ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.19 by dl, Mon Aug 25 13:01:41 2003 UTC vs.
Revision 1.252 by dl, Sun Dec 1 13:38:58 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3 < * Expert Group and released to the public domain. Use, modify, and
4 < * redistribute this code in any way without acknowledgement.
3 > * Expert Group and released to the public domain, as explained at
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Comparator;
17 > import java.util.Enumeration;
18 > import java.util.HashMap;
19 > import java.util.Hashtable;
20 > import java.util.Iterator;
21 > import java.util.Map;
22 > import java.util.NoSuchElementException;
23 > import java.util.Set;
24 > import java.util.Spliterator;
25 > import java.util.concurrent.ConcurrentMap;
26 > import java.util.concurrent.ForkJoinPool;
27 > import java.util.concurrent.atomic.AtomicReference;
28 > import java.util.concurrent.locks.LockSupport;
29 > import java.util.concurrent.locks.ReentrantLock;
30 > import java.util.function.BiConsumer;
31 > import java.util.function.BiFunction;
32 > import java.util.function.BinaryOperator;
33 > import java.util.function.Consumer;
34 > import java.util.function.DoubleBinaryOperator;
35 > import java.util.function.Function;
36 > import java.util.function.IntBinaryOperator;
37 > import java.util.function.LongBinaryOperator;
38 > import java.util.function.ToDoubleBiFunction;
39 > import java.util.function.ToDoubleFunction;
40 > import java.util.function.ToIntBiFunction;
41 > import java.util.function.ToIntFunction;
42 > import java.util.function.ToLongBiFunction;
43 > import java.util.function.ToLongFunction;
44 > import java.util.stream.Stream;
45  
46   /**
47   * A hash table supporting full concurrency of retrievals and
48 < * adjustable expected concurrency for updates. This class obeys the
49 < * same functional specification as <tt>java.util.Hashtable</tt>, and
48 > * high expected concurrency for updates. This class obeys the
49 > * same functional specification as {@link java.util.Hashtable}, and
50   * includes versions of methods corresponding to each method of
51 < * <tt>Hashtable</tt> . However, even though all operations are
51 > * {@code Hashtable}. However, even though all operations are
52   * thread-safe, retrieval operations do <em>not</em> entail locking,
53   * and there is <em>not</em> any support for locking the entire table
54   * in a way that prevents all access.  This class is fully
55 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
55 > * interoperable with {@code Hashtable} in programs that rely on its
56   * thread safety but not on its synchronization details.
57   *
58 < * <p> Retrieval operations (including <tt>get</tt>) ordinarily
59 < * overlap with update operations (including <tt>put</tt> and
60 < * <tt>remove</tt>). Retrievals reflect the results of the most
58 > * <p>Retrieval operations (including {@code get}) generally do not
59 > * block, so may overlap with update operations (including {@code put}
60 > * and {@code remove}). Retrievals reflect the results of the most
61   * recently <em>completed</em> update operations holding upon their
62 < * onset.  For aggregate operations such as <tt>putAll</tt> and
63 < * <tt>clear</tt>, concurrent retrievals may reflect insertion or
64 < * removal of only some entries.  Similarly, Iterators and
65 < * Enumerations return elements reflecting the state of the hash table
66 < * at some point at or since the creation of the iterator/enumeration.
67 < * They do <em>not</em> throw ConcurrentModificationException.
68 < * However, Iterators are designed to be used by only one thread at a
69 < * time.
70 < *
71 < * <p> The allowed concurrency among update operations is guided by
72 < * the optional <tt>concurrencyLevel</tt> constructor argument
73 < * (default 16). The table is internally partitioned to permit the
74 < * indicated number of concurrent updates without contention. Because
75 < * placement in hash tables is essentially random, the actual
76 < * concurrency will vary.  Ideally, you should choose a value to
77 < * accommodate as many threads as will ever concurrently access the
78 < * table. Using a significantly higher value than you need can waste
79 < * space and time, and a significantly lower value can lead to thread
80 < * contention. But overestimates and underestimates within an order of
81 < * magnitude do not usually have much noticeable impact.
62 > * onset. (More formally, an update operation for a given key bears a
63 > * <em>happens-before</em> relation with any (non-null) retrieval for
64 > * that key reporting the updated value.)  For aggregate operations
65 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 > * reflect insertion or removal of only some entries.  Similarly,
67 > * Iterators, Spliterators and Enumerations return elements reflecting the
68 > * state of the hash table at some point at or since the creation of the
69 > * iterator/enumeration.  They do <em>not</em> throw {@link
70 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
71 > * However, iterators are designed to be used by only one thread at a time.
72 > * Bear in mind that the results of aggregate status methods including
73 > * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74 > * useful only when a map is not undergoing concurrent updates in other threads.
75 > * Otherwise the results of these methods reflect transient states
76 > * that may be adequate for monitoring or estimation purposes, but not
77 > * for program control.
78 > *
79 > * <p>The table is dynamically expanded when there are too many
80 > * collisions (i.e., keys that have distinct hash codes but fall into
81 > * the same slot modulo the table size), with the expected average
82 > * effect of maintaining roughly two bins per mapping (corresponding
83 > * to a 0.75 load factor threshold for resizing). There may be much
84 > * variance around this average as mappings are added and removed, but
85 > * overall, this maintains a commonly accepted time/space tradeoff for
86 > * hash tables.  However, resizing this or any other kind of hash
87 > * table may be a relatively slow operation. When possible, it is a
88 > * good idea to provide a size estimate as an optional {@code
89 > * initialCapacity} constructor argument. An additional optional
90 > * {@code loadFactor} constructor argument provides a further means of
91 > * customizing initial table capacity by specifying the table density
92 > * to be used in calculating the amount of space to allocate for the
93 > * given number of elements.  Also, for compatibility with previous
94 > * versions of this class, constructors may optionally specify an
95 > * expected {@code concurrencyLevel} as an additional hint for
96 > * internal sizing.  Note that using many keys with exactly the same
97 > * {@code hashCode()} is a sure way to slow down performance of any
98 > * hash table. To ameliorate impact, when keys are {@link Comparable},
99 > * this class may use comparison order among keys to help break ties.
100 > *
101 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 > * (using {@link #keySet(Object)} when only keys are of interest, and the
104 > * mapped values are (perhaps transiently) not used or all take the
105 > * same mapping value.
106 > *
107 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 > * form of histogram or multiset) by using {@link
109 > * java.util.concurrent.atomic.LongAdder} values and initializing via
110 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 > *
114 > * <p>This class and its views and iterators implement all of the
115 > * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 > * interfaces.
117 > *
118 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 > * does <em>not</em> allow {@code null} to be used as a key or value.
120 > *
121 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 > * operations that, unlike most {@link Stream} methods, are designed
123 > * to be safely, and often sensibly, applied even with maps that are
124 > * being concurrently updated by other threads; for example, when
125 > * computing a snapshot summary of the values in a shared registry.
126 > * There are three kinds of operation, each with four forms, accepting
127 > * functions with Keys, Values, Entries, and (Key, Value) arguments
128 > * and/or return values. Because the elements of a ConcurrentHashMap
129 > * are not ordered in any particular way, and may be processed in
130 > * different orders in different parallel executions, the correctness
131 > * of supplied functions should not depend on any ordering, or on any
132 > * other objects or values that may transiently change while
133 > * computation is in progress; and except for forEach actions, should
134 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 > * objects do not support method {@code setValue}.
136 > *
137 > * <ul>
138 > * <li> forEach: Perform a given action on each element.
139 > * A variant form applies a given transformation on each element
140 > * before performing the action.</li>
141 > *
142 > * <li> search: Return the first available non-null result of
143 > * applying a given function on each element; skipping further
144 > * search when a result is found.</li>
145 > *
146 > * <li> reduce: Accumulate each element.  The supplied reduction
147 > * function cannot rely on ordering (more formally, it should be
148 > * both associative and commutative).  There are five variants:
149 > *
150 > * <ul>
151 > *
152 > * <li> Plain reductions. (There is not a form of this method for
153 > * (key, value) function arguments since there is no corresponding
154 > * return type.)</li>
155 > *
156 > * <li> Mapped reductions that accumulate the results of a given
157 > * function applied to each element.</li>
158 > *
159 > * <li> Reductions to scalar doubles, longs, and ints, using a
160 > * given basis value.</li>
161 > *
162 > * </ul>
163 > * </li>
164 > * </ul>
165 > *
166 > * <p>These bulk operations accept a {@code parallelismThreshold}
167 > * argument. Methods proceed sequentially if the current map size is
168 > * estimated to be less than the given threshold. Using a value of
169 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
170 > * of {@code 1} results in maximal parallelism by partitioning into
171 > * enough subtasks to fully utilize the {@link
172 > * ForkJoinPool#commonPool()} that is used for all parallel
173 > * computations. Normally, you would initially choose one of these
174 > * extreme values, and then measure performance of using in-between
175 > * values that trade off overhead versus throughput.
176 > *
177 > * <p>The concurrency properties of bulk operations follow
178 > * from those of ConcurrentHashMap: Any non-null result returned
179 > * from {@code get(key)} and related access methods bears a
180 > * happens-before relation with the associated insertion or
181 > * update.  The result of any bulk operation reflects the
182 > * composition of these per-element relations (but is not
183 > * necessarily atomic with respect to the map as a whole unless it
184 > * is somehow known to be quiescent).  Conversely, because keys
185 > * and values in the map are never null, null serves as a reliable
186 > * atomic indicator of the current lack of any result.  To
187 > * maintain this property, null serves as an implicit basis for
188 > * all non-scalar reduction operations. For the double, long, and
189 > * int versions, the basis should be one that, when combined with
190 > * any other value, returns that other value (more formally, it
191 > * should be the identity element for the reduction). Most common
192 > * reductions have these properties; for example, computing a sum
193 > * with basis 0 or a minimum with basis MAX_VALUE.
194 > *
195 > * <p>Search and transformation functions provided as arguments
196 > * should similarly return null to indicate the lack of any result
197 > * (in which case it is not used). In the case of mapped
198 > * reductions, this also enables transformations to serve as
199 > * filters, returning null (or, in the case of primitive
200 > * specializations, the identity basis) if the element should not
201 > * be combined. You can create compound transformations and
202 > * filterings by composing them yourself under this "null means
203 > * there is nothing there now" rule before using them in search or
204 > * reduce operations.
205 > *
206 > * <p>Methods accepting and/or returning Entry arguments maintain
207 > * key-value associations. They may be useful for example when
208 > * finding the key for the greatest value. Note that "plain" Entry
209 > * arguments can be supplied using {@code new
210 > * AbstractMap.SimpleEntry(k,v)}.
211 > *
212 > * <p>Bulk operations may complete abruptly, throwing an
213 > * exception encountered in the application of a supplied
214 > * function. Bear in mind when handling such exceptions that other
215 > * concurrently executing functions could also have thrown
216 > * exceptions, or would have done so if the first exception had
217 > * not occurred.
218 > *
219 > * <p>Speedups for parallel compared to sequential forms are common
220 > * but not guaranteed.  Parallel operations involving brief functions
221 > * on small maps may execute more slowly than sequential forms if the
222 > * underlying work to parallelize the computation is more expensive
223 > * than the computation itself.  Similarly, parallelization may not
224 > * lead to much actual parallelism if all processors are busy
225 > * performing unrelated tasks.
226 > *
227 > * <p>All arguments to all task methods must be non-null.
228   *
229 < * <p> Like Hashtable but unlike java.util.HashMap, this class does
230 < * NOT allow <tt>null</tt> to be used as a key or value.
229 > * <p>This class is a member of the
230 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 > * Java Collections Framework</a>.
232   *
233   * @since 1.5
234   * @author Doug Lea
235 + * @param <K> the type of keys maintained by this map
236 + * @param <V> the type of mapped values
237   */
238 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
239 <        implements ConcurrentMap<K, V>, Cloneable, Serializable {
238 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239 >    implements ConcurrentMap<K,V>, Serializable {
240 >    private static final long serialVersionUID = 7249069246763182397L;
241  
242      /*
243 <     * The basic strategy is to subdivide the table among Segments,
244 <     * each of which itself is a concurrently readable hash table.
243 >     * Overview:
244 >     *
245 >     * The primary design goal of this hash table is to maintain
246 >     * concurrent readability (typically method get(), but also
247 >     * iterators and related methods) while minimizing update
248 >     * contention. Secondary goals are to keep space consumption about
249 >     * the same or better than java.util.HashMap, and to support high
250 >     * initial insertion rates on an empty table by many threads.
251 >     *
252 >     * This map usually acts as a binned (bucketed) hash table.  Each
253 >     * key-value mapping is held in a Node.  Most nodes are instances
254 >     * of the basic Node class with hash, key, value, and next
255 >     * fields. However, various subclasses exist: TreeNodes are
256 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
257 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 >     * of bins during resizing. ReservationNodes are used as
259 >     * placeholders while establishing values in computeIfAbsent and
260 >     * related methods.  The types TreeBin, ForwardingNode, and
261 >     * ReservationNode do not hold normal user keys, values, or
262 >     * hashes, and are readily distinguishable during search etc
263 >     * because they have negative hash fields and null key and value
264 >     * fields. (These special nodes are either uncommon or transient,
265 >     * so the impact of carrying around some unused fields is
266 >     * insignificant.)
267 >     *
268 >     * The table is lazily initialized to a power-of-two size upon the
269 >     * first insertion.  Each bin in the table normally contains a
270 >     * list of Nodes (most often, the list has only zero or one Node).
271 >     * Table accesses require volatile/atomic reads, writes, and
272 >     * CASes.  Because there is no other way to arrange this without
273 >     * adding further indirections, we use intrinsics
274 >     * (sun.misc.Unsafe) operations.
275 >     *
276 >     * We use the top (sign) bit of Node hash fields for control
277 >     * purposes -- it is available anyway because of addressing
278 >     * constraints.  Nodes with negative hash fields are specially
279 >     * handled or ignored in map methods.
280 >     *
281 >     * Insertion (via put or its variants) of the first node in an
282 >     * empty bin is performed by just CASing it to the bin.  This is
283 >     * by far the most common case for put operations under most
284 >     * key/hash distributions.  Other update operations (insert,
285 >     * delete, and replace) require locks.  We do not want to waste
286 >     * the space required to associate a distinct lock object with
287 >     * each bin, so instead use the first node of a bin list itself as
288 >     * a lock. Locking support for these locks relies on builtin
289 >     * "synchronized" monitors.
290 >     *
291 >     * Using the first node of a list as a lock does not by itself
292 >     * suffice though: When a node is locked, any update must first
293 >     * validate that it is still the first node after locking it, and
294 >     * retry if not. Because new nodes are always appended to lists,
295 >     * once a node is first in a bin, it remains first until deleted
296 >     * or the bin becomes invalidated (upon resizing).
297 >     *
298 >     * The main disadvantage of per-bin locks is that other update
299 >     * operations on other nodes in a bin list protected by the same
300 >     * lock can stall, for example when user equals() or mapping
301 >     * functions take a long time.  However, statistically, under
302 >     * random hash codes, this is not a common problem.  Ideally, the
303 >     * frequency of nodes in bins follows a Poisson distribution
304 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 >     * parameter of about 0.5 on average, given the resizing threshold
306 >     * of 0.75, although with a large variance because of resizing
307 >     * granularity. Ignoring variance, the expected occurrences of
308 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 >     * first values are:
310 >     *
311 >     * 0:    0.60653066
312 >     * 1:    0.30326533
313 >     * 2:    0.07581633
314 >     * 3:    0.01263606
315 >     * 4:    0.00157952
316 >     * 5:    0.00015795
317 >     * 6:    0.00001316
318 >     * 7:    0.00000094
319 >     * 8:    0.00000006
320 >     * more: less than 1 in ten million
321 >     *
322 >     * Lock contention probability for two threads accessing distinct
323 >     * elements is roughly 1 / (8 * #elements) under random hashes.
324 >     *
325 >     * Actual hash code distributions encountered in practice
326 >     * sometimes deviate significantly from uniform randomness.  This
327 >     * includes the case when N > (1<<30), so some keys MUST collide.
328 >     * Similarly for dumb or hostile usages in which multiple keys are
329 >     * designed to have identical hash codes or ones that differs only
330 >     * in masked-out high bits. So we use a secondary strategy that
331 >     * applies when the number of nodes in a bin exceeds a
332 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
333 >     * specialized form of red-black trees), bounding search time to
334 >     * O(log N).  Each search step in a TreeBin is at least twice as
335 >     * slow as in a regular list, but given that N cannot exceed
336 >     * (1<<64) (before running out of addresses) this bounds search
337 >     * steps, lock hold times, etc, to reasonable constants (roughly
338 >     * 100 nodes inspected per operation worst case) so long as keys
339 >     * are Comparable (which is very common -- String, Long, etc).
340 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
341 >     * traversal pointers as regular nodes, so can be traversed in
342 >     * iterators in the same way.
343 >     *
344 >     * The table is resized when occupancy exceeds a percentage
345 >     * threshold (nominally, 0.75, but see below).  Any thread
346 >     * noticing an overfull bin may assist in resizing after the
347 >     * initiating thread allocates and sets up the replacement array.
348 >     * However, rather than stalling, these other threads may proceed
349 >     * with insertions etc.  The use of TreeBins shields us from the
350 >     * worst case effects of overfilling while resizes are in
351 >     * progress.  Resizing proceeds by transferring bins, one by one,
352 >     * from the table to the next table. However, threads claim small
353 >     * blocks of indices to transfer (via field transferIndex) before
354 >     * doing so, reducing contention.  A generation stamp in field
355 >     * sizeCtl ensures that resizings do not overlap. Because we are
356 >     * using power-of-two expansion, the elements from each bin must
357 >     * either stay at same index, or move with a power of two
358 >     * offset. We eliminate unnecessary node creation by catching
359 >     * cases where old nodes can be reused because their next fields
360 >     * won't change.  On average, only about one-sixth of them need
361 >     * cloning when a table doubles. The nodes they replace will be
362 >     * garbage collectable as soon as they are no longer referenced by
363 >     * any reader thread that may be in the midst of concurrently
364 >     * traversing table.  Upon transfer, the old table bin contains
365 >     * only a special forwarding node (with hash field "MOVED") that
366 >     * contains the next table as its key. On encountering a
367 >     * forwarding node, access and update operations restart, using
368 >     * the new table.
369 >     *
370 >     * Each bin transfer requires its bin lock, which can stall
371 >     * waiting for locks while resizing. However, because other
372 >     * threads can join in and help resize rather than contend for
373 >     * locks, average aggregate waits become shorter as resizing
374 >     * progresses.  The transfer operation must also ensure that all
375 >     * accessible bins in both the old and new table are usable by any
376 >     * traversal.  This is arranged in part by proceeding from the
377 >     * last bin (table.length - 1) up towards the first.  Upon seeing
378 >     * a forwarding node, traversals (see class Traverser) arrange to
379 >     * move to the new table without revisiting nodes.  To ensure that
380 >     * no intervening nodes are skipped even when moved out of order,
381 >     * a stack (see class TableStack) is created on first encounter of
382 >     * a forwarding node during a traversal, to maintain its place if
383 >     * later processing the current table. The need for these
384 >     * save/restore mechanics is relatively rare, but when one
385 >     * forwarding node is encountered, typically many more will be.
386 >     * So Traversers use a simple caching scheme to avoid creating so
387 >     * many new TableStack nodes. (Thanks to Peter Levart for
388 >     * suggesting use of a stack here.)
389 >     *
390 >     * The traversal scheme also applies to partial traversals of
391 >     * ranges of bins (via an alternate Traverser constructor)
392 >     * to support partitioned aggregate operations.  Also, read-only
393 >     * operations give up if ever forwarded to a null table, which
394 >     * provides support for shutdown-style clearing, which is also not
395 >     * currently implemented.
396 >     *
397 >     * Lazy table initialization minimizes footprint until first use,
398 >     * and also avoids resizings when the first operation is from a
399 >     * putAll, constructor with map argument, or deserialization.
400 >     * These cases attempt to override the initial capacity settings,
401 >     * but harmlessly fail to take effect in cases of races.
402 >     *
403 >     * The element count is maintained using a specialization of
404 >     * LongAdder. We need to incorporate a specialization rather than
405 >     * just use a LongAdder in order to access implicit
406 >     * contention-sensing that leads to creation of multiple
407 >     * CounterCells.  The counter mechanics avoid contention on
408 >     * updates but can encounter cache thrashing if read too
409 >     * frequently during concurrent access. To avoid reading so often,
410 >     * resizing under contention is attempted only upon adding to a
411 >     * bin already holding two or more nodes. Under uniform hash
412 >     * distributions, the probability of this occurring at threshold
413 >     * is around 13%, meaning that only about 1 in 8 puts check
414 >     * threshold (and after resizing, many fewer do so).
415 >     *
416 >     * TreeBins use a special form of comparison for search and
417 >     * related operations (which is the main reason we cannot use
418 >     * existing collections such as TreeMaps). TreeBins contain
419 >     * Comparable elements, but may contain others, as well as
420 >     * elements that are Comparable but not necessarily Comparable for
421 >     * the same T, so we cannot invoke compareTo among them. To handle
422 >     * this, the tree is ordered primarily by hash value, then by
423 >     * Comparable.compareTo order if applicable.  On lookup at a node,
424 >     * if elements are not comparable or compare as 0 then both left
425 >     * and right children may need to be searched in the case of tied
426 >     * hash values. (This corresponds to the full list search that
427 >     * would be necessary if all elements were non-Comparable and had
428 >     * tied hashes.) On insertion, to keep a total ordering (or as
429 >     * close as is required here) across rebalancings, we compare
430 >     * classes and identityHashCodes as tie-breakers. The red-black
431 >     * balancing code is updated from pre-jdk-collections
432 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
433 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
434 >     * Algorithms" (CLR).
435 >     *
436 >     * TreeBins also require an additional locking mechanism.  While
437 >     * list traversal is always possible by readers even during
438 >     * updates, tree traversal is not, mainly because of tree-rotations
439 >     * that may change the root node and/or its linkages.  TreeBins
440 >     * include a simple read-write lock mechanism parasitic on the
441 >     * main bin-synchronization strategy: Structural adjustments
442 >     * associated with an insertion or removal are already bin-locked
443 >     * (and so cannot conflict with other writers) but must wait for
444 >     * ongoing readers to finish. Since there can be only one such
445 >     * waiter, we use a simple scheme using a single "waiter" field to
446 >     * block writers.  However, readers need never block.  If the root
447 >     * lock is held, they proceed along the slow traversal path (via
448 >     * next-pointers) until the lock becomes available or the list is
449 >     * exhausted, whichever comes first. These cases are not fast, but
450 >     * maximize aggregate expected throughput.
451 >     *
452 >     * Maintaining API and serialization compatibility with previous
453 >     * versions of this class introduces several oddities. Mainly: We
454 >     * leave untouched but unused constructor arguments refering to
455 >     * concurrencyLevel. We accept a loadFactor constructor argument,
456 >     * but apply it only to initial table capacity (which is the only
457 >     * time that we can guarantee to honor it.) We also declare an
458 >     * unused "Segment" class that is instantiated in minimal form
459 >     * only when serializing.
460 >     *
461 >     * Also, solely for compatibility with previous versions of this
462 >     * class, it extends AbstractMap, even though all of its methods
463 >     * are overridden, so it is just useless baggage.
464 >     *
465 >     * This file is organized to make things a little easier to follow
466 >     * while reading than they might otherwise: First the main static
467 >     * declarations and utilities, then fields, then main public
468 >     * methods (with a few factorings of multiple public methods into
469 >     * internal ones), then sizing methods, trees, traversers, and
470 >     * bulk operations.
471       */
472  
473      /* ---------------- Constants -------------- */
474  
475      /**
476 <     * The default initial number of table slots for this table.
477 <     * Used when not otherwise specified in constructor.
476 >     * The largest possible table capacity.  This value must be
477 >     * exactly 1<<30 to stay within Java array allocation and indexing
478 >     * bounds for power of two table sizes, and is further required
479 >     * because the top two bits of 32bit hash fields are used for
480 >     * control purposes.
481 >     */
482 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
483 >
484 >    /**
485 >     * The default initial table capacity.  Must be a power of 2
486 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487 >     */
488 >    private static final int DEFAULT_CAPACITY = 16;
489 >
490 >    /**
491 >     * The largest possible (non-power of two) array size.
492 >     * Needed by toArray and related methods.
493 >     */
494 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495 >
496 >    /**
497 >     * The default concurrency level for this table. Unused but
498 >     * defined for compatibility with previous versions of this class.
499 >     */
500 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501 >
502 >    /**
503 >     * The load factor for this table. Overrides of this value in
504 >     * constructors affect only the initial table capacity.  The
505 >     * actual floating point value isn't normally used -- it is
506 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
507 >     * the associated resizing threshold.
508 >     */
509 >    private static final float LOAD_FACTOR = 0.75f;
510 >
511 >    /**
512 >     * The bin count threshold for using a tree rather than list for a
513 >     * bin.  Bins are converted to trees when adding an element to a
514 >     * bin with at least this many nodes. The value must be greater
515 >     * than 2, and should be at least 8 to mesh with assumptions in
516 >     * tree removal about conversion back to plain bins upon
517 >     * shrinkage.
518 >     */
519 >    static final int TREEIFY_THRESHOLD = 8;
520 >
521 >    /**
522 >     * The bin count threshold for untreeifying a (split) bin during a
523 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
524 >     * most 6 to mesh with shrinkage detection under removal.
525 >     */
526 >    static final int UNTREEIFY_THRESHOLD = 6;
527 >
528 >    /**
529 >     * The smallest table capacity for which bins may be treeified.
530 >     * (Otherwise the table is resized if too many nodes in a bin.)
531 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
532 >     * conflicts between resizing and treeification thresholds.
533 >     */
534 >    static final int MIN_TREEIFY_CAPACITY = 64;
535 >
536 >    /**
537 >     * Minimum number of rebinnings per transfer step. Ranges are
538 >     * subdivided to allow multiple resizer threads.  This value
539 >     * serves as a lower bound to avoid resizers encountering
540 >     * excessive memory contention.  The value should be at least
541 >     * DEFAULT_CAPACITY.
542 >     */
543 >    private static final int MIN_TRANSFER_STRIDE = 16;
544 >
545 >    /**
546 >     * The number of bits used for generation stamp in sizeCtl.
547 >     * Must be at least 6 for 32bit arrays.
548 >     */
549 >    private static int RESIZE_STAMP_BITS = 16;
550 >
551 >    /**
552 >     * The maximum number of threads that can help resize.
553 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
554 >     */
555 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
556 >
557 >    /**
558 >     * The bit shift for recording size stamp in sizeCtl.
559 >     */
560 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
561 >
562 >    /*
563 >     * Encodings for Node hash fields. See above for explanation.
564 >     */
565 >    static final int MOVED     = -1; // hash for forwarding nodes
566 >    static final int TREEBIN   = -2; // hash for roots of trees
567 >    static final int RESERVED  = -3; // hash for transient reservations
568 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
569 >
570 >    /** Number of CPUS, to place bounds on some sizings */
571 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
572 >
573 >    /** For serialization compatibility. */
574 >    private static final ObjectStreamField[] serialPersistentFields = {
575 >        new ObjectStreamField("segments", Segment[].class),
576 >        new ObjectStreamField("segmentMask", Integer.TYPE),
577 >        new ObjectStreamField("segmentShift", Integer.TYPE)
578 >    };
579 >
580 >    /* ---------------- Nodes -------------- */
581 >
582 >    /**
583 >     * Key-value entry.  This class is never exported out as a
584 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
585 >     * MapEntry below), but can be used for read-only traversals used
586 >     * in bulk tasks.  Subclasses of Node with a negative hash field
587 >     * are special, and contain null keys and values (but are never
588 >     * exported).  Otherwise, keys and vals are never null.
589 >     */
590 >    static class Node<K,V> implements Map.Entry<K,V> {
591 >        final int hash;
592 >        final K key;
593 >        volatile V val;
594 >        volatile Node<K,V> next;
595 >
596 >        Node(int hash, K key, V val, Node<K,V> next) {
597 >            this.hash = hash;
598 >            this.key = key;
599 >            this.val = val;
600 >            this.next = next;
601 >        }
602 >
603 >        public final K getKey()       { return key; }
604 >        public final V getValue()     { return val; }
605 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
606 >        public final String toString(){ return key + "=" + val; }
607 >        public final V setValue(V value) {
608 >            throw new UnsupportedOperationException();
609 >        }
610 >
611 >        public final boolean equals(Object o) {
612 >            Object k, v, u; Map.Entry<?,?> e;
613 >            return ((o instanceof Map.Entry) &&
614 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615 >                    (v = e.getValue()) != null &&
616 >                    (k == key || k.equals(key)) &&
617 >                    (v == (u = val) || v.equals(u)));
618 >        }
619 >
620 >        /**
621 >         * Virtualized support for map.get(); overridden in subclasses.
622 >         */
623 >        Node<K,V> find(int h, Object k) {
624 >            Node<K,V> e = this;
625 >            if (k != null) {
626 >                do {
627 >                    K ek;
628 >                    if (e.hash == h &&
629 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
630 >                        return e;
631 >                } while ((e = e.next) != null);
632 >            }
633 >            return null;
634 >        }
635 >    }
636 >
637 >    /* ---------------- Static utilities -------------- */
638 >
639 >    /**
640 >     * Spreads (XORs) higher bits of hash to lower and also forces top
641 >     * bit to 0. Because the table uses power-of-two masking, sets of
642 >     * hashes that vary only in bits above the current mask will
643 >     * always collide. (Among known examples are sets of Float keys
644 >     * holding consecutive whole numbers in small tables.)  So we
645 >     * apply a transform that spreads the impact of higher bits
646 >     * downward. There is a tradeoff between speed, utility, and
647 >     * quality of bit-spreading. Because many common sets of hashes
648 >     * are already reasonably distributed (so don't benefit from
649 >     * spreading), and because we use trees to handle large sets of
650 >     * collisions in bins, we just XOR some shifted bits in the
651 >     * cheapest possible way to reduce systematic lossage, as well as
652 >     * to incorporate impact of the highest bits that would otherwise
653 >     * never be used in index calculations because of table bounds.
654       */
655 <    private static int DEFAULT_INITIAL_CAPACITY = 16;
655 >    static final int spread(int h) {
656 >        return (h ^ (h >>> 16)) & HASH_BITS;
657 >    }
658  
659      /**
660 <     * The maximum capacity, used if a higher value is implicitly
661 <     * specified by either of the constructors with arguments.  MUST
77 <     * be a power of two <= 1<<30.
660 >     * Returns a power of two table size for the given desired capacity.
661 >     * See Hackers Delight, sec 3.2
662       */
663 <    static final int MAXIMUM_CAPACITY = 1 << 30;
663 >    private static final int tableSizeFor(int c) {
664 >        int n = c - 1;
665 >        n |= n >>> 1;
666 >        n |= n >>> 2;
667 >        n |= n >>> 4;
668 >        n |= n >>> 8;
669 >        n |= n >>> 16;
670 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671 >    }
672  
673      /**
674 <     * The default load factor for this table.  Used when not
675 <     * otherwise specified in constructor.
674 >     * Returns x's Class if it is of the form "class C implements
675 >     * Comparable<C>", else null.
676       */
677 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
677 >    static Class<?> comparableClassFor(Object x) {
678 >        if (x instanceof Comparable) {
679 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680 >            if ((c = x.getClass()) == String.class) // bypass checks
681 >                return c;
682 >            if ((ts = c.getGenericInterfaces()) != null) {
683 >                for (int i = 0; i < ts.length; ++i) {
684 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
685 >                        ((p = (ParameterizedType)t).getRawType() ==
686 >                         Comparable.class) &&
687 >                        (as = p.getActualTypeArguments()) != null &&
688 >                        as.length == 1 && as[0] == c) // type arg is c
689 >                        return c;
690 >                }
691 >            }
692 >        }
693 >        return null;
694 >    }
695  
696      /**
697 <     * The default number of concurrency control segments.
698 <     **/
699 <    private static final int DEFAULT_SEGMENTS = 16;
697 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
698 >     * class), else 0.
699 >     */
700 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701 >    static int compareComparables(Class<?> kc, Object k, Object x) {
702 >        return (x == null || x.getClass() != kc ? 0 :
703 >                ((Comparable)k).compareTo(x));
704 >    }
705 >
706 >    /* ---------------- Table element access -------------- */
707 >
708 >    /*
709 >     * Volatile access methods are used for table elements as well as
710 >     * elements of in-progress next table while resizing.  All uses of
711 >     * the tab arguments must be null checked by callers.  All callers
712 >     * also paranoically precheck that tab's length is not zero (or an
713 >     * equivalent check), thus ensuring that any index argument taking
714 >     * the form of a hash value anded with (length - 1) is a valid
715 >     * index.  Note that, to be correct wrt arbitrary concurrency
716 >     * errors by users, these checks must operate on local variables,
717 >     * which accounts for some odd-looking inline assignments below.
718 >     * Note that calls to setTabAt always occur within locked regions,
719 >     * and so in principle require only release ordering, not
720 >     * full volatile semantics, but are currently coded as volatile
721 >     * writes to be conservative.
722 >     */
723 >
724 >    @SuppressWarnings("unchecked")
725 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727 >    }
728 >
729 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730 >                                        Node<K,V> c, Node<K,V> v) {
731 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732 >    }
733 >
734 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736 >    }
737  
738      /* ---------------- Fields -------------- */
739  
740      /**
741 <     * Mask value for indexing into segments. The upper bits of a
742 <     * key's hash code are used to choose the segment.
743 <     **/
744 <    private final int segmentMask;
741 >     * The array of bins. Lazily initialized upon first insertion.
742 >     * Size is always a power of two. Accessed directly by iterators.
743 >     */
744 >    transient volatile Node<K,V>[] table;
745 >
746 >    /**
747 >     * The next table to use; non-null only while resizing.
748 >     */
749 >    private transient volatile Node<K,V>[] nextTable;
750 >
751 >    /**
752 >     * Base counter value, used mainly when there is no contention,
753 >     * but also as a fallback during table initialization
754 >     * races. Updated via CAS.
755 >     */
756 >    private transient volatile long baseCount;
757 >
758 >    /**
759 >     * Table initialization and resizing control.  When negative, the
760 >     * table is being initialized or resized: -1 for initialization,
761 >     * else -(1 + the number of active resizing threads).  Otherwise,
762 >     * when table is null, holds the initial table size to use upon
763 >     * creation, or 0 for default. After initialization, holds the
764 >     * next element count value upon which to resize the table.
765 >     */
766 >    private transient volatile int sizeCtl;
767 >
768 >    /**
769 >     * The next table index (plus one) to split while resizing.
770 >     */
771 >    private transient volatile int transferIndex;
772 >
773 >    /**
774 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775 >     */
776 >    private transient volatile int cellsBusy;
777 >
778 >    /**
779 >     * Table of counter cells. When non-null, size is a power of 2.
780 >     */
781 >    private transient volatile CounterCell[] counterCells;
782 >
783 >    // views
784 >    private transient KeySetView<K,V> keySet;
785 >    private transient ValuesView<K,V> values;
786 >    private transient EntrySetView<K,V> entrySet;
787 >
788 >
789 >    /* ---------------- Public operations -------------- */
790  
791      /**
792 <     * Shift value for indexing within segments.
793 <     **/
794 <    private final int segmentShift;
792 >     * Creates a new, empty map with the default initial table size (16).
793 >     */
794 >    public ConcurrentHashMap() {
795 >    }
796  
797      /**
798 <     * The segments, each of which is a specialized hash table
798 >     * Creates a new, empty map with an initial table size
799 >     * accommodating the specified number of elements without the need
800 >     * to dynamically resize.
801 >     *
802 >     * @param initialCapacity The implementation performs internal
803 >     * sizing to accommodate this many elements.
804 >     * @throws IllegalArgumentException if the initial capacity of
805 >     * elements is negative
806       */
807 <    private final Segment[] segments;
807 >    public ConcurrentHashMap(int initialCapacity) {
808 >        if (initialCapacity < 0)
809 >            throw new IllegalArgumentException();
810 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811 >                   MAXIMUM_CAPACITY :
812 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
813 >        this.sizeCtl = cap;
814 >    }
815  
816 <    private transient Set<K> keySet;
817 <    private transient Set<Map.Entry<K,V>> entrySet;
818 <    private transient Collection<V> values;
816 >    /**
817 >     * Creates a new map with the same mappings as the given map.
818 >     *
819 >     * @param m the map
820 >     */
821 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 >        this.sizeCtl = DEFAULT_CAPACITY;
823 >        putAll(m);
824 >    }
825  
826 <    /* ---------------- Small Utilities -------------- */
826 >    /**
827 >     * Creates a new, empty map with an initial table size based on
828 >     * the given number of elements ({@code initialCapacity}) and
829 >     * initial table density ({@code loadFactor}).
830 >     *
831 >     * @param initialCapacity the initial capacity. The implementation
832 >     * performs internal sizing to accommodate this many elements,
833 >     * given the specified load factor.
834 >     * @param loadFactor the load factor (table density) for
835 >     * establishing the initial table size
836 >     * @throws IllegalArgumentException if the initial capacity of
837 >     * elements is negative or the load factor is nonpositive
838 >     *
839 >     * @since 1.6
840 >     */
841 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 >        this(initialCapacity, loadFactor, 1);
843 >    }
844  
845      /**
846 <     * Return a hash code for non-null Object x.
847 <     * Uses the same hash code spreader as most other j.u hash tables.
848 <     * @param x the object serving as a key
849 <     * @return the hash code
846 >     * Creates a new, empty map with an initial table size based on
847 >     * the given number of elements ({@code initialCapacity}), table
848 >     * density ({@code loadFactor}), and number of concurrently
849 >     * updating threads ({@code concurrencyLevel}).
850 >     *
851 >     * @param initialCapacity the initial capacity. The implementation
852 >     * performs internal sizing to accommodate this many elements,
853 >     * given the specified load factor.
854 >     * @param loadFactor the load factor (table density) for
855 >     * establishing the initial table size
856 >     * @param concurrencyLevel the estimated number of concurrently
857 >     * updating threads. The implementation may use this value as
858 >     * a sizing hint.
859 >     * @throws IllegalArgumentException if the initial capacity is
860 >     * negative or the load factor or concurrencyLevel are
861 >     * nonpositive
862       */
863 <    private static int hash(Object x) {
864 <        int h = x.hashCode();
865 <        h += ~(h << 9);
866 <        h ^=  (h >>> 14);
867 <        h +=  (h << 4);
868 <        h ^=  (h >>> 10);
863 >    public ConcurrentHashMap(int initialCapacity,
864 >                             float loadFactor, int concurrencyLevel) {
865 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 >            throw new IllegalArgumentException();
867 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
868 >            initialCapacity = concurrencyLevel;   // as estimated threads
869 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 >        this.sizeCtl = cap;
873 >    }
874 >
875 >    // Original (since JDK1.2) Map methods
876 >
877 >    /**
878 >     * {@inheritDoc}
879 >     */
880 >    public int size() {
881 >        long n = sumCount();
882 >        return ((n < 0L) ? 0 :
883 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 >                (int)n);
885 >    }
886 >
887 >    /**
888 >     * {@inheritDoc}
889 >     */
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892 >    }
893 >
894 >    /**
895 >     * Returns the value to which the specified key is mapped,
896 >     * or {@code null} if this map contains no mapping for the key.
897 >     *
898 >     * <p>More formally, if this map contains a mapping from a key
899 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 >     * then this method returns {@code v}; otherwise it returns
901 >     * {@code null}.  (There can be at most one such mapping.)
902 >     *
903 >     * @throws NullPointerException if the specified key is null
904 >     */
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920 >            }
921 >        }
922 >        return null;
923 >    }
924 >
925 >    /**
926 >     * Tests if the specified object is a key in this table.
927 >     *
928 >     * @param  key possible key
929 >     * @return {@code true} if and only if the specified object
930 >     *         is a key in this table, as determined by the
931 >     *         {@code equals} method; {@code false} otherwise
932 >     * @throws NullPointerException if the specified key is null
933 >     */
934 >    public boolean containsKey(Object key) {
935 >        return get(key) != null;
936 >    }
937 >
938 >    /**
939 >     * Returns {@code true} if this map maps one or more keys to the
940 >     * specified value. Note: This method may require a full traversal
941 >     * of the map, and is much slower than method {@code containsKey}.
942 >     *
943 >     * @param value value whose presence in this map is to be tested
944 >     * @return {@code true} if this map maps one or more keys to the
945 >     *         specified value
946 >     * @throws NullPointerException if the specified value is null
947 >     */
948 >    public boolean containsValue(Object value) {
949 >        if (value == null)
950 >            throw new NullPointerException();
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958 >            }
959 >        }
960 >        return false;
961 >    }
962 >
963 >    /**
964 >     * Maps the specified key to the specified value in this table.
965 >     * Neither the key nor the value can be null.
966 >     *
967 >     * <p>The value can be retrieved by calling the {@code get} method
968 >     * with a key that is equal to the original key.
969 >     *
970 >     * @param key key with which the specified value is to be associated
971 >     * @param value value to be associated with the specified key
972 >     * @return the previous value associated with {@code key}, or
973 >     *         {@code null} if there was no mapping for {@code key}
974 >     * @throws NullPointerException if the specified key or value is null
975 >     */
976 >    public V put(K key, V value) {
977 >        return putVal(key, value, false);
978 >    }
979 >
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null,
991 >                             new Node<K,V>(hash, key, value, null)))
992 >                    break;                   // no lock when adding to empty bin
993 >            }
994 >            else if ((fh = f.hash) == MOVED)
995 >                tab = helpTransfer(tab, f);
996 >            else {
997 >                V oldVal = null;
998 >                synchronized (f) {
999 >                    if (tabAt(tab, i) == f) {
1000 >                        if (fh >= 0) {
1001 >                            binCount = 1;
1002 >                            for (Node<K,V> e = f;; ++binCount) {
1003 >                                K ek;
1004 >                                if (e.hash == hash &&
1005 >                                    ((ek = e.key) == key ||
1006 >                                     (ek != null && key.equals(ek)))) {
1007 >                                    oldVal = e.val;
1008 >                                    if (!onlyIfAbsent)
1009 >                                        e.val = value;
1010 >                                    break;
1011 >                                }
1012 >                                Node<K,V> pred = e;
1013 >                                if ((e = e.next) == null) {
1014 >                                    pred.next = new Node<K,V>(hash, key,
1015 >                                                              value, null);
1016 >                                    break;
1017 >                                }
1018 >                            }
1019 >                        }
1020 >                        else if (f instanceof TreeBin) {
1021 >                            Node<K,V> p;
1022 >                            binCount = 2;
1023 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024 >                                                           value)) != null) {
1025 >                                oldVal = p.val;
1026 >                                if (!onlyIfAbsent)
1027 >                                    p.val = value;
1028 >                            }
1029 >                        }
1030 >                    }
1031 >                }
1032 >                if (binCount != 0) {
1033 >                    if (binCount >= TREEIFY_THRESHOLD)
1034 >                        treeifyBin(tab, i);
1035 >                    if (oldVal != null)
1036 >                        return oldVal;
1037 >                    break;
1038 >                }
1039 >            }
1040 >        }
1041 >        addCount(1L, binCount);
1042 >        return null;
1043 >    }
1044 >
1045 >    /**
1046 >     * Copies all of the mappings from the specified map to this one.
1047 >     * These mappings replace any mappings that this map had for any of the
1048 >     * keys currently in the specified map.
1049 >     *
1050 >     * @param m mappings to be stored in this map
1051 >     */
1052 >    public void putAll(Map<? extends K, ? extends V> m) {
1053 >        tryPresize(m.size());
1054 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1055 >            putVal(e.getKey(), e.getValue(), false);
1056 >    }
1057 >
1058 >    /**
1059 >     * Removes the key (and its corresponding value) from this map.
1060 >     * This method does nothing if the key is not in the map.
1061 >     *
1062 >     * @param  key the key that needs to be removed
1063 >     * @return the previous value associated with {@code key}, or
1064 >     *         {@code null} if there was no mapping for {@code key}
1065 >     * @throws NullPointerException if the specified key is null
1066 >     */
1067 >    public V remove(Object key) {
1068 >        return replaceNode(key, null, null);
1069 >    }
1070 >
1071 >    /**
1072 >     * Implementation for the four public remove/replace methods:
1073 >     * Replaces node value with v, conditional upon match of cv if
1074 >     * non-null.  If resulting value is null, delete.
1075 >     */
1076 >    final V replaceNode(Object key, V value, Object cv) {
1077 >        int hash = spread(key.hashCode());
1078 >        for (Node<K,V>[] tab = table;;) {
1079 >            Node<K,V> f; int n, i, fh;
1080 >            if (tab == null || (n = tab.length) == 0 ||
1081 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1082 >                break;
1083 >            else if ((fh = f.hash) == MOVED)
1084 >                tab = helpTransfer(tab, f);
1085 >            else {
1086 >                V oldVal = null;
1087 >                boolean validated = false;
1088 >                synchronized (f) {
1089 >                    if (tabAt(tab, i) == f) {
1090 >                        if (fh >= 0) {
1091 >                            validated = true;
1092 >                            for (Node<K,V> e = f, pred = null;;) {
1093 >                                K ek;
1094 >                                if (e.hash == hash &&
1095 >                                    ((ek = e.key) == key ||
1096 >                                     (ek != null && key.equals(ek)))) {
1097 >                                    V ev = e.val;
1098 >                                    if (cv == null || cv == ev ||
1099 >                                        (ev != null && cv.equals(ev))) {
1100 >                                        oldVal = ev;
1101 >                                        if (value != null)
1102 >                                            e.val = value;
1103 >                                        else if (pred != null)
1104 >                                            pred.next = e.next;
1105 >                                        else
1106 >                                            setTabAt(tab, i, e.next);
1107 >                                    }
1108 >                                    break;
1109 >                                }
1110 >                                pred = e;
1111 >                                if ((e = e.next) == null)
1112 >                                    break;
1113 >                            }
1114 >                        }
1115 >                        else if (f instanceof TreeBin) {
1116 >                            validated = true;
1117 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1118 >                            TreeNode<K,V> r, p;
1119 >                            if ((r = t.root) != null &&
1120 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1121 >                                V pv = p.val;
1122 >                                if (cv == null || cv == pv ||
1123 >                                    (pv != null && cv.equals(pv))) {
1124 >                                    oldVal = pv;
1125 >                                    if (value != null)
1126 >                                        p.val = value;
1127 >                                    else if (t.removeTreeNode(p))
1128 >                                        setTabAt(tab, i, untreeify(t.first));
1129 >                                }
1130 >                            }
1131 >                        }
1132 >                    }
1133 >                }
1134 >                if (validated) {
1135 >                    if (oldVal != null) {
1136 >                        if (value == null)
1137 >                            addCount(-1L, -1);
1138 >                        return oldVal;
1139 >                    }
1140 >                    break;
1141 >                }
1142 >            }
1143 >        }
1144 >        return null;
1145 >    }
1146 >
1147 >    /**
1148 >     * Removes all of the mappings from this map.
1149 >     */
1150 >    public void clear() {
1151 >        long delta = 0L; // negative number of deletions
1152 >        int i = 0;
1153 >        Node<K,V>[] tab = table;
1154 >        while (tab != null && i < tab.length) {
1155 >            int fh;
1156 >            Node<K,V> f = tabAt(tab, i);
1157 >            if (f == null)
1158 >                ++i;
1159 >            else if ((fh = f.hash) == MOVED) {
1160 >                tab = helpTransfer(tab, f);
1161 >                i = 0; // restart
1162 >            }
1163 >            else {
1164 >                synchronized (f) {
1165 >                    if (tabAt(tab, i) == f) {
1166 >                        Node<K,V> p = (fh >= 0 ? f :
1167 >                                       (f instanceof TreeBin) ?
1168 >                                       ((TreeBin<K,V>)f).first : null);
1169 >                        while (p != null) {
1170 >                            --delta;
1171 >                            p = p.next;
1172 >                        }
1173 >                        setTabAt(tab, i++, null);
1174 >                    }
1175 >                }
1176 >            }
1177 >        }
1178 >        if (delta != 0L)
1179 >            addCount(delta, -1);
1180 >    }
1181 >
1182 >    /**
1183 >     * Returns a {@link Set} view of the keys contained in this map.
1184 >     * The set is backed by the map, so changes to the map are
1185 >     * reflected in the set, and vice-versa. The set supports element
1186 >     * removal, which removes the corresponding mapping from this map,
1187 >     * via the {@code Iterator.remove}, {@code Set.remove},
1188 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1189 >     * operations.  It does not support the {@code add} or
1190 >     * {@code addAll} operations.
1191 >     *
1192 >     * <p>The view's iterators and spliterators are
1193 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1194 >     *
1195 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1196 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1197 >     *
1198 >     * @return the set view
1199 >     */
1200 >    public KeySetView<K,V> keySet() {
1201 >        KeySetView<K,V> ks;
1202 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1203 >    }
1204 >
1205 >    /**
1206 >     * Returns a {@link Collection} view of the values contained in this map.
1207 >     * The collection is backed by the map, so changes to the map are
1208 >     * reflected in the collection, and vice-versa.  The collection
1209 >     * supports element removal, which removes the corresponding
1210 >     * mapping from this map, via the {@code Iterator.remove},
1211 >     * {@code Collection.remove}, {@code removeAll},
1212 >     * {@code retainAll}, and {@code clear} operations.  It does not
1213 >     * support the {@code add} or {@code addAll} operations.
1214 >     *
1215 >     * <p>The view's iterators and spliterators are
1216 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1217 >     *
1218 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1219 >     * and {@link Spliterator#NONNULL}.
1220 >     *
1221 >     * @return the collection view
1222 >     */
1223 >    public Collection<V> values() {
1224 >        ValuesView<K,V> vs;
1225 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1226 >    }
1227 >
1228 >    /**
1229 >     * Returns a {@link Set} view of the mappings contained in this map.
1230 >     * The set is backed by the map, so changes to the map are
1231 >     * reflected in the set, and vice-versa.  The set supports element
1232 >     * removal, which removes the corresponding mapping from the map,
1233 >     * via the {@code Iterator.remove}, {@code Set.remove},
1234 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1235 >     * operations.
1236 >     *
1237 >     * <p>The view's iterators and spliterators are
1238 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1239 >     *
1240 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1241 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1242 >     *
1243 >     * @return the set view
1244 >     */
1245 >    public Set<Map.Entry<K,V>> entrySet() {
1246 >        EntrySetView<K,V> es;
1247 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1248 >    }
1249 >
1250 >    /**
1251 >     * Returns the hash code value for this {@link Map}, i.e.,
1252 >     * the sum of, for each key-value pair in the map,
1253 >     * {@code key.hashCode() ^ value.hashCode()}.
1254 >     *
1255 >     * @return the hash code value for this map
1256 >     */
1257 >    public int hashCode() {
1258 >        int h = 0;
1259 >        Node<K,V>[] t;
1260 >        if ((t = table) != null) {
1261 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1262 >            for (Node<K,V> p; (p = it.advance()) != null; )
1263 >                h += p.key.hashCode() ^ p.val.hashCode();
1264 >        }
1265          return h;
1266      }
1267  
1268      /**
1269 <     * Return the segment that should be used for key with given hash
1269 >     * Returns a string representation of this map.  The string
1270 >     * representation consists of a list of key-value mappings (in no
1271 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1272 >     * mappings are separated by the characters {@code ", "} (comma
1273 >     * and space).  Each key-value mapping is rendered as the key
1274 >     * followed by an equals sign ("{@code =}") followed by the
1275 >     * associated value.
1276 >     *
1277 >     * @return a string representation of this map
1278       */
1279 <    private Segment<K,V> segmentFor(int hash) {
1280 <        return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
1279 >    public String toString() {
1280 >        Node<K,V>[] t;
1281 >        int f = (t = table) == null ? 0 : t.length;
1282 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1283 >        StringBuilder sb = new StringBuilder();
1284 >        sb.append('{');
1285 >        Node<K,V> p;
1286 >        if ((p = it.advance()) != null) {
1287 >            for (;;) {
1288 >                K k = p.key;
1289 >                V v = p.val;
1290 >                sb.append(k == this ? "(this Map)" : k);
1291 >                sb.append('=');
1292 >                sb.append(v == this ? "(this Map)" : v);
1293 >                if ((p = it.advance()) == null)
1294 >                    break;
1295 >                sb.append(',').append(' ');
1296 >            }
1297 >        }
1298 >        return sb.append('}').toString();
1299      }
1300  
1301 <    /* ---------------- Inner Classes -------------- */
1301 >    /**
1302 >     * Compares the specified object with this map for equality.
1303 >     * Returns {@code true} if the given object is a map with the same
1304 >     * mappings as this map.  This operation may return misleading
1305 >     * results if either map is concurrently modified during execution
1306 >     * of this method.
1307 >     *
1308 >     * @param o object to be compared for equality with this map
1309 >     * @return {@code true} if the specified object is equal to this map
1310 >     */
1311 >    public boolean equals(Object o) {
1312 >        if (o != this) {
1313 >            if (!(o instanceof Map))
1314 >                return false;
1315 >            Map<?,?> m = (Map<?,?>) o;
1316 >            Node<K,V>[] t;
1317 >            int f = (t = table) == null ? 0 : t.length;
1318 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1320 >                V val = p.val;
1321 >                Object v = m.get(p.key);
1322 >                if (v == null || (v != val && !v.equals(val)))
1323 >                    return false;
1324 >            }
1325 >            for (Map.Entry<?,?> e : m.entrySet()) {
1326 >                Object mk, mv, v;
1327 >                if ((mk = e.getKey()) == null ||
1328 >                    (mv = e.getValue()) == null ||
1329 >                    (v = get(mk)) == null ||
1330 >                    (mv != v && !mv.equals(v)))
1331 >                    return false;
1332 >            }
1333 >        }
1334 >        return true;
1335 >    }
1336  
1337      /**
1338 <     * Segments are specialized versions of hash tables.  This
1339 <     * subclasses from ReentrantLock opportunistically, just to
1340 <     * simplify some locking and avoid separate construction.
1341 <     **/
1342 <    private static final class Segment<K,V> extends ReentrantLock implements Serializable {
1338 >     * Stripped-down version of helper class used in previous version,
1339 >     * declared for the sake of serialization compatibility
1340 >     */
1341 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1342 >        private static final long serialVersionUID = 2249069246763182397L;
1343 >        final float loadFactor;
1344 >        Segment(float lf) { this.loadFactor = lf; }
1345 >    }
1346 >
1347 >    /**
1348 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1349 >     * stream (i.e., serializes it).
1350 >     * @param s the stream
1351 >     * @throws java.io.IOException if an I/O error occurs
1352 >     * @serialData
1353 >     * the key (Object) and value (Object)
1354 >     * for each key-value mapping, followed by a null pair.
1355 >     * The key-value mappings are emitted in no particular order.
1356 >     */
1357 >    private void writeObject(java.io.ObjectOutputStream s)
1358 >        throws java.io.IOException {
1359 >        // For serialization compatibility
1360 >        // Emulate segment calculation from previous version of this class
1361 >        int sshift = 0;
1362 >        int ssize = 1;
1363 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1364 >            ++sshift;
1365 >            ssize <<= 1;
1366 >        }
1367 >        int segmentShift = 32 - sshift;
1368 >        int segmentMask = ssize - 1;
1369 >        @SuppressWarnings("unchecked")
1370 >        Segment<K,V>[] segments = (Segment<K,V>[])
1371 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1372 >        for (int i = 0; i < segments.length; ++i)
1373 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1374 >        s.putFields().put("segments", segments);
1375 >        s.putFields().put("segmentShift", segmentShift);
1376 >        s.putFields().put("segmentMask", segmentMask);
1377 >        s.writeFields();
1378 >
1379 >        Node<K,V>[] t;
1380 >        if ((t = table) != null) {
1381 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1382 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1383 >                s.writeObject(p.key);
1384 >                s.writeObject(p.val);
1385 >            }
1386 >        }
1387 >        s.writeObject(null);
1388 >        s.writeObject(null);
1389 >        segments = null; // throw away
1390 >    }
1391 >
1392 >    /**
1393 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1394 >     * @param s the stream
1395 >     * @throws ClassNotFoundException if the class of a serialized object
1396 >     *         could not be found
1397 >     * @throws java.io.IOException if an I/O error occurs
1398 >     */
1399 >    private void readObject(java.io.ObjectInputStream s)
1400 >        throws java.io.IOException, ClassNotFoundException {
1401          /*
1402 <         * Segments maintain a table of entry lists that are ALWAYS
1403 <         * kept in a consistent state, so can be read without locking.
1404 <         * Next fields of nodes are immutable (final).  All list
1405 <         * additions are performed at the front of each bin. This
1406 <         * makes it easy to check changes, and also fast to traverse.
152 <         * When nodes would otherwise be changed, new nodes are
153 <         * created to replace them. This works well for hash tables
154 <         * since the bin lists tend to be short. (The average length
155 <         * is less than two for the default load factor threshold.)
156 <         *
157 <         * Read operations can thus proceed without locking, but rely
158 <         * on a memory barrier to ensure that completed write
159 <         * operations performed by other threads are
160 <         * noticed. Conveniently, the "count" field, tracking the
161 <         * number of elements, can also serve as the volatile variable
162 <         * providing proper read/write barriers. This is convenient
163 <         * because this field needs to be read in many read operations
164 <         * anyway.
165 <         *
166 <         * Implementors note. The basic rules for all this are:
167 <         *
168 <         *   - All unsynchronized read operations must first read the
169 <         *     "count" field, and should not look at table entries if
170 <         *     it is 0.
171 <         *
172 <         *   - All synchronized write operations should write to
173 <         *     the "count" field after updating. The operations must not
174 <         *     take any action that could even momentarily cause
175 <         *     a concurrent read operation to see inconsistent
176 <         *     data. This is made easier by the nature of the read
177 <         *     operations in Map. For example, no operation
178 <         *     can reveal that the table has grown but the threshold
179 <         *     has not yet been updated, so there are no atomicity
180 <         *     requirements for this with respect to reads.
181 <         *
182 <         * As a guide, all critical volatile reads and writes are marked
183 <         * in code comments.
1402 >         * To improve performance in typical cases, we create nodes
1403 >         * while reading, then place in table once size is known.
1404 >         * However, we must also validate uniqueness and deal with
1405 >         * overpopulated bins while doing so, which requires
1406 >         * specialized versions of putVal mechanics.
1407           */
1408 +        sizeCtl = -1; // force exclusion for table construction
1409 +        s.defaultReadObject();
1410 +        long size = 0L;
1411 +        Node<K,V> p = null;
1412 +        for (;;) {
1413 +            @SuppressWarnings("unchecked")
1414 +            K k = (K) s.readObject();
1415 +            @SuppressWarnings("unchecked")
1416 +            V v = (V) s.readObject();
1417 +            if (k != null && v != null) {
1418 +                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1419 +                ++size;
1420 +            }
1421 +            else
1422 +                break;
1423 +        }
1424 +        if (size == 0L)
1425 +            sizeCtl = 0;
1426 +        else {
1427 +            int n;
1428 +            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1429 +                n = MAXIMUM_CAPACITY;
1430 +            else {
1431 +                int sz = (int)size;
1432 +                n = tableSizeFor(sz + (sz >>> 1) + 1);
1433 +            }
1434 +            @SuppressWarnings("unchecked")
1435 +            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1436 +            int mask = n - 1;
1437 +            long added = 0L;
1438 +            while (p != null) {
1439 +                boolean insertAtFront;
1440 +                Node<K,V> next = p.next, first;
1441 +                int h = p.hash, j = h & mask;
1442 +                if ((first = tabAt(tab, j)) == null)
1443 +                    insertAtFront = true;
1444 +                else {
1445 +                    K k = p.key;
1446 +                    if (first.hash < 0) {
1447 +                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1448 +                        if (t.putTreeVal(h, k, p.val) == null)
1449 +                            ++added;
1450 +                        insertAtFront = false;
1451 +                    }
1452 +                    else {
1453 +                        int binCount = 0;
1454 +                        insertAtFront = true;
1455 +                        Node<K,V> q; K qk;
1456 +                        for (q = first; q != null; q = q.next) {
1457 +                            if (q.hash == h &&
1458 +                                ((qk = q.key) == k ||
1459 +                                 (qk != null && k.equals(qk)))) {
1460 +                                insertAtFront = false;
1461 +                                break;
1462 +                            }
1463 +                            ++binCount;
1464 +                        }
1465 +                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1466 +                            insertAtFront = false;
1467 +                            ++added;
1468 +                            p.next = first;
1469 +                            TreeNode<K,V> hd = null, tl = null;
1470 +                            for (q = p; q != null; q = q.next) {
1471 +                                TreeNode<K,V> t = new TreeNode<K,V>
1472 +                                    (q.hash, q.key, q.val, null, null);
1473 +                                if ((t.prev = tl) == null)
1474 +                                    hd = t;
1475 +                                else
1476 +                                    tl.next = t;
1477 +                                tl = t;
1478 +                            }
1479 +                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1480 +                        }
1481 +                    }
1482 +                }
1483 +                if (insertAtFront) {
1484 +                    ++added;
1485 +                    p.next = first;
1486 +                    setTabAt(tab, j, p);
1487 +                }
1488 +                p = next;
1489 +            }
1490 +            table = tab;
1491 +            sizeCtl = n - (n >>> 2);
1492 +            baseCount = added;
1493 +        }
1494 +    }
1495  
1496 <        /**
1497 <         * The number of elements in this segment's region.
1498 <         **/
1499 <        transient volatile int count;
1496 >    // ConcurrentMap methods
1497 >
1498 >    /**
1499 >     * {@inheritDoc}
1500 >     *
1501 >     * @return the previous value associated with the specified key,
1502 >     *         or {@code null} if there was no mapping for the key
1503 >     * @throws NullPointerException if the specified key or value is null
1504 >     */
1505 >    public V putIfAbsent(K key, V value) {
1506 >        return putVal(key, value, true);
1507 >    }
1508 >
1509 >    /**
1510 >     * {@inheritDoc}
1511 >     *
1512 >     * @throws NullPointerException if the specified key is null
1513 >     */
1514 >    public boolean remove(Object key, Object value) {
1515 >        if (key == null)
1516 >            throw new NullPointerException();
1517 >        return value != null && replaceNode(key, null, value) != null;
1518 >    }
1519 >
1520 >    /**
1521 >     * {@inheritDoc}
1522 >     *
1523 >     * @throws NullPointerException if any of the arguments are null
1524 >     */
1525 >    public boolean replace(K key, V oldValue, V newValue) {
1526 >        if (key == null || oldValue == null || newValue == null)
1527 >            throw new NullPointerException();
1528 >        return replaceNode(key, newValue, oldValue) != null;
1529 >    }
1530 >
1531 >    /**
1532 >     * {@inheritDoc}
1533 >     *
1534 >     * @return the previous value associated with the specified key,
1535 >     *         or {@code null} if there was no mapping for the key
1536 >     * @throws NullPointerException if the specified key or value is null
1537 >     */
1538 >    public V replace(K key, V value) {
1539 >        if (key == null || value == null)
1540 >            throw new NullPointerException();
1541 >        return replaceNode(key, value, null);
1542 >    }
1543 >
1544 >    // Overrides of JDK8+ Map extension method defaults
1545 >
1546 >    /**
1547 >     * Returns the value to which the specified key is mapped, or the
1548 >     * given default value if this map contains no mapping for the
1549 >     * key.
1550 >     *
1551 >     * @param key the key whose associated value is to be returned
1552 >     * @param defaultValue the value to return if this map contains
1553 >     * no mapping for the given key
1554 >     * @return the mapping for the key, if present; else the default value
1555 >     * @throws NullPointerException if the specified key is null
1556 >     */
1557 >    public V getOrDefault(Object key, V defaultValue) {
1558 >        V v;
1559 >        return (v = get(key)) == null ? defaultValue : v;
1560 >    }
1561 >
1562 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1563 >        if (action == null) throw new NullPointerException();
1564 >        Node<K,V>[] t;
1565 >        if ((t = table) != null) {
1566 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1567 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1568 >                action.accept(p.key, p.val);
1569 >            }
1570 >        }
1571 >    }
1572 >
1573 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1574 >        if (function == null) throw new NullPointerException();
1575 >        Node<K,V>[] t;
1576 >        if ((t = table) != null) {
1577 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1579 >                V oldValue = p.val;
1580 >                for (K key = p.key;;) {
1581 >                    V newValue = function.apply(key, oldValue);
1582 >                    if (newValue == null)
1583 >                        throw new NullPointerException();
1584 >                    if (replaceNode(key, newValue, oldValue) != null ||
1585 >                        (oldValue = get(key)) == null)
1586 >                        break;
1587 >                }
1588 >            }
1589 >        }
1590 >    }
1591 >
1592 >    /**
1593 >     * If the specified key is not already associated with a value,
1594 >     * attempts to compute its value using the given mapping function
1595 >     * and enters it into this map unless {@code null}.  The entire
1596 >     * method invocation is performed atomically, so the function is
1597 >     * applied at most once per key.  Some attempted update operations
1598 >     * on this map by other threads may be blocked while computation
1599 >     * is in progress, so the computation should be short and simple,
1600 >     * and must not attempt to update any other mappings of this map.
1601 >     *
1602 >     * @param key key with which the specified value is to be associated
1603 >     * @param mappingFunction the function to compute a value
1604 >     * @return the current (existing or computed) value associated with
1605 >     *         the specified key, or null if the computed value is null
1606 >     * @throws NullPointerException if the specified key or mappingFunction
1607 >     *         is null
1608 >     * @throws IllegalStateException if the computation detectably
1609 >     *         attempts a recursive update to this map that would
1610 >     *         otherwise never complete
1611 >     * @throws RuntimeException or Error if the mappingFunction does so,
1612 >     *         in which case the mapping is left unestablished
1613 >     */
1614 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1615 >        if (key == null || mappingFunction == null)
1616 >            throw new NullPointerException();
1617 >        int h = spread(key.hashCode());
1618 >        V val = null;
1619 >        int binCount = 0;
1620 >        for (Node<K,V>[] tab = table;;) {
1621 >            Node<K,V> f; int n, i, fh;
1622 >            if (tab == null || (n = tab.length) == 0)
1623 >                tab = initTable();
1624 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1625 >                Node<K,V> r = new ReservationNode<K,V>();
1626 >                synchronized (r) {
1627 >                    if (casTabAt(tab, i, null, r)) {
1628 >                        binCount = 1;
1629 >                        Node<K,V> node = null;
1630 >                        try {
1631 >                            if ((val = mappingFunction.apply(key)) != null)
1632 >                                node = new Node<K,V>(h, key, val, null);
1633 >                        } finally {
1634 >                            setTabAt(tab, i, node);
1635 >                        }
1636 >                    }
1637 >                }
1638 >                if (binCount != 0)
1639 >                    break;
1640 >            }
1641 >            else if ((fh = f.hash) == MOVED)
1642 >                tab = helpTransfer(tab, f);
1643 >            else {
1644 >                boolean added = false;
1645 >                synchronized (f) {
1646 >                    if (tabAt(tab, i) == f) {
1647 >                        if (fh >= 0) {
1648 >                            binCount = 1;
1649 >                            for (Node<K,V> e = f;; ++binCount) {
1650 >                                K ek; V ev;
1651 >                                if (e.hash == h &&
1652 >                                    ((ek = e.key) == key ||
1653 >                                     (ek != null && key.equals(ek)))) {
1654 >                                    val = e.val;
1655 >                                    break;
1656 >                                }
1657 >                                Node<K,V> pred = e;
1658 >                                if ((e = e.next) == null) {
1659 >                                    if ((val = mappingFunction.apply(key)) != null) {
1660 >                                        added = true;
1661 >                                        pred.next = new Node<K,V>(h, key, val, null);
1662 >                                    }
1663 >                                    break;
1664 >                                }
1665 >                            }
1666 >                        }
1667 >                        else if (f instanceof TreeBin) {
1668 >                            binCount = 2;
1669 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1670 >                            TreeNode<K,V> r, p;
1671 >                            if ((r = t.root) != null &&
1672 >                                (p = r.findTreeNode(h, key, null)) != null)
1673 >                                val = p.val;
1674 >                            else if ((val = mappingFunction.apply(key)) != null) {
1675 >                                added = true;
1676 >                                t.putTreeVal(h, key, val);
1677 >                            }
1678 >                        }
1679 >                    }
1680 >                }
1681 >                if (binCount != 0) {
1682 >                    if (binCount >= TREEIFY_THRESHOLD)
1683 >                        treeifyBin(tab, i);
1684 >                    if (!added)
1685 >                        return val;
1686 >                    break;
1687 >                }
1688 >            }
1689 >        }
1690 >        if (val != null)
1691 >            addCount(1L, binCount);
1692 >        return val;
1693 >    }
1694 >
1695 >    /**
1696 >     * If the value for the specified key is present, attempts to
1697 >     * compute a new mapping given the key and its current mapped
1698 >     * value.  The entire method invocation is performed atomically.
1699 >     * Some attempted update operations on this map by other threads
1700 >     * may be blocked while computation is in progress, so the
1701 >     * computation should be short and simple, and must not attempt to
1702 >     * update any other mappings of this map.
1703 >     *
1704 >     * @param key key with which a value may be associated
1705 >     * @param remappingFunction the function to compute a value
1706 >     * @return the new value associated with the specified key, or null if none
1707 >     * @throws NullPointerException if the specified key or remappingFunction
1708 >     *         is null
1709 >     * @throws IllegalStateException if the computation detectably
1710 >     *         attempts a recursive update to this map that would
1711 >     *         otherwise never complete
1712 >     * @throws RuntimeException or Error if the remappingFunction does so,
1713 >     *         in which case the mapping is unchanged
1714 >     */
1715 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1716 >        if (key == null || remappingFunction == null)
1717 >            throw new NullPointerException();
1718 >        int h = spread(key.hashCode());
1719 >        V val = null;
1720 >        int delta = 0;
1721 >        int binCount = 0;
1722 >        for (Node<K,V>[] tab = table;;) {
1723 >            Node<K,V> f; int n, i, fh;
1724 >            if (tab == null || (n = tab.length) == 0)
1725 >                tab = initTable();
1726 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1727 >                break;
1728 >            else if ((fh = f.hash) == MOVED)
1729 >                tab = helpTransfer(tab, f);
1730 >            else {
1731 >                synchronized (f) {
1732 >                    if (tabAt(tab, i) == f) {
1733 >                        if (fh >= 0) {
1734 >                            binCount = 1;
1735 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1736 >                                K ek;
1737 >                                if (e.hash == h &&
1738 >                                    ((ek = e.key) == key ||
1739 >                                     (ek != null && key.equals(ek)))) {
1740 >                                    val = remappingFunction.apply(key, e.val);
1741 >                                    if (val != null)
1742 >                                        e.val = val;
1743 >                                    else {
1744 >                                        delta = -1;
1745 >                                        Node<K,V> en = e.next;
1746 >                                        if (pred != null)
1747 >                                            pred.next = en;
1748 >                                        else
1749 >                                            setTabAt(tab, i, en);
1750 >                                    }
1751 >                                    break;
1752 >                                }
1753 >                                pred = e;
1754 >                                if ((e = e.next) == null)
1755 >                                    break;
1756 >                            }
1757 >                        }
1758 >                        else if (f instanceof TreeBin) {
1759 >                            binCount = 2;
1760 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1761 >                            TreeNode<K,V> r, p;
1762 >                            if ((r = t.root) != null &&
1763 >                                (p = r.findTreeNode(h, key, null)) != null) {
1764 >                                val = remappingFunction.apply(key, p.val);
1765 >                                if (val != null)
1766 >                                    p.val = val;
1767 >                                else {
1768 >                                    delta = -1;
1769 >                                    if (t.removeTreeNode(p))
1770 >                                        setTabAt(tab, i, untreeify(t.first));
1771 >                                }
1772 >                            }
1773 >                        }
1774 >                    }
1775 >                }
1776 >                if (binCount != 0)
1777 >                    break;
1778 >            }
1779 >        }
1780 >        if (delta != 0)
1781 >            addCount((long)delta, binCount);
1782 >        return val;
1783 >    }
1784 >
1785 >    /**
1786 >     * Attempts to compute a mapping for the specified key and its
1787 >     * current mapped value (or {@code null} if there is no current
1788 >     * mapping). The entire method invocation is performed atomically.
1789 >     * Some attempted update operations on this map by other threads
1790 >     * may be blocked while computation is in progress, so the
1791 >     * computation should be short and simple, and must not attempt to
1792 >     * update any other mappings of this Map.
1793 >     *
1794 >     * @param key key with which the specified value is to be associated
1795 >     * @param remappingFunction the function to compute a value
1796 >     * @return the new value associated with the specified key, or null if none
1797 >     * @throws NullPointerException if the specified key or remappingFunction
1798 >     *         is null
1799 >     * @throws IllegalStateException if the computation detectably
1800 >     *         attempts a recursive update to this map that would
1801 >     *         otherwise never complete
1802 >     * @throws RuntimeException or Error if the remappingFunction does so,
1803 >     *         in which case the mapping is unchanged
1804 >     */
1805 >    public V compute(K key,
1806 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1807 >        if (key == null || remappingFunction == null)
1808 >            throw new NullPointerException();
1809 >        int h = spread(key.hashCode());
1810 >        V val = null;
1811 >        int delta = 0;
1812 >        int binCount = 0;
1813 >        for (Node<K,V>[] tab = table;;) {
1814 >            Node<K,V> f; int n, i, fh;
1815 >            if (tab == null || (n = tab.length) == 0)
1816 >                tab = initTable();
1817 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1818 >                Node<K,V> r = new ReservationNode<K,V>();
1819 >                synchronized (r) {
1820 >                    if (casTabAt(tab, i, null, r)) {
1821 >                        binCount = 1;
1822 >                        Node<K,V> node = null;
1823 >                        try {
1824 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1825 >                                delta = 1;
1826 >                                node = new Node<K,V>(h, key, val, null);
1827 >                            }
1828 >                        } finally {
1829 >                            setTabAt(tab, i, node);
1830 >                        }
1831 >                    }
1832 >                }
1833 >                if (binCount != 0)
1834 >                    break;
1835 >            }
1836 >            else if ((fh = f.hash) == MOVED)
1837 >                tab = helpTransfer(tab, f);
1838 >            else {
1839 >                synchronized (f) {
1840 >                    if (tabAt(tab, i) == f) {
1841 >                        if (fh >= 0) {
1842 >                            binCount = 1;
1843 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1844 >                                K ek;
1845 >                                if (e.hash == h &&
1846 >                                    ((ek = e.key) == key ||
1847 >                                     (ek != null && key.equals(ek)))) {
1848 >                                    val = remappingFunction.apply(key, e.val);
1849 >                                    if (val != null)
1850 >                                        e.val = val;
1851 >                                    else {
1852 >                                        delta = -1;
1853 >                                        Node<K,V> en = e.next;
1854 >                                        if (pred != null)
1855 >                                            pred.next = en;
1856 >                                        else
1857 >                                            setTabAt(tab, i, en);
1858 >                                    }
1859 >                                    break;
1860 >                                }
1861 >                                pred = e;
1862 >                                if ((e = e.next) == null) {
1863 >                                    val = remappingFunction.apply(key, null);
1864 >                                    if (val != null) {
1865 >                                        delta = 1;
1866 >                                        pred.next =
1867 >                                            new Node<K,V>(h, key, val, null);
1868 >                                    }
1869 >                                    break;
1870 >                                }
1871 >                            }
1872 >                        }
1873 >                        else if (f instanceof TreeBin) {
1874 >                            binCount = 1;
1875 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1876 >                            TreeNode<K,V> r, p;
1877 >                            if ((r = t.root) != null)
1878 >                                p = r.findTreeNode(h, key, null);
1879 >                            else
1880 >                                p = null;
1881 >                            V pv = (p == null) ? null : p.val;
1882 >                            val = remappingFunction.apply(key, pv);
1883 >                            if (val != null) {
1884 >                                if (p != null)
1885 >                                    p.val = val;
1886 >                                else {
1887 >                                    delta = 1;
1888 >                                    t.putTreeVal(h, key, val);
1889 >                                }
1890 >                            }
1891 >                            else if (p != null) {
1892 >                                delta = -1;
1893 >                                if (t.removeTreeNode(p))
1894 >                                    setTabAt(tab, i, untreeify(t.first));
1895 >                            }
1896 >                        }
1897 >                    }
1898 >                }
1899 >                if (binCount != 0) {
1900 >                    if (binCount >= TREEIFY_THRESHOLD)
1901 >                        treeifyBin(tab, i);
1902 >                    break;
1903 >                }
1904 >            }
1905 >        }
1906 >        if (delta != 0)
1907 >            addCount((long)delta, binCount);
1908 >        return val;
1909 >    }
1910 >
1911 >    /**
1912 >     * If the specified key is not already associated with a
1913 >     * (non-null) value, associates it with the given value.
1914 >     * Otherwise, replaces the value with the results of the given
1915 >     * remapping function, or removes if {@code null}. The entire
1916 >     * method invocation is performed atomically.  Some attempted
1917 >     * update operations on this map by other threads may be blocked
1918 >     * while computation is in progress, so the computation should be
1919 >     * short and simple, and must not attempt to update any other
1920 >     * mappings of this Map.
1921 >     *
1922 >     * @param key key with which the specified value is to be associated
1923 >     * @param value the value to use if absent
1924 >     * @param remappingFunction the function to recompute a value if present
1925 >     * @return the new value associated with the specified key, or null if none
1926 >     * @throws NullPointerException if the specified key or the
1927 >     *         remappingFunction is null
1928 >     * @throws RuntimeException or Error if the remappingFunction does so,
1929 >     *         in which case the mapping is unchanged
1930 >     */
1931 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1932 >        if (key == null || value == null || remappingFunction == null)
1933 >            throw new NullPointerException();
1934 >        int h = spread(key.hashCode());
1935 >        V val = null;
1936 >        int delta = 0;
1937 >        int binCount = 0;
1938 >        for (Node<K,V>[] tab = table;;) {
1939 >            Node<K,V> f; int n, i, fh;
1940 >            if (tab == null || (n = tab.length) == 0)
1941 >                tab = initTable();
1942 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1943 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1944 >                    delta = 1;
1945 >                    val = value;
1946 >                    break;
1947 >                }
1948 >            }
1949 >            else if ((fh = f.hash) == MOVED)
1950 >                tab = helpTransfer(tab, f);
1951 >            else {
1952 >                synchronized (f) {
1953 >                    if (tabAt(tab, i) == f) {
1954 >                        if (fh >= 0) {
1955 >                            binCount = 1;
1956 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1957 >                                K ek;
1958 >                                if (e.hash == h &&
1959 >                                    ((ek = e.key) == key ||
1960 >                                     (ek != null && key.equals(ek)))) {
1961 >                                    val = remappingFunction.apply(e.val, value);
1962 >                                    if (val != null)
1963 >                                        e.val = val;
1964 >                                    else {
1965 >                                        delta = -1;
1966 >                                        Node<K,V> en = e.next;
1967 >                                        if (pred != null)
1968 >                                            pred.next = en;
1969 >                                        else
1970 >                                            setTabAt(tab, i, en);
1971 >                                    }
1972 >                                    break;
1973 >                                }
1974 >                                pred = e;
1975 >                                if ((e = e.next) == null) {
1976 >                                    delta = 1;
1977 >                                    val = value;
1978 >                                    pred.next =
1979 >                                        new Node<K,V>(h, key, val, null);
1980 >                                    break;
1981 >                                }
1982 >                            }
1983 >                        }
1984 >                        else if (f instanceof TreeBin) {
1985 >                            binCount = 2;
1986 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1987 >                            TreeNode<K,V> r = t.root;
1988 >                            TreeNode<K,V> p = (r == null) ? null :
1989 >                                r.findTreeNode(h, key, null);
1990 >                            val = (p == null) ? value :
1991 >                                remappingFunction.apply(p.val, value);
1992 >                            if (val != null) {
1993 >                                if (p != null)
1994 >                                    p.val = val;
1995 >                                else {
1996 >                                    delta = 1;
1997 >                                    t.putTreeVal(h, key, val);
1998 >                                }
1999 >                            }
2000 >                            else if (p != null) {
2001 >                                delta = -1;
2002 >                                if (t.removeTreeNode(p))
2003 >                                    setTabAt(tab, i, untreeify(t.first));
2004 >                            }
2005 >                        }
2006 >                    }
2007 >                }
2008 >                if (binCount != 0) {
2009 >                    if (binCount >= TREEIFY_THRESHOLD)
2010 >                        treeifyBin(tab, i);
2011 >                    break;
2012 >                }
2013 >            }
2014 >        }
2015 >        if (delta != 0)
2016 >            addCount((long)delta, binCount);
2017 >        return val;
2018 >    }
2019 >
2020 >    // Hashtable legacy methods
2021 >
2022 >    /**
2023 >     * Legacy method testing if some key maps into the specified value
2024 >     * in this table.
2025 >     *
2026 >     * @deprecated This method is identical in functionality to
2027 >     * {@link #containsValue(Object)}, and exists solely to ensure
2028 >     * full compatibility with class {@link java.util.Hashtable},
2029 >     * which supported this method prior to introduction of the
2030 >     * Java Collections framework.
2031 >     *
2032 >     * @param  value a value to search for
2033 >     * @return {@code true} if and only if some key maps to the
2034 >     *         {@code value} argument in this table as
2035 >     *         determined by the {@code equals} method;
2036 >     *         {@code false} otherwise
2037 >     * @throws NullPointerException if the specified value is null
2038 >     */
2039 >    @Deprecated
2040 >    public boolean contains(Object value) {
2041 >        return containsValue(value);
2042 >    }
2043 >
2044 >    /**
2045 >     * Returns an enumeration of the keys in this table.
2046 >     *
2047 >     * @return an enumeration of the keys in this table
2048 >     * @see #keySet()
2049 >     */
2050 >    public Enumeration<K> keys() {
2051 >        Node<K,V>[] t;
2052 >        int f = (t = table) == null ? 0 : t.length;
2053 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2054 >    }
2055 >
2056 >    /**
2057 >     * Returns an enumeration of the values in this table.
2058 >     *
2059 >     * @return an enumeration of the values in this table
2060 >     * @see #values()
2061 >     */
2062 >    public Enumeration<V> elements() {
2063 >        Node<K,V>[] t;
2064 >        int f = (t = table) == null ? 0 : t.length;
2065 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2066 >    }
2067 >
2068 >    // ConcurrentHashMap-only methods
2069 >
2070 >    /**
2071 >     * Returns the number of mappings. This method should be used
2072 >     * instead of {@link #size} because a ConcurrentHashMap may
2073 >     * contain more mappings than can be represented as an int. The
2074 >     * value returned is an estimate; the actual count may differ if
2075 >     * there are concurrent insertions or removals.
2076 >     *
2077 >     * @return the number of mappings
2078 >     * @since 1.8
2079 >     */
2080 >    public long mappingCount() {
2081 >        long n = sumCount();
2082 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2083 >    }
2084 >
2085 >    /**
2086 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2087 >     * from the given type to {@code Boolean.TRUE}.
2088 >     *
2089 >     * @param <K> the element type of the returned set
2090 >     * @return the new set
2091 >     * @since 1.8
2092 >     */
2093 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2094 >        return new KeySetView<K,Boolean>
2095 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2096 >    }
2097 >
2098 >    /**
2099 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2100 >     * from the given type to {@code Boolean.TRUE}.
2101 >     *
2102 >     * @param initialCapacity The implementation performs internal
2103 >     * sizing to accommodate this many elements.
2104 >     * @param <K> the element type of the returned set
2105 >     * @return the new set
2106 >     * @throws IllegalArgumentException if the initial capacity of
2107 >     * elements is negative
2108 >     * @since 1.8
2109 >     */
2110 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2111 >        return new KeySetView<K,Boolean>
2112 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2113 >    }
2114 >
2115 >    /**
2116 >     * Returns a {@link Set} view of the keys in this map, using the
2117 >     * given common mapped value for any additions (i.e., {@link
2118 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2119 >     * This is of course only appropriate if it is acceptable to use
2120 >     * the same value for all additions from this view.
2121 >     *
2122 >     * @param mappedValue the mapped value to use for any additions
2123 >     * @return the set view
2124 >     * @throws NullPointerException if the mappedValue is null
2125 >     */
2126 >    public KeySetView<K,V> keySet(V mappedValue) {
2127 >        if (mappedValue == null)
2128 >            throw new NullPointerException();
2129 >        return new KeySetView<K,V>(this, mappedValue);
2130 >    }
2131 >
2132 >    /* ---------------- Special Nodes -------------- */
2133 >
2134 >    /**
2135 >     * A node inserted at head of bins during transfer operations.
2136 >     */
2137 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2138 >        final Node<K,V>[] nextTable;
2139 >        ForwardingNode(Node<K,V>[] tab) {
2140 >            super(MOVED, null, null, null);
2141 >            this.nextTable = tab;
2142 >        }
2143 >
2144 >        Node<K,V> find(int h, Object k) {
2145 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2146 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2147 >                Node<K,V> e; int n;
2148 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2149 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2150 >                    return null;
2151 >                for (;;) {
2152 >                    int eh; K ek;
2153 >                    if ((eh = e.hash) == h &&
2154 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2155 >                        return e;
2156 >                    if (eh < 0) {
2157 >                        if (e instanceof ForwardingNode) {
2158 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2159 >                            continue outer;
2160 >                        }
2161 >                        else
2162 >                            return e.find(h, k);
2163 >                    }
2164 >                    if ((e = e.next) == null)
2165 >                        return null;
2166 >                }
2167 >            }
2168 >        }
2169 >    }
2170 >
2171 >    /**
2172 >     * A place-holder node used in computeIfAbsent and compute
2173 >     */
2174 >    static final class ReservationNode<K,V> extends Node<K,V> {
2175 >        ReservationNode() {
2176 >            super(RESERVED, null, null, null);
2177 >        }
2178 >
2179 >        Node<K,V> find(int h, Object k) {
2180 >            return null;
2181 >        }
2182 >    }
2183 >
2184 >    /* ---------------- Table Initialization and Resizing -------------- */
2185 >
2186 >    /**
2187 >     * Returns the stamp bits for resizing a table of size n.
2188 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2189 >     */
2190 >    static final int resizeStamp(int n) {
2191 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2192 >    }
2193 >
2194 >    /**
2195 >     * Initializes table, using the size recorded in sizeCtl.
2196 >     */
2197 >    private final Node<K,V>[] initTable() {
2198 >        Node<K,V>[] tab; int sc;
2199 >        while ((tab = table) == null || tab.length == 0) {
2200 >            if ((sc = sizeCtl) < 0)
2201 >                Thread.yield(); // lost initialization race; just spin
2202 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2203 >                try {
2204 >                    if ((tab = table) == null || tab.length == 0) {
2205 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2206 >                        @SuppressWarnings("unchecked")
2207 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2208 >                        table = tab = nt;
2209 >                        sc = n - (n >>> 2);
2210 >                    }
2211 >                } finally {
2212 >                    sizeCtl = sc;
2213 >                }
2214 >                break;
2215 >            }
2216 >        }
2217 >        return tab;
2218 >    }
2219 >
2220 >    /**
2221 >     * Adds to count, and if table is too small and not already
2222 >     * resizing, initiates transfer. If already resizing, helps
2223 >     * perform transfer if work is available.  Rechecks occupancy
2224 >     * after a transfer to see if another resize is already needed
2225 >     * because resizings are lagging additions.
2226 >     *
2227 >     * @param x the count to add
2228 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2229 >     */
2230 >    private final void addCount(long x, int check) {
2231 >        CounterCell[] as; long b, s;
2232 >        if ((as = counterCells) != null ||
2233 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2234 >            CounterCell a; long v; int m;
2235 >            boolean uncontended = true;
2236 >            if (as == null || (m = as.length - 1) < 0 ||
2237 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2238 >                !(uncontended =
2239 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2240 >                fullAddCount(x, uncontended);
2241 >                return;
2242 >            }
2243 >            if (check <= 1)
2244 >                return;
2245 >            s = sumCount();
2246 >        }
2247 >        if (check >= 0) {
2248 >            Node<K,V>[] tab, nt; int n, sc;
2249 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2250 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2251 >                int rs = resizeStamp(n);
2252 >                if (sc < 0) {
2253 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2254 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2255 >                        transferIndex <= 0)
2256 >                        break;
2257 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2258 >                        transfer(tab, nt);
2259 >                }
2260 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2261 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2262 >                    transfer(tab, null);
2263 >                s = sumCount();
2264 >            }
2265 >        }
2266 >    }
2267 >
2268 >    /**
2269 >     * Helps transfer if a resize is in progress.
2270 >     */
2271 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2272 >        Node<K,V>[] nextTab; int sc;
2273 >        if (tab != null && (f instanceof ForwardingNode) &&
2274 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2275 >            int rs = resizeStamp(tab.length);
2276 >            while (nextTab == nextTable && table == tab &&
2277 >                   (sc = sizeCtl) < 0) {
2278 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2279 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2280 >                    break;
2281 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2282 >                    transfer(tab, nextTab);
2283 >                    break;
2284 >                }
2285 >            }
2286 >            return nextTab;
2287 >        }
2288 >        return table;
2289 >    }
2290 >
2291 >    /**
2292 >     * Tries to presize table to accommodate the given number of elements.
2293 >     *
2294 >     * @param size number of elements (doesn't need to be perfectly accurate)
2295 >     */
2296 >    private final void tryPresize(int size) {
2297 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2298 >            tableSizeFor(size + (size >>> 1) + 1);
2299 >        int sc;
2300 >        while ((sc = sizeCtl) >= 0) {
2301 >            Node<K,V>[] tab = table; int n;
2302 >            if (tab == null || (n = tab.length) == 0) {
2303 >                n = (sc > c) ? sc : c;
2304 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2305 >                    try {
2306 >                        if (table == tab) {
2307 >                            @SuppressWarnings("unchecked")
2308 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2309 >                            table = nt;
2310 >                            sc = n - (n >>> 2);
2311 >                        }
2312 >                    } finally {
2313 >                        sizeCtl = sc;
2314 >                    }
2315 >                }
2316 >            }
2317 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2318 >                break;
2319 >            else if (tab == table) {
2320 >                int rs = resizeStamp(n);
2321 >                if (sc < 0) {
2322 >                    Node<K,V>[] nt;
2323 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2324 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2325 >                        transferIndex <= 0)
2326 >                        break;
2327 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2328 >                        transfer(tab, nt);
2329 >                }
2330 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2331 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2332 >                    transfer(tab, null);
2333 >            }
2334 >        }
2335 >    }
2336 >
2337 >    /**
2338 >     * Moves and/or copies the nodes in each bin to new table. See
2339 >     * above for explanation.
2340 >     */
2341 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2342 >        int n = tab.length, stride;
2343 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2344 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2345 >        if (nextTab == null) {            // initiating
2346 >            try {
2347 >                @SuppressWarnings("unchecked")
2348 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2349 >                nextTab = nt;
2350 >            } catch (Throwable ex) {      // try to cope with OOME
2351 >                sizeCtl = Integer.MAX_VALUE;
2352 >                return;
2353 >            }
2354 >            nextTable = nextTab;
2355 >            transferIndex = n;
2356 >        }
2357 >        int nextn = nextTab.length;
2358 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2359 >        boolean advance = true;
2360 >        boolean finishing = false; // to ensure sweep before committing nextTab
2361 >        for (int i = 0, bound = 0;;) {
2362 >            Node<K,V> f; int fh;
2363 >            while (advance) {
2364 >                int nextIndex, nextBound;
2365 >                if (--i >= bound || finishing)
2366 >                    advance = false;
2367 >                else if ((nextIndex = transferIndex) <= 0) {
2368 >                    i = -1;
2369 >                    advance = false;
2370 >                }
2371 >                else if (U.compareAndSwapInt
2372 >                         (this, TRANSFERINDEX, nextIndex,
2373 >                          nextBound = (nextIndex > stride ?
2374 >                                       nextIndex - stride : 0))) {
2375 >                    bound = nextBound;
2376 >                    i = nextIndex - 1;
2377 >                    advance = false;
2378 >                }
2379 >            }
2380 >            if (i < 0 || i >= n || i + n >= nextn) {
2381 >                int sc;
2382 >                if (finishing) {
2383 >                    nextTable = null;
2384 >                    table = nextTab;
2385 >                    sizeCtl = (n << 1) - (n >>> 1);
2386 >                    return;
2387 >                }
2388 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2389 >                    if ((sc - 2) != resizeStamp(n))
2390 >                        return;
2391 >                    finishing = advance = true;
2392 >                    i = n; // recheck before commit
2393 >                }
2394 >            }
2395 >            else if ((f = tabAt(tab, i)) == null)
2396 >                advance = casTabAt(tab, i, null, fwd);
2397 >            else if ((fh = f.hash) == MOVED)
2398 >                advance = true; // already processed
2399 >            else {
2400 >                synchronized (f) {
2401 >                    if (tabAt(tab, i) == f) {
2402 >                        Node<K,V> ln, hn;
2403 >                        if (fh >= 0) {
2404 >                            int runBit = fh & n;
2405 >                            Node<K,V> lastRun = f;
2406 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2407 >                                int b = p.hash & n;
2408 >                                if (b != runBit) {
2409 >                                    runBit = b;
2410 >                                    lastRun = p;
2411 >                                }
2412 >                            }
2413 >                            if (runBit == 0) {
2414 >                                ln = lastRun;
2415 >                                hn = null;
2416 >                            }
2417 >                            else {
2418 >                                hn = lastRun;
2419 >                                ln = null;
2420 >                            }
2421 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2422 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2423 >                                if ((ph & n) == 0)
2424 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2425 >                                else
2426 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2427 >                            }
2428 >                            setTabAt(nextTab, i, ln);
2429 >                            setTabAt(nextTab, i + n, hn);
2430 >                            setTabAt(tab, i, fwd);
2431 >                            advance = true;
2432 >                        }
2433 >                        else if (f instanceof TreeBin) {
2434 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2435 >                            TreeNode<K,V> lo = null, loTail = null;
2436 >                            TreeNode<K,V> hi = null, hiTail = null;
2437 >                            int lc = 0, hc = 0;
2438 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2439 >                                int h = e.hash;
2440 >                                TreeNode<K,V> p = new TreeNode<K,V>
2441 >                                    (h, e.key, e.val, null, null);
2442 >                                if ((h & n) == 0) {
2443 >                                    if ((p.prev = loTail) == null)
2444 >                                        lo = p;
2445 >                                    else
2446 >                                        loTail.next = p;
2447 >                                    loTail = p;
2448 >                                    ++lc;
2449 >                                }
2450 >                                else {
2451 >                                    if ((p.prev = hiTail) == null)
2452 >                                        hi = p;
2453 >                                    else
2454 >                                        hiTail.next = p;
2455 >                                    hiTail = p;
2456 >                                    ++hc;
2457 >                                }
2458 >                            }
2459 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2460 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2461 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2462 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2463 >                            setTabAt(nextTab, i, ln);
2464 >                            setTabAt(nextTab, i + n, hn);
2465 >                            setTabAt(tab, i, fwd);
2466 >                            advance = true;
2467 >                        }
2468 >                    }
2469 >                }
2470 >            }
2471 >        }
2472 >    }
2473 >
2474 >    /* ---------------- Counter support -------------- */
2475 >
2476 >    /**
2477 >     * A padded cell for distributing counts.  Adapted from LongAdder
2478 >     * and Striped64.  See their internal docs for explanation.
2479 >     */
2480 >    @sun.misc.Contended static final class CounterCell {
2481 >        volatile long value;
2482 >        CounterCell(long x) { value = x; }
2483 >    }
2484 >
2485 >    final long sumCount() {
2486 >        CounterCell[] as = counterCells; CounterCell a;
2487 >        long sum = baseCount;
2488 >        if (as != null) {
2489 >            for (int i = 0; i < as.length; ++i) {
2490 >                if ((a = as[i]) != null)
2491 >                    sum += a.value;
2492 >            }
2493 >        }
2494 >        return sum;
2495 >    }
2496 >
2497 >    // See LongAdder version for explanation
2498 >    private final void fullAddCount(long x, boolean wasUncontended) {
2499 >        int h;
2500 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2501 >            ThreadLocalRandom.localInit();      // force initialization
2502 >            h = ThreadLocalRandom.getProbe();
2503 >            wasUncontended = true;
2504 >        }
2505 >        boolean collide = false;                // True if last slot nonempty
2506 >        for (;;) {
2507 >            CounterCell[] as; CounterCell a; int n; long v;
2508 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2509 >                if ((a = as[(n - 1) & h]) == null) {
2510 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2511 >                        CounterCell r = new CounterCell(x); // Optimistic create
2512 >                        if (cellsBusy == 0 &&
2513 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2514 >                            boolean created = false;
2515 >                            try {               // Recheck under lock
2516 >                                CounterCell[] rs; int m, j;
2517 >                                if ((rs = counterCells) != null &&
2518 >                                    (m = rs.length) > 0 &&
2519 >                                    rs[j = (m - 1) & h] == null) {
2520 >                                    rs[j] = r;
2521 >                                    created = true;
2522 >                                }
2523 >                            } finally {
2524 >                                cellsBusy = 0;
2525 >                            }
2526 >                            if (created)
2527 >                                break;
2528 >                            continue;           // Slot is now non-empty
2529 >                        }
2530 >                    }
2531 >                    collide = false;
2532 >                }
2533 >                else if (!wasUncontended)       // CAS already known to fail
2534 >                    wasUncontended = true;      // Continue after rehash
2535 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2536 >                    break;
2537 >                else if (counterCells != as || n >= NCPU)
2538 >                    collide = false;            // At max size or stale
2539 >                else if (!collide)
2540 >                    collide = true;
2541 >                else if (cellsBusy == 0 &&
2542 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2543 >                    try {
2544 >                        if (counterCells == as) {// Expand table unless stale
2545 >                            CounterCell[] rs = new CounterCell[n << 1];
2546 >                            for (int i = 0; i < n; ++i)
2547 >                                rs[i] = as[i];
2548 >                            counterCells = rs;
2549 >                        }
2550 >                    } finally {
2551 >                        cellsBusy = 0;
2552 >                    }
2553 >                    collide = false;
2554 >                    continue;                   // Retry with expanded table
2555 >                }
2556 >                h = ThreadLocalRandom.advanceProbe(h);
2557 >            }
2558 >            else if (cellsBusy == 0 && counterCells == as &&
2559 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2560 >                boolean init = false;
2561 >                try {                           // Initialize table
2562 >                    if (counterCells == as) {
2563 >                        CounterCell[] rs = new CounterCell[2];
2564 >                        rs[h & 1] = new CounterCell(x);
2565 >                        counterCells = rs;
2566 >                        init = true;
2567 >                    }
2568 >                } finally {
2569 >                    cellsBusy = 0;
2570 >                }
2571 >                if (init)
2572 >                    break;
2573 >            }
2574 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2575 >                break;                          // Fall back on using base
2576 >        }
2577 >    }
2578 >
2579 >    /* ---------------- Conversion from/to TreeBins -------------- */
2580 >
2581 >    /**
2582 >     * Replaces all linked nodes in bin at given index unless table is
2583 >     * too small, in which case resizes instead.
2584 >     */
2585 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2586 >        Node<K,V> b; int n, sc;
2587 >        if (tab != null) {
2588 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2589 >                tryPresize(n << 1);
2590 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2591 >                synchronized (b) {
2592 >                    if (tabAt(tab, index) == b) {
2593 >                        TreeNode<K,V> hd = null, tl = null;
2594 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2595 >                            TreeNode<K,V> p =
2596 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2597 >                                                  null, null);
2598 >                            if ((p.prev = tl) == null)
2599 >                                hd = p;
2600 >                            else
2601 >                                tl.next = p;
2602 >                            tl = p;
2603 >                        }
2604 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2605 >                    }
2606 >                }
2607 >            }
2608 >        }
2609 >    }
2610 >
2611 >    /**
2612 >     * Returns a list on non-TreeNodes replacing those in given list.
2613 >     */
2614 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2615 >        Node<K,V> hd = null, tl = null;
2616 >        for (Node<K,V> q = b; q != null; q = q.next) {
2617 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2618 >            if (tl == null)
2619 >                hd = p;
2620 >            else
2621 >                tl.next = p;
2622 >            tl = p;
2623 >        }
2624 >        return hd;
2625 >    }
2626 >
2627 >    /* ---------------- TreeNodes -------------- */
2628 >
2629 >    /**
2630 >     * Nodes for use in TreeBins
2631 >     */
2632 >    static final class TreeNode<K,V> extends Node<K,V> {
2633 >        TreeNode<K,V> parent;  // red-black tree links
2634 >        TreeNode<K,V> left;
2635 >        TreeNode<K,V> right;
2636 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2637 >        boolean red;
2638 >
2639 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2640 >                 TreeNode<K,V> parent) {
2641 >            super(hash, key, val, next);
2642 >            this.parent = parent;
2643 >        }
2644 >
2645 >        Node<K,V> find(int h, Object k) {
2646 >            return findTreeNode(h, k, null);
2647 >        }
2648  
2649          /**
2650 <         * The table is rehashed when its size exceeds this threshold.
2651 <         * (The value of this field is always (int)(capacity *
194 <         * loadFactor).)
2650 >         * Returns the TreeNode (or null if not found) for the given key
2651 >         * starting at given root.
2652           */
2653 <        private transient int threshold;
2653 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2654 >            if (k != null) {
2655 >                TreeNode<K,V> p = this;
2656 >                do  {
2657 >                    int ph, dir; K pk; TreeNode<K,V> q;
2658 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2659 >                    if ((ph = p.hash) > h)
2660 >                        p = pl;
2661 >                    else if (ph < h)
2662 >                        p = pr;
2663 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2664 >                        return p;
2665 >                    else if (pl == null)
2666 >                        p = pr;
2667 >                    else if (pr == null)
2668 >                        p = pl;
2669 >                    else if ((kc != null ||
2670 >                              (kc = comparableClassFor(k)) != null) &&
2671 >                             (dir = compareComparables(kc, k, pk)) != 0)
2672 >                        p = (dir < 0) ? pl : pr;
2673 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2674 >                        return q;
2675 >                    else
2676 >                        p = pl;
2677 >                } while (p != null);
2678 >            }
2679 >            return null;
2680 >        }
2681 >    }
2682 >
2683 >    /* ---------------- TreeBins -------------- */
2684 >
2685 >    /**
2686 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2687 >     * keys or values, but instead point to list of TreeNodes and
2688 >     * their root. They also maintain a parasitic read-write lock
2689 >     * forcing writers (who hold bin lock) to wait for readers (who do
2690 >     * not) to complete before tree restructuring operations.
2691 >     */
2692 >    static final class TreeBin<K,V> extends Node<K,V> {
2693 >        TreeNode<K,V> root;
2694 >        volatile TreeNode<K,V> first;
2695 >        volatile Thread waiter;
2696 >        volatile int lockState;
2697 >        // values for lockState
2698 >        static final int WRITER = 1; // set while holding write lock
2699 >        static final int WAITER = 2; // set when waiting for write lock
2700 >        static final int READER = 4; // increment value for setting read lock
2701  
2702          /**
2703 <         * The per-segment table
2703 >         * Tie-breaking utility for ordering insertions when equal
2704 >         * hashCodes and non-comparable. We don't require a total
2705 >         * order, just a consistent insertion rule to maintain
2706 >         * equivalence across rebalancings. Tie-breaking further than
2707 >         * necessary simplifies testing a bit.
2708           */
2709 <        transient HashEntry[] table;
2709 >        static int tieBreakOrder(Object a, Object b) {
2710 >            int d;
2711 >            if (a == null || b == null ||
2712 >                (d = a.getClass().getName().
2713 >                 compareTo(b.getClass().getName())) == 0)
2714 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2715 >                     -1 : 1);
2716 >            return d;
2717 >        }
2718  
2719          /**
2720 <         * The load factor for the hash table.  Even though this value
205 <         * is same for all segments, it is replicated to avoid needing
206 <         * links to outer object.
207 <         * @serial
2720 >         * Creates bin with initial set of nodes headed by b.
2721           */
2722 <        private final float loadFactor;
2723 <
2724 <        Segment(int initialCapacity, float lf) {
2725 <            loadFactor = lf;
2726 <            setTable(new HashEntry[initialCapacity]);
2722 >        TreeBin(TreeNode<K,V> b) {
2723 >            super(TREEBIN, null, null, null);
2724 >            this.first = b;
2725 >            TreeNode<K,V> r = null;
2726 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2727 >                next = (TreeNode<K,V>)x.next;
2728 >                x.left = x.right = null;
2729 >                if (r == null) {
2730 >                    x.parent = null;
2731 >                    x.red = false;
2732 >                    r = x;
2733 >                }
2734 >                else {
2735 >                    K k = x.key;
2736 >                    int h = x.hash;
2737 >                    Class<?> kc = null;
2738 >                    for (TreeNode<K,V> p = r;;) {
2739 >                        int dir, ph;
2740 >                        K pk = p.key;
2741 >                        if ((ph = p.hash) > h)
2742 >                            dir = -1;
2743 >                        else if (ph < h)
2744 >                            dir = 1;
2745 >                        else if ((kc == null &&
2746 >                                  (kc = comparableClassFor(k)) == null) ||
2747 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2748 >                            dir = tieBreakOrder(k, pk);
2749 >                            TreeNode<K,V> xp = p;
2750 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2751 >                            x.parent = xp;
2752 >                            if (dir <= 0)
2753 >                                xp.left = x;
2754 >                            else
2755 >                                xp.right = x;
2756 >                            r = balanceInsertion(r, x);
2757 >                            break;
2758 >                        }
2759 >                    }
2760 >                }
2761 >            }
2762 >            this.root = r;
2763 >            assert checkInvariants(root);
2764          }
2765  
2766          /**
2767 <         * Set table to new HashEntry array.
2768 <         * Call only while holding lock or in constructor.
2769 <         **/
2770 <        private void setTable(HashEntry[] newTable) {
2771 <            table = newTable;
222 <            threshold = (int)(newTable.length * loadFactor);
223 <            count = count; // write-volatile
2767 >         * Acquires write lock for tree restructuring.
2768 >         */
2769 >        private final void lockRoot() {
2770 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2771 >                contendedLock(); // offload to separate method
2772          }
2773  
2774 <        /* Specialized implementations of map methods */
2774 >        /**
2775 >         * Releases write lock for tree restructuring.
2776 >         */
2777 >        private final void unlockRoot() {
2778 >            lockState = 0;
2779 >        }
2780  
2781 <        V get(K key, int hash) {
2782 <            if (count != 0) { // read-volatile
2783 <                HashEntry[] tab = table;
2784 <                int index = hash & (tab.length - 1);
2785 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
2786 <                while (e != null) {
2787 <                    if (e.hash == hash && key.equals(e.key))
2788 <                        return e.value;
2789 <                    e = e.next;
2781 >        /**
2782 >         * Possibly blocks awaiting root lock.
2783 >         */
2784 >        private final void contendedLock() {
2785 >            boolean waiting = false;
2786 >            for (int s;;) {
2787 >                if (((s = lockState) & ~WAITER) == 0) {
2788 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2789 >                        if (waiting)
2790 >                            waiter = null;
2791 >                        return;
2792 >                    }
2793                  }
2794 +                else if ((s & WAITER) == 0) {
2795 +                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2796 +                        waiting = true;
2797 +                        waiter = Thread.currentThread();
2798 +                    }
2799 +                }
2800 +                else if (waiting)
2801 +                    LockSupport.park(this);
2802              }
239            return null;
2803          }
2804  
2805 <        boolean containsKey(Object key, int hash) {
2806 <            if (count != 0) { // read-volatile
2807 <                HashEntry[] tab = table;
2808 <                int index = hash & (tab.length - 1);
2809 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
2810 <                while (e != null) {
2811 <                    if (e.hash == hash && key.equals(e.key))
2812 <                        return true;
2813 <                    e = e.next;
2805 >        /**
2806 >         * Returns matching node or null if none. Tries to search
2807 >         * using tree comparisons from root, but continues linear
2808 >         * search when lock not available.
2809 >         */
2810 >        final Node<K,V> find(int h, Object k) {
2811 >            if (k != null) {
2812 >                for (Node<K,V> e = first; e != null; e = e.next) {
2813 >                    int s; K ek;
2814 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2815 >                        if (e.hash == h &&
2816 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2817 >                            return e;
2818 >                    }
2819 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2820 >                                                 s + READER)) {
2821 >                        TreeNode<K,V> r, p;
2822 >                        try {
2823 >                            p = ((r = root) == null ? null :
2824 >                                 r.findTreeNode(h, k, null));
2825 >                        } finally {
2826 >                            Thread w;
2827 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2828 >                                (READER|WAITER) && (w = waiter) != null)
2829 >                                LockSupport.unpark(w);
2830 >                        }
2831 >                        return p;
2832 >                    }
2833                  }
2834              }
2835 <            return false;
2835 >            return null;
2836          }
2837  
2838 <        boolean containsValue(Object value) {
2839 <            if (count != 0) { // read-volatile
2840 <                HashEntry[] tab = table;
2841 <                int len = tab.length;
2842 <                for (int i = 0 ; i < len; i++)
2843 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
2844 <                        if (value.equals(e.value))
2845 <                            return true;
2838 >        /**
2839 >         * Finds or adds a node.
2840 >         * @return null if added
2841 >         */
2842 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2843 >            Class<?> kc = null;
2844 >            boolean searched = false;
2845 >            for (TreeNode<K,V> p = root;;) {
2846 >                int dir, ph; K pk;
2847 >                if (p == null) {
2848 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2849 >                    break;
2850 >                }
2851 >                else if ((ph = p.hash) > h)
2852 >                    dir = -1;
2853 >                else if (ph < h)
2854 >                    dir = 1;
2855 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2856 >                    return p;
2857 >                else if ((kc == null &&
2858 >                          (kc = comparableClassFor(k)) == null) ||
2859 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2860 >                    if (!searched) {
2861 >                        TreeNode<K,V> q, ch;
2862 >                        searched = true;
2863 >                        if (((ch = p.left) != null &&
2864 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2865 >                            ((ch = p.right) != null &&
2866 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2867 >                            return q;
2868 >                    }
2869 >                    dir = tieBreakOrder(k, pk);
2870 >                }
2871 >
2872 >                TreeNode<K,V> xp = p;
2873 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2874 >                    TreeNode<K,V> x, f = first;
2875 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2876 >                    if (f != null)
2877 >                        f.prev = x;
2878 >                    if (dir <= 0)
2879 >                        xp.left = x;
2880 >                    else
2881 >                        xp.right = x;
2882 >                    if (!xp.red)
2883 >                        x.red = true;
2884 >                    else {
2885 >                        lockRoot();
2886 >                        try {
2887 >                            root = balanceInsertion(root, x);
2888 >                        } finally {
2889 >                            unlockRoot();
2890 >                        }
2891 >                    }
2892 >                    break;
2893 >                }
2894              }
2895 <            return false;
2895 >            assert checkInvariants(root);
2896 >            return null;
2897          }
2898  
2899 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
2900 <            lock();
2899 >        /**
2900 >         * Removes the given node, that must be present before this
2901 >         * call.  This is messier than typical red-black deletion code
2902 >         * because we cannot swap the contents of an interior node
2903 >         * with a leaf successor that is pinned by "next" pointers
2904 >         * that are accessible independently of lock. So instead we
2905 >         * swap the tree linkages.
2906 >         *
2907 >         * @return true if now too small, so should be untreeified
2908 >         */
2909 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2910 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2911 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2912 >            TreeNode<K,V> r, rl;
2913 >            if (pred == null)
2914 >                first = next;
2915 >            else
2916 >                pred.next = next;
2917 >            if (next != null)
2918 >                next.prev = pred;
2919 >            if (first == null) {
2920 >                root = null;
2921 >                return true;
2922 >            }
2923 >            if ((r = root) == null || r.right == null || // too small
2924 >                (rl = r.left) == null || rl.left == null)
2925 >                return true;
2926 >            lockRoot();
2927              try {
2928 <                int c = count;
2929 <                HashEntry[] tab = table;
2930 <                int index = hash & (tab.length - 1);
2931 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
2932 <
2933 <                for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
2934 <                    if (e.hash == hash && key.equals(e.key)) {
2935 <                        V oldValue = e.value;
2936 <                        if (!onlyIfAbsent)
2937 <                            e.value = value;
2938 <                        count = c; // write-volatile
2939 <                        return oldValue;
2928 >                TreeNode<K,V> replacement;
2929 >                TreeNode<K,V> pl = p.left;
2930 >                TreeNode<K,V> pr = p.right;
2931 >                if (pl != null && pr != null) {
2932 >                    TreeNode<K,V> s = pr, sl;
2933 >                    while ((sl = s.left) != null) // find successor
2934 >                        s = sl;
2935 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2936 >                    TreeNode<K,V> sr = s.right;
2937 >                    TreeNode<K,V> pp = p.parent;
2938 >                    if (s == pr) { // p was s's direct parent
2939 >                        p.parent = s;
2940 >                        s.right = p;
2941 >                    }
2942 >                    else {
2943 >                        TreeNode<K,V> sp = s.parent;
2944 >                        if ((p.parent = sp) != null) {
2945 >                            if (s == sp.left)
2946 >                                sp.left = p;
2947 >                            else
2948 >                                sp.right = p;
2949 >                        }
2950 >                        if ((s.right = pr) != null)
2951 >                            pr.parent = s;
2952                      }
2953 +                    p.left = null;
2954 +                    if ((p.right = sr) != null)
2955 +                        sr.parent = p;
2956 +                    if ((s.left = pl) != null)
2957 +                        pl.parent = s;
2958 +                    if ((s.parent = pp) == null)
2959 +                        r = s;
2960 +                    else if (p == pp.left)
2961 +                        pp.left = s;
2962 +                    else
2963 +                        pp.right = s;
2964 +                    if (sr != null)
2965 +                        replacement = sr;
2966 +                    else
2967 +                        replacement = p;
2968                  }
2969 +                else if (pl != null)
2970 +                    replacement = pl;
2971 +                else if (pr != null)
2972 +                    replacement = pr;
2973 +                else
2974 +                    replacement = p;
2975 +                if (replacement != p) {
2976 +                    TreeNode<K,V> pp = replacement.parent = p.parent;
2977 +                    if (pp == null)
2978 +                        r = replacement;
2979 +                    else if (p == pp.left)
2980 +                        pp.left = replacement;
2981 +                    else
2982 +                        pp.right = replacement;
2983 +                    p.left = p.right = p.parent = null;
2984 +                }
2985 +
2986 +                root = (p.red) ? r : balanceDeletion(r, replacement);
2987  
2988 <                tab[index] = new HashEntry<K,V>(hash, key, value, first);
2989 <                ++c;
2990 <                count = c; // write-volatile
2991 <                if (c > threshold)
2992 <                    setTable(rehash(tab));
2993 <                return null;
2988 >                if (p == replacement) {  // detach pointers
2989 >                    TreeNode<K,V> pp;
2990 >                    if ((pp = p.parent) != null) {
2991 >                        if (p == pp.left)
2992 >                            pp.left = null;
2993 >                        else if (p == pp.right)
2994 >                            pp.right = null;
2995 >                        p.parent = null;
2996 >                    }
2997 >                }
2998              } finally {
2999 <                unlock();
2999 >                unlockRoot();
3000              }
3001 +            assert checkInvariants(root);
3002 +            return false;
3003          }
3004  
3005 <        private HashEntry[] rehash(HashEntry[] oldTable) {
3006 <            int oldCapacity = oldTable.length;
3007 <            if (oldCapacity >= MAXIMUM_CAPACITY)
3008 <                return oldTable;
3009 <
3010 <            /*
3011 <             * Reclassify nodes in each list to new Map.  Because we are
3012 <             * using power-of-two expansion, the elements from each bin
3013 <             * must either stay at same index, or move with a power of two
3014 <             * offset. We eliminate unnecessary node creation by catching
3015 <             * cases where old nodes can be reused because their next
3016 <             * fields won't change. Statistically, at the default
3017 <             * threshhold, only about one-sixth of them need cloning when
3018 <             * a table doubles. The nodes they replace will be garbage
3019 <             * collectable as soon as they are no longer referenced by any
3020 <             * reader thread that may be in the midst of traversing table
3021 <             * right now.
3022 <             */
3023 <
3024 <            HashEntry[] newTable = new HashEntry[oldCapacity << 1];
3025 <            int sizeMask = newTable.length - 1;
3026 <            for (int i = 0; i < oldCapacity ; i++) {
3027 <                // We need to guarantee that any existing reads of old Map can
3028 <                //  proceed. So we cannot yet null out each bin.
3029 <                HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
3030 <
3031 <                if (e != null) {
3032 <                    HashEntry<K,V> next = e.next;
3033 <                    int idx = e.hash & sizeMask;
3034 <
3035 <                    //  Single node on list
3036 <                    if (next == null)
3037 <                        newTable[idx] = e;
3005 >        /* ------------------------------------------------------------ */
3006 >        // Red-black tree methods, all adapted from CLR
3007 >
3008 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3009 >                                              TreeNode<K,V> p) {
3010 >            TreeNode<K,V> r, pp, rl;
3011 >            if (p != null && (r = p.right) != null) {
3012 >                if ((rl = p.right = r.left) != null)
3013 >                    rl.parent = p;
3014 >                if ((pp = r.parent = p.parent) == null)
3015 >                    (root = r).red = false;
3016 >                else if (pp.left == p)
3017 >                    pp.left = r;
3018 >                else
3019 >                    pp.right = r;
3020 >                r.left = p;
3021 >                p.parent = r;
3022 >            }
3023 >            return root;
3024 >        }
3025 >
3026 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3027 >                                               TreeNode<K,V> p) {
3028 >            TreeNode<K,V> l, pp, lr;
3029 >            if (p != null && (l = p.left) != null) {
3030 >                if ((lr = p.left = l.right) != null)
3031 >                    lr.parent = p;
3032 >                if ((pp = l.parent = p.parent) == null)
3033 >                    (root = l).red = false;
3034 >                else if (pp.right == p)
3035 >                    pp.right = l;
3036 >                else
3037 >                    pp.left = l;
3038 >                l.right = p;
3039 >                p.parent = l;
3040 >            }
3041 >            return root;
3042 >        }
3043  
3044 +        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3045 +                                                    TreeNode<K,V> x) {
3046 +            x.red = true;
3047 +            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3048 +                if ((xp = x.parent) == null) {
3049 +                    x.red = false;
3050 +                    return x;
3051 +                }
3052 +                else if (!xp.red || (xpp = xp.parent) == null)
3053 +                    return root;
3054 +                if (xp == (xppl = xpp.left)) {
3055 +                    if ((xppr = xpp.right) != null && xppr.red) {
3056 +                        xppr.red = false;
3057 +                        xp.red = false;
3058 +                        xpp.red = true;
3059 +                        x = xpp;
3060 +                    }
3061                      else {
3062 <                        // Reuse trailing consecutive sequence at same slot
3063 <                        HashEntry<K,V> lastRun = e;
3064 <                        int lastIdx = idx;
3065 <                        for (HashEntry<K,V> last = next;
3066 <                             last != null;
3067 <                             last = last.next) {
3068 <                            int k = last.hash & sizeMask;
3069 <                            if (k != lastIdx) {
3070 <                                lastIdx = k;
341 <                                lastRun = last;
3062 >                        if (x == xp.right) {
3063 >                            root = rotateLeft(root, x = xp);
3064 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3065 >                        }
3066 >                        if (xp != null) {
3067 >                            xp.red = false;
3068 >                            if (xpp != null) {
3069 >                                xpp.red = true;
3070 >                                root = rotateRight(root, xpp);
3071                              }
3072                          }
3073 <                        newTable[lastIdx] = lastRun;
3073 >                    }
3074 >                }
3075 >                else {
3076 >                    if (xppl != null && xppl.red) {
3077 >                        xppl.red = false;
3078 >                        xp.red = false;
3079 >                        xpp.red = true;
3080 >                        x = xpp;
3081 >                    }
3082 >                    else {
3083 >                        if (x == xp.left) {
3084 >                            root = rotateRight(root, x = xp);
3085 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3086 >                        }
3087 >                        if (xp != null) {
3088 >                            xp.red = false;
3089 >                            if (xpp != null) {
3090 >                                xpp.red = true;
3091 >                                root = rotateLeft(root, xpp);
3092 >                            }
3093 >                        }
3094 >                    }
3095 >                }
3096 >            }
3097 >        }
3098  
3099 <                        // Clone all remaining nodes
3100 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
3101 <                            int k = p.hash & sizeMask;
3102 <                            newTable[k] = new HashEntry<K,V>(p.hash,
3103 <                                                             p.key,
3104 <                                                             p.value,
3105 <                                                             (HashEntry<K,V>) newTable[k]);
3099 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3100 >                                                   TreeNode<K,V> x) {
3101 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3102 >                if (x == null || x == root)
3103 >                    return root;
3104 >                else if ((xp = x.parent) == null) {
3105 >                    x.red = false;
3106 >                    return x;
3107 >                }
3108 >                else if (x.red) {
3109 >                    x.red = false;
3110 >                    return root;
3111 >                }
3112 >                else if ((xpl = xp.left) == x) {
3113 >                    if ((xpr = xp.right) != null && xpr.red) {
3114 >                        xpr.red = false;
3115 >                        xp.red = true;
3116 >                        root = rotateLeft(root, xp);
3117 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3118 >                    }
3119 >                    if (xpr == null)
3120 >                        x = xp;
3121 >                    else {
3122 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3123 >                        if ((sr == null || !sr.red) &&
3124 >                            (sl == null || !sl.red)) {
3125 >                            xpr.red = true;
3126 >                            x = xp;
3127 >                        }
3128 >                        else {
3129 >                            if (sr == null || !sr.red) {
3130 >                                if (sl != null)
3131 >                                    sl.red = false;
3132 >                                xpr.red = true;
3133 >                                root = rotateRight(root, xpr);
3134 >                                xpr = (xp = x.parent) == null ?
3135 >                                    null : xp.right;
3136 >                            }
3137 >                            if (xpr != null) {
3138 >                                xpr.red = (xp == null) ? false : xp.red;
3139 >                                if ((sr = xpr.right) != null)
3140 >                                    sr.red = false;
3141 >                            }
3142 >                            if (xp != null) {
3143 >                                xp.red = false;
3144 >                                root = rotateLeft(root, xp);
3145 >                            }
3146 >                            x = root;
3147 >                        }
3148 >                    }
3149 >                }
3150 >                else { // symmetric
3151 >                    if (xpl != null && xpl.red) {
3152 >                        xpl.red = false;
3153 >                        xp.red = true;
3154 >                        root = rotateRight(root, xp);
3155 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3156 >                    }
3157 >                    if (xpl == null)
3158 >                        x = xp;
3159 >                    else {
3160 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3161 >                        if ((sl == null || !sl.red) &&
3162 >                            (sr == null || !sr.red)) {
3163 >                            xpl.red = true;
3164 >                            x = xp;
3165 >                        }
3166 >                        else {
3167 >                            if (sl == null || !sl.red) {
3168 >                                if (sr != null)
3169 >                                    sr.red = false;
3170 >                                xpl.red = true;
3171 >                                root = rotateLeft(root, xpl);
3172 >                                xpl = (xp = x.parent) == null ?
3173 >                                    null : xp.left;
3174 >                            }
3175 >                            if (xpl != null) {
3176 >                                xpl.red = (xp == null) ? false : xp.red;
3177 >                                if ((sl = xpl.left) != null)
3178 >                                    sl.red = false;
3179 >                            }
3180 >                            if (xp != null) {
3181 >                                xp.red = false;
3182 >                                root = rotateRight(root, xp);
3183 >                            }
3184 >                            x = root;
3185                          }
3186                      }
3187                  }
3188              }
357            return newTable;
3189          }
3190  
3191          /**
3192 <         * Remove; match on key only if value null, else match both.
3192 >         * Recursive invariant check
3193           */
3194 <        V remove(Object key, int hash, Object value) {
3195 <            lock();
3194 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3195 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3196 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3197 >            if (tb != null && tb.next != t)
3198 >                return false;
3199 >            if (tn != null && tn.prev != t)
3200 >                return false;
3201 >            if (tp != null && t != tp.left && t != tp.right)
3202 >                return false;
3203 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3204 >                return false;
3205 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3206 >                return false;
3207 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3208 >                return false;
3209 >            if (tl != null && !checkInvariants(tl))
3210 >                return false;
3211 >            if (tr != null && !checkInvariants(tr))
3212 >                return false;
3213 >            return true;
3214 >        }
3215 >
3216 >        private static final sun.misc.Unsafe U;
3217 >        private static final long LOCKSTATE;
3218 >        static {
3219              try {
3220 <                int c = count;
3221 <                HashEntry[] tab = table;
3222 <                int index = hash & (tab.length - 1);
3223 <                HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
3220 >                U = sun.misc.Unsafe.getUnsafe();
3221 >                Class<?> k = TreeBin.class;
3222 >                LOCKSTATE = U.objectFieldOffset
3223 >                    (k.getDeclaredField("lockState"));
3224 >            } catch (Exception e) {
3225 >                throw new Error(e);
3226 >            }
3227 >        }
3228 >    }
3229  
3230 <                HashEntry<K,V> e = first;
372 <                for (;;) {
373 <                    if (e == null)
374 <                        return null;
375 <                    if (e.hash == hash && key.equals(e.key))
376 <                        break;
377 <                    e = e.next;
378 <                }
3230 >    /* ----------------Table Traversal -------------- */
3231  
3232 <                V oldValue = e.value;
3233 <                if (value != null && !value.equals(oldValue))
3234 <                    return null;
3232 >    /**
3233 >     * Records the table, its length, and current traversal index for a
3234 >     * traverser that must process a region of a forwarded table before
3235 >     * proceeding with current table.
3236 >     */
3237 >    static final class TableStack<K,V> {
3238 >        int length;
3239 >        int index;
3240 >        Node<K,V>[] tab;
3241 >        TableStack<K,V> next;
3242 >    }
3243  
3244 <                // All entries following removed node can stay in list, but
3245 <                // all preceeding ones need to be cloned.
3246 <                HashEntry<K,V> newFirst = e.next;
3247 <                for (HashEntry<K,V> p = first; p != e; p = p.next)
3248 <                    newFirst = new HashEntry<K,V>(p.hash, p.key,
3249 <                                                  p.value, newFirst);
3250 <                tab[index] = newFirst;
3251 <                count = c-1; // write-volatile
3252 <                return oldValue;
3253 <            } finally {
3254 <                unlock();
3244 >    /**
3245 >     * Encapsulates traversal for methods such as containsValue; also
3246 >     * serves as a base class for other iterators and spliterators.
3247 >     *
3248 >     * Method advance visits once each still-valid node that was
3249 >     * reachable upon iterator construction. It might miss some that
3250 >     * were added to a bin after the bin was visited, which is OK wrt
3251 >     * consistency guarantees. Maintaining this property in the face
3252 >     * of possible ongoing resizes requires a fair amount of
3253 >     * bookkeeping state that is difficult to optimize away amidst
3254 >     * volatile accesses.  Even so, traversal maintains reasonable
3255 >     * throughput.
3256 >     *
3257 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3258 >     * However, if the table has been resized, then all future steps
3259 >     * must traverse both the bin at the current index as well as at
3260 >     * (index + baseSize); and so on for further resizings. To
3261 >     * paranoically cope with potential sharing by users of iterators
3262 >     * across threads, iteration terminates if a bounds checks fails
3263 >     * for a table read.
3264 >     */
3265 >    static class Traverser<K,V> {
3266 >        Node<K,V>[] tab;        // current table; updated if resized
3267 >        Node<K,V> next;         // the next entry to use
3268 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3269 >        int index;              // index of bin to use next
3270 >        int baseIndex;          // current index of initial table
3271 >        int baseLimit;          // index bound for initial table
3272 >        final int baseSize;     // initial table size
3273 >
3274 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3275 >            this.tab = tab;
3276 >            this.baseSize = size;
3277 >            this.baseIndex = this.index = index;
3278 >            this.baseLimit = limit;
3279 >            this.next = null;
3280 >        }
3281 >
3282 >        /**
3283 >         * Advances if possible, returning next valid node, or null if none.
3284 >         */
3285 >        final Node<K,V> advance() {
3286 >            Node<K,V> e;
3287 >            if ((e = next) != null)
3288 >                e = e.next;
3289 >            for (;;) {
3290 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3291 >                if (e != null)
3292 >                    return next = e;
3293 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3294 >                    (n = t.length) <= (i = index) || i < 0)
3295 >                    return next = null;
3296 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3297 >                    if (e instanceof ForwardingNode) {
3298 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3299 >                        e = null;
3300 >                        pushState(t, i, n);
3301 >                        continue;
3302 >                    }
3303 >                    else if (e instanceof TreeBin)
3304 >                        e = ((TreeBin<K,V>)e).first;
3305 >                    else
3306 >                        e = null;
3307 >                }
3308 >                if (stack != null)
3309 >                    recoverState(n);
3310 >                else if ((index = i + baseSize) >= n)
3311 >                    index = ++baseIndex; // visit upper slots if present
3312              }
3313          }
3314  
3315 <        void clear() {
3316 <            lock();
3317 <            try {
3318 <                HashEntry[] tab = table;
3319 <                for (int i = 0; i < tab.length ; i++)
3320 <                    tab[i] = null;
3321 <                count = 0; // write-volatile
3322 <            } finally {
3323 <                unlock();
3315 >        /**
3316 >         * Saves traversal state upon encountering a forwarding node.
3317 >         */
3318 >        private void pushState(Node<K,V>[] t, int i, int n) {
3319 >            TableStack<K,V> s = spare;  // reuse if possible
3320 >            if (s != null)
3321 >                spare = s.next;
3322 >            else
3323 >                s = new TableStack<K,V>();
3324 >            s.tab = t;
3325 >            s.length = n;
3326 >            s.index = i;
3327 >            s.next = stack;
3328 >            stack = s;
3329 >        }
3330 >
3331 >        /**
3332 >         * Possibly pops traversal state.
3333 >         *
3334 >         * @param n length of current table
3335 >         */
3336 >        private void recoverState(int n) {
3337 >            TableStack<K,V> s; int len;
3338 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3339 >                n = len;
3340 >                index = s.index;
3341 >                tab = s.tab;
3342 >                s.tab = null;
3343 >                TableStack<K,V> next = s.next;
3344 >                s.next = spare; // save for reuse
3345 >                stack = next;
3346 >                spare = s;
3347              }
3348 +            if (s == null && (index += baseSize) >= n)
3349 +                index = ++baseIndex;
3350          }
3351      }
3352  
3353      /**
3354 <     * ConcurrentReaderHashMap list entry.
3354 >     * Base of key, value, and entry Iterators. Adds fields to
3355 >     * Traverser to support iterator.remove.
3356       */
3357 <    private static class HashEntry<K,V> implements Entry<K,V> {
3358 <        private final K key;
3359 <        private V value;
3360 <        private final int hash;
3361 <        private final HashEntry<K,V> next;
3357 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3358 >        final ConcurrentHashMap<K,V> map;
3359 >        Node<K,V> lastReturned;
3360 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3361 >                    ConcurrentHashMap<K,V> map) {
3362 >            super(tab, size, index, limit);
3363 >            this.map = map;
3364 >            advance();
3365 >        }
3366  
3367 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
3368 <            this.value = value;
3369 <            this.hash = hash;
3370 <            this.key = key;
3371 <            this.next = next;
3367 >        public final boolean hasNext() { return next != null; }
3368 >        public final boolean hasMoreElements() { return next != null; }
3369 >
3370 >        public final void remove() {
3371 >            Node<K,V> p;
3372 >            if ((p = lastReturned) == null)
3373 >                throw new IllegalStateException();
3374 >            lastReturned = null;
3375 >            map.replaceNode(p.key, null, null);
3376 >        }
3377 >    }
3378 >
3379 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3380 >        implements Iterator<K>, Enumeration<K> {
3381 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3382 >                    ConcurrentHashMap<K,V> map) {
3383 >            super(tab, index, size, limit, map);
3384 >        }
3385 >
3386 >        public final K next() {
3387 >            Node<K,V> p;
3388 >            if ((p = next) == null)
3389 >                throw new NoSuchElementException();
3390 >            K k = p.key;
3391 >            lastReturned = p;
3392 >            advance();
3393 >            return k;
3394          }
3395  
3396 <        public K getKey() {
3397 <            return key;
3396 >        public final K nextElement() { return next(); }
3397 >    }
3398 >
3399 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3400 >        implements Iterator<V>, Enumeration<V> {
3401 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3402 >                      ConcurrentHashMap<K,V> map) {
3403 >            super(tab, index, size, limit, map);
3404 >        }
3405 >
3406 >        public final V next() {
3407 >            Node<K,V> p;
3408 >            if ((p = next) == null)
3409 >                throw new NoSuchElementException();
3410 >            V v = p.val;
3411 >            lastReturned = p;
3412 >            advance();
3413 >            return v;
3414          }
3415  
3416 <        public V getValue() {
3417 <            return value;
3416 >        public final V nextElement() { return next(); }
3417 >    }
3418 >
3419 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3420 >        implements Iterator<Map.Entry<K,V>> {
3421 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3422 >                      ConcurrentHashMap<K,V> map) {
3423 >            super(tab, index, size, limit, map);
3424 >        }
3425 >
3426 >        public final Map.Entry<K,V> next() {
3427 >            Node<K,V> p;
3428 >            if ((p = next) == null)
3429 >                throw new NoSuchElementException();
3430 >            K k = p.key;
3431 >            V v = p.val;
3432 >            lastReturned = p;
3433 >            advance();
3434 >            return new MapEntry<K,V>(k, v, map);
3435          }
3436 +    }
3437  
3438 <        public V setValue(V newValue) {
3439 <            // We aren't required to, and don't provide any
3440 <            // visibility barriers for setting value.
3441 <            if (newValue == null)
3442 <                throw new NullPointerException();
3443 <            V oldValue = this.value;
3444 <            this.value = newValue;
3445 <            return oldValue;
3438 >    /**
3439 >     * Exported Entry for EntryIterator
3440 >     */
3441 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3442 >        final K key; // non-null
3443 >        V val;       // non-null
3444 >        final ConcurrentHashMap<K,V> map;
3445 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3446 >            this.key = key;
3447 >            this.val = val;
3448 >            this.map = map;
3449          }
3450 +        public K getKey()        { return key; }
3451 +        public V getValue()      { return val; }
3452 +        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3453 +        public String toString() { return key + "=" + val; }
3454  
3455          public boolean equals(Object o) {
3456 <            if (!(o instanceof Entry))
3456 >            Object k, v; Map.Entry<?,?> e;
3457 >            return ((o instanceof Map.Entry) &&
3458 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3459 >                    (v = e.getValue()) != null &&
3460 >                    (k == key || k.equals(key)) &&
3461 >                    (v == val || v.equals(val)));
3462 >        }
3463 >
3464 >        /**
3465 >         * Sets our entry's value and writes through to the map. The
3466 >         * value to return is somewhat arbitrary here. Since we do not
3467 >         * necessarily track asynchronous changes, the most recent
3468 >         * "previous" value could be different from what we return (or
3469 >         * could even have been removed, in which case the put will
3470 >         * re-establish). We do not and cannot guarantee more.
3471 >         */
3472 >        public V setValue(V value) {
3473 >            if (value == null) throw new NullPointerException();
3474 >            V v = val;
3475 >            val = value;
3476 >            map.put(key, value);
3477 >            return v;
3478 >        }
3479 >    }
3480 >
3481 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3482 >        implements Spliterator<K> {
3483 >        long est;               // size estimate
3484 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3485 >                       long est) {
3486 >            super(tab, size, index, limit);
3487 >            this.est = est;
3488 >        }
3489 >
3490 >        public Spliterator<K> trySplit() {
3491 >            int i, f, h;
3492 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3493 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3494 >                                        f, est >>>= 1);
3495 >        }
3496 >
3497 >        public void forEachRemaining(Consumer<? super K> action) {
3498 >            if (action == null) throw new NullPointerException();
3499 >            for (Node<K,V> p; (p = advance()) != null;)
3500 >                action.accept(p.key);
3501 >        }
3502 >
3503 >        public boolean tryAdvance(Consumer<? super K> action) {
3504 >            if (action == null) throw new NullPointerException();
3505 >            Node<K,V> p;
3506 >            if ((p = advance()) == null)
3507                  return false;
3508 <            Entry<K,V> e = (Entry<K,V>)o;
3509 <            return (key.equals(e.getKey()) && value.equals(e.getValue()));
3508 >            action.accept(p.key);
3509 >            return true;
3510          }
3511  
3512 <        public int hashCode() {
3513 <            return  key.hashCode() ^ value.hashCode();
3512 >        public long estimateSize() { return est; }
3513 >
3514 >        public int characteristics() {
3515 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3516 >                Spliterator.NONNULL;
3517 >        }
3518 >    }
3519 >
3520 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3521 >        implements Spliterator<V> {
3522 >        long est;               // size estimate
3523 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3524 >                         long est) {
3525 >            super(tab, size, index, limit);
3526 >            this.est = est;
3527 >        }
3528 >
3529 >        public Spliterator<V> trySplit() {
3530 >            int i, f, h;
3531 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3532 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3533 >                                          f, est >>>= 1);
3534          }
3535  
3536 <        public String toString() {
3537 <            return key + "=" + value;
3536 >        public void forEachRemaining(Consumer<? super V> action) {
3537 >            if (action == null) throw new NullPointerException();
3538 >            for (Node<K,V> p; (p = advance()) != null;)
3539 >                action.accept(p.val);
3540 >        }
3541 >
3542 >        public boolean tryAdvance(Consumer<? super V> action) {
3543 >            if (action == null) throw new NullPointerException();
3544 >            Node<K,V> p;
3545 >            if ((p = advance()) == null)
3546 >                return false;
3547 >            action.accept(p.val);
3548 >            return true;
3549 >        }
3550 >
3551 >        public long estimateSize() { return est; }
3552 >
3553 >        public int characteristics() {
3554 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3555          }
3556      }
3557  
3558 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3559 +        implements Spliterator<Map.Entry<K,V>> {
3560 +        final ConcurrentHashMap<K,V> map; // To export MapEntry
3561 +        long est;               // size estimate
3562 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3563 +                         long est, ConcurrentHashMap<K,V> map) {
3564 +            super(tab, size, index, limit);
3565 +            this.map = map;
3566 +            this.est = est;
3567 +        }
3568  
3569 <    /* ---------------- Public operations -------------- */
3569 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3570 >            int i, f, h;
3571 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3572 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3573 >                                          f, est >>>= 1, map);
3574 >        }
3575  
3576 <    /**
3577 <     * Constructs a new, empty map with the specified initial
3578 <     * capacity and the specified load factor.
3579 <     *
3580 <     * @param initialCapacity the initial capacity. The implementation
469 <     * performs internal sizing to accommodate this many elements.
470 <     * @param loadFactor  the load factor threshold, used to control resizing.
471 <     * @param concurrencyLevel the estimated number of concurrently
472 <     * updating threads. The implementation performs internal sizing
473 <     * to accommodate this many threads.  
474 <     * @throws IllegalArgumentException if the initial capacity is
475 <     * negative or the load factor or concurrencyLevel are
476 <     * nonpositive.
477 <     */
478 <    public ConcurrentHashMap(int initialCapacity,
479 <                             float loadFactor, int concurrencyLevel) {
480 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
481 <            throw new IllegalArgumentException();
3576 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3577 >            if (action == null) throw new NullPointerException();
3578 >            for (Node<K,V> p; (p = advance()) != null; )
3579 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3580 >        }
3581  
3582 <        // Find power-of-two sizes best matching arguments
3583 <        int sshift = 0;
3584 <        int ssize = 1;
3585 <        while (ssize < concurrencyLevel) {
3586 <            ++sshift;
3587 <            ssize <<= 1;
3582 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3583 >            if (action == null) throw new NullPointerException();
3584 >            Node<K,V> p;
3585 >            if ((p = advance()) == null)
3586 >                return false;
3587 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3588 >            return true;
3589          }
490        segmentShift = 32 - sshift;
491        segmentMask = ssize - 1;
492        this.segments = new Segment[ssize];
493
494        if (initialCapacity > MAXIMUM_CAPACITY)
495            initialCapacity = MAXIMUM_CAPACITY;
496        int c = initialCapacity / ssize;
497        if (c * ssize < initialCapacity)
498            ++c;
499        int cap = 1;
500        while (cap < c)
501            cap <<= 1;
3590  
3591 <        for (int i = 0; i < this.segments.length; ++i)
3592 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
3591 >        public long estimateSize() { return est; }
3592 >
3593 >        public int characteristics() {
3594 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3595 >                Spliterator.NONNULL;
3596 >        }
3597 >    }
3598 >
3599 >    // Parallel bulk operations
3600 >
3601 >    /**
3602 >     * Computes initial batch value for bulk tasks. The returned value
3603 >     * is approximately exp2 of the number of times (minus one) to
3604 >     * split task by two before executing leaf action. This value is
3605 >     * faster to compute and more convenient to use as a guide to
3606 >     * splitting than is the depth, since it is used while dividing by
3607 >     * two anyway.
3608 >     */
3609 >    final int batchFor(long b) {
3610 >        long n;
3611 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3612 >            return 0;
3613 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3614 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3615      }
3616  
3617      /**
3618 <     * Constructs a new, empty map with the specified initial
509 <     * capacity,  and with default load factor and concurrencyLevel.
3618 >     * Performs the given action for each (key, value).
3619       *
3620 <     * @param initialCapacity The implementation performs internal
3621 <     * sizing to accommodate this many elements.
3622 <     * @throws IllegalArgumentException if the initial capacity of
3623 <     * elements is negative.
3620 >     * @param parallelismThreshold the (estimated) number of elements
3621 >     * needed for this operation to be executed in parallel
3622 >     * @param action the action
3623 >     * @since 1.8
3624       */
3625 <    public ConcurrentHashMap(int initialCapacity) {
3626 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
3625 >    public void forEach(long parallelismThreshold,
3626 >                        BiConsumer<? super K,? super V> action) {
3627 >        if (action == null) throw new NullPointerException();
3628 >        new ForEachMappingTask<K,V>
3629 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3630 >             action).invoke();
3631      }
3632  
3633      /**
3634 <     * Constructs a new, empty map with a default initial capacity,
3635 <     * load factor, and number of concurrencyLevel.
3634 >     * Performs the given action for each non-null transformation
3635 >     * of each (key, value).
3636 >     *
3637 >     * @param parallelismThreshold the (estimated) number of elements
3638 >     * needed for this operation to be executed in parallel
3639 >     * @param transformer a function returning the transformation
3640 >     * for an element, or null if there is no transformation (in
3641 >     * which case the action is not applied)
3642 >     * @param action the action
3643 >     * @param <U> the return type of the transformer
3644 >     * @since 1.8
3645       */
3646 <    public ConcurrentHashMap() {
3647 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
3646 >    public <U> void forEach(long parallelismThreshold,
3647 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3648 >                            Consumer<? super U> action) {
3649 >        if (transformer == null || action == null)
3650 >            throw new NullPointerException();
3651 >        new ForEachTransformedMappingTask<K,V,U>
3652 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3653 >             transformer, action).invoke();
3654      }
3655  
3656      /**
3657 <     * Constructs a new map with the same mappings as the given map.  The
3658 <     * map is created with a capacity of twice the number of mappings in
3659 <     * the given map or 11 (whichever is greater), and a default load factor.
3657 >     * Returns a non-null result from applying the given search
3658 >     * function on each (key, value), or null if none.  Upon
3659 >     * success, further element processing is suppressed and the
3660 >     * results of any other parallel invocations of the search
3661 >     * function are ignored.
3662 >     *
3663 >     * @param parallelismThreshold the (estimated) number of elements
3664 >     * needed for this operation to be executed in parallel
3665 >     * @param searchFunction a function returning a non-null
3666 >     * result on success, else null
3667 >     * @param <U> the return type of the search function
3668 >     * @return a non-null result from applying the given search
3669 >     * function on each (key, value), or null if none
3670 >     * @since 1.8
3671       */
3672 <    public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
3673 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
3674 <                      11),
3675 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
3676 <        putAll(t);
3672 >    public <U> U search(long parallelismThreshold,
3673 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3674 >        if (searchFunction == null) throw new NullPointerException();
3675 >        return new SearchMappingsTask<K,V,U>
3676 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3677 >             searchFunction, new AtomicReference<U>()).invoke();
3678      }
3679  
3680 <    // inherit Map javadoc
3681 <    public int size() {
3682 <        int c = 0;
3683 <        for (int i = 0; i < segments.length; ++i)
3684 <            c += segments[i].count;
3685 <        return c;
3680 >    /**
3681 >     * Returns the result of accumulating the given transformation
3682 >     * of all (key, value) pairs using the given reducer to
3683 >     * combine values, or null if none.
3684 >     *
3685 >     * @param parallelismThreshold the (estimated) number of elements
3686 >     * needed for this operation to be executed in parallel
3687 >     * @param transformer a function returning the transformation
3688 >     * for an element, or null if there is no transformation (in
3689 >     * which case it is not combined)
3690 >     * @param reducer a commutative associative combining function
3691 >     * @param <U> the return type of the transformer
3692 >     * @return the result of accumulating the given transformation
3693 >     * of all (key, value) pairs
3694 >     * @since 1.8
3695 >     */
3696 >    public <U> U reduce(long parallelismThreshold,
3697 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3698 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3699 >        if (transformer == null || reducer == null)
3700 >            throw new NullPointerException();
3701 >        return new MapReduceMappingsTask<K,V,U>
3702 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3703 >             null, transformer, reducer).invoke();
3704      }
3705  
3706 <    // inherit Map javadoc
3707 <    public boolean isEmpty() {
3708 <        for (int i = 0; i < segments.length; ++i)
3709 <            if (segments[i].count != 0)
3710 <                return false;
3711 <        return true;
3706 >    /**
3707 >     * Returns the result of accumulating the given transformation
3708 >     * of all (key, value) pairs using the given reducer to
3709 >     * combine values, and the given basis as an identity value.
3710 >     *
3711 >     * @param parallelismThreshold the (estimated) number of elements
3712 >     * needed for this operation to be executed in parallel
3713 >     * @param transformer a function returning the transformation
3714 >     * for an element
3715 >     * @param basis the identity (initial default value) for the reduction
3716 >     * @param reducer a commutative associative combining function
3717 >     * @return the result of accumulating the given transformation
3718 >     * of all (key, value) pairs
3719 >     * @since 1.8
3720 >     */
3721 >    public double reduceToDouble(long parallelismThreshold,
3722 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3723 >                                 double basis,
3724 >                                 DoubleBinaryOperator reducer) {
3725 >        if (transformer == null || reducer == null)
3726 >            throw new NullPointerException();
3727 >        return new MapReduceMappingsToDoubleTask<K,V>
3728 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3729 >             null, transformer, basis, reducer).invoke();
3730      }
3731  
3732      /**
3733 <     * Returns the value to which the specified key is mapped in this table.
3733 >     * Returns the result of accumulating the given transformation
3734 >     * of all (key, value) pairs using the given reducer to
3735 >     * combine values, and the given basis as an identity value.
3736       *
3737 <     * @param   key   a key in the table.
3738 <     * @return  the value to which the key is mapped in this table;
3739 <     *          <tt>null</tt> if the key is not mapped to any value in
3740 <     *          this table.
3741 <     * @throws  NullPointerException  if the key is
3742 <     *               <tt>null</tt>.
3743 <     * @see     #put(Object, Object)
3737 >     * @param parallelismThreshold the (estimated) number of elements
3738 >     * needed for this operation to be executed in parallel
3739 >     * @param transformer a function returning the transformation
3740 >     * for an element
3741 >     * @param basis the identity (initial default value) for the reduction
3742 >     * @param reducer a commutative associative combining function
3743 >     * @return the result of accumulating the given transformation
3744 >     * of all (key, value) pairs
3745 >     * @since 1.8
3746       */
3747 <    public V get(Object key) {
3748 <        int hash = hash(key); // throws NullPointerException if key null
3749 <        return segmentFor(hash).get((K) key, hash);
3747 >    public long reduceToLong(long parallelismThreshold,
3748 >                             ToLongBiFunction<? super K, ? super V> transformer,
3749 >                             long basis,
3750 >                             LongBinaryOperator reducer) {
3751 >        if (transformer == null || reducer == null)
3752 >            throw new NullPointerException();
3753 >        return new MapReduceMappingsToLongTask<K,V>
3754 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3755 >             null, transformer, basis, reducer).invoke();
3756      }
3757  
3758      /**
3759 <     * Tests if the specified object is a key in this table.
3759 >     * Returns the result of accumulating the given transformation
3760 >     * of all (key, value) pairs using the given reducer to
3761 >     * combine values, and the given basis as an identity value.
3762       *
3763 <     * @param   key   possible key.
3764 <     * @return  <tt>true</tt> if and only if the specified object
3765 <     *          is a key in this table, as determined by the
3766 <     *          <tt>equals</tt> method; <tt>false</tt> otherwise.
3767 <     * @throws  NullPointerException  if the key is
3768 <     *               <tt>null</tt>.
3769 <     * @see     #contains(Object)
3763 >     * @param parallelismThreshold the (estimated) number of elements
3764 >     * needed for this operation to be executed in parallel
3765 >     * @param transformer a function returning the transformation
3766 >     * for an element
3767 >     * @param basis the identity (initial default value) for the reduction
3768 >     * @param reducer a commutative associative combining function
3769 >     * @return the result of accumulating the given transformation
3770 >     * of all (key, value) pairs
3771 >     * @since 1.8
3772       */
3773 <    public boolean containsKey(Object key) {
3774 <        int hash = hash(key); // throws NullPointerException if key null
3775 <        return segmentFor(hash).containsKey(key, hash);
3773 >    public int reduceToInt(long parallelismThreshold,
3774 >                           ToIntBiFunction<? super K, ? super V> transformer,
3775 >                           int basis,
3776 >                           IntBinaryOperator reducer) {
3777 >        if (transformer == null || reducer == null)
3778 >            throw new NullPointerException();
3779 >        return new MapReduceMappingsToIntTask<K,V>
3780 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3781 >             null, transformer, basis, reducer).invoke();
3782      }
3783  
3784      /**
3785 <     * Returns <tt>true</tt> if this map maps one or more keys to the
590 <     * specified value. Note: This method requires a full internal
591 <     * traversal of the hash table, and so is much slower than
592 <     * method <tt>containsKey</tt>.
3785 >     * Performs the given action for each key.
3786       *
3787 <     * @param value value whose presence in this map is to be tested.
3788 <     * @return <tt>true</tt> if this map maps one or more keys to the
3789 <     * specified value.
3790 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
3787 >     * @param parallelismThreshold the (estimated) number of elements
3788 >     * needed for this operation to be executed in parallel
3789 >     * @param action the action
3790 >     * @since 1.8
3791       */
3792 <    public boolean containsValue(Object value) {
3793 <        if (value == null)
3792 >    public void forEachKey(long parallelismThreshold,
3793 >                           Consumer<? super K> action) {
3794 >        if (action == null) throw new NullPointerException();
3795 >        new ForEachKeyTask<K,V>
3796 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3797 >             action).invoke();
3798 >    }
3799 >
3800 >    /**
3801 >     * Performs the given action for each non-null transformation
3802 >     * of each key.
3803 >     *
3804 >     * @param parallelismThreshold the (estimated) number of elements
3805 >     * needed for this operation to be executed in parallel
3806 >     * @param transformer a function returning the transformation
3807 >     * for an element, or null if there is no transformation (in
3808 >     * which case the action is not applied)
3809 >     * @param action the action
3810 >     * @param <U> the return type of the transformer
3811 >     * @since 1.8
3812 >     */
3813 >    public <U> void forEachKey(long parallelismThreshold,
3814 >                               Function<? super K, ? extends U> transformer,
3815 >                               Consumer<? super U> action) {
3816 >        if (transformer == null || action == null)
3817              throw new NullPointerException();
3818 +        new ForEachTransformedKeyTask<K,V,U>
3819 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3820 +             transformer, action).invoke();
3821 +    }
3822  
3823 <        for (int i = 0; i < segments.length; ++i) {
3824 <            if (segments[i].containsValue(value))
3825 <                return true;
3826 <        }
3827 <        return false;
3823 >    /**
3824 >     * Returns a non-null result from applying the given search
3825 >     * function on each key, or null if none. Upon success,
3826 >     * further element processing is suppressed and the results of
3827 >     * any other parallel invocations of the search function are
3828 >     * ignored.
3829 >     *
3830 >     * @param parallelismThreshold the (estimated) number of elements
3831 >     * needed for this operation to be executed in parallel
3832 >     * @param searchFunction a function returning a non-null
3833 >     * result on success, else null
3834 >     * @param <U> the return type of the search function
3835 >     * @return a non-null result from applying the given search
3836 >     * function on each key, or null if none
3837 >     * @since 1.8
3838 >     */
3839 >    public <U> U searchKeys(long parallelismThreshold,
3840 >                            Function<? super K, ? extends U> searchFunction) {
3841 >        if (searchFunction == null) throw new NullPointerException();
3842 >        return new SearchKeysTask<K,V,U>
3843 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3844 >             searchFunction, new AtomicReference<U>()).invoke();
3845      }
3846  
3847      /**
3848 <     * Legacy method testing if some key maps into the specified value
3849 <     * in this table.  This operation is more expensive than the
3850 <     * <tt>containsKey</tt> method.
3851 <     *
3852 <     * <p> Note that this method is identical in functionality to
3853 <     * <tt>containsValue</tt>, This method esists solely to ensure
3854 <     * full compatibility with class {@link java.util.Hashtable},
3855 <     * which supported this method prior to introduction of the
3856 <     * collections framework.
3848 >     * Returns the result of accumulating all keys using the given
3849 >     * reducer to combine values, or null if none.
3850 >     *
3851 >     * @param parallelismThreshold the (estimated) number of elements
3852 >     * needed for this operation to be executed in parallel
3853 >     * @param reducer a commutative associative combining function
3854 >     * @return the result of accumulating all keys using the given
3855 >     * reducer to combine values, or null if none
3856 >     * @since 1.8
3857 >     */
3858 >    public K reduceKeys(long parallelismThreshold,
3859 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3860 >        if (reducer == null) throw new NullPointerException();
3861 >        return new ReduceKeysTask<K,V>
3862 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3863 >             null, reducer).invoke();
3864 >    }
3865  
3866 <     * @param      value   a value to search for.
3867 <     * @return     <tt>true</tt> if and only if some key maps to the
3868 <     *             <tt>value</tt> argument in this table as
3869 <     *             determined by the <tt>equals</tt> method;
3870 <     *             <tt>false</tt> otherwise.
3871 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
3872 <     * @see        #containsKey(Object)
3873 <     * @see        #containsValue(Object)
3874 <     * @see   Map
3866 >    /**
3867 >     * Returns the result of accumulating the given transformation
3868 >     * of all keys using the given reducer to combine values, or
3869 >     * null if none.
3870 >     *
3871 >     * @param parallelismThreshold the (estimated) number of elements
3872 >     * needed for this operation to be executed in parallel
3873 >     * @param transformer a function returning the transformation
3874 >     * for an element, or null if there is no transformation (in
3875 >     * which case it is not combined)
3876 >     * @param reducer a commutative associative combining function
3877 >     * @param <U> the return type of the transformer
3878 >     * @return the result of accumulating the given transformation
3879 >     * of all keys
3880 >     * @since 1.8
3881       */
3882 <    public boolean contains(Object value) {
3883 <        return containsValue(value);
3882 >    public <U> U reduceKeys(long parallelismThreshold,
3883 >                            Function<? super K, ? extends U> transformer,
3884 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3885 >        if (transformer == null || reducer == null)
3886 >            throw new NullPointerException();
3887 >        return new MapReduceKeysTask<K,V,U>
3888 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3889 >             null, transformer, reducer).invoke();
3890      }
3891  
3892      /**
3893 <     * Maps the specified <tt>key</tt> to the specified
3894 <     * <tt>value</tt> in this table. Neither the key nor the
3895 <     * value can be <tt>null</tt>. <p>
3893 >     * Returns the result of accumulating the given transformation
3894 >     * of all keys using the given reducer to combine values, and
3895 >     * the given basis as an identity value.
3896       *
3897 <     * The value can be retrieved by calling the <tt>get</tt> method
3898 <     * with a key that is equal to the original key.
3897 >     * @param parallelismThreshold the (estimated) number of elements
3898 >     * needed for this operation to be executed in parallel
3899 >     * @param transformer a function returning the transformation
3900 >     * for an element
3901 >     * @param basis the identity (initial default value) for the reduction
3902 >     * @param reducer a commutative associative combining function
3903 >     * @return the result of accumulating the given transformation
3904 >     * of all keys
3905 >     * @since 1.8
3906 >     */
3907 >    public double reduceKeysToDouble(long parallelismThreshold,
3908 >                                     ToDoubleFunction<? super K> transformer,
3909 >                                     double basis,
3910 >                                     DoubleBinaryOperator reducer) {
3911 >        if (transformer == null || reducer == null)
3912 >            throw new NullPointerException();
3913 >        return new MapReduceKeysToDoubleTask<K,V>
3914 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3915 >             null, transformer, basis, reducer).invoke();
3916 >    }
3917 >
3918 >    /**
3919 >     * Returns the result of accumulating the given transformation
3920 >     * of all keys using the given reducer to combine values, and
3921 >     * the given basis as an identity value.
3922       *
3923 <     * @param      key     the table key.
3924 <     * @param      value   the value.
3925 <     * @return     the previous value of the specified key in this table,
3926 <     *             or <tt>null</tt> if it did not have one.
3927 <     * @throws  NullPointerException  if the key or value is
3928 <     *               <tt>null</tt>.
3929 <     * @see     Object#equals(Object)
3930 <     * @see     #get(Object)
3923 >     * @param parallelismThreshold the (estimated) number of elements
3924 >     * needed for this operation to be executed in parallel
3925 >     * @param transformer a function returning the transformation
3926 >     * for an element
3927 >     * @param basis the identity (initial default value) for the reduction
3928 >     * @param reducer a commutative associative combining function
3929 >     * @return the result of accumulating the given transformation
3930 >     * of all keys
3931 >     * @since 1.8
3932       */
3933 <    public V put(K key, V value) {
3934 <        if (value == null)
3933 >    public long reduceKeysToLong(long parallelismThreshold,
3934 >                                 ToLongFunction<? super K> transformer,
3935 >                                 long basis,
3936 >                                 LongBinaryOperator reducer) {
3937 >        if (transformer == null || reducer == null)
3938              throw new NullPointerException();
3939 <        int hash = hash(key);
3940 <        return segmentFor(hash).put(key, hash, value, false);
3939 >        return new MapReduceKeysToLongTask<K,V>
3940 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3941 >             null, transformer, basis, reducer).invoke();
3942      }
3943  
3944      /**
3945 <     * If the specified key is not already associated
3946 <     * with a value, associate it with the given value.
3947 <     * This is equivalent to
663 <     * <pre>
664 <     *   if (!map.containsKey(key))
665 <     *      return map.put(key, value);
666 <     *   else
667 <     *      return map.get(key);
668 <     * </pre>
669 <     * Except that the action is performed atomically.
670 <     * @param key key with which the specified value is to be associated.
671 <     * @param value value to be associated with the specified key.
672 <     * @return previous value associated with specified key, or <tt>null</tt>
673 <     *         if there was no mapping for key.  A <tt>null</tt> return can
674 <     *         also indicate that the map previously associated <tt>null</tt>
675 <     *         with the specified key, if the implementation supports
676 <     *         <tt>null</tt> values.
677 <     *
678 <     * @throws UnsupportedOperationException if the <tt>put</tt> operation is
679 <     *            not supported by this map.
680 <     * @throws ClassCastException if the class of the specified key or value
681 <     *            prevents it from being stored in this map.
682 <     * @throws NullPointerException if the specified key or value is
683 <     *            <tt>null</tt>.
3945 >     * Returns the result of accumulating the given transformation
3946 >     * of all keys using the given reducer to combine values, and
3947 >     * the given basis as an identity value.
3948       *
3949 <     **/
3950 <    public V putIfAbsent(K key, V value) {
3951 <        if (value == null)
3949 >     * @param parallelismThreshold the (estimated) number of elements
3950 >     * needed for this operation to be executed in parallel
3951 >     * @param transformer a function returning the transformation
3952 >     * for an element
3953 >     * @param basis the identity (initial default value) for the reduction
3954 >     * @param reducer a commutative associative combining function
3955 >     * @return the result of accumulating the given transformation
3956 >     * of all keys
3957 >     * @since 1.8
3958 >     */
3959 >    public int reduceKeysToInt(long parallelismThreshold,
3960 >                               ToIntFunction<? super K> transformer,
3961 >                               int basis,
3962 >                               IntBinaryOperator reducer) {
3963 >        if (transformer == null || reducer == null)
3964              throw new NullPointerException();
3965 <        int hash = hash(key);
3966 <        return segmentFor(hash).put(key, hash, value, true);
3965 >        return new MapReduceKeysToIntTask<K,V>
3966 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3967 >             null, transformer, basis, reducer).invoke();
3968      }
3969  
3970 +    /**
3971 +     * Performs the given action for each value.
3972 +     *
3973 +     * @param parallelismThreshold the (estimated) number of elements
3974 +     * needed for this operation to be executed in parallel
3975 +     * @param action the action
3976 +     * @since 1.8
3977 +     */
3978 +    public void forEachValue(long parallelismThreshold,
3979 +                             Consumer<? super V> action) {
3980 +        if (action == null)
3981 +            throw new NullPointerException();
3982 +        new ForEachValueTask<K,V>
3983 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3984 +             action).invoke();
3985 +    }
3986  
3987      /**
3988 <     * Copies all of the mappings from the specified map to this one.
3988 >     * Performs the given action for each non-null transformation
3989 >     * of each value.
3990       *
3991 <     * These mappings replace any mappings that this map had for any of the
3992 <     * keys currently in the specified Map.
3991 >     * @param parallelismThreshold the (estimated) number of elements
3992 >     * needed for this operation to be executed in parallel
3993 >     * @param transformer a function returning the transformation
3994 >     * for an element, or null if there is no transformation (in
3995 >     * which case the action is not applied)
3996 >     * @param action the action
3997 >     * @param <U> the return type of the transformer
3998 >     * @since 1.8
3999 >     */
4000 >    public <U> void forEachValue(long parallelismThreshold,
4001 >                                 Function<? super V, ? extends U> transformer,
4002 >                                 Consumer<? super U> action) {
4003 >        if (transformer == null || action == null)
4004 >            throw new NullPointerException();
4005 >        new ForEachTransformedValueTask<K,V,U>
4006 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4007 >             transformer, action).invoke();
4008 >    }
4009 >
4010 >    /**
4011 >     * Returns a non-null result from applying the given search
4012 >     * function on each value, or null if none.  Upon success,
4013 >     * further element processing is suppressed and the results of
4014 >     * any other parallel invocations of the search function are
4015 >     * ignored.
4016       *
4017 <     * @param t Mappings to be stored in this map.
4017 >     * @param parallelismThreshold the (estimated) number of elements
4018 >     * needed for this operation to be executed in parallel
4019 >     * @param searchFunction a function returning a non-null
4020 >     * result on success, else null
4021 >     * @param <U> the return type of the search function
4022 >     * @return a non-null result from applying the given search
4023 >     * function on each value, or null if none
4024 >     * @since 1.8
4025       */
4026 <    public void putAll(Map<? extends K, ? extends V> t) {
4027 <        Iterator<Map.Entry<? extends K, ? extends V>> it = t.entrySet().iterator();
4028 <        while (it.hasNext()) {
4029 <            Entry<? extends K, ? extends V> e = it.next();
4030 <            put(e.getKey(), e.getValue());
4031 <        }
4026 >    public <U> U searchValues(long parallelismThreshold,
4027 >                              Function<? super V, ? extends U> searchFunction) {
4028 >        if (searchFunction == null) throw new NullPointerException();
4029 >        return new SearchValuesTask<K,V,U>
4030 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4031 >             searchFunction, new AtomicReference<U>()).invoke();
4032      }
4033  
4034      /**
4035 <     * Removes the key (and its corresponding value) from this
4036 <     * table. This method does nothing if the key is not in the table.
4035 >     * Returns the result of accumulating all values using the
4036 >     * given reducer to combine values, or null if none.
4037       *
4038 <     * @param   key   the key that needs to be removed.
4039 <     * @return  the value to which the key had been mapped in this table,
4040 <     *          or <tt>null</tt> if the key did not have a mapping.
4041 <     * @throws  NullPointerException  if the key is
4042 <     *               <tt>null</tt>.
4038 >     * @param parallelismThreshold the (estimated) number of elements
4039 >     * needed for this operation to be executed in parallel
4040 >     * @param reducer a commutative associative combining function
4041 >     * @return the result of accumulating all values
4042 >     * @since 1.8
4043       */
4044 <    public V remove(Object key) {
4045 <        int hash = hash(key);
4046 <        return segmentFor(hash).remove(key, hash, null);
4044 >    public V reduceValues(long parallelismThreshold,
4045 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4046 >        if (reducer == null) throw new NullPointerException();
4047 >        return new ReduceValuesTask<K,V>
4048 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4049 >             null, reducer).invoke();
4050      }
4051  
4052      /**
4053 <     * Remove entry for key only if currently mapped to given value.
4054 <     * Acts as
4055 <     * <pre>
4056 <     *  if (map.get(key).equals(value)) {
4057 <     *     map.remove(key);
4058 <     *     return true;
4059 <     * } else return false;
4060 <     * </pre>
4061 <     * except that the action is performed atomically.
4062 <     * @param key key with which the specified value is associated.
4063 <     * @param value value associated with the specified key.
4064 <     * @return true if the value was removed
4065 <     * @throws NullPointerException if the specified key is
4066 <     *            <tt>null</tt>.
4053 >     * Returns the result of accumulating the given transformation
4054 >     * of all values using the given reducer to combine values, or
4055 >     * null if none.
4056 >     *
4057 >     * @param parallelismThreshold the (estimated) number of elements
4058 >     * needed for this operation to be executed in parallel
4059 >     * @param transformer a function returning the transformation
4060 >     * for an element, or null if there is no transformation (in
4061 >     * which case it is not combined)
4062 >     * @param reducer a commutative associative combining function
4063 >     * @param <U> the return type of the transformer
4064 >     * @return the result of accumulating the given transformation
4065 >     * of all values
4066 >     * @since 1.8
4067       */
4068 <    public boolean remove(Object key, Object value) {
4069 <        int hash = hash(key);
4070 <        return segmentFor(hash).remove(key, hash, value) != null;
4068 >    public <U> U reduceValues(long parallelismThreshold,
4069 >                              Function<? super V, ? extends U> transformer,
4070 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4071 >        if (transformer == null || reducer == null)
4072 >            throw new NullPointerException();
4073 >        return new MapReduceValuesTask<K,V,U>
4074 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4075 >             null, transformer, reducer).invoke();
4076      }
4077  
4078      /**
4079 <     * Removes all mappings from this map.
4079 >     * Returns the result of accumulating the given transformation
4080 >     * of all values using the given reducer to combine values,
4081 >     * and the given basis as an identity value.
4082 >     *
4083 >     * @param parallelismThreshold the (estimated) number of elements
4084 >     * needed for this operation to be executed in parallel
4085 >     * @param transformer a function returning the transformation
4086 >     * for an element
4087 >     * @param basis the identity (initial default value) for the reduction
4088 >     * @param reducer a commutative associative combining function
4089 >     * @return the result of accumulating the given transformation
4090 >     * of all values
4091 >     * @since 1.8
4092       */
4093 <    public void clear() {
4094 <        for (int i = 0; i < segments.length; ++i)
4095 <            segments[i].clear();
4093 >    public double reduceValuesToDouble(long parallelismThreshold,
4094 >                                       ToDoubleFunction<? super V> transformer,
4095 >                                       double basis,
4096 >                                       DoubleBinaryOperator reducer) {
4097 >        if (transformer == null || reducer == null)
4098 >            throw new NullPointerException();
4099 >        return new MapReduceValuesToDoubleTask<K,V>
4100 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4101 >             null, transformer, basis, reducer).invoke();
4102      }
4103  
4104 +    /**
4105 +     * Returns the result of accumulating the given transformation
4106 +     * of all values using the given reducer to combine values,
4107 +     * and the given basis as an identity value.
4108 +     *
4109 +     * @param parallelismThreshold the (estimated) number of elements
4110 +     * needed for this operation to be executed in parallel
4111 +     * @param transformer a function returning the transformation
4112 +     * for an element
4113 +     * @param basis the identity (initial default value) for the reduction
4114 +     * @param reducer a commutative associative combining function
4115 +     * @return the result of accumulating the given transformation
4116 +     * of all values
4117 +     * @since 1.8
4118 +     */
4119 +    public long reduceValuesToLong(long parallelismThreshold,
4120 +                                   ToLongFunction<? super V> transformer,
4121 +                                   long basis,
4122 +                                   LongBinaryOperator reducer) {
4123 +        if (transformer == null || reducer == null)
4124 +            throw new NullPointerException();
4125 +        return new MapReduceValuesToLongTask<K,V>
4126 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4127 +             null, transformer, basis, reducer).invoke();
4128 +    }
4129  
4130      /**
4131 <     * Returns a shallow copy of this
4132 <     * <tt>ConcurrentHashMap</tt> instance: the keys and
4133 <     * values themselves are not cloned.
4131 >     * Returns the result of accumulating the given transformation
4132 >     * of all values using the given reducer to combine values,
4133 >     * and the given basis as an identity value.
4134       *
4135 <     * @return a shallow copy of this map.
4135 >     * @param parallelismThreshold the (estimated) number of elements
4136 >     * needed for this operation to be executed in parallel
4137 >     * @param transformer a function returning the transformation
4138 >     * for an element
4139 >     * @param basis the identity (initial default value) for the reduction
4140 >     * @param reducer a commutative associative combining function
4141 >     * @return the result of accumulating the given transformation
4142 >     * of all values
4143 >     * @since 1.8
4144       */
4145 <    public Object clone() {
4146 <        // We cannot call super.clone, since it would share final
4147 <        // segments array, and there's no way to reassign finals.
4145 >    public int reduceValuesToInt(long parallelismThreshold,
4146 >                                 ToIntFunction<? super V> transformer,
4147 >                                 int basis,
4148 >                                 IntBinaryOperator reducer) {
4149 >        if (transformer == null || reducer == null)
4150 >            throw new NullPointerException();
4151 >        return new MapReduceValuesToIntTask<K,V>
4152 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4153 >             null, transformer, basis, reducer).invoke();
4154 >    }
4155  
4156 <        float lf = segments[0].loadFactor;
4157 <        int segs = segments.length;
4158 <        int cap = (int)(size() / lf);
4159 <        if (cap < segs) cap = segs;
4160 <        ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
4161 <        t.putAll(this);
4162 <        return t;
4156 >    /**
4157 >     * Performs the given action for each entry.
4158 >     *
4159 >     * @param parallelismThreshold the (estimated) number of elements
4160 >     * needed for this operation to be executed in parallel
4161 >     * @param action the action
4162 >     * @since 1.8
4163 >     */
4164 >    public void forEachEntry(long parallelismThreshold,
4165 >                             Consumer<? super Map.Entry<K,V>> action) {
4166 >        if (action == null) throw new NullPointerException();
4167 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4168 >                                  action).invoke();
4169      }
4170  
4171      /**
4172 <     * Returns a set view of the keys contained in this map.  The set is
4173 <     * backed by the map, so changes to the map are reflected in the set, and
778 <     * vice-versa.  The set supports element removal, which removes the
779 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
780 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
781 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
782 <     * <tt>addAll</tt> operations.
783 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
784 <     * will never throw {@link java.util.ConcurrentModificationException},
785 <     * and guarantees to traverse elements as they existed upon
786 <     * construction of the iterator, and may (but is not guaranteed to)
787 <     * reflect any modifications subsequent to construction.
4172 >     * Performs the given action for each non-null transformation
4173 >     * of each entry.
4174       *
4175 <     * @return a set view of the keys contained in this map.
4175 >     * @param parallelismThreshold the (estimated) number of elements
4176 >     * needed for this operation to be executed in parallel
4177 >     * @param transformer a function returning the transformation
4178 >     * for an element, or null if there is no transformation (in
4179 >     * which case the action is not applied)
4180 >     * @param action the action
4181 >     * @param <U> the return type of the transformer
4182 >     * @since 1.8
4183       */
4184 <    public Set<K> keySet() {
4185 <        Set<K> ks = keySet;
4186 <        return (ks != null) ? ks : (keySet = new KeySet());
4184 >    public <U> void forEachEntry(long parallelismThreshold,
4185 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4186 >                                 Consumer<? super U> action) {
4187 >        if (transformer == null || action == null)
4188 >            throw new NullPointerException();
4189 >        new ForEachTransformedEntryTask<K,V,U>
4190 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4191 >             transformer, action).invoke();
4192      }
4193  
4194 +    /**
4195 +     * Returns a non-null result from applying the given search
4196 +     * function on each entry, or null if none.  Upon success,
4197 +     * further element processing is suppressed and the results of
4198 +     * any other parallel invocations of the search function are
4199 +     * ignored.
4200 +     *
4201 +     * @param parallelismThreshold the (estimated) number of elements
4202 +     * needed for this operation to be executed in parallel
4203 +     * @param searchFunction a function returning a non-null
4204 +     * result on success, else null
4205 +     * @param <U> the return type of the search function
4206 +     * @return a non-null result from applying the given search
4207 +     * function on each entry, or null if none
4208 +     * @since 1.8
4209 +     */
4210 +    public <U> U searchEntries(long parallelismThreshold,
4211 +                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4212 +        if (searchFunction == null) throw new NullPointerException();
4213 +        return new SearchEntriesTask<K,V,U>
4214 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4215 +             searchFunction, new AtomicReference<U>()).invoke();
4216 +    }
4217  
4218      /**
4219 <     * Returns a collection view of the values contained in this map.  The
4220 <     * collection is backed by the map, so changes to the map are reflected in
800 <     * the collection, and vice-versa.  The collection supports element
801 <     * removal, which removes the corresponding mapping from this map, via the
802 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
803 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
804 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
805 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
806 <     * will never throw {@link java.util.ConcurrentModificationException},
807 <     * and guarantees to traverse elements as they existed upon
808 <     * construction of the iterator, and may (but is not guaranteed to)
809 <     * reflect any modifications subsequent to construction.
4219 >     * Returns the result of accumulating all entries using the
4220 >     * given reducer to combine values, or null if none.
4221       *
4222 <     * @return a collection view of the values contained in this map.
4222 >     * @param parallelismThreshold the (estimated) number of elements
4223 >     * needed for this operation to be executed in parallel
4224 >     * @param reducer a commutative associative combining function
4225 >     * @return the result of accumulating all entries
4226 >     * @since 1.8
4227       */
4228 <    public Collection<V> values() {
4229 <        Collection<V> vs = values;
4230 <        return (vs != null) ? vs : (values = new Values());
4228 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4229 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4230 >        if (reducer == null) throw new NullPointerException();
4231 >        return new ReduceEntriesTask<K,V>
4232 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4233 >             null, reducer).invoke();
4234      }
4235  
4236 +    /**
4237 +     * Returns the result of accumulating the given transformation
4238 +     * of all entries using the given reducer to combine values,
4239 +     * or null if none.
4240 +     *
4241 +     * @param parallelismThreshold the (estimated) number of elements
4242 +     * needed for this operation to be executed in parallel
4243 +     * @param transformer a function returning the transformation
4244 +     * for an element, or null if there is no transformation (in
4245 +     * which case it is not combined)
4246 +     * @param reducer a commutative associative combining function
4247 +     * @param <U> the return type of the transformer
4248 +     * @return the result of accumulating the given transformation
4249 +     * of all entries
4250 +     * @since 1.8
4251 +     */
4252 +    public <U> U reduceEntries(long parallelismThreshold,
4253 +                               Function<Map.Entry<K,V>, ? extends U> transformer,
4254 +                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4255 +        if (transformer == null || reducer == null)
4256 +            throw new NullPointerException();
4257 +        return new MapReduceEntriesTask<K,V,U>
4258 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4259 +             null, transformer, reducer).invoke();
4260 +    }
4261  
4262      /**
4263 <     * Returns a collection view of the mappings contained in this map.  Each
4264 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
4265 <     * collection is backed by the map, so changes to the map are reflected in
823 <     * the collection, and vice-versa.  The collection supports element
824 <     * removal, which removes the corresponding mapping from the map, via the
825 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
826 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
827 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
828 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
829 <     * will never throw {@link java.util.ConcurrentModificationException},
830 <     * and guarantees to traverse elements as they existed upon
831 <     * construction of the iterator, and may (but is not guaranteed to)
832 <     * reflect any modifications subsequent to construction.
4263 >     * Returns the result of accumulating the given transformation
4264 >     * of all entries using the given reducer to combine values,
4265 >     * and the given basis as an identity value.
4266       *
4267 <     * @return a collection view of the mappings contained in this map.
4267 >     * @param parallelismThreshold the (estimated) number of elements
4268 >     * needed for this operation to be executed in parallel
4269 >     * @param transformer a function returning the transformation
4270 >     * for an element
4271 >     * @param basis the identity (initial default value) for the reduction
4272 >     * @param reducer a commutative associative combining function
4273 >     * @return the result of accumulating the given transformation
4274 >     * of all entries
4275 >     * @since 1.8
4276       */
4277 <    public Set<Map.Entry<K,V>> entrySet() {
4278 <        Set<Map.Entry<K,V>> es = entrySet;
4279 <        return (es != null) ? es : (entrySet = new EntrySet());
4277 >    public double reduceEntriesToDouble(long parallelismThreshold,
4278 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4279 >                                        double basis,
4280 >                                        DoubleBinaryOperator reducer) {
4281 >        if (transformer == null || reducer == null)
4282 >            throw new NullPointerException();
4283 >        return new MapReduceEntriesToDoubleTask<K,V>
4284 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4285 >             null, transformer, basis, reducer).invoke();
4286      }
4287  
4288 +    /**
4289 +     * Returns the result of accumulating the given transformation
4290 +     * of all entries using the given reducer to combine values,
4291 +     * and the given basis as an identity value.
4292 +     *
4293 +     * @param parallelismThreshold the (estimated) number of elements
4294 +     * needed for this operation to be executed in parallel
4295 +     * @param transformer a function returning the transformation
4296 +     * for an element
4297 +     * @param basis the identity (initial default value) for the reduction
4298 +     * @param reducer a commutative associative combining function
4299 +     * @return the result of accumulating the given transformation
4300 +     * of all entries
4301 +     * @since 1.8
4302 +     */
4303 +    public long reduceEntriesToLong(long parallelismThreshold,
4304 +                                    ToLongFunction<Map.Entry<K,V>> transformer,
4305 +                                    long basis,
4306 +                                    LongBinaryOperator reducer) {
4307 +        if (transformer == null || reducer == null)
4308 +            throw new NullPointerException();
4309 +        return new MapReduceEntriesToLongTask<K,V>
4310 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4311 +             null, transformer, basis, reducer).invoke();
4312 +    }
4313  
4314      /**
4315 <     * Returns an enumeration of the keys in this table.
4315 >     * Returns the result of accumulating the given transformation
4316 >     * of all entries using the given reducer to combine values,
4317 >     * and the given basis as an identity value.
4318       *
4319 <     * @return  an enumeration of the keys in this table.
4320 <     * @see     Enumeration
4321 <     * @see     #elements()
4322 <     * @see     #keySet()
4323 <     * @see     Map
4319 >     * @param parallelismThreshold the (estimated) number of elements
4320 >     * needed for this operation to be executed in parallel
4321 >     * @param transformer a function returning the transformation
4322 >     * for an element
4323 >     * @param basis the identity (initial default value) for the reduction
4324 >     * @param reducer a commutative associative combining function
4325 >     * @return the result of accumulating the given transformation
4326 >     * of all entries
4327 >     * @since 1.8
4328       */
4329 <    public Enumeration<K> keys() {
4330 <        return new KeyIterator();
4329 >    public int reduceEntriesToInt(long parallelismThreshold,
4330 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4331 >                                  int basis,
4332 >                                  IntBinaryOperator reducer) {
4333 >        if (transformer == null || reducer == null)
4334 >            throw new NullPointerException();
4335 >        return new MapReduceEntriesToIntTask<K,V>
4336 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4337 >             null, transformer, basis, reducer).invoke();
4338      }
4339  
4340 +
4341 +    /* ----------------Views -------------- */
4342 +
4343      /**
4344 <     * Returns an enumeration of the values in this table.
4345 <     * Use the Enumeration methods on the returned object to fetch the elements
4346 <     * sequentially.
4344 >     * Base class for views.
4345 >     */
4346 >    abstract static class CollectionView<K,V,E>
4347 >        implements Collection<E>, java.io.Serializable {
4348 >        private static final long serialVersionUID = 7249069246763182397L;
4349 >        final ConcurrentHashMap<K,V> map;
4350 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4351 >
4352 >        /**
4353 >         * Returns the map backing this view.
4354 >         *
4355 >         * @return the map backing this view
4356 >         */
4357 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4358 >
4359 >        /**
4360 >         * Removes all of the elements from this view, by removing all
4361 >         * the mappings from the map backing this view.
4362 >         */
4363 >        public final void clear()      { map.clear(); }
4364 >        public final int size()        { return map.size(); }
4365 >        public final boolean isEmpty() { return map.isEmpty(); }
4366 >
4367 >        // implementations below rely on concrete classes supplying these
4368 >        // abstract methods
4369 >        /**
4370 >         * Returns an iterator over the elements in this collection.
4371 >         *
4372 >         * <p>The returned iterator is
4373 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4374 >         *
4375 >         * @return an iterator over the elements in this collection
4376 >         */
4377 >        public abstract Iterator<E> iterator();
4378 >        public abstract boolean contains(Object o);
4379 >        public abstract boolean remove(Object o);
4380 >
4381 >        private static final String oomeMsg = "Required array size too large";
4382 >
4383 >        public final Object[] toArray() {
4384 >            long sz = map.mappingCount();
4385 >            if (sz > MAX_ARRAY_SIZE)
4386 >                throw new OutOfMemoryError(oomeMsg);
4387 >            int n = (int)sz;
4388 >            Object[] r = new Object[n];
4389 >            int i = 0;
4390 >            for (E e : this) {
4391 >                if (i == n) {
4392 >                    if (n >= MAX_ARRAY_SIZE)
4393 >                        throw new OutOfMemoryError(oomeMsg);
4394 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4395 >                        n = MAX_ARRAY_SIZE;
4396 >                    else
4397 >                        n += (n >>> 1) + 1;
4398 >                    r = Arrays.copyOf(r, n);
4399 >                }
4400 >                r[i++] = e;
4401 >            }
4402 >            return (i == n) ? r : Arrays.copyOf(r, i);
4403 >        }
4404 >
4405 >        @SuppressWarnings("unchecked")
4406 >        public final <T> T[] toArray(T[] a) {
4407 >            long sz = map.mappingCount();
4408 >            if (sz > MAX_ARRAY_SIZE)
4409 >                throw new OutOfMemoryError(oomeMsg);
4410 >            int m = (int)sz;
4411 >            T[] r = (a.length >= m) ? a :
4412 >                (T[])java.lang.reflect.Array
4413 >                .newInstance(a.getClass().getComponentType(), m);
4414 >            int n = r.length;
4415 >            int i = 0;
4416 >            for (E e : this) {
4417 >                if (i == n) {
4418 >                    if (n >= MAX_ARRAY_SIZE)
4419 >                        throw new OutOfMemoryError(oomeMsg);
4420 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4421 >                        n = MAX_ARRAY_SIZE;
4422 >                    else
4423 >                        n += (n >>> 1) + 1;
4424 >                    r = Arrays.copyOf(r, n);
4425 >                }
4426 >                r[i++] = (T)e;
4427 >            }
4428 >            if (a == r && i < n) {
4429 >                r[i] = null; // null-terminate
4430 >                return r;
4431 >            }
4432 >            return (i == n) ? r : Arrays.copyOf(r, i);
4433 >        }
4434 >
4435 >        /**
4436 >         * Returns a string representation of this collection.
4437 >         * The string representation consists of the string representations
4438 >         * of the collection's elements in the order they are returned by
4439 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4440 >         * Adjacent elements are separated by the characters {@code ", "}
4441 >         * (comma and space).  Elements are converted to strings as by
4442 >         * {@link String#valueOf(Object)}.
4443 >         *
4444 >         * @return a string representation of this collection
4445 >         */
4446 >        public final String toString() {
4447 >            StringBuilder sb = new StringBuilder();
4448 >            sb.append('[');
4449 >            Iterator<E> it = iterator();
4450 >            if (it.hasNext()) {
4451 >                for (;;) {
4452 >                    Object e = it.next();
4453 >                    sb.append(e == this ? "(this Collection)" : e);
4454 >                    if (!it.hasNext())
4455 >                        break;
4456 >                    sb.append(',').append(' ');
4457 >                }
4458 >            }
4459 >            return sb.append(']').toString();
4460 >        }
4461 >
4462 >        public final boolean containsAll(Collection<?> c) {
4463 >            if (c != this) {
4464 >                for (Object e : c) {
4465 >                    if (e == null || !contains(e))
4466 >                        return false;
4467 >                }
4468 >            }
4469 >            return true;
4470 >        }
4471 >
4472 >        public final boolean removeAll(Collection<?> c) {
4473 >            if (c == null) throw new NullPointerException();
4474 >            boolean modified = false;
4475 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4476 >                if (c.contains(it.next())) {
4477 >                    it.remove();
4478 >                    modified = true;
4479 >                }
4480 >            }
4481 >            return modified;
4482 >        }
4483 >
4484 >        public final boolean retainAll(Collection<?> c) {
4485 >            if (c == null) throw new NullPointerException();
4486 >            boolean modified = false;
4487 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4488 >                if (!c.contains(it.next())) {
4489 >                    it.remove();
4490 >                    modified = true;
4491 >                }
4492 >            }
4493 >            return modified;
4494 >        }
4495 >
4496 >    }
4497 >
4498 >    /**
4499 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4500 >     * which additions may optionally be enabled by mapping to a
4501 >     * common value.  This class cannot be directly instantiated.
4502 >     * See {@link #keySet() keySet()},
4503 >     * {@link #keySet(Object) keySet(V)},
4504 >     * {@link #newKeySet() newKeySet()},
4505 >     * {@link #newKeySet(int) newKeySet(int)}.
4506       *
4507 <     * @return  an enumeration of the values in this table.
861 <     * @see     java.util.Enumeration
862 <     * @see     #keys()
863 <     * @see     #values()
864 <     * @see     Map
4507 >     * @since 1.8
4508       */
4509 <    public Enumeration<V> elements() {
4510 <        return new ValueIterator();
4509 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4510 >        implements Set<K>, java.io.Serializable {
4511 >        private static final long serialVersionUID = 7249069246763182397L;
4512 >        private final V value;
4513 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4514 >            super(map);
4515 >            this.value = value;
4516 >        }
4517 >
4518 >        /**
4519 >         * Returns the default mapped value for additions,
4520 >         * or {@code null} if additions are not supported.
4521 >         *
4522 >         * @return the default mapped value for additions, or {@code null}
4523 >         * if not supported
4524 >         */
4525 >        public V getMappedValue() { return value; }
4526 >
4527 >        /**
4528 >         * {@inheritDoc}
4529 >         * @throws NullPointerException if the specified key is null
4530 >         */
4531 >        public boolean contains(Object o) { return map.containsKey(o); }
4532 >
4533 >        /**
4534 >         * Removes the key from this map view, by removing the key (and its
4535 >         * corresponding value) from the backing map.  This method does
4536 >         * nothing if the key is not in the map.
4537 >         *
4538 >         * @param  o the key to be removed from the backing map
4539 >         * @return {@code true} if the backing map contained the specified key
4540 >         * @throws NullPointerException if the specified key is null
4541 >         */
4542 >        public boolean remove(Object o) { return map.remove(o) != null; }
4543 >
4544 >        /**
4545 >         * @return an iterator over the keys of the backing map
4546 >         */
4547 >        public Iterator<K> iterator() {
4548 >            Node<K,V>[] t;
4549 >            ConcurrentHashMap<K,V> m = map;
4550 >            int f = (t = m.table) == null ? 0 : t.length;
4551 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4552 >        }
4553 >
4554 >        /**
4555 >         * Adds the specified key to this set view by mapping the key to
4556 >         * the default mapped value in the backing map, if defined.
4557 >         *
4558 >         * @param e key to be added
4559 >         * @return {@code true} if this set changed as a result of the call
4560 >         * @throws NullPointerException if the specified key is null
4561 >         * @throws UnsupportedOperationException if no default mapped value
4562 >         * for additions was provided
4563 >         */
4564 >        public boolean add(K e) {
4565 >            V v;
4566 >            if ((v = value) == null)
4567 >                throw new UnsupportedOperationException();
4568 >            return map.putVal(e, v, true) == null;
4569 >        }
4570 >
4571 >        /**
4572 >         * Adds all of the elements in the specified collection to this set,
4573 >         * as if by calling {@link #add} on each one.
4574 >         *
4575 >         * @param c the elements to be inserted into this set
4576 >         * @return {@code true} if this set changed as a result of the call
4577 >         * @throws NullPointerException if the collection or any of its
4578 >         * elements are {@code null}
4579 >         * @throws UnsupportedOperationException if no default mapped value
4580 >         * for additions was provided
4581 >         */
4582 >        public boolean addAll(Collection<? extends K> c) {
4583 >            boolean added = false;
4584 >            V v;
4585 >            if ((v = value) == null)
4586 >                throw new UnsupportedOperationException();
4587 >            for (K e : c) {
4588 >                if (map.putVal(e, v, true) == null)
4589 >                    added = true;
4590 >            }
4591 >            return added;
4592 >        }
4593 >
4594 >        public int hashCode() {
4595 >            int h = 0;
4596 >            for (K e : this)
4597 >                h += e.hashCode();
4598 >            return h;
4599 >        }
4600 >
4601 >        public boolean equals(Object o) {
4602 >            Set<?> c;
4603 >            return ((o instanceof Set) &&
4604 >                    ((c = (Set<?>)o) == this ||
4605 >                     (containsAll(c) && c.containsAll(this))));
4606 >        }
4607 >
4608 >        public Spliterator<K> spliterator() {
4609 >            Node<K,V>[] t;
4610 >            ConcurrentHashMap<K,V> m = map;
4611 >            long n = m.sumCount();
4612 >            int f = (t = m.table) == null ? 0 : t.length;
4613 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4614 >        }
4615 >
4616 >        public void forEach(Consumer<? super K> action) {
4617 >            if (action == null) throw new NullPointerException();
4618 >            Node<K,V>[] t;
4619 >            if ((t = map.table) != null) {
4620 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4621 >                for (Node<K,V> p; (p = it.advance()) != null; )
4622 >                    action.accept(p.key);
4623 >            }
4624 >        }
4625 >    }
4626 >
4627 >    /**
4628 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4629 >     * values, in which additions are disabled. This class cannot be
4630 >     * directly instantiated. See {@link #values()}.
4631 >     */
4632 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4633 >        implements Collection<V>, java.io.Serializable {
4634 >        private static final long serialVersionUID = 2249069246763182397L;
4635 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4636 >        public final boolean contains(Object o) {
4637 >            return map.containsValue(o);
4638 >        }
4639 >
4640 >        public final boolean remove(Object o) {
4641 >            if (o != null) {
4642 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4643 >                    if (o.equals(it.next())) {
4644 >                        it.remove();
4645 >                        return true;
4646 >                    }
4647 >                }
4648 >            }
4649 >            return false;
4650 >        }
4651 >
4652 >        public final Iterator<V> iterator() {
4653 >            ConcurrentHashMap<K,V> m = map;
4654 >            Node<K,V>[] t;
4655 >            int f = (t = m.table) == null ? 0 : t.length;
4656 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4657 >        }
4658 >
4659 >        public final boolean add(V e) {
4660 >            throw new UnsupportedOperationException();
4661 >        }
4662 >        public final boolean addAll(Collection<? extends V> c) {
4663 >            throw new UnsupportedOperationException();
4664 >        }
4665 >
4666 >        public Spliterator<V> spliterator() {
4667 >            Node<K,V>[] t;
4668 >            ConcurrentHashMap<K,V> m = map;
4669 >            long n = m.sumCount();
4670 >            int f = (t = m.table) == null ? 0 : t.length;
4671 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4672 >        }
4673 >
4674 >        public void forEach(Consumer<? super V> action) {
4675 >            if (action == null) throw new NullPointerException();
4676 >            Node<K,V>[] t;
4677 >            if ((t = map.table) != null) {
4678 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4679 >                for (Node<K,V> p; (p = it.advance()) != null; )
4680 >                    action.accept(p.val);
4681 >            }
4682 >        }
4683      }
4684  
4685 <    /* ---------------- Iterator Support -------------- */
4685 >    /**
4686 >     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4687 >     * entries.  This class cannot be directly instantiated. See
4688 >     * {@link #entrySet()}.
4689 >     */
4690 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4691 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4692 >        private static final long serialVersionUID = 2249069246763182397L;
4693 >        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4694 >
4695 >        public boolean contains(Object o) {
4696 >            Object k, v, r; Map.Entry<?,?> e;
4697 >            return ((o instanceof Map.Entry) &&
4698 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4699 >                    (r = map.get(k)) != null &&
4700 >                    (v = e.getValue()) != null &&
4701 >                    (v == r || v.equals(r)));
4702 >        }
4703  
4704 <    private abstract class HashIterator {
4705 <        private int nextSegmentIndex;
4706 <        private int nextTableIndex;
4707 <        private HashEntry[] currentTable;
4708 <        private HashEntry<K, V> nextEntry;
4709 <        private HashEntry<K, V> lastReturned;
4704 >        public boolean remove(Object o) {
4705 >            Object k, v; Map.Entry<?,?> e;
4706 >            return ((o instanceof Map.Entry) &&
4707 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4708 >                    (v = e.getValue()) != null &&
4709 >                    map.remove(k, v));
4710 >        }
4711  
4712 <        private HashIterator() {
4713 <            nextSegmentIndex = segments.length - 1;
4714 <            nextTableIndex = -1;
4715 <            advance();
4712 >        /**
4713 >         * @return an iterator over the entries of the backing map
4714 >         */
4715 >        public Iterator<Map.Entry<K,V>> iterator() {
4716 >            ConcurrentHashMap<K,V> m = map;
4717 >            Node<K,V>[] t;
4718 >            int f = (t = m.table) == null ? 0 : t.length;
4719 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4720          }
4721  
4722 <        public boolean hasMoreElements() { return hasNext(); }
4722 >        public boolean add(Entry<K,V> e) {
4723 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4724 >        }
4725  
4726 <        private void advance() {
4727 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
4728 <                return;
4726 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4727 >            boolean added = false;
4728 >            for (Entry<K,V> e : c) {
4729 >                if (add(e))
4730 >                    added = true;
4731 >            }
4732 >            return added;
4733 >        }
4734  
4735 <            while (nextTableIndex >= 0) {
4736 <                if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
4737 <                    return;
4735 >        public final int hashCode() {
4736 >            int h = 0;
4737 >            Node<K,V>[] t;
4738 >            if ((t = map.table) != null) {
4739 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4740 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4741 >                    h += p.hashCode();
4742 >                }
4743              }
4744 +            return h;
4745 +        }
4746  
4747 <            while (nextSegmentIndex >= 0) {
4748 <                Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
4749 <                if (seg.count != 0) {
4750 <                    currentTable = seg.table;
4751 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
4752 <                        if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
4753 <                            nextTableIndex = j - 1;
4754 <                            return;
4755 <                        }
4747 >        public final boolean equals(Object o) {
4748 >            Set<?> c;
4749 >            return ((o instanceof Set) &&
4750 >                    ((c = (Set<?>)o) == this ||
4751 >                     (containsAll(c) && c.containsAll(this))));
4752 >        }
4753 >
4754 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4755 >            Node<K,V>[] t;
4756 >            ConcurrentHashMap<K,V> m = map;
4757 >            long n = m.sumCount();
4758 >            int f = (t = m.table) == null ? 0 : t.length;
4759 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4760 >        }
4761 >
4762 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4763 >            if (action == null) throw new NullPointerException();
4764 >            Node<K,V>[] t;
4765 >            if ((t = map.table) != null) {
4766 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4767 >                for (Node<K,V> p; (p = it.advance()) != null; )
4768 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4769 >            }
4770 >        }
4771 >
4772 >    }
4773 >
4774 >    // -------------------------------------------------------
4775 >
4776 >    /**
4777 >     * Base class for bulk tasks. Repeats some fields and code from
4778 >     * class Traverser, because we need to subclass CountedCompleter.
4779 >     */
4780 >    @SuppressWarnings("serial")
4781 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4782 >        Node<K,V>[] tab;        // same as Traverser
4783 >        Node<K,V> next;
4784 >        TableStack<K,V> stack, spare;
4785 >        int index;
4786 >        int baseIndex;
4787 >        int baseLimit;
4788 >        final int baseSize;
4789 >        int batch;              // split control
4790 >
4791 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4792 >            super(par);
4793 >            this.batch = b;
4794 >            this.index = this.baseIndex = i;
4795 >            if ((this.tab = t) == null)
4796 >                this.baseSize = this.baseLimit = 0;
4797 >            else if (par == null)
4798 >                this.baseSize = this.baseLimit = t.length;
4799 >            else {
4800 >                this.baseLimit = f;
4801 >                this.baseSize = par.baseSize;
4802 >            }
4803 >        }
4804 >
4805 >        /**
4806 >         * Same as Traverser version
4807 >         */
4808 >        final Node<K,V> advance() {
4809 >            Node<K,V> e;
4810 >            if ((e = next) != null)
4811 >                e = e.next;
4812 >            for (;;) {
4813 >                Node<K,V>[] t; int i, n;
4814 >                if (e != null)
4815 >                    return next = e;
4816 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4817 >                    (n = t.length) <= (i = index) || i < 0)
4818 >                    return next = null;
4819 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4820 >                    if (e instanceof ForwardingNode) {
4821 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4822 >                        e = null;
4823 >                        pushState(t, i, n);
4824 >                        continue;
4825                      }
4826 +                    else if (e instanceof TreeBin)
4827 +                        e = ((TreeBin<K,V>)e).first;
4828 +                    else
4829 +                        e = null;
4830                  }
4831 +                if (stack != null)
4832 +                    recoverState(n);
4833 +                else if ((index = i + baseSize) >= n)
4834 +                    index = ++baseIndex;
4835              }
4836          }
4837  
4838 <        public boolean hasNext() { return nextEntry != null; }
4838 >        private void pushState(Node<K,V>[] t, int i, int n) {
4839 >            TableStack<K,V> s = spare;
4840 >            if (s != null)
4841 >                spare = s.next;
4842 >            else
4843 >                s = new TableStack<K,V>();
4844 >            s.tab = t;
4845 >            s.length = n;
4846 >            s.index = i;
4847 >            s.next = stack;
4848 >            stack = s;
4849 >        }
4850  
4851 <        HashEntry<K,V> nextEntry() {
4852 <            if (nextEntry == null)
4853 <                throw new NoSuchElementException();
4854 <            lastReturned = nextEntry;
4855 <            advance();
4856 <            return lastReturned;
4851 >        private void recoverState(int n) {
4852 >            TableStack<K,V> s; int len;
4853 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4854 >                n = len;
4855 >                index = s.index;
4856 >                tab = s.tab;
4857 >                s.tab = null;
4858 >                TableStack<K,V> next = s.next;
4859 >                s.next = spare; // save for reuse
4860 >                stack = next;
4861 >                spare = s;
4862 >            }
4863 >            if (s == null && (index += baseSize) >= n)
4864 >                index = ++baseIndex;
4865          }
4866 +    }
4867  
4868 <        public void remove() {
4869 <            if (lastReturned == null)
4870 <                throw new IllegalStateException();
4871 <            ConcurrentHashMap.this.remove(lastReturned.key);
4872 <            lastReturned = null;
4868 >    /*
4869 >     * Task classes. Coded in a regular but ugly format/style to
4870 >     * simplify checks that each variant differs in the right way from
4871 >     * others. The null screenings exist because compilers cannot tell
4872 >     * that we've already null-checked task arguments, so we force
4873 >     * simplest hoisted bypass to help avoid convoluted traps.
4874 >     */
4875 >    @SuppressWarnings("serial")
4876 >    static final class ForEachKeyTask<K,V>
4877 >        extends BulkTask<K,V,Void> {
4878 >        final Consumer<? super K> action;
4879 >        ForEachKeyTask
4880 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4881 >             Consumer<? super K> action) {
4882 >            super(p, b, i, f, t);
4883 >            this.action = action;
4884 >        }
4885 >        public final void compute() {
4886 >            final Consumer<? super K> action;
4887 >            if ((action = this.action) != null) {
4888 >                for (int i = baseIndex, f, h; batch > 0 &&
4889 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4890 >                    addToPendingCount(1);
4891 >                    new ForEachKeyTask<K,V>
4892 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4893 >                         action).fork();
4894 >                }
4895 >                for (Node<K,V> p; (p = advance()) != null;)
4896 >                    action.accept(p.key);
4897 >                propagateCompletion();
4898 >            }
4899          }
4900      }
4901  
4902 <    private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
4903 <        public K next() { return super.nextEntry().key; }
4904 <        public K nextElement() { return super.nextEntry().key; }
4902 >    @SuppressWarnings("serial")
4903 >    static final class ForEachValueTask<K,V>
4904 >        extends BulkTask<K,V,Void> {
4905 >        final Consumer<? super V> action;
4906 >        ForEachValueTask
4907 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4908 >             Consumer<? super V> action) {
4909 >            super(p, b, i, f, t);
4910 >            this.action = action;
4911 >        }
4912 >        public final void compute() {
4913 >            final Consumer<? super V> action;
4914 >            if ((action = this.action) != null) {
4915 >                for (int i = baseIndex, f, h; batch > 0 &&
4916 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4917 >                    addToPendingCount(1);
4918 >                    new ForEachValueTask<K,V>
4919 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4920 >                         action).fork();
4921 >                }
4922 >                for (Node<K,V> p; (p = advance()) != null;)
4923 >                    action.accept(p.val);
4924 >                propagateCompletion();
4925 >            }
4926 >        }
4927      }
4928  
4929 <    private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
4930 <        public V next() { return super.nextEntry().value; }
4931 <        public V nextElement() { return super.nextEntry().value; }
4929 >    @SuppressWarnings("serial")
4930 >    static final class ForEachEntryTask<K,V>
4931 >        extends BulkTask<K,V,Void> {
4932 >        final Consumer<? super Entry<K,V>> action;
4933 >        ForEachEntryTask
4934 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4935 >             Consumer<? super Entry<K,V>> action) {
4936 >            super(p, b, i, f, t);
4937 >            this.action = action;
4938 >        }
4939 >        public final void compute() {
4940 >            final Consumer<? super Entry<K,V>> action;
4941 >            if ((action = this.action) != null) {
4942 >                for (int i = baseIndex, f, h; batch > 0 &&
4943 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4944 >                    addToPendingCount(1);
4945 >                    new ForEachEntryTask<K,V>
4946 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4947 >                         action).fork();
4948 >                }
4949 >                for (Node<K,V> p; (p = advance()) != null; )
4950 >                    action.accept(p);
4951 >                propagateCompletion();
4952 >            }
4953 >        }
4954      }
4955  
4956 <    private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
4957 <        public Map.Entry<K,V> next() { return super.nextEntry(); }
4956 >    @SuppressWarnings("serial")
4957 >    static final class ForEachMappingTask<K,V>
4958 >        extends BulkTask<K,V,Void> {
4959 >        final BiConsumer<? super K, ? super V> action;
4960 >        ForEachMappingTask
4961 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4962 >             BiConsumer<? super K,? super V> action) {
4963 >            super(p, b, i, f, t);
4964 >            this.action = action;
4965 >        }
4966 >        public final void compute() {
4967 >            final BiConsumer<? super K, ? super V> action;
4968 >            if ((action = this.action) != null) {
4969 >                for (int i = baseIndex, f, h; batch > 0 &&
4970 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971 >                    addToPendingCount(1);
4972 >                    new ForEachMappingTask<K,V>
4973 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4974 >                         action).fork();
4975 >                }
4976 >                for (Node<K,V> p; (p = advance()) != null; )
4977 >                    action.accept(p.key, p.val);
4978 >                propagateCompletion();
4979 >            }
4980 >        }
4981      }
4982  
4983 <    private class KeySet extends AbstractSet<K> {
4984 <        public Iterator<K> iterator() {
4985 <            return new KeyIterator();
4983 >    @SuppressWarnings("serial")
4984 >    static final class ForEachTransformedKeyTask<K,V,U>
4985 >        extends BulkTask<K,V,Void> {
4986 >        final Function<? super K, ? extends U> transformer;
4987 >        final Consumer<? super U> action;
4988 >        ForEachTransformedKeyTask
4989 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4990 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4991 >            super(p, b, i, f, t);
4992 >            this.transformer = transformer; this.action = action;
4993          }
4994 <        public int size() {
4995 <            return ConcurrentHashMap.this.size();
4994 >        public final void compute() {
4995 >            final Function<? super K, ? extends U> transformer;
4996 >            final Consumer<? super U> action;
4997 >            if ((transformer = this.transformer) != null &&
4998 >                (action = this.action) != null) {
4999 >                for (int i = baseIndex, f, h; batch > 0 &&
5000 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5001 >                    addToPendingCount(1);
5002 >                    new ForEachTransformedKeyTask<K,V,U>
5003 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5004 >                         transformer, action).fork();
5005 >                }
5006 >                for (Node<K,V> p; (p = advance()) != null; ) {
5007 >                    U u;
5008 >                    if ((u = transformer.apply(p.key)) != null)
5009 >                        action.accept(u);
5010 >                }
5011 >                propagateCompletion();
5012 >            }
5013          }
5014 <        public boolean contains(Object o) {
5015 <            return ConcurrentHashMap.this.containsKey(o);
5014 >    }
5015 >
5016 >    @SuppressWarnings("serial")
5017 >    static final class ForEachTransformedValueTask<K,V,U>
5018 >        extends BulkTask<K,V,Void> {
5019 >        final Function<? super V, ? extends U> transformer;
5020 >        final Consumer<? super U> action;
5021 >        ForEachTransformedValueTask
5022 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5023 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5024 >            super(p, b, i, f, t);
5025 >            this.transformer = transformer; this.action = action;
5026          }
5027 <        public boolean remove(Object o) {
5028 <            return ConcurrentHashMap.this.remove(o) != null;
5027 >        public final void compute() {
5028 >            final Function<? super V, ? extends U> transformer;
5029 >            final Consumer<? super U> action;
5030 >            if ((transformer = this.transformer) != null &&
5031 >                (action = this.action) != null) {
5032 >                for (int i = baseIndex, f, h; batch > 0 &&
5033 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5034 >                    addToPendingCount(1);
5035 >                    new ForEachTransformedValueTask<K,V,U>
5036 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5037 >                         transformer, action).fork();
5038 >                }
5039 >                for (Node<K,V> p; (p = advance()) != null; ) {
5040 >                    U u;
5041 >                    if ((u = transformer.apply(p.val)) != null)
5042 >                        action.accept(u);
5043 >                }
5044 >                propagateCompletion();
5045 >            }
5046          }
5047 <        public void clear() {
5048 <            ConcurrentHashMap.this.clear();
5047 >    }
5048 >
5049 >    @SuppressWarnings("serial")
5050 >    static final class ForEachTransformedEntryTask<K,V,U>
5051 >        extends BulkTask<K,V,Void> {
5052 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5053 >        final Consumer<? super U> action;
5054 >        ForEachTransformedEntryTask
5055 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5056 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5057 >            super(p, b, i, f, t);
5058 >            this.transformer = transformer; this.action = action;
5059 >        }
5060 >        public final void compute() {
5061 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5062 >            final Consumer<? super U> action;
5063 >            if ((transformer = this.transformer) != null &&
5064 >                (action = this.action) != null) {
5065 >                for (int i = baseIndex, f, h; batch > 0 &&
5066 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5067 >                    addToPendingCount(1);
5068 >                    new ForEachTransformedEntryTask<K,V,U>
5069 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5070 >                         transformer, action).fork();
5071 >                }
5072 >                for (Node<K,V> p; (p = advance()) != null; ) {
5073 >                    U u;
5074 >                    if ((u = transformer.apply(p)) != null)
5075 >                        action.accept(u);
5076 >                }
5077 >                propagateCompletion();
5078 >            }
5079          }
5080      }
5081  
5082 <    private class Values extends AbstractCollection<V> {
5083 <        public Iterator<V> iterator() {
5084 <            return new ValueIterator();
5082 >    @SuppressWarnings("serial")
5083 >    static final class ForEachTransformedMappingTask<K,V,U>
5084 >        extends BulkTask<K,V,Void> {
5085 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5086 >        final Consumer<? super U> action;
5087 >        ForEachTransformedMappingTask
5088 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5089 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5090 >             Consumer<? super U> action) {
5091 >            super(p, b, i, f, t);
5092 >            this.transformer = transformer; this.action = action;
5093          }
5094 <        public int size() {
5095 <            return ConcurrentHashMap.this.size();
5094 >        public final void compute() {
5095 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5096 >            final Consumer<? super U> action;
5097 >            if ((transformer = this.transformer) != null &&
5098 >                (action = this.action) != null) {
5099 >                for (int i = baseIndex, f, h; batch > 0 &&
5100 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5101 >                    addToPendingCount(1);
5102 >                    new ForEachTransformedMappingTask<K,V,U>
5103 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5104 >                         transformer, action).fork();
5105 >                }
5106 >                for (Node<K,V> p; (p = advance()) != null; ) {
5107 >                    U u;
5108 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5109 >                        action.accept(u);
5110 >                }
5111 >                propagateCompletion();
5112 >            }
5113          }
5114 <        public boolean contains(Object o) {
5115 <            return ConcurrentHashMap.this.containsValue(o);
5114 >    }
5115 >
5116 >    @SuppressWarnings("serial")
5117 >    static final class SearchKeysTask<K,V,U>
5118 >        extends BulkTask<K,V,U> {
5119 >        final Function<? super K, ? extends U> searchFunction;
5120 >        final AtomicReference<U> result;
5121 >        SearchKeysTask
5122 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5123 >             Function<? super K, ? extends U> searchFunction,
5124 >             AtomicReference<U> result) {
5125 >            super(p, b, i, f, t);
5126 >            this.searchFunction = searchFunction; this.result = result;
5127          }
5128 <        public void clear() {
5129 <            ConcurrentHashMap.this.clear();
5128 >        public final U getRawResult() { return result.get(); }
5129 >        public final void compute() {
5130 >            final Function<? super K, ? extends U> searchFunction;
5131 >            final AtomicReference<U> result;
5132 >            if ((searchFunction = this.searchFunction) != null &&
5133 >                (result = this.result) != null) {
5134 >                for (int i = baseIndex, f, h; batch > 0 &&
5135 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5136 >                    if (result.get() != null)
5137 >                        return;
5138 >                    addToPendingCount(1);
5139 >                    new SearchKeysTask<K,V,U>
5140 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5141 >                         searchFunction, result).fork();
5142 >                }
5143 >                while (result.get() == null) {
5144 >                    U u;
5145 >                    Node<K,V> p;
5146 >                    if ((p = advance()) == null) {
5147 >                        propagateCompletion();
5148 >                        break;
5149 >                    }
5150 >                    if ((u = searchFunction.apply(p.key)) != null) {
5151 >                        if (result.compareAndSet(null, u))
5152 >                            quietlyCompleteRoot();
5153 >                        break;
5154 >                    }
5155 >                }
5156 >            }
5157          }
5158      }
5159  
5160 <    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
5161 <        public Iterator<Map.Entry<K,V>> iterator() {
5162 <            return new EntryIterator();
5160 >    @SuppressWarnings("serial")
5161 >    static final class SearchValuesTask<K,V,U>
5162 >        extends BulkTask<K,V,U> {
5163 >        final Function<? super V, ? extends U> searchFunction;
5164 >        final AtomicReference<U> result;
5165 >        SearchValuesTask
5166 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5167 >             Function<? super V, ? extends U> searchFunction,
5168 >             AtomicReference<U> result) {
5169 >            super(p, b, i, f, t);
5170 >            this.searchFunction = searchFunction; this.result = result;
5171          }
5172 <        public boolean contains(Object o) {
5173 <            if (!(o instanceof Map.Entry))
5174 <                return false;
5175 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
5176 <            V v = ConcurrentHashMap.this.get(e.getKey());
5177 <            return v != null && v.equals(e.getValue());
5172 >        public final U getRawResult() { return result.get(); }
5173 >        public final void compute() {
5174 >            final Function<? super V, ? extends U> searchFunction;
5175 >            final AtomicReference<U> result;
5176 >            if ((searchFunction = this.searchFunction) != null &&
5177 >                (result = this.result) != null) {
5178 >                for (int i = baseIndex, f, h; batch > 0 &&
5179 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5180 >                    if (result.get() != null)
5181 >                        return;
5182 >                    addToPendingCount(1);
5183 >                    new SearchValuesTask<K,V,U>
5184 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5185 >                         searchFunction, result).fork();
5186 >                }
5187 >                while (result.get() == null) {
5188 >                    U u;
5189 >                    Node<K,V> p;
5190 >                    if ((p = advance()) == null) {
5191 >                        propagateCompletion();
5192 >                        break;
5193 >                    }
5194 >                    if ((u = searchFunction.apply(p.val)) != null) {
5195 >                        if (result.compareAndSet(null, u))
5196 >                            quietlyCompleteRoot();
5197 >                        break;
5198 >                    }
5199 >                }
5200 >            }
5201          }
5202 <        public boolean remove(Object o) {
5203 <            if (!(o instanceof Map.Entry))
5204 <                return false;
5205 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
5206 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
5202 >    }
5203 >
5204 >    @SuppressWarnings("serial")
5205 >    static final class SearchEntriesTask<K,V,U>
5206 >        extends BulkTask<K,V,U> {
5207 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5208 >        final AtomicReference<U> result;
5209 >        SearchEntriesTask
5210 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5211 >             Function<Entry<K,V>, ? extends U> searchFunction,
5212 >             AtomicReference<U> result) {
5213 >            super(p, b, i, f, t);
5214 >            this.searchFunction = searchFunction; this.result = result;
5215          }
5216 <        public int size() {
5217 <            return ConcurrentHashMap.this.size();
5216 >        public final U getRawResult() { return result.get(); }
5217 >        public final void compute() {
5218 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5219 >            final AtomicReference<U> result;
5220 >            if ((searchFunction = this.searchFunction) != null &&
5221 >                (result = this.result) != null) {
5222 >                for (int i = baseIndex, f, h; batch > 0 &&
5223 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5224 >                    if (result.get() != null)
5225 >                        return;
5226 >                    addToPendingCount(1);
5227 >                    new SearchEntriesTask<K,V,U>
5228 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5229 >                         searchFunction, result).fork();
5230 >                }
5231 >                while (result.get() == null) {
5232 >                    U u;
5233 >                    Node<K,V> p;
5234 >                    if ((p = advance()) == null) {
5235 >                        propagateCompletion();
5236 >                        break;
5237 >                    }
5238 >                    if ((u = searchFunction.apply(p)) != null) {
5239 >                        if (result.compareAndSet(null, u))
5240 >                            quietlyCompleteRoot();
5241 >                        return;
5242 >                    }
5243 >                }
5244 >            }
5245          }
5246 <        public void clear() {
5247 <            ConcurrentHashMap.this.clear();
5246 >    }
5247 >
5248 >    @SuppressWarnings("serial")
5249 >    static final class SearchMappingsTask<K,V,U>
5250 >        extends BulkTask<K,V,U> {
5251 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5252 >        final AtomicReference<U> result;
5253 >        SearchMappingsTask
5254 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5255 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5256 >             AtomicReference<U> result) {
5257 >            super(p, b, i, f, t);
5258 >            this.searchFunction = searchFunction; this.result = result;
5259 >        }
5260 >        public final U getRawResult() { return result.get(); }
5261 >        public final void compute() {
5262 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5263 >            final AtomicReference<U> result;
5264 >            if ((searchFunction = this.searchFunction) != null &&
5265 >                (result = this.result) != null) {
5266 >                for (int i = baseIndex, f, h; batch > 0 &&
5267 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5268 >                    if (result.get() != null)
5269 >                        return;
5270 >                    addToPendingCount(1);
5271 >                    new SearchMappingsTask<K,V,U>
5272 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5273 >                         searchFunction, result).fork();
5274 >                }
5275 >                while (result.get() == null) {
5276 >                    U u;
5277 >                    Node<K,V> p;
5278 >                    if ((p = advance()) == null) {
5279 >                        propagateCompletion();
5280 >                        break;
5281 >                    }
5282 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5283 >                        if (result.compareAndSet(null, u))
5284 >                            quietlyCompleteRoot();
5285 >                        break;
5286 >                    }
5287 >                }
5288 >            }
5289          }
5290      }
5291  
5292 <    /* ---------------- Serialization Support -------------- */
5292 >    @SuppressWarnings("serial")
5293 >    static final class ReduceKeysTask<K,V>
5294 >        extends BulkTask<K,V,K> {
5295 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5296 >        K result;
5297 >        ReduceKeysTask<K,V> rights, nextRight;
5298 >        ReduceKeysTask
5299 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5300 >             ReduceKeysTask<K,V> nextRight,
5301 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5302 >            super(p, b, i, f, t); this.nextRight = nextRight;
5303 >            this.reducer = reducer;
5304 >        }
5305 >        public final K getRawResult() { return result; }
5306 >        public final void compute() {
5307 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5308 >            if ((reducer = this.reducer) != null) {
5309 >                for (int i = baseIndex, f, h; batch > 0 &&
5310 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5311 >                    addToPendingCount(1);
5312 >                    (rights = new ReduceKeysTask<K,V>
5313 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5314 >                      rights, reducer)).fork();
5315 >                }
5316 >                K r = null;
5317 >                for (Node<K,V> p; (p = advance()) != null; ) {
5318 >                    K u = p.key;
5319 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5320 >                }
5321 >                result = r;
5322 >                CountedCompleter<?> c;
5323 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5324 >                    @SuppressWarnings("unchecked")
5325 >                    ReduceKeysTask<K,V>
5326 >                        t = (ReduceKeysTask<K,V>)c,
5327 >                        s = t.rights;
5328 >                    while (s != null) {
5329 >                        K tr, sr;
5330 >                        if ((sr = s.result) != null)
5331 >                            t.result = (((tr = t.result) == null) ? sr :
5332 >                                        reducer.apply(tr, sr));
5333 >                        s = t.rights = s.nextRight;
5334 >                    }
5335 >                }
5336 >            }
5337 >        }
5338 >    }
5339  
5340 <    /**
5341 <     * Save the state of the <tt>ConcurrentHashMap</tt>
5342 <     * instance to a stream (i.e.,
5343 <     * serialize it).
5344 <     * @param s the stream
5345 <     * @serialData
5346 <     * the key (Object) and value (Object)
5347 <     * for each key-value mapping, followed by a null pair.
5348 <     * The key-value mappings are emitted in no particular order.
5349 <     */
5350 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
5351 <        s.defaultWriteObject();
5340 >    @SuppressWarnings("serial")
5341 >    static final class ReduceValuesTask<K,V>
5342 >        extends BulkTask<K,V,V> {
5343 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5344 >        V result;
5345 >        ReduceValuesTask<K,V> rights, nextRight;
5346 >        ReduceValuesTask
5347 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5348 >             ReduceValuesTask<K,V> nextRight,
5349 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5350 >            super(p, b, i, f, t); this.nextRight = nextRight;
5351 >            this.reducer = reducer;
5352 >        }
5353 >        public final V getRawResult() { return result; }
5354 >        public final void compute() {
5355 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5356 >            if ((reducer = this.reducer) != null) {
5357 >                for (int i = baseIndex, f, h; batch > 0 &&
5358 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5359 >                    addToPendingCount(1);
5360 >                    (rights = new ReduceValuesTask<K,V>
5361 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5362 >                      rights, reducer)).fork();
5363 >                }
5364 >                V r = null;
5365 >                for (Node<K,V> p; (p = advance()) != null; ) {
5366 >                    V v = p.val;
5367 >                    r = (r == null) ? v : reducer.apply(r, v);
5368 >                }
5369 >                result = r;
5370 >                CountedCompleter<?> c;
5371 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5372 >                    @SuppressWarnings("unchecked")
5373 >                    ReduceValuesTask<K,V>
5374 >                        t = (ReduceValuesTask<K,V>)c,
5375 >                        s = t.rights;
5376 >                    while (s != null) {
5377 >                        V tr, sr;
5378 >                        if ((sr = s.result) != null)
5379 >                            t.result = (((tr = t.result) == null) ? sr :
5380 >                                        reducer.apply(tr, sr));
5381 >                        s = t.rights = s.nextRight;
5382 >                    }
5383 >                }
5384 >            }
5385 >        }
5386 >    }
5387  
5388 <        for (int k = 0; k < segments.length; ++k) {
5389 <            Segment<K,V> seg = (Segment<K,V>)segments[k];
5390 <            seg.lock();
5391 <            try {
5392 <                HashEntry[] tab = seg.table;
5393 <                for (int i = 0; i < tab.length; ++i) {
5394 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
5395 <                        s.writeObject(e.key);
5396 <                        s.writeObject(e.value);
5388 >    @SuppressWarnings("serial")
5389 >    static final class ReduceEntriesTask<K,V>
5390 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5391 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5392 >        Map.Entry<K,V> result;
5393 >        ReduceEntriesTask<K,V> rights, nextRight;
5394 >        ReduceEntriesTask
5395 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5396 >             ReduceEntriesTask<K,V> nextRight,
5397 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5398 >            super(p, b, i, f, t); this.nextRight = nextRight;
5399 >            this.reducer = reducer;
5400 >        }
5401 >        public final Map.Entry<K,V> getRawResult() { return result; }
5402 >        public final void compute() {
5403 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5404 >            if ((reducer = this.reducer) != null) {
5405 >                for (int i = baseIndex, f, h; batch > 0 &&
5406 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5407 >                    addToPendingCount(1);
5408 >                    (rights = new ReduceEntriesTask<K,V>
5409 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5410 >                      rights, reducer)).fork();
5411 >                }
5412 >                Map.Entry<K,V> r = null;
5413 >                for (Node<K,V> p; (p = advance()) != null; )
5414 >                    r = (r == null) ? p : reducer.apply(r, p);
5415 >                result = r;
5416 >                CountedCompleter<?> c;
5417 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5418 >                    @SuppressWarnings("unchecked")
5419 >                    ReduceEntriesTask<K,V>
5420 >                        t = (ReduceEntriesTask<K,V>)c,
5421 >                        s = t.rights;
5422 >                    while (s != null) {
5423 >                        Map.Entry<K,V> tr, sr;
5424 >                        if ((sr = s.result) != null)
5425 >                            t.result = (((tr = t.result) == null) ? sr :
5426 >                                        reducer.apply(tr, sr));
5427 >                        s = t.rights = s.nextRight;
5428                      }
5429                  }
1026            } finally {
1027                seg.unlock();
5430              }
5431          }
1030        s.writeObject(null);
1031        s.writeObject(null);
5432      }
5433  
5434 <    /**
5435 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
5436 <     * instance from a stream (i.e.,
5437 <     * deserialize it).
5438 <     * @param s the stream
5439 <     */
5440 <    private void readObject(java.io.ObjectInputStream s)
5441 <        throws IOException, ClassNotFoundException  {
5442 <        s.defaultReadObject();
5434 >    @SuppressWarnings("serial")
5435 >    static final class MapReduceKeysTask<K,V,U>
5436 >        extends BulkTask<K,V,U> {
5437 >        final Function<? super K, ? extends U> transformer;
5438 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5439 >        U result;
5440 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5441 >        MapReduceKeysTask
5442 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5443 >             MapReduceKeysTask<K,V,U> nextRight,
5444 >             Function<? super K, ? extends U> transformer,
5445 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5446 >            super(p, b, i, f, t); this.nextRight = nextRight;
5447 >            this.transformer = transformer;
5448 >            this.reducer = reducer;
5449 >        }
5450 >        public final U getRawResult() { return result; }
5451 >        public final void compute() {
5452 >            final Function<? super K, ? extends U> transformer;
5453 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5454 >            if ((transformer = this.transformer) != null &&
5455 >                (reducer = this.reducer) != null) {
5456 >                for (int i = baseIndex, f, h; batch > 0 &&
5457 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5458 >                    addToPendingCount(1);
5459 >                    (rights = new MapReduceKeysTask<K,V,U>
5460 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5461 >                      rights, transformer, reducer)).fork();
5462 >                }
5463 >                U r = null;
5464 >                for (Node<K,V> p; (p = advance()) != null; ) {
5465 >                    U u;
5466 >                    if ((u = transformer.apply(p.key)) != null)
5467 >                        r = (r == null) ? u : reducer.apply(r, u);
5468 >                }
5469 >                result = r;
5470 >                CountedCompleter<?> c;
5471 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5472 >                    @SuppressWarnings("unchecked")
5473 >                    MapReduceKeysTask<K,V,U>
5474 >                        t = (MapReduceKeysTask<K,V,U>)c,
5475 >                        s = t.rights;
5476 >                    while (s != null) {
5477 >                        U tr, sr;
5478 >                        if ((sr = s.result) != null)
5479 >                            t.result = (((tr = t.result) == null) ? sr :
5480 >                                        reducer.apply(tr, sr));
5481 >                        s = t.rights = s.nextRight;
5482 >                    }
5483 >                }
5484 >            }
5485 >        }
5486 >    }
5487  
5488 <        // Initialize each segment to be minimally sized, and let grow.
5489 <        for (int i = 0; i < segments.length; ++i) {
5490 <            segments[i].setTable(new HashEntry[1]);
5488 >    @SuppressWarnings("serial")
5489 >    static final class MapReduceValuesTask<K,V,U>
5490 >        extends BulkTask<K,V,U> {
5491 >        final Function<? super V, ? extends U> transformer;
5492 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5493 >        U result;
5494 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5495 >        MapReduceValuesTask
5496 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5497 >             MapReduceValuesTask<K,V,U> nextRight,
5498 >             Function<? super V, ? extends U> transformer,
5499 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5500 >            super(p, b, i, f, t); this.nextRight = nextRight;
5501 >            this.transformer = transformer;
5502 >            this.reducer = reducer;
5503 >        }
5504 >        public final U getRawResult() { return result; }
5505 >        public final void compute() {
5506 >            final Function<? super V, ? extends U> transformer;
5507 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5508 >            if ((transformer = this.transformer) != null &&
5509 >                (reducer = this.reducer) != null) {
5510 >                for (int i = baseIndex, f, h; batch > 0 &&
5511 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5512 >                    addToPendingCount(1);
5513 >                    (rights = new MapReduceValuesTask<K,V,U>
5514 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5515 >                      rights, transformer, reducer)).fork();
5516 >                }
5517 >                U r = null;
5518 >                for (Node<K,V> p; (p = advance()) != null; ) {
5519 >                    U u;
5520 >                    if ((u = transformer.apply(p.val)) != null)
5521 >                        r = (r == null) ? u : reducer.apply(r, u);
5522 >                }
5523 >                result = r;
5524 >                CountedCompleter<?> c;
5525 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5526 >                    @SuppressWarnings("unchecked")
5527 >                    MapReduceValuesTask<K,V,U>
5528 >                        t = (MapReduceValuesTask<K,V,U>)c,
5529 >                        s = t.rights;
5530 >                    while (s != null) {
5531 >                        U tr, sr;
5532 >                        if ((sr = s.result) != null)
5533 >                            t.result = (((tr = t.result) == null) ? sr :
5534 >                                        reducer.apply(tr, sr));
5535 >                        s = t.rights = s.nextRight;
5536 >                    }
5537 >                }
5538 >            }
5539          }
5540 +    }
5541  
5542 <        // Read the keys and values, and put the mappings in the table
5543 <        for (;;) {
5544 <            K key = (K) s.readObject();
5545 <            V value = (V) s.readObject();
5546 <            if (key == null)
5547 <                break;
5548 <            put(key, value);
5542 >    @SuppressWarnings("serial")
5543 >    static final class MapReduceEntriesTask<K,V,U>
5544 >        extends BulkTask<K,V,U> {
5545 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5546 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5547 >        U result;
5548 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5549 >        MapReduceEntriesTask
5550 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5551 >             MapReduceEntriesTask<K,V,U> nextRight,
5552 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5553 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5554 >            super(p, b, i, f, t); this.nextRight = nextRight;
5555 >            this.transformer = transformer;
5556 >            this.reducer = reducer;
5557 >        }
5558 >        public final U getRawResult() { return result; }
5559 >        public final void compute() {
5560 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5561 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5562 >            if ((transformer = this.transformer) != null &&
5563 >                (reducer = this.reducer) != null) {
5564 >                for (int i = baseIndex, f, h; batch > 0 &&
5565 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566 >                    addToPendingCount(1);
5567 >                    (rights = new MapReduceEntriesTask<K,V,U>
5568 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5569 >                      rights, transformer, reducer)).fork();
5570 >                }
5571 >                U r = null;
5572 >                for (Node<K,V> p; (p = advance()) != null; ) {
5573 >                    U u;
5574 >                    if ((u = transformer.apply(p)) != null)
5575 >                        r = (r == null) ? u : reducer.apply(r, u);
5576 >                }
5577 >                result = r;
5578 >                CountedCompleter<?> c;
5579 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5580 >                    @SuppressWarnings("unchecked")
5581 >                    MapReduceEntriesTask<K,V,U>
5582 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5583 >                        s = t.rights;
5584 >                    while (s != null) {
5585 >                        U tr, sr;
5586 >                        if ((sr = s.result) != null)
5587 >                            t.result = (((tr = t.result) == null) ? sr :
5588 >                                        reducer.apply(tr, sr));
5589 >                        s = t.rights = s.nextRight;
5590 >                    }
5591 >                }
5592 >            }
5593 >        }
5594 >    }
5595 >
5596 >    @SuppressWarnings("serial")
5597 >    static final class MapReduceMappingsTask<K,V,U>
5598 >        extends BulkTask<K,V,U> {
5599 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5600 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5601 >        U result;
5602 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5603 >        MapReduceMappingsTask
5604 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5605 >             MapReduceMappingsTask<K,V,U> nextRight,
5606 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5607 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5608 >            super(p, b, i, f, t); this.nextRight = nextRight;
5609 >            this.transformer = transformer;
5610 >            this.reducer = reducer;
5611 >        }
5612 >        public final U getRawResult() { return result; }
5613 >        public final void compute() {
5614 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5615 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5616 >            if ((transformer = this.transformer) != null &&
5617 >                (reducer = this.reducer) != null) {
5618 >                for (int i = baseIndex, f, h; batch > 0 &&
5619 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5620 >                    addToPendingCount(1);
5621 >                    (rights = new MapReduceMappingsTask<K,V,U>
5622 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5623 >                      rights, transformer, reducer)).fork();
5624 >                }
5625 >                U r = null;
5626 >                for (Node<K,V> p; (p = advance()) != null; ) {
5627 >                    U u;
5628 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5629 >                        r = (r == null) ? u : reducer.apply(r, u);
5630 >                }
5631 >                result = r;
5632 >                CountedCompleter<?> c;
5633 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5634 >                    @SuppressWarnings("unchecked")
5635 >                    MapReduceMappingsTask<K,V,U>
5636 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5637 >                        s = t.rights;
5638 >                    while (s != null) {
5639 >                        U tr, sr;
5640 >                        if ((sr = s.result) != null)
5641 >                            t.result = (((tr = t.result) == null) ? sr :
5642 >                                        reducer.apply(tr, sr));
5643 >                        s = t.rights = s.nextRight;
5644 >                    }
5645 >                }
5646 >            }
5647 >        }
5648 >    }
5649 >
5650 >    @SuppressWarnings("serial")
5651 >    static final class MapReduceKeysToDoubleTask<K,V>
5652 >        extends BulkTask<K,V,Double> {
5653 >        final ToDoubleFunction<? super K> transformer;
5654 >        final DoubleBinaryOperator reducer;
5655 >        final double basis;
5656 >        double result;
5657 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5658 >        MapReduceKeysToDoubleTask
5659 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5660 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5661 >             ToDoubleFunction<? super K> transformer,
5662 >             double basis,
5663 >             DoubleBinaryOperator reducer) {
5664 >            super(p, b, i, f, t); this.nextRight = nextRight;
5665 >            this.transformer = transformer;
5666 >            this.basis = basis; this.reducer = reducer;
5667 >        }
5668 >        public final Double getRawResult() { return result; }
5669 >        public final void compute() {
5670 >            final ToDoubleFunction<? super K> transformer;
5671 >            final DoubleBinaryOperator reducer;
5672 >            if ((transformer = this.transformer) != null &&
5673 >                (reducer = this.reducer) != null) {
5674 >                double r = this.basis;
5675 >                for (int i = baseIndex, f, h; batch > 0 &&
5676 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5677 >                    addToPendingCount(1);
5678 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5679 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5680 >                      rights, transformer, r, reducer)).fork();
5681 >                }
5682 >                for (Node<K,V> p; (p = advance()) != null; )
5683 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5684 >                result = r;
5685 >                CountedCompleter<?> c;
5686 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5687 >                    @SuppressWarnings("unchecked")
5688 >                    MapReduceKeysToDoubleTask<K,V>
5689 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5690 >                        s = t.rights;
5691 >                    while (s != null) {
5692 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5693 >                        s = t.rights = s.nextRight;
5694 >                    }
5695 >                }
5696 >            }
5697          }
5698      }
1058 }
5699  
5700 +    @SuppressWarnings("serial")
5701 +    static final class MapReduceValuesToDoubleTask<K,V>
5702 +        extends BulkTask<K,V,Double> {
5703 +        final ToDoubleFunction<? super V> transformer;
5704 +        final DoubleBinaryOperator reducer;
5705 +        final double basis;
5706 +        double result;
5707 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5708 +        MapReduceValuesToDoubleTask
5709 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5710 +             MapReduceValuesToDoubleTask<K,V> nextRight,
5711 +             ToDoubleFunction<? super V> transformer,
5712 +             double basis,
5713 +             DoubleBinaryOperator reducer) {
5714 +            super(p, b, i, f, t); this.nextRight = nextRight;
5715 +            this.transformer = transformer;
5716 +            this.basis = basis; this.reducer = reducer;
5717 +        }
5718 +        public final Double getRawResult() { return result; }
5719 +        public final void compute() {
5720 +            final ToDoubleFunction<? super V> transformer;
5721 +            final DoubleBinaryOperator reducer;
5722 +            if ((transformer = this.transformer) != null &&
5723 +                (reducer = this.reducer) != null) {
5724 +                double r = this.basis;
5725 +                for (int i = baseIndex, f, h; batch > 0 &&
5726 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5727 +                    addToPendingCount(1);
5728 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
5729 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5730 +                      rights, transformer, r, reducer)).fork();
5731 +                }
5732 +                for (Node<K,V> p; (p = advance()) != null; )
5733 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5734 +                result = r;
5735 +                CountedCompleter<?> c;
5736 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5737 +                    @SuppressWarnings("unchecked")
5738 +                    MapReduceValuesToDoubleTask<K,V>
5739 +                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5740 +                        s = t.rights;
5741 +                    while (s != null) {
5742 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5743 +                        s = t.rights = s.nextRight;
5744 +                    }
5745 +                }
5746 +            }
5747 +        }
5748 +    }
5749 +
5750 +    @SuppressWarnings("serial")
5751 +    static final class MapReduceEntriesToDoubleTask<K,V>
5752 +        extends BulkTask<K,V,Double> {
5753 +        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5754 +        final DoubleBinaryOperator reducer;
5755 +        final double basis;
5756 +        double result;
5757 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5758 +        MapReduceEntriesToDoubleTask
5759 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5760 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
5761 +             ToDoubleFunction<Map.Entry<K,V>> transformer,
5762 +             double basis,
5763 +             DoubleBinaryOperator reducer) {
5764 +            super(p, b, i, f, t); this.nextRight = nextRight;
5765 +            this.transformer = transformer;
5766 +            this.basis = basis; this.reducer = reducer;
5767 +        }
5768 +        public final Double getRawResult() { return result; }
5769 +        public final void compute() {
5770 +            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5771 +            final DoubleBinaryOperator reducer;
5772 +            if ((transformer = this.transformer) != null &&
5773 +                (reducer = this.reducer) != null) {
5774 +                double r = this.basis;
5775 +                for (int i = baseIndex, f, h; batch > 0 &&
5776 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5777 +                    addToPendingCount(1);
5778 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5779 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5780 +                      rights, transformer, r, reducer)).fork();
5781 +                }
5782 +                for (Node<K,V> p; (p = advance()) != null; )
5783 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5784 +                result = r;
5785 +                CountedCompleter<?> c;
5786 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5787 +                    @SuppressWarnings("unchecked")
5788 +                    MapReduceEntriesToDoubleTask<K,V>
5789 +                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5790 +                        s = t.rights;
5791 +                    while (s != null) {
5792 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5793 +                        s = t.rights = s.nextRight;
5794 +                    }
5795 +                }
5796 +            }
5797 +        }
5798 +    }
5799 +
5800 +    @SuppressWarnings("serial")
5801 +    static final class MapReduceMappingsToDoubleTask<K,V>
5802 +        extends BulkTask<K,V,Double> {
5803 +        final ToDoubleBiFunction<? super K, ? super V> transformer;
5804 +        final DoubleBinaryOperator reducer;
5805 +        final double basis;
5806 +        double result;
5807 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5808 +        MapReduceMappingsToDoubleTask
5809 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5810 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
5811 +             ToDoubleBiFunction<? super K, ? super V> transformer,
5812 +             double basis,
5813 +             DoubleBinaryOperator reducer) {
5814 +            super(p, b, i, f, t); this.nextRight = nextRight;
5815 +            this.transformer = transformer;
5816 +            this.basis = basis; this.reducer = reducer;
5817 +        }
5818 +        public final Double getRawResult() { return result; }
5819 +        public final void compute() {
5820 +            final ToDoubleBiFunction<? super K, ? super V> transformer;
5821 +            final DoubleBinaryOperator reducer;
5822 +            if ((transformer = this.transformer) != null &&
5823 +                (reducer = this.reducer) != null) {
5824 +                double r = this.basis;
5825 +                for (int i = baseIndex, f, h; batch > 0 &&
5826 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5827 +                    addToPendingCount(1);
5828 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5829 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5830 +                      rights, transformer, r, reducer)).fork();
5831 +                }
5832 +                for (Node<K,V> p; (p = advance()) != null; )
5833 +                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5834 +                result = r;
5835 +                CountedCompleter<?> c;
5836 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5837 +                    @SuppressWarnings("unchecked")
5838 +                    MapReduceMappingsToDoubleTask<K,V>
5839 +                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5840 +                        s = t.rights;
5841 +                    while (s != null) {
5842 +                        t.result = reducer.applyAsDouble(t.result, s.result);
5843 +                        s = t.rights = s.nextRight;
5844 +                    }
5845 +                }
5846 +            }
5847 +        }
5848 +    }
5849 +
5850 +    @SuppressWarnings("serial")
5851 +    static final class MapReduceKeysToLongTask<K,V>
5852 +        extends BulkTask<K,V,Long> {
5853 +        final ToLongFunction<? super K> transformer;
5854 +        final LongBinaryOperator reducer;
5855 +        final long basis;
5856 +        long result;
5857 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
5858 +        MapReduceKeysToLongTask
5859 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5860 +             MapReduceKeysToLongTask<K,V> nextRight,
5861 +             ToLongFunction<? super K> transformer,
5862 +             long basis,
5863 +             LongBinaryOperator reducer) {
5864 +            super(p, b, i, f, t); this.nextRight = nextRight;
5865 +            this.transformer = transformer;
5866 +            this.basis = basis; this.reducer = reducer;
5867 +        }
5868 +        public final Long getRawResult() { return result; }
5869 +        public final void compute() {
5870 +            final ToLongFunction<? super K> transformer;
5871 +            final LongBinaryOperator reducer;
5872 +            if ((transformer = this.transformer) != null &&
5873 +                (reducer = this.reducer) != null) {
5874 +                long r = this.basis;
5875 +                for (int i = baseIndex, f, h; batch > 0 &&
5876 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5877 +                    addToPendingCount(1);
5878 +                    (rights = new MapReduceKeysToLongTask<K,V>
5879 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5880 +                      rights, transformer, r, reducer)).fork();
5881 +                }
5882 +                for (Node<K,V> p; (p = advance()) != null; )
5883 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5884 +                result = r;
5885 +                CountedCompleter<?> c;
5886 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5887 +                    @SuppressWarnings("unchecked")
5888 +                    MapReduceKeysToLongTask<K,V>
5889 +                        t = (MapReduceKeysToLongTask<K,V>)c,
5890 +                        s = t.rights;
5891 +                    while (s != null) {
5892 +                        t.result = reducer.applyAsLong(t.result, s.result);
5893 +                        s = t.rights = s.nextRight;
5894 +                    }
5895 +                }
5896 +            }
5897 +        }
5898 +    }
5899 +
5900 +    @SuppressWarnings("serial")
5901 +    static final class MapReduceValuesToLongTask<K,V>
5902 +        extends BulkTask<K,V,Long> {
5903 +        final ToLongFunction<? super V> transformer;
5904 +        final LongBinaryOperator reducer;
5905 +        final long basis;
5906 +        long result;
5907 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
5908 +        MapReduceValuesToLongTask
5909 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5910 +             MapReduceValuesToLongTask<K,V> nextRight,
5911 +             ToLongFunction<? super V> transformer,
5912 +             long basis,
5913 +             LongBinaryOperator reducer) {
5914 +            super(p, b, i, f, t); this.nextRight = nextRight;
5915 +            this.transformer = transformer;
5916 +            this.basis = basis; this.reducer = reducer;
5917 +        }
5918 +        public final Long getRawResult() { return result; }
5919 +        public final void compute() {
5920 +            final ToLongFunction<? super V> transformer;
5921 +            final LongBinaryOperator reducer;
5922 +            if ((transformer = this.transformer) != null &&
5923 +                (reducer = this.reducer) != null) {
5924 +                long r = this.basis;
5925 +                for (int i = baseIndex, f, h; batch > 0 &&
5926 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5927 +                    addToPendingCount(1);
5928 +                    (rights = new MapReduceValuesToLongTask<K,V>
5929 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5930 +                      rights, transformer, r, reducer)).fork();
5931 +                }
5932 +                for (Node<K,V> p; (p = advance()) != null; )
5933 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5934 +                result = r;
5935 +                CountedCompleter<?> c;
5936 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5937 +                    @SuppressWarnings("unchecked")
5938 +                    MapReduceValuesToLongTask<K,V>
5939 +                        t = (MapReduceValuesToLongTask<K,V>)c,
5940 +                        s = t.rights;
5941 +                    while (s != null) {
5942 +                        t.result = reducer.applyAsLong(t.result, s.result);
5943 +                        s = t.rights = s.nextRight;
5944 +                    }
5945 +                }
5946 +            }
5947 +        }
5948 +    }
5949 +
5950 +    @SuppressWarnings("serial")
5951 +    static final class MapReduceEntriesToLongTask<K,V>
5952 +        extends BulkTask<K,V,Long> {
5953 +        final ToLongFunction<Map.Entry<K,V>> transformer;
5954 +        final LongBinaryOperator reducer;
5955 +        final long basis;
5956 +        long result;
5957 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5958 +        MapReduceEntriesToLongTask
5959 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5960 +             MapReduceEntriesToLongTask<K,V> nextRight,
5961 +             ToLongFunction<Map.Entry<K,V>> transformer,
5962 +             long basis,
5963 +             LongBinaryOperator reducer) {
5964 +            super(p, b, i, f, t); this.nextRight = nextRight;
5965 +            this.transformer = transformer;
5966 +            this.basis = basis; this.reducer = reducer;
5967 +        }
5968 +        public final Long getRawResult() { return result; }
5969 +        public final void compute() {
5970 +            final ToLongFunction<Map.Entry<K,V>> transformer;
5971 +            final LongBinaryOperator reducer;
5972 +            if ((transformer = this.transformer) != null &&
5973 +                (reducer = this.reducer) != null) {
5974 +                long r = this.basis;
5975 +                for (int i = baseIndex, f, h; batch > 0 &&
5976 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5977 +                    addToPendingCount(1);
5978 +                    (rights = new MapReduceEntriesToLongTask<K,V>
5979 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5980 +                      rights, transformer, r, reducer)).fork();
5981 +                }
5982 +                for (Node<K,V> p; (p = advance()) != null; )
5983 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5984 +                result = r;
5985 +                CountedCompleter<?> c;
5986 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5987 +                    @SuppressWarnings("unchecked")
5988 +                    MapReduceEntriesToLongTask<K,V>
5989 +                        t = (MapReduceEntriesToLongTask<K,V>)c,
5990 +                        s = t.rights;
5991 +                    while (s != null) {
5992 +                        t.result = reducer.applyAsLong(t.result, s.result);
5993 +                        s = t.rights = s.nextRight;
5994 +                    }
5995 +                }
5996 +            }
5997 +        }
5998 +    }
5999 +
6000 +    @SuppressWarnings("serial")
6001 +    static final class MapReduceMappingsToLongTask<K,V>
6002 +        extends BulkTask<K,V,Long> {
6003 +        final ToLongBiFunction<? super K, ? super V> transformer;
6004 +        final LongBinaryOperator reducer;
6005 +        final long basis;
6006 +        long result;
6007 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6008 +        MapReduceMappingsToLongTask
6009 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6010 +             MapReduceMappingsToLongTask<K,V> nextRight,
6011 +             ToLongBiFunction<? super K, ? super V> transformer,
6012 +             long basis,
6013 +             LongBinaryOperator reducer) {
6014 +            super(p, b, i, f, t); this.nextRight = nextRight;
6015 +            this.transformer = transformer;
6016 +            this.basis = basis; this.reducer = reducer;
6017 +        }
6018 +        public final Long getRawResult() { return result; }
6019 +        public final void compute() {
6020 +            final ToLongBiFunction<? super K, ? super V> transformer;
6021 +            final LongBinaryOperator reducer;
6022 +            if ((transformer = this.transformer) != null &&
6023 +                (reducer = this.reducer) != null) {
6024 +                long r = this.basis;
6025 +                for (int i = baseIndex, f, h; batch > 0 &&
6026 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6027 +                    addToPendingCount(1);
6028 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6029 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6030 +                      rights, transformer, r, reducer)).fork();
6031 +                }
6032 +                for (Node<K,V> p; (p = advance()) != null; )
6033 +                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6034 +                result = r;
6035 +                CountedCompleter<?> c;
6036 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6037 +                    @SuppressWarnings("unchecked")
6038 +                    MapReduceMappingsToLongTask<K,V>
6039 +                        t = (MapReduceMappingsToLongTask<K,V>)c,
6040 +                        s = t.rights;
6041 +                    while (s != null) {
6042 +                        t.result = reducer.applyAsLong(t.result, s.result);
6043 +                        s = t.rights = s.nextRight;
6044 +                    }
6045 +                }
6046 +            }
6047 +        }
6048 +    }
6049 +
6050 +    @SuppressWarnings("serial")
6051 +    static final class MapReduceKeysToIntTask<K,V>
6052 +        extends BulkTask<K,V,Integer> {
6053 +        final ToIntFunction<? super K> transformer;
6054 +        final IntBinaryOperator reducer;
6055 +        final int basis;
6056 +        int result;
6057 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6058 +        MapReduceKeysToIntTask
6059 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6060 +             MapReduceKeysToIntTask<K,V> nextRight,
6061 +             ToIntFunction<? super K> transformer,
6062 +             int basis,
6063 +             IntBinaryOperator reducer) {
6064 +            super(p, b, i, f, t); this.nextRight = nextRight;
6065 +            this.transformer = transformer;
6066 +            this.basis = basis; this.reducer = reducer;
6067 +        }
6068 +        public final Integer getRawResult() { return result; }
6069 +        public final void compute() {
6070 +            final ToIntFunction<? super K> transformer;
6071 +            final IntBinaryOperator reducer;
6072 +            if ((transformer = this.transformer) != null &&
6073 +                (reducer = this.reducer) != null) {
6074 +                int r = this.basis;
6075 +                for (int i = baseIndex, f, h; batch > 0 &&
6076 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6077 +                    addToPendingCount(1);
6078 +                    (rights = new MapReduceKeysToIntTask<K,V>
6079 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6080 +                      rights, transformer, r, reducer)).fork();
6081 +                }
6082 +                for (Node<K,V> p; (p = advance()) != null; )
6083 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6084 +                result = r;
6085 +                CountedCompleter<?> c;
6086 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6087 +                    @SuppressWarnings("unchecked")
6088 +                    MapReduceKeysToIntTask<K,V>
6089 +                        t = (MapReduceKeysToIntTask<K,V>)c,
6090 +                        s = t.rights;
6091 +                    while (s != null) {
6092 +                        t.result = reducer.applyAsInt(t.result, s.result);
6093 +                        s = t.rights = s.nextRight;
6094 +                    }
6095 +                }
6096 +            }
6097 +        }
6098 +    }
6099 +
6100 +    @SuppressWarnings("serial")
6101 +    static final class MapReduceValuesToIntTask<K,V>
6102 +        extends BulkTask<K,V,Integer> {
6103 +        final ToIntFunction<? super V> transformer;
6104 +        final IntBinaryOperator reducer;
6105 +        final int basis;
6106 +        int result;
6107 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6108 +        MapReduceValuesToIntTask
6109 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6110 +             MapReduceValuesToIntTask<K,V> nextRight,
6111 +             ToIntFunction<? super V> transformer,
6112 +             int basis,
6113 +             IntBinaryOperator reducer) {
6114 +            super(p, b, i, f, t); this.nextRight = nextRight;
6115 +            this.transformer = transformer;
6116 +            this.basis = basis; this.reducer = reducer;
6117 +        }
6118 +        public final Integer getRawResult() { return result; }
6119 +        public final void compute() {
6120 +            final ToIntFunction<? super V> transformer;
6121 +            final IntBinaryOperator reducer;
6122 +            if ((transformer = this.transformer) != null &&
6123 +                (reducer = this.reducer) != null) {
6124 +                int r = this.basis;
6125 +                for (int i = baseIndex, f, h; batch > 0 &&
6126 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6127 +                    addToPendingCount(1);
6128 +                    (rights = new MapReduceValuesToIntTask<K,V>
6129 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6130 +                      rights, transformer, r, reducer)).fork();
6131 +                }
6132 +                for (Node<K,V> p; (p = advance()) != null; )
6133 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6134 +                result = r;
6135 +                CountedCompleter<?> c;
6136 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6137 +                    @SuppressWarnings("unchecked")
6138 +                    MapReduceValuesToIntTask<K,V>
6139 +                        t = (MapReduceValuesToIntTask<K,V>)c,
6140 +                        s = t.rights;
6141 +                    while (s != null) {
6142 +                        t.result = reducer.applyAsInt(t.result, s.result);
6143 +                        s = t.rights = s.nextRight;
6144 +                    }
6145 +                }
6146 +            }
6147 +        }
6148 +    }
6149 +
6150 +    @SuppressWarnings("serial")
6151 +    static final class MapReduceEntriesToIntTask<K,V>
6152 +        extends BulkTask<K,V,Integer> {
6153 +        final ToIntFunction<Map.Entry<K,V>> transformer;
6154 +        final IntBinaryOperator reducer;
6155 +        final int basis;
6156 +        int result;
6157 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6158 +        MapReduceEntriesToIntTask
6159 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6160 +             MapReduceEntriesToIntTask<K,V> nextRight,
6161 +             ToIntFunction<Map.Entry<K,V>> transformer,
6162 +             int basis,
6163 +             IntBinaryOperator reducer) {
6164 +            super(p, b, i, f, t); this.nextRight = nextRight;
6165 +            this.transformer = transformer;
6166 +            this.basis = basis; this.reducer = reducer;
6167 +        }
6168 +        public final Integer getRawResult() { return result; }
6169 +        public final void compute() {
6170 +            final ToIntFunction<Map.Entry<K,V>> transformer;
6171 +            final IntBinaryOperator reducer;
6172 +            if ((transformer = this.transformer) != null &&
6173 +                (reducer = this.reducer) != null) {
6174 +                int r = this.basis;
6175 +                for (int i = baseIndex, f, h; batch > 0 &&
6176 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6177 +                    addToPendingCount(1);
6178 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6179 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6180 +                      rights, transformer, r, reducer)).fork();
6181 +                }
6182 +                for (Node<K,V> p; (p = advance()) != null; )
6183 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6184 +                result = r;
6185 +                CountedCompleter<?> c;
6186 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6187 +                    @SuppressWarnings("unchecked")
6188 +                    MapReduceEntriesToIntTask<K,V>
6189 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
6190 +                        s = t.rights;
6191 +                    while (s != null) {
6192 +                        t.result = reducer.applyAsInt(t.result, s.result);
6193 +                        s = t.rights = s.nextRight;
6194 +                    }
6195 +                }
6196 +            }
6197 +        }
6198 +    }
6199 +
6200 +    @SuppressWarnings("serial")
6201 +    static final class MapReduceMappingsToIntTask<K,V>
6202 +        extends BulkTask<K,V,Integer> {
6203 +        final ToIntBiFunction<? super K, ? super V> transformer;
6204 +        final IntBinaryOperator reducer;
6205 +        final int basis;
6206 +        int result;
6207 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6208 +        MapReduceMappingsToIntTask
6209 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6210 +             MapReduceMappingsToIntTask<K,V> nextRight,
6211 +             ToIntBiFunction<? super K, ? super V> transformer,
6212 +             int basis,
6213 +             IntBinaryOperator reducer) {
6214 +            super(p, b, i, f, t); this.nextRight = nextRight;
6215 +            this.transformer = transformer;
6216 +            this.basis = basis; this.reducer = reducer;
6217 +        }
6218 +        public final Integer getRawResult() { return result; }
6219 +        public final void compute() {
6220 +            final ToIntBiFunction<? super K, ? super V> transformer;
6221 +            final IntBinaryOperator reducer;
6222 +            if ((transformer = this.transformer) != null &&
6223 +                (reducer = this.reducer) != null) {
6224 +                int r = this.basis;
6225 +                for (int i = baseIndex, f, h; batch > 0 &&
6226 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6227 +                    addToPendingCount(1);
6228 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6229 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6230 +                      rights, transformer, r, reducer)).fork();
6231 +                }
6232 +                for (Node<K,V> p; (p = advance()) != null; )
6233 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6234 +                result = r;
6235 +                CountedCompleter<?> c;
6236 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6237 +                    @SuppressWarnings("unchecked")
6238 +                    MapReduceMappingsToIntTask<K,V>
6239 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6240 +                        s = t.rights;
6241 +                    while (s != null) {
6242 +                        t.result = reducer.applyAsInt(t.result, s.result);
6243 +                        s = t.rights = s.nextRight;
6244 +                    }
6245 +                }
6246 +            }
6247 +        }
6248 +    }
6249 +
6250 +    // Unsafe mechanics
6251 +    private static final sun.misc.Unsafe U;
6252 +    private static final long SIZECTL;
6253 +    private static final long TRANSFERINDEX;
6254 +    private static final long BASECOUNT;
6255 +    private static final long CELLSBUSY;
6256 +    private static final long CELLVALUE;
6257 +    private static final long ABASE;
6258 +    private static final int ASHIFT;
6259 +
6260 +    static {
6261 +        try {
6262 +            U = sun.misc.Unsafe.getUnsafe();
6263 +            Class<?> k = ConcurrentHashMap.class;
6264 +            SIZECTL = U.objectFieldOffset
6265 +                (k.getDeclaredField("sizeCtl"));
6266 +            TRANSFERINDEX = U.objectFieldOffset
6267 +                (k.getDeclaredField("transferIndex"));
6268 +            BASECOUNT = U.objectFieldOffset
6269 +                (k.getDeclaredField("baseCount"));
6270 +            CELLSBUSY = U.objectFieldOffset
6271 +                (k.getDeclaredField("cellsBusy"));
6272 +            Class<?> ck = CounterCell.class;
6273 +            CELLVALUE = U.objectFieldOffset
6274 +                (ck.getDeclaredField("value"));
6275 +            Class<?> ak = Node[].class;
6276 +            ABASE = U.arrayBaseOffset(ak);
6277 +            int scale = U.arrayIndexScale(ak);
6278 +            if ((scale & (scale - 1)) != 0)
6279 +                throw new Error("data type scale not a power of two");
6280 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6281 +        } catch (Exception e) {
6282 +            throw new Error(e);
6283 +        }
6284 +    }
6285 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines