ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.121 by jsr166, Mon Aug 13 18:15:39 2012 UTC vs.
Revision 1.257 by jsr166, Tue Jun 3 23:49:57 2014 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 import java.util.concurrent.atomic.LongAdder;
9 import java.util.concurrent.ForkJoinPool;
10 import java.util.concurrent.ForkJoinTask;
8  
9 < import java.util.Comparator;
9 > import java.io.ObjectStreamField;
10 > import java.io.Serializable;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14   import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
15   import java.util.Collection;
16 < import java.util.AbstractMap;
17 < import java.util.AbstractSet;
19 < import java.util.AbstractCollection;
20 < import java.util.Hashtable;
16 > import java.util.Comparator;
17 > import java.util.Enumeration;
18   import java.util.HashMap;
19 + import java.util.Hashtable;
20   import java.util.Iterator;
21 < import java.util.Enumeration;
24 < import java.util.ConcurrentModificationException;
21 > import java.util.Map;
22   import java.util.NoSuchElementException;
23 + import java.util.Set;
24 + import java.util.Spliterator;
25   import java.util.concurrent.ConcurrentMap;
26 < import java.util.concurrent.ThreadLocalRandom;
28 < import java.util.concurrent.locks.LockSupport;
29 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
26 > import java.util.concurrent.ForkJoinPool;
27   import java.util.concurrent.atomic.AtomicReference;
28 <
29 < import java.io.Serializable;
28 > import java.util.concurrent.locks.LockSupport;
29 > import java.util.concurrent.locks.ReentrantLock;
30 > import java.util.function.BiConsumer;
31 > import java.util.function.BiFunction;
32 > import java.util.function.BinaryOperator;
33 > import java.util.function.Consumer;
34 > import java.util.function.DoubleBinaryOperator;
35 > import java.util.function.Function;
36 > import java.util.function.IntBinaryOperator;
37 > import java.util.function.LongBinaryOperator;
38 > import java.util.function.ToDoubleBiFunction;
39 > import java.util.function.ToDoubleFunction;
40 > import java.util.function.ToIntBiFunction;
41 > import java.util.function.ToIntFunction;
42 > import java.util.function.ToLongBiFunction;
43 > import java.util.function.ToLongFunction;
44 > import java.util.stream.Stream;
45  
46   /**
47   * A hash table supporting full concurrency of retrievals and
# Line 43 | Line 55 | import java.io.Serializable;
55   * interoperable with {@code Hashtable} in programs that rely on its
56   * thread safety but not on its synchronization details.
57   *
58 < * <p> Retrieval operations (including {@code get}) generally do not
58 > * <p>Retrieval operations (including {@code get}) generally do not
59   * block, so may overlap with update operations (including {@code put}
60   * and {@code remove}). Retrievals reflect the results of the most
61   * recently <em>completed</em> update operations holding upon their
62 < * onset.  For aggregate operations such as {@code putAll} and {@code
63 < * clear}, concurrent retrievals may reflect insertion or removal of
64 < * only some entries.  Similarly, Iterators and Enumerations return
65 < * elements reflecting the state of the hash table at some point at or
66 < * since the creation of the iterator/enumeration.  They do
67 < * <em>not</em> throw {@link ConcurrentModificationException}.
68 < * However, iterators are designed to be used by only one thread at a
69 < * time.  Bear in mind that the results of aggregate status methods
70 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
71 < * are typically useful only when a map is not undergoing concurrent
72 < * updates in other threads.  Otherwise the results of these methods
73 < * reflect transient states that may be adequate for monitoring
74 < * or estimation purposes, but not for program control.
62 > * onset. (More formally, an update operation for a given key bears a
63 > * <em>happens-before</em> relation with any (non-null) retrieval for
64 > * that key reporting the updated value.)  For aggregate operations
65 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 > * reflect insertion or removal of only some entries.  Similarly,
67 > * Iterators, Spliterators and Enumerations return elements reflecting the
68 > * state of the hash table at some point at or since the creation of the
69 > * iterator/enumeration.  They do <em>not</em> throw {@link
70 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
71 > * However, iterators are designed to be used by only one thread at a time.
72 > * Bear in mind that the results of aggregate status methods including
73 > * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74 > * useful only when a map is not undergoing concurrent updates in other threads.
75 > * Otherwise the results of these methods reflect transient states
76 > * that may be adequate for monitoring or estimation purposes, but not
77 > * for program control.
78   *
79 < * <p> The table is dynamically expanded when there are too many
79 > * <p>The table is dynamically expanded when there are too many
80   * collisions (i.e., keys that have distinct hash codes but fall into
81   * the same slot modulo the table size), with the expected average
82   * effect of maintaining roughly two bins per mapping (corresponding
# Line 80 | Line 95 | import java.io.Serializable;
95   * expected {@code concurrencyLevel} as an additional hint for
96   * internal sizing.  Note that using many keys with exactly the same
97   * {@code hashCode()} is a sure way to slow down performance of any
98 < * hash table.
98 > * hash table. To ameliorate impact, when keys are {@link Comparable},
99 > * this class may use comparison order among keys to help break ties.
100 > *
101 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 > * (using {@link #keySet(Object)} when only keys are of interest, and the
104 > * mapped values are (perhaps transiently) not used or all take the
105 > * same mapping value.
106 > *
107 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
108 > * form of histogram or multiset) by using {@link
109 > * java.util.concurrent.atomic.LongAdder} values and initializing via
110 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
113   *
114   * <p>This class and its views and iterators implement all of the
115   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116   * interfaces.
117   *
118 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
118 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119   * does <em>not</em> allow {@code null} to be used as a key or value.
120   *
121 + * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 + * operations that, unlike most {@link Stream} methods, are designed
123 + * to be safely, and often sensibly, applied even with maps that are
124 + * being concurrently updated by other threads; for example, when
125 + * computing a snapshot summary of the values in a shared registry.
126 + * There are three kinds of operation, each with four forms, accepting
127 + * functions with Keys, Values, Entries, and (Key, Value) arguments
128 + * and/or return values. Because the elements of a ConcurrentHashMap
129 + * are not ordered in any particular way, and may be processed in
130 + * different orders in different parallel executions, the correctness
131 + * of supplied functions should not depend on any ordering, or on any
132 + * other objects or values that may transiently change while
133 + * computation is in progress; and except for forEach actions, should
134 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 + * objects do not support method {@code setValue}.
136 + *
137 + * <ul>
138 + * <li> forEach: Perform a given action on each element.
139 + * A variant form applies a given transformation on each element
140 + * before performing the action.</li>
141 + *
142 + * <li> search: Return the first available non-null result of
143 + * applying a given function on each element; skipping further
144 + * search when a result is found.</li>
145 + *
146 + * <li> reduce: Accumulate each element.  The supplied reduction
147 + * function cannot rely on ordering (more formally, it should be
148 + * both associative and commutative).  There are five variants:
149 + *
150 + * <ul>
151 + *
152 + * <li> Plain reductions. (There is not a form of this method for
153 + * (key, value) function arguments since there is no corresponding
154 + * return type.)</li>
155 + *
156 + * <li> Mapped reductions that accumulate the results of a given
157 + * function applied to each element.</li>
158 + *
159 + * <li> Reductions to scalar doubles, longs, and ints, using a
160 + * given basis value.</li>
161 + *
162 + * </ul>
163 + * </li>
164 + * </ul>
165 + *
166 + * <p>These bulk operations accept a {@code parallelismThreshold}
167 + * argument. Methods proceed sequentially if the current map size is
168 + * estimated to be less than the given threshold. Using a value of
169 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
170 + * of {@code 1} results in maximal parallelism by partitioning into
171 + * enough subtasks to fully utilize the {@link
172 + * ForkJoinPool#commonPool()} that is used for all parallel
173 + * computations. Normally, you would initially choose one of these
174 + * extreme values, and then measure performance of using in-between
175 + * values that trade off overhead versus throughput.
176 + *
177 + * <p>The concurrency properties of bulk operations follow
178 + * from those of ConcurrentHashMap: Any non-null result returned
179 + * from {@code get(key)} and related access methods bears a
180 + * happens-before relation with the associated insertion or
181 + * update.  The result of any bulk operation reflects the
182 + * composition of these per-element relations (but is not
183 + * necessarily atomic with respect to the map as a whole unless it
184 + * is somehow known to be quiescent).  Conversely, because keys
185 + * and values in the map are never null, null serves as a reliable
186 + * atomic indicator of the current lack of any result.  To
187 + * maintain this property, null serves as an implicit basis for
188 + * all non-scalar reduction operations. For the double, long, and
189 + * int versions, the basis should be one that, when combined with
190 + * any other value, returns that other value (more formally, it
191 + * should be the identity element for the reduction). Most common
192 + * reductions have these properties; for example, computing a sum
193 + * with basis 0 or a minimum with basis MAX_VALUE.
194 + *
195 + * <p>Search and transformation functions provided as arguments
196 + * should similarly return null to indicate the lack of any result
197 + * (in which case it is not used). In the case of mapped
198 + * reductions, this also enables transformations to serve as
199 + * filters, returning null (or, in the case of primitive
200 + * specializations, the identity basis) if the element should not
201 + * be combined. You can create compound transformations and
202 + * filterings by composing them yourself under this "null means
203 + * there is nothing there now" rule before using them in search or
204 + * reduce operations.
205 + *
206 + * <p>Methods accepting and/or returning Entry arguments maintain
207 + * key-value associations. They may be useful for example when
208 + * finding the key for the greatest value. Note that "plain" Entry
209 + * arguments can be supplied using {@code new
210 + * AbstractMap.SimpleEntry(k,v)}.
211 + *
212 + * <p>Bulk operations may complete abruptly, throwing an
213 + * exception encountered in the application of a supplied
214 + * function. Bear in mind when handling such exceptions that other
215 + * concurrently executing functions could also have thrown
216 + * exceptions, or would have done so if the first exception had
217 + * not occurred.
218 + *
219 + * <p>Speedups for parallel compared to sequential forms are common
220 + * but not guaranteed.  Parallel operations involving brief functions
221 + * on small maps may execute more slowly than sequential forms if the
222 + * underlying work to parallelize the computation is more expensive
223 + * than the computation itself.  Similarly, parallelization may not
224 + * lead to much actual parallelism if all processors are busy
225 + * performing unrelated tasks.
226 + *
227 + * <p>All arguments to all task methods must be non-null.
228 + *
229   * <p>This class is a member of the
230   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231   * Java Collections Framework</a>.
232   *
96 * <p><em>jsr166e note: This class is a candidate replacement for
97 * java.util.concurrent.ConcurrentHashMap.  During transition, this
98 * class declares and uses nested functional interfaces with different
99 * names but the same forms as those expected for JDK8.<em>
100 *
233   * @since 1.5
234   * @author Doug Lea
235   * @param <K> the type of keys maintained by this map
236   * @param <V> the type of mapped values
237   */
238 < public class ConcurrentHashMap<K, V>
239 <    implements ConcurrentMap<K, V>, Serializable {
238 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239 >    implements ConcurrentMap<K,V>, Serializable {
240      private static final long serialVersionUID = 7249069246763182397L;
241  
110    /**
111     * A partitionable iterator. A Spliterator can be traversed
112     * directly, but can also be partitioned (before traversal) by
113     * creating another Spliterator that covers a non-overlapping
114     * portion of the elements, and so may be amenable to parallel
115     * execution.
116     *
117     * <p> This interface exports a subset of expected JDK8
118     * functionality.
119     *
120     * <p>Sample usage: Here is one (of the several) ways to compute
121     * the sum of the values held in a map using the ForkJoin
122     * framework. As illustrated here, Spliterators are well suited to
123     * designs in which a task repeatedly splits off half its work
124     * into forked subtasks until small enough to process directly,
125     * and then joins these subtasks. Variants of this style can also
126     * be used in completion-based designs.
127     *
128     * <pre>
129     * {@code ConcurrentHashMap<String, Long> m = ...
130     * // split as if have 8 * parallelism, for load balance
131     * int n = m.size();
132     * int p = aForkJoinPool.getParallelism() * 8;
133     * int split = (n < p)? n : p;
134     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
135     * // ...
136     * static class SumValues extends RecursiveTask<Long> {
137     *   final Spliterator<Long> s;
138     *   final int split;             // split while > 1
139     *   final SumValues nextJoin;    // records forked subtasks to join
140     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
141     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
142     *   }
143     *   public Long compute() {
144     *     long sum = 0;
145     *     SumValues subtasks = null; // fork subtasks
146     *     for (int s = split >>> 1; s > 0; s >>>= 1)
147     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
148     *     while (s.hasNext())        // directly process remaining elements
149     *       sum += s.next();
150     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
151     *       sum += t.join();         // collect subtask results
152     *     return sum;
153     *   }
154     * }
155     * }</pre>
156     */
157    public static interface Spliterator<T> extends Iterator<T> {
158        /**
159         * Returns a Spliterator covering approximately half of the
160         * elements, guaranteed not to overlap with those subsequently
161         * returned by this Spliterator.  After invoking this method,
162         * the current Spliterator will <em>not</em> produce any of
163         * the elements of the returned Spliterator, but the two
164         * Spliterators together will produce all of the elements that
165         * would have been produced by this Spliterator had this
166         * method not been called. The exact number of elements
167         * produced by the returned Spliterator is not guaranteed, and
168         * may be zero (i.e., with {@code hasNext()} reporting {@code
169         * false}) if this Spliterator cannot be further split.
170         *
171         * @return a Spliterator covering approximately half of the
172         * elements
173         * @throws IllegalStateException if this Spliterator has
174         * already commenced traversing elements
175         */
176        Spliterator<T> split();
177    }
178
242      /*
243       * Overview:
244       *
# Line 186 | Line 249 | public class ConcurrentHashMap<K, V>
249       * the same or better than java.util.HashMap, and to support high
250       * initial insertion rates on an empty table by many threads.
251       *
252 <     * Each key-value mapping is held in a Node.  Because Node fields
253 <     * can contain special values, they are defined using plain Object
254 <     * types. Similarly in turn, all internal methods that use them
255 <     * work off Object types. And similarly, so do the internal
256 <     * methods of auxiliary iterator and view classes.  All public
257 <     * generic typed methods relay in/out of these internal methods,
258 <     * supplying null-checks and casts as needed. This also allows
259 <     * many of the public methods to be factored into a smaller number
260 <     * of internal methods (although sadly not so for the five
261 <     * variants of put-related operations). The validation-based
262 <     * approach explained below leads to a lot of code sprawl because
263 <     * retry-control precludes factoring into smaller methods.
252 >     * This map usually acts as a binned (bucketed) hash table.  Each
253 >     * key-value mapping is held in a Node.  Most nodes are instances
254 >     * of the basic Node class with hash, key, value, and next
255 >     * fields. However, various subclasses exist: TreeNodes are
256 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
257 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 >     * of bins during resizing. ReservationNodes are used as
259 >     * placeholders while establishing values in computeIfAbsent and
260 >     * related methods.  The types TreeBin, ForwardingNode, and
261 >     * ReservationNode do not hold normal user keys, values, or
262 >     * hashes, and are readily distinguishable during search etc
263 >     * because they have negative hash fields and null key and value
264 >     * fields. (These special nodes are either uncommon or transient,
265 >     * so the impact of carrying around some unused fields is
266 >     * insignificant.)
267       *
268       * The table is lazily initialized to a power-of-two size upon the
269       * first insertion.  Each bin in the table normally contains a
# Line 205 | Line 271 | public class ConcurrentHashMap<K, V>
271       * Table accesses require volatile/atomic reads, writes, and
272       * CASes.  Because there is no other way to arrange this without
273       * adding further indirections, we use intrinsics
274 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
275 <     * are always accurately traversable under volatile reads, so long
276 <     * as lookups check hash code and non-nullness of value before
277 <     * checking key equality.
278 <     *
279 <     * We use the top two bits of Node hash fields for control
214 <     * purposes -- they are available anyway because of addressing
215 <     * constraints.  As explained further below, these top bits are
216 <     * used as follows:
217 <     *  00 - Normal
218 <     *  01 - Locked
219 <     *  11 - Locked and may have a thread waiting for lock
220 <     *  10 - Node is a forwarding node
221 <     *
222 <     * The lower 30 bits of each Node's hash field contain a
223 <     * transformation of the key's hash code, except for forwarding
224 <     * nodes, for which the lower bits are zero (and so always have
225 <     * hash field == MOVED).
274 >     * (sun.misc.Unsafe) operations.
275 >     *
276 >     * We use the top (sign) bit of Node hash fields for control
277 >     * purposes -- it is available anyway because of addressing
278 >     * constraints.  Nodes with negative hash fields are specially
279 >     * handled or ignored in map methods.
280       *
281       * Insertion (via put or its variants) of the first node in an
282       * empty bin is performed by just CASing it to the bin.  This is
# Line 231 | Line 285 | public class ConcurrentHashMap<K, V>
285       * delete, and replace) require locks.  We do not want to waste
286       * the space required to associate a distinct lock object with
287       * each bin, so instead use the first node of a bin list itself as
288 <     * a lock. Blocking support for these locks relies on the builtin
289 <     * "synchronized" monitors.  However, we also need a tryLock
236 <     * construction, so we overlay these by using bits of the Node
237 <     * hash field for lock control (see above), and so normally use
238 <     * builtin monitors only for blocking and signalling using
239 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
288 >     * a lock. Locking support for these locks relies on builtin
289 >     * "synchronized" monitors.
290       *
291       * Using the first node of a list as a lock does not by itself
292       * suffice though: When a node is locked, any update must first
293       * validate that it is still the first node after locking it, and
294       * retry if not. Because new nodes are always appended to lists,
295       * once a node is first in a bin, it remains first until deleted
296 <     * or the bin becomes invalidated (upon resizing).  However,
247 <     * operations that only conditionally update may inspect nodes
248 <     * until the point of update. This is a converse of sorts to the
249 <     * lazy locking technique described by Herlihy & Shavit.
296 >     * or the bin becomes invalidated (upon resizing).
297       *
298       * The main disadvantage of per-bin locks is that other update
299       * operations on other nodes in a bin list protected by the same
# Line 279 | Line 326 | public class ConcurrentHashMap<K, V>
326       * sometimes deviate significantly from uniform randomness.  This
327       * includes the case when N > (1<<30), so some keys MUST collide.
328       * Similarly for dumb or hostile usages in which multiple keys are
329 <     * designed to have identical hash codes. Also, although we guard
330 <     * against the worst effects of this (see method spread), sets of
331 <     * hashes may differ only in bits that do not impact their bin
332 <     * index for a given power-of-two mask.  So we use a secondary
333 <     * strategy that applies when the number of nodes in a bin exceeds
334 <     * a threshold, and at least one of the keys implements
288 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
289 <     * (a specialized form of red-black trees), bounding search time
290 <     * to O(log N).  Each search step in a TreeBin is around twice as
329 >     * designed to have identical hash codes or ones that differs only
330 >     * in masked-out high bits. So we use a secondary strategy that
331 >     * applies when the number of nodes in a bin exceeds a
332 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
333 >     * specialized form of red-black trees), bounding search time to
334 >     * O(log N).  Each search step in a TreeBin is at least twice as
335       * slow as in a regular list, but given that N cannot exceed
336       * (1<<64) (before running out of addresses) this bounds search
337       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 298 | Line 342 | public class ConcurrentHashMap<K, V>
342       * iterators in the same way.
343       *
344       * The table is resized when occupancy exceeds a percentage
345 <     * threshold (nominally, 0.75, but see below).  Only a single
346 <     * thread performs the resize (using field "sizeCtl", to arrange
347 <     * exclusion), but the table otherwise remains usable for reads
348 <     * and updates. Resizing proceeds by transferring bins, one by
349 <     * one, from the table to the next table.  Because we are using
350 <     * power-of-two expansion, the elements from each bin must either
351 <     * stay at same index, or move with a power of two offset. We
352 <     * eliminate unnecessary node creation by catching cases where old
353 <     * nodes can be reused because their next fields won't change.  On
354 <     * average, only about one-sixth of them need cloning when a table
355 <     * doubles. The nodes they replace will be garbage collectable as
356 <     * soon as they are no longer referenced by any reader thread that
357 <     * may be in the midst of concurrently traversing table.  Upon
358 <     * transfer, the old table bin contains only a special forwarding
359 <     * node (with hash field "MOVED") that contains the next table as
360 <     * its key. On encountering a forwarding node, access and update
361 <     * operations restart, using the new table.
362 <     *
363 <     * Each bin transfer requires its bin lock. However, unlike other
364 <     * cases, a transfer can skip a bin if it fails to acquire its
365 <     * lock, and revisit it later (unless it is a TreeBin). Method
366 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
367 <     * have been skipped because of failure to acquire a lock, and
368 <     * blocks only if none are available (i.e., only very rarely).
369 <     * The transfer operation must also ensure that all accessible
370 <     * bins in both the old and new table are usable by any traversal.
371 <     * When there are no lock acquisition failures, this is arranged
372 <     * simply by proceeding from the last bin (table.length - 1) up
373 <     * towards the first.  Upon seeing a forwarding node, traversals
374 <     * (see class Iter) arrange to move to the new table
375 <     * without revisiting nodes.  However, when any node is skipped
376 <     * during a transfer, all earlier table bins may have become
377 <     * visible, so are initialized with a reverse-forwarding node back
378 <     * to the old table until the new ones are established. (This
379 <     * sometimes requires transiently locking a forwarding node, which
380 <     * is possible under the above encoding.) These more expensive
381 <     * mechanics trigger only when necessary.
345 >     * threshold (nominally, 0.75, but see below).  Any thread
346 >     * noticing an overfull bin may assist in resizing after the
347 >     * initiating thread allocates and sets up the replacement array.
348 >     * However, rather than stalling, these other threads may proceed
349 >     * with insertions etc.  The use of TreeBins shields us from the
350 >     * worst case effects of overfilling while resizes are in
351 >     * progress.  Resizing proceeds by transferring bins, one by one,
352 >     * from the table to the next table. However, threads claim small
353 >     * blocks of indices to transfer (via field transferIndex) before
354 >     * doing so, reducing contention.  A generation stamp in field
355 >     * sizeCtl ensures that resizings do not overlap. Because we are
356 >     * using power-of-two expansion, the elements from each bin must
357 >     * either stay at same index, or move with a power of two
358 >     * offset. We eliminate unnecessary node creation by catching
359 >     * cases where old nodes can be reused because their next fields
360 >     * won't change.  On average, only about one-sixth of them need
361 >     * cloning when a table doubles. The nodes they replace will be
362 >     * garbage collectable as soon as they are no longer referenced by
363 >     * any reader thread that may be in the midst of concurrently
364 >     * traversing table.  Upon transfer, the old table bin contains
365 >     * only a special forwarding node (with hash field "MOVED") that
366 >     * contains the next table as its key. On encountering a
367 >     * forwarding node, access and update operations restart, using
368 >     * the new table.
369 >     *
370 >     * Each bin transfer requires its bin lock, which can stall
371 >     * waiting for locks while resizing. However, because other
372 >     * threads can join in and help resize rather than contend for
373 >     * locks, average aggregate waits become shorter as resizing
374 >     * progresses.  The transfer operation must also ensure that all
375 >     * accessible bins in both the old and new table are usable by any
376 >     * traversal.  This is arranged in part by proceeding from the
377 >     * last bin (table.length - 1) up towards the first.  Upon seeing
378 >     * a forwarding node, traversals (see class Traverser) arrange to
379 >     * move to the new table without revisiting nodes.  To ensure that
380 >     * no intervening nodes are skipped even when moved out of order,
381 >     * a stack (see class TableStack) is created on first encounter of
382 >     * a forwarding node during a traversal, to maintain its place if
383 >     * later processing the current table. The need for these
384 >     * save/restore mechanics is relatively rare, but when one
385 >     * forwarding node is encountered, typically many more will be.
386 >     * So Traversers use a simple caching scheme to avoid creating so
387 >     * many new TableStack nodes. (Thanks to Peter Levart for
388 >     * suggesting use of a stack here.)
389       *
390       * The traversal scheme also applies to partial traversals of
391       * ranges of bins (via an alternate Traverser constructor)
# Line 349 | Line 400 | public class ConcurrentHashMap<K, V>
400       * These cases attempt to override the initial capacity settings,
401       * but harmlessly fail to take effect in cases of races.
402       *
403 <     * The element count is maintained using a LongAdder, which avoids
404 <     * contention on updates but can encounter cache thrashing if read
405 <     * too frequently during concurrent access. To avoid reading so
406 <     * often, resizing is attempted either when a bin lock is
407 <     * contended, or upon adding to a bin already holding two or more
408 <     * nodes (checked before adding in the xIfAbsent methods, after
409 <     * adding in others). Under uniform hash distributions, the
410 <     * probability of this occurring at threshold is around 13%,
411 <     * meaning that only about 1 in 8 puts check threshold (and after
412 <     * resizing, many fewer do so). But this approximation has high
413 <     * variance for small table sizes, so we check on any collision
414 <     * for sizes <= 64. The bulk putAll operation further reduces
415 <     * contention by only committing count updates upon these size
416 <     * checks.
403 >     * The element count is maintained using a specialization of
404 >     * LongAdder. We need to incorporate a specialization rather than
405 >     * just use a LongAdder in order to access implicit
406 >     * contention-sensing that leads to creation of multiple
407 >     * CounterCells.  The counter mechanics avoid contention on
408 >     * updates but can encounter cache thrashing if read too
409 >     * frequently during concurrent access. To avoid reading so often,
410 >     * resizing under contention is attempted only upon adding to a
411 >     * bin already holding two or more nodes. Under uniform hash
412 >     * distributions, the probability of this occurring at threshold
413 >     * is around 13%, meaning that only about 1 in 8 puts check
414 >     * threshold (and after resizing, many fewer do so).
415 >     *
416 >     * TreeBins use a special form of comparison for search and
417 >     * related operations (which is the main reason we cannot use
418 >     * existing collections such as TreeMaps). TreeBins contain
419 >     * Comparable elements, but may contain others, as well as
420 >     * elements that are Comparable but not necessarily Comparable for
421 >     * the same T, so we cannot invoke compareTo among them. To handle
422 >     * this, the tree is ordered primarily by hash value, then by
423 >     * Comparable.compareTo order if applicable.  On lookup at a node,
424 >     * if elements are not comparable or compare as 0 then both left
425 >     * and right children may need to be searched in the case of tied
426 >     * hash values. (This corresponds to the full list search that
427 >     * would be necessary if all elements were non-Comparable and had
428 >     * tied hashes.) On insertion, to keep a total ordering (or as
429 >     * close as is required here) across rebalancings, we compare
430 >     * classes and identityHashCodes as tie-breakers. The red-black
431 >     * balancing code is updated from pre-jdk-collections
432 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
433 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
434 >     * Algorithms" (CLR).
435 >     *
436 >     * TreeBins also require an additional locking mechanism.  While
437 >     * list traversal is always possible by readers even during
438 >     * updates, tree traversal is not, mainly because of tree-rotations
439 >     * that may change the root node and/or its linkages.  TreeBins
440 >     * include a simple read-write lock mechanism parasitic on the
441 >     * main bin-synchronization strategy: Structural adjustments
442 >     * associated with an insertion or removal are already bin-locked
443 >     * (and so cannot conflict with other writers) but must wait for
444 >     * ongoing readers to finish. Since there can be only one such
445 >     * waiter, we use a simple scheme using a single "waiter" field to
446 >     * block writers.  However, readers need never block.  If the root
447 >     * lock is held, they proceed along the slow traversal path (via
448 >     * next-pointers) until the lock becomes available or the list is
449 >     * exhausted, whichever comes first. These cases are not fast, but
450 >     * maximize aggregate expected throughput.
451       *
452       * Maintaining API and serialization compatibility with previous
453       * versions of this class introduces several oddities. Mainly: We
# Line 372 | Line 457 | public class ConcurrentHashMap<K, V>
457       * time that we can guarantee to honor it.) We also declare an
458       * unused "Segment" class that is instantiated in minimal form
459       * only when serializing.
460 +     *
461 +     * Also, solely for compatibility with previous versions of this
462 +     * class, it extends AbstractMap, even though all of its methods
463 +     * are overridden, so it is just useless baggage.
464 +     *
465 +     * This file is organized to make things a little easier to follow
466 +     * while reading than they might otherwise: First the main static
467 +     * declarations and utilities, then fields, then main public
468 +     * methods (with a few factorings of multiple public methods into
469 +     * internal ones), then sizing methods, trees, traversers, and
470 +     * bulk operations.
471       */
472  
473      /* ---------------- Constants -------------- */
# Line 413 | Line 509 | public class ConcurrentHashMap<K, V>
509      private static final float LOAD_FACTOR = 0.75f;
510  
511      /**
512 <     * The buffer size for skipped bins during transfers. The
513 <     * value is arbitrary but should be large enough to avoid
514 <     * most locking stalls during resizes.
512 >     * The bin count threshold for using a tree rather than list for a
513 >     * bin.  Bins are converted to trees when adding an element to a
514 >     * bin with at least this many nodes. The value must be greater
515 >     * than 2, and should be at least 8 to mesh with assumptions in
516 >     * tree removal about conversion back to plain bins upon
517 >     * shrinkage.
518       */
519 <    private static final int TRANSFER_BUFFER_SIZE = 32;
519 >    static final int TREEIFY_THRESHOLD = 8;
520  
521      /**
522 <     * The bin count threshold for using a tree rather than list for a
523 <     * bin.  The value reflects the approximate break-even point for
524 <     * using tree-based operations.
522 >     * The bin count threshold for untreeifying a (split) bin during a
523 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
524 >     * most 6 to mesh with shrinkage detection under removal.
525       */
526 <    private static final int TREE_THRESHOLD = 8;
526 >    static final int UNTREEIFY_THRESHOLD = 6;
527  
528 <    /*
529 <     * Encodings for special uses of Node hash fields. See above for
530 <     * explanation.
528 >    /**
529 >     * The smallest table capacity for which bins may be treeified.
530 >     * (Otherwise the table is resized if too many nodes in a bin.)
531 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
532 >     * conflicts between resizing and treeification thresholds.
533       */
534 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
434 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
435 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
436 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
437 <
438 <    /* ---------------- Fields -------------- */
534 >    static final int MIN_TREEIFY_CAPACITY = 64;
535  
536      /**
537 <     * The array of bins. Lazily initialized upon first insertion.
538 <     * Size is always a power of two. Accessed directly by iterators.
537 >     * Minimum number of rebinnings per transfer step. Ranges are
538 >     * subdivided to allow multiple resizer threads.  This value
539 >     * serves as a lower bound to avoid resizers encountering
540 >     * excessive memory contention.  The value should be at least
541 >     * DEFAULT_CAPACITY.
542       */
543 <    transient volatile Node[] table;
543 >    private static final int MIN_TRANSFER_STRIDE = 16;
544  
545      /**
546 <     * The counter maintaining number of elements.
546 >     * The number of bits used for generation stamp in sizeCtl.
547 >     * Must be at least 6 for 32bit arrays.
548       */
549 <    private transient final LongAdder counter;
549 >    private static int RESIZE_STAMP_BITS = 16;
550  
551      /**
552 <     * Table initialization and resizing control.  When negative, the
553 <     * table is being initialized or resized. Otherwise, when table is
454 <     * null, holds the initial table size to use upon creation, or 0
455 <     * for default. After initialization, holds the next element count
456 <     * value upon which to resize the table.
552 >     * The maximum number of threads that can help resize.
553 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
554       */
555 <    private transient volatile int sizeCtl;
555 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
556  
557 <    // views
558 <    private transient KeySet<K,V> keySet;
559 <    private transient Values<K,V> values;
560 <    private transient EntrySet<K,V> entrySet;
464 <
465 <    /** For serialization compatibility. Null unless serialized; see below */
466 <    private Segment<K,V>[] segments;
467 <
468 <    /* ---------------- Table element access -------------- */
557 >    /**
558 >     * The bit shift for recording size stamp in sizeCtl.
559 >     */
560 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
561  
562      /*
563 <     * Volatile access methods are used for table elements as well as
472 <     * elements of in-progress next table while resizing.  Uses are
473 <     * null checked by callers, and implicitly bounds-checked, relying
474 <     * on the invariants that tab arrays have non-zero size, and all
475 <     * indices are masked with (tab.length - 1) which is never
476 <     * negative and always less than length. Note that, to be correct
477 <     * wrt arbitrary concurrency errors by users, bounds checks must
478 <     * operate on local variables, which accounts for some odd-looking
479 <     * inline assignments below.
563 >     * Encodings for Node hash fields. See above for explanation.
564       */
565 <
566 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
567 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
568 <    }
569 <
570 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
571 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
572 <    }
573 <
574 <    private static final void setTabAt(Node[] tab, int i, Node v) {
575 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
576 <    }
565 >    static final int MOVED     = -1; // hash for forwarding nodes
566 >    static final int TREEBIN   = -2; // hash for roots of trees
567 >    static final int RESERVED  = -3; // hash for transient reservations
568 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
569 >
570 >    /** Number of CPUS, to place bounds on some sizings */
571 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
572 >
573 >    /** For serialization compatibility. */
574 >    private static final ObjectStreamField[] serialPersistentFields = {
575 >        new ObjectStreamField("segments", Segment[].class),
576 >        new ObjectStreamField("segmentMask", Integer.TYPE),
577 >        new ObjectStreamField("segmentShift", Integer.TYPE)
578 >    };
579  
580      /* ---------------- Nodes -------------- */
581  
582      /**
583 <     * Key-value entry. Note that this is never exported out as a
584 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
585 <     * field of MOVED are special, and do not contain user keys or
586 <     * values.  Otherwise, keys are never null, and null val fields
587 <     * indicate that a node is in the process of being deleted or
588 <     * created. For purposes of read-only access, a key may be read
589 <     * before a val, but can only be used after checking val to be
590 <     * non-null.
591 <     */
592 <    static class Node {
593 <        volatile int hash;
594 <        final Object key;
509 <        volatile Object val;
510 <        volatile Node next;
583 >     * Key-value entry.  This class is never exported out as a
584 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
585 >     * MapEntry below), but can be used for read-only traversals used
586 >     * in bulk tasks.  Subclasses of Node with a negative hash field
587 >     * are special, and contain null keys and values (but are never
588 >     * exported).  Otherwise, keys and vals are never null.
589 >     */
590 >    static class Node<K,V> implements Map.Entry<K,V> {
591 >        final int hash;
592 >        final K key;
593 >        volatile V val;
594 >        volatile Node<K,V> next;
595  
596 <        Node(int hash, Object key, Object val, Node next) {
596 >        Node(int hash, K key, V val, Node<K,V> next) {
597              this.hash = hash;
598              this.key = key;
599              this.val = val;
600              this.next = next;
601          }
602  
603 <        /** CompareAndSet the hash field */
604 <        final boolean casHash(int cmp, int val) {
605 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
606 <        }
607 <
608 <        /** The number of spins before blocking for a lock */
525 <        static final int MAX_SPINS =
526 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
527 <
528 <        /**
529 <         * Spins a while if LOCKED bit set and this node is the first
530 <         * of its bin, and then sets WAITING bits on hash field and
531 <         * blocks (once) if they are still set.  It is OK for this
532 <         * method to return even if lock is not available upon exit,
533 <         * which enables these simple single-wait mechanics.
534 <         *
535 <         * The corresponding signalling operation is performed within
536 <         * callers: Upon detecting that WAITING has been set when
537 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
538 <         * state), unlockers acquire the sync lock and perform a
539 <         * notifyAll.
540 <         */
541 <        final void tryAwaitLock(Node[] tab, int i) {
542 <            if (tab != null && i >= 0 && i < tab.length) { // bounds check
543 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
544 <                int spins = MAX_SPINS, h;
545 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
546 <                    if (spins >= 0) {
547 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
548 <                        if (r >= 0 && --spins == 0)
549 <                            Thread.yield();  // yield before block
550 <                    }
551 <                    else if (casHash(h, h | WAITING)) {
552 <                        synchronized (this) {
553 <                            if (tabAt(tab, i) == this &&
554 <                                (hash & WAITING) == WAITING) {
555 <                                try {
556 <                                    wait();
557 <                                } catch (InterruptedException ie) {
558 <                                    Thread.currentThread().interrupt();
559 <                                }
560 <                            }
561 <                            else
562 <                                notifyAll(); // possibly won race vs signaller
563 <                        }
564 <                        break;
565 <                    }
566 <                }
567 <            }
568 <        }
569 <
570 <        // Unsafe mechanics for casHash
571 <        private static final sun.misc.Unsafe UNSAFE;
572 <        private static final long hashOffset;
573 <
574 <        static {
575 <            try {
576 <                UNSAFE = sun.misc.Unsafe.getUnsafe();
577 <                Class<?> k = Node.class;
578 <                hashOffset = UNSAFE.objectFieldOffset
579 <                    (k.getDeclaredField("hash"));
580 <            } catch (Exception e) {
581 <                throw new Error(e);
582 <            }
583 <        }
584 <    }
585 <
586 <    /* ---------------- TreeBins -------------- */
587 <
588 <    /**
589 <     * Nodes for use in TreeBins
590 <     */
591 <    static final class TreeNode extends Node {
592 <        TreeNode parent;  // red-black tree links
593 <        TreeNode left;
594 <        TreeNode right;
595 <        TreeNode prev;    // needed to unlink next upon deletion
596 <        boolean red;
597 <
598 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
599 <            super(hash, key, val, next);
600 <            this.parent = parent;
601 <        }
602 <    }
603 <
604 <    /**
605 <     * A specialized form of red-black tree for use in bins
606 <     * whose size exceeds a threshold.
607 <     *
608 <     * TreeBins use a special form of comparison for search and
609 <     * related operations (which is the main reason we cannot use
610 <     * existing collections such as TreeMaps). TreeBins contain
611 <     * Comparable elements, but may contain others, as well as
612 <     * elements that are Comparable but not necessarily Comparable<T>
613 <     * for the same T, so we cannot invoke compareTo among them. To
614 <     * handle this, the tree is ordered primarily by hash value, then
615 <     * by getClass().getName() order, and then by Comparator order
616 <     * among elements of the same class.  On lookup at a node, if
617 <     * elements are not comparable or compare as 0, both left and
618 <     * right children may need to be searched in the case of tied hash
619 <     * values. (This corresponds to the full list search that would be
620 <     * necessary if all elements were non-Comparable and had tied
621 <     * hashes.)  The red-black balancing code is updated from
622 <     * pre-jdk-collections
623 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
624 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
625 <     * Algorithms" (CLR).
626 <     *
627 <     * TreeBins also maintain a separate locking discipline than
628 <     * regular bins. Because they are forwarded via special MOVED
629 <     * nodes at bin heads (which can never change once established),
630 <     * we cannot use those nodes as locks. Instead, TreeBin
631 <     * extends AbstractQueuedSynchronizer to support a simple form of
632 <     * read-write lock. For update operations and table validation,
633 <     * the exclusive form of lock behaves in the same way as bin-head
634 <     * locks. However, lookups use shared read-lock mechanics to allow
635 <     * multiple readers in the absence of writers.  Additionally,
636 <     * these lookups do not ever block: While the lock is not
637 <     * available, they proceed along the slow traversal path (via
638 <     * next-pointers) until the lock becomes available or the list is
639 <     * exhausted, whichever comes first. (These cases are not fast,
640 <     * but maximize aggregate expected throughput.)  The AQS mechanics
641 <     * for doing this are straightforward.  The lock state is held as
642 <     * AQS getState().  Read counts are negative; the write count (1)
643 <     * is positive.  There are no signalling preferences among readers
644 <     * and writers. Since we don't need to export full Lock API, we
645 <     * just override the minimal AQS methods and use them directly.
646 <     */
647 <    static final class TreeBin extends AbstractQueuedSynchronizer {
648 <        private static final long serialVersionUID = 2249069246763182397L;
649 <        transient TreeNode root;  // root of tree
650 <        transient TreeNode first; // head of next-pointer list
651 <
652 <        /* AQS overrides */
653 <        public final boolean isHeldExclusively() { return getState() > 0; }
654 <        public final boolean tryAcquire(int ignore) {
655 <            if (compareAndSetState(0, 1)) {
656 <                setExclusiveOwnerThread(Thread.currentThread());
657 <                return true;
658 <            }
659 <            return false;
660 <        }
661 <        public final boolean tryRelease(int ignore) {
662 <            setExclusiveOwnerThread(null);
663 <            setState(0);
664 <            return true;
665 <        }
666 <        public final int tryAcquireShared(int ignore) {
667 <            for (int c;;) {
668 <                if ((c = getState()) > 0)
669 <                    return -1;
670 <                if (compareAndSetState(c, c -1))
671 <                    return 1;
672 <            }
673 <        }
674 <        public final boolean tryReleaseShared(int ignore) {
675 <            int c;
676 <            do {} while (!compareAndSetState(c = getState(), c + 1));
677 <            return c == -1;
678 <        }
679 <
680 <        /** From CLR */
681 <        private void rotateLeft(TreeNode p) {
682 <            if (p != null) {
683 <                TreeNode r = p.right, pp, rl;
684 <                if ((rl = p.right = r.left) != null)
685 <                    rl.parent = p;
686 <                if ((pp = r.parent = p.parent) == null)
687 <                    root = r;
688 <                else if (pp.left == p)
689 <                    pp.left = r;
690 <                else
691 <                    pp.right = r;
692 <                r.left = p;
693 <                p.parent = r;
694 <            }
695 <        }
696 <
697 <        /** From CLR */
698 <        private void rotateRight(TreeNode p) {
699 <            if (p != null) {
700 <                TreeNode l = p.left, pp, lr;
701 <                if ((lr = p.left = l.right) != null)
702 <                    lr.parent = p;
703 <                if ((pp = l.parent = p.parent) == null)
704 <                    root = l;
705 <                else if (pp.right == p)
706 <                    pp.right = l;
707 <                else
708 <                    pp.left = l;
709 <                l.right = p;
710 <                p.parent = l;
711 <            }
712 <        }
713 <
714 <        /**
715 <         * Return the TreeNode (or null if not found) for the given key
716 <         * starting at given root.
717 <         */
718 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
719 <            final TreeNode getTreeNode(int h, Object k, TreeNode p) {
720 <            Class<?> c = k.getClass();
721 <            while (p != null) {
722 <                int dir, ph;  Object pk; Class<?> pc;
723 <                if ((ph = p.hash) == h) {
724 <                    if ((pk = p.key) == k || k.equals(pk))
725 <                        return p;
726 <                    if (c != (pc = pk.getClass()) ||
727 <                        !(k instanceof Comparable) ||
728 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
729 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
730 <                        TreeNode r = null, s = null, pl, pr;
731 <                        if (dir >= 0) {
732 <                            if ((pl = p.left) != null && h <= pl.hash)
733 <                                s = pl;
734 <                        }
735 <                        else if ((pr = p.right) != null && h >= pr.hash)
736 <                            s = pr;
737 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
738 <                            return r;
739 <                    }
740 <                }
741 <                else
742 <                    dir = (h < ph) ? -1 : 1;
743 <                p = (dir > 0) ? p.right : p.left;
744 <            }
745 <            return null;
603 >        public final K getKey()       { return key; }
604 >        public final V getValue()     { return val; }
605 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
606 >        public final String toString(){ return key + "=" + val; }
607 >        public final V setValue(V value) {
608 >            throw new UnsupportedOperationException();
609          }
610  
611 <        /**
612 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
613 <         * read-lock to call getTreeNode, but during failure to get
614 <         * lock, searches along next links.
615 <         */
616 <        final Object getValue(int h, Object k) {
617 <            Node r = null;
755 <            int c = getState(); // Must read lock state first
756 <            for (Node e = first; e != null; e = e.next) {
757 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
758 <                    try {
759 <                        r = getTreeNode(h, k, root);
760 <                    } finally {
761 <                        releaseShared(0);
762 <                    }
763 <                    break;
764 <                }
765 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
766 <                    r = e;
767 <                    break;
768 <                }
769 <                else
770 <                    c = getState();
771 <            }
772 <            return r == null ? null : r.val;
611 >        public final boolean equals(Object o) {
612 >            Object k, v, u; Map.Entry<?,?> e;
613 >            return ((o instanceof Map.Entry) &&
614 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615 >                    (v = e.getValue()) != null &&
616 >                    (k == key || k.equals(key)) &&
617 >                    (v == (u = val) || v.equals(u)));
618          }
619  
620          /**
621 <         * Finds or adds a node.
777 <         * @return null if added
621 >         * Virtualized support for map.get(); overridden in subclasses.
622           */
623 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
624 <            final TreeNode putTreeNode(int h, Object k, Object v) {
625 <            Class<?> c = k.getClass();
626 <            TreeNode pp = root, p = null;
627 <            int dir = 0;
628 <            while (pp != null) { // find existing node or leaf to insert at
629 <                int ph;  Object pk; Class<?> pc;
630 <                p = pp;
631 <                if ((ph = p.hash) == h) {
788 <                    if ((pk = p.key) == k || k.equals(pk))
789 <                        return p;
790 <                    if (c != (pc = pk.getClass()) ||
791 <                        !(k instanceof Comparable) ||
792 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
793 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
794 <                        TreeNode r = null, s = null, pl, pr;
795 <                        if (dir >= 0) {
796 <                            if ((pl = p.left) != null && h <= pl.hash)
797 <                                s = pl;
798 <                        }
799 <                        else if ((pr = p.right) != null && h >= pr.hash)
800 <                            s = pr;
801 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
802 <                            return r;
803 <                    }
804 <                }
805 <                else
806 <                    dir = (h < ph) ? -1 : 1;
807 <                pp = (dir > 0) ? p.right : p.left;
808 <            }
809 <
810 <            TreeNode f = first;
811 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
812 <            if (p == null)
813 <                root = x;
814 <            else { // attach and rebalance; adapted from CLR
815 <                TreeNode xp, xpp;
816 <                if (f != null)
817 <                    f.prev = x;
818 <                if (dir <= 0)
819 <                    p.left = x;
820 <                else
821 <                    p.right = x;
822 <                x.red = true;
823 <                while (x != null && (xp = x.parent) != null && xp.red &&
824 <                       (xpp = xp.parent) != null) {
825 <                    TreeNode xppl = xpp.left;
826 <                    if (xp == xppl) {
827 <                        TreeNode y = xpp.right;
828 <                        if (y != null && y.red) {
829 <                            y.red = false;
830 <                            xp.red = false;
831 <                            xpp.red = true;
832 <                            x = xpp;
833 <                        }
834 <                        else {
835 <                            if (x == xp.right) {
836 <                                rotateLeft(x = xp);
837 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
838 <                            }
839 <                            if (xp != null) {
840 <                                xp.red = false;
841 <                                if (xpp != null) {
842 <                                    xpp.red = true;
843 <                                    rotateRight(xpp);
844 <                                }
845 <                            }
846 <                        }
847 <                    }
848 <                    else {
849 <                        TreeNode y = xppl;
850 <                        if (y != null && y.red) {
851 <                            y.red = false;
852 <                            xp.red = false;
853 <                            xpp.red = true;
854 <                            x = xpp;
855 <                        }
856 <                        else {
857 <                            if (x == xp.left) {
858 <                                rotateRight(x = xp);
859 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
860 <                            }
861 <                            if (xp != null) {
862 <                                xp.red = false;
863 <                                if (xpp != null) {
864 <                                    xpp.red = true;
865 <                                    rotateLeft(xpp);
866 <                                }
867 <                            }
868 <                        }
869 <                    }
870 <                }
871 <                TreeNode r = root;
872 <                if (r != null && r.red)
873 <                    r.red = false;
623 >        Node<K,V> find(int h, Object k) {
624 >            Node<K,V> e = this;
625 >            if (k != null) {
626 >                do {
627 >                    K ek;
628 >                    if (e.hash == h &&
629 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
630 >                        return e;
631 >                } while ((e = e.next) != null);
632              }
633              return null;
634          }
877
878        /**
879         * Removes the given node, that must be present before this
880         * call.  This is messier than typical red-black deletion code
881         * because we cannot swap the contents of an interior node
882         * with a leaf successor that is pinned by "next" pointers
883         * that are accessible independently of lock. So instead we
884         * swap the tree linkages.
885         */
886        final void deleteTreeNode(TreeNode p) {
887            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
888            TreeNode pred = p.prev;
889            if (pred == null)
890                first = next;
891            else
892                pred.next = next;
893            if (next != null)
894                next.prev = pred;
895            TreeNode replacement;
896            TreeNode pl = p.left;
897            TreeNode pr = p.right;
898            if (pl != null && pr != null) {
899                TreeNode s = pr, sl;
900                while ((sl = s.left) != null) // find successor
901                    s = sl;
902                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
903                TreeNode sr = s.right;
904                TreeNode pp = p.parent;
905                if (s == pr) { // p was s's direct parent
906                    p.parent = s;
907                    s.right = p;
908                }
909                else {
910                    TreeNode sp = s.parent;
911                    if ((p.parent = sp) != null) {
912                        if (s == sp.left)
913                            sp.left = p;
914                        else
915                            sp.right = p;
916                    }
917                    if ((s.right = pr) != null)
918                        pr.parent = s;
919                }
920                p.left = null;
921                if ((p.right = sr) != null)
922                    sr.parent = p;
923                if ((s.left = pl) != null)
924                    pl.parent = s;
925                if ((s.parent = pp) == null)
926                    root = s;
927                else if (p == pp.left)
928                    pp.left = s;
929                else
930                    pp.right = s;
931                replacement = sr;
932            }
933            else
934                replacement = (pl != null) ? pl : pr;
935            TreeNode pp = p.parent;
936            if (replacement == null) {
937                if (pp == null) {
938                    root = null;
939                    return;
940                }
941                replacement = p;
942            }
943            else {
944                replacement.parent = pp;
945                if (pp == null)
946                    root = replacement;
947                else if (p == pp.left)
948                    pp.left = replacement;
949                else
950                    pp.right = replacement;
951                p.left = p.right = p.parent = null;
952            }
953            if (!p.red) { // rebalance, from CLR
954                TreeNode x = replacement;
955                while (x != null) {
956                    TreeNode xp, xpl;
957                    if (x.red || (xp = x.parent) == null) {
958                        x.red = false;
959                        break;
960                    }
961                    if (x == (xpl = xp.left)) {
962                        TreeNode sib = xp.right;
963                        if (sib != null && sib.red) {
964                            sib.red = false;
965                            xp.red = true;
966                            rotateLeft(xp);
967                            sib = (xp = x.parent) == null ? null : xp.right;
968                        }
969                        if (sib == null)
970                            x = xp;
971                        else {
972                            TreeNode sl = sib.left, sr = sib.right;
973                            if ((sr == null || !sr.red) &&
974                                (sl == null || !sl.red)) {
975                                sib.red = true;
976                                x = xp;
977                            }
978                            else {
979                                if (sr == null || !sr.red) {
980                                    if (sl != null)
981                                        sl.red = false;
982                                    sib.red = true;
983                                    rotateRight(sib);
984                                    sib = (xp = x.parent) == null ? null : xp.right;
985                                }
986                                if (sib != null) {
987                                    sib.red = (xp == null) ? false : xp.red;
988                                    if ((sr = sib.right) != null)
989                                        sr.red = false;
990                                }
991                                if (xp != null) {
992                                    xp.red = false;
993                                    rotateLeft(xp);
994                                }
995                                x = root;
996                            }
997                        }
998                    }
999                    else { // symmetric
1000                        TreeNode sib = xpl;
1001                        if (sib != null && sib.red) {
1002                            sib.red = false;
1003                            xp.red = true;
1004                            rotateRight(xp);
1005                            sib = (xp = x.parent) == null ? null : xp.left;
1006                        }
1007                        if (sib == null)
1008                            x = xp;
1009                        else {
1010                            TreeNode sl = sib.left, sr = sib.right;
1011                            if ((sl == null || !sl.red) &&
1012                                (sr == null || !sr.red)) {
1013                                sib.red = true;
1014                                x = xp;
1015                            }
1016                            else {
1017                                if (sl == null || !sl.red) {
1018                                    if (sr != null)
1019                                        sr.red = false;
1020                                    sib.red = true;
1021                                    rotateLeft(sib);
1022                                    sib = (xp = x.parent) == null ? null : xp.left;
1023                                }
1024                                if (sib != null) {
1025                                    sib.red = (xp == null) ? false : xp.red;
1026                                    if ((sl = sib.left) != null)
1027                                        sl.red = false;
1028                                }
1029                                if (xp != null) {
1030                                    xp.red = false;
1031                                    rotateRight(xp);
1032                                }
1033                                x = root;
1034                            }
1035                        }
1036                    }
1037                }
1038            }
1039            if (p == replacement && (pp = p.parent) != null) {
1040                if (p == pp.left) // detach pointers
1041                    pp.left = null;
1042                else if (p == pp.right)
1043                    pp.right = null;
1044                p.parent = null;
1045            }
1046        }
635      }
636  
637 <    /* ---------------- Collision reduction methods -------------- */
637 >    /* ---------------- Static utilities -------------- */
638  
639      /**
640 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
641 <     * Because the table uses power-of-two masking, sets of hashes
642 <     * that vary only in bits above the current mask will always
643 <     * collide. (Among known examples are sets of Float keys holding
644 <     * consecutive whole numbers in small tables.)  To counter this,
645 <     * we apply a transform that spreads the impact of higher bits
640 >     * Spreads (XORs) higher bits of hash to lower and also forces top
641 >     * bit to 0. Because the table uses power-of-two masking, sets of
642 >     * hashes that vary only in bits above the current mask will
643 >     * always collide. (Among known examples are sets of Float keys
644 >     * holding consecutive whole numbers in small tables.)  So we
645 >     * apply a transform that spreads the impact of higher bits
646       * downward. There is a tradeoff between speed, utility, and
647       * quality of bit-spreading. Because many common sets of hashes
648 <     * are already reasonably distributed across bits (so don't benefit
649 <     * from spreading), and because we use trees to handle large sets
650 <     * of collisions in bins, we don't need excessively high quality.
648 >     * are already reasonably distributed (so don't benefit from
649 >     * spreading), and because we use trees to handle large sets of
650 >     * collisions in bins, we just XOR some shifted bits in the
651 >     * cheapest possible way to reduce systematic lossage, as well as
652 >     * to incorporate impact of the highest bits that would otherwise
653 >     * never be used in index calculations because of table bounds.
654       */
655 <    private static final int spread(int h) {
656 <        h ^= (h >>> 18) ^ (h >>> 12);
1066 <        return (h ^ (h >>> 10)) & HASH_BITS;
655 >    static final int spread(int h) {
656 >        return (h ^ (h >>> 16)) & HASH_BITS;
657      }
658  
659      /**
660 <     * Replaces a list bin with a tree bin. Call only when locked.
661 <     * Fails to replace if the given key is non-comparable or table
1072 <     * is, or needs, resizing.
660 >     * Returns a power of two table size for the given desired capacity.
661 >     * See Hackers Delight, sec 3.2
662       */
663 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
664 <        if ((key instanceof Comparable) &&
665 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
666 <            TreeBin t = new TreeBin();
667 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
668 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
669 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
670 <        }
663 >    private static final int tableSizeFor(int c) {
664 >        int n = c - 1;
665 >        n |= n >>> 1;
666 >        n |= n >>> 2;
667 >        n |= n >>> 4;
668 >        n |= n >>> 8;
669 >        n |= n >>> 16;
670 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671      }
672  
673 <    /* ---------------- Internal access and update methods -------------- */
674 <
675 <    /** Implementation for get and containsKey */
676 <    private final Object internalGet(Object k) {
677 <        int h = spread(k.hashCode());
678 <        retry: for (Node[] tab = table; tab != null;) {
679 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
680 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
681 <                if ((eh = e.hash) == MOVED) {
682 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
683 <                        return ((TreeBin)ek).getValue(h, k);
684 <                    else {                        // restart with new table
685 <                        tab = (Node[])ek;
686 <                        continue retry;
687 <                    }
673 >    /**
674 >     * Returns x's Class if it is of the form "class C implements
675 >     * Comparable<C>", else null.
676 >     */
677 >    static Class<?> comparableClassFor(Object x) {
678 >        if (x instanceof Comparable) {
679 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680 >            if ((c = x.getClass()) == String.class) // bypass checks
681 >                return c;
682 >            if ((ts = c.getGenericInterfaces()) != null) {
683 >                for (int i = 0; i < ts.length; ++i) {
684 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
685 >                        ((p = (ParameterizedType)t).getRawType() ==
686 >                         Comparable.class) &&
687 >                        (as = p.getActualTypeArguments()) != null &&
688 >                        as.length == 1 && as[0] == c) // type arg is c
689 >                        return c;
690                  }
1100                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1101                         ((ek = e.key) == k || k.equals(ek)))
1102                    return ev;
691              }
1104            break;
692          }
693          return null;
694      }
695  
696      /**
697 <     * Implementation for the four public remove/replace methods:
698 <     * Replaces node value with v, conditional upon match of cv if
1112 <     * non-null.  If resulting value is null, delete.
697 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
698 >     * class), else 0.
699       */
700 <    private final Object internalReplace(Object k, Object v, Object cv) {
701 <        int h = spread(k.hashCode());
702 <        Object oldVal = null;
703 <        for (Node[] tab = table;;) {
1118 <            Node f; int i, fh; Object fk;
1119 <            if (tab == null ||
1120 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1121 <                break;
1122 <            else if ((fh = f.hash) == MOVED) {
1123 <                if ((fk = f.key) instanceof TreeBin) {
1124 <                    TreeBin t = (TreeBin)fk;
1125 <                    boolean validated = false;
1126 <                    boolean deleted = false;
1127 <                    t.acquire(0);
1128 <                    try {
1129 <                        if (tabAt(tab, i) == f) {
1130 <                            validated = true;
1131 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1132 <                            if (p != null) {
1133 <                                Object pv = p.val;
1134 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1135 <                                    oldVal = pv;
1136 <                                    if ((p.val = v) == null) {
1137 <                                        deleted = true;
1138 <                                        t.deleteTreeNode(p);
1139 <                                    }
1140 <                                }
1141 <                            }
1142 <                        }
1143 <                    } finally {
1144 <                        t.release(0);
1145 <                    }
1146 <                    if (validated) {
1147 <                        if (deleted)
1148 <                            counter.add(-1L);
1149 <                        break;
1150 <                    }
1151 <                }
1152 <                else
1153 <                    tab = (Node[])fk;
1154 <            }
1155 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1156 <                break;                          // rules out possible existence
1157 <            else if ((fh & LOCKED) != 0) {
1158 <                checkForResize();               // try resizing if can't get lock
1159 <                f.tryAwaitLock(tab, i);
1160 <            }
1161 <            else if (f.casHash(fh, fh | LOCKED)) {
1162 <                boolean validated = false;
1163 <                boolean deleted = false;
1164 <                try {
1165 <                    if (tabAt(tab, i) == f) {
1166 <                        validated = true;
1167 <                        for (Node e = f, pred = null;;) {
1168 <                            Object ek, ev;
1169 <                            if ((e.hash & HASH_BITS) == h &&
1170 <                                ((ev = e.val) != null) &&
1171 <                                ((ek = e.key) == k || k.equals(ek))) {
1172 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1173 <                                    oldVal = ev;
1174 <                                    if ((e.val = v) == null) {
1175 <                                        deleted = true;
1176 <                                        Node en = e.next;
1177 <                                        if (pred != null)
1178 <                                            pred.next = en;
1179 <                                        else
1180 <                                            setTabAt(tab, i, en);
1181 <                                    }
1182 <                                }
1183 <                                break;
1184 <                            }
1185 <                            pred = e;
1186 <                            if ((e = e.next) == null)
1187 <                                break;
1188 <                        }
1189 <                    }
1190 <                } finally {
1191 <                    if (!f.casHash(fh | LOCKED, fh)) {
1192 <                        f.hash = fh;
1193 <                        synchronized (f) { f.notifyAll(); };
1194 <                    }
1195 <                }
1196 <                if (validated) {
1197 <                    if (deleted)
1198 <                        counter.add(-1L);
1199 <                    break;
1200 <                }
1201 <            }
1202 <        }
1203 <        return oldVal;
1204 <    }
1205 <
1206 <    /*
1207 <     * Internal versions of the five insertion methods, each a
1208 <     * little more complicated than the last. All have
1209 <     * the same basic structure as the first (internalPut):
1210 <     *  1. If table uninitialized, create
1211 <     *  2. If bin empty, try to CAS new node
1212 <     *  3. If bin stale, use new table
1213 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1214 <     *  5. Lock and validate; if valid, scan and add or update
1215 <     *
1216 <     * The others interweave other checks and/or alternative actions:
1217 <     *  * Plain put checks for and performs resize after insertion.
1218 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1219 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1220 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1221 <     *    mechanics to deal with, calls, potential exceptions and null
1222 <     *    returns from function call.
1223 <     *  * compute uses the same function-call mechanics, but without
1224 <     *    the prescans
1225 <     *  * putAll attempts to pre-allocate enough table space
1226 <     *    and more lazily performs count updates and checks.
1227 <     *
1228 <     * Someday when details settle down a bit more, it might be worth
1229 <     * some factoring to reduce sprawl.
1230 <     */
1231 <
1232 <    /** Implementation for put */
1233 <    private final Object internalPut(Object k, Object v) {
1234 <        int h = spread(k.hashCode());
1235 <        int count = 0;
1236 <        for (Node[] tab = table;;) {
1237 <            int i; Node f; int fh; Object fk;
1238 <            if (tab == null)
1239 <                tab = initTable();
1240 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1241 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1242 <                    break;                   // no lock when adding to empty bin
1243 <            }
1244 <            else if ((fh = f.hash) == MOVED) {
1245 <                if ((fk = f.key) instanceof TreeBin) {
1246 <                    TreeBin t = (TreeBin)fk;
1247 <                    Object oldVal = null;
1248 <                    t.acquire(0);
1249 <                    try {
1250 <                        if (tabAt(tab, i) == f) {
1251 <                            count = 2;
1252 <                            TreeNode p = t.putTreeNode(h, k, v);
1253 <                            if (p != null) {
1254 <                                oldVal = p.val;
1255 <                                p.val = v;
1256 <                            }
1257 <                        }
1258 <                    } finally {
1259 <                        t.release(0);
1260 <                    }
1261 <                    if (count != 0) {
1262 <                        if (oldVal != null)
1263 <                            return oldVal;
1264 <                        break;
1265 <                    }
1266 <                }
1267 <                else
1268 <                    tab = (Node[])fk;
1269 <            }
1270 <            else if ((fh & LOCKED) != 0) {
1271 <                checkForResize();
1272 <                f.tryAwaitLock(tab, i);
1273 <            }
1274 <            else if (f.casHash(fh, fh | LOCKED)) {
1275 <                Object oldVal = null;
1276 <                try {                        // needed in case equals() throws
1277 <                    if (tabAt(tab, i) == f) {
1278 <                        count = 1;
1279 <                        for (Node e = f;; ++count) {
1280 <                            Object ek, ev;
1281 <                            if ((e.hash & HASH_BITS) == h &&
1282 <                                (ev = e.val) != null &&
1283 <                                ((ek = e.key) == k || k.equals(ek))) {
1284 <                                oldVal = ev;
1285 <                                e.val = v;
1286 <                                break;
1287 <                            }
1288 <                            Node last = e;
1289 <                            if ((e = e.next) == null) {
1290 <                                last.next = new Node(h, k, v, null);
1291 <                                if (count >= TREE_THRESHOLD)
1292 <                                    replaceWithTreeBin(tab, i, k);
1293 <                                break;
1294 <                            }
1295 <                        }
1296 <                    }
1297 <                } finally {                  // unlock and signal if needed
1298 <                    if (!f.casHash(fh | LOCKED, fh)) {
1299 <                        f.hash = fh;
1300 <                        synchronized (f) { f.notifyAll(); };
1301 <                    }
1302 <                }
1303 <                if (count != 0) {
1304 <                    if (oldVal != null)
1305 <                        return oldVal;
1306 <                    if (tab.length <= 64)
1307 <                        count = 2;
1308 <                    break;
1309 <                }
1310 <            }
1311 <        }
1312 <        counter.add(1L);
1313 <        if (count > 1)
1314 <            checkForResize();
1315 <        return null;
700 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701 >    static int compareComparables(Class<?> kc, Object k, Object x) {
702 >        return (x == null || x.getClass() != kc ? 0 :
703 >                ((Comparable)k).compareTo(x));
704      }
705  
706 <    /** Implementation for putIfAbsent */
1319 <    private final Object internalPutIfAbsent(Object k, Object v) {
1320 <        int h = spread(k.hashCode());
1321 <        int count = 0;
1322 <        for (Node[] tab = table;;) {
1323 <            int i; Node f; int fh; Object fk, fv;
1324 <            if (tab == null)
1325 <                tab = initTable();
1326 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1327 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1328 <                    break;
1329 <            }
1330 <            else if ((fh = f.hash) == MOVED) {
1331 <                if ((fk = f.key) instanceof TreeBin) {
1332 <                    TreeBin t = (TreeBin)fk;
1333 <                    Object oldVal = null;
1334 <                    t.acquire(0);
1335 <                    try {
1336 <                        if (tabAt(tab, i) == f) {
1337 <                            count = 2;
1338 <                            TreeNode p = t.putTreeNode(h, k, v);
1339 <                            if (p != null)
1340 <                                oldVal = p.val;
1341 <                        }
1342 <                    } finally {
1343 <                        t.release(0);
1344 <                    }
1345 <                    if (count != 0) {
1346 <                        if (oldVal != null)
1347 <                            return oldVal;
1348 <                        break;
1349 <                    }
1350 <                }
1351 <                else
1352 <                    tab = (Node[])fk;
1353 <            }
1354 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1355 <                     ((fk = f.key) == k || k.equals(fk)))
1356 <                return fv;
1357 <            else {
1358 <                Node g = f.next;
1359 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1360 <                    for (Node e = g;;) {
1361 <                        Object ek, ev;
1362 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1363 <                            ((ek = e.key) == k || k.equals(ek)))
1364 <                            return ev;
1365 <                        if ((e = e.next) == null) {
1366 <                            checkForResize();
1367 <                            break;
1368 <                        }
1369 <                    }
1370 <                }
1371 <                if (((fh = f.hash) & LOCKED) != 0) {
1372 <                    checkForResize();
1373 <                    f.tryAwaitLock(tab, i);
1374 <                }
1375 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1376 <                    Object oldVal = null;
1377 <                    try {
1378 <                        if (tabAt(tab, i) == f) {
1379 <                            count = 1;
1380 <                            for (Node e = f;; ++count) {
1381 <                                Object ek, ev;
1382 <                                if ((e.hash & HASH_BITS) == h &&
1383 <                                    (ev = e.val) != null &&
1384 <                                    ((ek = e.key) == k || k.equals(ek))) {
1385 <                                    oldVal = ev;
1386 <                                    break;
1387 <                                }
1388 <                                Node last = e;
1389 <                                if ((e = e.next) == null) {
1390 <                                    last.next = new Node(h, k, v, null);
1391 <                                    if (count >= TREE_THRESHOLD)
1392 <                                        replaceWithTreeBin(tab, i, k);
1393 <                                    break;
1394 <                                }
1395 <                            }
1396 <                        }
1397 <                    } finally {
1398 <                        if (!f.casHash(fh | LOCKED, fh)) {
1399 <                            f.hash = fh;
1400 <                            synchronized (f) { f.notifyAll(); };
1401 <                        }
1402 <                    }
1403 <                    if (count != 0) {
1404 <                        if (oldVal != null)
1405 <                            return oldVal;
1406 <                        if (tab.length <= 64)
1407 <                            count = 2;
1408 <                        break;
1409 <                    }
1410 <                }
1411 <            }
1412 <        }
1413 <        counter.add(1L);
1414 <        if (count > 1)
1415 <            checkForResize();
1416 <        return null;
1417 <    }
706 >    /* ---------------- Table element access -------------- */
707  
708 <    /** Implementation for computeIfAbsent */
709 <    private final Object internalComputeIfAbsent(K k,
710 <                                                 Fun<? super K, ?> mf) {
711 <        int h = spread(k.hashCode());
712 <        Object val = null;
713 <        int count = 0;
714 <        for (Node[] tab = table;;) {
715 <            Node f; int i, fh; Object fk, fv;
716 <            if (tab == null)
717 <                tab = initTable();
718 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
719 <                Node node = new Node(fh = h | LOCKED, k, null, null);
720 <                if (casTabAt(tab, i, null, node)) {
721 <                    count = 1;
722 <                    try {
1434 <                        if ((val = mf.apply(k)) != null)
1435 <                            node.val = val;
1436 <                    } finally {
1437 <                        if (val == null)
1438 <                            setTabAt(tab, i, null);
1439 <                        if (!node.casHash(fh, h)) {
1440 <                            node.hash = h;
1441 <                            synchronized (node) { node.notifyAll(); };
1442 <                        }
1443 <                    }
1444 <                }
1445 <                if (count != 0)
1446 <                    break;
1447 <            }
1448 <            else if ((fh = f.hash) == MOVED) {
1449 <                if ((fk = f.key) instanceof TreeBin) {
1450 <                    TreeBin t = (TreeBin)fk;
1451 <                    boolean added = false;
1452 <                    t.acquire(0);
1453 <                    try {
1454 <                        if (tabAt(tab, i) == f) {
1455 <                            count = 1;
1456 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1457 <                            if (p != null)
1458 <                                val = p.val;
1459 <                            else if ((val = mf.apply(k)) != null) {
1460 <                                added = true;
1461 <                                count = 2;
1462 <                                t.putTreeNode(h, k, val);
1463 <                            }
1464 <                        }
1465 <                    } finally {
1466 <                        t.release(0);
1467 <                    }
1468 <                    if (count != 0) {
1469 <                        if (!added)
1470 <                            return val;
1471 <                        break;
1472 <                    }
1473 <                }
1474 <                else
1475 <                    tab = (Node[])fk;
1476 <            }
1477 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1478 <                     ((fk = f.key) == k || k.equals(fk)))
1479 <                return fv;
1480 <            else {
1481 <                Node g = f.next;
1482 <                if (g != null) {
1483 <                    for (Node e = g;;) {
1484 <                        Object ek, ev;
1485 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1486 <                            ((ek = e.key) == k || k.equals(ek)))
1487 <                            return ev;
1488 <                        if ((e = e.next) == null) {
1489 <                            checkForResize();
1490 <                            break;
1491 <                        }
1492 <                    }
1493 <                }
1494 <                if (((fh = f.hash) & LOCKED) != 0) {
1495 <                    checkForResize();
1496 <                    f.tryAwaitLock(tab, i);
1497 <                }
1498 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1499 <                    boolean added = false;
1500 <                    try {
1501 <                        if (tabAt(tab, i) == f) {
1502 <                            count = 1;
1503 <                            for (Node e = f;; ++count) {
1504 <                                Object ek, ev;
1505 <                                if ((e.hash & HASH_BITS) == h &&
1506 <                                    (ev = e.val) != null &&
1507 <                                    ((ek = e.key) == k || k.equals(ek))) {
1508 <                                    val = ev;
1509 <                                    break;
1510 <                                }
1511 <                                Node last = e;
1512 <                                if ((e = e.next) == null) {
1513 <                                    if ((val = mf.apply(k)) != null) {
1514 <                                        added = true;
1515 <                                        last.next = new Node(h, k, val, null);
1516 <                                        if (count >= TREE_THRESHOLD)
1517 <                                            replaceWithTreeBin(tab, i, k);
1518 <                                    }
1519 <                                    break;
1520 <                                }
1521 <                            }
1522 <                        }
1523 <                    } finally {
1524 <                        if (!f.casHash(fh | LOCKED, fh)) {
1525 <                            f.hash = fh;
1526 <                            synchronized (f) { f.notifyAll(); };
1527 <                        }
1528 <                    }
1529 <                    if (count != 0) {
1530 <                        if (!added)
1531 <                            return val;
1532 <                        if (tab.length <= 64)
1533 <                            count = 2;
1534 <                        break;
1535 <                    }
1536 <                }
1537 <            }
1538 <        }
1539 <        if (val != null) {
1540 <            counter.add(1L);
1541 <            if (count > 1)
1542 <                checkForResize();
1543 <        }
1544 <        return val;
1545 <    }
708 >    /*
709 >     * Volatile access methods are used for table elements as well as
710 >     * elements of in-progress next table while resizing.  All uses of
711 >     * the tab arguments must be null checked by callers.  All callers
712 >     * also paranoically precheck that tab's length is not zero (or an
713 >     * equivalent check), thus ensuring that any index argument taking
714 >     * the form of a hash value anded with (length - 1) is a valid
715 >     * index.  Note that, to be correct wrt arbitrary concurrency
716 >     * errors by users, these checks must operate on local variables,
717 >     * which accounts for some odd-looking inline assignments below.
718 >     * Note that calls to setTabAt always occur within locked regions,
719 >     * and so in principle require only release ordering, not
720 >     * full volatile semantics, but are currently coded as volatile
721 >     * writes to be conservative.
722 >     */
723  
1547    /** Implementation for compute */
724      @SuppressWarnings("unchecked")
725 <        private final Object internalCompute(K k, boolean onlyIfPresent,
726 <                                             BiFun<? super K, ? super V, ? extends V> mf) {
1551 <        int h = spread(k.hashCode());
1552 <        Object val = null;
1553 <        int delta = 0;
1554 <        int count = 0;
1555 <        for (Node[] tab = table;;) {
1556 <            Node f; int i, fh; Object fk;
1557 <            if (tab == null)
1558 <                tab = initTable();
1559 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1560 <                if (onlyIfPresent)
1561 <                    break;
1562 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1563 <                if (casTabAt(tab, i, null, node)) {
1564 <                    try {
1565 <                        count = 1;
1566 <                        if ((val = mf.apply(k, null)) != null) {
1567 <                            node.val = val;
1568 <                            delta = 1;
1569 <                        }
1570 <                    } finally {
1571 <                        if (delta == 0)
1572 <                            setTabAt(tab, i, null);
1573 <                        if (!node.casHash(fh, h)) {
1574 <                            node.hash = h;
1575 <                            synchronized (node) { node.notifyAll(); };
1576 <                        }
1577 <                    }
1578 <                }
1579 <                if (count != 0)
1580 <                    break;
1581 <            }
1582 <            else if ((fh = f.hash) == MOVED) {
1583 <                if ((fk = f.key) instanceof TreeBin) {
1584 <                    TreeBin t = (TreeBin)fk;
1585 <                    t.acquire(0);
1586 <                    try {
1587 <                        if (tabAt(tab, i) == f) {
1588 <                            count = 1;
1589 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1590 <                            Object pv = (p == null) ? null : p.val;
1591 <                            if ((val = mf.apply(k, (V)pv)) != null) {
1592 <                                if (p != null)
1593 <                                    p.val = val;
1594 <                                else {
1595 <                                    count = 2;
1596 <                                    delta = 1;
1597 <                                    t.putTreeNode(h, k, val);
1598 <                                }
1599 <                            }
1600 <                            else if (p != null) {
1601 <                                delta = -1;
1602 <                                t.deleteTreeNode(p);
1603 <                            }
1604 <                        }
1605 <                    } finally {
1606 <                        t.release(0);
1607 <                    }
1608 <                    if (count != 0)
1609 <                        break;
1610 <                }
1611 <                else
1612 <                    tab = (Node[])fk;
1613 <            }
1614 <            else if ((fh & LOCKED) != 0) {
1615 <                checkForResize();
1616 <                f.tryAwaitLock(tab, i);
1617 <            }
1618 <            else if (f.casHash(fh, fh | LOCKED)) {
1619 <                try {
1620 <                    if (tabAt(tab, i) == f) {
1621 <                        count = 1;
1622 <                        for (Node e = f, pred = null;; ++count) {
1623 <                            Object ek, ev;
1624 <                            if ((e.hash & HASH_BITS) == h &&
1625 <                                (ev = e.val) != null &&
1626 <                                ((ek = e.key) == k || k.equals(ek))) {
1627 <                                val = mf.apply(k, (V)ev);
1628 <                                if (val != null)
1629 <                                    e.val = val;
1630 <                                else {
1631 <                                    delta = -1;
1632 <                                    Node en = e.next;
1633 <                                    if (pred != null)
1634 <                                        pred.next = en;
1635 <                                    else
1636 <                                        setTabAt(tab, i, en);
1637 <                                }
1638 <                                break;
1639 <                            }
1640 <                            pred = e;
1641 <                            if ((e = e.next) == null) {
1642 <                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1643 <                                    pred.next = new Node(h, k, val, null);
1644 <                                    delta = 1;
1645 <                                    if (count >= TREE_THRESHOLD)
1646 <                                        replaceWithTreeBin(tab, i, k);
1647 <                                }
1648 <                                break;
1649 <                            }
1650 <                        }
1651 <                    }
1652 <                } finally {
1653 <                    if (!f.casHash(fh | LOCKED, fh)) {
1654 <                        f.hash = fh;
1655 <                        synchronized (f) { f.notifyAll(); };
1656 <                    }
1657 <                }
1658 <                if (count != 0) {
1659 <                    if (tab.length <= 64)
1660 <                        count = 2;
1661 <                    break;
1662 <                }
1663 <            }
1664 <        }
1665 <        if (delta != 0) {
1666 <            counter.add((long)delta);
1667 <            if (count > 1)
1668 <                checkForResize();
1669 <        }
1670 <        return val;
725 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727      }
728  
729 <    private final Object internalMerge(K k, V v,
730 <                                       BiFun<? super V, ? super V, ? extends V> mf) {
731 <        int h = spread(k.hashCode());
1676 <        Object val = null;
1677 <        int delta = 0;
1678 <        int count = 0;
1679 <        for (Node[] tab = table;;) {
1680 <            int i; Node f; int fh; Object fk, fv;
1681 <            if (tab == null)
1682 <                tab = initTable();
1683 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1684 <                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1685 <                    delta = 1;
1686 <                    val = v;
1687 <                    break;
1688 <                }
1689 <            }
1690 <            else if ((fh = f.hash) == MOVED) {
1691 <                if ((fk = f.key) instanceof TreeBin) {
1692 <                    TreeBin t = (TreeBin)fk;
1693 <                    t.acquire(0);
1694 <                    try {
1695 <                        if (tabAt(tab, i) == f) {
1696 <                            count = 1;
1697 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1698 <                            val = (p == null) ? v : mf.apply((V)p.val, v);
1699 <                            if (val != null) {
1700 <                                if (p != null)
1701 <                                    p.val = val;
1702 <                                else {
1703 <                                    count = 2;
1704 <                                    delta = 1;
1705 <                                    t.putTreeNode(h, k, val);
1706 <                                }
1707 <                            }
1708 <                            else if (p != null) {
1709 <                                delta = -1;
1710 <                                t.deleteTreeNode(p);
1711 <                            }
1712 <                        }
1713 <                    } finally {
1714 <                        t.release(0);
1715 <                    }
1716 <                    if (count != 0)
1717 <                        break;
1718 <                }
1719 <                else
1720 <                    tab = (Node[])fk;
1721 <            }
1722 <            else if ((fh & LOCKED) != 0) {
1723 <                checkForResize();
1724 <                f.tryAwaitLock(tab, i);
1725 <            }
1726 <            else if (f.casHash(fh, fh | LOCKED)) {
1727 <                try {
1728 <                    if (tabAt(tab, i) == f) {
1729 <                        count = 1;
1730 <                        for (Node e = f, pred = null;; ++count) {
1731 <                            Object ek, ev;
1732 <                            if ((e.hash & HASH_BITS) == h &&
1733 <                                (ev = e.val) != null &&
1734 <                                ((ek = e.key) == k || k.equals(ek))) {
1735 <                                val = mf.apply(v, (V)ev);
1736 <                                if (val != null)
1737 <                                    e.val = val;
1738 <                                else {
1739 <                                    delta = -1;
1740 <                                    Node en = e.next;
1741 <                                    if (pred != null)
1742 <                                        pred.next = en;
1743 <                                    else
1744 <                                        setTabAt(tab, i, en);
1745 <                                }
1746 <                                break;
1747 <                            }
1748 <                            pred = e;
1749 <                            if ((e = e.next) == null) {
1750 <                                val = v;
1751 <                                pred.next = new Node(h, k, val, null);
1752 <                                delta = 1;
1753 <                                if (count >= TREE_THRESHOLD)
1754 <                                    replaceWithTreeBin(tab, i, k);
1755 <                                break;
1756 <                            }
1757 <                        }
1758 <                    }
1759 <                } finally {
1760 <                    if (!f.casHash(fh | LOCKED, fh)) {
1761 <                        f.hash = fh;
1762 <                        synchronized (f) { f.notifyAll(); };
1763 <                    }
1764 <                }
1765 <                if (count != 0) {
1766 <                    if (tab.length <= 64)
1767 <                        count = 2;
1768 <                    break;
1769 <                }
1770 <            }
1771 <        }
1772 <        if (delta != 0) {
1773 <            counter.add((long)delta);
1774 <            if (count > 1)
1775 <                checkForResize();
1776 <        }
1777 <        return val;
729 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730 >                                        Node<K,V> c, Node<K,V> v) {
731 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732      }
733  
734 <    /** Implementation for putAll */
735 <    private final void internalPutAll(Map<?, ?> m) {
1782 <        tryPresize(m.size());
1783 <        long delta = 0L;     // number of uncommitted additions
1784 <        boolean npe = false; // to throw exception on exit for nulls
1785 <        try {                // to clean up counts on other exceptions
1786 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1787 <                Object k, v;
1788 <                if (entry == null || (k = entry.getKey()) == null ||
1789 <                    (v = entry.getValue()) == null) {
1790 <                    npe = true;
1791 <                    break;
1792 <                }
1793 <                int h = spread(k.hashCode());
1794 <                for (Node[] tab = table;;) {
1795 <                    int i; Node f; int fh; Object fk;
1796 <                    if (tab == null)
1797 <                        tab = initTable();
1798 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1799 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1800 <                            ++delta;
1801 <                            break;
1802 <                        }
1803 <                    }
1804 <                    else if ((fh = f.hash) == MOVED) {
1805 <                        if ((fk = f.key) instanceof TreeBin) {
1806 <                            TreeBin t = (TreeBin)fk;
1807 <                            boolean validated = false;
1808 <                            t.acquire(0);
1809 <                            try {
1810 <                                if (tabAt(tab, i) == f) {
1811 <                                    validated = true;
1812 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
1813 <                                    if (p != null)
1814 <                                        p.val = v;
1815 <                                    else {
1816 <                                        t.putTreeNode(h, k, v);
1817 <                                        ++delta;
1818 <                                    }
1819 <                                }
1820 <                            } finally {
1821 <                                t.release(0);
1822 <                            }
1823 <                            if (validated)
1824 <                                break;
1825 <                        }
1826 <                        else
1827 <                            tab = (Node[])fk;
1828 <                    }
1829 <                    else if ((fh & LOCKED) != 0) {
1830 <                        counter.add(delta);
1831 <                        delta = 0L;
1832 <                        checkForResize();
1833 <                        f.tryAwaitLock(tab, i);
1834 <                    }
1835 <                    else if (f.casHash(fh, fh | LOCKED)) {
1836 <                        int count = 0;
1837 <                        try {
1838 <                            if (tabAt(tab, i) == f) {
1839 <                                count = 1;
1840 <                                for (Node e = f;; ++count) {
1841 <                                    Object ek, ev;
1842 <                                    if ((e.hash & HASH_BITS) == h &&
1843 <                                        (ev = e.val) != null &&
1844 <                                        ((ek = e.key) == k || k.equals(ek))) {
1845 <                                        e.val = v;
1846 <                                        break;
1847 <                                    }
1848 <                                    Node last = e;
1849 <                                    if ((e = e.next) == null) {
1850 <                                        ++delta;
1851 <                                        last.next = new Node(h, k, v, null);
1852 <                                        if (count >= TREE_THRESHOLD)
1853 <                                            replaceWithTreeBin(tab, i, k);
1854 <                                        break;
1855 <                                    }
1856 <                                }
1857 <                            }
1858 <                        } finally {
1859 <                            if (!f.casHash(fh | LOCKED, fh)) {
1860 <                                f.hash = fh;
1861 <                                synchronized (f) { f.notifyAll(); };
1862 <                            }
1863 <                        }
1864 <                        if (count != 0) {
1865 <                            if (count > 1) {
1866 <                                counter.add(delta);
1867 <                                delta = 0L;
1868 <                                checkForResize();
1869 <                            }
1870 <                            break;
1871 <                        }
1872 <                    }
1873 <                }
1874 <            }
1875 <        } finally {
1876 <            if (delta != 0)
1877 <                counter.add(delta);
1878 <        }
1879 <        if (npe)
1880 <            throw new NullPointerException();
734 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736      }
737  
738 <    /* ---------------- Table Initialization and Resizing -------------- */
738 >    /* ---------------- Fields -------------- */
739  
740      /**
741 <     * Returns a power of two table size for the given desired capacity.
742 <     * See Hackers Delight, sec 3.2
741 >     * The array of bins. Lazily initialized upon first insertion.
742 >     * Size is always a power of two. Accessed directly by iterators.
743       */
744 <    private static final int tableSizeFor(int c) {
1890 <        int n = c - 1;
1891 <        n |= n >>> 1;
1892 <        n |= n >>> 2;
1893 <        n |= n >>> 4;
1894 <        n |= n >>> 8;
1895 <        n |= n >>> 16;
1896 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1897 <    }
744 >    transient volatile Node<K,V>[] table;
745  
746      /**
747 <     * Initializes table, using the size recorded in sizeCtl.
747 >     * The next table to use; non-null only while resizing.
748       */
749 <    private final Node[] initTable() {
1903 <        Node[] tab; int sc;
1904 <        while ((tab = table) == null) {
1905 <            if ((sc = sizeCtl) < 0)
1906 <                Thread.yield(); // lost initialization race; just spin
1907 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1908 <                try {
1909 <                    if ((tab = table) == null) {
1910 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1911 <                        tab = table = new Node[n];
1912 <                        sc = n - (n >>> 2);
1913 <                    }
1914 <                } finally {
1915 <                    sizeCtl = sc;
1916 <                }
1917 <                break;
1918 <            }
1919 <        }
1920 <        return tab;
1921 <    }
749 >    private transient volatile Node<K,V>[] nextTable;
750  
751      /**
752 <     * If table is too small and not already resizing, creates next
753 <     * table and transfers bins.  Rechecks occupancy after a transfer
754 <     * to see if another resize is already needed because resizings
1927 <     * are lagging additions.
1928 <     */
1929 <    private final void checkForResize() {
1930 <        Node[] tab; int n, sc;
1931 <        while ((tab = table) != null &&
1932 <               (n = tab.length) < MAXIMUM_CAPACITY &&
1933 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1934 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1935 <            try {
1936 <                if (tab == table) {
1937 <                    table = rebuild(tab);
1938 <                    sc = (n << 1) - (n >>> 1);
1939 <                }
1940 <            } finally {
1941 <                sizeCtl = sc;
1942 <            }
1943 <        }
1944 <    }
1945 <
1946 <    /**
1947 <     * Tries to presize table to accommodate the given number of elements.
1948 <     *
1949 <     * @param size number of elements (doesn't need to be perfectly accurate)
1950 <     */
1951 <    private final void tryPresize(int size) {
1952 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1953 <            tableSizeFor(size + (size >>> 1) + 1);
1954 <        int sc;
1955 <        while ((sc = sizeCtl) >= 0) {
1956 <            Node[] tab = table; int n;
1957 <            if (tab == null || (n = tab.length) == 0) {
1958 <                n = (sc > c) ? sc : c;
1959 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1960 <                    try {
1961 <                        if (table == tab) {
1962 <                            table = new Node[n];
1963 <                            sc = n - (n >>> 2);
1964 <                        }
1965 <                    } finally {
1966 <                        sizeCtl = sc;
1967 <                    }
1968 <                }
1969 <            }
1970 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971 <                break;
1972 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1973 <                try {
1974 <                    if (table == tab) {
1975 <                        table = rebuild(tab);
1976 <                        sc = (n << 1) - (n >>> 1);
1977 <                    }
1978 <                } finally {
1979 <                    sizeCtl = sc;
1980 <                }
1981 <            }
1982 <        }
1983 <    }
1984 <
1985 <    /*
1986 <     * Moves and/or copies the nodes in each bin to new table. See
1987 <     * above for explanation.
1988 <     *
1989 <     * @return the new table
752 >     * Base counter value, used mainly when there is no contention,
753 >     * but also as a fallback during table initialization
754 >     * races. Updated via CAS.
755       */
756 <    private static final Node[] rebuild(Node[] tab) {
1992 <        int n = tab.length;
1993 <        Node[] nextTab = new Node[n << 1];
1994 <        Node fwd = new Node(MOVED, nextTab, null, null);
1995 <        int[] buffer = null;       // holds bins to revisit; null until needed
1996 <        Node rev = null;           // reverse forwarder; null until needed
1997 <        int nbuffered = 0;         // the number of bins in buffer list
1998 <        int bufferIndex = 0;       // buffer index of current buffered bin
1999 <        int bin = n - 1;           // current non-buffered bin or -1 if none
2000 <
2001 <        for (int i = bin;;) {      // start upwards sweep
2002 <            int fh; Node f;
2003 <            if ((f = tabAt(tab, i)) == null) {
2004 <                if (bin >= 0) {    // no lock needed (or available)
2005 <                    if (!casTabAt(tab, i, f, fwd))
2006 <                        continue;
2007 <                }
2008 <                else {             // transiently use a locked forwarding node
2009 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2010 <                    if (!casTabAt(tab, i, f, g))
2011 <                        continue;
2012 <                    setTabAt(nextTab, i, null);
2013 <                    setTabAt(nextTab, i + n, null);
2014 <                    setTabAt(tab, i, fwd);
2015 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2016 <                        g.hash = MOVED;
2017 <                        synchronized (g) { g.notifyAll(); }
2018 <                    }
2019 <                }
2020 <            }
2021 <            else if ((fh = f.hash) == MOVED) {
2022 <                Object fk = f.key;
2023 <                if (fk instanceof TreeBin) {
2024 <                    TreeBin t = (TreeBin)fk;
2025 <                    boolean validated = false;
2026 <                    t.acquire(0);
2027 <                    try {
2028 <                        if (tabAt(tab, i) == f) {
2029 <                            validated = true;
2030 <                            splitTreeBin(nextTab, i, t);
2031 <                            setTabAt(tab, i, fwd);
2032 <                        }
2033 <                    } finally {
2034 <                        t.release(0);
2035 <                    }
2036 <                    if (!validated)
2037 <                        continue;
2038 <                }
2039 <            }
2040 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2041 <                boolean validated = false;
2042 <                try {              // split to lo and hi lists; copying as needed
2043 <                    if (tabAt(tab, i) == f) {
2044 <                        validated = true;
2045 <                        splitBin(nextTab, i, f);
2046 <                        setTabAt(tab, i, fwd);
2047 <                    }
2048 <                } finally {
2049 <                    if (!f.casHash(fh | LOCKED, fh)) {
2050 <                        f.hash = fh;
2051 <                        synchronized (f) { f.notifyAll(); };
2052 <                    }
2053 <                }
2054 <                if (!validated)
2055 <                    continue;
2056 <            }
2057 <            else {
2058 <                if (buffer == null) // initialize buffer for revisits
2059 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2060 <                if (bin < 0 && bufferIndex > 0) {
2061 <                    int j = buffer[--bufferIndex];
2062 <                    buffer[bufferIndex] = i;
2063 <                    i = j;         // swap with another bin
2064 <                    continue;
2065 <                }
2066 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2067 <                    f.tryAwaitLock(tab, i);
2068 <                    continue;      // no other options -- block
2069 <                }
2070 <                if (rev == null)   // initialize reverse-forwarder
2071 <                    rev = new Node(MOVED, tab, null, null);
2072 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2073 <                    continue;      // recheck before adding to list
2074 <                buffer[nbuffered++] = i;
2075 <                setTabAt(nextTab, i, rev);     // install place-holders
2076 <                setTabAt(nextTab, i + n, rev);
2077 <            }
2078 <
2079 <            if (bin > 0)
2080 <                i = --bin;
2081 <            else if (buffer != null && nbuffered > 0) {
2082 <                bin = -1;
2083 <                i = buffer[bufferIndex = --nbuffered];
2084 <            }
2085 <            else
2086 <                return nextTab;
2087 <        }
2088 <    }
756 >    private transient volatile long baseCount;
757  
758      /**
759 <     * Splits a normal bin with list headed by e into lo and hi parts;
760 <     * installs in given table.
759 >     * Table initialization and resizing control.  When negative, the
760 >     * table is being initialized or resized: -1 for initialization,
761 >     * else -(1 + the number of active resizing threads).  Otherwise,
762 >     * when table is null, holds the initial table size to use upon
763 >     * creation, or 0 for default. After initialization, holds the
764 >     * next element count value upon which to resize the table.
765       */
766 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2095 <        int bit = nextTab.length >>> 1; // bit to split on
2096 <        int runBit = e.hash & bit;
2097 <        Node lastRun = e, lo = null, hi = null;
2098 <        for (Node p = e.next; p != null; p = p.next) {
2099 <            int b = p.hash & bit;
2100 <            if (b != runBit) {
2101 <                runBit = b;
2102 <                lastRun = p;
2103 <            }
2104 <        }
2105 <        if (runBit == 0)
2106 <            lo = lastRun;
2107 <        else
2108 <            hi = lastRun;
2109 <        for (Node p = e; p != lastRun; p = p.next) {
2110 <            int ph = p.hash & HASH_BITS;
2111 <            Object pk = p.key, pv = p.val;
2112 <            if ((ph & bit) == 0)
2113 <                lo = new Node(ph, pk, pv, lo);
2114 <            else
2115 <                hi = new Node(ph, pk, pv, hi);
2116 <        }
2117 <        setTabAt(nextTab, i, lo);
2118 <        setTabAt(nextTab, i + bit, hi);
2119 <    }
766 >    private transient volatile int sizeCtl;
767  
768      /**
769 <     * Splits a tree bin into lo and hi parts; installs in given table.
769 >     * The next table index (plus one) to split while resizing.
770       */
771 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2125 <        int bit = nextTab.length >>> 1;
2126 <        TreeBin lt = new TreeBin();
2127 <        TreeBin ht = new TreeBin();
2128 <        int lc = 0, hc = 0;
2129 <        for (Node e = t.first; e != null; e = e.next) {
2130 <            int h = e.hash & HASH_BITS;
2131 <            Object k = e.key, v = e.val;
2132 <            if ((h & bit) == 0) {
2133 <                ++lc;
2134 <                lt.putTreeNode(h, k, v);
2135 <            }
2136 <            else {
2137 <                ++hc;
2138 <                ht.putTreeNode(h, k, v);
2139 <            }
2140 <        }
2141 <        Node ln, hn; // throw away trees if too small
2142 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2143 <            ln = null;
2144 <            for (Node p = lt.first; p != null; p = p.next)
2145 <                ln = new Node(p.hash, p.key, p.val, ln);
2146 <        }
2147 <        else
2148 <            ln = new Node(MOVED, lt, null, null);
2149 <        setTabAt(nextTab, i, ln);
2150 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2151 <            hn = null;
2152 <            for (Node p = ht.first; p != null; p = p.next)
2153 <                hn = new Node(p.hash, p.key, p.val, hn);
2154 <        }
2155 <        else
2156 <            hn = new Node(MOVED, ht, null, null);
2157 <        setTabAt(nextTab, i + bit, hn);
2158 <    }
771 >    private transient volatile int transferIndex;
772  
773      /**
774 <     * Implementation for clear. Steps through each bin, removing all
2162 <     * nodes.
774 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775       */
776 <    private final void internalClear() {
2165 <        long delta = 0L; // negative number of deletions
2166 <        int i = 0;
2167 <        Node[] tab = table;
2168 <        while (tab != null && i < tab.length) {
2169 <            int fh; Object fk;
2170 <            Node f = tabAt(tab, i);
2171 <            if (f == null)
2172 <                ++i;
2173 <            else if ((fh = f.hash) == MOVED) {
2174 <                if ((fk = f.key) instanceof TreeBin) {
2175 <                    TreeBin t = (TreeBin)fk;
2176 <                    t.acquire(0);
2177 <                    try {
2178 <                        if (tabAt(tab, i) == f) {
2179 <                            for (Node p = t.first; p != null; p = p.next) {
2180 <                                p.val = null;
2181 <                                --delta;
2182 <                            }
2183 <                            t.first = null;
2184 <                            t.root = null;
2185 <                            ++i;
2186 <                        }
2187 <                    } finally {
2188 <                        t.release(0);
2189 <                    }
2190 <                }
2191 <                else
2192 <                    tab = (Node[])fk;
2193 <            }
2194 <            else if ((fh & LOCKED) != 0) {
2195 <                counter.add(delta); // opportunistically update count
2196 <                delta = 0L;
2197 <                f.tryAwaitLock(tab, i);
2198 <            }
2199 <            else if (f.casHash(fh, fh | LOCKED)) {
2200 <                try {
2201 <                    if (tabAt(tab, i) == f) {
2202 <                        for (Node e = f; e != null; e = e.next) {
2203 <                            e.val = null;
2204 <                            --delta;
2205 <                        }
2206 <                        setTabAt(tab, i, null);
2207 <                        ++i;
2208 <                    }
2209 <                } finally {
2210 <                    if (!f.casHash(fh | LOCKED, fh)) {
2211 <                        f.hash = fh;
2212 <                        synchronized (f) { f.notifyAll(); };
2213 <                    }
2214 <                }
2215 <            }
2216 <        }
2217 <        if (delta != 0)
2218 <            counter.add(delta);
2219 <    }
2220 <
2221 <    /* ----------------Table Traversal -------------- */
776 >    private transient volatile int cellsBusy;
777  
778      /**
779 <     * Encapsulates traversal for methods such as containsValue; also
780 <     * serves as a base class for other iterators.
781 <     *
2227 <     * At each step, the iterator snapshots the key ("nextKey") and
2228 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2229 <     * snapshot, has a non-null user value). Because val fields can
2230 <     * change (including to null, indicating deletion), field nextVal
2231 <     * might not be accurate at point of use, but still maintains the
2232 <     * weak consistency property of holding a value that was once
2233 <     * valid.
2234 <     *
2235 <     * Internal traversals directly access these fields, as in:
2236 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2237 <     *
2238 <     * Exported iterators must track whether the iterator has advanced
2239 <     * (in hasNext vs next) (by setting/checking/nulling field
2240 <     * nextVal), and then extract key, value, or key-value pairs as
2241 <     * return values of next().
2242 <     *
2243 <     * The iterator visits once each still-valid node that was
2244 <     * reachable upon iterator construction. It might miss some that
2245 <     * were added to a bin after the bin was visited, which is OK wrt
2246 <     * consistency guarantees. Maintaining this property in the face
2247 <     * of possible ongoing resizes requires a fair amount of
2248 <     * bookkeeping state that is difficult to optimize away amidst
2249 <     * volatile accesses.  Even so, traversal maintains reasonable
2250 <     * throughput.
2251 <     *
2252 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2253 <     * However, if the table has been resized, then all future steps
2254 <     * must traverse both the bin at the current index as well as at
2255 <     * (index + baseSize); and so on for further resizings. To
2256 <     * paranoically cope with potential sharing by users of iterators
2257 <     * across threads, iteration terminates if a bounds checks fails
2258 <     * for a table read.
2259 <     *
2260 <     * This class extends ForkJoinTask to streamline parallel
2261 <     * iteration in bulk operations (see BulkTask). This adds only an
2262 <     * int of space overhead, which is close enough to negligible in
2263 <     * cases where it is not needed to not worry about it.
2264 <     */
2265 <    static class Traverser<K,V,R> extends ForkJoinTask<R> {
2266 <        final ConcurrentHashMap<K, V> map;
2267 <        Node next;           // the next entry to use
2268 <        Node last;           // the last entry used
2269 <        Object nextKey;      // cached key field of next
2270 <        Object nextVal;      // cached val field of next
2271 <        Node[] tab;          // current table; updated if resized
2272 <        int index;           // index of bin to use next
2273 <        int baseIndex;       // current index of initial table
2274 <        int baseLimit;       // index bound for initial table
2275 <        final int baseSize;  // initial table size
2276 <
2277 <        /** Creates iterator for all entries in the table. */
2278 <        Traverser(ConcurrentHashMap<K, V> map) {
2279 <            this.tab = (this.map = map).table;
2280 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2281 <        }
2282 <
2283 <        /** Creates iterator for split() methods */
2284 <        Traverser(Traverser<K,V,?> it, boolean split) {
2285 <            this.map = it.map;
2286 <            this.tab = it.tab;
2287 <            this.baseSize = it.baseSize;
2288 <            int lo = it.baseIndex;
2289 <            int hi = this.baseLimit = it.baseLimit;
2290 <            int i;
2291 <            if (split) // adjust parent
2292 <                i = it.baseLimit = (lo + hi + 1) >>> 1;
2293 <            else       // clone parent
2294 <                i = lo;
2295 <            this.index = this.baseIndex = i;
2296 <        }
2297 <
2298 <        /**
2299 <         * Advances next; returns nextVal or null if terminated.
2300 <         * See above for explanation.
2301 <         */
2302 <        final Object advance() {
2303 <            Node e = last = next;
2304 <            Object ev = null;
2305 <            outer: do {
2306 <                if (e != null)                  // advance past used/skipped node
2307 <                    e = e.next;
2308 <                while (e == null) {             // get to next non-null bin
2309 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2310 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2311 <                        (t = tab) == null || i >= (n = t.length))
2312 <                        break outer;
2313 <                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2314 <                        if ((ek = e.key) instanceof TreeBin)
2315 <                            e = ((TreeBin)ek).first;
2316 <                        else {
2317 <                            tab = (Node[])ek;
2318 <                            continue;           // restarts due to null val
2319 <                        }
2320 <                    }                           // visit upper slots if present
2321 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2322 <                }
2323 <                nextKey = e.key;
2324 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2325 <            next = e;
2326 <            return nextVal = ev;
2327 <        }
2328 <
2329 <        public final void remove() {
2330 <            if (nextVal == null)
2331 <                advance();
2332 <            Node e = last;
2333 <            if (e == null)
2334 <                throw new IllegalStateException();
2335 <            last = null;
2336 <            map.remove(e.key);
2337 <        }
779 >     * Table of counter cells. When non-null, size is a power of 2.
780 >     */
781 >    private transient volatile CounterCell[] counterCells;
782  
783 <        public final boolean hasNext() {
784 <            return nextVal != null || advance() != null;
785 <        }
783 >    // views
784 >    private transient KeySetView<K,V> keySet;
785 >    private transient ValuesView<K,V> values;
786 >    private transient EntrySetView<K,V> entrySet;
787  
2343        public final boolean hasMoreElements() { return hasNext(); }
2344        public final void setRawResult(Object x) { }
2345        public R getRawResult() { return null; }
2346        public boolean exec() { return true; }
2347    }
788  
789      /* ---------------- Public operations -------------- */
790  
# Line 2352 | Line 792 | public class ConcurrentHashMap<K, V>
792       * Creates a new, empty map with the default initial table size (16).
793       */
794      public ConcurrentHashMap() {
2355        this.counter = new LongAdder();
795      }
796  
797      /**
# Line 2371 | Line 810 | public class ConcurrentHashMap<K, V>
810          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811                     MAXIMUM_CAPACITY :
812                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2374        this.counter = new LongAdder();
813          this.sizeCtl = cap;
814      }
815  
# Line 2381 | Line 819 | public class ConcurrentHashMap<K, V>
819       * @param m the map
820       */
821      public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2384        this.counter = new LongAdder();
822          this.sizeCtl = DEFAULT_CAPACITY;
823 <        internalPutAll(m);
823 >        putAll(m);
824      }
825  
826      /**
# Line 2424 | Line 861 | public class ConcurrentHashMap<K, V>
861       * nonpositive
862       */
863      public ConcurrentHashMap(int initialCapacity,
864 <                               float loadFactor, int concurrencyLevel) {
864 >                             float loadFactor, int concurrencyLevel) {
865          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866              throw new IllegalArgumentException();
867          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2432 | Line 869 | public class ConcurrentHashMap<K, V>
869          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2435        this.counter = new LongAdder();
872          this.sizeCtl = cap;
873      }
874  
875 <    /**
2440 <     * {@inheritDoc}
2441 <     */
2442 <    public boolean isEmpty() {
2443 <        return counter.sum() <= 0L; // ignore transient negative values
2444 <    }
875 >    // Original (since JDK1.2) Map methods
876  
877      /**
878       * {@inheritDoc}
879       */
880      public int size() {
881 <        long n = counter.sum();
881 >        long n = sumCount();
882          return ((n < 0L) ? 0 :
883                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884                  (int)n);
885      }
886  
887      /**
888 <     * Returns the number of mappings. This method should be used
2458 <     * instead of {@link #size} because a ConcurrentHashMap may
2459 <     * contain more mappings than can be represented as an int. The
2460 <     * value returned is a snapshot; the actual count may differ if
2461 <     * there are ongoing concurrent insertions of removals.
2462 <     *
2463 <     * @return the number of mappings
888 >     * {@inheritDoc}
889       */
890 <    public long mappingCount() {
891 <        long n = counter.sum();
2467 <        return (n < 0L) ? 0L : n;
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892      }
893  
894      /**
# Line 2478 | Line 902 | public class ConcurrentHashMap<K, V>
902       *
903       * @throws NullPointerException if the specified key is null
904       */
905 <    @SuppressWarnings("unchecked")
906 <        public V get(Object key) {
907 <        if (key == null)
908 <            throw new NullPointerException();
909 <        return (V)internalGet(key);
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920 >            }
921 >        }
922 >        return null;
923      }
924  
925      /**
926       * Tests if the specified object is a key in this table.
927       *
928 <     * @param  key   possible key
928 >     * @param  key possible key
929       * @return {@code true} if and only if the specified object
930       *         is a key in this table, as determined by the
931       *         {@code equals} method; {@code false} otherwise
932       * @throws NullPointerException if the specified key is null
933       */
934      public boolean containsKey(Object key) {
935 <        if (key == null)
2499 <            throw new NullPointerException();
2500 <        return internalGet(key) != null;
935 >        return get(key) != null;
936      }
937  
938      /**
# Line 2513 | Line 948 | public class ConcurrentHashMap<K, V>
948      public boolean containsValue(Object value) {
949          if (value == null)
950              throw new NullPointerException();
951 <        Object v;
952 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
953 <        while ((v = it.advance()) != null) {
954 <            if (v == value || value.equals(v))
955 <                return true;
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958 >            }
959          }
960          return false;
961      }
962  
963      /**
2526     * Legacy method testing if some key maps into the specified value
2527     * in this table.  This method is identical in functionality to
2528     * {@link #containsValue}, and exists solely to ensure
2529     * full compatibility with class {@link java.util.Hashtable},
2530     * which supported this method prior to introduction of the
2531     * Java Collections framework.
2532     *
2533     * @param  value a value to search for
2534     * @return {@code true} if and only if some key maps to the
2535     *         {@code value} argument in this table as
2536     *         determined by the {@code equals} method;
2537     *         {@code false} otherwise
2538     * @throws NullPointerException if the specified value is null
2539     */
2540    public boolean contains(Object value) {
2541        return containsValue(value);
2542    }
2543
2544    /**
964       * Maps the specified key to the specified value in this table.
965       * Neither the key nor the value can be null.
966       *
967 <     * <p> The value can be retrieved by calling the {@code get} method
967 >     * <p>The value can be retrieved by calling the {@code get} method
968       * with a key that is equal to the original key.
969       *
970       * @param key key with which the specified value is to be associated
# Line 2554 | Line 973 | public class ConcurrentHashMap<K, V>
973       *         {@code null} if there was no mapping for {@code key}
974       * @throws NullPointerException if the specified key or value is null
975       */
976 <    @SuppressWarnings("unchecked")
977 <        public V put(K key, V value) {
2559 <        if (key == null || value == null)
2560 <            throw new NullPointerException();
2561 <        return (V)internalPut(key, value);
976 >    public V put(K key, V value) {
977 >        return putVal(key, value, false);
978      }
979  
980 <    /**
981 <     * {@inheritDoc}
982 <     *
983 <     * @return the previous value associated with the specified key,
984 <     *         or {@code null} if there was no mapping for the key
985 <     * @throws NullPointerException if the specified key or value is null
986 <     */
987 <    @SuppressWarnings("unchecked")
988 <        public V putIfAbsent(K key, V value) {
989 <        if (key == null || value == null)
990 <            throw new NullPointerException();
991 <        return (V)internalPutIfAbsent(key, value);
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null,
991 >                             new Node<K,V>(hash, key, value, null)))
992 >                    break;                   // no lock when adding to empty bin
993 >            }
994 >            else if ((fh = f.hash) == MOVED)
995 >                tab = helpTransfer(tab, f);
996 >            else {
997 >                V oldVal = null;
998 >                synchronized (f) {
999 >                    if (tabAt(tab, i) == f) {
1000 >                        if (fh >= 0) {
1001 >                            binCount = 1;
1002 >                            for (Node<K,V> e = f;; ++binCount) {
1003 >                                K ek;
1004 >                                if (e.hash == hash &&
1005 >                                    ((ek = e.key) == key ||
1006 >                                     (ek != null && key.equals(ek)))) {
1007 >                                    oldVal = e.val;
1008 >                                    if (!onlyIfAbsent)
1009 >                                        e.val = value;
1010 >                                    break;
1011 >                                }
1012 >                                Node<K,V> pred = e;
1013 >                                if ((e = e.next) == null) {
1014 >                                    pred.next = new Node<K,V>(hash, key,
1015 >                                                              value, null);
1016 >                                    break;
1017 >                                }
1018 >                            }
1019 >                        }
1020 >                        else if (f instanceof TreeBin) {
1021 >                            Node<K,V> p;
1022 >                            binCount = 2;
1023 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024 >                                                           value)) != null) {
1025 >                                oldVal = p.val;
1026 >                                if (!onlyIfAbsent)
1027 >                                    p.val = value;
1028 >                            }
1029 >                        }
1030 >                    }
1031 >                }
1032 >                if (binCount != 0) {
1033 >                    if (binCount >= TREEIFY_THRESHOLD)
1034 >                        treeifyBin(tab, i);
1035 >                    if (oldVal != null)
1036 >                        return oldVal;
1037 >                    break;
1038 >                }
1039 >            }
1040 >        }
1041 >        addCount(1L, binCount);
1042 >        return null;
1043      }
1044  
1045      /**
# Line 2583 | Line 1050 | public class ConcurrentHashMap<K, V>
1050       * @param m mappings to be stored in this map
1051       */
1052      public void putAll(Map<? extends K, ? extends V> m) {
1053 <        internalPutAll(m);
1054 <    }
1055 <
2589 <    /**
2590 <     * If the specified key is not already associated with a value,
2591 <     * computes its value using the given mappingFunction and enters
2592 <     * it into the map unless null.  This is equivalent to
2593 <     * <pre> {@code
2594 <     * if (map.containsKey(key))
2595 <     *   return map.get(key);
2596 <     * value = mappingFunction.apply(key);
2597 <     * if (value != null)
2598 <     *   map.put(key, value);
2599 <     * return value;}</pre>
2600 <     *
2601 <     * except that the action is performed atomically.  If the
2602 <     * function returns {@code null} no mapping is recorded. If the
2603 <     * function itself throws an (unchecked) exception, the exception
2604 <     * is rethrown to its caller, and no mapping is recorded.  Some
2605 <     * attempted update operations on this map by other threads may be
2606 <     * blocked while computation is in progress, so the computation
2607 <     * should be short and simple, and must not attempt to update any
2608 <     * other mappings of this Map. The most appropriate usage is to
2609 <     * construct a new object serving as an initial mapped value, or
2610 <     * memoized result, as in:
2611 <     *
2612 <     *  <pre> {@code
2613 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2614 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2615 <     *
2616 <     * @param key key with which the specified value is to be associated
2617 <     * @param mappingFunction the function to compute a value
2618 <     * @return the current (existing or computed) value associated with
2619 <     *         the specified key, or null if the computed value is null.
2620 <     * @throws NullPointerException if the specified key or mappingFunction
2621 <     *         is null
2622 <     * @throws IllegalStateException if the computation detectably
2623 <     *         attempts a recursive update to this map that would
2624 <     *         otherwise never complete
2625 <     * @throws RuntimeException or Error if the mappingFunction does so,
2626 <     *         in which case the mapping is left unestablished
2627 <     */
2628 <    @SuppressWarnings("unchecked")
2629 <        public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
2630 <        if (key == null || mappingFunction == null)
2631 <            throw new NullPointerException();
2632 <        return (V)internalComputeIfAbsent(key, mappingFunction);
2633 <    }
2634 <
2635 <    /**
2636 <     * If the given key is present, computes a new mapping value given a key and
2637 <     * its current mapped value. This is equivalent to
2638 <     *  <pre> {@code
2639 <     *   if (map.containsKey(key)) {
2640 <     *     value = remappingFunction.apply(key, map.get(key));
2641 <     *     if (value != null)
2642 <     *       map.put(key, value);
2643 <     *     else
2644 <     *       map.remove(key);
2645 <     *   }
2646 <     * }</pre>
2647 <     *
2648 <     * except that the action is performed atomically.  If the
2649 <     * function returns {@code null}, the mapping is removed.  If the
2650 <     * function itself throws an (unchecked) exception, the exception
2651 <     * is rethrown to its caller, and the current mapping is left
2652 <     * unchanged.  Some attempted update operations on this map by
2653 <     * other threads may be blocked while computation is in progress,
2654 <     * so the computation should be short and simple, and must not
2655 <     * attempt to update any other mappings of this Map. For example,
2656 <     * to either create or append new messages to a value mapping:
2657 <     *
2658 <     * @param key key with which the specified value is to be associated
2659 <     * @param remappingFunction the function to compute a value
2660 <     * @return the new value associated with
2661 <     *         the specified key, or null if none.
2662 <     * @throws NullPointerException if the specified key or remappingFunction
2663 <     *         is null
2664 <     * @throws IllegalStateException if the computation detectably
2665 <     *         attempts a recursive update to this map that would
2666 <     *         otherwise never complete
2667 <     * @throws RuntimeException or Error if the remappingFunction does so,
2668 <     *         in which case the mapping is unchanged
2669 <     */
2670 <    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2671 <        if (key == null || remappingFunction == null)
2672 <            throw new NullPointerException();
2673 <        return (V)internalCompute(key, true, remappingFunction);
2674 <    }
2675 <
2676 <    /**
2677 <     * Computes a new mapping value given a key and
2678 <     * its current mapped value (or {@code null} if there is no current
2679 <     * mapping). This is equivalent to
2680 <     *  <pre> {@code
2681 <     *   value = remappingFunction.apply(key, map.get(key));
2682 <     *   if (value != null)
2683 <     *     map.put(key, value);
2684 <     *   else
2685 <     *     map.remove(key);
2686 <     * }</pre>
2687 <     *
2688 <     * except that the action is performed atomically.  If the
2689 <     * function returns {@code null}, the mapping is removed.  If the
2690 <     * function itself throws an (unchecked) exception, the exception
2691 <     * is rethrown to its caller, and the current mapping is left
2692 <     * unchanged.  Some attempted update operations on this map by
2693 <     * other threads may be blocked while computation is in progress,
2694 <     * so the computation should be short and simple, and must not
2695 <     * attempt to update any other mappings of this Map. For example,
2696 <     * to either create or append new messages to a value mapping:
2697 <     *
2698 <     * <pre> {@code
2699 <     * Map<Key, String> map = ...;
2700 <     * final String msg = ...;
2701 <     * map.compute(key, new BiFun<Key, String, String>() {
2702 <     *   public String apply(Key k, String v) {
2703 <     *    return (v == null) ? msg : v + msg;});}}</pre>
2704 <     *
2705 <     * @param key key with which the specified value is to be associated
2706 <     * @param remappingFunction the function to compute a value
2707 <     * @return the new value associated with
2708 <     *         the specified key, or null if none.
2709 <     * @throws NullPointerException if the specified key or remappingFunction
2710 <     *         is null
2711 <     * @throws IllegalStateException if the computation detectably
2712 <     *         attempts a recursive update to this map that would
2713 <     *         otherwise never complete
2714 <     * @throws RuntimeException or Error if the remappingFunction does so,
2715 <     *         in which case the mapping is unchanged
2716 <     */
2717 <    //    @SuppressWarnings("unchecked")
2718 <    public V compute(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2719 <        if (key == null || remappingFunction == null)
2720 <            throw new NullPointerException();
2721 <        return (V)internalCompute(key, false, remappingFunction);
2722 <    }
2723 <
2724 <    /**
2725 <     * If the specified key is not already associated
2726 <     * with a value, associate it with the given value.
2727 <     * Otherwise, replace the value with the results of
2728 <     * the given remapping function. This is equivalent to:
2729 <     *  <pre> {@code
2730 <     *   if (!map.containsKey(key))
2731 <     *     map.put(value);
2732 <     *   else {
2733 <     *     newValue = remappingFunction.apply(map.get(key), value);
2734 <     *     if (value != null)
2735 <     *       map.put(key, value);
2736 <     *     else
2737 <     *       map.remove(key);
2738 <     *   }
2739 <     * }</pre>
2740 <     * except that the action is performed atomically.  If the
2741 <     * function returns {@code null}, the mapping is removed.  If the
2742 <     * function itself throws an (unchecked) exception, the exception
2743 <     * is rethrown to its caller, and the current mapping is left
2744 <     * unchanged.  Some attempted update operations on this map by
2745 <     * other threads may be blocked while computation is in progress,
2746 <     * so the computation should be short and simple, and must not
2747 <     * attempt to update any other mappings of this Map.
2748 <     */
2749 <    //    @SuppressWarnings("unchecked")
2750 <    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2751 <        if (key == null || value == null || remappingFunction == null)
2752 <            throw new NullPointerException();
2753 <        return (V)internalMerge(key, value, remappingFunction);
1053 >        tryPresize(m.size());
1054 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1055 >            putVal(e.getKey(), e.getValue(), false);
1056      }
1057  
1058      /**
# Line 2762 | Line 1064 | public class ConcurrentHashMap<K, V>
1064       *         {@code null} if there was no mapping for {@code key}
1065       * @throws NullPointerException if the specified key is null
1066       */
1067 <    @SuppressWarnings("unchecked")
1068 <        public V remove(Object key) {
2767 <        if (key == null)
2768 <            throw new NullPointerException();
2769 <        return (V)internalReplace(key, null, null);
2770 <    }
2771 <
2772 <    /**
2773 <     * {@inheritDoc}
2774 <     *
2775 <     * @throws NullPointerException if the specified key is null
2776 <     */
2777 <    public boolean remove(Object key, Object value) {
2778 <        if (key == null)
2779 <            throw new NullPointerException();
2780 <        if (value == null)
2781 <            return false;
2782 <        return internalReplace(key, null, value) != null;
2783 <    }
2784 <
2785 <    /**
2786 <     * {@inheritDoc}
2787 <     *
2788 <     * @throws NullPointerException if any of the arguments are null
2789 <     */
2790 <    public boolean replace(K key, V oldValue, V newValue) {
2791 <        if (key == null || oldValue == null || newValue == null)
2792 <            throw new NullPointerException();
2793 <        return internalReplace(key, newValue, oldValue) != null;
1067 >    public V remove(Object key) {
1068 >        return replaceNode(key, null, null);
1069      }
1070  
1071      /**
1072 <     * {@inheritDoc}
1073 <     *
1074 <     * @return the previous value associated with the specified key,
2800 <     *         or {@code null} if there was no mapping for the key
2801 <     * @throws NullPointerException if the specified key or value is null
1072 >     * Implementation for the four public remove/replace methods:
1073 >     * Replaces node value with v, conditional upon match of cv if
1074 >     * non-null.  If resulting value is null, delete.
1075       */
1076 <    @SuppressWarnings("unchecked")
1077 <        public V replace(K key, V value) {
1078 <        if (key == null || value == null)
1079 <            throw new NullPointerException();
1080 <        return (V)internalReplace(key, value, null);
1076 >    final V replaceNode(Object key, V value, Object cv) {
1077 >        int hash = spread(key.hashCode());
1078 >        for (Node<K,V>[] tab = table;;) {
1079 >            Node<K,V> f; int n, i, fh;
1080 >            if (tab == null || (n = tab.length) == 0 ||
1081 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1082 >                break;
1083 >            else if ((fh = f.hash) == MOVED)
1084 >                tab = helpTransfer(tab, f);
1085 >            else {
1086 >                V oldVal = null;
1087 >                boolean validated = false;
1088 >                synchronized (f) {
1089 >                    if (tabAt(tab, i) == f) {
1090 >                        if (fh >= 0) {
1091 >                            validated = true;
1092 >                            for (Node<K,V> e = f, pred = null;;) {
1093 >                                K ek;
1094 >                                if (e.hash == hash &&
1095 >                                    ((ek = e.key) == key ||
1096 >                                     (ek != null && key.equals(ek)))) {
1097 >                                    V ev = e.val;
1098 >                                    if (cv == null || cv == ev ||
1099 >                                        (ev != null && cv.equals(ev))) {
1100 >                                        oldVal = ev;
1101 >                                        if (value != null)
1102 >                                            e.val = value;
1103 >                                        else if (pred != null)
1104 >                                            pred.next = e.next;
1105 >                                        else
1106 >                                            setTabAt(tab, i, e.next);
1107 >                                    }
1108 >                                    break;
1109 >                                }
1110 >                                pred = e;
1111 >                                if ((e = e.next) == null)
1112 >                                    break;
1113 >                            }
1114 >                        }
1115 >                        else if (f instanceof TreeBin) {
1116 >                            validated = true;
1117 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1118 >                            TreeNode<K,V> r, p;
1119 >                            if ((r = t.root) != null &&
1120 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1121 >                                V pv = p.val;
1122 >                                if (cv == null || cv == pv ||
1123 >                                    (pv != null && cv.equals(pv))) {
1124 >                                    oldVal = pv;
1125 >                                    if (value != null)
1126 >                                        p.val = value;
1127 >                                    else if (t.removeTreeNode(p))
1128 >                                        setTabAt(tab, i, untreeify(t.first));
1129 >                                }
1130 >                            }
1131 >                        }
1132 >                    }
1133 >                }
1134 >                if (validated) {
1135 >                    if (oldVal != null) {
1136 >                        if (value == null)
1137 >                            addCount(-1L, -1);
1138 >                        return oldVal;
1139 >                    }
1140 >                    break;
1141 >                }
1142 >            }
1143 >        }
1144 >        return null;
1145      }
1146  
1147      /**
1148       * Removes all of the mappings from this map.
1149       */
1150      public void clear() {
1151 <        internalClear();
1151 >        long delta = 0L; // negative number of deletions
1152 >        int i = 0;
1153 >        Node<K,V>[] tab = table;
1154 >        while (tab != null && i < tab.length) {
1155 >            int fh;
1156 >            Node<K,V> f = tabAt(tab, i);
1157 >            if (f == null)
1158 >                ++i;
1159 >            else if ((fh = f.hash) == MOVED) {
1160 >                tab = helpTransfer(tab, f);
1161 >                i = 0; // restart
1162 >            }
1163 >            else {
1164 >                synchronized (f) {
1165 >                    if (tabAt(tab, i) == f) {
1166 >                        Node<K,V> p = (fh >= 0 ? f :
1167 >                                       (f instanceof TreeBin) ?
1168 >                                       ((TreeBin<K,V>)f).first : null);
1169 >                        while (p != null) {
1170 >                            --delta;
1171 >                            p = p.next;
1172 >                        }
1173 >                        setTabAt(tab, i++, null);
1174 >                    }
1175 >                }
1176 >            }
1177 >        }
1178 >        if (delta != 0L)
1179 >            addCount(delta, -1);
1180      }
1181  
1182      /**
1183       * Returns a {@link Set} view of the keys contained in this map.
1184       * The set is backed by the map, so changes to the map are
1185 <     * reflected in the set, and vice-versa.  The set supports element
1185 >     * reflected in the set, and vice-versa. The set supports element
1186       * removal, which removes the corresponding mapping from this map,
1187       * via the {@code Iterator.remove}, {@code Set.remove},
1188       * {@code removeAll}, {@code retainAll}, and {@code clear}
1189       * operations.  It does not support the {@code add} or
1190       * {@code addAll} operations.
1191       *
1192 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1193 <     * that will never throw {@link ConcurrentModificationException},
1194 <     * and guarantees to traverse elements as they existed upon
1195 <     * construction of the iterator, and may (but is not guaranteed to)
1196 <     * reflect any modifications subsequent to construction.
1197 <     */
1198 <    public Set<K> keySet() {
1199 <        KeySet<K,V> ks = keySet;
1200 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
1192 >     * <p>The view's iterators and spliterators are
1193 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1194 >     *
1195 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1196 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1197 >     *
1198 >     * @return the set view
1199 >     */
1200 >    public KeySetView<K,V> keySet() {
1201 >        KeySetView<K,V> ks;
1202 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1203      }
1204  
1205      /**
# Line 2845 | Line 1212 | public class ConcurrentHashMap<K, V>
1212       * {@code retainAll}, and {@code clear} operations.  It does not
1213       * support the {@code add} or {@code addAll} operations.
1214       *
1215 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1216 <     * that will never throw {@link ConcurrentModificationException},
1217 <     * and guarantees to traverse elements as they existed upon
1218 <     * construction of the iterator, and may (but is not guaranteed to)
1219 <     * reflect any modifications subsequent to construction.
1215 >     * <p>The view's iterators and spliterators are
1216 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1217 >     *
1218 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1219 >     * and {@link Spliterator#NONNULL}.
1220 >     *
1221 >     * @return the collection view
1222       */
1223      public Collection<V> values() {
1224 <        Values<K,V> vs = values;
1225 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
1224 >        ValuesView<K,V> vs;
1225 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1226      }
1227  
1228      /**
# Line 2863 | Line 1232 | public class ConcurrentHashMap<K, V>
1232       * removal, which removes the corresponding mapping from the map,
1233       * via the {@code Iterator.remove}, {@code Set.remove},
1234       * {@code removeAll}, {@code retainAll}, and {@code clear}
1235 <     * operations.  It does not support the {@code add} or
2867 <     * {@code addAll} operations.
2868 <     *
2869 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2870 <     * that will never throw {@link ConcurrentModificationException},
2871 <     * and guarantees to traverse elements as they existed upon
2872 <     * construction of the iterator, and may (but is not guaranteed to)
2873 <     * reflect any modifications subsequent to construction.
2874 <     */
2875 <    public Set<Map.Entry<K,V>> entrySet() {
2876 <        EntrySet<K,V> es = entrySet;
2877 <        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2878 <    }
2879 <
2880 <    /**
2881 <     * Returns an enumeration of the keys in this table.
2882 <     *
2883 <     * @return an enumeration of the keys in this table
2884 <     * @see #keySet()
2885 <     */
2886 <    public Enumeration<K> keys() {
2887 <        return new KeyIterator<K,V>(this);
2888 <    }
2889 <
2890 <    /**
2891 <     * Returns an enumeration of the values in this table.
1235 >     * operations.
1236       *
1237 <     * @return an enumeration of the values in this table
1238 <     * @see #values()
2895 <     */
2896 <    public Enumeration<V> elements() {
2897 <        return new ValueIterator<K,V>(this);
2898 <    }
2899 <
2900 <    /**
2901 <     * Returns a partionable iterator of the keys in this map.
2902 <     *
2903 <     * @return a partionable iterator of the keys in this map
2904 <     */
2905 <    public Spliterator<K> keySpliterator() {
2906 <        return new KeyIterator<K,V>(this);
2907 <    }
2908 <
2909 <    /**
2910 <     * Returns a partionable iterator of the values in this map.
1237 >     * <p>The view's iterators and spliterators are
1238 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1239       *
1240 <     * @return a partionable iterator of the values in this map
1241 <     */
2914 <    public Spliterator<V> valueSpliterator() {
2915 <        return new ValueIterator<K,V>(this);
2916 <    }
2917 <
2918 <    /**
2919 <     * Returns a partionable iterator of the entries in this map.
1240 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1241 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1242       *
1243 <     * @return a partionable iterator of the entries in this map
1243 >     * @return the set view
1244       */
1245 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
1246 <        return new EntryIterator<K,V>(this);
1245 >    public Set<Map.Entry<K,V>> entrySet() {
1246 >        EntrySetView<K,V> es;
1247 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1248      }
1249  
1250      /**
# Line 2933 | Line 1256 | public class ConcurrentHashMap<K, V>
1256       */
1257      public int hashCode() {
1258          int h = 0;
1259 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1260 <        Object v;
1261 <        while ((v = it.advance()) != null) {
1262 <            h += it.nextKey.hashCode() ^ v.hashCode();
1259 >        Node<K,V>[] t;
1260 >        if ((t = table) != null) {
1261 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1262 >            for (Node<K,V> p; (p = it.advance()) != null; )
1263 >                h += p.key.hashCode() ^ p.val.hashCode();
1264          }
1265          return h;
1266      }
# Line 2953 | Line 1277 | public class ConcurrentHashMap<K, V>
1277       * @return a string representation of this map
1278       */
1279      public String toString() {
1280 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1280 >        Node<K,V>[] t;
1281 >        int f = (t = table) == null ? 0 : t.length;
1282 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1283          StringBuilder sb = new StringBuilder();
1284          sb.append('{');
1285 <        Object v;
1286 <        if ((v = it.advance()) != null) {
1285 >        Node<K,V> p;
1286 >        if ((p = it.advance()) != null) {
1287              for (;;) {
1288 <                Object k = it.nextKey;
1288 >                K k = p.key;
1289 >                V v = p.val;
1290                  sb.append(k == this ? "(this Map)" : k);
1291                  sb.append('=');
1292                  sb.append(v == this ? "(this Map)" : v);
1293 <                if ((v = it.advance()) == null)
1293 >                if ((p = it.advance()) == null)
1294                      break;
1295                  sb.append(',').append(' ');
1296              }
# Line 2986 | Line 1313 | public class ConcurrentHashMap<K, V>
1313              if (!(o instanceof Map))
1314                  return false;
1315              Map<?,?> m = (Map<?,?>) o;
1316 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1317 <            Object val;
1318 <            while ((val = it.advance()) != null) {
1319 <                Object v = m.get(it.nextKey);
1316 >            Node<K,V>[] t;
1317 >            int f = (t = table) == null ? 0 : t.length;
1318 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1320 >                V val = p.val;
1321 >                Object v = m.get(p.key);
1322                  if (v == null || (v != val && !v.equals(val)))
1323                      return false;
1324              }
# Line 2997 | Line 1326 | public class ConcurrentHashMap<K, V>
1326                  Object mk, mv, v;
1327                  if ((mk = e.getKey()) == null ||
1328                      (mv = e.getValue()) == null ||
1329 <                    (v = internalGet(mk)) == null ||
1329 >                    (v = get(mk)) == null ||
1330                      (mv != v && !mv.equals(v)))
1331                      return false;
1332              }
# Line 3005 | Line 1334 | public class ConcurrentHashMap<K, V>
1334          return true;
1335      }
1336  
1337 <    /* ----------------Iterators -------------- */
1337 >    /**
1338 >     * Stripped-down version of helper class used in previous version,
1339 >     * declared for the sake of serialization compatibility
1340 >     */
1341 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1342 >        private static final long serialVersionUID = 2249069246763182397L;
1343 >        final float loadFactor;
1344 >        Segment(float lf) { this.loadFactor = lf; }
1345 >    }
1346  
1347 <    static final class KeyIterator<K,V> extends Traverser<K,V,Object>
1348 <        implements Spliterator<K>, Enumeration<K> {
1349 <        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
1350 <        KeyIterator(Traverser<K,V,Object> it, boolean split) {
1351 <            super(it, split);
1352 <        }
1353 <        public KeyIterator<K,V> split() {
1354 <            if (last != null || (next != null && nextVal == null))
1355 <                throw new IllegalStateException();
1356 <            return new KeyIterator<K,V>(this, true);
1347 >    /**
1348 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1349 >     * stream (i.e., serializes it).
1350 >     * @param s the stream
1351 >     * @throws java.io.IOException if an I/O error occurs
1352 >     * @serialData
1353 >     * the key (Object) and value (Object)
1354 >     * for each key-value mapping, followed by a null pair.
1355 >     * The key-value mappings are emitted in no particular order.
1356 >     */
1357 >    private void writeObject(java.io.ObjectOutputStream s)
1358 >        throws java.io.IOException {
1359 >        // For serialization compatibility
1360 >        // Emulate segment calculation from previous version of this class
1361 >        int sshift = 0;
1362 >        int ssize = 1;
1363 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1364 >            ++sshift;
1365 >            ssize <<= 1;
1366          }
1367 +        int segmentShift = 32 - sshift;
1368 +        int segmentMask = ssize - 1;
1369          @SuppressWarnings("unchecked")
1370 <            public final K next() {
1371 <            if (nextVal == null && advance() == null)
1372 <                throw new NoSuchElementException();
1373 <            Object k = nextKey;
1374 <            nextVal = null;
1375 <            return (K) k;
1370 >        Segment<K,V>[] segments = (Segment<K,V>[])
1371 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1372 >        for (int i = 0; i < segments.length; ++i)
1373 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1374 >        s.putFields().put("segments", segments);
1375 >        s.putFields().put("segmentShift", segmentShift);
1376 >        s.putFields().put("segmentMask", segmentMask);
1377 >        s.writeFields();
1378 >
1379 >        Node<K,V>[] t;
1380 >        if ((t = table) != null) {
1381 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1382 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1383 >                s.writeObject(p.key);
1384 >                s.writeObject(p.val);
1385 >            }
1386          }
1387 <
1388 <        public final K nextElement() { return next(); }
1387 >        s.writeObject(null);
1388 >        s.writeObject(null);
1389 >        segments = null; // throw away
1390      }
1391  
1392 <    static final class ValueIterator<K,V> extends Traverser<K,V,Object>
1393 <        implements Spliterator<V>, Enumeration<V> {
1394 <        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
1395 <        ValueIterator(Traverser<K,V,Object> it, boolean split) {
1396 <            super(it, split);
1397 <        }
1398 <        public ValueIterator<K,V> split() {
1399 <            if (last != null || (next != null && nextVal == null))
1400 <                throw new IllegalStateException();
1401 <            return new ValueIterator<K,V>(this, true);
1392 >    /**
1393 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1394 >     * @param s the stream
1395 >     * @throws ClassNotFoundException if the class of a serialized object
1396 >     *         could not be found
1397 >     * @throws java.io.IOException if an I/O error occurs
1398 >     */
1399 >    private void readObject(java.io.ObjectInputStream s)
1400 >        throws java.io.IOException, ClassNotFoundException {
1401 >        /*
1402 >         * To improve performance in typical cases, we create nodes
1403 >         * while reading, then place in table once size is known.
1404 >         * However, we must also validate uniqueness and deal with
1405 >         * overpopulated bins while doing so, which requires
1406 >         * specialized versions of putVal mechanics.
1407 >         */
1408 >        sizeCtl = -1; // force exclusion for table construction
1409 >        s.defaultReadObject();
1410 >        long size = 0L;
1411 >        Node<K,V> p = null;
1412 >        for (;;) {
1413 >            @SuppressWarnings("unchecked")
1414 >            K k = (K) s.readObject();
1415 >            @SuppressWarnings("unchecked")
1416 >            V v = (V) s.readObject();
1417 >            if (k != null && v != null) {
1418 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1419 >                ++size;
1420 >            }
1421 >            else
1422 >                break;
1423          }
1424 <
1425 <        @SuppressWarnings("unchecked")
1426 <            public final V next() {
1427 <            Object v;
1428 <            if ((v = nextVal) == null && (v = advance()) == null)
1429 <                throw new NoSuchElementException();
1430 <            nextVal = null;
1431 <            return (V) v;
1424 >        if (size == 0L)
1425 >            sizeCtl = 0;
1426 >        else {
1427 >            int n;
1428 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1429 >                n = MAXIMUM_CAPACITY;
1430 >            else {
1431 >                int sz = (int)size;
1432 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1433 >            }
1434 >            @SuppressWarnings("unchecked")
1435 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1436 >            int mask = n - 1;
1437 >            long added = 0L;
1438 >            while (p != null) {
1439 >                boolean insertAtFront;
1440 >                Node<K,V> next = p.next, first;
1441 >                int h = p.hash, j = h & mask;
1442 >                if ((first = tabAt(tab, j)) == null)
1443 >                    insertAtFront = true;
1444 >                else {
1445 >                    K k = p.key;
1446 >                    if (first.hash < 0) {
1447 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1448 >                        if (t.putTreeVal(h, k, p.val) == null)
1449 >                            ++added;
1450 >                        insertAtFront = false;
1451 >                    }
1452 >                    else {
1453 >                        int binCount = 0;
1454 >                        insertAtFront = true;
1455 >                        Node<K,V> q; K qk;
1456 >                        for (q = first; q != null; q = q.next) {
1457 >                            if (q.hash == h &&
1458 >                                ((qk = q.key) == k ||
1459 >                                 (qk != null && k.equals(qk)))) {
1460 >                                insertAtFront = false;
1461 >                                break;
1462 >                            }
1463 >                            ++binCount;
1464 >                        }
1465 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1466 >                            insertAtFront = false;
1467 >                            ++added;
1468 >                            p.next = first;
1469 >                            TreeNode<K,V> hd = null, tl = null;
1470 >                            for (q = p; q != null; q = q.next) {
1471 >                                TreeNode<K,V> t = new TreeNode<K,V>
1472 >                                    (q.hash, q.key, q.val, null, null);
1473 >                                if ((t.prev = tl) == null)
1474 >                                    hd = t;
1475 >                                else
1476 >                                    tl.next = t;
1477 >                                tl = t;
1478 >                            }
1479 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1480 >                        }
1481 >                    }
1482 >                }
1483 >                if (insertAtFront) {
1484 >                    ++added;
1485 >                    p.next = first;
1486 >                    setTabAt(tab, j, p);
1487 >                }
1488 >                p = next;
1489 >            }
1490 >            table = tab;
1491 >            sizeCtl = n - (n >>> 2);
1492 >            baseCount = added;
1493          }
3053
3054        public final V nextElement() { return next(); }
1494      }
1495  
1496 <    static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3058 <        implements Spliterator<Map.Entry<K,V>> {
3059 <        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3060 <        EntryIterator(Traverser<K,V,Object> it, boolean split) {
3061 <            super(it, split);
3062 <        }
3063 <        public EntryIterator<K,V> split() {
3064 <            if (last != null || (next != null && nextVal == null))
3065 <                throw new IllegalStateException();
3066 <            return new EntryIterator<K,V>(this, true);
3067 <        }
1496 >    // ConcurrentMap methods
1497  
1498 <        @SuppressWarnings("unchecked")
1499 <            public final Map.Entry<K,V> next() {
1500 <            Object v;
1501 <            if ((v = nextVal) == null && (v = advance()) == null)
1502 <                throw new NoSuchElementException();
1503 <            Object k = nextKey;
1504 <            nextVal = null;
1505 <            return new MapEntry<K,V>((K)k, (V)v, map);
1506 <        }
1498 >    /**
1499 >     * {@inheritDoc}
1500 >     *
1501 >     * @return the previous value associated with the specified key,
1502 >     *         or {@code null} if there was no mapping for the key
1503 >     * @throws NullPointerException if the specified key or value is null
1504 >     */
1505 >    public V putIfAbsent(K key, V value) {
1506 >        return putVal(key, value, true);
1507      }
1508  
1509      /**
1510 <     * Exported Entry for iterators
1510 >     * {@inheritDoc}
1511 >     *
1512 >     * @throws NullPointerException if the specified key is null
1513       */
1514 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
1515 <        final K key; // non-null
1516 <        V val;       // non-null
1517 <        final ConcurrentHashMap<K, V> map;
3087 <        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3088 <            this.key = key;
3089 <            this.val = val;
3090 <            this.map = map;
3091 <        }
3092 <        public final K getKey()       { return key; }
3093 <        public final V getValue()     { return val; }
3094 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3095 <        public final String toString(){ return key + "=" + val; }
3096 <
3097 <        public final boolean equals(Object o) {
3098 <            Object k, v; Map.Entry<?,?> e;
3099 <            return ((o instanceof Map.Entry) &&
3100 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3101 <                    (v = e.getValue()) != null &&
3102 <                    (k == key || k.equals(key)) &&
3103 <                    (v == val || v.equals(val)));
3104 <        }
3105 <
3106 <        /**
3107 <         * Sets our entry's value and writes through to the map. The
3108 <         * value to return is somewhat arbitrary here. Since we do not
3109 <         * necessarily track asynchronous changes, the most recent
3110 <         * "previous" value could be different from what we return (or
3111 <         * could even have been removed in which case the put will
3112 <         * re-establish). We do not and cannot guarantee more.
3113 <         */
3114 <        public final V setValue(V value) {
3115 <            if (value == null) throw new NullPointerException();
3116 <            V v = val;
3117 <            val = value;
3118 <            map.put(key, value);
3119 <            return v;
3120 <        }
1514 >    public boolean remove(Object key, Object value) {
1515 >        if (key == null)
1516 >            throw new NullPointerException();
1517 >        return value != null && replaceNode(key, null, value) != null;
1518      }
1519  
1520 <    /* ----------------Views -------------- */
1520 >    /**
1521 >     * {@inheritDoc}
1522 >     *
1523 >     * @throws NullPointerException if any of the arguments are null
1524 >     */
1525 >    public boolean replace(K key, V oldValue, V newValue) {
1526 >        if (key == null || oldValue == null || newValue == null)
1527 >            throw new NullPointerException();
1528 >        return replaceNode(key, newValue, oldValue) != null;
1529 >    }
1530  
1531      /**
1532 <     * Base class for views.
1532 >     * {@inheritDoc}
1533 >     *
1534 >     * @return the previous value associated with the specified key,
1535 >     *         or {@code null} if there was no mapping for the key
1536 >     * @throws NullPointerException if the specified key or value is null
1537       */
1538 <    static abstract class CHMView<K, V> {
1539 <        final ConcurrentHashMap<K, V> map;
1540 <        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
1541 <        public final int size()                 { return map.size(); }
1542 <        public final boolean isEmpty()          { return map.isEmpty(); }
3133 <        public final void clear()               { map.clear(); }
1538 >    public V replace(K key, V value) {
1539 >        if (key == null || value == null)
1540 >            throw new NullPointerException();
1541 >        return replaceNode(key, value, null);
1542 >    }
1543  
1544 <        // implementations below rely on concrete classes supplying these
3136 <        abstract public Iterator<?> iterator();
3137 <        abstract public boolean contains(Object o);
3138 <        abstract public boolean remove(Object o);
1544 >    // Overrides of JDK8+ Map extension method defaults
1545  
1546 <        private static final String oomeMsg = "Required array size too large";
1546 >    /**
1547 >     * Returns the value to which the specified key is mapped, or the
1548 >     * given default value if this map contains no mapping for the
1549 >     * key.
1550 >     *
1551 >     * @param key the key whose associated value is to be returned
1552 >     * @param defaultValue the value to return if this map contains
1553 >     * no mapping for the given key
1554 >     * @return the mapping for the key, if present; else the default value
1555 >     * @throws NullPointerException if the specified key is null
1556 >     */
1557 >    public V getOrDefault(Object key, V defaultValue) {
1558 >        V v;
1559 >        return (v = get(key)) == null ? defaultValue : v;
1560 >    }
1561 >
1562 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1563 >        if (action == null) throw new NullPointerException();
1564 >        Node<K,V>[] t;
1565 >        if ((t = table) != null) {
1566 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1567 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1568 >                action.accept(p.key, p.val);
1569 >            }
1570 >        }
1571 >    }
1572  
1573 <        public final Object[] toArray() {
1574 <            long sz = map.mappingCount();
1575 <            if (sz > (long)(MAX_ARRAY_SIZE))
1576 <                throw new OutOfMemoryError(oomeMsg);
1577 <            int n = (int)sz;
1578 <            Object[] r = new Object[n];
1579 <            int i = 0;
1580 <            Iterator<?> it = iterator();
1581 <            while (it.hasNext()) {
1582 <                if (i == n) {
1583 <                    if (n >= MAX_ARRAY_SIZE)
1584 <                        throw new OutOfMemoryError(oomeMsg);
1585 <                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
1586 <                        n = MAX_ARRAY_SIZE;
3156 <                    else
3157 <                        n += (n >>> 1) + 1;
3158 <                    r = Arrays.copyOf(r, n);
1573 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1574 >        if (function == null) throw new NullPointerException();
1575 >        Node<K,V>[] t;
1576 >        if ((t = table) != null) {
1577 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1579 >                V oldValue = p.val;
1580 >                for (K key = p.key;;) {
1581 >                    V newValue = function.apply(key, oldValue);
1582 >                    if (newValue == null)
1583 >                        throw new NullPointerException();
1584 >                    if (replaceNode(key, newValue, oldValue) != null ||
1585 >                        (oldValue = get(key)) == null)
1586 >                        break;
1587                  }
3160                r[i++] = it.next();
1588              }
3162            return (i == n) ? r : Arrays.copyOf(r, i);
1589          }
1590 +    }
1591  
1592 <        @SuppressWarnings("unchecked")
1593 <            public final <T> T[] toArray(T[] a) {
1594 <            long sz = map.mappingCount();
1595 <            if (sz > (long)(MAX_ARRAY_SIZE))
1596 <                throw new OutOfMemoryError(oomeMsg);
1597 <            int m = (int)sz;
1598 <            T[] r = (a.length >= m) ? a :
1599 <                (T[])java.lang.reflect.Array
1600 <                .newInstance(a.getClass().getComponentType(), m);
1601 <            int n = r.length;
1602 <            int i = 0;
1603 <            Iterator<?> it = iterator();
1604 <            while (it.hasNext()) {
1605 <                if (i == n) {
1606 <                    if (n >= MAX_ARRAY_SIZE)
1607 <                        throw new OutOfMemoryError(oomeMsg);
1608 <                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
1609 <                        n = MAX_ARRAY_SIZE;
1610 <                    else
1611 <                        n += (n >>> 1) + 1;
1612 <                    r = Arrays.copyOf(r, n);
1592 >    /**
1593 >     * If the specified key is not already associated with a value,
1594 >     * attempts to compute its value using the given mapping function
1595 >     * and enters it into this map unless {@code null}.  The entire
1596 >     * method invocation is performed atomically, so the function is
1597 >     * applied at most once per key.  Some attempted update operations
1598 >     * on this map by other threads may be blocked while computation
1599 >     * is in progress, so the computation should be short and simple,
1600 >     * and must not attempt to update any other mappings of this map.
1601 >     *
1602 >     * @param key key with which the specified value is to be associated
1603 >     * @param mappingFunction the function to compute a value
1604 >     * @return the current (existing or computed) value associated with
1605 >     *         the specified key, or null if the computed value is null
1606 >     * @throws NullPointerException if the specified key or mappingFunction
1607 >     *         is null
1608 >     * @throws IllegalStateException if the computation detectably
1609 >     *         attempts a recursive update to this map that would
1610 >     *         otherwise never complete
1611 >     * @throws RuntimeException or Error if the mappingFunction does so,
1612 >     *         in which case the mapping is left unestablished
1613 >     */
1614 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1615 >        if (key == null || mappingFunction == null)
1616 >            throw new NullPointerException();
1617 >        int h = spread(key.hashCode());
1618 >        V val = null;
1619 >        int binCount = 0;
1620 >        for (Node<K,V>[] tab = table;;) {
1621 >            Node<K,V> f; int n, i, fh;
1622 >            if (tab == null || (n = tab.length) == 0)
1623 >                tab = initTable();
1624 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1625 >                Node<K,V> r = new ReservationNode<K,V>();
1626 >                synchronized (r) {
1627 >                    if (casTabAt(tab, i, null, r)) {
1628 >                        binCount = 1;
1629 >                        Node<K,V> node = null;
1630 >                        try {
1631 >                            if ((val = mappingFunction.apply(key)) != null)
1632 >                                node = new Node<K,V>(h, key, val, null);
1633 >                        } finally {
1634 >                            setTabAt(tab, i, node);
1635 >                        }
1636 >                    }
1637                  }
1638 <                r[i++] = (T)it.next();
1638 >                if (binCount != 0)
1639 >                    break;
1640              }
1641 <            if (a == r && i < n) {
1642 <                r[i] = null; // null-terminate
1643 <                return r;
1641 >            else if ((fh = f.hash) == MOVED)
1642 >                tab = helpTransfer(tab, f);
1643 >            else {
1644 >                boolean added = false;
1645 >                synchronized (f) {
1646 >                    if (tabAt(tab, i) == f) {
1647 >                        if (fh >= 0) {
1648 >                            binCount = 1;
1649 >                            for (Node<K,V> e = f;; ++binCount) {
1650 >                                K ek; V ev;
1651 >                                if (e.hash == h &&
1652 >                                    ((ek = e.key) == key ||
1653 >                                     (ek != null && key.equals(ek)))) {
1654 >                                    val = e.val;
1655 >                                    break;
1656 >                                }
1657 >                                Node<K,V> pred = e;
1658 >                                if ((e = e.next) == null) {
1659 >                                    if ((val = mappingFunction.apply(key)) != null) {
1660 >                                        added = true;
1661 >                                        pred.next = new Node<K,V>(h, key, val, null);
1662 >                                    }
1663 >                                    break;
1664 >                                }
1665 >                            }
1666 >                        }
1667 >                        else if (f instanceof TreeBin) {
1668 >                            binCount = 2;
1669 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1670 >                            TreeNode<K,V> r, p;
1671 >                            if ((r = t.root) != null &&
1672 >                                (p = r.findTreeNode(h, key, null)) != null)
1673 >                                val = p.val;
1674 >                            else if ((val = mappingFunction.apply(key)) != null) {
1675 >                                added = true;
1676 >                                t.putTreeVal(h, key, val);
1677 >                            }
1678 >                        }
1679 >                    }
1680 >                }
1681 >                if (binCount != 0) {
1682 >                    if (binCount >= TREEIFY_THRESHOLD)
1683 >                        treeifyBin(tab, i);
1684 >                    if (!added)
1685 >                        return val;
1686 >                    break;
1687 >                }
1688              }
3193            return (i == n) ? r : Arrays.copyOf(r, i);
3194        }
3195
3196        public final int hashCode() {
3197            int h = 0;
3198            for (Iterator<?> it = iterator(); it.hasNext();)
3199                h += it.next().hashCode();
3200            return h;
1689          }
1690 +        if (val != null)
1691 +            addCount(1L, binCount);
1692 +        return val;
1693 +    }
1694  
1695 <        public final String toString() {
1696 <            StringBuilder sb = new StringBuilder();
1697 <            sb.append('[');
1698 <            Iterator<?> it = iterator();
1699 <            if (it.hasNext()) {
1700 <                for (;;) {
1701 <                    Object e = it.next();
1702 <                    sb.append(e == this ? "(this Collection)" : e);
1703 <                    if (!it.hasNext())
1704 <                        break;
1705 <                    sb.append(',').append(' ');
1695 >    /**
1696 >     * If the value for the specified key is present, attempts to
1697 >     * compute a new mapping given the key and its current mapped
1698 >     * value.  The entire method invocation is performed atomically.
1699 >     * Some attempted update operations on this map by other threads
1700 >     * may be blocked while computation is in progress, so the
1701 >     * computation should be short and simple, and must not attempt to
1702 >     * update any other mappings of this map.
1703 >     *
1704 >     * @param key key with which a value may be associated
1705 >     * @param remappingFunction the function to compute a value
1706 >     * @return the new value associated with the specified key, or null if none
1707 >     * @throws NullPointerException if the specified key or remappingFunction
1708 >     *         is null
1709 >     * @throws IllegalStateException if the computation detectably
1710 >     *         attempts a recursive update to this map that would
1711 >     *         otherwise never complete
1712 >     * @throws RuntimeException or Error if the remappingFunction does so,
1713 >     *         in which case the mapping is unchanged
1714 >     */
1715 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1716 >        if (key == null || remappingFunction == null)
1717 >            throw new NullPointerException();
1718 >        int h = spread(key.hashCode());
1719 >        V val = null;
1720 >        int delta = 0;
1721 >        int binCount = 0;
1722 >        for (Node<K,V>[] tab = table;;) {
1723 >            Node<K,V> f; int n, i, fh;
1724 >            if (tab == null || (n = tab.length) == 0)
1725 >                tab = initTable();
1726 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1727 >                break;
1728 >            else if ((fh = f.hash) == MOVED)
1729 >                tab = helpTransfer(tab, f);
1730 >            else {
1731 >                synchronized (f) {
1732 >                    if (tabAt(tab, i) == f) {
1733 >                        if (fh >= 0) {
1734 >                            binCount = 1;
1735 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1736 >                                K ek;
1737 >                                if (e.hash == h &&
1738 >                                    ((ek = e.key) == key ||
1739 >                                     (ek != null && key.equals(ek)))) {
1740 >                                    val = remappingFunction.apply(key, e.val);
1741 >                                    if (val != null)
1742 >                                        e.val = val;
1743 >                                    else {
1744 >                                        delta = -1;
1745 >                                        Node<K,V> en = e.next;
1746 >                                        if (pred != null)
1747 >                                            pred.next = en;
1748 >                                        else
1749 >                                            setTabAt(tab, i, en);
1750 >                                    }
1751 >                                    break;
1752 >                                }
1753 >                                pred = e;
1754 >                                if ((e = e.next) == null)
1755 >                                    break;
1756 >                            }
1757 >                        }
1758 >                        else if (f instanceof TreeBin) {
1759 >                            binCount = 2;
1760 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1761 >                            TreeNode<K,V> r, p;
1762 >                            if ((r = t.root) != null &&
1763 >                                (p = r.findTreeNode(h, key, null)) != null) {
1764 >                                val = remappingFunction.apply(key, p.val);
1765 >                                if (val != null)
1766 >                                    p.val = val;
1767 >                                else {
1768 >                                    delta = -1;
1769 >                                    if (t.removeTreeNode(p))
1770 >                                        setTabAt(tab, i, untreeify(t.first));
1771 >                                }
1772 >                            }
1773 >                        }
1774 >                    }
1775                  }
1776 +                if (binCount != 0)
1777 +                    break;
1778              }
3216            return sb.append(']').toString();
1779          }
1780 +        if (delta != 0)
1781 +            addCount((long)delta, binCount);
1782 +        return val;
1783 +    }
1784  
1785 <        public final boolean containsAll(Collection<?> c) {
1786 <            if (c != this) {
1787 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
1788 <                    Object e = it.next();
1789 <                    if (e == null || !contains(e))
1790 <                        return false;
1785 >    /**
1786 >     * Attempts to compute a mapping for the specified key and its
1787 >     * current mapped value (or {@code null} if there is no current
1788 >     * mapping). The entire method invocation is performed atomically.
1789 >     * Some attempted update operations on this map by other threads
1790 >     * may be blocked while computation is in progress, so the
1791 >     * computation should be short and simple, and must not attempt to
1792 >     * update any other mappings of this Map.
1793 >     *
1794 >     * @param key key with which the specified value is to be associated
1795 >     * @param remappingFunction the function to compute a value
1796 >     * @return the new value associated with the specified key, or null if none
1797 >     * @throws NullPointerException if the specified key or remappingFunction
1798 >     *         is null
1799 >     * @throws IllegalStateException if the computation detectably
1800 >     *         attempts a recursive update to this map that would
1801 >     *         otherwise never complete
1802 >     * @throws RuntimeException or Error if the remappingFunction does so,
1803 >     *         in which case the mapping is unchanged
1804 >     */
1805 >    public V compute(K key,
1806 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1807 >        if (key == null || remappingFunction == null)
1808 >            throw new NullPointerException();
1809 >        int h = spread(key.hashCode());
1810 >        V val = null;
1811 >        int delta = 0;
1812 >        int binCount = 0;
1813 >        for (Node<K,V>[] tab = table;;) {
1814 >            Node<K,V> f; int n, i, fh;
1815 >            if (tab == null || (n = tab.length) == 0)
1816 >                tab = initTable();
1817 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1818 >                Node<K,V> r = new ReservationNode<K,V>();
1819 >                synchronized (r) {
1820 >                    if (casTabAt(tab, i, null, r)) {
1821 >                        binCount = 1;
1822 >                        Node<K,V> node = null;
1823 >                        try {
1824 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1825 >                                delta = 1;
1826 >                                node = new Node<K,V>(h, key, val, null);
1827 >                            }
1828 >                        } finally {
1829 >                            setTabAt(tab, i, node);
1830 >                        }
1831 >                    }
1832                  }
1833 +                if (binCount != 0)
1834 +                    break;
1835              }
1836 <            return true;
1837 <        }
1838 <
1839 <        public final boolean removeAll(Collection<?> c) {
1840 <            boolean modified = false;
1841 <            for (Iterator<?> it = iterator(); it.hasNext();) {
1842 <                if (c.contains(it.next())) {
1843 <                    it.remove();
1844 <                    modified = true;
1836 >            else if ((fh = f.hash) == MOVED)
1837 >                tab = helpTransfer(tab, f);
1838 >            else {
1839 >                synchronized (f) {
1840 >                    if (tabAt(tab, i) == f) {
1841 >                        if (fh >= 0) {
1842 >                            binCount = 1;
1843 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1844 >                                K ek;
1845 >                                if (e.hash == h &&
1846 >                                    ((ek = e.key) == key ||
1847 >                                     (ek != null && key.equals(ek)))) {
1848 >                                    val = remappingFunction.apply(key, e.val);
1849 >                                    if (val != null)
1850 >                                        e.val = val;
1851 >                                    else {
1852 >                                        delta = -1;
1853 >                                        Node<K,V> en = e.next;
1854 >                                        if (pred != null)
1855 >                                            pred.next = en;
1856 >                                        else
1857 >                                            setTabAt(tab, i, en);
1858 >                                    }
1859 >                                    break;
1860 >                                }
1861 >                                pred = e;
1862 >                                if ((e = e.next) == null) {
1863 >                                    val = remappingFunction.apply(key, null);
1864 >                                    if (val != null) {
1865 >                                        delta = 1;
1866 >                                        pred.next =
1867 >                                            new Node<K,V>(h, key, val, null);
1868 >                                    }
1869 >                                    break;
1870 >                                }
1871 >                            }
1872 >                        }
1873 >                        else if (f instanceof TreeBin) {
1874 >                            binCount = 1;
1875 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1876 >                            TreeNode<K,V> r, p;
1877 >                            if ((r = t.root) != null)
1878 >                                p = r.findTreeNode(h, key, null);
1879 >                            else
1880 >                                p = null;
1881 >                            V pv = (p == null) ? null : p.val;
1882 >                            val = remappingFunction.apply(key, pv);
1883 >                            if (val != null) {
1884 >                                if (p != null)
1885 >                                    p.val = val;
1886 >                                else {
1887 >                                    delta = 1;
1888 >                                    t.putTreeVal(h, key, val);
1889 >                                }
1890 >                            }
1891 >                            else if (p != null) {
1892 >                                delta = -1;
1893 >                                if (t.removeTreeNode(p))
1894 >                                    setTabAt(tab, i, untreeify(t.first));
1895 >                            }
1896 >                        }
1897 >                    }
1898 >                }
1899 >                if (binCount != 0) {
1900 >                    if (binCount >= TREEIFY_THRESHOLD)
1901 >                        treeifyBin(tab, i);
1902 >                    break;
1903                  }
1904              }
3238            return modified;
1905          }
1906 +        if (delta != 0)
1907 +            addCount((long)delta, binCount);
1908 +        return val;
1909 +    }
1910  
1911 <        public final boolean retainAll(Collection<?> c) {
1912 <            boolean modified = false;
1913 <            for (Iterator<?> it = iterator(); it.hasNext();) {
1914 <                if (!c.contains(it.next())) {
1915 <                    it.remove();
1916 <                    modified = true;
1911 >    /**
1912 >     * If the specified key is not already associated with a
1913 >     * (non-null) value, associates it with the given value.
1914 >     * Otherwise, replaces the value with the results of the given
1915 >     * remapping function, or removes if {@code null}. The entire
1916 >     * method invocation is performed atomically.  Some attempted
1917 >     * update operations on this map by other threads may be blocked
1918 >     * while computation is in progress, so the computation should be
1919 >     * short and simple, and must not attempt to update any other
1920 >     * mappings of this Map.
1921 >     *
1922 >     * @param key key with which the specified value is to be associated
1923 >     * @param value the value to use if absent
1924 >     * @param remappingFunction the function to recompute a value if present
1925 >     * @return the new value associated with the specified key, or null if none
1926 >     * @throws NullPointerException if the specified key or the
1927 >     *         remappingFunction is null
1928 >     * @throws RuntimeException or Error if the remappingFunction does so,
1929 >     *         in which case the mapping is unchanged
1930 >     */
1931 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1932 >        if (key == null || value == null || remappingFunction == null)
1933 >            throw new NullPointerException();
1934 >        int h = spread(key.hashCode());
1935 >        V val = null;
1936 >        int delta = 0;
1937 >        int binCount = 0;
1938 >        for (Node<K,V>[] tab = table;;) {
1939 >            Node<K,V> f; int n, i, fh;
1940 >            if (tab == null || (n = tab.length) == 0)
1941 >                tab = initTable();
1942 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1943 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1944 >                    delta = 1;
1945 >                    val = value;
1946 >                    break;
1947 >                }
1948 >            }
1949 >            else if ((fh = f.hash) == MOVED)
1950 >                tab = helpTransfer(tab, f);
1951 >            else {
1952 >                synchronized (f) {
1953 >                    if (tabAt(tab, i) == f) {
1954 >                        if (fh >= 0) {
1955 >                            binCount = 1;
1956 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1957 >                                K ek;
1958 >                                if (e.hash == h &&
1959 >                                    ((ek = e.key) == key ||
1960 >                                     (ek != null && key.equals(ek)))) {
1961 >                                    val = remappingFunction.apply(e.val, value);
1962 >                                    if (val != null)
1963 >                                        e.val = val;
1964 >                                    else {
1965 >                                        delta = -1;
1966 >                                        Node<K,V> en = e.next;
1967 >                                        if (pred != null)
1968 >                                            pred.next = en;
1969 >                                        else
1970 >                                            setTabAt(tab, i, en);
1971 >                                    }
1972 >                                    break;
1973 >                                }
1974 >                                pred = e;
1975 >                                if ((e = e.next) == null) {
1976 >                                    delta = 1;
1977 >                                    val = value;
1978 >                                    pred.next =
1979 >                                        new Node<K,V>(h, key, val, null);
1980 >                                    break;
1981 >                                }
1982 >                            }
1983 >                        }
1984 >                        else if (f instanceof TreeBin) {
1985 >                            binCount = 2;
1986 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1987 >                            TreeNode<K,V> r = t.root;
1988 >                            TreeNode<K,V> p = (r == null) ? null :
1989 >                                r.findTreeNode(h, key, null);
1990 >                            val = (p == null) ? value :
1991 >                                remappingFunction.apply(p.val, value);
1992 >                            if (val != null) {
1993 >                                if (p != null)
1994 >                                    p.val = val;
1995 >                                else {
1996 >                                    delta = 1;
1997 >                                    t.putTreeVal(h, key, val);
1998 >                                }
1999 >                            }
2000 >                            else if (p != null) {
2001 >                                delta = -1;
2002 >                                if (t.removeTreeNode(p))
2003 >                                    setTabAt(tab, i, untreeify(t.first));
2004 >                            }
2005 >                        }
2006 >                    }
2007 >                }
2008 >                if (binCount != 0) {
2009 >                    if (binCount >= TREEIFY_THRESHOLD)
2010 >                        treeifyBin(tab, i);
2011 >                    break;
2012                  }
2013              }
3249            return modified;
2014          }
2015 +        if (delta != 0)
2016 +            addCount((long)delta, binCount);
2017 +        return val;
2018 +    }
2019 +
2020 +    // Hashtable legacy methods
2021  
2022 +    /**
2023 +     * Legacy method testing if some key maps into the specified value
2024 +     * in this table.
2025 +     *
2026 +     * @deprecated This method is identical in functionality to
2027 +     * {@link #containsValue(Object)}, and exists solely to ensure
2028 +     * full compatibility with class {@link java.util.Hashtable},
2029 +     * which supported this method prior to introduction of the
2030 +     * Java Collections framework.
2031 +     *
2032 +     * @param  value a value to search for
2033 +     * @return {@code true} if and only if some key maps to the
2034 +     *         {@code value} argument in this table as
2035 +     *         determined by the {@code equals} method;
2036 +     *         {@code false} otherwise
2037 +     * @throws NullPointerException if the specified value is null
2038 +     */
2039 +    @Deprecated
2040 +    public boolean contains(Object value) {
2041 +        return containsValue(value);
2042      }
2043  
2044 <    static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
2045 <        KeySet(ConcurrentHashMap<K, V> map)  {
2046 <            super(map);
2047 <        }
2048 <        public final boolean contains(Object o) { return map.containsKey(o); }
2049 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
2050 <        public final Iterator<K> iterator() {
2051 <            return new KeyIterator<K,V>(map);
2052 <        }
2053 <        public final boolean add(K e) {
2054 <            throw new UnsupportedOperationException();
2055 <        }
2056 <        public final boolean addAll(Collection<? extends K> c) {
2057 <            throw new UnsupportedOperationException();
2058 <        }
2059 <        public boolean equals(Object o) {
2060 <            Set<?> c;
2061 <            return ((o instanceof Set) &&
2062 <                    ((c = (Set<?>)o) == this ||
2063 <                     (containsAll(c) && c.containsAll(this))));
2064 <        }
2044 >    /**
2045 >     * Returns an enumeration of the keys in this table.
2046 >     *
2047 >     * @return an enumeration of the keys in this table
2048 >     * @see #keySet()
2049 >     */
2050 >    public Enumeration<K> keys() {
2051 >        Node<K,V>[] t;
2052 >        int f = (t = table) == null ? 0 : t.length;
2053 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2054 >    }
2055 >
2056 >    /**
2057 >     * Returns an enumeration of the values in this table.
2058 >     *
2059 >     * @return an enumeration of the values in this table
2060 >     * @see #values()
2061 >     */
2062 >    public Enumeration<V> elements() {
2063 >        Node<K,V>[] t;
2064 >        int f = (t = table) == null ? 0 : t.length;
2065 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2066      }
2067  
2068 +    // ConcurrentHashMap-only methods
2069  
2070 <    static final class Values<K,V> extends CHMView<K,V>
2071 <        implements Collection<V> {
2072 <        Values(ConcurrentHashMap<K, V> map)   { super(map); }
2073 <        public final boolean contains(Object o) { return map.containsValue(o); }
2074 <        public final boolean remove(Object o) {
2075 <            if (o != null) {
2076 <                Iterator<V> it = new ValueIterator<K,V>(map);
2077 <                while (it.hasNext()) {
2078 <                    if (o.equals(it.next())) {
2079 <                        it.remove();
2080 <                        return true;
2070 >    /**
2071 >     * Returns the number of mappings. This method should be used
2072 >     * instead of {@link #size} because a ConcurrentHashMap may
2073 >     * contain more mappings than can be represented as an int. The
2074 >     * value returned is an estimate; the actual count may differ if
2075 >     * there are concurrent insertions or removals.
2076 >     *
2077 >     * @return the number of mappings
2078 >     * @since 1.8
2079 >     */
2080 >    public long mappingCount() {
2081 >        long n = sumCount();
2082 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2083 >    }
2084 >
2085 >    /**
2086 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2087 >     * from the given type to {@code Boolean.TRUE}.
2088 >     *
2089 >     * @param <K> the element type of the returned set
2090 >     * @return the new set
2091 >     * @since 1.8
2092 >     */
2093 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2094 >        return new KeySetView<K,Boolean>
2095 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2096 >    }
2097 >
2098 >    /**
2099 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2100 >     * from the given type to {@code Boolean.TRUE}.
2101 >     *
2102 >     * @param initialCapacity The implementation performs internal
2103 >     * sizing to accommodate this many elements.
2104 >     * @param <K> the element type of the returned set
2105 >     * @return the new set
2106 >     * @throws IllegalArgumentException if the initial capacity of
2107 >     * elements is negative
2108 >     * @since 1.8
2109 >     */
2110 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2111 >        return new KeySetView<K,Boolean>
2112 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2113 >    }
2114 >
2115 >    /**
2116 >     * Returns a {@link Set} view of the keys in this map, using the
2117 >     * given common mapped value for any additions (i.e., {@link
2118 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2119 >     * This is of course only appropriate if it is acceptable to use
2120 >     * the same value for all additions from this view.
2121 >     *
2122 >     * @param mappedValue the mapped value to use for any additions
2123 >     * @return the set view
2124 >     * @throws NullPointerException if the mappedValue is null
2125 >     */
2126 >    public KeySetView<K,V> keySet(V mappedValue) {
2127 >        if (mappedValue == null)
2128 >            throw new NullPointerException();
2129 >        return new KeySetView<K,V>(this, mappedValue);
2130 >    }
2131 >
2132 >    /* ---------------- Special Nodes -------------- */
2133 >
2134 >    /**
2135 >     * A node inserted at head of bins during transfer operations.
2136 >     */
2137 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2138 >        final Node<K,V>[] nextTable;
2139 >        ForwardingNode(Node<K,V>[] tab) {
2140 >            super(MOVED, null, null, null);
2141 >            this.nextTable = tab;
2142 >        }
2143 >
2144 >        Node<K,V> find(int h, Object k) {
2145 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2146 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2147 >                Node<K,V> e; int n;
2148 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2149 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2150 >                    return null;
2151 >                for (;;) {
2152 >                    int eh; K ek;
2153 >                    if ((eh = e.hash) == h &&
2154 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2155 >                        return e;
2156 >                    if (eh < 0) {
2157 >                        if (e instanceof ForwardingNode) {
2158 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2159 >                            continue outer;
2160 >                        }
2161 >                        else
2162 >                            return e.find(h, k);
2163                      }
2164 +                    if ((e = e.next) == null)
2165 +                        return null;
2166                  }
2167              }
3292            return false;
3293        }
3294        public final Iterator<V> iterator() {
3295            return new ValueIterator<K,V>(map);
3296        }
3297        public final boolean add(V e) {
3298            throw new UnsupportedOperationException();
3299        }
3300        public final boolean addAll(Collection<? extends V> c) {
3301            throw new UnsupportedOperationException();
2168          }
3303
2169      }
2170  
2171 <    static final class EntrySet<K,V> extends CHMView<K,V>
2172 <        implements Set<Map.Entry<K,V>> {
2173 <        EntrySet(ConcurrentHashMap<K, V> map) { super(map); }
2174 <        public final boolean contains(Object o) {
2175 <            Object k, v, r; Map.Entry<?,?> e;
2176 <            return ((o instanceof Map.Entry) &&
3312 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3313 <                    (r = map.get(k)) != null &&
3314 <                    (v = e.getValue()) != null &&
3315 <                    (v == r || v.equals(r)));
3316 <        }
3317 <        public final boolean remove(Object o) {
3318 <            Object k, v; Map.Entry<?,?> e;
3319 <            return ((o instanceof Map.Entry) &&
3320 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3321 <                    (v = e.getValue()) != null &&
3322 <                    map.remove(k, v));
3323 <        }
3324 <        public final Iterator<Map.Entry<K,V>> iterator() {
3325 <            return new EntryIterator<K,V>(map);
3326 <        }
3327 <        public final boolean add(Entry<K,V> e) {
3328 <            throw new UnsupportedOperationException();
3329 <        }
3330 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3331 <            throw new UnsupportedOperationException();
2171 >    /**
2172 >     * A place-holder node used in computeIfAbsent and compute
2173 >     */
2174 >    static final class ReservationNode<K,V> extends Node<K,V> {
2175 >        ReservationNode() {
2176 >            super(RESERVED, null, null, null);
2177          }
2178 <        public boolean equals(Object o) {
2179 <            Set<?> c;
2180 <            return ((o instanceof Set) &&
3336 <                    ((c = (Set<?>)o) == this ||
3337 <                     (containsAll(c) && c.containsAll(this))));
2178 >
2179 >        Node<K,V> find(int h, Object k) {
2180 >            return null;
2181          }
2182      }
2183  
2184 <    /* ---------------- Serialization Support -------------- */
2184 >    /* ---------------- Table Initialization and Resizing -------------- */
2185  
2186      /**
2187 <     * Stripped-down version of helper class used in previous version,
2188 <     * declared for the sake of serialization compatibility
2187 >     * Returns the stamp bits for resizing a table of size n.
2188 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2189       */
2190 <    static class Segment<K,V> implements Serializable {
2191 <        private static final long serialVersionUID = 2249069246763182397L;
3349 <        final float loadFactor;
3350 <        Segment(float lf) { this.loadFactor = lf; }
2190 >    static final int resizeStamp(int n) {
2191 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2192      }
2193  
2194      /**
2195 <     * Saves the state of the {@code ConcurrentHashMap} instance to a
3355 <     * stream (i.e., serializes it).
3356 <     * @param s the stream
3357 <     * @serialData
3358 <     * the key (Object) and value (Object)
3359 <     * for each key-value mapping, followed by a null pair.
3360 <     * The key-value mappings are emitted in no particular order.
2195 >     * Initializes table, using the size recorded in sizeCtl.
2196       */
2197 <    @SuppressWarnings("unchecked")
2198 <        private void writeObject(java.io.ObjectOutputStream s)
2199 <        throws java.io.IOException {
2200 <        if (segments == null) { // for serialization compatibility
2201 <            segments = (Segment<K,V>[])
2202 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
2203 <            for (int i = 0; i < segments.length; ++i)
2204 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
2205 <        }
2206 <        s.defaultWriteObject();
2207 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2208 <        Object v;
2209 <        while ((v = it.advance()) != null) {
2210 <            s.writeObject(it.nextKey);
2211 <            s.writeObject(v);
2197 >    private final Node<K,V>[] initTable() {
2198 >        Node<K,V>[] tab; int sc;
2199 >        while ((tab = table) == null || tab.length == 0) {
2200 >            if ((sc = sizeCtl) < 0)
2201 >                Thread.yield(); // lost initialization race; just spin
2202 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2203 >                try {
2204 >                    if ((tab = table) == null || tab.length == 0) {
2205 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2206 >                        @SuppressWarnings("unchecked")
2207 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2208 >                        table = tab = nt;
2209 >                        sc = n - (n >>> 2);
2210 >                    }
2211 >                } finally {
2212 >                    sizeCtl = sc;
2213 >                }
2214 >                break;
2215 >            }
2216          }
2217 <        s.writeObject(null);
3379 <        s.writeObject(null);
3380 <        segments = null; // throw away
2217 >        return tab;
2218      }
2219  
2220      /**
2221 <     * Reconstitutes the instance from a stream (that is, deserializes it).
2222 <     * @param s the stream
2221 >     * Adds to count, and if table is too small and not already
2222 >     * resizing, initiates transfer. If already resizing, helps
2223 >     * perform transfer if work is available.  Rechecks occupancy
2224 >     * after a transfer to see if another resize is already needed
2225 >     * because resizings are lagging additions.
2226 >     *
2227 >     * @param x the count to add
2228 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2229 >     */
2230 >    private final void addCount(long x, int check) {
2231 >        CounterCell[] as; long b, s;
2232 >        if ((as = counterCells) != null ||
2233 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2234 >            CounterCell a; long v; int m;
2235 >            boolean uncontended = true;
2236 >            if (as == null || (m = as.length - 1) < 0 ||
2237 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2238 >                !(uncontended =
2239 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2240 >                fullAddCount(x, uncontended);
2241 >                return;
2242 >            }
2243 >            if (check <= 1)
2244 >                return;
2245 >            s = sumCount();
2246 >        }
2247 >        if (check >= 0) {
2248 >            Node<K,V>[] tab, nt; int n, sc;
2249 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2250 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2251 >                int rs = resizeStamp(n);
2252 >                if (sc < 0) {
2253 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2254 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2255 >                        transferIndex <= 0)
2256 >                        break;
2257 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2258 >                        transfer(tab, nt);
2259 >                }
2260 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2261 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2262 >                    transfer(tab, null);
2263 >                s = sumCount();
2264 >            }
2265 >        }
2266 >    }
2267 >
2268 >    /**
2269 >     * Helps transfer if a resize is in progress.
2270       */
2271 <    @SuppressWarnings("unchecked")
2272 <        private void readObject(java.io.ObjectInputStream s)
2273 <        throws java.io.IOException, ClassNotFoundException {
2274 <        s.defaultReadObject();
2275 <        this.segments = null; // unneeded
2276 <        // initialize transient final field
2277 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
2271 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2272 >        Node<K,V>[] nextTab; int sc;
2273 >        if (tab != null && (f instanceof ForwardingNode) &&
2274 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2275 >            int rs = resizeStamp(tab.length);
2276 >            while (nextTab == nextTable && table == tab &&
2277 >                   (sc = sizeCtl) < 0) {
2278 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2279 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2280 >                    break;
2281 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2282 >                    transfer(tab, nextTab);
2283 >                    break;
2284 >                }
2285 >            }
2286 >            return nextTab;
2287 >        }
2288 >        return table;
2289 >    }
2290  
2291 <        // Create all nodes, then place in table once size is known
2292 <        long size = 0L;
2293 <        Node p = null;
2294 <        for (;;) {
2295 <            K k = (K) s.readObject();
2296 <            V v = (V) s.readObject();
2297 <            if (k != null && v != null) {
2298 <                int h = spread(k.hashCode());
2299 <                p = new Node(h, k, v, p);
2300 <                ++size;
2291 >    /**
2292 >     * Tries to presize table to accommodate the given number of elements.
2293 >     *
2294 >     * @param size number of elements (doesn't need to be perfectly accurate)
2295 >     */
2296 >    private final void tryPresize(int size) {
2297 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2298 >            tableSizeFor(size + (size >>> 1) + 1);
2299 >        int sc;
2300 >        while ((sc = sizeCtl) >= 0) {
2301 >            Node<K,V>[] tab = table; int n;
2302 >            if (tab == null || (n = tab.length) == 0) {
2303 >                n = (sc > c) ? sc : c;
2304 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2305 >                    try {
2306 >                        if (table == tab) {
2307 >                            @SuppressWarnings("unchecked")
2308 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2309 >                            table = nt;
2310 >                            sc = n - (n >>> 2);
2311 >                        }
2312 >                    } finally {
2313 >                        sizeCtl = sc;
2314 >                    }
2315 >                }
2316              }
2317 <            else
2317 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2318                  break;
2319 +            else if (tab == table) {
2320 +                int rs = resizeStamp(n);
2321 +                if (sc < 0) {
2322 +                    Node<K,V>[] nt;
2323 +                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2324 +                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2325 +                        transferIndex <= 0)
2326 +                        break;
2327 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2328 +                        transfer(tab, nt);
2329 +                }
2330 +                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2331 +                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2332 +                    transfer(tab, null);
2333 +            }
2334          }
2335 <        if (p != null) {
2336 <            boolean init = false;
2337 <            int n;
2338 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
2339 <                n = MAXIMUM_CAPACITY;
2340 <            else {
2341 <                int sz = (int)size;
2342 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
2335 >    }
2336 >
2337 >    /**
2338 >     * Moves and/or copies the nodes in each bin to new table. See
2339 >     * above for explanation.
2340 >     */
2341 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2342 >        int n = tab.length, stride;
2343 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2344 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2345 >        if (nextTab == null) {            // initiating
2346 >            try {
2347 >                @SuppressWarnings("unchecked")
2348 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2349 >                nextTab = nt;
2350 >            } catch (Throwable ex) {      // try to cope with OOME
2351 >                sizeCtl = Integer.MAX_VALUE;
2352 >                return;
2353 >            }
2354 >            nextTable = nextTab;
2355 >            transferIndex = n;
2356 >        }
2357 >        int nextn = nextTab.length;
2358 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2359 >        boolean advance = true;
2360 >        boolean finishing = false; // to ensure sweep before committing nextTab
2361 >        for (int i = 0, bound = 0;;) {
2362 >            Node<K,V> f; int fh;
2363 >            while (advance) {
2364 >                int nextIndex, nextBound;
2365 >                if (--i >= bound || finishing)
2366 >                    advance = false;
2367 >                else if ((nextIndex = transferIndex) <= 0) {
2368 >                    i = -1;
2369 >                    advance = false;
2370 >                }
2371 >                else if (U.compareAndSwapInt
2372 >                         (this, TRANSFERINDEX, nextIndex,
2373 >                          nextBound = (nextIndex > stride ?
2374 >                                       nextIndex - stride : 0))) {
2375 >                    bound = nextBound;
2376 >                    i = nextIndex - 1;
2377 >                    advance = false;
2378 >                }
2379 >            }
2380 >            if (i < 0 || i >= n || i + n >= nextn) {
2381 >                int sc;
2382 >                if (finishing) {
2383 >                    nextTable = null;
2384 >                    table = nextTab;
2385 >                    sizeCtl = (n << 1) - (n >>> 1);
2386 >                    return;
2387 >                }
2388 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2389 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2390 >                        return;
2391 >                    finishing = advance = true;
2392 >                    i = n; // recheck before commit
2393 >                }
2394              }
2395 <            int sc = sizeCtl;
2396 <            boolean collide = false;
2397 <            if (n > sc &&
2398 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2399 <                try {
2400 <                    if (table == null) {
2401 <                        init = true;
2402 <                        Node[] tab = new Node[n];
2403 <                        int mask = n - 1;
2404 <                        while (p != null) {
2405 <                            int j = p.hash & mask;
2406 <                            Node next = p.next;
2407 <                            Node q = p.next = tabAt(tab, j);
2408 <                            setTabAt(tab, j, p);
2409 <                            if (!collide && q != null && q.hash == p.hash)
2410 <                                collide = true;
2411 <                            p = next;
2395 >            else if ((f = tabAt(tab, i)) == null)
2396 >                advance = casTabAt(tab, i, null, fwd);
2397 >            else if ((fh = f.hash) == MOVED)
2398 >                advance = true; // already processed
2399 >            else {
2400 >                synchronized (f) {
2401 >                    if (tabAt(tab, i) == f) {
2402 >                        Node<K,V> ln, hn;
2403 >                        if (fh >= 0) {
2404 >                            int runBit = fh & n;
2405 >                            Node<K,V> lastRun = f;
2406 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2407 >                                int b = p.hash & n;
2408 >                                if (b != runBit) {
2409 >                                    runBit = b;
2410 >                                    lastRun = p;
2411 >                                }
2412 >                            }
2413 >                            if (runBit == 0) {
2414 >                                ln = lastRun;
2415 >                                hn = null;
2416 >                            }
2417 >                            else {
2418 >                                hn = lastRun;
2419 >                                ln = null;
2420 >                            }
2421 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2422 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2423 >                                if ((ph & n) == 0)
2424 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2425 >                                else
2426 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2427 >                            }
2428 >                            setTabAt(nextTab, i, ln);
2429 >                            setTabAt(nextTab, i + n, hn);
2430 >                            setTabAt(tab, i, fwd);
2431 >                            advance = true;
2432 >                        }
2433 >                        else if (f instanceof TreeBin) {
2434 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2435 >                            TreeNode<K,V> lo = null, loTail = null;
2436 >                            TreeNode<K,V> hi = null, hiTail = null;
2437 >                            int lc = 0, hc = 0;
2438 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2439 >                                int h = e.hash;
2440 >                                TreeNode<K,V> p = new TreeNode<K,V>
2441 >                                    (h, e.key, e.val, null, null);
2442 >                                if ((h & n) == 0) {
2443 >                                    if ((p.prev = loTail) == null)
2444 >                                        lo = p;
2445 >                                    else
2446 >                                        loTail.next = p;
2447 >                                    loTail = p;
2448 >                                    ++lc;
2449 >                                }
2450 >                                else {
2451 >                                    if ((p.prev = hiTail) == null)
2452 >                                        hi = p;
2453 >                                    else
2454 >                                        hiTail.next = p;
2455 >                                    hiTail = p;
2456 >                                    ++hc;
2457 >                                }
2458 >                            }
2459 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2460 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2461 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2462 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2463 >                            setTabAt(nextTab, i, ln);
2464 >                            setTabAt(nextTab, i + n, hn);
2465 >                            setTabAt(tab, i, fwd);
2466 >                            advance = true;
2467                          }
3436                        table = tab;
3437                        counter.add(size);
3438                        sc = n - (n >>> 2);
2468                      }
3440                } finally {
3441                    sizeCtl = sc;
2469                  }
2470 <                if (collide) { // rescan and convert to TreeBins
2471 <                    Node[] tab = table;
2472 <                    for (int i = 0; i < tab.length; ++i) {
2473 <                        int c = 0;
2474 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
2475 <                            if (++c > TREE_THRESHOLD &&
2476 <                                (e.key instanceof Comparable)) {
2477 <                                replaceWithTreeBin(tab, i, e.key);
2478 <                                break;
2470 >            }
2471 >        }
2472 >    }
2473 >
2474 >    /* ---------------- Counter support -------------- */
2475 >
2476 >    /**
2477 >     * A padded cell for distributing counts.  Adapted from LongAdder
2478 >     * and Striped64.  See their internal docs for explanation.
2479 >     */
2480 >    @sun.misc.Contended static final class CounterCell {
2481 >        volatile long value;
2482 >        CounterCell(long x) { value = x; }
2483 >    }
2484 >
2485 >    final long sumCount() {
2486 >        CounterCell[] as = counterCells; CounterCell a;
2487 >        long sum = baseCount;
2488 >        if (as != null) {
2489 >            for (int i = 0; i < as.length; ++i) {
2490 >                if ((a = as[i]) != null)
2491 >                    sum += a.value;
2492 >            }
2493 >        }
2494 >        return sum;
2495 >    }
2496 >
2497 >    // See LongAdder version for explanation
2498 >    private final void fullAddCount(long x, boolean wasUncontended) {
2499 >        int h;
2500 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2501 >            ThreadLocalRandom.localInit();      // force initialization
2502 >            h = ThreadLocalRandom.getProbe();
2503 >            wasUncontended = true;
2504 >        }
2505 >        boolean collide = false;                // True if last slot nonempty
2506 >        for (;;) {
2507 >            CounterCell[] as; CounterCell a; int n; long v;
2508 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2509 >                if ((a = as[(n - 1) & h]) == null) {
2510 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2511 >                        CounterCell r = new CounterCell(x); // Optimistic create
2512 >                        if (cellsBusy == 0 &&
2513 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2514 >                            boolean created = false;
2515 >                            try {               // Recheck under lock
2516 >                                CounterCell[] rs; int m, j;
2517 >                                if ((rs = counterCells) != null &&
2518 >                                    (m = rs.length) > 0 &&
2519 >                                    rs[j = (m - 1) & h] == null) {
2520 >                                    rs[j] = r;
2521 >                                    created = true;
2522 >                                }
2523 >                            } finally {
2524 >                                cellsBusy = 0;
2525                              }
2526 +                            if (created)
2527 +                                break;
2528 +                            continue;           // Slot is now non-empty
2529                          }
2530                      }
2531 +                    collide = false;
2532                  }
2533 +                else if (!wasUncontended)       // CAS already known to fail
2534 +                    wasUncontended = true;      // Continue after rehash
2535 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2536 +                    break;
2537 +                else if (counterCells != as || n >= NCPU)
2538 +                    collide = false;            // At max size or stale
2539 +                else if (!collide)
2540 +                    collide = true;
2541 +                else if (cellsBusy == 0 &&
2542 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2543 +                    try {
2544 +                        if (counterCells == as) {// Expand table unless stale
2545 +                            CounterCell[] rs = new CounterCell[n << 1];
2546 +                            for (int i = 0; i < n; ++i)
2547 +                                rs[i] = as[i];
2548 +                            counterCells = rs;
2549 +                        }
2550 +                    } finally {
2551 +                        cellsBusy = 0;
2552 +                    }
2553 +                    collide = false;
2554 +                    continue;                   // Retry with expanded table
2555 +                }
2556 +                h = ThreadLocalRandom.advanceProbe(h);
2557              }
2558 <            if (!init) { // Can only happen if unsafely published.
2559 <                while (p != null) {
2560 <                    internalPut(p.key, p.val);
2561 <                    p = p.next;
2558 >            else if (cellsBusy == 0 && counterCells == as &&
2559 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2560 >                boolean init = false;
2561 >                try {                           // Initialize table
2562 >                    if (counterCells == as) {
2563 >                        CounterCell[] rs = new CounterCell[2];
2564 >                        rs[h & 1] = new CounterCell(x);
2565 >                        counterCells = rs;
2566 >                        init = true;
2567 >                    }
2568 >                } finally {
2569 >                    cellsBusy = 0;
2570                  }
2571 +                if (init)
2572 +                    break;
2573              }
2574 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2575 +                break;                          // Fall back on using base
2576          }
2577      }
2578  
2579 +    /* ---------------- Conversion from/to TreeBins -------------- */
2580  
2581 <    // -------------------------------------------------------
2582 <
2583 <    // Sams
2584 <    /** Interface describing a void action of one argument */
2585 <    public interface Action<A> { void apply(A a); }
2586 <    /** Interface describing a void action of two arguments */
2587 <    public interface BiAction<A,B> { void apply(A a, B b); }
2588 <    /** Interface describing a function of one argument */
2589 <    public interface Fun<A,T> { T apply(A a); }
2590 <    /** Interface describing a function of two arguments */
2591 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
2592 <    /** Interface describing a function of no arguments */
2593 <    public interface Generator<T> { T apply(); }
2594 <    /** Interface describing a function mapping its argument to a double */
2595 <    public interface ObjectToDouble<A> { double apply(A a); }
2596 <    /** Interface describing a function mapping its argument to a long */
2597 <    public interface ObjectToLong<A> { long apply(A a); }
2598 <    /** Interface describing a function mapping its argument to an int */
2599 <    public interface ObjectToInt<A> {int apply(A a); }
2600 <    /** Interface describing a function mapping two arguments to a double */
2601 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
2602 <    /** Interface describing a function mapping two arguments to a long */
2603 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
2604 <    /** Interface describing a function mapping two arguments to an int */
2605 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
2606 <    /** Interface describing a function mapping a double to a double */
2607 <    public interface DoubleToDouble { double apply(double a); }
2608 <    /** Interface describing a function mapping a long to a long */
2609 <    public interface LongToLong { long apply(long a); }
3496 <    /** Interface describing a function mapping an int to an int */
3497 <    public interface IntToInt { int apply(int a); }
3498 <    /** Interface describing a function mapping two doubles to a double */
3499 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3500 <    /** Interface describing a function mapping two longs to a long */
3501 <    public interface LongByLongToLong { long apply(long a, long b); }
3502 <    /** Interface describing a function mapping two ints to an int */
3503 <    public interface IntByIntToInt { int apply(int a, int b); }
3504 <
3505 <
3506 <    // -------------------------------------------------------
2581 >    /**
2582 >     * Replaces all linked nodes in bin at given index unless table is
2583 >     * too small, in which case resizes instead.
2584 >     */
2585 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2586 >        Node<K,V> b; int n, sc;
2587 >        if (tab != null) {
2588 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2589 >                tryPresize(n << 1);
2590 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2591 >                synchronized (b) {
2592 >                    if (tabAt(tab, index) == b) {
2593 >                        TreeNode<K,V> hd = null, tl = null;
2594 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2595 >                            TreeNode<K,V> p =
2596 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2597 >                                                  null, null);
2598 >                            if ((p.prev = tl) == null)
2599 >                                hd = p;
2600 >                            else
2601 >                                tl.next = p;
2602 >                            tl = p;
2603 >                        }
2604 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2605 >                    }
2606 >                }
2607 >            }
2608 >        }
2609 >    }
2610  
2611      /**
2612 <     * Returns an extended {@link Parallel} view of this map using the
3510 <     * given executor for bulk parallel operations.
3511 <     *
3512 <     * @param executor the executor
3513 <     * @return a parallel view
2612 >     * Returns a list on non-TreeNodes replacing those in given list.
2613       */
2614 <    public Parallel parallel(ForkJoinPool executor)  {
2615 <        return new Parallel(executor);
2614 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2615 >        Node<K,V> hd = null, tl = null;
2616 >        for (Node<K,V> q = b; q != null; q = q.next) {
2617 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2618 >            if (tl == null)
2619 >                hd = p;
2620 >            else
2621 >                tl.next = p;
2622 >            tl = p;
2623 >        }
2624 >        return hd;
2625      }
2626  
2627 +    /* ---------------- TreeNodes -------------- */
2628 +
2629      /**
2630 <     * An extended view of a ConcurrentHashMap supporting bulk
3521 <     * parallel operations. These operations are designed to be
3522 <     * safely, and often sensibly, applied even with maps that are
3523 <     * being concurrently updated by other threads; for example, when
3524 <     * computing a snapshot summary of the values in a shared
3525 <     * registry.  There are three kinds of operation, each with four
3526 <     * forms, accepting functions with Keys, Values, Entries, and
3527 <     * (Key, Value) arguments and/or return values. Because the
3528 <     * elements of a ConcurrentHashMap are not ordered in any
3529 <     * particular way, and may be processed in different orders in
3530 <     * different parallel executions, the correctness of supplied
3531 <     * functions should not depend on any ordering, or on any other
3532 <     * objects or values that may transiently change while computation
3533 <     * is in progress; and except for forEach actions, should ideally
3534 <     * be side-effect-free.
3535 <     *
3536 <     * <ul>
3537 <     * <li> forEach: Perform a given action on each element.
3538 <     * A variant form applies a given transformation on each element
3539 <     * before performing the action.</li>
3540 <     *
3541 <     * <li> search: Return the first available non-null result of
3542 <     * applying a given function on each element; skipping further
3543 <     * search when a result is found.</li>
3544 <     *
3545 <     * <li> reduce: Accumulate each element.  The supplied reduction
3546 <     * function cannot rely on ordering (more formally, it should be
3547 <     * both associative and commutative).  There are five variants:
3548 <     *
3549 <     * <ul>
3550 <     *
3551 <     * <li> Plain reductions. (There is not a form of this method for
3552 <     * (key, value) function arguments since there is no corresponding
3553 <     * return type.)</li>
3554 <     *
3555 <     * <li> Mapped reductions that accumulate the results of a given
3556 <     * function applied to each element.</li>
3557 <     *
3558 <     * <li> Reductions to scalar doubles, longs, and ints, using a
3559 <     * given basis value.</li>
3560 <     *
3561 <     * </li>
3562 <     * </ul>
3563 <     * </ul>
3564 <     *
3565 <     * <p>The concurrency properties of the bulk operations follow
3566 <     * from those of ConcurrentHashMap: Any non-null result returned
3567 <     * from {@code get(key)} and related access methods bears a
3568 <     * happens-before relation with the associated insertion or
3569 <     * update.  The result of any bulk operation reflects the
3570 <     * composition of these per-element relations (but is not
3571 <     * necessarily atomic with respect to the map as a whole unless it
3572 <     * is somehow known to be quiescent).  Conversely, because keys
3573 <     * and values in the map are never null, null serves as a reliable
3574 <     * atomic indicator of the current lack of any result.  To
3575 <     * maintain this property, null serves as an implicit basis for
3576 <     * all non-scalar reduction operations. For the double, long, and
3577 <     * int versions, the basis should be one that, when combined with
3578 <     * any other value, returns that other value (more formally, it
3579 <     * should be the identity element for the reduction). Most common
3580 <     * reductions have these properties; for example, computing a sum
3581 <     * with basis 0 or a minimum with basis MAX_VALUE.
3582 <     *
3583 <     * <p>Search and transformation functions provided as arguments
3584 <     * should similarly return null to indicate the lack of any result
3585 <     * (in which case it is not used). In the case of mapped
3586 <     * reductions, this also enables transformations to serve as
3587 <     * filters, returning null (or, in the case of primitive
3588 <     * specializations, the identity basis) if the element should not
3589 <     * be combined. You can create compound transformations and
3590 <     * filterings by composing them yourself under this "null means
3591 <     * there is nothing there now" rule before using them in search or
3592 <     * reduce operations.
3593 <     *
3594 <     * <p>Methods accepting and/or returning Entry arguments maintain
3595 <     * key-value associations. They may be useful for example when
3596 <     * finding the key for the greatest value. Note that "plain" Entry
3597 <     * arguments can be supplied using {@code new
3598 <     * AbstractMap.SimpleEntry(k,v)}.
3599 <     *
3600 <     * <p> Bulk operations may complete abruptly, throwing an
3601 <     * exception encountered in the application of a supplied
3602 <     * function. Bear in mind when handling such exceptions that other
3603 <     * concurrently executing functions could also have thrown
3604 <     * exceptions, or would have done so if the first exception had
3605 <     * not occurred.
3606 <     *
3607 <     * <p>Parallel speedups compared to sequential processing are
3608 <     * common but not guaranteed.  Operations involving brief
3609 <     * functions on small maps may execute more slowly than sequential
3610 <     * loops if the underlying work to parallelize the computation is
3611 <     * more expensive than the computation itself. Similarly,
3612 <     * parallelization may not lead to much actual parallelism if all
3613 <     * processors are busy performing unrelated tasks.
3614 <     *
3615 <     * <p> All arguments to all task methods must be non-null.
3616 <     *
3617 <     * <p><em>jsr166e note: During transition, this class
3618 <     * uses nested functional interfaces with different names but the
3619 <     * same forms as those expected for JDK8.<em>
2630 >     * Nodes for use in TreeBins
2631       */
2632 <    public class Parallel {
2633 <        final ForkJoinPool fjp;
2632 >    static final class TreeNode<K,V> extends Node<K,V> {
2633 >        TreeNode<K,V> parent;  // red-black tree links
2634 >        TreeNode<K,V> left;
2635 >        TreeNode<K,V> right;
2636 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2637 >        boolean red;
2638  
2639 <        /**
2640 <         * Returns an extended view of this map using the given
2641 <         * executor for bulk parallel operations.
2642 <         *
3628 <         * @param executor the executor
3629 <         */
3630 <        public Parallel(ForkJoinPool executor)  {
3631 <            this.fjp = executor;
2639 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2640 >                 TreeNode<K,V> parent) {
2641 >            super(hash, key, val, next);
2642 >            this.parent = parent;
2643          }
2644  
2645 <        /**
2646 <         * Performs the given action for each (key, value).
3636 <         *
3637 <         * @param action the action
3638 <         */
3639 <        public void forEach(BiAction<K,V> action) {
3640 <            fjp.invoke(ForkJoinTasks.forEach
3641 <                       (ConcurrentHashMap.this, action));
2645 >        Node<K,V> find(int h, Object k) {
2646 >            return findTreeNode(h, k, null);
2647          }
2648  
2649          /**
2650 <         * Performs the given action for each non-null transformation
2651 <         * of each (key, value).
3647 <         *
3648 <         * @param transformer a function returning the transformation
3649 <         * for an element, or null of there is no transformation (in
3650 <         * which case the action is not applied).
3651 <         * @param action the action
2650 >         * Returns the TreeNode (or null if not found) for the given key
2651 >         * starting at given root.
2652           */
2653 <        public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
2654 <                                Action<U> action) {
2655 <            fjp.invoke(ForkJoinTasks.forEach
2656 <                       (ConcurrentHashMap.this, transformer, action));
2653 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2654 >            if (k != null) {
2655 >                TreeNode<K,V> p = this;
2656 >                do {
2657 >                    int ph, dir; K pk; TreeNode<K,V> q;
2658 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2659 >                    if ((ph = p.hash) > h)
2660 >                        p = pl;
2661 >                    else if (ph < h)
2662 >                        p = pr;
2663 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2664 >                        return p;
2665 >                    else if (pl == null)
2666 >                        p = pr;
2667 >                    else if (pr == null)
2668 >                        p = pl;
2669 >                    else if ((kc != null ||
2670 >                              (kc = comparableClassFor(k)) != null) &&
2671 >                             (dir = compareComparables(kc, k, pk)) != 0)
2672 >                        p = (dir < 0) ? pl : pr;
2673 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2674 >                        return q;
2675 >                    else
2676 >                        p = pl;
2677 >                } while (p != null);
2678 >            }
2679 >            return null;
2680          }
2681 +    }
2682  
2683 <        /**
2684 <         * Returns a non-null result from applying the given search
2685 <         * function on each (key, value), or null if none.  Further
2686 <         * element processing is suppressed upon success. However,
2687 <         * this method does not return until other in-progress
2688 <         * parallel invocations of the search function also complete.
2689 <         *
2690 <         * @param searchFunction a function returning a non-null
2691 <         * result on success, else null
2692 <         * @return a non-null result from applying the given search
2693 <         * function on each (key, value), or null if none
2694 <         */
2695 <        public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
2696 <            return fjp.invoke(ForkJoinTasks.search
2697 <                              (ConcurrentHashMap.this, searchFunction));
2683 >    /* ---------------- TreeBins -------------- */
2684 >
2685 >    /**
2686 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2687 >     * keys or values, but instead point to list of TreeNodes and
2688 >     * their root. They also maintain a parasitic read-write lock
2689 >     * forcing writers (who hold bin lock) to wait for readers (who do
2690 >     * not) to complete before tree restructuring operations.
2691 >     */
2692 >    static final class TreeBin<K,V> extends Node<K,V> {
2693 >        TreeNode<K,V> root;
2694 >        volatile TreeNode<K,V> first;
2695 >        volatile Thread waiter;
2696 >        volatile int lockState;
2697 >        // values for lockState
2698 >        static final int WRITER = 1; // set while holding write lock
2699 >        static final int WAITER = 2; // set when waiting for write lock
2700 >        static final int READER = 4; // increment value for setting read lock
2701 >
2702 >        /**
2703 >         * Tie-breaking utility for ordering insertions when equal
2704 >         * hashCodes and non-comparable. We don't require a total
2705 >         * order, just a consistent insertion rule to maintain
2706 >         * equivalence across rebalancings. Tie-breaking further than
2707 >         * necessary simplifies testing a bit.
2708 >         */
2709 >        static int tieBreakOrder(Object a, Object b) {
2710 >            int d;
2711 >            if (a == null || b == null ||
2712 >                (d = a.getClass().getName().
2713 >                 compareTo(b.getClass().getName())) == 0)
2714 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2715 >                     -1 : 1);
2716 >            return d;
2717          }
2718  
2719          /**
2720 <         * Returns the result of accumulating the given transformation
2721 <         * of all (key, value) pairs using the given reducer to
2722 <         * combine values, or null if none.
2723 <         *
2724 <         * @param transformer a function returning the transformation
2725 <         * for an element, or null of there is no transformation (in
2726 <         * which case it is not combined).
2727 <         * @param reducer a commutative associative combining function
2728 <         * @return the result of accumulating the given transformation
2729 <         * of all (key, value) pairs
2730 <         */
2731 <        public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
2732 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
2733 <            return fjp.invoke(ForkJoinTasks.reduce
2734 <                              (ConcurrentHashMap.this, transformer, reducer));
2720 >         * Creates bin with initial set of nodes headed by b.
2721 >         */
2722 >        TreeBin(TreeNode<K,V> b) {
2723 >            super(TREEBIN, null, null, null);
2724 >            this.first = b;
2725 >            TreeNode<K,V> r = null;
2726 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2727 >                next = (TreeNode<K,V>)x.next;
2728 >                x.left = x.right = null;
2729 >                if (r == null) {
2730 >                    x.parent = null;
2731 >                    x.red = false;
2732 >                    r = x;
2733 >                }
2734 >                else {
2735 >                    K k = x.key;
2736 >                    int h = x.hash;
2737 >                    Class<?> kc = null;
2738 >                    for (TreeNode<K,V> p = r;;) {
2739 >                        int dir, ph;
2740 >                        K pk = p.key;
2741 >                        if ((ph = p.hash) > h)
2742 >                            dir = -1;
2743 >                        else if (ph < h)
2744 >                            dir = 1;
2745 >                        else if ((kc == null &&
2746 >                                  (kc = comparableClassFor(k)) == null) ||
2747 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2748 >                            dir = tieBreakOrder(k, pk);
2749 >                            TreeNode<K,V> xp = p;
2750 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2751 >                            x.parent = xp;
2752 >                            if (dir <= 0)
2753 >                                xp.left = x;
2754 >                            else
2755 >                                xp.right = x;
2756 >                            r = balanceInsertion(r, x);
2757 >                            break;
2758 >                        }
2759 >                    }
2760 >                }
2761 >            }
2762 >            this.root = r;
2763 >            assert checkInvariants(root);
2764          }
2765  
2766          /**
2767 <         * Returns the result of accumulating the given transformation
3696 <         * of all (key, value) pairs using the given reducer to
3697 <         * combine values, and the given basis as an identity value.
3698 <         *
3699 <         * @param transformer a function returning the transformation
3700 <         * for an element
3701 <         * @param basis the identity (initial default value) for the reduction
3702 <         * @param reducer a commutative associative combining function
3703 <         * @return the result of accumulating the given transformation
3704 <         * of all (key, value) pairs
2767 >         * Acquires write lock for tree restructuring.
2768           */
2769 <        public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
2770 <                                     double basis,
2771 <                                     DoubleByDoubleToDouble reducer) {
3709 <            return fjp.invoke(ForkJoinTasks.reduceToDouble
3710 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
2769 >        private final void lockRoot() {
2770 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2771 >                contendedLock(); // offload to separate method
2772          }
2773  
2774          /**
2775 <         * Returns the result of accumulating the given transformation
3715 <         * of all (key, value) pairs using the given reducer to
3716 <         * combine values, and the given basis as an identity value.
3717 <         *
3718 <         * @param transformer a function returning the transformation
3719 <         * for an element
3720 <         * @param basis the identity (initial default value) for the reduction
3721 <         * @param reducer a commutative associative combining function
3722 <         * @return the result of accumulating the given transformation
3723 <         * of all (key, value) pairs using the given reducer to
3724 <         * combine values, and the given basis as an identity value.
2775 >         * Releases write lock for tree restructuring.
2776           */
2777 <        public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
2778 <                                 long basis,
3728 <                                 LongByLongToLong reducer) {
3729 <            return fjp.invoke(ForkJoinTasks.reduceToLong
3730 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
2777 >        private final void unlockRoot() {
2778 >            lockState = 0;
2779          }
2780  
2781          /**
2782 <         * Returns the result of accumulating the given transformation
3735 <         * of all (key, value) pairs using the given reducer to
3736 <         * combine values, and the given basis as an identity value.
3737 <         *
3738 <         * @param transformer a function returning the transformation
3739 <         * for an element
3740 <         * @param basis the identity (initial default value) for the reduction
3741 <         * @param reducer a commutative associative combining function
3742 <         * @return the result of accumulating the given transformation
3743 <         * of all (key, value) pairs
2782 >         * Possibly blocks awaiting root lock.
2783           */
2784 <        public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
2785 <                               int basis,
2786 <                               IntByIntToInt reducer) {
2787 <            return fjp.invoke(ForkJoinTasks.reduceToInt
2788 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
2784 >        private final void contendedLock() {
2785 >            boolean waiting = false;
2786 >            for (int s;;) {
2787 >                if (((s = lockState) & ~WAITER) == 0) {
2788 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2789 >                        if (waiting)
2790 >                            waiter = null;
2791 >                        return;
2792 >                    }
2793 >                }
2794 >                else if ((s & WAITER) == 0) {
2795 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2796 >                        waiting = true;
2797 >                        waiter = Thread.currentThread();
2798 >                    }
2799 >                }
2800 >                else if (waiting)
2801 >                    LockSupport.park(this);
2802 >            }
2803          }
2804  
2805          /**
2806 <         * Performs the given action for each key
2807 <         *
2808 <         * @param action the action
2806 >         * Returns matching node or null if none. Tries to search
2807 >         * using tree comparisons from root, but continues linear
2808 >         * search when lock not available.
2809           */
2810 <        public void forEachKey(Action<K> action) {
2811 <            fjp.invoke(ForkJoinTasks.forEachKey
2812 <                       (ConcurrentHashMap.this, action));
2810 >        final Node<K,V> find(int h, Object k) {
2811 >            if (k != null) {
2812 >                for (Node<K,V> e = first; e != null; ) {
2813 >                    int s; K ek;
2814 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2815 >                        if (e.hash == h &&
2816 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2817 >                            return e;
2818 >                        e = e.next;
2819 >                    }
2820 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2821 >                                                 s + READER)) {
2822 >                        TreeNode<K,V> r, p;
2823 >                        try {
2824 >                            p = ((r = root) == null ? null :
2825 >                                 r.findTreeNode(h, k, null));
2826 >                        } finally {
2827 >                            Thread w;
2828 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2829 >                                (READER|WAITER) && (w = waiter) != null)
2830 >                                LockSupport.unpark(w);
2831 >                        }
2832 >                        return p;
2833 >                    }
2834 >                }
2835 >            }
2836 >            return null;
2837          }
2838  
2839          /**
2840 <         * Performs the given action for each non-null transformation
2841 <         * of each key
3765 <         *
3766 <         * @param transformer a function returning the transformation
3767 <         * for an element, or null of there is no transformation (in
3768 <         * which case the action is not applied).
3769 <         * @param action the action
2840 >         * Finds or adds a node.
2841 >         * @return null if added
2842           */
2843 <        public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
2844 <                                   Action<U> action) {
2845 <            fjp.invoke(ForkJoinTasks.forEachKey
2846 <                       (ConcurrentHashMap.this, transformer, action));
2843 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2844 >            Class<?> kc = null;
2845 >            boolean searched = false;
2846 >            for (TreeNode<K,V> p = root;;) {
2847 >                int dir, ph; K pk;
2848 >                if (p == null) {
2849 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2850 >                    break;
2851 >                }
2852 >                else if ((ph = p.hash) > h)
2853 >                    dir = -1;
2854 >                else if (ph < h)
2855 >                    dir = 1;
2856 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2857 >                    return p;
2858 >                else if ((kc == null &&
2859 >                          (kc = comparableClassFor(k)) == null) ||
2860 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2861 >                    if (!searched) {
2862 >                        TreeNode<K,V> q, ch;
2863 >                        searched = true;
2864 >                        if (((ch = p.left) != null &&
2865 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2866 >                            ((ch = p.right) != null &&
2867 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2868 >                            return q;
2869 >                    }
2870 >                    dir = tieBreakOrder(k, pk);
2871 >                }
2872 >
2873 >                TreeNode<K,V> xp = p;
2874 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2875 >                    TreeNode<K,V> x, f = first;
2876 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2877 >                    if (f != null)
2878 >                        f.prev = x;
2879 >                    if (dir <= 0)
2880 >                        xp.left = x;
2881 >                    else
2882 >                        xp.right = x;
2883 >                    if (!xp.red)
2884 >                        x.red = true;
2885 >                    else {
2886 >                        lockRoot();
2887 >                        try {
2888 >                            root = balanceInsertion(root, x);
2889 >                        } finally {
2890 >                            unlockRoot();
2891 >                        }
2892 >                    }
2893 >                    break;
2894 >                }
2895 >            }
2896 >            assert checkInvariants(root);
2897 >            return null;
2898          }
2899  
2900          /**
2901 <         * Returns a non-null result from applying the given search
2902 <         * function on each key, or null if none.  Further element
2903 <         * processing is suppressed upon success. However, this method
2904 <         * does not return until other in-progress parallel
2905 <         * invocations of the search function also complete.
2901 >         * Removes the given node, that must be present before this
2902 >         * call.  This is messier than typical red-black deletion code
2903 >         * because we cannot swap the contents of an interior node
2904 >         * with a leaf successor that is pinned by "next" pointers
2905 >         * that are accessible independently of lock. So instead we
2906 >         * swap the tree linkages.
2907           *
2908 <         * @param searchFunction a function returning a non-null
3785 <         * result on success, else null
3786 <         * @return a non-null result from applying the given search
3787 <         * function on each key, or null if none
2908 >         * @return true if now too small, so should be untreeified
2909           */
2910 <        public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
2911 <            return fjp.invoke(ForkJoinTasks.searchKeys
2912 <                              (ConcurrentHashMap.this, searchFunction));
2910 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2911 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2912 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2913 >            TreeNode<K,V> r, rl;
2914 >            if (pred == null)
2915 >                first = next;
2916 >            else
2917 >                pred.next = next;
2918 >            if (next != null)
2919 >                next.prev = pred;
2920 >            if (first == null) {
2921 >                root = null;
2922 >                return true;
2923 >            }
2924 >            if ((r = root) == null || r.right == null || // too small
2925 >                (rl = r.left) == null || rl.left == null)
2926 >                return true;
2927 >            lockRoot();
2928 >            try {
2929 >                TreeNode<K,V> replacement;
2930 >                TreeNode<K,V> pl = p.left;
2931 >                TreeNode<K,V> pr = p.right;
2932 >                if (pl != null && pr != null) {
2933 >                    TreeNode<K,V> s = pr, sl;
2934 >                    while ((sl = s.left) != null) // find successor
2935 >                        s = sl;
2936 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2937 >                    TreeNode<K,V> sr = s.right;
2938 >                    TreeNode<K,V> pp = p.parent;
2939 >                    if (s == pr) { // p was s's direct parent
2940 >                        p.parent = s;
2941 >                        s.right = p;
2942 >                    }
2943 >                    else {
2944 >                        TreeNode<K,V> sp = s.parent;
2945 >                        if ((p.parent = sp) != null) {
2946 >                            if (s == sp.left)
2947 >                                sp.left = p;
2948 >                            else
2949 >                                sp.right = p;
2950 >                        }
2951 >                        if ((s.right = pr) != null)
2952 >                            pr.parent = s;
2953 >                    }
2954 >                    p.left = null;
2955 >                    if ((p.right = sr) != null)
2956 >                        sr.parent = p;
2957 >                    if ((s.left = pl) != null)
2958 >                        pl.parent = s;
2959 >                    if ((s.parent = pp) == null)
2960 >                        r = s;
2961 >                    else if (p == pp.left)
2962 >                        pp.left = s;
2963 >                    else
2964 >                        pp.right = s;
2965 >                    if (sr != null)
2966 >                        replacement = sr;
2967 >                    else
2968 >                        replacement = p;
2969 >                }
2970 >                else if (pl != null)
2971 >                    replacement = pl;
2972 >                else if (pr != null)
2973 >                    replacement = pr;
2974 >                else
2975 >                    replacement = p;
2976 >                if (replacement != p) {
2977 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2978 >                    if (pp == null)
2979 >                        r = replacement;
2980 >                    else if (p == pp.left)
2981 >                        pp.left = replacement;
2982 >                    else
2983 >                        pp.right = replacement;
2984 >                    p.left = p.right = p.parent = null;
2985 >                }
2986 >
2987 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2988 >
2989 >                if (p == replacement) {  // detach pointers
2990 >                    TreeNode<K,V> pp;
2991 >                    if ((pp = p.parent) != null) {
2992 >                        if (p == pp.left)
2993 >                            pp.left = null;
2994 >                        else if (p == pp.right)
2995 >                            pp.right = null;
2996 >                        p.parent = null;
2997 >                    }
2998 >                }
2999 >            } finally {
3000 >                unlockRoot();
3001 >            }
3002 >            assert checkInvariants(root);
3003 >            return false;
3004          }
3005  
3006 <        /**
3007 <         * Returns the result of accumulating all keys using the given
3008 <         * reducer to combine values, or null if none.
3009 <         *
3010 <         * @param reducer a commutative associative combining function
3011 <         * @return the result of accumulating all keys using the given
3012 <         * reducer to combine values, or null if none
3013 <         */
3014 <        public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3015 <            return fjp.invoke(ForkJoinTasks.reduceKeys
3016 <                              (ConcurrentHashMap.this, reducer));
3006 >        /* ------------------------------------------------------------ */
3007 >        // Red-black tree methods, all adapted from CLR
3008 >
3009 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3010 >                                              TreeNode<K,V> p) {
3011 >            TreeNode<K,V> r, pp, rl;
3012 >            if (p != null && (r = p.right) != null) {
3013 >                if ((rl = p.right = r.left) != null)
3014 >                    rl.parent = p;
3015 >                if ((pp = r.parent = p.parent) == null)
3016 >                    (root = r).red = false;
3017 >                else if (pp.left == p)
3018 >                    pp.left = r;
3019 >                else
3020 >                    pp.right = r;
3021 >                r.left = p;
3022 >                p.parent = r;
3023 >            }
3024 >            return root;
3025          }
3026  
3027 <        /**
3028 <         * Returns the result of accumulating the given transformation
3029 <         * of all keys using the given reducer to combine values, or
3030 <         * null if none.
3031 <         *
3032 <         * @param transformer a function returning the transformation
3033 <         * for an element, or null of there is no transformation (in
3034 <         * which case it is not combined).
3035 <         * @param reducer a commutative associative combining function
3036 <         * @return the result of accumulating the given transformation
3037 <         * of all keys
3038 <         */
3039 <        public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3040 <                                BiFun<? super U, ? super U, ? extends U> reducer) {
3041 <            return fjp.invoke(ForkJoinTasks.reduceKeys
3042 <                              (ConcurrentHashMap.this, transformer, reducer));
3027 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3028 >                                               TreeNode<K,V> p) {
3029 >            TreeNode<K,V> l, pp, lr;
3030 >            if (p != null && (l = p.left) != null) {
3031 >                if ((lr = p.left = l.right) != null)
3032 >                    lr.parent = p;
3033 >                if ((pp = l.parent = p.parent) == null)
3034 >                    (root = l).red = false;
3035 >                else if (pp.right == p)
3036 >                    pp.right = l;
3037 >                else
3038 >                    pp.left = l;
3039 >                l.right = p;
3040 >                p.parent = l;
3041 >            }
3042 >            return root;
3043          }
3044  
3045 <        /**
3046 <         * Returns the result of accumulating the given transformation
3047 <         * of all keys using the given reducer to combine values, and
3048 <         * the given basis as an identity value.
3049 <         *
3050 <         * @param transformer a function returning the transformation
3051 <         * for an element
3052 <         * @param basis the identity (initial default value) for the reduction
3053 <         * @param reducer a commutative associative combining function
3054 <         * @return  the result of accumulating the given transformation
3055 <         * of all keys
3056 <         */
3057 <        public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3058 <                                         double basis,
3059 <                                         DoubleByDoubleToDouble reducer) {
3060 <            return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3061 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
3045 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3046 >                                                    TreeNode<K,V> x) {
3047 >            x.red = true;
3048 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3049 >                if ((xp = x.parent) == null) {
3050 >                    x.red = false;
3051 >                    return x;
3052 >                }
3053 >                else if (!xp.red || (xpp = xp.parent) == null)
3054 >                    return root;
3055 >                if (xp == (xppl = xpp.left)) {
3056 >                    if ((xppr = xpp.right) != null && xppr.red) {
3057 >                        xppr.red = false;
3058 >                        xp.red = false;
3059 >                        xpp.red = true;
3060 >                        x = xpp;
3061 >                    }
3062 >                    else {
3063 >                        if (x == xp.right) {
3064 >                            root = rotateLeft(root, x = xp);
3065 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3066 >                        }
3067 >                        if (xp != null) {
3068 >                            xp.red = false;
3069 >                            if (xpp != null) {
3070 >                                xpp.red = true;
3071 >                                root = rotateRight(root, xpp);
3072 >                            }
3073 >                        }
3074 >                    }
3075 >                }
3076 >                else {
3077 >                    if (xppl != null && xppl.red) {
3078 >                        xppl.red = false;
3079 >                        xp.red = false;
3080 >                        xpp.red = true;
3081 >                        x = xpp;
3082 >                    }
3083 >                    else {
3084 >                        if (x == xp.left) {
3085 >                            root = rotateRight(root, x = xp);
3086 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3087 >                        }
3088 >                        if (xp != null) {
3089 >                            xp.red = false;
3090 >                            if (xpp != null) {
3091 >                                xpp.red = true;
3092 >                                root = rotateLeft(root, xpp);
3093 >                            }
3094 >                        }
3095 >                    }
3096 >                }
3097 >            }
3098          }
3099  
3100 <        /**
3101 <         * Returns the result of accumulating the given transformation
3102 <         * of all keys using the given reducer to combine values, and
3103 <         * the given basis as an identity value.
3104 <         *
3105 <         * @param transformer a function returning the transformation
3106 <         * for an element
3107 <         * @param basis the identity (initial default value) for the reduction
3108 <         * @param reducer a commutative associative combining function
3109 <         * @return the result of accumulating the given transformation
3110 <         * of all keys
3111 <         */
3112 <        public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3113 <                                     long basis,
3114 <                                     LongByLongToLong reducer) {
3115 <            return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3116 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
3100 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3101 >                                                   TreeNode<K,V> x) {
3102 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3103 >                if (x == null || x == root)
3104 >                    return root;
3105 >                else if ((xp = x.parent) == null) {
3106 >                    x.red = false;
3107 >                    return x;
3108 >                }
3109 >                else if (x.red) {
3110 >                    x.red = false;
3111 >                    return root;
3112 >                }
3113 >                else if ((xpl = xp.left) == x) {
3114 >                    if ((xpr = xp.right) != null && xpr.red) {
3115 >                        xpr.red = false;
3116 >                        xp.red = true;
3117 >                        root = rotateLeft(root, xp);
3118 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3119 >                    }
3120 >                    if (xpr == null)
3121 >                        x = xp;
3122 >                    else {
3123 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3124 >                        if ((sr == null || !sr.red) &&
3125 >                            (sl == null || !sl.red)) {
3126 >                            xpr.red = true;
3127 >                            x = xp;
3128 >                        }
3129 >                        else {
3130 >                            if (sr == null || !sr.red) {
3131 >                                if (sl != null)
3132 >                                    sl.red = false;
3133 >                                xpr.red = true;
3134 >                                root = rotateRight(root, xpr);
3135 >                                xpr = (xp = x.parent) == null ?
3136 >                                    null : xp.right;
3137 >                            }
3138 >                            if (xpr != null) {
3139 >                                xpr.red = (xp == null) ? false : xp.red;
3140 >                                if ((sr = xpr.right) != null)
3141 >                                    sr.red = false;
3142 >                            }
3143 >                            if (xp != null) {
3144 >                                xp.red = false;
3145 >                                root = rotateLeft(root, xp);
3146 >                            }
3147 >                            x = root;
3148 >                        }
3149 >                    }
3150 >                }
3151 >                else { // symmetric
3152 >                    if (xpl != null && xpl.red) {
3153 >                        xpl.red = false;
3154 >                        xp.red = true;
3155 >                        root = rotateRight(root, xp);
3156 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3157 >                    }
3158 >                    if (xpl == null)
3159 >                        x = xp;
3160 >                    else {
3161 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3162 >                        if ((sl == null || !sl.red) &&
3163 >                            (sr == null || !sr.red)) {
3164 >                            xpl.red = true;
3165 >                            x = xp;
3166 >                        }
3167 >                        else {
3168 >                            if (sl == null || !sl.red) {
3169 >                                if (sr != null)
3170 >                                    sr.red = false;
3171 >                                xpl.red = true;
3172 >                                root = rotateLeft(root, xpl);
3173 >                                xpl = (xp = x.parent) == null ?
3174 >                                    null : xp.left;
3175 >                            }
3176 >                            if (xpl != null) {
3177 >                                xpl.red = (xp == null) ? false : xp.red;
3178 >                                if ((sl = xpl.left) != null)
3179 >                                    sl.red = false;
3180 >                            }
3181 >                            if (xp != null) {
3182 >                                xp.red = false;
3183 >                                root = rotateRight(root, xp);
3184 >                            }
3185 >                            x = root;
3186 >                        }
3187 >                    }
3188 >                }
3189 >            }
3190          }
3191  
3192          /**
3193 <         * Returns the result of accumulating the given transformation
3865 <         * of all keys using the given reducer to combine values, and
3866 <         * the given basis as an identity value.
3867 <         *
3868 <         * @param transformer a function returning the transformation
3869 <         * for an element
3870 <         * @param basis the identity (initial default value) for the reduction
3871 <         * @param reducer a commutative associative combining function
3872 <         * @return the result of accumulating the given transformation
3873 <         * of all keys
3193 >         * Recursive invariant check
3194           */
3195 <        public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3196 <                                   int basis,
3197 <                                   IntByIntToInt reducer) {
3198 <            return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3199 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
3195 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3196 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3197 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3198 >            if (tb != null && tb.next != t)
3199 >                return false;
3200 >            if (tn != null && tn.prev != t)
3201 >                return false;
3202 >            if (tp != null && t != tp.left && t != tp.right)
3203 >                return false;
3204 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3205 >                return false;
3206 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3207 >                return false;
3208 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3209 >                return false;
3210 >            if (tl != null && !checkInvariants(tl))
3211 >                return false;
3212 >            if (tr != null && !checkInvariants(tr))
3213 >                return false;
3214 >            return true;
3215          }
3216  
3217 <        /**
3218 <         * Performs the given action for each value
3219 <         *
3220 <         * @param action the action
3221 <         */
3222 <        public void forEachValue(Action<V> action) {
3223 <            fjp.invoke(ForkJoinTasks.forEachValue
3224 <                       (ConcurrentHashMap.this, action));
3217 >        private static final sun.misc.Unsafe U;
3218 >        private static final long LOCKSTATE;
3219 >        static {
3220 >            try {
3221 >                U = sun.misc.Unsafe.getUnsafe();
3222 >                Class<?> k = TreeBin.class;
3223 >                LOCKSTATE = U.objectFieldOffset
3224 >                    (k.getDeclaredField("lockState"));
3225 >            } catch (Exception e) {
3226 >                throw new Error(e);
3227 >            }
3228          }
3229 +    }
3230  
3231 <        /**
3232 <         * Performs the given action for each non-null transformation
3233 <         * of each value
3234 <         *
3235 <         * @param transformer a function returning the transformation
3236 <         * for an element, or null of there is no transformation (in
3237 <         * which case the action is not applied).
3238 <         */
3239 <        public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3240 <                                     Action<U> action) {
3241 <            fjp.invoke(ForkJoinTasks.forEachValue
3242 <                       (ConcurrentHashMap.this, transformer, action));
3231 >    /* ----------------Table Traversal -------------- */
3232 >
3233 >    /**
3234 >     * Records the table, its length, and current traversal index for a
3235 >     * traverser that must process a region of a forwarded table before
3236 >     * proceeding with current table.
3237 >     */
3238 >    static final class TableStack<K,V> {
3239 >        int length;
3240 >        int index;
3241 >        Node<K,V>[] tab;
3242 >        TableStack<K,V> next;
3243 >    }
3244 >
3245 >    /**
3246 >     * Encapsulates traversal for methods such as containsValue; also
3247 >     * serves as a base class for other iterators and spliterators.
3248 >     *
3249 >     * Method advance visits once each still-valid node that was
3250 >     * reachable upon iterator construction. It might miss some that
3251 >     * were added to a bin after the bin was visited, which is OK wrt
3252 >     * consistency guarantees. Maintaining this property in the face
3253 >     * of possible ongoing resizes requires a fair amount of
3254 >     * bookkeeping state that is difficult to optimize away amidst
3255 >     * volatile accesses.  Even so, traversal maintains reasonable
3256 >     * throughput.
3257 >     *
3258 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3259 >     * However, if the table has been resized, then all future steps
3260 >     * must traverse both the bin at the current index as well as at
3261 >     * (index + baseSize); and so on for further resizings. To
3262 >     * paranoically cope with potential sharing by users of iterators
3263 >     * across threads, iteration terminates if a bounds checks fails
3264 >     * for a table read.
3265 >     */
3266 >    static class Traverser<K,V> {
3267 >        Node<K,V>[] tab;        // current table; updated if resized
3268 >        Node<K,V> next;         // the next entry to use
3269 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3270 >        int index;              // index of bin to use next
3271 >        int baseIndex;          // current index of initial table
3272 >        int baseLimit;          // index bound for initial table
3273 >        final int baseSize;     // initial table size
3274 >
3275 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3276 >            this.tab = tab;
3277 >            this.baseSize = size;
3278 >            this.baseIndex = this.index = index;
3279 >            this.baseLimit = limit;
3280 >            this.next = null;
3281          }
3282  
3283          /**
3284 <         * Returns a non-null result from applying the given search
3285 <         * function on each value, or null if none.  Further element
3286 <         * processing is suppressed upon success. However, this method
3287 <         * does not return until other in-progress parallel
3288 <         * invocations of the search function also complete.
3289 <         *
3290 <         * @param searchFunction a function returning a non-null
3291 <         * result on success, else null
3292 <         * @return a non-null result from applying the given search
3293 <         * function on each value, or null if none
3294 <         *
3295 <         */
3296 <        public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3297 <            return fjp.invoke(ForkJoinTasks.searchValues
3298 <                              (ConcurrentHashMap.this, searchFunction));
3284 >         * Advances if possible, returning next valid node, or null if none.
3285 >         */
3286 >        final Node<K,V> advance() {
3287 >            Node<K,V> e;
3288 >            if ((e = next) != null)
3289 >                e = e.next;
3290 >            for (;;) {
3291 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3292 >                if (e != null)
3293 >                    return next = e;
3294 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3295 >                    (n = t.length) <= (i = index) || i < 0)
3296 >                    return next = null;
3297 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3298 >                    if (e instanceof ForwardingNode) {
3299 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3300 >                        e = null;
3301 >                        pushState(t, i, n);
3302 >                        continue;
3303 >                    }
3304 >                    else if (e instanceof TreeBin)
3305 >                        e = ((TreeBin<K,V>)e).first;
3306 >                    else
3307 >                        e = null;
3308 >                }
3309 >                if (stack != null)
3310 >                    recoverState(n);
3311 >                else if ((index = i + baseSize) >= n)
3312 >                    index = ++baseIndex; // visit upper slots if present
3313 >            }
3314          }
3315  
3316          /**
3317 <         * Returns the result of accumulating all values using the
3926 <         * given reducer to combine values, or null if none.
3927 <         *
3928 <         * @param reducer a commutative associative combining function
3929 <         * @return  the result of accumulating all values
3317 >         * Saves traversal state upon encountering a forwarding node.
3318           */
3319 <        public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3320 <            return fjp.invoke(ForkJoinTasks.reduceValues
3321 <                              (ConcurrentHashMap.this, reducer));
3319 >        private void pushState(Node<K,V>[] t, int i, int n) {
3320 >            TableStack<K,V> s = spare;  // reuse if possible
3321 >            if (s != null)
3322 >                spare = s.next;
3323 >            else
3324 >                s = new TableStack<K,V>();
3325 >            s.tab = t;
3326 >            s.length = n;
3327 >            s.index = i;
3328 >            s.next = stack;
3329 >            stack = s;
3330          }
3331  
3332          /**
3333 <         * Returns the result of accumulating the given transformation
3938 <         * of all values using the given reducer to combine values, or
3939 <         * null if none.
3333 >         * Possibly pops traversal state.
3334           *
3335 <         * @param transformer a function returning the transformation
3942 <         * for an element, or null of there is no transformation (in
3943 <         * which case it is not combined).
3944 <         * @param reducer a commutative associative combining function
3945 <         * @return the result of accumulating the given transformation
3946 <         * of all values
3335 >         * @param n length of current table
3336           */
3337 <        public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3338 <                                  BiFun<? super U, ? super U, ? extends U> reducer) {
3339 <            return fjp.invoke(ForkJoinTasks.reduceValues
3340 <                              (ConcurrentHashMap.this, transformer, reducer));
3337 >        private void recoverState(int n) {
3338 >            TableStack<K,V> s; int len;
3339 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3340 >                n = len;
3341 >                index = s.index;
3342 >                tab = s.tab;
3343 >                s.tab = null;
3344 >                TableStack<K,V> next = s.next;
3345 >                s.next = spare; // save for reuse
3346 >                stack = next;
3347 >                spare = s;
3348 >            }
3349 >            if (s == null && (index += baseSize) >= n)
3350 >                index = ++baseIndex;
3351          }
3352 +    }
3353  
3354 <        /**
3355 <         * Returns the result of accumulating the given transformation
3356 <         * of all values using the given reducer to combine values,
3357 <         * and the given basis as an identity value.
3358 <         *
3359 <         * @param transformer a function returning the transformation
3360 <         * for an element
3361 <         * @param basis the identity (initial default value) for the reduction
3362 <         * @param reducer a commutative associative combining function
3363 <         * @return the result of accumulating the given transformation
3364 <         * of all values
3365 <         */
3966 <        public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3967 <                                           double basis,
3968 <                                           DoubleByDoubleToDouble reducer) {
3969 <            return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3970 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
3354 >    /**
3355 >     * Base of key, value, and entry Iterators. Adds fields to
3356 >     * Traverser to support iterator.remove.
3357 >     */
3358 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3359 >        final ConcurrentHashMap<K,V> map;
3360 >        Node<K,V> lastReturned;
3361 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3362 >                    ConcurrentHashMap<K,V> map) {
3363 >            super(tab, size, index, limit);
3364 >            this.map = map;
3365 >            advance();
3366          }
3367  
3368 <        /**
3369 <         * Returns the result of accumulating the given transformation
3370 <         * of all values using the given reducer to combine values,
3371 <         * and the given basis as an identity value.
3372 <         *
3373 <         * @param transformer a function returning the transformation
3374 <         * for an element
3375 <         * @param basis the identity (initial default value) for the reduction
3376 <         * @param reducer a commutative associative combining function
3982 <         * @return the result of accumulating the given transformation
3983 <         * of all values
3984 <         */
3985 <        public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3986 <                                       long basis,
3987 <                                       LongByLongToLong reducer) {
3988 <            return fjp.invoke(ForkJoinTasks.reduceValuesToLong
3989 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
3368 >        public final boolean hasNext() { return next != null; }
3369 >        public final boolean hasMoreElements() { return next != null; }
3370 >
3371 >        public final void remove() {
3372 >            Node<K,V> p;
3373 >            if ((p = lastReturned) == null)
3374 >                throw new IllegalStateException();
3375 >            lastReturned = null;
3376 >            map.replaceNode(p.key, null, null);
3377          }
3378 +    }
3379  
3380 <        /**
3381 <         * Returns the result of accumulating the given transformation
3382 <         * of all values using the given reducer to combine values,
3383 <         * and the given basis as an identity value.
3384 <         *
3997 <         * @param transformer a function returning the transformation
3998 <         * for an element
3999 <         * @param basis the identity (initial default value) for the reduction
4000 <         * @param reducer a commutative associative combining function
4001 <         * @return the result of accumulating the given transformation
4002 <         * of all values
4003 <         */
4004 <        public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4005 <                                     int basis,
4006 <                                     IntByIntToInt reducer) {
4007 <            return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4008 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
3380 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3381 >        implements Iterator<K>, Enumeration<K> {
3382 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3383 >                    ConcurrentHashMap<K,V> map) {
3384 >            super(tab, index, size, limit, map);
3385          }
3386  
3387 <        /**
3388 <         * Perform the given action for each entry
3389 <         *
3390 <         * @param action the action
3391 <         */
3392 <        public void forEachEntry(Action<Map.Entry<K,V>> action) {
3393 <            fjp.invoke(ForkJoinTasks.forEachEntry
3394 <                       (ConcurrentHashMap.this, action));
3387 >        public final K next() {
3388 >            Node<K,V> p;
3389 >            if ((p = next) == null)
3390 >                throw new NoSuchElementException();
3391 >            K k = p.key;
3392 >            lastReturned = p;
3393 >            advance();
3394 >            return k;
3395          }
3396  
3397 <        /**
3398 <         * Perform the given action for each non-null transformation
3399 <         * of each entry
3400 <         *
3401 <         * @param transformer a function returning the transformation
3402 <         * for an element, or null of there is no transformation (in
3403 <         * which case the action is not applied).
3404 <         * @param action the action
4029 <         */
4030 <        public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4031 <                                     Action<U> action) {
4032 <            fjp.invoke(ForkJoinTasks.forEachEntry
4033 <                       (ConcurrentHashMap.this, transformer, action));
3397 >        public final K nextElement() { return next(); }
3398 >    }
3399 >
3400 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3401 >        implements Iterator<V>, Enumeration<V> {
3402 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3403 >                      ConcurrentHashMap<K,V> map) {
3404 >            super(tab, index, size, limit, map);
3405          }
3406  
3407 <        /**
3408 <         * Returns a non-null result from applying the given search
3409 <         * function on each entry, or null if none.  Further element
3410 <         * processing is suppressed upon success. However, this method
3411 <         * does not return until other in-progress parallel
3412 <         * invocations of the search function also complete.
3413 <         *
3414 <         * @param searchFunction a function returning a non-null
4044 <         * result on success, else null
4045 <         * @return a non-null result from applying the given search
4046 <         * function on each entry, or null if none
4047 <         */
4048 <        public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4049 <            return fjp.invoke(ForkJoinTasks.searchEntries
4050 <                              (ConcurrentHashMap.this, searchFunction));
3407 >        public final V next() {
3408 >            Node<K,V> p;
3409 >            if ((p = next) == null)
3410 >                throw new NoSuchElementException();
3411 >            V v = p.val;
3412 >            lastReturned = p;
3413 >            advance();
3414 >            return v;
3415          }
3416  
3417 <        /**
3418 <         * Returns the result of accumulating all entries using the
3419 <         * given reducer to combine values, or null if none.
3420 <         *
3421 <         * @param reducer a commutative associative combining function
3422 <         * @return the result of accumulating all entries
3423 <         */
3424 <        public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4061 <            return fjp.invoke(ForkJoinTasks.reduceEntries
4062 <                              (ConcurrentHashMap.this, reducer));
3417 >        public final V nextElement() { return next(); }
3418 >    }
3419 >
3420 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3421 >        implements Iterator<Map.Entry<K,V>> {
3422 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3423 >                      ConcurrentHashMap<K,V> map) {
3424 >            super(tab, index, size, limit, map);
3425          }
3426  
3427 <        /**
3428 <         * Returns the result of accumulating the given transformation
3429 <         * of all entries using the given reducer to combine values,
3430 <         * or null if none.
3431 <         *
3432 <         * @param transformer a function returning the transformation
3433 <         * for an element, or null of there is no transformation (in
3434 <         * which case it is not combined).
3435 <         * @param reducer a commutative associative combining function
4074 <         * @return the result of accumulating the given transformation
4075 <         * of all entries
4076 <         */
4077 <        public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4078 <                                   BiFun<? super U, ? super U, ? extends U> reducer) {
4079 <            return fjp.invoke(ForkJoinTasks.reduceEntries
4080 <                              (ConcurrentHashMap.this, transformer, reducer));
3427 >        public final Map.Entry<K,V> next() {
3428 >            Node<K,V> p;
3429 >            if ((p = next) == null)
3430 >                throw new NoSuchElementException();
3431 >            K k = p.key;
3432 >            V v = p.val;
3433 >            lastReturned = p;
3434 >            advance();
3435 >            return new MapEntry<K,V>(k, v, map);
3436          }
3437 +    }
3438  
3439 <        /**
3440 <         * Returns the result of accumulating the given transformation
3441 <         * of all entries using the given reducer to combine values,
3442 <         * and the given basis as an identity value.
3443 <         *
3444 <         * @param transformer a function returning the transformation
3445 <         * for an element
3446 <         * @param basis the identity (initial default value) for the reduction
3447 <         * @param reducer a commutative associative combining function
3448 <         * @return the result of accumulating the given transformation
3449 <         * of all entries
4094 <         */
4095 <        public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4096 <                                            double basis,
4097 <                                            DoubleByDoubleToDouble reducer) {
4098 <            return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4099 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
3439 >    /**
3440 >     * Exported Entry for EntryIterator
3441 >     */
3442 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3443 >        final K key; // non-null
3444 >        V val;       // non-null
3445 >        final ConcurrentHashMap<K,V> map;
3446 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3447 >            this.key = key;
3448 >            this.val = val;
3449 >            this.map = map;
3450          }
3451 +        public K getKey()        { return key; }
3452 +        public V getValue()      { return val; }
3453 +        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3454 +        public String toString() { return key + "=" + val; }
3455  
3456 <        /**
3457 <         * Returns the result of accumulating the given transformation
3458 <         * of all entries using the given reducer to combine values,
3459 <         * and the given basis as an identity value.
3460 <         *
3461 <         * @param transformer a function returning the transformation
3462 <         * for an element
4109 <         * @param basis the identity (initial default value) for the reduction
4110 <         * @param reducer a commutative associative combining function
4111 <         * @return  the result of accumulating the given transformation
4112 <         * of all entries
4113 <         */
4114 <        public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4115 <                                        long basis,
4116 <                                        LongByLongToLong reducer) {
4117 <            return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4118 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
3456 >        public boolean equals(Object o) {
3457 >            Object k, v; Map.Entry<?,?> e;
3458 >            return ((o instanceof Map.Entry) &&
3459 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3460 >                    (v = e.getValue()) != null &&
3461 >                    (k == key || k.equals(key)) &&
3462 >                    (v == val || v.equals(val)));
3463          }
3464  
3465          /**
3466 <         * Returns the result of accumulating the given transformation
3467 <         * of all entries using the given reducer to combine values,
3468 <         * and the given basis as an identity value.
3469 <         *
3470 <         * @param transformer a function returning the transformation
3471 <         * for an element
4128 <         * @param basis the identity (initial default value) for the reduction
4129 <         * @param reducer a commutative associative combining function
4130 <         * @return the result of accumulating the given transformation
4131 <         * of all entries
3466 >         * Sets our entry's value and writes through to the map. The
3467 >         * value to return is somewhat arbitrary here. Since we do not
3468 >         * necessarily track asynchronous changes, the most recent
3469 >         * "previous" value could be different from what we return (or
3470 >         * could even have been removed, in which case the put will
3471 >         * re-establish). We do not and cannot guarantee more.
3472           */
3473 <        public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3474 <                                      int basis,
3475 <                                      IntByIntToInt reducer) {
3476 <            return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
3477 <                              (ConcurrentHashMap.this, transformer, basis, reducer));
3473 >        public V setValue(V value) {
3474 >            if (value == null) throw new NullPointerException();
3475 >            V v = val;
3476 >            val = value;
3477 >            map.put(key, value);
3478 >            return v;
3479          }
3480      }
3481  
3482 <    // ---------------------------------------------------------------------
3482 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3483 >        implements Spliterator<K> {
3484 >        long est;               // size estimate
3485 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3486 >                       long est) {
3487 >            super(tab, size, index, limit);
3488 >            this.est = est;
3489 >        }
3490 >
3491 >        public Spliterator<K> trySplit() {
3492 >            int i, f, h;
3493 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3494 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3495 >                                        f, est >>>= 1);
3496 >        }
3497  
3498 <    /**
3499 <     * Predefined tasks for performing bulk parallel operations on
3500 <     * ConcurrentHashMaps. These tasks follow the forms and rules used
3501 <     * in class {@link Parallel}. Each method has the same name, but
3502 <     * returns a task rather than invoking it. These methods may be
4148 <     * useful in custom applications such as submitting a task without
4149 <     * waiting for completion, or combining with other tasks.
4150 <     */
4151 <    public static class ForkJoinTasks {
4152 <        private ForkJoinTasks() {}
3498 >        public void forEachRemaining(Consumer<? super K> action) {
3499 >            if (action == null) throw new NullPointerException();
3500 >            for (Node<K,V> p; (p = advance()) != null;)
3501 >                action.accept(p.key);
3502 >        }
3503  
3504 <        /**
4155 <         * Returns a task that when invoked, performs the given
4156 <         * action for each (key, value)
4157 <         *
4158 <         * @param map the map
4159 <         * @param action the action
4160 <         * @return the task
4161 <         */
4162 <        public static <K,V> ForkJoinTask<Void> forEach
4163 <            (ConcurrentHashMap<K,V> map,
4164 <             BiAction<K,V> action) {
3504 >        public boolean tryAdvance(Consumer<? super K> action) {
3505              if (action == null) throw new NullPointerException();
3506 <            return new ForEachMappingTask<K,V>(map, action);
3506 >            Node<K,V> p;
3507 >            if ((p = advance()) == null)
3508 >                return false;
3509 >            action.accept(p.key);
3510 >            return true;
3511          }
3512  
3513 <        /**
3514 <         * Returns a task that when invoked, performs the given
3515 <         * action for each non-null transformation of each (key, value)
3516 <         *
3517 <         * @param map the map
4174 <         * @param transformer a function returning the transformation
4175 <         * for an element, or null of there is no transformation (in
4176 <         * which case the action is not applied).
4177 <         * @param action the action
4178 <         * @return the task
4179 <         */
4180 <        public static <K,V,U> ForkJoinTask<Void> forEach
4181 <            (ConcurrentHashMap<K,V> map,
4182 <             BiFun<? super K, ? super V, ? extends U> transformer,
4183 <             Action<U> action) {
4184 <            if (transformer == null || action == null)
4185 <                throw new NullPointerException();
4186 <            return new ForEachTransformedMappingTask<K,V,U>
4187 <                (map, transformer, action);
3513 >        public long estimateSize() { return est; }
3514 >
3515 >        public int characteristics() {
3516 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3517 >                Spliterator.NONNULL;
3518          }
3519 +    }
3520  
3521 <        /**
3522 <         * Returns a task that when invoked, returns a non-null
3523 <         * result from applying the given search function on each
3524 <         * (key, value), or null if none.  Further element processing
3525 <         * is suppressed upon success. However, this method does not
3526 <         * return until other in-progress parallel invocations of the
3527 <         * search function also complete.
4197 <         *
4198 <         * @param map the map
4199 <         * @param searchFunction a function returning a non-null
4200 <         * result on success, else null
4201 <         * @return the task
4202 <         */
4203 <        public static <K,V,U> ForkJoinTask<U> search
4204 <            (ConcurrentHashMap<K,V> map,
4205 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4206 <            if (searchFunction == null) throw new NullPointerException();
4207 <            return new SearchMappingsTask<K,V,U>
4208 <                (map, searchFunction,
4209 <                 new AtomicReference<U>());
3521 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3522 >        implements Spliterator<V> {
3523 >        long est;               // size estimate
3524 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3525 >                         long est) {
3526 >            super(tab, size, index, limit);
3527 >            this.est = est;
3528          }
3529  
3530 <        /**
3531 <         * Returns a task that when invoked, returns the result of
3532 <         * accumulating the given transformation of all (key, value) pairs
3533 <         * using the given reducer to combine values, or null if none.
3534 <         *
4217 <         * @param map the map
4218 <         * @param transformer a function returning the transformation
4219 <         * for an element, or null of there is no transformation (in
4220 <         * which case it is not combined).
4221 <         * @param reducer a commutative associative combining function
4222 <         * @return the task
4223 <         */
4224 <        public static <K,V,U> ForkJoinTask<U> reduce
4225 <            (ConcurrentHashMap<K,V> map,
4226 <             BiFun<? super K, ? super V, ? extends U> transformer,
4227 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4228 <            if (transformer == null || reducer == null)
4229 <                throw new NullPointerException();
4230 <            return new MapReduceMappingsTask<K,V,U>
4231 <                (map, transformer, reducer);
3530 >        public Spliterator<V> trySplit() {
3531 >            int i, f, h;
3532 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3533 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3534 >                                          f, est >>>= 1);
3535          }
3536  
3537 <        /**
3538 <         * Returns a task that when invoked, returns the result of
3539 <         * accumulating the given transformation of all (key, value) pairs
3540 <         * using the given reducer to combine values, and the given
4238 <         * basis as an identity value.
4239 <         *
4240 <         * @param map the map
4241 <         * @param transformer a function returning the transformation
4242 <         * for an element
4243 <         * @param basis the identity (initial default value) for the reduction
4244 <         * @param reducer a commutative associative combining function
4245 <         * @return the task
4246 <         */
4247 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4248 <            (ConcurrentHashMap<K,V> map,
4249 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4250 <             double basis,
4251 <             DoubleByDoubleToDouble reducer) {
4252 <            if (transformer == null || reducer == null)
4253 <                throw new NullPointerException();
4254 <            return new MapReduceMappingsToDoubleTask<K,V>
4255 <                (map, transformer, basis, reducer);
3537 >        public void forEachRemaining(Consumer<? super V> action) {
3538 >            if (action == null) throw new NullPointerException();
3539 >            for (Node<K,V> p; (p = advance()) != null;)
3540 >                action.accept(p.val);
3541          }
3542  
3543 <        /**
3544 <         * Returns a task that when invoked, returns the result of
3545 <         * accumulating the given transformation of all (key, value) pairs
3546 <         * using the given reducer to combine values, and the given
3547 <         * basis as an identity value.
3548 <         *
3549 <         * @param map the map
4265 <         * @param transformer a function returning the transformation
4266 <         * for an element
4267 <         * @param basis the identity (initial default value) for the reduction
4268 <         * @param reducer a commutative associative combining function
4269 <         * @return the task
4270 <         */
4271 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4272 <            (ConcurrentHashMap<K,V> map,
4273 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4274 <             long basis,
4275 <             LongByLongToLong reducer) {
4276 <            if (transformer == null || reducer == null)
4277 <                throw new NullPointerException();
4278 <            return new MapReduceMappingsToLongTask<K,V>
4279 <                (map, transformer, basis, reducer);
3543 >        public boolean tryAdvance(Consumer<? super V> action) {
3544 >            if (action == null) throw new NullPointerException();
3545 >            Node<K,V> p;
3546 >            if ((p = advance()) == null)
3547 >                return false;
3548 >            action.accept(p.val);
3549 >            return true;
3550          }
3551  
3552 <        /**
3553 <         * Returns a task that when invoked, returns the result of
3554 <         * accumulating the given transformation of all (key, value) pairs
3555 <         * using the given reducer to combine values, and the given
4286 <         * basis as an identity value.
4287 <         *
4288 <         * @param transformer a function returning the transformation
4289 <         * for an element
4290 <         * @param basis the identity (initial default value) for the reduction
4291 <         * @param reducer a commutative associative combining function
4292 <         * @return the task
4293 <         */
4294 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4295 <            (ConcurrentHashMap<K,V> map,
4296 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4297 <             int basis,
4298 <             IntByIntToInt reducer) {
4299 <            if (transformer == null || reducer == null)
4300 <                throw new NullPointerException();
4301 <            return new MapReduceMappingsToIntTask<K,V>
4302 <                (map, transformer, basis, reducer);
3552 >        public long estimateSize() { return est; }
3553 >
3554 >        public int characteristics() {
3555 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3556          }
3557 +    }
3558  
3559 <        /**
3560 <         * Returns a task that when invoked, performs the given action
3561 <         * for each key
3562 <         *
3563 <         * @param map the map
3564 <         * @param action the action
3565 <         * @return the task
3566 <         */
3567 <        public static <K,V> ForkJoinTask<Void> forEachKey
4314 <            (ConcurrentHashMap<K,V> map,
4315 <             Action<K> action) {
4316 <            if (action == null) throw new NullPointerException();
4317 <            return new ForEachKeyTask<K,V>(map, action);
3559 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3560 >        implements Spliterator<Map.Entry<K,V>> {
3561 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3562 >        long est;               // size estimate
3563 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3564 >                         long est, ConcurrentHashMap<K,V> map) {
3565 >            super(tab, size, index, limit);
3566 >            this.map = map;
3567 >            this.est = est;
3568          }
3569  
3570 <        /**
3571 <         * Returns a task that when invoked, performs the given action
3572 <         * for each non-null transformation of each key
3573 <         *
3574 <         * @param map the map
4325 <         * @param transformer a function returning the transformation
4326 <         * for an element, or null of there is no transformation (in
4327 <         * which case the action is not applied).
4328 <         * @param action the action
4329 <         * @return the task
4330 <         */
4331 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4332 <            (ConcurrentHashMap<K,V> map,
4333 <             Fun<? super K, ? extends U> transformer,
4334 <             Action<U> action) {
4335 <            if (transformer == null || action == null)
4336 <                throw new NullPointerException();
4337 <            return new ForEachTransformedKeyTask<K,V,U>
4338 <                (map, transformer, action);
3570 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3571 >            int i, f, h;
3572 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3573 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3574 >                                          f, est >>>= 1, map);
3575          }
3576  
3577 <        /**
3578 <         * Returns a task that when invoked, returns a non-null result
3579 <         * from applying the given search function on each key, or
3580 <         * null if none.  Further element processing is suppressed
4345 <         * upon success. However, this method does not return until
4346 <         * other in-progress parallel invocations of the search
4347 <         * function also complete.
4348 <         *
4349 <         * @param map the map
4350 <         * @param searchFunction a function returning a non-null
4351 <         * result on success, else null
4352 <         * @return the task
4353 <         */
4354 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4355 <            (ConcurrentHashMap<K,V> map,
4356 <             Fun<? super K, ? extends U> searchFunction) {
4357 <            if (searchFunction == null) throw new NullPointerException();
4358 <            return new SearchKeysTask<K,V,U>
4359 <                (map, searchFunction,
4360 <                 new AtomicReference<U>());
3577 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3578 >            if (action == null) throw new NullPointerException();
3579 >            for (Node<K,V> p; (p = advance()) != null; )
3580 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3581          }
3582  
3583 <        /**
3584 <         * Returns a task that when invoked, returns the result of
3585 <         * accumulating all keys using the given reducer to combine
3586 <         * values, or null if none.
3587 <         *
3588 <         * @param map the map
3589 <         * @param reducer a commutative associative combining function
4370 <         * @return the task
4371 <         */
4372 <        public static <K,V> ForkJoinTask<K> reduceKeys
4373 <            (ConcurrentHashMap<K,V> map,
4374 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4375 <            if (reducer == null) throw new NullPointerException();
4376 <            return new ReduceKeysTask<K,V>
4377 <                (map, reducer);
3583 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3584 >            if (action == null) throw new NullPointerException();
3585 >            Node<K,V> p;
3586 >            if ((p = advance()) == null)
3587 >                return false;
3588 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3589 >            return true;
3590          }
3591 <        /**
3592 <         * Returns a task that when invoked, returns the result of
3593 <         * accumulating the given transformation of all keys using the given
3594 <         * reducer to combine values, or null if none.
3595 <         *
3596 <         * @param map the map
4385 <         * @param transformer a function returning the transformation
4386 <         * for an element, or null of there is no transformation (in
4387 <         * which case it is not combined).
4388 <         * @param reducer a commutative associative combining function
4389 <         * @return the task
4390 <         */
4391 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4392 <            (ConcurrentHashMap<K,V> map,
4393 <             Fun<? super K, ? extends U> transformer,
4394 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4395 <            if (transformer == null || reducer == null)
4396 <                throw new NullPointerException();
4397 <            return new MapReduceKeysTask<K,V,U>
4398 <                (map, transformer, reducer);
3591 >
3592 >        public long estimateSize() { return est; }
3593 >
3594 >        public int characteristics() {
3595 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3596 >                Spliterator.NONNULL;
3597          }
3598 +    }
3599 +
3600 +    // Parallel bulk operations
3601 +
3602 +    /**
3603 +     * Computes initial batch value for bulk tasks. The returned value
3604 +     * is approximately exp2 of the number of times (minus one) to
3605 +     * split task by two before executing leaf action. This value is
3606 +     * faster to compute and more convenient to use as a guide to
3607 +     * splitting than is the depth, since it is used while dividing by
3608 +     * two anyway.
3609 +     */
3610 +    final int batchFor(long b) {
3611 +        long n;
3612 +        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3613 +            return 0;
3614 +        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3615 +        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3616 +    }
3617 +
3618 +    /**
3619 +     * Performs the given action for each (key, value).
3620 +     *
3621 +     * @param parallelismThreshold the (estimated) number of elements
3622 +     * needed for this operation to be executed in parallel
3623 +     * @param action the action
3624 +     * @since 1.8
3625 +     */
3626 +    public void forEach(long parallelismThreshold,
3627 +                        BiConsumer<? super K,? super V> action) {
3628 +        if (action == null) throw new NullPointerException();
3629 +        new ForEachMappingTask<K,V>
3630 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3631 +             action).invoke();
3632 +    }
3633 +
3634 +    /**
3635 +     * Performs the given action for each non-null transformation
3636 +     * of each (key, value).
3637 +     *
3638 +     * @param parallelismThreshold the (estimated) number of elements
3639 +     * needed for this operation to be executed in parallel
3640 +     * @param transformer a function returning the transformation
3641 +     * for an element, or null if there is no transformation (in
3642 +     * which case the action is not applied)
3643 +     * @param action the action
3644 +     * @param <U> the return type of the transformer
3645 +     * @since 1.8
3646 +     */
3647 +    public <U> void forEach(long parallelismThreshold,
3648 +                            BiFunction<? super K, ? super V, ? extends U> transformer,
3649 +                            Consumer<? super U> action) {
3650 +        if (transformer == null || action == null)
3651 +            throw new NullPointerException();
3652 +        new ForEachTransformedMappingTask<K,V,U>
3653 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3654 +             transformer, action).invoke();
3655 +    }
3656 +
3657 +    /**
3658 +     * Returns a non-null result from applying the given search
3659 +     * function on each (key, value), or null if none.  Upon
3660 +     * success, further element processing is suppressed and the
3661 +     * results of any other parallel invocations of the search
3662 +     * function are ignored.
3663 +     *
3664 +     * @param parallelismThreshold the (estimated) number of elements
3665 +     * needed for this operation to be executed in parallel
3666 +     * @param searchFunction a function returning a non-null
3667 +     * result on success, else null
3668 +     * @param <U> the return type of the search function
3669 +     * @return a non-null result from applying the given search
3670 +     * function on each (key, value), or null if none
3671 +     * @since 1.8
3672 +     */
3673 +    public <U> U search(long parallelismThreshold,
3674 +                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3675 +        if (searchFunction == null) throw new NullPointerException();
3676 +        return new SearchMappingsTask<K,V,U>
3677 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3678 +             searchFunction, new AtomicReference<U>()).invoke();
3679 +    }
3680 +
3681 +    /**
3682 +     * Returns the result of accumulating the given transformation
3683 +     * of all (key, value) pairs using the given reducer to
3684 +     * combine values, or null if none.
3685 +     *
3686 +     * @param parallelismThreshold the (estimated) number of elements
3687 +     * needed for this operation to be executed in parallel
3688 +     * @param transformer a function returning the transformation
3689 +     * for an element, or null if there is no transformation (in
3690 +     * which case it is not combined)
3691 +     * @param reducer a commutative associative combining function
3692 +     * @param <U> the return type of the transformer
3693 +     * @return the result of accumulating the given transformation
3694 +     * of all (key, value) pairs
3695 +     * @since 1.8
3696 +     */
3697 +    public <U> U reduce(long parallelismThreshold,
3698 +                        BiFunction<? super K, ? super V, ? extends U> transformer,
3699 +                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3700 +        if (transformer == null || reducer == null)
3701 +            throw new NullPointerException();
3702 +        return new MapReduceMappingsTask<K,V,U>
3703 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3704 +             null, transformer, reducer).invoke();
3705 +    }
3706 +
3707 +    /**
3708 +     * Returns the result of accumulating the given transformation
3709 +     * of all (key, value) pairs using the given reducer to
3710 +     * combine values, and the given basis as an identity value.
3711 +     *
3712 +     * @param parallelismThreshold the (estimated) number of elements
3713 +     * needed for this operation to be executed in parallel
3714 +     * @param transformer a function returning the transformation
3715 +     * for an element
3716 +     * @param basis the identity (initial default value) for the reduction
3717 +     * @param reducer a commutative associative combining function
3718 +     * @return the result of accumulating the given transformation
3719 +     * of all (key, value) pairs
3720 +     * @since 1.8
3721 +     */
3722 +    public double reduceToDouble(long parallelismThreshold,
3723 +                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3724 +                                 double basis,
3725 +                                 DoubleBinaryOperator reducer) {
3726 +        if (transformer == null || reducer == null)
3727 +            throw new NullPointerException();
3728 +        return new MapReduceMappingsToDoubleTask<K,V>
3729 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3730 +             null, transformer, basis, reducer).invoke();
3731 +    }
3732 +
3733 +    /**
3734 +     * Returns the result of accumulating the given transformation
3735 +     * of all (key, value) pairs using the given reducer to
3736 +     * combine values, and the given basis as an identity value.
3737 +     *
3738 +     * @param parallelismThreshold the (estimated) number of elements
3739 +     * needed for this operation to be executed in parallel
3740 +     * @param transformer a function returning the transformation
3741 +     * for an element
3742 +     * @param basis the identity (initial default value) for the reduction
3743 +     * @param reducer a commutative associative combining function
3744 +     * @return the result of accumulating the given transformation
3745 +     * of all (key, value) pairs
3746 +     * @since 1.8
3747 +     */
3748 +    public long reduceToLong(long parallelismThreshold,
3749 +                             ToLongBiFunction<? super K, ? super V> transformer,
3750 +                             long basis,
3751 +                             LongBinaryOperator reducer) {
3752 +        if (transformer == null || reducer == null)
3753 +            throw new NullPointerException();
3754 +        return new MapReduceMappingsToLongTask<K,V>
3755 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3756 +             null, transformer, basis, reducer).invoke();
3757 +    }
3758 +
3759 +    /**
3760 +     * Returns the result of accumulating the given transformation
3761 +     * of all (key, value) pairs using the given reducer to
3762 +     * combine values, and the given basis as an identity value.
3763 +     *
3764 +     * @param parallelismThreshold the (estimated) number of elements
3765 +     * needed for this operation to be executed in parallel
3766 +     * @param transformer a function returning the transformation
3767 +     * for an element
3768 +     * @param basis the identity (initial default value) for the reduction
3769 +     * @param reducer a commutative associative combining function
3770 +     * @return the result of accumulating the given transformation
3771 +     * of all (key, value) pairs
3772 +     * @since 1.8
3773 +     */
3774 +    public int reduceToInt(long parallelismThreshold,
3775 +                           ToIntBiFunction<? super K, ? super V> transformer,
3776 +                           int basis,
3777 +                           IntBinaryOperator reducer) {
3778 +        if (transformer == null || reducer == null)
3779 +            throw new NullPointerException();
3780 +        return new MapReduceMappingsToIntTask<K,V>
3781 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3782 +             null, transformer, basis, reducer).invoke();
3783 +    }
3784 +
3785 +    /**
3786 +     * Performs the given action for each key.
3787 +     *
3788 +     * @param parallelismThreshold the (estimated) number of elements
3789 +     * needed for this operation to be executed in parallel
3790 +     * @param action the action
3791 +     * @since 1.8
3792 +     */
3793 +    public void forEachKey(long parallelismThreshold,
3794 +                           Consumer<? super K> action) {
3795 +        if (action == null) throw new NullPointerException();
3796 +        new ForEachKeyTask<K,V>
3797 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3798 +             action).invoke();
3799 +    }
3800 +
3801 +    /**
3802 +     * Performs the given action for each non-null transformation
3803 +     * of each key.
3804 +     *
3805 +     * @param parallelismThreshold the (estimated) number of elements
3806 +     * needed for this operation to be executed in parallel
3807 +     * @param transformer a function returning the transformation
3808 +     * for an element, or null if there is no transformation (in
3809 +     * which case the action is not applied)
3810 +     * @param action the action
3811 +     * @param <U> the return type of the transformer
3812 +     * @since 1.8
3813 +     */
3814 +    public <U> void forEachKey(long parallelismThreshold,
3815 +                               Function<? super K, ? extends U> transformer,
3816 +                               Consumer<? super U> action) {
3817 +        if (transformer == null || action == null)
3818 +            throw new NullPointerException();
3819 +        new ForEachTransformedKeyTask<K,V,U>
3820 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3821 +             transformer, action).invoke();
3822 +    }
3823 +
3824 +    /**
3825 +     * Returns a non-null result from applying the given search
3826 +     * function on each key, or null if none. Upon success,
3827 +     * further element processing is suppressed and the results of
3828 +     * any other parallel invocations of the search function are
3829 +     * ignored.
3830 +     *
3831 +     * @param parallelismThreshold the (estimated) number of elements
3832 +     * needed for this operation to be executed in parallel
3833 +     * @param searchFunction a function returning a non-null
3834 +     * result on success, else null
3835 +     * @param <U> the return type of the search function
3836 +     * @return a non-null result from applying the given search
3837 +     * function on each key, or null if none
3838 +     * @since 1.8
3839 +     */
3840 +    public <U> U searchKeys(long parallelismThreshold,
3841 +                            Function<? super K, ? extends U> searchFunction) {
3842 +        if (searchFunction == null) throw new NullPointerException();
3843 +        return new SearchKeysTask<K,V,U>
3844 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3845 +             searchFunction, new AtomicReference<U>()).invoke();
3846 +    }
3847 +
3848 +    /**
3849 +     * Returns the result of accumulating all keys using the given
3850 +     * reducer to combine values, or null if none.
3851 +     *
3852 +     * @param parallelismThreshold the (estimated) number of elements
3853 +     * needed for this operation to be executed in parallel
3854 +     * @param reducer a commutative associative combining function
3855 +     * @return the result of accumulating all keys using the given
3856 +     * reducer to combine values, or null if none
3857 +     * @since 1.8
3858 +     */
3859 +    public K reduceKeys(long parallelismThreshold,
3860 +                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3861 +        if (reducer == null) throw new NullPointerException();
3862 +        return new ReduceKeysTask<K,V>
3863 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3864 +             null, reducer).invoke();
3865 +    }
3866 +
3867 +    /**
3868 +     * Returns the result of accumulating the given transformation
3869 +     * of all keys using the given reducer to combine values, or
3870 +     * null if none.
3871 +     *
3872 +     * @param parallelismThreshold the (estimated) number of elements
3873 +     * needed for this operation to be executed in parallel
3874 +     * @param transformer a function returning the transformation
3875 +     * for an element, or null if there is no transformation (in
3876 +     * which case it is not combined)
3877 +     * @param reducer a commutative associative combining function
3878 +     * @param <U> the return type of the transformer
3879 +     * @return the result of accumulating the given transformation
3880 +     * of all keys
3881 +     * @since 1.8
3882 +     */
3883 +    public <U> U reduceKeys(long parallelismThreshold,
3884 +                            Function<? super K, ? extends U> transformer,
3885 +         BiFunction<? super U, ? super U, ? extends U> reducer) {
3886 +        if (transformer == null || reducer == null)
3887 +            throw new NullPointerException();
3888 +        return new MapReduceKeysTask<K,V,U>
3889 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3890 +             null, transformer, reducer).invoke();
3891 +    }
3892 +
3893 +    /**
3894 +     * Returns the result of accumulating the given transformation
3895 +     * of all keys using the given reducer to combine values, and
3896 +     * the given basis as an identity value.
3897 +     *
3898 +     * @param parallelismThreshold the (estimated) number of elements
3899 +     * needed for this operation to be executed in parallel
3900 +     * @param transformer a function returning the transformation
3901 +     * for an element
3902 +     * @param basis the identity (initial default value) for the reduction
3903 +     * @param reducer a commutative associative combining function
3904 +     * @return the result of accumulating the given transformation
3905 +     * of all keys
3906 +     * @since 1.8
3907 +     */
3908 +    public double reduceKeysToDouble(long parallelismThreshold,
3909 +                                     ToDoubleFunction<? super K> transformer,
3910 +                                     double basis,
3911 +                                     DoubleBinaryOperator reducer) {
3912 +        if (transformer == null || reducer == null)
3913 +            throw new NullPointerException();
3914 +        return new MapReduceKeysToDoubleTask<K,V>
3915 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3916 +             null, transformer, basis, reducer).invoke();
3917 +    }
3918 +
3919 +    /**
3920 +     * Returns the result of accumulating the given transformation
3921 +     * of all keys using the given reducer to combine values, and
3922 +     * the given basis as an identity value.
3923 +     *
3924 +     * @param parallelismThreshold the (estimated) number of elements
3925 +     * needed for this operation to be executed in parallel
3926 +     * @param transformer a function returning the transformation
3927 +     * for an element
3928 +     * @param basis the identity (initial default value) for the reduction
3929 +     * @param reducer a commutative associative combining function
3930 +     * @return the result of accumulating the given transformation
3931 +     * of all keys
3932 +     * @since 1.8
3933 +     */
3934 +    public long reduceKeysToLong(long parallelismThreshold,
3935 +                                 ToLongFunction<? super K> transformer,
3936 +                                 long basis,
3937 +                                 LongBinaryOperator reducer) {
3938 +        if (transformer == null || reducer == null)
3939 +            throw new NullPointerException();
3940 +        return new MapReduceKeysToLongTask<K,V>
3941 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3942 +             null, transformer, basis, reducer).invoke();
3943 +    }
3944 +
3945 +    /**
3946 +     * Returns the result of accumulating the given transformation
3947 +     * of all keys using the given reducer to combine values, and
3948 +     * the given basis as an identity value.
3949 +     *
3950 +     * @param parallelismThreshold the (estimated) number of elements
3951 +     * needed for this operation to be executed in parallel
3952 +     * @param transformer a function returning the transformation
3953 +     * for an element
3954 +     * @param basis the identity (initial default value) for the reduction
3955 +     * @param reducer a commutative associative combining function
3956 +     * @return the result of accumulating the given transformation
3957 +     * of all keys
3958 +     * @since 1.8
3959 +     */
3960 +    public int reduceKeysToInt(long parallelismThreshold,
3961 +                               ToIntFunction<? super K> transformer,
3962 +                               int basis,
3963 +                               IntBinaryOperator reducer) {
3964 +        if (transformer == null || reducer == null)
3965 +            throw new NullPointerException();
3966 +        return new MapReduceKeysToIntTask<K,V>
3967 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3968 +             null, transformer, basis, reducer).invoke();
3969 +    }
3970 +
3971 +    /**
3972 +     * Performs the given action for each value.
3973 +     *
3974 +     * @param parallelismThreshold the (estimated) number of elements
3975 +     * needed for this operation to be executed in parallel
3976 +     * @param action the action
3977 +     * @since 1.8
3978 +     */
3979 +    public void forEachValue(long parallelismThreshold,
3980 +                             Consumer<? super V> action) {
3981 +        if (action == null)
3982 +            throw new NullPointerException();
3983 +        new ForEachValueTask<K,V>
3984 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3985 +             action).invoke();
3986 +    }
3987 +
3988 +    /**
3989 +     * Performs the given action for each non-null transformation
3990 +     * of each value.
3991 +     *
3992 +     * @param parallelismThreshold the (estimated) number of elements
3993 +     * needed for this operation to be executed in parallel
3994 +     * @param transformer a function returning the transformation
3995 +     * for an element, or null if there is no transformation (in
3996 +     * which case the action is not applied)
3997 +     * @param action the action
3998 +     * @param <U> the return type of the transformer
3999 +     * @since 1.8
4000 +     */
4001 +    public <U> void forEachValue(long parallelismThreshold,
4002 +                                 Function<? super V, ? extends U> transformer,
4003 +                                 Consumer<? super U> action) {
4004 +        if (transformer == null || action == null)
4005 +            throw new NullPointerException();
4006 +        new ForEachTransformedValueTask<K,V,U>
4007 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4008 +             transformer, action).invoke();
4009 +    }
4010 +
4011 +    /**
4012 +     * Returns a non-null result from applying the given search
4013 +     * function on each value, or null if none.  Upon success,
4014 +     * further element processing is suppressed and the results of
4015 +     * any other parallel invocations of the search function are
4016 +     * ignored.
4017 +     *
4018 +     * @param parallelismThreshold the (estimated) number of elements
4019 +     * needed for this operation to be executed in parallel
4020 +     * @param searchFunction a function returning a non-null
4021 +     * result on success, else null
4022 +     * @param <U> the return type of the search function
4023 +     * @return a non-null result from applying the given search
4024 +     * function on each value, or null if none
4025 +     * @since 1.8
4026 +     */
4027 +    public <U> U searchValues(long parallelismThreshold,
4028 +                              Function<? super V, ? extends U> searchFunction) {
4029 +        if (searchFunction == null) throw new NullPointerException();
4030 +        return new SearchValuesTask<K,V,U>
4031 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4032 +             searchFunction, new AtomicReference<U>()).invoke();
4033 +    }
4034 +
4035 +    /**
4036 +     * Returns the result of accumulating all values using the
4037 +     * given reducer to combine values, or null if none.
4038 +     *
4039 +     * @param parallelismThreshold the (estimated) number of elements
4040 +     * needed for this operation to be executed in parallel
4041 +     * @param reducer a commutative associative combining function
4042 +     * @return the result of accumulating all values
4043 +     * @since 1.8
4044 +     */
4045 +    public V reduceValues(long parallelismThreshold,
4046 +                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4047 +        if (reducer == null) throw new NullPointerException();
4048 +        return new ReduceValuesTask<K,V>
4049 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4050 +             null, reducer).invoke();
4051 +    }
4052 +
4053 +    /**
4054 +     * Returns the result of accumulating the given transformation
4055 +     * of all values using the given reducer to combine values, or
4056 +     * null if none.
4057 +     *
4058 +     * @param parallelismThreshold the (estimated) number of elements
4059 +     * needed for this operation to be executed in parallel
4060 +     * @param transformer a function returning the transformation
4061 +     * for an element, or null if there is no transformation (in
4062 +     * which case it is not combined)
4063 +     * @param reducer a commutative associative combining function
4064 +     * @param <U> the return type of the transformer
4065 +     * @return the result of accumulating the given transformation
4066 +     * of all values
4067 +     * @since 1.8
4068 +     */
4069 +    public <U> U reduceValues(long parallelismThreshold,
4070 +                              Function<? super V, ? extends U> transformer,
4071 +                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4072 +        if (transformer == null || reducer == null)
4073 +            throw new NullPointerException();
4074 +        return new MapReduceValuesTask<K,V,U>
4075 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4076 +             null, transformer, reducer).invoke();
4077 +    }
4078 +
4079 +    /**
4080 +     * Returns the result of accumulating the given transformation
4081 +     * of all values using the given reducer to combine values,
4082 +     * and the given basis as an identity value.
4083 +     *
4084 +     * @param parallelismThreshold the (estimated) number of elements
4085 +     * needed for this operation to be executed in parallel
4086 +     * @param transformer a function returning the transformation
4087 +     * for an element
4088 +     * @param basis the identity (initial default value) for the reduction
4089 +     * @param reducer a commutative associative combining function
4090 +     * @return the result of accumulating the given transformation
4091 +     * of all values
4092 +     * @since 1.8
4093 +     */
4094 +    public double reduceValuesToDouble(long parallelismThreshold,
4095 +                                       ToDoubleFunction<? super V> transformer,
4096 +                                       double basis,
4097 +                                       DoubleBinaryOperator reducer) {
4098 +        if (transformer == null || reducer == null)
4099 +            throw new NullPointerException();
4100 +        return new MapReduceValuesToDoubleTask<K,V>
4101 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4102 +             null, transformer, basis, reducer).invoke();
4103 +    }
4104 +
4105 +    /**
4106 +     * Returns the result of accumulating the given transformation
4107 +     * of all values using the given reducer to combine values,
4108 +     * and the given basis as an identity value.
4109 +     *
4110 +     * @param parallelismThreshold the (estimated) number of elements
4111 +     * needed for this operation to be executed in parallel
4112 +     * @param transformer a function returning the transformation
4113 +     * for an element
4114 +     * @param basis the identity (initial default value) for the reduction
4115 +     * @param reducer a commutative associative combining function
4116 +     * @return the result of accumulating the given transformation
4117 +     * of all values
4118 +     * @since 1.8
4119 +     */
4120 +    public long reduceValuesToLong(long parallelismThreshold,
4121 +                                   ToLongFunction<? super V> transformer,
4122 +                                   long basis,
4123 +                                   LongBinaryOperator reducer) {
4124 +        if (transformer == null || reducer == null)
4125 +            throw new NullPointerException();
4126 +        return new MapReduceValuesToLongTask<K,V>
4127 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4128 +             null, transformer, basis, reducer).invoke();
4129 +    }
4130 +
4131 +    /**
4132 +     * Returns the result of accumulating the given transformation
4133 +     * of all values using the given reducer to combine values,
4134 +     * and the given basis as an identity value.
4135 +     *
4136 +     * @param parallelismThreshold the (estimated) number of elements
4137 +     * needed for this operation to be executed in parallel
4138 +     * @param transformer a function returning the transformation
4139 +     * for an element
4140 +     * @param basis the identity (initial default value) for the reduction
4141 +     * @param reducer a commutative associative combining function
4142 +     * @return the result of accumulating the given transformation
4143 +     * of all values
4144 +     * @since 1.8
4145 +     */
4146 +    public int reduceValuesToInt(long parallelismThreshold,
4147 +                                 ToIntFunction<? super V> transformer,
4148 +                                 int basis,
4149 +                                 IntBinaryOperator reducer) {
4150 +        if (transformer == null || reducer == null)
4151 +            throw new NullPointerException();
4152 +        return new MapReduceValuesToIntTask<K,V>
4153 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4154 +             null, transformer, basis, reducer).invoke();
4155 +    }
4156 +
4157 +    /**
4158 +     * Performs the given action for each entry.
4159 +     *
4160 +     * @param parallelismThreshold the (estimated) number of elements
4161 +     * needed for this operation to be executed in parallel
4162 +     * @param action the action
4163 +     * @since 1.8
4164 +     */
4165 +    public void forEachEntry(long parallelismThreshold,
4166 +                             Consumer<? super Map.Entry<K,V>> action) {
4167 +        if (action == null) throw new NullPointerException();
4168 +        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4169 +                                  action).invoke();
4170 +    }
4171 +
4172 +    /**
4173 +     * Performs the given action for each non-null transformation
4174 +     * of each entry.
4175 +     *
4176 +     * @param parallelismThreshold the (estimated) number of elements
4177 +     * needed for this operation to be executed in parallel
4178 +     * @param transformer a function returning the transformation
4179 +     * for an element, or null if there is no transformation (in
4180 +     * which case the action is not applied)
4181 +     * @param action the action
4182 +     * @param <U> the return type of the transformer
4183 +     * @since 1.8
4184 +     */
4185 +    public <U> void forEachEntry(long parallelismThreshold,
4186 +                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4187 +                                 Consumer<? super U> action) {
4188 +        if (transformer == null || action == null)
4189 +            throw new NullPointerException();
4190 +        new ForEachTransformedEntryTask<K,V,U>
4191 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4192 +             transformer, action).invoke();
4193 +    }
4194 +
4195 +    /**
4196 +     * Returns a non-null result from applying the given search
4197 +     * function on each entry, or null if none.  Upon success,
4198 +     * further element processing is suppressed and the results of
4199 +     * any other parallel invocations of the search function are
4200 +     * ignored.
4201 +     *
4202 +     * @param parallelismThreshold the (estimated) number of elements
4203 +     * needed for this operation to be executed in parallel
4204 +     * @param searchFunction a function returning a non-null
4205 +     * result on success, else null
4206 +     * @param <U> the return type of the search function
4207 +     * @return a non-null result from applying the given search
4208 +     * function on each entry, or null if none
4209 +     * @since 1.8
4210 +     */
4211 +    public <U> U searchEntries(long parallelismThreshold,
4212 +                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4213 +        if (searchFunction == null) throw new NullPointerException();
4214 +        return new SearchEntriesTask<K,V,U>
4215 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4216 +             searchFunction, new AtomicReference<U>()).invoke();
4217 +    }
4218 +
4219 +    /**
4220 +     * Returns the result of accumulating all entries using the
4221 +     * given reducer to combine values, or null if none.
4222 +     *
4223 +     * @param parallelismThreshold the (estimated) number of elements
4224 +     * needed for this operation to be executed in parallel
4225 +     * @param reducer a commutative associative combining function
4226 +     * @return the result of accumulating all entries
4227 +     * @since 1.8
4228 +     */
4229 +    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4230 +                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4231 +        if (reducer == null) throw new NullPointerException();
4232 +        return new ReduceEntriesTask<K,V>
4233 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4234 +             null, reducer).invoke();
4235 +    }
4236 +
4237 +    /**
4238 +     * Returns the result of accumulating the given transformation
4239 +     * of all entries using the given reducer to combine values,
4240 +     * or null if none.
4241 +     *
4242 +     * @param parallelismThreshold the (estimated) number of elements
4243 +     * needed for this operation to be executed in parallel
4244 +     * @param transformer a function returning the transformation
4245 +     * for an element, or null if there is no transformation (in
4246 +     * which case it is not combined)
4247 +     * @param reducer a commutative associative combining function
4248 +     * @param <U> the return type of the transformer
4249 +     * @return the result of accumulating the given transformation
4250 +     * of all entries
4251 +     * @since 1.8
4252 +     */
4253 +    public <U> U reduceEntries(long parallelismThreshold,
4254 +                               Function<Map.Entry<K,V>, ? extends U> transformer,
4255 +                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4256 +        if (transformer == null || reducer == null)
4257 +            throw new NullPointerException();
4258 +        return new MapReduceEntriesTask<K,V,U>
4259 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4260 +             null, transformer, reducer).invoke();
4261 +    }
4262 +
4263 +    /**
4264 +     * Returns the result of accumulating the given transformation
4265 +     * of all entries using the given reducer to combine values,
4266 +     * and the given basis as an identity value.
4267 +     *
4268 +     * @param parallelismThreshold the (estimated) number of elements
4269 +     * needed for this operation to be executed in parallel
4270 +     * @param transformer a function returning the transformation
4271 +     * for an element
4272 +     * @param basis the identity (initial default value) for the reduction
4273 +     * @param reducer a commutative associative combining function
4274 +     * @return the result of accumulating the given transformation
4275 +     * of all entries
4276 +     * @since 1.8
4277 +     */
4278 +    public double reduceEntriesToDouble(long parallelismThreshold,
4279 +                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4280 +                                        double basis,
4281 +                                        DoubleBinaryOperator reducer) {
4282 +        if (transformer == null || reducer == null)
4283 +            throw new NullPointerException();
4284 +        return new MapReduceEntriesToDoubleTask<K,V>
4285 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4286 +             null, transformer, basis, reducer).invoke();
4287 +    }
4288 +
4289 +    /**
4290 +     * Returns the result of accumulating the given transformation
4291 +     * of all entries using the given reducer to combine values,
4292 +     * and the given basis as an identity value.
4293 +     *
4294 +     * @param parallelismThreshold the (estimated) number of elements
4295 +     * needed for this operation to be executed in parallel
4296 +     * @param transformer a function returning the transformation
4297 +     * for an element
4298 +     * @param basis the identity (initial default value) for the reduction
4299 +     * @param reducer a commutative associative combining function
4300 +     * @return the result of accumulating the given transformation
4301 +     * of all entries
4302 +     * @since 1.8
4303 +     */
4304 +    public long reduceEntriesToLong(long parallelismThreshold,
4305 +                                    ToLongFunction<Map.Entry<K,V>> transformer,
4306 +                                    long basis,
4307 +                                    LongBinaryOperator reducer) {
4308 +        if (transformer == null || reducer == null)
4309 +            throw new NullPointerException();
4310 +        return new MapReduceEntriesToLongTask<K,V>
4311 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4312 +             null, transformer, basis, reducer).invoke();
4313 +    }
4314 +
4315 +    /**
4316 +     * Returns the result of accumulating the given transformation
4317 +     * of all entries using the given reducer to combine values,
4318 +     * and the given basis as an identity value.
4319 +     *
4320 +     * @param parallelismThreshold the (estimated) number of elements
4321 +     * needed for this operation to be executed in parallel
4322 +     * @param transformer a function returning the transformation
4323 +     * for an element
4324 +     * @param basis the identity (initial default value) for the reduction
4325 +     * @param reducer a commutative associative combining function
4326 +     * @return the result of accumulating the given transformation
4327 +     * of all entries
4328 +     * @since 1.8
4329 +     */
4330 +    public int reduceEntriesToInt(long parallelismThreshold,
4331 +                                  ToIntFunction<Map.Entry<K,V>> transformer,
4332 +                                  int basis,
4333 +                                  IntBinaryOperator reducer) {
4334 +        if (transformer == null || reducer == null)
4335 +            throw new NullPointerException();
4336 +        return new MapReduceEntriesToIntTask<K,V>
4337 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4338 +             null, transformer, basis, reducer).invoke();
4339 +    }
4340 +
4341 +
4342 +    /* ----------------Views -------------- */
4343 +
4344 +    /**
4345 +     * Base class for views.
4346 +     */
4347 +    abstract static class CollectionView<K,V,E>
4348 +        implements Collection<E>, java.io.Serializable {
4349 +        private static final long serialVersionUID = 7249069246763182397L;
4350 +        final ConcurrentHashMap<K,V> map;
4351 +        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4352  
4353          /**
4354 <         * Returns a task that when invoked, returns the result of
4403 <         * accumulating the given transformation of all keys using the given
4404 <         * reducer to combine values, and the given basis as an
4405 <         * identity value.
4354 >         * Returns the map backing this view.
4355           *
4356 <         * @param map the map
4408 <         * @param transformer a function returning the transformation
4409 <         * for an element
4410 <         * @param basis the identity (initial default value) for the reduction
4411 <         * @param reducer a commutative associative combining function
4412 <         * @return the task
4356 >         * @return the map backing this view
4357           */
4358 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4415 <            (ConcurrentHashMap<K,V> map,
4416 <             ObjectToDouble<? super K> transformer,
4417 <             double basis,
4418 <             DoubleByDoubleToDouble reducer) {
4419 <            if (transformer == null || reducer == null)
4420 <                throw new NullPointerException();
4421 <            return new MapReduceKeysToDoubleTask<K,V>
4422 <                (map, transformer, basis, reducer);
4423 <        }
4358 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4359  
4360          /**
4361 <         * Returns a task that when invoked, returns the result of
4362 <         * accumulating the given transformation of all keys using the given
4428 <         * reducer to combine values, and the given basis as an
4429 <         * identity value.
4430 <         *
4431 <         * @param map the map
4432 <         * @param transformer a function returning the transformation
4433 <         * for an element
4434 <         * @param basis the identity (initial default value) for the reduction
4435 <         * @param reducer a commutative associative combining function
4436 <         * @return the task
4361 >         * Removes all of the elements from this view, by removing all
4362 >         * the mappings from the map backing this view.
4363           */
4364 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4365 <            (ConcurrentHashMap<K,V> map,
4366 <             ObjectToLong<? super K> transformer,
4441 <             long basis,
4442 <             LongByLongToLong reducer) {
4443 <            if (transformer == null || reducer == null)
4444 <                throw new NullPointerException();
4445 <            return new MapReduceKeysToLongTask<K,V>
4446 <                (map, transformer, basis, reducer);
4447 <        }
4364 >        public final void clear()      { map.clear(); }
4365 >        public final int size()        { return map.size(); }
4366 >        public final boolean isEmpty() { return map.isEmpty(); }
4367  
4368 +        // implementations below rely on concrete classes supplying these
4369 +        // abstract methods
4370          /**
4371 <         * Returns a task that when invoked, returns the result of
4372 <         * accumulating the given transformation of all keys using the given
4373 <         * reducer to combine values, and the given basis as an
4374 <         * identity value.
4371 >         * Returns an iterator over the elements in this collection.
4372 >         *
4373 >         * <p>The returned iterator is
4374 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4375           *
4376 <         * @param map the map
4456 <         * @param transformer a function returning the transformation
4457 <         * for an element
4458 <         * @param basis the identity (initial default value) for the reduction
4459 <         * @param reducer a commutative associative combining function
4460 <         * @return the task
4376 >         * @return an iterator over the elements in this collection
4377           */
4378 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4379 <            (ConcurrentHashMap<K,V> map,
4380 <             ObjectToInt<? super K> transformer,
4381 <             int basis,
4382 <             IntByIntToInt reducer) {
4383 <            if (transformer == null || reducer == null)
4384 <                throw new NullPointerException();
4385 <            return new MapReduceKeysToIntTask<K,V>
4386 <                (map, transformer, basis, reducer);
4378 >        public abstract Iterator<E> iterator();
4379 >        public abstract boolean contains(Object o);
4380 >        public abstract boolean remove(Object o);
4381 >
4382 >        private static final String oomeMsg = "Required array size too large";
4383 >
4384 >        public final Object[] toArray() {
4385 >            long sz = map.mappingCount();
4386 >            if (sz > MAX_ARRAY_SIZE)
4387 >                throw new OutOfMemoryError(oomeMsg);
4388 >            int n = (int)sz;
4389 >            Object[] r = new Object[n];
4390 >            int i = 0;
4391 >            for (E e : this) {
4392 >                if (i == n) {
4393 >                    if (n >= MAX_ARRAY_SIZE)
4394 >                        throw new OutOfMemoryError(oomeMsg);
4395 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4396 >                        n = MAX_ARRAY_SIZE;
4397 >                    else
4398 >                        n += (n >>> 1) + 1;
4399 >                    r = Arrays.copyOf(r, n);
4400 >                }
4401 >                r[i++] = e;
4402 >            }
4403 >            return (i == n) ? r : Arrays.copyOf(r, i);
4404          }
4405  
4406 <        /**
4407 <         * Returns a task that when invoked, performs the given action
4408 <         * for each value
4409 <         *
4410 <         * @param map the map
4411 <         * @param action the action
4412 <         */
4413 <        public static <K,V> ForkJoinTask<Void> forEachValue
4414 <            (ConcurrentHashMap<K,V> map,
4415 <             Action<V> action) {
4416 <            if (action == null) throw new NullPointerException();
4417 <            return new ForEachValueTask<K,V>(map, action);
4406 >        @SuppressWarnings("unchecked")
4407 >        public final <T> T[] toArray(T[] a) {
4408 >            long sz = map.mappingCount();
4409 >            if (sz > MAX_ARRAY_SIZE)
4410 >                throw new OutOfMemoryError(oomeMsg);
4411 >            int m = (int)sz;
4412 >            T[] r = (a.length >= m) ? a :
4413 >                (T[])java.lang.reflect.Array
4414 >                .newInstance(a.getClass().getComponentType(), m);
4415 >            int n = r.length;
4416 >            int i = 0;
4417 >            for (E e : this) {
4418 >                if (i == n) {
4419 >                    if (n >= MAX_ARRAY_SIZE)
4420 >                        throw new OutOfMemoryError(oomeMsg);
4421 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4422 >                        n = MAX_ARRAY_SIZE;
4423 >                    else
4424 >                        n += (n >>> 1) + 1;
4425 >                    r = Arrays.copyOf(r, n);
4426 >                }
4427 >                r[i++] = (T)e;
4428 >            }
4429 >            if (a == r && i < n) {
4430 >                r[i] = null; // null-terminate
4431 >                return r;
4432 >            }
4433 >            return (i == n) ? r : Arrays.copyOf(r, i);
4434          }
4435  
4436          /**
4437 <         * Returns a task that when invoked, performs the given action
4438 <         * for each non-null transformation of each value
4437 >         * Returns a string representation of this collection.
4438 >         * The string representation consists of the string representations
4439 >         * of the collection's elements in the order they are returned by
4440 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4441 >         * Adjacent elements are separated by the characters {@code ", "}
4442 >         * (comma and space).  Elements are converted to strings as by
4443 >         * {@link String#valueOf(Object)}.
4444           *
4445 <         * @param map the map
4492 <         * @param transformer a function returning the transformation
4493 <         * for an element, or null of there is no transformation (in
4494 <         * which case the action is not applied).
4495 <         * @param action the action
4445 >         * @return a string representation of this collection
4446           */
4447 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
4448 <            (ConcurrentHashMap<K,V> map,
4449 <             Fun<? super V, ? extends U> transformer,
4450 <             Action<U> action) {
4451 <            if (transformer == null || action == null)
4452 <                throw new NullPointerException();
4453 <            return new ForEachTransformedValueTask<K,V,U>
4454 <                (map, transformer, action);
4447 >        public final String toString() {
4448 >            StringBuilder sb = new StringBuilder();
4449 >            sb.append('[');
4450 >            Iterator<E> it = iterator();
4451 >            if (it.hasNext()) {
4452 >                for (;;) {
4453 >                    Object e = it.next();
4454 >                    sb.append(e == this ? "(this Collection)" : e);
4455 >                    if (!it.hasNext())
4456 >                        break;
4457 >                    sb.append(',').append(' ');
4458 >                }
4459 >            }
4460 >            return sb.append(']').toString();
4461          }
4462  
4463 <        /**
4464 <         * Returns a task that when invoked, returns a non-null result
4465 <         * from applying the given search function on each value, or
4466 <         * null if none.  Further element processing is suppressed
4467 <         * upon success. However, this method does not return until
4468 <         * other in-progress parallel invocations of the search
4469 <         * function also complete.
4470 <         *
4515 <         * @param map the map
4516 <         * @param searchFunction a function returning a non-null
4517 <         * result on success, else null
4518 <         * @return the task
4519 <         *
4520 <         */
4521 <        public static <K,V,U> ForkJoinTask<U> searchValues
4522 <            (ConcurrentHashMap<K,V> map,
4523 <             Fun<? super V, ? extends U> searchFunction) {
4524 <            if (searchFunction == null) throw new NullPointerException();
4525 <            return new SearchValuesTask<K,V,U>
4526 <                (map, searchFunction,
4527 <                 new AtomicReference<U>());
4463 >        public final boolean containsAll(Collection<?> c) {
4464 >            if (c != this) {
4465 >                for (Object e : c) {
4466 >                    if (e == null || !contains(e))
4467 >                        return false;
4468 >                }
4469 >            }
4470 >            return true;
4471          }
4472  
4473 <        /**
4474 <         * Returns a task that when invoked, returns the result of
4475 <         * accumulating all values using the given reducer to combine
4476 <         * values, or null if none.
4477 <         *
4478 <         * @param map the map
4479 <         * @param reducer a commutative associative combining function
4480 <         * @return the task
4481 <         */
4482 <        public static <K,V> ForkJoinTask<V> reduceValues
4540 <            (ConcurrentHashMap<K,V> map,
4541 <             BiFun<? super V, ? super V, ? extends V> reducer) {
4542 <            if (reducer == null) throw new NullPointerException();
4543 <            return new ReduceValuesTask<K,V>
4544 <                (map, reducer);
4473 >        public final boolean removeAll(Collection<?> c) {
4474 >            if (c == null) throw new NullPointerException();
4475 >            boolean modified = false;
4476 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4477 >                if (c.contains(it.next())) {
4478 >                    it.remove();
4479 >                    modified = true;
4480 >                }
4481 >            }
4482 >            return modified;
4483          }
4484  
4485 <        /**
4486 <         * Returns a task that when invoked, returns the result of
4487 <         * accumulating the given transformation of all values using the
4488 <         * given reducer to combine values, or null if none.
4489 <         *
4490 <         * @param map the map
4491 <         * @param transformer a function returning the transformation
4492 <         * for an element, or null of there is no transformation (in
4493 <         * which case it is not combined).
4494 <         * @param reducer a commutative associative combining function
4557 <         * @return the task
4558 <         */
4559 <        public static <K,V,U> ForkJoinTask<U> reduceValues
4560 <            (ConcurrentHashMap<K,V> map,
4561 <             Fun<? super V, ? extends U> transformer,
4562 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4563 <            if (transformer == null || reducer == null)
4564 <                throw new NullPointerException();
4565 <            return new MapReduceValuesTask<K,V,U>
4566 <                (map, transformer, reducer);
4485 >        public final boolean retainAll(Collection<?> c) {
4486 >            if (c == null) throw new NullPointerException();
4487 >            boolean modified = false;
4488 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4489 >                if (!c.contains(it.next())) {
4490 >                    it.remove();
4491 >                    modified = true;
4492 >                }
4493 >            }
4494 >            return modified;
4495          }
4496  
4497 <        /**
4498 <         * Returns a task that when invoked, returns the result of
4499 <         * accumulating the given transformation of all values using the
4500 <         * given reducer to combine values, and the given basis as an
4501 <         * identity value.
4502 <         *
4503 <         * @param map the map
4504 <         * @param transformer a function returning the transformation
4505 <         * for an element
4506 <         * @param basis the identity (initial default value) for the reduction
4507 <         * @param reducer a commutative associative combining function
4508 <         * @return the task
4509 <         */
4510 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4511 <            (ConcurrentHashMap<K,V> map,
4512 <             ObjectToDouble<? super V> transformer,
4513 <             double basis,
4514 <             DoubleByDoubleToDouble reducer) {
4515 <            if (transformer == null || reducer == null)
4516 <                throw new NullPointerException();
4589 <            return new MapReduceValuesToDoubleTask<K,V>
4590 <                (map, transformer, basis, reducer);
4497 >    }
4498 >
4499 >    /**
4500 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4501 >     * which additions may optionally be enabled by mapping to a
4502 >     * common value.  This class cannot be directly instantiated.
4503 >     * See {@link #keySet() keySet()},
4504 >     * {@link #keySet(Object) keySet(V)},
4505 >     * {@link #newKeySet() newKeySet()},
4506 >     * {@link #newKeySet(int) newKeySet(int)}.
4507 >     *
4508 >     * @since 1.8
4509 >     */
4510 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4511 >        implements Set<K>, java.io.Serializable {
4512 >        private static final long serialVersionUID = 7249069246763182397L;
4513 >        private final V value;
4514 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4515 >            super(map);
4516 >            this.value = value;
4517          }
4518  
4519          /**
4520 <         * Returns a task that when invoked, returns the result of
4521 <         * accumulating the given transformation of all values using the
4596 <         * given reducer to combine values, and the given basis as an
4597 <         * identity value.
4520 >         * Returns the default mapped value for additions,
4521 >         * or {@code null} if additions are not supported.
4522           *
4523 <         * @param map the map
4524 <         * @param transformer a function returning the transformation
4601 <         * for an element
4602 <         * @param basis the identity (initial default value) for the reduction
4603 <         * @param reducer a commutative associative combining function
4604 <         * @return the task
4523 >         * @return the default mapped value for additions, or {@code null}
4524 >         * if not supported
4525           */
4526 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4607 <            (ConcurrentHashMap<K,V> map,
4608 <             ObjectToLong<? super V> transformer,
4609 <             long basis,
4610 <             LongByLongToLong reducer) {
4611 <            if (transformer == null || reducer == null)
4612 <                throw new NullPointerException();
4613 <            return new MapReduceValuesToLongTask<K,V>
4614 <                (map, transformer, basis, reducer);
4615 <        }
4526 >        public V getMappedValue() { return value; }
4527  
4528          /**
4529 <         * Returns a task that when invoked, returns the result of
4530 <         * accumulating the given transformation of all values using the
4620 <         * given reducer to combine values, and the given basis as an
4621 <         * identity value.
4622 <         *
4623 <         * @param map the map
4624 <         * @param transformer a function returning the transformation
4625 <         * for an element
4626 <         * @param basis the identity (initial default value) for the reduction
4627 <         * @param reducer a commutative associative combining function
4628 <         * @return the task
4529 >         * {@inheritDoc}
4530 >         * @throws NullPointerException if the specified key is null
4531           */
4532 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4631 <            (ConcurrentHashMap<K,V> map,
4632 <             ObjectToInt<? super V> transformer,
4633 <             int basis,
4634 <             IntByIntToInt reducer) {
4635 <            if (transformer == null || reducer == null)
4636 <                throw new NullPointerException();
4637 <            return new MapReduceValuesToIntTask<K,V>
4638 <                (map, transformer, basis, reducer);
4639 <        }
4532 >        public boolean contains(Object o) { return map.containsKey(o); }
4533  
4534          /**
4535 <         * Returns a task that when invoked, perform the given action
4536 <         * for each entry
4535 >         * Removes the key from this map view, by removing the key (and its
4536 >         * corresponding value) from the backing map.  This method does
4537 >         * nothing if the key is not in the map.
4538           *
4539 <         * @param map the map
4540 <         * @param action the action
4539 >         * @param  o the key to be removed from the backing map
4540 >         * @return {@code true} if the backing map contained the specified key
4541 >         * @throws NullPointerException if the specified key is null
4542           */
4543 <        public static <K,V> ForkJoinTask<Void> forEachEntry
4649 <            (ConcurrentHashMap<K,V> map,
4650 <             Action<Map.Entry<K,V>> action) {
4651 <            if (action == null) throw new NullPointerException();
4652 <            return new ForEachEntryTask<K,V>(map, action);
4653 <        }
4543 >        public boolean remove(Object o) { return map.remove(o) != null; }
4544  
4545          /**
4546 <         * Returns a task that when invoked, perform the given action
4657 <         * for each non-null transformation of each entry
4658 <         *
4659 <         * @param map the map
4660 <         * @param transformer a function returning the transformation
4661 <         * for an element, or null of there is no transformation (in
4662 <         * which case the action is not applied).
4663 <         * @param action the action
4546 >         * @return an iterator over the keys of the backing map
4547           */
4548 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
4549 <            (ConcurrentHashMap<K,V> map,
4550 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4551 <             Action<U> action) {
4552 <            if (transformer == null || action == null)
4670 <                throw new NullPointerException();
4671 <            return new ForEachTransformedEntryTask<K,V,U>
4672 <                (map, transformer, action);
4548 >        public Iterator<K> iterator() {
4549 >            Node<K,V>[] t;
4550 >            ConcurrentHashMap<K,V> m = map;
4551 >            int f = (t = m.table) == null ? 0 : t.length;
4552 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4553          }
4554  
4555          /**
4556 <         * Returns a task that when invoked, returns a non-null result
4557 <         * from applying the given search function on each entry, or
4678 <         * null if none.  Further element processing is suppressed
4679 <         * upon success. However, this method does not return until
4680 <         * other in-progress parallel invocations of the search
4681 <         * function also complete.
4682 <         *
4683 <         * @param map the map
4684 <         * @param searchFunction a function returning a non-null
4685 <         * result on success, else null
4686 <         * @return the task
4556 >         * Adds the specified key to this set view by mapping the key to
4557 >         * the default mapped value in the backing map, if defined.
4558           *
4559 +         * @param e key to be added
4560 +         * @return {@code true} if this set changed as a result of the call
4561 +         * @throws NullPointerException if the specified key is null
4562 +         * @throws UnsupportedOperationException if no default mapped value
4563 +         * for additions was provided
4564           */
4565 <        public static <K,V,U> ForkJoinTask<U> searchEntries
4566 <            (ConcurrentHashMap<K,V> map,
4567 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4568 <            if (searchFunction == null) throw new NullPointerException();
4569 <            return new SearchEntriesTask<K,V,U>
4694 <                (map, searchFunction,
4695 <                 new AtomicReference<U>());
4565 >        public boolean add(K e) {
4566 >            V v;
4567 >            if ((v = value) == null)
4568 >                throw new UnsupportedOperationException();
4569 >            return map.putVal(e, v, true) == null;
4570          }
4571  
4572          /**
4573 <         * Returns a task that when invoked, returns the result of
4574 <         * accumulating all entries using the given reducer to combine
4701 <         * values, or null if none.
4573 >         * Adds all of the elements in the specified collection to this set,
4574 >         * as if by calling {@link #add} on each one.
4575           *
4576 <         * @param map the map
4577 <         * @param reducer a commutative associative combining function
4578 <         * @return the task
4576 >         * @param c the elements to be inserted into this set
4577 >         * @return {@code true} if this set changed as a result of the call
4578 >         * @throws NullPointerException if the collection or any of its
4579 >         * elements are {@code null}
4580 >         * @throws UnsupportedOperationException if no default mapped value
4581 >         * for additions was provided
4582           */
4583 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4584 <            (ConcurrentHashMap<K,V> map,
4585 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4586 <            if (reducer == null) throw new NullPointerException();
4587 <            return new ReduceEntriesTask<K,V>
4588 <                (map, reducer);
4583 >        public boolean addAll(Collection<? extends K> c) {
4584 >            boolean added = false;
4585 >            V v;
4586 >            if ((v = value) == null)
4587 >                throw new UnsupportedOperationException();
4588 >            for (K e : c) {
4589 >                if (map.putVal(e, v, true) == null)
4590 >                    added = true;
4591 >            }
4592 >            return added;
4593          }
4594  
4595 <        /**
4596 <         * Returns a task that when invoked, returns the result of
4597 <         * accumulating the given transformation of all entries using the
4598 <         * given reducer to combine values, or null if none.
4599 <         *
4720 <         * @param map the map
4721 <         * @param transformer a function returning the transformation
4722 <         * for an element, or null of there is no transformation (in
4723 <         * which case it is not combined).
4724 <         * @param reducer a commutative associative combining function
4725 <         * @return the task
4726 <         */
4727 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
4728 <            (ConcurrentHashMap<K,V> map,
4729 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4730 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4731 <            if (transformer == null || reducer == null)
4732 <                throw new NullPointerException();
4733 <            return new MapReduceEntriesTask<K,V,U>
4734 <                (map, transformer, reducer);
4595 >        public int hashCode() {
4596 >            int h = 0;
4597 >            for (K e : this)
4598 >                h += e.hashCode();
4599 >            return h;
4600          }
4601  
4602 <        /**
4603 <         * Returns a task that when invoked, returns the result of
4604 <         * accumulating the given transformation of all entries using the
4605 <         * given reducer to combine values, and the given basis as an
4606 <         * identity value.
4742 <         *
4743 <         * @param map the map
4744 <         * @param transformer a function returning the transformation
4745 <         * for an element
4746 <         * @param basis the identity (initial default value) for the reduction
4747 <         * @param reducer a commutative associative combining function
4748 <         * @return the task
4749 <         */
4750 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4751 <            (ConcurrentHashMap<K,V> map,
4752 <             ObjectToDouble<Map.Entry<K,V>> transformer,
4753 <             double basis,
4754 <             DoubleByDoubleToDouble reducer) {
4755 <            if (transformer == null || reducer == null)
4756 <                throw new NullPointerException();
4757 <            return new MapReduceEntriesToDoubleTask<K,V>
4758 <                (map, transformer, basis, reducer);
4602 >        public boolean equals(Object o) {
4603 >            Set<?> c;
4604 >            return ((o instanceof Set) &&
4605 >                    ((c = (Set<?>)o) == this ||
4606 >                     (containsAll(c) && c.containsAll(this))));
4607          }
4608  
4609 <        /**
4610 <         * Returns a task that when invoked, returns the result of
4611 <         * accumulating the given transformation of all entries using the
4612 <         * given reducer to combine values, and the given basis as an
4613 <         * identity value.
4614 <         *
4767 <         * @param map the map
4768 <         * @param transformer a function returning the transformation
4769 <         * for an element
4770 <         * @param basis the identity (initial default value) for the reduction
4771 <         * @param reducer a commutative associative combining function
4772 <         * @return the task
4773 <         */
4774 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4775 <            (ConcurrentHashMap<K,V> map,
4776 <             ObjectToLong<Map.Entry<K,V>> transformer,
4777 <             long basis,
4778 <             LongByLongToLong reducer) {
4779 <            if (transformer == null || reducer == null)
4780 <                throw new NullPointerException();
4781 <            return new MapReduceEntriesToLongTask<K,V>
4782 <                (map, transformer, basis, reducer);
4609 >        public Spliterator<K> spliterator() {
4610 >            Node<K,V>[] t;
4611 >            ConcurrentHashMap<K,V> m = map;
4612 >            long n = m.sumCount();
4613 >            int f = (t = m.table) == null ? 0 : t.length;
4614 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4615          }
4616  
4617 <        /**
4618 <         * Returns a task that when invoked, returns the result of
4619 <         * accumulating the given transformation of all entries using the
4620 <         * given reducer to combine values, and the given basis as an
4621 <         * identity value.
4622 <         *
4623 <         * @param map the map
4624 <         * @param transformer a function returning the transformation
4793 <         * for an element
4794 <         * @param basis the identity (initial default value) for the reduction
4795 <         * @param reducer a commutative associative combining function
4796 <         * @return the task
4797 <         */
4798 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4799 <            (ConcurrentHashMap<K,V> map,
4800 <             ObjectToInt<Map.Entry<K,V>> transformer,
4801 <             int basis,
4802 <             IntByIntToInt reducer) {
4803 <            if (transformer == null || reducer == null)
4804 <                throw new NullPointerException();
4805 <            return new MapReduceEntriesToIntTask<K,V>
4806 <                (map, transformer, basis, reducer);
4617 >        public void forEach(Consumer<? super K> action) {
4618 >            if (action == null) throw new NullPointerException();
4619 >            Node<K,V>[] t;
4620 >            if ((t = map.table) != null) {
4621 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4622 >                for (Node<K,V> p; (p = it.advance()) != null; )
4623 >                    action.accept(p.key);
4624 >            }
4625          }
4626      }
4627  
4810    // -------------------------------------------------------
4811
4628      /**
4629 <     * Base for FJ tasks for bulk operations. This adds a variant of
4630 <     * CountedCompleters and some split and merge bookeeping to
4631 <     * iterator functionality. The forEach and reduce methods are
4632 <     * similar to those illustrated in CountedCompleter documentation,
4633 <     * except that bottom-up reduction completions perform them within
4634 <     * their compute methods. The search methods are like forEach
4635 <     * except they continually poll for success and exit early.  Also,
4636 <     * exceptions are handled in a simpler manner, by just trying to
4637 <     * complete root task exceptionally.
4638 <     */
4639 <    static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4824 <        final BulkTask<K,V,?> parent;  // completion target
4825 <        int batch;                     // split control
4826 <        int pending;                   // completion control
4629 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4630 >     * values, in which additions are disabled. This class cannot be
4631 >     * directly instantiated. See {@link #values()}.
4632 >     */
4633 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4634 >        implements Collection<V>, java.io.Serializable {
4635 >        private static final long serialVersionUID = 2249069246763182397L;
4636 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4637 >        public final boolean contains(Object o) {
4638 >            return map.containsValue(o);
4639 >        }
4640  
4641 <        /** Constructor for root tasks */
4642 <        BulkTask(ConcurrentHashMap<K,V> map) {
4643 <            super(map);
4644 <            this.parent = null;
4645 <            this.batch = -1; // force call to batch() on execution
4641 >        public final boolean remove(Object o) {
4642 >            if (o != null) {
4643 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4644 >                    if (o.equals(it.next())) {
4645 >                        it.remove();
4646 >                        return true;
4647 >                    }
4648 >                }
4649 >            }
4650 >            return false;
4651          }
4652  
4653 <        /** Constructor for subtasks */
4654 <        BulkTask(BulkTask<K,V,?> parent, int batch, boolean split) {
4655 <            super(parent, split);
4656 <            this.parent = parent;
4657 <            this.batch = batch;
4653 >        public final Iterator<V> iterator() {
4654 >            ConcurrentHashMap<K,V> m = map;
4655 >            Node<K,V>[] t;
4656 >            int f = (t = m.table) == null ? 0 : t.length;
4657 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4658 >        }
4659 >
4660 >        public final boolean add(V e) {
4661 >            throw new UnsupportedOperationException();
4662 >        }
4663 >        public final boolean addAll(Collection<? extends V> c) {
4664 >            throw new UnsupportedOperationException();
4665          }
4666  
4667 <        // FJ methods
4667 >        public Spliterator<V> spliterator() {
4668 >            Node<K,V>[] t;
4669 >            ConcurrentHashMap<K,V> m = map;
4670 >            long n = m.sumCount();
4671 >            int f = (t = m.table) == null ? 0 : t.length;
4672 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4673 >        }
4674  
4675 <        /**
4676 <         * Propagate completion. Note that all reduce actions
4677 <         * bypass this method to combine while completing.
4678 <         */
4679 <        final void tryComplete() {
4680 <            BulkTask<K,V,?> a = this, s = a;
4681 <            for (int c;;) {
4851 <                if ((c = a.pending) == 0) {
4852 <                    if ((a = (s = a).parent) == null) {
4853 <                        s.quietlyComplete();
4854 <                        break;
4855 <                    }
4856 <                }
4857 <                else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4858 <                    break;
4675 >        public void forEach(Consumer<? super V> action) {
4676 >            if (action == null) throw new NullPointerException();
4677 >            Node<K,V>[] t;
4678 >            if ((t = map.table) != null) {
4679 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4680 >                for (Node<K,V> p; (p = it.advance()) != null; )
4681 >                    action.accept(p.val);
4682              }
4683          }
4684 +    }
4685 +
4686 +    /**
4687 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4688 +     * entries.  This class cannot be directly instantiated. See
4689 +     * {@link #entrySet()}.
4690 +     */
4691 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4692 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4693 +        private static final long serialVersionUID = 2249069246763182397L;
4694 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4695 +
4696 +        public boolean contains(Object o) {
4697 +            Object k, v, r; Map.Entry<?,?> e;
4698 +            return ((o instanceof Map.Entry) &&
4699 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4700 +                    (r = map.get(k)) != null &&
4701 +                    (v = e.getValue()) != null &&
4702 +                    (v == r || v.equals(r)));
4703 +        }
4704 +
4705 +        public boolean remove(Object o) {
4706 +            Object k, v; Map.Entry<?,?> e;
4707 +            return ((o instanceof Map.Entry) &&
4708 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4709 +                    (v = e.getValue()) != null &&
4710 +                    map.remove(k, v));
4711 +        }
4712  
4713          /**
4714 <         * Force root task to throw exception unless already complete.
4714 >         * @return an iterator over the entries of the backing map
4715           */
4716 <        final void tryAbortComputation(Throwable ex) {
4717 <            for (BulkTask<K,V,?> a = this;;) {
4718 <                BulkTask<K,V,?> p = a.parent;
4719 <                if (p == null) {
4720 <                    a.completeExceptionally(ex);
4870 <                    break;
4871 <                }
4872 <                a = p;
4873 <            }
4716 >        public Iterator<Map.Entry<K,V>> iterator() {
4717 >            ConcurrentHashMap<K,V> m = map;
4718 >            Node<K,V>[] t;
4719 >            int f = (t = m.table) == null ? 0 : t.length;
4720 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4721          }
4722  
4723 <        public final boolean exec() {
4724 <            try {
4725 <                compute();
4726 <            }
4727 <            catch (Throwable ex) {
4728 <                tryAbortComputation(ex);
4723 >        public boolean add(Entry<K,V> e) {
4724 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4725 >        }
4726 >
4727 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4728 >            boolean added = false;
4729 >            for (Entry<K,V> e : c) {
4730 >                if (add(e))
4731 >                    added = true;
4732              }
4733 <            return false;
4733 >            return added;
4734          }
4735  
4736 <        public abstract void compute();
4736 >        public final int hashCode() {
4737 >            int h = 0;
4738 >            Node<K,V>[] t;
4739 >            if ((t = map.table) != null) {
4740 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4741 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4742 >                    h += p.hashCode();
4743 >                }
4744 >            }
4745 >            return h;
4746 >        }
4747  
4748 <        // utilities
4748 >        public final boolean equals(Object o) {
4749 >            Set<?> c;
4750 >            return ((o instanceof Set) &&
4751 >                    ((c = (Set<?>)o) == this ||
4752 >                     (containsAll(c) && c.containsAll(this))));
4753 >        }
4754  
4755 <        /** CompareAndSet pending count */
4756 <        final boolean casPending(int cmp, int val) {
4757 <            return U.compareAndSwapInt(this, PENDING, cmp, val);
4755 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4756 >            Node<K,V>[] t;
4757 >            ConcurrentHashMap<K,V> m = map;
4758 >            long n = m.sumCount();
4759 >            int f = (t = m.table) == null ? 0 : t.length;
4760 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4761          }
4762  
4763 <        /**
4764 <         * Return approx exp2 of the number of times (minus one) to
4765 <         * split task by two before executing leaf action. This value
4766 <         * is faster to compute and more convenient to use as a guide
4767 <         * to splitting than is the depth, since it is used while
4768 <         * dividing by two anyway.
4769 <         */
4902 <        final int batch() {
4903 <            int b = batch;
4904 <            if (b < 0) {
4905 <                long n = map.counter.sum();
4906 <                int sp = getPool().getParallelism() << 3; // slack of 8
4907 <                b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4763 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4764 >            if (action == null) throw new NullPointerException();
4765 >            Node<K,V>[] t;
4766 >            if ((t = map.table) != null) {
4767 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4768 >                for (Node<K,V> p; (p = it.advance()) != null; )
4769 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4770              }
4909            return b;
4771          }
4772  
4773 <        /**
4774 <         * Error message for hoisted null checks of functions
4775 <         */
4776 <        static final String NullFunctionMessage =
4777 <            "Unexpected null function";
4773 >    }
4774 >
4775 >    // -------------------------------------------------------
4776 >
4777 >    /**
4778 >     * Base class for bulk tasks. Repeats some fields and code from
4779 >     * class Traverser, because we need to subclass CountedCompleter.
4780 >     */
4781 >    @SuppressWarnings("serial")
4782 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4783 >        Node<K,V>[] tab;        // same as Traverser
4784 >        Node<K,V> next;
4785 >        TableStack<K,V> stack, spare;
4786 >        int index;
4787 >        int baseIndex;
4788 >        int baseLimit;
4789 >        final int baseSize;
4790 >        int batch;              // split control
4791 >
4792 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4793 >            super(par);
4794 >            this.batch = b;
4795 >            this.index = this.baseIndex = i;
4796 >            if ((this.tab = t) == null)
4797 >                this.baseSize = this.baseLimit = 0;
4798 >            else if (par == null)
4799 >                this.baseSize = this.baseLimit = t.length;
4800 >            else {
4801 >                this.baseLimit = f;
4802 >                this.baseSize = par.baseSize;
4803 >            }
4804 >        }
4805  
4806          /**
4807 <         * Return exportable snapshot entry
4807 >         * Same as Traverser version
4808           */
4809 <        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4810 <            return new AbstractMap.SimpleEntry(k, v);
4809 >        final Node<K,V> advance() {
4810 >            Node<K,V> e;
4811 >            if ((e = next) != null)
4812 >                e = e.next;
4813 >            for (;;) {
4814 >                Node<K,V>[] t; int i, n;
4815 >                if (e != null)
4816 >                    return next = e;
4817 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4818 >                    (n = t.length) <= (i = index) || i < 0)
4819 >                    return next = null;
4820 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4821 >                    if (e instanceof ForwardingNode) {
4822 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4823 >                        e = null;
4824 >                        pushState(t, i, n);
4825 >                        continue;
4826 >                    }
4827 >                    else if (e instanceof TreeBin)
4828 >                        e = ((TreeBin<K,V>)e).first;
4829 >                    else
4830 >                        e = null;
4831 >                }
4832 >                if (stack != null)
4833 >                    recoverState(n);
4834 >                else if ((index = i + baseSize) >= n)
4835 >                    index = ++baseIndex;
4836 >            }
4837          }
4838  
4839 <        // Unsafe mechanics
4840 <        private static final sun.misc.Unsafe U;
4841 <        private static final long PENDING;
4842 <        static {
4843 <            try {
4844 <                U = sun.misc.Unsafe.getUnsafe();
4845 <                PENDING = U.objectFieldOffset
4846 <                    (BulkTask.class.getDeclaredField("pending"));
4847 <            } catch (Exception e) {
4848 <                throw new Error(e);
4839 >        private void pushState(Node<K,V>[] t, int i, int n) {
4840 >            TableStack<K,V> s = spare;
4841 >            if (s != null)
4842 >                spare = s.next;
4843 >            else
4844 >                s = new TableStack<K,V>();
4845 >            s.tab = t;
4846 >            s.length = n;
4847 >            s.index = i;
4848 >            s.next = stack;
4849 >            stack = s;
4850 >        }
4851 >
4852 >        private void recoverState(int n) {
4853 >            TableStack<K,V> s; int len;
4854 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4855 >                n = len;
4856 >                index = s.index;
4857 >                tab = s.tab;
4858 >                s.tab = null;
4859 >                TableStack<K,V> next = s.next;
4860 >                s.next = spare; // save for reuse
4861 >                stack = next;
4862 >                spare = s;
4863              }
4864 +            if (s == null && (index += baseSize) >= n)
4865 +                index = ++baseIndex;
4866          }
4867      }
4868  
4869      /*
4870       * Task classes. Coded in a regular but ugly format/style to
4871       * simplify checks that each variant differs in the right way from
4872 <     * others.
4872 >     * others. The null screenings exist because compilers cannot tell
4873 >     * that we've already null-checked task arguments, so we force
4874 >     * simplest hoisted bypass to help avoid convoluted traps.
4875       */
4876 <
4876 >    @SuppressWarnings("serial")
4877      static final class ForEachKeyTask<K,V>
4878          extends BulkTask<K,V,Void> {
4879 <        final Action<K> action;
4879 >        final Consumer<? super K> action;
4880          ForEachKeyTask
4881 <            (ConcurrentHashMap<K,V> m,
4882 <             Action<K> action) {
4883 <            super(m);
4952 <            this.action = action;
4953 <        }
4954 <        ForEachKeyTask
4955 <            (BulkTask<K,V,?> p, int b, boolean split,
4956 <             Action<K> action) {
4957 <            super(p, b, split);
4881 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4882 >             Consumer<? super K> action) {
4883 >            super(p, b, i, f, t);
4884              this.action = action;
4885          }
4886          public final void compute() {
4887 <            final Action<K> action = this.action;
4888 <            if (action == null)
4889 <                throw new Error(NullFunctionMessage);
4890 <            int b = batch(), c;
4891 <            while (b > 1 && baseIndex != baseLimit) {
4892 <                do {} while (!casPending(c = pending, c+1));
4893 <                new ForEachKeyTask<K,V>(this, b >>>= 1, true, action).fork();
4894 <            }
4895 <            while (advance() != null)
4896 <                action.apply((K)nextKey);
4897 <            tryComplete();
4887 >            final Consumer<? super K> action;
4888 >            if ((action = this.action) != null) {
4889 >                for (int i = baseIndex, f, h; batch > 0 &&
4890 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4891 >                    addToPendingCount(1);
4892 >                    new ForEachKeyTask<K,V>
4893 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4894 >                         action).fork();
4895 >                }
4896 >                for (Node<K,V> p; (p = advance()) != null;)
4897 >                    action.accept(p.key);
4898 >                propagateCompletion();
4899 >            }
4900          }
4901      }
4902  
4903 +    @SuppressWarnings("serial")
4904      static final class ForEachValueTask<K,V>
4905          extends BulkTask<K,V,Void> {
4906 <        final Action<V> action;
4978 <        ForEachValueTask
4979 <            (ConcurrentHashMap<K,V> m,
4980 <             Action<V> action) {
4981 <            super(m);
4982 <            this.action = action;
4983 <        }
4906 >        final Consumer<? super V> action;
4907          ForEachValueTask
4908 <            (BulkTask<K,V,?> p, int b, boolean split,
4909 <             Action<V> action) {
4910 <            super(p, b, split);
4908 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4909 >             Consumer<? super V> action) {
4910 >            super(p, b, i, f, t);
4911              this.action = action;
4912          }
4913          public final void compute() {
4914 <            final Action<V> action = this.action;
4915 <            if (action == null)
4916 <                throw new Error(NullFunctionMessage);
4917 <            int b = batch(), c;
4918 <            while (b > 1 && baseIndex != baseLimit) {
4919 <                do {} while (!casPending(c = pending, c+1));
4920 <                new ForEachValueTask<K,V>(this, b >>>= 1, true, action).fork();
4921 <            }
4922 <            Object v;
4923 <            while ((v = advance()) != null)
4924 <                action.apply((V)v);
4925 <            tryComplete();
4914 >            final Consumer<? super V> action;
4915 >            if ((action = this.action) != null) {
4916 >                for (int i = baseIndex, f, h; batch > 0 &&
4917 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4918 >                    addToPendingCount(1);
4919 >                    new ForEachValueTask<K,V>
4920 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4921 >                         action).fork();
4922 >                }
4923 >                for (Node<K,V> p; (p = advance()) != null;)
4924 >                    action.accept(p.val);
4925 >                propagateCompletion();
4926 >            }
4927          }
4928      }
4929  
4930 +    @SuppressWarnings("serial")
4931      static final class ForEachEntryTask<K,V>
4932          extends BulkTask<K,V,Void> {
4933 <        final Action<Entry<K,V>> action;
5009 <        ForEachEntryTask
5010 <            (ConcurrentHashMap<K,V> m,
5011 <             Action<Entry<K,V>> action) {
5012 <            super(m);
5013 <            this.action = action;
5014 <        }
4933 >        final Consumer<? super Entry<K,V>> action;
4934          ForEachEntryTask
4935 <            (BulkTask<K,V,?> p, int b, boolean split,
4936 <             Action<Entry<K,V>> action) {
4937 <            super(p, b, split);
4935 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4936 >             Consumer<? super Entry<K,V>> action) {
4937 >            super(p, b, i, f, t);
4938              this.action = action;
4939          }
4940          public final void compute() {
4941 <            final Action<Entry<K,V>> action = this.action;
4942 <            if (action == null)
4943 <                throw new Error(NullFunctionMessage);
4944 <            int b = batch(), c;
4945 <            while (b > 1 && baseIndex != baseLimit) {
4946 <                do {} while (!casPending(c = pending, c+1));
4947 <                new ForEachEntryTask<K,V>(this, b >>>= 1, true, action).fork();
4948 <            }
4949 <            Object v;
4950 <            while ((v = advance()) != null)
4951 <                action.apply(entryFor((K)nextKey, (V)v));
4952 <            tryComplete();
4941 >            final Consumer<? super Entry<K,V>> action;
4942 >            if ((action = this.action) != null) {
4943 >                for (int i = baseIndex, f, h; batch > 0 &&
4944 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4945 >                    addToPendingCount(1);
4946 >                    new ForEachEntryTask<K,V>
4947 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4948 >                         action).fork();
4949 >                }
4950 >                for (Node<K,V> p; (p = advance()) != null; )
4951 >                    action.accept(p);
4952 >                propagateCompletion();
4953 >            }
4954          }
4955      }
4956  
4957 +    @SuppressWarnings("serial")
4958      static final class ForEachMappingTask<K,V>
4959          extends BulkTask<K,V,Void> {
4960 <        final BiAction<K,V> action;
5040 <        ForEachMappingTask
5041 <            (ConcurrentHashMap<K,V> m,
5042 <             BiAction<K,V> action) {
5043 <            super(m);
5044 <            this.action = action;
5045 <        }
4960 >        final BiConsumer<? super K, ? super V> action;
4961          ForEachMappingTask
4962 <            (BulkTask<K,V,?> p, int b, boolean split,
4963 <             BiAction<K,V> action) {
4964 <            super(p, b, split);
4962 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4963 >             BiConsumer<? super K,? super V> action) {
4964 >            super(p, b, i, f, t);
4965              this.action = action;
4966          }
5052
4967          public final void compute() {
4968 <            final BiAction<K,V> action = this.action;
4969 <            if (action == null)
4970 <                throw new Error(NullFunctionMessage);
4971 <            int b = batch(), c;
4972 <            while (b > 1 && baseIndex != baseLimit) {
4973 <                do {} while (!casPending(c = pending, c+1));
4974 <                new ForEachMappingTask<K,V>(this, b >>>= 1, true,
4975 <                                            action).fork();
4976 <            }
4977 <            Object v;
4978 <            while ((v = advance()) != null)
4979 <                action.apply((K)nextKey, (V)v);
4980 <            tryComplete();
4968 >            final BiConsumer<? super K, ? super V> action;
4969 >            if ((action = this.action) != null) {
4970 >                for (int i = baseIndex, f, h; batch > 0 &&
4971 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4972 >                    addToPendingCount(1);
4973 >                    new ForEachMappingTask<K,V>
4974 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4975 >                         action).fork();
4976 >                }
4977 >                for (Node<K,V> p; (p = advance()) != null; )
4978 >                    action.accept(p.key, p.val);
4979 >                propagateCompletion();
4980 >            }
4981          }
4982      }
4983  
4984 +    @SuppressWarnings("serial")
4985      static final class ForEachTransformedKeyTask<K,V,U>
4986          extends BulkTask<K,V,Void> {
4987 <        final Fun<? super K, ? extends U> transformer;
4988 <        final Action<U> action;
4987 >        final Function<? super K, ? extends U> transformer;
4988 >        final Consumer<? super U> action;
4989          ForEachTransformedKeyTask
4990 <            (ConcurrentHashMap<K,V> m,
4991 <             Fun<? super K, ? extends U> transformer,
4992 <             Action<U> action) {
4993 <            super(m);
5079 <            this.transformer = transformer;
5080 <            this.action = action;
5081 <
5082 <        }
5083 <        ForEachTransformedKeyTask
5084 <            (BulkTask<K,V,?> p, int b, boolean split,
5085 <             Fun<? super K, ? extends U> transformer,
5086 <             Action<U> action) {
5087 <            super(p, b, split);
5088 <            this.transformer = transformer;
5089 <            this.action = action;
4990 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4991 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4992 >            super(p, b, i, f, t);
4993 >            this.transformer = transformer; this.action = action;
4994          }
4995          public final void compute() {
4996 <            final Fun<? super K, ? extends U> transformer =
4997 <                this.transformer;
4998 <            final Action<U> action = this.action;
4999 <            if (transformer == null || action == null)
5000 <                throw new Error(NullFunctionMessage);
5001 <            int b = batch(), c;
5002 <            while (b > 1 && baseIndex != baseLimit) {
5003 <                do {} while (!casPending(c = pending, c+1));
5004 <                new ForEachTransformedKeyTask<K,V,U>
5005 <                    (this, b >>>= 1, true, transformer, action).fork();
5006 <            }
5007 <            U u;
5008 <            while (advance() != null) {
5009 <                if ((u = transformer.apply((K)nextKey)) != null)
5010 <                    action.apply(u);
4996 >            final Function<? super K, ? extends U> transformer;
4997 >            final Consumer<? super U> action;
4998 >            if ((transformer = this.transformer) != null &&
4999 >                (action = this.action) != null) {
5000 >                for (int i = baseIndex, f, h; batch > 0 &&
5001 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5002 >                    addToPendingCount(1);
5003 >                    new ForEachTransformedKeyTask<K,V,U>
5004 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5005 >                         transformer, action).fork();
5006 >                }
5007 >                for (Node<K,V> p; (p = advance()) != null; ) {
5008 >                    U u;
5009 >                    if ((u = transformer.apply(p.key)) != null)
5010 >                        action.accept(u);
5011 >                }
5012 >                propagateCompletion();
5013              }
5108            tryComplete();
5014          }
5015      }
5016  
5017 +    @SuppressWarnings("serial")
5018      static final class ForEachTransformedValueTask<K,V,U>
5019          extends BulkTask<K,V,Void> {
5020 <        final Fun<? super V, ? extends U> transformer;
5021 <        final Action<U> action;
5020 >        final Function<? super V, ? extends U> transformer;
5021 >        final Consumer<? super U> action;
5022          ForEachTransformedValueTask
5023 <            (ConcurrentHashMap<K,V> m,
5024 <             Fun<? super V, ? extends U> transformer,
5025 <             Action<U> action) {
5026 <            super(m);
5121 <            this.transformer = transformer;
5122 <            this.action = action;
5123 <
5124 <        }
5125 <        ForEachTransformedValueTask
5126 <            (BulkTask<K,V,?> p, int b, boolean split,
5127 <             Fun<? super V, ? extends U> transformer,
5128 <             Action<U> action) {
5129 <            super(p, b, split);
5130 <            this.transformer = transformer;
5131 <            this.action = action;
5023 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5024 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5025 >            super(p, b, i, f, t);
5026 >            this.transformer = transformer; this.action = action;
5027          }
5028          public final void compute() {
5029 <            final Fun<? super V, ? extends U> transformer =
5030 <                this.transformer;
5031 <            final Action<U> action = this.action;
5032 <            if (transformer == null || action == null)
5033 <                throw new Error(NullFunctionMessage);
5034 <            int b = batch(), c;
5035 <            while (b > 1 && baseIndex != baseLimit) {
5036 <                do {} while (!casPending(c = pending, c+1));
5037 <                new ForEachTransformedValueTask<K,V,U>
5038 <                    (this, b >>>= 1, true, transformer, action).fork();
5039 <            }
5040 <            Object v; U u;
5041 <            while ((v = advance()) != null) {
5042 <                if ((u = transformer.apply((V)v)) != null)
5043 <                    action.apply(u);
5029 >            final Function<? super V, ? extends U> transformer;
5030 >            final Consumer<? super U> action;
5031 >            if ((transformer = this.transformer) != null &&
5032 >                (action = this.action) != null) {
5033 >                for (int i = baseIndex, f, h; batch > 0 &&
5034 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5035 >                    addToPendingCount(1);
5036 >                    new ForEachTransformedValueTask<K,V,U>
5037 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5038 >                         transformer, action).fork();
5039 >                }
5040 >                for (Node<K,V> p; (p = advance()) != null; ) {
5041 >                    U u;
5042 >                    if ((u = transformer.apply(p.val)) != null)
5043 >                        action.accept(u);
5044 >                }
5045 >                propagateCompletion();
5046              }
5150            tryComplete();
5047          }
5048      }
5049  
5050 +    @SuppressWarnings("serial")
5051      static final class ForEachTransformedEntryTask<K,V,U>
5052          extends BulkTask<K,V,Void> {
5053 <        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5054 <        final Action<U> action;
5158 <        ForEachTransformedEntryTask
5159 <            (ConcurrentHashMap<K,V> m,
5160 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5161 <             Action<U> action) {
5162 <            super(m);
5163 <            this.transformer = transformer;
5164 <            this.action = action;
5165 <
5166 <        }
5053 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5054 >        final Consumer<? super U> action;
5055          ForEachTransformedEntryTask
5056 <            (BulkTask<K,V,?> p, int b, boolean split,
5057 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5058 <             Action<U> action) {
5059 <            super(p, b, split);
5172 <            this.transformer = transformer;
5173 <            this.action = action;
5056 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5057 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5058 >            super(p, b, i, f, t);
5059 >            this.transformer = transformer; this.action = action;
5060          }
5061          public final void compute() {
5062 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5063 <                this.transformer;
5064 <            final Action<U> action = this.action;
5065 <            if (transformer == null || action == null)
5066 <                throw new Error(NullFunctionMessage);
5067 <            int b = batch(), c;
5068 <            while (b > 1 && baseIndex != baseLimit) {
5069 <                do {} while (!casPending(c = pending, c+1));
5070 <                new ForEachTransformedEntryTask<K,V,U>
5071 <                    (this, b >>>= 1, true, transformer, action).fork();
5072 <            }
5073 <            Object v; U u;
5074 <            while ((v = advance()) != null) {
5075 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5076 <                    action.apply(u);
5062 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5063 >            final Consumer<? super U> action;
5064 >            if ((transformer = this.transformer) != null &&
5065 >                (action = this.action) != null) {
5066 >                for (int i = baseIndex, f, h; batch > 0 &&
5067 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5068 >                    addToPendingCount(1);
5069 >                    new ForEachTransformedEntryTask<K,V,U>
5070 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5071 >                         transformer, action).fork();
5072 >                }
5073 >                for (Node<K,V> p; (p = advance()) != null; ) {
5074 >                    U u;
5075 >                    if ((u = transformer.apply(p)) != null)
5076 >                        action.accept(u);
5077 >                }
5078 >                propagateCompletion();
5079              }
5192            tryComplete();
5080          }
5081      }
5082  
5083 +    @SuppressWarnings("serial")
5084      static final class ForEachTransformedMappingTask<K,V,U>
5085          extends BulkTask<K,V,Void> {
5086 <        final BiFun<? super K, ? super V, ? extends U> transformer;
5087 <        final Action<U> action;
5200 <        ForEachTransformedMappingTask
5201 <            (ConcurrentHashMap<K,V> m,
5202 <             BiFun<? super K, ? super V, ? extends U> transformer,
5203 <             Action<U> action) {
5204 <            super(m);
5205 <            this.transformer = transformer;
5206 <            this.action = action;
5207 <
5208 <        }
5086 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5087 >        final Consumer<? super U> action;
5088          ForEachTransformedMappingTask
5089 <            (BulkTask<K,V,?> p, int b, boolean split,
5090 <             BiFun<? super K, ? super V, ? extends U> transformer,
5091 <             Action<U> action) {
5092 <            super(p, b, split);
5093 <            this.transformer = transformer;
5215 <            this.action = action;
5089 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5090 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5091 >             Consumer<? super U> action) {
5092 >            super(p, b, i, f, t);
5093 >            this.transformer = transformer; this.action = action;
5094          }
5095          public final void compute() {
5096 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5097 <                this.transformer;
5098 <            final Action<U> action = this.action;
5099 <            if (transformer == null || action == null)
5100 <                throw new Error(NullFunctionMessage);
5101 <            int b = batch(), c;
5102 <            while (b > 1 && baseIndex != baseLimit) {
5103 <                do {} while (!casPending(c = pending, c+1));
5104 <                new ForEachTransformedMappingTask<K,V,U>
5105 <                    (this, b >>>= 1, true, transformer, action).fork();
5106 <            }
5107 <            Object v; U u;
5108 <            while ((v = advance()) != null) {
5109 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5110 <                    action.apply(u);
5096 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5097 >            final Consumer<? super U> action;
5098 >            if ((transformer = this.transformer) != null &&
5099 >                (action = this.action) != null) {
5100 >                for (int i = baseIndex, f, h; batch > 0 &&
5101 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5102 >                    addToPendingCount(1);
5103 >                    new ForEachTransformedMappingTask<K,V,U>
5104 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5105 >                         transformer, action).fork();
5106 >                }
5107 >                for (Node<K,V> p; (p = advance()) != null; ) {
5108 >                    U u;
5109 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5110 >                        action.accept(u);
5111 >                }
5112 >                propagateCompletion();
5113              }
5234            tryComplete();
5114          }
5115      }
5116  
5117 +    @SuppressWarnings("serial")
5118      static final class SearchKeysTask<K,V,U>
5119          extends BulkTask<K,V,U> {
5120 <        final Fun<? super K, ? extends U> searchFunction;
5120 >        final Function<? super K, ? extends U> searchFunction;
5121          final AtomicReference<U> result;
5122          SearchKeysTask
5123 <            (ConcurrentHashMap<K,V> m,
5124 <             Fun<? super K, ? extends U> searchFunction,
5123 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5124 >             Function<? super K, ? extends U> searchFunction,
5125               AtomicReference<U> result) {
5126 <            super(m);
5247 <            this.searchFunction = searchFunction; this.result = result;
5248 <        }
5249 <        SearchKeysTask
5250 <            (BulkTask<K,V,?> p, int b, boolean split,
5251 <             Fun<? super K, ? extends U> searchFunction,
5252 <             AtomicReference<U> result) {
5253 <            super(p, b, split);
5126 >            super(p, b, i, f, t);
5127              this.searchFunction = searchFunction; this.result = result;
5128          }
5129 +        public final U getRawResult() { return result.get(); }
5130          public final void compute() {
5131 <            AtomicReference<U> result = this.result;
5132 <            final Fun<? super K, ? extends U> searchFunction =
5133 <                this.searchFunction;
5134 <            if (searchFunction == null || result == null)
5135 <                throw new Error(NullFunctionMessage);
5136 <            int b = batch(), c;
5137 <            while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5138 <                do {} while (!casPending(c = pending, c+1));
5139 <                new SearchKeysTask<K,V,U>(this, b >>>= 1, true,
5140 <                                          searchFunction, result).fork();
5141 <            }
5142 <            U u;
5143 <            while (result.get() == null && advance() != null) {
5144 <                if ((u = searchFunction.apply((K)nextKey)) != null) {
5145 <                    result.compareAndSet(null, u);
5146 <                    break;
5131 >            final Function<? super K, ? extends U> searchFunction;
5132 >            final AtomicReference<U> result;
5133 >            if ((searchFunction = this.searchFunction) != null &&
5134 >                (result = this.result) != null) {
5135 >                for (int i = baseIndex, f, h; batch > 0 &&
5136 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5137 >                    if (result.get() != null)
5138 >                        return;
5139 >                    addToPendingCount(1);
5140 >                    new SearchKeysTask<K,V,U>
5141 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5142 >                         searchFunction, result).fork();
5143 >                }
5144 >                while (result.get() == null) {
5145 >                    U u;
5146 >                    Node<K,V> p;
5147 >                    if ((p = advance()) == null) {
5148 >                        propagateCompletion();
5149 >                        break;
5150 >                    }
5151 >                    if ((u = searchFunction.apply(p.key)) != null) {
5152 >                        if (result.compareAndSet(null, u))
5153 >                            quietlyCompleteRoot();
5154 >                        break;
5155 >                    }
5156                  }
5157              }
5275            tryComplete();
5158          }
5277        public final U getRawResult() { return result.get(); }
5159      }
5160  
5161 +    @SuppressWarnings("serial")
5162      static final class SearchValuesTask<K,V,U>
5163          extends BulkTask<K,V,U> {
5164 <        final Fun<? super V, ? extends U> searchFunction;
5164 >        final Function<? super V, ? extends U> searchFunction;
5165          final AtomicReference<U> result;
5166          SearchValuesTask
5167 <            (ConcurrentHashMap<K,V> m,
5168 <             Fun<? super V, ? extends U> searchFunction,
5167 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5168 >             Function<? super V, ? extends U> searchFunction,
5169               AtomicReference<U> result) {
5170 <            super(m);
5289 <            this.searchFunction = searchFunction; this.result = result;
5290 <        }
5291 <        SearchValuesTask
5292 <            (BulkTask<K,V,?> p, int b, boolean split,
5293 <             Fun<? super V, ? extends U> searchFunction,
5294 <             AtomicReference<U> result) {
5295 <            super(p, b, split);
5170 >            super(p, b, i, f, t);
5171              this.searchFunction = searchFunction; this.result = result;
5172          }
5173 +        public final U getRawResult() { return result.get(); }
5174          public final void compute() {
5175 <            AtomicReference<U> result = this.result;
5176 <            final Fun<? super V, ? extends U> searchFunction =
5177 <                this.searchFunction;
5178 <            if (searchFunction == null || result == null)
5179 <                throw new Error(NullFunctionMessage);
5180 <            int b = batch(), c;
5181 <            while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5182 <                do {} while (!casPending(c = pending, c+1));
5183 <                new SearchValuesTask<K,V,U>(this, b >>>= 1, true,
5184 <                                            searchFunction, result).fork();
5185 <            }
5186 <            Object v; U u;
5187 <            while (result.get() == null && (v = advance()) != null) {
5188 <                if ((u = searchFunction.apply((V)v)) != null) {
5189 <                    result.compareAndSet(null, u);
5190 <                    break;
5175 >            final Function<? super V, ? extends U> searchFunction;
5176 >            final AtomicReference<U> result;
5177 >            if ((searchFunction = this.searchFunction) != null &&
5178 >                (result = this.result) != null) {
5179 >                for (int i = baseIndex, f, h; batch > 0 &&
5180 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5181 >                    if (result.get() != null)
5182 >                        return;
5183 >                    addToPendingCount(1);
5184 >                    new SearchValuesTask<K,V,U>
5185 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5186 >                         searchFunction, result).fork();
5187 >                }
5188 >                while (result.get() == null) {
5189 >                    U u;
5190 >                    Node<K,V> p;
5191 >                    if ((p = advance()) == null) {
5192 >                        propagateCompletion();
5193 >                        break;
5194 >                    }
5195 >                    if ((u = searchFunction.apply(p.val)) != null) {
5196 >                        if (result.compareAndSet(null, u))
5197 >                            quietlyCompleteRoot();
5198 >                        break;
5199 >                    }
5200                  }
5201              }
5317            tryComplete();
5202          }
5319        public final U getRawResult() { return result.get(); }
5203      }
5204  
5205 +    @SuppressWarnings("serial")
5206      static final class SearchEntriesTask<K,V,U>
5207          extends BulkTask<K,V,U> {
5208 <        final Fun<Entry<K,V>, ? extends U> searchFunction;
5208 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5209          final AtomicReference<U> result;
5210          SearchEntriesTask
5211 <            (ConcurrentHashMap<K,V> m,
5212 <             Fun<Entry<K,V>, ? extends U> searchFunction,
5211 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5212 >             Function<Entry<K,V>, ? extends U> searchFunction,
5213               AtomicReference<U> result) {
5214 <            super(m);
5331 <            this.searchFunction = searchFunction; this.result = result;
5332 <        }
5333 <        SearchEntriesTask
5334 <            (BulkTask<K,V,?> p, int b, boolean split,
5335 <             Fun<Entry<K,V>, ? extends U> searchFunction,
5336 <             AtomicReference<U> result) {
5337 <            super(p, b, split);
5214 >            super(p, b, i, f, t);
5215              this.searchFunction = searchFunction; this.result = result;
5216          }
5217 +        public final U getRawResult() { return result.get(); }
5218          public final void compute() {
5219 <            AtomicReference<U> result = this.result;
5220 <            final Fun<Entry<K,V>, ? extends U> searchFunction =
5221 <                this.searchFunction;
5222 <            if (searchFunction == null || result == null)
5223 <                throw new Error(NullFunctionMessage);
5224 <            int b = batch(), c;
5225 <            while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5226 <                do {} while (!casPending(c = pending, c+1));
5227 <                new SearchEntriesTask<K,V,U>(this, b >>>= 1, true,
5228 <                                             searchFunction, result).fork();
5229 <            }
5230 <            Object v; U u;
5231 <            while (result.get() == null && (v = advance()) != null) {
5232 <                if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5233 <                    result.compareAndSet(null, u);
5234 <                    break;
5219 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5220 >            final AtomicReference<U> result;
5221 >            if ((searchFunction = this.searchFunction) != null &&
5222 >                (result = this.result) != null) {
5223 >                for (int i = baseIndex, f, h; batch > 0 &&
5224 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5225 >                    if (result.get() != null)
5226 >                        return;
5227 >                    addToPendingCount(1);
5228 >                    new SearchEntriesTask<K,V,U>
5229 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5230 >                         searchFunction, result).fork();
5231 >                }
5232 >                while (result.get() == null) {
5233 >                    U u;
5234 >                    Node<K,V> p;
5235 >                    if ((p = advance()) == null) {
5236 >                        propagateCompletion();
5237 >                        break;
5238 >                    }
5239 >                    if ((u = searchFunction.apply(p)) != null) {
5240 >                        if (result.compareAndSet(null, u))
5241 >                            quietlyCompleteRoot();
5242 >                        return;
5243 >                    }
5244                  }
5245              }
5359            tryComplete();
5246          }
5361        public final U getRawResult() { return result.get(); }
5247      }
5248  
5249 +    @SuppressWarnings("serial")
5250      static final class SearchMappingsTask<K,V,U>
5251          extends BulkTask<K,V,U> {
5252 <        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5252 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5253          final AtomicReference<U> result;
5254          SearchMappingsTask
5255 <            (ConcurrentHashMap<K,V> m,
5256 <             BiFun<? super K, ? super V, ? extends U> searchFunction,
5255 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5256 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5257               AtomicReference<U> result) {
5258 <            super(m);
5373 <            this.searchFunction = searchFunction; this.result = result;
5374 <        }
5375 <        SearchMappingsTask
5376 <            (BulkTask<K,V,?> p, int b, boolean split,
5377 <             BiFun<? super K, ? super V, ? extends U> searchFunction,
5378 <             AtomicReference<U> result) {
5379 <            super(p, b, split);
5258 >            super(p, b, i, f, t);
5259              this.searchFunction = searchFunction; this.result = result;
5260          }
5261 +        public final U getRawResult() { return result.get(); }
5262          public final void compute() {
5263 <            AtomicReference<U> result = this.result;
5264 <            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5265 <                this.searchFunction;
5266 <            if (searchFunction == null || result == null)
5267 <                throw new Error(NullFunctionMessage);
5268 <            int b = batch(), c;
5269 <            while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5270 <                do {} while (!casPending(c = pending, c+1));
5271 <                new SearchMappingsTask<K,V,U>(this, b >>>= 1, true,
5272 <                                              searchFunction, result).fork();
5273 <            }
5274 <            Object v; U u;
5275 <            while (result.get() == null && (v = advance()) != null) {
5276 <                if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5277 <                    result.compareAndSet(null, u);
5278 <                    break;
5263 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5264 >            final AtomicReference<U> result;
5265 >            if ((searchFunction = this.searchFunction) != null &&
5266 >                (result = this.result) != null) {
5267 >                for (int i = baseIndex, f, h; batch > 0 &&
5268 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5269 >                    if (result.get() != null)
5270 >                        return;
5271 >                    addToPendingCount(1);
5272 >                    new SearchMappingsTask<K,V,U>
5273 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5274 >                         searchFunction, result).fork();
5275 >                }
5276 >                while (result.get() == null) {
5277 >                    U u;
5278 >                    Node<K,V> p;
5279 >                    if ((p = advance()) == null) {
5280 >                        propagateCompletion();
5281 >                        break;
5282 >                    }
5283 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5284 >                        if (result.compareAndSet(null, u))
5285 >                            quietlyCompleteRoot();
5286 >                        break;
5287 >                    }
5288                  }
5289              }
5401            tryComplete();
5290          }
5403        public final U getRawResult() { return result.get(); }
5291      }
5292  
5293 +    @SuppressWarnings("serial")
5294      static final class ReduceKeysTask<K,V>
5295          extends BulkTask<K,V,K> {
5296 <        final BiFun<? super K, ? super K, ? extends K> reducer;
5296 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5297          K result;
5298 <        ReduceKeysTask<K,V> sibling;
5298 >        ReduceKeysTask<K,V> rights, nextRight;
5299          ReduceKeysTask
5300 <            (ConcurrentHashMap<K,V> m,
5301 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5302 <            super(m);
5300 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5301 >             ReduceKeysTask<K,V> nextRight,
5302 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5303 >            super(p, b, i, f, t); this.nextRight = nextRight;
5304              this.reducer = reducer;
5305          }
5306 <        ReduceKeysTask
5418 <            (BulkTask<K,V,?> p, int b, boolean split,
5419 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5420 <            super(p, b, split);
5421 <            this.reducer = reducer;
5422 <        }
5423 <
5306 >        public final K getRawResult() { return result; }
5307          public final void compute() {
5308 <            ReduceKeysTask<K,V> t = this;
5309 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5310 <                this.reducer;
5311 <            if (reducer == null)
5312 <                throw new Error(NullFunctionMessage);
5313 <            int b = batch();
5314 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5315 <                b >>>= 1;
5316 <                t.pending = 1;
5317 <                ReduceKeysTask<K,V> rt =
5318 <                    new ReduceKeysTask<K,V>
5319 <                    (t, b, true, reducer);
5320 <                t = new ReduceKeysTask<K,V>
5321 <                    (t, b, false, reducer);
5322 <                t.sibling = rt;
5323 <                rt.sibling = t;
5324 <                rt.fork();
5325 <            }
5326 <            K r = null;
5327 <            while (t.advance() != null) {
5328 <                K u = (K)t.nextKey;
5329 <                r = (r == null) ? u : reducer.apply(r, u);
5330 <            }
5331 <            t.result = r;
5332 <            for (;;) {
5333 <                int c; BulkTask<K,V,?> par; ReduceKeysTask<K,V> s, p; K u;
5334 <                if ((par = t.parent) == null ||
5335 <                    !(par instanceof ReduceKeysTask)) {
5453 <                    t.quietlyComplete();
5454 <                    break;
5455 <                }
5456 <                else if ((c = (p = (ReduceKeysTask<K,V>)par).pending) == 0) {
5457 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5458 <                        r = (r == null) ? u : reducer.apply(r, u);
5459 <                    (t = p).result = r;
5308 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5309 >            if ((reducer = this.reducer) != null) {
5310 >                for (int i = baseIndex, f, h; batch > 0 &&
5311 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5312 >                    addToPendingCount(1);
5313 >                    (rights = new ReduceKeysTask<K,V>
5314 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5315 >                      rights, reducer)).fork();
5316 >                }
5317 >                K r = null;
5318 >                for (Node<K,V> p; (p = advance()) != null; ) {
5319 >                    K u = p.key;
5320 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5321 >                }
5322 >                result = r;
5323 >                CountedCompleter<?> c;
5324 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5325 >                    @SuppressWarnings("unchecked")
5326 >                    ReduceKeysTask<K,V>
5327 >                        t = (ReduceKeysTask<K,V>)c,
5328 >                        s = t.rights;
5329 >                    while (s != null) {
5330 >                        K tr, sr;
5331 >                        if ((sr = s.result) != null)
5332 >                            t.result = (((tr = t.result) == null) ? sr :
5333 >                                        reducer.apply(tr, sr));
5334 >                        s = t.rights = s.nextRight;
5335 >                    }
5336                  }
5461                else if (p.casPending(c, 0))
5462                    break;
5337              }
5338          }
5465        public final K getRawResult() { return result; }
5339      }
5340  
5341 +    @SuppressWarnings("serial")
5342      static final class ReduceValuesTask<K,V>
5343          extends BulkTask<K,V,V> {
5344 <        final BiFun<? super V, ? super V, ? extends V> reducer;
5344 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5345          V result;
5346 <        ReduceValuesTask<K,V> sibling;
5346 >        ReduceValuesTask<K,V> rights, nextRight;
5347          ReduceValuesTask
5348 <            (ConcurrentHashMap<K,V> m,
5349 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5350 <            super(m);
5348 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5349 >             ReduceValuesTask<K,V> nextRight,
5350 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5351 >            super(p, b, i, f, t); this.nextRight = nextRight;
5352              this.reducer = reducer;
5353          }
5354 <        ReduceValuesTask
5480 <            (BulkTask<K,V,?> p, int b, boolean split,
5481 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5482 <            super(p, b, split);
5483 <            this.reducer = reducer;
5484 <        }
5485 <
5354 >        public final V getRawResult() { return result; }
5355          public final void compute() {
5356 <            ReduceValuesTask<K,V> t = this;
5357 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5358 <                this.reducer;
5359 <            if (reducer == null)
5360 <                throw new Error(NullFunctionMessage);
5361 <            int b = batch();
5362 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5363 <                b >>>= 1;
5364 <                t.pending = 1;
5365 <                ReduceValuesTask<K,V> rt =
5366 <                    new ReduceValuesTask<K,V>
5367 <                    (t, b, true, reducer);
5368 <                t = new ReduceValuesTask<K,V>
5369 <                    (t, b, false, reducer);
5370 <                t.sibling = rt;
5371 <                rt.sibling = t;
5372 <                rt.fork();
5373 <            }
5374 <            V r = null;
5375 <            Object v;
5376 <            while ((v = t.advance()) != null) {
5377 <                V u = (V)v;
5378 <                r = (r == null) ? u : reducer.apply(r, u);
5379 <            }
5380 <            t.result = r;
5381 <            for (;;) {
5382 <                int c; BulkTask<K,V,?> par; ReduceValuesTask<K,V> s, p; V u;
5383 <                if ((par = t.parent) == null ||
5515 <                    !(par instanceof ReduceValuesTask)) {
5516 <                    t.quietlyComplete();
5517 <                    break;
5518 <                }
5519 <                else if ((c = (p = (ReduceValuesTask<K,V>)par).pending) == 0) {
5520 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5521 <                        r = (r == null) ? u : reducer.apply(r, u);
5522 <                    (t = p).result = r;
5356 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5357 >            if ((reducer = this.reducer) != null) {
5358 >                for (int i = baseIndex, f, h; batch > 0 &&
5359 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5360 >                    addToPendingCount(1);
5361 >                    (rights = new ReduceValuesTask<K,V>
5362 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5363 >                      rights, reducer)).fork();
5364 >                }
5365 >                V r = null;
5366 >                for (Node<K,V> p; (p = advance()) != null; ) {
5367 >                    V v = p.val;
5368 >                    r = (r == null) ? v : reducer.apply(r, v);
5369 >                }
5370 >                result = r;
5371 >                CountedCompleter<?> c;
5372 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5373 >                    @SuppressWarnings("unchecked")
5374 >                    ReduceValuesTask<K,V>
5375 >                        t = (ReduceValuesTask<K,V>)c,
5376 >                        s = t.rights;
5377 >                    while (s != null) {
5378 >                        V tr, sr;
5379 >                        if ((sr = s.result) != null)
5380 >                            t.result = (((tr = t.result) == null) ? sr :
5381 >                                        reducer.apply(tr, sr));
5382 >                        s = t.rights = s.nextRight;
5383 >                    }
5384                  }
5524                else if (p.casPending(c, 0))
5525                    break;
5385              }
5386          }
5528        public final V getRawResult() { return result; }
5387      }
5388  
5389 +    @SuppressWarnings("serial")
5390      static final class ReduceEntriesTask<K,V>
5391          extends BulkTask<K,V,Map.Entry<K,V>> {
5392 <        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5392 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5393          Map.Entry<K,V> result;
5394 <        ReduceEntriesTask<K,V> sibling;
5536 <        ReduceEntriesTask
5537 <            (ConcurrentHashMap<K,V> m,
5538 <             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5539 <            super(m);
5540 <            this.reducer = reducer;
5541 <        }
5394 >        ReduceEntriesTask<K,V> rights, nextRight;
5395          ReduceEntriesTask
5396 <            (BulkTask<K,V,?> p, int b, boolean split,
5397 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5398 <            super(p, b, split);
5396 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5397 >             ReduceEntriesTask<K,V> nextRight,
5398 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5399 >            super(p, b, i, f, t); this.nextRight = nextRight;
5400              this.reducer = reducer;
5401          }
5402 <
5402 >        public final Map.Entry<K,V> getRawResult() { return result; }
5403          public final void compute() {
5404 <            ReduceEntriesTask<K,V> t = this;
5405 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5406 <                this.reducer;
5407 <            if (reducer == null)
5408 <                throw new Error(NullFunctionMessage);
5409 <            int b = batch();
5410 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5411 <                b >>>= 1;
5412 <                t.pending = 1;
5413 <                ReduceEntriesTask<K,V> rt =
5414 <                    new ReduceEntriesTask<K,V>
5415 <                    (t, b, true, reducer);
5416 <                t = new ReduceEntriesTask<K,V>
5417 <                    (t, b, false, reducer);
5418 <                t.sibling = rt;
5419 <                rt.sibling = t;
5420 <                rt.fork();
5421 <            }
5422 <            Map.Entry<K,V> r = null;
5423 <            Object v;
5424 <            while ((v = t.advance()) != null) {
5425 <                Map.Entry<K,V> u = entryFor((K)t.nextKey, (V)v);
5426 <                r = (r == null) ? u : reducer.apply(r, u);
5427 <            }
5428 <            t.result = r;
5429 <            for (;;) {
5576 <                int c; BulkTask<K,V,?> par; ReduceEntriesTask<K,V> s, p;
5577 <                Map.Entry<K,V> u;
5578 <                if ((par = t.parent) == null ||
5579 <                    !(par instanceof ReduceEntriesTask)) {
5580 <                    t.quietlyComplete();
5581 <                    break;
5582 <                }
5583 <                else if ((c = (p = (ReduceEntriesTask<K,V>)par).pending) == 0) {
5584 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5585 <                        r = (r == null) ? u : reducer.apply(r, u);
5586 <                    (t = p).result = r;
5404 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5405 >            if ((reducer = this.reducer) != null) {
5406 >                for (int i = baseIndex, f, h; batch > 0 &&
5407 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5408 >                    addToPendingCount(1);
5409 >                    (rights = new ReduceEntriesTask<K,V>
5410 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5411 >                      rights, reducer)).fork();
5412 >                }
5413 >                Map.Entry<K,V> r = null;
5414 >                for (Node<K,V> p; (p = advance()) != null; )
5415 >                    r = (r == null) ? p : reducer.apply(r, p);
5416 >                result = r;
5417 >                CountedCompleter<?> c;
5418 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5419 >                    @SuppressWarnings("unchecked")
5420 >                    ReduceEntriesTask<K,V>
5421 >                        t = (ReduceEntriesTask<K,V>)c,
5422 >                        s = t.rights;
5423 >                    while (s != null) {
5424 >                        Map.Entry<K,V> tr, sr;
5425 >                        if ((sr = s.result) != null)
5426 >                            t.result = (((tr = t.result) == null) ? sr :
5427 >                                        reducer.apply(tr, sr));
5428 >                        s = t.rights = s.nextRight;
5429 >                    }
5430                  }
5588                else if (p.casPending(c, 0))
5589                    break;
5431              }
5432          }
5592        public final Map.Entry<K,V> getRawResult() { return result; }
5433      }
5434  
5435 +    @SuppressWarnings("serial")
5436      static final class MapReduceKeysTask<K,V,U>
5437          extends BulkTask<K,V,U> {
5438 <        final Fun<? super K, ? extends U> transformer;
5439 <        final BiFun<? super U, ? super U, ? extends U> reducer;
5438 >        final Function<? super K, ? extends U> transformer;
5439 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5440          U result;
5441 <        MapReduceKeysTask<K,V,U> sibling;
5441 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5442          MapReduceKeysTask
5443 <            (ConcurrentHashMap<K,V> m,
5444 <             Fun<? super K, ? extends U> transformer,
5445 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5446 <            super(m);
5447 <            this.transformer = transformer;
5607 <            this.reducer = reducer;
5608 <        }
5609 <        MapReduceKeysTask
5610 <            (BulkTask<K,V,?> p, int b, boolean split,
5611 <             Fun<? super K, ? extends U> transformer,
5612 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5613 <            super(p, b, split);
5443 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5444 >             MapReduceKeysTask<K,V,U> nextRight,
5445 >             Function<? super K, ? extends U> transformer,
5446 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5447 >            super(p, b, i, f, t); this.nextRight = nextRight;
5448              this.transformer = transformer;
5449              this.reducer = reducer;
5450          }
5451 +        public final U getRawResult() { return result; }
5452          public final void compute() {
5453 <            MapReduceKeysTask<K,V,U> t = this;
5454 <            final Fun<? super K, ? extends U> transformer =
5455 <                this.transformer;
5456 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5457 <                this.reducer;
5458 <            if (transformer == null || reducer == null)
5459 <                throw new Error(NullFunctionMessage);
5460 <            int b = batch();
5461 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5462 <                b >>>= 1;
5463 <                t.pending = 1;
5464 <                MapReduceKeysTask<K,V,U> rt =
5465 <                    new MapReduceKeysTask<K,V,U>
5466 <                    (t, b, true, transformer, reducer);
5467 <                t = new MapReduceKeysTask<K,V,U>
5633 <                    (t, b, false, transformer, reducer);
5634 <                t.sibling = rt;
5635 <                rt.sibling = t;
5636 <                rt.fork();
5637 <            }
5638 <            U r = null, u;
5639 <            while (t.advance() != null) {
5640 <                if ((u = transformer.apply((K)t.nextKey)) != null)
5641 <                    r = (r == null) ? u : reducer.apply(r, u);
5642 <            }
5643 <            t.result = r;
5644 <            for (;;) {
5645 <                int c; BulkTask<K,V,?> par; MapReduceKeysTask<K,V,U> s, p;
5646 <                if ((par = t.parent) == null ||
5647 <                    !(par instanceof MapReduceKeysTask)) {
5648 <                    t.quietlyComplete();
5649 <                    break;
5650 <                }
5651 <                else if ((c = (p = (MapReduceKeysTask<K,V,U>)par).pending) == 0) {
5652 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5453 >            final Function<? super K, ? extends U> transformer;
5454 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5455 >            if ((transformer = this.transformer) != null &&
5456 >                (reducer = this.reducer) != null) {
5457 >                for (int i = baseIndex, f, h; batch > 0 &&
5458 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5459 >                    addToPendingCount(1);
5460 >                    (rights = new MapReduceKeysTask<K,V,U>
5461 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5462 >                      rights, transformer, reducer)).fork();
5463 >                }
5464 >                U r = null;
5465 >                for (Node<K,V> p; (p = advance()) != null; ) {
5466 >                    U u;
5467 >                    if ((u = transformer.apply(p.key)) != null)
5468                          r = (r == null) ? u : reducer.apply(r, u);
5654                    (t = p).result = r;
5469                  }
5470 <                else if (p.casPending(c, 0))
5471 <                    break;
5470 >                result = r;
5471 >                CountedCompleter<?> c;
5472 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5473 >                    @SuppressWarnings("unchecked")
5474 >                    MapReduceKeysTask<K,V,U>
5475 >                        t = (MapReduceKeysTask<K,V,U>)c,
5476 >                        s = t.rights;
5477 >                    while (s != null) {
5478 >                        U tr, sr;
5479 >                        if ((sr = s.result) != null)
5480 >                            t.result = (((tr = t.result) == null) ? sr :
5481 >                                        reducer.apply(tr, sr));
5482 >                        s = t.rights = s.nextRight;
5483 >                    }
5484 >                }
5485              }
5486          }
5660        public final U getRawResult() { return result; }
5487      }
5488  
5489 +    @SuppressWarnings("serial")
5490      static final class MapReduceValuesTask<K,V,U>
5491          extends BulkTask<K,V,U> {
5492 <        final Fun<? super V, ? extends U> transformer;
5493 <        final BiFun<? super U, ? super U, ? extends U> reducer;
5492 >        final Function<? super V, ? extends U> transformer;
5493 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5494          U result;
5495 <        MapReduceValuesTask<K,V,U> sibling;
5669 <        MapReduceValuesTask
5670 <            (ConcurrentHashMap<K,V> m,
5671 <             Fun<? super V, ? extends U> transformer,
5672 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5673 <            super(m);
5674 <            this.transformer = transformer;
5675 <            this.reducer = reducer;
5676 <        }
5495 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5496          MapReduceValuesTask
5497 <            (BulkTask<K,V,?> p, int b, boolean split,
5498 <             Fun<? super V, ? extends U> transformer,
5499 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5500 <            super(p, b, split);
5497 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5498 >             MapReduceValuesTask<K,V,U> nextRight,
5499 >             Function<? super V, ? extends U> transformer,
5500 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5501 >            super(p, b, i, f, t); this.nextRight = nextRight;
5502              this.transformer = transformer;
5503              this.reducer = reducer;
5504          }
5505 +        public final U getRawResult() { return result; }
5506          public final void compute() {
5507 <            MapReduceValuesTask<K,V,U> t = this;
5508 <            final Fun<? super V, ? extends U> transformer =
5509 <                this.transformer;
5510 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5511 <                this.reducer;
5512 <            if (transformer == null || reducer == null)
5513 <                throw new Error(NullFunctionMessage);
5514 <            int b = batch();
5515 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5516 <                b >>>= 1;
5517 <                t.pending = 1;
5518 <                MapReduceValuesTask<K,V,U> rt =
5519 <                    new MapReduceValuesTask<K,V,U>
5520 <                    (t, b, true, transformer, reducer);
5521 <                t = new MapReduceValuesTask<K,V,U>
5701 <                    (t, b, false, transformer, reducer);
5702 <                t.sibling = rt;
5703 <                rt.sibling = t;
5704 <                rt.fork();
5705 <            }
5706 <            U r = null, u;
5707 <            Object v;
5708 <            while ((v = t.advance()) != null) {
5709 <                if ((u = transformer.apply((V)v)) != null)
5710 <                    r = (r == null) ? u : reducer.apply(r, u);
5711 <            }
5712 <            t.result = r;
5713 <            for (;;) {
5714 <                int c; BulkTask<K,V,?> par; MapReduceValuesTask<K,V,U> s, p;
5715 <                if ((par = t.parent) == null ||
5716 <                    !(par instanceof MapReduceValuesTask)) {
5717 <                    t.quietlyComplete();
5718 <                    break;
5719 <                }
5720 <                else if ((c = (p = (MapReduceValuesTask<K,V,U>)par).pending) == 0) {
5721 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5507 >            final Function<? super V, ? extends U> transformer;
5508 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5509 >            if ((transformer = this.transformer) != null &&
5510 >                (reducer = this.reducer) != null) {
5511 >                for (int i = baseIndex, f, h; batch > 0 &&
5512 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5513 >                    addToPendingCount(1);
5514 >                    (rights = new MapReduceValuesTask<K,V,U>
5515 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5516 >                      rights, transformer, reducer)).fork();
5517 >                }
5518 >                U r = null;
5519 >                for (Node<K,V> p; (p = advance()) != null; ) {
5520 >                    U u;
5521 >                    if ((u = transformer.apply(p.val)) != null)
5522                          r = (r == null) ? u : reducer.apply(r, u);
5723                    (t = p).result = r;
5523                  }
5524 <                else if (p.casPending(c, 0))
5525 <                    break;
5524 >                result = r;
5525 >                CountedCompleter<?> c;
5526 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5527 >                    @SuppressWarnings("unchecked")
5528 >                    MapReduceValuesTask<K,V,U>
5529 >                        t = (MapReduceValuesTask<K,V,U>)c,
5530 >                        s = t.rights;
5531 >                    while (s != null) {
5532 >                        U tr, sr;
5533 >                        if ((sr = s.result) != null)
5534 >                            t.result = (((tr = t.result) == null) ? sr :
5535 >                                        reducer.apply(tr, sr));
5536 >                        s = t.rights = s.nextRight;
5537 >                    }
5538 >                }
5539              }
5540          }
5729        public final U getRawResult() { return result; }
5541      }
5542  
5543 +    @SuppressWarnings("serial")
5544      static final class MapReduceEntriesTask<K,V,U>
5545          extends BulkTask<K,V,U> {
5546 <        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5547 <        final BiFun<? super U, ? super U, ? extends U> reducer;
5546 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5547 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5548          U result;
5549 <        MapReduceEntriesTask<K,V,U> sibling;
5549 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5550          MapReduceEntriesTask
5551 <            (ConcurrentHashMap<K,V> m,
5552 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5553 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5554 <            super(m);
5555 <            this.transformer = transformer;
5744 <            this.reducer = reducer;
5745 <        }
5746 <        MapReduceEntriesTask
5747 <            (BulkTask<K,V,?> p, int b, boolean split,
5748 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5749 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5750 <            super(p, b, split);
5551 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5552 >             MapReduceEntriesTask<K,V,U> nextRight,
5553 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5554 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5555 >            super(p, b, i, f, t); this.nextRight = nextRight;
5556              this.transformer = transformer;
5557              this.reducer = reducer;
5558          }
5559 +        public final U getRawResult() { return result; }
5560          public final void compute() {
5561 <            MapReduceEntriesTask<K,V,U> t = this;
5562 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5563 <                this.transformer;
5564 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5565 <                this.reducer;
5566 <            if (transformer == null || reducer == null)
5567 <                throw new Error(NullFunctionMessage);
5568 <            int b = batch();
5569 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5570 <                b >>>= 1;
5571 <                t.pending = 1;
5572 <                MapReduceEntriesTask<K,V,U> rt =
5573 <                    new MapReduceEntriesTask<K,V,U>
5574 <                    (t, b, true, transformer, reducer);
5575 <                t = new MapReduceEntriesTask<K,V,U>
5770 <                    (t, b, false, transformer, reducer);
5771 <                t.sibling = rt;
5772 <                rt.sibling = t;
5773 <                rt.fork();
5774 <            }
5775 <            U r = null, u;
5776 <            Object v;
5777 <            while ((v = t.advance()) != null) {
5778 <                if ((u = transformer.apply(entryFor((K)t.nextKey, (V)v))) != null)
5779 <                    r = (r == null) ? u : reducer.apply(r, u);
5780 <            }
5781 <            t.result = r;
5782 <            for (;;) {
5783 <                int c; BulkTask<K,V,?> par; MapReduceEntriesTask<K,V,U> s, p;
5784 <                if ((par = t.parent) == null ||
5785 <                    !(par instanceof MapReduceEntriesTask)) {
5786 <                    t.quietlyComplete();
5787 <                    break;
5788 <                }
5789 <                else if ((c = (p = (MapReduceEntriesTask<K,V,U>)par).pending) == 0) {
5790 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5561 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5562 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5563 >            if ((transformer = this.transformer) != null &&
5564 >                (reducer = this.reducer) != null) {
5565 >                for (int i = baseIndex, f, h; batch > 0 &&
5566 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5567 >                    addToPendingCount(1);
5568 >                    (rights = new MapReduceEntriesTask<K,V,U>
5569 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5570 >                      rights, transformer, reducer)).fork();
5571 >                }
5572 >                U r = null;
5573 >                for (Node<K,V> p; (p = advance()) != null; ) {
5574 >                    U u;
5575 >                    if ((u = transformer.apply(p)) != null)
5576                          r = (r == null) ? u : reducer.apply(r, u);
5792                    (t = p).result = r;
5577                  }
5578 <                else if (p.casPending(c, 0))
5579 <                    break;
5578 >                result = r;
5579 >                CountedCompleter<?> c;
5580 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5581 >                    @SuppressWarnings("unchecked")
5582 >                    MapReduceEntriesTask<K,V,U>
5583 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5584 >                        s = t.rights;
5585 >                    while (s != null) {
5586 >                        U tr, sr;
5587 >                        if ((sr = s.result) != null)
5588 >                            t.result = (((tr = t.result) == null) ? sr :
5589 >                                        reducer.apply(tr, sr));
5590 >                        s = t.rights = s.nextRight;
5591 >                    }
5592 >                }
5593              }
5594          }
5798        public final U getRawResult() { return result; }
5595      }
5596  
5597 +    @SuppressWarnings("serial")
5598      static final class MapReduceMappingsTask<K,V,U>
5599          extends BulkTask<K,V,U> {
5600 <        final BiFun<? super K, ? super V, ? extends U> transformer;
5601 <        final BiFun<? super U, ? super U, ? extends U> reducer;
5600 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5601 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5602          U result;
5603 <        MapReduceMappingsTask<K,V,U> sibling;
5603 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5604          MapReduceMappingsTask
5605 <            (ConcurrentHashMap<K,V> m,
5606 <             BiFun<? super K, ? super V, ? extends U> transformer,
5607 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5608 <            super(m);
5609 <            this.transformer = transformer;
5813 <            this.reducer = reducer;
5814 <        }
5815 <        MapReduceMappingsTask
5816 <            (BulkTask<K,V,?> p, int b, boolean split,
5817 <             BiFun<? super K, ? super V, ? extends U> transformer,
5818 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5819 <            super(p, b, split);
5605 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5606 >             MapReduceMappingsTask<K,V,U> nextRight,
5607 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5608 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5609 >            super(p, b, i, f, t); this.nextRight = nextRight;
5610              this.transformer = transformer;
5611              this.reducer = reducer;
5612          }
5613 +        public final U getRawResult() { return result; }
5614          public final void compute() {
5615 <            MapReduceMappingsTask<K,V,U> t = this;
5616 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5617 <                this.transformer;
5618 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5619 <                this.reducer;
5620 <            if (transformer == null || reducer == null)
5621 <                throw new Error(NullFunctionMessage);
5622 <            int b = batch();
5623 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5624 <                b >>>= 1;
5625 <                t.pending = 1;
5626 <                MapReduceMappingsTask<K,V,U> rt =
5627 <                    new MapReduceMappingsTask<K,V,U>
5628 <                    (t, b, true, transformer, reducer);
5629 <                t = new MapReduceMappingsTask<K,V,U>
5839 <                    (t, b, false, transformer, reducer);
5840 <                t.sibling = rt;
5841 <                rt.sibling = t;
5842 <                rt.fork();
5843 <            }
5844 <            U r = null, u;
5845 <            Object v;
5846 <            while ((v = t.advance()) != null) {
5847 <                if ((u = transformer.apply((K)t.nextKey, (V)v)) != null)
5848 <                    r = (r == null) ? u : reducer.apply(r, u);
5849 <            }
5850 <            for (;;) {
5851 <                int c; BulkTask<K,V,?> par; MapReduceMappingsTask<K,V,U> s, p;
5852 <                if ((par = t.parent) == null ||
5853 <                    !(par instanceof MapReduceMappingsTask)) {
5854 <                    t.quietlyComplete();
5855 <                    break;
5856 <                }
5857 <                else if ((c = (p = (MapReduceMappingsTask<K,V,U>)par).pending) == 0) {
5858 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5615 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5616 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5617 >            if ((transformer = this.transformer) != null &&
5618 >                (reducer = this.reducer) != null) {
5619 >                for (int i = baseIndex, f, h; batch > 0 &&
5620 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5621 >                    addToPendingCount(1);
5622 >                    (rights = new MapReduceMappingsTask<K,V,U>
5623 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5624 >                      rights, transformer, reducer)).fork();
5625 >                }
5626 >                U r = null;
5627 >                for (Node<K,V> p; (p = advance()) != null; ) {
5628 >                    U u;
5629 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5630                          r = (r == null) ? u : reducer.apply(r, u);
5860                    (t = p).result = r;
5631                  }
5632 <                else if (p.casPending(c, 0))
5633 <                    break;
5632 >                result = r;
5633 >                CountedCompleter<?> c;
5634 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5635 >                    @SuppressWarnings("unchecked")
5636 >                    MapReduceMappingsTask<K,V,U>
5637 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5638 >                        s = t.rights;
5639 >                    while (s != null) {
5640 >                        U tr, sr;
5641 >                        if ((sr = s.result) != null)
5642 >                            t.result = (((tr = t.result) == null) ? sr :
5643 >                                        reducer.apply(tr, sr));
5644 >                        s = t.rights = s.nextRight;
5645 >                    }
5646 >                }
5647              }
5648          }
5866        public final U getRawResult() { return result; }
5649      }
5650  
5651 +    @SuppressWarnings("serial")
5652      static final class MapReduceKeysToDoubleTask<K,V>
5653          extends BulkTask<K,V,Double> {
5654 <        final ObjectToDouble<? super K> transformer;
5655 <        final DoubleByDoubleToDouble reducer;
5654 >        final ToDoubleFunction<? super K> transformer;
5655 >        final DoubleBinaryOperator reducer;
5656          final double basis;
5657          double result;
5658 <        MapReduceKeysToDoubleTask<K,V> sibling;
5876 <        MapReduceKeysToDoubleTask
5877 <            (ConcurrentHashMap<K,V> m,
5878 <             ObjectToDouble<? super K> transformer,
5879 <             double basis,
5880 <             DoubleByDoubleToDouble reducer) {
5881 <            super(m);
5882 <            this.transformer = transformer;
5883 <            this.basis = basis; this.reducer = reducer;
5884 <        }
5658 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5659          MapReduceKeysToDoubleTask
5660 <            (BulkTask<K,V,?> p, int b, boolean split,
5661 <             ObjectToDouble<? super K> transformer,
5660 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5661 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5662 >             ToDoubleFunction<? super K> transformer,
5663               double basis,
5664 <             DoubleByDoubleToDouble reducer) {
5665 <            super(p, b, split);
5664 >             DoubleBinaryOperator reducer) {
5665 >            super(p, b, i, f, t); this.nextRight = nextRight;
5666              this.transformer = transformer;
5667              this.basis = basis; this.reducer = reducer;
5668          }
5669 +        public final Double getRawResult() { return result; }
5670          public final void compute() {
5671 <            MapReduceKeysToDoubleTask<K,V> t = this;
5672 <            final ObjectToDouble<? super K> transformer =
5673 <                this.transformer;
5674 <            final DoubleByDoubleToDouble reducer = this.reducer;
5675 <            if (transformer == null || reducer == null)
5676 <                throw new Error(NullFunctionMessage);
5677 <            final double id = this.basis;
5678 <            int b = batch();
5679 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5680 <                b >>>= 1;
5681 <                t.pending = 1;
5682 <                MapReduceKeysToDoubleTask<K,V> rt =
5683 <                    new MapReduceKeysToDoubleTask<K,V>
5684 <                    (t, b, true, transformer, id, reducer);
5685 <                t = new MapReduceKeysToDoubleTask<K,V>
5686 <                    (t, b, false, transformer, id, reducer);
5687 <                t.sibling = rt;
5688 <                rt.sibling = t;
5689 <                rt.fork();
5690 <            }
5691 <            double r = id;
5692 <            while (t.advance() != null)
5693 <                r = reducer.apply(r, transformer.apply((K)t.nextKey));
5694 <            t.result = r;
5695 <            for (;;) {
5920 <                int c; BulkTask<K,V,?> par; MapReduceKeysToDoubleTask<K,V> s, p;
5921 <                if ((par = t.parent) == null ||
5922 <                    !(par instanceof MapReduceKeysToDoubleTask)) {
5923 <                    t.quietlyComplete();
5924 <                    break;
5925 <                }
5926 <                else if ((c = (p = (MapReduceKeysToDoubleTask<K,V>)par).pending) == 0) {
5927 <                    if ((s = t.sibling) != null)
5928 <                        r = reducer.apply(r, s.result);
5929 <                    (t = p).result = r;
5671 >            final ToDoubleFunction<? super K> transformer;
5672 >            final DoubleBinaryOperator reducer;
5673 >            if ((transformer = this.transformer) != null &&
5674 >                (reducer = this.reducer) != null) {
5675 >                double r = this.basis;
5676 >                for (int i = baseIndex, f, h; batch > 0 &&
5677 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5678 >                    addToPendingCount(1);
5679 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5680 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5681 >                      rights, transformer, r, reducer)).fork();
5682 >                }
5683 >                for (Node<K,V> p; (p = advance()) != null; )
5684 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5685 >                result = r;
5686 >                CountedCompleter<?> c;
5687 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5688 >                    @SuppressWarnings("unchecked")
5689 >                    MapReduceKeysToDoubleTask<K,V>
5690 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5691 >                        s = t.rights;
5692 >                    while (s != null) {
5693 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5694 >                        s = t.rights = s.nextRight;
5695 >                    }
5696                  }
5931                else if (p.casPending(c, 0))
5932                    break;
5697              }
5698          }
5935        public final Double getRawResult() { return result; }
5699      }
5700  
5701 +    @SuppressWarnings("serial")
5702      static final class MapReduceValuesToDoubleTask<K,V>
5703          extends BulkTask<K,V,Double> {
5704 <        final ObjectToDouble<? super V> transformer;
5705 <        final DoubleByDoubleToDouble reducer;
5704 >        final ToDoubleFunction<? super V> transformer;
5705 >        final DoubleBinaryOperator reducer;
5706          final double basis;
5707          double result;
5708 <        MapReduceValuesToDoubleTask<K,V> sibling;
5945 <        MapReduceValuesToDoubleTask
5946 <            (ConcurrentHashMap<K,V> m,
5947 <             ObjectToDouble<? super V> transformer,
5948 <             double basis,
5949 <             DoubleByDoubleToDouble reducer) {
5950 <            super(m);
5951 <            this.transformer = transformer;
5952 <            this.basis = basis; this.reducer = reducer;
5953 <        }
5708 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5709          MapReduceValuesToDoubleTask
5710 <            (BulkTask<K,V,?> p, int b, boolean split,
5711 <             ObjectToDouble<? super V> transformer,
5710 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5711 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5712 >             ToDoubleFunction<? super V> transformer,
5713               double basis,
5714 <             DoubleByDoubleToDouble reducer) {
5715 <            super(p, b, split);
5714 >             DoubleBinaryOperator reducer) {
5715 >            super(p, b, i, f, t); this.nextRight = nextRight;
5716              this.transformer = transformer;
5717              this.basis = basis; this.reducer = reducer;
5718          }
5719 +        public final Double getRawResult() { return result; }
5720          public final void compute() {
5721 <            MapReduceValuesToDoubleTask<K,V> t = this;
5722 <            final ObjectToDouble<? super V> transformer =
5723 <                this.transformer;
5724 <            final DoubleByDoubleToDouble reducer = this.reducer;
5725 <            if (transformer == null || reducer == null)
5726 <                throw new Error(NullFunctionMessage);
5727 <            final double id = this.basis;
5728 <            int b = batch();
5729 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5730 <                b >>>= 1;
5731 <                t.pending = 1;
5732 <                MapReduceValuesToDoubleTask<K,V> rt =
5733 <                    new MapReduceValuesToDoubleTask<K,V>
5734 <                    (t, b, true, transformer, id, reducer);
5735 <                t = new MapReduceValuesToDoubleTask<K,V>
5736 <                    (t, b, false, transformer, id, reducer);
5737 <                t.sibling = rt;
5738 <                rt.sibling = t;
5739 <                rt.fork();
5740 <            }
5741 <            double r = id;
5742 <            Object v;
5743 <            while ((v = t.advance()) != null)
5744 <                r = reducer.apply(r, transformer.apply((V)v));
5745 <            t.result = r;
5989 <            for (;;) {
5990 <                int c; BulkTask<K,V,?> par; MapReduceValuesToDoubleTask<K,V> s, p;
5991 <                if ((par = t.parent) == null ||
5992 <                    !(par instanceof MapReduceValuesToDoubleTask)) {
5993 <                    t.quietlyComplete();
5994 <                    break;
5995 <                }
5996 <                else if ((c = (p = (MapReduceValuesToDoubleTask<K,V>)par).pending) == 0) {
5997 <                    if ((s = t.sibling) != null)
5998 <                        r = reducer.apply(r, s.result);
5999 <                    (t = p).result = r;
5721 >            final ToDoubleFunction<? super V> transformer;
5722 >            final DoubleBinaryOperator reducer;
5723 >            if ((transformer = this.transformer) != null &&
5724 >                (reducer = this.reducer) != null) {
5725 >                double r = this.basis;
5726 >                for (int i = baseIndex, f, h; batch > 0 &&
5727 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5728 >                    addToPendingCount(1);
5729 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5730 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5731 >                      rights, transformer, r, reducer)).fork();
5732 >                }
5733 >                for (Node<K,V> p; (p = advance()) != null; )
5734 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5735 >                result = r;
5736 >                CountedCompleter<?> c;
5737 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5738 >                    @SuppressWarnings("unchecked")
5739 >                    MapReduceValuesToDoubleTask<K,V>
5740 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5741 >                        s = t.rights;
5742 >                    while (s != null) {
5743 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5744 >                        s = t.rights = s.nextRight;
5745 >                    }
5746                  }
6001                else if (p.casPending(c, 0))
6002                    break;
5747              }
5748          }
6005        public final Double getRawResult() { return result; }
5749      }
5750  
5751 +    @SuppressWarnings("serial")
5752      static final class MapReduceEntriesToDoubleTask<K,V>
5753          extends BulkTask<K,V,Double> {
5754 <        final ObjectToDouble<Map.Entry<K,V>> transformer;
5755 <        final DoubleByDoubleToDouble reducer;
5754 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5755 >        final DoubleBinaryOperator reducer;
5756          final double basis;
5757          double result;
5758 <        MapReduceEntriesToDoubleTask<K,V> sibling;
6015 <        MapReduceEntriesToDoubleTask
6016 <            (ConcurrentHashMap<K,V> m,
6017 <             ObjectToDouble<Map.Entry<K,V>> transformer,
6018 <             double basis,
6019 <             DoubleByDoubleToDouble reducer) {
6020 <            super(m);
6021 <            this.transformer = transformer;
6022 <            this.basis = basis; this.reducer = reducer;
6023 <        }
5758 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5759          MapReduceEntriesToDoubleTask
5760 <            (BulkTask<K,V,?> p, int b, boolean split,
5761 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5760 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5761 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5762 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5763               double basis,
5764 <             DoubleByDoubleToDouble reducer) {
5765 <            super(p, b, split);
5764 >             DoubleBinaryOperator reducer) {
5765 >            super(p, b, i, f, t); this.nextRight = nextRight;
5766              this.transformer = transformer;
5767              this.basis = basis; this.reducer = reducer;
5768          }
5769 +        public final Double getRawResult() { return result; }
5770          public final void compute() {
5771 <            MapReduceEntriesToDoubleTask<K,V> t = this;
5772 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
5773 <                this.transformer;
5774 <            final DoubleByDoubleToDouble reducer = this.reducer;
5775 <            if (transformer == null || reducer == null)
5776 <                throw new Error(NullFunctionMessage);
5777 <            final double id = this.basis;
5778 <            int b = batch();
5779 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5780 <                b >>>= 1;
5781 <                t.pending = 1;
5782 <                MapReduceEntriesToDoubleTask<K,V> rt =
5783 <                    new MapReduceEntriesToDoubleTask<K,V>
5784 <                    (t, b, true, transformer, id, reducer);
5785 <                t = new MapReduceEntriesToDoubleTask<K,V>
5786 <                    (t, b, false, transformer, id, reducer);
5787 <                t.sibling = rt;
5788 <                rt.sibling = t;
5789 <                rt.fork();
5790 <            }
5791 <            double r = id;
5792 <            Object v;
5793 <            while ((v = t.advance()) != null)
5794 <                r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
5795 <            t.result = r;
6059 <            for (;;) {
6060 <                int c; BulkTask<K,V,?> par; MapReduceEntriesToDoubleTask<K,V> s, p;
6061 <                if ((par = t.parent) == null ||
6062 <                    !(par instanceof MapReduceEntriesToDoubleTask)) {
6063 <                    t.quietlyComplete();
6064 <                    break;
6065 <                }
6066 <                else if ((c = (p = (MapReduceEntriesToDoubleTask<K,V>)par).pending) == 0) {
6067 <                    if ((s = t.sibling) != null)
6068 <                        r = reducer.apply(r, s.result);
6069 <                    (t = p).result = r;
5771 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5772 >            final DoubleBinaryOperator reducer;
5773 >            if ((transformer = this.transformer) != null &&
5774 >                (reducer = this.reducer) != null) {
5775 >                double r = this.basis;
5776 >                for (int i = baseIndex, f, h; batch > 0 &&
5777 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5778 >                    addToPendingCount(1);
5779 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5780 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5781 >                      rights, transformer, r, reducer)).fork();
5782 >                }
5783 >                for (Node<K,V> p; (p = advance()) != null; )
5784 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5785 >                result = r;
5786 >                CountedCompleter<?> c;
5787 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5788 >                    @SuppressWarnings("unchecked")
5789 >                    MapReduceEntriesToDoubleTask<K,V>
5790 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5791 >                        s = t.rights;
5792 >                    while (s != null) {
5793 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5794 >                        s = t.rights = s.nextRight;
5795 >                    }
5796                  }
6071                else if (p.casPending(c, 0))
6072                    break;
5797              }
5798          }
6075        public final Double getRawResult() { return result; }
5799      }
5800  
5801 +    @SuppressWarnings("serial")
5802      static final class MapReduceMappingsToDoubleTask<K,V>
5803          extends BulkTask<K,V,Double> {
5804 <        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5805 <        final DoubleByDoubleToDouble reducer;
5804 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5805 >        final DoubleBinaryOperator reducer;
5806          final double basis;
5807          double result;
5808 <        MapReduceMappingsToDoubleTask<K,V> sibling;
5808 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5809          MapReduceMappingsToDoubleTask
5810 <            (ConcurrentHashMap<K,V> m,
5811 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
5810 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5811 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5812 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5813               double basis,
5814 <             DoubleByDoubleToDouble reducer) {
5815 <            super(m);
6091 <            this.transformer = transformer;
6092 <            this.basis = basis; this.reducer = reducer;
6093 <        }
6094 <        MapReduceMappingsToDoubleTask
6095 <            (BulkTask<K,V,?> p, int b, boolean split,
6096 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
6097 <             double basis,
6098 <             DoubleByDoubleToDouble reducer) {
6099 <            super(p, b, split);
5814 >             DoubleBinaryOperator reducer) {
5815 >            super(p, b, i, f, t); this.nextRight = nextRight;
5816              this.transformer = transformer;
5817              this.basis = basis; this.reducer = reducer;
5818          }
5819 +        public final Double getRawResult() { return result; }
5820          public final void compute() {
5821 <            MapReduceMappingsToDoubleTask<K,V> t = this;
5822 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
5823 <                this.transformer;
5824 <            final DoubleByDoubleToDouble reducer = this.reducer;
5825 <            if (transformer == null || reducer == null)
5826 <                throw new Error(NullFunctionMessage);
5827 <            final double id = this.basis;
5828 <            int b = batch();
5829 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5830 <                b >>>= 1;
5831 <                t.pending = 1;
5832 <                MapReduceMappingsToDoubleTask<K,V> rt =
5833 <                    new MapReduceMappingsToDoubleTask<K,V>
5834 <                    (t, b, true, transformer, id, reducer);
5835 <                t = new MapReduceMappingsToDoubleTask<K,V>
5836 <                    (t, b, false, transformer, id, reducer);
5837 <                t.sibling = rt;
5838 <                rt.sibling = t;
5839 <                rt.fork();
5840 <            }
5841 <            double r = id;
5842 <            Object v;
5843 <            while ((v = t.advance()) != null)
5844 <                r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
5845 <            t.result = r;
6129 <            for (;;) {
6130 <                int c; BulkTask<K,V,?> par; MapReduceMappingsToDoubleTask<K,V> s, p;
6131 <                if ((par = t.parent) == null ||
6132 <                    !(par instanceof MapReduceMappingsToDoubleTask)) {
6133 <                    t.quietlyComplete();
6134 <                    break;
6135 <                }
6136 <                else if ((c = (p = (MapReduceMappingsToDoubleTask<K,V>)par).pending) == 0) {
6137 <                    if ((s = t.sibling) != null)
6138 <                        r = reducer.apply(r, s.result);
6139 <                    (t = p).result = r;
5821 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5822 >            final DoubleBinaryOperator reducer;
5823 >            if ((transformer = this.transformer) != null &&
5824 >                (reducer = this.reducer) != null) {
5825 >                double r = this.basis;
5826 >                for (int i = baseIndex, f, h; batch > 0 &&
5827 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5828 >                    addToPendingCount(1);
5829 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5830 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5831 >                      rights, transformer, r, reducer)).fork();
5832 >                }
5833 >                for (Node<K,V> p; (p = advance()) != null; )
5834 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5835 >                result = r;
5836 >                CountedCompleter<?> c;
5837 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5838 >                    @SuppressWarnings("unchecked")
5839 >                    MapReduceMappingsToDoubleTask<K,V>
5840 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5841 >                        s = t.rights;
5842 >                    while (s != null) {
5843 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5844 >                        s = t.rights = s.nextRight;
5845 >                    }
5846                  }
6141                else if (p.casPending(c, 0))
6142                    break;
5847              }
5848          }
6145        public final Double getRawResult() { return result; }
5849      }
5850  
5851 +    @SuppressWarnings("serial")
5852      static final class MapReduceKeysToLongTask<K,V>
5853          extends BulkTask<K,V,Long> {
5854 <        final ObjectToLong<? super K> transformer;
5855 <        final LongByLongToLong reducer;
5854 >        final ToLongFunction<? super K> transformer;
5855 >        final LongBinaryOperator reducer;
5856          final long basis;
5857          long result;
5858 <        MapReduceKeysToLongTask<K,V> sibling;
6155 <        MapReduceKeysToLongTask
6156 <            (ConcurrentHashMap<K,V> m,
6157 <             ObjectToLong<? super K> transformer,
6158 <             long basis,
6159 <             LongByLongToLong reducer) {
6160 <            super(m);
6161 <            this.transformer = transformer;
6162 <            this.basis = basis; this.reducer = reducer;
6163 <        }
5858 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5859          MapReduceKeysToLongTask
5860 <            (BulkTask<K,V,?> p, int b, boolean split,
5861 <             ObjectToLong<? super K> transformer,
5860 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5861 >             MapReduceKeysToLongTask<K,V> nextRight,
5862 >             ToLongFunction<? super K> transformer,
5863               long basis,
5864 <             LongByLongToLong reducer) {
5865 <            super(p, b, split);
5864 >             LongBinaryOperator reducer) {
5865 >            super(p, b, i, f, t); this.nextRight = nextRight;
5866              this.transformer = transformer;
5867              this.basis = basis; this.reducer = reducer;
5868          }
5869 +        public final Long getRawResult() { return result; }
5870          public final void compute() {
5871 <            MapReduceKeysToLongTask<K,V> t = this;
5872 <            final ObjectToLong<? super K> transformer =
5873 <                this.transformer;
5874 <            final LongByLongToLong reducer = this.reducer;
5875 <            if (transformer == null || reducer == null)
5876 <                throw new Error(NullFunctionMessage);
5877 <            final long id = this.basis;
5878 <            int b = batch();
5879 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5880 <                b >>>= 1;
5881 <                t.pending = 1;
5882 <                MapReduceKeysToLongTask<K,V> rt =
5883 <                    new MapReduceKeysToLongTask<K,V>
5884 <                    (t, b, true, transformer, id, reducer);
5885 <                t = new MapReduceKeysToLongTask<K,V>
5886 <                    (t, b, false, transformer, id, reducer);
5887 <                t.sibling = rt;
5888 <                rt.sibling = t;
5889 <                rt.fork();
5890 <            }
5891 <            long r = id;
5892 <            while (t.advance() != null)
5893 <                r = reducer.apply(r, transformer.apply((K)t.nextKey));
5894 <            t.result = r;
5895 <            for (;;) {
6199 <                int c; BulkTask<K,V,?> par; MapReduceKeysToLongTask<K,V> s, p;
6200 <                if ((par = t.parent) == null ||
6201 <                    !(par instanceof MapReduceKeysToLongTask)) {
6202 <                    t.quietlyComplete();
6203 <                    break;
6204 <                }
6205 <                else if ((c = (p = (MapReduceKeysToLongTask<K,V>)par).pending) == 0) {
6206 <                    if ((s = t.sibling) != null)
6207 <                        r = reducer.apply(r, s.result);
6208 <                    (t = p).result = r;
5871 >            final ToLongFunction<? super K> transformer;
5872 >            final LongBinaryOperator reducer;
5873 >            if ((transformer = this.transformer) != null &&
5874 >                (reducer = this.reducer) != null) {
5875 >                long r = this.basis;
5876 >                for (int i = baseIndex, f, h; batch > 0 &&
5877 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5878 >                    addToPendingCount(1);
5879 >                    (rights = new MapReduceKeysToLongTask<K,V>
5880 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5881 >                      rights, transformer, r, reducer)).fork();
5882 >                }
5883 >                for (Node<K,V> p; (p = advance()) != null; )
5884 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5885 >                result = r;
5886 >                CountedCompleter<?> c;
5887 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5888 >                    @SuppressWarnings("unchecked")
5889 >                    MapReduceKeysToLongTask<K,V>
5890 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5891 >                        s = t.rights;
5892 >                    while (s != null) {
5893 >                        t.result = reducer.applyAsLong(t.result, s.result);
5894 >                        s = t.rights = s.nextRight;
5895 >                    }
5896                  }
6210                else if (p.casPending(c, 0))
6211                    break;
5897              }
5898          }
6214        public final Long getRawResult() { return result; }
5899      }
5900  
5901 +    @SuppressWarnings("serial")
5902      static final class MapReduceValuesToLongTask<K,V>
5903          extends BulkTask<K,V,Long> {
5904 <        final ObjectToLong<? super V> transformer;
5905 <        final LongByLongToLong reducer;
5904 >        final ToLongFunction<? super V> transformer;
5905 >        final LongBinaryOperator reducer;
5906          final long basis;
5907          long result;
5908 <        MapReduceValuesToLongTask<K,V> sibling;
5908 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5909          MapReduceValuesToLongTask
5910 <            (ConcurrentHashMap<K,V> m,
5911 <             ObjectToLong<? super V> transformer,
5910 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5911 >             MapReduceValuesToLongTask<K,V> nextRight,
5912 >             ToLongFunction<? super V> transformer,
5913               long basis,
5914 <             LongByLongToLong reducer) {
5915 <            super(m);
6230 <            this.transformer = transformer;
6231 <            this.basis = basis; this.reducer = reducer;
6232 <        }
6233 <        MapReduceValuesToLongTask
6234 <            (BulkTask<K,V,?> p, int b, boolean split,
6235 <             ObjectToLong<? super V> transformer,
6236 <             long basis,
6237 <             LongByLongToLong reducer) {
6238 <            super(p, b, split);
5914 >             LongBinaryOperator reducer) {
5915 >            super(p, b, i, f, t); this.nextRight = nextRight;
5916              this.transformer = transformer;
5917              this.basis = basis; this.reducer = reducer;
5918          }
5919 +        public final Long getRawResult() { return result; }
5920          public final void compute() {
5921 <            MapReduceValuesToLongTask<K,V> t = this;
5922 <            final ObjectToLong<? super V> transformer =
5923 <                this.transformer;
5924 <            final LongByLongToLong reducer = this.reducer;
5925 <            if (transformer == null || reducer == null)
5926 <                throw new Error(NullFunctionMessage);
5927 <            final long id = this.basis;
5928 <            int b = batch();
5929 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5930 <                b >>>= 1;
5931 <                t.pending = 1;
5932 <                MapReduceValuesToLongTask<K,V> rt =
5933 <                    new MapReduceValuesToLongTask<K,V>
5934 <                    (t, b, true, transformer, id, reducer);
5935 <                t = new MapReduceValuesToLongTask<K,V>
5936 <                    (t, b, false, transformer, id, reducer);
5937 <                t.sibling = rt;
5938 <                rt.sibling = t;
5939 <                rt.fork();
5940 <            }
5941 <            long r = id;
5942 <            Object v;
5943 <            while ((v = t.advance()) != null)
5944 <                r = reducer.apply(r, transformer.apply((V)v));
5945 <            t.result = r;
6268 <            for (;;) {
6269 <                int c; BulkTask<K,V,?> par; MapReduceValuesToLongTask<K,V> s, p;
6270 <                if ((par = t.parent) == null ||
6271 <                    !(par instanceof MapReduceValuesToLongTask)) {
6272 <                    t.quietlyComplete();
6273 <                    break;
6274 <                }
6275 <                else if ((c = (p = (MapReduceValuesToLongTask<K,V>)par).pending) == 0) {
6276 <                    if ((s = t.sibling) != null)
6277 <                        r = reducer.apply(r, s.result);
6278 <                    (t = p).result = r;
5921 >            final ToLongFunction<? super V> transformer;
5922 >            final LongBinaryOperator reducer;
5923 >            if ((transformer = this.transformer) != null &&
5924 >                (reducer = this.reducer) != null) {
5925 >                long r = this.basis;
5926 >                for (int i = baseIndex, f, h; batch > 0 &&
5927 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5928 >                    addToPendingCount(1);
5929 >                    (rights = new MapReduceValuesToLongTask<K,V>
5930 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5931 >                      rights, transformer, r, reducer)).fork();
5932 >                }
5933 >                for (Node<K,V> p; (p = advance()) != null; )
5934 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5935 >                result = r;
5936 >                CountedCompleter<?> c;
5937 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5938 >                    @SuppressWarnings("unchecked")
5939 >                    MapReduceValuesToLongTask<K,V>
5940 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5941 >                        s = t.rights;
5942 >                    while (s != null) {
5943 >                        t.result = reducer.applyAsLong(t.result, s.result);
5944 >                        s = t.rights = s.nextRight;
5945 >                    }
5946                  }
6280                else if (p.casPending(c, 0))
6281                    break;
5947              }
5948          }
6284        public final Long getRawResult() { return result; }
5949      }
5950  
5951 +    @SuppressWarnings("serial")
5952      static final class MapReduceEntriesToLongTask<K,V>
5953          extends BulkTask<K,V,Long> {
5954 <        final ObjectToLong<Map.Entry<K,V>> transformer;
5955 <        final LongByLongToLong reducer;
5954 >        final ToLongFunction<Map.Entry<K,V>> transformer;
5955 >        final LongBinaryOperator reducer;
5956          final long basis;
5957          long result;
5958 <        MapReduceEntriesToLongTask<K,V> sibling;
5958 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5959          MapReduceEntriesToLongTask
5960 <            (ConcurrentHashMap<K,V> m,
5961 <             ObjectToLong<Map.Entry<K,V>> transformer,
5960 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5961 >             MapReduceEntriesToLongTask<K,V> nextRight,
5962 >             ToLongFunction<Map.Entry<K,V>> transformer,
5963               long basis,
5964 <             LongByLongToLong reducer) {
5965 <            super(m);
6300 <            this.transformer = transformer;
6301 <            this.basis = basis; this.reducer = reducer;
6302 <        }
6303 <        MapReduceEntriesToLongTask
6304 <            (BulkTask<K,V,?> p, int b, boolean split,
6305 <             ObjectToLong<Map.Entry<K,V>> transformer,
6306 <             long basis,
6307 <             LongByLongToLong reducer) {
6308 <            super(p, b, split);
5964 >             LongBinaryOperator reducer) {
5965 >            super(p, b, i, f, t); this.nextRight = nextRight;
5966              this.transformer = transformer;
5967              this.basis = basis; this.reducer = reducer;
5968          }
5969 +        public final Long getRawResult() { return result; }
5970          public final void compute() {
5971 <            MapReduceEntriesToLongTask<K,V> t = this;
5972 <            final ObjectToLong<Map.Entry<K,V>> transformer =
5973 <                this.transformer;
5974 <            final LongByLongToLong reducer = this.reducer;
5975 <            if (transformer == null || reducer == null)
5976 <                throw new Error(NullFunctionMessage);
5977 <            final long id = this.basis;
5978 <            int b = batch();
5979 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5980 <                b >>>= 1;
5981 <                t.pending = 1;
5982 <                MapReduceEntriesToLongTask<K,V> rt =
5983 <                    new MapReduceEntriesToLongTask<K,V>
5984 <                    (t, b, true, transformer, id, reducer);
5985 <                t = new MapReduceEntriesToLongTask<K,V>
5986 <                    (t, b, false, transformer, id, reducer);
5987 <                t.sibling = rt;
5988 <                rt.sibling = t;
5989 <                rt.fork();
5990 <            }
5991 <            long r = id;
5992 <            Object v;
5993 <            while ((v = t.advance()) != null)
5994 <                r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
5995 <            t.result = r;
6338 <            for (;;) {
6339 <                int c; BulkTask<K,V,?> par; MapReduceEntriesToLongTask<K,V> s, p;
6340 <                if ((par = t.parent) == null ||
6341 <                    !(par instanceof MapReduceEntriesToLongTask)) {
6342 <                    t.quietlyComplete();
6343 <                    break;
6344 <                }
6345 <                else if ((c = (p = (MapReduceEntriesToLongTask<K,V>)par).pending) == 0) {
6346 <                    if ((s = t.sibling) != null)
6347 <                        r = reducer.apply(r, s.result);
6348 <                    (t = p).result = r;
5971 >            final ToLongFunction<Map.Entry<K,V>> transformer;
5972 >            final LongBinaryOperator reducer;
5973 >            if ((transformer = this.transformer) != null &&
5974 >                (reducer = this.reducer) != null) {
5975 >                long r = this.basis;
5976 >                for (int i = baseIndex, f, h; batch > 0 &&
5977 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5978 >                    addToPendingCount(1);
5979 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5980 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5981 >                      rights, transformer, r, reducer)).fork();
5982 >                }
5983 >                for (Node<K,V> p; (p = advance()) != null; )
5984 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5985 >                result = r;
5986 >                CountedCompleter<?> c;
5987 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5988 >                    @SuppressWarnings("unchecked")
5989 >                    MapReduceEntriesToLongTask<K,V>
5990 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5991 >                        s = t.rights;
5992 >                    while (s != null) {
5993 >                        t.result = reducer.applyAsLong(t.result, s.result);
5994 >                        s = t.rights = s.nextRight;
5995 >                    }
5996                  }
6350                else if (p.casPending(c, 0))
6351                    break;
5997              }
5998          }
6354        public final Long getRawResult() { return result; }
5999      }
6000  
6001 +    @SuppressWarnings("serial")
6002      static final class MapReduceMappingsToLongTask<K,V>
6003          extends BulkTask<K,V,Long> {
6004 <        final ObjectByObjectToLong<? super K, ? super V> transformer;
6005 <        final LongByLongToLong reducer;
6004 >        final ToLongBiFunction<? super K, ? super V> transformer;
6005 >        final LongBinaryOperator reducer;
6006          final long basis;
6007          long result;
6008 <        MapReduceMappingsToLongTask<K,V> sibling;
6008 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6009          MapReduceMappingsToLongTask
6010 <            (ConcurrentHashMap<K,V> m,
6011 <             ObjectByObjectToLong<? super K, ? super V> transformer,
6010 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6011 >             MapReduceMappingsToLongTask<K,V> nextRight,
6012 >             ToLongBiFunction<? super K, ? super V> transformer,
6013               long basis,
6014 <             LongByLongToLong reducer) {
6015 <            super(m);
6370 <            this.transformer = transformer;
6371 <            this.basis = basis; this.reducer = reducer;
6372 <        }
6373 <        MapReduceMappingsToLongTask
6374 <            (BulkTask<K,V,?> p, int b, boolean split,
6375 <             ObjectByObjectToLong<? super K, ? super V> transformer,
6376 <             long basis,
6377 <             LongByLongToLong reducer) {
6378 <            super(p, b, split);
6014 >             LongBinaryOperator reducer) {
6015 >            super(p, b, i, f, t); this.nextRight = nextRight;
6016              this.transformer = transformer;
6017              this.basis = basis; this.reducer = reducer;
6018          }
6019 +        public final Long getRawResult() { return result; }
6020          public final void compute() {
6021 <            MapReduceMappingsToLongTask<K,V> t = this;
6022 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
6023 <                this.transformer;
6024 <            final LongByLongToLong reducer = this.reducer;
6025 <            if (transformer == null || reducer == null)
6026 <                throw new Error(NullFunctionMessage);
6027 <            final long id = this.basis;
6028 <            int b = batch();
6029 <            while (b > 1 && t.baseIndex != t.baseLimit) {
6030 <                b >>>= 1;
6031 <                t.pending = 1;
6032 <                MapReduceMappingsToLongTask<K,V> rt =
6033 <                    new MapReduceMappingsToLongTask<K,V>
6034 <                    (t, b, true, transformer, id, reducer);
6035 <                t = new MapReduceMappingsToLongTask<K,V>
6036 <                    (t, b, false, transformer, id, reducer);
6037 <                t.sibling = rt;
6038 <                rt.sibling = t;
6039 <                rt.fork();
6040 <            }
6041 <            long r = id;
6042 <            Object v;
6043 <            while ((v = t.advance()) != null)
6044 <                r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6045 <            t.result = r;
6408 <            for (;;) {
6409 <                int c; BulkTask<K,V,?> par; MapReduceMappingsToLongTask<K,V> s, p;
6410 <                if ((par = t.parent) == null ||
6411 <                    !(par instanceof MapReduceMappingsToLongTask)) {
6412 <                    t.quietlyComplete();
6413 <                    break;
6414 <                }
6415 <                else if ((c = (p = (MapReduceMappingsToLongTask<K,V>)par).pending) == 0) {
6416 <                    if ((s = t.sibling) != null)
6417 <                        r = reducer.apply(r, s.result);
6418 <                    (t = p).result = r;
6021 >            final ToLongBiFunction<? super K, ? super V> transformer;
6022 >            final LongBinaryOperator reducer;
6023 >            if ((transformer = this.transformer) != null &&
6024 >                (reducer = this.reducer) != null) {
6025 >                long r = this.basis;
6026 >                for (int i = baseIndex, f, h; batch > 0 &&
6027 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6028 >                    addToPendingCount(1);
6029 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6030 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6031 >                      rights, transformer, r, reducer)).fork();
6032 >                }
6033 >                for (Node<K,V> p; (p = advance()) != null; )
6034 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6035 >                result = r;
6036 >                CountedCompleter<?> c;
6037 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6038 >                    @SuppressWarnings("unchecked")
6039 >                    MapReduceMappingsToLongTask<K,V>
6040 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6041 >                        s = t.rights;
6042 >                    while (s != null) {
6043 >                        t.result = reducer.applyAsLong(t.result, s.result);
6044 >                        s = t.rights = s.nextRight;
6045 >                    }
6046                  }
6420                else if (p.casPending(c, 0))
6421                    break;
6047              }
6048          }
6424        public final Long getRawResult() { return result; }
6049      }
6050  
6051 +    @SuppressWarnings("serial")
6052      static final class MapReduceKeysToIntTask<K,V>
6053          extends BulkTask<K,V,Integer> {
6054 <        final ObjectToInt<? super K> transformer;
6055 <        final IntByIntToInt reducer;
6054 >        final ToIntFunction<? super K> transformer;
6055 >        final IntBinaryOperator reducer;
6056          final int basis;
6057          int result;
6058 <        MapReduceKeysToIntTask<K,V> sibling;
6058 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6059          MapReduceKeysToIntTask
6060 <            (ConcurrentHashMap<K,V> m,
6061 <             ObjectToInt<? super K> transformer,
6060 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6061 >             MapReduceKeysToIntTask<K,V> nextRight,
6062 >             ToIntFunction<? super K> transformer,
6063               int basis,
6064 <             IntByIntToInt reducer) {
6065 <            super(m);
6440 <            this.transformer = transformer;
6441 <            this.basis = basis; this.reducer = reducer;
6442 <        }
6443 <        MapReduceKeysToIntTask
6444 <            (BulkTask<K,V,?> p, int b, boolean split,
6445 <             ObjectToInt<? super K> transformer,
6446 <             int basis,
6447 <             IntByIntToInt reducer) {
6448 <            super(p, b, split);
6064 >             IntBinaryOperator reducer) {
6065 >            super(p, b, i, f, t); this.nextRight = nextRight;
6066              this.transformer = transformer;
6067              this.basis = basis; this.reducer = reducer;
6068          }
6069 +        public final Integer getRawResult() { return result; }
6070          public final void compute() {
6071 <            MapReduceKeysToIntTask<K,V> t = this;
6072 <            final ObjectToInt<? super K> transformer =
6073 <                this.transformer;
6074 <            final IntByIntToInt reducer = this.reducer;
6075 <            if (transformer == null || reducer == null)
6076 <                throw new Error(NullFunctionMessage);
6077 <            final int id = this.basis;
6078 <            int b = batch();
6079 <            while (b > 1 && t.baseIndex != t.baseLimit) {
6080 <                b >>>= 1;
6081 <                t.pending = 1;
6082 <                MapReduceKeysToIntTask<K,V> rt =
6083 <                    new MapReduceKeysToIntTask<K,V>
6084 <                    (t, b, true, transformer, id, reducer);
6085 <                t = new MapReduceKeysToIntTask<K,V>
6086 <                    (t, b, false, transformer, id, reducer);
6087 <                t.sibling = rt;
6088 <                rt.sibling = t;
6089 <                rt.fork();
6090 <            }
6091 <            int r = id;
6092 <            while (t.advance() != null)
6093 <                r = reducer.apply(r, transformer.apply((K)t.nextKey));
6094 <            t.result = r;
6095 <            for (;;) {
6478 <                int c; BulkTask<K,V,?> par; MapReduceKeysToIntTask<K,V> s, p;
6479 <                if ((par = t.parent) == null ||
6480 <                    !(par instanceof MapReduceKeysToIntTask)) {
6481 <                    t.quietlyComplete();
6482 <                    break;
6483 <                }
6484 <                else if ((c = (p = (MapReduceKeysToIntTask<K,V>)par).pending) == 0) {
6485 <                    if ((s = t.sibling) != null)
6486 <                        r = reducer.apply(r, s.result);
6487 <                    (t = p).result = r;
6071 >            final ToIntFunction<? super K> transformer;
6072 >            final IntBinaryOperator reducer;
6073 >            if ((transformer = this.transformer) != null &&
6074 >                (reducer = this.reducer) != null) {
6075 >                int r = this.basis;
6076 >                for (int i = baseIndex, f, h; batch > 0 &&
6077 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6078 >                    addToPendingCount(1);
6079 >                    (rights = new MapReduceKeysToIntTask<K,V>
6080 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6081 >                      rights, transformer, r, reducer)).fork();
6082 >                }
6083 >                for (Node<K,V> p; (p = advance()) != null; )
6084 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6085 >                result = r;
6086 >                CountedCompleter<?> c;
6087 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6088 >                    @SuppressWarnings("unchecked")
6089 >                    MapReduceKeysToIntTask<K,V>
6090 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6091 >                        s = t.rights;
6092 >                    while (s != null) {
6093 >                        t.result = reducer.applyAsInt(t.result, s.result);
6094 >                        s = t.rights = s.nextRight;
6095 >                    }
6096                  }
6489                else if (p.casPending(c, 0))
6490                    break;
6097              }
6098          }
6493        public final Integer getRawResult() { return result; }
6099      }
6100  
6101 +    @SuppressWarnings("serial")
6102      static final class MapReduceValuesToIntTask<K,V>
6103          extends BulkTask<K,V,Integer> {
6104 <        final ObjectToInt<? super V> transformer;
6105 <        final IntByIntToInt reducer;
6104 >        final ToIntFunction<? super V> transformer;
6105 >        final IntBinaryOperator reducer;
6106          final int basis;
6107          int result;
6108 <        MapReduceValuesToIntTask<K,V> sibling;
6503 <        MapReduceValuesToIntTask
6504 <            (ConcurrentHashMap<K,V> m,
6505 <             ObjectToInt<? super V> transformer,
6506 <             int basis,
6507 <             IntByIntToInt reducer) {
6508 <            super(m);
6509 <            this.transformer = transformer;
6510 <            this.basis = basis; this.reducer = reducer;
6511 <        }
6108 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6109          MapReduceValuesToIntTask
6110 <            (BulkTask<K,V,?> p, int b, boolean split,
6111 <             ObjectToInt<? super V> transformer,
6110 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6111 >             MapReduceValuesToIntTask<K,V> nextRight,
6112 >             ToIntFunction<? super V> transformer,
6113               int basis,
6114 <             IntByIntToInt reducer) {
6115 <            super(p, b, split);
6114 >             IntBinaryOperator reducer) {
6115 >            super(p, b, i, f, t); this.nextRight = nextRight;
6116              this.transformer = transformer;
6117              this.basis = basis; this.reducer = reducer;
6118          }
6119 +        public final Integer getRawResult() { return result; }
6120          public final void compute() {
6121 <            MapReduceValuesToIntTask<K,V> t = this;
6122 <            final ObjectToInt<? super V> transformer =
6123 <                this.transformer;
6124 <            final IntByIntToInt reducer = this.reducer;
6125 <            if (transformer == null || reducer == null)
6126 <                throw new Error(NullFunctionMessage);
6127 <            final int id = this.basis;
6128 <            int b = batch();
6129 <            while (b > 1 && t.baseIndex != t.baseLimit) {
6130 <                b >>>= 1;
6131 <                t.pending = 1;
6132 <                MapReduceValuesToIntTask<K,V> rt =
6133 <                    new MapReduceValuesToIntTask<K,V>
6134 <                    (t, b, true, transformer, id, reducer);
6135 <                t = new MapReduceValuesToIntTask<K,V>
6136 <                    (t, b, false, transformer, id, reducer);
6137 <                t.sibling = rt;
6138 <                rt.sibling = t;
6139 <                rt.fork();
6140 <            }
6141 <            int r = id;
6142 <            Object v;
6143 <            while ((v = t.advance()) != null)
6144 <                r = reducer.apply(r, transformer.apply((V)v));
6145 <            t.result = r;
6547 <            for (;;) {
6548 <                int c; BulkTask<K,V,?> par; MapReduceValuesToIntTask<K,V> s, p;
6549 <                if ((par = t.parent) == null ||
6550 <                    !(par instanceof MapReduceValuesToIntTask)) {
6551 <                    t.quietlyComplete();
6552 <                    break;
6553 <                }
6554 <                else if ((c = (p = (MapReduceValuesToIntTask<K,V>)par).pending) == 0) {
6555 <                    if ((s = t.sibling) != null)
6556 <                        r = reducer.apply(r, s.result);
6557 <                    (t = p).result = r;
6121 >            final ToIntFunction<? super V> transformer;
6122 >            final IntBinaryOperator reducer;
6123 >            if ((transformer = this.transformer) != null &&
6124 >                (reducer = this.reducer) != null) {
6125 >                int r = this.basis;
6126 >                for (int i = baseIndex, f, h; batch > 0 &&
6127 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6128 >                    addToPendingCount(1);
6129 >                    (rights = new MapReduceValuesToIntTask<K,V>
6130 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6131 >                      rights, transformer, r, reducer)).fork();
6132 >                }
6133 >                for (Node<K,V> p; (p = advance()) != null; )
6134 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6135 >                result = r;
6136 >                CountedCompleter<?> c;
6137 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6138 >                    @SuppressWarnings("unchecked")
6139 >                    MapReduceValuesToIntTask<K,V>
6140 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6141 >                        s = t.rights;
6142 >                    while (s != null) {
6143 >                        t.result = reducer.applyAsInt(t.result, s.result);
6144 >                        s = t.rights = s.nextRight;
6145 >                    }
6146                  }
6559                else if (p.casPending(c, 0))
6560                    break;
6147              }
6148          }
6563        public final Integer getRawResult() { return result; }
6149      }
6150  
6151 +    @SuppressWarnings("serial")
6152      static final class MapReduceEntriesToIntTask<K,V>
6153          extends BulkTask<K,V,Integer> {
6154 <        final ObjectToInt<Map.Entry<K,V>> transformer;
6155 <        final IntByIntToInt reducer;
6154 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6155 >        final IntBinaryOperator reducer;
6156          final int basis;
6157          int result;
6158 <        MapReduceEntriesToIntTask<K,V> sibling;
6573 <        MapReduceEntriesToIntTask
6574 <            (ConcurrentHashMap<K,V> m,
6575 <             ObjectToInt<Map.Entry<K,V>> transformer,
6576 <             int basis,
6577 <             IntByIntToInt reducer) {
6578 <            super(m);
6579 <            this.transformer = transformer;
6580 <            this.basis = basis; this.reducer = reducer;
6581 <        }
6158 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6159          MapReduceEntriesToIntTask
6160 <            (BulkTask<K,V,?> p, int b, boolean split,
6161 <             ObjectToInt<Map.Entry<K,V>> transformer,
6160 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6161 >             MapReduceEntriesToIntTask<K,V> nextRight,
6162 >             ToIntFunction<Map.Entry<K,V>> transformer,
6163               int basis,
6164 <             IntByIntToInt reducer) {
6165 <            super(p, b, split);
6164 >             IntBinaryOperator reducer) {
6165 >            super(p, b, i, f, t); this.nextRight = nextRight;
6166              this.transformer = transformer;
6167              this.basis = basis; this.reducer = reducer;
6168          }
6169 +        public final Integer getRawResult() { return result; }
6170          public final void compute() {
6171 <            MapReduceEntriesToIntTask<K,V> t = this;
6172 <            final ObjectToInt<Map.Entry<K,V>> transformer =
6173 <                this.transformer;
6174 <            final IntByIntToInt reducer = this.reducer;
6175 <            if (transformer == null || reducer == null)
6176 <                throw new Error(NullFunctionMessage);
6177 <            final int id = this.basis;
6178 <            int b = batch();
6179 <            while (b > 1 && t.baseIndex != t.baseLimit) {
6180 <                b >>>= 1;
6181 <                t.pending = 1;
6182 <                MapReduceEntriesToIntTask<K,V> rt =
6183 <                    new MapReduceEntriesToIntTask<K,V>
6184 <                    (t, b, true, transformer, id, reducer);
6185 <                t = new MapReduceEntriesToIntTask<K,V>
6186 <                    (t, b, false, transformer, id, reducer);
6187 <                t.sibling = rt;
6188 <                rt.sibling = t;
6189 <                rt.fork();
6190 <            }
6191 <            int r = id;
6192 <            Object v;
6193 <            while ((v = t.advance()) != null)
6194 <                r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6195 <            t.result = r;
6617 <            for (;;) {
6618 <                int c; BulkTask<K,V,?> par; MapReduceEntriesToIntTask<K,V> s, p;
6619 <                if ((par = t.parent) == null ||
6620 <                    !(par instanceof MapReduceEntriesToIntTask)) {
6621 <                    t.quietlyComplete();
6622 <                    break;
6623 <                }
6624 <                else if ((c = (p = (MapReduceEntriesToIntTask<K,V>)par).pending) == 0) {
6625 <                    if ((s = t.sibling) != null)
6626 <                        r = reducer.apply(r, s.result);
6627 <                    (t = p).result = r;
6171 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6172 >            final IntBinaryOperator reducer;
6173 >            if ((transformer = this.transformer) != null &&
6174 >                (reducer = this.reducer) != null) {
6175 >                int r = this.basis;
6176 >                for (int i = baseIndex, f, h; batch > 0 &&
6177 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6178 >                    addToPendingCount(1);
6179 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6180 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6181 >                      rights, transformer, r, reducer)).fork();
6182 >                }
6183 >                for (Node<K,V> p; (p = advance()) != null; )
6184 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6185 >                result = r;
6186 >                CountedCompleter<?> c;
6187 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6188 >                    @SuppressWarnings("unchecked")
6189 >                    MapReduceEntriesToIntTask<K,V>
6190 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6191 >                        s = t.rights;
6192 >                    while (s != null) {
6193 >                        t.result = reducer.applyAsInt(t.result, s.result);
6194 >                        s = t.rights = s.nextRight;
6195 >                    }
6196                  }
6629                else if (p.casPending(c, 0))
6630                    break;
6197              }
6198          }
6633        public final Integer getRawResult() { return result; }
6199      }
6200  
6201 +    @SuppressWarnings("serial")
6202      static final class MapReduceMappingsToIntTask<K,V>
6203          extends BulkTask<K,V,Integer> {
6204 <        final ObjectByObjectToInt<? super K, ? super V> transformer;
6205 <        final IntByIntToInt reducer;
6204 >        final ToIntBiFunction<? super K, ? super V> transformer;
6205 >        final IntBinaryOperator reducer;
6206          final int basis;
6207          int result;
6208 <        MapReduceMappingsToIntTask<K,V> sibling;
6643 <        MapReduceMappingsToIntTask
6644 <            (ConcurrentHashMap<K,V> m,
6645 <             ObjectByObjectToInt<? super K, ? super V> transformer,
6646 <             int basis,
6647 <             IntByIntToInt reducer) {
6648 <            super(m);
6649 <            this.transformer = transformer;
6650 <            this.basis = basis; this.reducer = reducer;
6651 <        }
6208 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6209          MapReduceMappingsToIntTask
6210 <            (BulkTask<K,V,?> p, int b, boolean split,
6211 <             ObjectByObjectToInt<? super K, ? super V> transformer,
6210 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6211 >             MapReduceMappingsToIntTask<K,V> nextRight,
6212 >             ToIntBiFunction<? super K, ? super V> transformer,
6213               int basis,
6214 <             IntByIntToInt reducer) {
6215 <            super(p, b, split);
6214 >             IntBinaryOperator reducer) {
6215 >            super(p, b, i, f, t); this.nextRight = nextRight;
6216              this.transformer = transformer;
6217              this.basis = basis; this.reducer = reducer;
6218          }
6219 +        public final Integer getRawResult() { return result; }
6220          public final void compute() {
6221 <            MapReduceMappingsToIntTask<K,V> t = this;
6222 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
6223 <                this.transformer;
6224 <            final IntByIntToInt reducer = this.reducer;
6225 <            if (transformer == null || reducer == null)
6226 <                throw new Error(NullFunctionMessage);
6227 <            final int id = this.basis;
6228 <            int b = batch();
6229 <            while (b > 1 && t.baseIndex != t.baseLimit) {
6230 <                b >>>= 1;
6231 <                t.pending = 1;
6232 <                MapReduceMappingsToIntTask<K,V> rt =
6233 <                    new MapReduceMappingsToIntTask<K,V>
6234 <                    (t, b, true, transformer, id, reducer);
6235 <                t = new MapReduceMappingsToIntTask<K,V>
6236 <                    (t, b, false, transformer, id, reducer);
6237 <                t.sibling = rt;
6238 <                rt.sibling = t;
6239 <                rt.fork();
6240 <            }
6241 <            int r = id;
6242 <            Object v;
6243 <            while ((v = t.advance()) != null)
6244 <                r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6245 <            t.result = r;
6687 <            for (;;) {
6688 <                int c; BulkTask<K,V,?> par; MapReduceMappingsToIntTask<K,V> s, p;
6689 <                if ((par = t.parent) == null ||
6690 <                    !(par instanceof MapReduceMappingsToIntTask)) {
6691 <                    t.quietlyComplete();
6692 <                    break;
6693 <                }
6694 <                else if ((c = (p = (MapReduceMappingsToIntTask<K,V>)par).pending) == 0) {
6695 <                    if ((s = t.sibling) != null)
6696 <                        r = reducer.apply(r, s.result);
6697 <                    (t = p).result = r;
6221 >            final ToIntBiFunction<? super K, ? super V> transformer;
6222 >            final IntBinaryOperator reducer;
6223 >            if ((transformer = this.transformer) != null &&
6224 >                (reducer = this.reducer) != null) {
6225 >                int r = this.basis;
6226 >                for (int i = baseIndex, f, h; batch > 0 &&
6227 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6228 >                    addToPendingCount(1);
6229 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6230 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6231 >                      rights, transformer, r, reducer)).fork();
6232 >                }
6233 >                for (Node<K,V> p; (p = advance()) != null; )
6234 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6235 >                result = r;
6236 >                CountedCompleter<?> c;
6237 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6238 >                    @SuppressWarnings("unchecked")
6239 >                    MapReduceMappingsToIntTask<K,V>
6240 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6241 >                        s = t.rights;
6242 >                    while (s != null) {
6243 >                        t.result = reducer.applyAsInt(t.result, s.result);
6244 >                        s = t.rights = s.nextRight;
6245 >                    }
6246                  }
6699                else if (p.casPending(c, 0))
6700                    break;
6247              }
6248          }
6703        public final Integer getRawResult() { return result; }
6249      }
6250  
6706
6251      // Unsafe mechanics
6252 <    private static final sun.misc.Unsafe UNSAFE;
6253 <    private static final long counterOffset;
6254 <    private static final long sizeCtlOffset;
6252 >    private static final sun.misc.Unsafe U;
6253 >    private static final long SIZECTL;
6254 >    private static final long TRANSFERINDEX;
6255 >    private static final long BASECOUNT;
6256 >    private static final long CELLSBUSY;
6257 >    private static final long CELLVALUE;
6258      private static final long ABASE;
6259      private static final int ASHIFT;
6260  
6261      static {
6715        int ss;
6262          try {
6263 <            UNSAFE =  sun.misc.Unsafe.getUnsafe();
6263 >            U = sun.misc.Unsafe.getUnsafe();
6264              Class<?> k = ConcurrentHashMap.class;
6265 <            counterOffset = UNSAFE.objectFieldOffset
6720 <                (k.getDeclaredField("counter"));
6721 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6265 >            SIZECTL = U.objectFieldOffset
6266                  (k.getDeclaredField("sizeCtl"));
6267 <            Class<?> sc = Node[].class;
6268 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6269 <            ss = UNSAFE.arrayIndexScale(sc);
6267 >            TRANSFERINDEX = U.objectFieldOffset
6268 >                (k.getDeclaredField("transferIndex"));
6269 >            BASECOUNT = U.objectFieldOffset
6270 >                (k.getDeclaredField("baseCount"));
6271 >            CELLSBUSY = U.objectFieldOffset
6272 >                (k.getDeclaredField("cellsBusy"));
6273 >            Class<?> ck = CounterCell.class;
6274 >            CELLVALUE = U.objectFieldOffset
6275 >                (ck.getDeclaredField("value"));
6276 >            Class<?> ak = Node[].class;
6277 >            ABASE = U.arrayBaseOffset(ak);
6278 >            int scale = U.arrayIndexScale(ak);
6279 >            if ((scale & (scale - 1)) != 0)
6280 >                throw new Error("data type scale not a power of two");
6281 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6282          } catch (Exception e) {
6283              throw new Error(e);
6284          }
6729        if ((ss & (ss-1)) != 0)
6730            throw new Error("data type scale not a power of two");
6731        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6285      }
6733
6286   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines