ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.4 by dl, Fri Jun 6 14:17:16 2003 UTC vs.
Revision 1.238 by jsr166, Thu Jul 18 18:21:22 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3 < * Expert Group and released to the public domain. Use, modify, and
4 < * redistribute this code in any way without acknowledgement.
3 > * Expert Group and released to the public domain, as explained at
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8  
9 < import java.util.*;
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Comparator;
17 > import java.util.ConcurrentModificationException;
18 > import java.util.Enumeration;
19 > import java.util.HashMap;
20 > import java.util.Hashtable;
21 > import java.util.Iterator;
22 > import java.util.Map;
23 > import java.util.NoSuchElementException;
24 > import java.util.Set;
25 > import java.util.Spliterator;
26 > import java.util.concurrent.ConcurrentMap;
27 > import java.util.concurrent.ForkJoinPool;
28 > import java.util.concurrent.atomic.AtomicReference;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31 > import java.util.function.BiConsumer;
32 > import java.util.function.BiFunction;
33 > import java.util.function.BinaryOperator;
34 > import java.util.function.Consumer;
35 > import java.util.function.DoubleBinaryOperator;
36 > import java.util.function.Function;
37 > import java.util.function.IntBinaryOperator;
38 > import java.util.function.LongBinaryOperator;
39 > import java.util.function.ToDoubleBiFunction;
40 > import java.util.function.ToDoubleFunction;
41 > import java.util.function.ToIntBiFunction;
42 > import java.util.function.ToIntFunction;
43 > import java.util.function.ToLongBiFunction;
44 > import java.util.function.ToLongFunction;
45 > import java.util.stream.Stream;
46  
47   /**
48   * A hash table supporting full concurrency of retrievals and
49 < * adjustable expected concurrency for updates. This class obeys the
50 < * same functional specification as
51 < * <tt>java.util.Hashtable</tt>. However, even though all operations
52 < * are thread-safe, retrieval operations do <em>not</em> entail
53 < * locking, and there is <em>not</em> any support for locking the
54 < * entire table in a way that prevents all access.  This class is
55 < * fully interoperable with Hashtable in programs that rely on its
49 > * high expected concurrency for updates. This class obeys the
50 > * same functional specification as {@link java.util.Hashtable}, and
51 > * includes versions of methods corresponding to each method of
52 > * {@code Hashtable}. However, even though all operations are
53 > * thread-safe, retrieval operations do <em>not</em> entail locking,
54 > * and there is <em>not</em> any support for locking the entire table
55 > * in a way that prevents all access.  This class is fully
56 > * interoperable with {@code Hashtable} in programs that rely on its
57   * thread safety but not on its synchronization details.
58 < *  
59 < * <p> Retrieval operations (including <tt>get</tt>) ordinarily
60 < * overlap with update operations (including <tt>put/tt> and
61 < * <tt>remove</tt>). Retrievals reflect the results of the most
58 > *
59 > * <p>Retrieval operations (including {@code get}) generally do not
60 > * block, so may overlap with update operations (including {@code put}
61 > * and {@code remove}). Retrievals reflect the results of the most
62   * recently <em>completed</em> update operations holding upon their
63 < * onset.  For aggregate operations such as <tt>putAll</tt> and
64 < * <tt>clear</tt>, concurrent retrievals may reflect insertion or
65 < * removal of only some entries.  Similarly, Iterators and
66 < * Enumerations return elements reflecting the state of the hash table
67 < * at some point at or since the creation of the iterator/enumeration.
68 < * They do <em>not</em> throw ConcurrentModificationException.
69 < * However, Iterators are designed to be used by only one thread at a
70 < * time.
71 < *
72 < * <p> The allowed concurrency among update operations is controlled
73 < * by the optional <tt>segments</tt> constructor argument (default
74 < * 16). The table is divided into this many independent parts; each of
75 < * which can be updated concurrently. Because placement in hash tables
76 < * is essentially random, the actual concurrency will vary. As a rough
77 < * rule of thumb, you should choose at least as many segments as you
78 < * expect concurrent threads. However, using more segments than you
79 < * need can waste space and time. Using a value of 1 for
80 < * <tt>segments</tt> results in a table that is concurrently readable
81 < * but can only be updated by one thread at a time.
82 < *
83 < * <p> Like Hashtable but unlike java.util.HashMap, this class does
84 < * NOT allow <tt>null</tt> to be used as a key or value.
85 < *
86 < **/
87 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
88 <        implements ConcurrentMap<K, V>, Cloneable, Serializable {
63 > * onset. (More formally, an update operation for a given key bears a
64 > * <em>happens-before</em> relation with any (non-null) retrieval for
65 > * that key reporting the updated value.)  For aggregate operations
66 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
67 > * reflect insertion or removal of only some entries.  Similarly,
68 > * Iterators and Enumerations return elements reflecting the state of
69 > * the hash table at some point at or since the creation of the
70 > * iterator/enumeration.  They do <em>not</em> throw {@link
71 > * ConcurrentModificationException}.  However, iterators are designed
72 > * to be used by only one thread at a time.  Bear in mind that the
73 > * results of aggregate status methods including {@code size}, {@code
74 > * isEmpty}, and {@code containsValue} are typically useful only when
75 > * a map is not undergoing concurrent updates in other threads.
76 > * Otherwise the results of these methods reflect transient states
77 > * that may be adequate for monitoring or estimation purposes, but not
78 > * for program control.
79 > *
80 > * <p>The table is dynamically expanded when there are too many
81 > * collisions (i.e., keys that have distinct hash codes but fall into
82 > * the same slot modulo the table size), with the expected average
83 > * effect of maintaining roughly two bins per mapping (corresponding
84 > * to a 0.75 load factor threshold for resizing). There may be much
85 > * variance around this average as mappings are added and removed, but
86 > * overall, this maintains a commonly accepted time/space tradeoff for
87 > * hash tables.  However, resizing this or any other kind of hash
88 > * table may be a relatively slow operation. When possible, it is a
89 > * good idea to provide a size estimate as an optional {@code
90 > * initialCapacity} constructor argument. An additional optional
91 > * {@code loadFactor} constructor argument provides a further means of
92 > * customizing initial table capacity by specifying the table density
93 > * to be used in calculating the amount of space to allocate for the
94 > * given number of elements.  Also, for compatibility with previous
95 > * versions of this class, constructors may optionally specify an
96 > * expected {@code concurrencyLevel} as an additional hint for
97 > * internal sizing.  Note that using many keys with exactly the same
98 > * {@code hashCode()} is a sure way to slow down performance of any
99 > * hash table. To ameliorate impact, when keys are {@link Comparable},
100 > * this class may use comparison order among keys to help break ties.
101 > *
102 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
103 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
104 > * (using {@link #keySet(Object)} when only keys are of interest, and the
105 > * mapped values are (perhaps transiently) not used or all take the
106 > * same mapping value.
107 > *
108 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
109 > * form of histogram or multiset) by using {@link
110 > * java.util.concurrent.atomic.LongAdder} values and initializing via
111 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
112 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
113 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
114 > *
115 > * <p>This class and its views and iterators implement all of the
116 > * <em>optional</em> methods of the {@link Map} and {@link Iterator}
117 > * interfaces.
118 > *
119 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
120 > * does <em>not</em> allow {@code null} to be used as a key or value.
121 > *
122 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
123 > * operations that, unlike most {@link Stream} methods, are designed
124 > * to be safely, and often sensibly, applied even with maps that are
125 > * being concurrently updated by other threads; for example, when
126 > * computing a snapshot summary of the values in a shared registry.
127 > * There are three kinds of operation, each with four forms, accepting
128 > * functions with Keys, Values, Entries, and (Key, Value) arguments
129 > * and/or return values. Because the elements of a ConcurrentHashMap
130 > * are not ordered in any particular way, and may be processed in
131 > * different orders in different parallel executions, the correctness
132 > * of supplied functions should not depend on any ordering, or on any
133 > * other objects or values that may transiently change while
134 > * computation is in progress; and except for forEach actions, should
135 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
136 > * objects do not support method {@code setValue}.
137 > *
138 > * <ul>
139 > * <li> forEach: Perform a given action on each element.
140 > * A variant form applies a given transformation on each element
141 > * before performing the action.</li>
142 > *
143 > * <li> search: Return the first available non-null result of
144 > * applying a given function on each element; skipping further
145 > * search when a result is found.</li>
146 > *
147 > * <li> reduce: Accumulate each element.  The supplied reduction
148 > * function cannot rely on ordering (more formally, it should be
149 > * both associative and commutative).  There are five variants:
150 > *
151 > * <ul>
152 > *
153 > * <li> Plain reductions. (There is not a form of this method for
154 > * (key, value) function arguments since there is no corresponding
155 > * return type.)</li>
156 > *
157 > * <li> Mapped reductions that accumulate the results of a given
158 > * function applied to each element.</li>
159 > *
160 > * <li> Reductions to scalar doubles, longs, and ints, using a
161 > * given basis value.</li>
162 > *
163 > * </ul>
164 > * </li>
165 > * </ul>
166 > *
167 > * <p>These bulk operations accept a {@code parallelismThreshold}
168 > * argument. Methods proceed sequentially if the current map size is
169 > * estimated to be less than the given threshold. Using a value of
170 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
171 > * of {@code 1} results in maximal parallelism by partitioning into
172 > * enough subtasks to fully utilize the {@link
173 > * ForkJoinPool#commonPool()} that is used for all parallel
174 > * computations. Normally, you would initially choose one of these
175 > * extreme values, and then measure performance of using in-between
176 > * values that trade off overhead versus throughput.
177 > *
178 > * <p>The concurrency properties of bulk operations follow
179 > * from those of ConcurrentHashMap: Any non-null result returned
180 > * from {@code get(key)} and related access methods bears a
181 > * happens-before relation with the associated insertion or
182 > * update.  The result of any bulk operation reflects the
183 > * composition of these per-element relations (but is not
184 > * necessarily atomic with respect to the map as a whole unless it
185 > * is somehow known to be quiescent).  Conversely, because keys
186 > * and values in the map are never null, null serves as a reliable
187 > * atomic indicator of the current lack of any result.  To
188 > * maintain this property, null serves as an implicit basis for
189 > * all non-scalar reduction operations. For the double, long, and
190 > * int versions, the basis should be one that, when combined with
191 > * any other value, returns that other value (more formally, it
192 > * should be the identity element for the reduction). Most common
193 > * reductions have these properties; for example, computing a sum
194 > * with basis 0 or a minimum with basis MAX_VALUE.
195 > *
196 > * <p>Search and transformation functions provided as arguments
197 > * should similarly return null to indicate the lack of any result
198 > * (in which case it is not used). In the case of mapped
199 > * reductions, this also enables transformations to serve as
200 > * filters, returning null (or, in the case of primitive
201 > * specializations, the identity basis) if the element should not
202 > * be combined. You can create compound transformations and
203 > * filterings by composing them yourself under this "null means
204 > * there is nothing there now" rule before using them in search or
205 > * reduce operations.
206 > *
207 > * <p>Methods accepting and/or returning Entry arguments maintain
208 > * key-value associations. They may be useful for example when
209 > * finding the key for the greatest value. Note that "plain" Entry
210 > * arguments can be supplied using {@code new
211 > * AbstractMap.SimpleEntry(k,v)}.
212 > *
213 > * <p>Bulk operations may complete abruptly, throwing an
214 > * exception encountered in the application of a supplied
215 > * function. Bear in mind when handling such exceptions that other
216 > * concurrently executing functions could also have thrown
217 > * exceptions, or would have done so if the first exception had
218 > * not occurred.
219 > *
220 > * <p>Speedups for parallel compared to sequential forms are common
221 > * but not guaranteed.  Parallel operations involving brief functions
222 > * on small maps may execute more slowly than sequential forms if the
223 > * underlying work to parallelize the computation is more expensive
224 > * than the computation itself.  Similarly, parallelization may not
225 > * lead to much actual parallelism if all processors are busy
226 > * performing unrelated tasks.
227 > *
228 > * <p>All arguments to all task methods must be non-null.
229 > *
230 > * <p>This class is a member of the
231 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
232 > * Java Collections Framework</a>.
233 > *
234 > * @since 1.5
235 > * @author Doug Lea
236 > * @param <K> the type of keys maintained by this map
237 > * @param <V> the type of mapped values
238 > */
239 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> implements ConcurrentMap<K,V>, Serializable {
240 >    private static final long serialVersionUID = 7249069246763182397L;
241  
242      /*
243 <     * The basic strategy is to subdivide the table among Segments,
244 <     * each of which itself is a concurrently readable hash table.
243 >     * Overview:
244 >     *
245 >     * The primary design goal of this hash table is to maintain
246 >     * concurrent readability (typically method get(), but also
247 >     * iterators and related methods) while minimizing update
248 >     * contention. Secondary goals are to keep space consumption about
249 >     * the same or better than java.util.HashMap, and to support high
250 >     * initial insertion rates on an empty table by many threads.
251 >     *
252 >     * This map usually acts as a binned (bucketed) hash table.  Each
253 >     * key-value mapping is held in a Node.  Most nodes are instances
254 >     * of the basic Node class with hash, key, value, and next
255 >     * fields. However, various subclasses exist: TreeNodes are
256 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
257 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 >     * of bins during resizing. ReservationNodes are used as
259 >     * placeholders while establishing values in computeIfAbsent and
260 >     * related methods.  The types TreeBin, ForwardingNode, and
261 >     * ReservationNode do not hold normal user keys, values, or
262 >     * hashes, and are readily distinguishable during search etc
263 >     * because they have negative hash fields and null key and value
264 >     * fields. (These special nodes are either uncommon or transient,
265 >     * so the impact of carrying around some unused fields is
266 >     * insignificant.)
267 >     *
268 >     * The table is lazily initialized to a power-of-two size upon the
269 >     * first insertion.  Each bin in the table normally contains a
270 >     * list of Nodes (most often, the list has only zero or one Node).
271 >     * Table accesses require volatile/atomic reads, writes, and
272 >     * CASes.  Because there is no other way to arrange this without
273 >     * adding further indirections, we use intrinsics
274 >     * (sun.misc.Unsafe) operations.
275 >     *
276 >     * We use the top (sign) bit of Node hash fields for control
277 >     * purposes -- it is available anyway because of addressing
278 >     * constraints.  Nodes with negative hash fields are specially
279 >     * handled or ignored in map methods.
280 >     *
281 >     * Insertion (via put or its variants) of the first node in an
282 >     * empty bin is performed by just CASing it to the bin.  This is
283 >     * by far the most common case for put operations under most
284 >     * key/hash distributions.  Other update operations (insert,
285 >     * delete, and replace) require locks.  We do not want to waste
286 >     * the space required to associate a distinct lock object with
287 >     * each bin, so instead use the first node of a bin list itself as
288 >     * a lock. Locking support for these locks relies on builtin
289 >     * "synchronized" monitors.
290 >     *
291 >     * Using the first node of a list as a lock does not by itself
292 >     * suffice though: When a node is locked, any update must first
293 >     * validate that it is still the first node after locking it, and
294 >     * retry if not. Because new nodes are always appended to lists,
295 >     * once a node is first in a bin, it remains first until deleted
296 >     * or the bin becomes invalidated (upon resizing).
297 >     *
298 >     * The main disadvantage of per-bin locks is that other update
299 >     * operations on other nodes in a bin list protected by the same
300 >     * lock can stall, for example when user equals() or mapping
301 >     * functions take a long time.  However, statistically, under
302 >     * random hash codes, this is not a common problem.  Ideally, the
303 >     * frequency of nodes in bins follows a Poisson distribution
304 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 >     * parameter of about 0.5 on average, given the resizing threshold
306 >     * of 0.75, although with a large variance because of resizing
307 >     * granularity. Ignoring variance, the expected occurrences of
308 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 >     * first values are:
310 >     *
311 >     * 0:    0.60653066
312 >     * 1:    0.30326533
313 >     * 2:    0.07581633
314 >     * 3:    0.01263606
315 >     * 4:    0.00157952
316 >     * 5:    0.00015795
317 >     * 6:    0.00001316
318 >     * 7:    0.00000094
319 >     * 8:    0.00000006
320 >     * more: less than 1 in ten million
321 >     *
322 >     * Lock contention probability for two threads accessing distinct
323 >     * elements is roughly 1 / (8 * #elements) under random hashes.
324 >     *
325 >     * Actual hash code distributions encountered in practice
326 >     * sometimes deviate significantly from uniform randomness.  This
327 >     * includes the case when N > (1<<30), so some keys MUST collide.
328 >     * Similarly for dumb or hostile usages in which multiple keys are
329 >     * designed to have identical hash codes or ones that differs only
330 >     * in masked-out high bits. So we use a secondary strategy that
331 >     * applies when the number of nodes in a bin exceeds a
332 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
333 >     * specialized form of red-black trees), bounding search time to
334 >     * O(log N).  Each search step in a TreeBin is at least twice as
335 >     * slow as in a regular list, but given that N cannot exceed
336 >     * (1<<64) (before running out of addresses) this bounds search
337 >     * steps, lock hold times, etc, to reasonable constants (roughly
338 >     * 100 nodes inspected per operation worst case) so long as keys
339 >     * are Comparable (which is very common -- String, Long, etc).
340 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
341 >     * traversal pointers as regular nodes, so can be traversed in
342 >     * iterators in the same way.
343 >     *
344 >     * The table is resized when occupancy exceeds a percentage
345 >     * threshold (nominally, 0.75, but see below).  Any thread
346 >     * noticing an overfull bin may assist in resizing after the
347 >     * initiating thread allocates and sets up the replacement
348 >     * array. However, rather than stalling, these other threads may
349 >     * proceed with insertions etc.  The use of TreeBins shields us
350 >     * from the worst case effects of overfilling while resizes are in
351 >     * progress.  Resizing proceeds by transferring bins, one by one,
352 >     * from the table to the next table. To enable concurrency, the
353 >     * next table must be (incrementally) prefilled with place-holders
354 >     * serving as reverse forwarders to the old table.  Because we are
355 >     * using power-of-two expansion, the elements from each bin must
356 >     * either stay at same index, or move with a power of two
357 >     * offset. We eliminate unnecessary node creation by catching
358 >     * cases where old nodes can be reused because their next fields
359 >     * won't change.  On average, only about one-sixth of them need
360 >     * cloning when a table doubles. The nodes they replace will be
361 >     * garbage collectable as soon as they are no longer referenced by
362 >     * any reader thread that may be in the midst of concurrently
363 >     * traversing table.  Upon transfer, the old table bin contains
364 >     * only a special forwarding node (with hash field "MOVED") that
365 >     * contains the next table as its key. On encountering a
366 >     * forwarding node, access and update operations restart, using
367 >     * the new table.
368 >     *
369 >     * Each bin transfer requires its bin lock, which can stall
370 >     * waiting for locks while resizing. However, because other
371 >     * threads can join in and help resize rather than contend for
372 >     * locks, average aggregate waits become shorter as resizing
373 >     * progresses.  The transfer operation must also ensure that all
374 >     * accessible bins in both the old and new table are usable by any
375 >     * traversal.  This is arranged by proceeding from the last bin
376 >     * (table.length - 1) up towards the first.  Upon seeing a
377 >     * forwarding node, traversals (see class Traverser) arrange to
378 >     * move to the new table without revisiting nodes.  However, to
379 >     * ensure that no intervening nodes are skipped, bin splitting can
380 >     * only begin after the associated reverse-forwarders are in
381 >     * place.
382 >     *
383 >     * The traversal scheme also applies to partial traversals of
384 >     * ranges of bins (via an alternate Traverser constructor)
385 >     * to support partitioned aggregate operations.  Also, read-only
386 >     * operations give up if ever forwarded to a null table, which
387 >     * provides support for shutdown-style clearing, which is also not
388 >     * currently implemented.
389 >     *
390 >     * Lazy table initialization minimizes footprint until first use,
391 >     * and also avoids resizings when the first operation is from a
392 >     * putAll, constructor with map argument, or deserialization.
393 >     * These cases attempt to override the initial capacity settings,
394 >     * but harmlessly fail to take effect in cases of races.
395 >     *
396 >     * The element count is maintained using a specialization of
397 >     * LongAdder. We need to incorporate a specialization rather than
398 >     * just use a LongAdder in order to access implicit
399 >     * contention-sensing that leads to creation of multiple
400 >     * CounterCells.  The counter mechanics avoid contention on
401 >     * updates but can encounter cache thrashing if read too
402 >     * frequently during concurrent access. To avoid reading so often,
403 >     * resizing under contention is attempted only upon adding to a
404 >     * bin already holding two or more nodes. Under uniform hash
405 >     * distributions, the probability of this occurring at threshold
406 >     * is around 13%, meaning that only about 1 in 8 puts check
407 >     * threshold (and after resizing, many fewer do so).
408 >     *
409 >     * TreeBins use a special form of comparison for search and
410 >     * related operations (which is the main reason we cannot use
411 >     * existing collections such as TreeMaps). TreeBins contain
412 >     * Comparable elements, but may contain others, as well as
413 >     * elements that are Comparable but not necessarily Comparable
414 >     * for the same T, so we cannot invoke compareTo among them. To
415 >     * handle this, the tree is ordered primarily by hash value, then
416 >     * by Comparable.compareTo order if applicable.  On lookup at a
417 >     * node, if elements are not comparable or compare as 0 then both
418 >     * left and right children may need to be searched in the case of
419 >     * tied hash values. (This corresponds to the full list search
420 >     * that would be necessary if all elements were non-Comparable and
421 >     * had tied hashes.)  The red-black balancing code is updated from
422 >     * pre-jdk-collections
423 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
424 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
425 >     * Algorithms" (CLR).
426 >     *
427 >     * TreeBins also require an additional locking mechanism.  While
428 >     * list traversal is always possible by readers even during
429 >     * updates, tree traversal is not, mainly because of tree-rotations
430 >     * that may change the root node and/or its linkages.  TreeBins
431 >     * include a simple read-write lock mechanism parasitic on the
432 >     * main bin-synchronization strategy: Structural adjustments
433 >     * associated with an insertion or removal are already bin-locked
434 >     * (and so cannot conflict with other writers) but must wait for
435 >     * ongoing readers to finish. Since there can be only one such
436 >     * waiter, we use a simple scheme using a single "waiter" field to
437 >     * block writers.  However, readers need never block.  If the root
438 >     * lock is held, they proceed along the slow traversal path (via
439 >     * next-pointers) until the lock becomes available or the list is
440 >     * exhausted, whichever comes first. These cases are not fast, but
441 >     * maximize aggregate expected throughput.
442 >     *
443 >     * Maintaining API and serialization compatibility with previous
444 >     * versions of this class introduces several oddities. Mainly: We
445 >     * leave untouched but unused constructor arguments refering to
446 >     * concurrencyLevel. We accept a loadFactor constructor argument,
447 >     * but apply it only to initial table capacity (which is the only
448 >     * time that we can guarantee to honor it.) We also declare an
449 >     * unused "Segment" class that is instantiated in minimal form
450 >     * only when serializing.
451 >     *
452 >     * This file is organized to make things a little easier to follow
453 >     * while reading than they might otherwise: First the main static
454 >     * declarations and utilities, then fields, then main public
455 >     * methods (with a few factorings of multiple public methods into
456 >     * internal ones), then sizing methods, trees, traversers, and
457 >     * bulk operations.
458       */
459  
460      /* ---------------- Constants -------------- */
461 <    
461 >
462 >    /**
463 >     * The largest possible table capacity.  This value must be
464 >     * exactly 1<<30 to stay within Java array allocation and indexing
465 >     * bounds for power of two table sizes, and is further required
466 >     * because the top two bits of 32bit hash fields are used for
467 >     * control purposes.
468 >     */
469 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
470 >
471 >    /**
472 >     * The default initial table capacity.  Must be a power of 2
473 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
474 >     */
475 >    private static final int DEFAULT_CAPACITY = 16;
476 >
477 >    /**
478 >     * The largest possible (non-power of two) array size.
479 >     * Needed by toArray and related methods.
480 >     */
481 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
482 >
483 >    /**
484 >     * The default concurrency level for this table. Unused but
485 >     * defined for compatibility with previous versions of this class.
486 >     */
487 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
488 >
489 >    /**
490 >     * The load factor for this table. Overrides of this value in
491 >     * constructors affect only the initial table capacity.  The
492 >     * actual floating point value isn't normally used -- it is
493 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
494 >     * the associated resizing threshold.
495 >     */
496 >    private static final float LOAD_FACTOR = 0.75f;
497 >
498 >    /**
499 >     * The bin count threshold for using a tree rather than list for a
500 >     * bin.  Bins are converted to trees when adding an element to a
501 >     * bin with at least this many nodes. The value must be greater
502 >     * than 2, and should be at least 8 to mesh with assumptions in
503 >     * tree removal about conversion back to plain bins upon
504 >     * shrinkage.
505 >     */
506 >    static final int TREEIFY_THRESHOLD = 8;
507 >
508 >    /**
509 >     * The bin count threshold for untreeifying a (split) bin during a
510 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
511 >     * most 6 to mesh with shrinkage detection under removal.
512 >     */
513 >    static final int UNTREEIFY_THRESHOLD = 6;
514 >
515 >    /**
516 >     * The smallest table capacity for which bins may be treeified.
517 >     * (Otherwise the table is resized if too many nodes in a bin.)
518 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
519 >     * conflicts between resizing and treeification thresholds.
520 >     */
521 >    static final int MIN_TREEIFY_CAPACITY = 64;
522 >
523 >    /**
524 >     * Minimum number of rebinnings per transfer step. Ranges are
525 >     * subdivided to allow multiple resizer threads.  This value
526 >     * serves as a lower bound to avoid resizers encountering
527 >     * excessive memory contention.  The value should be at least
528 >     * DEFAULT_CAPACITY.
529 >     */
530 >    private static final int MIN_TRANSFER_STRIDE = 16;
531 >
532 >    /*
533 >     * Encodings for Node hash fields. See above for explanation.
534 >     */
535 >    static final int MOVED     = -1; // hash for forwarding nodes
536 >    static final int TREEBIN   = -2; // hash for roots of trees
537 >    static final int RESERVED  = -3; // hash for transient reservations
538 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
539 >
540 >    /** Number of CPUS, to place bounds on some sizings */
541 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
542 >
543 >    /** For serialization compatibility. */
544 >    private static final ObjectStreamField[] serialPersistentFields = {
545 >        new ObjectStreamField("segments", Segment[].class),
546 >        new ObjectStreamField("segmentMask", Integer.TYPE),
547 >        new ObjectStreamField("segmentShift", Integer.TYPE)
548 >    };
549 >
550 >    /* ---------------- Nodes -------------- */
551 >
552 >    /**
553 >     * Key-value entry.  This class is never exported out as a
554 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
555 >     * MapEntry below), but can be used for read-only traversals used
556 >     * in bulk tasks.  Subclasses of Node with a negative hash field
557 >     * are special, and contain null keys and values (but are never
558 >     * exported).  Otherwise, keys and vals are never null.
559 >     */
560 >    static class Node<K,V> implements Map.Entry<K,V> {
561 >        final int hash;
562 >        final K key;
563 >        volatile V val;
564 >        volatile Node<K,V> next;
565 >
566 >        Node(int hash, K key, V val, Node<K,V> next) {
567 >            this.hash = hash;
568 >            this.key = key;
569 >            this.val = val;
570 >            this.next = next;
571 >        }
572 >
573 >        public final K getKey()       { return key; }
574 >        public final V getValue()     { return val; }
575 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
576 >        public final String toString(){ return key + "=" + val; }
577 >        public final V setValue(V value) {
578 >            throw new UnsupportedOperationException();
579 >        }
580 >
581 >        public final boolean equals(Object o) {
582 >            Object k, v, u; Map.Entry<?,?> e;
583 >            return ((o instanceof Map.Entry) &&
584 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
585 >                    (v = e.getValue()) != null &&
586 >                    (k == key || k.equals(key)) &&
587 >                    (v == (u = val) || v.equals(u)));
588 >        }
589 >
590 >        /**
591 >         * Virtualized support for map.get(); overridden in subclasses.
592 >         */
593 >        Node<K,V> find(int h, Object k) {
594 >            Node<K,V> e = this;
595 >            if (k != null) {
596 >                do {
597 >                    K ek;
598 >                    if (e.hash == h &&
599 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
600 >                        return e;
601 >                } while ((e = e.next) != null);
602 >            }
603 >            return null;
604 >        }
605 >    }
606 >
607 >    /* ---------------- Static utilities -------------- */
608 >
609      /**
610 <     * The default initial number of table slots for this table (32).
611 <     * Used when not otherwise specified in constructor.
610 >     * Spreads (XORs) higher bits of hash to lower and also forces top
611 >     * bit to 0. Because the table uses power-of-two masking, sets of
612 >     * hashes that vary only in bits above the current mask will
613 >     * always collide. (Among known examples are sets of Float keys
614 >     * holding consecutive whole numbers in small tables.)  So we
615 >     * apply a transform that spreads the impact of higher bits
616 >     * downward. There is a tradeoff between speed, utility, and
617 >     * quality of bit-spreading. Because many common sets of hashes
618 >     * are already reasonably distributed (so don't benefit from
619 >     * spreading), and because we use trees to handle large sets of
620 >     * collisions in bins, we just XOR some shifted bits in the
621 >     * cheapest possible way to reduce systematic lossage, as well as
622 >     * to incorporate impact of the highest bits that would otherwise
623 >     * never be used in index calculations because of table bounds.
624       */
625 <    static int DEFAULT_INITIAL_CAPACITY = 16;
625 >    static final int spread(int h) {
626 >        return (h ^ (h >>> 16)) & HASH_BITS;
627 >    }
628  
629      /**
630 <     * The maximum capacity, used if a higher value is implicitly
631 <     * specified by either of the constructors with arguments.  MUST
73 <     * be a power of two <= 1<<30.
630 >     * Returns a power of two table size for the given desired capacity.
631 >     * See Hackers Delight, sec 3.2
632       */
633 <    static final int MAXIMUM_CAPACITY = 1 << 30;
634 <  
633 >    private static final int tableSizeFor(int c) {
634 >        int n = c - 1;
635 >        n |= n >>> 1;
636 >        n |= n >>> 2;
637 >        n |= n >>> 4;
638 >        n |= n >>> 8;
639 >        n |= n >>> 16;
640 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
641 >    }
642 >
643      /**
644 <     * The default load factor for this table.  Used when not
645 <     * otherwise specified in constructor.
644 >     * Returns x's Class if it is of the form "class C implements
645 >     * Comparable<C>", else null.
646       */
647 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
647 >    static Class<?> comparableClassFor(Object x) {
648 >        if (x instanceof Comparable) {
649 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
650 >            if ((c = x.getClass()) == String.class) // bypass checks
651 >                return c;
652 >            if ((ts = c.getGenericInterfaces()) != null) {
653 >                for (int i = 0; i < ts.length; ++i) {
654 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
655 >                        ((p = (ParameterizedType)t).getRawType() ==
656 >                         Comparable.class) &&
657 >                        (as = p.getActualTypeArguments()) != null &&
658 >                        as.length == 1 && as[0] == c) // type arg is c
659 >                        return c;
660 >                }
661 >            }
662 >        }
663 >        return null;
664 >    }
665  
666      /**
667 <     * The default number of concurrency control segments.
668 <     **/
669 <    private static final int DEFAULT_SEGMENTS = 16;
667 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
668 >     * class), else 0.
669 >     */
670 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
671 >    static int compareComparables(Class<?> kc, Object k, Object x) {
672 >        return (x == null || x.getClass() != kc ? 0 :
673 >                ((Comparable)k).compareTo(x));
674 >    }
675 >
676 >    /* ---------------- Table element access -------------- */
677 >
678 >    /*
679 >     * Volatile access methods are used for table elements as well as
680 >     * elements of in-progress next table while resizing.  All uses of
681 >     * the tab arguments must be null checked by callers.  All callers
682 >     * also paranoically precheck that tab's length is not zero (or an
683 >     * equivalent check), thus ensuring that any index argument taking
684 >     * the form of a hash value anded with (length - 1) is a valid
685 >     * index.  Note that, to be correct wrt arbitrary concurrency
686 >     * errors by users, these checks must operate on local variables,
687 >     * which accounts for some odd-looking inline assignments below.
688 >     * Note that calls to setTabAt always occur within locked regions,
689 >     * and so in principle require only release ordering, not need
690 >     * full volatile semantics, but are currently coded as volatile
691 >     * writes to be conservative.
692 >     */
693 >
694 >    @SuppressWarnings("unchecked")
695 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
696 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
697 >    }
698 >
699 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
700 >                                        Node<K,V> c, Node<K,V> v) {
701 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
702 >    }
703 >
704 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
705 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
706 >    }
707  
708      /* ---------------- Fields -------------- */
709  
710      /**
711 <     * Mask value for indexing into segments. The lower bits of a
712 <     * key's hash code are used to choose the segment, and the
713 <     * remaining bits are used as the placement hashcode used within
714 <     * the segment.
95 <     **/
96 <    private final int segmentMask;
711 >     * The array of bins. Lazily initialized upon first insertion.
712 >     * Size is always a power of two. Accessed directly by iterators.
713 >     */
714 >    transient volatile Node<K,V>[] table;
715  
716      /**
717 <     * Shift value for indexing within segments.
718 <     **/
719 <    private final int segmentShift;
717 >     * The next table to use; non-null only while resizing.
718 >     */
719 >    private transient volatile Node<K,V>[] nextTable;
720 >
721 >    /**
722 >     * Base counter value, used mainly when there is no contention,
723 >     * but also as a fallback during table initialization
724 >     * races. Updated via CAS.
725 >     */
726 >    private transient volatile long baseCount;
727  
728      /**
729 <     * The segments, each of which is a specialized hash table
729 >     * Table initialization and resizing control.  When negative, the
730 >     * table is being initialized or resized: -1 for initialization,
731 >     * else -(1 + the number of active resizing threads).  Otherwise,
732 >     * when table is null, holds the initial table size to use upon
733 >     * creation, or 0 for default. After initialization, holds the
734 >     * next element count value upon which to resize the table.
735       */
736 <    private final Segment<K,V>[] segments;
736 >    private transient volatile int sizeCtl;
737  
738 <    private transient Set<K> keySet = null;
739 <    private transient Set/*<Map.Entry<K,V>>*/ entrySet = null;
740 <    private transient Collection<V> values = null;
738 >    /**
739 >     * The next table index (plus one) to split while resizing.
740 >     */
741 >    private transient volatile int transferIndex;
742  
743 <    /* ---------------- Small Utilities -------------- */
743 >    /**
744 >     * The least available table index to split while resizing.
745 >     */
746 >    private transient volatile int transferOrigin;
747  
748      /**
749 <     * Return a hash code for non-null Object x.  
116 <     * Uses the same hash code spreader as most other j.u hash tables.
749 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
750       */
751 <    private static int hash(Object x) {
752 <        int h = x.hashCode();
753 <        h += ~(h << 9);
754 <        h ^=  (h >>> 14);
755 <        h +=  (h << 4);
756 <        h ^=  (h >>> 10);
757 <        return h;
751 >    private transient volatile int cellsBusy;
752 >
753 >    /**
754 >     * Table of counter cells. When non-null, size is a power of 2.
755 >     */
756 >    private transient volatile CounterCell[] counterCells;
757 >
758 >    // views
759 >    private transient KeySetView<K,V> keySet;
760 >    private transient ValuesView<K,V> values;
761 >    private transient EntrySetView<K,V> entrySet;
762 >
763 >
764 >    /* ---------------- Public operations -------------- */
765 >
766 >    /**
767 >     * Creates a new, empty map with the default initial table size (16).
768 >     */
769 >    public ConcurrentHashMap() {
770 >    }
771 >
772 >    /**
773 >     * Creates a new, empty map with an initial table size
774 >     * accommodating the specified number of elements without the need
775 >     * to dynamically resize.
776 >     *
777 >     * @param initialCapacity The implementation performs internal
778 >     * sizing to accommodate this many elements.
779 >     * @throws IllegalArgumentException if the initial capacity of
780 >     * elements is negative
781 >     */
782 >    public ConcurrentHashMap(int initialCapacity) {
783 >        if (initialCapacity < 0)
784 >            throw new IllegalArgumentException();
785 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
786 >                   MAXIMUM_CAPACITY :
787 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
788 >        this.sizeCtl = cap;
789 >    }
790 >
791 >    /**
792 >     * Creates a new map with the same mappings as the given map.
793 >     *
794 >     * @param m the map
795 >     */
796 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
797 >        this.sizeCtl = DEFAULT_CAPACITY;
798 >        putAll(m);
799 >    }
800 >
801 >    /**
802 >     * Creates a new, empty map with an initial table size based on
803 >     * the given number of elements ({@code initialCapacity}) and
804 >     * initial table density ({@code loadFactor}).
805 >     *
806 >     * @param initialCapacity the initial capacity. The implementation
807 >     * performs internal sizing to accommodate this many elements,
808 >     * given the specified load factor.
809 >     * @param loadFactor the load factor (table density) for
810 >     * establishing the initial table size
811 >     * @throws IllegalArgumentException if the initial capacity of
812 >     * elements is negative or the load factor is nonpositive
813 >     *
814 >     * @since 1.6
815 >     */
816 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
817 >        this(initialCapacity, loadFactor, 1);
818 >    }
819 >
820 >    /**
821 >     * Creates a new, empty map with an initial table size based on
822 >     * the given number of elements ({@code initialCapacity}), table
823 >     * density ({@code loadFactor}), and number of concurrently
824 >     * updating threads ({@code concurrencyLevel}).
825 >     *
826 >     * @param initialCapacity the initial capacity. The implementation
827 >     * performs internal sizing to accommodate this many elements,
828 >     * given the specified load factor.
829 >     * @param loadFactor the load factor (table density) for
830 >     * establishing the initial table size
831 >     * @param concurrencyLevel the estimated number of concurrently
832 >     * updating threads. The implementation may use this value as
833 >     * a sizing hint.
834 >     * @throws IllegalArgumentException if the initial capacity is
835 >     * negative or the load factor or concurrencyLevel are
836 >     * nonpositive
837 >     */
838 >    public ConcurrentHashMap(int initialCapacity,
839 >                             float loadFactor, int concurrencyLevel) {
840 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
841 >            throw new IllegalArgumentException();
842 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
843 >            initialCapacity = concurrencyLevel;   // as estimated threads
844 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
845 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
846 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
847 >        this.sizeCtl = cap;
848 >    }
849 >
850 >    // Original (since JDK1.2) Map methods
851 >
852 >    /**
853 >     * {@inheritDoc}
854 >     */
855 >    public int size() {
856 >        long n = sumCount();
857 >        return ((n < 0L) ? 0 :
858 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
859 >                (int)n);
860 >    }
861 >
862 >    /**
863 >     * {@inheritDoc}
864 >     */
865 >    public boolean isEmpty() {
866 >        return sumCount() <= 0L; // ignore transient negative values
867 >    }
868 >
869 >    /**
870 >     * Returns the value to which the specified key is mapped,
871 >     * or {@code null} if this map contains no mapping for the key.
872 >     *
873 >     * <p>More formally, if this map contains a mapping from a key
874 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
875 >     * then this method returns {@code v}; otherwise it returns
876 >     * {@code null}.  (There can be at most one such mapping.)
877 >     *
878 >     * @throws NullPointerException if the specified key is null
879 >     */
880 >    public V get(Object key) {
881 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
882 >        int h = spread(key.hashCode());
883 >        if ((tab = table) != null && (n = tab.length) > 0 &&
884 >            (e = tabAt(tab, (n - 1) & h)) != null) {
885 >            if ((eh = e.hash) == h) {
886 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
887 >                    return e.val;
888 >            }
889 >            else if (eh < 0)
890 >                return (p = e.find(h, key)) != null ? p.val : null;
891 >            while ((e = e.next) != null) {
892 >                if (e.hash == h &&
893 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
894 >                    return e.val;
895 >            }
896 >        }
897 >        return null;
898 >    }
899 >
900 >    /**
901 >     * Tests if the specified object is a key in this table.
902 >     *
903 >     * @param  key possible key
904 >     * @return {@code true} if and only if the specified object
905 >     *         is a key in this table, as determined by the
906 >     *         {@code equals} method; {@code false} otherwise
907 >     * @throws NullPointerException if the specified key is null
908 >     */
909 >    public boolean containsKey(Object key) {
910 >        return get(key) != null;
911 >    }
912 >
913 >    /**
914 >     * Returns {@code true} if this map maps one or more keys to the
915 >     * specified value. Note: This method may require a full traversal
916 >     * of the map, and is much slower than method {@code containsKey}.
917 >     *
918 >     * @param value value whose presence in this map is to be tested
919 >     * @return {@code true} if this map maps one or more keys to the
920 >     *         specified value
921 >     * @throws NullPointerException if the specified value is null
922 >     */
923 >    public boolean containsValue(Object value) {
924 >        if (value == null)
925 >            throw new NullPointerException();
926 >        Node<K,V>[] t;
927 >        if ((t = table) != null) {
928 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
929 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
930 >                V v;
931 >                if ((v = p.val) == value || (v != null && value.equals(v)))
932 >                    return true;
933 >            }
934 >        }
935 >        return false;
936 >    }
937 >
938 >    /**
939 >     * Maps the specified key to the specified value in this table.
940 >     * Neither the key nor the value can be null.
941 >     *
942 >     * <p>The value can be retrieved by calling the {@code get} method
943 >     * with a key that is equal to the original key.
944 >     *
945 >     * @param key key with which the specified value is to be associated
946 >     * @param value value to be associated with the specified key
947 >     * @return the previous value associated with {@code key}, or
948 >     *         {@code null} if there was no mapping for {@code key}
949 >     * @throws NullPointerException if the specified key or value is null
950 >     */
951 >    public V put(K key, V value) {
952 >        return putVal(key, value, false);
953 >    }
954 >
955 >    /** Implementation for put and putIfAbsent */
956 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
957 >        if (key == null || value == null) throw new NullPointerException();
958 >        int hash = spread(key.hashCode());
959 >        int binCount = 0;
960 >        for (Node<K,V>[] tab = table;;) {
961 >            Node<K,V> f; int n, i, fh;
962 >            if (tab == null || (n = tab.length) == 0)
963 >                tab = initTable();
964 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
965 >                if (casTabAt(tab, i, null,
966 >                             new Node<K,V>(hash, key, value, null)))
967 >                    break;                   // no lock when adding to empty bin
968 >            }
969 >            else if ((fh = f.hash) == MOVED)
970 >                tab = helpTransfer(tab, f);
971 >            else {
972 >                V oldVal = null;
973 >                synchronized (f) {
974 >                    if (tabAt(tab, i) == f) {
975 >                        if (fh >= 0) {
976 >                            binCount = 1;
977 >                            for (Node<K,V> e = f;; ++binCount) {
978 >                                K ek;
979 >                                if (e.hash == hash &&
980 >                                    ((ek = e.key) == key ||
981 >                                     (ek != null && key.equals(ek)))) {
982 >                                    oldVal = e.val;
983 >                                    if (!onlyIfAbsent)
984 >                                        e.val = value;
985 >                                    break;
986 >                                }
987 >                                Node<K,V> pred = e;
988 >                                if ((e = e.next) == null) {
989 >                                    pred.next = new Node<K,V>(hash, key,
990 >                                                              value, null);
991 >                                    break;
992 >                                }
993 >                            }
994 >                        }
995 >                        else if (f instanceof TreeBin) {
996 >                            Node<K,V> p;
997 >                            binCount = 2;
998 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
999 >                                                           value)) != null) {
1000 >                                oldVal = p.val;
1001 >                                if (!onlyIfAbsent)
1002 >                                    p.val = value;
1003 >                            }
1004 >                        }
1005 >                    }
1006 >                }
1007 >                if (binCount != 0) {
1008 >                    if (binCount >= TREEIFY_THRESHOLD)
1009 >                        treeifyBin(tab, i);
1010 >                    if (oldVal != null)
1011 >                        return oldVal;
1012 >                    break;
1013 >                }
1014 >            }
1015 >        }
1016 >        addCount(1L, binCount);
1017 >        return null;
1018 >    }
1019 >
1020 >    /**
1021 >     * Copies all of the mappings from the specified map to this one.
1022 >     * These mappings replace any mappings that this map had for any of the
1023 >     * keys currently in the specified map.
1024 >     *
1025 >     * @param m mappings to be stored in this map
1026 >     */
1027 >    public void putAll(Map<? extends K, ? extends V> m) {
1028 >        tryPresize(m.size());
1029 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1030 >            putVal(e.getKey(), e.getValue(), false);
1031 >    }
1032 >
1033 >    /**
1034 >     * Removes the key (and its corresponding value) from this map.
1035 >     * This method does nothing if the key is not in the map.
1036 >     *
1037 >     * @param  key the key that needs to be removed
1038 >     * @return the previous value associated with {@code key}, or
1039 >     *         {@code null} if there was no mapping for {@code key}
1040 >     * @throws NullPointerException if the specified key is null
1041 >     */
1042 >    public V remove(Object key) {
1043 >        return replaceNode(key, null, null);
1044 >    }
1045 >
1046 >    /**
1047 >     * Implementation for the four public remove/replace methods:
1048 >     * Replaces node value with v, conditional upon match of cv if
1049 >     * non-null.  If resulting value is null, delete.
1050 >     */
1051 >    final V replaceNode(Object key, V value, Object cv) {
1052 >        int hash = spread(key.hashCode());
1053 >        for (Node<K,V>[] tab = table;;) {
1054 >            Node<K,V> f; int n, i, fh;
1055 >            if (tab == null || (n = tab.length) == 0 ||
1056 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1057 >                break;
1058 >            else if ((fh = f.hash) == MOVED)
1059 >                tab = helpTransfer(tab, f);
1060 >            else {
1061 >                V oldVal = null;
1062 >                boolean validated = false;
1063 >                synchronized (f) {
1064 >                    if (tabAt(tab, i) == f) {
1065 >                        if (fh >= 0) {
1066 >                            validated = true;
1067 >                            for (Node<K,V> e = f, pred = null;;) {
1068 >                                K ek;
1069 >                                if (e.hash == hash &&
1070 >                                    ((ek = e.key) == key ||
1071 >                                     (ek != null && key.equals(ek)))) {
1072 >                                    V ev = e.val;
1073 >                                    if (cv == null || cv == ev ||
1074 >                                        (ev != null && cv.equals(ev))) {
1075 >                                        oldVal = ev;
1076 >                                        if (value != null)
1077 >                                            e.val = value;
1078 >                                        else if (pred != null)
1079 >                                            pred.next = e.next;
1080 >                                        else
1081 >                                            setTabAt(tab, i, e.next);
1082 >                                    }
1083 >                                    break;
1084 >                                }
1085 >                                pred = e;
1086 >                                if ((e = e.next) == null)
1087 >                                    break;
1088 >                            }
1089 >                        }
1090 >                        else if (f instanceof TreeBin) {
1091 >                            validated = true;
1092 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1093 >                            TreeNode<K,V> r, p;
1094 >                            if ((r = t.root) != null &&
1095 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1096 >                                V pv = p.val;
1097 >                                if (cv == null || cv == pv ||
1098 >                                    (pv != null && cv.equals(pv))) {
1099 >                                    oldVal = pv;
1100 >                                    if (value != null)
1101 >                                        p.val = value;
1102 >                                    else if (t.removeTreeNode(p))
1103 >                                        setTabAt(tab, i, untreeify(t.first));
1104 >                                }
1105 >                            }
1106 >                        }
1107 >                    }
1108 >                }
1109 >                if (validated) {
1110 >                    if (oldVal != null) {
1111 >                        if (value == null)
1112 >                            addCount(-1L, -1);
1113 >                        return oldVal;
1114 >                    }
1115 >                    break;
1116 >                }
1117 >            }
1118 >        }
1119 >        return null;
1120 >    }
1121 >
1122 >    /**
1123 >     * Removes all of the mappings from this map.
1124 >     */
1125 >    public void clear() {
1126 >        long delta = 0L; // negative number of deletions
1127 >        int i = 0;
1128 >        Node<K,V>[] tab = table;
1129 >        while (tab != null && i < tab.length) {
1130 >            int fh;
1131 >            Node<K,V> f = tabAt(tab, i);
1132 >            if (f == null)
1133 >                ++i;
1134 >            else if ((fh = f.hash) == MOVED) {
1135 >                tab = helpTransfer(tab, f);
1136 >                i = 0; // restart
1137 >            }
1138 >            else {
1139 >                synchronized (f) {
1140 >                    if (tabAt(tab, i) == f) {
1141 >                        Node<K,V> p = (fh >= 0 ? f :
1142 >                                       (f instanceof TreeBin) ?
1143 >                                       ((TreeBin<K,V>)f).first : null);
1144 >                        while (p != null) {
1145 >                            --delta;
1146 >                            p = p.next;
1147 >                        }
1148 >                        setTabAt(tab, i++, null);
1149 >                    }
1150 >                }
1151 >            }
1152 >        }
1153 >        if (delta != 0L)
1154 >            addCount(delta, -1);
1155 >    }
1156 >
1157 >    /**
1158 >     * Returns a {@link Set} view of the keys contained in this map.
1159 >     * The set is backed by the map, so changes to the map are
1160 >     * reflected in the set, and vice-versa. The set supports element
1161 >     * removal, which removes the corresponding mapping from this map,
1162 >     * via the {@code Iterator.remove}, {@code Set.remove},
1163 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1164 >     * operations.  It does not support the {@code add} or
1165 >     * {@code addAll} operations.
1166 >     *
1167 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1168 >     * that will never throw {@link ConcurrentModificationException},
1169 >     * and guarantees to traverse elements as they existed upon
1170 >     * construction of the iterator, and may (but is not guaranteed to)
1171 >     * reflect any modifications subsequent to construction.
1172 >     *
1173 >     * @return the set view
1174 >     */
1175 >    public KeySetView<K,V> keySet() {
1176 >        KeySetView<K,V> ks;
1177 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1178 >    }
1179 >
1180 >    /**
1181 >     * Returns a {@link Collection} view of the values contained in this map.
1182 >     * The collection is backed by the map, so changes to the map are
1183 >     * reflected in the collection, and vice-versa.  The collection
1184 >     * supports element removal, which removes the corresponding
1185 >     * mapping from this map, via the {@code Iterator.remove},
1186 >     * {@code Collection.remove}, {@code removeAll},
1187 >     * {@code retainAll}, and {@code clear} operations.  It does not
1188 >     * support the {@code add} or {@code addAll} operations.
1189 >     *
1190 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1191 >     * that will never throw {@link ConcurrentModificationException},
1192 >     * and guarantees to traverse elements as they existed upon
1193 >     * construction of the iterator, and may (but is not guaranteed to)
1194 >     * reflect any modifications subsequent to construction.
1195 >     *
1196 >     * @return the collection view
1197 >     */
1198 >    public Collection<V> values() {
1199 >        ValuesView<K,V> vs;
1200 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1201      }
1202  
1203 <    /**
1204 <     * Check for equality of non-null references x and y.
1205 <     **/
1206 <    private static boolean eq(Object x, Object y) {
1207 <        return x == y || x.equals(y);
1203 >    /**
1204 >     * Returns a {@link Set} view of the mappings contained in this map.
1205 >     * The set is backed by the map, so changes to the map are
1206 >     * reflected in the set, and vice-versa.  The set supports element
1207 >     * removal, which removes the corresponding mapping from the map,
1208 >     * via the {@code Iterator.remove}, {@code Set.remove},
1209 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1210 >     * operations.
1211 >     *
1212 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1213 >     * that will never throw {@link ConcurrentModificationException},
1214 >     * and guarantees to traverse elements as they existed upon
1215 >     * construction of the iterator, and may (but is not guaranteed to)
1216 >     * reflect any modifications subsequent to construction.
1217 >     *
1218 >     * @return the set view
1219 >     */
1220 >    public Set<Map.Entry<K,V>> entrySet() {
1221 >        EntrySetView<K,V> es;
1222 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1223      }
1224  
1225      /**
1226 <     * Return index for hash code h in table of given length.
1226 >     * Returns the hash code value for this {@link Map}, i.e.,
1227 >     * the sum of, for each key-value pair in the map,
1228 >     * {@code key.hashCode() ^ value.hashCode()}.
1229 >     *
1230 >     * @return the hash code value for this map
1231       */
1232 <    private static int indexFor(int h, int length) {
1233 <        return h & (length-1);
1232 >    public int hashCode() {
1233 >        int h = 0;
1234 >        Node<K,V>[] t;
1235 >        if ((t = table) != null) {
1236 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1237 >            for (Node<K,V> p; (p = it.advance()) != null; )
1238 >                h += p.key.hashCode() ^ p.val.hashCode();
1239 >        }
1240 >        return h;
1241      }
1242  
1243      /**
1244 <     * Return the segment that should be used for key with given hash
1244 >     * Returns a string representation of this map.  The string
1245 >     * representation consists of a list of key-value mappings (in no
1246 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1247 >     * mappings are separated by the characters {@code ", "} (comma
1248 >     * and space).  Each key-value mapping is rendered as the key
1249 >     * followed by an equals sign ("{@code =}") followed by the
1250 >     * associated value.
1251 >     *
1252 >     * @return a string representation of this map
1253       */
1254 <    private Segment<K,V> segmentFor(int hash) {
1255 <        return segments[hash & segmentMask];
1254 >    public String toString() {
1255 >        Node<K,V>[] t;
1256 >        int f = (t = table) == null ? 0 : t.length;
1257 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1258 >        StringBuilder sb = new StringBuilder();
1259 >        sb.append('{');
1260 >        Node<K,V> p;
1261 >        if ((p = it.advance()) != null) {
1262 >            for (;;) {
1263 >                K k = p.key;
1264 >                V v = p.val;
1265 >                sb.append(k == this ? "(this Map)" : k);
1266 >                sb.append('=');
1267 >                sb.append(v == this ? "(this Map)" : v);
1268 >                if ((p = it.advance()) == null)
1269 >                    break;
1270 >                sb.append(',').append(' ');
1271 >            }
1272 >        }
1273 >        return sb.append('}').toString();
1274      }
1275  
1276      /**
1277 <     * Strip the segment index from hash code to use as a per-segment hash.
1277 >     * Compares the specified object with this map for equality.
1278 >     * Returns {@code true} if the given object is a map with the same
1279 >     * mappings as this map.  This operation may return misleading
1280 >     * results if either map is concurrently modified during execution
1281 >     * of this method.
1282 >     *
1283 >     * @param o object to be compared for equality with this map
1284 >     * @return {@code true} if the specified object is equal to this map
1285       */
1286 <    private int segmentHashFor(int hash) {
1287 <        return hash >>> segmentShift;
1286 >    public boolean equals(Object o) {
1287 >        if (o != this) {
1288 >            if (!(o instanceof Map))
1289 >                return false;
1290 >            Map<?,?> m = (Map<?,?>) o;
1291 >            Node<K,V>[] t;
1292 >            int f = (t = table) == null ? 0 : t.length;
1293 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1294 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1295 >                V val = p.val;
1296 >                Object v = m.get(p.key);
1297 >                if (v == null || (v != val && !v.equals(val)))
1298 >                    return false;
1299 >            }
1300 >            for (Map.Entry<?,?> e : m.entrySet()) {
1301 >                Object mk, mv, v;
1302 >                if ((mk = e.getKey()) == null ||
1303 >                    (mv = e.getValue()) == null ||
1304 >                    (v = get(mk)) == null ||
1305 >                    (mv != v && !mv.equals(v)))
1306 >                    return false;
1307 >            }
1308 >        }
1309 >        return true;
1310      }
1311  
1312 <    /* ---------------- Inner Classes -------------- */
1312 >    /**
1313 >     * Stripped-down version of helper class used in previous version,
1314 >     * declared for the sake of serialization compatibility
1315 >     */
1316 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1317 >        private static final long serialVersionUID = 2249069246763182397L;
1318 >        final float loadFactor;
1319 >        Segment(float lf) { this.loadFactor = lf; }
1320 >    }
1321  
1322      /**
1323 <     * Segments are specialized versions of hash tables.  This
1324 <     * subclasses from ReentrantLock opportunistically, just to
1325 <     * simplify some locking and avoid separate construction.
1326 <     **/
1327 <    private final static class Segment<K,V> extends ReentrantLock implements Serializable {
1323 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1324 >     * stream (i.e., serializes it).
1325 >     * @param s the stream
1326 >     * @throws java.io.IOException if an I/O error occurs
1327 >     * @serialData
1328 >     * the key (Object) and value (Object)
1329 >     * for each key-value mapping, followed by a null pair.
1330 >     * The key-value mappings are emitted in no particular order.
1331 >     */
1332 >    private void writeObject(java.io.ObjectOutputStream s)
1333 >        throws java.io.IOException {
1334 >        // For serialization compatibility
1335 >        // Emulate segment calculation from previous version of this class
1336 >        int sshift = 0;
1337 >        int ssize = 1;
1338 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1339 >            ++sshift;
1340 >            ssize <<= 1;
1341 >        }
1342 >        int segmentShift = 32 - sshift;
1343 >        int segmentMask = ssize - 1;
1344 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1345 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1346 >        for (int i = 0; i < segments.length; ++i)
1347 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1348 >        s.putFields().put("segments", segments);
1349 >        s.putFields().put("segmentShift", segmentShift);
1350 >        s.putFields().put("segmentMask", segmentMask);
1351 >        s.writeFields();
1352 >
1353 >        Node<K,V>[] t;
1354 >        if ((t = table) != null) {
1355 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1356 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1357 >                s.writeObject(p.key);
1358 >                s.writeObject(p.val);
1359 >            }
1360 >        }
1361 >        s.writeObject(null);
1362 >        s.writeObject(null);
1363 >        segments = null; // throw away
1364 >    }
1365 >
1366 >    /**
1367 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1368 >     * @param s the stream
1369 >     * @throws ClassNotFoundException if the class of a serialized object
1370 >     *         could not be found
1371 >     * @throws java.io.IOException if an I/O error occurs
1372 >     */
1373 >    private void readObject(java.io.ObjectInputStream s)
1374 >        throws java.io.IOException, ClassNotFoundException {
1375          /*
1376 <         * Segments maintain a table of entry lists that are ALWAYS
1377 <         * kept in a consistent state, so can be read without locking.
1378 <         * Next fields of nodes are immutable (final).  All list
1379 <         * additions are performed at the front of each bin. This
1380 <         * makes it easy to check changes, and also fast to traverse.
169 <         * When nodes would otherwise be changed, new nodes are
170 <         * created to replace them. This works well for hash tables
171 <         * since the bin lists tend to be short. (The average length
172 <         * is less than two for the default load factor threshold.)
173 <         *
174 <         * Read operations can thus proceed without locking, but rely
175 <         * on a memory barrier to ensure that completed write
176 <         * operations performed by other threads are
177 <         * noticed. Conveniently, the "count" field, tracking the
178 <         * number of elements, can also serve as the volatile variable
179 <         * providing proper read/write barriers. This is convenient
180 <         * because this field needs to be read in many read operations
181 <         * anyway. The use of volatiles for this purpose is only
182 <         * guaranteed to work in accord with reuirements in
183 <         * multithreaded environments when run on JVMs conforming to
184 <         * the clarified JSR133 memory model specification.  This true
185 <         * for hotspot as of release 1.4.
186 <         *
187 <         * Implementors note. The basic rules for all this are:
188 <         *
189 <         *   - All unsynchronized read operations must first read the
190 <         *     "count" field, and should not look at table entries if
191 <         *     it is 0.
192 <         *    
193 <         *   - All synchronized write operations should write to
194 <         *     the "count" field after updating. The operations must not
195 <         *     take any action that could even momentarily cause
196 <         *     a concurrent read operation to see inconsistent
197 <         *     data. This is made easier by the nature of the read
198 <         *     operations in Map. For example, no operation
199 <         *     can reveal that the table has grown but the threshold
200 <         *     has not yet been updated, so there are no atomicity
201 <         *     requirements for this with respect to reads.
202 <         *
203 <         * As a guide, all critical volatile reads and writes are marked
204 <         * in code comments.
1376 >         * To improve performance in typical cases, we create nodes
1377 >         * while reading, then place in table once size is known.
1378 >         * However, we must also validate uniqueness and deal with
1379 >         * overpopulated bins while doing so, which requires
1380 >         * specialized versions of putVal mechanics.
1381           */
1382 <        
1383 <        /**
1384 <         * The number of elements in this segment's region.
1385 <         **/
1386 <        transient volatile int count;
1382 >        sizeCtl = -1; // force exclusion for table construction
1383 >        s.defaultReadObject();
1384 >        long size = 0L;
1385 >        Node<K,V> p = null;
1386 >        for (;;) {
1387 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1388 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1389 >            if (k != null && v != null) {
1390 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1391 >                ++size;
1392 >            }
1393 >            else
1394 >                break;
1395 >        }
1396 >        if (size == 0L)
1397 >            sizeCtl = 0;
1398 >        else {
1399 >            int n;
1400 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1401 >                n = MAXIMUM_CAPACITY;
1402 >            else {
1403 >                int sz = (int)size;
1404 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1405 >            }
1406 >            @SuppressWarnings({"rawtypes","unchecked"})
1407 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1408 >            int mask = n - 1;
1409 >            long added = 0L;
1410 >            while (p != null) {
1411 >                boolean insertAtFront;
1412 >                Node<K,V> next = p.next, first;
1413 >                int h = p.hash, j = h & mask;
1414 >                if ((first = tabAt(tab, j)) == null)
1415 >                    insertAtFront = true;
1416 >                else {
1417 >                    K k = p.key;
1418 >                    if (first.hash < 0) {
1419 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1420 >                        if (t.putTreeVal(h, k, p.val) == null)
1421 >                            ++added;
1422 >                        insertAtFront = false;
1423 >                    }
1424 >                    else {
1425 >                        int binCount = 0;
1426 >                        insertAtFront = true;
1427 >                        Node<K,V> q; K qk;
1428 >                        for (q = first; q != null; q = q.next) {
1429 >                            if (q.hash == h &&
1430 >                                ((qk = q.key) == k ||
1431 >                                 (qk != null && k.equals(qk)))) {
1432 >                                insertAtFront = false;
1433 >                                break;
1434 >                            }
1435 >                            ++binCount;
1436 >                        }
1437 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1438 >                            insertAtFront = false;
1439 >                            ++added;
1440 >                            p.next = first;
1441 >                            TreeNode<K,V> hd = null, tl = null;
1442 >                            for (q = p; q != null; q = q.next) {
1443 >                                TreeNode<K,V> t = new TreeNode<K,V>
1444 >                                    (q.hash, q.key, q.val, null, null);
1445 >                                if ((t.prev = tl) == null)
1446 >                                    hd = t;
1447 >                                else
1448 >                                    tl.next = t;
1449 >                                tl = t;
1450 >                            }
1451 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1452 >                        }
1453 >                    }
1454 >                }
1455 >                if (insertAtFront) {
1456 >                    ++added;
1457 >                    p.next = first;
1458 >                    setTabAt(tab, j, p);
1459 >                }
1460 >                p = next;
1461 >            }
1462 >            table = tab;
1463 >            sizeCtl = n - (n >>> 2);
1464 >            baseCount = added;
1465 >        }
1466 >    }
1467 >
1468 >    // ConcurrentMap methods
1469 >
1470 >    /**
1471 >     * {@inheritDoc}
1472 >     *
1473 >     * @return the previous value associated with the specified key,
1474 >     *         or {@code null} if there was no mapping for the key
1475 >     * @throws NullPointerException if the specified key or value is null
1476 >     */
1477 >    public V putIfAbsent(K key, V value) {
1478 >        return putVal(key, value, true);
1479 >    }
1480 >
1481 >    /**
1482 >     * {@inheritDoc}
1483 >     *
1484 >     * @throws NullPointerException if the specified key is null
1485 >     */
1486 >    public boolean remove(Object key, Object value) {
1487 >        if (key == null)
1488 >            throw new NullPointerException();
1489 >        return value != null && replaceNode(key, null, value) != null;
1490 >    }
1491 >
1492 >    /**
1493 >     * {@inheritDoc}
1494 >     *
1495 >     * @throws NullPointerException if any of the arguments are null
1496 >     */
1497 >    public boolean replace(K key, V oldValue, V newValue) {
1498 >        if (key == null || oldValue == null || newValue == null)
1499 >            throw new NullPointerException();
1500 >        return replaceNode(key, newValue, oldValue) != null;
1501 >    }
1502 >
1503 >    /**
1504 >     * {@inheritDoc}
1505 >     *
1506 >     * @return the previous value associated with the specified key,
1507 >     *         or {@code null} if there was no mapping for the key
1508 >     * @throws NullPointerException if the specified key or value is null
1509 >     */
1510 >    public V replace(K key, V value) {
1511 >        if (key == null || value == null)
1512 >            throw new NullPointerException();
1513 >        return replaceNode(key, value, null);
1514 >    }
1515 >
1516 >    // Overrides of JDK8+ Map extension method defaults
1517 >
1518 >    /**
1519 >     * Returns the value to which the specified key is mapped, or the
1520 >     * given default value if this map contains no mapping for the
1521 >     * key.
1522 >     *
1523 >     * @param key the key whose associated value is to be returned
1524 >     * @param defaultValue the value to return if this map contains
1525 >     * no mapping for the given key
1526 >     * @return the mapping for the key, if present; else the default value
1527 >     * @throws NullPointerException if the specified key is null
1528 >     */
1529 >    public V getOrDefault(Object key, V defaultValue) {
1530 >        V v;
1531 >        return (v = get(key)) == null ? defaultValue : v;
1532 >    }
1533 >
1534 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1535 >        if (action == null) throw new NullPointerException();
1536 >        Node<K,V>[] t;
1537 >        if ((t = table) != null) {
1538 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1539 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1540 >                action.accept(p.key, p.val);
1541 >            }
1542 >        }
1543 >    }
1544 >
1545 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1546 >        if (function == null) throw new NullPointerException();
1547 >        Node<K,V>[] t;
1548 >        if ((t = table) != null) {
1549 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1550 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1551 >                V oldValue = p.val;
1552 >                for (K key = p.key;;) {
1553 >                    V newValue = function.apply(key, oldValue);
1554 >                    if (newValue == null)
1555 >                        throw new NullPointerException();
1556 >                    if (replaceNode(key, newValue, oldValue) != null ||
1557 >                        (oldValue = get(key)) == null)
1558 >                        break;
1559 >                }
1560 >            }
1561 >        }
1562 >    }
1563 >
1564 >    /**
1565 >     * If the specified key is not already associated with a value,
1566 >     * attempts to compute its value using the given mapping function
1567 >     * and enters it into this map unless {@code null}.  The entire
1568 >     * method invocation is performed atomically, so the function is
1569 >     * applied at most once per key.  Some attempted update operations
1570 >     * on this map by other threads may be blocked while computation
1571 >     * is in progress, so the computation should be short and simple,
1572 >     * and must not attempt to update any other mappings of this map.
1573 >     *
1574 >     * @param key key with which the specified value is to be associated
1575 >     * @param mappingFunction the function to compute a value
1576 >     * @return the current (existing or computed) value associated with
1577 >     *         the specified key, or null if the computed value is null
1578 >     * @throws NullPointerException if the specified key or mappingFunction
1579 >     *         is null
1580 >     * @throws IllegalStateException if the computation detectably
1581 >     *         attempts a recursive update to this map that would
1582 >     *         otherwise never complete
1583 >     * @throws RuntimeException or Error if the mappingFunction does so,
1584 >     *         in which case the mapping is left unestablished
1585 >     */
1586 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1587 >        if (key == null || mappingFunction == null)
1588 >            throw new NullPointerException();
1589 >        int h = spread(key.hashCode());
1590 >        V val = null;
1591 >        int binCount = 0;
1592 >        for (Node<K,V>[] tab = table;;) {
1593 >            Node<K,V> f; int n, i, fh;
1594 >            if (tab == null || (n = tab.length) == 0)
1595 >                tab = initTable();
1596 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1597 >                Node<K,V> r = new ReservationNode<K,V>();
1598 >                synchronized (r) {
1599 >                    if (casTabAt(tab, i, null, r)) {
1600 >                        binCount = 1;
1601 >                        Node<K,V> node = null;
1602 >                        try {
1603 >                            if ((val = mappingFunction.apply(key)) != null)
1604 >                                node = new Node<K,V>(h, key, val, null);
1605 >                        } finally {
1606 >                            setTabAt(tab, i, node);
1607 >                        }
1608 >                    }
1609 >                }
1610 >                if (binCount != 0)
1611 >                    break;
1612 >            }
1613 >            else if ((fh = f.hash) == MOVED)
1614 >                tab = helpTransfer(tab, f);
1615 >            else {
1616 >                boolean added = false;
1617 >                synchronized (f) {
1618 >                    if (tabAt(tab, i) == f) {
1619 >                        if (fh >= 0) {
1620 >                            binCount = 1;
1621 >                            for (Node<K,V> e = f;; ++binCount) {
1622 >                                K ek; V ev;
1623 >                                if (e.hash == h &&
1624 >                                    ((ek = e.key) == key ||
1625 >                                     (ek != null && key.equals(ek)))) {
1626 >                                    val = e.val;
1627 >                                    break;
1628 >                                }
1629 >                                Node<K,V> pred = e;
1630 >                                if ((e = e.next) == null) {
1631 >                                    if ((val = mappingFunction.apply(key)) != null) {
1632 >                                        added = true;
1633 >                                        pred.next = new Node<K,V>(h, key, val, null);
1634 >                                    }
1635 >                                    break;
1636 >                                }
1637 >                            }
1638 >                        }
1639 >                        else if (f instanceof TreeBin) {
1640 >                            binCount = 2;
1641 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1642 >                            TreeNode<K,V> r, p;
1643 >                            if ((r = t.root) != null &&
1644 >                                (p = r.findTreeNode(h, key, null)) != null)
1645 >                                val = p.val;
1646 >                            else if ((val = mappingFunction.apply(key)) != null) {
1647 >                                added = true;
1648 >                                t.putTreeVal(h, key, val);
1649 >                            }
1650 >                        }
1651 >                    }
1652 >                }
1653 >                if (binCount != 0) {
1654 >                    if (binCount >= TREEIFY_THRESHOLD)
1655 >                        treeifyBin(tab, i);
1656 >                    if (!added)
1657 >                        return val;
1658 >                    break;
1659 >                }
1660 >            }
1661 >        }
1662 >        if (val != null)
1663 >            addCount(1L, binCount);
1664 >        return val;
1665 >    }
1666 >
1667 >    /**
1668 >     * If the value for the specified key is present, attempts to
1669 >     * compute a new mapping given the key and its current mapped
1670 >     * value.  The entire method invocation is performed atomically.
1671 >     * Some attempted update operations on this map by other threads
1672 >     * may be blocked while computation is in progress, so the
1673 >     * computation should be short and simple, and must not attempt to
1674 >     * update any other mappings of this map.
1675 >     *
1676 >     * @param key key with which a value may be associated
1677 >     * @param remappingFunction the function to compute a value
1678 >     * @return the new value associated with the specified key, or null if none
1679 >     * @throws NullPointerException if the specified key or remappingFunction
1680 >     *         is null
1681 >     * @throws IllegalStateException if the computation detectably
1682 >     *         attempts a recursive update to this map that would
1683 >     *         otherwise never complete
1684 >     * @throws RuntimeException or Error if the remappingFunction does so,
1685 >     *         in which case the mapping is unchanged
1686 >     */
1687 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1688 >        if (key == null || remappingFunction == null)
1689 >            throw new NullPointerException();
1690 >        int h = spread(key.hashCode());
1691 >        V val = null;
1692 >        int delta = 0;
1693 >        int binCount = 0;
1694 >        for (Node<K,V>[] tab = table;;) {
1695 >            Node<K,V> f; int n, i, fh;
1696 >            if (tab == null || (n = tab.length) == 0)
1697 >                tab = initTable();
1698 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1699 >                break;
1700 >            else if ((fh = f.hash) == MOVED)
1701 >                tab = helpTransfer(tab, f);
1702 >            else {
1703 >                synchronized (f) {
1704 >                    if (tabAt(tab, i) == f) {
1705 >                        if (fh >= 0) {
1706 >                            binCount = 1;
1707 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1708 >                                K ek;
1709 >                                if (e.hash == h &&
1710 >                                    ((ek = e.key) == key ||
1711 >                                     (ek != null && key.equals(ek)))) {
1712 >                                    val = remappingFunction.apply(key, e.val);
1713 >                                    if (val != null)
1714 >                                        e.val = val;
1715 >                                    else {
1716 >                                        delta = -1;
1717 >                                        Node<K,V> en = e.next;
1718 >                                        if (pred != null)
1719 >                                            pred.next = en;
1720 >                                        else
1721 >                                            setTabAt(tab, i, en);
1722 >                                    }
1723 >                                    break;
1724 >                                }
1725 >                                pred = e;
1726 >                                if ((e = e.next) == null)
1727 >                                    break;
1728 >                            }
1729 >                        }
1730 >                        else if (f instanceof TreeBin) {
1731 >                            binCount = 2;
1732 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1733 >                            TreeNode<K,V> r, p;
1734 >                            if ((r = t.root) != null &&
1735 >                                (p = r.findTreeNode(h, key, null)) != null) {
1736 >                                val = remappingFunction.apply(key, p.val);
1737 >                                if (val != null)
1738 >                                    p.val = val;
1739 >                                else {
1740 >                                    delta = -1;
1741 >                                    if (t.removeTreeNode(p))
1742 >                                        setTabAt(tab, i, untreeify(t.first));
1743 >                                }
1744 >                            }
1745 >                        }
1746 >                    }
1747 >                }
1748 >                if (binCount != 0)
1749 >                    break;
1750 >            }
1751 >        }
1752 >        if (delta != 0)
1753 >            addCount((long)delta, binCount);
1754 >        return val;
1755 >    }
1756 >
1757 >    /**
1758 >     * Attempts to compute a mapping for the specified key and its
1759 >     * current mapped value (or {@code null} if there is no current
1760 >     * mapping). The entire method invocation is performed atomically.
1761 >     * Some attempted update operations on this map by other threads
1762 >     * may be blocked while computation is in progress, so the
1763 >     * computation should be short and simple, and must not attempt to
1764 >     * update any other mappings of this Map.
1765 >     *
1766 >     * @param key key with which the specified value is to be associated
1767 >     * @param remappingFunction the function to compute a value
1768 >     * @return the new value associated with the specified key, or null if none
1769 >     * @throws NullPointerException if the specified key or remappingFunction
1770 >     *         is null
1771 >     * @throws IllegalStateException if the computation detectably
1772 >     *         attempts a recursive update to this map that would
1773 >     *         otherwise never complete
1774 >     * @throws RuntimeException or Error if the remappingFunction does so,
1775 >     *         in which case the mapping is unchanged
1776 >     */
1777 >    public V compute(K key,
1778 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1779 >        if (key == null || remappingFunction == null)
1780 >            throw new NullPointerException();
1781 >        int h = spread(key.hashCode());
1782 >        V val = null;
1783 >        int delta = 0;
1784 >        int binCount = 0;
1785 >        for (Node<K,V>[] tab = table;;) {
1786 >            Node<K,V> f; int n, i, fh;
1787 >            if (tab == null || (n = tab.length) == 0)
1788 >                tab = initTable();
1789 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1790 >                Node<K,V> r = new ReservationNode<K,V>();
1791 >                synchronized (r) {
1792 >                    if (casTabAt(tab, i, null, r)) {
1793 >                        binCount = 1;
1794 >                        Node<K,V> node = null;
1795 >                        try {
1796 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1797 >                                delta = 1;
1798 >                                node = new Node<K,V>(h, key, val, null);
1799 >                            }
1800 >                        } finally {
1801 >                            setTabAt(tab, i, node);
1802 >                        }
1803 >                    }
1804 >                }
1805 >                if (binCount != 0)
1806 >                    break;
1807 >            }
1808 >            else if ((fh = f.hash) == MOVED)
1809 >                tab = helpTransfer(tab, f);
1810 >            else {
1811 >                synchronized (f) {
1812 >                    if (tabAt(tab, i) == f) {
1813 >                        if (fh >= 0) {
1814 >                            binCount = 1;
1815 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1816 >                                K ek;
1817 >                                if (e.hash == h &&
1818 >                                    ((ek = e.key) == key ||
1819 >                                     (ek != null && key.equals(ek)))) {
1820 >                                    val = remappingFunction.apply(key, e.val);
1821 >                                    if (val != null)
1822 >                                        e.val = val;
1823 >                                    else {
1824 >                                        delta = -1;
1825 >                                        Node<K,V> en = e.next;
1826 >                                        if (pred != null)
1827 >                                            pred.next = en;
1828 >                                        else
1829 >                                            setTabAt(tab, i, en);
1830 >                                    }
1831 >                                    break;
1832 >                                }
1833 >                                pred = e;
1834 >                                if ((e = e.next) == null) {
1835 >                                    val = remappingFunction.apply(key, null);
1836 >                                    if (val != null) {
1837 >                                        delta = 1;
1838 >                                        pred.next =
1839 >                                            new Node<K,V>(h, key, val, null);
1840 >                                    }
1841 >                                    break;
1842 >                                }
1843 >                            }
1844 >                        }
1845 >                        else if (f instanceof TreeBin) {
1846 >                            binCount = 1;
1847 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1848 >                            TreeNode<K,V> r, p;
1849 >                            if ((r = t.root) != null)
1850 >                                p = r.findTreeNode(h, key, null);
1851 >                            else
1852 >                                p = null;
1853 >                            V pv = (p == null) ? null : p.val;
1854 >                            val = remappingFunction.apply(key, pv);
1855 >                            if (val != null) {
1856 >                                if (p != null)
1857 >                                    p.val = val;
1858 >                                else {
1859 >                                    delta = 1;
1860 >                                    t.putTreeVal(h, key, val);
1861 >                                }
1862 >                            }
1863 >                            else if (p != null) {
1864 >                                delta = -1;
1865 >                                if (t.removeTreeNode(p))
1866 >                                    setTabAt(tab, i, untreeify(t.first));
1867 >                            }
1868 >                        }
1869 >                    }
1870 >                }
1871 >                if (binCount != 0) {
1872 >                    if (binCount >= TREEIFY_THRESHOLD)
1873 >                        treeifyBin(tab, i);
1874 >                    break;
1875 >                }
1876 >            }
1877 >        }
1878 >        if (delta != 0)
1879 >            addCount((long)delta, binCount);
1880 >        return val;
1881 >    }
1882 >
1883 >    /**
1884 >     * If the specified key is not already associated with a
1885 >     * (non-null) value, associates it with the given value.
1886 >     * Otherwise, replaces the value with the results of the given
1887 >     * remapping function, or removes if {@code null}. The entire
1888 >     * method invocation is performed atomically.  Some attempted
1889 >     * update operations on this map by other threads may be blocked
1890 >     * while computation is in progress, so the computation should be
1891 >     * short and simple, and must not attempt to update any other
1892 >     * mappings of this Map.
1893 >     *
1894 >     * @param key key with which the specified value is to be associated
1895 >     * @param value the value to use if absent
1896 >     * @param remappingFunction the function to recompute a value if present
1897 >     * @return the new value associated with the specified key, or null if none
1898 >     * @throws NullPointerException if the specified key or the
1899 >     *         remappingFunction is null
1900 >     * @throws RuntimeException or Error if the remappingFunction does so,
1901 >     *         in which case the mapping is unchanged
1902 >     */
1903 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1904 >        if (key == null || value == null || remappingFunction == null)
1905 >            throw new NullPointerException();
1906 >        int h = spread(key.hashCode());
1907 >        V val = null;
1908 >        int delta = 0;
1909 >        int binCount = 0;
1910 >        for (Node<K,V>[] tab = table;;) {
1911 >            Node<K,V> f; int n, i, fh;
1912 >            if (tab == null || (n = tab.length) == 0)
1913 >                tab = initTable();
1914 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1915 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1916 >                    delta = 1;
1917 >                    val = value;
1918 >                    break;
1919 >                }
1920 >            }
1921 >            else if ((fh = f.hash) == MOVED)
1922 >                tab = helpTransfer(tab, f);
1923 >            else {
1924 >                synchronized (f) {
1925 >                    if (tabAt(tab, i) == f) {
1926 >                        if (fh >= 0) {
1927 >                            binCount = 1;
1928 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1929 >                                K ek;
1930 >                                if (e.hash == h &&
1931 >                                    ((ek = e.key) == key ||
1932 >                                     (ek != null && key.equals(ek)))) {
1933 >                                    val = remappingFunction.apply(e.val, value);
1934 >                                    if (val != null)
1935 >                                        e.val = val;
1936 >                                    else {
1937 >                                        delta = -1;
1938 >                                        Node<K,V> en = e.next;
1939 >                                        if (pred != null)
1940 >                                            pred.next = en;
1941 >                                        else
1942 >                                            setTabAt(tab, i, en);
1943 >                                    }
1944 >                                    break;
1945 >                                }
1946 >                                pred = e;
1947 >                                if ((e = e.next) == null) {
1948 >                                    delta = 1;
1949 >                                    val = value;
1950 >                                    pred.next =
1951 >                                        new Node<K,V>(h, key, val, null);
1952 >                                    break;
1953 >                                }
1954 >                            }
1955 >                        }
1956 >                        else if (f instanceof TreeBin) {
1957 >                            binCount = 2;
1958 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1959 >                            TreeNode<K,V> r = t.root;
1960 >                            TreeNode<K,V> p = (r == null) ? null :
1961 >                                r.findTreeNode(h, key, null);
1962 >                            val = (p == null) ? value :
1963 >                                remappingFunction.apply(p.val, value);
1964 >                            if (val != null) {
1965 >                                if (p != null)
1966 >                                    p.val = val;
1967 >                                else {
1968 >                                    delta = 1;
1969 >                                    t.putTreeVal(h, key, val);
1970 >                                }
1971 >                            }
1972 >                            else if (p != null) {
1973 >                                delta = -1;
1974 >                                if (t.removeTreeNode(p))
1975 >                                    setTabAt(tab, i, untreeify(t.first));
1976 >                            }
1977 >                        }
1978 >                    }
1979 >                }
1980 >                if (binCount != 0) {
1981 >                    if (binCount >= TREEIFY_THRESHOLD)
1982 >                        treeifyBin(tab, i);
1983 >                    break;
1984 >                }
1985 >            }
1986 >        }
1987 >        if (delta != 0)
1988 >            addCount((long)delta, binCount);
1989 >        return val;
1990 >    }
1991 >
1992 >    // Hashtable legacy methods
1993 >
1994 >    /**
1995 >     * Legacy method testing if some key maps into the specified value
1996 >     * in this table.  This method is identical in functionality to
1997 >     * {@link #containsValue(Object)}, and exists solely to ensure
1998 >     * full compatibility with class {@link java.util.Hashtable},
1999 >     * which supported this method prior to introduction of the
2000 >     * Java Collections framework.
2001 >     *
2002 >     * @param  value a value to search for
2003 >     * @return {@code true} if and only if some key maps to the
2004 >     *         {@code value} argument in this table as
2005 >     *         determined by the {@code equals} method;
2006 >     *         {@code false} otherwise
2007 >     * @throws NullPointerException if the specified value is null
2008 >     */
2009 >    @Deprecated public boolean contains(Object value) {
2010 >        return containsValue(value);
2011 >    }
2012 >
2013 >    /**
2014 >     * Returns an enumeration of the keys in this table.
2015 >     *
2016 >     * @return an enumeration of the keys in this table
2017 >     * @see #keySet()
2018 >     */
2019 >    public Enumeration<K> keys() {
2020 >        Node<K,V>[] t;
2021 >        int f = (t = table) == null ? 0 : t.length;
2022 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2023 >    }
2024 >
2025 >    /**
2026 >     * Returns an enumeration of the values in this table.
2027 >     *
2028 >     * @return an enumeration of the values in this table
2029 >     * @see #values()
2030 >     */
2031 >    public Enumeration<V> elements() {
2032 >        Node<K,V>[] t;
2033 >        int f = (t = table) == null ? 0 : t.length;
2034 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2035 >    }
2036 >
2037 >    // ConcurrentHashMap-only methods
2038 >
2039 >    /**
2040 >     * Returns the number of mappings. This method should be used
2041 >     * instead of {@link #size} because a ConcurrentHashMap may
2042 >     * contain more mappings than can be represented as an int. The
2043 >     * value returned is an estimate; the actual count may differ if
2044 >     * there are concurrent insertions or removals.
2045 >     *
2046 >     * @return the number of mappings
2047 >     * @since 1.8
2048 >     */
2049 >    public long mappingCount() {
2050 >        long n = sumCount();
2051 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2052 >    }
2053 >
2054 >    /**
2055 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2056 >     * from the given type to {@code Boolean.TRUE}.
2057 >     *
2058 >     * @param <K> the element type of the returned set
2059 >     * @return the new set
2060 >     * @since 1.8
2061 >     */
2062 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2063 >        return new KeySetView<K,Boolean>
2064 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2065 >    }
2066 >
2067 >    /**
2068 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2069 >     * from the given type to {@code Boolean.TRUE}.
2070 >     *
2071 >     * @param initialCapacity The implementation performs internal
2072 >     * sizing to accommodate this many elements.
2073 >     * @param <K> the element type of the returned set
2074 >     * @throws IllegalArgumentException if the initial capacity of
2075 >     * elements is negative
2076 >     * @return the new set
2077 >     * @since 1.8
2078 >     */
2079 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2080 >        return new KeySetView<K,Boolean>
2081 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2082 >    }
2083 >
2084 >    /**
2085 >     * Returns a {@link Set} view of the keys in this map, using the
2086 >     * given common mapped value for any additions (i.e., {@link
2087 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2088 >     * This is of course only appropriate if it is acceptable to use
2089 >     * the same value for all additions from this view.
2090 >     *
2091 >     * @param mappedValue the mapped value to use for any additions
2092 >     * @return the set view
2093 >     * @throws NullPointerException if the mappedValue is null
2094 >     */
2095 >    public KeySetView<K,V> keySet(V mappedValue) {
2096 >        if (mappedValue == null)
2097 >            throw new NullPointerException();
2098 >        return new KeySetView<K,V>(this, mappedValue);
2099 >    }
2100 >
2101 >    /* ---------------- Special Nodes -------------- */
2102 >
2103 >    /**
2104 >     * A node inserted at head of bins during transfer operations.
2105 >     */
2106 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2107 >        final Node<K,V>[] nextTable;
2108 >        ForwardingNode(Node<K,V>[] tab) {
2109 >            super(MOVED, null, null, null);
2110 >            this.nextTable = tab;
2111 >        }
2112 >
2113 >        Node<K,V> find(int h, Object k) {
2114 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2115 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2116 >                Node<K,V> e; int n;
2117 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2118 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2119 >                    return null;
2120 >                for (;;) {
2121 >                    int eh; K ek;
2122 >                    if ((eh = e.hash) == h &&
2123 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2124 >                        return e;
2125 >                    if (eh < 0) {
2126 >                        if (e instanceof ForwardingNode) {
2127 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2128 >                            continue outer;
2129 >                        }
2130 >                        else
2131 >                            return e.find(h, k);
2132 >                    }
2133 >                    if ((e = e.next) == null)
2134 >                        return null;
2135 >                }
2136 >            }
2137 >        }
2138 >    }
2139 >
2140 >    /**
2141 >     * A place-holder node used in computeIfAbsent and compute
2142 >     */
2143 >    static final class ReservationNode<K,V> extends Node<K,V> {
2144 >        ReservationNode() {
2145 >            super(RESERVED, null, null, null);
2146 >        }
2147 >
2148 >        Node<K,V> find(int h, Object k) {
2149 >            return null;
2150 >        }
2151 >    }
2152 >
2153 >    /* ---------------- Table Initialization and Resizing -------------- */
2154 >
2155 >    /**
2156 >     * Initializes table, using the size recorded in sizeCtl.
2157 >     */
2158 >    private final Node<K,V>[] initTable() {
2159 >        Node<K,V>[] tab; int sc;
2160 >        while ((tab = table) == null || tab.length == 0) {
2161 >            if ((sc = sizeCtl) < 0)
2162 >                Thread.yield(); // lost initialization race; just spin
2163 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2164 >                try {
2165 >                    if ((tab = table) == null || tab.length == 0) {
2166 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2167 >                        @SuppressWarnings({"rawtypes","unchecked"})
2168 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2169 >                        table = tab = nt;
2170 >                        sc = n - (n >>> 2);
2171 >                    }
2172 >                } finally {
2173 >                    sizeCtl = sc;
2174 >                }
2175 >                break;
2176 >            }
2177 >        }
2178 >        return tab;
2179 >    }
2180 >
2181 >    /**
2182 >     * Adds to count, and if table is too small and not already
2183 >     * resizing, initiates transfer. If already resizing, helps
2184 >     * perform transfer if work is available.  Rechecks occupancy
2185 >     * after a transfer to see if another resize is already needed
2186 >     * because resizings are lagging additions.
2187 >     *
2188 >     * @param x the count to add
2189 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2190 >     */
2191 >    private final void addCount(long x, int check) {
2192 >        CounterCell[] as; long b, s;
2193 >        if ((as = counterCells) != null ||
2194 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2195 >            CounterCell a; long v; int m;
2196 >            boolean uncontended = true;
2197 >            if (as == null || (m = as.length - 1) < 0 ||
2198 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2199 >                !(uncontended =
2200 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2201 >                fullAddCount(x, uncontended);
2202 >                return;
2203 >            }
2204 >            if (check <= 1)
2205 >                return;
2206 >            s = sumCount();
2207 >        }
2208 >        if (check >= 0) {
2209 >            Node<K,V>[] tab, nt; int sc;
2210 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2211 >                   tab.length < MAXIMUM_CAPACITY) {
2212 >                if (sc < 0) {
2213 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2214 >                        (nt = nextTable) == null)
2215 >                        break;
2216 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2217 >                        transfer(tab, nt);
2218 >                }
2219 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2220 >                    transfer(tab, null);
2221 >                s = sumCount();
2222 >            }
2223 >        }
2224 >    }
2225 >
2226 >    /**
2227 >     * Helps transfer if a resize is in progress.
2228 >     */
2229 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2230 >        Node<K,V>[] nextTab; int sc;
2231 >        if ((f instanceof ForwardingNode) &&
2232 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2233 >            if (nextTab == nextTable && tab == table &&
2234 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2235 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2236 >                transfer(tab, nextTab);
2237 >            return nextTab;
2238 >        }
2239 >        return table;
2240 >    }
2241 >
2242 >    /**
2243 >     * Tries to presize table to accommodate the given number of elements.
2244 >     *
2245 >     * @param size number of elements (doesn't need to be perfectly accurate)
2246 >     */
2247 >    private final void tryPresize(int size) {
2248 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2249 >            tableSizeFor(size + (size >>> 1) + 1);
2250 >        int sc;
2251 >        while ((sc = sizeCtl) >= 0) {
2252 >            Node<K,V>[] tab = table; int n;
2253 >            if (tab == null || (n = tab.length) == 0) {
2254 >                n = (sc > c) ? sc : c;
2255 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2256 >                    try {
2257 >                        if (table == tab) {
2258 >                            @SuppressWarnings({"rawtypes","unchecked"})
2259 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2260 >                            table = nt;
2261 >                            sc = n - (n >>> 2);
2262 >                        }
2263 >                    } finally {
2264 >                        sizeCtl = sc;
2265 >                    }
2266 >                }
2267 >            }
2268 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2269 >                break;
2270 >            else if (tab == table &&
2271 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2272 >                transfer(tab, null);
2273 >        }
2274 >    }
2275 >
2276 >    /**
2277 >     * Moves and/or copies the nodes in each bin to new table. See
2278 >     * above for explanation.
2279 >     */
2280 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2281 >        int n = tab.length, stride;
2282 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2283 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2284 >        if (nextTab == null) {            // initiating
2285 >            try {
2286 >                @SuppressWarnings({"rawtypes","unchecked"})
2287 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2288 >                nextTab = nt;
2289 >            } catch (Throwable ex) {      // try to cope with OOME
2290 >                sizeCtl = Integer.MAX_VALUE;
2291 >                return;
2292 >            }
2293 >            nextTable = nextTab;
2294 >            transferOrigin = n;
2295 >            transferIndex = n;
2296 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2297 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2298 >                int nextk = (k > stride) ? k - stride : 0;
2299 >                for (int m = nextk; m < k; ++m)
2300 >                    nextTab[m] = rev;
2301 >                for (int m = n + nextk; m < n + k; ++m)
2302 >                    nextTab[m] = rev;
2303 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2304 >            }
2305 >        }
2306 >        int nextn = nextTab.length;
2307 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2308 >        boolean advance = true;
2309 >        boolean finishing = false; // to ensure sweep before committing nextTab
2310 >        for (int i = 0, bound = 0;;) {
2311 >            int nextIndex, nextBound, fh; Node<K,V> f;
2312 >            while (advance) {
2313 >                if (--i >= bound || finishing)
2314 >                    advance = false;
2315 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2316 >                    i = -1;
2317 >                    advance = false;
2318 >                }
2319 >                else if (U.compareAndSwapInt
2320 >                         (this, TRANSFERINDEX, nextIndex,
2321 >                          nextBound = (nextIndex > stride ?
2322 >                                       nextIndex - stride : 0))) {
2323 >                    bound = nextBound;
2324 >                    i = nextIndex - 1;
2325 >                    advance = false;
2326 >                }
2327 >            }
2328 >            if (i < 0 || i >= n || i + n >= nextn) {
2329 >                if (finishing) {
2330 >                    nextTable = null;
2331 >                    table = nextTab;
2332 >                    sizeCtl = (n << 1) - (n >>> 1);
2333 >                    return;
2334 >                }
2335 >                for (int sc;;) {
2336 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2337 >                        if (sc != -1)
2338 >                            return;
2339 >                        finishing = advance = true;
2340 >                        i = n; // recheck before commit
2341 >                        break;
2342 >                    }
2343 >                }
2344 >            }
2345 >            else if ((f = tabAt(tab, i)) == null) {
2346 >                if (casTabAt(tab, i, null, fwd)) {
2347 >                    setTabAt(nextTab, i, null);
2348 >                    setTabAt(nextTab, i + n, null);
2349 >                    advance = true;
2350 >                }
2351 >            }
2352 >            else if ((fh = f.hash) == MOVED)
2353 >                advance = true; // already processed
2354 >            else {
2355 >                synchronized (f) {
2356 >                    if (tabAt(tab, i) == f) {
2357 >                        Node<K,V> ln, hn;
2358 >                        if (fh >= 0) {
2359 >                            int runBit = fh & n;
2360 >                            Node<K,V> lastRun = f;
2361 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2362 >                                int b = p.hash & n;
2363 >                                if (b != runBit) {
2364 >                                    runBit = b;
2365 >                                    lastRun = p;
2366 >                                }
2367 >                            }
2368 >                            if (runBit == 0) {
2369 >                                ln = lastRun;
2370 >                                hn = null;
2371 >                            }
2372 >                            else {
2373 >                                hn = lastRun;
2374 >                                ln = null;
2375 >                            }
2376 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2377 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2378 >                                if ((ph & n) == 0)
2379 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2380 >                                else
2381 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2382 >                            }
2383 >                            setTabAt(nextTab, i, ln);
2384 >                            setTabAt(nextTab, i + n, hn);
2385 >                            setTabAt(tab, i, fwd);
2386 >                            advance = true;
2387 >                        }
2388 >                        else if (f instanceof TreeBin) {
2389 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2390 >                            TreeNode<K,V> lo = null, loTail = null;
2391 >                            TreeNode<K,V> hi = null, hiTail = null;
2392 >                            int lc = 0, hc = 0;
2393 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2394 >                                int h = e.hash;
2395 >                                TreeNode<K,V> p = new TreeNode<K,V>
2396 >                                    (h, e.key, e.val, null, null);
2397 >                                if ((h & n) == 0) {
2398 >                                    if ((p.prev = loTail) == null)
2399 >                                        lo = p;
2400 >                                    else
2401 >                                        loTail.next = p;
2402 >                                    loTail = p;
2403 >                                    ++lc;
2404 >                                }
2405 >                                else {
2406 >                                    if ((p.prev = hiTail) == null)
2407 >                                        hi = p;
2408 >                                    else
2409 >                                        hiTail.next = p;
2410 >                                    hiTail = p;
2411 >                                    ++hc;
2412 >                                }
2413 >                            }
2414 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2415 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2416 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2417 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2418 >                            setTabAt(nextTab, i, ln);
2419 >                            setTabAt(nextTab, i + n, hn);
2420 >                            setTabAt(tab, i, fwd);
2421 >                            advance = true;
2422 >                        }
2423 >                    }
2424 >                }
2425 >            }
2426 >        }
2427 >    }
2428 >
2429 >    /* ---------------- Counter support -------------- */
2430 >
2431 >    /**
2432 >     * A padded cell for distributing counts.  Adapted from LongAdder
2433 >     * and Striped64.  See their internal docs for explanation.
2434 >     */
2435 >    @sun.misc.Contended static final class CounterCell {
2436 >        volatile long value;
2437 >        CounterCell(long x) { value = x; }
2438 >    }
2439 >
2440 >    final long sumCount() {
2441 >        CounterCell[] as = counterCells; CounterCell a;
2442 >        long sum = baseCount;
2443 >        if (as != null) {
2444 >            for (int i = 0; i < as.length; ++i) {
2445 >                if ((a = as[i]) != null)
2446 >                    sum += a.value;
2447 >            }
2448 >        }
2449 >        return sum;
2450 >    }
2451 >
2452 >    // See LongAdder version for explanation
2453 >    private final void fullAddCount(long x, boolean wasUncontended) {
2454 >        int h;
2455 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2456 >            ThreadLocalRandom.localInit();      // force initialization
2457 >            h = ThreadLocalRandom.getProbe();
2458 >            wasUncontended = true;
2459 >        }
2460 >        boolean collide = false;                // True if last slot nonempty
2461 >        for (;;) {
2462 >            CounterCell[] as; CounterCell a; int n; long v;
2463 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2464 >                if ((a = as[(n - 1) & h]) == null) {
2465 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2466 >                        CounterCell r = new CounterCell(x); // Optimistic create
2467 >                        if (cellsBusy == 0 &&
2468 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2469 >                            boolean created = false;
2470 >                            try {               // Recheck under lock
2471 >                                CounterCell[] rs; int m, j;
2472 >                                if ((rs = counterCells) != null &&
2473 >                                    (m = rs.length) > 0 &&
2474 >                                    rs[j = (m - 1) & h] == null) {
2475 >                                    rs[j] = r;
2476 >                                    created = true;
2477 >                                }
2478 >                            } finally {
2479 >                                cellsBusy = 0;
2480 >                            }
2481 >                            if (created)
2482 >                                break;
2483 >                            continue;           // Slot is now non-empty
2484 >                        }
2485 >                    }
2486 >                    collide = false;
2487 >                }
2488 >                else if (!wasUncontended)       // CAS already known to fail
2489 >                    wasUncontended = true;      // Continue after rehash
2490 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2491 >                    break;
2492 >                else if (counterCells != as || n >= NCPU)
2493 >                    collide = false;            // At max size or stale
2494 >                else if (!collide)
2495 >                    collide = true;
2496 >                else if (cellsBusy == 0 &&
2497 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2498 >                    try {
2499 >                        if (counterCells == as) {// Expand table unless stale
2500 >                            CounterCell[] rs = new CounterCell[n << 1];
2501 >                            for (int i = 0; i < n; ++i)
2502 >                                rs[i] = as[i];
2503 >                            counterCells = rs;
2504 >                        }
2505 >                    } finally {
2506 >                        cellsBusy = 0;
2507 >                    }
2508 >                    collide = false;
2509 >                    continue;                   // Retry with expanded table
2510 >                }
2511 >                h = ThreadLocalRandom.advanceProbe(h);
2512 >            }
2513 >            else if (cellsBusy == 0 && counterCells == as &&
2514 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2515 >                boolean init = false;
2516 >                try {                           // Initialize table
2517 >                    if (counterCells == as) {
2518 >                        CounterCell[] rs = new CounterCell[2];
2519 >                        rs[h & 1] = new CounterCell(x);
2520 >                        counterCells = rs;
2521 >                        init = true;
2522 >                    }
2523 >                } finally {
2524 >                    cellsBusy = 0;
2525 >                }
2526 >                if (init)
2527 >                    break;
2528 >            }
2529 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2530 >                break;                          // Fall back on using base
2531 >        }
2532 >    }
2533 >
2534 >    /* ---------------- Conversion from/to TreeBins -------------- */
2535 >
2536 >    /**
2537 >     * Replaces all linked nodes in bin at given index unless table is
2538 >     * too small, in which case resizes instead.
2539 >     */
2540 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2541 >        Node<K,V> b; int n, sc;
2542 >        if (tab != null) {
2543 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2544 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2545 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2546 >                    transfer(tab, null);
2547 >            }
2548 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2549 >                synchronized (b) {
2550 >                    if (tabAt(tab, index) == b) {
2551 >                        TreeNode<K,V> hd = null, tl = null;
2552 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2553 >                            TreeNode<K,V> p =
2554 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2555 >                                                  null, null);
2556 >                            if ((p.prev = tl) == null)
2557 >                                hd = p;
2558 >                            else
2559 >                                tl.next = p;
2560 >                            tl = p;
2561 >                        }
2562 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2563 >                    }
2564 >                }
2565 >            }
2566 >        }
2567 >    }
2568 >
2569 >    /**
2570 >     * Returns a list on non-TreeNodes replacing those in given list.
2571 >     */
2572 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2573 >        Node<K,V> hd = null, tl = null;
2574 >        for (Node<K,V> q = b; q != null; q = q.next) {
2575 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2576 >            if (tl == null)
2577 >                hd = p;
2578 >            else
2579 >                tl.next = p;
2580 >            tl = p;
2581 >        }
2582 >        return hd;
2583 >    }
2584 >
2585 >    /* ---------------- TreeNodes -------------- */
2586 >
2587 >    /**
2588 >     * Nodes for use in TreeBins
2589 >     */
2590 >    static final class TreeNode<K,V> extends Node<K,V> {
2591 >        TreeNode<K,V> parent;  // red-black tree links
2592 >        TreeNode<K,V> left;
2593 >        TreeNode<K,V> right;
2594 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2595 >        boolean red;
2596 >
2597 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2598 >                 TreeNode<K,V> parent) {
2599 >            super(hash, key, val, next);
2600 >            this.parent = parent;
2601 >        }
2602 >
2603 >        Node<K,V> find(int h, Object k) {
2604 >            return findTreeNode(h, k, null);
2605 >        }
2606  
2607          /**
2608 <         * The table is rehashed when its size exceeds this threshold.
2609 <         * (The value of this field is always (int)(capacity *
215 <         * loadFactor).)
2608 >         * Returns the TreeNode (or null if not found) for the given key
2609 >         * starting at given root.
2610           */
2611 <        transient private int threshold;
2611 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2612 >            if (k != null) {
2613 >                TreeNode<K,V> p = this;
2614 >                do  {
2615 >                    int ph, dir; K pk; TreeNode<K,V> q;
2616 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2617 >                    if ((ph = p.hash) > h)
2618 >                        p = pl;
2619 >                    else if (ph < h)
2620 >                        p = pr;
2621 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2622 >                        return p;
2623 >                    else if (pl == null && pr == null)
2624 >                        break;
2625 >                    else if ((kc != null ||
2626 >                              (kc = comparableClassFor(k)) != null) &&
2627 >                             (dir = compareComparables(kc, k, pk)) != 0)
2628 >                        p = (dir < 0) ? pl : pr;
2629 >                    else if (pl == null)
2630 >                        p = pr;
2631 >                    else if (pr == null ||
2632 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2633 >                        p = pl;
2634 >                    else
2635 >                        return q;
2636 >                } while (p != null);
2637 >            }
2638 >            return null;
2639 >        }
2640 >    }
2641 >
2642 >    /* ---------------- TreeBins -------------- */
2643 >
2644 >    /**
2645 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2646 >     * keys or values, but instead point to list of TreeNodes and
2647 >     * their root. They also maintain a parasitic read-write lock
2648 >     * forcing writers (who hold bin lock) to wait for readers (who do
2649 >     * not) to complete before tree restructuring operations.
2650 >     */
2651 >    static final class TreeBin<K,V> extends Node<K,V> {
2652 >        TreeNode<K,V> root;
2653 >        volatile TreeNode<K,V> first;
2654 >        volatile Thread waiter;
2655 >        volatile int lockState;
2656 >        // values for lockState
2657 >        static final int WRITER = 1; // set while holding write lock
2658 >        static final int WAITER = 2; // set when waiting for write lock
2659 >        static final int READER = 4; // increment value for setting read lock
2660  
2661          /**
2662 <         * The per-segment table
2662 >         * Creates bin with initial set of nodes headed by b.
2663           */
2664 <        transient HashEntry<K,V>[] table;
2664 >        TreeBin(TreeNode<K,V> b) {
2665 >            super(TREEBIN, null, null, null);
2666 >            this.first = b;
2667 >            TreeNode<K,V> r = null;
2668 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2669 >                next = (TreeNode<K,V>)x.next;
2670 >                x.left = x.right = null;
2671 >                if (r == null) {
2672 >                    x.parent = null;
2673 >                    x.red = false;
2674 >                    r = x;
2675 >                }
2676 >                else {
2677 >                    Object key = x.key;
2678 >                    int hash = x.hash;
2679 >                    Class<?> kc = null;
2680 >                    for (TreeNode<K,V> p = r;;) {
2681 >                        int dir, ph;
2682 >                        if ((ph = p.hash) > hash)
2683 >                            dir = -1;
2684 >                        else if (ph < hash)
2685 >                            dir = 1;
2686 >                        else if ((kc != null ||
2687 >                                  (kc = comparableClassFor(key)) != null))
2688 >                            dir = compareComparables(kc, key, p.key);
2689 >                        else
2690 >                            dir = 0;
2691 >                        TreeNode<K,V> xp = p;
2692 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2693 >                            x.parent = xp;
2694 >                            if (dir <= 0)
2695 >                                xp.left = x;
2696 >                            else
2697 >                                xp.right = x;
2698 >                            r = balanceInsertion(r, x);
2699 >                            break;
2700 >                        }
2701 >                    }
2702 >                }
2703 >            }
2704 >            this.root = r;
2705 >        }
2706  
2707          /**
2708 <         * The load factor for the hash table.  Even though this value
226 <         * is same for all segments, it is replicated to avoid needing
227 <         * links to outer object.
228 <         * @serial
2708 >         * Acquires write lock for tree restructuring.
2709           */
2710 <        private final float loadFactor;
2710 >        private final void lockRoot() {
2711 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2712 >                contendedLock(); // offload to separate method
2713 >        }
2714  
2715 <        Segment(int initialCapacity, float lf) {
2716 <            loadFactor = lf;
2717 <            setTable(new HashEntry<K,V>[initialCapacity]);
2715 >        /**
2716 >         * Releases write lock for tree restructuring.
2717 >         */
2718 >        private final void unlockRoot() {
2719 >            lockState = 0;
2720          }
2721  
2722          /**
2723 <         * Set table to new HashEntry array.
2724 <         * Call only while holding lock or in constructor.
2725 <         **/
2726 <        private void setTable(HashEntry<K,V>[] newTable) {
2727 <            table = newTable;
2728 <            threshold = (int)(newTable.length * loadFactor);
2729 <            count = count; // write-volatile
2730 <        }    
2723 >         * Possibly blocks awaiting root lock.
2724 >         */
2725 >        private final void contendedLock() {
2726 >            boolean waiting = false;
2727 >            for (int s;;) {
2728 >                if (((s = lockState) & WRITER) == 0) {
2729 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2730 >                        if (waiting)
2731 >                            waiter = null;
2732 >                        return;
2733 >                    }
2734 >                }
2735 >                else if ((s | WAITER) == 0) {
2736 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2737 >                        waiting = true;
2738 >                        waiter = Thread.currentThread();
2739 >                    }
2740 >                }
2741 >                else if (waiting)
2742 >                    LockSupport.park(this);
2743 >            }
2744 >        }
2745  
2746 <        /* Specialized implementations of map methods */
2747 <        
2748 <        V get(K key, int hash) {
2749 <            if (count != 0) { // read-volatile
2750 <                HashEntry<K,V>[] tab = table;
2751 <                int index = indexFor(hash, tab.length);
2752 <                HashEntry<K,V> e = tab[index];
2753 <                while (e != null) {
2754 <                    if (e.hash == hash && eq(key, e.key))
2755 <                        return e.value;
2756 <                    e = e.next;
2746 >        /**
2747 >         * Returns matching node or null if none. Tries to search
2748 >         * using tree comparisons from root, but continues linear
2749 >         * search when lock not available.
2750 >         */
2751 >        final Node<K,V> find(int h, Object k) {
2752 >            if (k != null) {
2753 >                for (Node<K,V> e = first; e != null; e = e.next) {
2754 >                    int s; K ek;
2755 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2756 >                        if (e.hash == h &&
2757 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2758 >                            return e;
2759 >                    }
2760 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2761 >                                                 s + READER)) {
2762 >                        TreeNode<K,V> r, p;
2763 >                        try {
2764 >                            p = ((r = root) == null ? null :
2765 >                                 r.findTreeNode(h, k, null));
2766 >                        } finally {
2767 >                            Thread w;
2768 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2769 >                                (READER|WAITER) && (w = waiter) != null)
2770 >                                LockSupport.unpark(w);
2771 >                        }
2772 >                        return p;
2773 >                    }
2774                  }
2775              }
2776              return null;
2777          }
2778  
2779 <        boolean containsKey(Object key, int hash) {
2780 <            if (count != 0) { // read-volatile
2781 <                HashEntry<K,V>[] tab = table;
2782 <                int index = indexFor(hash, tab.length);
2783 <                HashEntry<K,V> e = tab[index];
2784 <                while (e != null) {
2785 <                    if (e.hash == hash && eq(key, e.key))
2786 <                        return true;
2787 <                    e = e.next;
2779 >        /**
2780 >         * Finds or adds a node.
2781 >         * @return null if added
2782 >         */
2783 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2784 >            Class<?> kc = null;
2785 >            for (TreeNode<K,V> p = root;;) {
2786 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2787 >                if (p == null) {
2788 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2789 >                    break;
2790 >                }
2791 >                else if ((ph = p.hash) > h)
2792 >                    dir = -1;
2793 >                else if (ph < h)
2794 >                    dir = 1;
2795 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2796 >                    return p;
2797 >                else if ((kc == null &&
2798 >                          (kc = comparableClassFor(k)) == null) ||
2799 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2800 >                    if (p.left == null)
2801 >                        dir = 1;
2802 >                    else if ((pr = p.right) == null ||
2803 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2804 >                        dir = -1;
2805 >                    else
2806 >                        return q;
2807 >                }
2808 >                TreeNode<K,V> xp = p;
2809 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2810 >                    TreeNode<K,V> x, f = first;
2811 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2812 >                    if (f != null)
2813 >                        f.prev = x;
2814 >                    if (dir < 0)
2815 >                        xp.left = x;
2816 >                    else
2817 >                        xp.right = x;
2818 >                    if (!xp.red)
2819 >                        x.red = true;
2820 >                    else {
2821 >                        lockRoot();
2822 >                        try {
2823 >                            root = balanceInsertion(root, x);
2824 >                        } finally {
2825 >                            unlockRoot();
2826 >                        }
2827 >                    }
2828 >                    break;
2829                  }
2830              }
2831 <            return false;
2831 >            assert checkInvariants(root);
2832 >            return null;
2833          }
2834 <        
2835 <        boolean containsValue(Object value) {
2836 <            if (count != 0) { // read-volatile
2837 <                HashEntry<K,V> tab[] = table;
2838 <                int len = tab.length;
2839 <                for (int i = 0 ; i < len; i++)
2840 <                    for (HashEntry<K,V> e = tab[i] ; e != null ; e = e.next)
2841 <                        if (value.equals(e.value))
2842 <                            return true;
2834 >
2835 >        /**
2836 >         * Removes the given node, that must be present before this
2837 >         * call.  This is messier than typical red-black deletion code
2838 >         * because we cannot swap the contents of an interior node
2839 >         * with a leaf successor that is pinned by "next" pointers
2840 >         * that are accessible independently of lock. So instead we
2841 >         * swap the tree linkages.
2842 >         *
2843 >         * @return true if now too small, so should be untreeified
2844 >         */
2845 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2846 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2847 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2848 >            TreeNode<K,V> r, rl;
2849 >            if (pred == null)
2850 >                first = next;
2851 >            else
2852 >                pred.next = next;
2853 >            if (next != null)
2854 >                next.prev = pred;
2855 >            if (first == null) {
2856 >                root = null;
2857 >                return true;
2858 >            }
2859 >            if ((r = root) == null || r.right == null || // too small
2860 >                (rl = r.left) == null || rl.left == null)
2861 >                return true;
2862 >            lockRoot();
2863 >            try {
2864 >                TreeNode<K,V> replacement;
2865 >                TreeNode<K,V> pl = p.left;
2866 >                TreeNode<K,V> pr = p.right;
2867 >                if (pl != null && pr != null) {
2868 >                    TreeNode<K,V> s = pr, sl;
2869 >                    while ((sl = s.left) != null) // find successor
2870 >                        s = sl;
2871 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2872 >                    TreeNode<K,V> sr = s.right;
2873 >                    TreeNode<K,V> pp = p.parent;
2874 >                    if (s == pr) { // p was s's direct parent
2875 >                        p.parent = s;
2876 >                        s.right = p;
2877 >                    }
2878 >                    else {
2879 >                        TreeNode<K,V> sp = s.parent;
2880 >                        if ((p.parent = sp) != null) {
2881 >                            if (s == sp.left)
2882 >                                sp.left = p;
2883 >                            else
2884 >                                sp.right = p;
2885 >                        }
2886 >                        if ((s.right = pr) != null)
2887 >                            pr.parent = s;
2888 >                    }
2889 >                    p.left = null;
2890 >                    if ((p.right = sr) != null)
2891 >                        sr.parent = p;
2892 >                    if ((s.left = pl) != null)
2893 >                        pl.parent = s;
2894 >                    if ((s.parent = pp) == null)
2895 >                        r = s;
2896 >                    else if (p == pp.left)
2897 >                        pp.left = s;
2898 >                    else
2899 >                        pp.right = s;
2900 >                    if (sr != null)
2901 >                        replacement = sr;
2902 >                    else
2903 >                        replacement = p;
2904 >                }
2905 >                else if (pl != null)
2906 >                    replacement = pl;
2907 >                else if (pr != null)
2908 >                    replacement = pr;
2909 >                else
2910 >                    replacement = p;
2911 >                if (replacement != p) {
2912 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2913 >                    if (pp == null)
2914 >                        r = replacement;
2915 >                    else if (p == pp.left)
2916 >                        pp.left = replacement;
2917 >                    else
2918 >                        pp.right = replacement;
2919 >                    p.left = p.right = p.parent = null;
2920 >                }
2921 >
2922 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2923 >
2924 >                if (p == replacement) {  // detach pointers
2925 >                    TreeNode<K,V> pp;
2926 >                    if ((pp = p.parent) != null) {
2927 >                        if (p == pp.left)
2928 >                            pp.left = null;
2929 >                        else if (p == pp.right)
2930 >                            pp.right = null;
2931 >                        p.parent = null;
2932 >                    }
2933 >                }
2934 >            } finally {
2935 >                unlockRoot();
2936              }
2937 +            assert checkInvariants(root);
2938              return false;
2939          }
2940  
2941 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
2942 <            lock();
2943 <            try {
2944 <                HashEntry<K,V>[] tab = table;
2945 <                int index = indexFor(hash, tab.length);
2946 <                HashEntry<K,V> first = tab[index];
2947 <                
2948 <                for (HashEntry<K,V> e = first; e != null; e = e.next) {
2949 <                    if (e.hash == hash && eq(key, e.key)) {
2950 <                        V oldValue = e.value;
2951 <                        if (!onlyIfAbsent)
2952 <                            e.value = value;
2953 <                        count = count; // write-volatile
2954 <                        return oldValue;
2955 <                    }
2956 <                }
2957 <                
306 <                tab[index] = new HashEntry<K,V>(hash, key, value, first);
307 <                if (++count > threshold) // write-volatile
308 <                    rehash();
309 <                return null;
310 <            }
311 <            finally {
312 <                unlock();
2941 >        /* ------------------------------------------------------------ */
2942 >        // Red-black tree methods, all adapted from CLR
2943 >
2944 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2945 >                                              TreeNode<K,V> p) {
2946 >            TreeNode<K,V> r, pp, rl;
2947 >            if (p != null && (r = p.right) != null) {
2948 >                if ((rl = p.right = r.left) != null)
2949 >                    rl.parent = p;
2950 >                if ((pp = r.parent = p.parent) == null)
2951 >                    (root = r).red = false;
2952 >                else if (pp.left == p)
2953 >                    pp.left = r;
2954 >                else
2955 >                    pp.right = r;
2956 >                r.left = p;
2957 >                p.parent = r;
2958              }
2959 +            return root;
2960          }
2961  
2962 <        private void rehash() {
2963 <            HashEntry<K,V>[] oldTable = table;
2964 <            int oldCapacity = oldTable.length;
2965 <            if (oldCapacity >= MAXIMUM_CAPACITY)
2966 <                return;
2962 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2963 >                                               TreeNode<K,V> p) {
2964 >            TreeNode<K,V> l, pp, lr;
2965 >            if (p != null && (l = p.left) != null) {
2966 >                if ((lr = p.left = l.right) != null)
2967 >                    lr.parent = p;
2968 >                if ((pp = l.parent = p.parent) == null)
2969 >                    (root = l).red = false;
2970 >                else if (pp.right == p)
2971 >                    pp.right = l;
2972 >                else
2973 >                    pp.left = l;
2974 >                l.right = p;
2975 >                p.parent = l;
2976 >            }
2977 >            return root;
2978 >        }
2979  
2980 <            /*
2981 <             * Reclassify nodes in each list to new Map.  Because we are
2982 <             * using power-of-two expansion, the elements from each bin
2983 <             * must either stay at same index, or move with a power of two
2984 <             * offset. We eliminate unnecessary node creation by catching
2985 <             * cases where old nodes can be reused because their next
2986 <             * fields won't change. Statistically, at the default
2987 <             * threshhold, only about one-sixth of them need cloning when
2988 <             * a table doubles. The nodes they replace will be garbage
2989 <             * collectable as soon as they are no longer referenced by any
2990 <             * reader thread that may be in the midst of traversing table
2991 <             * right now.
2992 <             */
2993 <            
2994 <            HashEntry<K,V>[] newTable = new HashEntry<K,V>[oldCapacity << 1];
2995 <            int sizeMask = newTable.length - 1;
2996 <            for (int i = 0; i < oldCapacity ; i++) {
2997 <                // We need to guarantee that any existing reads of old Map can
2998 <                //  proceed. So we cannot yet null out each bin.  
2999 <                HashEntry<K,V> e = oldTable[i];
3000 <                
3001 <                if (e != null) {
3002 <                    HashEntry<K,V> next = e.next;
3003 <                    int idx = e.hash & sizeMask;
3004 <                    
3005 <                    //  Single node on list
3006 <                    if (next == null)
3007 <                        newTable[idx] = e;
350 <                    
351 <                    else {    
352 <                        // Reuse trailing consecutive sequence at same slot
353 <                        HashEntry<K,V> lastRun = e;
354 <                        int lastIdx = idx;
355 <                        for (HashEntry<K,V> last = next;
356 <                             last != null;
357 <                             last = last.next) {
358 <                            int k = last.hash & sizeMask;
359 <                            if (k != lastIdx) {
360 <                                lastIdx = k;
361 <                                lastRun = last;
362 <                            }
363 <                        }
364 <                        newTable[lastIdx] = lastRun;
365 <                        
366 <                        // Clone all remaining nodes
367 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
368 <                            int k = p.hash & sizeMask;
369 <                            newTable[k] = new HashEntry<K,V>(p.hash, p.key,
370 <                                                             p.value, newTable[k]);
2980 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2981 >                                                    TreeNode<K,V> x) {
2982 >            x.red = true;
2983 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2984 >                if ((xp = x.parent) == null) {
2985 >                    x.red = false;
2986 >                    return x;
2987 >                }
2988 >                else if (!xp.red || (xpp = xp.parent) == null)
2989 >                    return root;
2990 >                if (xp == (xppl = xpp.left)) {
2991 >                    if ((xppr = xpp.right) != null && xppr.red) {
2992 >                        xppr.red = false;
2993 >                        xp.red = false;
2994 >                        xpp.red = true;
2995 >                        x = xpp;
2996 >                    }
2997 >                    else {
2998 >                        if (x == xp.right) {
2999 >                            root = rotateLeft(root, x = xp);
3000 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3001 >                        }
3002 >                        if (xp != null) {
3003 >                            xp.red = false;
3004 >                            if (xpp != null) {
3005 >                                xpp.red = true;
3006 >                                root = rotateRight(root, xpp);
3007 >                            }
3008                          }
3009                      }
3010                  }
3011 <            }
3012 <            setTable(newTable);
3013 <        }
3014 <        
3015 <        V remove(Object key, int hash, Object value) {
3016 <            lock();
3017 <            try {
3018 <                HashEntry[] tab = table;
3019 <                int index = indexFor(hash, tab.length);
3020 <                HashEntry<K,V> first = tab[index];
3021 <                
3022 <                HashEntry<K,V> e = first;
3023 <                while (true) {
3024 <                    if (e == null)
3025 <                        return null;
3026 <                    if (e.hash == hash && eq(key, e.key))
3027 <                        break;
3028 <                    e = e.next;
3011 >                else {
3012 >                    if (xppl != null && xppl.red) {
3013 >                        xppl.red = false;
3014 >                        xp.red = false;
3015 >                        xpp.red = true;
3016 >                        x = xpp;
3017 >                    }
3018 >                    else {
3019 >                        if (x == xp.left) {
3020 >                            root = rotateRight(root, x = xp);
3021 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3022 >                        }
3023 >                        if (xp != null) {
3024 >                            xp.red = false;
3025 >                            if (xpp != null) {
3026 >                                xpp.red = true;
3027 >                                root = rotateLeft(root, xpp);
3028 >                            }
3029 >                        }
3030 >                    }
3031                  }
393
394                V oldValue = e.value;
395                if (value != null && !value.equals(oldValue))
396                    return null;
397                
398                // All entries following removed node can stay in list, but
399                // all preceeding ones need to be cloned.  
400                HashEntry<K,V> newFirst = e.next;
401                for (HashEntry<K,V> p = first; p != e; p = p.next)
402                    newFirst = new HashEntry<K,V>(p.hash, p.key, p.value, newFirst);
403                tab[index] = newFirst;
404                
405                count--; // write-volatile
406                return e.value;
3032              }
3033 <            finally {
3034 <                unlock();
3033 >        }
3034 >
3035 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3036 >                                                   TreeNode<K,V> x) {
3037 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3038 >                if (x == null || x == root)
3039 >                    return root;
3040 >                else if ((xp = x.parent) == null) {
3041 >                    x.red = false;
3042 >                    return x;
3043 >                }
3044 >                else if (x.red) {
3045 >                    x.red = false;
3046 >                    return root;
3047 >                }
3048 >                else if ((xpl = xp.left) == x) {
3049 >                    if ((xpr = xp.right) != null && xpr.red) {
3050 >                        xpr.red = false;
3051 >                        xp.red = true;
3052 >                        root = rotateLeft(root, xp);
3053 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3054 >                    }
3055 >                    if (xpr == null)
3056 >                        x = xp;
3057 >                    else {
3058 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3059 >                        if ((sr == null || !sr.red) &&
3060 >                            (sl == null || !sl.red)) {
3061 >                            xpr.red = true;
3062 >                            x = xp;
3063 >                        }
3064 >                        else {
3065 >                            if (sr == null || !sr.red) {
3066 >                                if (sl != null)
3067 >                                    sl.red = false;
3068 >                                xpr.red = true;
3069 >                                root = rotateRight(root, xpr);
3070 >                                xpr = (xp = x.parent) == null ?
3071 >                                    null : xp.right;
3072 >                            }
3073 >                            if (xpr != null) {
3074 >                                xpr.red = (xp == null) ? false : xp.red;
3075 >                                if ((sr = xpr.right) != null)
3076 >                                    sr.red = false;
3077 >                            }
3078 >                            if (xp != null) {
3079 >                                xp.red = false;
3080 >                                root = rotateLeft(root, xp);
3081 >                            }
3082 >                            x = root;
3083 >                        }
3084 >                    }
3085 >                }
3086 >                else { // symmetric
3087 >                    if (xpl != null && xpl.red) {
3088 >                        xpl.red = false;
3089 >                        xp.red = true;
3090 >                        root = rotateRight(root, xp);
3091 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3092 >                    }
3093 >                    if (xpl == null)
3094 >                        x = xp;
3095 >                    else {
3096 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3097 >                        if ((sl == null || !sl.red) &&
3098 >                            (sr == null || !sr.red)) {
3099 >                            xpl.red = true;
3100 >                            x = xp;
3101 >                        }
3102 >                        else {
3103 >                            if (sl == null || !sl.red) {
3104 >                                if (sr != null)
3105 >                                    sr.red = false;
3106 >                                xpl.red = true;
3107 >                                root = rotateLeft(root, xpl);
3108 >                                xpl = (xp = x.parent) == null ?
3109 >                                    null : xp.left;
3110 >                            }
3111 >                            if (xpl != null) {
3112 >                                xpl.red = (xp == null) ? false : xp.red;
3113 >                                if ((sl = xpl.left) != null)
3114 >                                    sl.red = false;
3115 >                            }
3116 >                            if (xp != null) {
3117 >                                xp.red = false;
3118 >                                root = rotateRight(root, xp);
3119 >                            }
3120 >                            x = root;
3121 >                        }
3122 >                    }
3123 >                }
3124              }
3125          }
3126  
3127 <        void clear() {
3128 <            lock();
3127 >        /**
3128 >         * Recursive invariant check
3129 >         */
3130 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3131 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3132 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3133 >            if (tb != null && tb.next != t)
3134 >                return false;
3135 >            if (tn != null && tn.prev != t)
3136 >                return false;
3137 >            if (tp != null && t != tp.left && t != tp.right)
3138 >                return false;
3139 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3140 >                return false;
3141 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3142 >                return false;
3143 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3144 >                return false;
3145 >            if (tl != null && !checkInvariants(tl))
3146 >                return false;
3147 >            if (tr != null && !checkInvariants(tr))
3148 >                return false;
3149 >            return true;
3150 >        }
3151 >
3152 >        private static final sun.misc.Unsafe U;
3153 >        private static final long LOCKSTATE;
3154 >        static {
3155              try {
3156 <                HashEntry<K,V> tab[] = table;
3157 <                for (int i = 0; i < tab.length ; i++)
3158 <                    tab[i] = null;
3159 <                count = 0; // write-volatile
3156 >                U = sun.misc.Unsafe.getUnsafe();
3157 >                Class<?> k = TreeBin.class;
3158 >                LOCKSTATE = U.objectFieldOffset
3159 >                    (k.getDeclaredField("lockState"));
3160 >            } catch (Exception e) {
3161 >                throw new Error(e);
3162              }
3163 <            finally {
3164 <                unlock();
3163 >        }
3164 >    }
3165 >
3166 >    /* ----------------Table Traversal -------------- */
3167 >
3168 >    /**
3169 >     * Encapsulates traversal for methods such as containsValue; also
3170 >     * serves as a base class for other iterators and spliterators.
3171 >     *
3172 >     * Method advance visits once each still-valid node that was
3173 >     * reachable upon iterator construction. It might miss some that
3174 >     * were added to a bin after the bin was visited, which is OK wrt
3175 >     * consistency guarantees. Maintaining this property in the face
3176 >     * of possible ongoing resizes requires a fair amount of
3177 >     * bookkeeping state that is difficult to optimize away amidst
3178 >     * volatile accesses.  Even so, traversal maintains reasonable
3179 >     * throughput.
3180 >     *
3181 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3182 >     * However, if the table has been resized, then all future steps
3183 >     * must traverse both the bin at the current index as well as at
3184 >     * (index + baseSize); and so on for further resizings. To
3185 >     * paranoically cope with potential sharing by users of iterators
3186 >     * across threads, iteration terminates if a bounds checks fails
3187 >     * for a table read.
3188 >     */
3189 >    static class Traverser<K,V> {
3190 >        Node<K,V>[] tab;        // current table; updated if resized
3191 >        Node<K,V> next;         // the next entry to use
3192 >        int index;              // index of bin to use next
3193 >        int baseIndex;          // current index of initial table
3194 >        int baseLimit;          // index bound for initial table
3195 >        final int baseSize;     // initial table size
3196 >
3197 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3198 >            this.tab = tab;
3199 >            this.baseSize = size;
3200 >            this.baseIndex = this.index = index;
3201 >            this.baseLimit = limit;
3202 >            this.next = null;
3203 >        }
3204 >
3205 >        /**
3206 >         * Advances if possible, returning next valid node, or null if none.
3207 >         */
3208 >        final Node<K,V> advance() {
3209 >            Node<K,V> e;
3210 >            if ((e = next) != null)
3211 >                e = e.next;
3212 >            for (;;) {
3213 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3214 >                if (e != null)
3215 >                    return next = e;
3216 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3217 >                    (n = t.length) <= (i = index) || i < 0)
3218 >                    return next = null;
3219 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3220 >                    if (e instanceof ForwardingNode) {
3221 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3222 >                        e = null;
3223 >                        continue;
3224 >                    }
3225 >                    else if (e instanceof TreeBin)
3226 >                        e = ((TreeBin<K,V>)e).first;
3227 >                    else
3228 >                        e = null;
3229 >                }
3230 >                if ((index += baseSize) >= n)
3231 >                    index = ++baseIndex;    // visit upper slots if present
3232              }
3233          }
3234      }
3235  
3236      /**
3237 <     * ConcurrentReaderHashMap list entry.
3237 >     * Base of key, value, and entry Iterators. Adds fields to
3238 >     * Traverser to support iterator.remove.
3239       */
3240 <    private static class HashEntry<K,V> implements Entry<K,V> {
3241 <        private final K key;
3242 <        private V value;
3243 <        private final int hash;
3244 <        private final HashEntry<K,V> next;
3240 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3241 >        final ConcurrentHashMap<K,V> map;
3242 >        Node<K,V> lastReturned;
3243 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3244 >                    ConcurrentHashMap<K,V> map) {
3245 >            super(tab, size, index, limit);
3246 >            this.map = map;
3247 >            advance();
3248 >        }
3249  
3250 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
3251 <            this.value = value;
3252 <            this.hash = hash;
3253 <            this.key = key;
3254 <            this.next = next;
3250 >        public final boolean hasNext() { return next != null; }
3251 >        public final boolean hasMoreElements() { return next != null; }
3252 >
3253 >        public final void remove() {
3254 >            Node<K,V> p;
3255 >            if ((p = lastReturned) == null)
3256 >                throw new IllegalStateException();
3257 >            lastReturned = null;
3258 >            map.replaceNode(p.key, null, null);
3259 >        }
3260 >    }
3261 >
3262 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3263 >        implements Iterator<K>, Enumeration<K> {
3264 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3265 >                    ConcurrentHashMap<K,V> map) {
3266 >            super(tab, index, size, limit, map);
3267 >        }
3268 >
3269 >        public final K next() {
3270 >            Node<K,V> p;
3271 >            if ((p = next) == null)
3272 >                throw new NoSuchElementException();
3273 >            K k = p.key;
3274 >            lastReturned = p;
3275 >            advance();
3276 >            return k;
3277 >        }
3278 >
3279 >        public final K nextElement() { return next(); }
3280 >    }
3281 >
3282 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3283 >        implements Iterator<V>, Enumeration<V> {
3284 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3285 >                      ConcurrentHashMap<K,V> map) {
3286 >            super(tab, index, size, limit, map);
3287          }
3288  
3289 <        public K getKey() {
3290 <            return key;
3289 >        public final V next() {
3290 >            Node<K,V> p;
3291 >            if ((p = next) == null)
3292 >                throw new NoSuchElementException();
3293 >            V v = p.val;
3294 >            lastReturned = p;
3295 >            advance();
3296 >            return v;
3297          }
3298  
3299 <        public V getValue() {
3300 <            return value;
3299 >        public final V nextElement() { return next(); }
3300 >    }
3301 >
3302 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3303 >        implements Iterator<Map.Entry<K,V>> {
3304 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3305 >                      ConcurrentHashMap<K,V> map) {
3306 >            super(tab, index, size, limit, map);
3307          }
3308  
3309 <        public V setValue(V newValue) {
3310 <            // We aren't required to, and don't provide any
3311 <            // visibility barriers for setting value.
3312 <            if (newValue == null)
3313 <                throw new NullPointerException();
3314 <            V oldValue = this.value;
3315 <            this.value = newValue;
3316 <            return oldValue;
3309 >        public final Map.Entry<K,V> next() {
3310 >            Node<K,V> p;
3311 >            if ((p = next) == null)
3312 >                throw new NoSuchElementException();
3313 >            K k = p.key;
3314 >            V v = p.val;
3315 >            lastReturned = p;
3316 >            advance();
3317 >            return new MapEntry<K,V>(k, v, map);
3318          }
3319 +    }
3320 +
3321 +    /**
3322 +     * Exported Entry for EntryIterator
3323 +     */
3324 +    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3325 +        final K key; // non-null
3326 +        V val;       // non-null
3327 +        final ConcurrentHashMap<K,V> map;
3328 +        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3329 +            this.key = key;
3330 +            this.val = val;
3331 +            this.map = map;
3332 +        }
3333 +        public K getKey()        { return key; }
3334 +        public V getValue()      { return val; }
3335 +        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3336 +        public String toString() { return key + "=" + val; }
3337  
3338          public boolean equals(Object o) {
3339 <            if (!(o instanceof Entry))
3339 >            Object k, v; Map.Entry<?,?> e;
3340 >            return ((o instanceof Map.Entry) &&
3341 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3342 >                    (v = e.getValue()) != null &&
3343 >                    (k == key || k.equals(key)) &&
3344 >                    (v == val || v.equals(val)));
3345 >        }
3346 >
3347 >        /**
3348 >         * Sets our entry's value and writes through to the map. The
3349 >         * value to return is somewhat arbitrary here. Since we do not
3350 >         * necessarily track asynchronous changes, the most recent
3351 >         * "previous" value could be different from what we return (or
3352 >         * could even have been removed, in which case the put will
3353 >         * re-establish). We do not and cannot guarantee more.
3354 >         */
3355 >        public V setValue(V value) {
3356 >            if (value == null) throw new NullPointerException();
3357 >            V v = val;
3358 >            val = value;
3359 >            map.put(key, value);
3360 >            return v;
3361 >        }
3362 >    }
3363 >
3364 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3365 >        implements Spliterator<K> {
3366 >        long est;               // size estimate
3367 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3368 >                       long est) {
3369 >            super(tab, size, index, limit);
3370 >            this.est = est;
3371 >        }
3372 >
3373 >        public Spliterator<K> trySplit() {
3374 >            int i, f, h;
3375 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3376 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3377 >                                        f, est >>>= 1);
3378 >        }
3379 >
3380 >        public void forEachRemaining(Consumer<? super K> action) {
3381 >            if (action == null) throw new NullPointerException();
3382 >            for (Node<K,V> p; (p = advance()) != null;)
3383 >                action.accept(p.key);
3384 >        }
3385 >
3386 >        public boolean tryAdvance(Consumer<? super K> action) {
3387 >            if (action == null) throw new NullPointerException();
3388 >            Node<K,V> p;
3389 >            if ((p = advance()) == null)
3390                  return false;
3391 <            Entry<K,V> e = (Entry)o;
3392 <            return (key.equals(e.getKey()) && value.equals(e.getValue()));
3391 >            action.accept(p.key);
3392 >            return true;
3393          }
3394 <    
3395 <        public int hashCode() {
3396 <            return  key.hashCode() ^ value.hashCode();
3394 >
3395 >        public long estimateSize() { return est; }
3396 >
3397 >        public int characteristics() {
3398 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3399 >                Spliterator.NONNULL;
3400          }
3401 +    }
3402 +
3403 +    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3404 +        implements Spliterator<V> {
3405 +        long est;               // size estimate
3406 +        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3407 +                         long est) {
3408 +            super(tab, size, index, limit);
3409 +            this.est = est;
3410 +        }
3411 +
3412 +        public Spliterator<V> trySplit() {
3413 +            int i, f, h;
3414 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3415 +                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3416 +                                          f, est >>>= 1);
3417 +        }
3418 +
3419 +        public void forEachRemaining(Consumer<? super V> action) {
3420 +            if (action == null) throw new NullPointerException();
3421 +            for (Node<K,V> p; (p = advance()) != null;)
3422 +                action.accept(p.val);
3423 +        }
3424 +
3425 +        public boolean tryAdvance(Consumer<? super V> action) {
3426 +            if (action == null) throw new NullPointerException();
3427 +            Node<K,V> p;
3428 +            if ((p = advance()) == null)
3429 +                return false;
3430 +            action.accept(p.val);
3431 +            return true;
3432 +        }
3433 +
3434 +        public long estimateSize() { return est; }
3435  
3436 <        public String toString() {
3437 <            return key + "=" + value;
3436 >        public int characteristics() {
3437 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3438          }
3439      }
3440  
3441 <    
3442 <    /* ---------------- Public operations -------------- */
3441 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3442 >        implements Spliterator<Map.Entry<K,V>> {
3443 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3444 >        long est;               // size estimate
3445 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3446 >                         long est, ConcurrentHashMap<K,V> map) {
3447 >            super(tab, size, index, limit);
3448 >            this.map = map;
3449 >            this.est = est;
3450 >        }
3451 >
3452 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3453 >            int i, f, h;
3454 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3455 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3456 >                                          f, est >>>= 1, map);
3457 >        }
3458 >
3459 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3460 >            if (action == null) throw new NullPointerException();
3461 >            for (Node<K,V> p; (p = advance()) != null; )
3462 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3463 >        }
3464 >
3465 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3466 >            if (action == null) throw new NullPointerException();
3467 >            Node<K,V> p;
3468 >            if ((p = advance()) == null)
3469 >                return false;
3470 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3471 >            return true;
3472 >        }
3473 >
3474 >        public long estimateSize() { return est; }
3475 >
3476 >        public int characteristics() {
3477 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3478 >                Spliterator.NONNULL;
3479 >        }
3480 >    }
3481 >
3482 >    // Parallel bulk operations
3483 >
3484 >    /**
3485 >     * Computes initial batch value for bulk tasks. The returned value
3486 >     * is approximately exp2 of the number of times (minus one) to
3487 >     * split task by two before executing leaf action. This value is
3488 >     * faster to compute and more convenient to use as a guide to
3489 >     * splitting than is the depth, since it is used while dividing by
3490 >     * two anyway.
3491 >     */
3492 >    final int batchFor(long b) {
3493 >        long n;
3494 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3495 >            return 0;
3496 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3497 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3498 >    }
3499  
3500      /**
3501 <     * Constructs a new, empty map with the specified initial
482 <     * capacity and the specified load factor.
3501 >     * Performs the given action for each (key, value).
3502       *
3503 <     * @param initialCapacity the initial capacity.  The actual
3504 <     * initial capacity is rounded up to the nearest power of two.
3505 <     * @param loadFactor  the load factor threshold, used to control resizing.
3506 <     * @param segments the number of concurrently accessible segments. the
488 <     * actual number of segments is rounded to the next power of two.
489 <     * @throws IllegalArgumentException if the initial capacity is
490 <     * negative or the load factor or number of segments are
491 <     * nonpositive.
3503 >     * @param parallelismThreshold the (estimated) number of elements
3504 >     * needed for this operation to be executed in parallel
3505 >     * @param action the action
3506 >     * @since 1.8
3507       */
3508 <    public ConcurrentHashMap(int initialCapacity, float loadFactor, int segments) {
3509 <        if (!(loadFactor > 0) || initialCapacity < 0 || segments <= 0)
3510 <            throw new IllegalArgumentException();
3508 >    public void forEach(long parallelismThreshold,
3509 >                        BiConsumer<? super K,? super V> action) {
3510 >        if (action == null) throw new NullPointerException();
3511 >        new ForEachMappingTask<K,V>
3512 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3513 >             action).invoke();
3514 >    }
3515  
3516 <        // Find power-of-two sizes best matching arguments
3517 <        int sshift = 0;
3518 <        int ssize = 1;
3519 <        while (ssize < segments) {
3520 <            ++sshift;
3521 <            ssize <<= 1;
3522 <        }
3523 <        segmentShift = sshift;
3524 <        segmentMask = ssize-1;
3525 <        this.segments = new Segment<K,V>[ssize];
3516 >    /**
3517 >     * Performs the given action for each non-null transformation
3518 >     * of each (key, value).
3519 >     *
3520 >     * @param parallelismThreshold the (estimated) number of elements
3521 >     * needed for this operation to be executed in parallel
3522 >     * @param transformer a function returning the transformation
3523 >     * for an element, or null if there is no transformation (in
3524 >     * which case the action is not applied)
3525 >     * @param action the action
3526 >     * @param <U> the return type of the transformer
3527 >     * @since 1.8
3528 >     */
3529 >    public <U> void forEach(long parallelismThreshold,
3530 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3531 >                            Consumer<? super U> action) {
3532 >        if (transformer == null || action == null)
3533 >            throw new NullPointerException();
3534 >        new ForEachTransformedMappingTask<K,V,U>
3535 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3536 >             transformer, action).invoke();
3537 >    }
3538  
3539 <        if (initialCapacity > MAXIMUM_CAPACITY)
3540 <            initialCapacity = MAXIMUM_CAPACITY;
3541 <        int c = initialCapacity / ssize;
3542 <        if (c * ssize < initialCapacity)
3543 <            ++c;
3544 <        int cap = 1;
3545 <        while (cap < c)
3546 <            cap <<= 1;
3539 >    /**
3540 >     * Returns a non-null result from applying the given search
3541 >     * function on each (key, value), or null if none.  Upon
3542 >     * success, further element processing is suppressed and the
3543 >     * results of any other parallel invocations of the search
3544 >     * function are ignored.
3545 >     *
3546 >     * @param parallelismThreshold the (estimated) number of elements
3547 >     * needed for this operation to be executed in parallel
3548 >     * @param searchFunction a function returning a non-null
3549 >     * result on success, else null
3550 >     * @param <U> the return type of the search function
3551 >     * @return a non-null result from applying the given search
3552 >     * function on each (key, value), or null if none
3553 >     * @since 1.8
3554 >     */
3555 >    public <U> U search(long parallelismThreshold,
3556 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3557 >        if (searchFunction == null) throw new NullPointerException();
3558 >        return new SearchMappingsTask<K,V,U>
3559 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3560 >             searchFunction, new AtomicReference<U>()).invoke();
3561 >    }
3562  
3563 <        for (int i = 0; i < this.segments.length; ++i)
3564 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
3563 >    /**
3564 >     * Returns the result of accumulating the given transformation
3565 >     * of all (key, value) pairs using the given reducer to
3566 >     * combine values, or null if none.
3567 >     *
3568 >     * @param parallelismThreshold the (estimated) number of elements
3569 >     * needed for this operation to be executed in parallel
3570 >     * @param transformer a function returning the transformation
3571 >     * for an element, or null if there is no transformation (in
3572 >     * which case it is not combined)
3573 >     * @param reducer a commutative associative combining function
3574 >     * @param <U> the return type of the transformer
3575 >     * @return the result of accumulating the given transformation
3576 >     * of all (key, value) pairs
3577 >     * @since 1.8
3578 >     */
3579 >    public <U> U reduce(long parallelismThreshold,
3580 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3581 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3582 >        if (transformer == null || reducer == null)
3583 >            throw new NullPointerException();
3584 >        return new MapReduceMappingsTask<K,V,U>
3585 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3586 >             null, transformer, reducer).invoke();
3587      }
3588  
3589      /**
3590 <     * Constructs a new, empty map with the specified initial
3591 <     * capacity,  and with default load factor and segments.
3590 >     * Returns the result of accumulating the given transformation
3591 >     * of all (key, value) pairs using the given reducer to
3592 >     * combine values, and the given basis as an identity value.
3593       *
3594 <     * @param initialCapacity the initial capacity of the
3595 <     * ConcurrentHashMap.
3596 <     * @throws IllegalArgumentException if the initial capacity of
3597 <     * elements is negative.
3594 >     * @param parallelismThreshold the (estimated) number of elements
3595 >     * needed for this operation to be executed in parallel
3596 >     * @param transformer a function returning the transformation
3597 >     * for an element
3598 >     * @param basis the identity (initial default value) for the reduction
3599 >     * @param reducer a commutative associative combining function
3600 >     * @return the result of accumulating the given transformation
3601 >     * of all (key, value) pairs
3602 >     * @since 1.8
3603       */
3604 <    public ConcurrentHashMap(int initialCapacity) {
3605 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
3604 >    public double reduceToDouble(long parallelismThreshold,
3605 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3606 >                                 double basis,
3607 >                                 DoubleBinaryOperator reducer) {
3608 >        if (transformer == null || reducer == null)
3609 >            throw new NullPointerException();
3610 >        return new MapReduceMappingsToDoubleTask<K,V>
3611 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3612 >             null, transformer, basis, reducer).invoke();
3613      }
3614  
3615      /**
3616 <     * Constructs a new, empty map with a default initial capacity,
3617 <     * load factor, and number of segments
3616 >     * Returns the result of accumulating the given transformation
3617 >     * of all (key, value) pairs using the given reducer to
3618 >     * combine values, and the given basis as an identity value.
3619 >     *
3620 >     * @param parallelismThreshold the (estimated) number of elements
3621 >     * needed for this operation to be executed in parallel
3622 >     * @param transformer a function returning the transformation
3623 >     * for an element
3624 >     * @param basis the identity (initial default value) for the reduction
3625 >     * @param reducer a commutative associative combining function
3626 >     * @return the result of accumulating the given transformation
3627 >     * of all (key, value) pairs
3628 >     * @since 1.8
3629       */
3630 <    public ConcurrentHashMap() {
3631 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
3630 >    public long reduceToLong(long parallelismThreshold,
3631 >                             ToLongBiFunction<? super K, ? super V> transformer,
3632 >                             long basis,
3633 >                             LongBinaryOperator reducer) {
3634 >        if (transformer == null || reducer == null)
3635 >            throw new NullPointerException();
3636 >        return new MapReduceMappingsToLongTask<K,V>
3637 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3638 >             null, transformer, basis, reducer).invoke();
3639      }
3640  
3641      /**
3642 <     * Constructs a new map with the same mappings as the given map.  The
3643 <     * map is created with a capacity of twice the number of mappings in
3644 <     * the given map or 11 (whichever is greater), and a default load factor.
3642 >     * Returns the result of accumulating the given transformation
3643 >     * of all (key, value) pairs using the given reducer to
3644 >     * combine values, and the given basis as an identity value.
3645 >     *
3646 >     * @param parallelismThreshold the (estimated) number of elements
3647 >     * needed for this operation to be executed in parallel
3648 >     * @param transformer a function returning the transformation
3649 >     * for an element
3650 >     * @param basis the identity (initial default value) for the reduction
3651 >     * @param reducer a commutative associative combining function
3652 >     * @return the result of accumulating the given transformation
3653 >     * of all (key, value) pairs
3654 >     * @since 1.8
3655       */
3656 <    public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
3657 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
3658 <                      11),
3659 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
3660 <        putAll(t);
3656 >    public int reduceToInt(long parallelismThreshold,
3657 >                           ToIntBiFunction<? super K, ? super V> transformer,
3658 >                           int basis,
3659 >                           IntBinaryOperator reducer) {
3660 >        if (transformer == null || reducer == null)
3661 >            throw new NullPointerException();
3662 >        return new MapReduceMappingsToIntTask<K,V>
3663 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3664 >             null, transformer, basis, reducer).invoke();
3665      }
3666  
3667 <    // inherit Map javadoc
3668 <    public int size() {
3669 <        int c = 0;
3670 <        for (int i = 0; i < segments.length; ++i)
3671 <            c += segments[i].count;
3672 <        return c;
3667 >    /**
3668 >     * Performs the given action for each key.
3669 >     *
3670 >     * @param parallelismThreshold the (estimated) number of elements
3671 >     * needed for this operation to be executed in parallel
3672 >     * @param action the action
3673 >     * @since 1.8
3674 >     */
3675 >    public void forEachKey(long parallelismThreshold,
3676 >                           Consumer<? super K> action) {
3677 >        if (action == null) throw new NullPointerException();
3678 >        new ForEachKeyTask<K,V>
3679 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3680 >             action).invoke();
3681      }
3682  
3683 <    // inherit Map javadoc
3684 <    public boolean isEmpty() {
3685 <        for (int i = 0; i < segments.length; ++i)
3686 <            if (segments[i].count != 0)
3687 <                return false;
3688 <        return true;
3683 >    /**
3684 >     * Performs the given action for each non-null transformation
3685 >     * of each key.
3686 >     *
3687 >     * @param parallelismThreshold the (estimated) number of elements
3688 >     * needed for this operation to be executed in parallel
3689 >     * @param transformer a function returning the transformation
3690 >     * for an element, or null if there is no transformation (in
3691 >     * which case the action is not applied)
3692 >     * @param action the action
3693 >     * @param <U> the return type of the transformer
3694 >     * @since 1.8
3695 >     */
3696 >    public <U> void forEachKey(long parallelismThreshold,
3697 >                               Function<? super K, ? extends U> transformer,
3698 >                               Consumer<? super U> action) {
3699 >        if (transformer == null || action == null)
3700 >            throw new NullPointerException();
3701 >        new ForEachTransformedKeyTask<K,V,U>
3702 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3703 >             transformer, action).invoke();
3704      }
3705  
3706      /**
3707 <     * Returns the value to which the specified key is mapped in this table.
3707 >     * Returns a non-null result from applying the given search
3708 >     * function on each key, or null if none. Upon success,
3709 >     * further element processing is suppressed and the results of
3710 >     * any other parallel invocations of the search function are
3711 >     * ignored.
3712       *
3713 <     * @param   key   a key in the table.
3714 <     * @return  the value to which the key is mapped in this table;
3715 <     *          <code>null</code> if the key is not mapped to any value in
3716 <     *          this table.
3717 <     * @exception  NullPointerException  if the key is
3718 <     *               <code>null</code>.
3719 <     * @see     #put(Object, Object)
3720 <     */
3721 <    public V get(K key) {
3722 <        int hash = hash(key); // throws NullPointerException if key null
3723 <        return segmentFor(hash).get(key, segmentHashFor(hash));
3713 >     * @param parallelismThreshold the (estimated) number of elements
3714 >     * needed for this operation to be executed in parallel
3715 >     * @param searchFunction a function returning a non-null
3716 >     * result on success, else null
3717 >     * @param <U> the return type of the search function
3718 >     * @return a non-null result from applying the given search
3719 >     * function on each key, or null if none
3720 >     * @since 1.8
3721 >     */
3722 >    public <U> U searchKeys(long parallelismThreshold,
3723 >                            Function<? super K, ? extends U> searchFunction) {
3724 >        if (searchFunction == null) throw new NullPointerException();
3725 >        return new SearchKeysTask<K,V,U>
3726 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3727 >             searchFunction, new AtomicReference<U>()).invoke();
3728      }
3729  
3730      /**
3731 <     * Tests if the specified object is a key in this table.
3732 <     *
3733 <     * @param   key   possible key.
3734 <     * @return  <code>true</code> if and only if the specified object
3735 <     *          is a key in this table, as determined by the
3736 <     *          <tt>equals</tt> method; <code>false</code> otherwise.
3737 <     * @exception  NullPointerException  if the key is
3738 <     *               <code>null</code>.
3739 <     * @see     #contains(Object)
3731 >     * Returns the result of accumulating all keys using the given
3732 >     * reducer to combine values, or null if none.
3733 >     *
3734 >     * @param parallelismThreshold the (estimated) number of elements
3735 >     * needed for this operation to be executed in parallel
3736 >     * @param reducer a commutative associative combining function
3737 >     * @return the result of accumulating all keys using the given
3738 >     * reducer to combine values, or null if none
3739 >     * @since 1.8
3740       */
3741 <    public boolean containsKey(Object key) {
3742 <        int hash = hash(key); // throws NullPointerException if key null
3743 <        return segmentFor(hash).containsKey(key, segmentHashFor(hash));
3741 >    public K reduceKeys(long parallelismThreshold,
3742 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3743 >        if (reducer == null) throw new NullPointerException();
3744 >        return new ReduceKeysTask<K,V>
3745 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3746 >             null, reducer).invoke();
3747      }
3748  
3749      /**
3750 <     * Returns <tt>true</tt> if this map maps one or more keys to the
3751 <     * specified value. Note: This method requires a full internal
3752 <     * traversal of the hash table, and so is much slower than
606 <     * method <tt>containsKey</tt>.
3750 >     * Returns the result of accumulating the given transformation
3751 >     * of all keys using the given reducer to combine values, or
3752 >     * null if none.
3753       *
3754 <     * @param value value whose presence in this map is to be tested.
3755 <     * @return <tt>true</tt> if this map maps one or more keys to the
3756 <     * specified value.  
3757 <     * @exception  NullPointerException  if the value is <code>null</code>.
3754 >     * @param parallelismThreshold the (estimated) number of elements
3755 >     * needed for this operation to be executed in parallel
3756 >     * @param transformer a function returning the transformation
3757 >     * for an element, or null if there is no transformation (in
3758 >     * which case it is not combined)
3759 >     * @param reducer a commutative associative combining function
3760 >     * @param <U> the return type of the transformer
3761 >     * @return the result of accumulating the given transformation
3762 >     * of all keys
3763 >     * @since 1.8
3764       */
3765 <    public boolean containsValue(Object value) {
3766 <        if (value == null)
3765 >    public <U> U reduceKeys(long parallelismThreshold,
3766 >                            Function<? super K, ? extends U> transformer,
3767 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3768 >        if (transformer == null || reducer == null)
3769              throw new NullPointerException();
3770 <
3771 <        for (int i = 0; i < segments.length; ++i) {
3772 <            if (segments[i].containsValue(value))
619 <                return true;
620 <        }
621 <        return false;
3770 >        return new MapReduceKeysTask<K,V,U>
3771 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3772 >             null, transformer, reducer).invoke();
3773      }
3774 +
3775      /**
3776 <     * Tests if some key maps into the specified value in this table.
3777 <     * This operation is more expensive than the <code>containsKey</code>
3778 <     * method.<p>
3779 <     *
3780 <     * Note that this method is identical in functionality to containsValue,
3781 <     * (which is part of the Map interface in the collections framework).
3782 <     *
3783 <     * @param      value   a value to search for.
3784 <     * @return     <code>true</code> if and only if some key maps to the
3785 <     *             <code>value</code> argument in this table as
3786 <     *             determined by the <tt>equals</tt> method;
3787 <     *             <code>false</code> otherwise.
3788 <     * @exception  NullPointerException  if the value is <code>null</code>.
637 <     * @see        #containsKey(Object)
638 <     * @see        #containsValue(Object)
639 <     * @see        Map
3776 >     * Returns the result of accumulating the given transformation
3777 >     * of all keys using the given reducer to combine values, and
3778 >     * the given basis as an identity value.
3779 >     *
3780 >     * @param parallelismThreshold the (estimated) number of elements
3781 >     * needed for this operation to be executed in parallel
3782 >     * @param transformer a function returning the transformation
3783 >     * for an element
3784 >     * @param basis the identity (initial default value) for the reduction
3785 >     * @param reducer a commutative associative combining function
3786 >     * @return the result of accumulating the given transformation
3787 >     * of all keys
3788 >     * @since 1.8
3789       */
3790 <    public boolean contains(Object value) {
3791 <        return containsValue(value);
3790 >    public double reduceKeysToDouble(long parallelismThreshold,
3791 >                                     ToDoubleFunction<? super K> transformer,
3792 >                                     double basis,
3793 >                                     DoubleBinaryOperator reducer) {
3794 >        if (transformer == null || reducer == null)
3795 >            throw new NullPointerException();
3796 >        return new MapReduceKeysToDoubleTask<K,V>
3797 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3798 >             null, transformer, basis, reducer).invoke();
3799      }
3800  
3801      /**
3802 <     * Maps the specified <code>key</code> to the specified
3803 <     * <code>value</code> in this table. Neither the key nor the
3804 <     * value can be <code>null</code>. <p>
3805 <     *
3806 <     * The value can be retrieved by calling the <code>get</code> method
3807 <     * with a key that is equal to the original key.
3808 <     *
3809 <     * @param      key     the table key.
3810 <     * @param      value   the value.
3811 <     * @return     the previous value of the specified key in this table,
3812 <     *             or <code>null</code> if it did not have one.
3813 <     * @exception  NullPointerException  if the key or value is
3814 <     *               <code>null</code>.
3815 <     * @see     Object#equals(Object)
3816 <     * @see     #get(Object)
3817 <     */
3818 <    public V put(K key, V value) {
3819 <        if (value == null)
3820 <            throw new NullPointerException();
3821 <        int hash = hash(key);
3822 <        return segmentFor(hash).put(key, segmentHashFor(hash), value, false);
3802 >     * Returns the result of accumulating the given transformation
3803 >     * of all keys using the given reducer to combine values, and
3804 >     * the given basis as an identity value.
3805 >     *
3806 >     * @param parallelismThreshold the (estimated) number of elements
3807 >     * needed for this operation to be executed in parallel
3808 >     * @param transformer a function returning the transformation
3809 >     * for an element
3810 >     * @param basis the identity (initial default value) for the reduction
3811 >     * @param reducer a commutative associative combining function
3812 >     * @return the result of accumulating the given transformation
3813 >     * of all keys
3814 >     * @since 1.8
3815 >     */
3816 >    public long reduceKeysToLong(long parallelismThreshold,
3817 >                                 ToLongFunction<? super K> transformer,
3818 >                                 long basis,
3819 >                                 LongBinaryOperator reducer) {
3820 >        if (transformer == null || reducer == null)
3821 >            throw new NullPointerException();
3822 >        return new MapReduceKeysToLongTask<K,V>
3823 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3824 >             null, transformer, basis, reducer).invoke();
3825      }
3826  
3827      /**
3828 <     * If the specified key is not already associated
3829 <     * with a value, associate it with the given value.
3830 <     * This is equivalent to
3831 <     * <pre>
3832 <     *   if (!map.containsKey(key)) map.put(key, value);
3833 <     *   return get(key);
3834 <     * </pre>
3835 <     * Except that the action is performed atomically.
3836 <     * @param key key with which the specified value is to be associated.
3837 <     * @param value value to be associated with the specified key.
3838 <     * @return previous value associated with specified key, or <tt>null</tt>
3839 <     *         if there was no mapping for key.  A <tt>null</tt> return can
3840 <     *         also indicate that the map previously associated <tt>null</tt>
3841 <     *         with the specified key, if the implementation supports
3842 <     *         <tt>null</tt> values.
3843 <     *
3844 <     * @throws NullPointerException this map does not permit <tt>null</tt>
3845 <     *            keys or values, and the specified key or value is
3846 <     *            <tt>null</tt>.
689 <     *
690 <     **/
691 <    public V putIfAbsent(K key, V value) {
692 <        if (value == null)
3828 >     * Returns the result of accumulating the given transformation
3829 >     * of all keys using the given reducer to combine values, and
3830 >     * the given basis as an identity value.
3831 >     *
3832 >     * @param parallelismThreshold the (estimated) number of elements
3833 >     * needed for this operation to be executed in parallel
3834 >     * @param transformer a function returning the transformation
3835 >     * for an element
3836 >     * @param basis the identity (initial default value) for the reduction
3837 >     * @param reducer a commutative associative combining function
3838 >     * @return the result of accumulating the given transformation
3839 >     * of all keys
3840 >     * @since 1.8
3841 >     */
3842 >    public int reduceKeysToInt(long parallelismThreshold,
3843 >                               ToIntFunction<? super K> transformer,
3844 >                               int basis,
3845 >                               IntBinaryOperator reducer) {
3846 >        if (transformer == null || reducer == null)
3847              throw new NullPointerException();
3848 <        int hash = hash(key);
3849 <        return segmentFor(hash).put(key, segmentHashFor(hash), value, true);
3848 >        return new MapReduceKeysToIntTask<K,V>
3849 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3850 >             null, transformer, basis, reducer).invoke();
3851      }
3852  
3853 +    /**
3854 +     * Performs the given action for each value.
3855 +     *
3856 +     * @param parallelismThreshold the (estimated) number of elements
3857 +     * needed for this operation to be executed in parallel
3858 +     * @param action the action
3859 +     * @since 1.8
3860 +     */
3861 +    public void forEachValue(long parallelismThreshold,
3862 +                             Consumer<? super V> action) {
3863 +        if (action == null)
3864 +            throw new NullPointerException();
3865 +        new ForEachValueTask<K,V>
3866 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3867 +             action).invoke();
3868 +    }
3869  
3870      /**
3871 <     * Copies all of the mappings from the specified map to this one.
3871 >     * Performs the given action for each non-null transformation
3872 >     * of each value.
3873       *
3874 <     * These mappings replace any mappings that this map had for any of the
3875 <     * keys currently in the specified Map.
3874 >     * @param parallelismThreshold the (estimated) number of elements
3875 >     * needed for this operation to be executed in parallel
3876 >     * @param transformer a function returning the transformation
3877 >     * for an element, or null if there is no transformation (in
3878 >     * which case the action is not applied)
3879 >     * @param action the action
3880 >     * @param <U> the return type of the transformer
3881 >     * @since 1.8
3882 >     */
3883 >    public <U> void forEachValue(long parallelismThreshold,
3884 >                                 Function<? super V, ? extends U> transformer,
3885 >                                 Consumer<? super U> action) {
3886 >        if (transformer == null || action == null)
3887 >            throw new NullPointerException();
3888 >        new ForEachTransformedValueTask<K,V,U>
3889 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3890 >             transformer, action).invoke();
3891 >    }
3892 >
3893 >    /**
3894 >     * Returns a non-null result from applying the given search
3895 >     * function on each value, or null if none.  Upon success,
3896 >     * further element processing is suppressed and the results of
3897 >     * any other parallel invocations of the search function are
3898 >     * ignored.
3899       *
3900 <     * @param t Mappings to be stored in this map.
3900 >     * @param parallelismThreshold the (estimated) number of elements
3901 >     * needed for this operation to be executed in parallel
3902 >     * @param searchFunction a function returning a non-null
3903 >     * result on success, else null
3904 >     * @param <U> the return type of the search function
3905 >     * @return a non-null result from applying the given search
3906 >     * function on each value, or null if none
3907 >     * @since 1.8
3908       */
3909 <    public <K1 extends K, V1 extends V> void putAll(Map<K1,V1> t) {
3910 <        Iterator<Map.Entry<K1,V1>> it = t.entrySet().iterator();
3911 <        while (it.hasNext()) {
3912 <            Entry<K,V> e = (Entry) it.next();
3913 <            put(e.getKey(), e.getValue());
3914 <        }
3909 >    public <U> U searchValues(long parallelismThreshold,
3910 >                              Function<? super V, ? extends U> searchFunction) {
3911 >        if (searchFunction == null) throw new NullPointerException();
3912 >        return new SearchValuesTask<K,V,U>
3913 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3914 >             searchFunction, new AtomicReference<U>()).invoke();
3915      }
3916  
3917      /**
3918 <     * Removes the key (and its corresponding value) from this
3919 <     * table. This method does nothing if the key is not in the table.
3918 >     * Returns the result of accumulating all values using the
3919 >     * given reducer to combine values, or null if none.
3920       *
3921 <     * @param   key   the key that needs to be removed.
3922 <     * @return  the value to which the key had been mapped in this table,
3923 <     *          or <code>null</code> if the key did not have a mapping.
3924 <     * @exception  NullPointerException  if the key is
3925 <     *               <code>null</code>.
3921 >     * @param parallelismThreshold the (estimated) number of elements
3922 >     * needed for this operation to be executed in parallel
3923 >     * @param reducer a commutative associative combining function
3924 >     * @return the result of accumulating all values
3925 >     * @since 1.8
3926       */
3927 <    public V remove(Object key) {
3928 <        int hash = hash(key);
3929 <        return segmentFor(hash).remove(key, segmentHashFor(hash), null);
3927 >    public V reduceValues(long parallelismThreshold,
3928 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
3929 >        if (reducer == null) throw new NullPointerException();
3930 >        return new ReduceValuesTask<K,V>
3931 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3932 >             null, reducer).invoke();
3933      }
3934  
3935      /**
3936 <     * Removes the (key, value) pair from this
3937 <     * table. This method does nothing if the key is not in the table,
3938 <     * or if the key is associated with a different value. This method
734 <     * is needed by EntrySet.
3936 >     * Returns the result of accumulating the given transformation
3937 >     * of all values using the given reducer to combine values, or
3938 >     * null if none.
3939       *
3940 <     * @param   key   the key that needs to be removed.
3941 <     * @param   value   the associated value. If the value is null,
3942 <     *                   it means "any value".
3943 <     * @return  the value to which the key had been mapped in this table,
3944 <     *          or <code>null</code> if the key did not have a mapping.
3945 <     * @exception  NullPointerException  if the key is
3946 <     *               <code>null</code>.
3940 >     * @param parallelismThreshold the (estimated) number of elements
3941 >     * needed for this operation to be executed in parallel
3942 >     * @param transformer a function returning the transformation
3943 >     * for an element, or null if there is no transformation (in
3944 >     * which case it is not combined)
3945 >     * @param reducer a commutative associative combining function
3946 >     * @param <U> the return type of the transformer
3947 >     * @return the result of accumulating the given transformation
3948 >     * of all values
3949 >     * @since 1.8
3950       */
3951 <    public V remove(Object key, Object value) {
3952 <        if (value == null)
3953 <            return null;
3954 <        int hash = hash(key);
3955 <        return segmentFor(hash).remove(key, segmentHashFor(hash), value);
3951 >    public <U> U reduceValues(long parallelismThreshold,
3952 >                              Function<? super V, ? extends U> transformer,
3953 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
3954 >        if (transformer == null || reducer == null)
3955 >            throw new NullPointerException();
3956 >        return new MapReduceValuesTask<K,V,U>
3957 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3958 >             null, transformer, reducer).invoke();
3959      }
3960  
3961      /**
3962 <     * Removes all mappings from this map.
3962 >     * Returns the result of accumulating the given transformation
3963 >     * of all values using the given reducer to combine values,
3964 >     * and the given basis as an identity value.
3965 >     *
3966 >     * @param parallelismThreshold the (estimated) number of elements
3967 >     * needed for this operation to be executed in parallel
3968 >     * @param transformer a function returning the transformation
3969 >     * for an element
3970 >     * @param basis the identity (initial default value) for the reduction
3971 >     * @param reducer a commutative associative combining function
3972 >     * @return the result of accumulating the given transformation
3973 >     * of all values
3974 >     * @since 1.8
3975       */
3976 <    public void clear() {
3977 <        for (int i = 0; i < segments.length; ++i)
3978 <            segments[i].clear();
3976 >    public double reduceValuesToDouble(long parallelismThreshold,
3977 >                                       ToDoubleFunction<? super V> transformer,
3978 >                                       double basis,
3979 >                                       DoubleBinaryOperator reducer) {
3980 >        if (transformer == null || reducer == null)
3981 >            throw new NullPointerException();
3982 >        return new MapReduceValuesToDoubleTask<K,V>
3983 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3984 >             null, transformer, basis, reducer).invoke();
3985      }
3986  
3987 +    /**
3988 +     * Returns the result of accumulating the given transformation
3989 +     * of all values using the given reducer to combine values,
3990 +     * and the given basis as an identity value.
3991 +     *
3992 +     * @param parallelismThreshold the (estimated) number of elements
3993 +     * needed for this operation to be executed in parallel
3994 +     * @param transformer a function returning the transformation
3995 +     * for an element
3996 +     * @param basis the identity (initial default value) for the reduction
3997 +     * @param reducer a commutative associative combining function
3998 +     * @return the result of accumulating the given transformation
3999 +     * of all values
4000 +     * @since 1.8
4001 +     */
4002 +    public long reduceValuesToLong(long parallelismThreshold,
4003 +                                   ToLongFunction<? super V> transformer,
4004 +                                   long basis,
4005 +                                   LongBinaryOperator reducer) {
4006 +        if (transformer == null || reducer == null)
4007 +            throw new NullPointerException();
4008 +        return new MapReduceValuesToLongTask<K,V>
4009 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4010 +             null, transformer, basis, reducer).invoke();
4011 +    }
4012  
4013      /**
4014 <     * Returns a shallow copy of this
4015 <     * <tt>ConcurrentHashMap</tt> instance: the keys and
4016 <     * values themselves are not cloned.
4014 >     * Returns the result of accumulating the given transformation
4015 >     * of all values using the given reducer to combine values,
4016 >     * and the given basis as an identity value.
4017       *
4018 <     * @return a shallow copy of this map.
4018 >     * @param parallelismThreshold the (estimated) number of elements
4019 >     * needed for this operation to be executed in parallel
4020 >     * @param transformer a function returning the transformation
4021 >     * for an element
4022 >     * @param basis the identity (initial default value) for the reduction
4023 >     * @param reducer a commutative associative combining function
4024 >     * @return the result of accumulating the given transformation
4025 >     * of all values
4026 >     * @since 1.8
4027       */
4028 <    public Object clone() {
4029 <        // We cannot call super.clone, since it would share final
4030 <        // segments array, and there's no way to reassign finals.
4028 >    public int reduceValuesToInt(long parallelismThreshold,
4029 >                                 ToIntFunction<? super V> transformer,
4030 >                                 int basis,
4031 >                                 IntBinaryOperator reducer) {
4032 >        if (transformer == null || reducer == null)
4033 >            throw new NullPointerException();
4034 >        return new MapReduceValuesToIntTask<K,V>
4035 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4036 >             null, transformer, basis, reducer).invoke();
4037 >    }
4038  
4039 <        float lf = segments[0].loadFactor;
4040 <        int segs = segments.length;
4041 <        int cap = (int)(size() / lf);
4042 <        if (cap < segs) cap = segs;
4043 <        ConcurrentHashMap t = new ConcurrentHashMap(cap, lf, segs);
4044 <        t.putAll(this);
4045 <        return t;
4039 >    /**
4040 >     * Performs the given action for each entry.
4041 >     *
4042 >     * @param parallelismThreshold the (estimated) number of elements
4043 >     * needed for this operation to be executed in parallel
4044 >     * @param action the action
4045 >     * @since 1.8
4046 >     */
4047 >    public void forEachEntry(long parallelismThreshold,
4048 >                             Consumer<? super Map.Entry<K,V>> action) {
4049 >        if (action == null) throw new NullPointerException();
4050 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4051 >                                  action).invoke();
4052      }
4053  
4054      /**
4055 <     * Returns a set view of the keys contained in this map.  The set is
4056 <     * backed by the map, so changes to the map are reflected in the set, and
783 <     * vice-versa.  The set supports element removal, which removes the
784 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
785 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
786 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
787 <     * <tt>addAll</tt> operations.
4055 >     * Performs the given action for each non-null transformation
4056 >     * of each entry.
4057       *
4058 <     * @return a set view of the keys contained in this map.
4058 >     * @param parallelismThreshold the (estimated) number of elements
4059 >     * needed for this operation to be executed in parallel
4060 >     * @param transformer a function returning the transformation
4061 >     * for an element, or null if there is no transformation (in
4062 >     * which case the action is not applied)
4063 >     * @param action the action
4064 >     * @param <U> the return type of the transformer
4065 >     * @since 1.8
4066       */
4067 <    public Set<K> keySet() {
4068 <        Set<K> ks = keySet;
4069 <        return (ks != null)? ks : (keySet = new KeySet());
4067 >    public <U> void forEachEntry(long parallelismThreshold,
4068 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4069 >                                 Consumer<? super U> action) {
4070 >        if (transformer == null || action == null)
4071 >            throw new NullPointerException();
4072 >        new ForEachTransformedEntryTask<K,V,U>
4073 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4074 >             transformer, action).invoke();
4075      }
4076  
4077 +    /**
4078 +     * Returns a non-null result from applying the given search
4079 +     * function on each entry, or null if none.  Upon success,
4080 +     * further element processing is suppressed and the results of
4081 +     * any other parallel invocations of the search function are
4082 +     * ignored.
4083 +     *
4084 +     * @param parallelismThreshold the (estimated) number of elements
4085 +     * needed for this operation to be executed in parallel
4086 +     * @param searchFunction a function returning a non-null
4087 +     * result on success, else null
4088 +     * @param <U> the return type of the search function
4089 +     * @return a non-null result from applying the given search
4090 +     * function on each entry, or null if none
4091 +     * @since 1.8
4092 +     */
4093 +    public <U> U searchEntries(long parallelismThreshold,
4094 +                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4095 +        if (searchFunction == null) throw new NullPointerException();
4096 +        return new SearchEntriesTask<K,V,U>
4097 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4098 +             searchFunction, new AtomicReference<U>()).invoke();
4099 +    }
4100  
4101      /**
4102 <     * Returns a collection view of the values contained in this map.  The
4103 <     * collection is backed by the map, so changes to the map are reflected in
800 <     * the collection, and vice-versa.  The collection supports element
801 <     * removal, which removes the corresponding mapping from this map, via the
802 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
803 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
804 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
4102 >     * Returns the result of accumulating all entries using the
4103 >     * given reducer to combine values, or null if none.
4104       *
4105 <     * @return a collection view of the values contained in this map.
4105 >     * @param parallelismThreshold the (estimated) number of elements
4106 >     * needed for this operation to be executed in parallel
4107 >     * @param reducer a commutative associative combining function
4108 >     * @return the result of accumulating all entries
4109 >     * @since 1.8
4110       */
4111 <    public Collection<V> values() {
4112 <        Collection<V> vs = values;
4113 <        return (vs != null)? vs : (values = new Values());
4111 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4112 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4113 >        if (reducer == null) throw new NullPointerException();
4114 >        return new ReduceEntriesTask<K,V>
4115 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4116 >             null, reducer).invoke();
4117      }
4118  
4119 +    /**
4120 +     * Returns the result of accumulating the given transformation
4121 +     * of all entries using the given reducer to combine values,
4122 +     * or null if none.
4123 +     *
4124 +     * @param parallelismThreshold the (estimated) number of elements
4125 +     * needed for this operation to be executed in parallel
4126 +     * @param transformer a function returning the transformation
4127 +     * for an element, or null if there is no transformation (in
4128 +     * which case it is not combined)
4129 +     * @param reducer a commutative associative combining function
4130 +     * @param <U> the return type of the transformer
4131 +     * @return the result of accumulating the given transformation
4132 +     * of all entries
4133 +     * @since 1.8
4134 +     */
4135 +    public <U> U reduceEntries(long parallelismThreshold,
4136 +                               Function<Map.Entry<K,V>, ? extends U> transformer,
4137 +                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4138 +        if (transformer == null || reducer == null)
4139 +            throw new NullPointerException();
4140 +        return new MapReduceEntriesTask<K,V,U>
4141 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4142 +             null, transformer, reducer).invoke();
4143 +    }
4144  
4145      /**
4146 <     * Returns a collection view of the mappings contained in this map.  Each
4147 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
4148 <     * collection is backed by the map, so changes to the map are reflected in
818 <     * the collection, and vice-versa.  The collection supports element
819 <     * removal, which removes the corresponding mapping from the map, via the
820 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
821 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
822 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
4146 >     * Returns the result of accumulating the given transformation
4147 >     * of all entries using the given reducer to combine values,
4148 >     * and the given basis as an identity value.
4149       *
4150 <     * @return a collection view of the mappings contained in this map.
4150 >     * @param parallelismThreshold the (estimated) number of elements
4151 >     * needed for this operation to be executed in parallel
4152 >     * @param transformer a function returning the transformation
4153 >     * for an element
4154 >     * @param basis the identity (initial default value) for the reduction
4155 >     * @param reducer a commutative associative combining function
4156 >     * @return the result of accumulating the given transformation
4157 >     * of all entries
4158 >     * @since 1.8
4159       */
4160 <    public Set<Map.Entry<K,V>> entrySet() {
4161 <        Set<Map.Entry<K,V>> es = entrySet;
4162 <        return (es != null) ? es : (entrySet = new EntrySet());
4160 >    public double reduceEntriesToDouble(long parallelismThreshold,
4161 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4162 >                                        double basis,
4163 >                                        DoubleBinaryOperator reducer) {
4164 >        if (transformer == null || reducer == null)
4165 >            throw new NullPointerException();
4166 >        return new MapReduceEntriesToDoubleTask<K,V>
4167 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4168 >             null, transformer, basis, reducer).invoke();
4169      }
4170  
4171 +    /**
4172 +     * Returns the result of accumulating the given transformation
4173 +     * of all entries using the given reducer to combine values,
4174 +     * and the given basis as an identity value.
4175 +     *
4176 +     * @param parallelismThreshold the (estimated) number of elements
4177 +     * needed for this operation to be executed in parallel
4178 +     * @param transformer a function returning the transformation
4179 +     * for an element
4180 +     * @param basis the identity (initial default value) for the reduction
4181 +     * @param reducer a commutative associative combining function
4182 +     * @return the result of accumulating the given transformation
4183 +     * of all entries
4184 +     * @since 1.8
4185 +     */
4186 +    public long reduceEntriesToLong(long parallelismThreshold,
4187 +                                    ToLongFunction<Map.Entry<K,V>> transformer,
4188 +                                    long basis,
4189 +                                    LongBinaryOperator reducer) {
4190 +        if (transformer == null || reducer == null)
4191 +            throw new NullPointerException();
4192 +        return new MapReduceEntriesToLongTask<K,V>
4193 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4194 +             null, transformer, basis, reducer).invoke();
4195 +    }
4196  
4197      /**
4198 <     * Returns an enumeration of the keys in this table.
4198 >     * Returns the result of accumulating the given transformation
4199 >     * of all entries using the given reducer to combine values,
4200 >     * and the given basis as an identity value.
4201       *
4202 <     * @return  an enumeration of the keys in this table.
4203 <     * @see     Enumeration
4204 <     * @see     #elements()
4205 <     * @see     #keySet()
4206 <     * @see     Map
4202 >     * @param parallelismThreshold the (estimated) number of elements
4203 >     * needed for this operation to be executed in parallel
4204 >     * @param transformer a function returning the transformation
4205 >     * for an element
4206 >     * @param basis the identity (initial default value) for the reduction
4207 >     * @param reducer a commutative associative combining function
4208 >     * @return the result of accumulating the given transformation
4209 >     * of all entries
4210 >     * @since 1.8
4211       */
4212 <    public Enumeration<K> keys() {
4213 <        return new KeyIterator();
4212 >    public int reduceEntriesToInt(long parallelismThreshold,
4213 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4214 >                                  int basis,
4215 >                                  IntBinaryOperator reducer) {
4216 >        if (transformer == null || reducer == null)
4217 >            throw new NullPointerException();
4218 >        return new MapReduceEntriesToIntTask<K,V>
4219 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4220 >             null, transformer, basis, reducer).invoke();
4221      }
4222  
4223 +
4224 +    /* ----------------Views -------------- */
4225 +
4226      /**
4227 <     * Returns an enumeration of the values in this table.
4228 <     * Use the Enumeration methods on the returned object to fetch the elements
4229 <     * sequentially.
4227 >     * Base class for views.
4228 >     */
4229 >    abstract static class CollectionView<K,V,E>
4230 >        implements Collection<E>, java.io.Serializable {
4231 >        private static final long serialVersionUID = 7249069246763182397L;
4232 >        final ConcurrentHashMap<K,V> map;
4233 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4234 >
4235 >        /**
4236 >         * Returns the map backing this view.
4237 >         *
4238 >         * @return the map backing this view
4239 >         */
4240 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4241 >
4242 >        /**
4243 >         * Removes all of the elements from this view, by removing all
4244 >         * the mappings from the map backing this view.
4245 >         */
4246 >        public final void clear()      { map.clear(); }
4247 >        public final int size()        { return map.size(); }
4248 >        public final boolean isEmpty() { return map.isEmpty(); }
4249 >
4250 >        // implementations below rely on concrete classes supplying these
4251 >        // abstract methods
4252 >        /**
4253 >         * Returns a "weakly consistent" iterator that will never
4254 >         * throw {@link ConcurrentModificationException}, and
4255 >         * guarantees to traverse elements as they existed upon
4256 >         * construction of the iterator, and may (but is not
4257 >         * guaranteed to) reflect any modifications subsequent to
4258 >         * construction.
4259 >         */
4260 >        public abstract Iterator<E> iterator();
4261 >        public abstract boolean contains(Object o);
4262 >        public abstract boolean remove(Object o);
4263 >
4264 >        private static final String oomeMsg = "Required array size too large";
4265 >
4266 >        public final Object[] toArray() {
4267 >            long sz = map.mappingCount();
4268 >            if (sz > MAX_ARRAY_SIZE)
4269 >                throw new OutOfMemoryError(oomeMsg);
4270 >            int n = (int)sz;
4271 >            Object[] r = new Object[n];
4272 >            int i = 0;
4273 >            for (E e : this) {
4274 >                if (i == n) {
4275 >                    if (n >= MAX_ARRAY_SIZE)
4276 >                        throw new OutOfMemoryError(oomeMsg);
4277 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4278 >                        n = MAX_ARRAY_SIZE;
4279 >                    else
4280 >                        n += (n >>> 1) + 1;
4281 >                    r = Arrays.copyOf(r, n);
4282 >                }
4283 >                r[i++] = e;
4284 >            }
4285 >            return (i == n) ? r : Arrays.copyOf(r, i);
4286 >        }
4287 >
4288 >        @SuppressWarnings("unchecked")
4289 >        public final <T> T[] toArray(T[] a) {
4290 >            long sz = map.mappingCount();
4291 >            if (sz > MAX_ARRAY_SIZE)
4292 >                throw new OutOfMemoryError(oomeMsg);
4293 >            int m = (int)sz;
4294 >            T[] r = (a.length >= m) ? a :
4295 >                (T[])java.lang.reflect.Array
4296 >                .newInstance(a.getClass().getComponentType(), m);
4297 >            int n = r.length;
4298 >            int i = 0;
4299 >            for (E e : this) {
4300 >                if (i == n) {
4301 >                    if (n >= MAX_ARRAY_SIZE)
4302 >                        throw new OutOfMemoryError(oomeMsg);
4303 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4304 >                        n = MAX_ARRAY_SIZE;
4305 >                    else
4306 >                        n += (n >>> 1) + 1;
4307 >                    r = Arrays.copyOf(r, n);
4308 >                }
4309 >                r[i++] = (T)e;
4310 >            }
4311 >            if (a == r && i < n) {
4312 >                r[i] = null; // null-terminate
4313 >                return r;
4314 >            }
4315 >            return (i == n) ? r : Arrays.copyOf(r, i);
4316 >        }
4317 >
4318 >        /**
4319 >         * Returns a string representation of this collection.
4320 >         * The string representation consists of the string representations
4321 >         * of the collection's elements in the order they are returned by
4322 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4323 >         * Adjacent elements are separated by the characters {@code ", "}
4324 >         * (comma and space).  Elements are converted to strings as by
4325 >         * {@link String#valueOf(Object)}.
4326 >         *
4327 >         * @return a string representation of this collection
4328 >         */
4329 >        public final String toString() {
4330 >            StringBuilder sb = new StringBuilder();
4331 >            sb.append('[');
4332 >            Iterator<E> it = iterator();
4333 >            if (it.hasNext()) {
4334 >                for (;;) {
4335 >                    Object e = it.next();
4336 >                    sb.append(e == this ? "(this Collection)" : e);
4337 >                    if (!it.hasNext())
4338 >                        break;
4339 >                    sb.append(',').append(' ');
4340 >                }
4341 >            }
4342 >            return sb.append(']').toString();
4343 >        }
4344 >
4345 >        public final boolean containsAll(Collection<?> c) {
4346 >            if (c != this) {
4347 >                for (Object e : c) {
4348 >                    if (e == null || !contains(e))
4349 >                        return false;
4350 >                }
4351 >            }
4352 >            return true;
4353 >        }
4354 >
4355 >        public final boolean removeAll(Collection<?> c) {
4356 >            boolean modified = false;
4357 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4358 >                if (c.contains(it.next())) {
4359 >                    it.remove();
4360 >                    modified = true;
4361 >                }
4362 >            }
4363 >            return modified;
4364 >        }
4365 >
4366 >        public final boolean retainAll(Collection<?> c) {
4367 >            boolean modified = false;
4368 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4369 >                if (!c.contains(it.next())) {
4370 >                    it.remove();
4371 >                    modified = true;
4372 >                }
4373 >            }
4374 >            return modified;
4375 >        }
4376 >
4377 >    }
4378 >
4379 >    /**
4380 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4381 >     * which additions may optionally be enabled by mapping to a
4382 >     * common value.  This class cannot be directly instantiated.
4383 >     * See {@link #keySet() keySet()},
4384 >     * {@link #keySet(Object) keySet(V)},
4385 >     * {@link #newKeySet() newKeySet()},
4386 >     * {@link #newKeySet(int) newKeySet(int)}.
4387       *
4388 <     * @return  an enumeration of the values in this table.
851 <     * @see     java.util.Enumeration
852 <     * @see     #keys()
853 <     * @see     #values()
854 <     * @see     Map
4388 >     * @since 1.8
4389       */
4390 <    public Enumeration<V> elements() {
4391 <        return new ValueIterator();
4390 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4391 >        implements Set<K>, java.io.Serializable {
4392 >        private static final long serialVersionUID = 7249069246763182397L;
4393 >        private final V value;
4394 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4395 >            super(map);
4396 >            this.value = value;
4397 >        }
4398 >
4399 >        /**
4400 >         * Returns the default mapped value for additions,
4401 >         * or {@code null} if additions are not supported.
4402 >         *
4403 >         * @return the default mapped value for additions, or {@code null}
4404 >         * if not supported
4405 >         */
4406 >        public V getMappedValue() { return value; }
4407 >
4408 >        /**
4409 >         * {@inheritDoc}
4410 >         * @throws NullPointerException if the specified key is null
4411 >         */
4412 >        public boolean contains(Object o) { return map.containsKey(o); }
4413 >
4414 >        /**
4415 >         * Removes the key from this map view, by removing the key (and its
4416 >         * corresponding value) from the backing map.  This method does
4417 >         * nothing if the key is not in the map.
4418 >         *
4419 >         * @param  o the key to be removed from the backing map
4420 >         * @return {@code true} if the backing map contained the specified key
4421 >         * @throws NullPointerException if the specified key is null
4422 >         */
4423 >        public boolean remove(Object o) { return map.remove(o) != null; }
4424 >
4425 >        /**
4426 >         * @return an iterator over the keys of the backing map
4427 >         */
4428 >        public Iterator<K> iterator() {
4429 >            Node<K,V>[] t;
4430 >            ConcurrentHashMap<K,V> m = map;
4431 >            int f = (t = m.table) == null ? 0 : t.length;
4432 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4433 >        }
4434 >
4435 >        /**
4436 >         * Adds the specified key to this set view by mapping the key to
4437 >         * the default mapped value in the backing map, if defined.
4438 >         *
4439 >         * @param e key to be added
4440 >         * @return {@code true} if this set changed as a result of the call
4441 >         * @throws NullPointerException if the specified key is null
4442 >         * @throws UnsupportedOperationException if no default mapped value
4443 >         * for additions was provided
4444 >         */
4445 >        public boolean add(K e) {
4446 >            V v;
4447 >            if ((v = value) == null)
4448 >                throw new UnsupportedOperationException();
4449 >            return map.putVal(e, v, true) == null;
4450 >        }
4451 >
4452 >        /**
4453 >         * Adds all of the elements in the specified collection to this set,
4454 >         * as if by calling {@link #add} on each one.
4455 >         *
4456 >         * @param c the elements to be inserted into this set
4457 >         * @return {@code true} if this set changed as a result of the call
4458 >         * @throws NullPointerException if the collection or any of its
4459 >         * elements are {@code null}
4460 >         * @throws UnsupportedOperationException if no default mapped value
4461 >         * for additions was provided
4462 >         */
4463 >        public boolean addAll(Collection<? extends K> c) {
4464 >            boolean added = false;
4465 >            V v;
4466 >            if ((v = value) == null)
4467 >                throw new UnsupportedOperationException();
4468 >            for (K e : c) {
4469 >                if (map.putVal(e, v, true) == null)
4470 >                    added = true;
4471 >            }
4472 >            return added;
4473 >        }
4474 >
4475 >        public int hashCode() {
4476 >            int h = 0;
4477 >            for (K e : this)
4478 >                h += e.hashCode();
4479 >            return h;
4480 >        }
4481 >
4482 >        public boolean equals(Object o) {
4483 >            Set<?> c;
4484 >            return ((o instanceof Set) &&
4485 >                    ((c = (Set<?>)o) == this ||
4486 >                     (containsAll(c) && c.containsAll(this))));
4487 >        }
4488 >
4489 >        public Spliterator<K> spliterator() {
4490 >            Node<K,V>[] t;
4491 >            ConcurrentHashMap<K,V> m = map;
4492 >            long n = m.sumCount();
4493 >            int f = (t = m.table) == null ? 0 : t.length;
4494 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4495 >        }
4496 >
4497 >        public void forEach(Consumer<? super K> action) {
4498 >            if (action == null) throw new NullPointerException();
4499 >            Node<K,V>[] t;
4500 >            if ((t = map.table) != null) {
4501 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4502 >                for (Node<K,V> p; (p = it.advance()) != null; )
4503 >                    action.accept(p.key);
4504 >            }
4505 >        }
4506      }
4507  
4508 <    /* ---------------- Iterator Support -------------- */
4509 <    
4510 <    private abstract class HashIterator {
4511 <        private int nextSegmentIndex;
4512 <        private int nextTableIndex;
4513 <        private HashEntry<K, V>[] currentTable;
4514 <        private HashEntry<K, V> nextEntry;
4515 <        private HashEntry<K, V> lastReturned;
4516 <
4517 <        private HashIterator() {
4518 <            nextSegmentIndex = segments.length-1;
871 <            nextTableIndex = -1;
872 <            advance();
4508 >    /**
4509 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4510 >     * values, in which additions are disabled. This class cannot be
4511 >     * directly instantiated. See {@link #values()}.
4512 >     */
4513 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4514 >        implements Collection<V>, java.io.Serializable {
4515 >        private static final long serialVersionUID = 2249069246763182397L;
4516 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4517 >        public final boolean contains(Object o) {
4518 >            return map.containsValue(o);
4519          }
4520  
4521 <        public boolean hasMoreElements() { return hasNext(); }
4521 >        public final boolean remove(Object o) {
4522 >            if (o != null) {
4523 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4524 >                    if (o.equals(it.next())) {
4525 >                        it.remove();
4526 >                        return true;
4527 >                    }
4528 >                }
4529 >            }
4530 >            return false;
4531 >        }
4532  
4533 <        private void advance() {
4534 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
4535 <                return;
4536 <                
4537 <            while (nextTableIndex >= 0) {
4538 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
4539 <                    return;
4533 >        public final Iterator<V> iterator() {
4534 >            ConcurrentHashMap<K,V> m = map;
4535 >            Node<K,V>[] t;
4536 >            int f = (t = m.table) == null ? 0 : t.length;
4537 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4538 >        }
4539 >
4540 >        public final boolean add(V e) {
4541 >            throw new UnsupportedOperationException();
4542 >        }
4543 >        public final boolean addAll(Collection<? extends V> c) {
4544 >            throw new UnsupportedOperationException();
4545 >        }
4546 >
4547 >        public Spliterator<V> spliterator() {
4548 >            Node<K,V>[] t;
4549 >            ConcurrentHashMap<K,V> m = map;
4550 >            long n = m.sumCount();
4551 >            int f = (t = m.table) == null ? 0 : t.length;
4552 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4553 >        }
4554 >
4555 >        public void forEach(Consumer<? super V> action) {
4556 >            if (action == null) throw new NullPointerException();
4557 >            Node<K,V>[] t;
4558 >            if ((t = map.table) != null) {
4559 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4560 >                for (Node<K,V> p; (p = it.advance()) != null; )
4561 >                    action.accept(p.val);
4562              }
4563 <                
4564 <            while (nextSegmentIndex >= 0) {
4565 <                Segment<K,V> seg = segments[nextSegmentIndex--];
4566 <                if (seg.count != 0) {
4567 <                    currentTable = seg.table;
4568 <                    for (int j = currentTable.length-1; j >= 0; --j) {
4569 <                        if ( (nextEntry = currentTable[j]) != null) {
4570 <                            nextTableIndex = j-1;
4571 <                            return;
4572 <                        }
4563 >        }
4564 >    }
4565 >
4566 >    /**
4567 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4568 >     * entries.  This class cannot be directly instantiated. See
4569 >     * {@link #entrySet()}.
4570 >     */
4571 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4572 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4573 >        private static final long serialVersionUID = 2249069246763182397L;
4574 >        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4575 >
4576 >        public boolean contains(Object o) {
4577 >            Object k, v, r; Map.Entry<?,?> e;
4578 >            return ((o instanceof Map.Entry) &&
4579 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4580 >                    (r = map.get(k)) != null &&
4581 >                    (v = e.getValue()) != null &&
4582 >                    (v == r || v.equals(r)));
4583 >        }
4584 >
4585 >        public boolean remove(Object o) {
4586 >            Object k, v; Map.Entry<?,?> e;
4587 >            return ((o instanceof Map.Entry) &&
4588 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4589 >                    (v = e.getValue()) != null &&
4590 >                    map.remove(k, v));
4591 >        }
4592 >
4593 >        /**
4594 >         * @return an iterator over the entries of the backing map
4595 >         */
4596 >        public Iterator<Map.Entry<K,V>> iterator() {
4597 >            ConcurrentHashMap<K,V> m = map;
4598 >            Node<K,V>[] t;
4599 >            int f = (t = m.table) == null ? 0 : t.length;
4600 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4601 >        }
4602 >
4603 >        public boolean add(Entry<K,V> e) {
4604 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4605 >        }
4606 >
4607 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4608 >            boolean added = false;
4609 >            for (Entry<K,V> e : c) {
4610 >                if (add(e))
4611 >                    added = true;
4612 >            }
4613 >            return added;
4614 >        }
4615 >
4616 >        public final int hashCode() {
4617 >            int h = 0;
4618 >            Node<K,V>[] t;
4619 >            if ((t = map.table) != null) {
4620 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4621 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4622 >                    h += p.hashCode();
4623 >                }
4624 >            }
4625 >            return h;
4626 >        }
4627 >
4628 >        public final boolean equals(Object o) {
4629 >            Set<?> c;
4630 >            return ((o instanceof Set) &&
4631 >                    ((c = (Set<?>)o) == this ||
4632 >                     (containsAll(c) && c.containsAll(this))));
4633 >        }
4634 >
4635 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4636 >            Node<K,V>[] t;
4637 >            ConcurrentHashMap<K,V> m = map;
4638 >            long n = m.sumCount();
4639 >            int f = (t = m.table) == null ? 0 : t.length;
4640 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4641 >        }
4642 >
4643 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4644 >            if (action == null) throw new NullPointerException();
4645 >            Node<K,V>[] t;
4646 >            if ((t = map.table) != null) {
4647 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4648 >                for (Node<K,V> p; (p = it.advance()) != null; )
4649 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4650 >            }
4651 >        }
4652 >
4653 >    }
4654 >
4655 >    // -------------------------------------------------------
4656 >
4657 >    /**
4658 >     * Base class for bulk tasks. Repeats some fields and code from
4659 >     * class Traverser, because we need to subclass CountedCompleter.
4660 >     */
4661 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4662 >        Node<K,V>[] tab;        // same as Traverser
4663 >        Node<K,V> next;
4664 >        int index;
4665 >        int baseIndex;
4666 >        int baseLimit;
4667 >        final int baseSize;
4668 >        int batch;              // split control
4669 >
4670 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4671 >            super(par);
4672 >            this.batch = b;
4673 >            this.index = this.baseIndex = i;
4674 >            if ((this.tab = t) == null)
4675 >                this.baseSize = this.baseLimit = 0;
4676 >            else if (par == null)
4677 >                this.baseSize = this.baseLimit = t.length;
4678 >            else {
4679 >                this.baseLimit = f;
4680 >                this.baseSize = par.baseSize;
4681 >            }
4682 >        }
4683 >
4684 >        /**
4685 >         * Same as Traverser version
4686 >         */
4687 >        final Node<K,V> advance() {
4688 >            Node<K,V> e;
4689 >            if ((e = next) != null)
4690 >                e = e.next;
4691 >            for (;;) {
4692 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4693 >                if (e != null)
4694 >                    return next = e;
4695 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4696 >                    (n = t.length) <= (i = index) || i < 0)
4697 >                    return next = null;
4698 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4699 >                    if (e instanceof ForwardingNode) {
4700 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4701 >                        e = null;
4702 >                        continue;
4703                      }
4704 +                    else if (e instanceof TreeBin)
4705 +                        e = ((TreeBin<K,V>)e).first;
4706 +                    else
4707 +                        e = null;
4708                  }
4709 +                if ((index += baseSize) >= n)
4710 +                    index = ++baseIndex;    // visit upper slots if present
4711              }
4712          }
4713 +    }
4714  
4715 <        public boolean hasNext() { return nextEntry != null; }
4715 >    /*
4716 >     * Task classes. Coded in a regular but ugly format/style to
4717 >     * simplify checks that each variant differs in the right way from
4718 >     * others. The null screenings exist because compilers cannot tell
4719 >     * that we've already null-checked task arguments, so we force
4720 >     * simplest hoisted bypass to help avoid convoluted traps.
4721 >     */
4722 >    @SuppressWarnings("serial")
4723 >    static final class ForEachKeyTask<K,V>
4724 >        extends BulkTask<K,V,Void> {
4725 >        final Consumer<? super K> action;
4726 >        ForEachKeyTask
4727 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4728 >             Consumer<? super K> action) {
4729 >            super(p, b, i, f, t);
4730 >            this.action = action;
4731 >        }
4732 >        public final void compute() {
4733 >            final Consumer<? super K> action;
4734 >            if ((action = this.action) != null) {
4735 >                for (int i = baseIndex, f, h; batch > 0 &&
4736 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4737 >                    addToPendingCount(1);
4738 >                    new ForEachKeyTask<K,V>
4739 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4740 >                         action).fork();
4741 >                }
4742 >                for (Node<K,V> p; (p = advance()) != null;)
4743 >                    action.accept(p.key);
4744 >                propagateCompletion();
4745 >            }
4746 >        }
4747 >    }
4748  
4749 <        HashEntry<K,V> nextEntry() {
4750 <            if (nextEntry == null)
4751 <                throw new NoSuchElementException();
4752 <            lastReturned = nextEntry;
4753 <            advance();
4754 <            return lastReturned;
4749 >    @SuppressWarnings("serial")
4750 >    static final class ForEachValueTask<K,V>
4751 >        extends BulkTask<K,V,Void> {
4752 >        final Consumer<? super V> action;
4753 >        ForEachValueTask
4754 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4755 >             Consumer<? super V> action) {
4756 >            super(p, b, i, f, t);
4757 >            this.action = action;
4758 >        }
4759 >        public final void compute() {
4760 >            final Consumer<? super V> action;
4761 >            if ((action = this.action) != null) {
4762 >                for (int i = baseIndex, f, h; batch > 0 &&
4763 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4764 >                    addToPendingCount(1);
4765 >                    new ForEachValueTask<K,V>
4766 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4767 >                         action).fork();
4768 >                }
4769 >                for (Node<K,V> p; (p = advance()) != null;)
4770 >                    action.accept(p.val);
4771 >                propagateCompletion();
4772 >            }
4773          }
4774 +    }
4775  
4776 <        public void remove() {
4777 <            if (lastReturned == null)
4778 <                throw new IllegalStateException();
4779 <            ConcurrentHashMap.this.remove(lastReturned.key);
4780 <            lastReturned = null;
4776 >    @SuppressWarnings("serial")
4777 >    static final class ForEachEntryTask<K,V>
4778 >        extends BulkTask<K,V,Void> {
4779 >        final Consumer<? super Entry<K,V>> action;
4780 >        ForEachEntryTask
4781 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4782 >             Consumer<? super Entry<K,V>> action) {
4783 >            super(p, b, i, f, t);
4784 >            this.action = action;
4785 >        }
4786 >        public final void compute() {
4787 >            final Consumer<? super Entry<K,V>> action;
4788 >            if ((action = this.action) != null) {
4789 >                for (int i = baseIndex, f, h; batch > 0 &&
4790 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4791 >                    addToPendingCount(1);
4792 >                    new ForEachEntryTask<K,V>
4793 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4794 >                         action).fork();
4795 >                }
4796 >                for (Node<K,V> p; (p = advance()) != null; )
4797 >                    action.accept(p);
4798 >                propagateCompletion();
4799 >            }
4800          }
4801      }
4802  
4803 <    private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
4804 <        public K next() { return super.nextEntry().key; }
4805 <        public K nextElement() { return super.nextEntry().key; }
4803 >    @SuppressWarnings("serial")
4804 >    static final class ForEachMappingTask<K,V>
4805 >        extends BulkTask<K,V,Void> {
4806 >        final BiConsumer<? super K, ? super V> action;
4807 >        ForEachMappingTask
4808 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4809 >             BiConsumer<? super K,? super V> action) {
4810 >            super(p, b, i, f, t);
4811 >            this.action = action;
4812 >        }
4813 >        public final void compute() {
4814 >            final BiConsumer<? super K, ? super V> action;
4815 >            if ((action = this.action) != null) {
4816 >                for (int i = baseIndex, f, h; batch > 0 &&
4817 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4818 >                    addToPendingCount(1);
4819 >                    new ForEachMappingTask<K,V>
4820 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4821 >                         action).fork();
4822 >                }
4823 >                for (Node<K,V> p; (p = advance()) != null; )
4824 >                    action.accept(p.key, p.val);
4825 >                propagateCompletion();
4826 >            }
4827 >        }
4828      }
4829  
4830 <    private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
4831 <        public V next() { return super.nextEntry().value; }
4832 <        public V nextElement() { return super.nextEntry().value; }
4830 >    @SuppressWarnings("serial")
4831 >    static final class ForEachTransformedKeyTask<K,V,U>
4832 >        extends BulkTask<K,V,Void> {
4833 >        final Function<? super K, ? extends U> transformer;
4834 >        final Consumer<? super U> action;
4835 >        ForEachTransformedKeyTask
4836 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4837 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4838 >            super(p, b, i, f, t);
4839 >            this.transformer = transformer; this.action = action;
4840 >        }
4841 >        public final void compute() {
4842 >            final Function<? super K, ? extends U> transformer;
4843 >            final Consumer<? super U> action;
4844 >            if ((transformer = this.transformer) != null &&
4845 >                (action = this.action) != null) {
4846 >                for (int i = baseIndex, f, h; batch > 0 &&
4847 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4848 >                    addToPendingCount(1);
4849 >                    new ForEachTransformedKeyTask<K,V,U>
4850 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4851 >                         transformer, action).fork();
4852 >                }
4853 >                for (Node<K,V> p; (p = advance()) != null; ) {
4854 >                    U u;
4855 >                    if ((u = transformer.apply(p.key)) != null)
4856 >                        action.accept(u);
4857 >                }
4858 >                propagateCompletion();
4859 >            }
4860 >        }
4861      }
4862  
4863 <    private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
4864 <        public Map.Entry<K,V> next() { return super.nextEntry(); }
4863 >    @SuppressWarnings("serial")
4864 >    static final class ForEachTransformedValueTask<K,V,U>
4865 >        extends BulkTask<K,V,Void> {
4866 >        final Function<? super V, ? extends U> transformer;
4867 >        final Consumer<? super U> action;
4868 >        ForEachTransformedValueTask
4869 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4870 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4871 >            super(p, b, i, f, t);
4872 >            this.transformer = transformer; this.action = action;
4873 >        }
4874 >        public final void compute() {
4875 >            final Function<? super V, ? extends U> transformer;
4876 >            final Consumer<? super U> action;
4877 >            if ((transformer = this.transformer) != null &&
4878 >                (action = this.action) != null) {
4879 >                for (int i = baseIndex, f, h; batch > 0 &&
4880 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4881 >                    addToPendingCount(1);
4882 >                    new ForEachTransformedValueTask<K,V,U>
4883 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4884 >                         transformer, action).fork();
4885 >                }
4886 >                for (Node<K,V> p; (p = advance()) != null; ) {
4887 >                    U u;
4888 >                    if ((u = transformer.apply(p.val)) != null)
4889 >                        action.accept(u);
4890 >                }
4891 >                propagateCompletion();
4892 >            }
4893 >        }
4894      }
4895  
4896 <    private class KeySet extends AbstractSet<K> {
4897 <        public Iterator<K> iterator() {
4898 <            return new KeyIterator();
4896 >    @SuppressWarnings("serial")
4897 >    static final class ForEachTransformedEntryTask<K,V,U>
4898 >        extends BulkTask<K,V,Void> {
4899 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
4900 >        final Consumer<? super U> action;
4901 >        ForEachTransformedEntryTask
4902 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4903 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4904 >            super(p, b, i, f, t);
4905 >            this.transformer = transformer; this.action = action;
4906          }
4907 <        public int size() {
4908 <            return ConcurrentHashMap.this.size();
4907 >        public final void compute() {
4908 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
4909 >            final Consumer<? super U> action;
4910 >            if ((transformer = this.transformer) != null &&
4911 >                (action = this.action) != null) {
4912 >                for (int i = baseIndex, f, h; batch > 0 &&
4913 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4914 >                    addToPendingCount(1);
4915 >                    new ForEachTransformedEntryTask<K,V,U>
4916 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4917 >                         transformer, action).fork();
4918 >                }
4919 >                for (Node<K,V> p; (p = advance()) != null; ) {
4920 >                    U u;
4921 >                    if ((u = transformer.apply(p)) != null)
4922 >                        action.accept(u);
4923 >                }
4924 >                propagateCompletion();
4925 >            }
4926          }
4927 <        public boolean contains(Object o) {
4928 <            return ConcurrentHashMap.this.containsKey(o);
4927 >    }
4928 >
4929 >    @SuppressWarnings("serial")
4930 >    static final class ForEachTransformedMappingTask<K,V,U>
4931 >        extends BulkTask<K,V,Void> {
4932 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
4933 >        final Consumer<? super U> action;
4934 >        ForEachTransformedMappingTask
4935 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4936 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4937 >             Consumer<? super U> action) {
4938 >            super(p, b, i, f, t);
4939 >            this.transformer = transformer; this.action = action;
4940          }
4941 <        public boolean remove(Object o) {
4942 <            return ConcurrentHashMap.this.remove(o) != null;
4941 >        public final void compute() {
4942 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
4943 >            final Consumer<? super U> action;
4944 >            if ((transformer = this.transformer) != null &&
4945 >                (action = this.action) != null) {
4946 >                for (int i = baseIndex, f, h; batch > 0 &&
4947 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4948 >                    addToPendingCount(1);
4949 >                    new ForEachTransformedMappingTask<K,V,U>
4950 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4951 >                         transformer, action).fork();
4952 >                }
4953 >                for (Node<K,V> p; (p = advance()) != null; ) {
4954 >                    U u;
4955 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4956 >                        action.accept(u);
4957 >                }
4958 >                propagateCompletion();
4959 >            }
4960          }
4961 <        public void clear() {
4962 <            ConcurrentHashMap.this.clear();
4961 >    }
4962 >
4963 >    @SuppressWarnings("serial")
4964 >    static final class SearchKeysTask<K,V,U>
4965 >        extends BulkTask<K,V,U> {
4966 >        final Function<? super K, ? extends U> searchFunction;
4967 >        final AtomicReference<U> result;
4968 >        SearchKeysTask
4969 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4970 >             Function<? super K, ? extends U> searchFunction,
4971 >             AtomicReference<U> result) {
4972 >            super(p, b, i, f, t);
4973 >            this.searchFunction = searchFunction; this.result = result;
4974 >        }
4975 >        public final U getRawResult() { return result.get(); }
4976 >        public final void compute() {
4977 >            final Function<? super K, ? extends U> searchFunction;
4978 >            final AtomicReference<U> result;
4979 >            if ((searchFunction = this.searchFunction) != null &&
4980 >                (result = this.result) != null) {
4981 >                for (int i = baseIndex, f, h; batch > 0 &&
4982 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4983 >                    if (result.get() != null)
4984 >                        return;
4985 >                    addToPendingCount(1);
4986 >                    new SearchKeysTask<K,V,U>
4987 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4988 >                         searchFunction, result).fork();
4989 >                }
4990 >                while (result.get() == null) {
4991 >                    U u;
4992 >                    Node<K,V> p;
4993 >                    if ((p = advance()) == null) {
4994 >                        propagateCompletion();
4995 >                        break;
4996 >                    }
4997 >                    if ((u = searchFunction.apply(p.key)) != null) {
4998 >                        if (result.compareAndSet(null, u))
4999 >                            quietlyCompleteRoot();
5000 >                        break;
5001 >                    }
5002 >                }
5003 >            }
5004          }
5005      }
5006  
5007 <    private class Values extends AbstractCollection<V> {
5008 <        public Iterator<V> iterator() {
5009 <            return new ValueIterator();
5007 >    @SuppressWarnings("serial")
5008 >    static final class SearchValuesTask<K,V,U>
5009 >        extends BulkTask<K,V,U> {
5010 >        final Function<? super V, ? extends U> searchFunction;
5011 >        final AtomicReference<U> result;
5012 >        SearchValuesTask
5013 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5014 >             Function<? super V, ? extends U> searchFunction,
5015 >             AtomicReference<U> result) {
5016 >            super(p, b, i, f, t);
5017 >            this.searchFunction = searchFunction; this.result = result;
5018          }
5019 <        public int size() {
5020 <            return ConcurrentHashMap.this.size();
5019 >        public final U getRawResult() { return result.get(); }
5020 >        public final void compute() {
5021 >            final Function<? super V, ? extends U> searchFunction;
5022 >            final AtomicReference<U> result;
5023 >            if ((searchFunction = this.searchFunction) != null &&
5024 >                (result = this.result) != null) {
5025 >                for (int i = baseIndex, f, h; batch > 0 &&
5026 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5027 >                    if (result.get() != null)
5028 >                        return;
5029 >                    addToPendingCount(1);
5030 >                    new SearchValuesTask<K,V,U>
5031 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5032 >                         searchFunction, result).fork();
5033 >                }
5034 >                while (result.get() == null) {
5035 >                    U u;
5036 >                    Node<K,V> p;
5037 >                    if ((p = advance()) == null) {
5038 >                        propagateCompletion();
5039 >                        break;
5040 >                    }
5041 >                    if ((u = searchFunction.apply(p.val)) != null) {
5042 >                        if (result.compareAndSet(null, u))
5043 >                            quietlyCompleteRoot();
5044 >                        break;
5045 >                    }
5046 >                }
5047 >            }
5048          }
5049 <        public boolean contains(Object o) {
5050 <            return ConcurrentHashMap.this.containsValue(o);
5049 >    }
5050 >
5051 >    @SuppressWarnings("serial")
5052 >    static final class SearchEntriesTask<K,V,U>
5053 >        extends BulkTask<K,V,U> {
5054 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5055 >        final AtomicReference<U> result;
5056 >        SearchEntriesTask
5057 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5058 >             Function<Entry<K,V>, ? extends U> searchFunction,
5059 >             AtomicReference<U> result) {
5060 >            super(p, b, i, f, t);
5061 >            this.searchFunction = searchFunction; this.result = result;
5062          }
5063 <        public void clear() {
5064 <            ConcurrentHashMap.this.clear();
5063 >        public final U getRawResult() { return result.get(); }
5064 >        public final void compute() {
5065 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5066 >            final AtomicReference<U> result;
5067 >            if ((searchFunction = this.searchFunction) != null &&
5068 >                (result = this.result) != null) {
5069 >                for (int i = baseIndex, f, h; batch > 0 &&
5070 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5071 >                    if (result.get() != null)
5072 >                        return;
5073 >                    addToPendingCount(1);
5074 >                    new SearchEntriesTask<K,V,U>
5075 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5076 >                         searchFunction, result).fork();
5077 >                }
5078 >                while (result.get() == null) {
5079 >                    U u;
5080 >                    Node<K,V> p;
5081 >                    if ((p = advance()) == null) {
5082 >                        propagateCompletion();
5083 >                        break;
5084 >                    }
5085 >                    if ((u = searchFunction.apply(p)) != null) {
5086 >                        if (result.compareAndSet(null, u))
5087 >                            quietlyCompleteRoot();
5088 >                        return;
5089 >                    }
5090 >                }
5091 >            }
5092          }
5093      }
5094  
5095 <    private class EntrySet extends AbstractSet {
5096 <        public Iterator<Map.Entry<K,V>> iterator() {
5097 <            return new EntryIterator();
5095 >    @SuppressWarnings("serial")
5096 >    static final class SearchMappingsTask<K,V,U>
5097 >        extends BulkTask<K,V,U> {
5098 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5099 >        final AtomicReference<U> result;
5100 >        SearchMappingsTask
5101 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5102 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5103 >             AtomicReference<U> result) {
5104 >            super(p, b, i, f, t);
5105 >            this.searchFunction = searchFunction; this.result = result;
5106          }
5107 <        public boolean contains(Object o) {
5108 <            if (!(o instanceof Map.Entry))
5109 <                return false;
5110 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
5111 <            V v = ConcurrentHashMap.this.get(e.getKey());
5112 <            return v != null && v.equals(e.getValue());
5107 >        public final U getRawResult() { return result.get(); }
5108 >        public final void compute() {
5109 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5110 >            final AtomicReference<U> result;
5111 >            if ((searchFunction = this.searchFunction) != null &&
5112 >                (result = this.result) != null) {
5113 >                for (int i = baseIndex, f, h; batch > 0 &&
5114 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5115 >                    if (result.get() != null)
5116 >                        return;
5117 >                    addToPendingCount(1);
5118 >                    new SearchMappingsTask<K,V,U>
5119 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5120 >                         searchFunction, result).fork();
5121 >                }
5122 >                while (result.get() == null) {
5123 >                    U u;
5124 >                    Node<K,V> p;
5125 >                    if ((p = advance()) == null) {
5126 >                        propagateCompletion();
5127 >                        break;
5128 >                    }
5129 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5130 >                        if (result.compareAndSet(null, u))
5131 >                            quietlyCompleteRoot();
5132 >                        break;
5133 >                    }
5134 >                }
5135 >            }
5136          }
5137 <        public boolean remove(Object o) {
5138 <            if (!(o instanceof Map.Entry))
5139 <                return false;
5140 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
5141 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue()) != null;
5137 >    }
5138 >
5139 >    @SuppressWarnings("serial")
5140 >    static final class ReduceKeysTask<K,V>
5141 >        extends BulkTask<K,V,K> {
5142 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5143 >        K result;
5144 >        ReduceKeysTask<K,V> rights, nextRight;
5145 >        ReduceKeysTask
5146 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5147 >             ReduceKeysTask<K,V> nextRight,
5148 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5149 >            super(p, b, i, f, t); this.nextRight = nextRight;
5150 >            this.reducer = reducer;
5151          }
5152 <        public int size() {
5153 <            return ConcurrentHashMap.this.size();
5152 >        public final K getRawResult() { return result; }
5153 >        public final void compute() {
5154 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5155 >            if ((reducer = this.reducer) != null) {
5156 >                for (int i = baseIndex, f, h; batch > 0 &&
5157 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5158 >                    addToPendingCount(1);
5159 >                    (rights = new ReduceKeysTask<K,V>
5160 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5161 >                      rights, reducer)).fork();
5162 >                }
5163 >                K r = null;
5164 >                for (Node<K,V> p; (p = advance()) != null; ) {
5165 >                    K u = p.key;
5166 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5167 >                }
5168 >                result = r;
5169 >                CountedCompleter<?> c;
5170 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5171 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5172 >                        t = (ReduceKeysTask<K,V>)c,
5173 >                        s = t.rights;
5174 >                    while (s != null) {
5175 >                        K tr, sr;
5176 >                        if ((sr = s.result) != null)
5177 >                            t.result = (((tr = t.result) == null) ? sr :
5178 >                                        reducer.apply(tr, sr));
5179 >                        s = t.rights = s.nextRight;
5180 >                    }
5181 >                }
5182 >            }
5183          }
5184 <        public void clear() {
5185 <            ConcurrentHashMap.this.clear();
5184 >    }
5185 >
5186 >    @SuppressWarnings("serial")
5187 >    static final class ReduceValuesTask<K,V>
5188 >        extends BulkTask<K,V,V> {
5189 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5190 >        V result;
5191 >        ReduceValuesTask<K,V> rights, nextRight;
5192 >        ReduceValuesTask
5193 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5194 >             ReduceValuesTask<K,V> nextRight,
5195 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5196 >            super(p, b, i, f, t); this.nextRight = nextRight;
5197 >            this.reducer = reducer;
5198 >        }
5199 >        public final V getRawResult() { return result; }
5200 >        public final void compute() {
5201 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5202 >            if ((reducer = this.reducer) != null) {
5203 >                for (int i = baseIndex, f, h; batch > 0 &&
5204 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5205 >                    addToPendingCount(1);
5206 >                    (rights = new ReduceValuesTask<K,V>
5207 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5208 >                      rights, reducer)).fork();
5209 >                }
5210 >                V r = null;
5211 >                for (Node<K,V> p; (p = advance()) != null; ) {
5212 >                    V v = p.val;
5213 >                    r = (r == null) ? v : reducer.apply(r, v);
5214 >                }
5215 >                result = r;
5216 >                CountedCompleter<?> c;
5217 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5218 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5219 >                        t = (ReduceValuesTask<K,V>)c,
5220 >                        s = t.rights;
5221 >                    while (s != null) {
5222 >                        V tr, sr;
5223 >                        if ((sr = s.result) != null)
5224 >                            t.result = (((tr = t.result) == null) ? sr :
5225 >                                        reducer.apply(tr, sr));
5226 >                        s = t.rights = s.nextRight;
5227 >                    }
5228 >                }
5229 >            }
5230          }
5231      }
5232  
5233 <    /* ---------------- Serialization Support -------------- */
5233 >    @SuppressWarnings("serial")
5234 >    static final class ReduceEntriesTask<K,V>
5235 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5236 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5237 >        Map.Entry<K,V> result;
5238 >        ReduceEntriesTask<K,V> rights, nextRight;
5239 >        ReduceEntriesTask
5240 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5241 >             ReduceEntriesTask<K,V> nextRight,
5242 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5243 >            super(p, b, i, f, t); this.nextRight = nextRight;
5244 >            this.reducer = reducer;
5245 >        }
5246 >        public final Map.Entry<K,V> getRawResult() { return result; }
5247 >        public final void compute() {
5248 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5249 >            if ((reducer = this.reducer) != null) {
5250 >                for (int i = baseIndex, f, h; batch > 0 &&
5251 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5252 >                    addToPendingCount(1);
5253 >                    (rights = new ReduceEntriesTask<K,V>
5254 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5255 >                      rights, reducer)).fork();
5256 >                }
5257 >                Map.Entry<K,V> r = null;
5258 >                for (Node<K,V> p; (p = advance()) != null; )
5259 >                    r = (r == null) ? p : reducer.apply(r, p);
5260 >                result = r;
5261 >                CountedCompleter<?> c;
5262 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5263 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5264 >                        t = (ReduceEntriesTask<K,V>)c,
5265 >                        s = t.rights;
5266 >                    while (s != null) {
5267 >                        Map.Entry<K,V> tr, sr;
5268 >                        if ((sr = s.result) != null)
5269 >                            t.result = (((tr = t.result) == null) ? sr :
5270 >                                        reducer.apply(tr, sr));
5271 >                        s = t.rights = s.nextRight;
5272 >                    }
5273 >                }
5274 >            }
5275 >        }
5276 >    }
5277  
5278 <    /**
5279 <     * Save the state of the <tt>ConcurrentHashMap</tt>
5280 <     * instance to a stream (i.e.,
5281 <     * serialize it).
5282 <     * @serialData
5283 <     * the key (Object) and value (Object)
5284 <     * for each key-value mapping, followed by a null pair.
5285 <     * The key-value mappings are emitted in no particular order.
5286 <     */
5287 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
5288 <        s.defaultWriteObject();
5278 >    @SuppressWarnings("serial")
5279 >    static final class MapReduceKeysTask<K,V,U>
5280 >        extends BulkTask<K,V,U> {
5281 >        final Function<? super K, ? extends U> transformer;
5282 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5283 >        U result;
5284 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5285 >        MapReduceKeysTask
5286 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5287 >             MapReduceKeysTask<K,V,U> nextRight,
5288 >             Function<? super K, ? extends U> transformer,
5289 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5290 >            super(p, b, i, f, t); this.nextRight = nextRight;
5291 >            this.transformer = transformer;
5292 >            this.reducer = reducer;
5293 >        }
5294 >        public final U getRawResult() { return result; }
5295 >        public final void compute() {
5296 >            final Function<? super K, ? extends U> transformer;
5297 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5298 >            if ((transformer = this.transformer) != null &&
5299 >                (reducer = this.reducer) != null) {
5300 >                for (int i = baseIndex, f, h; batch > 0 &&
5301 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5302 >                    addToPendingCount(1);
5303 >                    (rights = new MapReduceKeysTask<K,V,U>
5304 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5305 >                      rights, transformer, reducer)).fork();
5306 >                }
5307 >                U r = null;
5308 >                for (Node<K,V> p; (p = advance()) != null; ) {
5309 >                    U u;
5310 >                    if ((u = transformer.apply(p.key)) != null)
5311 >                        r = (r == null) ? u : reducer.apply(r, u);
5312 >                }
5313 >                result = r;
5314 >                CountedCompleter<?> c;
5315 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5316 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5317 >                        t = (MapReduceKeysTask<K,V,U>)c,
5318 >                        s = t.rights;
5319 >                    while (s != null) {
5320 >                        U tr, sr;
5321 >                        if ((sr = s.result) != null)
5322 >                            t.result = (((tr = t.result) == null) ? sr :
5323 >                                        reducer.apply(tr, sr));
5324 >                        s = t.rights = s.nextRight;
5325 >                    }
5326 >                }
5327 >            }
5328 >        }
5329 >    }
5330  
5331 <        for (int k = 0; k < segments.length; ++k) {
5332 <            Segment<K,V> seg = segments[k];
5333 <            seg.lock();
5334 <            try {
5335 <                HashEntry<K,V>[] tab = seg.table;
5336 <                for (int i = 0; i < tab.length; ++i) {
5337 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
5338 <                        s.writeObject(e.key);
5339 <                        s.writeObject(e.value);
5331 >    @SuppressWarnings("serial")
5332 >    static final class MapReduceValuesTask<K,V,U>
5333 >        extends BulkTask<K,V,U> {
5334 >        final Function<? super V, ? extends U> transformer;
5335 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5336 >        U result;
5337 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5338 >        MapReduceValuesTask
5339 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5340 >             MapReduceValuesTask<K,V,U> nextRight,
5341 >             Function<? super V, ? extends U> transformer,
5342 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5343 >            super(p, b, i, f, t); this.nextRight = nextRight;
5344 >            this.transformer = transformer;
5345 >            this.reducer = reducer;
5346 >        }
5347 >        public final U getRawResult() { return result; }
5348 >        public final void compute() {
5349 >            final Function<? super V, ? extends U> transformer;
5350 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5351 >            if ((transformer = this.transformer) != null &&
5352 >                (reducer = this.reducer) != null) {
5353 >                for (int i = baseIndex, f, h; batch > 0 &&
5354 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5355 >                    addToPendingCount(1);
5356 >                    (rights = new MapReduceValuesTask<K,V,U>
5357 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5358 >                      rights, transformer, reducer)).fork();
5359 >                }
5360 >                U r = null;
5361 >                for (Node<K,V> p; (p = advance()) != null; ) {
5362 >                    U u;
5363 >                    if ((u = transformer.apply(p.val)) != null)
5364 >                        r = (r == null) ? u : reducer.apply(r, u);
5365 >                }
5366 >                result = r;
5367 >                CountedCompleter<?> c;
5368 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5369 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5370 >                        t = (MapReduceValuesTask<K,V,U>)c,
5371 >                        s = t.rights;
5372 >                    while (s != null) {
5373 >                        U tr, sr;
5374 >                        if ((sr = s.result) != null)
5375 >                            t.result = (((tr = t.result) == null) ? sr :
5376 >                                        reducer.apply(tr, sr));
5377 >                        s = t.rights = s.nextRight;
5378                      }
5379                  }
5380              }
5381 <            finally {
5382 <                seg.unlock();
5381 >        }
5382 >    }
5383 >
5384 >    @SuppressWarnings("serial")
5385 >    static final class MapReduceEntriesTask<K,V,U>
5386 >        extends BulkTask<K,V,U> {
5387 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5388 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5389 >        U result;
5390 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5391 >        MapReduceEntriesTask
5392 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5393 >             MapReduceEntriesTask<K,V,U> nextRight,
5394 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5395 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5396 >            super(p, b, i, f, t); this.nextRight = nextRight;
5397 >            this.transformer = transformer;
5398 >            this.reducer = reducer;
5399 >        }
5400 >        public final U getRawResult() { return result; }
5401 >        public final void compute() {
5402 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5403 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5404 >            if ((transformer = this.transformer) != null &&
5405 >                (reducer = this.reducer) != null) {
5406 >                for (int i = baseIndex, f, h; batch > 0 &&
5407 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5408 >                    addToPendingCount(1);
5409 >                    (rights = new MapReduceEntriesTask<K,V,U>
5410 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5411 >                      rights, transformer, reducer)).fork();
5412 >                }
5413 >                U r = null;
5414 >                for (Node<K,V> p; (p = advance()) != null; ) {
5415 >                    U u;
5416 >                    if ((u = transformer.apply(p)) != null)
5417 >                        r = (r == null) ? u : reducer.apply(r, u);
5418 >                }
5419 >                result = r;
5420 >                CountedCompleter<?> c;
5421 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5422 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5423 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5424 >                        s = t.rights;
5425 >                    while (s != null) {
5426 >                        U tr, sr;
5427 >                        if ((sr = s.result) != null)
5428 >                            t.result = (((tr = t.result) == null) ? sr :
5429 >                                        reducer.apply(tr, sr));
5430 >                        s = t.rights = s.nextRight;
5431 >                    }
5432 >                }
5433              }
5434          }
1020        s.writeObject(null);
1021        s.writeObject(null);
5435      }
5436  
5437 <    /**
5438 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
5439 <     * instance from a stream (i.e.,
5440 <     * deserialize it).
5441 <     */
5442 <    private void readObject(java.io.ObjectInputStream s)
5443 <        throws IOException, ClassNotFoundException  {
5444 <        s.defaultReadObject();
5437 >    @SuppressWarnings("serial")
5438 >    static final class MapReduceMappingsTask<K,V,U>
5439 >        extends BulkTask<K,V,U> {
5440 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5441 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5442 >        U result;
5443 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5444 >        MapReduceMappingsTask
5445 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5446 >             MapReduceMappingsTask<K,V,U> nextRight,
5447 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5448 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5449 >            super(p, b, i, f, t); this.nextRight = nextRight;
5450 >            this.transformer = transformer;
5451 >            this.reducer = reducer;
5452 >        }
5453 >        public final U getRawResult() { return result; }
5454 >        public final void compute() {
5455 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5456 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5457 >            if ((transformer = this.transformer) != null &&
5458 >                (reducer = this.reducer) != null) {
5459 >                for (int i = baseIndex, f, h; batch > 0 &&
5460 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5461 >                    addToPendingCount(1);
5462 >                    (rights = new MapReduceMappingsTask<K,V,U>
5463 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5464 >                      rights, transformer, reducer)).fork();
5465 >                }
5466 >                U r = null;
5467 >                for (Node<K,V> p; (p = advance()) != null; ) {
5468 >                    U u;
5469 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5470 >                        r = (r == null) ? u : reducer.apply(r, u);
5471 >                }
5472 >                result = r;
5473 >                CountedCompleter<?> c;
5474 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5475 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5476 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5477 >                        s = t.rights;
5478 >                    while (s != null) {
5479 >                        U tr, sr;
5480 >                        if ((sr = s.result) != null)
5481 >                            t.result = (((tr = t.result) == null) ? sr :
5482 >                                        reducer.apply(tr, sr));
5483 >                        s = t.rights = s.nextRight;
5484 >                    }
5485 >                }
5486 >            }
5487 >        }
5488 >    }
5489  
5490 <        // Initialize each segment to be minimally sized, and let grow.
5491 <        for (int i = 0; i < segments.length; ++i) {
5492 <            segments[i].setTable(new HashEntry<K,V>[1]);
5490 >    @SuppressWarnings("serial")
5491 >    static final class MapReduceKeysToDoubleTask<K,V>
5492 >        extends BulkTask<K,V,Double> {
5493 >        final ToDoubleFunction<? super K> transformer;
5494 >        final DoubleBinaryOperator reducer;
5495 >        final double basis;
5496 >        double result;
5497 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5498 >        MapReduceKeysToDoubleTask
5499 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5500 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5501 >             ToDoubleFunction<? super K> transformer,
5502 >             double basis,
5503 >             DoubleBinaryOperator reducer) {
5504 >            super(p, b, i, f, t); this.nextRight = nextRight;
5505 >            this.transformer = transformer;
5506 >            this.basis = basis; this.reducer = reducer;
5507 >        }
5508 >        public final Double getRawResult() { return result; }
5509 >        public final void compute() {
5510 >            final ToDoubleFunction<? super K> transformer;
5511 >            final DoubleBinaryOperator reducer;
5512 >            if ((transformer = this.transformer) != null &&
5513 >                (reducer = this.reducer) != null) {
5514 >                double r = this.basis;
5515 >                for (int i = baseIndex, f, h; batch > 0 &&
5516 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5517 >                    addToPendingCount(1);
5518 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5519 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5520 >                      rights, transformer, r, reducer)).fork();
5521 >                }
5522 >                for (Node<K,V> p; (p = advance()) != null; )
5523 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5524 >                result = r;
5525 >                CountedCompleter<?> c;
5526 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5527 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5528 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5529 >                        s = t.rights;
5530 >                    while (s != null) {
5531 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5532 >                        s = t.rights = s.nextRight;
5533 >                    }
5534 >                }
5535 >            }
5536          }
5537 +    }
5538  
5539 <        // Read the keys and values, and put the mappings in the table
5540 <        while (true) {
5541 <            K key = (K) s.readObject();
5542 <            V value = (V) s.readObject();
5543 <            if (key == null)
5544 <                break;
5545 <            put(key, value);
5539 >    @SuppressWarnings("serial")
5540 >    static final class MapReduceValuesToDoubleTask<K,V>
5541 >        extends BulkTask<K,V,Double> {
5542 >        final ToDoubleFunction<? super V> transformer;
5543 >        final DoubleBinaryOperator reducer;
5544 >        final double basis;
5545 >        double result;
5546 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5547 >        MapReduceValuesToDoubleTask
5548 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5549 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5550 >             ToDoubleFunction<? super V> transformer,
5551 >             double basis,
5552 >             DoubleBinaryOperator reducer) {
5553 >            super(p, b, i, f, t); this.nextRight = nextRight;
5554 >            this.transformer = transformer;
5555 >            this.basis = basis; this.reducer = reducer;
5556 >        }
5557 >        public final Double getRawResult() { return result; }
5558 >        public final void compute() {
5559 >            final ToDoubleFunction<? super V> transformer;
5560 >            final DoubleBinaryOperator reducer;
5561 >            if ((transformer = this.transformer) != null &&
5562 >                (reducer = this.reducer) != null) {
5563 >                double r = this.basis;
5564 >                for (int i = baseIndex, f, h; batch > 0 &&
5565 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566 >                    addToPendingCount(1);
5567 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5568 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5569 >                      rights, transformer, r, reducer)).fork();
5570 >                }
5571 >                for (Node<K,V> p; (p = advance()) != null; )
5572 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5573 >                result = r;
5574 >                CountedCompleter<?> c;
5575 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5576 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5577 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5578 >                        s = t.rights;
5579 >                    while (s != null) {
5580 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5581 >                        s = t.rights = s.nextRight;
5582 >                    }
5583 >                }
5584 >            }
5585 >        }
5586 >    }
5587 >
5588 >    @SuppressWarnings("serial")
5589 >    static final class MapReduceEntriesToDoubleTask<K,V>
5590 >        extends BulkTask<K,V,Double> {
5591 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5592 >        final DoubleBinaryOperator reducer;
5593 >        final double basis;
5594 >        double result;
5595 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5596 >        MapReduceEntriesToDoubleTask
5597 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5598 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5599 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5600 >             double basis,
5601 >             DoubleBinaryOperator reducer) {
5602 >            super(p, b, i, f, t); this.nextRight = nextRight;
5603 >            this.transformer = transformer;
5604 >            this.basis = basis; this.reducer = reducer;
5605 >        }
5606 >        public final Double getRawResult() { return result; }
5607 >        public final void compute() {
5608 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5609 >            final DoubleBinaryOperator reducer;
5610 >            if ((transformer = this.transformer) != null &&
5611 >                (reducer = this.reducer) != null) {
5612 >                double r = this.basis;
5613 >                for (int i = baseIndex, f, h; batch > 0 &&
5614 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5615 >                    addToPendingCount(1);
5616 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5617 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5618 >                      rights, transformer, r, reducer)).fork();
5619 >                }
5620 >                for (Node<K,V> p; (p = advance()) != null; )
5621 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5622 >                result = r;
5623 >                CountedCompleter<?> c;
5624 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5625 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5626 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5627 >                        s = t.rights;
5628 >                    while (s != null) {
5629 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5630 >                        s = t.rights = s.nextRight;
5631 >                    }
5632 >                }
5633 >            }
5634 >        }
5635 >    }
5636 >
5637 >    @SuppressWarnings("serial")
5638 >    static final class MapReduceMappingsToDoubleTask<K,V>
5639 >        extends BulkTask<K,V,Double> {
5640 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5641 >        final DoubleBinaryOperator reducer;
5642 >        final double basis;
5643 >        double result;
5644 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5645 >        MapReduceMappingsToDoubleTask
5646 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5647 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5648 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5649 >             double basis,
5650 >             DoubleBinaryOperator reducer) {
5651 >            super(p, b, i, f, t); this.nextRight = nextRight;
5652 >            this.transformer = transformer;
5653 >            this.basis = basis; this.reducer = reducer;
5654 >        }
5655 >        public final Double getRawResult() { return result; }
5656 >        public final void compute() {
5657 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5658 >            final DoubleBinaryOperator reducer;
5659 >            if ((transformer = this.transformer) != null &&
5660 >                (reducer = this.reducer) != null) {
5661 >                double r = this.basis;
5662 >                for (int i = baseIndex, f, h; batch > 0 &&
5663 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5664 >                    addToPendingCount(1);
5665 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5666 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5667 >                      rights, transformer, r, reducer)).fork();
5668 >                }
5669 >                for (Node<K,V> p; (p = advance()) != null; )
5670 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5671 >                result = r;
5672 >                CountedCompleter<?> c;
5673 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5674 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5675 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5676 >                        s = t.rights;
5677 >                    while (s != null) {
5678 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5679 >                        s = t.rights = s.nextRight;
5680 >                    }
5681 >                }
5682 >            }
5683 >        }
5684 >    }
5685 >
5686 >    @SuppressWarnings("serial")
5687 >    static final class MapReduceKeysToLongTask<K,V>
5688 >        extends BulkTask<K,V,Long> {
5689 >        final ToLongFunction<? super K> transformer;
5690 >        final LongBinaryOperator reducer;
5691 >        final long basis;
5692 >        long result;
5693 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5694 >        MapReduceKeysToLongTask
5695 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5696 >             MapReduceKeysToLongTask<K,V> nextRight,
5697 >             ToLongFunction<? super K> transformer,
5698 >             long basis,
5699 >             LongBinaryOperator reducer) {
5700 >            super(p, b, i, f, t); this.nextRight = nextRight;
5701 >            this.transformer = transformer;
5702 >            this.basis = basis; this.reducer = reducer;
5703 >        }
5704 >        public final Long getRawResult() { return result; }
5705 >        public final void compute() {
5706 >            final ToLongFunction<? super K> transformer;
5707 >            final LongBinaryOperator reducer;
5708 >            if ((transformer = this.transformer) != null &&
5709 >                (reducer = this.reducer) != null) {
5710 >                long r = this.basis;
5711 >                for (int i = baseIndex, f, h; batch > 0 &&
5712 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5713 >                    addToPendingCount(1);
5714 >                    (rights = new MapReduceKeysToLongTask<K,V>
5715 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5716 >                      rights, transformer, r, reducer)).fork();
5717 >                }
5718 >                for (Node<K,V> p; (p = advance()) != null; )
5719 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5720 >                result = r;
5721 >                CountedCompleter<?> c;
5722 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5723 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5724 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5725 >                        s = t.rights;
5726 >                    while (s != null) {
5727 >                        t.result = reducer.applyAsLong(t.result, s.result);
5728 >                        s = t.rights = s.nextRight;
5729 >                    }
5730 >                }
5731 >            }
5732 >        }
5733 >    }
5734 >
5735 >    @SuppressWarnings("serial")
5736 >    static final class MapReduceValuesToLongTask<K,V>
5737 >        extends BulkTask<K,V,Long> {
5738 >        final ToLongFunction<? super V> transformer;
5739 >        final LongBinaryOperator reducer;
5740 >        final long basis;
5741 >        long result;
5742 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5743 >        MapReduceValuesToLongTask
5744 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5745 >             MapReduceValuesToLongTask<K,V> nextRight,
5746 >             ToLongFunction<? super V> transformer,
5747 >             long basis,
5748 >             LongBinaryOperator reducer) {
5749 >            super(p, b, i, f, t); this.nextRight = nextRight;
5750 >            this.transformer = transformer;
5751 >            this.basis = basis; this.reducer = reducer;
5752 >        }
5753 >        public final Long getRawResult() { return result; }
5754 >        public final void compute() {
5755 >            final ToLongFunction<? super V> transformer;
5756 >            final LongBinaryOperator reducer;
5757 >            if ((transformer = this.transformer) != null &&
5758 >                (reducer = this.reducer) != null) {
5759 >                long r = this.basis;
5760 >                for (int i = baseIndex, f, h; batch > 0 &&
5761 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5762 >                    addToPendingCount(1);
5763 >                    (rights = new MapReduceValuesToLongTask<K,V>
5764 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5765 >                      rights, transformer, r, reducer)).fork();
5766 >                }
5767 >                for (Node<K,V> p; (p = advance()) != null; )
5768 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5769 >                result = r;
5770 >                CountedCompleter<?> c;
5771 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5772 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5773 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5774 >                        s = t.rights;
5775 >                    while (s != null) {
5776 >                        t.result = reducer.applyAsLong(t.result, s.result);
5777 >                        s = t.rights = s.nextRight;
5778 >                    }
5779 >                }
5780 >            }
5781 >        }
5782 >    }
5783 >
5784 >    @SuppressWarnings("serial")
5785 >    static final class MapReduceEntriesToLongTask<K,V>
5786 >        extends BulkTask<K,V,Long> {
5787 >        final ToLongFunction<Map.Entry<K,V>> transformer;
5788 >        final LongBinaryOperator reducer;
5789 >        final long basis;
5790 >        long result;
5791 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5792 >        MapReduceEntriesToLongTask
5793 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5794 >             MapReduceEntriesToLongTask<K,V> nextRight,
5795 >             ToLongFunction<Map.Entry<K,V>> transformer,
5796 >             long basis,
5797 >             LongBinaryOperator reducer) {
5798 >            super(p, b, i, f, t); this.nextRight = nextRight;
5799 >            this.transformer = transformer;
5800 >            this.basis = basis; this.reducer = reducer;
5801 >        }
5802 >        public final Long getRawResult() { return result; }
5803 >        public final void compute() {
5804 >            final ToLongFunction<Map.Entry<K,V>> transformer;
5805 >            final LongBinaryOperator reducer;
5806 >            if ((transformer = this.transformer) != null &&
5807 >                (reducer = this.reducer) != null) {
5808 >                long r = this.basis;
5809 >                for (int i = baseIndex, f, h; batch > 0 &&
5810 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5811 >                    addToPendingCount(1);
5812 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5813 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5814 >                      rights, transformer, r, reducer)).fork();
5815 >                }
5816 >                for (Node<K,V> p; (p = advance()) != null; )
5817 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5818 >                result = r;
5819 >                CountedCompleter<?> c;
5820 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5821 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5822 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5823 >                        s = t.rights;
5824 >                    while (s != null) {
5825 >                        t.result = reducer.applyAsLong(t.result, s.result);
5826 >                        s = t.rights = s.nextRight;
5827 >                    }
5828 >                }
5829 >            }
5830 >        }
5831 >    }
5832 >
5833 >    @SuppressWarnings("serial")
5834 >    static final class MapReduceMappingsToLongTask<K,V>
5835 >        extends BulkTask<K,V,Long> {
5836 >        final ToLongBiFunction<? super K, ? super V> transformer;
5837 >        final LongBinaryOperator reducer;
5838 >        final long basis;
5839 >        long result;
5840 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5841 >        MapReduceMappingsToLongTask
5842 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5843 >             MapReduceMappingsToLongTask<K,V> nextRight,
5844 >             ToLongBiFunction<? super K, ? super V> transformer,
5845 >             long basis,
5846 >             LongBinaryOperator reducer) {
5847 >            super(p, b, i, f, t); this.nextRight = nextRight;
5848 >            this.transformer = transformer;
5849 >            this.basis = basis; this.reducer = reducer;
5850 >        }
5851 >        public final Long getRawResult() { return result; }
5852 >        public final void compute() {
5853 >            final ToLongBiFunction<? super K, ? super V> transformer;
5854 >            final LongBinaryOperator reducer;
5855 >            if ((transformer = this.transformer) != null &&
5856 >                (reducer = this.reducer) != null) {
5857 >                long r = this.basis;
5858 >                for (int i = baseIndex, f, h; batch > 0 &&
5859 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5860 >                    addToPendingCount(1);
5861 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5862 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5863 >                      rights, transformer, r, reducer)).fork();
5864 >                }
5865 >                for (Node<K,V> p; (p = advance()) != null; )
5866 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5867 >                result = r;
5868 >                CountedCompleter<?> c;
5869 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5870 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5871 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5872 >                        s = t.rights;
5873 >                    while (s != null) {
5874 >                        t.result = reducer.applyAsLong(t.result, s.result);
5875 >                        s = t.rights = s.nextRight;
5876 >                    }
5877 >                }
5878 >            }
5879 >        }
5880 >    }
5881 >
5882 >    @SuppressWarnings("serial")
5883 >    static final class MapReduceKeysToIntTask<K,V>
5884 >        extends BulkTask<K,V,Integer> {
5885 >        final ToIntFunction<? super K> transformer;
5886 >        final IntBinaryOperator reducer;
5887 >        final int basis;
5888 >        int result;
5889 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5890 >        MapReduceKeysToIntTask
5891 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5892 >             MapReduceKeysToIntTask<K,V> nextRight,
5893 >             ToIntFunction<? super K> transformer,
5894 >             int basis,
5895 >             IntBinaryOperator reducer) {
5896 >            super(p, b, i, f, t); this.nextRight = nextRight;
5897 >            this.transformer = transformer;
5898 >            this.basis = basis; this.reducer = reducer;
5899 >        }
5900 >        public final Integer getRawResult() { return result; }
5901 >        public final void compute() {
5902 >            final ToIntFunction<? super K> transformer;
5903 >            final IntBinaryOperator reducer;
5904 >            if ((transformer = this.transformer) != null &&
5905 >                (reducer = this.reducer) != null) {
5906 >                int r = this.basis;
5907 >                for (int i = baseIndex, f, h; batch > 0 &&
5908 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5909 >                    addToPendingCount(1);
5910 >                    (rights = new MapReduceKeysToIntTask<K,V>
5911 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5912 >                      rights, transformer, r, reducer)).fork();
5913 >                }
5914 >                for (Node<K,V> p; (p = advance()) != null; )
5915 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5916 >                result = r;
5917 >                CountedCompleter<?> c;
5918 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5919 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5920 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5921 >                        s = t.rights;
5922 >                    while (s != null) {
5923 >                        t.result = reducer.applyAsInt(t.result, s.result);
5924 >                        s = t.rights = s.nextRight;
5925 >                    }
5926 >                }
5927 >            }
5928 >        }
5929 >    }
5930 >
5931 >    @SuppressWarnings("serial")
5932 >    static final class MapReduceValuesToIntTask<K,V>
5933 >        extends BulkTask<K,V,Integer> {
5934 >        final ToIntFunction<? super V> transformer;
5935 >        final IntBinaryOperator reducer;
5936 >        final int basis;
5937 >        int result;
5938 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5939 >        MapReduceValuesToIntTask
5940 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5941 >             MapReduceValuesToIntTask<K,V> nextRight,
5942 >             ToIntFunction<? super V> transformer,
5943 >             int basis,
5944 >             IntBinaryOperator reducer) {
5945 >            super(p, b, i, f, t); this.nextRight = nextRight;
5946 >            this.transformer = transformer;
5947 >            this.basis = basis; this.reducer = reducer;
5948 >        }
5949 >        public final Integer getRawResult() { return result; }
5950 >        public final void compute() {
5951 >            final ToIntFunction<? super V> transformer;
5952 >            final IntBinaryOperator reducer;
5953 >            if ((transformer = this.transformer) != null &&
5954 >                (reducer = this.reducer) != null) {
5955 >                int r = this.basis;
5956 >                for (int i = baseIndex, f, h; batch > 0 &&
5957 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5958 >                    addToPendingCount(1);
5959 >                    (rights = new MapReduceValuesToIntTask<K,V>
5960 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5961 >                      rights, transformer, r, reducer)).fork();
5962 >                }
5963 >                for (Node<K,V> p; (p = advance()) != null; )
5964 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5965 >                result = r;
5966 >                CountedCompleter<?> c;
5967 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5968 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5969 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5970 >                        s = t.rights;
5971 >                    while (s != null) {
5972 >                        t.result = reducer.applyAsInt(t.result, s.result);
5973 >                        s = t.rights = s.nextRight;
5974 >                    }
5975 >                }
5976 >            }
5977 >        }
5978 >    }
5979 >
5980 >    @SuppressWarnings("serial")
5981 >    static final class MapReduceEntriesToIntTask<K,V>
5982 >        extends BulkTask<K,V,Integer> {
5983 >        final ToIntFunction<Map.Entry<K,V>> transformer;
5984 >        final IntBinaryOperator reducer;
5985 >        final int basis;
5986 >        int result;
5987 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5988 >        MapReduceEntriesToIntTask
5989 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5990 >             MapReduceEntriesToIntTask<K,V> nextRight,
5991 >             ToIntFunction<Map.Entry<K,V>> transformer,
5992 >             int basis,
5993 >             IntBinaryOperator reducer) {
5994 >            super(p, b, i, f, t); this.nextRight = nextRight;
5995 >            this.transformer = transformer;
5996 >            this.basis = basis; this.reducer = reducer;
5997 >        }
5998 >        public final Integer getRawResult() { return result; }
5999 >        public final void compute() {
6000 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6001 >            final IntBinaryOperator reducer;
6002 >            if ((transformer = this.transformer) != null &&
6003 >                (reducer = this.reducer) != null) {
6004 >                int r = this.basis;
6005 >                for (int i = baseIndex, f, h; batch > 0 &&
6006 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6007 >                    addToPendingCount(1);
6008 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6009 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6010 >                      rights, transformer, r, reducer)).fork();
6011 >                }
6012 >                for (Node<K,V> p; (p = advance()) != null; )
6013 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6014 >                result = r;
6015 >                CountedCompleter<?> c;
6016 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6017 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6018 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6019 >                        s = t.rights;
6020 >                    while (s != null) {
6021 >                        t.result = reducer.applyAsInt(t.result, s.result);
6022 >                        s = t.rights = s.nextRight;
6023 >                    }
6024 >                }
6025 >            }
6026 >        }
6027 >    }
6028 >
6029 >    @SuppressWarnings("serial")
6030 >    static final class MapReduceMappingsToIntTask<K,V>
6031 >        extends BulkTask<K,V,Integer> {
6032 >        final ToIntBiFunction<? super K, ? super V> transformer;
6033 >        final IntBinaryOperator reducer;
6034 >        final int basis;
6035 >        int result;
6036 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6037 >        MapReduceMappingsToIntTask
6038 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6039 >             MapReduceMappingsToIntTask<K,V> nextRight,
6040 >             ToIntBiFunction<? super K, ? super V> transformer,
6041 >             int basis,
6042 >             IntBinaryOperator reducer) {
6043 >            super(p, b, i, f, t); this.nextRight = nextRight;
6044 >            this.transformer = transformer;
6045 >            this.basis = basis; this.reducer = reducer;
6046 >        }
6047 >        public final Integer getRawResult() { return result; }
6048 >        public final void compute() {
6049 >            final ToIntBiFunction<? super K, ? super V> transformer;
6050 >            final IntBinaryOperator reducer;
6051 >            if ((transformer = this.transformer) != null &&
6052 >                (reducer = this.reducer) != null) {
6053 >                int r = this.basis;
6054 >                for (int i = baseIndex, f, h; batch > 0 &&
6055 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6056 >                    addToPendingCount(1);
6057 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6058 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6059 >                      rights, transformer, r, reducer)).fork();
6060 >                }
6061 >                for (Node<K,V> p; (p = advance()) != null; )
6062 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6063 >                result = r;
6064 >                CountedCompleter<?> c;
6065 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6066 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6067 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6068 >                        s = t.rights;
6069 >                    while (s != null) {
6070 >                        t.result = reducer.applyAsInt(t.result, s.result);
6071 >                        s = t.rights = s.nextRight;
6072 >                    }
6073 >                }
6074 >            }
6075 >        }
6076 >    }
6077 >
6078 >    // Unsafe mechanics
6079 >    private static final sun.misc.Unsafe U;
6080 >    private static final long SIZECTL;
6081 >    private static final long TRANSFERINDEX;
6082 >    private static final long TRANSFERORIGIN;
6083 >    private static final long BASECOUNT;
6084 >    private static final long CELLSBUSY;
6085 >    private static final long CELLVALUE;
6086 >    private static final long ABASE;
6087 >    private static final int ASHIFT;
6088 >
6089 >    static {
6090 >        try {
6091 >            U = sun.misc.Unsafe.getUnsafe();
6092 >            Class<?> k = ConcurrentHashMap.class;
6093 >            SIZECTL = U.objectFieldOffset
6094 >                (k.getDeclaredField("sizeCtl"));
6095 >            TRANSFERINDEX = U.objectFieldOffset
6096 >                (k.getDeclaredField("transferIndex"));
6097 >            TRANSFERORIGIN = U.objectFieldOffset
6098 >                (k.getDeclaredField("transferOrigin"));
6099 >            BASECOUNT = U.objectFieldOffset
6100 >                (k.getDeclaredField("baseCount"));
6101 >            CELLSBUSY = U.objectFieldOffset
6102 >                (k.getDeclaredField("cellsBusy"));
6103 >            Class<?> ck = CounterCell.class;
6104 >            CELLVALUE = U.objectFieldOffset
6105 >                (ck.getDeclaredField("value"));
6106 >            Class<?> ak = Node[].class;
6107 >            ABASE = U.arrayBaseOffset(ak);
6108 >            int scale = U.arrayIndexScale(ak);
6109 >            if ((scale & (scale - 1)) != 0)
6110 >                throw new Error("data type scale not a power of two");
6111 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6112 >        } catch (Exception e) {
6113 >            throw new Error(e);
6114          }
6115      }
6116   }
1048        

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines