOperator reducer) {
3794          if (transformer == null || reducer == null)
3795              throw new NullPointerException();
3796 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3797 <        double r = basis;
3798 <        while (it.advance() != null)
3517 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3518 <        return r;
3796 >        return new MapReduceKeysToDoubleTask<K,V>
3797 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3798 >             null, transformer, basis, reducer).invoke();
3799      }
3800  
3801      /**
# Line 3523 | Line 3803 | public class ConcurrentHashMap<K, V>
3803       * of all keys using the given reducer to combine values, and
3804       * the given basis as an identity value.
3805       *
3806 +     * @param parallelismThreshold the (estimated) number of elements
3807 +     * needed for this operation to be executed in parallel
3808       * @param transformer a function returning the transformation
3809       * for an element
3810       * @param basis the identity (initial default value) for the reduction
3811       * @param reducer a commutative associative combining function
3812       * @return the result of accumulating the given transformation
3813       * of all keys
3814 +     * @since 1.8
3815       */
3816 <    public long reduceKeysToLongSequentially
3817 <        (ToLongFunction<? super K> transformer,
3818 <         long basis,
3819 <         LongBinaryOperator reducer) {
3816 >    public long reduceKeysToLong(long parallelismThreshold,
3817 >                                 ToLongFunction<? super K> transformer,
3818 >                                 long basis,
3819 >                                 LongBinaryOperator reducer) {
3820          if (transformer == null || reducer == null)
3821              throw new NullPointerException();
3822 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3823 <        long r = basis;
3824 <        while (it.advance() != null)
3542 <            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3543 <        return r;
3822 >        return new MapReduceKeysToLongTask<K,V>
3823 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3824 >             null, transformer, basis, reducer).invoke();
3825      }
3826  
3827      /**
# Line 3548 | Line 3829 | public class ConcurrentHashMap<K, V>
3829       * of all keys using the given reducer to combine values, and
3830       * the given basis as an identity value.
3831       *
3832 +     * @param parallelismThreshold the (estimated) number of elements
3833 +     * needed for this operation to be executed in parallel
3834       * @param transformer a function returning the transformation
3835       * for an element
3836       * @param basis the identity (initial default value) for the reduction
3837       * @param reducer a commutative associative combining function
3838       * @return the result of accumulating the given transformation
3839       * of all keys
3840 +     * @since 1.8
3841       */
3842 <    public int reduceKeysToIntSequentially
3843 <        (ToIntFunction<? super K> transformer,
3844 <         int basis,
3845 <         IntBinaryOperator reducer) {
3842 >    public int reduceKeysToInt(long parallelismThreshold,
3843 >                               ToIntFunction<? super K> transformer,
3844 >                               int basis,
3845 >                               IntBinaryOperator reducer) {
3846          if (transformer == null || reducer == null)
3847              throw new NullPointerException();
3848 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3849 <        int r = basis;
3850 <        while (it.advance() != null)
3567 <            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3568 <        return r;
3848 >        return new MapReduceKeysToIntTask<K,V>
3849 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3850 >             null, transformer, basis, reducer).invoke();
3851      }
3852  
3853      /**
3854       * Performs the given action for each value.
3855       *
3856 +     * @param parallelismThreshold the (estimated) number of elements
3857 +     * needed for this operation to be executed in parallel
3858       * @param action the action
3859 +     * @since 1.8
3860       */
3861 <    public void forEachValueSequentially(Consumer<? super V> action) {
3862 <        if (action == null) throw new NullPointerException();
3863 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3864 <        V v;
3865 <        while ((v = it.advance()) != null)
3866 <            action.accept(v);
3861 >    public void forEachValue(long parallelismThreshold,
3862 >                             Consumer<? super V> action) {
3863 >        if (action == null)
3864 >            throw new NullPointerException();
3865 >        new ForEachValueTask<K,V>
3866 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3867 >             action).invoke();
3868      }
3869  
3870      /**
3871       * Performs the given action for each non-null transformation
3872       * of each value.
3873       *
3874 +     * @param parallelismThreshold the (estimated) number of elements
3875 +     * needed for this operation to be executed in parallel
3876       * @param transformer a function returning the transformation
3877       * for an element, or null if there is no transformation (in
3878 <     * which case the action is not applied).
3878 >     * which case the action is not applied)
3879 >     * @param action the action
3880 >     * @param <U> the return type of the transformer
3881 >     * @since 1.8
3882       */
3883 <    public <U> void forEachValueSequentially
3884 <        (Function<? super V, ? extends U> transformer,
3885 <         Consumer<? super U> action) {
3883 >    public <U> void forEachValue(long parallelismThreshold,
3884 >                                 Function<? super V, ? extends U> transformer,
3885 >                                 Consumer<? super U> action) {
3886          if (transformer == null || action == null)
3887              throw new NullPointerException();
3888 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3889 <        V v; U u;
3890 <        while ((v = it.advance()) != null) {
3600 <            if ((u = transformer.apply(v)) != null)
3601 <                action.accept(u);
3602 <        }
3888 >        new ForEachTransformedValueTask<K,V,U>
3889 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3890 >             transformer, action).invoke();
3891      }
3892  
3893      /**
3894       * Returns a non-null result from applying the given search
3895 <     * function on each value, or null if none.
3895 >     * function on each value, or null if none.  Upon success,
3896 >     * further element processing is suppressed and the results of
3897 >     * any other parallel invocations of the search function are
3898 >     * ignored.
3899       *
3900 +     * @param parallelismThreshold the (estimated) number of elements
3901 +     * needed for this operation to be executed in parallel
3902       * @param searchFunction a function returning a non-null
3903       * result on success, else null
3904 +     * @param <U> the return type of the search function
3905       * @return a non-null result from applying the given search
3906       * function on each value, or null if none
3907 +     * @since 1.8
3908       */
3909 <    public <U> U searchValuesSequentially
3910 <        (Function<? super V, ? extends U> searchFunction) {
3909 >    public <U> U searchValues(long parallelismThreshold,
3910 >                              Function<? super V, ? extends U> searchFunction) {
3911          if (searchFunction == null) throw new NullPointerException();
3912 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3913 <        V v; U u;
3914 <        while ((v = it.advance()) != null) {
3620 <            if ((u = searchFunction.apply(v)) != null)
3621 <                return u;
3622 <        }
3623 <        return null;
3912 >        return new SearchValuesTask<K,V,U>
3913 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3914 >             searchFunction, new AtomicReference<U>()).invoke();
3915      }
3916  
3917      /**
3918       * Returns the result of accumulating all values using the
3919       * given reducer to combine values, or null if none.
3920       *
3921 +     * @param parallelismThreshold the (estimated) number of elements
3922 +     * needed for this operation to be executed in parallel
3923       * @param reducer a commutative associative combining function
3924       * @return the result of accumulating all values
3925 +     * @since 1.8
3926       */
3927 <    public V reduceValuesSequentially
3928 <        (BiFunction<? super V, ? super V, ? extends V> reducer) {
3927 >    public V reduceValues(long parallelismThreshold,
3928 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
3929          if (reducer == null) throw new NullPointerException();
3930 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3931 <        V r = null; V v;
3932 <        while ((v = it.advance()) != null)
3639 <            r = (r == null) ? v : reducer.apply(r, v);
3640 <        return r;
3930 >        return new ReduceValuesTask<K,V>
3931 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3932 >             null, reducer).invoke();
3933      }
3934  
3935      /**
# Line 3645 | Line 3937 | public class ConcurrentHashMap<K, V>
3937       * of all values using the given reducer to combine values, or
3938       * null if none.
3939       *
3940 +     * @param parallelismThreshold the (estimated) number of elements
3941 +     * needed for this operation to be executed in parallel
3942       * @param transformer a function returning the transformation
3943       * for an element, or null if there is no transformation (in
3944 <     * which case it is not combined).
3944 >     * which case it is not combined)
3945       * @param reducer a commutative associative combining function
3946 +     * @param <U> the return type of the transformer
3947       * @return the result of accumulating the given transformation
3948       * of all values
3949 +     * @since 1.8
3950       */
3951 <    public <U> U reduceValuesSequentially
3952 <        (Function<? super V, ? extends U> transformer,
3953 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
3951 >    public <U> U reduceValues(long parallelismThreshold,
3952 >                              Function<? super V, ? extends U> transformer,
3953 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
3954          if (transformer == null || reducer == null)
3955              throw new NullPointerException();
3956 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3957 <        U r = null, u; V v;
3958 <        while ((v = it.advance()) != null) {
3663 <            if ((u = transformer.apply(v)) != null)
3664 <                r = (r == null) ? u : reducer.apply(r, u);
3665 <        }
3666 <        return r;
3956 >        return new MapReduceValuesTask<K,V,U>
3957 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3958 >             null, transformer, reducer).invoke();
3959      }
3960  
3961      /**
# Line 3671 | Line 3963 | public class ConcurrentHashMap<K, V>
3963       * of all values using the given reducer to combine values,
3964       * and the given basis as an identity value.
3965       *
3966 +     * @param parallelismThreshold the (estimated) number of elements
3967 +     * needed for this operation to be executed in parallel
3968       * @param transformer a function returning the transformation
3969       * for an element
3970       * @param basis the identity (initial default value) for the reduction
3971       * @param reducer a commutative associative combining function
3972       * @return the result of accumulating the given transformation
3973       * of all values
3974 +     * @since 1.8
3975       */
3976 <    public double reduceValuesToDoubleSequentially
3977 <        (ToDoubleFunction<? super V> transformer,
3978 <         double basis,
3979 <         DoubleBinaryOperator reducer) {
3976 >    public double reduceValuesToDouble(long parallelismThreshold,
3977 >                                       ToDoubleFunction<? super V> transformer,
3978 >                                       double basis,
3979 >                                       DoubleBinaryOperator reducer) {
3980          if (transformer == null || reducer == null)
3981              throw new NullPointerException();
3982 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3983 <        double r = basis; V v;
3984 <        while ((v = it.advance()) != null)
3690 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3691 <        return r;
3982 >        return new MapReduceValuesToDoubleTask<K,V>
3983 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3984 >             null, transformer, basis, reducer).invoke();
3985      }
3986  
3987      /**
# Line 3696 | Line 3989 | public class ConcurrentHashMap<K, V>
3989       * of all values using the given reducer to combine values,
3990       * and the given basis as an identity value.
3991       *
3992 +     * @param parallelismThreshold the (estimated) number of elements
3993 +     * needed for this operation to be executed in parallel
3994       * @param transformer a function returning the transformation
3995       * for an element
3996       * @param basis the identity (initial default value) for the reduction
3997       * @param reducer a commutative associative combining function
3998       * @return the result of accumulating the given transformation
3999       * of all values
4000 +     * @since 1.8
4001       */
4002 <    public long reduceValuesToLongSequentially
4003 <        (ToLongFunction<? super V> transformer,
4004 <         long basis,
4005 <         LongBinaryOperator reducer) {
4002 >    public long reduceValuesToLong(long parallelismThreshold,
4003 >                                   ToLongFunction<? super V> transformer,
4004 >                                   long basis,
4005 >                                   LongBinaryOperator reducer) {
4006          if (transformer == null || reducer == null)
4007              throw new NullPointerException();
4008 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4009 <        long r = basis; V v;
4010 <        while ((v = it.advance()) != null)
3715 <            r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3716 <        return r;
4008 >        return new MapReduceValuesToLongTask<K,V>
4009 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4010 >             null, transformer, basis, reducer).invoke();
4011      }
4012  
4013      /**
# Line 3721 | Line 4015 | public class ConcurrentHashMap<K, V>
4015       * of all values using the given reducer to combine values,
4016       * and the given basis as an identity value.
4017       *
4018 +     * @param parallelismThreshold the (estimated) number of elements
4019 +     * needed for this operation to be executed in parallel
4020       * @param transformer a function returning the transformation
4021       * for an element
4022       * @param basis the identity (initial default value) for the reduction
4023       * @param reducer a commutative associative combining function
4024       * @return the result of accumulating the given transformation
4025       * of all values
4026 +     * @since 1.8
4027       */
4028 <    public int reduceValuesToIntSequentially
4029 <        (ToIntFunction<? super V> transformer,
4030 <         int basis,
4031 <         IntBinaryOperator reducer) {
4028 >    public int reduceValuesToInt(long parallelismThreshold,
4029 >                                 ToIntFunction<? super V> transformer,
4030 >                                 int basis,
4031 >                                 IntBinaryOperator reducer) {
4032          if (transformer == null || reducer == null)
4033              throw new NullPointerException();
4034 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4035 <        int r = basis; V v;
4036 <        while ((v = it.advance()) != null)
3740 <            r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3741 <        return r;
4034 >        return new MapReduceValuesToIntTask<K,V>
4035 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4036 >             null, transformer, basis, reducer).invoke();
4037      }
4038  
4039      /**
4040       * Performs the given action for each entry.
4041       *
4042 +     * @param parallelismThreshold the (estimated) number of elements
4043 +     * needed for this operation to be executed in parallel
4044       * @param action the action
4045 +     * @since 1.8
4046       */
4047 <    public void forEachEntrySequentially
4048 <        (Consumer<? super Map.Entry<K,V>> action) {
4047 >    public void forEachEntry(long parallelismThreshold,
4048 >                             Consumer<? super Map.Entry<K,V>> action) {
4049          if (action == null) throw new NullPointerException();
4050 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4051 <        V v;
3754 <        while ((v = it.advance()) != null)
3755 <            action.accept(entryFor(it.nextKey, v));
4050 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4051 >                                  action).invoke();
4052      }
4053  
4054      /**
4055       * Performs the given action for each non-null transformation
4056       * of each entry.
4057       *
4058 +     * @param parallelismThreshold the (estimated) number of elements
4059 +     * needed for this operation to be executed in parallel
4060       * @param transformer a function returning the transformation
4061       * for an element, or null if there is no transformation (in
4062 <     * which case the action is not applied).
4062 >     * which case the action is not applied)
4063       * @param action the action
4064 +     * @param <U> the return type of the transformer
4065 +     * @since 1.8
4066       */
4067 <    public <U> void forEachEntrySequentially
4068 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4069 <         Consumer<? super U> action) {
4067 >    public <U> void forEachEntry(long parallelismThreshold,
4068 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4069 >                                 Consumer<? super U> action) {
4070          if (transformer == null || action == null)
4071              throw new NullPointerException();
4072 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4073 <        V v; U u;
4074 <        while ((v = it.advance()) != null) {
3775 <            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3776 <                action.accept(u);
3777 <        }
4072 >        new ForEachTransformedEntryTask<K,V,U>
4073 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4074 >             transformer, action).invoke();
4075      }
4076  
4077      /**
4078       * Returns a non-null result from applying the given search
4079 <     * function on each entry, or null if none.
4079 >     * function on each entry, or null if none.  Upon success,
4080 >     * further element processing is suppressed and the results of
4081 >     * any other parallel invocations of the search function are
4082 >     * ignored.
4083       *
4084 +     * @param parallelismThreshold the (estimated) number of elements
4085 +     * needed for this operation to be executed in parallel
4086       * @param searchFunction a function returning a non-null
4087       * result on success, else null
4088 +     * @param <U> the return type of the search function
4089       * @return a non-null result from applying the given search
4090       * function on each entry, or null if none
4091 +     * @since 1.8
4092       */
4093 <    public <U> U searchEntriesSequentially
4094 <        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4093 >    public <U> U searchEntries(long parallelismThreshold,
4094 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4095          if (searchFunction == null) throw new NullPointerException();
4096 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4097 <        V v; U u;
4098 <        while ((v = it.advance()) != null) {
3795 <            if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3796 <                return u;
3797 <        }
3798 <        return null;
4096 >        return new SearchEntriesTask<K,V,U>
4097 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4098 >             searchFunction, new AtomicReference<U>()).invoke();
4099      }
4100  
4101      /**
4102       * Returns the result of accumulating all entries using the
4103       * given reducer to combine values, or null if none.
4104       *
4105 +     * @param parallelismThreshold the (estimated) number of elements
4106 +     * needed for this operation to be executed in parallel
4107       * @param reducer a commutative associative combining function
4108       * @return the result of accumulating all entries
4109 +     * @since 1.8
4110       */
4111 <    public Map.Entry<K,V> reduceEntriesSequentially
4112 <        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4111 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4112 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4113          if (reducer == null) throw new NullPointerException();
4114 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4115 <        Map.Entry<K,V> r = null; V v;
4116 <        while ((v = it.advance()) != null) {
3814 <            Map.Entry<K,V> u = entryFor(it.nextKey, v);
3815 <            r = (r == null) ? u : reducer.apply(r, u);
3816 <        }
3817 <        return r;
4114 >        return new ReduceEntriesTask<K,V>
4115 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4116 >             null, reducer).invoke();
4117      }
4118  
4119      /**
# Line 3822 | Line 4121 | public class ConcurrentHashMap<K, V>
4121       * of all entries using the given reducer to combine values,
4122       * or null if none.
4123       *
4124 +     * @param parallelismThreshold the (estimated) number of elements
4125 +     * needed for this operation to be executed in parallel
4126       * @param transformer a function returning the transformation
4127       * for an element, or null if there is no transformation (in
4128 <     * which case it is not combined).
4128 >     * which case it is not combined)
4129       * @param reducer a commutative associative combining function
4130 +     * @param <U> the return type of the transformer
4131       * @return the result of accumulating the given transformation
4132       * of all entries
4133 +     * @since 1.8
4134       */
4135 <    public <U> U reduceEntriesSequentially
4136 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4137 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4135 >    public <U> U reduceEntries(long parallelismThreshold,
4136 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4137 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4138          if (transformer == null || reducer == null)
4139              throw new NullPointerException();
4140 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4141 <        U r = null, u; V v;
4142 <        while ((v = it.advance()) != null) {
3840 <            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3841 <                r = (r == null) ? u : reducer.apply(r, u);
3842 <        }
3843 <        return r;
4140 >        return new MapReduceEntriesTask<K,V,U>
4141 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4142 >             null, transformer, reducer).invoke();
4143      }
4144  
4145      /**
# Line 3848 | Line 4147 | public class ConcurrentHashMap<K, V>
4147       * of all entries using the given reducer to combine values,
4148       * and the given basis as an identity value.
4149       *
4150 +     * @param parallelismThreshold the (estimated) number of elements
4151 +     * needed for this operation to be executed in parallel
4152       * @param transformer a function returning the transformation
4153       * for an element
4154       * @param basis the identity (initial default value) for the reduction
4155       * @param reducer a commutative associative combining function
4156       * @return the result of accumulating the given transformation
4157       * of all entries
4158 +     * @since 1.8
4159       */
4160 <    public double reduceEntriesToDoubleSequentially
4161 <        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4162 <         double basis,
4163 <         DoubleBinaryOperator reducer) {
4160 >    public double reduceEntriesToDouble(long parallelismThreshold,
4161 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4162 >                                        double basis,
4163 >                                        DoubleBinaryOperator reducer) {
4164          if (transformer == null || reducer == null)
4165              throw new NullPointerException();
4166 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4167 <        double r = basis; V v;
4168 <        while ((v = it.advance()) != null)
3867 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3868 <        return r;
4166 >        return new MapReduceEntriesToDoubleTask<K,V>
4167 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4168 >             null, transformer, basis, reducer).invoke();
4169      }
4170  
4171      /**
# Line 3873 | Line 4173 | public class ConcurrentHashMap<K, V>
4173       * of all entries using the given reducer to combine values,
4174       * and the given basis as an identity value.
4175       *
4176 +     * @param parallelismThreshold the (estimated) number of elements
4177 +     * needed for this operation to be executed in parallel
4178       * @param transformer a function returning the transformation
4179       * for an element
4180       * @param basis the identity (initial default value) for the reduction
4181       * @param reducer a commutative associative combining function
4182       * @return the result of accumulating the given transformation
4183       * of all entries
4184 +     * @since 1.8
4185       */
4186 <    public long reduceEntriesToLongSequentially
4187 <        (ToLongFunction<Map.Entry<K,V>> transformer,
4188 <         long basis,
4189 <         LongBinaryOperator reducer) {
4186 >    public long reduceEntriesToLong(long parallelismThreshold,
4187 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4188 >                                    long basis,
4189 >                                    LongBinaryOperator reducer) {
4190          if (transformer == null || reducer == null)
4191              throw new NullPointerException();
4192 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4193 <        long r = basis; V v;
4194 <        while ((v = it.advance()) != null)
3892 <            r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3893 <        return r;
4192 >        return new MapReduceEntriesToLongTask<K,V>
4193 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4194 >             null, transformer, basis, reducer).invoke();
4195      }
4196  
4197      /**
# Line 3898 | Line 4199 | public class ConcurrentHashMap<K, V>
4199       * of all entries using the given reducer to combine values,
4200       * and the given basis as an identity value.
4201       *
4202 +     * @param parallelismThreshold the (estimated) number of elements
4203 +     * needed for this operation to be executed in parallel
4204       * @param transformer a function returning the transformation
4205       * for an element
4206       * @param basis the identity (initial default value) for the reduction
4207       * @param reducer a commutative associative combining function
4208       * @return the result of accumulating the given transformation
4209       * of all entries
4210 +     * @since 1.8
4211       */
4212 <    public int reduceEntriesToIntSequentially
4213 <        (ToIntFunction<Map.Entry<K,V>> transformer,
4214 <         int basis,
4215 <         IntBinaryOperator reducer) {
4212 >    public int reduceEntriesToInt(long parallelismThreshold,
4213 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4214 >                                  int basis,
4215 >                                  IntBinaryOperator reducer) {
4216          if (transformer == null || reducer == null)
4217              throw new NullPointerException();
4218 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4219 <        int r = basis; V v;
4220 <        while ((v = it.advance()) != null)
3917 <            r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3918 <        return r;
3919 <    }
3920 <
3921 <    // Parallel bulk operations
3922 <
3923 <    /**
3924 <     * Performs the given action for each (key, value).
3925 <     *
3926 <     * @param action the action
3927 <     */
3928 <    public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3929 <        ForkJoinTasks.forEach
3930 <            (this, action).invoke();
3931 <    }
3932 <
3933 <    /**
3934 <     * Performs the given action for each non-null transformation
3935 <     * of each (key, value).
3936 <     *
3937 <     * @param transformer a function returning the transformation
3938 <     * for an element, or null if there is no transformation (in
3939 <     * which case the action is not applied).
3940 <     * @param action the action
3941 <     */
3942 <    public <U> void forEachInParallel
3943 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
3944 <                            Consumer<? super U> action) {
3945 <        ForkJoinTasks.forEach
3946 <            (this, transformer, action).invoke();
3947 <    }
3948 <
3949 <    /**
3950 <     * Returns a non-null result from applying the given search
3951 <     * function on each (key, value), or null if none.  Upon
3952 <     * success, further element processing is suppressed and the
3953 <     * results of any other parallel invocations of the search
3954 <     * function are ignored.
3955 <     *
3956 <     * @param searchFunction a function returning a non-null
3957 <     * result on success, else null
3958 <     * @return a non-null result from applying the given search
3959 <     * function on each (key, value), or null if none
3960 <     */
3961 <    public <U> U searchInParallel
3962 <        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3963 <        return ForkJoinTasks.search
3964 <            (this, searchFunction).invoke();
3965 <    }
3966 <
3967 <    /**
3968 <     * Returns the result of accumulating the given transformation
3969 <     * of all (key, value) pairs using the given reducer to
3970 <     * combine values, or null if none.
3971 <     *
3972 <     * @param transformer a function returning the transformation
3973 <     * for an element, or null if there is no transformation (in
3974 <     * which case it is not combined).
3975 <     * @param reducer a commutative associative combining function
3976 <     * @return the result of accumulating the given transformation
3977 <     * of all (key, value) pairs
3978 <     */
3979 <    public <U> U reduceInParallel
3980 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
3981 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
3982 <        return ForkJoinTasks.reduce
3983 <            (this, transformer, reducer).invoke();
3984 <    }
3985 <
3986 <    /**
3987 <     * Returns the result of accumulating the given transformation
3988 <     * of all (key, value) pairs using the given reducer to
3989 <     * combine values, and the given basis as an identity value.
3990 <     *
3991 <     * @param transformer a function returning the transformation
3992 <     * for an element
3993 <     * @param basis the identity (initial default value) for the reduction
3994 <     * @param reducer a commutative associative combining function
3995 <     * @return the result of accumulating the given transformation
3996 <     * of all (key, value) pairs
3997 <     */
3998 <    public double reduceToDoubleInParallel
3999 <        (ToDoubleBiFunction<? super K, ? super V> transformer,
4000 <         double basis,
4001 <         DoubleBinaryOperator reducer) {
4002 <        return ForkJoinTasks.reduceToDouble
4003 <            (this, transformer, basis, reducer).invoke();
4004 <    }
4005 <
4006 <    /**
4007 <     * Returns the result of accumulating the given transformation
4008 <     * of all (key, value) pairs using the given reducer to
4009 <     * combine values, and the given basis as an identity value.
4010 <     *
4011 <     * @param transformer a function returning the transformation
4012 <     * for an element
4013 <     * @param basis the identity (initial default value) for the reduction
4014 <     * @param reducer a commutative associative combining function
4015 <     * @return the result of accumulating the given transformation
4016 <     * of all (key, value) pairs
4017 <     */
4018 <    public long reduceToLongInParallel
4019 <        (ToLongBiFunction<? super K, ? super V> transformer,
4020 <         long basis,
4021 <         LongBinaryOperator reducer) {
4022 <        return ForkJoinTasks.reduceToLong
4023 <            (this, transformer, basis, reducer).invoke();
4024 <    }
4025 <
4026 <    /**
4027 <     * Returns the result of accumulating the given transformation
4028 <     * of all (key, value) pairs using the given reducer to
4029 <     * combine values, and the given basis as an identity value.
4030 <     *
4031 <     * @param transformer a function returning the transformation
4032 <     * for an element
4033 <     * @param basis the identity (initial default value) for the reduction
4034 <     * @param reducer a commutative associative combining function
4035 <     * @return the result of accumulating the given transformation
4036 <     * of all (key, value) pairs
4037 <     */
4038 <    public int reduceToIntInParallel
4039 <        (ToIntBiFunction<? super K, ? super V> transformer,
4040 <         int basis,
4041 <         IntBinaryOperator reducer) {
4042 <        return ForkJoinTasks.reduceToInt
4043 <            (this, transformer, basis, reducer).invoke();
4044 <    }
4045 <
4046 <    /**
4047 <     * Performs the given action for each key.
4048 <     *
4049 <     * @param action the action
4050 <     */
4051 <    public void forEachKeyInParallel(Consumer<? super K> action) {
4052 <        ForkJoinTasks.forEachKey
4053 <            (this, action).invoke();
4054 <    }
4055 <
4056 <    /**
4057 <     * Performs the given action for each non-null transformation
4058 <     * of each key.
4059 <     *
4060 <     * @param transformer a function returning the transformation
4061 <     * for an element, or null if there is no transformation (in
4062 <     * which case the action is not applied).
4063 <     * @param action the action
4064 <     */
4065 <    public <U> void forEachKeyInParallel
4066 <        (Function<? super K, ? extends U> transformer,
4067 <         Consumer<? super U> action) {
4068 <        ForkJoinTasks.forEachKey
4069 <            (this, transformer, action).invoke();
4070 <    }
4071 <
4072 <    /**
4073 <     * Returns a non-null result from applying the given search
4074 <     * function on each key, or null if none. Upon success,
4075 <     * further element processing is suppressed and the results of
4076 <     * any other parallel invocations of the search function are
4077 <     * ignored.
4078 <     *
4079 <     * @param searchFunction a function returning a non-null
4080 <     * result on success, else null
4081 <     * @return a non-null result from applying the given search
4082 <     * function on each key, or null if none
4083 <     */
4084 <    public <U> U searchKeysInParallel
4085 <        (Function<? super K, ? extends U> searchFunction) {
4086 <        return ForkJoinTasks.searchKeys
4087 <            (this, searchFunction).invoke();
4088 <    }
4089 <
4090 <    /**
4091 <     * Returns the result of accumulating all keys using the given
4092 <     * reducer to combine values, or null if none.
4093 <     *
4094 <     * @param reducer a commutative associative combining function
4095 <     * @return the result of accumulating all keys using the given
4096 <     * reducer to combine values, or null if none
4097 <     */
4098 <    public K reduceKeysInParallel
4099 <        (BiFunction<? super K, ? super K, ? extends K> reducer) {
4100 <        return ForkJoinTasks.reduceKeys
4101 <            (this, reducer).invoke();
4102 <    }
4103 <
4104 <    /**
4105 <     * Returns the result of accumulating the given transformation
4106 <     * of all keys using the given reducer to combine values, or
4107 <     * null if none.
4108 <     *
4109 <     * @param transformer a function returning the transformation
4110 <     * for an element, or null if there is no transformation (in
4111 <     * which case it is not combined).
4112 <     * @param reducer a commutative associative combining function
4113 <     * @return the result of accumulating the given transformation
4114 <     * of all keys
4115 <     */
4116 <    public <U> U reduceKeysInParallel
4117 <        (Function<? super K, ? extends U> transformer,
4118 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4119 <        return ForkJoinTasks.reduceKeys
4120 <            (this, transformer, reducer).invoke();
4121 <    }
4122 <
4123 <    /**
4124 <     * Returns the result of accumulating the given transformation
4125 <     * of all keys using the given reducer to combine values, and
4126 <     * the given basis as an identity value.
4127 <     *
4128 <     * @param transformer a function returning the transformation
4129 <     * for an element
4130 <     * @param basis the identity (initial default value) for the reduction
4131 <     * @param reducer a commutative associative combining function
4132 <     * @return the result of accumulating the given transformation
4133 <     * of all keys
4134 <     */
4135 <    public double reduceKeysToDoubleInParallel
4136 <        (ToDoubleFunction<? super K> transformer,
4137 <         double basis,
4138 <         DoubleBinaryOperator reducer) {
4139 <        return ForkJoinTasks.reduceKeysToDouble
4140 <            (this, transformer, basis, reducer).invoke();
4141 <    }
4142 <
4143 <    /**
4144 <     * Returns the result of accumulating the given transformation
4145 <     * of all keys using the given reducer to combine values, and
4146 <     * the given basis as an identity value.
4147 <     *
4148 <     * @param transformer a function returning the transformation
4149 <     * for an element
4150 <     * @param basis the identity (initial default value) for the reduction
4151 <     * @param reducer a commutative associative combining function
4152 <     * @return the result of accumulating the given transformation
4153 <     * of all keys
4154 <     */
4155 <    public long reduceKeysToLongInParallel
4156 <        (ToLongFunction<? super K> transformer,
4157 <         long basis,
4158 <         LongBinaryOperator reducer) {
4159 <        return ForkJoinTasks.reduceKeysToLong
4160 <            (this, transformer, basis, reducer).invoke();
4161 <    }
4162 <
4163 <    /**
4164 <     * Returns the result of accumulating the given transformation
4165 <     * of all keys using the given reducer to combine values, and
4166 <     * the given basis as an identity value.
4167 <     *
4168 <     * @param transformer a function returning the transformation
4169 <     * for an element
4170 <     * @param basis the identity (initial default value) for the reduction
4171 <     * @param reducer a commutative associative combining function
4172 <     * @return the result of accumulating the given transformation
4173 <     * of all keys
4174 <     */
4175 <    public int reduceKeysToIntInParallel
4176 <        (ToIntFunction<? super K> transformer,
4177 <         int basis,
4178 <         IntBinaryOperator reducer) {
4179 <        return ForkJoinTasks.reduceKeysToInt
4180 <            (this, transformer, basis, reducer).invoke();
4181 <    }
4182 <
4183 <    /**
4184 <     * Performs the given action for each value.
4185 <     *
4186 <     * @param action the action
4187 <     */
4188 <    public void forEachValueInParallel(Consumer<? super V> action) {
4189 <        ForkJoinTasks.forEachValue
4190 <            (this, action).invoke();
4191 <    }
4192 <
4193 <    /**
4194 <     * Performs the given action for each non-null transformation
4195 <     * of each value.
4196 <     *
4197 <     * @param transformer a function returning the transformation
4198 <     * for an element, or null if there is no transformation (in
4199 <     * which case the action is not applied).
4200 <     */
4201 <    public <U> void forEachValueInParallel
4202 <        (Function<? super V, ? extends U> transformer,
4203 <         Consumer<? super U> action) {
4204 <        ForkJoinTasks.forEachValue
4205 <            (this, transformer, action).invoke();
4206 <    }
4207 <
4208 <    /**
4209 <     * Returns a non-null result from applying the given search
4210 <     * function on each value, or null if none.  Upon success,
4211 <     * further element processing is suppressed and the results of
4212 <     * any other parallel invocations of the search function are
4213 <     * ignored.
4214 <     *
4215 <     * @param searchFunction a function returning a non-null
4216 <     * result on success, else null
4217 <     * @return a non-null result from applying the given search
4218 <     * function on each value, or null if none
4219 <     */
4220 <    public <U> U searchValuesInParallel
4221 <        (Function<? super V, ? extends U> searchFunction) {
4222 <        return ForkJoinTasks.searchValues
4223 <            (this, searchFunction).invoke();
4224 <    }
4225 <
4226 <    /**
4227 <     * Returns the result of accumulating all values using the
4228 <     * given reducer to combine values, or null if none.
4229 <     *
4230 <     * @param reducer a commutative associative combining function
4231 <     * @return the result of accumulating all values
4232 <     */
4233 <    public V reduceValuesInParallel
4234 <        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4235 <        return ForkJoinTasks.reduceValues
4236 <            (this, reducer).invoke();
4237 <    }
4238 <
4239 <    /**
4240 <     * Returns the result of accumulating the given transformation
4241 <     * of all values using the given reducer to combine values, or
4242 <     * null if none.
4243 <     *
4244 <     * @param transformer a function returning the transformation
4245 <     * for an element, or null if there is no transformation (in
4246 <     * which case it is not combined).
4247 <     * @param reducer a commutative associative combining function
4248 <     * @return the result of accumulating the given transformation
4249 <     * of all values
4250 <     */
4251 <    public <U> U reduceValuesInParallel
4252 <        (Function<? super V, ? extends U> transformer,
4253 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4254 <        return ForkJoinTasks.reduceValues
4255 <            (this, transformer, reducer).invoke();
4256 <    }
4257 <
4258 <    /**
4259 <     * Returns the result of accumulating the given transformation
4260 <     * of all values using the given reducer to combine values,
4261 <     * and the given basis as an identity value.
4262 <     *
4263 <     * @param transformer a function returning the transformation
4264 <     * for an element
4265 <     * @param basis the identity (initial default value) for the reduction
4266 <     * @param reducer a commutative associative combining function
4267 <     * @return the result of accumulating the given transformation
4268 <     * of all values
4269 <     */
4270 <    public double reduceValuesToDoubleInParallel
4271 <        (ToDoubleFunction<? super V> transformer,
4272 <         double basis,
4273 <         DoubleBinaryOperator reducer) {
4274 <        return ForkJoinTasks.reduceValuesToDouble
4275 <            (this, transformer, basis, reducer).invoke();
4276 <    }
4277 <
4278 <    /**
4279 <     * Returns the result of accumulating the given transformation
4280 <     * of all values using the given reducer to combine values,
4281 <     * and the given basis as an identity value.
4282 <     *
4283 <     * @param transformer a function returning the transformation
4284 <     * for an element
4285 <     * @param basis the identity (initial default value) for the reduction
4286 <     * @param reducer a commutative associative combining function
4287 <     * @return the result of accumulating the given transformation
4288 <     * of all values
4289 <     */
4290 <    public long reduceValuesToLongInParallel
4291 <        (ToLongFunction<? super V> transformer,
4292 <         long basis,
4293 <         LongBinaryOperator reducer) {
4294 <        return ForkJoinTasks.reduceValuesToLong
4295 <            (this, transformer, basis, reducer).invoke();
4296 <    }
4297 <
4298 <    /**
4299 <     * Returns the result of accumulating the given transformation
4300 <     * of all values using the given reducer to combine values,
4301 <     * and the given basis as an identity value.
4302 <     *
4303 <     * @param transformer a function returning the transformation
4304 <     * for an element
4305 <     * @param basis the identity (initial default value) for the reduction
4306 <     * @param reducer a commutative associative combining function
4307 <     * @return the result of accumulating the given transformation
4308 <     * of all values
4309 <     */
4310 <    public int reduceValuesToIntInParallel
4311 <        (ToIntFunction<? super V> transformer,
4312 <         int basis,
4313 <         IntBinaryOperator reducer) {
4314 <        return ForkJoinTasks.reduceValuesToInt
4315 <            (this, transformer, basis, reducer).invoke();
4316 <    }
4317 <
4318 <    /**
4319 <     * Performs the given action for each entry.
4320 <     *
4321 <     * @param action the action
4322 <     */
4323 <    public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4324 <        ForkJoinTasks.forEachEntry
4325 <            (this, action).invoke();
4326 <    }
4327 <
4328 <    /**
4329 <     * Performs the given action for each non-null transformation
4330 <     * of each entry.
4331 <     *
4332 <     * @param transformer a function returning the transformation
4333 <     * for an element, or null if there is no transformation (in
4334 <     * which case the action is not applied).
4335 <     * @param action the action
4336 <     */
4337 <    public <U> void forEachEntryInParallel
4338 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4339 <         Consumer<? super U> action) {
4340 <        ForkJoinTasks.forEachEntry
4341 <            (this, transformer, action).invoke();
4342 <    }
4343 <
4344 <    /**
4345 <     * Returns a non-null result from applying the given search
4346 <     * function on each entry, or null if none.  Upon success,
4347 <     * further element processing is suppressed and the results of
4348 <     * any other parallel invocations of the search function are
4349 <     * ignored.
4350 <     *
4351 <     * @param searchFunction a function returning a non-null
4352 <     * result on success, else null
4353 <     * @return a non-null result from applying the given search
4354 <     * function on each entry, or null if none
4355 <     */
4356 <    public <U> U searchEntriesInParallel
4357 <        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4358 <        return ForkJoinTasks.searchEntries
4359 <            (this, searchFunction).invoke();
4360 <    }
4361 <
4362 <    /**
4363 <     * Returns the result of accumulating all entries using the
4364 <     * given reducer to combine values, or null if none.
4365 <     *
4366 <     * @param reducer a commutative associative combining function
4367 <     * @return the result of accumulating all entries
4368 <     */
4369 <    public Map.Entry<K,V> reduceEntriesInParallel
4370 <        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4371 <        return ForkJoinTasks.reduceEntries
4372 <            (this, reducer).invoke();
4373 <    }
4374 <
4375 <    /**
4376 <     * Returns the result of accumulating the given transformation
4377 <     * of all entries using the given reducer to combine values,
4378 <     * or null if none.
4379 <     *
4380 <     * @param transformer a function returning the transformation
4381 <     * for an element, or null if there is no transformation (in
4382 <     * which case it is not combined).
4383 <     * @param reducer a commutative associative combining function
4384 <     * @return the result of accumulating the given transformation
4385 <     * of all entries
4386 <     */
4387 <    public <U> U reduceEntriesInParallel
4388 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4389 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4390 <        return ForkJoinTasks.reduceEntries
4391 <            (this, transformer, reducer).invoke();
4392 <    }
4393 <
4394 <    /**
4395 <     * Returns the result of accumulating the given transformation
4396 <     * of all entries using the given reducer to combine values,
4397 <     * and the given basis as an identity value.
4398 <     *
4399 <     * @param transformer a function returning the transformation
4400 <     * for an element
4401 <     * @param basis the identity (initial default value) for the reduction
4402 <     * @param reducer a commutative associative combining function
4403 <     * @return the result of accumulating the given transformation
4404 <     * of all entries
4405 <     */
4406 <    public double reduceEntriesToDoubleInParallel
4407 <        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4408 <         double basis,
4409 <         DoubleBinaryOperator reducer) {
4410 <        return ForkJoinTasks.reduceEntriesToDouble
4411 <            (this, transformer, basis, reducer).invoke();
4412 <    }
4413 <
4414 <    /**
4415 <     * Returns the result of accumulating the given transformation
4416 <     * of all entries using the given reducer to combine values,
4417 <     * and the given basis as an identity value.
4418 <     *
4419 <     * @param transformer a function returning the transformation
4420 <     * for an element
4421 <     * @param basis the identity (initial default value) for the reduction
4422 <     * @param reducer a commutative associative combining function
4423 <     * @return the result of accumulating the given transformation
4424 <     * of all entries
4425 <     */
4426 <    public long reduceEntriesToLongInParallel
4427 <        (ToLongFunction<Map.Entry<K,V>> transformer,
4428 <         long basis,
4429 <         LongBinaryOperator reducer) {
4430 <        return ForkJoinTasks.reduceEntriesToLong
4431 <            (this, transformer, basis, reducer).invoke();
4432 <    }
4433 <
4434 <    /**
4435 <     * Returns the result of accumulating the given transformation
4436 <     * of all entries using the given reducer to combine values,
4437 <     * and the given basis as an identity value.
4438 <     *
4439 <     * @param transformer a function returning the transformation
4440 <     * for an element
4441 <     * @param basis the identity (initial default value) for the reduction
4442 <     * @param reducer a commutative associative combining function
4443 <     * @return the result of accumulating the given transformation
4444 <     * of all entries
4445 <     */
4446 <    public int reduceEntriesToIntInParallel
4447 <        (ToIntFunction<Map.Entry<K,V>> transformer,
4448 <         int basis,
4449 <         IntBinaryOperator reducer) {
4450 <        return ForkJoinTasks.reduceEntriesToInt
4451 <            (this, transformer, basis, reducer).invoke();
4218 >        return new MapReduceEntriesToIntTask<K,V>
4219 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4220 >             null, transformer, basis, reducer).invoke();
4221      }
4222  
4223  
# Line 4457 | Line 4226 | public class ConcurrentHashMap<K, V>
4226      /**
4227       * Base class for views.
4228       */
4229 <    abstract static class CHMView<K, V> implements java.io.Serializable {
4229 >    abstract static class CollectionView<K,V,E>
4230 >        implements Collection<E>, java.io.Serializable {
4231          private static final long serialVersionUID = 7249069246763182397L;
4232 <        final ConcurrentHashMap<K, V> map;
4233 <        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
4232 >        final ConcurrentHashMap<K,V> map;
4233 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4234  
4235          /**
4236           * Returns the map backing this view.
# Line 4469 | Line 4239 | public class ConcurrentHashMap<K, V>
4239           */
4240          public ConcurrentHashMap<K,V> getMap() { return map; }
4241  
4242 <        public final int size()                 { return map.size(); }
4243 <        public final boolean isEmpty()          { return map.isEmpty(); }
4244 <        public final void clear()               { map.clear(); }
4242 >        /**
4243 >         * Removes all of the elements from this view, by removing all
4244 >         * the mappings from the map backing this view.
4245 >         */
4246 >        public final void clear()      { map.clear(); }
4247 >        public final int size()        { return map.size(); }
4248 >        public final boolean isEmpty() { return map.isEmpty(); }
4249  
4250          // implementations below rely on concrete classes supplying these
4251 <        public abstract Iterator<?> iterator();
4251 >        // abstract methods
4252 >        /**
4253 >         * Returns a "weakly consistent" iterator that will never
4254 >         * throw {@link ConcurrentModificationException}, and
4255 >         * guarantees to traverse elements as they existed upon
4256 >         * construction of the iterator, and may (but is not
4257 >         * guaranteed to) reflect any modifications subsequent to
4258 >         * construction.
4259 >         */
4260 >        public abstract Iterator<E> iterator();
4261          public abstract boolean contains(Object o);
4262          public abstract boolean remove(Object o);
4263  
# Line 4482 | Line 4265 | public class ConcurrentHashMap<K, V>
4265  
4266          public final Object[] toArray() {
4267              long sz = map.mappingCount();
4268 <            if (sz > (long)(MAX_ARRAY_SIZE))
4268 >            if (sz > MAX_ARRAY_SIZE)
4269                  throw new OutOfMemoryError(oomeMsg);
4270              int n = (int)sz;
4271              Object[] r = new Object[n];
4272              int i = 0;
4273 <            Iterator<?> it = iterator();
4491 <            while (it.hasNext()) {
4273 >            for (E e : this) {
4274                  if (i == n) {
4275                      if (n >= MAX_ARRAY_SIZE)
4276                          throw new OutOfMemoryError(oomeMsg);
# Line 4498 | Line 4280 | public class ConcurrentHashMap<K, V>
4280                          n += (n >>> 1) + 1;
4281                      r = Arrays.copyOf(r, n);
4282                  }
4283 <                r[i++] = it.next();
4283 >                r[i++] = e;
4284              }
4285              return (i == n) ? r : Arrays.copyOf(r, i);
4286          }
4287  
4288 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4288 >        @SuppressWarnings("unchecked")
4289 >        public final <T> T[] toArray(T[] a) {
4290              long sz = map.mappingCount();
4291 <            if (sz > (long)(MAX_ARRAY_SIZE))
4291 >            if (sz > MAX_ARRAY_SIZE)
4292                  throw new OutOfMemoryError(oomeMsg);
4293              int m = (int)sz;
4294              T[] r = (a.length >= m) ? a :
# Line 4513 | Line 4296 | public class ConcurrentHashMap<K, V>
4296                  .newInstance(a.getClass().getComponentType(), m);
4297              int n = r.length;
4298              int i = 0;
4299 <            Iterator<?> it = iterator();
4517 <            while (it.hasNext()) {
4299 >            for (E e : this) {
4300                  if (i == n) {
4301                      if (n >= MAX_ARRAY_SIZE)
4302                          throw new OutOfMemoryError(oomeMsg);
# Line 4524 | Line 4306 | public class ConcurrentHashMap<K, V>
4306                          n += (n >>> 1) + 1;
4307                      r = Arrays.copyOf(r, n);
4308                  }
4309 <                r[i++] = (T)it.next();
4309 >                r[i++] = (T)e;
4310              }
4311              if (a == r && i < n) {
4312                  r[i] = null; // null-terminate
# Line 4533 | Line 4315 | public class ConcurrentHashMap<K, V>
4315              return (i == n) ? r : Arrays.copyOf(r, i);
4316          }
4317  
4318 <        public final int hashCode() {
4319 <            int h = 0;
4320 <            for (Iterator<?> it = iterator(); it.hasNext();)
4321 <                h += it.next().hashCode();
4322 <            return h;
4323 <        }
4324 <
4318 >        /**
4319 >         * Returns a string representation of this collection.
4320 >         * The string representation consists of the string representations
4321 >         * of the collection's elements in the order they are returned by
4322 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4323 >         * Adjacent elements are separated by the characters {@code ", "}
4324 >         * (comma and space).  Elements are converted to strings as by
4325 >         * {@link String#valueOf(Object)}.
4326 >         *
4327 >         * @return a string representation of this collection
4328 >         */
4329          public final String toString() {
4330              StringBuilder sb = new StringBuilder();
4331              sb.append('[');
4332 <            Iterator<?> it = iterator();
4332 >            Iterator<E> it = iterator();
4333              if (it.hasNext()) {
4334                  for (;;) {
4335                      Object e = it.next();
# Line 4558 | Line 4344 | public class ConcurrentHashMap<K, V>
4344  
4345          public final boolean containsAll(Collection<?> c) {
4346              if (c != this) {
4347 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4562 <                    Object e = it.next();
4347 >                for (Object e : c) {
4348                      if (e == null || !contains(e))
4349                          return false;
4350                  }
# Line 4569 | Line 4354 | public class ConcurrentHashMap<K, V>
4354  
4355          public final boolean removeAll(Collection<?> c) {
4356              boolean modified = false;
4357 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4357 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4358                  if (c.contains(it.next())) {
4359                      it.remove();
4360                      modified = true;
# Line 4580 | Line 4365 | public class ConcurrentHashMap<K, V>
4365  
4366          public final boolean retainAll(Collection<?> c) {
4367              boolean modified = false;
4368 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4368 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4369                  if (!c.contains(it.next())) {
4370                      it.remove();
4371                      modified = true;
# Line 4594 | Line 4379 | public class ConcurrentHashMap<K, V>
4379      /**
4380       * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4381       * which additions may optionally be enabled by mapping to a
4382 <     * common value.  This class cannot be directly instantiated. See
4383 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4384 <     * {@link #newKeySet(int)}.
4382 >     * common value.  This class cannot be directly instantiated.
4383 >     * See {@link #keySet() keySet()},
4384 >     * {@link #keySet(Object) keySet(V)},
4385 >     * {@link #newKeySet() newKeySet()},
4386 >     * {@link #newKeySet(int) newKeySet(int)}.
4387 >     *
4388 >     * @since 1.8
4389       */
4390 <    public static class KeySetView<K,V> extends CHMView<K,V>
4390 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4391          implements Set<K>, java.io.Serializable {
4392          private static final long serialVersionUID = 7249069246763182397L;
4393          private final V value;
4394 <        KeySetView(ConcurrentHashMap<K, V> map, V value) {  // non-public
4394 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4395              super(map);
4396              this.value = value;
4397          }
# Line 4612 | Line 4401 | public class ConcurrentHashMap<K, V>
4401           * or {@code null} if additions are not supported.
4402           *
4403           * @return the default mapped value for additions, or {@code null}
4404 <         * if not supported.
4404 >         * if not supported
4405           */
4406          public V getMappedValue() { return value; }
4407  
4408 <        // implement Set API
4409 <
4408 >        /**
4409 >         * {@inheritDoc}
4410 >         * @throws NullPointerException if the specified key is null
4411 >         */
4412          public boolean contains(Object o) { return map.containsKey(o); }
4622        public boolean remove(Object o)   { return map.remove(o) != null; }
4413  
4414          /**
4415 <         * Returns a "weakly consistent" iterator that will never
4416 <         * throw {@link ConcurrentModificationException}, and
4417 <         * guarantees to traverse elements as they existed upon
4418 <         * construction of the iterator, and may (but is not
4419 <         * guaranteed to) reflect any modifications subsequent to
4420 <         * construction.
4415 >         * Removes the key from this map view, by removing the key (and its
4416 >         * corresponding value) from the backing map.  This method does
4417 >         * nothing if the key is not in the map.
4418 >         *
4419 >         * @param  o the key to be removed from the backing map
4420 >         * @return {@code true} if the backing map contained the specified key
4421 >         * @throws NullPointerException if the specified key is null
4422 >         */
4423 >        public boolean remove(Object o) { return map.remove(o) != null; }
4424 >
4425 >        /**
4426 >         * @return an iterator over the keys of the backing map
4427 >         */
4428 >        public Iterator<K> iterator() {
4429 >            Node<K,V>[] t;
4430 >            ConcurrentHashMap<K,V> m = map;
4431 >            int f = (t = m.table) == null ? 0 : t.length;
4432 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4433 >        }
4434 >
4435 >        /**
4436 >         * Adds the specified key to this set view by mapping the key to
4437 >         * the default mapped value in the backing map, if defined.
4438           *
4439 <         * @return an iterator over the keys of this map
4439 >         * @param e key to be added
4440 >         * @return {@code true} if this set changed as a result of the call
4441 >         * @throws NullPointerException if the specified key is null
4442 >         * @throws UnsupportedOperationException if no default mapped value
4443 >         * for additions was provided
4444           */
4634        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4445          public boolean add(K e) {
4446              V v;
4447              if ((v = value) == null)
4448                  throw new UnsupportedOperationException();
4449 <            if (e == null)
4640 <                throw new NullPointerException();
4641 <            return map.internalPut(e, v, true) == null;
4449 >            return map.putVal(e, v, true) == null;
4450          }
4451 +
4452 +        /**
4453 +         * Adds all of the elements in the specified collection to this set,
4454 +         * as if by calling {@link #add} on each one.
4455 +         *
4456 +         * @param c the elements to be inserted into this set
4457 +         * @return {@code true} if this set changed as a result of the call
4458 +         * @throws NullPointerException if the collection or any of its
4459 +         * elements are {@code null}
4460 +         * @throws UnsupportedOperationException if no default mapped value
4461 +         * for additions was provided
4462 +         */
4463          public boolean addAll(Collection<? extends K> c) {
4464              boolean added = false;
4465              V v;
4466              if ((v = value) == null)
4467                  throw new UnsupportedOperationException();
4468              for (K e : c) {
4469 <                if (e == null)
4650 <                    throw new NullPointerException();
4651 <                if (map.internalPut(e, v, true) == null)
4469 >                if (map.putVal(e, v, true) == null)
4470                      added = true;
4471              }
4472              return added;
4473          }
4474 +
4475 +        public int hashCode() {
4476 +            int h = 0;
4477 +            for (K e : this)
4478 +                h += e.hashCode();
4479 +            return h;
4480 +        }
4481 +
4482          public boolean equals(Object o) {
4483              Set<?> c;
4484              return ((o instanceof Set) &&
# Line 4660 | Line 4486 | public class ConcurrentHashMap<K, V>
4486                       (containsAll(c) && c.containsAll(this))));
4487          }
4488  
4489 <        public Stream<K> stream() {
4490 <            return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4489 >        public Spliterator<K> spliterator() {
4490 >            Node<K,V>[] t;
4491 >            ConcurrentHashMap<K,V> m = map;
4492 >            long n = m.sumCount();
4493 >            int f = (t = m.table) == null ? 0 : t.length;
4494 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4495          }
4496 <        public Stream<K> parallelStream() {
4497 <            return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4498 <                                          0);
4496 >
4497 >        public void forEach(Consumer<? super K> action) {
4498 >            if (action == null) throw new NullPointerException();
4499 >            Node<K,V>[] t;
4500 >            if ((t = map.table) != null) {
4501 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4502 >                for (Node<K,V> p; (p = it.advance()) != null; )
4503 >                    action.accept(p.key);
4504 >            }
4505          }
4506      }
4507  
4508      /**
4509       * A view of a ConcurrentHashMap as a {@link Collection} of
4510       * values, in which additions are disabled. This class cannot be
4511 <     * directly instantiated. See {@link #values},
4676 <     *
4677 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4678 <     * that will never throw {@link ConcurrentModificationException},
4679 <     * and guarantees to traverse elements as they existed upon
4680 <     * construction of the iterator, and may (but is not guaranteed to)
4681 <     * reflect any modifications subsequent to construction.
4511 >     * directly instantiated. See {@link #values()}.
4512       */
4513 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4514 <        implements Collection<V> {
4513 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4514 >        implements Collection<V>, java.io.Serializable {
4515          private static final long serialVersionUID = 2249069246763182397L;
4516 <        ValuesView(ConcurrentHashMap<K, V> map)   { super(map); }
4517 <        public final boolean contains(Object o) { return map.containsValue(o); }
4516 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4517 >        public final boolean contains(Object o) {
4518 >            return map.containsValue(o);
4519 >        }
4520 >
4521          public final boolean remove(Object o) {
4522              if (o != null) {
4523 <                Iterator<V> it = new ValueIterator<K,V>(map);
4691 <                while (it.hasNext()) {
4523 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4524                      if (o.equals(it.next())) {
4525                          it.remove();
4526                          return true;
# Line 4698 | Line 4530 | public class ConcurrentHashMap<K, V>
4530              return false;
4531          }
4532  
4701        /**
4702         * Returns a "weakly consistent" iterator that will never
4703         * throw {@link ConcurrentModificationException}, and
4704         * guarantees to traverse elements as they existed upon
4705         * construction of the iterator, and may (but is not
4706         * guaranteed to) reflect any modifications subsequent to
4707         * construction.
4708         *
4709         * @return an iterator over the values of this map
4710         */
4533          public final Iterator<V> iterator() {
4534 <            return new ValueIterator<K,V>(map);
4534 >            ConcurrentHashMap<K,V> m = map;
4535 >            Node<K,V>[] t;
4536 >            int f = (t = m.table) == null ? 0 : t.length;
4537 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4538          }
4539 +
4540          public final boolean add(V e) {
4541              throw new UnsupportedOperationException();
4542          }
# Line 4718 | Line 4544 | public class ConcurrentHashMap<K, V>
4544              throw new UnsupportedOperationException();
4545          }
4546  
4547 <        public Stream<V> stream() {
4548 <            return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4547 >        public Spliterator<V> spliterator() {
4548 >            Node<K,V>[] t;
4549 >            ConcurrentHashMap<K,V> m = map;
4550 >            long n = m.sumCount();
4551 >            int f = (t = m.table) == null ? 0 : t.length;
4552 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4553          }
4554  
4555 <        public Stream<V> parallelStream() {
4556 <            return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4557 <                                          0);
4555 >        public void forEach(Consumer<? super V> action) {
4556 >            if (action == null) throw new NullPointerException();
4557 >            Node<K,V>[] t;
4558 >            if ((t = map.table) != null) {
4559 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4560 >                for (Node<K,V> p; (p = it.advance()) != null; )
4561 >                    action.accept(p.val);
4562 >            }
4563          }
4729
4564      }
4565  
4566      /**
4567       * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4568       * entries.  This class cannot be directly instantiated. See
4569 <     * {@link #entrySet}.
4569 >     * {@link #entrySet()}.
4570       */
4571 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4572 <        implements Set<Map.Entry<K,V>> {
4571 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4572 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4573          private static final long serialVersionUID = 2249069246763182397L;
4574 <        EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4575 <        public final boolean contains(Object o) {
4574 >        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4575 >
4576 >        public boolean contains(Object o) {
4577              Object k, v, r; Map.Entry<?,?> e;
4578              return ((o instanceof Map.Entry) &&
4579                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4746 | Line 4581 | public class ConcurrentHashMap<K, V>
4581                      (v = e.getValue()) != null &&
4582                      (v == r || v.equals(r)));
4583          }
4584 <        public final boolean remove(Object o) {
4584 >
4585 >        public boolean remove(Object o) {
4586              Object k, v; Map.Entry<?,?> e;
4587              return ((o instanceof Map.Entry) &&
4588                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4755 | Line 4591 | public class ConcurrentHashMap<K, V>
4591          }
4592  
4593          /**
4594 <         * Returns a "weakly consistent" iterator that will never
4759 <         * throw {@link ConcurrentModificationException}, and
4760 <         * guarantees to traverse elements as they existed upon
4761 <         * construction of the iterator, and may (but is not
4762 <         * guaranteed to) reflect any modifications subsequent to
4763 <         * construction.
4764 <         *
4765 <         * @return an iterator over the entries of this map
4594 >         * @return an iterator over the entries of the backing map
4595           */
4596 <        public final Iterator<Map.Entry<K,V>> iterator() {
4597 <            return new EntryIterator<K,V>(map);
4596 >        public Iterator<Map.Entry<K,V>> iterator() {
4597 >            ConcurrentHashMap<K,V> m = map;
4598 >            Node<K,V>[] t;
4599 >            int f = (t = m.table) == null ? 0 : t.length;
4600 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4601          }
4602  
4603 <        public final boolean add(Entry<K,V> e) {
4604 <            K key = e.getKey();
4773 <            V value = e.getValue();
4774 <            if (key == null || value == null)
4775 <                throw new NullPointerException();
4776 <            return map.internalPut(key, value, false) == null;
4603 >        public boolean add(Entry<K,V> e) {
4604 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4605          }
4606 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4606 >
4607 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4608              boolean added = false;
4609              for (Entry<K,V> e : c) {
4610                  if (add(e))
# Line 4783 | Line 4612 | public class ConcurrentHashMap<K, V>
4612              }
4613              return added;
4614          }
4615 <        public boolean equals(Object o) {
4615 >
4616 >        public final int hashCode() {
4617 >            int h = 0;
4618 >            Node<K,V>[] t;
4619 >            if ((t = map.table) != null) {
4620 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4621 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4622 >                    h += p.hashCode();
4623 >                }
4624 >            }
4625 >            return h;
4626 >        }
4627 >
4628 >        public final boolean equals(Object o) {
4629              Set<?> c;
4630              return ((o instanceof Set) &&
4631                      ((c = (Set<?>)o) == this ||
4632                       (containsAll(c) && c.containsAll(this))));
4633          }
4634  
4635 <        public Stream<Map.Entry<K,V>> stream() {
4636 <            return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4635 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4636 >            Node<K,V>[] t;
4637 >            ConcurrentHashMap<K,V> m = map;
4638 >            long n = m.sumCount();
4639 >            int f = (t = m.table) == null ? 0 : t.length;
4640 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4641          }
4642  
4643 <        public Stream<Map.Entry<K,V>> parallelStream() {
4644 <            return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4645 <                                          0);
4643 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4644 >            if (action == null) throw new NullPointerException();
4645 >            Node<K,V>[] t;
4646 >            if ((t = map.table) != null) {
4647 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4648 >                for (Node<K,V> p; (p = it.advance()) != null; )
4649 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4650 >            }
4651          }
4652 +
4653      }
4654  
4655 <    // ---------------------------------------------------------------------
4655 >    // -------------------------------------------------------
4656  
4657      /**
4658 <     * Predefined tasks for performing bulk parallel operations on
4659 <     * ConcurrentHashMaps. These tasks follow the forms and rules used
4808 <     * for bulk operations. Each method has the same name, but returns
4809 <     * a task rather than invoking it. These methods may be useful in
4810 <     * custom applications such as submitting a task without waiting
4811 <     * for completion, using a custom pool, or combining with other
4812 <     * tasks.
4658 >     * Base class for bulk tasks. Repeats some fields and code from
4659 >     * class Traverser, because we need to subclass CountedCompleter.
4660       */
4661 <    public static class ForkJoinTasks {
4662 <        private ForkJoinTasks() {}
4663 <
4664 <        /**
4665 <         * Returns a task that when invoked, performs the given
4666 <         * action for each (key, value)
4667 <         *
4668 <         * @param map the map
4669 <         * @param action the action
4670 <         * @return the task
4671 <         */
4672 <        public static <K,V> ForkJoinTask<Void> forEach
4673 <            (ConcurrentHashMap<K,V> map,
4674 <             BiConsumer<? super K, ? super V> action) {
4675 <            if (action == null) throw new NullPointerException();
4676 <            return new ForEachMappingTask<K,V>(map, null, -1, action);
4677 <        }
4678 <
4679 <        /**
4680 <         * Returns a task that when invoked, performs the given
4681 <         * action for each non-null transformation of each (key, value)
4835 <         *
4836 <         * @param map the map
4837 <         * @param transformer a function returning the transformation
4838 <         * for an element, or null if there is no transformation (in
4839 <         * which case the action is not applied)
4840 <         * @param action the action
4841 <         * @return the task
4842 <         */
4843 <        public static <K,V,U> ForkJoinTask<Void> forEach
4844 <            (ConcurrentHashMap<K,V> map,
4845 <             BiFunction<? super K, ? super V, ? extends U> transformer,
4846 <             Consumer<? super U> action) {
4847 <            if (transformer == null || action == null)
4848 <                throw new NullPointerException();
4849 <            return new ForEachTransformedMappingTask<K,V,U>
4850 <                (map, null, -1, transformer, action);
4851 <        }
4852 <
4853 <        /**
4854 <         * Returns a task that when invoked, returns a non-null result
4855 <         * from applying the given search function on each (key,
4856 <         * value), or null if none. Upon success, further element
4857 <         * processing is suppressed and the results of any other
4858 <         * parallel invocations of the search function are ignored.
4859 <         *
4860 <         * @param map the map
4861 <         * @param searchFunction a function returning a non-null
4862 <         * result on success, else null
4863 <         * @return the task
4864 <         */
4865 <        public static <K,V,U> ForkJoinTask<U> search
4866 <            (ConcurrentHashMap<K,V> map,
4867 <             BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4868 <            if (searchFunction == null) throw new NullPointerException();
4869 <            return new SearchMappingsTask<K,V,U>
4870 <                (map, null, -1, searchFunction,
4871 <                 new AtomicReference<U>());
4872 <        }
4873 <
4874 <        /**
4875 <         * Returns a task that when invoked, returns the result of
4876 <         * accumulating the given transformation of all (key, value) pairs
4877 <         * using the given reducer to combine values, or null if none.
4878 <         *
4879 <         * @param map the map
4880 <         * @param transformer a function returning the transformation
4881 <         * for an element, or null if there is no transformation (in
4882 <         * which case it is not combined).
4883 <         * @param reducer a commutative associative combining function
4884 <         * @return the task
4885 <         */
4886 <        public static <K,V,U> ForkJoinTask<U> reduce
4887 <            (ConcurrentHashMap<K,V> map,
4888 <             BiFunction<? super K, ? super V, ? extends U> transformer,
4889 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
4890 <            if (transformer == null || reducer == null)
4891 <                throw new NullPointerException();
4892 <            return new MapReduceMappingsTask<K,V,U>
4893 <                (map, null, -1, null, transformer, reducer);
4894 <        }
4895 <
4896 <        /**
4897 <         * Returns a task that when invoked, returns the result of
4898 <         * accumulating the given transformation of all (key, value) pairs
4899 <         * using the given reducer to combine values, and the given
4900 <         * basis as an identity value.
4901 <         *
4902 <         * @param map the map
4903 <         * @param transformer a function returning the transformation
4904 <         * for an element
4905 <         * @param basis the identity (initial default value) for the reduction
4906 <         * @param reducer a commutative associative combining function
4907 <         * @return the task
4908 <         */
4909 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4910 <            (ConcurrentHashMap<K,V> map,
4911 <             ToDoubleBiFunction<? super K, ? super V> transformer,
4912 <             double basis,
4913 <             DoubleBinaryOperator reducer) {
4914 <            if (transformer == null || reducer == null)
4915 <                throw new NullPointerException();
4916 <            return new MapReduceMappingsToDoubleTask<K,V>
4917 <                (map, null, -1, null, transformer, basis, reducer);
4918 <        }
4919 <
4920 <        /**
4921 <         * Returns a task that when invoked, returns the result of
4922 <         * accumulating the given transformation of all (key, value) pairs
4923 <         * using the given reducer to combine values, and the given
4924 <         * basis as an identity value.
4925 <         *
4926 <         * @param map the map
4927 <         * @param transformer a function returning the transformation
4928 <         * for an element
4929 <         * @param basis the identity (initial default value) for the reduction
4930 <         * @param reducer a commutative associative combining function
4931 <         * @return the task
4932 <         */
4933 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4934 <            (ConcurrentHashMap<K,V> map,
4935 <             ToLongBiFunction<? super K, ? super V> transformer,
4936 <             long basis,
4937 <             LongBinaryOperator reducer) {
4938 <            if (transformer == null || reducer == null)
4939 <                throw new NullPointerException();
4940 <            return new MapReduceMappingsToLongTask<K,V>
4941 <                (map, null, -1, null, transformer, basis, reducer);
4942 <        }
4943 <
4944 <        /**
4945 <         * Returns a task that when invoked, returns the result of
4946 <         * accumulating the given transformation of all (key, value) pairs
4947 <         * using the given reducer to combine values, and the given
4948 <         * basis as an identity value.
4949 <         *
4950 <         * @param transformer a function returning the transformation
4951 <         * for an element
4952 <         * @param basis the identity (initial default value) for the reduction
4953 <         * @param reducer a commutative associative combining function
4954 <         * @return the task
4955 <         */
4956 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4957 <            (ConcurrentHashMap<K,V> map,
4958 <             ToIntBiFunction<? super K, ? super V> transformer,
4959 <             int basis,
4960 <             IntBinaryOperator reducer) {
4961 <            if (transformer == null || reducer == null)
4962 <                throw new NullPointerException();
4963 <            return new MapReduceMappingsToIntTask<K,V>
4964 <                (map, null, -1, null, transformer, basis, reducer);
4965 <        }
4966 <
4967 <        /**
4968 <         * Returns a task that when invoked, performs the given action
4969 <         * for each key.
4970 <         *
4971 <         * @param map the map
4972 <         * @param action the action
4973 <         * @return the task
4974 <         */
4975 <        public static <K,V> ForkJoinTask<Void> forEachKey
4976 <            (ConcurrentHashMap<K,V> map,
4977 <             Consumer<? super K> action) {
4978 <            if (action == null) throw new NullPointerException();
4979 <            return new ForEachKeyTask<K,V>(map, null, -1, action);
4980 <        }
4981 <
4982 <        /**
4983 <         * Returns a task that when invoked, performs the given action
4984 <         * for each non-null transformation of each key.
4985 <         *
4986 <         * @param map the map
4987 <         * @param transformer a function returning the transformation
4988 <         * for an element, or null if there is no transformation (in
4989 <         * which case the action is not applied)
4990 <         * @param action the action
4991 <         * @return the task
4992 <         */
4993 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4994 <            (ConcurrentHashMap<K,V> map,
4995 <             Function<? super K, ? extends U> transformer,
4996 <             Consumer<? super U> action) {
4997 <            if (transformer == null || action == null)
4998 <                throw new NullPointerException();
4999 <            return new ForEachTransformedKeyTask<K,V,U>
5000 <                (map, null, -1, transformer, action);
5001 <        }
5002 <
5003 <        /**
5004 <         * Returns a task that when invoked, returns a non-null result
5005 <         * from applying the given search function on each key, or
5006 <         * null if none.  Upon success, further element processing is
5007 <         * suppressed and the results of any other parallel
5008 <         * invocations of the search function are ignored.
5009 <         *
5010 <         * @param map the map
5011 <         * @param searchFunction a function returning a non-null
5012 <         * result on success, else null
5013 <         * @return the task
5014 <         */
5015 <        public static <K,V,U> ForkJoinTask<U> searchKeys
5016 <            (ConcurrentHashMap<K,V> map,
5017 <             Function<? super K, ? extends U> searchFunction) {
5018 <            if (searchFunction == null) throw new NullPointerException();
5019 <            return new SearchKeysTask<K,V,U>
5020 <                (map, null, -1, searchFunction,
5021 <                 new AtomicReference<U>());
5022 <        }
5023 <
5024 <        /**
5025 <         * Returns a task that when invoked, returns the result of
5026 <         * accumulating all keys using the given reducer to combine
5027 <         * values, or null if none.
5028 <         *
5029 <         * @param map the map
5030 <         * @param reducer a commutative associative combining function
5031 <         * @return the task
5032 <         */
5033 <        public static <K,V> ForkJoinTask<K> reduceKeys
5034 <            (ConcurrentHashMap<K,V> map,
5035 <             BiFunction<? super K, ? super K, ? extends K> reducer) {
5036 <            if (reducer == null) throw new NullPointerException();
5037 <            return new ReduceKeysTask<K,V>
5038 <                (map, null, -1, null, reducer);
5039 <        }
5040 <
5041 <        /**
5042 <         * Returns a task that when invoked, returns the result of
5043 <         * accumulating the given transformation of all keys using the given
5044 <         * reducer to combine values, or null if none.
5045 <         *
5046 <         * @param map the map
5047 <         * @param transformer a function returning the transformation
5048 <         * for an element, or null if there is no transformation (in
5049 <         * which case it is not combined).
5050 <         * @param reducer a commutative associative combining function
5051 <         * @return the task
5052 <         */
5053 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
5054 <            (ConcurrentHashMap<K,V> map,
5055 <             Function<? super K, ? extends U> transformer,
5056 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5057 <            if (transformer == null || reducer == null)
5058 <                throw new NullPointerException();
5059 <            return new MapReduceKeysTask<K,V,U>
5060 <                (map, null, -1, null, transformer, reducer);
5061 <        }
5062 <
5063 <        /**
5064 <         * Returns a task that when invoked, returns the result of
5065 <         * accumulating the given transformation of all keys using the given
5066 <         * reducer to combine values, and the given basis as an
5067 <         * identity value.
5068 <         *
5069 <         * @param map the map
5070 <         * @param transformer a function returning the transformation
5071 <         * for an element
5072 <         * @param basis the identity (initial default value) for the reduction
5073 <         * @param reducer a commutative associative combining function
5074 <         * @return the task
5075 <         */
5076 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5077 <            (ConcurrentHashMap<K,V> map,
5078 <             ToDoubleFunction<? super K> transformer,
5079 <             double basis,
5080 <             DoubleBinaryOperator reducer) {
5081 <            if (transformer == null || reducer == null)
5082 <                throw new NullPointerException();
5083 <            return new MapReduceKeysToDoubleTask<K,V>
5084 <                (map, null, -1, null, transformer, basis, reducer);
5085 <        }
5086 <
5087 <        /**
5088 <         * Returns a task that when invoked, returns the result of
5089 <         * accumulating the given transformation of all keys using the given
5090 <         * reducer to combine values, and the given basis as an
5091 <         * identity value.
5092 <         *
5093 <         * @param map the map
5094 <         * @param transformer a function returning the transformation
5095 <         * for an element
5096 <         * @param basis the identity (initial default value) for the reduction
5097 <         * @param reducer a commutative associative combining function
5098 <         * @return the task
5099 <         */
5100 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5101 <            (ConcurrentHashMap<K,V> map,
5102 <             ToLongFunction<? super K> transformer,
5103 <             long basis,
5104 <             LongBinaryOperator reducer) {
5105 <            if (transformer == null || reducer == null)
5106 <                throw new NullPointerException();
5107 <            return new MapReduceKeysToLongTask<K,V>
5108 <                (map, null, -1, null, transformer, basis, reducer);
5109 <        }
5110 <
5111 <        /**
5112 <         * Returns a task that when invoked, returns the result of
5113 <         * accumulating the given transformation of all keys using the given
5114 <         * reducer to combine values, and the given basis as an
5115 <         * identity value.
5116 <         *
5117 <         * @param map the map
5118 <         * @param transformer a function returning the transformation
5119 <         * for an element
5120 <         * @param basis the identity (initial default value) for the reduction
5121 <         * @param reducer a commutative associative combining function
5122 <         * @return the task
5123 <         */
5124 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5125 <            (ConcurrentHashMap<K,V> map,
5126 <             ToIntFunction<? super K> transformer,
5127 <             int basis,
5128 <             IntBinaryOperator reducer) {
5129 <            if (transformer == null || reducer == null)
5130 <                throw new NullPointerException();
5131 <            return new MapReduceKeysToIntTask<K,V>
5132 <                (map, null, -1, null, transformer, basis, reducer);
5133 <        }
5134 <
5135 <        /**
5136 <         * Returns a task that when invoked, performs the given action
5137 <         * for each value.
5138 <         *
5139 <         * @param map the map
5140 <         * @param action the action
5141 <         */
5142 <        public static <K,V> ForkJoinTask<Void> forEachValue
5143 <            (ConcurrentHashMap<K,V> map,
5144 <             Consumer<? super V> action) {
5145 <            if (action == null) throw new NullPointerException();
5146 <            return new ForEachValueTask<K,V>(map, null, -1, action);
5147 <        }
5148 <
5149 <        /**
5150 <         * Returns a task that when invoked, performs the given action
5151 <         * for each non-null transformation of each value.
5152 <         *
5153 <         * @param map the map
5154 <         * @param transformer a function returning the transformation
5155 <         * for an element, or null if there is no transformation (in
5156 <         * which case the action is not applied)
5157 <         * @param action the action
5158 <         */
5159 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
5160 <            (ConcurrentHashMap<K,V> map,
5161 <             Function<? super V, ? extends U> transformer,
5162 <             Consumer<? super U> action) {
5163 <            if (transformer == null || action == null)
5164 <                throw new NullPointerException();
5165 <            return new ForEachTransformedValueTask<K,V,U>
5166 <                (map, null, -1, transformer, action);
5167 <        }
5168 <
5169 <        /**
5170 <         * Returns a task that when invoked, returns a non-null result
5171 <         * from applying the given search function on each value, or
5172 <         * null if none.  Upon success, further element processing is
5173 <         * suppressed and the results of any other parallel
5174 <         * invocations of the search function are ignored.
5175 <         *
5176 <         * @param map the map
5177 <         * @param searchFunction a function returning a non-null
5178 <         * result on success, else null
5179 <         * @return the task
5180 <         */
5181 <        public static <K,V,U> ForkJoinTask<U> searchValues
5182 <            (ConcurrentHashMap<K,V> map,
5183 <             Function<? super V, ? extends U> searchFunction) {
5184 <            if (searchFunction == null) throw new NullPointerException();
5185 <            return new SearchValuesTask<K,V,U>
5186 <                (map, null, -1, searchFunction,
5187 <                 new AtomicReference<U>());
5188 <        }
5189 <
5190 <        /**
5191 <         * Returns a task that when invoked, returns the result of
5192 <         * accumulating all values using the given reducer to combine
5193 <         * values, or null if none.
5194 <         *
5195 <         * @param map the map
5196 <         * @param reducer a commutative associative combining function
5197 <         * @return the task
5198 <         */
5199 <        public static <K,V> ForkJoinTask<V> reduceValues
5200 <            (ConcurrentHashMap<K,V> map,
5201 <             BiFunction<? super V, ? super V, ? extends V> reducer) {
5202 <            if (reducer == null) throw new NullPointerException();
5203 <            return new ReduceValuesTask<K,V>
5204 <                (map, null, -1, null, reducer);
5205 <        }
5206 <
5207 <        /**
5208 <         * Returns a task that when invoked, returns the result of
5209 <         * accumulating the given transformation of all values using the
5210 <         * given reducer to combine values, or null if none.
5211 <         *
5212 <         * @param map the map
5213 <         * @param transformer a function returning the transformation
5214 <         * for an element, or null if there is no transformation (in
5215 <         * which case it is not combined).
5216 <         * @param reducer a commutative associative combining function
5217 <         * @return the task
5218 <         */
5219 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5220 <            (ConcurrentHashMap<K,V> map,
5221 <             Function<? super V, ? extends U> transformer,
5222 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5223 <            if (transformer == null || reducer == null)
5224 <                throw new NullPointerException();
5225 <            return new MapReduceValuesTask<K,V,U>
5226 <                (map, null, -1, null, transformer, reducer);
5227 <        }
5228 <
5229 <        /**
5230 <         * Returns a task that when invoked, returns the result of
5231 <         * accumulating the given transformation of all values using the
5232 <         * given reducer to combine values, and the given basis as an
5233 <         * identity value.
5234 <         *
5235 <         * @param map the map
5236 <         * @param transformer a function returning the transformation
5237 <         * for an element
5238 <         * @param basis the identity (initial default value) for the reduction
5239 <         * @param reducer a commutative associative combining function
5240 <         * @return the task
5241 <         */
5242 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5243 <            (ConcurrentHashMap<K,V> map,
5244 <             ToDoubleFunction<? super V> transformer,
5245 <             double basis,
5246 <             DoubleBinaryOperator reducer) {
5247 <            if (transformer == null || reducer == null)
5248 <                throw new NullPointerException();
5249 <            return new MapReduceValuesToDoubleTask<K,V>
5250 <                (map, null, -1, null, transformer, basis, reducer);
5251 <        }
5252 <
5253 <        /**
5254 <         * Returns a task that when invoked, returns the result of
5255 <         * accumulating the given transformation of all values using the
5256 <         * given reducer to combine values, and the given basis as an
5257 <         * identity value.
5258 <         *
5259 <         * @param map the map
5260 <         * @param transformer a function returning the transformation
5261 <         * for an element
5262 <         * @param basis the identity (initial default value) for the reduction
5263 <         * @param reducer a commutative associative combining function
5264 <         * @return the task
5265 <         */
5266 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5267 <            (ConcurrentHashMap<K,V> map,
5268 <             ToLongFunction<? super V> transformer,
5269 <             long basis,
5270 <             LongBinaryOperator reducer) {
5271 <            if (transformer == null || reducer == null)
5272 <                throw new NullPointerException();
5273 <            return new MapReduceValuesToLongTask<K,V>
5274 <                (map, null, -1, null, transformer, basis, reducer);
5275 <        }
5276 <
5277 <        /**
5278 <         * Returns a task that when invoked, returns the result of
5279 <         * accumulating the given transformation of all values using the
5280 <         * given reducer to combine values, and the given basis as an
5281 <         * identity value.
5282 <         *
5283 <         * @param map the map
5284 <         * @param transformer a function returning the transformation
5285 <         * for an element
5286 <         * @param basis the identity (initial default value) for the reduction
5287 <         * @param reducer a commutative associative combining function
5288 <         * @return the task
5289 <         */
5290 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5291 <            (ConcurrentHashMap<K,V> map,
5292 <             ToIntFunction<? super V> transformer,
5293 <             int basis,
5294 <             IntBinaryOperator reducer) {
5295 <            if (transformer == null || reducer == null)
5296 <                throw new NullPointerException();
5297 <            return new MapReduceValuesToIntTask<K,V>
5298 <                (map, null, -1, null, transformer, basis, reducer);
5299 <        }
5300 <
5301 <        /**
5302 <         * Returns a task that when invoked, perform the given action
5303 <         * for each entry.
5304 <         *
5305 <         * @param map the map
5306 <         * @param action the action
5307 <         */
5308 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5309 <            (ConcurrentHashMap<K,V> map,
5310 <             Consumer<? super Map.Entry<K,V>> action) {
5311 <            if (action == null) throw new NullPointerException();
5312 <            return new ForEachEntryTask<K,V>(map, null, -1, action);
5313 <        }
5314 <
5315 <        /**
5316 <         * Returns a task that when invoked, perform the given action
5317 <         * for each non-null transformation of each entry.
5318 <         *
5319 <         * @param map the map
5320 <         * @param transformer a function returning the transformation
5321 <         * for an element, or null if there is no transformation (in
5322 <         * which case the action is not applied)
5323 <         * @param action the action
5324 <         */
5325 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5326 <            (ConcurrentHashMap<K,V> map,
5327 <             Function<Map.Entry<K,V>, ? extends U> transformer,
5328 <             Consumer<? super U> action) {
5329 <            if (transformer == null || action == null)
5330 <                throw new NullPointerException();
5331 <            return new ForEachTransformedEntryTask<K,V,U>
5332 <                (map, null, -1, transformer, action);
5333 <        }
5334 <
5335 <        /**
5336 <         * Returns a task that when invoked, returns a non-null result
5337 <         * from applying the given search function on each entry, or
5338 <         * null if none.  Upon success, further element processing is
5339 <         * suppressed and the results of any other parallel
5340 <         * invocations of the search function are ignored.
5341 <         *
5342 <         * @param map the map
5343 <         * @param searchFunction a function returning a non-null
5344 <         * result on success, else null
5345 <         * @return the task
5346 <         */
5347 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5348 <            (ConcurrentHashMap<K,V> map,
5349 <             Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5350 <            if (searchFunction == null) throw new NullPointerException();
5351 <            return new SearchEntriesTask<K,V,U>
5352 <                (map, null, -1, searchFunction,
5353 <                 new AtomicReference<U>());
5354 <        }
5355 <
5356 <        /**
5357 <         * Returns a task that when invoked, returns the result of
5358 <         * accumulating all entries using the given reducer to combine
5359 <         * values, or null if none.
5360 <         *
5361 <         * @param map the map
5362 <         * @param reducer a commutative associative combining function
5363 <         * @return the task
5364 <         */
5365 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5366 <            (ConcurrentHashMap<K,V> map,
5367 <             BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5368 <            if (reducer == null) throw new NullPointerException();
5369 <            return new ReduceEntriesTask<K,V>
5370 <                (map, null, -1, null, reducer);
5371 <        }
5372 <
5373 <        /**
5374 <         * Returns a task that when invoked, returns the result of
5375 <         * accumulating the given transformation of all entries using the
5376 <         * given reducer to combine values, or null if none.
5377 <         *
5378 <         * @param map the map
5379 <         * @param transformer a function returning the transformation
5380 <         * for an element, or null if there is no transformation (in
5381 <         * which case it is not combined).
5382 <         * @param reducer a commutative associative combining function
5383 <         * @return the task
5384 <         */
5385 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5386 <            (ConcurrentHashMap<K,V> map,
5387 <             Function<Map.Entry<K,V>, ? extends U> transformer,
5388 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5389 <            if (transformer == null || reducer == null)
5390 <                throw new NullPointerException();
5391 <            return new MapReduceEntriesTask<K,V,U>
5392 <                (map, null, -1, null, transformer, reducer);
5393 <        }
5394 <
5395 <        /**
5396 <         * Returns a task that when invoked, returns the result of
5397 <         * accumulating the given transformation of all entries using the
5398 <         * given reducer to combine values, and the given basis as an
5399 <         * identity value.
5400 <         *
5401 <         * @param map the map
5402 <         * @param transformer a function returning the transformation
5403 <         * for an element
5404 <         * @param basis the identity (initial default value) for the reduction
5405 <         * @param reducer a commutative associative combining function
5406 <         * @return the task
5407 <         */
5408 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5409 <            (ConcurrentHashMap<K,V> map,
5410 <             ToDoubleFunction<Map.Entry<K,V>> transformer,
5411 <             double basis,
5412 <             DoubleBinaryOperator reducer) {
5413 <            if (transformer == null || reducer == null)
5414 <                throw new NullPointerException();
5415 <            return new MapReduceEntriesToDoubleTask<K,V>
5416 <                (map, null, -1, null, transformer, basis, reducer);
5417 <        }
5418 <
5419 <        /**
5420 <         * Returns a task that when invoked, returns the result of
5421 <         * accumulating the given transformation of all entries using the
5422 <         * given reducer to combine values, and the given basis as an
5423 <         * identity value.
5424 <         *
5425 <         * @param map the map
5426 <         * @param transformer a function returning the transformation
5427 <         * for an element
5428 <         * @param basis the identity (initial default value) for the reduction
5429 <         * @param reducer a commutative associative combining function
5430 <         * @return the task
5431 <         */
5432 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5433 <            (ConcurrentHashMap<K,V> map,
5434 <             ToLongFunction<Map.Entry<K,V>> transformer,
5435 <             long basis,
5436 <             LongBinaryOperator reducer) {
5437 <            if (transformer == null || reducer == null)
5438 <                throw new NullPointerException();
5439 <            return new MapReduceEntriesToLongTask<K,V>
5440 <                (map, null, -1, null, transformer, basis, reducer);
4661 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4662 >        Node<K,V>[] tab;        // same as Traverser
4663 >        Node<K,V> next;
4664 >        int index;
4665 >        int baseIndex;
4666 >        int baseLimit;
4667 >        final int baseSize;
4668 >        int batch;              // split control
4669 >
4670 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4671 >            super(par);
4672 >            this.batch = b;
4673 >            this.index = this.baseIndex = i;
4674 >            if ((this.tab = t) == null)
4675 >                this.baseSize = this.baseLimit = 0;
4676 >            else if (par == null)
4677 >                this.baseSize = this.baseLimit = t.length;
4678 >            else {
4679 >                this.baseLimit = f;
4680 >                this.baseSize = par.baseSize;
4681 >            }
4682          }
4683  
4684          /**
4685 <         * Returns a task that when invoked, returns the result of
5445 <         * accumulating the given transformation of all entries using the
5446 <         * given reducer to combine values, and the given basis as an
5447 <         * identity value.
5448 <         *
5449 <         * @param map the map
5450 <         * @param transformer a function returning the transformation
5451 <         * for an element
5452 <         * @param basis the identity (initial default value) for the reduction
5453 <         * @param reducer a commutative associative combining function
5454 <         * @return the task
4685 >         * Same as Traverser version
4686           */
4687 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4688 <            (ConcurrentHashMap<K,V> map,
4689 <             ToIntFunction<Map.Entry<K,V>> transformer,
4690 <             int basis,
4691 <             IntBinaryOperator reducer) {
4692 <            if (transformer == null || reducer == null)
4693 <                throw new NullPointerException();
4694 <            return new MapReduceEntriesToIntTask<K,V>
4695 <                (map, null, -1, null, transformer, basis, reducer);
4687 >        final Node<K,V> advance() {
4688 >            Node<K,V> e;
4689 >            if ((e = next) != null)
4690 >                e = e.next;
4691 >            for (;;) {
4692 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4693 >                if (e != null)
4694 >                    return next = e;
4695 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4696 >                    (n = t.length) <= (i = index) || i < 0)
4697 >                    return next = null;
4698 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4699 >                    if (e instanceof ForwardingNode) {
4700 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4701 >                        e = null;
4702 >                        continue;
4703 >                    }
4704 >                    else if (e instanceof TreeBin)
4705 >                        e = ((TreeBin<K,V>)e).first;
4706 >                    else
4707 >                        e = null;
4708 >                }
4709 >                if ((index += baseSize) >= n)
4710 >                    index = ++baseIndex;    // visit upper slots if present
4711 >            }
4712          }
4713      }
4714  
5468    // -------------------------------------------------------
5469
4715      /*
4716       * Task classes. Coded in a regular but ugly format/style to
4717       * simplify checks that each variant differs in the right way from
# Line 5474 | Line 4719 | public class ConcurrentHashMap<K, V>
4719       * that we've already null-checked task arguments, so we force
4720       * simplest hoisted bypass to help avoid convoluted traps.
4721       */
4722 <
4723 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4724 <        extends Traverser<K,V,Void> {
4722 >    @SuppressWarnings("serial")
4723 >    static final class ForEachKeyTask<K,V>
4724 >        extends BulkTask<K,V,Void> {
4725          final Consumer<? super K> action;
4726          ForEachKeyTask
4727 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4727 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4728               Consumer<? super K> action) {
4729 <            super(m, p, b);
4729 >            super(p, b, i, f, t);
4730              this.action = action;
4731          }
4732          public final void compute() {
4733              final Consumer<? super K> action;
4734              if ((action = this.action) != null) {
4735 <                for (int b; (b = preSplit()) > 0;)
4736 <                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
4737 <                while (advance() != null)
4738 <                    action.accept(nextKey);
4735 >                for (int i = baseIndex, f, h; batch > 0 &&
4736 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4737 >                    addToPendingCount(1);
4738 >                    new ForEachKeyTask<K,V>
4739 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4740 >                         action).fork();
4741 >                }
4742 >                for (Node<K,V> p; (p = advance()) != null;)
4743 >                    action.accept(p.key);
4744                  propagateCompletion();
4745              }
4746          }
4747      }
4748  
4749 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4750 <        extends Traverser<K,V,Void> {
4749 >    @SuppressWarnings("serial")
4750 >    static final class ForEachValueTask<K,V>
4751 >        extends BulkTask<K,V,Void> {
4752          final Consumer<? super V> action;
4753          ForEachValueTask
4754 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4754 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4755               Consumer<? super V> action) {
4756 <            super(m, p, b);
4756 >            super(p, b, i, f, t);
4757              this.action = action;
4758          }
4759          public final void compute() {
4760              final Consumer<? super V> action;
4761              if ((action = this.action) != null) {
4762 <                for (int b; (b = preSplit()) > 0;)
4763 <                    new ForEachValueTask<K,V>(map, this, b, action).fork();
4764 <                V v;
4765 <                while ((v = advance()) != null)
4766 <                    action.accept(v);
4762 >                for (int i = baseIndex, f, h; batch > 0 &&
4763 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4764 >                    addToPendingCount(1);
4765 >                    new ForEachValueTask<K,V>
4766 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4767 >                         action).fork();
4768 >                }
4769 >                for (Node<K,V> p; (p = advance()) != null;)
4770 >                    action.accept(p.val);
4771                  propagateCompletion();
4772              }
4773          }
4774      }
4775  
4776 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4777 <        extends Traverser<K,V,Void> {
4776 >    @SuppressWarnings("serial")
4777 >    static final class ForEachEntryTask<K,V>
4778 >        extends BulkTask<K,V,Void> {
4779          final Consumer<? super Entry<K,V>> action;
4780          ForEachEntryTask
4781 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4781 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4782               Consumer<? super Entry<K,V>> action) {
4783 <            super(m, p, b);
4783 >            super(p, b, i, f, t);
4784              this.action = action;
4785          }
4786          public final void compute() {
4787              final Consumer<? super Entry<K,V>> action;
4788              if ((action = this.action) != null) {
4789 <                for (int b; (b = preSplit()) > 0;)
4790 <                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
4791 <                V v;
4792 <                while ((v = advance()) != null)
4793 <                    action.accept(entryFor(nextKey, v));
4789 >                for (int i = baseIndex, f, h; batch > 0 &&
4790 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4791 >                    addToPendingCount(1);
4792 >                    new ForEachEntryTask<K,V>
4793 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4794 >                         action).fork();
4795 >                }
4796 >                for (Node<K,V> p; (p = advance()) != null; )
4797 >                    action.accept(p);
4798                  propagateCompletion();
4799              }
4800          }
4801      }
4802  
4803 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4804 <        extends Traverser<K,V,Void> {
4803 >    @SuppressWarnings("serial")
4804 >    static final class ForEachMappingTask<K,V>
4805 >        extends BulkTask<K,V,Void> {
4806          final BiConsumer<? super K, ? super V> action;
4807          ForEachMappingTask
4808 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4808 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4809               BiConsumer<? super K,? super V> action) {
4810 <            super(m, p, b);
4810 >            super(p, b, i, f, t);
4811              this.action = action;
4812          }
4813          public final void compute() {
4814              final BiConsumer<? super K, ? super V> action;
4815              if ((action = this.action) != null) {
4816 <                for (int b; (b = preSplit()) > 0;)
4817 <                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
4818 <                V v;
4819 <                while ((v = advance()) != null)
4820 <                    action.accept(nextKey, v);
4816 >                for (int i = baseIndex, f, h; batch > 0 &&
4817 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4818 >                    addToPendingCount(1);
4819 >                    new ForEachMappingTask<K,V>
4820 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4821 >                         action).fork();
4822 >                }
4823 >                for (Node<K,V> p; (p = advance()) != null; )
4824 >                    action.accept(p.key, p.val);
4825                  propagateCompletion();
4826              }
4827          }
4828      }
4829  
4830 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4831 <        extends Traverser<K,V,Void> {
4830 >    @SuppressWarnings("serial")
4831 >    static final class ForEachTransformedKeyTask<K,V,U>
4832 >        extends BulkTask<K,V,Void> {
4833          final Function<? super K, ? extends U> transformer;
4834          final Consumer<? super U> action;
4835          ForEachTransformedKeyTask
4836 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4836 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4837               Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4838 <            super(m, p, b);
4838 >            super(p, b, i, f, t);
4839              this.transformer = transformer; this.action = action;
4840          }
4841          public final void compute() {
# Line 5577 | Line 4843 | public class ConcurrentHashMap<K, V>
4843              final Consumer<? super U> action;
4844              if ((transformer = this.transformer) != null &&
4845                  (action = this.action) != null) {
4846 <                for (int b; (b = preSplit()) > 0;)
4846 >                for (int i = baseIndex, f, h; batch > 0 &&
4847 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4848 >                    addToPendingCount(1);
4849                      new ForEachTransformedKeyTask<K,V,U>
4850 <                        (map, this, b, transformer, action).fork();
4851 <                U u;
4852 <                while (advance() != null) {
4853 <                    if ((u = transformer.apply(nextKey)) != null)
4850 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4851 >                         transformer, action).fork();
4852 >                }
4853 >                for (Node<K,V> p; (p = advance()) != null; ) {
4854 >                    U u;
4855 >                    if ((u = transformer.apply(p.key)) != null)
4856                          action.accept(u);
4857                  }
4858                  propagateCompletion();
# Line 5590 | Line 4860 | public class ConcurrentHashMap<K, V>
4860          }
4861      }
4862  
4863 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4864 <        extends Traverser<K,V,Void> {
4863 >    @SuppressWarnings("serial")
4864 >    static final class ForEachTransformedValueTask<K,V,U>
4865 >        extends BulkTask<K,V,Void> {
4866          final Function<? super V, ? extends U> transformer;
4867          final Consumer<? super U> action;
4868          ForEachTransformedValueTask
4869 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4869 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4870               Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4871 <            super(m, p, b);
4871 >            super(p, b, i, f, t);
4872              this.transformer = transformer; this.action = action;
4873          }
4874          public final void compute() {
# Line 5605 | Line 4876 | public class ConcurrentHashMap<K, V>
4876              final Consumer<? super U> action;
4877              if ((transformer = this.transformer) != null &&
4878                  (action = this.action) != null) {
4879 <                for (int b; (b = preSplit()) > 0;)
4879 >                for (int i = baseIndex, f, h; batch > 0 &&
4880 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4881 >                    addToPendingCount(1);
4882                      new ForEachTransformedValueTask<K,V,U>
4883 <                        (map, this, b, transformer, action).fork();
4884 <                V v; U u;
4885 <                while ((v = advance()) != null) {
4886 <                    if ((u = transformer.apply(v)) != null)
4883 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4884 >                         transformer, action).fork();
4885 >                }
4886 >                for (Node<K,V> p; (p = advance()) != null; ) {
4887 >                    U u;
4888 >                    if ((u = transformer.apply(p.val)) != null)
4889                          action.accept(u);
4890                  }
4891                  propagateCompletion();
# Line 5618 | Line 4893 | public class ConcurrentHashMap<K, V>
4893          }
4894      }
4895  
4896 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4897 <        extends Traverser<K,V,Void> {
4896 >    @SuppressWarnings("serial")
4897 >    static final class ForEachTransformedEntryTask<K,V,U>
4898 >        extends BulkTask<K,V,Void> {
4899          final Function<Map.Entry<K,V>, ? extends U> transformer;
4900          final Consumer<? super U> action;
4901          ForEachTransformedEntryTask
4902 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4902 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4903               Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4904 <            super(m, p, b);
4904 >            super(p, b, i, f, t);
4905              this.transformer = transformer; this.action = action;
4906          }
4907          public final void compute() {
# Line 5633 | Line 4909 | public class ConcurrentHashMap<K, V>
4909              final Consumer<? super U> action;
4910              if ((transformer = this.transformer) != null &&
4911                  (action = this.action) != null) {
4912 <                for (int b; (b = preSplit()) > 0;)
4912 >                for (int i = baseIndex, f, h; batch > 0 &&
4913 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4914 >                    addToPendingCount(1);
4915                      new ForEachTransformedEntryTask<K,V,U>
4916 <                        (map, this, b, transformer, action).fork();
4917 <                V v; U u;
4918 <                while ((v = advance()) != null) {
4919 <                    if ((u = transformer.apply(entryFor(nextKey,
4920 <                                                        v))) != null)
4916 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4917 >                         transformer, action).fork();
4918 >                }
4919 >                for (Node<K,V> p; (p = advance()) != null; ) {
4920 >                    U u;
4921 >                    if ((u = transformer.apply(p)) != null)
4922                          action.accept(u);
4923                  }
4924                  propagateCompletion();
# Line 5647 | Line 4926 | public class ConcurrentHashMap<K, V>
4926          }
4927      }
4928  
4929 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4930 <        extends Traverser<K,V,Void> {
4929 >    @SuppressWarnings("serial")
4930 >    static final class ForEachTransformedMappingTask<K,V,U>
4931 >        extends BulkTask<K,V,Void> {
4932          final BiFunction<? super K, ? super V, ? extends U> transformer;
4933          final Consumer<? super U> action;
4934          ForEachTransformedMappingTask
4935 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4935 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4936               BiFunction<? super K, ? super V, ? extends U> transformer,
4937               Consumer<? super U> action) {
4938 <            super(m, p, b);
4938 >            super(p, b, i, f, t);
4939              this.transformer = transformer; this.action = action;
4940          }
4941          public final void compute() {
# Line 5663 | Line 4943 | public class ConcurrentHashMap<K, V>
4943              final Consumer<? super U> action;
4944              if ((transformer = this.transformer) != null &&
4945                  (action = this.action) != null) {
4946 <                for (int b; (b = preSplit()) > 0;)
4946 >                for (int i = baseIndex, f, h; batch > 0 &&
4947 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4948 >                    addToPendingCount(1);
4949                      new ForEachTransformedMappingTask<K,V,U>
4950 <                        (map, this, b, transformer, action).fork();
4951 <                V v; U u;
4952 <                while ((v = advance()) != null) {
4953 <                    if ((u = transformer.apply(nextKey, v)) != null)
4950 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4951 >                         transformer, action).fork();
4952 >                }
4953 >                for (Node<K,V> p; (p = advance()) != null; ) {
4954 >                    U u;
4955 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4956                          action.accept(u);
4957                  }
4958                  propagateCompletion();
# Line 5676 | Line 4960 | public class ConcurrentHashMap<K, V>
4960          }
4961      }
4962  
4963 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4964 <        extends Traverser<K,V,U> {
4963 >    @SuppressWarnings("serial")
4964 >    static final class SearchKeysTask<K,V,U>
4965 >        extends BulkTask<K,V,U> {
4966          final Function<? super K, ? extends U> searchFunction;
4967          final AtomicReference<U> result;
4968          SearchKeysTask
4969 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4969 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4970               Function<? super K, ? extends U> searchFunction,
4971               AtomicReference<U> result) {
4972 <            super(m, p, b);
4972 >            super(p, b, i, f, t);
4973              this.searchFunction = searchFunction; this.result = result;
4974          }
4975          public final U getRawResult() { return result.get(); }
# Line 5693 | Line 4978 | public class ConcurrentHashMap<K, V>
4978              final AtomicReference<U> result;
4979              if ((searchFunction = this.searchFunction) != null &&
4980                  (result = this.result) != null) {
4981 <                for (int b;;) {
4981 >                for (int i = baseIndex, f, h; batch > 0 &&
4982 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4983                      if (result.get() != null)
4984                          return;
4985 <                    if ((b = preSplit()) <= 0)
5700 <                        break;
4985 >                    addToPendingCount(1);
4986                      new SearchKeysTask<K,V,U>
4987 <                        (map, this, b, searchFunction, result).fork();
4987 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4988 >                         searchFunction, result).fork();
4989                  }
4990                  while (result.get() == null) {
4991                      U u;
4992 <                    if (advance() == null) {
4992 >                    Node<K,V> p;
4993 >                    if ((p = advance()) == null) {
4994                          propagateCompletion();
4995                          break;
4996                      }
4997 <                    if ((u = searchFunction.apply(nextKey)) != null) {
4997 >                    if ((u = searchFunction.apply(p.key)) != null) {
4998                          if (result.compareAndSet(null, u))
4999                              quietlyCompleteRoot();
5000                          break;
# Line 5717 | Line 5004 | public class ConcurrentHashMap<K, V>
5004          }
5005      }
5006  
5007 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5008 <        extends Traverser<K,V,U> {
5007 >    @SuppressWarnings("serial")
5008 >    static final class SearchValuesTask<K,V,U>
5009 >        extends BulkTask<K,V,U> {
5010          final Function<? super V, ? extends U> searchFunction;
5011          final AtomicReference<U> result;
5012          SearchValuesTask
5013 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5013 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5014               Function<? super V, ? extends U> searchFunction,
5015               AtomicReference<U> result) {
5016 <            super(m, p, b);
5016 >            super(p, b, i, f, t);
5017              this.searchFunction = searchFunction; this.result = result;
5018          }
5019          public final U getRawResult() { return result.get(); }
# Line 5734 | Line 5022 | public class ConcurrentHashMap<K, V>
5022              final AtomicReference<U> result;
5023              if ((searchFunction = this.searchFunction) != null &&
5024                  (result = this.result) != null) {
5025 <                for (int b;;) {
5025 >                for (int i = baseIndex, f, h; batch > 0 &&
5026 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5027                      if (result.get() != null)
5028                          return;
5029 <                    if ((b = preSplit()) <= 0)
5741 <                        break;
5029 >                    addToPendingCount(1);
5030                      new SearchValuesTask<K,V,U>
5031 <                        (map, this, b, searchFunction, result).fork();
5031 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5032 >                         searchFunction, result).fork();
5033                  }
5034                  while (result.get() == null) {
5035 <                    V v; U u;
5036 <                    if ((v = advance()) == null) {
5035 >                    U u;
5036 >                    Node<K,V> p;
5037 >                    if ((p = advance()) == null) {
5038                          propagateCompletion();
5039                          break;
5040                      }
5041 <                    if ((u = searchFunction.apply(v)) != null) {
5041 >                    if ((u = searchFunction.apply(p.val)) != null) {
5042                          if (result.compareAndSet(null, u))
5043                              quietlyCompleteRoot();
5044                          break;
# Line 5758 | Line 5048 | public class ConcurrentHashMap<K, V>
5048          }
5049      }
5050  
5051 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5052 <        extends Traverser<K,V,U> {
5051 >    @SuppressWarnings("serial")
5052 >    static final class SearchEntriesTask<K,V,U>
5053 >        extends BulkTask<K,V,U> {
5054          final Function<Entry<K,V>, ? extends U> searchFunction;
5055          final AtomicReference<U> result;
5056          SearchEntriesTask
5057 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5057 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5058               Function<Entry<K,V>, ? extends U> searchFunction,
5059               AtomicReference<U> result) {
5060 <            super(m, p, b);
5060 >            super(p, b, i, f, t);
5061              this.searchFunction = searchFunction; this.result = result;
5062          }
5063          public final U getRawResult() { return result.get(); }
# Line 5775 | Line 5066 | public class ConcurrentHashMap<K, V>
5066              final AtomicReference<U> result;
5067              if ((searchFunction = this.searchFunction) != null &&
5068                  (result = this.result) != null) {
5069 <                for (int b;;) {
5069 >                for (int i = baseIndex, f, h; batch > 0 &&
5070 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5071                      if (result.get() != null)
5072                          return;
5073 <                    if ((b = preSplit()) <= 0)
5782 <                        break;
5073 >                    addToPendingCount(1);
5074                      new SearchEntriesTask<K,V,U>
5075 <                        (map, this, b, searchFunction, result).fork();
5075 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5076 >                         searchFunction, result).fork();
5077                  }
5078                  while (result.get() == null) {
5079 <                    V v; U u;
5080 <                    if ((v = advance()) == null) {
5079 >                    U u;
5080 >                    Node<K,V> p;
5081 >                    if ((p = advance()) == null) {
5082                          propagateCompletion();
5083                          break;
5084                      }
5085 <                    if ((u = searchFunction.apply(entryFor(nextKey,
5793 <                                                           v))) != null) {
5085 >                    if ((u = searchFunction.apply(p)) != null) {
5086                          if (result.compareAndSet(null, u))
5087                              quietlyCompleteRoot();
5088                          return;
# Line 5800 | Line 5092 | public class ConcurrentHashMap<K, V>
5092          }
5093      }
5094  
5095 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5096 <        extends Traverser<K,V,U> {
5095 >    @SuppressWarnings("serial")
5096 >    static final class SearchMappingsTask<K,V,U>
5097 >        extends BulkTask<K,V,U> {
5098          final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5099          final AtomicReference<U> result;
5100          SearchMappingsTask
5101 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5101 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5102               BiFunction<? super K, ? super V, ? extends U> searchFunction,
5103               AtomicReference<U> result) {
5104 <            super(m, p, b);
5104 >            super(p, b, i, f, t);
5105              this.searchFunction = searchFunction; this.result = result;
5106          }
5107          public final U getRawResult() { return result.get(); }
# Line 5817 | Line 5110 | public class ConcurrentHashMap<K, V>
5110              final AtomicReference<U> result;
5111              if ((searchFunction = this.searchFunction) != null &&
5112                  (result = this.result) != null) {
5113 <                for (int b;;) {
5113 >                for (int i = baseIndex, f, h; batch > 0 &&
5114 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5115                      if (result.get() != null)
5116                          return;
5117 <                    if ((b = preSplit()) <= 0)
5824 <                        break;
5117 >                    addToPendingCount(1);
5118                      new SearchMappingsTask<K,V,U>
5119 <                        (map, this, b, searchFunction, result).fork();
5119 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5120 >                         searchFunction, result).fork();
5121                  }
5122                  while (result.get() == null) {
5123 <                    V v; U u;
5124 <                    if ((v = advance()) == null) {
5123 >                    U u;
5124 >                    Node<K,V> p;
5125 >                    if ((p = advance()) == null) {
5126                          propagateCompletion();
5127                          break;
5128                      }
5129 <                    if ((u = searchFunction.apply(nextKey, v)) != null) {
5129 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5130                          if (result.compareAndSet(null, u))
5131                              quietlyCompleteRoot();
5132                          break;
# Line 5841 | Line 5136 | public class ConcurrentHashMap<K, V>
5136          }
5137      }
5138  
5139 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5140 <        extends Traverser<K,V,K> {
5139 >    @SuppressWarnings("serial")
5140 >    static final class ReduceKeysTask<K,V>
5141 >        extends BulkTask<K,V,K> {
5142          final BiFunction<? super K, ? super K, ? extends K> reducer;
5143          K result;
5144          ReduceKeysTask<K,V> rights, nextRight;
5145          ReduceKeysTask
5146 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5146 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5147               ReduceKeysTask<K,V> nextRight,
5148               BiFunction<? super K, ? super K, ? extends K> reducer) {
5149 <            super(m, p, b); this.nextRight = nextRight;
5149 >            super(p, b, i, f, t); this.nextRight = nextRight;
5150              this.reducer = reducer;
5151          }
5152          public final K getRawResult() { return result; }
5153 <        @SuppressWarnings("unchecked") public final void compute() {
5153 >        public final void compute() {
5154              final BiFunction<? super K, ? super K, ? extends K> reducer;
5155              if ((reducer = this.reducer) != null) {
5156 <                for (int b; (b = preSplit()) > 0;)
5156 >                for (int i = baseIndex, f, h; batch > 0 &&
5157 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5158 >                    addToPendingCount(1);
5159                      (rights = new ReduceKeysTask<K,V>
5160 <                     (map, this, b, rights, reducer)).fork();
5160 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5161 >                      rights, reducer)).fork();
5162 >                }
5163                  K r = null;
5164 <                while (advance() != null) {
5165 <                    K u = nextKey;
5164 >                for (Node<K,V> p; (p = advance()) != null; ) {
5165 >                    K u = p.key;
5166                      r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5167                  }
5168                  result = r;
5169                  CountedCompleter<?> c;
5170                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5171 <                    ReduceKeysTask<K,V>
5171 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5172                          t = (ReduceKeysTask<K,V>)c,
5173                          s = t.rights;
5174                      while (s != null) {
# Line 5883 | Line 5183 | public class ConcurrentHashMap<K, V>
5183          }
5184      }
5185  
5186 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5187 <        extends Traverser<K,V,V> {
5186 >    @SuppressWarnings("serial")
5187 >    static final class ReduceValuesTask<K,V>
5188 >        extends BulkTask<K,V,V> {
5189          final BiFunction<? super V, ? super V, ? extends V> reducer;
5190          V result;
5191          ReduceValuesTask<K,V> rights, nextRight;
5192          ReduceValuesTask
5193 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5193 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5194               ReduceValuesTask<K,V> nextRight,
5195               BiFunction<? super V, ? super V, ? extends V> reducer) {
5196 <            super(m, p, b); this.nextRight = nextRight;
5196 >            super(p, b, i, f, t); this.nextRight = nextRight;
5197              this.reducer = reducer;
5198          }
5199          public final V getRawResult() { return result; }
5200 <        @SuppressWarnings("unchecked") public final void compute() {
5200 >        public final void compute() {
5201              final BiFunction<? super V, ? super V, ? extends V> reducer;
5202              if ((reducer = this.reducer) != null) {
5203 <                for (int b; (b = preSplit()) > 0;)
5203 >                for (int i = baseIndex, f, h; batch > 0 &&
5204 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5205 >                    addToPendingCount(1);
5206                      (rights = new ReduceValuesTask<K,V>
5207 <                     (map, this, b, rights, reducer)).fork();
5208 <                V r = null, v;
5209 <                while ((v = advance()) != null)
5207 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5208 >                      rights, reducer)).fork();
5209 >                }
5210 >                V r = null;
5211 >                for (Node<K,V> p; (p = advance()) != null; ) {
5212 >                    V v = p.val;
5213                      r = (r == null) ? v : reducer.apply(r, v);
5214 +                }
5215                  result = r;
5216                  CountedCompleter<?> c;
5217                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5218 <                    ReduceValuesTask<K,V>
5218 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5219                          t = (ReduceValuesTask<K,V>)c,
5220                          s = t.rights;
5221                      while (s != null) {
# Line 5923 | Line 5230 | public class ConcurrentHashMap<K, V>
5230          }
5231      }
5232  
5233 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5234 <        extends Traverser<K,V,Map.Entry<K,V>> {
5233 >    @SuppressWarnings("serial")
5234 >    static final class ReduceEntriesTask<K,V>
5235 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5236          final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5237          Map.Entry<K,V> result;
5238          ReduceEntriesTask<K,V> rights, nextRight;
5239          ReduceEntriesTask
5240 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5240 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5241               ReduceEntriesTask<K,V> nextRight,
5242               BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5243 <            super(m, p, b); this.nextRight = nextRight;
5243 >            super(p, b, i, f, t); this.nextRight = nextRight;
5244              this.reducer = reducer;
5245          }
5246          public final Map.Entry<K,V> getRawResult() { return result; }
5247 <        @SuppressWarnings("unchecked") public final void compute() {
5247 >        public final void compute() {
5248              final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5249              if ((reducer = this.reducer) != null) {
5250 <                for (int b; (b = preSplit()) > 0;)
5250 >                for (int i = baseIndex, f, h; batch > 0 &&
5251 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5252 >                    addToPendingCount(1);
5253                      (rights = new ReduceEntriesTask<K,V>
5254 <                     (map, this, b, rights, reducer)).fork();
5255 <                Map.Entry<K,V> r = null;
5946 <                V v;
5947 <                while ((v = advance()) != null) {
5948 <                    Map.Entry<K,V> u = entryFor(nextKey, v);
5949 <                    r = (r == null) ? u : reducer.apply(r, u);
5254 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5255 >                      rights, reducer)).fork();
5256                  }
5257 +                Map.Entry<K,V> r = null;
5258 +                for (Node<K,V> p; (p = advance()) != null; )
5259 +                    r = (r == null) ? p : reducer.apply(r, p);
5260                  result = r;
5261                  CountedCompleter<?> c;
5262                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5263 <                    ReduceEntriesTask<K,V>
5263 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5264                          t = (ReduceEntriesTask<K,V>)c,
5265                          s = t.rights;
5266                      while (s != null) {
# Line 5966 | Line 5275 | public class ConcurrentHashMap<K, V>
5275          }
5276      }
5277  
5278 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5279 <        extends Traverser<K,V,U> {
5278 >    @SuppressWarnings("serial")
5279 >    static final class MapReduceKeysTask<K,V,U>
5280 >        extends BulkTask<K,V,U> {
5281          final Function<? super K, ? extends U> transformer;
5282          final BiFunction<? super U, ? super U, ? extends U> reducer;
5283          U result;
5284          MapReduceKeysTask<K,V,U> rights, nextRight;
5285          MapReduceKeysTask
5286 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5286 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5287               MapReduceKeysTask<K,V,U> nextRight,
5288               Function<? super K, ? extends U> transformer,
5289               BiFunction<? super U, ? super U, ? extends U> reducer) {
5290 <            super(m, p, b); this.nextRight = nextRight;
5290 >            super(p, b, i, f, t); this.nextRight = nextRight;
5291              this.transformer = transformer;
5292              this.reducer = reducer;
5293          }
5294          public final U getRawResult() { return result; }
5295 <        @SuppressWarnings("unchecked") public final void compute() {
5295 >        public final void compute() {
5296              final Function<? super K, ? extends U> transformer;
5297              final BiFunction<? super U, ? super U, ? extends U> reducer;
5298              if ((transformer = this.transformer) != null &&
5299                  (reducer = this.reducer) != null) {
5300 <                for (int b; (b = preSplit()) > 0;)
5300 >                for (int i = baseIndex, f, h; batch > 0 &&
5301 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5302 >                    addToPendingCount(1);
5303                      (rights = new MapReduceKeysTask<K,V,U>
5304 <                     (map, this, b, rights, transformer, reducer)).fork();
5305 <                U r = null, u;
5306 <                while (advance() != null) {
5307 <                    if ((u = transformer.apply(nextKey)) != null)
5304 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5305 >                      rights, transformer, reducer)).fork();
5306 >                }
5307 >                U r = null;
5308 >                for (Node<K,V> p; (p = advance()) != null; ) {
5309 >                    U u;
5310 >                    if ((u = transformer.apply(p.key)) != null)
5311                          r = (r == null) ? u : reducer.apply(r, u);
5312                  }
5313                  result = r;
5314                  CountedCompleter<?> c;
5315                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5316 <                    MapReduceKeysTask<K,V,U>
5316 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5317                          t = (MapReduceKeysTask<K,V,U>)c,
5318                          s = t.rights;
5319                      while (s != null) {
# Line 6013 | Line 5328 | public class ConcurrentHashMap<K, V>
5328          }
5329      }
5330  
5331 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5332 <        extends Traverser<K,V,U> {
5331 >    @SuppressWarnings("serial")
5332 >    static final class MapReduceValuesTask<K,V,U>
5333 >        extends BulkTask<K,V,U> {
5334          final Function<? super V, ? extends U> transformer;
5335          final BiFunction<? super U, ? super U, ? extends U> reducer;
5336          U result;
5337          MapReduceValuesTask<K,V,U> rights, nextRight;
5338          MapReduceValuesTask
5339 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5339 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5340               MapReduceValuesTask<K,V,U> nextRight,
5341               Function<? super V, ? extends U> transformer,
5342               BiFunction<? super U, ? super U, ? extends U> reducer) {
5343 <            super(m, p, b); this.nextRight = nextRight;
5343 >            super(p, b, i, f, t); this.nextRight = nextRight;
5344              this.transformer = transformer;
5345              this.reducer = reducer;
5346          }
5347          public final U getRawResult() { return result; }
5348 <        @SuppressWarnings("unchecked") public final void compute() {
5348 >        public final void compute() {
5349              final Function<? super V, ? extends U> transformer;
5350              final BiFunction<? super U, ? super U, ? extends U> reducer;
5351              if ((transformer = this.transformer) != null &&
5352                  (reducer = this.reducer) != null) {
5353 <                for (int b; (b = preSplit()) > 0;)
5353 >                for (int i = baseIndex, f, h; batch > 0 &&
5354 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5355 >                    addToPendingCount(1);
5356                      (rights = new MapReduceValuesTask<K,V,U>
5357 <                     (map, this, b, rights, transformer, reducer)).fork();
5358 <                U r = null, u;
5359 <                V v;
5360 <                while ((v = advance()) != null) {
5361 <                    if ((u = transformer.apply(v)) != null)
5357 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5358 >                      rights, transformer, reducer)).fork();
5359 >                }
5360 >                U r = null;
5361 >                for (Node<K,V> p; (p = advance()) != null; ) {
5362 >                    U u;
5363 >                    if ((u = transformer.apply(p.val)) != null)
5364                          r = (r == null) ? u : reducer.apply(r, u);
5365                  }
5366                  result = r;
5367                  CountedCompleter<?> c;
5368                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5369 <                    MapReduceValuesTask<K,V,U>
5369 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5370                          t = (MapReduceValuesTask<K,V,U>)c,
5371                          s = t.rights;
5372                      while (s != null) {
# Line 6061 | Line 5381 | public class ConcurrentHashMap<K, V>
5381          }
5382      }
5383  
5384 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5385 <        extends Traverser<K,V,U> {
5384 >    @SuppressWarnings("serial")
5385 >    static final class MapReduceEntriesTask<K,V,U>
5386 >        extends BulkTask<K,V,U> {
5387          final Function<Map.Entry<K,V>, ? extends U> transformer;
5388          final BiFunction<? super U, ? super U, ? extends U> reducer;
5389          U result;
5390          MapReduceEntriesTask<K,V,U> rights, nextRight;
5391          MapReduceEntriesTask
5392 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5392 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5393               MapReduceEntriesTask<K,V,U> nextRight,
5394               Function<Map.Entry<K,V>, ? extends U> transformer,
5395               BiFunction<? super U, ? super U, ? extends U> reducer) {
5396 <            super(m, p, b); this.nextRight = nextRight;
5396 >            super(p, b, i, f, t); this.nextRight = nextRight;
5397              this.transformer = transformer;
5398              this.reducer = reducer;
5399          }
5400          public final U getRawResult() { return result; }
5401 <        @SuppressWarnings("unchecked") public final void compute() {
5401 >        public final void compute() {
5402              final Function<Map.Entry<K,V>, ? extends U> transformer;
5403              final BiFunction<? super U, ? super U, ? extends U> reducer;
5404              if ((transformer = this.transformer) != null &&
5405                  (reducer = this.reducer) != null) {
5406 <                for (int b; (b = preSplit()) > 0;)
5406 >                for (int i = baseIndex, f, h; batch > 0 &&
5407 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5408 >                    addToPendingCount(1);
5409                      (rights = new MapReduceEntriesTask<K,V,U>
5410 <                     (map, this, b, rights, transformer, reducer)).fork();
5411 <                U r = null, u;
5412 <                V v;
5413 <                while ((v = advance()) != null) {
5414 <                    if ((u = transformer.apply(entryFor(nextKey,
5415 <                                                        v))) != null)
5410 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5411 >                      rights, transformer, reducer)).fork();
5412 >                }
5413 >                U r = null;
5414 >                for (Node<K,V> p; (p = advance()) != null; ) {
5415 >                    U u;
5416 >                    if ((u = transformer.apply(p)) != null)
5417                          r = (r == null) ? u : reducer.apply(r, u);
5418                  }
5419                  result = r;
5420                  CountedCompleter<?> c;
5421                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5422 <                    MapReduceEntriesTask<K,V,U>
5422 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5423                          t = (MapReduceEntriesTask<K,V,U>)c,
5424                          s = t.rights;
5425                      while (s != null) {
# Line 6110 | Line 5434 | public class ConcurrentHashMap<K, V>
5434          }
5435      }
5436  
5437 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5438 <        extends Traverser<K,V,U> {
5437 >    @SuppressWarnings("serial")
5438 >    static final class MapReduceMappingsTask<K,V,U>
5439 >        extends BulkTask<K,V,U> {
5440          final BiFunction<? super K, ? super V, ? extends U> transformer;
5441          final BiFunction<? super U, ? super U, ? extends U> reducer;
5442          U result;
5443          MapReduceMappingsTask<K,V,U> rights, nextRight;
5444          MapReduceMappingsTask
5445 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5445 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5446               MapReduceMappingsTask<K,V,U> nextRight,
5447               BiFunction<? super K, ? super V, ? extends U> transformer,
5448               BiFunction<? super U, ? super U, ? extends U> reducer) {
5449 <            super(m, p, b); this.nextRight = nextRight;
5449 >            super(p, b, i, f, t); this.nextRight = nextRight;
5450              this.transformer = transformer;
5451              this.reducer = reducer;
5452          }
5453          public final U getRawResult() { return result; }
5454 <        @SuppressWarnings("unchecked") public final void compute() {
5454 >        public final void compute() {
5455              final BiFunction<? super K, ? super V, ? extends U> transformer;
5456              final BiFunction<? super U, ? super U, ? extends U> reducer;
5457              if ((transformer = this.transformer) != null &&
5458                  (reducer = this.reducer) != null) {
5459 <                for (int b; (b = preSplit()) > 0;)
5459 >                for (int i = baseIndex, f, h; batch > 0 &&
5460 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5461 >                    addToPendingCount(1);
5462                      (rights = new MapReduceMappingsTask<K,V,U>
5463 <                     (map, this, b, rights, transformer, reducer)).fork();
5464 <                U r = null, u;
5465 <                V v;
5466 <                while ((v = advance()) != null) {
5467 <                    if ((u = transformer.apply(nextKey, v)) != null)
5463 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5464 >                      rights, transformer, reducer)).fork();
5465 >                }
5466 >                U r = null;
5467 >                for (Node<K,V> p; (p = advance()) != null; ) {
5468 >                    U u;
5469 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5470                          r = (r == null) ? u : reducer.apply(r, u);
5471                  }
5472                  result = r;
5473                  CountedCompleter<?> c;
5474                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5475 <                    MapReduceMappingsTask<K,V,U>
5475 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5476                          t = (MapReduceMappingsTask<K,V,U>)c,
5477                          s = t.rights;
5478                      while (s != null) {
# Line 6158 | Line 5487 | public class ConcurrentHashMap<K, V>
5487          }
5488      }
5489  
5490 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5491 <        extends Traverser<K,V,Double> {
5490 >    @SuppressWarnings("serial")
5491 >    static final class MapReduceKeysToDoubleTask<K,V>
5492 >        extends BulkTask<K,V,Double> {
5493          final ToDoubleFunction<? super K> transformer;
5494          final DoubleBinaryOperator reducer;
5495          final double basis;
5496          double result;
5497          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5498          MapReduceKeysToDoubleTask
5499 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5499 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5500               MapReduceKeysToDoubleTask<K,V> nextRight,
5501               ToDoubleFunction<? super K> transformer,
5502               double basis,
5503               DoubleBinaryOperator reducer) {
5504 <            super(m, p, b); this.nextRight = nextRight;
5504 >            super(p, b, i, f, t); this.nextRight = nextRight;
5505              this.transformer = transformer;
5506              this.basis = basis; this.reducer = reducer;
5507          }
5508          public final Double getRawResult() { return result; }
5509 <        @SuppressWarnings("unchecked") public final void compute() {
5509 >        public final void compute() {
5510              final ToDoubleFunction<? super K> transformer;
5511              final DoubleBinaryOperator reducer;
5512              if ((transformer = this.transformer) != null &&
5513                  (reducer = this.reducer) != null) {
5514                  double r = this.basis;
5515 <                for (int b; (b = preSplit()) > 0;)
5515 >                for (int i = baseIndex, f, h; batch > 0 &&
5516 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5517 >                    addToPendingCount(1);
5518                      (rights = new MapReduceKeysToDoubleTask<K,V>
5519 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5520 <                while (advance() != null)
5521 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
5519 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5520 >                      rights, transformer, r, reducer)).fork();
5521 >                }
5522 >                for (Node<K,V> p; (p = advance()) != null; )
5523 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5524                  result = r;
5525                  CountedCompleter<?> c;
5526                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5527 <                    MapReduceKeysToDoubleTask<K,V>
5527 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5528                          t = (MapReduceKeysToDoubleTask<K,V>)c,
5529                          s = t.rights;
5530                      while (s != null) {
# Line 6202 | Line 5536 | public class ConcurrentHashMap<K, V>
5536          }
5537      }
5538  
5539 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5540 <        extends Traverser<K,V,Double> {
5539 >    @SuppressWarnings("serial")
5540 >    static final class MapReduceValuesToDoubleTask<K,V>
5541 >        extends BulkTask<K,V,Double> {
5542          final ToDoubleFunction<? super V> transformer;
5543          final DoubleBinaryOperator reducer;
5544          final double basis;
5545          double result;
5546          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5547          MapReduceValuesToDoubleTask
5548 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5548 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5549               MapReduceValuesToDoubleTask<K,V> nextRight,
5550               ToDoubleFunction<? super V> transformer,
5551               double basis,
5552               DoubleBinaryOperator reducer) {
5553 <            super(m, p, b); this.nextRight = nextRight;
5553 >            super(p, b, i, f, t); this.nextRight = nextRight;
5554              this.transformer = transformer;
5555              this.basis = basis; this.reducer = reducer;
5556          }
5557          public final Double getRawResult() { return result; }
5558 <        @SuppressWarnings("unchecked") public final void compute() {
5558 >        public final void compute() {
5559              final ToDoubleFunction<? super V> transformer;
5560              final DoubleBinaryOperator reducer;
5561              if ((transformer = this.transformer) != null &&
5562                  (reducer = this.reducer) != null) {
5563                  double r = this.basis;
5564 <                for (int b; (b = preSplit()) > 0;)
5564 >                for (int i = baseIndex, f, h; batch > 0 &&
5565 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566 >                    addToPendingCount(1);
5567                      (rights = new MapReduceValuesToDoubleTask<K,V>
5568 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5569 <                V v;
5570 <                while ((v = advance()) != null)
5571 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
5568 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5569 >                      rights, transformer, r, reducer)).fork();
5570 >                }
5571 >                for (Node<K,V> p; (p = advance()) != null; )
5572 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5573                  result = r;
5574                  CountedCompleter<?> c;
5575                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5576 <                    MapReduceValuesToDoubleTask<K,V>
5576 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5577                          t = (MapReduceValuesToDoubleTask<K,V>)c,
5578                          s = t.rights;
5579                      while (s != null) {
# Line 6247 | Line 5585 | public class ConcurrentHashMap<K, V>
5585          }
5586      }
5587  
5588 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5589 <        extends Traverser<K,V,Double> {
5588 >    @SuppressWarnings("serial")
5589 >    static final class MapReduceEntriesToDoubleTask<K,V>
5590 >        extends BulkTask<K,V,Double> {
5591          final ToDoubleFunction<Map.Entry<K,V>> transformer;
5592          final DoubleBinaryOperator reducer;
5593          final double basis;
5594          double result;
5595          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5596          MapReduceEntriesToDoubleTask
5597 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5597 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5598               MapReduceEntriesToDoubleTask<K,V> nextRight,
5599               ToDoubleFunction<Map.Entry<K,V>> transformer,
5600               double basis,
5601               DoubleBinaryOperator reducer) {
5602 <            super(m, p, b); this.nextRight = nextRight;
5602 >            super(p, b, i, f, t); this.nextRight = nextRight;
5603              this.transformer = transformer;
5604              this.basis = basis; this.reducer = reducer;
5605          }
5606          public final Double getRawResult() { return result; }
5607 <        @SuppressWarnings("unchecked") public final void compute() {
5607 >        public final void compute() {
5608              final ToDoubleFunction<Map.Entry<K,V>> transformer;
5609              final DoubleBinaryOperator reducer;
5610              if ((transformer = this.transformer) != null &&
5611                  (reducer = this.reducer) != null) {
5612                  double r = this.basis;
5613 <                for (int b; (b = preSplit()) > 0;)
5613 >                for (int i = baseIndex, f, h; batch > 0 &&
5614 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5615 >                    addToPendingCount(1);
5616                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5617 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5618 <                V v;
5619 <                while ((v = advance()) != null)
5620 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
5621 <                                                                    v)));
5617 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5618 >                      rights, transformer, r, reducer)).fork();
5619 >                }
5620 >                for (Node<K,V> p; (p = advance()) != null; )
5621 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5622                  result = r;
5623                  CountedCompleter<?> c;
5624                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5625 <                    MapReduceEntriesToDoubleTask<K,V>
5625 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5626                          t = (MapReduceEntriesToDoubleTask<K,V>)c,
5627                          s = t.rights;
5628                      while (s != null) {
# Line 6293 | Line 5634 | public class ConcurrentHashMap<K, V>
5634          }
5635      }
5636  
5637 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5638 <        extends Traverser<K,V,Double> {
5637 >    @SuppressWarnings("serial")
5638 >    static final class MapReduceMappingsToDoubleTask<K,V>
5639 >        extends BulkTask<K,V,Double> {
5640          final ToDoubleBiFunction<? super K, ? super V> transformer;
5641          final DoubleBinaryOperator reducer;
5642          final double basis;
5643          double result;
5644          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5645          MapReduceMappingsToDoubleTask
5646 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5646 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5647               MapReduceMappingsToDoubleTask<K,V> nextRight,
5648               ToDoubleBiFunction<? super K, ? super V> transformer,
5649               double basis,
5650               DoubleBinaryOperator reducer) {
5651 <            super(m, p, b); this.nextRight = nextRight;
5651 >            super(p, b, i, f, t); this.nextRight = nextRight;
5652              this.transformer = transformer;
5653              this.basis = basis; this.reducer = reducer;
5654          }
5655          public final Double getRawResult() { return result; }
5656 <        @SuppressWarnings("unchecked") public final void compute() {
5656 >        public final void compute() {
5657              final ToDoubleBiFunction<? super K, ? super V> transformer;
5658              final DoubleBinaryOperator reducer;
5659              if ((transformer = this.transformer) != null &&
5660                  (reducer = this.reducer) != null) {
5661                  double r = this.basis;
5662 <                for (int b; (b = preSplit()) > 0;)
5662 >                for (int i = baseIndex, f, h; batch > 0 &&
5663 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5664 >                    addToPendingCount(1);
5665                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5666 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5667 <                V v;
5668 <                while ((v = advance()) != null)
5669 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
5666 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5667 >                      rights, transformer, r, reducer)).fork();
5668 >                }
5669 >                for (Node<K,V> p; (p = advance()) != null; )
5670 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5671                  result = r;
5672                  CountedCompleter<?> c;
5673                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5674 <                    MapReduceMappingsToDoubleTask<K,V>
5674 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5675                          t = (MapReduceMappingsToDoubleTask<K,V>)c,
5676                          s = t.rights;
5677                      while (s != null) {
# Line 6338 | Line 5683 | public class ConcurrentHashMap<K, V>
5683          }
5684      }
5685  
5686 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5687 <        extends Traverser<K,V,Long> {
5686 >    @SuppressWarnings("serial")
5687 >    static final class MapReduceKeysToLongTask<K,V>
5688 >        extends BulkTask<K,V,Long> {
5689          final ToLongFunction<? super K> transformer;
5690          final LongBinaryOperator reducer;
5691          final long basis;
5692          long result;
5693          MapReduceKeysToLongTask<K,V> rights, nextRight;
5694          MapReduceKeysToLongTask
5695 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5695 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5696               MapReduceKeysToLongTask<K,V> nextRight,
5697               ToLongFunction<? super K> transformer,
5698               long basis,
5699               LongBinaryOperator reducer) {
5700 <            super(m, p, b); this.nextRight = nextRight;
5700 >            super(p, b, i, f, t); this.nextRight = nextRight;
5701              this.transformer = transformer;
5702              this.basis = basis; this.reducer = reducer;
5703          }
5704          public final Long getRawResult() { return result; }
5705 <        @SuppressWarnings("unchecked") public final void compute() {
5705 >        public final void compute() {
5706              final ToLongFunction<? super K> transformer;
5707              final LongBinaryOperator reducer;
5708              if ((transformer = this.transformer) != null &&
5709                  (reducer = this.reducer) != null) {
5710                  long r = this.basis;
5711 <                for (int b; (b = preSplit()) > 0;)
5711 >                for (int i = baseIndex, f, h; batch > 0 &&
5712 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5713 >                    addToPendingCount(1);
5714                      (rights = new MapReduceKeysToLongTask<K,V>
5715 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5716 <                while (advance() != null)
5717 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
5715 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5716 >                      rights, transformer, r, reducer)).fork();
5717 >                }
5718 >                for (Node<K,V> p; (p = advance()) != null; )
5719 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5720                  result = r;
5721                  CountedCompleter<?> c;
5722                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5723 <                    MapReduceKeysToLongTask<K,V>
5723 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5724                          t = (MapReduceKeysToLongTask<K,V>)c,
5725                          s = t.rights;
5726                      while (s != null) {
# Line 6382 | Line 5732 | public class ConcurrentHashMap<K, V>
5732          }
5733      }
5734  
5735 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5736 <        extends Traverser<K,V,Long> {
5735 >    @SuppressWarnings("serial")
5736 >    static final class MapReduceValuesToLongTask<K,V>
5737 >        extends BulkTask<K,V,Long> {
5738          final ToLongFunction<? super V> transformer;
5739          final LongBinaryOperator reducer;
5740          final long basis;
5741          long result;
5742          MapReduceValuesToLongTask<K,V> rights, nextRight;
5743          MapReduceValuesToLongTask
5744 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5744 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5745               MapReduceValuesToLongTask<K,V> nextRight,
5746               ToLongFunction<? super V> transformer,
5747               long basis,
5748               LongBinaryOperator reducer) {
5749 <            super(m, p, b); this.nextRight = nextRight;
5749 >            super(p, b, i, f, t); this.nextRight = nextRight;
5750              this.transformer = transformer;
5751              this.basis = basis; this.reducer = reducer;
5752          }
5753          public final Long getRawResult() { return result; }
5754 <        @SuppressWarnings("unchecked") public final void compute() {
5754 >        public final void compute() {
5755              final ToLongFunction<? super V> transformer;
5756              final LongBinaryOperator reducer;
5757              if ((transformer = this.transformer) != null &&
5758                  (reducer = this.reducer) != null) {
5759                  long r = this.basis;
5760 <                for (int b; (b = preSplit()) > 0;)
5760 >                for (int i = baseIndex, f, h; batch > 0 &&
5761 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5762 >                    addToPendingCount(1);
5763                      (rights = new MapReduceValuesToLongTask<K,V>
5764 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5765 <                V v;
5766 <                while ((v = advance()) != null)
5767 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(v));
5764 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5765 >                      rights, transformer, r, reducer)).fork();
5766 >                }
5767 >                for (Node<K,V> p; (p = advance()) != null; )
5768 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5769                  result = r;
5770                  CountedCompleter<?> c;
5771                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5772 <                    MapReduceValuesToLongTask<K,V>
5772 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5773                          t = (MapReduceValuesToLongTask<K,V>)c,
5774                          s = t.rights;
5775                      while (s != null) {
# Line 6427 | Line 5781 | public class ConcurrentHashMap<K, V>
5781          }
5782      }
5783  
5784 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5785 <        extends Traverser<K,V,Long> {
5784 >    @SuppressWarnings("serial")
5785 >    static final class MapReduceEntriesToLongTask<K,V>
5786 >        extends BulkTask<K,V,Long> {
5787          final ToLongFunction<Map.Entry<K,V>> transformer;
5788          final LongBinaryOperator reducer;
5789          final long basis;
5790          long result;
5791          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5792          MapReduceEntriesToLongTask
5793 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5793 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5794               MapReduceEntriesToLongTask<K,V> nextRight,
5795               ToLongFunction<Map.Entry<K,V>> transformer,
5796               long basis,
5797               LongBinaryOperator reducer) {
5798 <            super(m, p, b); this.nextRight = nextRight;
5798 >            super(p, b, i, f, t); this.nextRight = nextRight;
5799              this.transformer = transformer;
5800              this.basis = basis; this.reducer = reducer;
5801          }
5802          public final Long getRawResult() { return result; }
5803 <        @SuppressWarnings("unchecked") public final void compute() {
5803 >        public final void compute() {
5804              final ToLongFunction<Map.Entry<K,V>> transformer;
5805              final LongBinaryOperator reducer;
5806              if ((transformer = this.transformer) != null &&
5807                  (reducer = this.reducer) != null) {
5808                  long r = this.basis;
5809 <                for (int b; (b = preSplit()) > 0;)
5809 >                for (int i = baseIndex, f, h; batch > 0 &&
5810 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5811 >                    addToPendingCount(1);
5812                      (rights = new MapReduceEntriesToLongTask<K,V>
5813 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5814 <                V v;
5815 <                while ((v = advance()) != null)
5816 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
5813 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5814 >                      rights, transformer, r, reducer)).fork();
5815 >                }
5816 >                for (Node<K,V> p; (p = advance()) != null; )
5817 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5818                  result = r;
5819                  CountedCompleter<?> c;
5820                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5821 <                    MapReduceEntriesToLongTask<K,V>
5821 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5822                          t = (MapReduceEntriesToLongTask<K,V>)c,
5823                          s = t.rights;
5824                      while (s != null) {
# Line 6472 | Line 5830 | public class ConcurrentHashMap<K, V>
5830          }
5831      }
5832  
5833 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5834 <        extends Traverser<K,V,Long> {
5833 >    @SuppressWarnings("serial")
5834 >    static final class MapReduceMappingsToLongTask<K,V>
5835 >        extends BulkTask<K,V,Long> {
5836          final ToLongBiFunction<? super K, ? super V> transformer;
5837          final LongBinaryOperator reducer;
5838          final long basis;
5839          long result;
5840          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5841          MapReduceMappingsToLongTask
5842 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5842 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5843               MapReduceMappingsToLongTask<K,V> nextRight,
5844               ToLongBiFunction<? super K, ? super V> transformer,
5845               long basis,
5846               LongBinaryOperator reducer) {
5847 <            super(m, p, b); this.nextRight = nextRight;
5847 >            super(p, b, i, f, t); this.nextRight = nextRight;
5848              this.transformer = transformer;
5849              this.basis = basis; this.reducer = reducer;
5850          }
5851          public final Long getRawResult() { return result; }
5852 <        @SuppressWarnings("unchecked") public final void compute() {
5852 >        public final void compute() {
5853              final ToLongBiFunction<? super K, ? super V> transformer;
5854              final LongBinaryOperator reducer;
5855              if ((transformer = this.transformer) != null &&
5856                  (reducer = this.reducer) != null) {
5857                  long r = this.basis;
5858 <                for (int b; (b = preSplit()) > 0;)
5858 >                for (int i = baseIndex, f, h; batch > 0 &&
5859 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5860 >                    addToPendingCount(1);
5861                      (rights = new MapReduceMappingsToLongTask<K,V>
5862 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5863 <                V v;
5864 <                while ((v = advance()) != null)
5865 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
5862 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5863 >                      rights, transformer, r, reducer)).fork();
5864 >                }
5865 >                for (Node<K,V> p; (p = advance()) != null; )
5866 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5867                  result = r;
5868                  CountedCompleter<?> c;
5869                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5870 <                    MapReduceMappingsToLongTask<K,V>
5870 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5871                          t = (MapReduceMappingsToLongTask<K,V>)c,
5872                          s = t.rights;
5873                      while (s != null) {
# Line 6517 | Line 5879 | public class ConcurrentHashMap<K, V>
5879          }
5880      }
5881  
5882 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5883 <        extends Traverser<K,V,Integer> {
5882 >    @SuppressWarnings("serial")
5883 >    static final class MapReduceKeysToIntTask<K,V>
5884 >        extends BulkTask<K,V,Integer> {
5885          final ToIntFunction<? super K> transformer;
5886          final IntBinaryOperator reducer;
5887          final int basis;
5888          int result;
5889          MapReduceKeysToIntTask<K,V> rights, nextRight;
5890          MapReduceKeysToIntTask
5891 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5891 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5892               MapReduceKeysToIntTask<K,V> nextRight,
5893               ToIntFunction<? super K> transformer,
5894               int basis,
5895               IntBinaryOperator reducer) {
5896 <            super(m, p, b); this.nextRight = nextRight;
5896 >            super(p, b, i, f, t); this.nextRight = nextRight;
5897              this.transformer = transformer;
5898              this.basis = basis; this.reducer = reducer;
5899          }
5900          public final Integer getRawResult() { return result; }
5901 <        @SuppressWarnings("unchecked") public final void compute() {
5901 >        public final void compute() {
5902              final ToIntFunction<? super K> transformer;
5903              final IntBinaryOperator reducer;
5904              if ((transformer = this.transformer) != null &&
5905                  (reducer = this.reducer) != null) {
5906                  int r = this.basis;
5907 <                for (int b; (b = preSplit()) > 0;)
5907 >                for (int i = baseIndex, f, h; batch > 0 &&
5908 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5909 >                    addToPendingCount(1);
5910                      (rights = new MapReduceKeysToIntTask<K,V>
5911 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5912 <                while (advance() != null)
5913 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
5911 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5912 >                      rights, transformer, r, reducer)).fork();
5913 >                }
5914 >                for (Node<K,V> p; (p = advance()) != null; )
5915 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5916                  result = r;
5917                  CountedCompleter<?> c;
5918                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5919 <                    MapReduceKeysToIntTask<K,V>
5919 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5920                          t = (MapReduceKeysToIntTask<K,V>)c,
5921                          s = t.rights;
5922                      while (s != null) {
# Line 6561 | Line 5928 | public class ConcurrentHashMap<K, V>
5928          }
5929      }
5930  
5931 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5932 <        extends Traverser<K,V,Integer> {
5931 >    @SuppressWarnings("serial")
5932 >    static final class MapReduceValuesToIntTask<K,V>
5933 >        extends BulkTask<K,V,Integer> {
5934          final ToIntFunction<? super V> transformer;
5935          final IntBinaryOperator reducer;
5936          final int basis;
5937          int result;
5938          MapReduceValuesToIntTask<K,V> rights, nextRight;
5939          MapReduceValuesToIntTask
5940 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5940 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5941               MapReduceValuesToIntTask<K,V> nextRight,
5942               ToIntFunction<? super V> transformer,
5943               int basis,
5944               IntBinaryOperator reducer) {
5945 <            super(m, p, b); this.nextRight = nextRight;
5945 >            super(p, b, i, f, t); this.nextRight = nextRight;
5946              this.transformer = transformer;
5947              this.basis = basis; this.reducer = reducer;
5948          }
5949          public final Integer getRawResult() { return result; }
5950 <        @SuppressWarnings("unchecked") public final void compute() {
5950 >        public final void compute() {
5951              final ToIntFunction<? super V> transformer;
5952              final IntBinaryOperator reducer;
5953              if ((transformer = this.transformer) != null &&
5954                  (reducer = this.reducer) != null) {
5955                  int r = this.basis;
5956 <                for (int b; (b = preSplit()) > 0;)
5956 >                for (int i = baseIndex, f, h; batch > 0 &&
5957 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5958 >                    addToPendingCount(1);
5959                      (rights = new MapReduceValuesToIntTask<K,V>
5960 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5961 <                V v;
5962 <                while ((v = advance()) != null)
5963 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(v));
5960 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5961 >                      rights, transformer, r, reducer)).fork();
5962 >                }
5963 >                for (Node<K,V> p; (p = advance()) != null; )
5964 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5965                  result = r;
5966                  CountedCompleter<?> c;
5967                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5968 <                    MapReduceValuesToIntTask<K,V>
5968 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5969                          t = (MapReduceValuesToIntTask<K,V>)c,
5970                          s = t.rights;
5971                      while (s != null) {
# Line 6606 | Line 5977 | public class ConcurrentHashMap<K, V>
5977          }
5978      }
5979  
5980 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
5981 <        extends Traverser<K,V,Integer> {
5980 >    @SuppressWarnings("serial")
5981 >    static final class MapReduceEntriesToIntTask<K,V>
5982 >        extends BulkTask<K,V,Integer> {
5983          final ToIntFunction<Map.Entry<K,V>> transformer;
5984          final IntBinaryOperator reducer;
5985          final int basis;
5986          int result;
5987          MapReduceEntriesToIntTask<K,V> rights, nextRight;
5988          MapReduceEntriesToIntTask
5989 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5989 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5990               MapReduceEntriesToIntTask<K,V> nextRight,
5991               ToIntFunction<Map.Entry<K,V>> transformer,
5992               int basis,
5993               IntBinaryOperator reducer) {
5994 <            super(m, p, b); this.nextRight = nextRight;
5994 >            super(p, b, i, f, t); this.nextRight = nextRight;
5995              this.transformer = transformer;
5996              this.basis = basis; this.reducer = reducer;
5997          }
5998          public final Integer getRawResult() { return result; }
5999 <        @SuppressWarnings("unchecked") public final void compute() {
5999 >        public final void compute() {
6000              final ToIntFunction<Map.Entry<K,V>> transformer;
6001              final IntBinaryOperator reducer;
6002              if ((transformer = this.transformer) != null &&
6003                  (reducer = this.reducer) != null) {
6004                  int r = this.basis;
6005 <                for (int b; (b = preSplit()) > 0;)
6005 >                for (int i = baseIndex, f, h; batch > 0 &&
6006 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6007 >                    addToPendingCount(1);
6008                      (rights = new MapReduceEntriesToIntTask<K,V>
6009 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6010 <                V v;
6011 <                while ((v = advance()) != null)
6012 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6013 <                                                                    v)));
6009 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6010 >                      rights, transformer, r, reducer)).fork();
6011 >                }
6012 >                for (Node<K,V> p; (p = advance()) != null; )
6013 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6014                  result = r;
6015                  CountedCompleter<?> c;
6016                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6017 <                    MapReduceEntriesToIntTask<K,V>
6017 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6018                          t = (MapReduceEntriesToIntTask<K,V>)c,
6019                          s = t.rights;
6020                      while (s != null) {
# Line 6652 | Line 6026 | public class ConcurrentHashMap<K, V>
6026          }
6027      }
6028  
6029 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6030 <        extends Traverser<K,V,Integer> {
6029 >    @SuppressWarnings("serial")
6030 >    static final class MapReduceMappingsToIntTask<K,V>
6031 >        extends BulkTask<K,V,Integer> {
6032          final ToIntBiFunction<? super K, ? super V> transformer;
6033          final IntBinaryOperator reducer;
6034          final int basis;
6035          int result;
6036          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6037          MapReduceMappingsToIntTask
6038 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6038 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6039               MapReduceMappingsToIntTask<K,V> nextRight,
6040               ToIntBiFunction<? super K, ? super V> transformer,
6041               int basis,
6042               IntBinaryOperator reducer) {
6043 <            super(m, p, b); this.nextRight = nextRight;
6043 >            super(p, b, i, f, t); this.nextRight = nextRight;
6044              this.transformer = transformer;
6045              this.basis = basis; this.reducer = reducer;
6046          }
6047          public final Integer getRawResult() { return result; }
6048 <        @SuppressWarnings("unchecked") public final void compute() {
6048 >        public final void compute() {
6049              final ToIntBiFunction<? super K, ? super V> transformer;
6050              final IntBinaryOperator reducer;
6051              if ((transformer = this.transformer) != null &&
6052                  (reducer = this.reducer) != null) {
6053                  int r = this.basis;
6054 <                for (int b; (b = preSplit()) > 0;)
6054 >                for (int i = baseIndex, f, h; batch > 0 &&
6055 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6056 >                    addToPendingCount(1);
6057                      (rights = new MapReduceMappingsToIntTask<K,V>
6058 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6059 <                V v;
6060 <                while ((v = advance()) != null)
6061 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6058 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6059 >                      rights, transformer, r, reducer)).fork();
6060 >                }
6061 >                for (Node<K,V> p; (p = advance()) != null; )
6062 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6063                  result = r;
6064                  CountedCompleter<?> c;
6065                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6066 <                    MapReduceMappingsToIntTask<K,V>
6066 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6067                          t = (MapReduceMappingsToIntTask<K,V>)c,
6068                          s = t.rights;
6069                      while (s != null) {
# Line 6722 | Line 6100 | public class ConcurrentHashMap<K, V>
6100                  (k.getDeclaredField("baseCount"));
6101              CELLSBUSY = U.objectFieldOffset
6102                  (k.getDeclaredField("cellsBusy"));
6103 <            Class<?> ck = Cell.class;
6103 >            Class<?> ck = CounterCell.class;
6104              CELLVALUE = U.objectFieldOffset
6105                  (ck.getDeclaredField("value"));
6106 <            Class<?> sc = Node[].class;
6107 <            ABASE = U.arrayBaseOffset(sc);
6108 <            int scale = U.arrayIndexScale(sc);
6106 >            Class<?> ak = Node[].class;
6107 >            ABASE = U.arrayBaseOffset(ak);
6108 >            int scale = U.arrayIndexScale(ak);
6109              if ((scale & (scale - 1)) != 0)
6110                  throw new Error("data type scale not a power of two");
6111              ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
# Line 6735 | Line 6113 | public class ConcurrentHashMap<K, V>
6113              throw new Error(e);
6114          }
6115      }
6738
6116   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines