ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.207 by jsr166, Tue Apr 16 05:45:59 2013 UTC vs.
Revision 1.238 by jsr166, Thu Jul 18 18:21:22 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.Spliterator;
11 import java.util.stream.Stream;
12 import java.util.stream.Streams;
13 import java.util.function.*;
14 import java.util.function.Consumer;
15 import java.util.function.Function;
16 import java.util.function.BiFunction;
8  
9 < import java.util.Comparator;
9 > import java.io.ObjectStreamField;
10 > import java.io.Serializable;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14   import java.util.Arrays;
20 import java.util.Map;
21 import java.util.Set;
15   import java.util.Collection;
16 < import java.util.AbstractMap;
17 < import java.util.AbstractSet;
18 < import java.util.AbstractCollection;
26 < import java.util.Hashtable;
16 > import java.util.Comparator;
17 > import java.util.ConcurrentModificationException;
18 > import java.util.Enumeration;
19   import java.util.HashMap;
20 + import java.util.Hashtable;
21   import java.util.Iterator;
22 < import java.util.Enumeration;
30 < import java.util.ConcurrentModificationException;
22 > import java.util.Map;
23   import java.util.NoSuchElementException;
24 + import java.util.Set;
25 + import java.util.Spliterator;
26   import java.util.concurrent.ConcurrentMap;
27 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
34 < import java.util.concurrent.atomic.AtomicInteger;
27 > import java.util.concurrent.ForkJoinPool;
28   import java.util.concurrent.atomic.AtomicReference;
29 < import java.io.Serializable;
30 < import java.lang.reflect.Type;
31 < import java.lang.reflect.ParameterizedType;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31 > import java.util.function.BiConsumer;
32 > import java.util.function.BiFunction;
33 > import java.util.function.BinaryOperator;
34 > import java.util.function.Consumer;
35 > import java.util.function.DoubleBinaryOperator;
36 > import java.util.function.Function;
37 > import java.util.function.IntBinaryOperator;
38 > import java.util.function.LongBinaryOperator;
39 > import java.util.function.ToDoubleBiFunction;
40 > import java.util.function.ToDoubleFunction;
41 > import java.util.function.ToIntBiFunction;
42 > import java.util.function.ToIntFunction;
43 > import java.util.function.ToLongBiFunction;
44 > import java.util.function.ToLongFunction;
45 > import java.util.stream.Stream;
46  
47   /**
48   * A hash table supporting full concurrency of retrievals and
# Line 89 | Line 96 | import java.lang.reflect.ParameterizedTy
96   * expected {@code concurrencyLevel} as an additional hint for
97   * internal sizing.  Note that using many keys with exactly the same
98   * {@code hashCode()} is a sure way to slow down performance of any
99 < * hash table.
99 > * hash table. To ameliorate impact, when keys are {@link Comparable},
100 > * this class may use comparison order among keys to help break ties.
101   *
102   * <p>A {@link Set} projection of a ConcurrentHashMap may be created
103   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 111 | Line 119 | import java.lang.reflect.ParameterizedTy
119   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
120   * does <em>not</em> allow {@code null} to be used as a key or value.
121   *
122 < * <p>ConcurrentHashMaps support sequential and parallel operations
123 < * bulk operations. (Parallel forms use the {@link
124 < * ForkJoinPool#commonPool()}). Tasks that may be used in other
125 < * contexts are available in class {@link ForkJoinTasks}. These
126 < * operations are designed to be safely, and often sensibly, applied
127 < * even with maps that are being concurrently updated by other
128 < * threads; for example, when computing a snapshot summary of the
129 < * values in a shared registry.  There are three kinds of operation,
130 < * each with four forms, accepting functions with Keys, Values,
131 < * Entries, and (Key, Value) arguments and/or return values. Because
132 < * the elements of a ConcurrentHashMap are not ordered in any
133 < * particular way, and may be processed in different orders in
134 < * different parallel executions, the correctness of supplied
135 < * functions should not depend on any ordering, or on any other
136 < * objects or values that may transiently change while computation is
129 < * in progress; and except for forEach actions, should ideally be
130 < * side-effect-free.
122 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
123 > * operations that, unlike most {@link Stream} methods, are designed
124 > * to be safely, and often sensibly, applied even with maps that are
125 > * being concurrently updated by other threads; for example, when
126 > * computing a snapshot summary of the values in a shared registry.
127 > * There are three kinds of operation, each with four forms, accepting
128 > * functions with Keys, Values, Entries, and (Key, Value) arguments
129 > * and/or return values. Because the elements of a ConcurrentHashMap
130 > * are not ordered in any particular way, and may be processed in
131 > * different orders in different parallel executions, the correctness
132 > * of supplied functions should not depend on any ordering, or on any
133 > * other objects or values that may transiently change while
134 > * computation is in progress; and except for forEach actions, should
135 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
136 > * objects do not support method {@code setValue}.
137   *
138   * <ul>
139   * <li> forEach: Perform a given action on each element.
# Line 158 | Line 164 | import java.lang.reflect.ParameterizedTy
164   * </li>
165   * </ul>
166   *
167 + * <p>These bulk operations accept a {@code parallelismThreshold}
168 + * argument. Methods proceed sequentially if the current map size is
169 + * estimated to be less than the given threshold. Using a value of
170 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
171 + * of {@code 1} results in maximal parallelism by partitioning into
172 + * enough subtasks to fully utilize the {@link
173 + * ForkJoinPool#commonPool()} that is used for all parallel
174 + * computations. Normally, you would initially choose one of these
175 + * extreme values, and then measure performance of using in-between
176 + * values that trade off overhead versus throughput.
177 + *
178   * <p>The concurrency properties of bulk operations follow
179   * from those of ConcurrentHashMap: Any non-null result returned
180   * from {@code get(key)} and related access methods bears a
# Line 219 | Line 236 | import java.lang.reflect.ParameterizedTy
236   * @param <K> the type of keys maintained by this map
237   * @param <V> the type of mapped values
238   */
239 < public class ConcurrentHashMap<K,V>
223 <    implements ConcurrentMap<K,V>, Serializable {
239 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> implements ConcurrentMap<K,V>, Serializable {
240      private static final long serialVersionUID = 7249069246763182397L;
241  
242      /*
# Line 233 | Line 249 | public class ConcurrentHashMap<K,V>
249       * the same or better than java.util.HashMap, and to support high
250       * initial insertion rates on an empty table by many threads.
251       *
252 <     * Each key-value mapping is held in a Node.  Because Node key
253 <     * fields can contain special values, they are defined using plain
254 <     * Object types (not type "K"). This leads to a lot of explicit
255 <     * casting (and many explicit warning suppressions to tell
256 <     * compilers not to complain about it). It also allows some of the
257 <     * public methods to be factored into a smaller number of internal
258 <     * methods (although sadly not so for the five variants of
259 <     * put-related operations). The validation-based approach
260 <     * explained below leads to a lot of code sprawl because
261 <     * retry-control precludes factoring into smaller methods.
252 >     * This map usually acts as a binned (bucketed) hash table.  Each
253 >     * key-value mapping is held in a Node.  Most nodes are instances
254 >     * of the basic Node class with hash, key, value, and next
255 >     * fields. However, various subclasses exist: TreeNodes are
256 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
257 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 >     * of bins during resizing. ReservationNodes are used as
259 >     * placeholders while establishing values in computeIfAbsent and
260 >     * related methods.  The types TreeBin, ForwardingNode, and
261 >     * ReservationNode do not hold normal user keys, values, or
262 >     * hashes, and are readily distinguishable during search etc
263 >     * because they have negative hash fields and null key and value
264 >     * fields. (These special nodes are either uncommon or transient,
265 >     * so the impact of carrying around some unused fields is
266 >     * insignificant.)
267       *
268       * The table is lazily initialized to a power-of-two size upon the
269       * first insertion.  Each bin in the table normally contains a
# Line 250 | Line 271 | public class ConcurrentHashMap<K,V>
271       * Table accesses require volatile/atomic reads, writes, and
272       * CASes.  Because there is no other way to arrange this without
273       * adding further indirections, we use intrinsics
274 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
254 <     * are always accurately traversable under volatile reads, so long
255 <     * as lookups check hash code and non-nullness of value before
256 <     * checking key equality.
274 >     * (sun.misc.Unsafe) operations.
275       *
276       * We use the top (sign) bit of Node hash fields for control
277       * purposes -- it is available anyway because of addressing
278 <     * constraints.  Nodes with negative hash fields are forwarding
279 <     * nodes to either TreeBins or resized tables.  The lower 31 bits
262 <     * of each normal Node's hash field contain a transformation of
263 <     * the key's hash code.
278 >     * constraints.  Nodes with negative hash fields are specially
279 >     * handled or ignored in map methods.
280       *
281       * Insertion (via put or its variants) of the first node in an
282       * empty bin is performed by just CASing it to the bin.  This is
# Line 277 | Line 293 | public class ConcurrentHashMap<K,V>
293       * validate that it is still the first node after locking it, and
294       * retry if not. Because new nodes are always appended to lists,
295       * once a node is first in a bin, it remains first until deleted
296 <     * or the bin becomes invalidated (upon resizing).  However,
281 <     * operations that only conditionally update may inspect nodes
282 <     * until the point of update. This is a converse of sorts to the
283 <     * lazy locking technique described by Herlihy & Shavit.
296 >     * or the bin becomes invalidated (upon resizing).
297       *
298       * The main disadvantage of per-bin locks is that other update
299       * operations on other nodes in a bin list protected by the same
# Line 313 | Line 326 | public class ConcurrentHashMap<K,V>
326       * sometimes deviate significantly from uniform randomness.  This
327       * includes the case when N > (1<<30), so some keys MUST collide.
328       * Similarly for dumb or hostile usages in which multiple keys are
329 <     * designed to have identical hash codes. Also, although we guard
330 <     * against the worst effects of this (see method spread), sets of
331 <     * hashes may differ only in bits that do not impact their bin
332 <     * index for a given power-of-two mask.  So we use a secondary
333 <     * strategy that applies when the number of nodes in a bin exceeds
334 <     * a threshold, and at least one of the keys implements
322 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
323 <     * (a specialized form of red-black trees), bounding search time
324 <     * to O(log N).  Each search step in a TreeBin is at least twice as
329 >     * designed to have identical hash codes or ones that differs only
330 >     * in masked-out high bits. So we use a secondary strategy that
331 >     * applies when the number of nodes in a bin exceeds a
332 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
333 >     * specialized form of red-black trees), bounding search time to
334 >     * O(log N).  Each search step in a TreeBin is at least twice as
335       * slow as in a regular list, but given that N cannot exceed
336       * (1<<64) (before running out of addresses) this bounds search
337       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 387 | Line 397 | public class ConcurrentHashMap<K,V>
397       * LongAdder. We need to incorporate a specialization rather than
398       * just use a LongAdder in order to access implicit
399       * contention-sensing that leads to creation of multiple
400 <     * Cells.  The counter mechanics avoid contention on
400 >     * CounterCells.  The counter mechanics avoid contention on
401       * updates but can encounter cache thrashing if read too
402       * frequently during concurrent access. To avoid reading so often,
403       * resizing under contention is attempted only upon adding to a
404       * bin already holding two or more nodes. Under uniform hash
405       * distributions, the probability of this occurring at threshold
406       * is around 13%, meaning that only about 1 in 8 puts check
407 <     * threshold (and after resizing, many fewer do so). The bulk
408 <     * putAll operation further reduces contention by only committing
409 <     * count updates upon these size checks.
407 >     * threshold (and after resizing, many fewer do so).
408 >     *
409 >     * TreeBins use a special form of comparison for search and
410 >     * related operations (which is the main reason we cannot use
411 >     * existing collections such as TreeMaps). TreeBins contain
412 >     * Comparable elements, but may contain others, as well as
413 >     * elements that are Comparable but not necessarily Comparable
414 >     * for the same T, so we cannot invoke compareTo among them. To
415 >     * handle this, the tree is ordered primarily by hash value, then
416 >     * by Comparable.compareTo order if applicable.  On lookup at a
417 >     * node, if elements are not comparable or compare as 0 then both
418 >     * left and right children may need to be searched in the case of
419 >     * tied hash values. (This corresponds to the full list search
420 >     * that would be necessary if all elements were non-Comparable and
421 >     * had tied hashes.)  The red-black balancing code is updated from
422 >     * pre-jdk-collections
423 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
424 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
425 >     * Algorithms" (CLR).
426 >     *
427 >     * TreeBins also require an additional locking mechanism.  While
428 >     * list traversal is always possible by readers even during
429 >     * updates, tree traversal is not, mainly because of tree-rotations
430 >     * that may change the root node and/or its linkages.  TreeBins
431 >     * include a simple read-write lock mechanism parasitic on the
432 >     * main bin-synchronization strategy: Structural adjustments
433 >     * associated with an insertion or removal are already bin-locked
434 >     * (and so cannot conflict with other writers) but must wait for
435 >     * ongoing readers to finish. Since there can be only one such
436 >     * waiter, we use a simple scheme using a single "waiter" field to
437 >     * block writers.  However, readers need never block.  If the root
438 >     * lock is held, they proceed along the slow traversal path (via
439 >     * next-pointers) until the lock becomes available or the list is
440 >     * exhausted, whichever comes first. These cases are not fast, but
441 >     * maximize aggregate expected throughput.
442       *
443       * Maintaining API and serialization compatibility with previous
444       * versions of this class introduces several oddities. Mainly: We
# Line 406 | Line 448 | public class ConcurrentHashMap<K,V>
448       * time that we can guarantee to honor it.) We also declare an
449       * unused "Segment" class that is instantiated in minimal form
450       * only when serializing.
451 +     *
452 +     * This file is organized to make things a little easier to follow
453 +     * while reading than they might otherwise: First the main static
454 +     * declarations and utilities, then fields, then main public
455 +     * methods (with a few factorings of multiple public methods into
456 +     * internal ones), then sizing methods, trees, traversers, and
457 +     * bulk operations.
458       */
459  
460      /* ---------------- Constants -------------- */
# Line 448 | Line 497 | public class ConcurrentHashMap<K,V>
497  
498      /**
499       * The bin count threshold for using a tree rather than list for a
500 <     * bin.  The value reflects the approximate break-even point for
501 <     * using tree-based operations.
500 >     * bin.  Bins are converted to trees when adding an element to a
501 >     * bin with at least this many nodes. The value must be greater
502 >     * than 2, and should be at least 8 to mesh with assumptions in
503 >     * tree removal about conversion back to plain bins upon
504 >     * shrinkage.
505 >     */
506 >    static final int TREEIFY_THRESHOLD = 8;
507 >
508 >    /**
509 >     * The bin count threshold for untreeifying a (split) bin during a
510 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
511 >     * most 6 to mesh with shrinkage detection under removal.
512       */
513 <    private static final int TREE_THRESHOLD = 16;
513 >    static final int UNTREEIFY_THRESHOLD = 6;
514 >
515 >    /**
516 >     * The smallest table capacity for which bins may be treeified.
517 >     * (Otherwise the table is resized if too many nodes in a bin.)
518 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
519 >     * conflicts between resizing and treeification thresholds.
520 >     */
521 >    static final int MIN_TREEIFY_CAPACITY = 64;
522  
523      /**
524       * Minimum number of rebinnings per transfer step. Ranges are
# Line 465 | Line 532 | public class ConcurrentHashMap<K,V>
532      /*
533       * Encodings for Node hash fields. See above for explanation.
534       */
535 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
535 >    static final int MOVED     = -1; // hash for forwarding nodes
536 >    static final int TREEBIN   = -2; // hash for roots of trees
537 >    static final int RESERVED  = -3; // hash for transient reservations
538      static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
539  
540      /** Number of CPUS, to place bounds on some sizings */
541      static final int NCPU = Runtime.getRuntime().availableProcessors();
542  
543 <    /* ---------------- Counters -------------- */
543 >    /** For serialization compatibility. */
544 >    private static final ObjectStreamField[] serialPersistentFields = {
545 >        new ObjectStreamField("segments", Segment[].class),
546 >        new ObjectStreamField("segmentMask", Integer.TYPE),
547 >        new ObjectStreamField("segmentShift", Integer.TYPE)
548 >    };
549  
550 <    // Adapted from LongAdder and Striped64.
477 <    // See their internal docs for explanation.
550 >    /* ---------------- Nodes -------------- */
551  
552 <    // A padded cell for distributing counts
553 <    static final class Cell {
554 <        volatile long p0, p1, p2, p3, p4, p5, p6;
555 <        volatile long value;
556 <        volatile long q0, q1, q2, q3, q4, q5, q6;
557 <        Cell(long x) { value = x; }
552 >    /**
553 >     * Key-value entry.  This class is never exported out as a
554 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
555 >     * MapEntry below), but can be used for read-only traversals used
556 >     * in bulk tasks.  Subclasses of Node with a negative hash field
557 >     * are special, and contain null keys and values (but are never
558 >     * exported).  Otherwise, keys and vals are never null.
559 >     */
560 >    static class Node<K,V> implements Map.Entry<K,V> {
561 >        final int hash;
562 >        final K key;
563 >        volatile V val;
564 >        volatile Node<K,V> next;
565 >
566 >        Node(int hash, K key, V val, Node<K,V> next) {
567 >            this.hash = hash;
568 >            this.key = key;
569 >            this.val = val;
570 >            this.next = next;
571 >        }
572 >
573 >        public final K getKey()       { return key; }
574 >        public final V getValue()     { return val; }
575 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
576 >        public final String toString(){ return key + "=" + val; }
577 >        public final V setValue(V value) {
578 >            throw new UnsupportedOperationException();
579 >        }
580 >
581 >        public final boolean equals(Object o) {
582 >            Object k, v, u; Map.Entry<?,?> e;
583 >            return ((o instanceof Map.Entry) &&
584 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
585 >                    (v = e.getValue()) != null &&
586 >                    (k == key || k.equals(key)) &&
587 >                    (v == (u = val) || v.equals(u)));
588 >        }
589 >
590 >        /**
591 >         * Virtualized support for map.get(); overridden in subclasses.
592 >         */
593 >        Node<K,V> find(int h, Object k) {
594 >            Node<K,V> e = this;
595 >            if (k != null) {
596 >                do {
597 >                    K ek;
598 >                    if (e.hash == h &&
599 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
600 >                        return e;
601 >                } while ((e = e.next) != null);
602 >            }
603 >            return null;
604 >        }
605 >    }
606 >
607 >    /* ---------------- Static utilities -------------- */
608 >
609 >    /**
610 >     * Spreads (XORs) higher bits of hash to lower and also forces top
611 >     * bit to 0. Because the table uses power-of-two masking, sets of
612 >     * hashes that vary only in bits above the current mask will
613 >     * always collide. (Among known examples are sets of Float keys
614 >     * holding consecutive whole numbers in small tables.)  So we
615 >     * apply a transform that spreads the impact of higher bits
616 >     * downward. There is a tradeoff between speed, utility, and
617 >     * quality of bit-spreading. Because many common sets of hashes
618 >     * are already reasonably distributed (so don't benefit from
619 >     * spreading), and because we use trees to handle large sets of
620 >     * collisions in bins, we just XOR some shifted bits in the
621 >     * cheapest possible way to reduce systematic lossage, as well as
622 >     * to incorporate impact of the highest bits that would otherwise
623 >     * never be used in index calculations because of table bounds.
624 >     */
625 >    static final int spread(int h) {
626 >        return (h ^ (h >>> 16)) & HASH_BITS;
627 >    }
628 >
629 >    /**
630 >     * Returns a power of two table size for the given desired capacity.
631 >     * See Hackers Delight, sec 3.2
632 >     */
633 >    private static final int tableSizeFor(int c) {
634 >        int n = c - 1;
635 >        n |= n >>> 1;
636 >        n |= n >>> 2;
637 >        n |= n >>> 4;
638 >        n |= n >>> 8;
639 >        n |= n >>> 16;
640 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
641 >    }
642 >
643 >    /**
644 >     * Returns x's Class if it is of the form "class C implements
645 >     * Comparable<C>", else null.
646 >     */
647 >    static Class<?> comparableClassFor(Object x) {
648 >        if (x instanceof Comparable) {
649 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
650 >            if ((c = x.getClass()) == String.class) // bypass checks
651 >                return c;
652 >            if ((ts = c.getGenericInterfaces()) != null) {
653 >                for (int i = 0; i < ts.length; ++i) {
654 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
655 >                        ((p = (ParameterizedType)t).getRawType() ==
656 >                         Comparable.class) &&
657 >                        (as = p.getActualTypeArguments()) != null &&
658 >                        as.length == 1 && as[0] == c) // type arg is c
659 >                        return c;
660 >                }
661 >            }
662 >        }
663 >        return null;
664 >    }
665 >
666 >    /**
667 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
668 >     * class), else 0.
669 >     */
670 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
671 >    static int compareComparables(Class<?> kc, Object k, Object x) {
672 >        return (x == null || x.getClass() != kc ? 0 :
673 >                ((Comparable)k).compareTo(x));
674 >    }
675 >
676 >    /* ---------------- Table element access -------------- */
677 >
678 >    /*
679 >     * Volatile access methods are used for table elements as well as
680 >     * elements of in-progress next table while resizing.  All uses of
681 >     * the tab arguments must be null checked by callers.  All callers
682 >     * also paranoically precheck that tab's length is not zero (or an
683 >     * equivalent check), thus ensuring that any index argument taking
684 >     * the form of a hash value anded with (length - 1) is a valid
685 >     * index.  Note that, to be correct wrt arbitrary concurrency
686 >     * errors by users, these checks must operate on local variables,
687 >     * which accounts for some odd-looking inline assignments below.
688 >     * Note that calls to setTabAt always occur within locked regions,
689 >     * and so in principle require only release ordering, not need
690 >     * full volatile semantics, but are currently coded as volatile
691 >     * writes to be conservative.
692 >     */
693 >
694 >    @SuppressWarnings("unchecked")
695 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
696 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
697 >    }
698 >
699 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
700 >                                        Node<K,V> c, Node<K,V> v) {
701 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
702 >    }
703 >
704 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
705 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
706      }
707  
708      /* ---------------- Fields -------------- */
# Line 490 | Line 711 | public class ConcurrentHashMap<K,V>
711       * The array of bins. Lazily initialized upon first insertion.
712       * Size is always a power of two. Accessed directly by iterators.
713       */
714 <    transient volatile Node<V>[] table;
714 >    transient volatile Node<K,V>[] table;
715  
716      /**
717       * The next table to use; non-null only while resizing.
718       */
719 <    private transient volatile Node<V>[] nextTable;
719 >    private transient volatile Node<K,V>[] nextTable;
720  
721      /**
722       * Base counter value, used mainly when there is no contention,
# Line 525 | Line 746 | public class ConcurrentHashMap<K,V>
746      private transient volatile int transferOrigin;
747  
748      /**
749 <     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
749 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
750       */
751      private transient volatile int cellsBusy;
752  
753      /**
754       * Table of counter cells. When non-null, size is a power of 2.
755       */
756 <    private transient volatile Cell[] counterCells;
756 >    private transient volatile CounterCell[] counterCells;
757  
758      // views
759      private transient KeySetView<K,V> keySet;
760      private transient ValuesView<K,V> values;
761      private transient EntrySetView<K,V> entrySet;
762  
542    /** For serialization compatibility. Null unless serialized; see below */
543    private Segment<K,V>[] segments;
763  
764 <    /* ---------------- Table element access -------------- */
764 >    /* ---------------- Public operations -------------- */
765  
766 <    /*
767 <     * Volatile access methods are used for table elements as well as
768 <     * elements of in-progress next table while resizing.  Uses are
769 <     * null checked by callers, and implicitly bounds-checked, relying
551 <     * on the invariants that tab arrays have non-zero size, and all
552 <     * indices are masked with (tab.length - 1) which is never
553 <     * negative and always less than length. Note that, to be correct
554 <     * wrt arbitrary concurrency errors by users, bounds checks must
555 <     * operate on local variables, which accounts for some odd-looking
556 <     * inline assignments below.
557 <     */
558 <
559 <    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
560 <        (Node<V>[] tab, int i) { // used by Traverser
561 <        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
766 >    /**
767 >     * Creates a new, empty map with the default initial table size (16).
768 >     */
769 >    public ConcurrentHashMap() {
770      }
771  
772 <    private static final <V> boolean casTabAt
773 <        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
774 <        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
772 >    /**
773 >     * Creates a new, empty map with an initial table size
774 >     * accommodating the specified number of elements without the need
775 >     * to dynamically resize.
776 >     *
777 >     * @param initialCapacity The implementation performs internal
778 >     * sizing to accommodate this many elements.
779 >     * @throws IllegalArgumentException if the initial capacity of
780 >     * elements is negative
781 >     */
782 >    public ConcurrentHashMap(int initialCapacity) {
783 >        if (initialCapacity < 0)
784 >            throw new IllegalArgumentException();
785 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
786 >                   MAXIMUM_CAPACITY :
787 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
788 >        this.sizeCtl = cap;
789      }
790  
791 <    private static final <V> void setTabAt
792 <        (Node<V>[] tab, int i, Node<V> v) {
793 <        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
791 >    /**
792 >     * Creates a new map with the same mappings as the given map.
793 >     *
794 >     * @param m the map
795 >     */
796 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
797 >        this.sizeCtl = DEFAULT_CAPACITY;
798 >        putAll(m);
799      }
800  
574    /* ---------------- Nodes -------------- */
575
801      /**
802 <     * Key-value entry. Note that this is never exported out as a
803 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
804 <     * field of MOVED are special, and do not contain user keys or
805 <     * values.  Otherwise, keys are never null, and null val fields
806 <     * indicate that a node is in the process of being deleted or
807 <     * created. For purposes of read-only access, a key may be read
808 <     * before a val, but can only be used after checking val to be
809 <     * non-null.
802 >     * Creates a new, empty map with an initial table size based on
803 >     * the given number of elements ({@code initialCapacity}) and
804 >     * initial table density ({@code loadFactor}).
805 >     *
806 >     * @param initialCapacity the initial capacity. The implementation
807 >     * performs internal sizing to accommodate this many elements,
808 >     * given the specified load factor.
809 >     * @param loadFactor the load factor (table density) for
810 >     * establishing the initial table size
811 >     * @throws IllegalArgumentException if the initial capacity of
812 >     * elements is negative or the load factor is nonpositive
813 >     *
814 >     * @since 1.6
815       */
816 <    static class Node<V> {
817 <        final int hash;
818 <        final Object key;
589 <        volatile V val;
590 <        volatile Node<V> next;
816 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
817 >        this(initialCapacity, loadFactor, 1);
818 >    }
819  
820 <        Node(int hash, Object key, V val, Node<V> next) {
821 <            this.hash = hash;
822 <            this.key = key;
823 <            this.val = val;
824 <            this.next = next;
825 <        }
820 >    /**
821 >     * Creates a new, empty map with an initial table size based on
822 >     * the given number of elements ({@code initialCapacity}), table
823 >     * density ({@code loadFactor}), and number of concurrently
824 >     * updating threads ({@code concurrencyLevel}).
825 >     *
826 >     * @param initialCapacity the initial capacity. The implementation
827 >     * performs internal sizing to accommodate this many elements,
828 >     * given the specified load factor.
829 >     * @param loadFactor the load factor (table density) for
830 >     * establishing the initial table size
831 >     * @param concurrencyLevel the estimated number of concurrently
832 >     * updating threads. The implementation may use this value as
833 >     * a sizing hint.
834 >     * @throws IllegalArgumentException if the initial capacity is
835 >     * negative or the load factor or concurrencyLevel are
836 >     * nonpositive
837 >     */
838 >    public ConcurrentHashMap(int initialCapacity,
839 >                             float loadFactor, int concurrencyLevel) {
840 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
841 >            throw new IllegalArgumentException();
842 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
843 >            initialCapacity = concurrencyLevel;   // as estimated threads
844 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
845 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
846 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
847 >        this.sizeCtl = cap;
848      }
849  
850 <    /* ---------------- TreeBins -------------- */
850 >    // Original (since JDK1.2) Map methods
851  
852      /**
853 <     * Nodes for use in TreeBins
853 >     * {@inheritDoc}
854       */
855 <    static final class TreeNode<V> extends Node<V> {
856 <        TreeNode<V> parent;  // red-black tree links
857 <        TreeNode<V> left;
858 <        TreeNode<V> right;
859 <        TreeNode<V> prev;    // needed to unlink next upon deletion
610 <        boolean red;
611 <
612 <        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
613 <            super(hash, key, val, next);
614 <            this.parent = parent;
615 <        }
855 >    public int size() {
856 >        long n = sumCount();
857 >        return ((n < 0L) ? 0 :
858 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
859 >                (int)n);
860      }
861  
862 +    /**
863 +     * {@inheritDoc}
864 +     */
865 +    public boolean isEmpty() {
866 +        return sumCount() <= 0L; // ignore transient negative values
867 +    }
868  
869      /**
870 <     * Returns a Class for the given object of the form "class C
871 <     * implements Comparable<C>", if one exists, else null.  See below
872 <     * for explanation.
870 >     * Returns the value to which the specified key is mapped,
871 >     * or {@code null} if this map contains no mapping for the key.
872 >     *
873 >     * <p>More formally, if this map contains a mapping from a key
874 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
875 >     * then this method returns {@code v}; otherwise it returns
876 >     * {@code null}.  (There can be at most one such mapping.)
877 >     *
878 >     * @throws NullPointerException if the specified key is null
879       */
880 <    static Class<?> comparableClassFor(Object x) {
881 <        Class<?> c, s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
882 <        if ((c = x.getClass()) == String.class) // bypass checks
883 <            return c;
884 <        if ((cmpc = Comparable.class).isAssignableFrom(c)) {
885 <            while (cmpc.isAssignableFrom(s = c.getSuperclass()))
886 <                c = s; // find topmost comparable class
887 <            if ((ts = c.getGenericInterfaces()) != null) {
888 <                for (int i = 0; i < ts.length; ++i) {
889 <                    if (((t = ts[i]) instanceof ParameterizedType) &&
890 <                        ((p = (ParameterizedType)t).getRawType() == cmpc) &&
891 <                        (as = p.getActualTypeArguments()) != null &&
892 <                        as.length == 1 && as[0] == c) // type arg is c
893 <                        return c;
894 <                }
880 >    public V get(Object key) {
881 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
882 >        int h = spread(key.hashCode());
883 >        if ((tab = table) != null && (n = tab.length) > 0 &&
884 >            (e = tabAt(tab, (n - 1) & h)) != null) {
885 >            if ((eh = e.hash) == h) {
886 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
887 >                    return e.val;
888 >            }
889 >            else if (eh < 0)
890 >                return (p = e.find(h, key)) != null ? p.val : null;
891 >            while ((e = e.next) != null) {
892 >                if (e.hash == h &&
893 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
894 >                    return e.val;
895              }
896          }
897          return null;
898      }
899  
900      /**
901 <     * A specialized form of red-black tree for use in bins
646 <     * whose size exceeds a threshold.
647 <     *
648 <     * TreeBins use a special form of comparison for search and
649 <     * related operations (which is the main reason we cannot use
650 <     * existing collections such as TreeMaps). TreeBins contain
651 <     * Comparable elements, but may contain others, as well as
652 <     * elements that are Comparable but not necessarily Comparable<T>
653 <     * for the same T, so we cannot invoke compareTo among them. To
654 <     * handle this, the tree is ordered primarily by hash value, then
655 <     * by Comparable.compareTo order if applicable.  On lookup at a
656 <     * node, if elements are not comparable or compare as 0 then both
657 <     * left and right children may need to be searched in the case of
658 <     * tied hash values. (This corresponds to the full list search
659 <     * that would be necessary if all elements were non-Comparable and
660 <     * had tied hashes.)  The red-black balancing code is updated from
661 <     * pre-jdk-collections
662 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
663 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
664 <     * Algorithms" (CLR).
901 >     * Tests if the specified object is a key in this table.
902       *
903 <     * TreeBins also maintain a separate locking discipline than
904 <     * regular bins. Because they are forwarded via special MOVED
905 <     * nodes at bin heads (which can never change once established),
906 <     * we cannot use those nodes as locks. Instead, TreeBin
907 <     * extends AbstractQueuedSynchronizer to support a simple form of
671 <     * read-write lock. For update operations and table validation,
672 <     * the exclusive form of lock behaves in the same way as bin-head
673 <     * locks. However, lookups use shared read-lock mechanics to allow
674 <     * multiple readers in the absence of writers.  Additionally,
675 <     * these lookups do not ever block: While the lock is not
676 <     * available, they proceed along the slow traversal path (via
677 <     * next-pointers) until the lock becomes available or the list is
678 <     * exhausted, whichever comes first. (These cases are not fast,
679 <     * but maximize aggregate expected throughput.)  The AQS mechanics
680 <     * for doing this are straightforward.  The lock state is held as
681 <     * AQS getState().  Read counts are negative; the write count (1)
682 <     * is positive.  There are no signalling preferences among readers
683 <     * and writers. Since we don't need to export full Lock API, we
684 <     * just override the minimal AQS methods and use them directly.
903 >     * @param  key possible key
904 >     * @return {@code true} if and only if the specified object
905 >     *         is a key in this table, as determined by the
906 >     *         {@code equals} method; {@code false} otherwise
907 >     * @throws NullPointerException if the specified key is null
908       */
909 <    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
910 <        private static final long serialVersionUID = 2249069246763182397L;
911 <        transient TreeNode<V> root;  // root of tree
689 <        transient TreeNode<V> first; // head of next-pointer list
690 <
691 <        /* AQS overrides */
692 <        public final boolean isHeldExclusively() { return getState() > 0; }
693 <        public final boolean tryAcquire(int ignore) {
694 <            if (compareAndSetState(0, 1)) {
695 <                setExclusiveOwnerThread(Thread.currentThread());
696 <                return true;
697 <            }
698 <            return false;
699 <        }
700 <        public final boolean tryRelease(int ignore) {
701 <            setExclusiveOwnerThread(null);
702 <            setState(0);
703 <            return true;
704 <        }
705 <        public final int tryAcquireShared(int ignore) {
706 <            for (int c;;) {
707 <                if ((c = getState()) > 0)
708 <                    return -1;
709 <                if (compareAndSetState(c, c -1))
710 <                    return 1;
711 <            }
712 <        }
713 <        public final boolean tryReleaseShared(int ignore) {
714 <            int c;
715 <            do {} while (!compareAndSetState(c = getState(), c + 1));
716 <            return c == -1;
717 <        }
718 <
719 <        /** From CLR */
720 <        private void rotateLeft(TreeNode<V> p) {
721 <            if (p != null) {
722 <                TreeNode<V> r = p.right, pp, rl;
723 <                if ((rl = p.right = r.left) != null)
724 <                    rl.parent = p;
725 <                if ((pp = r.parent = p.parent) == null)
726 <                    root = r;
727 <                else if (pp.left == p)
728 <                    pp.left = r;
729 <                else
730 <                    pp.right = r;
731 <                r.left = p;
732 <                p.parent = r;
733 <            }
734 <        }
909 >    public boolean containsKey(Object key) {
910 >        return get(key) != null;
911 >    }
912  
913 <        /** From CLR */
914 <        private void rotateRight(TreeNode<V> p) {
915 <            if (p != null) {
916 <                TreeNode<V> l = p.left, pp, lr;
917 <                if ((lr = p.left = l.right) != null)
918 <                    lr.parent = p;
919 <                if ((pp = l.parent = p.parent) == null)
920 <                    root = l;
921 <                else if (pp.right == p)
922 <                    pp.right = l;
923 <                else
924 <                    pp.left = l;
925 <                l.right = p;
926 <                p.parent = l;
913 >    /**
914 >     * Returns {@code true} if this map maps one or more keys to the
915 >     * specified value. Note: This method may require a full traversal
916 >     * of the map, and is much slower than method {@code containsKey}.
917 >     *
918 >     * @param value value whose presence in this map is to be tested
919 >     * @return {@code true} if this map maps one or more keys to the
920 >     *         specified value
921 >     * @throws NullPointerException if the specified value is null
922 >     */
923 >    public boolean containsValue(Object value) {
924 >        if (value == null)
925 >            throw new NullPointerException();
926 >        Node<K,V>[] t;
927 >        if ((t = table) != null) {
928 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
929 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
930 >                V v;
931 >                if ((v = p.val) == value || (v != null && value.equals(v)))
932 >                    return true;
933              }
934          }
935 +        return false;
936 +    }
937  
938 <        /**
939 <         * Returns the TreeNode (or null if not found) for the given
940 <         * key.  A front-end for recursive version.
941 <         */
942 <        final TreeNode<V> getTreeNode(int h, Object k) {
943 <            return getTreeNode(h, k, root, comparableClassFor(k));
944 <        }
938 >    /**
939 >     * Maps the specified key to the specified value in this table.
940 >     * Neither the key nor the value can be null.
941 >     *
942 >     * <p>The value can be retrieved by calling the {@code get} method
943 >     * with a key that is equal to the original key.
944 >     *
945 >     * @param key key with which the specified value is to be associated
946 >     * @param value value to be associated with the specified key
947 >     * @return the previous value associated with {@code key}, or
948 >     *         {@code null} if there was no mapping for {@code key}
949 >     * @throws NullPointerException if the specified key or value is null
950 >     */
951 >    public V put(K key, V value) {
952 >        return putVal(key, value, false);
953 >    }
954  
955 <        /**
956 <         * Returns the TreeNode (or null if not found) for the given key
957 <         * starting at given root.
958 <         */
959 <        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
960 <            (int h, Object k, TreeNode<V> p, Class<?> cc) {
961 <            while (p != null) {
962 <                int dir, ph; Object pk;
963 <                if ((ph = p.hash) != h)
964 <                    dir = (h < ph) ? -1 : 1;
965 <                else if ((pk = p.key) == k || k.equals(pk))
966 <                    return p;
967 <                else if (cc == null || comparableClassFor(pk) != cc ||
774 <                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
775 <                    TreeNode<V> r, pr; // check both sides
776 <                    if ((pr = p.right) != null && h >= pr.hash &&
777 <                        (r = getTreeNode(h, k, pr, cc)) != null)
778 <                        return r;
779 <                    else // continue left
780 <                        dir = -1;
781 <                }
782 <                p = (dir > 0) ? p.right : p.left;
955 >    /** Implementation for put and putIfAbsent */
956 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
957 >        if (key == null || value == null) throw new NullPointerException();
958 >        int hash = spread(key.hashCode());
959 >        int binCount = 0;
960 >        for (Node<K,V>[] tab = table;;) {
961 >            Node<K,V> f; int n, i, fh;
962 >            if (tab == null || (n = tab.length) == 0)
963 >                tab = initTable();
964 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
965 >                if (casTabAt(tab, i, null,
966 >                             new Node<K,V>(hash, key, value, null)))
967 >                    break;                   // no lock when adding to empty bin
968              }
969 <            return null;
970 <        }
971 <
972 <        /**
973 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
974 <         * read-lock to call getTreeNode, but during failure to get
975 <         * lock, searches along next links.
976 <         */
977 <        final V getValue(int h, Object k) {
978 <            Node<V> r = null;
979 <            int c = getState(); // Must read lock state first
980 <            for (Node<V> e = first; e != null; e = e.next) {
981 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
982 <                    try {
983 <                        r = getTreeNode(h, k, root, comparableClassFor(k));
984 <                    } finally {
985 <                        releaseShared(0);
969 >            else if ((fh = f.hash) == MOVED)
970 >                tab = helpTransfer(tab, f);
971 >            else {
972 >                V oldVal = null;
973 >                synchronized (f) {
974 >                    if (tabAt(tab, i) == f) {
975 >                        if (fh >= 0) {
976 >                            binCount = 1;
977 >                            for (Node<K,V> e = f;; ++binCount) {
978 >                                K ek;
979 >                                if (e.hash == hash &&
980 >                                    ((ek = e.key) == key ||
981 >                                     (ek != null && key.equals(ek)))) {
982 >                                    oldVal = e.val;
983 >                                    if (!onlyIfAbsent)
984 >                                        e.val = value;
985 >                                    break;
986 >                                }
987 >                                Node<K,V> pred = e;
988 >                                if ((e = e.next) == null) {
989 >                                    pred.next = new Node<K,V>(hash, key,
990 >                                                              value, null);
991 >                                    break;
992 >                                }
993 >                            }
994 >                        }
995 >                        else if (f instanceof TreeBin) {
996 >                            Node<K,V> p;
997 >                            binCount = 2;
998 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
999 >                                                           value)) != null) {
1000 >                                oldVal = p.val;
1001 >                                if (!onlyIfAbsent)
1002 >                                    p.val = value;
1003 >                            }
1004 >                        }
1005                      }
802                    break;
1006                  }
1007 <                else if (e.hash == h && k.equals(e.key)) {
1008 <                    r = e;
1007 >                if (binCount != 0) {
1008 >                    if (binCount >= TREEIFY_THRESHOLD)
1009 >                        treeifyBin(tab, i);
1010 >                    if (oldVal != null)
1011 >                        return oldVal;
1012                      break;
1013                  }
808                else
809                    c = getState();
1014              }
811            return r == null ? null : r.val;
1015          }
1016 +        addCount(1L, binCount);
1017 +        return null;
1018 +    }
1019  
1020 <        /**
1021 <         * Finds or adds a node.
1022 <         * @return null if added
1023 <         */
1024 <        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
1025 <            (int h, Object k, V v) {
1026 <            Class<?> cc = comparableClassFor(k);
1027 <            TreeNode<V> pp = root, p = null;
1028 <            int dir = 0;
1029 <            while (pp != null) { // find existing node or leaf to insert at
1030 <                int ph; Object pk;
1031 <                p = pp;
826 <                if ((ph = p.hash) != h)
827 <                    dir = (h < ph) ? -1 : 1;
828 <                else if ((pk = p.key) == k || k.equals(pk))
829 <                    return p;
830 <                else if (cc == null || comparableClassFor(pk) != cc ||
831 <                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
832 <                    TreeNode<V> r, pr;
833 <                    if ((pr = p.right) != null && h >= pr.hash &&
834 <                        (r = getTreeNode(h, k, pr, cc)) != null)
835 <                        return r;
836 <                    else // continue left
837 <                        dir = -1;
838 <                }
839 <                pp = (dir > 0) ? p.right : p.left;
840 <            }
1020 >    /**
1021 >     * Copies all of the mappings from the specified map to this one.
1022 >     * These mappings replace any mappings that this map had for any of the
1023 >     * keys currently in the specified map.
1024 >     *
1025 >     * @param m mappings to be stored in this map
1026 >     */
1027 >    public void putAll(Map<? extends K, ? extends V> m) {
1028 >        tryPresize(m.size());
1029 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1030 >            putVal(e.getKey(), e.getValue(), false);
1031 >    }
1032  
1033 <            TreeNode<V> f = first;
1034 <            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
1035 <            if (p == null)
1036 <                root = x;
1037 <            else { // attach and rebalance; adapted from CLR
1038 <                TreeNode<V> xp, xpp;
1039 <                if (f != null)
1040 <                    f.prev = x;
1041 <                if (dir <= 0)
1042 <                    p.left = x;
1043 <                else
1044 <                    p.right = x;
1045 <                x.red = true;
1046 <                while (x != null && (xp = x.parent) != null && xp.red &&
1047 <                       (xpp = xp.parent) != null) {
1048 <                    TreeNode<V> xppl = xpp.left;
1049 <                    if (xp == xppl) {
1050 <                        TreeNode<V> y = xpp.right;
1051 <                        if (y != null && y.red) {
1052 <                            y.red = false;
1053 <                            xp.red = false;
1054 <                            xpp.red = true;
1055 <                            x = xpp;
1056 <                        }
1057 <                        else {
1058 <                            if (x == xp.right) {
1059 <                                rotateLeft(x = xp);
1060 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1061 <                            }
1062 <                            if (xp != null) {
1063 <                                xp.red = false;
1064 <                                if (xpp != null) {
1065 <                                    xpp.red = true;
1066 <                                    rotateRight(xpp);
1033 >    /**
1034 >     * Removes the key (and its corresponding value) from this map.
1035 >     * This method does nothing if the key is not in the map.
1036 >     *
1037 >     * @param  key the key that needs to be removed
1038 >     * @return the previous value associated with {@code key}, or
1039 >     *         {@code null} if there was no mapping for {@code key}
1040 >     * @throws NullPointerException if the specified key is null
1041 >     */
1042 >    public V remove(Object key) {
1043 >        return replaceNode(key, null, null);
1044 >    }
1045 >
1046 >    /**
1047 >     * Implementation for the four public remove/replace methods:
1048 >     * Replaces node value with v, conditional upon match of cv if
1049 >     * non-null.  If resulting value is null, delete.
1050 >     */
1051 >    final V replaceNode(Object key, V value, Object cv) {
1052 >        int hash = spread(key.hashCode());
1053 >        for (Node<K,V>[] tab = table;;) {
1054 >            Node<K,V> f; int n, i, fh;
1055 >            if (tab == null || (n = tab.length) == 0 ||
1056 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1057 >                break;
1058 >            else if ((fh = f.hash) == MOVED)
1059 >                tab = helpTransfer(tab, f);
1060 >            else {
1061 >                V oldVal = null;
1062 >                boolean validated = false;
1063 >                synchronized (f) {
1064 >                    if (tabAt(tab, i) == f) {
1065 >                        if (fh >= 0) {
1066 >                            validated = true;
1067 >                            for (Node<K,V> e = f, pred = null;;) {
1068 >                                K ek;
1069 >                                if (e.hash == hash &&
1070 >                                    ((ek = e.key) == key ||
1071 >                                     (ek != null && key.equals(ek)))) {
1072 >                                    V ev = e.val;
1073 >                                    if (cv == null || cv == ev ||
1074 >                                        (ev != null && cv.equals(ev))) {
1075 >                                        oldVal = ev;
1076 >                                        if (value != null)
1077 >                                            e.val = value;
1078 >                                        else if (pred != null)
1079 >                                            pred.next = e.next;
1080 >                                        else
1081 >                                            setTabAt(tab, i, e.next);
1082 >                                    }
1083 >                                    break;
1084                                  }
1085 +                                pred = e;
1086 +                                if ((e = e.next) == null)
1087 +                                    break;
1088                              }
1089                          }
1090 <                    }
1091 <                    else {
1092 <                        TreeNode<V> y = xppl;
1093 <                        if (y != null && y.red) {
1094 <                            y.red = false;
1095 <                            xp.red = false;
1096 <                            xpp.red = true;
1097 <                            x = xpp;
1098 <                        }
1099 <                        else {
1100 <                            if (x == xp.left) {
1101 <                                rotateRight(x = xp);
1102 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1103 <                            }
893 <                            if (xp != null) {
894 <                                xp.red = false;
895 <                                if (xpp != null) {
896 <                                    xpp.red = true;
897 <                                    rotateLeft(xpp);
1090 >                        else if (f instanceof TreeBin) {
1091 >                            validated = true;
1092 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1093 >                            TreeNode<K,V> r, p;
1094 >                            if ((r = t.root) != null &&
1095 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1096 >                                V pv = p.val;
1097 >                                if (cv == null || cv == pv ||
1098 >                                    (pv != null && cv.equals(pv))) {
1099 >                                    oldVal = pv;
1100 >                                    if (value != null)
1101 >                                        p.val = value;
1102 >                                    else if (t.removeTreeNode(p))
1103 >                                        setTabAt(tab, i, untreeify(t.first));
1104                                  }
1105                              }
1106                          }
1107                      }
1108                  }
1109 <                TreeNode<V> r = root;
1110 <                if (r != null && r.red)
1111 <                    r.red = false;
1112 <            }
1113 <            return null;
908 <        }
909 <
910 <        /**
911 <         * Removes the given node, that must be present before this
912 <         * call.  This is messier than typical red-black deletion code
913 <         * because we cannot swap the contents of an interior node
914 <         * with a leaf successor that is pinned by "next" pointers
915 <         * that are accessible independently of lock. So instead we
916 <         * swap the tree linkages.
917 <         */
918 <        final void deleteTreeNode(TreeNode<V> p) {
919 <            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
920 <            TreeNode<V> pred = p.prev;
921 <            if (pred == null)
922 <                first = next;
923 <            else
924 <                pred.next = next;
925 <            if (next != null)
926 <                next.prev = pred;
927 <            TreeNode<V> replacement;
928 <            TreeNode<V> pl = p.left;
929 <            TreeNode<V> pr = p.right;
930 <            if (pl != null && pr != null) {
931 <                TreeNode<V> s = pr, sl;
932 <                while ((sl = s.left) != null) // find successor
933 <                    s = sl;
934 <                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
935 <                TreeNode<V> sr = s.right;
936 <                TreeNode<V> pp = p.parent;
937 <                if (s == pr) { // p was s's direct parent
938 <                    p.parent = s;
939 <                    s.right = p;
940 <                }
941 <                else {
942 <                    TreeNode<V> sp = s.parent;
943 <                    if ((p.parent = sp) != null) {
944 <                        if (s == sp.left)
945 <                            sp.left = p;
946 <                        else
947 <                            sp.right = p;
1109 >                if (validated) {
1110 >                    if (oldVal != null) {
1111 >                        if (value == null)
1112 >                            addCount(-1L, -1);
1113 >                        return oldVal;
1114                      }
1115 <                    if ((s.right = pr) != null)
950 <                        pr.parent = s;
1115 >                    break;
1116                  }
952                p.left = null;
953                if ((p.right = sr) != null)
954                    sr.parent = p;
955                if ((s.left = pl) != null)
956                    pl.parent = s;
957                if ((s.parent = pp) == null)
958                    root = s;
959                else if (p == pp.left)
960                    pp.left = s;
961                else
962                    pp.right = s;
963                replacement = sr;
1117              }
1118 <            else
1119 <                replacement = (pl != null) ? pl : pr;
1120 <            TreeNode<V> pp = p.parent;
1121 <            if (replacement == null) {
1122 <                if (pp == null) {
1123 <                    root = null;
1124 <                    return;
1125 <                }
1126 <                replacement = p;
1118 >        }
1119 >        return null;
1120 >    }
1121 >
1122 >    /**
1123 >     * Removes all of the mappings from this map.
1124 >     */
1125 >    public void clear() {
1126 >        long delta = 0L; // negative number of deletions
1127 >        int i = 0;
1128 >        Node<K,V>[] tab = table;
1129 >        while (tab != null && i < tab.length) {
1130 >            int fh;
1131 >            Node<K,V> f = tabAt(tab, i);
1132 >            if (f == null)
1133 >                ++i;
1134 >            else if ((fh = f.hash) == MOVED) {
1135 >                tab = helpTransfer(tab, f);
1136 >                i = 0; // restart
1137              }
1138              else {
1139 <                replacement.parent = pp;
1140 <                if (pp == null)
1141 <                    root = replacement;
1142 <                else if (p == pp.left)
1143 <                    pp.left = replacement;
1144 <                else
1145 <                    pp.right = replacement;
1146 <                p.left = p.right = p.parent = null;
984 <            }
985 <            if (!p.red) { // rebalance, from CLR
986 <                TreeNode<V> x = replacement;
987 <                while (x != null) {
988 <                    TreeNode<V> xp, xpl;
989 <                    if (x.red || (xp = x.parent) == null) {
990 <                        x.red = false;
991 <                        break;
992 <                    }
993 <                    if (x == (xpl = xp.left)) {
994 <                        TreeNode<V> sib = xp.right;
995 <                        if (sib != null && sib.red) {
996 <                            sib.red = false;
997 <                            xp.red = true;
998 <                            rotateLeft(xp);
999 <                            sib = (xp = x.parent) == null ? null : xp.right;
1000 <                        }
1001 <                        if (sib == null)
1002 <                            x = xp;
1003 <                        else {
1004 <                            TreeNode<V> sl = sib.left, sr = sib.right;
1005 <                            if ((sr == null || !sr.red) &&
1006 <                                (sl == null || !sl.red)) {
1007 <                                sib.red = true;
1008 <                                x = xp;
1009 <                            }
1010 <                            else {
1011 <                                if (sr == null || !sr.red) {
1012 <                                    if (sl != null)
1013 <                                        sl.red = false;
1014 <                                    sib.red = true;
1015 <                                    rotateRight(sib);
1016 <                                    sib = (xp = x.parent) == null ?
1017 <                                        null : xp.right;
1018 <                                }
1019 <                                if (sib != null) {
1020 <                                    sib.red = (xp == null) ? false : xp.red;
1021 <                                    if ((sr = sib.right) != null)
1022 <                                        sr.red = false;
1023 <                                }
1024 <                                if (xp != null) {
1025 <                                    xp.red = false;
1026 <                                    rotateLeft(xp);
1027 <                                }
1028 <                                x = root;
1029 <                            }
1030 <                        }
1031 <                    }
1032 <                    else { // symmetric
1033 <                        TreeNode<V> sib = xpl;
1034 <                        if (sib != null && sib.red) {
1035 <                            sib.red = false;
1036 <                            xp.red = true;
1037 <                            rotateRight(xp);
1038 <                            sib = (xp = x.parent) == null ? null : xp.left;
1039 <                        }
1040 <                        if (sib == null)
1041 <                            x = xp;
1042 <                        else {
1043 <                            TreeNode<V> sl = sib.left, sr = sib.right;
1044 <                            if ((sl == null || !sl.red) &&
1045 <                                (sr == null || !sr.red)) {
1046 <                                sib.red = true;
1047 <                                x = xp;
1048 <                            }
1049 <                            else {
1050 <                                if (sl == null || !sl.red) {
1051 <                                    if (sr != null)
1052 <                                        sr.red = false;
1053 <                                    sib.red = true;
1054 <                                    rotateLeft(sib);
1055 <                                    sib = (xp = x.parent) == null ?
1056 <                                        null : xp.left;
1057 <                                }
1058 <                                if (sib != null) {
1059 <                                    sib.red = (xp == null) ? false : xp.red;
1060 <                                    if ((sl = sib.left) != null)
1061 <                                        sl.red = false;
1062 <                                }
1063 <                                if (xp != null) {
1064 <                                    xp.red = false;
1065 <                                    rotateRight(xp);
1066 <                                }
1067 <                                x = root;
1068 <                            }
1139 >                synchronized (f) {
1140 >                    if (tabAt(tab, i) == f) {
1141 >                        Node<K,V> p = (fh >= 0 ? f :
1142 >                                       (f instanceof TreeBin) ?
1143 >                                       ((TreeBin<K,V>)f).first : null);
1144 >                        while (p != null) {
1145 >                            --delta;
1146 >                            p = p.next;
1147                          }
1148 +                        setTabAt(tab, i++, null);
1149                      }
1150                  }
1151              }
1073            if (p == replacement && (pp = p.parent) != null) {
1074                if (p == pp.left) // detach pointers
1075                    pp.left = null;
1076                else if (p == pp.right)
1077                    pp.right = null;
1078                p.parent = null;
1079            }
1152          }
1153 +        if (delta != 0L)
1154 +            addCount(delta, -1);
1155      }
1156  
1157 <    /* ---------------- Collision reduction methods -------------- */
1157 >    /**
1158 >     * Returns a {@link Set} view of the keys contained in this map.
1159 >     * The set is backed by the map, so changes to the map are
1160 >     * reflected in the set, and vice-versa. The set supports element
1161 >     * removal, which removes the corresponding mapping from this map,
1162 >     * via the {@code Iterator.remove}, {@code Set.remove},
1163 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1164 >     * operations.  It does not support the {@code add} or
1165 >     * {@code addAll} operations.
1166 >     *
1167 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1168 >     * that will never throw {@link ConcurrentModificationException},
1169 >     * and guarantees to traverse elements as they existed upon
1170 >     * construction of the iterator, and may (but is not guaranteed to)
1171 >     * reflect any modifications subsequent to construction.
1172 >     *
1173 >     * @return the set view
1174 >     */
1175 >    public KeySetView<K,V> keySet() {
1176 >        KeySetView<K,V> ks;
1177 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1178 >    }
1179  
1180      /**
1181 <     * Spreads higher bits to lower, and also forces top bit to 0.
1182 <     * Because the table uses power-of-two masking, sets of hashes
1183 <     * that vary only in bits above the current mask will always
1184 <     * collide. (Among known examples are sets of Float keys holding
1185 <     * consecutive whole numbers in small tables.)  To counter this,
1186 <     * we apply a transform that spreads the impact of higher bits
1187 <     * downward. There is a tradeoff between speed, utility, and
1188 <     * quality of bit-spreading. Because many common sets of hashes
1189 <     * are already reasonably distributed across bits (so don't benefit
1190 <     * from spreading), and because we use trees to handle large sets
1191 <     * of collisions in bins, we don't need excessively high quality.
1181 >     * Returns a {@link Collection} view of the values contained in this map.
1182 >     * The collection is backed by the map, so changes to the map are
1183 >     * reflected in the collection, and vice-versa.  The collection
1184 >     * supports element removal, which removes the corresponding
1185 >     * mapping from this map, via the {@code Iterator.remove},
1186 >     * {@code Collection.remove}, {@code removeAll},
1187 >     * {@code retainAll}, and {@code clear} operations.  It does not
1188 >     * support the {@code add} or {@code addAll} operations.
1189 >     *
1190 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1191 >     * that will never throw {@link ConcurrentModificationException},
1192 >     * and guarantees to traverse elements as they existed upon
1193 >     * construction of the iterator, and may (but is not guaranteed to)
1194 >     * reflect any modifications subsequent to construction.
1195 >     *
1196 >     * @return the collection view
1197       */
1198 <    private static final int spread(int h) {
1199 <        h ^= (h >>> 18) ^ (h >>> 12);
1200 <        return (h ^ (h >>> 10)) & HASH_BITS;
1198 >    public Collection<V> values() {
1199 >        ValuesView<K,V> vs;
1200 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1201      }
1202  
1203      /**
1204 <     * Replaces a list bin with a tree bin if key is comparable.  Call
1205 <     * only when locked.
1204 >     * Returns a {@link Set} view of the mappings contained in this map.
1205 >     * The set is backed by the map, so changes to the map are
1206 >     * reflected in the set, and vice-versa.  The set supports element
1207 >     * removal, which removes the corresponding mapping from the map,
1208 >     * via the {@code Iterator.remove}, {@code Set.remove},
1209 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1210 >     * operations.
1211 >     *
1212 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1213 >     * that will never throw {@link ConcurrentModificationException},
1214 >     * and guarantees to traverse elements as they existed upon
1215 >     * construction of the iterator, and may (but is not guaranteed to)
1216 >     * reflect any modifications subsequent to construction.
1217 >     *
1218 >     * @return the set view
1219 >     */
1220 >    public Set<Map.Entry<K,V>> entrySet() {
1221 >        EntrySetView<K,V> es;
1222 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1223 >    }
1224 >
1225 >    /**
1226 >     * Returns the hash code value for this {@link Map}, i.e.,
1227 >     * the sum of, for each key-value pair in the map,
1228 >     * {@code key.hashCode() ^ value.hashCode()}.
1229 >     *
1230 >     * @return the hash code value for this map
1231       */
1232 <    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1233 <        if (comparableClassFor(key) != null) {
1234 <            TreeBin<V> t = new TreeBin<V>();
1235 <            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1236 <                t.putTreeNode(e.hash, e.key, e.val);
1237 <            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1232 >    public int hashCode() {
1233 >        int h = 0;
1234 >        Node<K,V>[] t;
1235 >        if ((t = table) != null) {
1236 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1237 >            for (Node<K,V> p; (p = it.advance()) != null; )
1238 >                h += p.key.hashCode() ^ p.val.hashCode();
1239          }
1240 +        return h;
1241      }
1242  
1243 <    /* ---------------- Internal access and update methods -------------- */
1243 >    /**
1244 >     * Returns a string representation of this map.  The string
1245 >     * representation consists of a list of key-value mappings (in no
1246 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1247 >     * mappings are separated by the characters {@code ", "} (comma
1248 >     * and space).  Each key-value mapping is rendered as the key
1249 >     * followed by an equals sign ("{@code =}") followed by the
1250 >     * associated value.
1251 >     *
1252 >     * @return a string representation of this map
1253 >     */
1254 >    public String toString() {
1255 >        Node<K,V>[] t;
1256 >        int f = (t = table) == null ? 0 : t.length;
1257 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1258 >        StringBuilder sb = new StringBuilder();
1259 >        sb.append('{');
1260 >        Node<K,V> p;
1261 >        if ((p = it.advance()) != null) {
1262 >            for (;;) {
1263 >                K k = p.key;
1264 >                V v = p.val;
1265 >                sb.append(k == this ? "(this Map)" : k);
1266 >                sb.append('=');
1267 >                sb.append(v == this ? "(this Map)" : v);
1268 >                if ((p = it.advance()) == null)
1269 >                    break;
1270 >                sb.append(',').append(' ');
1271 >            }
1272 >        }
1273 >        return sb.append('}').toString();
1274 >    }
1275  
1276 <    /** Implementation for get and containsKey */
1277 <    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1278 <        int h = spread(k.hashCode());
1279 <        retry: for (Node<V>[] tab = table; tab != null;) {
1280 <            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1281 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1282 <                if ((eh = e.hash) < 0) {
1283 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1284 <                        return ((TreeBin<V>)ek).getValue(h, k);
1285 <                    else {                      // restart with new table
1286 <                        tab = (Node<V>[])ek;
1287 <                        continue retry;
1288 <                    }
1289 <                }
1290 <                else if (eh == h && (ev = e.val) != null &&
1291 <                         ((ek = e.key) == k || k.equals(ek)))
1292 <                    return ev;
1276 >    /**
1277 >     * Compares the specified object with this map for equality.
1278 >     * Returns {@code true} if the given object is a map with the same
1279 >     * mappings as this map.  This operation may return misleading
1280 >     * results if either map is concurrently modified during execution
1281 >     * of this method.
1282 >     *
1283 >     * @param o object to be compared for equality with this map
1284 >     * @return {@code true} if the specified object is equal to this map
1285 >     */
1286 >    public boolean equals(Object o) {
1287 >        if (o != this) {
1288 >            if (!(o instanceof Map))
1289 >                return false;
1290 >            Map<?,?> m = (Map<?,?>) o;
1291 >            Node<K,V>[] t;
1292 >            int f = (t = table) == null ? 0 : t.length;
1293 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1294 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1295 >                V val = p.val;
1296 >                Object v = m.get(p.key);
1297 >                if (v == null || (v != val && !v.equals(val)))
1298 >                    return false;
1299 >            }
1300 >            for (Map.Entry<?,?> e : m.entrySet()) {
1301 >                Object mk, mv, v;
1302 >                if ((mk = e.getKey()) == null ||
1303 >                    (mv = e.getValue()) == null ||
1304 >                    (v = get(mk)) == null ||
1305 >                    (mv != v && !mv.equals(v)))
1306 >                    return false;
1307              }
1136            break;
1308          }
1309 <        return null;
1309 >        return true;
1310      }
1311  
1312      /**
1313 <     * Implementation for the four public remove/replace methods:
1314 <     * Replaces node value with v, conditional upon match of cv if
1144 <     * non-null.  If resulting value is null, delete.
1313 >     * Stripped-down version of helper class used in previous version,
1314 >     * declared for the sake of serialization compatibility
1315       */
1316 <    @SuppressWarnings("unchecked") private final V internalReplace
1317 <        (Object k, V v, Object cv) {
1318 <        int h = spread(k.hashCode());
1319 <        V oldVal = null;
1320 <        for (Node<V>[] tab = table;;) {
1321 <            Node<V> f; int i, fh; Object fk;
1322 <            if (tab == null ||
1323 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1324 <                break;
1325 <            else if ((fh = f.hash) < 0) {
1326 <                if ((fk = f.key) instanceof TreeBin) {
1327 <                    TreeBin<V> t = (TreeBin<V>)fk;
1328 <                    boolean validated = false;
1329 <                    boolean deleted = false;
1330 <                    t.acquire(0);
1331 <                    try {
1332 <                        if (tabAt(tab, i) == f) {
1333 <                            validated = true;
1334 <                            TreeNode<V> p = t.getTreeNode(h, k);
1335 <                            if (p != null) {
1336 <                                V pv = p.val;
1337 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1338 <                                    oldVal = pv;
1339 <                                    if ((p.val = v) == null) {
1340 <                                        deleted = true;
1341 <                                        t.deleteTreeNode(p);
1342 <                                    }
1343 <                                }
1344 <                            }
1345 <                        }
1346 <                    } finally {
1347 <                        t.release(0);
1348 <                    }
1349 <                    if (validated) {
1350 <                        if (deleted)
1351 <                            addCount(-1L, -1);
1352 <                        break;
1353 <                    }
1354 <                }
1355 <                else
1356 <                    tab = (Node<V>[])fk;
1316 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1317 >        private static final long serialVersionUID = 2249069246763182397L;
1318 >        final float loadFactor;
1319 >        Segment(float lf) { this.loadFactor = lf; }
1320 >    }
1321 >
1322 >    /**
1323 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1324 >     * stream (i.e., serializes it).
1325 >     * @param s the stream
1326 >     * @throws java.io.IOException if an I/O error occurs
1327 >     * @serialData
1328 >     * the key (Object) and value (Object)
1329 >     * for each key-value mapping, followed by a null pair.
1330 >     * The key-value mappings are emitted in no particular order.
1331 >     */
1332 >    private void writeObject(java.io.ObjectOutputStream s)
1333 >        throws java.io.IOException {
1334 >        // For serialization compatibility
1335 >        // Emulate segment calculation from previous version of this class
1336 >        int sshift = 0;
1337 >        int ssize = 1;
1338 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1339 >            ++sshift;
1340 >            ssize <<= 1;
1341 >        }
1342 >        int segmentShift = 32 - sshift;
1343 >        int segmentMask = ssize - 1;
1344 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1345 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1346 >        for (int i = 0; i < segments.length; ++i)
1347 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1348 >        s.putFields().put("segments", segments);
1349 >        s.putFields().put("segmentShift", segmentShift);
1350 >        s.putFields().put("segmentMask", segmentMask);
1351 >        s.writeFields();
1352 >
1353 >        Node<K,V>[] t;
1354 >        if ((t = table) != null) {
1355 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1356 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1357 >                s.writeObject(p.key);
1358 >                s.writeObject(p.val);
1359              }
1360 <            else if (fh != h && f.next == null) // precheck
1361 <                break;                          // rules out possible existence
1360 >        }
1361 >        s.writeObject(null);
1362 >        s.writeObject(null);
1363 >        segments = null; // throw away
1364 >    }
1365 >
1366 >    /**
1367 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1368 >     * @param s the stream
1369 >     * @throws ClassNotFoundException if the class of a serialized object
1370 >     *         could not be found
1371 >     * @throws java.io.IOException if an I/O error occurs
1372 >     */
1373 >    private void readObject(java.io.ObjectInputStream s)
1374 >        throws java.io.IOException, ClassNotFoundException {
1375 >        /*
1376 >         * To improve performance in typical cases, we create nodes
1377 >         * while reading, then place in table once size is known.
1378 >         * However, we must also validate uniqueness and deal with
1379 >         * overpopulated bins while doing so, which requires
1380 >         * specialized versions of putVal mechanics.
1381 >         */
1382 >        sizeCtl = -1; // force exclusion for table construction
1383 >        s.defaultReadObject();
1384 >        long size = 0L;
1385 >        Node<K,V> p = null;
1386 >        for (;;) {
1387 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1388 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1389 >            if (k != null && v != null) {
1390 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1391 >                ++size;
1392 >            }
1393 >            else
1394 >                break;
1395 >        }
1396 >        if (size == 0L)
1397 >            sizeCtl = 0;
1398 >        else {
1399 >            int n;
1400 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1401 >                n = MAXIMUM_CAPACITY;
1402              else {
1403 <                boolean validated = false;
1404 <                boolean deleted = false;
1405 <                synchronized (f) {
1406 <                    if (tabAt(tab, i) == f) {
1407 <                        validated = true;
1408 <                        for (Node<V> e = f, pred = null;;) {
1409 <                            Object ek; V ev;
1410 <                            if (e.hash == h &&
1411 <                                ((ev = e.val) != null) &&
1412 <                                ((ek = e.key) == k || k.equals(ek))) {
1413 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1414 <                                    oldVal = ev;
1415 <                                    if ((e.val = v) == null) {
1416 <                                        deleted = true;
1417 <                                        Node<V> en = e.next;
1418 <                                        if (pred != null)
1419 <                                            pred.next = en;
1420 <                                        else
1421 <                                            setTabAt(tab, i, en);
1422 <                                    }
1423 <                                }
1403 >                int sz = (int)size;
1404 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1405 >            }
1406 >            @SuppressWarnings({"rawtypes","unchecked"})
1407 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1408 >            int mask = n - 1;
1409 >            long added = 0L;
1410 >            while (p != null) {
1411 >                boolean insertAtFront;
1412 >                Node<K,V> next = p.next, first;
1413 >                int h = p.hash, j = h & mask;
1414 >                if ((first = tabAt(tab, j)) == null)
1415 >                    insertAtFront = true;
1416 >                else {
1417 >                    K k = p.key;
1418 >                    if (first.hash < 0) {
1419 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1420 >                        if (t.putTreeVal(h, k, p.val) == null)
1421 >                            ++added;
1422 >                        insertAtFront = false;
1423 >                    }
1424 >                    else {
1425 >                        int binCount = 0;
1426 >                        insertAtFront = true;
1427 >                        Node<K,V> q; K qk;
1428 >                        for (q = first; q != null; q = q.next) {
1429 >                            if (q.hash == h &&
1430 >                                ((qk = q.key) == k ||
1431 >                                 (qk != null && k.equals(qk)))) {
1432 >                                insertAtFront = false;
1433                                  break;
1434                              }
1435 <                            pred = e;
1436 <                            if ((e = e.next) == null)
1437 <                                break;
1435 >                            ++binCount;
1436 >                        }
1437 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1438 >                            insertAtFront = false;
1439 >                            ++added;
1440 >                            p.next = first;
1441 >                            TreeNode<K,V> hd = null, tl = null;
1442 >                            for (q = p; q != null; q = q.next) {
1443 >                                TreeNode<K,V> t = new TreeNode<K,V>
1444 >                                    (q.hash, q.key, q.val, null, null);
1445 >                                if ((t.prev = tl) == null)
1446 >                                    hd = t;
1447 >                                else
1448 >                                    tl.next = t;
1449 >                                tl = t;
1450 >                            }
1451 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1452                          }
1453                      }
1454                  }
1455 <                if (validated) {
1456 <                    if (deleted)
1457 <                        addCount(-1L, -1);
1458 <                    break;
1455 >                if (insertAtFront) {
1456 >                    ++added;
1457 >                    p.next = first;
1458 >                    setTabAt(tab, j, p);
1459                  }
1460 +                p = next;
1461              }
1462 +            table = tab;
1463 +            sizeCtl = n - (n >>> 2);
1464 +            baseCount = added;
1465          }
1227        return oldVal;
1466      }
1467  
1468 <    /*
1469 <     * Internal versions of insertion methods
1470 <     * All have the same basic structure as the first (internalPut):
1471 <     *  1. If table uninitialized, create
1472 <     *  2. If bin empty, try to CAS new node
1473 <     *  3. If bin stale, use new table
1474 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1475 <     *  5. Lock and validate; if valid, scan and add or update
1238 <     *
1239 <     * The putAll method differs mainly in attempting to pre-allocate
1240 <     * enough table space, and also more lazily performs count updates
1241 <     * and checks.
1242 <     *
1243 <     * Most of the function-accepting methods can't be factored nicely
1244 <     * because they require different functional forms, so instead
1245 <     * sprawl out similar mechanics.
1468 >    // ConcurrentMap methods
1469 >
1470 >    /**
1471 >     * {@inheritDoc}
1472 >     *
1473 >     * @return the previous value associated with the specified key,
1474 >     *         or {@code null} if there was no mapping for the key
1475 >     * @throws NullPointerException if the specified key or value is null
1476       */
1477 +    public V putIfAbsent(K key, V value) {
1478 +        return putVal(key, value, true);
1479 +    }
1480  
1481 <    /** Implementation for put and putIfAbsent */
1482 <    @SuppressWarnings("unchecked") private final V internalPut
1483 <        (K k, V v, boolean onlyIfAbsent) {
1484 <        if (k == null || v == null) throw new NullPointerException();
1485 <        int h = spread(k.hashCode());
1486 <        int len = 0;
1487 <        for (Node<V>[] tab = table;;) {
1488 <            int i, fh; Node<V> f; Object fk; V fv;
1489 <            if (tab == null)
1490 <                tab = initTable();
1491 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1492 <                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1493 <                    break;                   // no lock when adding to empty bin
1481 >    /**
1482 >     * {@inheritDoc}
1483 >     *
1484 >     * @throws NullPointerException if the specified key is null
1485 >     */
1486 >    public boolean remove(Object key, Object value) {
1487 >        if (key == null)
1488 >            throw new NullPointerException();
1489 >        return value != null && replaceNode(key, null, value) != null;
1490 >    }
1491 >
1492 >    /**
1493 >     * {@inheritDoc}
1494 >     *
1495 >     * @throws NullPointerException if any of the arguments are null
1496 >     */
1497 >    public boolean replace(K key, V oldValue, V newValue) {
1498 >        if (key == null || oldValue == null || newValue == null)
1499 >            throw new NullPointerException();
1500 >        return replaceNode(key, newValue, oldValue) != null;
1501 >    }
1502 >
1503 >    /**
1504 >     * {@inheritDoc}
1505 >     *
1506 >     * @return the previous value associated with the specified key,
1507 >     *         or {@code null} if there was no mapping for the key
1508 >     * @throws NullPointerException if the specified key or value is null
1509 >     */
1510 >    public V replace(K key, V value) {
1511 >        if (key == null || value == null)
1512 >            throw new NullPointerException();
1513 >        return replaceNode(key, value, null);
1514 >    }
1515 >
1516 >    // Overrides of JDK8+ Map extension method defaults
1517 >
1518 >    /**
1519 >     * Returns the value to which the specified key is mapped, or the
1520 >     * given default value if this map contains no mapping for the
1521 >     * key.
1522 >     *
1523 >     * @param key the key whose associated value is to be returned
1524 >     * @param defaultValue the value to return if this map contains
1525 >     * no mapping for the given key
1526 >     * @return the mapping for the key, if present; else the default value
1527 >     * @throws NullPointerException if the specified key is null
1528 >     */
1529 >    public V getOrDefault(Object key, V defaultValue) {
1530 >        V v;
1531 >        return (v = get(key)) == null ? defaultValue : v;
1532 >    }
1533 >
1534 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1535 >        if (action == null) throw new NullPointerException();
1536 >        Node<K,V>[] t;
1537 >        if ((t = table) != null) {
1538 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1539 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1540 >                action.accept(p.key, p.val);
1541              }
1542 <            else if ((fh = f.hash) < 0) {
1543 <                if ((fk = f.key) instanceof TreeBin) {
1544 <                    TreeBin<V> t = (TreeBin<V>)fk;
1545 <                    V oldVal = null;
1546 <                    t.acquire(0);
1547 <                    try {
1548 <                        if (tabAt(tab, i) == f) {
1549 <                            len = 2;
1550 <                            TreeNode<V> p = t.putTreeNode(h, k, v);
1551 <                            if (p != null) {
1552 <                                oldVal = p.val;
1553 <                                if (!onlyIfAbsent)
1554 <                                    p.val = v;
1555 <                            }
1556 <                        }
1557 <                    } finally {
1278 <                        t.release(0);
1279 <                    }
1280 <                    if (len != 0) {
1281 <                        if (oldVal != null)
1282 <                            return oldVal;
1542 >        }
1543 >    }
1544 >
1545 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1546 >        if (function == null) throw new NullPointerException();
1547 >        Node<K,V>[] t;
1548 >        if ((t = table) != null) {
1549 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1550 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1551 >                V oldValue = p.val;
1552 >                for (K key = p.key;;) {
1553 >                    V newValue = function.apply(key, oldValue);
1554 >                    if (newValue == null)
1555 >                        throw new NullPointerException();
1556 >                    if (replaceNode(key, newValue, oldValue) != null ||
1557 >                        (oldValue = get(key)) == null)
1558                          break;
1284                    }
1285                }
1286                else
1287                    tab = (Node<V>[])fk;
1288            }
1289            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1290                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1291                return fv;
1292            else {
1293                V oldVal = null;
1294                synchronized (f) {
1295                    if (tabAt(tab, i) == f) {
1296                        len = 1;
1297                        for (Node<V> e = f;; ++len) {
1298                            Object ek; V ev;
1299                            if (e.hash == h &&
1300                                (ev = e.val) != null &&
1301                                ((ek = e.key) == k || k.equals(ek))) {
1302                                oldVal = ev;
1303                                if (!onlyIfAbsent)
1304                                    e.val = v;
1305                                break;
1306                            }
1307                            Node<V> last = e;
1308                            if ((e = e.next) == null) {
1309                                last.next = new Node<V>(h, k, v, null);
1310                                if (len >= TREE_THRESHOLD)
1311                                    replaceWithTreeBin(tab, i, k);
1312                                break;
1313                            }
1314                        }
1315                    }
1316                }
1317                if (len != 0) {
1318                    if (oldVal != null)
1319                        return oldVal;
1320                    break;
1559                  }
1560              }
1561          }
1324        addCount(1L, len);
1325        return null;
1562      }
1563  
1564 <    /** Implementation for computeIfAbsent */
1565 <    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1566 <        (K k, Function<? super K, ? extends V> mf) {
1567 <        if (k == null || mf == null)
1564 >    /**
1565 >     * If the specified key is not already associated with a value,
1566 >     * attempts to compute its value using the given mapping function
1567 >     * and enters it into this map unless {@code null}.  The entire
1568 >     * method invocation is performed atomically, so the function is
1569 >     * applied at most once per key.  Some attempted update operations
1570 >     * on this map by other threads may be blocked while computation
1571 >     * is in progress, so the computation should be short and simple,
1572 >     * and must not attempt to update any other mappings of this map.
1573 >     *
1574 >     * @param key key with which the specified value is to be associated
1575 >     * @param mappingFunction the function to compute a value
1576 >     * @return the current (existing or computed) value associated with
1577 >     *         the specified key, or null if the computed value is null
1578 >     * @throws NullPointerException if the specified key or mappingFunction
1579 >     *         is null
1580 >     * @throws IllegalStateException if the computation detectably
1581 >     *         attempts a recursive update to this map that would
1582 >     *         otherwise never complete
1583 >     * @throws RuntimeException or Error if the mappingFunction does so,
1584 >     *         in which case the mapping is left unestablished
1585 >     */
1586 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1587 >        if (key == null || mappingFunction == null)
1588              throw new NullPointerException();
1589 <        int h = spread(k.hashCode());
1589 >        int h = spread(key.hashCode());
1590          V val = null;
1591 <        int len = 0;
1592 <        for (Node<V>[] tab = table;;) {
1593 <            Node<V> f; int i; Object fk;
1594 <            if (tab == null)
1591 >        int binCount = 0;
1592 >        for (Node<K,V>[] tab = table;;) {
1593 >            Node<K,V> f; int n, i, fh;
1594 >            if (tab == null || (n = tab.length) == 0)
1595                  tab = initTable();
1596 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1597 <                Node<V> node = new Node<V>(h, k, null, null);
1598 <                synchronized (node) {
1599 <                    if (casTabAt(tab, i, null, node)) {
1600 <                        len = 1;
1596 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1597 >                Node<K,V> r = new ReservationNode<K,V>();
1598 >                synchronized (r) {
1599 >                    if (casTabAt(tab, i, null, r)) {
1600 >                        binCount = 1;
1601 >                        Node<K,V> node = null;
1602                          try {
1603 <                            if ((val = mf.apply(k)) != null)
1604 <                                node.val = val;
1603 >                            if ((val = mappingFunction.apply(key)) != null)
1604 >                                node = new Node<K,V>(h, key, val, null);
1605                          } finally {
1606 <                            if (val == null)
1350 <                                setTabAt(tab, i, null);
1606 >                            setTabAt(tab, i, node);
1607                          }
1608                      }
1609                  }
1610 <                if (len != 0)
1610 >                if (binCount != 0)
1611                      break;
1612              }
1613 <            else if (f.hash < 0) {
1614 <                if ((fk = f.key) instanceof TreeBin) {
1615 <                    TreeBin<V> t = (TreeBin<V>)fk;
1616 <                    boolean added = false;
1617 <                    t.acquire(0);
1618 <                    try {
1619 <                        if (tabAt(tab, i) == f) {
1620 <                            len = 1;
1621 <                            TreeNode<V> p = t.getTreeNode(h, k);
1622 <                            if (p != null)
1613 >            else if ((fh = f.hash) == MOVED)
1614 >                tab = helpTransfer(tab, f);
1615 >            else {
1616 >                boolean added = false;
1617 >                synchronized (f) {
1618 >                    if (tabAt(tab, i) == f) {
1619 >                        if (fh >= 0) {
1620 >                            binCount = 1;
1621 >                            for (Node<K,V> e = f;; ++binCount) {
1622 >                                K ek; V ev;
1623 >                                if (e.hash == h &&
1624 >                                    ((ek = e.key) == key ||
1625 >                                     (ek != null && key.equals(ek)))) {
1626 >                                    val = e.val;
1627 >                                    break;
1628 >                                }
1629 >                                Node<K,V> pred = e;
1630 >                                if ((e = e.next) == null) {
1631 >                                    if ((val = mappingFunction.apply(key)) != null) {
1632 >                                        added = true;
1633 >                                        pred.next = new Node<K,V>(h, key, val, null);
1634 >                                    }
1635 >                                    break;
1636 >                                }
1637 >                            }
1638 >                        }
1639 >                        else if (f instanceof TreeBin) {
1640 >                            binCount = 2;
1641 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1642 >                            TreeNode<K,V> r, p;
1643 >                            if ((r = t.root) != null &&
1644 >                                (p = r.findTreeNode(h, key, null)) != null)
1645                                  val = p.val;
1646 <                            else if ((val = mf.apply(k)) != null) {
1646 >                            else if ((val = mappingFunction.apply(key)) != null) {
1647                                  added = true;
1648 <                                len = 2;
1371 <                                t.putTreeNode(h, k, val);
1648 >                                t.putTreeVal(h, key, val);
1649                              }
1650                          }
1374                    } finally {
1375                        t.release(0);
1376                    }
1377                    if (len != 0) {
1378                        if (!added)
1379                            return val;
1380                        break;
1651                      }
1652                  }
1653 <                else
1654 <                    tab = (Node<V>[])fk;
1653 >                if (binCount != 0) {
1654 >                    if (binCount >= TREEIFY_THRESHOLD)
1655 >                        treeifyBin(tab, i);
1656 >                    if (!added)
1657 >                        return val;
1658 >                    break;
1659 >                }
1660              }
1661 +        }
1662 +        if (val != null)
1663 +            addCount(1L, binCount);
1664 +        return val;
1665 +    }
1666 +
1667 +    /**
1668 +     * If the value for the specified key is present, attempts to
1669 +     * compute a new mapping given the key and its current mapped
1670 +     * value.  The entire method invocation is performed atomically.
1671 +     * Some attempted update operations on this map by other threads
1672 +     * may be blocked while computation is in progress, so the
1673 +     * computation should be short and simple, and must not attempt to
1674 +     * update any other mappings of this map.
1675 +     *
1676 +     * @param key key with which a value may be associated
1677 +     * @param remappingFunction the function to compute a value
1678 +     * @return the new value associated with the specified key, or null if none
1679 +     * @throws NullPointerException if the specified key or remappingFunction
1680 +     *         is null
1681 +     * @throws IllegalStateException if the computation detectably
1682 +     *         attempts a recursive update to this map that would
1683 +     *         otherwise never complete
1684 +     * @throws RuntimeException or Error if the remappingFunction does so,
1685 +     *         in which case the mapping is unchanged
1686 +     */
1687 +    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1688 +        if (key == null || remappingFunction == null)
1689 +            throw new NullPointerException();
1690 +        int h = spread(key.hashCode());
1691 +        V val = null;
1692 +        int delta = 0;
1693 +        int binCount = 0;
1694 +        for (Node<K,V>[] tab = table;;) {
1695 +            Node<K,V> f; int n, i, fh;
1696 +            if (tab == null || (n = tab.length) == 0)
1697 +                tab = initTable();
1698 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1699 +                break;
1700 +            else if ((fh = f.hash) == MOVED)
1701 +                tab = helpTransfer(tab, f);
1702              else {
1387                for (Node<V> e = f; e != null; e = e.next) { // prescan
1388                    Object ek; V ev;
1389                    if (e.hash == h && (ev = e.val) != null &&
1390                        ((ek = e.key) == k || k.equals(ek)))
1391                        return ev;
1392                }
1393                boolean added = false;
1703                  synchronized (f) {
1704                      if (tabAt(tab, i) == f) {
1705 <                        len = 1;
1706 <                        for (Node<V> e = f;; ++len) {
1707 <                            Object ek; V ev;
1708 <                            if (e.hash == h &&
1709 <                                (ev = e.val) != null &&
1710 <                                ((ek = e.key) == k || k.equals(ek))) {
1711 <                                val = ev;
1712 <                                break;
1705 >                        if (fh >= 0) {
1706 >                            binCount = 1;
1707 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1708 >                                K ek;
1709 >                                if (e.hash == h &&
1710 >                                    ((ek = e.key) == key ||
1711 >                                     (ek != null && key.equals(ek)))) {
1712 >                                    val = remappingFunction.apply(key, e.val);
1713 >                                    if (val != null)
1714 >                                        e.val = val;
1715 >                                    else {
1716 >                                        delta = -1;
1717 >                                        Node<K,V> en = e.next;
1718 >                                        if (pred != null)
1719 >                                            pred.next = en;
1720 >                                        else
1721 >                                            setTabAt(tab, i, en);
1722 >                                    }
1723 >                                    break;
1724 >                                }
1725 >                                pred = e;
1726 >                                if ((e = e.next) == null)
1727 >                                    break;
1728                              }
1729 <                            Node<V> last = e;
1730 <                            if ((e = e.next) == null) {
1731 <                                if ((val = mf.apply(k)) != null) {
1732 <                                    added = true;
1733 <                                    last.next = new Node<V>(h, k, val, null);
1734 <                                    if (len >= TREE_THRESHOLD)
1735 <                                        replaceWithTreeBin(tab, i, k);
1729 >                        }
1730 >                        else if (f instanceof TreeBin) {
1731 >                            binCount = 2;
1732 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1733 >                            TreeNode<K,V> r, p;
1734 >                            if ((r = t.root) != null &&
1735 >                                (p = r.findTreeNode(h, key, null)) != null) {
1736 >                                val = remappingFunction.apply(key, p.val);
1737 >                                if (val != null)
1738 >                                    p.val = val;
1739 >                                else {
1740 >                                    delta = -1;
1741 >                                    if (t.removeTreeNode(p))
1742 >                                        setTabAt(tab, i, untreeify(t.first));
1743                                  }
1413                                break;
1744                              }
1745                          }
1746                      }
1747                  }
1748 <                if (len != 0) {
1419 <                    if (!added)
1420 <                        return val;
1748 >                if (binCount != 0)
1749                      break;
1422                }
1750              }
1751          }
1752 <        if (val != null)
1753 <            addCount(1L, len);
1752 >        if (delta != 0)
1753 >            addCount((long)delta, binCount);
1754          return val;
1755      }
1756  
1757 <    /** Implementation for compute */
1758 <    @SuppressWarnings("unchecked") private final V internalCompute
1759 <        (K k, boolean onlyIfPresent,
1760 <         BiFunction<? super K, ? super V, ? extends V> mf) {
1761 <        if (k == null || mf == null)
1757 >    /**
1758 >     * Attempts to compute a mapping for the specified key and its
1759 >     * current mapped value (or {@code null} if there is no current
1760 >     * mapping). The entire method invocation is performed atomically.
1761 >     * Some attempted update operations on this map by other threads
1762 >     * may be blocked while computation is in progress, so the
1763 >     * computation should be short and simple, and must not attempt to
1764 >     * update any other mappings of this Map.
1765 >     *
1766 >     * @param key key with which the specified value is to be associated
1767 >     * @param remappingFunction the function to compute a value
1768 >     * @return the new value associated with the specified key, or null if none
1769 >     * @throws NullPointerException if the specified key or remappingFunction
1770 >     *         is null
1771 >     * @throws IllegalStateException if the computation detectably
1772 >     *         attempts a recursive update to this map that would
1773 >     *         otherwise never complete
1774 >     * @throws RuntimeException or Error if the remappingFunction does so,
1775 >     *         in which case the mapping is unchanged
1776 >     */
1777 >    public V compute(K key,
1778 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1779 >        if (key == null || remappingFunction == null)
1780              throw new NullPointerException();
1781 <        int h = spread(k.hashCode());
1781 >        int h = spread(key.hashCode());
1782          V val = null;
1783          int delta = 0;
1784 <        int len = 0;
1785 <        for (Node<V>[] tab = table;;) {
1786 <            Node<V> f; int i, fh; Object fk;
1787 <            if (tab == null)
1784 >        int binCount = 0;
1785 >        for (Node<K,V>[] tab = table;;) {
1786 >            Node<K,V> f; int n, i, fh;
1787 >            if (tab == null || (n = tab.length) == 0)
1788                  tab = initTable();
1789 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1790 <                if (onlyIfPresent)
1791 <                    break;
1792 <                Node<V> node = new Node<V>(h, k, null, null);
1793 <                synchronized (node) {
1794 <                    if (casTabAt(tab, i, null, node)) {
1789 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1790 >                Node<K,V> r = new ReservationNode<K,V>();
1791 >                synchronized (r) {
1792 >                    if (casTabAt(tab, i, null, r)) {
1793 >                        binCount = 1;
1794 >                        Node<K,V> node = null;
1795                          try {
1796 <                            len = 1;
1452 <                            if ((val = mf.apply(k, null)) != null) {
1453 <                                node.val = val;
1796 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1797                                  delta = 1;
1798 +                                node = new Node<K,V>(h, key, val, null);
1799                              }
1800                          } finally {
1801 <                            if (delta == 0)
1458 <                                setTabAt(tab, i, null);
1801 >                            setTabAt(tab, i, node);
1802                          }
1803                      }
1804                  }
1805 <                if (len != 0)
1805 >                if (binCount != 0)
1806                      break;
1807              }
1808 <            else if ((fh = f.hash) < 0) {
1809 <                if ((fk = f.key) instanceof TreeBin) {
1810 <                    TreeBin<V> t = (TreeBin<V>)fk;
1811 <                    t.acquire(0);
1812 <                    try {
1813 <                        if (tabAt(tab, i) == f) {
1814 <                            len = 1;
1815 <                            TreeNode<V> p = t.getTreeNode(h, k);
1816 <                            if (p == null && onlyIfPresent)
1817 <                                break;
1808 >            else if ((fh = f.hash) == MOVED)
1809 >                tab = helpTransfer(tab, f);
1810 >            else {
1811 >                synchronized (f) {
1812 >                    if (tabAt(tab, i) == f) {
1813 >                        if (fh >= 0) {
1814 >                            binCount = 1;
1815 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1816 >                                K ek;
1817 >                                if (e.hash == h &&
1818 >                                    ((ek = e.key) == key ||
1819 >                                     (ek != null && key.equals(ek)))) {
1820 >                                    val = remappingFunction.apply(key, e.val);
1821 >                                    if (val != null)
1822 >                                        e.val = val;
1823 >                                    else {
1824 >                                        delta = -1;
1825 >                                        Node<K,V> en = e.next;
1826 >                                        if (pred != null)
1827 >                                            pred.next = en;
1828 >                                        else
1829 >                                            setTabAt(tab, i, en);
1830 >                                    }
1831 >                                    break;
1832 >                                }
1833 >                                pred = e;
1834 >                                if ((e = e.next) == null) {
1835 >                                    val = remappingFunction.apply(key, null);
1836 >                                    if (val != null) {
1837 >                                        delta = 1;
1838 >                                        pred.next =
1839 >                                            new Node<K,V>(h, key, val, null);
1840 >                                    }
1841 >                                    break;
1842 >                                }
1843 >                            }
1844 >                        }
1845 >                        else if (f instanceof TreeBin) {
1846 >                            binCount = 1;
1847 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1848 >                            TreeNode<K,V> r, p;
1849 >                            if ((r = t.root) != null)
1850 >                                p = r.findTreeNode(h, key, null);
1851 >                            else
1852 >                                p = null;
1853                              V pv = (p == null) ? null : p.val;
1854 <                            if ((val = mf.apply(k, pv)) != null) {
1854 >                            val = remappingFunction.apply(key, pv);
1855 >                            if (val != null) {
1856                                  if (p != null)
1857                                      p.val = val;
1858                                  else {
1480                                    len = 2;
1859                                      delta = 1;
1860 <                                    t.putTreeNode(h, k, val);
1860 >                                    t.putTreeVal(h, key, val);
1861                                  }
1862                              }
1863                              else if (p != null) {
1864                                  delta = -1;
1865 <                                t.deleteTreeNode(p);
1865 >                                if (t.removeTreeNode(p))
1866 >                                    setTabAt(tab, i, untreeify(t.first));
1867                              }
1868                          }
1490                    } finally {
1491                        t.release(0);
1869                      }
1493                    if (len != 0)
1494                        break;
1870                  }
1871 <                else
1872 <                    tab = (Node<V>[])fk;
1873 <            }
1499 <            else {
1500 <                synchronized (f) {
1501 <                    if (tabAt(tab, i) == f) {
1502 <                        len = 1;
1503 <                        for (Node<V> e = f, pred = null;; ++len) {
1504 <                            Object ek; V ev;
1505 <                            if (e.hash == h &&
1506 <                                (ev = e.val) != null &&
1507 <                                ((ek = e.key) == k || k.equals(ek))) {
1508 <                                val = mf.apply(k, ev);
1509 <                                if (val != null)
1510 <                                    e.val = val;
1511 <                                else {
1512 <                                    delta = -1;
1513 <                                    Node<V> en = e.next;
1514 <                                    if (pred != null)
1515 <                                        pred.next = en;
1516 <                                    else
1517 <                                        setTabAt(tab, i, en);
1518 <                                }
1519 <                                break;
1520 <                            }
1521 <                            pred = e;
1522 <                            if ((e = e.next) == null) {
1523 <                                if (!onlyIfPresent &&
1524 <                                    (val = mf.apply(k, null)) != null) {
1525 <                                    pred.next = new Node<V>(h, k, val, null);
1526 <                                    delta = 1;
1527 <                                    if (len >= TREE_THRESHOLD)
1528 <                                        replaceWithTreeBin(tab, i, k);
1529 <                                }
1530 <                                break;
1531 <                            }
1532 <                        }
1533 <                    }
1534 <                }
1535 <                if (len != 0)
1871 >                if (binCount != 0) {
1872 >                    if (binCount >= TREEIFY_THRESHOLD)
1873 >                        treeifyBin(tab, i);
1874                      break;
1875 +                }
1876              }
1877          }
1878          if (delta != 0)
1879 <            addCount((long)delta, len);
1879 >            addCount((long)delta, binCount);
1880          return val;
1881      }
1882  
1883 <    /** Implementation for merge */
1884 <    @SuppressWarnings("unchecked") private final V internalMerge
1885 <        (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1886 <        if (k == null || v == null || mf == null)
1883 >    /**
1884 >     * If the specified key is not already associated with a
1885 >     * (non-null) value, associates it with the given value.
1886 >     * Otherwise, replaces the value with the results of the given
1887 >     * remapping function, or removes if {@code null}. The entire
1888 >     * method invocation is performed atomically.  Some attempted
1889 >     * update operations on this map by other threads may be blocked
1890 >     * while computation is in progress, so the computation should be
1891 >     * short and simple, and must not attempt to update any other
1892 >     * mappings of this Map.
1893 >     *
1894 >     * @param key key with which the specified value is to be associated
1895 >     * @param value the value to use if absent
1896 >     * @param remappingFunction the function to recompute a value if present
1897 >     * @return the new value associated with the specified key, or null if none
1898 >     * @throws NullPointerException if the specified key or the
1899 >     *         remappingFunction is null
1900 >     * @throws RuntimeException or Error if the remappingFunction does so,
1901 >     *         in which case the mapping is unchanged
1902 >     */
1903 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1904 >        if (key == null || value == null || remappingFunction == null)
1905              throw new NullPointerException();
1906 <        int h = spread(k.hashCode());
1906 >        int h = spread(key.hashCode());
1907          V val = null;
1908          int delta = 0;
1909 <        int len = 0;
1910 <        for (Node<V>[] tab = table;;) {
1911 <            int i; Node<V> f; Object fk; V fv;
1912 <            if (tab == null)
1909 >        int binCount = 0;
1910 >        for (Node<K,V>[] tab = table;;) {
1911 >            Node<K,V> f; int n, i, fh;
1912 >            if (tab == null || (n = tab.length) == 0)
1913                  tab = initTable();
1914 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1915 <                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1914 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1915 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1916                      delta = 1;
1917 <                    val = v;
1917 >                    val = value;
1918                      break;
1919                  }
1920              }
1921 <            else if (f.hash < 0) {
1922 <                if ((fk = f.key) instanceof TreeBin) {
1923 <                    TreeBin<V> t = (TreeBin<V>)fk;
1924 <                    t.acquire(0);
1925 <                    try {
1926 <                        if (tabAt(tab, i) == f) {
1927 <                            len = 1;
1928 <                            TreeNode<V> p = t.getTreeNode(h, k);
1929 <                            val = (p == null) ? v : mf.apply(p.val, v);
1921 >            else if ((fh = f.hash) == MOVED)
1922 >                tab = helpTransfer(tab, f);
1923 >            else {
1924 >                synchronized (f) {
1925 >                    if (tabAt(tab, i) == f) {
1926 >                        if (fh >= 0) {
1927 >                            binCount = 1;
1928 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1929 >                                K ek;
1930 >                                if (e.hash == h &&
1931 >                                    ((ek = e.key) == key ||
1932 >                                     (ek != null && key.equals(ek)))) {
1933 >                                    val = remappingFunction.apply(e.val, value);
1934 >                                    if (val != null)
1935 >                                        e.val = val;
1936 >                                    else {
1937 >                                        delta = -1;
1938 >                                        Node<K,V> en = e.next;
1939 >                                        if (pred != null)
1940 >                                            pred.next = en;
1941 >                                        else
1942 >                                            setTabAt(tab, i, en);
1943 >                                    }
1944 >                                    break;
1945 >                                }
1946 >                                pred = e;
1947 >                                if ((e = e.next) == null) {
1948 >                                    delta = 1;
1949 >                                    val = value;
1950 >                                    pred.next =
1951 >                                        new Node<K,V>(h, key, val, null);
1952 >                                    break;
1953 >                                }
1954 >                            }
1955 >                        }
1956 >                        else if (f instanceof TreeBin) {
1957 >                            binCount = 2;
1958 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1959 >                            TreeNode<K,V> r = t.root;
1960 >                            TreeNode<K,V> p = (r == null) ? null :
1961 >                                r.findTreeNode(h, key, null);
1962 >                            val = (p == null) ? value :
1963 >                                remappingFunction.apply(p.val, value);
1964                              if (val != null) {
1965                                  if (p != null)
1966                                      p.val = val;
1967                                  else {
1577                                    len = 2;
1968                                      delta = 1;
1969 <                                    t.putTreeNode(h, k, val);
1969 >                                    t.putTreeVal(h, key, val);
1970                                  }
1971                              }
1972                              else if (p != null) {
1973                                  delta = -1;
1974 <                                t.deleteTreeNode(p);
1975 <                            }
1586 <                        }
1587 <                    } finally {
1588 <                        t.release(0);
1589 <                    }
1590 <                    if (len != 0)
1591 <                        break;
1592 <                }
1593 <                else
1594 <                    tab = (Node<V>[])fk;
1595 <            }
1596 <            else {
1597 <                synchronized (f) {
1598 <                    if (tabAt(tab, i) == f) {
1599 <                        len = 1;
1600 <                        for (Node<V> e = f, pred = null;; ++len) {
1601 <                            Object ek; V ev;
1602 <                            if (e.hash == h &&
1603 <                                (ev = e.val) != null &&
1604 <                                ((ek = e.key) == k || k.equals(ek))) {
1605 <                                val = mf.apply(ev, v);
1606 <                                if (val != null)
1607 <                                    e.val = val;
1608 <                                else {
1609 <                                    delta = -1;
1610 <                                    Node<V> en = e.next;
1611 <                                    if (pred != null)
1612 <                                        pred.next = en;
1613 <                                    else
1614 <                                        setTabAt(tab, i, en);
1615 <                                }
1616 <                                break;
1617 <                            }
1618 <                            pred = e;
1619 <                            if ((e = e.next) == null) {
1620 <                                val = v;
1621 <                                pred.next = new Node<V>(h, k, val, null);
1622 <                                delta = 1;
1623 <                                if (len >= TREE_THRESHOLD)
1624 <                                    replaceWithTreeBin(tab, i, k);
1625 <                                break;
1974 >                                if (t.removeTreeNode(p))
1975 >                                    setTabAt(tab, i, untreeify(t.first));
1976                              }
1977                          }
1978                      }
1979                  }
1980 <                if (len != 0)
1980 >                if (binCount != 0) {
1981 >                    if (binCount >= TREEIFY_THRESHOLD)
1982 >                        treeifyBin(tab, i);
1983                      break;
1984 +                }
1985              }
1986          }
1987          if (delta != 0)
1988 <            addCount((long)delta, len);
1988 >            addCount((long)delta, binCount);
1989          return val;
1990      }
1991  
1992 <    /** Implementation for putAll */
1993 <    @SuppressWarnings("unchecked") private final void internalPutAll
1994 <        (Map<? extends K, ? extends V> m) {
1995 <        tryPresize(m.size());
1996 <        long delta = 0L;     // number of uncommitted additions
1997 <        boolean npe = false; // to throw exception on exit for nulls
1998 <        try {                // to clean up counts on other exceptions
1999 <            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
2000 <                Object k; V v;
2001 <                if (entry == null || (k = entry.getKey()) == null ||
2002 <                    (v = entry.getValue()) == null) {
2003 <                    npe = true;
2004 <                    break;
2005 <                }
2006 <                int h = spread(k.hashCode());
2007 <                for (Node<V>[] tab = table;;) {
2008 <                    int i; Node<V> f; int fh; Object fk;
2009 <                    if (tab == null)
2010 <                        tab = initTable();
2011 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
2012 <                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
2013 <                            ++delta;
2014 <                            break;
2015 <                        }
2016 <                    }
2017 <                    else if ((fh = f.hash) < 0) {
2018 <                        if ((fk = f.key) instanceof TreeBin) {
2019 <                            TreeBin<V> t = (TreeBin<V>)fk;
2020 <                            boolean validated = false;
2021 <                            t.acquire(0);
2022 <                            try {
2023 <                                if (tabAt(tab, i) == f) {
2024 <                                    validated = true;
2025 <                                    TreeNode<V> p = t.getTreeNode(h, k);
2026 <                                    if (p != null)
2027 <                                        p.val = v;
2028 <                                    else {
2029 <                                        t.putTreeNode(h, k, v);
2030 <                                        ++delta;
2031 <                                    }
2032 <                                }
2033 <                            } finally {
2034 <                                t.release(0);
2035 <                            }
2036 <                            if (validated)
2037 <                                break;
2038 <                        }
2039 <                        else
2040 <                            tab = (Node<V>[])fk;
2041 <                    }
2042 <                    else {
2043 <                        int len = 0;
2044 <                        synchronized (f) {
2045 <                            if (tabAt(tab, i) == f) {
2046 <                                len = 1;
2047 <                                for (Node<V> e = f;; ++len) {
2048 <                                    Object ek; V ev;
2049 <                                    if (e.hash == h &&
2050 <                                        (ev = e.val) != null &&
2051 <                                        ((ek = e.key) == k || k.equals(ek))) {
2052 <                                        e.val = v;
2053 <                                        break;
2054 <                                    }
2055 <                                    Node<V> last = e;
2056 <                                    if ((e = e.next) == null) {
2057 <                                        ++delta;
2058 <                                        last.next = new Node<V>(h, k, v, null);
2059 <                                        if (len >= TREE_THRESHOLD)
2060 <                                            replaceWithTreeBin(tab, i, k);
2061 <                                        break;
2062 <                                    }
2063 <                                }
2064 <                            }
2065 <                        }
2066 <                        if (len != 0) {
2067 <                            if (len > 1) {
2068 <                                addCount(delta, len);
2069 <                                delta = 0L;
2070 <                            }
2071 <                            break;
2072 <                        }
2073 <                    }
2074 <                }
2075 <            }
2076 <        } finally {
2077 <            if (delta != 0L)
2078 <                addCount(delta, 2);
2079 <        }
2080 <        if (npe)
1992 >    // Hashtable legacy methods
1993 >
1994 >    /**
1995 >     * Legacy method testing if some key maps into the specified value
1996 >     * in this table.  This method is identical in functionality to
1997 >     * {@link #containsValue(Object)}, and exists solely to ensure
1998 >     * full compatibility with class {@link java.util.Hashtable},
1999 >     * which supported this method prior to introduction of the
2000 >     * Java Collections framework.
2001 >     *
2002 >     * @param  value a value to search for
2003 >     * @return {@code true} if and only if some key maps to the
2004 >     *         {@code value} argument in this table as
2005 >     *         determined by the {@code equals} method;
2006 >     *         {@code false} otherwise
2007 >     * @throws NullPointerException if the specified value is null
2008 >     */
2009 >    @Deprecated public boolean contains(Object value) {
2010 >        return containsValue(value);
2011 >    }
2012 >
2013 >    /**
2014 >     * Returns an enumeration of the keys in this table.
2015 >     *
2016 >     * @return an enumeration of the keys in this table
2017 >     * @see #keySet()
2018 >     */
2019 >    public Enumeration<K> keys() {
2020 >        Node<K,V>[] t;
2021 >        int f = (t = table) == null ? 0 : t.length;
2022 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2023 >    }
2024 >
2025 >    /**
2026 >     * Returns an enumeration of the values in this table.
2027 >     *
2028 >     * @return an enumeration of the values in this table
2029 >     * @see #values()
2030 >     */
2031 >    public Enumeration<V> elements() {
2032 >        Node<K,V>[] t;
2033 >        int f = (t = table) == null ? 0 : t.length;
2034 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2035 >    }
2036 >
2037 >    // ConcurrentHashMap-only methods
2038 >
2039 >    /**
2040 >     * Returns the number of mappings. This method should be used
2041 >     * instead of {@link #size} because a ConcurrentHashMap may
2042 >     * contain more mappings than can be represented as an int. The
2043 >     * value returned is an estimate; the actual count may differ if
2044 >     * there are concurrent insertions or removals.
2045 >     *
2046 >     * @return the number of mappings
2047 >     * @since 1.8
2048 >     */
2049 >    public long mappingCount() {
2050 >        long n = sumCount();
2051 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2052 >    }
2053 >
2054 >    /**
2055 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2056 >     * from the given type to {@code Boolean.TRUE}.
2057 >     *
2058 >     * @param <K> the element type of the returned set
2059 >     * @return the new set
2060 >     * @since 1.8
2061 >     */
2062 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2063 >        return new KeySetView<K,Boolean>
2064 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2065 >    }
2066 >
2067 >    /**
2068 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2069 >     * from the given type to {@code Boolean.TRUE}.
2070 >     *
2071 >     * @param initialCapacity The implementation performs internal
2072 >     * sizing to accommodate this many elements.
2073 >     * @param <K> the element type of the returned set
2074 >     * @throws IllegalArgumentException if the initial capacity of
2075 >     * elements is negative
2076 >     * @return the new set
2077 >     * @since 1.8
2078 >     */
2079 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2080 >        return new KeySetView<K,Boolean>
2081 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2082 >    }
2083 >
2084 >    /**
2085 >     * Returns a {@link Set} view of the keys in this map, using the
2086 >     * given common mapped value for any additions (i.e., {@link
2087 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2088 >     * This is of course only appropriate if it is acceptable to use
2089 >     * the same value for all additions from this view.
2090 >     *
2091 >     * @param mappedValue the mapped value to use for any additions
2092 >     * @return the set view
2093 >     * @throws NullPointerException if the mappedValue is null
2094 >     */
2095 >    public KeySetView<K,V> keySet(V mappedValue) {
2096 >        if (mappedValue == null)
2097              throw new NullPointerException();
2098 +        return new KeySetView<K,V>(this, mappedValue);
2099      }
2100  
2101 +    /* ---------------- Special Nodes -------------- */
2102 +
2103      /**
2104 <     * Implementation for clear. Steps through each bin, removing all
1733 <     * nodes.
2104 >     * A node inserted at head of bins during transfer operations.
2105       */
2106 <    @SuppressWarnings("unchecked") private final void internalClear() {
2107 <        long delta = 0L; // negative number of deletions
2108 <        int i = 0;
2109 <        Node<V>[] tab = table;
2110 <        while (tab != null && i < tab.length) {
2111 <            Node<V> f = tabAt(tab, i);
2112 <            if (f == null)
2113 <                ++i;
2114 <            else if (f.hash < 0) {
2115 <                Object fk;
2116 <                if ((fk = f.key) instanceof TreeBin) {
2117 <                    TreeBin<V> t = (TreeBin<V>)fk;
2118 <                    t.acquire(0);
2119 <                    try {
2120 <                        if (tabAt(tab, i) == f) {
2121 <                            for (Node<V> p = t.first; p != null; p = p.next) {
2122 <                                if (p.val != null) { // (currently always true)
2123 <                                    p.val = null;
2124 <                                    --delta;
2125 <                                }
2126 <                            }
2127 <                            t.first = null;
2128 <                            t.root = null;
1758 <                            ++i;
1759 <                        }
1760 <                    } finally {
1761 <                        t.release(0);
1762 <                    }
1763 <                }
1764 <                else
1765 <                    tab = (Node<V>[])fk;
1766 <            }
1767 <            else {
1768 <                synchronized (f) {
1769 <                    if (tabAt(tab, i) == f) {
1770 <                        for (Node<V> e = f; e != null; e = e.next) {
1771 <                            if (e.val != null) {  // (currently always true)
1772 <                                e.val = null;
1773 <                                --delta;
1774 <                            }
2106 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2107 >        final Node<K,V>[] nextTable;
2108 >        ForwardingNode(Node<K,V>[] tab) {
2109 >            super(MOVED, null, null, null);
2110 >            this.nextTable = tab;
2111 >        }
2112 >
2113 >        Node<K,V> find(int h, Object k) {
2114 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2115 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2116 >                Node<K,V> e; int n;
2117 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2118 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2119 >                    return null;
2120 >                for (;;) {
2121 >                    int eh; K ek;
2122 >                    if ((eh = e.hash) == h &&
2123 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2124 >                        return e;
2125 >                    if (eh < 0) {
2126 >                        if (e instanceof ForwardingNode) {
2127 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2128 >                            continue outer;
2129                          }
2130 <                        setTabAt(tab, i, null);
2131 <                        ++i;
2130 >                        else
2131 >                            return e.find(h, k);
2132                      }
2133 +                    if ((e = e.next) == null)
2134 +                        return null;
2135                  }
2136              }
2137          }
1782        if (delta != 0L)
1783            addCount(delta, -1);
2138      }
2139  
1786    /* ---------------- Table Initialization and Resizing -------------- */
1787
2140      /**
2141 <     * Returns a power of two table size for the given desired capacity.
1790 <     * See Hackers Delight, sec 3.2
2141 >     * A place-holder node used in computeIfAbsent and compute
2142       */
2143 <    private static final int tableSizeFor(int c) {
2144 <        int n = c - 1;
2145 <        n |= n >>> 1;
2146 <        n |= n >>> 2;
2147 <        n |= n >>> 4;
2148 <        n |= n >>> 8;
2149 <        n |= n >>> 16;
2150 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2143 >    static final class ReservationNode<K,V> extends Node<K,V> {
2144 >        ReservationNode() {
2145 >            super(RESERVED, null, null, null);
2146 >        }
2147 >
2148 >        Node<K,V> find(int h, Object k) {
2149 >            return null;
2150 >        }
2151      }
2152  
2153 +    /* ---------------- Table Initialization and Resizing -------------- */
2154 +
2155      /**
2156       * Initializes table, using the size recorded in sizeCtl.
2157       */
2158 <    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
2159 <        Node<V>[] tab; int sc;
2160 <        while ((tab = table) == null) {
2158 >    private final Node<K,V>[] initTable() {
2159 >        Node<K,V>[] tab; int sc;
2160 >        while ((tab = table) == null || tab.length == 0) {
2161              if ((sc = sizeCtl) < 0)
2162                  Thread.yield(); // lost initialization race; just spin
2163              else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2164                  try {
2165 <                    if ((tab = table) == null) {
2165 >                    if ((tab = table) == null || tab.length == 0) {
2166                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2167 <                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
2168 <                        table = tab = (Node<V>[])tb;
2167 >                        @SuppressWarnings({"rawtypes","unchecked"})
2168 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2169 >                        table = tab = nt;
2170                          sc = n - (n >>> 2);
2171                      }
2172                  } finally {
# Line 1835 | Line 2189 | public class ConcurrentHashMap<K,V>
2189       * @param check if <0, don't check resize, if <= 1 only check if uncontended
2190       */
2191      private final void addCount(long x, int check) {
2192 <        Cell[] as; long b, s;
2192 >        CounterCell[] as; long b, s;
2193          if ((as = counterCells) != null ||
2194              !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2195 <            Cell a; long v; int m;
2195 >            CounterCell a; long v; int m;
2196              boolean uncontended = true;
2197              if (as == null || (m = as.length - 1) < 0 ||
2198                  (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
# Line 1852 | Line 2206 | public class ConcurrentHashMap<K,V>
2206              s = sumCount();
2207          }
2208          if (check >= 0) {
2209 <            Node<V>[] tab, nt; int sc;
2209 >            Node<K,V>[] tab, nt; int sc;
2210              while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2211                     tab.length < MAXIMUM_CAPACITY) {
2212                  if (sc < 0) {
# Line 1870 | Line 2224 | public class ConcurrentHashMap<K,V>
2224      }
2225  
2226      /**
2227 +     * Helps transfer if a resize is in progress.
2228 +     */
2229 +    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2230 +        Node<K,V>[] nextTab; int sc;
2231 +        if ((f instanceof ForwardingNode) &&
2232 +            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2233 +            if (nextTab == nextTable && tab == table &&
2234 +                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2235 +                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2236 +                transfer(tab, nextTab);
2237 +            return nextTab;
2238 +        }
2239 +        return table;
2240 +    }
2241 +
2242 +    /**
2243       * Tries to presize table to accommodate the given number of elements.
2244       *
2245       * @param size number of elements (doesn't need to be perfectly accurate)
2246       */
2247 <    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
2247 >    private final void tryPresize(int size) {
2248          int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2249              tableSizeFor(size + (size >>> 1) + 1);
2250          int sc;
2251          while ((sc = sizeCtl) >= 0) {
2252 <            Node<V>[] tab = table; int n;
2252 >            Node<K,V>[] tab = table; int n;
2253              if (tab == null || (n = tab.length) == 0) {
2254                  n = (sc > c) ? sc : c;
2255                  if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2256                      try {
2257                          if (table == tab) {
2258 <                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
2259 <                            table = (Node<V>[])tb;
2258 >                            @SuppressWarnings({"rawtypes","unchecked"})
2259 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2260 >                            table = nt;
2261                              sc = n - (n >>> 2);
2262                          }
2263                      } finally {
# Line 1906 | Line 2277 | public class ConcurrentHashMap<K,V>
2277       * Moves and/or copies the nodes in each bin to new table. See
2278       * above for explanation.
2279       */
2280 <    @SuppressWarnings("unchecked") private final void transfer
1910 <        (Node<V>[] tab, Node<V>[] nextTab) {
2280 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2281          int n = tab.length, stride;
2282          if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2283              stride = MIN_TRANSFER_STRIDE; // subdivide range
2284          if (nextTab == null) {            // initiating
2285              try {
2286 <                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
2287 <                nextTab = (Node<V>[])tb;
2286 >                @SuppressWarnings({"rawtypes","unchecked"})
2287 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2288 >                nextTab = nt;
2289              } catch (Throwable ex) {      // try to cope with OOME
2290                  sizeCtl = Integer.MAX_VALUE;
2291                  return;
# Line 1922 | Line 2293 | public class ConcurrentHashMap<K,V>
2293              nextTable = nextTab;
2294              transferOrigin = n;
2295              transferIndex = n;
2296 <            Node<V> rev = new Node<V>(MOVED, tab, null, null);
2296 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2297              for (int k = n; k > 0;) {    // progressively reveal ready slots
2298                  int nextk = (k > stride) ? k - stride : 0;
2299                  for (int m = nextk; m < k; ++m)
# Line 1933 | Line 2304 | public class ConcurrentHashMap<K,V>
2304              }
2305          }
2306          int nextn = nextTab.length;
2307 <        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2307 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2308          boolean advance = true;
2309 +        boolean finishing = false; // to ensure sweep before committing nextTab
2310          for (int i = 0, bound = 0;;) {
2311 <            int nextIndex, nextBound; Node<V> f; Object fk;
2311 >            int nextIndex, nextBound, fh; Node<K,V> f;
2312              while (advance) {
2313 <                if (--i >= bound)
2313 >                if (--i >= bound || finishing)
2314                      advance = false;
2315                  else if ((nextIndex = transferIndex) <= transferOrigin) {
2316                      i = -1;
# Line 1954 | Line 2326 | public class ConcurrentHashMap<K,V>
2326                  }
2327              }
2328              if (i < 0 || i >= n || i + n >= nextn) {
2329 +                if (finishing) {
2330 +                    nextTable = null;
2331 +                    table = nextTab;
2332 +                    sizeCtl = (n << 1) - (n >>> 1);
2333 +                    return;
2334 +                }
2335                  for (int sc;;) {
2336                      if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2337 <                        if (sc == -1) {
2338 <                            nextTable = null;
2339 <                            table = nextTab;
2340 <                            sizeCtl = (n << 1) - (n >>> 1);
2341 <                        }
1964 <                        return;
2337 >                        if (sc != -1)
2338 >                            return;
2339 >                        finishing = advance = true;
2340 >                        i = n; // recheck before commit
2341 >                        break;
2342                      }
2343                  }
2344              }
# Line 1972 | Line 2349 | public class ConcurrentHashMap<K,V>
2349                      advance = true;
2350                  }
2351              }
2352 <            else if (f.hash >= 0) {
2352 >            else if ((fh = f.hash) == MOVED)
2353 >                advance = true; // already processed
2354 >            else {
2355                  synchronized (f) {
2356                      if (tabAt(tab, i) == f) {
2357 <                        int runBit = f.hash & n;
2358 <                        Node<V> lastRun = f, lo = null, hi = null;
2359 <                        for (Node<V> p = f.next; p != null; p = p.next) {
2360 <                            int b = p.hash & n;
2361 <                            if (b != runBit) {
2362 <                                runBit = b;
2363 <                                lastRun = p;
2357 >                        Node<K,V> ln, hn;
2358 >                        if (fh >= 0) {
2359 >                            int runBit = fh & n;
2360 >                            Node<K,V> lastRun = f;
2361 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2362 >                                int b = p.hash & n;
2363 >                                if (b != runBit) {
2364 >                                    runBit = b;
2365 >                                    lastRun = p;
2366 >                                }
2367                              }
2368 <                        }
2369 <                        if (runBit == 0)
2370 <                            lo = lastRun;
1989 <                        else
1990 <                            hi = lastRun;
1991 <                        for (Node<V> p = f; p != lastRun; p = p.next) {
1992 <                            int ph = p.hash;
1993 <                            Object pk = p.key; V pv = p.val;
1994 <                            if ((ph & n) == 0)
1995 <                                lo = new Node<V>(ph, pk, pv, lo);
1996 <                            else
1997 <                                hi = new Node<V>(ph, pk, pv, hi);
1998 <                        }
1999 <                        setTabAt(nextTab, i, lo);
2000 <                        setTabAt(nextTab, i + n, hi);
2001 <                        setTabAt(tab, i, fwd);
2002 <                        advance = true;
2003 <                    }
2004 <                }
2005 <            }
2006 <            else if ((fk = f.key) instanceof TreeBin) {
2007 <                TreeBin<V> t = (TreeBin<V>)fk;
2008 <                t.acquire(0);
2009 <                try {
2010 <                    if (tabAt(tab, i) == f) {
2011 <                        TreeBin<V> lt = new TreeBin<V>();
2012 <                        TreeBin<V> ht = new TreeBin<V>();
2013 <                        int lc = 0, hc = 0;
2014 <                        for (Node<V> e = t.first; e != null; e = e.next) {
2015 <                            int h = e.hash;
2016 <                            Object k = e.key; V v = e.val;
2017 <                            if ((h & n) == 0) {
2018 <                                ++lc;
2019 <                                lt.putTreeNode(h, k, v);
2368 >                            if (runBit == 0) {
2369 >                                ln = lastRun;
2370 >                                hn = null;
2371                              }
2372                              else {
2373 <                                ++hc;
2374 <                                ht.putTreeNode(h, k, v);
2373 >                                hn = lastRun;
2374 >                                ln = null;
2375                              }
2376 +                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2377 +                                int ph = p.hash; K pk = p.key; V pv = p.val;
2378 +                                if ((ph & n) == 0)
2379 +                                    ln = new Node<K,V>(ph, pk, pv, ln);
2380 +                                else
2381 +                                    hn = new Node<K,V>(ph, pk, pv, hn);
2382 +                            }
2383 +                            setTabAt(nextTab, i, ln);
2384 +                            setTabAt(nextTab, i + n, hn);
2385 +                            setTabAt(tab, i, fwd);
2386 +                            advance = true;
2387 +                        }
2388 +                        else if (f instanceof TreeBin) {
2389 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2390 +                            TreeNode<K,V> lo = null, loTail = null;
2391 +                            TreeNode<K,V> hi = null, hiTail = null;
2392 +                            int lc = 0, hc = 0;
2393 +                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2394 +                                int h = e.hash;
2395 +                                TreeNode<K,V> p = new TreeNode<K,V>
2396 +                                    (h, e.key, e.val, null, null);
2397 +                                if ((h & n) == 0) {
2398 +                                    if ((p.prev = loTail) == null)
2399 +                                        lo = p;
2400 +                                    else
2401 +                                        loTail.next = p;
2402 +                                    loTail = p;
2403 +                                    ++lc;
2404 +                                }
2405 +                                else {
2406 +                                    if ((p.prev = hiTail) == null)
2407 +                                        hi = p;
2408 +                                    else
2409 +                                        hiTail.next = p;
2410 +                                    hiTail = p;
2411 +                                    ++hc;
2412 +                                }
2413 +                            }
2414 +                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2415 +                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2416 +                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2417 +                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2418 +                            setTabAt(nextTab, i, ln);
2419 +                            setTabAt(nextTab, i + n, hn);
2420 +                            setTabAt(tab, i, fwd);
2421 +                            advance = true;
2422                          }
2026                        Node<V> ln, hn; // throw away trees if too small
2027                        if (lc < TREE_THRESHOLD) {
2028                            ln = null;
2029                            for (Node<V> p = lt.first; p != null; p = p.next)
2030                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2031                        }
2032                        else
2033                            ln = new Node<V>(MOVED, lt, null, null);
2034                        setTabAt(nextTab, i, ln);
2035                        if (hc < TREE_THRESHOLD) {
2036                            hn = null;
2037                            for (Node<V> p = ht.first; p != null; p = p.next)
2038                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2039                        }
2040                        else
2041                            hn = new Node<V>(MOVED, ht, null, null);
2042                        setTabAt(nextTab, i + n, hn);
2043                        setTabAt(tab, i, fwd);
2044                        advance = true;
2423                      }
2046                } finally {
2047                    t.release(0);
2424                  }
2425              }
2050            else
2051                advance = true; // already processed
2426          }
2427      }
2428  
2429      /* ---------------- Counter support -------------- */
2430  
2431 +    /**
2432 +     * A padded cell for distributing counts.  Adapted from LongAdder
2433 +     * and Striped64.  See their internal docs for explanation.
2434 +     */
2435 +    @sun.misc.Contended static final class CounterCell {
2436 +        volatile long value;
2437 +        CounterCell(long x) { value = x; }
2438 +    }
2439 +
2440      final long sumCount() {
2441 <        Cell[] as = counterCells; Cell a;
2441 >        CounterCell[] as = counterCells; CounterCell a;
2442          long sum = baseCount;
2443          if (as != null) {
2444              for (int i = 0; i < as.length; ++i) {
# Line 2076 | Line 2459 | public class ConcurrentHashMap<K,V>
2459          }
2460          boolean collide = false;                // True if last slot nonempty
2461          for (;;) {
2462 <            Cell[] as; Cell a; int n; long v;
2462 >            CounterCell[] as; CounterCell a; int n; long v;
2463              if ((as = counterCells) != null && (n = as.length) > 0) {
2464                  if ((a = as[(n - 1) & h]) == null) {
2465                      if (cellsBusy == 0) {            // Try to attach new Cell
2466 <                        Cell r = new Cell(x); // Optimistic create
2466 >                        CounterCell r = new CounterCell(x); // Optimistic create
2467                          if (cellsBusy == 0 &&
2468                              U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2469                              boolean created = false;
2470                              try {               // Recheck under lock
2471 <                                Cell[] rs; int m, j;
2471 >                                CounterCell[] rs; int m, j;
2472                                  if ((rs = counterCells) != null &&
2473                                      (m = rs.length) > 0 &&
2474                                      rs[j = (m - 1) & h] == null) {
# Line 2114 | Line 2497 | public class ConcurrentHashMap<K,V>
2497                           U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2498                      try {
2499                          if (counterCells == as) {// Expand table unless stale
2500 <                            Cell[] rs = new Cell[n << 1];
2500 >                            CounterCell[] rs = new CounterCell[n << 1];
2501                              for (int i = 0; i < n; ++i)
2502                                  rs[i] = as[i];
2503                              counterCells = rs;
# Line 2132 | Line 2515 | public class ConcurrentHashMap<K,V>
2515                  boolean init = false;
2516                  try {                           // Initialize table
2517                      if (counterCells == as) {
2518 <                        Cell[] rs = new Cell[2];
2519 <                        rs[h & 1] = new Cell(x);
2518 >                        CounterCell[] rs = new CounterCell[2];
2519 >                        rs[h & 1] = new CounterCell(x);
2520                          counterCells = rs;
2521                          init = true;
2522                      }
# Line 2148 | Line 2531 | public class ConcurrentHashMap<K,V>
2531          }
2532      }
2533  
2534 <    /* ----------------Table Traversal -------------- */
2534 >    /* ---------------- Conversion from/to TreeBins -------------- */
2535  
2536      /**
2537 <     * Encapsulates traversal for methods such as containsValue; also
2538 <     * serves as a base class for other iterators and bulk tasks.
2156 <     *
2157 <     * At each step, the iterator snapshots the key ("nextKey") and
2158 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2159 <     * snapshot, has a non-null user value). Because val fields can
2160 <     * change (including to null, indicating deletion), field nextVal
2161 <     * might not be accurate at point of use, but still maintains the
2162 <     * weak consistency property of holding a value that was once
2163 <     * valid. To support iterator.remove, the nextKey field is not
2164 <     * updated (nulled out) when the iterator cannot advance.
2165 <     *
2166 <     * Exported iterators must track whether the iterator has advanced
2167 <     * (in hasNext vs next) (by setting/checking/nulling field
2168 <     * nextVal), and then extract key, value, or key-value pairs as
2169 <     * return values of next().
2170 <     *
2171 <     * Method advance visits once each still-valid node that was
2172 <     * reachable upon iterator construction. It might miss some that
2173 <     * were added to a bin after the bin was visited, which is OK wrt
2174 <     * consistency guarantees. Maintaining this property in the face
2175 <     * of possible ongoing resizes requires a fair amount of
2176 <     * bookkeeping state that is difficult to optimize away amidst
2177 <     * volatile accesses.  Even so, traversal maintains reasonable
2178 <     * throughput.
2179 <     *
2180 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2181 <     * However, if the table has been resized, then all future steps
2182 <     * must traverse both the bin at the current index as well as at
2183 <     * (index + baseSize); and so on for further resizings. To
2184 <     * paranoically cope with potential sharing by users of iterators
2185 <     * across threads, iteration terminates if a bounds checks fails
2186 <     * for a table read.
2187 <     *
2188 <     * Methods advanceKey and advanceValue are specializations of the
2189 <     * common cases of advance, relaying to the full version
2190 <     * otherwise. The forEachKey and forEachValue methods further
2191 <     * specialize, bypassing all incremental field updates in most cases.
2192 <     *
2193 <     * This class supports both Spliterator-based traversal and
2194 <     * CountedCompleter-based bulk tasks. The same "batch" field is
2195 <     * used, but in slightly different ways, in the two cases.  For
2196 <     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2197 <     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2198 <     * size that halves down to zero for leaf tasks, that is only
2199 <     * computed upon execution of the task. (Tasks can be submitted to
2200 <     * any pool, of any size, so we don't know scale factors until
2201 <     * running.)
2202 <     *
2203 <     * This class extends CountedCompleter to streamline parallel
2204 <     * iteration in bulk operations. This adds only a few fields of
2205 <     * space overhead, which is small enough in cases where it is not
2206 <     * needed to not worry about it.  Because CountedCompleter is
2207 <     * Serializable, but iterators need not be, we need to add warning
2208 <     * suppressions.
2537 >     * Replaces all linked nodes in bin at given index unless table is
2538 >     * too small, in which case resizes instead.
2539       */
2540 <    @SuppressWarnings("serial") static class Traverser<K,V,R>
2541 <        extends CountedCompleter<R> {
2542 <        final ConcurrentHashMap<K,V> map;
2543 <        Node<V> next;        // the next entry to use
2544 <        K nextKey;           // cached key field of next
2545 <        V nextVal;           // cached val field of next
2546 <        Node<V>[] tab;       // current table; updated if resized
2547 <        int index;           // index of bin to use next
2548 <        int baseIndex;       // current index of initial table
2549 <        int baseLimit;       // index bound for initial table
2550 <        final int baseSize;  // initial table size
2551 <        int batch;           // split control
2540 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2541 >        Node<K,V> b; int n, sc;
2542 >        if (tab != null) {
2543 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2544 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2545 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2546 >                    transfer(tab, null);
2547 >            }
2548 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2549 >                synchronized (b) {
2550 >                    if (tabAt(tab, index) == b) {
2551 >                        TreeNode<K,V> hd = null, tl = null;
2552 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2553 >                            TreeNode<K,V> p =
2554 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2555 >                                                  null, null);
2556 >                            if ((p.prev = tl) == null)
2557 >                                hd = p;
2558 >                            else
2559 >                                tl.next = p;
2560 >                            tl = p;
2561 >                        }
2562 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2563 >                    }
2564 >                }
2565 >            }
2566 >        }
2567 >    }
2568  
2569 <        /** Creates iterator for all entries in the table. */
2570 <        Traverser(ConcurrentHashMap<K,V> map) {
2571 <            this.map = map;
2572 <            Node<V>[] t = this.tab = map.table;
2573 <            baseLimit = baseSize = (t == null) ? 0 : t.length;
2569 >    /**
2570 >     * Returns a list on non-TreeNodes replacing those in given list.
2571 >     */
2572 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2573 >        Node<K,V> hd = null, tl = null;
2574 >        for (Node<K,V> q = b; q != null; q = q.next) {
2575 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2576 >            if (tl == null)
2577 >                hd = p;
2578 >            else
2579 >                tl.next = p;
2580 >            tl = p;
2581          }
2582 +        return hd;
2583 +    }
2584  
2585 <        /** Task constructor */
2586 <        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2587 <            super(it);
2588 <            this.map = map;
2589 <            this.batch = batch; // -1 if unknown
2590 <            if (it == null) {
2591 <                Node<V>[] t = this.tab = map.table;
2592 <                baseLimit = baseSize = (t == null) ? 0 : t.length;
2593 <            }
2594 <            else { // split parent
2595 <                this.tab = it.tab;
2596 <                this.baseSize = it.baseSize;
2597 <                int hi = this.baseLimit = it.baseLimit;
2598 <                it.baseLimit = this.index = this.baseIndex =
2599 <                    (hi + it.baseIndex) >>> 1;
2600 <            }
2585 >    /* ---------------- TreeNodes -------------- */
2586 >
2587 >    /**
2588 >     * Nodes for use in TreeBins
2589 >     */
2590 >    static final class TreeNode<K,V> extends Node<K,V> {
2591 >        TreeNode<K,V> parent;  // red-black tree links
2592 >        TreeNode<K,V> left;
2593 >        TreeNode<K,V> right;
2594 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2595 >        boolean red;
2596 >
2597 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2598 >                 TreeNode<K,V> parent) {
2599 >            super(hash, key, val, next);
2600 >            this.parent = parent;
2601          }
2602  
2603 <        /** Spliterator constructor */
2604 <        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2250 <            super(it);
2251 <            this.map = map;
2252 <            if (it == null) {
2253 <                Node<V>[] t = this.tab = map.table;
2254 <                baseLimit = baseSize = (t == null) ? 0 : t.length;
2255 <                long n = map.sumCount();
2256 <                batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2257 <                         (int)n);
2258 <            }
2259 <            else {
2260 <                this.tab = it.tab;
2261 <                this.baseSize = it.baseSize;
2262 <                int hi = this.baseLimit = it.baseLimit;
2263 <                it.baseLimit = this.index = this.baseIndex =
2264 <                    (hi + it.baseIndex) >>> 1;
2265 <                this.batch = it.batch >>>= 1;
2266 <            }
2603 >        Node<K,V> find(int h, Object k) {
2604 >            return findTreeNode(h, k, null);
2605          }
2606  
2607          /**
2608 <         * Advances if possible, returning next valid value, or null if none.
2608 >         * Returns the TreeNode (or null if not found) for the given key
2609 >         * starting at given root.
2610           */
2611 <        @SuppressWarnings("unchecked") final V advance() {
2612 <            for (Node<V> e = next;;) {
2613 <                if (e != null)                  // advance past used/skipped node
2614 <                    e = next = e.next;
2615 <                while (e == null) {             // get to next non-null bin
2616 <                    Node<V>[] t; int i, n;      // must use locals in checks
2617 <                    if (baseIndex >= baseLimit || (t = tab) == null ||
2618 <                        (n = t.length) <= (i = index) || i < 0)
2619 <                        return nextVal = null;
2620 <                    if ((e = next = tabAt(t, index)) != null && e.hash < 0) {
2621 <                        Object ek;
2622 <                        if ((ek = e.key) instanceof TreeBin)
2623 <                            e = ((TreeBin<V>)ek).first;
2624 <                        else {
2625 <                            tab = (Node<V>[])ek;
2626 <                            continue;           // restarts due to null val
2611 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2612 >            if (k != null) {
2613 >                TreeNode<K,V> p = this;
2614 >                do  {
2615 >                    int ph, dir; K pk; TreeNode<K,V> q;
2616 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2617 >                    if ((ph = p.hash) > h)
2618 >                        p = pl;
2619 >                    else if (ph < h)
2620 >                        p = pr;
2621 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2622 >                        return p;
2623 >                    else if (pl == null && pr == null)
2624 >                        break;
2625 >                    else if ((kc != null ||
2626 >                              (kc = comparableClassFor(k)) != null) &&
2627 >                             (dir = compareComparables(kc, k, pk)) != 0)
2628 >                        p = (dir < 0) ? pl : pr;
2629 >                    else if (pl == null)
2630 >                        p = pr;
2631 >                    else if (pr == null ||
2632 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2633 >                        p = pl;
2634 >                    else
2635 >                        return q;
2636 >                } while (p != null);
2637 >            }
2638 >            return null;
2639 >        }
2640 >    }
2641 >
2642 >    /* ---------------- TreeBins -------------- */
2643 >
2644 >    /**
2645 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2646 >     * keys or values, but instead point to list of TreeNodes and
2647 >     * their root. They also maintain a parasitic read-write lock
2648 >     * forcing writers (who hold bin lock) to wait for readers (who do
2649 >     * not) to complete before tree restructuring operations.
2650 >     */
2651 >    static final class TreeBin<K,V> extends Node<K,V> {
2652 >        TreeNode<K,V> root;
2653 >        volatile TreeNode<K,V> first;
2654 >        volatile Thread waiter;
2655 >        volatile int lockState;
2656 >        // values for lockState
2657 >        static final int WRITER = 1; // set while holding write lock
2658 >        static final int WAITER = 2; // set when waiting for write lock
2659 >        static final int READER = 4; // increment value for setting read lock
2660 >
2661 >        /**
2662 >         * Creates bin with initial set of nodes headed by b.
2663 >         */
2664 >        TreeBin(TreeNode<K,V> b) {
2665 >            super(TREEBIN, null, null, null);
2666 >            this.first = b;
2667 >            TreeNode<K,V> r = null;
2668 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2669 >                next = (TreeNode<K,V>)x.next;
2670 >                x.left = x.right = null;
2671 >                if (r == null) {
2672 >                    x.parent = null;
2673 >                    x.red = false;
2674 >                    r = x;
2675 >                }
2676 >                else {
2677 >                    Object key = x.key;
2678 >                    int hash = x.hash;
2679 >                    Class<?> kc = null;
2680 >                    for (TreeNode<K,V> p = r;;) {
2681 >                        int dir, ph;
2682 >                        if ((ph = p.hash) > hash)
2683 >                            dir = -1;
2684 >                        else if (ph < hash)
2685 >                            dir = 1;
2686 >                        else if ((kc != null ||
2687 >                                  (kc = comparableClassFor(key)) != null))
2688 >                            dir = compareComparables(kc, key, p.key);
2689 >                        else
2690 >                            dir = 0;
2691 >                        TreeNode<K,V> xp = p;
2692 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2693 >                            x.parent = xp;
2694 >                            if (dir <= 0)
2695 >                                xp.left = x;
2696 >                            else
2697 >                                xp.right = x;
2698 >                            r = balanceInsertion(r, x);
2699 >                            break;
2700                          }
2701                      }
2290                    if ((index += baseSize) >= n)
2291                        index = ++baseIndex;    // visit upper slots if present
2702                  }
2293                nextKey = (K)e.key;
2294                if ((nextVal = e.val) != null) // skip deleted or special nodes
2295                    return nextVal;
2703              }
2704 +            this.root = r;
2705          }
2706  
2707          /**
2708 <         * Common case version for value traversal
2708 >         * Acquires write lock for tree restructuring.
2709           */
2710 <        @SuppressWarnings("unchecked") final V advanceValue() {
2711 <            outer: for (Node<V> e = next;;) {
2712 <                if (e == null || (e = e.next) == null) {
2713 <                    Node<V>[] t; int i, len, n; Object ek;
2714 <                    if ((t = tab) == null ||
2715 <                        baseSize != (len = t.length) ||
2716 <                        len < (n = baseLimit) ||
2717 <                        baseIndex != (i = index))
2718 <                        break;
2719 <                    do {
2720 <                        if (i < 0 || i >= n) {
2721 <                            index = baseIndex = n;
2722 <                            next = null;
2723 <                            return nextVal = null;
2724 <                        }
2725 <                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2726 <                            if ((ek = e.key) instanceof TreeBin)
2727 <                                e = ((TreeBin<V>)ek).first;
2728 <                            else {
2729 <                                index = baseIndex = i;
2730 <                                next = null;
2731 <                                tab = (Node<V>[])ek;
2732 <                                break outer;
2733 <                            }
2326 <                        }
2327 <                        ++i;
2328 <                    } while (e == null);
2329 <                    index = baseIndex = i;
2710 >        private final void lockRoot() {
2711 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2712 >                contendedLock(); // offload to separate method
2713 >        }
2714 >
2715 >        /**
2716 >         * Releases write lock for tree restructuring.
2717 >         */
2718 >        private final void unlockRoot() {
2719 >            lockState = 0;
2720 >        }
2721 >
2722 >        /**
2723 >         * Possibly blocks awaiting root lock.
2724 >         */
2725 >        private final void contendedLock() {
2726 >            boolean waiting = false;
2727 >            for (int s;;) {
2728 >                if (((s = lockState) & WRITER) == 0) {
2729 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2730 >                        if (waiting)
2731 >                            waiter = null;
2732 >                        return;
2733 >                    }
2734                  }
2735 <                V v;
2736 <                K k = (K)e.key;
2737 <                if ((v = e.val) != null) {
2738 <                    nextVal = v;
2739 <                    nextKey = k;
2336 <                    next = e;
2337 <                    return v;
2735 >                else if ((s | WAITER) == 0) {
2736 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2737 >                        waiting = true;
2738 >                        waiter = Thread.currentThread();
2739 >                    }
2740                  }
2741 +                else if (waiting)
2742 +                    LockSupport.park(this);
2743              }
2340            return advance();
2744          }
2745  
2746          /**
2747 <         * Common case version for key traversal
2747 >         * Returns matching node or null if none. Tries to search
2748 >         * using tree comparisons from root, but continues linear
2749 >         * search when lock not available.
2750           */
2751 <        @SuppressWarnings("unchecked") final K advanceKey() {
2752 <            outer: for (Node<V> e = next;;) {
2753 <                if (e == null || (e = e.next) == null) {
2754 <                    Node<V>[] t; int i, len, n; Object ek;
2755 <                    if ((t = tab) == null ||
2756 <                        baseSize != (len = t.length) ||
2757 <                        len < (n = baseLimit) ||
2758 <                        baseIndex != (i = index))
2759 <                        break;
2760 <                    do {
2761 <                        if (i < 0 || i >= n) {
2762 <                            index = baseIndex = n;
2763 <                            next = null;
2764 <                            nextVal = null;
2765 <                            return null;
2766 <                        }
2767 <                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2768 <                            if ((ek = e.key) instanceof TreeBin)
2769 <                                e = ((TreeBin<V>)ek).first;
2770 <                            else {
2366 <                                index = baseIndex = i;
2367 <                                next = null;
2368 <                                tab = (Node<V>[])ek;
2369 <                                break outer;
2370 <                            }
2751 >        final Node<K,V> find(int h, Object k) {
2752 >            if (k != null) {
2753 >                for (Node<K,V> e = first; e != null; e = e.next) {
2754 >                    int s; K ek;
2755 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2756 >                        if (e.hash == h &&
2757 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2758 >                            return e;
2759 >                    }
2760 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2761 >                                                 s + READER)) {
2762 >                        TreeNode<K,V> r, p;
2763 >                        try {
2764 >                            p = ((r = root) == null ? null :
2765 >                                 r.findTreeNode(h, k, null));
2766 >                        } finally {
2767 >                            Thread w;
2768 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2769 >                                (READER|WAITER) && (w = waiter) != null)
2770 >                                LockSupport.unpark(w);
2771                          }
2772 <                        ++i;
2773 <                    } while (e == null);
2374 <                    index = baseIndex = i;
2375 <                }
2376 <                V v;
2377 <                K k = (K)e.key;
2378 <                if ((v = e.val) != null) {
2379 <                    nextVal = v;
2380 <                    nextKey = k;
2381 <                    next = e;
2382 <                    return k;
2772 >                        return p;
2773 >                    }
2774                  }
2775              }
2776 <            return (advance() == null) ? null : nextKey;
2776 >            return null;
2777          }
2778  
2779 <        @SuppressWarnings("unchecked") final void forEachValue(Consumer<? super V> action) {
2780 <            if (action == null) throw new NullPointerException();
2781 <            Node<V>[] t; int i, len, n;
2782 <            if ((t = tab) != null && baseSize == (len = t.length) &&
2783 <                len >= (n = baseLimit) && baseIndex == (i = index)) {
2784 <                index = baseIndex = n;
2785 <                nextVal = null;
2786 <                Node<V> e = next;
2787 <                next = null;
2788 <                if (e != null)
2789 <                    e = e.next;
2790 <                outer: for (;; e = e.next) {
2791 <                    V v; Object ek;
2792 <                    for (; e == null; ++i) {
2793 <                        if (i < 0 || i >= n)
2794 <                            return;
2795 <                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2796 <                            if ((ek = e.key) instanceof TreeBin)
2797 <                                e = ((TreeBin<V>)ek).first;
2798 <                            else {
2799 <                                index = baseIndex = i;
2800 <                                tab = (Node<V>[])ek;
2801 <                                break outer;
2802 <                            }
2779 >        /**
2780 >         * Finds or adds a node.
2781 >         * @return null if added
2782 >         */
2783 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2784 >            Class<?> kc = null;
2785 >            for (TreeNode<K,V> p = root;;) {
2786 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2787 >                if (p == null) {
2788 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2789 >                    break;
2790 >                }
2791 >                else if ((ph = p.hash) > h)
2792 >                    dir = -1;
2793 >                else if (ph < h)
2794 >                    dir = 1;
2795 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2796 >                    return p;
2797 >                else if ((kc == null &&
2798 >                          (kc = comparableClassFor(k)) == null) ||
2799 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2800 >                    if (p.left == null)
2801 >                        dir = 1;
2802 >                    else if ((pr = p.right) == null ||
2803 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2804 >                        dir = -1;
2805 >                    else
2806 >                        return q;
2807 >                }
2808 >                TreeNode<K,V> xp = p;
2809 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2810 >                    TreeNode<K,V> x, f = first;
2811 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2812 >                    if (f != null)
2813 >                        f.prev = x;
2814 >                    if (dir < 0)
2815 >                        xp.left = x;
2816 >                    else
2817 >                        xp.right = x;
2818 >                    if (!xp.red)
2819 >                        x.red = true;
2820 >                    else {
2821 >                        lockRoot();
2822 >                        try {
2823 >                            root = balanceInsertion(root, x);
2824 >                        } finally {
2825 >                            unlockRoot();
2826                          }
2827                      }
2828 <                    if ((v = e.val) != null)
2415 <                        action.accept(v);
2828 >                    break;
2829                  }
2830              }
2831 <            V v;
2832 <            while ((v = advance()) != null)
2420 <                action.accept(v);
2831 >            assert checkInvariants(root);
2832 >            return null;
2833          }
2834  
2835 <        @SuppressWarnings("unchecked") final void forEachKey(Consumer<? super K> action) {
2836 <            if (action == null) throw new NullPointerException();
2837 <            Node<V>[] t; int i, len, n;
2838 <            if ((t = tab) != null && baseSize == (len = t.length) &&
2839 <                len >= (n = baseLimit) && baseIndex == (i = index)) {
2840 <                index = baseIndex = n;
2841 <                nextVal = null;
2842 <                Node<V> e = next;
2843 <                next = null;
2844 <                if (e != null)
2845 <                    e = e.next;
2846 <                outer: for (;; e = e.next) {
2847 <                    for (; e == null; ++i) {
2848 <                        if (i < 0 || i >= n)
2849 <                            return;
2850 <                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2851 <                            Object ek;
2852 <                            if ((ek = e.key) instanceof TreeBin)
2853 <                                e = ((TreeBin<V>)ek).first;
2854 <                            else {
2855 <                                index = baseIndex = i;
2856 <                                tab = (Node<V>[])ek;
2857 <                                break outer;
2858 <                            }
2835 >        /**
2836 >         * Removes the given node, that must be present before this
2837 >         * call.  This is messier than typical red-black deletion code
2838 >         * because we cannot swap the contents of an interior node
2839 >         * with a leaf successor that is pinned by "next" pointers
2840 >         * that are accessible independently of lock. So instead we
2841 >         * swap the tree linkages.
2842 >         *
2843 >         * @return true if now too small, so should be untreeified
2844 >         */
2845 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2846 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2847 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2848 >            TreeNode<K,V> r, rl;
2849 >            if (pred == null)
2850 >                first = next;
2851 >            else
2852 >                pred.next = next;
2853 >            if (next != null)
2854 >                next.prev = pred;
2855 >            if (first == null) {
2856 >                root = null;
2857 >                return true;
2858 >            }
2859 >            if ((r = root) == null || r.right == null || // too small
2860 >                (rl = r.left) == null || rl.left == null)
2861 >                return true;
2862 >            lockRoot();
2863 >            try {
2864 >                TreeNode<K,V> replacement;
2865 >                TreeNode<K,V> pl = p.left;
2866 >                TreeNode<K,V> pr = p.right;
2867 >                if (pl != null && pr != null) {
2868 >                    TreeNode<K,V> s = pr, sl;
2869 >                    while ((sl = s.left) != null) // find successor
2870 >                        s = sl;
2871 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2872 >                    TreeNode<K,V> sr = s.right;
2873 >                    TreeNode<K,V> pp = p.parent;
2874 >                    if (s == pr) { // p was s's direct parent
2875 >                        p.parent = s;
2876 >                        s.right = p;
2877 >                    }
2878 >                    else {
2879 >                        TreeNode<K,V> sp = s.parent;
2880 >                        if ((p.parent = sp) != null) {
2881 >                            if (s == sp.left)
2882 >                                sp.left = p;
2883 >                            else
2884 >                                sp.right = p;
2885                          }
2886 +                        if ((s.right = pr) != null)
2887 +                            pr.parent = s;
2888 +                    }
2889 +                    p.left = null;
2890 +                    if ((p.right = sr) != null)
2891 +                        sr.parent = p;
2892 +                    if ((s.left = pl) != null)
2893 +                        pl.parent = s;
2894 +                    if ((s.parent = pp) == null)
2895 +                        r = s;
2896 +                    else if (p == pp.left)
2897 +                        pp.left = s;
2898 +                    else
2899 +                        pp.right = s;
2900 +                    if (sr != null)
2901 +                        replacement = sr;
2902 +                    else
2903 +                        replacement = p;
2904 +                }
2905 +                else if (pl != null)
2906 +                    replacement = pl;
2907 +                else if (pr != null)
2908 +                    replacement = pr;
2909 +                else
2910 +                    replacement = p;
2911 +                if (replacement != p) {
2912 +                    TreeNode<K,V> pp = replacement.parent = p.parent;
2913 +                    if (pp == null)
2914 +                        r = replacement;
2915 +                    else if (p == pp.left)
2916 +                        pp.left = replacement;
2917 +                    else
2918 +                        pp.right = replacement;
2919 +                    p.left = p.right = p.parent = null;
2920 +                }
2921 +
2922 +                root = (p.red) ? r : balanceDeletion(r, replacement);
2923 +
2924 +                if (p == replacement) {  // detach pointers
2925 +                    TreeNode<K,V> pp;
2926 +                    if ((pp = p.parent) != null) {
2927 +                        if (p == pp.left)
2928 +                            pp.left = null;
2929 +                        else if (p == pp.right)
2930 +                            pp.right = null;
2931 +                        p.parent = null;
2932                      }
2449                    Object k = e.key;
2450                    if (e.val != null)
2451                        action.accept((K)k);
2933                  }
2934 +            } finally {
2935 +                unlockRoot();
2936              }
2937 <            while (advance() != null)
2938 <                action.accept(nextKey);
2937 >            assert checkInvariants(root);
2938 >            return false;
2939          }
2940  
2941 <        public final void remove() {
2942 <            K k = nextKey;
2460 <            if (k == null && (advanceValue() == null || (k = nextKey) == null))
2461 <                throw new IllegalStateException();
2462 <            map.internalReplace(k, null, null);
2463 <        }
2941 >        /* ------------------------------------------------------------ */
2942 >        // Red-black tree methods, all adapted from CLR
2943  
2944 <        public final boolean hasNext() {
2945 <            return nextVal != null || advanceValue() != null;
2944 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2945 >                                              TreeNode<K,V> p) {
2946 >            TreeNode<K,V> r, pp, rl;
2947 >            if (p != null && (r = p.right) != null) {
2948 >                if ((rl = p.right = r.left) != null)
2949 >                    rl.parent = p;
2950 >                if ((pp = r.parent = p.parent) == null)
2951 >                    (root = r).red = false;
2952 >                else if (pp.left == p)
2953 >                    pp.left = r;
2954 >                else
2955 >                    pp.right = r;
2956 >                r.left = p;
2957 >                p.parent = r;
2958 >            }
2959 >            return root;
2960          }
2961  
2962 <        public final boolean hasMoreElements() { return hasNext(); }
2962 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2963 >                                               TreeNode<K,V> p) {
2964 >            TreeNode<K,V> l, pp, lr;
2965 >            if (p != null && (l = p.left) != null) {
2966 >                if ((lr = p.left = l.right) != null)
2967 >                    lr.parent = p;
2968 >                if ((pp = l.parent = p.parent) == null)
2969 >                    (root = l).red = false;
2970 >                else if (pp.right == p)
2971 >                    pp.right = l;
2972 >                else
2973 >                    pp.left = l;
2974 >                l.right = p;
2975 >                p.parent = l;
2976 >            }
2977 >            return root;
2978 >        }
2979  
2980 <        public void compute() { } // default no-op CountedCompleter body
2980 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2981 >                                                    TreeNode<K,V> x) {
2982 >            x.red = true;
2983 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2984 >                if ((xp = x.parent) == null) {
2985 >                    x.red = false;
2986 >                    return x;
2987 >                }
2988 >                else if (!xp.red || (xpp = xp.parent) == null)
2989 >                    return root;
2990 >                if (xp == (xppl = xpp.left)) {
2991 >                    if ((xppr = xpp.right) != null && xppr.red) {
2992 >                        xppr.red = false;
2993 >                        xp.red = false;
2994 >                        xpp.red = true;
2995 >                        x = xpp;
2996 >                    }
2997 >                    else {
2998 >                        if (x == xp.right) {
2999 >                            root = rotateLeft(root, x = xp);
3000 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3001 >                        }
3002 >                        if (xp != null) {
3003 >                            xp.red = false;
3004 >                            if (xpp != null) {
3005 >                                xpp.red = true;
3006 >                                root = rotateRight(root, xpp);
3007 >                            }
3008 >                        }
3009 >                    }
3010 >                }
3011 >                else {
3012 >                    if (xppl != null && xppl.red) {
3013 >                        xppl.red = false;
3014 >                        xp.red = false;
3015 >                        xpp.red = true;
3016 >                        x = xpp;
3017 >                    }
3018 >                    else {
3019 >                        if (x == xp.left) {
3020 >                            root = rotateRight(root, x = xp);
3021 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3022 >                        }
3023 >                        if (xp != null) {
3024 >                            xp.red = false;
3025 >                            if (xpp != null) {
3026 >                                xpp.red = true;
3027 >                                root = rotateLeft(root, xpp);
3028 >                            }
3029 >                        }
3030 >                    }
3031 >                }
3032 >            }
3033 >        }
3034  
3035 <        public long estimateSize() { return batch; }
3035 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3036 >                                                   TreeNode<K,V> x) {
3037 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3038 >                if (x == null || x == root)
3039 >                    return root;
3040 >                else if ((xp = x.parent) == null) {
3041 >                    x.red = false;
3042 >                    return x;
3043 >                }
3044 >                else if (x.red) {
3045 >                    x.red = false;
3046 >                    return root;
3047 >                }
3048 >                else if ((xpl = xp.left) == x) {
3049 >                    if ((xpr = xp.right) != null && xpr.red) {
3050 >                        xpr.red = false;
3051 >                        xp.red = true;
3052 >                        root = rotateLeft(root, xp);
3053 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3054 >                    }
3055 >                    if (xpr == null)
3056 >                        x = xp;
3057 >                    else {
3058 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3059 >                        if ((sr == null || !sr.red) &&
3060 >                            (sl == null || !sl.red)) {
3061 >                            xpr.red = true;
3062 >                            x = xp;
3063 >                        }
3064 >                        else {
3065 >                            if (sr == null || !sr.red) {
3066 >                                if (sl != null)
3067 >                                    sl.red = false;
3068 >                                xpr.red = true;
3069 >                                root = rotateRight(root, xpr);
3070 >                                xpr = (xp = x.parent) == null ?
3071 >                                    null : xp.right;
3072 >                            }
3073 >                            if (xpr != null) {
3074 >                                xpr.red = (xp == null) ? false : xp.red;
3075 >                                if ((sr = xpr.right) != null)
3076 >                                    sr.red = false;
3077 >                            }
3078 >                            if (xp != null) {
3079 >                                xp.red = false;
3080 >                                root = rotateLeft(root, xp);
3081 >                            }
3082 >                            x = root;
3083 >                        }
3084 >                    }
3085 >                }
3086 >                else { // symmetric
3087 >                    if (xpl != null && xpl.red) {
3088 >                        xpl.red = false;
3089 >                        xp.red = true;
3090 >                        root = rotateRight(root, xp);
3091 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3092 >                    }
3093 >                    if (xpl == null)
3094 >                        x = xp;
3095 >                    else {
3096 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3097 >                        if ((sl == null || !sl.red) &&
3098 >                            (sr == null || !sr.red)) {
3099 >                            xpl.red = true;
3100 >                            x = xp;
3101 >                        }
3102 >                        else {
3103 >                            if (sl == null || !sl.red) {
3104 >                                if (sr != null)
3105 >                                    sr.red = false;
3106 >                                xpl.red = true;
3107 >                                root = rotateLeft(root, xpl);
3108 >                                xpl = (xp = x.parent) == null ?
3109 >                                    null : xp.left;
3110 >                            }
3111 >                            if (xpl != null) {
3112 >                                xpl.red = (xp == null) ? false : xp.red;
3113 >                                if ((sl = xpl.left) != null)
3114 >                                    sl.red = false;
3115 >                            }
3116 >                            if (xp != null) {
3117 >                                xp.red = false;
3118 >                                root = rotateRight(root, xp);
3119 >                            }
3120 >                            x = root;
3121 >                        }
3122 >                    }
3123 >                }
3124 >            }
3125 >        }
3126  
3127          /**
3128 <         * Returns a batch value > 0 if this task should (and must) be
2477 <         * split, if so, adding to pending count, and in any case
2478 <         * updating batch value. The initial batch value is approx
2479 <         * exp2 of the number of times (minus one) to split task by
2480 <         * two before executing leaf action. This value is faster to
2481 <         * compute and more convenient to use as a guide to splitting
2482 <         * than is the depth, since it is used while dividing by two
2483 <         * anyway.
3128 >         * Recursive invariant check
3129           */
3130 <        final int preSplit() {
3131 <            int b; ForkJoinPool pool;
3132 <            if ((b = batch) < 0) { // force initialization
3133 <                int sp = (((pool = getPool()) == null) ?
3134 <                          ForkJoinPool.getCommonPoolParallelism() :
3135 <                          pool.getParallelism()) << 3; // slack of 8
3136 <                long n = map.sumCount();
3137 <                b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
3138 <            }
3139 <            b = (b <= 1 || baseIndex >= baseLimit) ? 0 : (b >>> 1);
3140 <            if ((batch = b) > 0)
3141 <                addToPendingCount(1);
3142 <            return b;
3130 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3131 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3132 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3133 >            if (tb != null && tb.next != t)
3134 >                return false;
3135 >            if (tn != null && tn.prev != t)
3136 >                return false;
3137 >            if (tp != null && t != tp.left && t != tp.right)
3138 >                return false;
3139 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3140 >                return false;
3141 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3142 >                return false;
3143 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3144 >                return false;
3145 >            if (tl != null && !checkInvariants(tl))
3146 >                return false;
3147 >            if (tr != null && !checkInvariants(tr))
3148 >                return false;
3149 >            return true;
3150          }
2499    }
2500
2501    /* ---------------- Public operations -------------- */
3151  
3152 <    /**
3153 <     * Creates a new, empty map with the default initial table size (16).
3154 <     */
3155 <    public ConcurrentHashMap() {
3156 <    }
3157 <
3158 <    /**
3159 <     * Creates a new, empty map with an initial table size
3160 <     * accommodating the specified number of elements without the need
3161 <     * to dynamically resize.
3162 <     *
2514 <     * @param initialCapacity The implementation performs internal
2515 <     * sizing to accommodate this many elements.
2516 <     * @throws IllegalArgumentException if the initial capacity of
2517 <     * elements is negative
2518 <     */
2519 <    public ConcurrentHashMap(int initialCapacity) {
2520 <        if (initialCapacity < 0)
2521 <            throw new IllegalArgumentException();
2522 <        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2523 <                   MAXIMUM_CAPACITY :
2524 <                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2525 <        this.sizeCtl = cap;
2526 <    }
2527 <
2528 <    /**
2529 <     * Creates a new map with the same mappings as the given map.
2530 <     *
2531 <     * @param m the map
2532 <     */
2533 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2534 <        this.sizeCtl = DEFAULT_CAPACITY;
2535 <        internalPutAll(m);
2536 <    }
2537 <
2538 <    /**
2539 <     * Creates a new, empty map with an initial table size based on
2540 <     * the given number of elements ({@code initialCapacity}) and
2541 <     * initial table density ({@code loadFactor}).
2542 <     *
2543 <     * @param initialCapacity the initial capacity. The implementation
2544 <     * performs internal sizing to accommodate this many elements,
2545 <     * given the specified load factor.
2546 <     * @param loadFactor the load factor (table density) for
2547 <     * establishing the initial table size
2548 <     * @throws IllegalArgumentException if the initial capacity of
2549 <     * elements is negative or the load factor is nonpositive
2550 <     *
2551 <     * @since 1.6
2552 <     */
2553 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2554 <        this(initialCapacity, loadFactor, 1);
2555 <    }
2556 <
2557 <    /**
2558 <     * Creates a new, empty map with an initial table size based on
2559 <     * the given number of elements ({@code initialCapacity}), table
2560 <     * density ({@code loadFactor}), and number of concurrently
2561 <     * updating threads ({@code concurrencyLevel}).
2562 <     *
2563 <     * @param initialCapacity the initial capacity. The implementation
2564 <     * performs internal sizing to accommodate this many elements,
2565 <     * given the specified load factor.
2566 <     * @param loadFactor the load factor (table density) for
2567 <     * establishing the initial table size
2568 <     * @param concurrencyLevel the estimated number of concurrently
2569 <     * updating threads. The implementation may use this value as
2570 <     * a sizing hint.
2571 <     * @throws IllegalArgumentException if the initial capacity is
2572 <     * negative or the load factor or concurrencyLevel are
2573 <     * nonpositive
2574 <     */
2575 <    public ConcurrentHashMap(int initialCapacity,
2576 <                               float loadFactor, int concurrencyLevel) {
2577 <        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2578 <            throw new IllegalArgumentException();
2579 <        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2580 <            initialCapacity = concurrencyLevel;   // as estimated threads
2581 <        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2582 <        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2583 <            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2584 <        this.sizeCtl = cap;
2585 <    }
2586 <
2587 <    /**
2588 <     * Creates a new {@link Set} backed by a ConcurrentHashMap
2589 <     * from the given type to {@code Boolean.TRUE}.
2590 <     *
2591 <     * @return the new set
2592 <     */
2593 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2594 <        return new KeySetView<K,Boolean>
2595 <            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2596 <    }
2597 <
2598 <    /**
2599 <     * Creates a new {@link Set} backed by a ConcurrentHashMap
2600 <     * from the given type to {@code Boolean.TRUE}.
2601 <     *
2602 <     * @param initialCapacity The implementation performs internal
2603 <     * sizing to accommodate this many elements.
2604 <     * @throws IllegalArgumentException if the initial capacity of
2605 <     * elements is negative
2606 <     * @return the new set
2607 <     */
2608 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2609 <        return new KeySetView<K,Boolean>
2610 <            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2611 <    }
2612 <
2613 <    /**
2614 <     * {@inheritDoc}
2615 <     */
2616 <    public boolean isEmpty() {
2617 <        return sumCount() <= 0L; // ignore transient negative values
2618 <    }
2619 <
2620 <    /**
2621 <     * {@inheritDoc}
2622 <     */
2623 <    public int size() {
2624 <        long n = sumCount();
2625 <        return ((n < 0L) ? 0 :
2626 <                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2627 <                (int)n);
2628 <    }
2629 <
2630 <    /**
2631 <     * Returns the number of mappings. This method should be used
2632 <     * instead of {@link #size} because a ConcurrentHashMap may
2633 <     * contain more mappings than can be represented as an int. The
2634 <     * value returned is an estimate; the actual count may differ if
2635 <     * there are concurrent insertions or removals.
2636 <     *
2637 <     * @return the number of mappings
2638 <     */
2639 <    public long mappingCount() {
2640 <        long n = sumCount();
2641 <        return (n < 0L) ? 0L : n; // ignore transient negative values
2642 <    }
2643 <
2644 <    /**
2645 <     * Returns the value to which the specified key is mapped,
2646 <     * or {@code null} if this map contains no mapping for the key.
2647 <     *
2648 <     * <p>More formally, if this map contains a mapping from a key
2649 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2650 <     * then this method returns {@code v}; otherwise it returns
2651 <     * {@code null}.  (There can be at most one such mapping.)
2652 <     *
2653 <     * @throws NullPointerException if the specified key is null
2654 <     */
2655 <    public V get(Object key) {
2656 <        return internalGet(key);
2657 <    }
2658 <
2659 <    /**
2660 <     * Returns the value to which the specified key is mapped,
2661 <     * or the given defaultValue if this map contains no mapping for the key.
2662 <     *
2663 <     * @param key the key
2664 <     * @param defaultValue the value to return if this map contains
2665 <     * no mapping for the given key
2666 <     * @return the mapping for the key, if present; else the defaultValue
2667 <     * @throws NullPointerException if the specified key is null
2668 <     */
2669 <    public V getOrDefault(Object key, V defaultValue) {
2670 <        V v;
2671 <        return (v = internalGet(key)) == null ? defaultValue : v;
2672 <    }
2673 <
2674 <    /**
2675 <     * Tests if the specified object is a key in this table.
2676 <     *
2677 <     * @param  key possible key
2678 <     * @return {@code true} if and only if the specified object
2679 <     *         is a key in this table, as determined by the
2680 <     *         {@code equals} method; {@code false} otherwise
2681 <     * @throws NullPointerException if the specified key is null
2682 <     */
2683 <    public boolean containsKey(Object key) {
2684 <        return internalGet(key) != null;
2685 <    }
2686 <
2687 <    /**
2688 <     * Returns {@code true} if this map maps one or more keys to the
2689 <     * specified value. Note: This method may require a full traversal
2690 <     * of the map, and is much slower than method {@code containsKey}.
2691 <     *
2692 <     * @param value value whose presence in this map is to be tested
2693 <     * @return {@code true} if this map maps one or more keys to the
2694 <     *         specified value
2695 <     * @throws NullPointerException if the specified value is null
2696 <     */
2697 <    public boolean containsValue(Object value) {
2698 <        if (value == null)
2699 <            throw new NullPointerException();
2700 <        V v;
2701 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2702 <        while ((v = it.advanceValue()) != null) {
2703 <            if (v == value || value.equals(v))
2704 <                return true;
3152 >        private static final sun.misc.Unsafe U;
3153 >        private static final long LOCKSTATE;
3154 >        static {
3155 >            try {
3156 >                U = sun.misc.Unsafe.getUnsafe();
3157 >                Class<?> k = TreeBin.class;
3158 >                LOCKSTATE = U.objectFieldOffset
3159 >                    (k.getDeclaredField("lockState"));
3160 >            } catch (Exception e) {
3161 >                throw new Error(e);
3162 >            }
3163          }
2706        return false;
2707    }
2708
2709    /**
2710     * Legacy method testing if some key maps into the specified value
2711     * in this table.  This method is identical in functionality to
2712     * {@link #containsValue(Object)}, and exists solely to ensure
2713     * full compatibility with class {@link java.util.Hashtable},
2714     * which supported this method prior to introduction of the
2715     * Java Collections framework.
2716     *
2717     * @param  value a value to search for
2718     * @return {@code true} if and only if some key maps to the
2719     *         {@code value} argument in this table as
2720     *         determined by the {@code equals} method;
2721     *         {@code false} otherwise
2722     * @throws NullPointerException if the specified value is null
2723     */
2724    @Deprecated public boolean contains(Object value) {
2725        return containsValue(value);
2726    }
2727
2728    /**
2729     * Maps the specified key to the specified value in this table.
2730     * Neither the key nor the value can be null.
2731     *
2732     * <p>The value can be retrieved by calling the {@code get} method
2733     * with a key that is equal to the original key.
2734     *
2735     * @param key key with which the specified value is to be associated
2736     * @param value value to be associated with the specified key
2737     * @return the previous value associated with {@code key}, or
2738     *         {@code null} if there was no mapping for {@code key}
2739     * @throws NullPointerException if the specified key or value is null
2740     */
2741    public V put(K key, V value) {
2742        return internalPut(key, value, false);
2743    }
2744
2745    /**
2746     * {@inheritDoc}
2747     *
2748     * @return the previous value associated with the specified key,
2749     *         or {@code null} if there was no mapping for the key
2750     * @throws NullPointerException if the specified key or value is null
2751     */
2752    public V putIfAbsent(K key, V value) {
2753        return internalPut(key, value, true);
2754    }
2755
2756    /**
2757     * Copies all of the mappings from the specified map to this one.
2758     * These mappings replace any mappings that this map had for any of the
2759     * keys currently in the specified map.
2760     *
2761     * @param m mappings to be stored in this map
2762     */
2763    public void putAll(Map<? extends K, ? extends V> m) {
2764        internalPutAll(m);
2765    }
2766
2767    /**
2768     * If the specified key is not already associated with a value (or
2769     * is mapped to {@code null}), attempts to compute its value using
2770     * the given mapping function and enters it into this map unless
2771     * {@code null}. The entire method invocation is performed
2772     * atomically, so the function is applied at most once per key.
2773     * Some attempted update operations on this map by other threads
2774     * may be blocked while computation is in progress, so the
2775     * computation should be short and simple, and must not attempt to
2776     * update any other mappings of this Map.
2777     *
2778     * @param key key with which the specified value is to be associated
2779     * @param mappingFunction the function to compute a value
2780     * @return the current (existing or computed) value associated with
2781     *         the specified key, or null if the computed value is null
2782     * @throws NullPointerException if the specified key or mappingFunction
2783     *         is null
2784     * @throws IllegalStateException if the computation detectably
2785     *         attempts a recursive update to this map that would
2786     *         otherwise never complete
2787     * @throws RuntimeException or Error if the mappingFunction does so,
2788     *         in which case the mapping is left unestablished
2789     */
2790    public V computeIfAbsent
2791        (K key, Function<? super K, ? extends V> mappingFunction) {
2792        return internalComputeIfAbsent(key, mappingFunction);
2793    }
2794
2795    /**
2796     * If the value for the specified key is present and non-null,
2797     * attempts to compute a new mapping given the key and its current
2798     * mapped value.  The entire method invocation is performed
2799     * atomically.  Some attempted update operations on this map by
2800     * other threads may be blocked while computation is in progress,
2801     * so the computation should be short and simple, and must not
2802     * attempt to update any other mappings of this Map.
2803     *
2804     * @param key key with which a value may be associated
2805     * @param remappingFunction the function to compute a value
2806     * @return the new value associated with the specified key, or null if none
2807     * @throws NullPointerException if the specified key or remappingFunction
2808     *         is null
2809     * @throws IllegalStateException if the computation detectably
2810     *         attempts a recursive update to this map that would
2811     *         otherwise never complete
2812     * @throws RuntimeException or Error if the remappingFunction does so,
2813     *         in which case the mapping is unchanged
2814     */
2815    public V computeIfPresent
2816        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2817        return internalCompute(key, true, remappingFunction);
2818    }
2819
2820    /**
2821     * Attempts to compute a mapping for the specified key and its
2822     * current mapped value (or {@code null} if there is no current
2823     * mapping). The entire method invocation is performed atomically.
2824     * Some attempted update operations on this map by other threads
2825     * may be blocked while computation is in progress, so the
2826     * computation should be short and simple, and must not attempt to
2827     * update any other mappings of this Map.
2828     *
2829     * @param key key with which the specified value is to be associated
2830     * @param remappingFunction the function to compute a value
2831     * @return the new value associated with the specified key, or null if none
2832     * @throws NullPointerException if the specified key or remappingFunction
2833     *         is null
2834     * @throws IllegalStateException if the computation detectably
2835     *         attempts a recursive update to this map that would
2836     *         otherwise never complete
2837     * @throws RuntimeException or Error if the remappingFunction does so,
2838     *         in which case the mapping is unchanged
2839     */
2840    public V compute
2841        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2842        return internalCompute(key, false, remappingFunction);
2843    }
2844
2845    /**
2846     * If the specified key is not already associated with a
2847     * (non-null) value, associates it with the given value.
2848     * Otherwise, replaces the value with the results of the given
2849     * remapping function, or removes if {@code null}. The entire
2850     * method invocation is performed atomically.  Some attempted
2851     * update operations on this map by other threads may be blocked
2852     * while computation is in progress, so the computation should be
2853     * short and simple, and must not attempt to update any other
2854     * mappings of this Map.
2855     *
2856     * @param key key with which the specified value is to be associated
2857     * @param value the value to use if absent
2858     * @param remappingFunction the function to recompute a value if present
2859     * @return the new value associated with the specified key, or null if none
2860     * @throws NullPointerException if the specified key or the
2861     *         remappingFunction is null
2862     * @throws RuntimeException or Error if the remappingFunction does so,
2863     *         in which case the mapping is unchanged
2864     */
2865    public V merge
2866        (K key, V value,
2867         BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2868        return internalMerge(key, value, remappingFunction);
2869    }
2870
2871    /**
2872     * Removes the key (and its corresponding value) from this map.
2873     * This method does nothing if the key is not in the map.
2874     *
2875     * @param  key the key that needs to be removed
2876     * @return the previous value associated with {@code key}, or
2877     *         {@code null} if there was no mapping for {@code key}
2878     * @throws NullPointerException if the specified key is null
2879     */
2880    public V remove(Object key) {
2881        return internalReplace(key, null, null);
2882    }
2883
2884    /**
2885     * {@inheritDoc}
2886     *
2887     * @throws NullPointerException if the specified key is null
2888     */
2889    public boolean remove(Object key, Object value) {
2890        if (key == null)
2891            throw new NullPointerException();
2892        return value != null && internalReplace(key, null, value) != null;
2893    }
2894
2895    /**
2896     * {@inheritDoc}
2897     *
2898     * @throws NullPointerException if any of the arguments are null
2899     */
2900    public boolean replace(K key, V oldValue, V newValue) {
2901        if (key == null || oldValue == null || newValue == null)
2902            throw new NullPointerException();
2903        return internalReplace(key, newValue, oldValue) != null;
2904    }
2905
2906    /**
2907     * {@inheritDoc}
2908     *
2909     * @return the previous value associated with the specified key,
2910     *         or {@code null} if there was no mapping for the key
2911     * @throws NullPointerException if the specified key or value is null
2912     */
2913    public V replace(K key, V value) {
2914        if (key == null || value == null)
2915            throw new NullPointerException();
2916        return internalReplace(key, value, null);
2917    }
2918
2919    /**
2920     * Removes all of the mappings from this map.
2921     */
2922    public void clear() {
2923        internalClear();
2924    }
2925
2926    /**
2927     * Returns a {@link Set} view of the keys contained in this map.
2928     * The set is backed by the map, so changes to the map are
2929     * reflected in the set, and vice-versa.
2930     *
2931     * @return the set view
2932     */
2933    public KeySetView<K,V> keySet() {
2934        KeySetView<K,V> ks = keySet;
2935        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2936    }
2937
2938    /**
2939     * Returns a {@link Set} view of the keys in this map, using the
2940     * given common mapped value for any additions (i.e., {@link
2941     * Collection#add} and {@link Collection#addAll(Collection)}).
2942     * This is of course only appropriate if it is acceptable to use
2943     * the same value for all additions from this view.
2944     *
2945     * @param mappedValue the mapped value to use for any additions
2946     * @return the set view
2947     * @throws NullPointerException if the mappedValue is null
2948     */
2949    public KeySetView<K,V> keySet(V mappedValue) {
2950        if (mappedValue == null)
2951            throw new NullPointerException();
2952        return new KeySetView<K,V>(this, mappedValue);
2953    }
2954
2955    /**
2956     * Returns a {@link Collection} view of the values contained in this map.
2957     * The collection is backed by the map, so changes to the map are
2958     * reflected in the collection, and vice-versa.
2959     *
2960     * @return the collection view
2961     */
2962    public ValuesView<K,V> values() {
2963        ValuesView<K,V> vs = values;
2964        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2965    }
2966
2967    /**
2968     * Returns a {@link Set} view of the mappings contained in this map.
2969     * The set is backed by the map, so changes to the map are
2970     * reflected in the set, and vice-versa.  The set supports element
2971     * removal, which removes the corresponding mapping from the map,
2972     * via the {@code Iterator.remove}, {@code Set.remove},
2973     * {@code removeAll}, {@code retainAll}, and {@code clear}
2974     * operations.  It does not support the {@code add} or
2975     * {@code addAll} operations.
2976     *
2977     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2978     * that will never throw {@link ConcurrentModificationException},
2979     * and guarantees to traverse elements as they existed upon
2980     * construction of the iterator, and may (but is not guaranteed to)
2981     * reflect any modifications subsequent to construction.
2982     *
2983     * @return the set view
2984     */
2985    public Set<Map.Entry<K,V>> entrySet() {
2986        EntrySetView<K,V> es = entrySet;
2987        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3164      }
3165  
3166 <    /**
2991 <     * Returns an enumeration of the keys in this table.
2992 <     *
2993 <     * @return an enumeration of the keys in this table
2994 <     * @see #keySet()
2995 <     */
2996 <    public Enumeration<K> keys() {
2997 <        return new KeyIterator<K,V>(this);
2998 <    }
3166 >    /* ----------------Table Traversal -------------- */
3167  
3168      /**
3169 <     * Returns an enumeration of the values in this table.
3169 >     * Encapsulates traversal for methods such as containsValue; also
3170 >     * serves as a base class for other iterators and spliterators.
3171       *
3172 <     * @return an enumeration of the values in this table
3173 <     * @see #values()
3174 <     */
3175 <    public Enumeration<V> elements() {
3176 <        return new ValueIterator<K,V>(this);
3177 <    }
3178 <
3179 <    /**
3011 <     * Returns the hash code value for this {@link Map}, i.e.,
3012 <     * the sum of, for each key-value pair in the map,
3013 <     * {@code key.hashCode() ^ value.hashCode()}.
3172 >     * Method advance visits once each still-valid node that was
3173 >     * reachable upon iterator construction. It might miss some that
3174 >     * were added to a bin after the bin was visited, which is OK wrt
3175 >     * consistency guarantees. Maintaining this property in the face
3176 >     * of possible ongoing resizes requires a fair amount of
3177 >     * bookkeeping state that is difficult to optimize away amidst
3178 >     * volatile accesses.  Even so, traversal maintains reasonable
3179 >     * throughput.
3180       *
3181 <     * @return the hash code value for this map
3181 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3182 >     * However, if the table has been resized, then all future steps
3183 >     * must traverse both the bin at the current index as well as at
3184 >     * (index + baseSize); and so on for further resizings. To
3185 >     * paranoically cope with potential sharing by users of iterators
3186 >     * across threads, iteration terminates if a bounds checks fails
3187 >     * for a table read.
3188       */
3189 <    public int hashCode() {
3190 <        int h = 0;
3191 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3192 <        V v;
3193 <        while ((v = it.advanceValue()) != null) {
3194 <            h += it.nextKey.hashCode() ^ v.hashCode();
3189 >    static class Traverser<K,V> {
3190 >        Node<K,V>[] tab;        // current table; updated if resized
3191 >        Node<K,V> next;         // the next entry to use
3192 >        int index;              // index of bin to use next
3193 >        int baseIndex;          // current index of initial table
3194 >        int baseLimit;          // index bound for initial table
3195 >        final int baseSize;     // initial table size
3196 >
3197 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3198 >            this.tab = tab;
3199 >            this.baseSize = size;
3200 >            this.baseIndex = this.index = index;
3201 >            this.baseLimit = limit;
3202 >            this.next = null;
3203          }
3024        return h;
3025    }
3204  
3205 <    /**
3206 <     * Returns a string representation of this map.  The string
3207 <     * representation consists of a list of key-value mappings (in no
3208 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3209 <     * mappings are separated by the characters {@code ", "} (comma
3210 <     * and space).  Each key-value mapping is rendered as the key
3211 <     * followed by an equals sign ("{@code =}") followed by the
3034 <     * associated value.
3035 <     *
3036 <     * @return a string representation of this map
3037 <     */
3038 <    public String toString() {
3039 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3040 <        StringBuilder sb = new StringBuilder();
3041 <        sb.append('{');
3042 <        V v;
3043 <        if ((v = it.advanceValue()) != null) {
3205 >        /**
3206 >         * Advances if possible, returning next valid node, or null if none.
3207 >         */
3208 >        final Node<K,V> advance() {
3209 >            Node<K,V> e;
3210 >            if ((e = next) != null)
3211 >                e = e.next;
3212              for (;;) {
3213 <                K k = it.nextKey;
3214 <                sb.append(k == this ? "(this Map)" : k);
3215 <                sb.append('=');
3216 <                sb.append(v == this ? "(this Map)" : v);
3217 <                if ((v = it.advanceValue()) == null)
3218 <                    break;
3219 <                sb.append(',').append(' ');
3213 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3214 >                if (e != null)
3215 >                    return next = e;
3216 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3217 >                    (n = t.length) <= (i = index) || i < 0)
3218 >                    return next = null;
3219 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3220 >                    if (e instanceof ForwardingNode) {
3221 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3222 >                        e = null;
3223 >                        continue;
3224 >                    }
3225 >                    else if (e instanceof TreeBin)
3226 >                        e = ((TreeBin<K,V>)e).first;
3227 >                    else
3228 >                        e = null;
3229 >                }
3230 >                if ((index += baseSize) >= n)
3231 >                    index = ++baseIndex;    // visit upper slots if present
3232              }
3233          }
3054        return sb.append('}').toString();
3234      }
3235  
3236      /**
3237 <     * Compares the specified object with this map for equality.
3238 <     * Returns {@code true} if the given object is a map with the same
3060 <     * mappings as this map.  This operation may return misleading
3061 <     * results if either map is concurrently modified during execution
3062 <     * of this method.
3063 <     *
3064 <     * @param o object to be compared for equality with this map
3065 <     * @return {@code true} if the specified object is equal to this map
3237 >     * Base of key, value, and entry Iterators. Adds fields to
3238 >     * Traverser to support iterator.remove.
3239       */
3240 <    public boolean equals(Object o) {
3241 <        if (o != this) {
3242 <            if (!(o instanceof Map))
3243 <                return false;
3244 <            Map<?,?> m = (Map<?,?>) o;
3245 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3246 <            V val;
3247 <            while ((val = it.advanceValue()) != null) {
3075 <                Object v = m.get(it.nextKey);
3076 <                if (v == null || (v != val && !v.equals(val)))
3077 <                    return false;
3078 <            }
3079 <            for (Map.Entry<?,?> e : m.entrySet()) {
3080 <                Object mk, mv, v;
3081 <                if ((mk = e.getKey()) == null ||
3082 <                    (mv = e.getValue()) == null ||
3083 <                    (v = internalGet(mk)) == null ||
3084 <                    (mv != v && !mv.equals(v)))
3085 <                    return false;
3086 <            }
3240 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3241 >        final ConcurrentHashMap<K,V> map;
3242 >        Node<K,V> lastReturned;
3243 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3244 >                    ConcurrentHashMap<K,V> map) {
3245 >            super(tab, size, index, limit);
3246 >            this.map = map;
3247 >            advance();
3248          }
3088        return true;
3089    }
3249  
3250 <    /* ----------------Iterators -------------- */
3250 >        public final boolean hasNext() { return next != null; }
3251 >        public final boolean hasMoreElements() { return next != null; }
3252  
3253 <    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3254 <        extends Traverser<K,V,Object>
3255 <        implements Spliterator<K>, Iterator<K>, Enumeration<K> {
3256 <        KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
3257 <        KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3258 <            super(map, it);
3253 >        public final void remove() {
3254 >            Node<K,V> p;
3255 >            if ((p = lastReturned) == null)
3256 >                throw new IllegalStateException();
3257 >            lastReturned = null;
3258 >            map.replaceNode(p.key, null, null);
3259          }
3260 <        public Spliterator<K> trySplit() {
3261 <            return (baseLimit - baseIndex <= 1) ? null :
3262 <                new KeyIterator<K,V>(map, this);
3260 >    }
3261 >
3262 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3263 >        implements Iterator<K>, Enumeration<K> {
3264 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3265 >                    ConcurrentHashMap<K,V> map) {
3266 >            super(tab, index, size, limit, map);
3267          }
3268 +
3269          public final K next() {
3270 <            K k;
3271 <            if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
3270 >            Node<K,V> p;
3271 >            if ((p = next) == null)
3272                  throw new NoSuchElementException();
3273 <            nextVal = null;
3273 >            K k = p.key;
3274 >            lastReturned = p;
3275 >            advance();
3276              return k;
3277          }
3278  
3279          public final K nextElement() { return next(); }
3113
3114        public Iterator<K> iterator() { return this; }
3115
3116        public void forEachRemaining(Consumer<? super K> action) {
3117            forEachKey(action);
3118        }
3119
3120        public boolean tryAdvance(Consumer<? super K> block) {
3121            if (block == null) throw new NullPointerException();
3122            K k;
3123            if ((k = advanceKey()) == null)
3124                return false;
3125            block.accept(k);
3126            return true;
3127        }
3128
3129        public int characteristics() {
3130            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3131                Spliterator.NONNULL;
3132        }
3133
3280      }
3281  
3282 <    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3283 <        extends Traverser<K,V,Object>
3284 <        implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3285 <        ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3286 <        ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3141 <            super(map, it);
3142 <        }
3143 <        public Spliterator<V> trySplit() {
3144 <            return (baseLimit - baseIndex <= 1) ? null :
3145 <                new ValueIterator<K,V>(map, this);
3282 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3283 >        implements Iterator<V>, Enumeration<V> {
3284 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3285 >                      ConcurrentHashMap<K,V> map) {
3286 >            super(tab, index, size, limit, map);
3287          }
3288  
3289          public final V next() {
3290 <            V v;
3291 <            if ((v = nextVal) == null && (v = advanceValue()) == null)
3290 >            Node<K,V> p;
3291 >            if ((p = next) == null)
3292                  throw new NoSuchElementException();
3293 <            nextVal = null;
3293 >            V v = p.val;
3294 >            lastReturned = p;
3295 >            advance();
3296              return v;
3297          }
3298  
3299          public final V nextElement() { return next(); }
3157
3158        public Iterator<V> iterator() { return this; }
3159
3160        public void forEachRemaining(Consumer<? super V> action) {
3161            forEachValue(action);
3162        }
3163
3164        public boolean tryAdvance(Consumer<? super V> block) {
3165            V v;
3166            if (block == null) throw new NullPointerException();
3167            if ((v = advanceValue()) == null)
3168                return false;
3169            block.accept(v);
3170            return true;
3171        }
3172
3173        public int characteristics() {
3174            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3175        }
3300      }
3301  
3302 <    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3303 <        extends Traverser<K,V,Object>
3304 <        implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3305 <        EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3306 <        EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3183 <            super(map, it);
3184 <        }
3185 <        public Spliterator<Map.Entry<K,V>> trySplit() {
3186 <            return (baseLimit - baseIndex <= 1) ? null :
3187 <                new EntryIterator<K,V>(map, this);
3302 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3303 >        implements Iterator<Map.Entry<K,V>> {
3304 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3305 >                      ConcurrentHashMap<K,V> map) {
3306 >            super(tab, index, size, limit, map);
3307          }
3308  
3309          public final Map.Entry<K,V> next() {
3310 <            V v;
3311 <            if ((v = nextVal) == null && (v = advanceValue()) == null)
3310 >            Node<K,V> p;
3311 >            if ((p = next) == null)
3312                  throw new NoSuchElementException();
3313 <            K k = nextKey;
3314 <            nextVal = null;
3313 >            K k = p.key;
3314 >            V v = p.val;
3315 >            lastReturned = p;
3316 >            advance();
3317              return new MapEntry<K,V>(k, v, map);
3318          }
3198
3199        public Iterator<Map.Entry<K,V>> iterator() { return this; }
3200
3201        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3202            if (action == null) throw new NullPointerException();
3203            V v;
3204            while ((v = advanceValue()) != null)
3205                action.accept(entryFor(nextKey, v));
3206        }
3207
3208        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3209            V v;
3210            if (block == null) throw new NullPointerException();
3211            if ((v = advanceValue()) == null)
3212                return false;
3213            block.accept(entryFor(nextKey, v));
3214            return true;
3215        }
3216
3217        public int characteristics() {
3218            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3219                Spliterator.NONNULL;
3220        }
3319      }
3320  
3321      /**
3322 <     * Exported Entry for iterators
3322 >     * Exported Entry for EntryIterator
3323       */
3324      static final class MapEntry<K,V> implements Map.Entry<K,V> {
3325          final K key; // non-null
# Line 3232 | Line 3330 | public class ConcurrentHashMap<K,V>
3330              this.val = val;
3331              this.map = map;
3332          }
3333 <        public final K getKey()       { return key; }
3334 <        public final V getValue()     { return val; }
3335 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3336 <        public final String toString(){ return key + "=" + val; }
3333 >        public K getKey()        { return key; }
3334 >        public V getValue()      { return val; }
3335 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3336 >        public String toString() { return key + "=" + val; }
3337  
3338 <        public final boolean equals(Object o) {
3338 >        public boolean equals(Object o) {
3339              Object k, v; Map.Entry<?,?> e;
3340              return ((o instanceof Map.Entry) &&
3341                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3251 | Line 3349 | public class ConcurrentHashMap<K,V>
3349           * value to return is somewhat arbitrary here. Since we do not
3350           * necessarily track asynchronous changes, the most recent
3351           * "previous" value could be different from what we return (or
3352 <         * could even have been removed in which case the put will
3352 >         * could even have been removed, in which case the put will
3353           * re-establish). We do not and cannot guarantee more.
3354           */
3355 <        public final V setValue(V value) {
3355 >        public V setValue(V value) {
3356              if (value == null) throw new NullPointerException();
3357              V v = val;
3358              val = value;
# Line 3263 | Line 3361 | public class ConcurrentHashMap<K,V>
3361          }
3362      }
3363  
3364 <    /**
3365 <     * Returns exportable snapshot entry for the given key and value
3366 <     * when write-through can't or shouldn't be used.
3367 <     */
3368 <    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3369 <        return new AbstractMap.SimpleEntry<K,V>(k, v);
3370 <    }
3364 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3365 >        implements Spliterator<K> {
3366 >        long est;               // size estimate
3367 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3368 >                       long est) {
3369 >            super(tab, size, index, limit);
3370 >            this.est = est;
3371 >        }
3372  
3373 <    /* ---------------- Serialization Support -------------- */
3373 >        public Spliterator<K> trySplit() {
3374 >            int i, f, h;
3375 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3376 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3377 >                                        f, est >>>= 1);
3378 >        }
3379  
3380 <    /**
3381 <     * Stripped-down version of helper class used in previous version,
3382 <     * declared for the sake of serialization compatibility
3383 <     */
3384 <    static class Segment<K,V> implements Serializable {
3385 <        private static final long serialVersionUID = 2249069246763182397L;
3386 <        final float loadFactor;
3387 <        Segment(float lf) { this.loadFactor = lf; }
3380 >        public void forEachRemaining(Consumer<? super K> action) {
3381 >            if (action == null) throw new NullPointerException();
3382 >            for (Node<K,V> p; (p = advance()) != null;)
3383 >                action.accept(p.key);
3384 >        }
3385 >
3386 >        public boolean tryAdvance(Consumer<? super K> action) {
3387 >            if (action == null) throw new NullPointerException();
3388 >            Node<K,V> p;
3389 >            if ((p = advance()) == null)
3390 >                return false;
3391 >            action.accept(p.key);
3392 >            return true;
3393 >        }
3394 >
3395 >        public long estimateSize() { return est; }
3396 >
3397 >        public int characteristics() {
3398 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3399 >                Spliterator.NONNULL;
3400 >        }
3401      }
3402  
3403 <    /**
3404 <     * Saves the state of the {@code ConcurrentHashMap} instance to a
3405 <     * stream (i.e., serializes it).
3406 <     * @param s the stream
3407 <     * @serialData
3408 <     * the key (Object) and value (Object)
3409 <     * for each key-value mapping, followed by a null pair.
3293 <     * The key-value mappings are emitted in no particular order.
3294 <     */
3295 <    @SuppressWarnings("unchecked") private void writeObject
3296 <        (java.io.ObjectOutputStream s)
3297 <        throws java.io.IOException {
3298 <        if (segments == null) { // for serialization compatibility
3299 <            segments = (Segment<K,V>[])
3300 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3301 <            for (int i = 0; i < segments.length; ++i)
3302 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3403 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3404 >        implements Spliterator<V> {
3405 >        long est;               // size estimate
3406 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3407 >                         long est) {
3408 >            super(tab, size, index, limit);
3409 >            this.est = est;
3410          }
3411 <        s.defaultWriteObject();
3412 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3413 <        V v;
3414 <        while ((v = it.advanceValue()) != null) {
3415 <            s.writeObject(it.nextKey);
3416 <            s.writeObject(v);
3411 >
3412 >        public Spliterator<V> trySplit() {
3413 >            int i, f, h;
3414 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3415 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3416 >                                          f, est >>>= 1);
3417 >        }
3418 >
3419 >        public void forEachRemaining(Consumer<? super V> action) {
3420 >            if (action == null) throw new NullPointerException();
3421 >            for (Node<K,V> p; (p = advance()) != null;)
3422 >                action.accept(p.val);
3423 >        }
3424 >
3425 >        public boolean tryAdvance(Consumer<? super V> action) {
3426 >            if (action == null) throw new NullPointerException();
3427 >            Node<K,V> p;
3428 >            if ((p = advance()) == null)
3429 >                return false;
3430 >            action.accept(p.val);
3431 >            return true;
3432 >        }
3433 >
3434 >        public long estimateSize() { return est; }
3435 >
3436 >        public int characteristics() {
3437 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3438          }
3311        s.writeObject(null);
3312        s.writeObject(null);
3313        segments = null; // throw away
3439      }
3440  
3441 <    /**
3442 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3443 <     * @param s the stream
3444 <     */
3445 <    @SuppressWarnings("unchecked") private void readObject
3446 <        (java.io.ObjectInputStream s)
3447 <        throws java.io.IOException, ClassNotFoundException {
3448 <        s.defaultReadObject();
3449 <        this.segments = null; // unneeded
3441 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3442 >        implements Spliterator<Map.Entry<K,V>> {
3443 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3444 >        long est;               // size estimate
3445 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3446 >                         long est, ConcurrentHashMap<K,V> map) {
3447 >            super(tab, size, index, limit);
3448 >            this.map = map;
3449 >            this.est = est;
3450 >        }
3451  
3452 <        // Create all nodes, then place in table once size is known
3453 <        long size = 0L;
3454 <        Node<V> p = null;
3455 <        for (;;) {
3456 <            K k = (K) s.readObject();
3331 <            V v = (V) s.readObject();
3332 <            if (k != null && v != null) {
3333 <                int h = spread(k.hashCode());
3334 <                p = new Node<V>(h, k, v, p);
3335 <                ++size;
3336 <            }
3337 <            else
3338 <                break;
3452 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3453 >            int i, f, h;
3454 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3455 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3456 >                                          f, est >>>= 1, map);
3457          }
3458 <        if (p != null) {
3459 <            boolean init = false;
3460 <            int n;
3461 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3462 <                n = MAXIMUM_CAPACITY;
3463 <            else {
3464 <                int sz = (int)size;
3465 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3466 <            }
3467 <            int sc = sizeCtl;
3468 <            boolean collide = false;
3469 <            if (n > sc &&
3470 <                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3471 <                try {
3472 <                    if (table == null) {
3473 <                        init = true;
3474 <                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3475 <                        Node<V>[] tab = (Node<V>[])rt;
3476 <                        int mask = n - 1;
3477 <                        while (p != null) {
3478 <                            int j = p.hash & mask;
3361 <                            Node<V> next = p.next;
3362 <                            Node<V> q = p.next = tabAt(tab, j);
3363 <                            setTabAt(tab, j, p);
3364 <                            if (!collide && q != null && q.hash == p.hash)
3365 <                                collide = true;
3366 <                            p = next;
3367 <                        }
3368 <                        table = tab;
3369 <                        addCount(size, -1);
3370 <                        sc = n - (n >>> 2);
3371 <                    }
3372 <                } finally {
3373 <                    sizeCtl = sc;
3374 <                }
3375 <                if (collide) { // rescan and convert to TreeBins
3376 <                    Node<V>[] tab = table;
3377 <                    for (int i = 0; i < tab.length; ++i) {
3378 <                        int c = 0;
3379 <                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3380 <                            if (++c > TREE_THRESHOLD &&
3381 <                                (e.key instanceof Comparable)) {
3382 <                                replaceWithTreeBin(tab, i, e.key);
3383 <                                break;
3384 <                            }
3385 <                        }
3386 <                    }
3387 <                }
3388 <            }
3389 <            if (!init) { // Can only happen if unsafely published.
3390 <                while (p != null) {
3391 <                    internalPut((K)p.key, p.val, false);
3392 <                    p = p.next;
3393 <                }
3394 <            }
3458 >
3459 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3460 >            if (action == null) throw new NullPointerException();
3461 >            for (Node<K,V> p; (p = advance()) != null; )
3462 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3463 >        }
3464 >
3465 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3466 >            if (action == null) throw new NullPointerException();
3467 >            Node<K,V> p;
3468 >            if ((p = advance()) == null)
3469 >                return false;
3470 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3471 >            return true;
3472 >        }
3473 >
3474 >        public long estimateSize() { return est; }
3475 >
3476 >        public int characteristics() {
3477 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3478 >                Spliterator.NONNULL;
3479          }
3480      }
3481  
3482 <    // -------------------------------------------------------
3482 >    // Parallel bulk operations
3483  
3484 <    // Sequential bulk operations
3484 >    /**
3485 >     * Computes initial batch value for bulk tasks. The returned value
3486 >     * is approximately exp2 of the number of times (minus one) to
3487 >     * split task by two before executing leaf action. This value is
3488 >     * faster to compute and more convenient to use as a guide to
3489 >     * splitting than is the depth, since it is used while dividing by
3490 >     * two anyway.
3491 >     */
3492 >    final int batchFor(long b) {
3493 >        long n;
3494 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3495 >            return 0;
3496 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3497 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3498 >    }
3499  
3500      /**
3501       * Performs the given action for each (key, value).
3502       *
3503 +     * @param parallelismThreshold the (estimated) number of elements
3504 +     * needed for this operation to be executed in parallel
3505       * @param action the action
3506 +     * @since 1.8
3507       */
3508 <    public void forEachSequentially
3509 <        (BiConsumer<? super K, ? super V> action) {
3508 >    public void forEach(long parallelismThreshold,
3509 >                        BiConsumer<? super K,? super V> action) {
3510          if (action == null) throw new NullPointerException();
3511 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3512 <        V v;
3513 <        while ((v = it.advanceValue()) != null)
3413 <            action.accept(it.nextKey, v);
3511 >        new ForEachMappingTask<K,V>
3512 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3513 >             action).invoke();
3514      }
3515  
3516      /**
3517       * Performs the given action for each non-null transformation
3518       * of each (key, value).
3519       *
3520 +     * @param parallelismThreshold the (estimated) number of elements
3521 +     * needed for this operation to be executed in parallel
3522       * @param transformer a function returning the transformation
3523       * for an element, or null if there is no transformation (in
3524       * which case the action is not applied)
3525       * @param action the action
3526 +     * @param <U> the return type of the transformer
3527 +     * @since 1.8
3528       */
3529 <    public <U> void forEachSequentially
3530 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
3531 <         Consumer<? super U> action) {
3529 >    public <U> void forEach(long parallelismThreshold,
3530 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3531 >                            Consumer<? super U> action) {
3532          if (transformer == null || action == null)
3533              throw new NullPointerException();
3534 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3535 <        V v; U u;
3536 <        while ((v = it.advanceValue()) != null) {
3433 <            if ((u = transformer.apply(it.nextKey, v)) != null)
3434 <                action.accept(u);
3435 <        }
3534 >        new ForEachTransformedMappingTask<K,V,U>
3535 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3536 >             transformer, action).invoke();
3537      }
3538  
3539      /**
3540       * Returns a non-null result from applying the given search
3541 <     * function on each (key, value), or null if none.
3541 >     * function on each (key, value), or null if none.  Upon
3542 >     * success, further element processing is suppressed and the
3543 >     * results of any other parallel invocations of the search
3544 >     * function are ignored.
3545       *
3546 +     * @param parallelismThreshold the (estimated) number of elements
3547 +     * needed for this operation to be executed in parallel
3548       * @param searchFunction a function returning a non-null
3549       * result on success, else null
3550 +     * @param <U> the return type of the search function
3551       * @return a non-null result from applying the given search
3552       * function on each (key, value), or null if none
3553 +     * @since 1.8
3554       */
3555 <    public <U> U searchSequentially
3556 <        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3555 >    public <U> U search(long parallelismThreshold,
3556 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3557          if (searchFunction == null) throw new NullPointerException();
3558 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3559 <        V v; U u;
3560 <        while ((v = it.advanceValue()) != null) {
3453 <            if ((u = searchFunction.apply(it.nextKey, v)) != null)
3454 <                return u;
3455 <        }
3456 <        return null;
3558 >        return new SearchMappingsTask<K,V,U>
3559 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3560 >             searchFunction, new AtomicReference<U>()).invoke();
3561      }
3562  
3563      /**
# Line 3461 | Line 3565 | public class ConcurrentHashMap<K,V>
3565       * of all (key, value) pairs using the given reducer to
3566       * combine values, or null if none.
3567       *
3568 +     * @param parallelismThreshold the (estimated) number of elements
3569 +     * needed for this operation to be executed in parallel
3570       * @param transformer a function returning the transformation
3571       * for an element, or null if there is no transformation (in
3572       * which case it is not combined)
3573       * @param reducer a commutative associative combining function
3574 +     * @param <U> the return type of the transformer
3575       * @return the result of accumulating the given transformation
3576       * of all (key, value) pairs
3577 +     * @since 1.8
3578       */
3579 <    public <U> U reduceSequentially
3580 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
3581 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
3579 >    public <U> U reduce(long parallelismThreshold,
3580 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3581 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3582          if (transformer == null || reducer == null)
3583              throw new NullPointerException();
3584 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3585 <        U r = null, u; V v;
3586 <        while ((v = it.advanceValue()) != null) {
3479 <            if ((u = transformer.apply(it.nextKey, v)) != null)
3480 <                r = (r == null) ? u : reducer.apply(r, u);
3481 <        }
3482 <        return r;
3584 >        return new MapReduceMappingsTask<K,V,U>
3585 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3586 >             null, transformer, reducer).invoke();
3587      }
3588  
3589      /**
# Line 3487 | Line 3591 | public class ConcurrentHashMap<K,V>
3591       * of all (key, value) pairs using the given reducer to
3592       * combine values, and the given basis as an identity value.
3593       *
3594 +     * @param parallelismThreshold the (estimated) number of elements
3595 +     * needed for this operation to be executed in parallel
3596       * @param transformer a function returning the transformation
3597       * for an element
3598       * @param basis the identity (initial default value) for the reduction
3599       * @param reducer a commutative associative combining function
3600       * @return the result of accumulating the given transformation
3601       * of all (key, value) pairs
3602 +     * @since 1.8
3603       */
3604 <    public double reduceToDoubleSequentially
3605 <        (ToDoubleBiFunction<? super K, ? super V> transformer,
3606 <         double basis,
3607 <         DoubleBinaryOperator reducer) {
3604 >    public double reduceToDouble(long parallelismThreshold,
3605 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3606 >                                 double basis,
3607 >                                 DoubleBinaryOperator reducer) {
3608          if (transformer == null || reducer == null)
3609              throw new NullPointerException();
3610 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3611 <        double r = basis; V v;
3612 <        while ((v = it.advanceValue()) != null)
3506 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3507 <        return r;
3610 >        return new MapReduceMappingsToDoubleTask<K,V>
3611 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3612 >             null, transformer, basis, reducer).invoke();
3613      }
3614  
3615      /**
# Line 3512 | Line 3617 | public class ConcurrentHashMap<K,V>
3617       * of all (key, value) pairs using the given reducer to
3618       * combine values, and the given basis as an identity value.
3619       *
3620 +     * @param parallelismThreshold the (estimated) number of elements
3621 +     * needed for this operation to be executed in parallel
3622       * @param transformer a function returning the transformation
3623       * for an element
3624       * @param basis the identity (initial default value) for the reduction
3625       * @param reducer a commutative associative combining function
3626       * @return the result of accumulating the given transformation
3627       * of all (key, value) pairs
3628 +     * @since 1.8
3629       */
3630 <    public long reduceToLongSequentially
3631 <        (ToLongBiFunction<? super K, ? super V> transformer,
3632 <         long basis,
3633 <         LongBinaryOperator reducer) {
3630 >    public long reduceToLong(long parallelismThreshold,
3631 >                             ToLongBiFunction<? super K, ? super V> transformer,
3632 >                             long basis,
3633 >                             LongBinaryOperator reducer) {
3634          if (transformer == null || reducer == null)
3635              throw new NullPointerException();
3636 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637 <        long r = basis; V v;
3638 <        while ((v = it.advanceValue()) != null)
3531 <            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3532 <        return r;
3636 >        return new MapReduceMappingsToLongTask<K,V>
3637 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3638 >             null, transformer, basis, reducer).invoke();
3639      }
3640  
3641      /**
# Line 3537 | Line 3643 | public class ConcurrentHashMap<K,V>
3643       * of all (key, value) pairs using the given reducer to
3644       * combine values, and the given basis as an identity value.
3645       *
3646 +     * @param parallelismThreshold the (estimated) number of elements
3647 +     * needed for this operation to be executed in parallel
3648       * @param transformer a function returning the transformation
3649       * for an element
3650       * @param basis the identity (initial default value) for the reduction
3651       * @param reducer a commutative associative combining function
3652       * @return the result of accumulating the given transformation
3653       * of all (key, value) pairs
3654 +     * @since 1.8
3655       */
3656 <    public int reduceToIntSequentially
3657 <        (ToIntBiFunction<? super K, ? super V> transformer,
3658 <         int basis,
3659 <         IntBinaryOperator reducer) {
3656 >    public int reduceToInt(long parallelismThreshold,
3657 >                           ToIntBiFunction<? super K, ? super V> transformer,
3658 >                           int basis,
3659 >                           IntBinaryOperator reducer) {
3660          if (transformer == null || reducer == null)
3661              throw new NullPointerException();
3662 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3663 <        int r = basis; V v;
3664 <        while ((v = it.advanceValue()) != null)
3556 <            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3557 <        return r;
3662 >        return new MapReduceMappingsToIntTask<K,V>
3663 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3664 >             null, transformer, basis, reducer).invoke();
3665      }
3666  
3667      /**
3668       * Performs the given action for each key.
3669       *
3670 +     * @param parallelismThreshold the (estimated) number of elements
3671 +     * needed for this operation to be executed in parallel
3672       * @param action the action
3673 +     * @since 1.8
3674       */
3675 <    public void forEachKeySequentially
3676 <        (Consumer<? super K> action) {
3677 <        new Traverser<K,V,Object>(this).forEachKey(action);
3675 >    public void forEachKey(long parallelismThreshold,
3676 >                           Consumer<? super K> action) {
3677 >        if (action == null) throw new NullPointerException();
3678 >        new ForEachKeyTask<K,V>
3679 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3680 >             action).invoke();
3681      }
3682  
3683      /**
3684       * Performs the given action for each non-null transformation
3685       * of each key.
3686       *
3687 +     * @param parallelismThreshold the (estimated) number of elements
3688 +     * needed for this operation to be executed in parallel
3689       * @param transformer a function returning the transformation
3690       * for an element, or null if there is no transformation (in
3691       * which case the action is not applied)
3692       * @param action the action
3693 +     * @param <U> the return type of the transformer
3694 +     * @since 1.8
3695       */
3696 <    public <U> void forEachKeySequentially
3697 <        (Function<? super K, ? extends U> transformer,
3698 <         Consumer<? super U> action) {
3696 >    public <U> void forEachKey(long parallelismThreshold,
3697 >                               Function<? super K, ? extends U> transformer,
3698 >                               Consumer<? super U> action) {
3699          if (transformer == null || action == null)
3700              throw new NullPointerException();
3701 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3702 <        K k; U u;
3703 <        while ((k = it.advanceKey()) != null) {
3587 <            if ((u = transformer.apply(k)) != null)
3588 <                action.accept(u);
3589 <        }
3701 >        new ForEachTransformedKeyTask<K,V,U>
3702 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3703 >             transformer, action).invoke();
3704      }
3705  
3706      /**
3707       * Returns a non-null result from applying the given search
3708 <     * function on each key, or null if none.
3708 >     * function on each key, or null if none. Upon success,
3709 >     * further element processing is suppressed and the results of
3710 >     * any other parallel invocations of the search function are
3711 >     * ignored.
3712       *
3713 +     * @param parallelismThreshold the (estimated) number of elements
3714 +     * needed for this operation to be executed in parallel
3715       * @param searchFunction a function returning a non-null
3716       * result on success, else null
3717 +     * @param <U> the return type of the search function
3718       * @return a non-null result from applying the given search
3719       * function on each key, or null if none
3720 +     * @since 1.8
3721       */
3722 <    public <U> U searchKeysSequentially
3723 <        (Function<? super K, ? extends U> searchFunction) {
3724 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3725 <        K k; U u;
3726 <        while ((k = it.advanceKey()) != null) {
3727 <            if ((u = searchFunction.apply(k)) != null)
3607 <                return u;
3608 <        }
3609 <        return null;
3722 >    public <U> U searchKeys(long parallelismThreshold,
3723 >                            Function<? super K, ? extends U> searchFunction) {
3724 >        if (searchFunction == null) throw new NullPointerException();
3725 >        return new SearchKeysTask<K,V,U>
3726 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3727 >             searchFunction, new AtomicReference<U>()).invoke();
3728      }
3729  
3730      /**
3731       * Returns the result of accumulating all keys using the given
3732       * reducer to combine values, or null if none.
3733       *
3734 +     * @param parallelismThreshold the (estimated) number of elements
3735 +     * needed for this operation to be executed in parallel
3736       * @param reducer a commutative associative combining function
3737       * @return the result of accumulating all keys using the given
3738       * reducer to combine values, or null if none
3739 +     * @since 1.8
3740       */
3741 <    public K reduceKeysSequentially
3742 <        (BiFunction<? super K, ? super K, ? extends K> reducer) {
3741 >    public K reduceKeys(long parallelismThreshold,
3742 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3743          if (reducer == null) throw new NullPointerException();
3744 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3745 <        K u, r = null;
3746 <        while ((u = it.advanceKey()) != null) {
3626 <            r = (r == null) ? u : reducer.apply(r, u);
3627 <        }
3628 <        return r;
3744 >        return new ReduceKeysTask<K,V>
3745 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3746 >             null, reducer).invoke();
3747      }
3748  
3749      /**
# Line 3633 | Line 3751 | public class ConcurrentHashMap<K,V>
3751       * of all keys using the given reducer to combine values, or
3752       * null if none.
3753       *
3754 +     * @param parallelismThreshold the (estimated) number of elements
3755 +     * needed for this operation to be executed in parallel
3756       * @param transformer a function returning the transformation
3757       * for an element, or null if there is no transformation (in
3758       * which case it is not combined)
3759       * @param reducer a commutative associative combining function
3760 +     * @param <U> the return type of the transformer
3761       * @return the result of accumulating the given transformation
3762       * of all keys
3763 +     * @since 1.8
3764       */
3765 <    public <U> U reduceKeysSequentially
3766 <        (Function<? super K, ? extends U> transformer,
3765 >    public <U> U reduceKeys(long parallelismThreshold,
3766 >                            Function<? super K, ? extends U> transformer,
3767           BiFunction<? super U, ? super U, ? extends U> reducer) {
3768          if (transformer == null || reducer == null)
3769              throw new NullPointerException();
3770 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3771 <        K k; U r = null, u;
3772 <        while ((k = it.advanceKey()) != null) {
3651 <            if ((u = transformer.apply(k)) != null)
3652 <                r = (r == null) ? u : reducer.apply(r, u);
3653 <        }
3654 <        return r;
3770 >        return new MapReduceKeysTask<K,V,U>
3771 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3772 >             null, transformer, reducer).invoke();
3773      }
3774  
3775      /**
# Line 3659 | Line 3777 | public class ConcurrentHashMap<K,V>
3777       * of all keys using the given reducer to combine values, and
3778       * the given basis as an identity value.
3779       *
3780 +     * @param parallelismThreshold the (estimated) number of elements
3781 +     * needed for this operation to be executed in parallel
3782       * @param transformer a function returning the transformation
3783       * for an element
3784       * @param basis the identity (initial default value) for the reduction
3785       * @param reducer a commutative associative combining function
3786       * @return the result of accumulating the given transformation
3787       * of all keys
3788 +     * @since 1.8
3789       */
3790 <    public double reduceKeysToDoubleSequentially
3791 <        (ToDoubleFunction<? super K> transformer,
3792 <         double basis,
3793 <         DoubleBinaryOperator reducer) {
3790 >    public double reduceKeysToDouble(long parallelismThreshold,
3791 >                                     ToDoubleFunction<? super K> transformer,
3792 >                                     double basis,
3793 >                                     DoubleBinaryOperator reducer) {
3794          if (transformer == null || reducer == null)
3795              throw new NullPointerException();
3796 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3797 <        double r = basis;
3798 <        K k;
3678 <        while ((k = it.advanceKey()) != null)
3679 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3680 <        return r;
3796 >        return new MapReduceKeysToDoubleTask<K,V>
3797 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3798 >             null, transformer, basis, reducer).invoke();
3799      }
3800  
3801      /**
# Line 3685 | Line 3803 | public class ConcurrentHashMap<K,V>
3803       * of all keys using the given reducer to combine values, and
3804       * the given basis as an identity value.
3805       *
3806 +     * @param parallelismThreshold the (estimated) number of elements
3807 +     * needed for this operation to be executed in parallel
3808       * @param transformer a function returning the transformation
3809       * for an element
3810       * @param basis the identity (initial default value) for the reduction
3811       * @param reducer a commutative associative combining function
3812       * @return the result of accumulating the given transformation
3813       * of all keys
3814 +     * @since 1.8
3815       */
3816 <    public long reduceKeysToLongSequentially
3817 <        (ToLongFunction<? super K> transformer,
3818 <         long basis,
3819 <         LongBinaryOperator reducer) {
3816 >    public long reduceKeysToLong(long parallelismThreshold,
3817 >                                 ToLongFunction<? super K> transformer,
3818 >                                 long basis,
3819 >                                 LongBinaryOperator reducer) {
3820          if (transformer == null || reducer == null)
3821              throw new NullPointerException();
3822 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3823 <        long r = basis;
3824 <        K k;
3704 <        while ((k = it.advanceKey()) != null)
3705 <            r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3706 <        return r;
3822 >        return new MapReduceKeysToLongTask<K,V>
3823 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3824 >             null, transformer, basis, reducer).invoke();
3825      }
3826  
3827      /**
# Line 3711 | Line 3829 | public class ConcurrentHashMap<K,V>
3829       * of all keys using the given reducer to combine values, and
3830       * the given basis as an identity value.
3831       *
3832 +     * @param parallelismThreshold the (estimated) number of elements
3833 +     * needed for this operation to be executed in parallel
3834       * @param transformer a function returning the transformation
3835       * for an element
3836       * @param basis the identity (initial default value) for the reduction
3837       * @param reducer a commutative associative combining function
3838       * @return the result of accumulating the given transformation
3839       * of all keys
3840 +     * @since 1.8
3841       */
3842 <    public int reduceKeysToIntSequentially
3843 <        (ToIntFunction<? super K> transformer,
3844 <         int basis,
3845 <         IntBinaryOperator reducer) {
3842 >    public int reduceKeysToInt(long parallelismThreshold,
3843 >                               ToIntFunction<? super K> transformer,
3844 >                               int basis,
3845 >                               IntBinaryOperator reducer) {
3846          if (transformer == null || reducer == null)
3847              throw new NullPointerException();
3848 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3849 <        int r = basis;
3850 <        K k;
3730 <        while ((k = it.advanceKey()) != null)
3731 <            r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3732 <        return r;
3848 >        return new MapReduceKeysToIntTask<K,V>
3849 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3850 >             null, transformer, basis, reducer).invoke();
3851      }
3852  
3853      /**
3854       * Performs the given action for each value.
3855       *
3856 +     * @param parallelismThreshold the (estimated) number of elements
3857 +     * needed for this operation to be executed in parallel
3858       * @param action the action
3859 +     * @since 1.8
3860       */
3861 <    public void forEachValueSequentially(Consumer<? super V> action) {
3862 <        new Traverser<K,V,Object>(this).forEachValue(action);
3861 >    public void forEachValue(long parallelismThreshold,
3862 >                             Consumer<? super V> action) {
3863 >        if (action == null)
3864 >            throw new NullPointerException();
3865 >        new ForEachValueTask<K,V>
3866 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3867 >             action).invoke();
3868      }
3869  
3870      /**
3871       * Performs the given action for each non-null transformation
3872       * of each value.
3873       *
3874 +     * @param parallelismThreshold the (estimated) number of elements
3875 +     * needed for this operation to be executed in parallel
3876       * @param transformer a function returning the transformation
3877       * for an element, or null if there is no transformation (in
3878       * which case the action is not applied)
3879       * @param action the action
3880 +     * @param <U> the return type of the transformer
3881 +     * @since 1.8
3882       */
3883 <    public <U> void forEachValueSequentially
3884 <        (Function<? super V, ? extends U> transformer,
3885 <         Consumer<? super U> action) {
3883 >    public <U> void forEachValue(long parallelismThreshold,
3884 >                                 Function<? super V, ? extends U> transformer,
3885 >                                 Consumer<? super U> action) {
3886          if (transformer == null || action == null)
3887              throw new NullPointerException();
3888 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3889 <        V v; U u;
3890 <        while ((v = it.advanceValue()) != null) {
3761 <            if ((u = transformer.apply(v)) != null)
3762 <                action.accept(u);
3763 <        }
3888 >        new ForEachTransformedValueTask<K,V,U>
3889 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3890 >             transformer, action).invoke();
3891      }
3892  
3893      /**
3894       * Returns a non-null result from applying the given search
3895 <     * function on each value, or null if none.
3895 >     * function on each value, or null if none.  Upon success,
3896 >     * further element processing is suppressed and the results of
3897 >     * any other parallel invocations of the search function are
3898 >     * ignored.
3899       *
3900 +     * @param parallelismThreshold the (estimated) number of elements
3901 +     * needed for this operation to be executed in parallel
3902       * @param searchFunction a function returning a non-null
3903       * result on success, else null
3904 +     * @param <U> the return type of the search function
3905       * @return a non-null result from applying the given search
3906       * function on each value, or null if none
3907 +     * @since 1.8
3908       */
3909 <    public <U> U searchValuesSequentially
3910 <        (Function<? super V, ? extends U> searchFunction) {
3909 >    public <U> U searchValues(long parallelismThreshold,
3910 >                              Function<? super V, ? extends U> searchFunction) {
3911          if (searchFunction == null) throw new NullPointerException();
3912 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3913 <        V v; U u;
3914 <        while ((v = it.advanceValue()) != null) {
3781 <            if ((u = searchFunction.apply(v)) != null)
3782 <                return u;
3783 <        }
3784 <        return null;
3912 >        return new SearchValuesTask<K,V,U>
3913 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3914 >             searchFunction, new AtomicReference<U>()).invoke();
3915      }
3916  
3917      /**
3918       * Returns the result of accumulating all values using the
3919       * given reducer to combine values, or null if none.
3920       *
3921 +     * @param parallelismThreshold the (estimated) number of elements
3922 +     * needed for this operation to be executed in parallel
3923       * @param reducer a commutative associative combining function
3924       * @return the result of accumulating all values
3925 +     * @since 1.8
3926       */
3927 <    public V reduceValuesSequentially
3928 <        (BiFunction<? super V, ? super V, ? extends V> reducer) {
3927 >    public V reduceValues(long parallelismThreshold,
3928 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
3929          if (reducer == null) throw new NullPointerException();
3930 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3931 <        V r = null; V v;
3932 <        while ((v = it.advanceValue()) != null)
3800 <            r = (r == null) ? v : reducer.apply(r, v);
3801 <        return r;
3930 >        return new ReduceValuesTask<K,V>
3931 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3932 >             null, reducer).invoke();
3933      }
3934  
3935      /**
# Line 3806 | Line 3937 | public class ConcurrentHashMap<K,V>
3937       * of all values using the given reducer to combine values, or
3938       * null if none.
3939       *
3940 +     * @param parallelismThreshold the (estimated) number of elements
3941 +     * needed for this operation to be executed in parallel
3942       * @param transformer a function returning the transformation
3943       * for an element, or null if there is no transformation (in
3944       * which case it is not combined)
3945       * @param reducer a commutative associative combining function
3946 +     * @param <U> the return type of the transformer
3947       * @return the result of accumulating the given transformation
3948       * of all values
3949 +     * @since 1.8
3950       */
3951 <    public <U> U reduceValuesSequentially
3952 <        (Function<? super V, ? extends U> transformer,
3953 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
3951 >    public <U> U reduceValues(long parallelismThreshold,
3952 >                              Function<? super V, ? extends U> transformer,
3953 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
3954          if (transformer == null || reducer == null)
3955              throw new NullPointerException();
3956 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3957 <        U r = null, u; V v;
3958 <        while ((v = it.advanceValue()) != null) {
3824 <            if ((u = transformer.apply(v)) != null)
3825 <                r = (r == null) ? u : reducer.apply(r, u);
3826 <        }
3827 <        return r;
3956 >        return new MapReduceValuesTask<K,V,U>
3957 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3958 >             null, transformer, reducer).invoke();
3959      }
3960  
3961      /**
# Line 3832 | Line 3963 | public class ConcurrentHashMap<K,V>
3963       * of all values using the given reducer to combine values,
3964       * and the given basis as an identity value.
3965       *
3966 +     * @param parallelismThreshold the (estimated) number of elements
3967 +     * needed for this operation to be executed in parallel
3968       * @param transformer a function returning the transformation
3969       * for an element
3970       * @param basis the identity (initial default value) for the reduction
3971       * @param reducer a commutative associative combining function
3972       * @return the result of accumulating the given transformation
3973       * of all values
3974 +     * @since 1.8
3975       */
3976 <    public double reduceValuesToDoubleSequentially
3977 <        (ToDoubleFunction<? super V> transformer,
3978 <         double basis,
3979 <         DoubleBinaryOperator reducer) {
3976 >    public double reduceValuesToDouble(long parallelismThreshold,
3977 >                                       ToDoubleFunction<? super V> transformer,
3978 >                                       double basis,
3979 >                                       DoubleBinaryOperator reducer) {
3980          if (transformer == null || reducer == null)
3981              throw new NullPointerException();
3982 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3983 <        double r = basis; V v;
3984 <        while ((v = it.advanceValue()) != null)
3851 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3852 <        return r;
3982 >        return new MapReduceValuesToDoubleTask<K,V>
3983 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3984 >             null, transformer, basis, reducer).invoke();
3985      }
3986  
3987      /**
# Line 3857 | Line 3989 | public class ConcurrentHashMap<K,V>
3989       * of all values using the given reducer to combine values,
3990       * and the given basis as an identity value.
3991       *
3992 +     * @param parallelismThreshold the (estimated) number of elements
3993 +     * needed for this operation to be executed in parallel
3994       * @param transformer a function returning the transformation
3995       * for an element
3996       * @param basis the identity (initial default value) for the reduction
3997       * @param reducer a commutative associative combining function
3998       * @return the result of accumulating the given transformation
3999       * of all values
4000 +     * @since 1.8
4001       */
4002 <    public long reduceValuesToLongSequentially
4003 <        (ToLongFunction<? super V> transformer,
4004 <         long basis,
4005 <         LongBinaryOperator reducer) {
4002 >    public long reduceValuesToLong(long parallelismThreshold,
4003 >                                   ToLongFunction<? super V> transformer,
4004 >                                   long basis,
4005 >                                   LongBinaryOperator reducer) {
4006          if (transformer == null || reducer == null)
4007              throw new NullPointerException();
4008 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4009 <        long r = basis; V v;
4010 <        while ((v = it.advanceValue()) != null)
3876 <            r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3877 <        return r;
4008 >        return new MapReduceValuesToLongTask<K,V>
4009 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4010 >             null, transformer, basis, reducer).invoke();
4011      }
4012  
4013      /**
# Line 3882 | Line 4015 | public class ConcurrentHashMap<K,V>
4015       * of all values using the given reducer to combine values,
4016       * and the given basis as an identity value.
4017       *
4018 +     * @param parallelismThreshold the (estimated) number of elements
4019 +     * needed for this operation to be executed in parallel
4020       * @param transformer a function returning the transformation
4021       * for an element
4022       * @param basis the identity (initial default value) for the reduction
4023       * @param reducer a commutative associative combining function
4024       * @return the result of accumulating the given transformation
4025       * of all values
4026 +     * @since 1.8
4027       */
4028 <    public int reduceValuesToIntSequentially
4029 <        (ToIntFunction<? super V> transformer,
4030 <         int basis,
4031 <         IntBinaryOperator reducer) {
4028 >    public int reduceValuesToInt(long parallelismThreshold,
4029 >                                 ToIntFunction<? super V> transformer,
4030 >                                 int basis,
4031 >                                 IntBinaryOperator reducer) {
4032          if (transformer == null || reducer == null)
4033              throw new NullPointerException();
4034 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4035 <        int r = basis; V v;
4036 <        while ((v = it.advanceValue()) != null)
3901 <            r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3902 <        return r;
4034 >        return new MapReduceValuesToIntTask<K,V>
4035 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4036 >             null, transformer, basis, reducer).invoke();
4037      }
4038  
4039      /**
4040       * Performs the given action for each entry.
4041       *
4042 +     * @param parallelismThreshold the (estimated) number of elements
4043 +     * needed for this operation to be executed in parallel
4044       * @param action the action
4045 +     * @since 1.8
4046       */
4047 <    public void forEachEntrySequentially
4048 <        (Consumer<? super Map.Entry<K,V>> action) {
4047 >    public void forEachEntry(long parallelismThreshold,
4048 >                             Consumer<? super Map.Entry<K,V>> action) {
4049          if (action == null) throw new NullPointerException();
4050 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4051 <        V v;
3915 <        while ((v = it.advanceValue()) != null)
3916 <            action.accept(entryFor(it.nextKey, v));
4050 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4051 >                                  action).invoke();
4052      }
4053  
4054      /**
4055       * Performs the given action for each non-null transformation
4056       * of each entry.
4057       *
4058 +     * @param parallelismThreshold the (estimated) number of elements
4059 +     * needed for this operation to be executed in parallel
4060       * @param transformer a function returning the transformation
4061       * for an element, or null if there is no transformation (in
4062       * which case the action is not applied)
4063       * @param action the action
4064 +     * @param <U> the return type of the transformer
4065 +     * @since 1.8
4066       */
4067 <    public <U> void forEachEntrySequentially
4068 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4069 <         Consumer<? super U> action) {
4067 >    public <U> void forEachEntry(long parallelismThreshold,
4068 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4069 >                                 Consumer<? super U> action) {
4070          if (transformer == null || action == null)
4071              throw new NullPointerException();
4072 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4073 <        V v; U u;
4074 <        while ((v = it.advanceValue()) != null) {
3936 <            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3937 <                action.accept(u);
3938 <        }
4072 >        new ForEachTransformedEntryTask<K,V,U>
4073 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4074 >             transformer, action).invoke();
4075      }
4076  
4077      /**
4078       * Returns a non-null result from applying the given search
4079 <     * function on each entry, or null if none.
4079 >     * function on each entry, or null if none.  Upon success,
4080 >     * further element processing is suppressed and the results of
4081 >     * any other parallel invocations of the search function are
4082 >     * ignored.
4083       *
4084 +     * @param parallelismThreshold the (estimated) number of elements
4085 +     * needed for this operation to be executed in parallel
4086       * @param searchFunction a function returning a non-null
4087       * result on success, else null
4088 +     * @param <U> the return type of the search function
4089       * @return a non-null result from applying the given search
4090       * function on each entry, or null if none
4091 +     * @since 1.8
4092       */
4093 <    public <U> U searchEntriesSequentially
4094 <        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4093 >    public <U> U searchEntries(long parallelismThreshold,
4094 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4095          if (searchFunction == null) throw new NullPointerException();
4096 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4097 <        V v; U u;
4098 <        while ((v = it.advanceValue()) != null) {
3956 <            if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3957 <                return u;
3958 <        }
3959 <        return null;
4096 >        return new SearchEntriesTask<K,V,U>
4097 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4098 >             searchFunction, new AtomicReference<U>()).invoke();
4099      }
4100  
4101      /**
4102       * Returns the result of accumulating all entries using the
4103       * given reducer to combine values, or null if none.
4104       *
4105 +     * @param parallelismThreshold the (estimated) number of elements
4106 +     * needed for this operation to be executed in parallel
4107       * @param reducer a commutative associative combining function
4108       * @return the result of accumulating all entries
4109 +     * @since 1.8
4110       */
4111 <    public Map.Entry<K,V> reduceEntriesSequentially
4112 <        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4111 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4112 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4113          if (reducer == null) throw new NullPointerException();
4114 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4115 <        Map.Entry<K,V> r = null; V v;
4116 <        while ((v = it.advanceValue()) != null) {
3975 <            Map.Entry<K,V> u = entryFor(it.nextKey, v);
3976 <            r = (r == null) ? u : reducer.apply(r, u);
3977 <        }
3978 <        return r;
4114 >        return new ReduceEntriesTask<K,V>
4115 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4116 >             null, reducer).invoke();
4117      }
4118  
4119      /**
# Line 3983 | Line 4121 | public class ConcurrentHashMap<K,V>
4121       * of all entries using the given reducer to combine values,
4122       * or null if none.
4123       *
4124 +     * @param parallelismThreshold the (estimated) number of elements
4125 +     * needed for this operation to be executed in parallel
4126       * @param transformer a function returning the transformation
4127       * for an element, or null if there is no transformation (in
4128       * which case it is not combined)
4129       * @param reducer a commutative associative combining function
4130 +     * @param <U> the return type of the transformer
4131       * @return the result of accumulating the given transformation
4132       * of all entries
4133 +     * @since 1.8
4134       */
4135 <    public <U> U reduceEntriesSequentially
4136 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4137 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4135 >    public <U> U reduceEntries(long parallelismThreshold,
4136 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4137 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4138          if (transformer == null || reducer == null)
4139              throw new NullPointerException();
4140 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4141 <        U r = null, u; V v;
4142 <        while ((v = it.advanceValue()) != null) {
4001 <            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
4002 <                r = (r == null) ? u : reducer.apply(r, u);
4003 <        }
4004 <        return r;
4140 >        return new MapReduceEntriesTask<K,V,U>
4141 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4142 >             null, transformer, reducer).invoke();
4143      }
4144  
4145      /**
# Line 4009 | Line 4147 | public class ConcurrentHashMap<K,V>
4147       * of all entries using the given reducer to combine values,
4148       * and the given basis as an identity value.
4149       *
4150 +     * @param parallelismThreshold the (estimated) number of elements
4151 +     * needed for this operation to be executed in parallel
4152       * @param transformer a function returning the transformation
4153       * for an element
4154       * @param basis the identity (initial default value) for the reduction
4155       * @param reducer a commutative associative combining function
4156       * @return the result of accumulating the given transformation
4157       * of all entries
4158 +     * @since 1.8
4159       */
4160 <    public double reduceEntriesToDoubleSequentially
4161 <        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4162 <         double basis,
4163 <         DoubleBinaryOperator reducer) {
4160 >    public double reduceEntriesToDouble(long parallelismThreshold,
4161 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4162 >                                        double basis,
4163 >                                        DoubleBinaryOperator reducer) {
4164          if (transformer == null || reducer == null)
4165              throw new NullPointerException();
4166 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4167 <        double r = basis; V v;
4168 <        while ((v = it.advanceValue()) != null)
4028 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
4029 <        return r;
4166 >        return new MapReduceEntriesToDoubleTask<K,V>
4167 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4168 >             null, transformer, basis, reducer).invoke();
4169      }
4170  
4171      /**
# Line 4034 | Line 4173 | public class ConcurrentHashMap<K,V>
4173       * of all entries using the given reducer to combine values,
4174       * and the given basis as an identity value.
4175       *
4176 +     * @param parallelismThreshold the (estimated) number of elements
4177 +     * needed for this operation to be executed in parallel
4178       * @param transformer a function returning the transformation
4179       * for an element
4180       * @param basis the identity (initial default value) for the reduction
4181       * @param reducer a commutative associative combining function
4182       * @return the result of accumulating the given transformation
4183       * of all entries
4184 +     * @since 1.8
4185       */
4186 <    public long reduceEntriesToLongSequentially
4187 <        (ToLongFunction<Map.Entry<K,V>> transformer,
4188 <         long basis,
4189 <         LongBinaryOperator reducer) {
4186 >    public long reduceEntriesToLong(long parallelismThreshold,
4187 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4188 >                                    long basis,
4189 >                                    LongBinaryOperator reducer) {
4190          if (transformer == null || reducer == null)
4191              throw new NullPointerException();
4192 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4193 <        long r = basis; V v;
4194 <        while ((v = it.advanceValue()) != null)
4053 <            r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
4054 <        return r;
4192 >        return new MapReduceEntriesToLongTask<K,V>
4193 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4194 >             null, transformer, basis, reducer).invoke();
4195      }
4196  
4197      /**
# Line 4059 | Line 4199 | public class ConcurrentHashMap<K,V>
4199       * of all entries using the given reducer to combine values,
4200       * and the given basis as an identity value.
4201       *
4202 +     * @param parallelismThreshold the (estimated) number of elements
4203 +     * needed for this operation to be executed in parallel
4204       * @param transformer a function returning the transformation
4205       * for an element
4206       * @param basis the identity (initial default value) for the reduction
4207       * @param reducer a commutative associative combining function
4208       * @return the result of accumulating the given transformation
4209       * of all entries
4210 +     * @since 1.8
4211       */
4212 <    public int reduceEntriesToIntSequentially
4213 <        (ToIntFunction<Map.Entry<K,V>> transformer,
4214 <         int basis,
4215 <         IntBinaryOperator reducer) {
4212 >    public int reduceEntriesToInt(long parallelismThreshold,
4213 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4214 >                                  int basis,
4215 >                                  IntBinaryOperator reducer) {
4216          if (transformer == null || reducer == null)
4217              throw new NullPointerException();
4218 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4219 <        int r = basis; V v;
4220 <        while ((v = it.advanceValue()) != null)
4078 <            r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
4079 <        return r;
4080 <    }
4081 <
4082 <    // Parallel bulk operations
4083 <
4084 <    /**
4085 <     * Performs the given action for each (key, value).
4086 <     *
4087 <     * @param action the action
4088 <     */
4089 <    public void forEachInParallel(BiConsumer<? super K,? super V> action) {
4090 <        ForkJoinTasks.forEach
4091 <            (this, action).invoke();
4092 <    }
4093 <
4094 <    /**
4095 <     * Performs the given action for each non-null transformation
4096 <     * of each (key, value).
4097 <     *
4098 <     * @param transformer a function returning the transformation
4099 <     * for an element, or null if there is no transformation (in
4100 <     * which case the action is not applied)
4101 <     * @param action the action
4102 <     */
4103 <    public <U> void forEachInParallel
4104 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
4105 <                            Consumer<? super U> action) {
4106 <        ForkJoinTasks.forEach
4107 <            (this, transformer, action).invoke();
4108 <    }
4109 <
4110 <    /**
4111 <     * Returns a non-null result from applying the given search
4112 <     * function on each (key, value), or null if none.  Upon
4113 <     * success, further element processing is suppressed and the
4114 <     * results of any other parallel invocations of the search
4115 <     * function are ignored.
4116 <     *
4117 <     * @param searchFunction a function returning a non-null
4118 <     * result on success, else null
4119 <     * @return a non-null result from applying the given search
4120 <     * function on each (key, value), or null if none
4121 <     */
4122 <    public <U> U searchInParallel
4123 <        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4124 <        return ForkJoinTasks.search
4125 <            (this, searchFunction).invoke();
4126 <    }
4127 <
4128 <    /**
4129 <     * Returns the result of accumulating the given transformation
4130 <     * of all (key, value) pairs using the given reducer to
4131 <     * combine values, or null if none.
4132 <     *
4133 <     * @param transformer a function returning the transformation
4134 <     * for an element, or null if there is no transformation (in
4135 <     * which case it is not combined)
4136 <     * @param reducer a commutative associative combining function
4137 <     * @return the result of accumulating the given transformation
4138 <     * of all (key, value) pairs
4139 <     */
4140 <    public <U> U reduceInParallel
4141 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
4142 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4143 <        return ForkJoinTasks.reduce
4144 <            (this, transformer, reducer).invoke();
4145 <    }
4146 <
4147 <    /**
4148 <     * Returns the result of accumulating the given transformation
4149 <     * of all (key, value) pairs using the given reducer to
4150 <     * combine values, and the given basis as an identity value.
4151 <     *
4152 <     * @param transformer a function returning the transformation
4153 <     * for an element
4154 <     * @param basis the identity (initial default value) for the reduction
4155 <     * @param reducer a commutative associative combining function
4156 <     * @return the result of accumulating the given transformation
4157 <     * of all (key, value) pairs
4158 <     */
4159 <    public double reduceToDoubleInParallel
4160 <        (ToDoubleBiFunction<? super K, ? super V> transformer,
4161 <         double basis,
4162 <         DoubleBinaryOperator reducer) {
4163 <        return ForkJoinTasks.reduceToDouble
4164 <            (this, transformer, basis, reducer).invoke();
4165 <    }
4166 <
4167 <    /**
4168 <     * Returns the result of accumulating the given transformation
4169 <     * of all (key, value) pairs using the given reducer to
4170 <     * combine values, and the given basis as an identity value.
4171 <     *
4172 <     * @param transformer a function returning the transformation
4173 <     * for an element
4174 <     * @param basis the identity (initial default value) for the reduction
4175 <     * @param reducer a commutative associative combining function
4176 <     * @return the result of accumulating the given transformation
4177 <     * of all (key, value) pairs
4178 <     */
4179 <    public long reduceToLongInParallel
4180 <        (ToLongBiFunction<? super K, ? super V> transformer,
4181 <         long basis,
4182 <         LongBinaryOperator reducer) {
4183 <        return ForkJoinTasks.reduceToLong
4184 <            (this, transformer, basis, reducer).invoke();
4185 <    }
4186 <
4187 <    /**
4188 <     * Returns the result of accumulating the given transformation
4189 <     * of all (key, value) pairs using the given reducer to
4190 <     * combine values, and the given basis as an identity value.
4191 <     *
4192 <     * @param transformer a function returning the transformation
4193 <     * for an element
4194 <     * @param basis the identity (initial default value) for the reduction
4195 <     * @param reducer a commutative associative combining function
4196 <     * @return the result of accumulating the given transformation
4197 <     * of all (key, value) pairs
4198 <     */
4199 <    public int reduceToIntInParallel
4200 <        (ToIntBiFunction<? super K, ? super V> transformer,
4201 <         int basis,
4202 <         IntBinaryOperator reducer) {
4203 <        return ForkJoinTasks.reduceToInt
4204 <            (this, transformer, basis, reducer).invoke();
4205 <    }
4206 <
4207 <    /**
4208 <     * Performs the given action for each key.
4209 <     *
4210 <     * @param action the action
4211 <     */
4212 <    public void forEachKeyInParallel(Consumer<? super K> action) {
4213 <        ForkJoinTasks.forEachKey
4214 <            (this, action).invoke();
4215 <    }
4216 <
4217 <    /**
4218 <     * Performs the given action for each non-null transformation
4219 <     * of each key.
4220 <     *
4221 <     * @param transformer a function returning the transformation
4222 <     * for an element, or null if there is no transformation (in
4223 <     * which case the action is not applied)
4224 <     * @param action the action
4225 <     */
4226 <    public <U> void forEachKeyInParallel
4227 <        (Function<? super K, ? extends U> transformer,
4228 <         Consumer<? super U> action) {
4229 <        ForkJoinTasks.forEachKey
4230 <            (this, transformer, action).invoke();
4231 <    }
4232 <
4233 <    /**
4234 <     * Returns a non-null result from applying the given search
4235 <     * function on each key, or null if none. Upon success,
4236 <     * further element processing is suppressed and the results of
4237 <     * any other parallel invocations of the search function are
4238 <     * ignored.
4239 <     *
4240 <     * @param searchFunction a function returning a non-null
4241 <     * result on success, else null
4242 <     * @return a non-null result from applying the given search
4243 <     * function on each key, or null if none
4244 <     */
4245 <    public <U> U searchKeysInParallel
4246 <        (Function<? super K, ? extends U> searchFunction) {
4247 <        return ForkJoinTasks.searchKeys
4248 <            (this, searchFunction).invoke();
4249 <    }
4250 <
4251 <    /**
4252 <     * Returns the result of accumulating all keys using the given
4253 <     * reducer to combine values, or null if none.
4254 <     *
4255 <     * @param reducer a commutative associative combining function
4256 <     * @return the result of accumulating all keys using the given
4257 <     * reducer to combine values, or null if none
4258 <     */
4259 <    public K reduceKeysInParallel
4260 <        (BiFunction<? super K, ? super K, ? extends K> reducer) {
4261 <        return ForkJoinTasks.reduceKeys
4262 <            (this, reducer).invoke();
4263 <    }
4264 <
4265 <    /**
4266 <     * Returns the result of accumulating the given transformation
4267 <     * of all keys using the given reducer to combine values, or
4268 <     * null if none.
4269 <     *
4270 <     * @param transformer a function returning the transformation
4271 <     * for an element, or null if there is no transformation (in
4272 <     * which case it is not combined)
4273 <     * @param reducer a commutative associative combining function
4274 <     * @return the result of accumulating the given transformation
4275 <     * of all keys
4276 <     */
4277 <    public <U> U reduceKeysInParallel
4278 <        (Function<? super K, ? extends U> transformer,
4279 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4280 <        return ForkJoinTasks.reduceKeys
4281 <            (this, transformer, reducer).invoke();
4282 <    }
4283 <
4284 <    /**
4285 <     * Returns the result of accumulating the given transformation
4286 <     * of all keys using the given reducer to combine values, and
4287 <     * the given basis as an identity value.
4288 <     *
4289 <     * @param transformer a function returning the transformation
4290 <     * for an element
4291 <     * @param basis the identity (initial default value) for the reduction
4292 <     * @param reducer a commutative associative combining function
4293 <     * @return the result of accumulating the given transformation
4294 <     * of all keys
4295 <     */
4296 <    public double reduceKeysToDoubleInParallel
4297 <        (ToDoubleFunction<? super K> transformer,
4298 <         double basis,
4299 <         DoubleBinaryOperator reducer) {
4300 <        return ForkJoinTasks.reduceKeysToDouble
4301 <            (this, transformer, basis, reducer).invoke();
4302 <    }
4303 <
4304 <    /**
4305 <     * Returns the result of accumulating the given transformation
4306 <     * of all keys using the given reducer to combine values, and
4307 <     * the given basis as an identity value.
4308 <     *
4309 <     * @param transformer a function returning the transformation
4310 <     * for an element
4311 <     * @param basis the identity (initial default value) for the reduction
4312 <     * @param reducer a commutative associative combining function
4313 <     * @return the result of accumulating the given transformation
4314 <     * of all keys
4315 <     */
4316 <    public long reduceKeysToLongInParallel
4317 <        (ToLongFunction<? super K> transformer,
4318 <         long basis,
4319 <         LongBinaryOperator reducer) {
4320 <        return ForkJoinTasks.reduceKeysToLong
4321 <            (this, transformer, basis, reducer).invoke();
4322 <    }
4323 <
4324 <    /**
4325 <     * Returns the result of accumulating the given transformation
4326 <     * of all keys using the given reducer to combine values, and
4327 <     * the given basis as an identity value.
4328 <     *
4329 <     * @param transformer a function returning the transformation
4330 <     * for an element
4331 <     * @param basis the identity (initial default value) for the reduction
4332 <     * @param reducer a commutative associative combining function
4333 <     * @return the result of accumulating the given transformation
4334 <     * of all keys
4335 <     */
4336 <    public int reduceKeysToIntInParallel
4337 <        (ToIntFunction<? super K> transformer,
4338 <         int basis,
4339 <         IntBinaryOperator reducer) {
4340 <        return ForkJoinTasks.reduceKeysToInt
4341 <            (this, transformer, basis, reducer).invoke();
4342 <    }
4343 <
4344 <    /**
4345 <     * Performs the given action for each value.
4346 <     *
4347 <     * @param action the action
4348 <     */
4349 <    public void forEachValueInParallel(Consumer<? super V> action) {
4350 <        ForkJoinTasks.forEachValue
4351 <            (this, action).invoke();
4352 <    }
4353 <
4354 <    /**
4355 <     * Performs the given action for each non-null transformation
4356 <     * of each value.
4357 <     *
4358 <     * @param transformer a function returning the transformation
4359 <     * for an element, or null if there is no transformation (in
4360 <     * which case the action is not applied)
4361 <     * @param action the action
4362 <     */
4363 <    public <U> void forEachValueInParallel
4364 <        (Function<? super V, ? extends U> transformer,
4365 <         Consumer<? super U> action) {
4366 <        ForkJoinTasks.forEachValue
4367 <            (this, transformer, action).invoke();
4368 <    }
4369 <
4370 <    /**
4371 <     * Returns a non-null result from applying the given search
4372 <     * function on each value, or null if none.  Upon success,
4373 <     * further element processing is suppressed and the results of
4374 <     * any other parallel invocations of the search function are
4375 <     * ignored.
4376 <     *
4377 <     * @param searchFunction a function returning a non-null
4378 <     * result on success, else null
4379 <     * @return a non-null result from applying the given search
4380 <     * function on each value, or null if none
4381 <     */
4382 <    public <U> U searchValuesInParallel
4383 <        (Function<? super V, ? extends U> searchFunction) {
4384 <        return ForkJoinTasks.searchValues
4385 <            (this, searchFunction).invoke();
4386 <    }
4387 <
4388 <    /**
4389 <     * Returns the result of accumulating all values using the
4390 <     * given reducer to combine values, or null if none.
4391 <     *
4392 <     * @param reducer a commutative associative combining function
4393 <     * @return the result of accumulating all values
4394 <     */
4395 <    public V reduceValuesInParallel
4396 <        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4397 <        return ForkJoinTasks.reduceValues
4398 <            (this, reducer).invoke();
4399 <    }
4400 <
4401 <    /**
4402 <     * Returns the result of accumulating the given transformation
4403 <     * of all values using the given reducer to combine values, or
4404 <     * null if none.
4405 <     *
4406 <     * @param transformer a function returning the transformation
4407 <     * for an element, or null if there is no transformation (in
4408 <     * which case it is not combined)
4409 <     * @param reducer a commutative associative combining function
4410 <     * @return the result of accumulating the given transformation
4411 <     * of all values
4412 <     */
4413 <    public <U> U reduceValuesInParallel
4414 <        (Function<? super V, ? extends U> transformer,
4415 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4416 <        return ForkJoinTasks.reduceValues
4417 <            (this, transformer, reducer).invoke();
4418 <    }
4419 <
4420 <    /**
4421 <     * Returns the result of accumulating the given transformation
4422 <     * of all values using the given reducer to combine values,
4423 <     * and the given basis as an identity value.
4424 <     *
4425 <     * @param transformer a function returning the transformation
4426 <     * for an element
4427 <     * @param basis the identity (initial default value) for the reduction
4428 <     * @param reducer a commutative associative combining function
4429 <     * @return the result of accumulating the given transformation
4430 <     * of all values
4431 <     */
4432 <    public double reduceValuesToDoubleInParallel
4433 <        (ToDoubleFunction<? super V> transformer,
4434 <         double basis,
4435 <         DoubleBinaryOperator reducer) {
4436 <        return ForkJoinTasks.reduceValuesToDouble
4437 <            (this, transformer, basis, reducer).invoke();
4438 <    }
4439 <
4440 <    /**
4441 <     * Returns the result of accumulating the given transformation
4442 <     * of all values using the given reducer to combine values,
4443 <     * and the given basis as an identity value.
4444 <     *
4445 <     * @param transformer a function returning the transformation
4446 <     * for an element
4447 <     * @param basis the identity (initial default value) for the reduction
4448 <     * @param reducer a commutative associative combining function
4449 <     * @return the result of accumulating the given transformation
4450 <     * of all values
4451 <     */
4452 <    public long reduceValuesToLongInParallel
4453 <        (ToLongFunction<? super V> transformer,
4454 <         long basis,
4455 <         LongBinaryOperator reducer) {
4456 <        return ForkJoinTasks.reduceValuesToLong
4457 <            (this, transformer, basis, reducer).invoke();
4458 <    }
4459 <
4460 <    /**
4461 <     * Returns the result of accumulating the given transformation
4462 <     * of all values using the given reducer to combine values,
4463 <     * and the given basis as an identity value.
4464 <     *
4465 <     * @param transformer a function returning the transformation
4466 <     * for an element
4467 <     * @param basis the identity (initial default value) for the reduction
4468 <     * @param reducer a commutative associative combining function
4469 <     * @return the result of accumulating the given transformation
4470 <     * of all values
4471 <     */
4472 <    public int reduceValuesToIntInParallel
4473 <        (ToIntFunction<? super V> transformer,
4474 <         int basis,
4475 <         IntBinaryOperator reducer) {
4476 <        return ForkJoinTasks.reduceValuesToInt
4477 <            (this, transformer, basis, reducer).invoke();
4478 <    }
4479 <
4480 <    /**
4481 <     * Performs the given action for each entry.
4482 <     *
4483 <     * @param action the action
4484 <     */
4485 <    public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4486 <        ForkJoinTasks.forEachEntry
4487 <            (this, action).invoke();
4488 <    }
4489 <
4490 <    /**
4491 <     * Performs the given action for each non-null transformation
4492 <     * of each entry.
4493 <     *
4494 <     * @param transformer a function returning the transformation
4495 <     * for an element, or null if there is no transformation (in
4496 <     * which case the action is not applied)
4497 <     * @param action the action
4498 <     */
4499 <    public <U> void forEachEntryInParallel
4500 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4501 <         Consumer<? super U> action) {
4502 <        ForkJoinTasks.forEachEntry
4503 <            (this, transformer, action).invoke();
4504 <    }
4505 <
4506 <    /**
4507 <     * Returns a non-null result from applying the given search
4508 <     * function on each entry, or null if none.  Upon success,
4509 <     * further element processing is suppressed and the results of
4510 <     * any other parallel invocations of the search function are
4511 <     * ignored.
4512 <     *
4513 <     * @param searchFunction a function returning a non-null
4514 <     * result on success, else null
4515 <     * @return a non-null result from applying the given search
4516 <     * function on each entry, or null if none
4517 <     */
4518 <    public <U> U searchEntriesInParallel
4519 <        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4520 <        return ForkJoinTasks.searchEntries
4521 <            (this, searchFunction).invoke();
4522 <    }
4523 <
4524 <    /**
4525 <     * Returns the result of accumulating all entries using the
4526 <     * given reducer to combine values, or null if none.
4527 <     *
4528 <     * @param reducer a commutative associative combining function
4529 <     * @return the result of accumulating all entries
4530 <     */
4531 <    public Map.Entry<K,V> reduceEntriesInParallel
4532 <        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4533 <        return ForkJoinTasks.reduceEntries
4534 <            (this, reducer).invoke();
4535 <    }
4536 <
4537 <    /**
4538 <     * Returns the result of accumulating the given transformation
4539 <     * of all entries using the given reducer to combine values,
4540 <     * or null if none.
4541 <     *
4542 <     * @param transformer a function returning the transformation
4543 <     * for an element, or null if there is no transformation (in
4544 <     * which case it is not combined)
4545 <     * @param reducer a commutative associative combining function
4546 <     * @return the result of accumulating the given transformation
4547 <     * of all entries
4548 <     */
4549 <    public <U> U reduceEntriesInParallel
4550 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4551 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4552 <        return ForkJoinTasks.reduceEntries
4553 <            (this, transformer, reducer).invoke();
4554 <    }
4555 <
4556 <    /**
4557 <     * Returns the result of accumulating the given transformation
4558 <     * of all entries using the given reducer to combine values,
4559 <     * and the given basis as an identity value.
4560 <     *
4561 <     * @param transformer a function returning the transformation
4562 <     * for an element
4563 <     * @param basis the identity (initial default value) for the reduction
4564 <     * @param reducer a commutative associative combining function
4565 <     * @return the result of accumulating the given transformation
4566 <     * of all entries
4567 <     */
4568 <    public double reduceEntriesToDoubleInParallel
4569 <        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4570 <         double basis,
4571 <         DoubleBinaryOperator reducer) {
4572 <        return ForkJoinTasks.reduceEntriesToDouble
4573 <            (this, transformer, basis, reducer).invoke();
4574 <    }
4575 <
4576 <    /**
4577 <     * Returns the result of accumulating the given transformation
4578 <     * of all entries using the given reducer to combine values,
4579 <     * and the given basis as an identity value.
4580 <     *
4581 <     * @param transformer a function returning the transformation
4582 <     * for an element
4583 <     * @param basis the identity (initial default value) for the reduction
4584 <     * @param reducer a commutative associative combining function
4585 <     * @return the result of accumulating the given transformation
4586 <     * of all entries
4587 <     */
4588 <    public long reduceEntriesToLongInParallel
4589 <        (ToLongFunction<Map.Entry<K,V>> transformer,
4590 <         long basis,
4591 <         LongBinaryOperator reducer) {
4592 <        return ForkJoinTasks.reduceEntriesToLong
4593 <            (this, transformer, basis, reducer).invoke();
4594 <    }
4595 <
4596 <    /**
4597 <     * Returns the result of accumulating the given transformation
4598 <     * of all entries using the given reducer to combine values,
4599 <     * and the given basis as an identity value.
4600 <     *
4601 <     * @param transformer a function returning the transformation
4602 <     * for an element
4603 <     * @param basis the identity (initial default value) for the reduction
4604 <     * @param reducer a commutative associative combining function
4605 <     * @return the result of accumulating the given transformation
4606 <     * of all entries
4607 <     */
4608 <    public int reduceEntriesToIntInParallel
4609 <        (ToIntFunction<Map.Entry<K,V>> transformer,
4610 <         int basis,
4611 <         IntBinaryOperator reducer) {
4612 <        return ForkJoinTasks.reduceEntriesToInt
4613 <            (this, transformer, basis, reducer).invoke();
4218 >        return new MapReduceEntriesToIntTask<K,V>
4219 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4220 >             null, transformer, basis, reducer).invoke();
4221      }
4222  
4223  
# Line 4619 | Line 4226 | public class ConcurrentHashMap<K,V>
4226      /**
4227       * Base class for views.
4228       */
4229 <    abstract static class CHMCollectionView<K,V,E>
4230 <            implements Collection<E>, java.io.Serializable {
4229 >    abstract static class CollectionView<K,V,E>
4230 >        implements Collection<E>, java.io.Serializable {
4231          private static final long serialVersionUID = 7249069246763182397L;
4232          final ConcurrentHashMap<K,V> map;
4233 <        CHMCollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4233 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4234  
4235          /**
4236           * Returns the map backing this view.
# Line 4769 | Line 4376 | public class ConcurrentHashMap<K,V>
4376  
4377      }
4378  
4772    abstract static class CHMSetView<K,V,E>
4773            extends CHMCollectionView<K,V,E>
4774            implements Set<E>, java.io.Serializable {
4775        private static final long serialVersionUID = 7249069246763182397L;
4776        CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4777
4778        // Implement Set API
4779
4780        /**
4781         * Implements {@link Set#hashCode()}.
4782         * @return the hash code value for this set
4783         */
4784        public final int hashCode() {
4785            int h = 0;
4786            for (E e : this)
4787                h += e.hashCode();
4788            return h;
4789        }
4790
4791        /**
4792         * Implements {@link Set#equals(Object)}.
4793         * @param o object to be compared for equality with this set
4794         * @return {@code true} if the specified object is equal to this set
4795        */
4796        public final boolean equals(Object o) {
4797            Set<?> c;
4798            return ((o instanceof Set) &&
4799                    ((c = (Set<?>)o) == this ||
4800                     (containsAll(c) && c.containsAll(this))));
4801        }
4802    }
4803
4379      /**
4380       * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4381       * which additions may optionally be enabled by mapping to a
# Line 4809 | Line 4384 | public class ConcurrentHashMap<K,V>
4384       * {@link #keySet(Object) keySet(V)},
4385       * {@link #newKeySet() newKeySet()},
4386       * {@link #newKeySet(int) newKeySet(int)}.
4387 +     *
4388 +     * @since 1.8
4389       */
4390 <    public static class KeySetView<K,V>
4391 <            extends CHMSetView<K,V,K>
4815 <            implements Set<K>, java.io.Serializable {
4390 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4391 >        implements Set<K>, java.io.Serializable {
4392          private static final long serialVersionUID = 7249069246763182397L;
4393          private final V value;
4394          KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
# Line 4849 | Line 4425 | public class ConcurrentHashMap<K,V>
4425          /**
4426           * @return an iterator over the keys of the backing map
4427           */
4428 <        public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4428 >        public Iterator<K> iterator() {
4429 >            Node<K,V>[] t;
4430 >            ConcurrentHashMap<K,V> m = map;
4431 >            int f = (t = m.table) == null ? 0 : t.length;
4432 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4433 >        }
4434  
4435          /**
4436           * Adds the specified key to this set view by mapping the key to
# Line 4865 | Line 4446 | public class ConcurrentHashMap<K,V>
4446              V v;
4447              if ((v = value) == null)
4448                  throw new UnsupportedOperationException();
4449 <            return map.internalPut(e, v, true) == null;
4449 >            return map.putVal(e, v, true) == null;
4450          }
4451  
4452          /**
# Line 4885 | Line 4466 | public class ConcurrentHashMap<K,V>
4466              if ((v = value) == null)
4467                  throw new UnsupportedOperationException();
4468              for (K e : c) {
4469 <                if (map.internalPut(e, v, true) == null)
4469 >                if (map.putVal(e, v, true) == null)
4470                      added = true;
4471              }
4472              return added;
4473          }
4474  
4475 +        public int hashCode() {
4476 +            int h = 0;
4477 +            for (K e : this)
4478 +                h += e.hashCode();
4479 +            return h;
4480 +        }
4481 +
4482 +        public boolean equals(Object o) {
4483 +            Set<?> c;
4484 +            return ((o instanceof Set) &&
4485 +                    ((c = (Set<?>)o) == this ||
4486 +                     (containsAll(c) && c.containsAll(this))));
4487 +        }
4488 +
4489          public Spliterator<K> spliterator() {
4490 <            return new KeyIterator<>(map, null);
4490 >            Node<K,V>[] t;
4491 >            ConcurrentHashMap<K,V> m = map;
4492 >            long n = m.sumCount();
4493 >            int f = (t = m.table) == null ? 0 : t.length;
4494 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4495          }
4496  
4497 +        public void forEach(Consumer<? super K> action) {
4498 +            if (action == null) throw new NullPointerException();
4499 +            Node<K,V>[] t;
4500 +            if ((t = map.table) != null) {
4501 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4502 +                for (Node<K,V> p; (p = it.advance()) != null; )
4503 +                    action.accept(p.key);
4504 +            }
4505 +        }
4506      }
4507  
4508      /**
4509       * A view of a ConcurrentHashMap as a {@link Collection} of
4510       * values, in which additions are disabled. This class cannot be
4511       * directly instantiated. See {@link #values()}.
4904     *
4905     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4906     * that will never throw {@link ConcurrentModificationException},
4907     * and guarantees to traverse elements as they existed upon
4908     * construction of the iterator, and may (but is not guaranteed to)
4909     * reflect any modifications subsequent to construction.
4512       */
4513 <    public static final class ValuesView<K,V>
4514 <            extends CHMCollectionView<K,V,V>
4913 <            implements Collection<V>, java.io.Serializable {
4513 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4514 >        implements Collection<V>, java.io.Serializable {
4515          private static final long serialVersionUID = 2249069246763182397L;
4516          ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4517          public final boolean contains(Object o) {
4518              return map.containsValue(o);
4519          }
4520 +
4521          public final boolean remove(Object o) {
4522              if (o != null) {
4523                  for (Iterator<V> it = iterator(); it.hasNext();) {
# Line 4928 | Line 4530 | public class ConcurrentHashMap<K,V>
4530              return false;
4531          }
4532  
4931        /**
4932         * @return an iterator over the values of the backing map
4933         */
4533          public final Iterator<V> iterator() {
4534 <            return new ValueIterator<K,V>(map);
4534 >            ConcurrentHashMap<K,V> m = map;
4535 >            Node<K,V>[] t;
4536 >            int f = (t = m.table) == null ? 0 : t.length;
4537 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4538          }
4539  
4938        /** Always throws {@link UnsupportedOperationException}. */
4540          public final boolean add(V e) {
4541              throw new UnsupportedOperationException();
4542          }
4942        /** Always throws {@link UnsupportedOperationException}. */
4543          public final boolean addAll(Collection<? extends V> c) {
4544              throw new UnsupportedOperationException();
4545          }
4546  
4547          public Spliterator<V> spliterator() {
4548 <            return new ValueIterator<K,V>(map, null);
4548 >            Node<K,V>[] t;
4549 >            ConcurrentHashMap<K,V> m = map;
4550 >            long n = m.sumCount();
4551 >            int f = (t = m.table) == null ? 0 : t.length;
4552 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4553          }
4554  
4555 +        public void forEach(Consumer<? super V> action) {
4556 +            if (action == null) throw new NullPointerException();
4557 +            Node<K,V>[] t;
4558 +            if ((t = map.table) != null) {
4559 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4560 +                for (Node<K,V> p; (p = it.advance()) != null; )
4561 +                    action.accept(p.val);
4562 +            }
4563 +        }
4564      }
4565  
4566      /**
# Line 4955 | Line 4568 | public class ConcurrentHashMap<K,V>
4568       * entries.  This class cannot be directly instantiated. See
4569       * {@link #entrySet()}.
4570       */
4571 <    public static final class EntrySetView<K,V>
4572 <            extends CHMSetView<K,V,Map.Entry<K,V>>
4960 <            implements Set<Map.Entry<K,V>>, java.io.Serializable {
4571 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4572 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4573          private static final long serialVersionUID = 2249069246763182397L;
4574          EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4575  
4576 <        public final boolean contains(Object o) {
4576 >        public boolean contains(Object o) {
4577              Object k, v, r; Map.Entry<?,?> e;
4578              return ((o instanceof Map.Entry) &&
4579                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4969 | Line 4581 | public class ConcurrentHashMap<K,V>
4581                      (v = e.getValue()) != null &&
4582                      (v == r || v.equals(r)));
4583          }
4584 <        public final boolean remove(Object o) {
4584 >
4585 >        public boolean remove(Object o) {
4586              Object k, v; Map.Entry<?,?> e;
4587              return ((o instanceof Map.Entry) &&
4588                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4980 | Line 4593 | public class ConcurrentHashMap<K,V>
4593          /**
4594           * @return an iterator over the entries of the backing map
4595           */
4596 <        public final Iterator<Map.Entry<K,V>> iterator() {
4597 <            return new EntryIterator<K,V>(map);
4596 >        public Iterator<Map.Entry<K,V>> iterator() {
4597 >            ConcurrentHashMap<K,V> m = map;
4598 >            Node<K,V>[] t;
4599 >            int f = (t = m.table) == null ? 0 : t.length;
4600 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4601          }
4602  
4603 <        /**
4604 <         * Adds the specified mapping to this view.
4989 <         *
4990 <         * @param e mapping to be added
4991 <         * @return {@code true} if this set changed as a result of the call
4992 <         * @throws NullPointerException if the entry, its key, or its
4993 <         * value is null
4994 <         */
4995 <        public final boolean add(Entry<K,V> e) {
4996 <            return map.internalPut(e.getKey(), e.getValue(), false) == null;
4603 >        public boolean add(Entry<K,V> e) {
4604 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4605          }
4606  
4607 <        /**
5000 <         * Adds all of the mappings in the specified collection to this
5001 <         * set, as if by calling {@link #add(Map.Entry)} on each one.
5002 <         * @param c the mappings to be inserted into this set
5003 <         * @return {@code true} if this set changed as a result of the call
5004 <         * @throws NullPointerException if the collection or any of its
5005 <         * entries, keys, or values are null
5006 <         */
5007 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4607 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4608              boolean added = false;
4609              for (Entry<K,V> e : c) {
4610                  if (add(e))
# Line 5013 | Line 4613 | public class ConcurrentHashMap<K,V>
4613              return added;
4614          }
4615  
4616 <        public Spliterator<Map.Entry<K,V>> spliterator() {
4617 <            return new EntryIterator<K,V>(map, null);
4618 <        }
4619 <
4620 <    }
4621 <
4622 <    // ---------------------------------------------------------------------
4623 <
4624 <    /**
4625 <     * Predefined tasks for performing bulk parallel operations on
5026 <     * ConcurrentHashMaps. These tasks follow the forms and rules used
5027 <     * for bulk operations. Each method has the same name, but returns
5028 <     * a task rather than invoking it. These methods may be useful in
5029 <     * custom applications such as submitting a task without waiting
5030 <     * for completion, using a custom pool, or combining with other
5031 <     * tasks.
5032 <     */
5033 <    public static class ForkJoinTasks {
5034 <        private ForkJoinTasks() {}
5035 <
5036 <        /**
5037 <         * Returns a task that when invoked, performs the given
5038 <         * action for each (key, value)
5039 <         *
5040 <         * @param map the map
5041 <         * @param action the action
5042 <         * @return the task
5043 <         */
5044 <        public static <K,V> ForkJoinTask<Void> forEach
5045 <            (ConcurrentHashMap<K,V> map,
5046 <             BiConsumer<? super K, ? super V> action) {
5047 <            if (action == null) throw new NullPointerException();
5048 <            return new ForEachMappingTask<K,V>(map, null, -1, action);
5049 <        }
5050 <
5051 <        /**
5052 <         * Returns a task that when invoked, performs the given
5053 <         * action for each non-null transformation of each (key, value)
5054 <         *
5055 <         * @param map the map
5056 <         * @param transformer a function returning the transformation
5057 <         * for an element, or null if there is no transformation (in
5058 <         * which case the action is not applied)
5059 <         * @param action the action
5060 <         * @return the task
5061 <         */
5062 <        public static <K,V,U> ForkJoinTask<Void> forEach
5063 <            (ConcurrentHashMap<K,V> map,
5064 <             BiFunction<? super K, ? super V, ? extends U> transformer,
5065 <             Consumer<? super U> action) {
5066 <            if (transformer == null || action == null)
5067 <                throw new NullPointerException();
5068 <            return new ForEachTransformedMappingTask<K,V,U>
5069 <                (map, null, -1, transformer, action);
5070 <        }
5071 <
5072 <        /**
5073 <         * Returns a task that when invoked, returns a non-null result
5074 <         * from applying the given search function on each (key,
5075 <         * value), or null if none. Upon success, further element
5076 <         * processing is suppressed and the results of any other
5077 <         * parallel invocations of the search function are ignored.
5078 <         *
5079 <         * @param map the map
5080 <         * @param searchFunction a function returning a non-null
5081 <         * result on success, else null
5082 <         * @return the task
5083 <         */
5084 <        public static <K,V,U> ForkJoinTask<U> search
5085 <            (ConcurrentHashMap<K,V> map,
5086 <             BiFunction<? super K, ? super V, ? extends U> searchFunction) {
5087 <            if (searchFunction == null) throw new NullPointerException();
5088 <            return new SearchMappingsTask<K,V,U>
5089 <                (map, null, -1, searchFunction,
5090 <                 new AtomicReference<U>());
5091 <        }
5092 <
5093 <        /**
5094 <         * Returns a task that when invoked, returns the result of
5095 <         * accumulating the given transformation of all (key, value) pairs
5096 <         * using the given reducer to combine values, or null if none.
5097 <         *
5098 <         * @param map the map
5099 <         * @param transformer a function returning the transformation
5100 <         * for an element, or null if there is no transformation (in
5101 <         * which case it is not combined)
5102 <         * @param reducer a commutative associative combining function
5103 <         * @return the task
5104 <         */
5105 <        public static <K,V,U> ForkJoinTask<U> reduce
5106 <            (ConcurrentHashMap<K,V> map,
5107 <             BiFunction<? super K, ? super V, ? extends U> transformer,
5108 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5109 <            if (transformer == null || reducer == null)
5110 <                throw new NullPointerException();
5111 <            return new MapReduceMappingsTask<K,V,U>
5112 <                (map, null, -1, null, transformer, reducer);
5113 <        }
5114 <
5115 <        /**
5116 <         * Returns a task that when invoked, returns the result of
5117 <         * accumulating the given transformation of all (key, value) pairs
5118 <         * using the given reducer to combine values, and the given
5119 <         * basis as an identity value.
5120 <         *
5121 <         * @param map the map
5122 <         * @param transformer a function returning the transformation
5123 <         * for an element
5124 <         * @param basis the identity (initial default value) for the reduction
5125 <         * @param reducer a commutative associative combining function
5126 <         * @return the task
5127 <         */
5128 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
5129 <            (ConcurrentHashMap<K,V> map,
5130 <             ToDoubleBiFunction<? super K, ? super V> transformer,
5131 <             double basis,
5132 <             DoubleBinaryOperator reducer) {
5133 <            if (transformer == null || reducer == null)
5134 <                throw new NullPointerException();
5135 <            return new MapReduceMappingsToDoubleTask<K,V>
5136 <                (map, null, -1, null, transformer, basis, reducer);
5137 <        }
5138 <
5139 <        /**
5140 <         * Returns a task that when invoked, returns the result of
5141 <         * accumulating the given transformation of all (key, value) pairs
5142 <         * using the given reducer to combine values, and the given
5143 <         * basis as an identity value.
5144 <         *
5145 <         * @param map the map
5146 <         * @param transformer a function returning the transformation
5147 <         * for an element
5148 <         * @param basis the identity (initial default value) for the reduction
5149 <         * @param reducer a commutative associative combining function
5150 <         * @return the task
5151 <         */
5152 <        public static <K,V> ForkJoinTask<Long> reduceToLong
5153 <            (ConcurrentHashMap<K,V> map,
5154 <             ToLongBiFunction<? super K, ? super V> transformer,
5155 <             long basis,
5156 <             LongBinaryOperator reducer) {
5157 <            if (transformer == null || reducer == null)
5158 <                throw new NullPointerException();
5159 <            return new MapReduceMappingsToLongTask<K,V>
5160 <                (map, null, -1, null, transformer, basis, reducer);
5161 <        }
5162 <
5163 <        /**
5164 <         * Returns a task that when invoked, returns the result of
5165 <         * accumulating the given transformation of all (key, value) pairs
5166 <         * using the given reducer to combine values, and the given
5167 <         * basis as an identity value.
5168 <         *
5169 <         * @param map the map
5170 <         * @param transformer a function returning the transformation
5171 <         * for an element
5172 <         * @param basis the identity (initial default value) for the reduction
5173 <         * @param reducer a commutative associative combining function
5174 <         * @return the task
5175 <         */
5176 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
5177 <            (ConcurrentHashMap<K,V> map,
5178 <             ToIntBiFunction<? super K, ? super V> transformer,
5179 <             int basis,
5180 <             IntBinaryOperator reducer) {
5181 <            if (transformer == null || reducer == null)
5182 <                throw new NullPointerException();
5183 <            return new MapReduceMappingsToIntTask<K,V>
5184 <                (map, null, -1, null, transformer, basis, reducer);
5185 <        }
5186 <
5187 <        /**
5188 <         * Returns a task that when invoked, performs the given action
5189 <         * for each key.
5190 <         *
5191 <         * @param map the map
5192 <         * @param action the action
5193 <         * @return the task
5194 <         */
5195 <        public static <K,V> ForkJoinTask<Void> forEachKey
5196 <            (ConcurrentHashMap<K,V> map,
5197 <             Consumer<? super K> action) {
5198 <            if (action == null) throw new NullPointerException();
5199 <            return new ForEachKeyTask<K,V>(map, null, -1, action);
5200 <        }
5201 <
5202 <        /**
5203 <         * Returns a task that when invoked, performs the given action
5204 <         * for each non-null transformation of each key.
5205 <         *
5206 <         * @param map the map
5207 <         * @param transformer a function returning the transformation
5208 <         * for an element, or null if there is no transformation (in
5209 <         * which case the action is not applied)
5210 <         * @param action the action
5211 <         * @return the task
5212 <         */
5213 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
5214 <            (ConcurrentHashMap<K,V> map,
5215 <             Function<? super K, ? extends U> transformer,
5216 <             Consumer<? super U> action) {
5217 <            if (transformer == null || action == null)
5218 <                throw new NullPointerException();
5219 <            return new ForEachTransformedKeyTask<K,V,U>
5220 <                (map, null, -1, transformer, action);
5221 <        }
5222 <
5223 <        /**
5224 <         * Returns a task that when invoked, returns a non-null result
5225 <         * from applying the given search function on each key, or
5226 <         * null if none.  Upon success, further element processing is
5227 <         * suppressed and the results of any other parallel
5228 <         * invocations of the search function are ignored.
5229 <         *
5230 <         * @param map the map
5231 <         * @param searchFunction a function returning a non-null
5232 <         * result on success, else null
5233 <         * @return the task
5234 <         */
5235 <        public static <K,V,U> ForkJoinTask<U> searchKeys
5236 <            (ConcurrentHashMap<K,V> map,
5237 <             Function<? super K, ? extends U> searchFunction) {
5238 <            if (searchFunction == null) throw new NullPointerException();
5239 <            return new SearchKeysTask<K,V,U>
5240 <                (map, null, -1, searchFunction,
5241 <                 new AtomicReference<U>());
5242 <        }
5243 <
5244 <        /**
5245 <         * Returns a task that when invoked, returns the result of
5246 <         * accumulating all keys using the given reducer to combine
5247 <         * values, or null if none.
5248 <         *
5249 <         * @param map the map
5250 <         * @param reducer a commutative associative combining function
5251 <         * @return the task
5252 <         */
5253 <        public static <K,V> ForkJoinTask<K> reduceKeys
5254 <            (ConcurrentHashMap<K,V> map,
5255 <             BiFunction<? super K, ? super K, ? extends K> reducer) {
5256 <            if (reducer == null) throw new NullPointerException();
5257 <            return new ReduceKeysTask<K,V>
5258 <                (map, null, -1, null, reducer);
5259 <        }
5260 <
5261 <        /**
5262 <         * Returns a task that when invoked, returns the result of
5263 <         * accumulating the given transformation of all keys using the given
5264 <         * reducer to combine values, or null if none.
5265 <         *
5266 <         * @param map the map
5267 <         * @param transformer a function returning the transformation
5268 <         * for an element, or null if there is no transformation (in
5269 <         * which case it is not combined)
5270 <         * @param reducer a commutative associative combining function
5271 <         * @return the task
5272 <         */
5273 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
5274 <            (ConcurrentHashMap<K,V> map,
5275 <             Function<? super K, ? extends U> transformer,
5276 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5277 <            if (transformer == null || reducer == null)
5278 <                throw new NullPointerException();
5279 <            return new MapReduceKeysTask<K,V,U>
5280 <                (map, null, -1, null, transformer, reducer);
5281 <        }
5282 <
5283 <        /**
5284 <         * Returns a task that when invoked, returns the result of
5285 <         * accumulating the given transformation of all keys using the given
5286 <         * reducer to combine values, and the given basis as an
5287 <         * identity value.
5288 <         *
5289 <         * @param map the map
5290 <         * @param transformer a function returning the transformation
5291 <         * for an element
5292 <         * @param basis the identity (initial default value) for the reduction
5293 <         * @param reducer a commutative associative combining function
5294 <         * @return the task
5295 <         */
5296 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5297 <            (ConcurrentHashMap<K,V> map,
5298 <             ToDoubleFunction<? super K> transformer,
5299 <             double basis,
5300 <             DoubleBinaryOperator reducer) {
5301 <            if (transformer == null || reducer == null)
5302 <                throw new NullPointerException();
5303 <            return new MapReduceKeysToDoubleTask<K,V>
5304 <                (map, null, -1, null, transformer, basis, reducer);
5305 <        }
5306 <
5307 <        /**
5308 <         * Returns a task that when invoked, returns the result of
5309 <         * accumulating the given transformation of all keys using the given
5310 <         * reducer to combine values, and the given basis as an
5311 <         * identity value.
5312 <         *
5313 <         * @param map the map
5314 <         * @param transformer a function returning the transformation
5315 <         * for an element
5316 <         * @param basis the identity (initial default value) for the reduction
5317 <         * @param reducer a commutative associative combining function
5318 <         * @return the task
5319 <         */
5320 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5321 <            (ConcurrentHashMap<K,V> map,
5322 <             ToLongFunction<? super K> transformer,
5323 <             long basis,
5324 <             LongBinaryOperator reducer) {
5325 <            if (transformer == null || reducer == null)
5326 <                throw new NullPointerException();
5327 <            return new MapReduceKeysToLongTask<K,V>
5328 <                (map, null, -1, null, transformer, basis, reducer);
5329 <        }
5330 <
5331 <        /**
5332 <         * Returns a task that when invoked, returns the result of
5333 <         * accumulating the given transformation of all keys using the given
5334 <         * reducer to combine values, and the given basis as an
5335 <         * identity value.
5336 <         *
5337 <         * @param map the map
5338 <         * @param transformer a function returning the transformation
5339 <         * for an element
5340 <         * @param basis the identity (initial default value) for the reduction
5341 <         * @param reducer a commutative associative combining function
5342 <         * @return the task
5343 <         */
5344 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5345 <            (ConcurrentHashMap<K,V> map,
5346 <             ToIntFunction<? super K> transformer,
5347 <             int basis,
5348 <             IntBinaryOperator reducer) {
5349 <            if (transformer == null || reducer == null)
5350 <                throw new NullPointerException();
5351 <            return new MapReduceKeysToIntTask<K,V>
5352 <                (map, null, -1, null, transformer, basis, reducer);
5353 <        }
5354 <
5355 <        /**
5356 <         * Returns a task that when invoked, performs the given action
5357 <         * for each value.
5358 <         *
5359 <         * @param map the map
5360 <         * @param action the action
5361 <         * @return the task
5362 <         */
5363 <        public static <K,V> ForkJoinTask<Void> forEachValue
5364 <            (ConcurrentHashMap<K,V> map,
5365 <             Consumer<? super V> action) {
5366 <            if (action == null) throw new NullPointerException();
5367 <            return new ForEachValueTask<K,V>(map, null, -1, action);
5368 <        }
5369 <
5370 <        /**
5371 <         * Returns a task that when invoked, performs the given action
5372 <         * for each non-null transformation of each value.
5373 <         *
5374 <         * @param map the map
5375 <         * @param transformer a function returning the transformation
5376 <         * for an element, or null if there is no transformation (in
5377 <         * which case the action is not applied)
5378 <         * @param action the action
5379 <         * @return the task
5380 <         */
5381 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
5382 <            (ConcurrentHashMap<K,V> map,
5383 <             Function<? super V, ? extends U> transformer,
5384 <             Consumer<? super U> action) {
5385 <            if (transformer == null || action == null)
5386 <                throw new NullPointerException();
5387 <            return new ForEachTransformedValueTask<K,V,U>
5388 <                (map, null, -1, transformer, action);
5389 <        }
5390 <
5391 <        /**
5392 <         * Returns a task that when invoked, returns a non-null result
5393 <         * from applying the given search function on each value, or
5394 <         * null if none.  Upon success, further element processing is
5395 <         * suppressed and the results of any other parallel
5396 <         * invocations of the search function are ignored.
5397 <         *
5398 <         * @param map the map
5399 <         * @param searchFunction a function returning a non-null
5400 <         * result on success, else null
5401 <         * @return the task
5402 <         */
5403 <        public static <K,V,U> ForkJoinTask<U> searchValues
5404 <            (ConcurrentHashMap<K,V> map,
5405 <             Function<? super V, ? extends U> searchFunction) {
5406 <            if (searchFunction == null) throw new NullPointerException();
5407 <            return new SearchValuesTask<K,V,U>
5408 <                (map, null, -1, searchFunction,
5409 <                 new AtomicReference<U>());
5410 <        }
5411 <
5412 <        /**
5413 <         * Returns a task that when invoked, returns the result of
5414 <         * accumulating all values using the given reducer to combine
5415 <         * values, or null if none.
5416 <         *
5417 <         * @param map the map
5418 <         * @param reducer a commutative associative combining function
5419 <         * @return the task
5420 <         */
5421 <        public static <K,V> ForkJoinTask<V> reduceValues
5422 <            (ConcurrentHashMap<K,V> map,
5423 <             BiFunction<? super V, ? super V, ? extends V> reducer) {
5424 <            if (reducer == null) throw new NullPointerException();
5425 <            return new ReduceValuesTask<K,V>
5426 <                (map, null, -1, null, reducer);
5427 <        }
5428 <
5429 <        /**
5430 <         * Returns a task that when invoked, returns the result of
5431 <         * accumulating the given transformation of all values using the
5432 <         * given reducer to combine values, or null if none.
5433 <         *
5434 <         * @param map the map
5435 <         * @param transformer a function returning the transformation
5436 <         * for an element, or null if there is no transformation (in
5437 <         * which case it is not combined)
5438 <         * @param reducer a commutative associative combining function
5439 <         * @return the task
5440 <         */
5441 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5442 <            (ConcurrentHashMap<K,V> map,
5443 <             Function<? super V, ? extends U> transformer,
5444 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5445 <            if (transformer == null || reducer == null)
5446 <                throw new NullPointerException();
5447 <            return new MapReduceValuesTask<K,V,U>
5448 <                (map, null, -1, null, transformer, reducer);
5449 <        }
5450 <
5451 <        /**
5452 <         * Returns a task that when invoked, returns the result of
5453 <         * accumulating the given transformation of all values using the
5454 <         * given reducer to combine values, and the given basis as an
5455 <         * identity value.
5456 <         *
5457 <         * @param map the map
5458 <         * @param transformer a function returning the transformation
5459 <         * for an element
5460 <         * @param basis the identity (initial default value) for the reduction
5461 <         * @param reducer a commutative associative combining function
5462 <         * @return the task
5463 <         */
5464 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5465 <            (ConcurrentHashMap<K,V> map,
5466 <             ToDoubleFunction<? super V> transformer,
5467 <             double basis,
5468 <             DoubleBinaryOperator reducer) {
5469 <            if (transformer == null || reducer == null)
5470 <                throw new NullPointerException();
5471 <            return new MapReduceValuesToDoubleTask<K,V>
5472 <                (map, null, -1, null, transformer, basis, reducer);
4616 >        public final int hashCode() {
4617 >            int h = 0;
4618 >            Node<K,V>[] t;
4619 >            if ((t = map.table) != null) {
4620 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4621 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4622 >                    h += p.hashCode();
4623 >                }
4624 >            }
4625 >            return h;
4626          }
4627  
4628 <        /**
4629 <         * Returns a task that when invoked, returns the result of
4630 <         * accumulating the given transformation of all values using the
4631 <         * given reducer to combine values, and the given basis as an
4632 <         * identity value.
5480 <         *
5481 <         * @param map the map
5482 <         * @param transformer a function returning the transformation
5483 <         * for an element
5484 <         * @param basis the identity (initial default value) for the reduction
5485 <         * @param reducer a commutative associative combining function
5486 <         * @return the task
5487 <         */
5488 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5489 <            (ConcurrentHashMap<K,V> map,
5490 <             ToLongFunction<? super V> transformer,
5491 <             long basis,
5492 <             LongBinaryOperator reducer) {
5493 <            if (transformer == null || reducer == null)
5494 <                throw new NullPointerException();
5495 <            return new MapReduceValuesToLongTask<K,V>
5496 <                (map, null, -1, null, transformer, basis, reducer);
4628 >        public final boolean equals(Object o) {
4629 >            Set<?> c;
4630 >            return ((o instanceof Set) &&
4631 >                    ((c = (Set<?>)o) == this ||
4632 >                     (containsAll(c) && c.containsAll(this))));
4633          }
4634  
4635 <        /**
4636 <         * Returns a task that when invoked, returns the result of
4637 <         * accumulating the given transformation of all values using the
4638 <         * given reducer to combine values, and the given basis as an
4639 <         * identity value.
4640 <         *
5505 <         * @param map the map
5506 <         * @param transformer a function returning the transformation
5507 <         * for an element
5508 <         * @param basis the identity (initial default value) for the reduction
5509 <         * @param reducer a commutative associative combining function
5510 <         * @return the task
5511 <         */
5512 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5513 <            (ConcurrentHashMap<K,V> map,
5514 <             ToIntFunction<? super V> transformer,
5515 <             int basis,
5516 <             IntBinaryOperator reducer) {
5517 <            if (transformer == null || reducer == null)
5518 <                throw new NullPointerException();
5519 <            return new MapReduceValuesToIntTask<K,V>
5520 <                (map, null, -1, null, transformer, basis, reducer);
4635 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4636 >            Node<K,V>[] t;
4637 >            ConcurrentHashMap<K,V> m = map;
4638 >            long n = m.sumCount();
4639 >            int f = (t = m.table) == null ? 0 : t.length;
4640 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4641          }
4642  
4643 <        /**
5524 <         * Returns a task that when invoked, perform the given action
5525 <         * for each entry.
5526 <         *
5527 <         * @param map the map
5528 <         * @param action the action
5529 <         * @return the task
5530 <         */
5531 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5532 <            (ConcurrentHashMap<K,V> map,
5533 <             Consumer<? super Map.Entry<K,V>> action) {
4643 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4644              if (action == null) throw new NullPointerException();
4645 <            return new ForEachEntryTask<K,V>(map, null, -1, action);
4646 <        }
4647 <
4648 <        /**
4649 <         * Returns a task that when invoked, perform the given action
4650 <         * for each non-null transformation of each entry.
5541 <         *
5542 <         * @param map the map
5543 <         * @param transformer a function returning the transformation
5544 <         * for an element, or null if there is no transformation (in
5545 <         * which case the action is not applied)
5546 <         * @param action the action
5547 <         * @return the task
5548 <         */
5549 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5550 <            (ConcurrentHashMap<K,V> map,
5551 <             Function<Map.Entry<K,V>, ? extends U> transformer,
5552 <             Consumer<? super U> action) {
5553 <            if (transformer == null || action == null)
5554 <                throw new NullPointerException();
5555 <            return new ForEachTransformedEntryTask<K,V,U>
5556 <                (map, null, -1, transformer, action);
5557 <        }
5558 <
5559 <        /**
5560 <         * Returns a task that when invoked, returns a non-null result
5561 <         * from applying the given search function on each entry, or
5562 <         * null if none.  Upon success, further element processing is
5563 <         * suppressed and the results of any other parallel
5564 <         * invocations of the search function are ignored.
5565 <         *
5566 <         * @param map the map
5567 <         * @param searchFunction a function returning a non-null
5568 <         * result on success, else null
5569 <         * @return the task
5570 <         */
5571 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5572 <            (ConcurrentHashMap<K,V> map,
5573 <             Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5574 <            if (searchFunction == null) throw new NullPointerException();
5575 <            return new SearchEntriesTask<K,V,U>
5576 <                (map, null, -1, searchFunction,
5577 <                 new AtomicReference<U>());
5578 <        }
5579 <
5580 <        /**
5581 <         * Returns a task that when invoked, returns the result of
5582 <         * accumulating all entries using the given reducer to combine
5583 <         * values, or null if none.
5584 <         *
5585 <         * @param map the map
5586 <         * @param reducer a commutative associative combining function
5587 <         * @return the task
5588 <         */
5589 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5590 <            (ConcurrentHashMap<K,V> map,
5591 <             BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5592 <            if (reducer == null) throw new NullPointerException();
5593 <            return new ReduceEntriesTask<K,V>
5594 <                (map, null, -1, null, reducer);
4645 >            Node<K,V>[] t;
4646 >            if ((t = map.table) != null) {
4647 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4648 >                for (Node<K,V> p; (p = it.advance()) != null; )
4649 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4650 >            }
4651          }
4652  
4653 <        /**
5598 <         * Returns a task that when invoked, returns the result of
5599 <         * accumulating the given transformation of all entries using the
5600 <         * given reducer to combine values, or null if none.
5601 <         *
5602 <         * @param map the map
5603 <         * @param transformer a function returning the transformation
5604 <         * for an element, or null if there is no transformation (in
5605 <         * which case it is not combined)
5606 <         * @param reducer a commutative associative combining function
5607 <         * @return the task
5608 <         */
5609 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5610 <            (ConcurrentHashMap<K,V> map,
5611 <             Function<Map.Entry<K,V>, ? extends U> transformer,
5612 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5613 <            if (transformer == null || reducer == null)
5614 <                throw new NullPointerException();
5615 <            return new MapReduceEntriesTask<K,V,U>
5616 <                (map, null, -1, null, transformer, reducer);
5617 <        }
4653 >    }
4654  
4655 <        /**
5620 <         * Returns a task that when invoked, returns the result of
5621 <         * accumulating the given transformation of all entries using the
5622 <         * given reducer to combine values, and the given basis as an
5623 <         * identity value.
5624 <         *
5625 <         * @param map the map
5626 <         * @param transformer a function returning the transformation
5627 <         * for an element
5628 <         * @param basis the identity (initial default value) for the reduction
5629 <         * @param reducer a commutative associative combining function
5630 <         * @return the task
5631 <         */
5632 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5633 <            (ConcurrentHashMap<K,V> map,
5634 <             ToDoubleFunction<Map.Entry<K,V>> transformer,
5635 <             double basis,
5636 <             DoubleBinaryOperator reducer) {
5637 <            if (transformer == null || reducer == null)
5638 <                throw new NullPointerException();
5639 <            return new MapReduceEntriesToDoubleTask<K,V>
5640 <                (map, null, -1, null, transformer, basis, reducer);
5641 <        }
4655 >    // -------------------------------------------------------
4656  
4657 <        /**
4658 <         * Returns a task that when invoked, returns the result of
4659 <         * accumulating the given transformation of all entries using the
4660 <         * given reducer to combine values, and the given basis as an
4661 <         * identity value.
4662 <         *
4663 <         * @param map the map
4664 <         * @param transformer a function returning the transformation
4665 <         * for an element
4666 <         * @param basis the identity (initial default value) for the reduction
4667 <         * @param reducer a commutative associative combining function
4668 <         * @return the task
4669 <         */
4670 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4671 <            (ConcurrentHashMap<K,V> map,
4672 <             ToLongFunction<Map.Entry<K,V>> transformer,
4673 <             long basis,
4674 <             LongBinaryOperator reducer) {
4675 <            if (transformer == null || reducer == null)
4676 <                throw new NullPointerException();
4677 <            return new MapReduceEntriesToLongTask<K,V>
4678 <                (map, null, -1, null, transformer, basis, reducer);
4657 >    /**
4658 >     * Base class for bulk tasks. Repeats some fields and code from
4659 >     * class Traverser, because we need to subclass CountedCompleter.
4660 >     */
4661 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4662 >        Node<K,V>[] tab;        // same as Traverser
4663 >        Node<K,V> next;
4664 >        int index;
4665 >        int baseIndex;
4666 >        int baseLimit;
4667 >        final int baseSize;
4668 >        int batch;              // split control
4669 >
4670 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4671 >            super(par);
4672 >            this.batch = b;
4673 >            this.index = this.baseIndex = i;
4674 >            if ((this.tab = t) == null)
4675 >                this.baseSize = this.baseLimit = 0;
4676 >            else if (par == null)
4677 >                this.baseSize = this.baseLimit = t.length;
4678 >            else {
4679 >                this.baseLimit = f;
4680 >                this.baseSize = par.baseSize;
4681 >            }
4682          }
4683  
4684          /**
4685 <         * Returns a task that when invoked, returns the result of
5669 <         * accumulating the given transformation of all entries using the
5670 <         * given reducer to combine values, and the given basis as an
5671 <         * identity value.
5672 <         *
5673 <         * @param map the map
5674 <         * @param transformer a function returning the transformation
5675 <         * for an element
5676 <         * @param basis the identity (initial default value) for the reduction
5677 <         * @param reducer a commutative associative combining function
5678 <         * @return the task
4685 >         * Same as Traverser version
4686           */
4687 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4688 <            (ConcurrentHashMap<K,V> map,
4689 <             ToIntFunction<Map.Entry<K,V>> transformer,
4690 <             int basis,
4691 <             IntBinaryOperator reducer) {
4692 <            if (transformer == null || reducer == null)
4693 <                throw new NullPointerException();
4694 <            return new MapReduceEntriesToIntTask<K,V>
4695 <                (map, null, -1, null, transformer, basis, reducer);
4687 >        final Node<K,V> advance() {
4688 >            Node<K,V> e;
4689 >            if ((e = next) != null)
4690 >                e = e.next;
4691 >            for (;;) {
4692 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4693 >                if (e != null)
4694 >                    return next = e;
4695 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4696 >                    (n = t.length) <= (i = index) || i < 0)
4697 >                    return next = null;
4698 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4699 >                    if (e instanceof ForwardingNode) {
4700 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4701 >                        e = null;
4702 >                        continue;
4703 >                    }
4704 >                    else if (e instanceof TreeBin)
4705 >                        e = ((TreeBin<K,V>)e).first;
4706 >                    else
4707 >                        e = null;
4708 >                }
4709 >                if ((index += baseSize) >= n)
4710 >                    index = ++baseIndex;    // visit upper slots if present
4711 >            }
4712          }
4713      }
4714  
5692    // -------------------------------------------------------
5693
4715      /*
4716       * Task classes. Coded in a regular but ugly format/style to
4717       * simplify checks that each variant differs in the right way from
# Line 5698 | Line 4719 | public class ConcurrentHashMap<K,V>
4719       * that we've already null-checked task arguments, so we force
4720       * simplest hoisted bypass to help avoid convoluted traps.
4721       */
4722 <
4723 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4724 <        extends Traverser<K,V,Void> {
4722 >    @SuppressWarnings("serial")
4723 >    static final class ForEachKeyTask<K,V>
4724 >        extends BulkTask<K,V,Void> {
4725          final Consumer<? super K> action;
4726          ForEachKeyTask
4727 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4727 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4728               Consumer<? super K> action) {
4729 <            super(m, p, b);
4729 >            super(p, b, i, f, t);
4730              this.action = action;
4731          }
4732          public final void compute() {
4733              final Consumer<? super K> action;
4734              if ((action = this.action) != null) {
4735 <                for (int b; (b = preSplit()) > 0;)
4736 <                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
4737 <                forEachKey(action);
4735 >                for (int i = baseIndex, f, h; batch > 0 &&
4736 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4737 >                    addToPendingCount(1);
4738 >                    new ForEachKeyTask<K,V>
4739 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4740 >                         action).fork();
4741 >                }
4742 >                for (Node<K,V> p; (p = advance()) != null;)
4743 >                    action.accept(p.key);
4744                  propagateCompletion();
4745              }
4746          }
4747      }
4748  
4749 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4750 <        extends Traverser<K,V,Void> {
4749 >    @SuppressWarnings("serial")
4750 >    static final class ForEachValueTask<K,V>
4751 >        extends BulkTask<K,V,Void> {
4752          final Consumer<? super V> action;
4753          ForEachValueTask
4754 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4754 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4755               Consumer<? super V> action) {
4756 <            super(m, p, b);
4756 >            super(p, b, i, f, t);
4757              this.action = action;
4758          }
4759          public final void compute() {
4760              final Consumer<? super V> action;
4761              if ((action = this.action) != null) {
4762 <                for (int b; (b = preSplit()) > 0;)
4763 <                    new ForEachValueTask<K,V>(map, this, b, action).fork();
4764 <                forEachValue(action);
4762 >                for (int i = baseIndex, f, h; batch > 0 &&
4763 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4764 >                    addToPendingCount(1);
4765 >                    new ForEachValueTask<K,V>
4766 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4767 >                         action).fork();
4768 >                }
4769 >                for (Node<K,V> p; (p = advance()) != null;)
4770 >                    action.accept(p.val);
4771                  propagateCompletion();
4772              }
4773          }
4774      }
4775  
4776 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4777 <        extends Traverser<K,V,Void> {
4776 >    @SuppressWarnings("serial")
4777 >    static final class ForEachEntryTask<K,V>
4778 >        extends BulkTask<K,V,Void> {
4779          final Consumer<? super Entry<K,V>> action;
4780          ForEachEntryTask
4781 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4781 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4782               Consumer<? super Entry<K,V>> action) {
4783 <            super(m, p, b);
4783 >            super(p, b, i, f, t);
4784              this.action = action;
4785          }
4786          public final void compute() {
4787              final Consumer<? super Entry<K,V>> action;
4788              if ((action = this.action) != null) {
4789 <                for (int b; (b = preSplit()) > 0;)
4790 <                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
4791 <                V v;
4792 <                while ((v = advanceValue()) != null)
4793 <                    action.accept(entryFor(nextKey, v));
4789 >                for (int i = baseIndex, f, h; batch > 0 &&
4790 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4791 >                    addToPendingCount(1);
4792 >                    new ForEachEntryTask<K,V>
4793 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4794 >                         action).fork();
4795 >                }
4796 >                for (Node<K,V> p; (p = advance()) != null; )
4797 >                    action.accept(p);
4798                  propagateCompletion();
4799              }
4800          }
4801      }
4802  
4803 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4804 <        extends Traverser<K,V,Void> {
4803 >    @SuppressWarnings("serial")
4804 >    static final class ForEachMappingTask<K,V>
4805 >        extends BulkTask<K,V,Void> {
4806          final BiConsumer<? super K, ? super V> action;
4807          ForEachMappingTask
4808 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4808 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4809               BiConsumer<? super K,? super V> action) {
4810 <            super(m, p, b);
4810 >            super(p, b, i, f, t);
4811              this.action = action;
4812          }
4813          public final void compute() {
4814              final BiConsumer<? super K, ? super V> action;
4815              if ((action = this.action) != null) {
4816 <                for (int b; (b = preSplit()) > 0;)
4817 <                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
4818 <                V v;
4819 <                while ((v = advanceValue()) != null)
4820 <                    action.accept(nextKey, v);
4816 >                for (int i = baseIndex, f, h; batch > 0 &&
4817 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4818 >                    addToPendingCount(1);
4819 >                    new ForEachMappingTask<K,V>
4820 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4821 >                         action).fork();
4822 >                }
4823 >                for (Node<K,V> p; (p = advance()) != null; )
4824 >                    action.accept(p.key, p.val);
4825                  propagateCompletion();
4826              }
4827          }
4828      }
4829  
4830 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4831 <        extends Traverser<K,V,Void> {
4830 >    @SuppressWarnings("serial")
4831 >    static final class ForEachTransformedKeyTask<K,V,U>
4832 >        extends BulkTask<K,V,Void> {
4833          final Function<? super K, ? extends U> transformer;
4834          final Consumer<? super U> action;
4835          ForEachTransformedKeyTask
4836 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4836 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4837               Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4838 <            super(m, p, b);
4838 >            super(p, b, i, f, t);
4839              this.transformer = transformer; this.action = action;
4840          }
4841          public final void compute() {
# Line 5798 | Line 4843 | public class ConcurrentHashMap<K,V>
4843              final Consumer<? super U> action;
4844              if ((transformer = this.transformer) != null &&
4845                  (action = this.action) != null) {
4846 <                for (int b; (b = preSplit()) > 0;)
4846 >                for (int i = baseIndex, f, h; batch > 0 &&
4847 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4848 >                    addToPendingCount(1);
4849                      new ForEachTransformedKeyTask<K,V,U>
4850 <                        (map, this, b, transformer, action).fork();
4851 <                K k; U u;
4852 <                while ((k = advanceKey()) != null) {
4853 <                    if ((u = transformer.apply(k)) != null)
4850 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4851 >                         transformer, action).fork();
4852 >                }
4853 >                for (Node<K,V> p; (p = advance()) != null; ) {
4854 >                    U u;
4855 >                    if ((u = transformer.apply(p.key)) != null)
4856                          action.accept(u);
4857                  }
4858                  propagateCompletion();
# Line 5811 | Line 4860 | public class ConcurrentHashMap<K,V>
4860          }
4861      }
4862  
4863 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4864 <        extends Traverser<K,V,Void> {
4863 >    @SuppressWarnings("serial")
4864 >    static final class ForEachTransformedValueTask<K,V,U>
4865 >        extends BulkTask<K,V,Void> {
4866          final Function<? super V, ? extends U> transformer;
4867          final Consumer<? super U> action;
4868          ForEachTransformedValueTask
4869 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4869 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4870               Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4871 <            super(m, p, b);
4871 >            super(p, b, i, f, t);
4872              this.transformer = transformer; this.action = action;
4873          }
4874          public final void compute() {
# Line 5826 | Line 4876 | public class ConcurrentHashMap<K,V>
4876              final Consumer<? super U> action;
4877              if ((transformer = this.transformer) != null &&
4878                  (action = this.action) != null) {
4879 <                for (int b; (b = preSplit()) > 0;)
4879 >                for (int i = baseIndex, f, h; batch > 0 &&
4880 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4881 >                    addToPendingCount(1);
4882                      new ForEachTransformedValueTask<K,V,U>
4883 <                        (map, this, b, transformer, action).fork();
4884 <                V v; U u;
4885 <                while ((v = advanceValue()) != null) {
4886 <                    if ((u = transformer.apply(v)) != null)
4883 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4884 >                         transformer, action).fork();
4885 >                }
4886 >                for (Node<K,V> p; (p = advance()) != null; ) {
4887 >                    U u;
4888 >                    if ((u = transformer.apply(p.val)) != null)
4889                          action.accept(u);
4890                  }
4891                  propagateCompletion();
# Line 5839 | Line 4893 | public class ConcurrentHashMap<K,V>
4893          }
4894      }
4895  
4896 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4897 <        extends Traverser<K,V,Void> {
4896 >    @SuppressWarnings("serial")
4897 >    static final class ForEachTransformedEntryTask<K,V,U>
4898 >        extends BulkTask<K,V,Void> {
4899          final Function<Map.Entry<K,V>, ? extends U> transformer;
4900          final Consumer<? super U> action;
4901          ForEachTransformedEntryTask
4902 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4902 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4903               Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4904 <            super(m, p, b);
4904 >            super(p, b, i, f, t);
4905              this.transformer = transformer; this.action = action;
4906          }
4907          public final void compute() {
# Line 5854 | Line 4909 | public class ConcurrentHashMap<K,V>
4909              final Consumer<? super U> action;
4910              if ((transformer = this.transformer) != null &&
4911                  (action = this.action) != null) {
4912 <                for (int b; (b = preSplit()) > 0;)
4912 >                for (int i = baseIndex, f, h; batch > 0 &&
4913 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4914 >                    addToPendingCount(1);
4915                      new ForEachTransformedEntryTask<K,V,U>
4916 <                        (map, this, b, transformer, action).fork();
4917 <                V v; U u;
4918 <                while ((v = advanceValue()) != null) {
4919 <                    if ((u = transformer.apply(entryFor(nextKey,
4920 <                                                        v))) != null)
4916 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4917 >                         transformer, action).fork();
4918 >                }
4919 >                for (Node<K,V> p; (p = advance()) != null; ) {
4920 >                    U u;
4921 >                    if ((u = transformer.apply(p)) != null)
4922                          action.accept(u);
4923                  }
4924                  propagateCompletion();
# Line 5868 | Line 4926 | public class ConcurrentHashMap<K,V>
4926          }
4927      }
4928  
4929 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4930 <        extends Traverser<K,V,Void> {
4929 >    @SuppressWarnings("serial")
4930 >    static final class ForEachTransformedMappingTask<K,V,U>
4931 >        extends BulkTask<K,V,Void> {
4932          final BiFunction<? super K, ? super V, ? extends U> transformer;
4933          final Consumer<? super U> action;
4934          ForEachTransformedMappingTask
4935 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4935 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4936               BiFunction<? super K, ? super V, ? extends U> transformer,
4937               Consumer<? super U> action) {
4938 <            super(m, p, b);
4938 >            super(p, b, i, f, t);
4939              this.transformer = transformer; this.action = action;
4940          }
4941          public final void compute() {
# Line 5884 | Line 4943 | public class ConcurrentHashMap<K,V>
4943              final Consumer<? super U> action;
4944              if ((transformer = this.transformer) != null &&
4945                  (action = this.action) != null) {
4946 <                for (int b; (b = preSplit()) > 0;)
4946 >                for (int i = baseIndex, f, h; batch > 0 &&
4947 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4948 >                    addToPendingCount(1);
4949                      new ForEachTransformedMappingTask<K,V,U>
4950 <                        (map, this, b, transformer, action).fork();
4951 <                V v; U u;
4952 <                while ((v = advanceValue()) != null) {
4953 <                    if ((u = transformer.apply(nextKey, v)) != null)
4950 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4951 >                         transformer, action).fork();
4952 >                }
4953 >                for (Node<K,V> p; (p = advance()) != null; ) {
4954 >                    U u;
4955 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4956                          action.accept(u);
4957                  }
4958                  propagateCompletion();
# Line 5897 | Line 4960 | public class ConcurrentHashMap<K,V>
4960          }
4961      }
4962  
4963 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4964 <        extends Traverser<K,V,U> {
4963 >    @SuppressWarnings("serial")
4964 >    static final class SearchKeysTask<K,V,U>
4965 >        extends BulkTask<K,V,U> {
4966          final Function<? super K, ? extends U> searchFunction;
4967          final AtomicReference<U> result;
4968          SearchKeysTask
4969 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4969 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4970               Function<? super K, ? extends U> searchFunction,
4971               AtomicReference<U> result) {
4972 <            super(m, p, b);
4972 >            super(p, b, i, f, t);
4973              this.searchFunction = searchFunction; this.result = result;
4974          }
4975          public final U getRawResult() { return result.get(); }
# Line 5914 | Line 4978 | public class ConcurrentHashMap<K,V>
4978              final AtomicReference<U> result;
4979              if ((searchFunction = this.searchFunction) != null &&
4980                  (result = this.result) != null) {
4981 <                for (int b;;) {
4981 >                for (int i = baseIndex, f, h; batch > 0 &&
4982 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4983                      if (result.get() != null)
4984                          return;
4985 <                    if ((b = preSplit()) <= 0)
5921 <                        break;
4985 >                    addToPendingCount(1);
4986                      new SearchKeysTask<K,V,U>
4987 <                        (map, this, b, searchFunction, result).fork();
4987 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4988 >                         searchFunction, result).fork();
4989                  }
4990                  while (result.get() == null) {
4991 <                    K k; U u;
4992 <                    if ((k = advanceKey()) == null) {
4991 >                    U u;
4992 >                    Node<K,V> p;
4993 >                    if ((p = advance()) == null) {
4994                          propagateCompletion();
4995                          break;
4996                      }
4997 <                    if ((u = searchFunction.apply(k)) != null) {
4997 >                    if ((u = searchFunction.apply(p.key)) != null) {
4998                          if (result.compareAndSet(null, u))
4999                              quietlyCompleteRoot();
5000                          break;
# Line 5938 | Line 5004 | public class ConcurrentHashMap<K,V>
5004          }
5005      }
5006  
5007 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5008 <        extends Traverser<K,V,U> {
5007 >    @SuppressWarnings("serial")
5008 >    static final class SearchValuesTask<K,V,U>
5009 >        extends BulkTask<K,V,U> {
5010          final Function<? super V, ? extends U> searchFunction;
5011          final AtomicReference<U> result;
5012          SearchValuesTask
5013 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5013 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5014               Function<? super V, ? extends U> searchFunction,
5015               AtomicReference<U> result) {
5016 <            super(m, p, b);
5016 >            super(p, b, i, f, t);
5017              this.searchFunction = searchFunction; this.result = result;
5018          }
5019          public final U getRawResult() { return result.get(); }
# Line 5955 | Line 5022 | public class ConcurrentHashMap<K,V>
5022              final AtomicReference<U> result;
5023              if ((searchFunction = this.searchFunction) != null &&
5024                  (result = this.result) != null) {
5025 <                for (int b;;) {
5025 >                for (int i = baseIndex, f, h; batch > 0 &&
5026 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5027                      if (result.get() != null)
5028                          return;
5029 <                    if ((b = preSplit()) <= 0)
5962 <                        break;
5029 >                    addToPendingCount(1);
5030                      new SearchValuesTask<K,V,U>
5031 <                        (map, this, b, searchFunction, result).fork();
5031 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5032 >                         searchFunction, result).fork();
5033                  }
5034                  while (result.get() == null) {
5035 <                    V v; U u;
5036 <                    if ((v = advanceValue()) == null) {
5035 >                    U u;
5036 >                    Node<K,V> p;
5037 >                    if ((p = advance()) == null) {
5038                          propagateCompletion();
5039                          break;
5040                      }
5041 <                    if ((u = searchFunction.apply(v)) != null) {
5041 >                    if ((u = searchFunction.apply(p.val)) != null) {
5042                          if (result.compareAndSet(null, u))
5043                              quietlyCompleteRoot();
5044                          break;
# Line 5979 | Line 5048 | public class ConcurrentHashMap<K,V>
5048          }
5049      }
5050  
5051 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5052 <        extends Traverser<K,V,U> {
5051 >    @SuppressWarnings("serial")
5052 >    static final class SearchEntriesTask<K,V,U>
5053 >        extends BulkTask<K,V,U> {
5054          final Function<Entry<K,V>, ? extends U> searchFunction;
5055          final AtomicReference<U> result;
5056          SearchEntriesTask
5057 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5057 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5058               Function<Entry<K,V>, ? extends U> searchFunction,
5059               AtomicReference<U> result) {
5060 <            super(m, p, b);
5060 >            super(p, b, i, f, t);
5061              this.searchFunction = searchFunction; this.result = result;
5062          }
5063          public final U getRawResult() { return result.get(); }
# Line 5996 | Line 5066 | public class ConcurrentHashMap<K,V>
5066              final AtomicReference<U> result;
5067              if ((searchFunction = this.searchFunction) != null &&
5068                  (result = this.result) != null) {
5069 <                for (int b;;) {
5069 >                for (int i = baseIndex, f, h; batch > 0 &&
5070 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5071                      if (result.get() != null)
5072                          return;
5073 <                    if ((b = preSplit()) <= 0)
6003 <                        break;
5073 >                    addToPendingCount(1);
5074                      new SearchEntriesTask<K,V,U>
5075 <                        (map, this, b, searchFunction, result).fork();
5075 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5076 >                         searchFunction, result).fork();
5077                  }
5078                  while (result.get() == null) {
5079 <                    V v; U u;
5080 <                    if ((v = advanceValue()) == null) {
5079 >                    U u;
5080 >                    Node<K,V> p;
5081 >                    if ((p = advance()) == null) {
5082                          propagateCompletion();
5083                          break;
5084                      }
5085 <                    if ((u = searchFunction.apply(entryFor(nextKey,
6014 <                                                           v))) != null) {
5085 >                    if ((u = searchFunction.apply(p)) != null) {
5086                          if (result.compareAndSet(null, u))
5087                              quietlyCompleteRoot();
5088                          return;
# Line 6021 | Line 5092 | public class ConcurrentHashMap<K,V>
5092          }
5093      }
5094  
5095 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5096 <        extends Traverser<K,V,U> {
5095 >    @SuppressWarnings("serial")
5096 >    static final class SearchMappingsTask<K,V,U>
5097 >        extends BulkTask<K,V,U> {
5098          final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5099          final AtomicReference<U> result;
5100          SearchMappingsTask
5101 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5101 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5102               BiFunction<? super K, ? super V, ? extends U> searchFunction,
5103               AtomicReference<U> result) {
5104 <            super(m, p, b);
5104 >            super(p, b, i, f, t);
5105              this.searchFunction = searchFunction; this.result = result;
5106          }
5107          public final U getRawResult() { return result.get(); }
# Line 6038 | Line 5110 | public class ConcurrentHashMap<K,V>
5110              final AtomicReference<U> result;
5111              if ((searchFunction = this.searchFunction) != null &&
5112                  (result = this.result) != null) {
5113 <                for (int b;;) {
5113 >                for (int i = baseIndex, f, h; batch > 0 &&
5114 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5115                      if (result.get() != null)
5116                          return;
5117 <                    if ((b = preSplit()) <= 0)
6045 <                        break;
5117 >                    addToPendingCount(1);
5118                      new SearchMappingsTask<K,V,U>
5119 <                        (map, this, b, searchFunction, result).fork();
5119 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5120 >                         searchFunction, result).fork();
5121                  }
5122                  while (result.get() == null) {
5123 <                    V v; U u;
5124 <                    if ((v = advanceValue()) == null) {
5123 >                    U u;
5124 >                    Node<K,V> p;
5125 >                    if ((p = advance()) == null) {
5126                          propagateCompletion();
5127                          break;
5128                      }
5129 <                    if ((u = searchFunction.apply(nextKey, v)) != null) {
5129 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5130                          if (result.compareAndSet(null, u))
5131                              quietlyCompleteRoot();
5132                          break;
# Line 6062 | Line 5136 | public class ConcurrentHashMap<K,V>
5136          }
5137      }
5138  
5139 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5140 <        extends Traverser<K,V,K> {
5139 >    @SuppressWarnings("serial")
5140 >    static final class ReduceKeysTask<K,V>
5141 >        extends BulkTask<K,V,K> {
5142          final BiFunction<? super K, ? super K, ? extends K> reducer;
5143          K result;
5144          ReduceKeysTask<K,V> rights, nextRight;
5145          ReduceKeysTask
5146 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5146 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5147               ReduceKeysTask<K,V> nextRight,
5148               BiFunction<? super K, ? super K, ? extends K> reducer) {
5149 <            super(m, p, b); this.nextRight = nextRight;
5149 >            super(p, b, i, f, t); this.nextRight = nextRight;
5150              this.reducer = reducer;
5151          }
5152          public final K getRawResult() { return result; }
5153 <        @SuppressWarnings("unchecked") public final void compute() {
5153 >        public final void compute() {
5154              final BiFunction<? super K, ? super K, ? extends K> reducer;
5155              if ((reducer = this.reducer) != null) {
5156 <                for (int b; (b = preSplit()) > 0;)
5156 >                for (int i = baseIndex, f, h; batch > 0 &&
5157 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5158 >                    addToPendingCount(1);
5159                      (rights = new ReduceKeysTask<K,V>
5160 <                     (map, this, b, rights, reducer)).fork();
5161 <                K u, r = null;
5162 <                while ((u = advanceKey()) != null) {
5160 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5161 >                      rights, reducer)).fork();
5162 >                }
5163 >                K r = null;
5164 >                for (Node<K,V> p; (p = advance()) != null; ) {
5165 >                    K u = p.key;
5166                      r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5167                  }
5168                  result = r;
5169                  CountedCompleter<?> c;
5170                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5171 <                    ReduceKeysTask<K,V>
5171 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5172                          t = (ReduceKeysTask<K,V>)c,
5173                          s = t.rights;
5174                      while (s != null) {
# Line 6103 | Line 5183 | public class ConcurrentHashMap<K,V>
5183          }
5184      }
5185  
5186 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5187 <        extends Traverser<K,V,V> {
5186 >    @SuppressWarnings("serial")
5187 >    static final class ReduceValuesTask<K,V>
5188 >        extends BulkTask<K,V,V> {
5189          final BiFunction<? super V, ? super V, ? extends V> reducer;
5190          V result;
5191          ReduceValuesTask<K,V> rights, nextRight;
5192          ReduceValuesTask
5193 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5193 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5194               ReduceValuesTask<K,V> nextRight,
5195               BiFunction<? super V, ? super V, ? extends V> reducer) {
5196 <            super(m, p, b); this.nextRight = nextRight;
5196 >            super(p, b, i, f, t); this.nextRight = nextRight;
5197              this.reducer = reducer;
5198          }
5199          public final V getRawResult() { return result; }
5200 <        @SuppressWarnings("unchecked") public final void compute() {
5200 >        public final void compute() {
5201              final BiFunction<? super V, ? super V, ? extends V> reducer;
5202              if ((reducer = this.reducer) != null) {
5203 <                for (int b; (b = preSplit()) > 0;)
5203 >                for (int i = baseIndex, f, h; batch > 0 &&
5204 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5205 >                    addToPendingCount(1);
5206                      (rights = new ReduceValuesTask<K,V>
5207 <                     (map, this, b, rights, reducer)).fork();
5208 <                V r = null, v;
5209 <                while ((v = advanceValue()) != null)
5207 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5208 >                      rights, reducer)).fork();
5209 >                }
5210 >                V r = null;
5211 >                for (Node<K,V> p; (p = advance()) != null; ) {
5212 >                    V v = p.val;
5213                      r = (r == null) ? v : reducer.apply(r, v);
5214 +                }
5215                  result = r;
5216                  CountedCompleter<?> c;
5217                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5218 <                    ReduceValuesTask<K,V>
5218 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5219                          t = (ReduceValuesTask<K,V>)c,
5220                          s = t.rights;
5221                      while (s != null) {
# Line 6143 | Line 5230 | public class ConcurrentHashMap<K,V>
5230          }
5231      }
5232  
5233 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5234 <        extends Traverser<K,V,Map.Entry<K,V>> {
5233 >    @SuppressWarnings("serial")
5234 >    static final class ReduceEntriesTask<K,V>
5235 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5236          final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5237          Map.Entry<K,V> result;
5238          ReduceEntriesTask<K,V> rights, nextRight;
5239          ReduceEntriesTask
5240 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5240 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5241               ReduceEntriesTask<K,V> nextRight,
5242               BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5243 <            super(m, p, b); this.nextRight = nextRight;
5243 >            super(p, b, i, f, t); this.nextRight = nextRight;
5244              this.reducer = reducer;
5245          }
5246          public final Map.Entry<K,V> getRawResult() { return result; }
5247 <        @SuppressWarnings("unchecked") public final void compute() {
5247 >        public final void compute() {
5248              final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5249              if ((reducer = this.reducer) != null) {
5250 <                for (int b; (b = preSplit()) > 0;)
5250 >                for (int i = baseIndex, f, h; batch > 0 &&
5251 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5252 >                    addToPendingCount(1);
5253                      (rights = new ReduceEntriesTask<K,V>
5254 <                     (map, this, b, rights, reducer)).fork();
5255 <                Map.Entry<K,V> r = null;
6166 <                V v;
6167 <                while ((v = advanceValue()) != null) {
6168 <                    Map.Entry<K,V> u = entryFor(nextKey, v);
6169 <                    r = (r == null) ? u : reducer.apply(r, u);
5254 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5255 >                      rights, reducer)).fork();
5256                  }
5257 +                Map.Entry<K,V> r = null;
5258 +                for (Node<K,V> p; (p = advance()) != null; )
5259 +                    r = (r == null) ? p : reducer.apply(r, p);
5260                  result = r;
5261                  CountedCompleter<?> c;
5262                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5263 <                    ReduceEntriesTask<K,V>
5263 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5264                          t = (ReduceEntriesTask<K,V>)c,
5265                          s = t.rights;
5266                      while (s != null) {
# Line 6186 | Line 5275 | public class ConcurrentHashMap<K,V>
5275          }
5276      }
5277  
5278 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5279 <        extends Traverser<K,V,U> {
5278 >    @SuppressWarnings("serial")
5279 >    static final class MapReduceKeysTask<K,V,U>
5280 >        extends BulkTask<K,V,U> {
5281          final Function<? super K, ? extends U> transformer;
5282          final BiFunction<? super U, ? super U, ? extends U> reducer;
5283          U result;
5284          MapReduceKeysTask<K,V,U> rights, nextRight;
5285          MapReduceKeysTask
5286 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5286 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5287               MapReduceKeysTask<K,V,U> nextRight,
5288               Function<? super K, ? extends U> transformer,
5289               BiFunction<? super U, ? super U, ? extends U> reducer) {
5290 <            super(m, p, b); this.nextRight = nextRight;
5290 >            super(p, b, i, f, t); this.nextRight = nextRight;
5291              this.transformer = transformer;
5292              this.reducer = reducer;
5293          }
5294          public final U getRawResult() { return result; }
5295 <        @SuppressWarnings("unchecked") public final void compute() {
5295 >        public final void compute() {
5296              final Function<? super K, ? extends U> transformer;
5297              final BiFunction<? super U, ? super U, ? extends U> reducer;
5298              if ((transformer = this.transformer) != null &&
5299                  (reducer = this.reducer) != null) {
5300 <                for (int b; (b = preSplit()) > 0;)
5300 >                for (int i = baseIndex, f, h; batch > 0 &&
5301 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5302 >                    addToPendingCount(1);
5303                      (rights = new MapReduceKeysTask<K,V,U>
5304 <                     (map, this, b, rights, transformer, reducer)).fork();
5305 <                K k; U r = null, u;
5306 <                while ((k = advanceKey()) != null) {
5307 <                    if ((u = transformer.apply(k)) != null)
5304 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5305 >                      rights, transformer, reducer)).fork();
5306 >                }
5307 >                U r = null;
5308 >                for (Node<K,V> p; (p = advance()) != null; ) {
5309 >                    U u;
5310 >                    if ((u = transformer.apply(p.key)) != null)
5311                          r = (r == null) ? u : reducer.apply(r, u);
5312                  }
5313                  result = r;
5314                  CountedCompleter<?> c;
5315                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5316 <                    MapReduceKeysTask<K,V,U>
5316 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5317                          t = (MapReduceKeysTask<K,V,U>)c,
5318                          s = t.rights;
5319                      while (s != null) {
# Line 6233 | Line 5328 | public class ConcurrentHashMap<K,V>
5328          }
5329      }
5330  
5331 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5332 <        extends Traverser<K,V,U> {
5331 >    @SuppressWarnings("serial")
5332 >    static final class MapReduceValuesTask<K,V,U>
5333 >        extends BulkTask<K,V,U> {
5334          final Function<? super V, ? extends U> transformer;
5335          final BiFunction<? super U, ? super U, ? extends U> reducer;
5336          U result;
5337          MapReduceValuesTask<K,V,U> rights, nextRight;
5338          MapReduceValuesTask
5339 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5339 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5340               MapReduceValuesTask<K,V,U> nextRight,
5341               Function<? super V, ? extends U> transformer,
5342               BiFunction<? super U, ? super U, ? extends U> reducer) {
5343 <            super(m, p, b); this.nextRight = nextRight;
5343 >            super(p, b, i, f, t); this.nextRight = nextRight;
5344              this.transformer = transformer;
5345              this.reducer = reducer;
5346          }
5347          public final U getRawResult() { return result; }
5348 <        @SuppressWarnings("unchecked") public final void compute() {
5348 >        public final void compute() {
5349              final Function<? super V, ? extends U> transformer;
5350              final BiFunction<? super U, ? super U, ? extends U> reducer;
5351              if ((transformer = this.transformer) != null &&
5352                  (reducer = this.reducer) != null) {
5353 <                for (int b; (b = preSplit()) > 0;)
5353 >                for (int i = baseIndex, f, h; batch > 0 &&
5354 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5355 >                    addToPendingCount(1);
5356                      (rights = new MapReduceValuesTask<K,V,U>
5357 <                     (map, this, b, rights, transformer, reducer)).fork();
5358 <                U r = null, u;
5359 <                V v;
5360 <                while ((v = advanceValue()) != null) {
5361 <                    if ((u = transformer.apply(v)) != null)
5357 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5358 >                      rights, transformer, reducer)).fork();
5359 >                }
5360 >                U r = null;
5361 >                for (Node<K,V> p; (p = advance()) != null; ) {
5362 >                    U u;
5363 >                    if ((u = transformer.apply(p.val)) != null)
5364                          r = (r == null) ? u : reducer.apply(r, u);
5365                  }
5366                  result = r;
5367                  CountedCompleter<?> c;
5368                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5369 <                    MapReduceValuesTask<K,V,U>
5369 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5370                          t = (MapReduceValuesTask<K,V,U>)c,
5371                          s = t.rights;
5372                      while (s != null) {
# Line 6281 | Line 5381 | public class ConcurrentHashMap<K,V>
5381          }
5382      }
5383  
5384 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5385 <        extends Traverser<K,V,U> {
5384 >    @SuppressWarnings("serial")
5385 >    static final class MapReduceEntriesTask<K,V,U>
5386 >        extends BulkTask<K,V,U> {
5387          final Function<Map.Entry<K,V>, ? extends U> transformer;
5388          final BiFunction<? super U, ? super U, ? extends U> reducer;
5389          U result;
5390          MapReduceEntriesTask<K,V,U> rights, nextRight;
5391          MapReduceEntriesTask
5392 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5392 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5393               MapReduceEntriesTask<K,V,U> nextRight,
5394               Function<Map.Entry<K,V>, ? extends U> transformer,
5395               BiFunction<? super U, ? super U, ? extends U> reducer) {
5396 <            super(m, p, b); this.nextRight = nextRight;
5396 >            super(p, b, i, f, t); this.nextRight = nextRight;
5397              this.transformer = transformer;
5398              this.reducer = reducer;
5399          }
5400          public final U getRawResult() { return result; }
5401 <        @SuppressWarnings("unchecked") public final void compute() {
5401 >        public final void compute() {
5402              final Function<Map.Entry<K,V>, ? extends U> transformer;
5403              final BiFunction<? super U, ? super U, ? extends U> reducer;
5404              if ((transformer = this.transformer) != null &&
5405                  (reducer = this.reducer) != null) {
5406 <                for (int b; (b = preSplit()) > 0;)
5406 >                for (int i = baseIndex, f, h; batch > 0 &&
5407 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5408 >                    addToPendingCount(1);
5409                      (rights = new MapReduceEntriesTask<K,V,U>
5410 <                     (map, this, b, rights, transformer, reducer)).fork();
5411 <                U r = null, u;
5412 <                V v;
5413 <                while ((v = advanceValue()) != null) {
5414 <                    if ((u = transformer.apply(entryFor(nextKey,
5415 <                                                        v))) != null)
5410 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5411 >                      rights, transformer, reducer)).fork();
5412 >                }
5413 >                U r = null;
5414 >                for (Node<K,V> p; (p = advance()) != null; ) {
5415 >                    U u;
5416 >                    if ((u = transformer.apply(p)) != null)
5417                          r = (r == null) ? u : reducer.apply(r, u);
5418                  }
5419                  result = r;
5420                  CountedCompleter<?> c;
5421                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5422 <                    MapReduceEntriesTask<K,V,U>
5422 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5423                          t = (MapReduceEntriesTask<K,V,U>)c,
5424                          s = t.rights;
5425                      while (s != null) {
# Line 6330 | Line 5434 | public class ConcurrentHashMap<K,V>
5434          }
5435      }
5436  
5437 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5438 <        extends Traverser<K,V,U> {
5437 >    @SuppressWarnings("serial")
5438 >    static final class MapReduceMappingsTask<K,V,U>
5439 >        extends BulkTask<K,V,U> {
5440          final BiFunction<? super K, ? super V, ? extends U> transformer;
5441          final BiFunction<? super U, ? super U, ? extends U> reducer;
5442          U result;
5443          MapReduceMappingsTask<K,V,U> rights, nextRight;
5444          MapReduceMappingsTask
5445 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5445 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5446               MapReduceMappingsTask<K,V,U> nextRight,
5447               BiFunction<? super K, ? super V, ? extends U> transformer,
5448               BiFunction<? super U, ? super U, ? extends U> reducer) {
5449 <            super(m, p, b); this.nextRight = nextRight;
5449 >            super(p, b, i, f, t); this.nextRight = nextRight;
5450              this.transformer = transformer;
5451              this.reducer = reducer;
5452          }
5453          public final U getRawResult() { return result; }
5454 <        @SuppressWarnings("unchecked") public final void compute() {
5454 >        public final void compute() {
5455              final BiFunction<? super K, ? super V, ? extends U> transformer;
5456              final BiFunction<? super U, ? super U, ? extends U> reducer;
5457              if ((transformer = this.transformer) != null &&
5458                  (reducer = this.reducer) != null) {
5459 <                for (int b; (b = preSplit()) > 0;)
5459 >                for (int i = baseIndex, f, h; batch > 0 &&
5460 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5461 >                    addToPendingCount(1);
5462                      (rights = new MapReduceMappingsTask<K,V,U>
5463 <                     (map, this, b, rights, transformer, reducer)).fork();
5464 <                U r = null, u;
5465 <                V v;
5466 <                while ((v = advanceValue()) != null) {
5467 <                    if ((u = transformer.apply(nextKey, v)) != null)
5463 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5464 >                      rights, transformer, reducer)).fork();
5465 >                }
5466 >                U r = null;
5467 >                for (Node<K,V> p; (p = advance()) != null; ) {
5468 >                    U u;
5469 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5470                          r = (r == null) ? u : reducer.apply(r, u);
5471                  }
5472                  result = r;
5473                  CountedCompleter<?> c;
5474                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5475 <                    MapReduceMappingsTask<K,V,U>
5475 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5476                          t = (MapReduceMappingsTask<K,V,U>)c,
5477                          s = t.rights;
5478                      while (s != null) {
# Line 6378 | Line 5487 | public class ConcurrentHashMap<K,V>
5487          }
5488      }
5489  
5490 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5491 <        extends Traverser<K,V,Double> {
5490 >    @SuppressWarnings("serial")
5491 >    static final class MapReduceKeysToDoubleTask<K,V>
5492 >        extends BulkTask<K,V,Double> {
5493          final ToDoubleFunction<? super K> transformer;
5494          final DoubleBinaryOperator reducer;
5495          final double basis;
5496          double result;
5497          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5498          MapReduceKeysToDoubleTask
5499 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5499 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5500               MapReduceKeysToDoubleTask<K,V> nextRight,
5501               ToDoubleFunction<? super K> transformer,
5502               double basis,
5503               DoubleBinaryOperator reducer) {
5504 <            super(m, p, b); this.nextRight = nextRight;
5504 >            super(p, b, i, f, t); this.nextRight = nextRight;
5505              this.transformer = transformer;
5506              this.basis = basis; this.reducer = reducer;
5507          }
5508          public final Double getRawResult() { return result; }
5509 <        @SuppressWarnings("unchecked") public final void compute() {
5509 >        public final void compute() {
5510              final ToDoubleFunction<? super K> transformer;
5511              final DoubleBinaryOperator reducer;
5512              if ((transformer = this.transformer) != null &&
5513                  (reducer = this.reducer) != null) {
5514                  double r = this.basis;
5515 <                for (int b; (b = preSplit()) > 0;)
5515 >                for (int i = baseIndex, f, h; batch > 0 &&
5516 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5517 >                    addToPendingCount(1);
5518                      (rights = new MapReduceKeysToDoubleTask<K,V>
5519 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5520 <                K k;
5521 <                while ((k = advanceKey()) != null)
5522 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
5519 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5520 >                      rights, transformer, r, reducer)).fork();
5521 >                }
5522 >                for (Node<K,V> p; (p = advance()) != null; )
5523 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5524                  result = r;
5525                  CountedCompleter<?> c;
5526                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5527 <                    MapReduceKeysToDoubleTask<K,V>
5527 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5528                          t = (MapReduceKeysToDoubleTask<K,V>)c,
5529                          s = t.rights;
5530                      while (s != null) {
# Line 6423 | Line 5536 | public class ConcurrentHashMap<K,V>
5536          }
5537      }
5538  
5539 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5540 <        extends Traverser<K,V,Double> {
5539 >    @SuppressWarnings("serial")
5540 >    static final class MapReduceValuesToDoubleTask<K,V>
5541 >        extends BulkTask<K,V,Double> {
5542          final ToDoubleFunction<? super V> transformer;
5543          final DoubleBinaryOperator reducer;
5544          final double basis;
5545          double result;
5546          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5547          MapReduceValuesToDoubleTask
5548 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5548 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5549               MapReduceValuesToDoubleTask<K,V> nextRight,
5550               ToDoubleFunction<? super V> transformer,
5551               double basis,
5552               DoubleBinaryOperator reducer) {
5553 <            super(m, p, b); this.nextRight = nextRight;
5553 >            super(p, b, i, f, t); this.nextRight = nextRight;
5554              this.transformer = transformer;
5555              this.basis = basis; this.reducer = reducer;
5556          }
5557          public final Double getRawResult() { return result; }
5558 <        @SuppressWarnings("unchecked") public final void compute() {
5558 >        public final void compute() {
5559              final ToDoubleFunction<? super V> transformer;
5560              final DoubleBinaryOperator reducer;
5561              if ((transformer = this.transformer) != null &&
5562                  (reducer = this.reducer) != null) {
5563                  double r = this.basis;
5564 <                for (int b; (b = preSplit()) > 0;)
5564 >                for (int i = baseIndex, f, h; batch > 0 &&
5565 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566 >                    addToPendingCount(1);
5567                      (rights = new MapReduceValuesToDoubleTask<K,V>
5568 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5569 <                V v;
5570 <                while ((v = advanceValue()) != null)
5571 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
5568 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5569 >                      rights, transformer, r, reducer)).fork();
5570 >                }
5571 >                for (Node<K,V> p; (p = advance()) != null; )
5572 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5573                  result = r;
5574                  CountedCompleter<?> c;
5575                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5576 <                    MapReduceValuesToDoubleTask<K,V>
5576 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5577                          t = (MapReduceValuesToDoubleTask<K,V>)c,
5578                          s = t.rights;
5579                      while (s != null) {
# Line 6468 | Line 5585 | public class ConcurrentHashMap<K,V>
5585          }
5586      }
5587  
5588 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5589 <        extends Traverser<K,V,Double> {
5588 >    @SuppressWarnings("serial")
5589 >    static final class MapReduceEntriesToDoubleTask<K,V>
5590 >        extends BulkTask<K,V,Double> {
5591          final ToDoubleFunction<Map.Entry<K,V>> transformer;
5592          final DoubleBinaryOperator reducer;
5593          final double basis;
5594          double result;
5595          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5596          MapReduceEntriesToDoubleTask
5597 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5597 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5598               MapReduceEntriesToDoubleTask<K,V> nextRight,
5599               ToDoubleFunction<Map.Entry<K,V>> transformer,
5600               double basis,
5601               DoubleBinaryOperator reducer) {
5602 <            super(m, p, b); this.nextRight = nextRight;
5602 >            super(p, b, i, f, t); this.nextRight = nextRight;
5603              this.transformer = transformer;
5604              this.basis = basis; this.reducer = reducer;
5605          }
5606          public final Double getRawResult() { return result; }
5607 <        @SuppressWarnings("unchecked") public final void compute() {
5607 >        public final void compute() {
5608              final ToDoubleFunction<Map.Entry<K,V>> transformer;
5609              final DoubleBinaryOperator reducer;
5610              if ((transformer = this.transformer) != null &&
5611                  (reducer = this.reducer) != null) {
5612                  double r = this.basis;
5613 <                for (int b; (b = preSplit()) > 0;)
5613 >                for (int i = baseIndex, f, h; batch > 0 &&
5614 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5615 >                    addToPendingCount(1);
5616                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5617 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5618 <                V v;
5619 <                while ((v = advanceValue()) != null)
5620 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
5621 <                                                                    v)));
5617 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5618 >                      rights, transformer, r, reducer)).fork();
5619 >                }
5620 >                for (Node<K,V> p; (p = advance()) != null; )
5621 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5622                  result = r;
5623                  CountedCompleter<?> c;
5624                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5625 <                    MapReduceEntriesToDoubleTask<K,V>
5625 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5626                          t = (MapReduceEntriesToDoubleTask<K,V>)c,
5627                          s = t.rights;
5628                      while (s != null) {
# Line 6514 | Line 5634 | public class ConcurrentHashMap<K,V>
5634          }
5635      }
5636  
5637 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5638 <        extends Traverser<K,V,Double> {
5637 >    @SuppressWarnings("serial")
5638 >    static final class MapReduceMappingsToDoubleTask<K,V>
5639 >        extends BulkTask<K,V,Double> {
5640          final ToDoubleBiFunction<? super K, ? super V> transformer;
5641          final DoubleBinaryOperator reducer;
5642          final double basis;
5643          double result;
5644          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5645          MapReduceMappingsToDoubleTask
5646 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5646 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5647               MapReduceMappingsToDoubleTask<K,V> nextRight,
5648               ToDoubleBiFunction<? super K, ? super V> transformer,
5649               double basis,
5650               DoubleBinaryOperator reducer) {
5651 <            super(m, p, b); this.nextRight = nextRight;
5651 >            super(p, b, i, f, t); this.nextRight = nextRight;
5652              this.transformer = transformer;
5653              this.basis = basis; this.reducer = reducer;
5654          }
5655          public final Double getRawResult() { return result; }
5656 <        @SuppressWarnings("unchecked") public final void compute() {
5656 >        public final void compute() {
5657              final ToDoubleBiFunction<? super K, ? super V> transformer;
5658              final DoubleBinaryOperator reducer;
5659              if ((transformer = this.transformer) != null &&
5660                  (reducer = this.reducer) != null) {
5661                  double r = this.basis;
5662 <                for (int b; (b = preSplit()) > 0;)
5662 >                for (int i = baseIndex, f, h; batch > 0 &&
5663 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5664 >                    addToPendingCount(1);
5665                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5666 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5667 <                V v;
5668 <                while ((v = advanceValue()) != null)
5669 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
5666 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5667 >                      rights, transformer, r, reducer)).fork();
5668 >                }
5669 >                for (Node<K,V> p; (p = advance()) != null; )
5670 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5671                  result = r;
5672                  CountedCompleter<?> c;
5673                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5674 <                    MapReduceMappingsToDoubleTask<K,V>
5674 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5675                          t = (MapReduceMappingsToDoubleTask<K,V>)c,
5676                          s = t.rights;
5677                      while (s != null) {
# Line 6559 | Line 5683 | public class ConcurrentHashMap<K,V>
5683          }
5684      }
5685  
5686 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5687 <        extends Traverser<K,V,Long> {
5686 >    @SuppressWarnings("serial")
5687 >    static final class MapReduceKeysToLongTask<K,V>
5688 >        extends BulkTask<K,V,Long> {
5689          final ToLongFunction<? super K> transformer;
5690          final LongBinaryOperator reducer;
5691          final long basis;
5692          long result;
5693          MapReduceKeysToLongTask<K,V> rights, nextRight;
5694          MapReduceKeysToLongTask
5695 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5695 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5696               MapReduceKeysToLongTask<K,V> nextRight,
5697               ToLongFunction<? super K> transformer,
5698               long basis,
5699               LongBinaryOperator reducer) {
5700 <            super(m, p, b); this.nextRight = nextRight;
5700 >            super(p, b, i, f, t); this.nextRight = nextRight;
5701              this.transformer = transformer;
5702              this.basis = basis; this.reducer = reducer;
5703          }
5704          public final Long getRawResult() { return result; }
5705 <        @SuppressWarnings("unchecked") public final void compute() {
5705 >        public final void compute() {
5706              final ToLongFunction<? super K> transformer;
5707              final LongBinaryOperator reducer;
5708              if ((transformer = this.transformer) != null &&
5709                  (reducer = this.reducer) != null) {
5710                  long r = this.basis;
5711 <                for (int b; (b = preSplit()) > 0;)
5711 >                for (int i = baseIndex, f, h; batch > 0 &&
5712 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5713 >                    addToPendingCount(1);
5714                      (rights = new MapReduceKeysToLongTask<K,V>
5715 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5716 <                K k;
5717 <                while ((k = advanceKey()) != null)
5718 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(k));
5715 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5716 >                      rights, transformer, r, reducer)).fork();
5717 >                }
5718 >                for (Node<K,V> p; (p = advance()) != null; )
5719 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5720                  result = r;
5721                  CountedCompleter<?> c;
5722                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5723 <                    MapReduceKeysToLongTask<K,V>
5723 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5724                          t = (MapReduceKeysToLongTask<K,V>)c,
5725                          s = t.rights;
5726                      while (s != null) {
# Line 6604 | Line 5732 | public class ConcurrentHashMap<K,V>
5732          }
5733      }
5734  
5735 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5736 <        extends Traverser<K,V,Long> {
5735 >    @SuppressWarnings("serial")
5736 >    static final class MapReduceValuesToLongTask<K,V>
5737 >        extends BulkTask<K,V,Long> {
5738          final ToLongFunction<? super V> transformer;
5739          final LongBinaryOperator reducer;
5740          final long basis;
5741          long result;
5742          MapReduceValuesToLongTask<K,V> rights, nextRight;
5743          MapReduceValuesToLongTask
5744 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5744 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5745               MapReduceValuesToLongTask<K,V> nextRight,
5746               ToLongFunction<? super V> transformer,
5747               long basis,
5748               LongBinaryOperator reducer) {
5749 <            super(m, p, b); this.nextRight = nextRight;
5749 >            super(p, b, i, f, t); this.nextRight = nextRight;
5750              this.transformer = transformer;
5751              this.basis = basis; this.reducer = reducer;
5752          }
5753          public final Long getRawResult() { return result; }
5754 <        @SuppressWarnings("unchecked") public final void compute() {
5754 >        public final void compute() {
5755              final ToLongFunction<? super V> transformer;
5756              final LongBinaryOperator reducer;
5757              if ((transformer = this.transformer) != null &&
5758                  (reducer = this.reducer) != null) {
5759                  long r = this.basis;
5760 <                for (int b; (b = preSplit()) > 0;)
5760 >                for (int i = baseIndex, f, h; batch > 0 &&
5761 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5762 >                    addToPendingCount(1);
5763                      (rights = new MapReduceValuesToLongTask<K,V>
5764 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5765 <                V v;
5766 <                while ((v = advanceValue()) != null)
5767 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(v));
5764 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5765 >                      rights, transformer, r, reducer)).fork();
5766 >                }
5767 >                for (Node<K,V> p; (p = advance()) != null; )
5768 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5769                  result = r;
5770                  CountedCompleter<?> c;
5771                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5772 <                    MapReduceValuesToLongTask<K,V>
5772 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5773                          t = (MapReduceValuesToLongTask<K,V>)c,
5774                          s = t.rights;
5775                      while (s != null) {
# Line 6649 | Line 5781 | public class ConcurrentHashMap<K,V>
5781          }
5782      }
5783  
5784 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5785 <        extends Traverser<K,V,Long> {
5784 >    @SuppressWarnings("serial")
5785 >    static final class MapReduceEntriesToLongTask<K,V>
5786 >        extends BulkTask<K,V,Long> {
5787          final ToLongFunction<Map.Entry<K,V>> transformer;
5788          final LongBinaryOperator reducer;
5789          final long basis;
5790          long result;
5791          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5792          MapReduceEntriesToLongTask
5793 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5793 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5794               MapReduceEntriesToLongTask<K,V> nextRight,
5795               ToLongFunction<Map.Entry<K,V>> transformer,
5796               long basis,
5797               LongBinaryOperator reducer) {
5798 <            super(m, p, b); this.nextRight = nextRight;
5798 >            super(p, b, i, f, t); this.nextRight = nextRight;
5799              this.transformer = transformer;
5800              this.basis = basis; this.reducer = reducer;
5801          }
5802          public final Long getRawResult() { return result; }
5803 <        @SuppressWarnings("unchecked") public final void compute() {
5803 >        public final void compute() {
5804              final ToLongFunction<Map.Entry<K,V>> transformer;
5805              final LongBinaryOperator reducer;
5806              if ((transformer = this.transformer) != null &&
5807                  (reducer = this.reducer) != null) {
5808                  long r = this.basis;
5809 <                for (int b; (b = preSplit()) > 0;)
5809 >                for (int i = baseIndex, f, h; batch > 0 &&
5810 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5811 >                    addToPendingCount(1);
5812                      (rights = new MapReduceEntriesToLongTask<K,V>
5813 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5814 <                V v;
5815 <                while ((v = advanceValue()) != null)
5816 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
5813 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5814 >                      rights, transformer, r, reducer)).fork();
5815 >                }
5816 >                for (Node<K,V> p; (p = advance()) != null; )
5817 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5818                  result = r;
5819                  CountedCompleter<?> c;
5820                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5821 <                    MapReduceEntriesToLongTask<K,V>
5821 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5822                          t = (MapReduceEntriesToLongTask<K,V>)c,
5823                          s = t.rights;
5824                      while (s != null) {
# Line 6694 | Line 5830 | public class ConcurrentHashMap<K,V>
5830          }
5831      }
5832  
5833 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5834 <        extends Traverser<K,V,Long> {
5833 >    @SuppressWarnings("serial")
5834 >    static final class MapReduceMappingsToLongTask<K,V>
5835 >        extends BulkTask<K,V,Long> {
5836          final ToLongBiFunction<? super K, ? super V> transformer;
5837          final LongBinaryOperator reducer;
5838          final long basis;
5839          long result;
5840          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5841          MapReduceMappingsToLongTask
5842 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5842 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5843               MapReduceMappingsToLongTask<K,V> nextRight,
5844               ToLongBiFunction<? super K, ? super V> transformer,
5845               long basis,
5846               LongBinaryOperator reducer) {
5847 <            super(m, p, b); this.nextRight = nextRight;
5847 >            super(p, b, i, f, t); this.nextRight = nextRight;
5848              this.transformer = transformer;
5849              this.basis = basis; this.reducer = reducer;
5850          }
5851          public final Long getRawResult() { return result; }
5852 <        @SuppressWarnings("unchecked") public final void compute() {
5852 >        public final void compute() {
5853              final ToLongBiFunction<? super K, ? super V> transformer;
5854              final LongBinaryOperator reducer;
5855              if ((transformer = this.transformer) != null &&
5856                  (reducer = this.reducer) != null) {
5857                  long r = this.basis;
5858 <                for (int b; (b = preSplit()) > 0;)
5858 >                for (int i = baseIndex, f, h; batch > 0 &&
5859 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5860 >                    addToPendingCount(1);
5861                      (rights = new MapReduceMappingsToLongTask<K,V>
5862 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5863 <                V v;
5864 <                while ((v = advanceValue()) != null)
5865 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
5862 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5863 >                      rights, transformer, r, reducer)).fork();
5864 >                }
5865 >                for (Node<K,V> p; (p = advance()) != null; )
5866 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5867                  result = r;
5868                  CountedCompleter<?> c;
5869                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5870 <                    MapReduceMappingsToLongTask<K,V>
5870 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5871                          t = (MapReduceMappingsToLongTask<K,V>)c,
5872                          s = t.rights;
5873                      while (s != null) {
# Line 6739 | Line 5879 | public class ConcurrentHashMap<K,V>
5879          }
5880      }
5881  
5882 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5883 <        extends Traverser<K,V,Integer> {
5882 >    @SuppressWarnings("serial")
5883 >    static final class MapReduceKeysToIntTask<K,V>
5884 >        extends BulkTask<K,V,Integer> {
5885          final ToIntFunction<? super K> transformer;
5886          final IntBinaryOperator reducer;
5887          final int basis;
5888          int result;
5889          MapReduceKeysToIntTask<K,V> rights, nextRight;
5890          MapReduceKeysToIntTask
5891 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5891 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5892               MapReduceKeysToIntTask<K,V> nextRight,
5893               ToIntFunction<? super K> transformer,
5894               int basis,
5895               IntBinaryOperator reducer) {
5896 <            super(m, p, b); this.nextRight = nextRight;
5896 >            super(p, b, i, f, t); this.nextRight = nextRight;
5897              this.transformer = transformer;
5898              this.basis = basis; this.reducer = reducer;
5899          }
5900          public final Integer getRawResult() { return result; }
5901 <        @SuppressWarnings("unchecked") public final void compute() {
5901 >        public final void compute() {
5902              final ToIntFunction<? super K> transformer;
5903              final IntBinaryOperator reducer;
5904              if ((transformer = this.transformer) != null &&
5905                  (reducer = this.reducer) != null) {
5906                  int r = this.basis;
5907 <                for (int b; (b = preSplit()) > 0;)
5907 >                for (int i = baseIndex, f, h; batch > 0 &&
5908 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5909 >                    addToPendingCount(1);
5910                      (rights = new MapReduceKeysToIntTask<K,V>
5911 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5912 <                K k;
5913 <                while ((k = advanceKey()) != null)
5914 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(k));
5911 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5912 >                      rights, transformer, r, reducer)).fork();
5913 >                }
5914 >                for (Node<K,V> p; (p = advance()) != null; )
5915 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5916                  result = r;
5917                  CountedCompleter<?> c;
5918                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5919 <                    MapReduceKeysToIntTask<K,V>
5919 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5920                          t = (MapReduceKeysToIntTask<K,V>)c,
5921                          s = t.rights;
5922                      while (s != null) {
# Line 6784 | Line 5928 | public class ConcurrentHashMap<K,V>
5928          }
5929      }
5930  
5931 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5932 <        extends Traverser<K,V,Integer> {
5931 >    @SuppressWarnings("serial")
5932 >    static final class MapReduceValuesToIntTask<K,V>
5933 >        extends BulkTask<K,V,Integer> {
5934          final ToIntFunction<? super V> transformer;
5935          final IntBinaryOperator reducer;
5936          final int basis;
5937          int result;
5938          MapReduceValuesToIntTask<K,V> rights, nextRight;
5939          MapReduceValuesToIntTask
5940 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5940 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5941               MapReduceValuesToIntTask<K,V> nextRight,
5942               ToIntFunction<? super V> transformer,
5943               int basis,
5944               IntBinaryOperator reducer) {
5945 <            super(m, p, b); this.nextRight = nextRight;
5945 >            super(p, b, i, f, t); this.nextRight = nextRight;
5946              this.transformer = transformer;
5947              this.basis = basis; this.reducer = reducer;
5948          }
5949          public final Integer getRawResult() { return result; }
5950 <        @SuppressWarnings("unchecked") public final void compute() {
5950 >        public final void compute() {
5951              final ToIntFunction<? super V> transformer;
5952              final IntBinaryOperator reducer;
5953              if ((transformer = this.transformer) != null &&
5954                  (reducer = this.reducer) != null) {
5955                  int r = this.basis;
5956 <                for (int b; (b = preSplit()) > 0;)
5956 >                for (int i = baseIndex, f, h; batch > 0 &&
5957 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5958 >                    addToPendingCount(1);
5959                      (rights = new MapReduceValuesToIntTask<K,V>
5960 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5961 <                V v;
5962 <                while ((v = advanceValue()) != null)
5963 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(v));
5960 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5961 >                      rights, transformer, r, reducer)).fork();
5962 >                }
5963 >                for (Node<K,V> p; (p = advance()) != null; )
5964 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5965                  result = r;
5966                  CountedCompleter<?> c;
5967                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5968 <                    MapReduceValuesToIntTask<K,V>
5968 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5969                          t = (MapReduceValuesToIntTask<K,V>)c,
5970                          s = t.rights;
5971                      while (s != null) {
# Line 6829 | Line 5977 | public class ConcurrentHashMap<K,V>
5977          }
5978      }
5979  
5980 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
5981 <        extends Traverser<K,V,Integer> {
5980 >    @SuppressWarnings("serial")
5981 >    static final class MapReduceEntriesToIntTask<K,V>
5982 >        extends BulkTask<K,V,Integer> {
5983          final ToIntFunction<Map.Entry<K,V>> transformer;
5984          final IntBinaryOperator reducer;
5985          final int basis;
5986          int result;
5987          MapReduceEntriesToIntTask<K,V> rights, nextRight;
5988          MapReduceEntriesToIntTask
5989 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5989 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5990               MapReduceEntriesToIntTask<K,V> nextRight,
5991               ToIntFunction<Map.Entry<K,V>> transformer,
5992               int basis,
5993               IntBinaryOperator reducer) {
5994 <            super(m, p, b); this.nextRight = nextRight;
5994 >            super(p, b, i, f, t); this.nextRight = nextRight;
5995              this.transformer = transformer;
5996              this.basis = basis; this.reducer = reducer;
5997          }
5998          public final Integer getRawResult() { return result; }
5999 <        @SuppressWarnings("unchecked") public final void compute() {
5999 >        public final void compute() {
6000              final ToIntFunction<Map.Entry<K,V>> transformer;
6001              final IntBinaryOperator reducer;
6002              if ((transformer = this.transformer) != null &&
6003                  (reducer = this.reducer) != null) {
6004                  int r = this.basis;
6005 <                for (int b; (b = preSplit()) > 0;)
6005 >                for (int i = baseIndex, f, h; batch > 0 &&
6006 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6007 >                    addToPendingCount(1);
6008                      (rights = new MapReduceEntriesToIntTask<K,V>
6009 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6010 <                V v;
6011 <                while ((v = advanceValue()) != null)
6012 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6013 <                                                                    v)));
6009 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6010 >                      rights, transformer, r, reducer)).fork();
6011 >                }
6012 >                for (Node<K,V> p; (p = advance()) != null; )
6013 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6014                  result = r;
6015                  CountedCompleter<?> c;
6016                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6017 <                    MapReduceEntriesToIntTask<K,V>
6017 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6018                          t = (MapReduceEntriesToIntTask<K,V>)c,
6019                          s = t.rights;
6020                      while (s != null) {
# Line 6875 | Line 6026 | public class ConcurrentHashMap<K,V>
6026          }
6027      }
6028  
6029 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6030 <        extends Traverser<K,V,Integer> {
6029 >    @SuppressWarnings("serial")
6030 >    static final class MapReduceMappingsToIntTask<K,V>
6031 >        extends BulkTask<K,V,Integer> {
6032          final ToIntBiFunction<? super K, ? super V> transformer;
6033          final IntBinaryOperator reducer;
6034          final int basis;
6035          int result;
6036          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6037          MapReduceMappingsToIntTask
6038 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6038 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6039               MapReduceMappingsToIntTask<K,V> nextRight,
6040               ToIntBiFunction<? super K, ? super V> transformer,
6041               int basis,
6042               IntBinaryOperator reducer) {
6043 <            super(m, p, b); this.nextRight = nextRight;
6043 >            super(p, b, i, f, t); this.nextRight = nextRight;
6044              this.transformer = transformer;
6045              this.basis = basis; this.reducer = reducer;
6046          }
6047          public final Integer getRawResult() { return result; }
6048 <        @SuppressWarnings("unchecked") public final void compute() {
6048 >        public final void compute() {
6049              final ToIntBiFunction<? super K, ? super V> transformer;
6050              final IntBinaryOperator reducer;
6051              if ((transformer = this.transformer) != null &&
6052                  (reducer = this.reducer) != null) {
6053                  int r = this.basis;
6054 <                for (int b; (b = preSplit()) > 0;)
6054 >                for (int i = baseIndex, f, h; batch > 0 &&
6055 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6056 >                    addToPendingCount(1);
6057                      (rights = new MapReduceMappingsToIntTask<K,V>
6058 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6059 <                V v;
6060 <                while ((v = advanceValue()) != null)
6061 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6058 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6059 >                      rights, transformer, r, reducer)).fork();
6060 >                }
6061 >                for (Node<K,V> p; (p = advance()) != null; )
6062 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6063                  result = r;
6064                  CountedCompleter<?> c;
6065                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6066 <                    MapReduceMappingsToIntTask<K,V>
6066 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6067                          t = (MapReduceMappingsToIntTask<K,V>)c,
6068                          s = t.rights;
6069                      while (s != null) {
# Line 6945 | Line 6100 | public class ConcurrentHashMap<K,V>
6100                  (k.getDeclaredField("baseCount"));
6101              CELLSBUSY = U.objectFieldOffset
6102                  (k.getDeclaredField("cellsBusy"));
6103 <            Class<?> ck = Cell.class;
6103 >            Class<?> ck = CounterCell.class;
6104              CELLVALUE = U.objectFieldOffset
6105                  (ck.getDeclaredField("value"));
6106 <            Class<?> sc = Node[].class;
6107 <            ABASE = U.arrayBaseOffset(sc);
6108 <            int scale = U.arrayIndexScale(sc);
6106 >            Class<?> ak = Node[].class;
6107 >            ABASE = U.arrayBaseOffset(ak);
6108 >            int scale = U.arrayIndexScale(ak);
6109              if ((scale & (scale - 1)) != 0)
6110                  throw new Error("data type scale not a power of two");
6111              ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
# Line 6958 | Line 6113 | public class ConcurrentHashMap<K,V>
6113              throw new Error(e);
6114          }
6115      }
6961
6116   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines