ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.111 by jsr166, Thu Apr 28 00:15:06 2011 UTC vs.
Revision 1.278 by jsr166, Sat Sep 12 21:55:08 2015 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.atomic.AtomicReference;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42  
43   /**
44   * A hash table supporting full concurrency of retrievals and
45 < * adjustable expected concurrency for updates. This class obeys the
45 > * high expected concurrency for updates. This class obeys the
46   * same functional specification as {@link java.util.Hashtable}, and
47   * includes versions of methods corresponding to each method of
48 < * <tt>Hashtable</tt>. However, even though all operations are
48 > * {@code Hashtable}. However, even though all operations are
49   * thread-safe, retrieval operations do <em>not</em> entail locking,
50   * and there is <em>not</em> any support for locking the entire table
51   * in a way that prevents all access.  This class is fully
52 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
52 > * interoperable with {@code Hashtable} in programs that rely on its
53   * thread safety but not on its synchronization details.
54   *
55 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
56 < * block, so may overlap with update operations (including
57 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
58 < * of the most recently <em>completed</em> update operations holding
59 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
60 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
61 < * removal of only some entries.  Similarly, Iterators and
62 < * Enumerations return elements reflecting the state of the hash table
63 < * at some point at or since the creation of the iterator/enumeration.
64 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
55 > * <p>Retrieval operations (including {@code get}) generally do not
56 > * block, so may overlap with update operations (including {@code put}
57 > * and {@code remove}). Retrievals reflect the results of the most
58 > * recently <em>completed</em> update operations holding upon their
59 > * onset. (More formally, an update operation for a given key bears a
60 > * <em>happens-before</em> relation with any (non-null) retrieval for
61 > * that key reporting the updated value.)  For aggregate operations
62 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 > * reflect insertion or removal of only some entries.  Similarly,
64 > * Iterators, Spliterators and Enumerations return elements reflecting the
65 > * state of the hash table at some point at or since the creation of the
66 > * iterator/enumeration.  They do <em>not</em> throw {@link
67 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
68   * However, iterators are designed to be used by only one thread at a time.
69 + * Bear in mind that the results of aggregate status methods including
70 + * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 + * useful only when a map is not undergoing concurrent updates in other threads.
72 + * Otherwise the results of these methods reflect transient states
73 + * that may be adequate for monitoring or estimation purposes, but not
74 + * for program control.
75 + *
76 + * <p>The table is dynamically expanded when there are too many
77 + * collisions (i.e., keys that have distinct hash codes but fall into
78 + * the same slot modulo the table size), with the expected average
79 + * effect of maintaining roughly two bins per mapping (corresponding
80 + * to a 0.75 load factor threshold for resizing). There may be much
81 + * variance around this average as mappings are added and removed, but
82 + * overall, this maintains a commonly accepted time/space tradeoff for
83 + * hash tables.  However, resizing this or any other kind of hash
84 + * table may be a relatively slow operation. When possible, it is a
85 + * good idea to provide a size estimate as an optional {@code
86 + * initialCapacity} constructor argument. An additional optional
87 + * {@code loadFactor} constructor argument provides a further means of
88 + * customizing initial table capacity by specifying the table density
89 + * to be used in calculating the amount of space to allocate for the
90 + * given number of elements.  Also, for compatibility with previous
91 + * versions of this class, constructors may optionally specify an
92 + * expected {@code concurrencyLevel} as an additional hint for
93 + * internal sizing.  Note that using many keys with exactly the same
94 + * {@code hashCode()} is a sure way to slow down performance of any
95 + * hash table. To ameliorate impact, when keys are {@link Comparable},
96 + * this class may use comparison order among keys to help break ties.
97 + *
98 + * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 + * (using {@link #keySet(Object)} when only keys are of interest, and the
101 + * mapped values are (perhaps transiently) not used or all take the
102 + * same mapping value.
103   *
104 < * <p> The allowed concurrency among update operations is guided by
105 < * the optional <tt>concurrencyLevel</tt> constructor argument
106 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
107 < * table is internally partitioned to try to permit the indicated
108 < * number of concurrent updates without contention. Because placement
109 < * in hash tables is essentially random, the actual concurrency will
45 < * vary.  Ideally, you should choose a value to accommodate as many
46 < * threads as will ever concurrently modify the table. Using a
47 < * significantly higher value than you need can waste space and time,
48 < * and a significantly lower value can lead to thread contention. But
49 < * overestimates and underestimates within an order of magnitude do
50 < * not usually have much noticeable impact. A value of one is
51 < * appropriate when it is known that only one thread will modify and
52 < * all others will only read. Also, resizing this or any other kind of
53 < * hash table is a relatively slow operation, so, when possible, it is
54 < * a good idea to provide estimates of expected table sizes in
55 < * constructors.
104 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 > * form of histogram or multiset) by using {@link
106 > * java.util.concurrent.atomic.LongAdder} values and initializing via
107 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110   *
111   * <p>This class and its views and iterators implement all of the
112   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113   * interfaces.
114   *
115 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
116 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
115 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 > * does <em>not</em> allow {@code null} to be used as a key or value.
117 > *
118 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 > * operations that, unlike most {@link Stream} methods, are designed
120 > * to be safely, and often sensibly, applied even with maps that are
121 > * being concurrently updated by other threads; for example, when
122 > * computing a snapshot summary of the values in a shared registry.
123 > * There are three kinds of operation, each with four forms, accepting
124 > * functions with keys, values, entries, and (key, value) pairs as
125 > * arguments and/or return values. Because the elements of a
126 > * ConcurrentHashMap are not ordered in any particular way, and may be
127 > * processed in different orders in different parallel executions, the
128 > * correctness of supplied functions should not depend on any
129 > * ordering, or on any other objects or values that may transiently
130 > * change while computation is in progress; and except for forEach
131 > * actions, should ideally be side-effect-free. Bulk operations on
132 > * {@link java.util.Map.Entry} objects do not support method {@code
133 > * setValue}.
134 > *
135 > * <ul>
136 > * <li> forEach: Perform a given action on each element.
137 > * A variant form applies a given transformation on each element
138 > * before performing the action.</li>
139 > *
140 > * <li> search: Return the first available non-null result of
141 > * applying a given function on each element; skipping further
142 > * search when a result is found.</li>
143 > *
144 > * <li> reduce: Accumulate each element.  The supplied reduction
145 > * function cannot rely on ordering (more formally, it should be
146 > * both associative and commutative).  There are five variants:
147 > *
148 > * <ul>
149 > *
150 > * <li> Plain reductions. (There is not a form of this method for
151 > * (key, value) function arguments since there is no corresponding
152 > * return type.)</li>
153 > *
154 > * <li> Mapped reductions that accumulate the results of a given
155 > * function applied to each element.</li>
156 > *
157 > * <li> Reductions to scalar doubles, longs, and ints, using a
158 > * given basis value.</li>
159 > *
160 > * </ul>
161 > * </li>
162 > * </ul>
163 > *
164 > * <p>These bulk operations accept a {@code parallelismThreshold}
165 > * argument. Methods proceed sequentially if the current map size is
166 > * estimated to be less than the given threshold. Using a value of
167 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
168 > * of {@code 1} results in maximal parallelism by partitioning into
169 > * enough subtasks to fully utilize the {@link
170 > * ForkJoinPool#commonPool()} that is used for all parallel
171 > * computations. Normally, you would initially choose one of these
172 > * extreme values, and then measure performance of using in-between
173 > * values that trade off overhead versus throughput.
174 > *
175 > * <p>The concurrency properties of bulk operations follow
176 > * from those of ConcurrentHashMap: Any non-null result returned
177 > * from {@code get(key)} and related access methods bears a
178 > * happens-before relation with the associated insertion or
179 > * update.  The result of any bulk operation reflects the
180 > * composition of these per-element relations (but is not
181 > * necessarily atomic with respect to the map as a whole unless it
182 > * is somehow known to be quiescent).  Conversely, because keys
183 > * and values in the map are never null, null serves as a reliable
184 > * atomic indicator of the current lack of any result.  To
185 > * maintain this property, null serves as an implicit basis for
186 > * all non-scalar reduction operations. For the double, long, and
187 > * int versions, the basis should be one that, when combined with
188 > * any other value, returns that other value (more formally, it
189 > * should be the identity element for the reduction). Most common
190 > * reductions have these properties; for example, computing a sum
191 > * with basis 0 or a minimum with basis MAX_VALUE.
192 > *
193 > * <p>Search and transformation functions provided as arguments
194 > * should similarly return null to indicate the lack of any result
195 > * (in which case it is not used). In the case of mapped
196 > * reductions, this also enables transformations to serve as
197 > * filters, returning null (or, in the case of primitive
198 > * specializations, the identity basis) if the element should not
199 > * be combined. You can create compound transformations and
200 > * filterings by composing them yourself under this "null means
201 > * there is nothing there now" rule before using them in search or
202 > * reduce operations.
203 > *
204 > * <p>Methods accepting and/or returning Entry arguments maintain
205 > * key-value associations. They may be useful for example when
206 > * finding the key for the greatest value. Note that "plain" Entry
207 > * arguments can be supplied using {@code new
208 > * AbstractMap.SimpleEntry(k,v)}.
209 > *
210 > * <p>Bulk operations may complete abruptly, throwing an
211 > * exception encountered in the application of a supplied
212 > * function. Bear in mind when handling such exceptions that other
213 > * concurrently executing functions could also have thrown
214 > * exceptions, or would have done so if the first exception had
215 > * not occurred.
216 > *
217 > * <p>Speedups for parallel compared to sequential forms are common
218 > * but not guaranteed.  Parallel operations involving brief functions
219 > * on small maps may execute more slowly than sequential forms if the
220 > * underlying work to parallelize the computation is more expensive
221 > * than the computation itself.  Similarly, parallelization may not
222 > * lead to much actual parallelism if all processors are busy
223 > * performing unrelated tasks.
224 > *
225 > * <p>All arguments to all task methods must be non-null.
226   *
227   * <p>This class is a member of the
228   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 233 | import java.io.ObjectOutputStream;
233   * @param <K> the type of keys maintained by this map
234   * @param <V> the type of mapped values
235   */
236 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
237 <        implements ConcurrentMap<K, V>, Serializable {
236 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
237 >    implements ConcurrentMap<K,V>, Serializable {
238      private static final long serialVersionUID = 7249069246763182397L;
239  
240      /*
241 <     * The basic strategy is to subdivide the table among Segments,
242 <     * each of which itself is a concurrently readable hash table.  To
243 <     * reduce footprint, all but one segments are constructed only
244 <     * when first needed (see ensureSegment). To maintain visibility
245 <     * in the presence of lazy construction, accesses to segments as
246 <     * well as elements of segment's table must use volatile access,
247 <     * which is done via Unsafe within methods segmentAt etc
248 <     * below. These provide the functionality of AtomicReferenceArrays
249 <     * but reduce the levels of indirection. Additionally,
250 <     * volatile-writes of table elements and entry "next" fields
251 <     * within locked operations use the cheaper "lazySet" forms of
252 <     * writes (via putOrderedObject) because these writes are always
253 <     * followed by lock releases that maintain sequential consistency
254 <     * of table updates.
255 <     *
256 <     * Historical note: The previous version of this class relied
257 <     * heavily on "final" fields, which avoided some volatile reads at
258 <     * the expense of a large initial footprint.  Some remnants of
259 <     * that design (including forced construction of segment 0) exist
260 <     * to ensure serialization compatibility.
241 >     * Overview:
242 >     *
243 >     * The primary design goal of this hash table is to maintain
244 >     * concurrent readability (typically method get(), but also
245 >     * iterators and related methods) while minimizing update
246 >     * contention. Secondary goals are to keep space consumption about
247 >     * the same or better than java.util.HashMap, and to support high
248 >     * initial insertion rates on an empty table by many threads.
249 >     *
250 >     * This map usually acts as a binned (bucketed) hash table.  Each
251 >     * key-value mapping is held in a Node.  Most nodes are instances
252 >     * of the basic Node class with hash, key, value, and next
253 >     * fields. However, various subclasses exist: TreeNodes are
254 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
255 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
256 >     * of bins during resizing. ReservationNodes are used as
257 >     * placeholders while establishing values in computeIfAbsent and
258 >     * related methods.  The types TreeBin, ForwardingNode, and
259 >     * ReservationNode do not hold normal user keys, values, or
260 >     * hashes, and are readily distinguishable during search etc
261 >     * because they have negative hash fields and null key and value
262 >     * fields. (These special nodes are either uncommon or transient,
263 >     * so the impact of carrying around some unused fields is
264 >     * insignificant.)
265 >     *
266 >     * The table is lazily initialized to a power-of-two size upon the
267 >     * first insertion.  Each bin in the table normally contains a
268 >     * list of Nodes (most often, the list has only zero or one Node).
269 >     * Table accesses require volatile/atomic reads, writes, and
270 >     * CASes.  Because there is no other way to arrange this without
271 >     * adding further indirections, we use intrinsics
272 >     * (sun.misc.Unsafe) operations.
273 >     *
274 >     * We use the top (sign) bit of Node hash fields for control
275 >     * purposes -- it is available anyway because of addressing
276 >     * constraints.  Nodes with negative hash fields are specially
277 >     * handled or ignored in map methods.
278 >     *
279 >     * Insertion (via put or its variants) of the first node in an
280 >     * empty bin is performed by just CASing it to the bin.  This is
281 >     * by far the most common case for put operations under most
282 >     * key/hash distributions.  Other update operations (insert,
283 >     * delete, and replace) require locks.  We do not want to waste
284 >     * the space required to associate a distinct lock object with
285 >     * each bin, so instead use the first node of a bin list itself as
286 >     * a lock. Locking support for these locks relies on builtin
287 >     * "synchronized" monitors.
288 >     *
289 >     * Using the first node of a list as a lock does not by itself
290 >     * suffice though: When a node is locked, any update must first
291 >     * validate that it is still the first node after locking it, and
292 >     * retry if not. Because new nodes are always appended to lists,
293 >     * once a node is first in a bin, it remains first until deleted
294 >     * or the bin becomes invalidated (upon resizing).
295 >     *
296 >     * The main disadvantage of per-bin locks is that other update
297 >     * operations on other nodes in a bin list protected by the same
298 >     * lock can stall, for example when user equals() or mapping
299 >     * functions take a long time.  However, statistically, under
300 >     * random hash codes, this is not a common problem.  Ideally, the
301 >     * frequency of nodes in bins follows a Poisson distribution
302 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
303 >     * parameter of about 0.5 on average, given the resizing threshold
304 >     * of 0.75, although with a large variance because of resizing
305 >     * granularity. Ignoring variance, the expected occurrences of
306 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
307 >     * first values are:
308 >     *
309 >     * 0:    0.60653066
310 >     * 1:    0.30326533
311 >     * 2:    0.07581633
312 >     * 3:    0.01263606
313 >     * 4:    0.00157952
314 >     * 5:    0.00015795
315 >     * 6:    0.00001316
316 >     * 7:    0.00000094
317 >     * 8:    0.00000006
318 >     * more: less than 1 in ten million
319 >     *
320 >     * Lock contention probability for two threads accessing distinct
321 >     * elements is roughly 1 / (8 * #elements) under random hashes.
322 >     *
323 >     * Actual hash code distributions encountered in practice
324 >     * sometimes deviate significantly from uniform randomness.  This
325 >     * includes the case when N > (1<<30), so some keys MUST collide.
326 >     * Similarly for dumb or hostile usages in which multiple keys are
327 >     * designed to have identical hash codes or ones that differs only
328 >     * in masked-out high bits. So we use a secondary strategy that
329 >     * applies when the number of nodes in a bin exceeds a
330 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
331 >     * specialized form of red-black trees), bounding search time to
332 >     * O(log N).  Each search step in a TreeBin is at least twice as
333 >     * slow as in a regular list, but given that N cannot exceed
334 >     * (1<<64) (before running out of addresses) this bounds search
335 >     * steps, lock hold times, etc, to reasonable constants (roughly
336 >     * 100 nodes inspected per operation worst case) so long as keys
337 >     * are Comparable (which is very common -- String, Long, etc).
338 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
339 >     * traversal pointers as regular nodes, so can be traversed in
340 >     * iterators in the same way.
341 >     *
342 >     * The table is resized when occupancy exceeds a percentage
343 >     * threshold (nominally, 0.75, but see below).  Any thread
344 >     * noticing an overfull bin may assist in resizing after the
345 >     * initiating thread allocates and sets up the replacement array.
346 >     * However, rather than stalling, these other threads may proceed
347 >     * with insertions etc.  The use of TreeBins shields us from the
348 >     * worst case effects of overfilling while resizes are in
349 >     * progress.  Resizing proceeds by transferring bins, one by one,
350 >     * from the table to the next table. However, threads claim small
351 >     * blocks of indices to transfer (via field transferIndex) before
352 >     * doing so, reducing contention.  A generation stamp in field
353 >     * sizeCtl ensures that resizings do not overlap. Because we are
354 >     * using power-of-two expansion, the elements from each bin must
355 >     * either stay at same index, or move with a power of two
356 >     * offset. We eliminate unnecessary node creation by catching
357 >     * cases where old nodes can be reused because their next fields
358 >     * won't change.  On average, only about one-sixth of them need
359 >     * cloning when a table doubles. The nodes they replace will be
360 >     * garbage collectable as soon as they are no longer referenced by
361 >     * any reader thread that may be in the midst of concurrently
362 >     * traversing table.  Upon transfer, the old table bin contains
363 >     * only a special forwarding node (with hash field "MOVED") that
364 >     * contains the next table as its key. On encountering a
365 >     * forwarding node, access and update operations restart, using
366 >     * the new table.
367 >     *
368 >     * Each bin transfer requires its bin lock, which can stall
369 >     * waiting for locks while resizing. However, because other
370 >     * threads can join in and help resize rather than contend for
371 >     * locks, average aggregate waits become shorter as resizing
372 >     * progresses.  The transfer operation must also ensure that all
373 >     * accessible bins in both the old and new table are usable by any
374 >     * traversal.  This is arranged in part by proceeding from the
375 >     * last bin (table.length - 1) up towards the first.  Upon seeing
376 >     * a forwarding node, traversals (see class Traverser) arrange to
377 >     * move to the new table without revisiting nodes.  To ensure that
378 >     * no intervening nodes are skipped even when moved out of order,
379 >     * a stack (see class TableStack) is created on first encounter of
380 >     * a forwarding node during a traversal, to maintain its place if
381 >     * later processing the current table. The need for these
382 >     * save/restore mechanics is relatively rare, but when one
383 >     * forwarding node is encountered, typically many more will be.
384 >     * So Traversers use a simple caching scheme to avoid creating so
385 >     * many new TableStack nodes. (Thanks to Peter Levart for
386 >     * suggesting use of a stack here.)
387 >     *
388 >     * The traversal scheme also applies to partial traversals of
389 >     * ranges of bins (via an alternate Traverser constructor)
390 >     * to support partitioned aggregate operations.  Also, read-only
391 >     * operations give up if ever forwarded to a null table, which
392 >     * provides support for shutdown-style clearing, which is also not
393 >     * currently implemented.
394 >     *
395 >     * Lazy table initialization minimizes footprint until first use,
396 >     * and also avoids resizings when the first operation is from a
397 >     * putAll, constructor with map argument, or deserialization.
398 >     * These cases attempt to override the initial capacity settings,
399 >     * but harmlessly fail to take effect in cases of races.
400 >     *
401 >     * The element count is maintained using a specialization of
402 >     * LongAdder. We need to incorporate a specialization rather than
403 >     * just use a LongAdder in order to access implicit
404 >     * contention-sensing that leads to creation of multiple
405 >     * CounterCells.  The counter mechanics avoid contention on
406 >     * updates but can encounter cache thrashing if read too
407 >     * frequently during concurrent access. To avoid reading so often,
408 >     * resizing under contention is attempted only upon adding to a
409 >     * bin already holding two or more nodes. Under uniform hash
410 >     * distributions, the probability of this occurring at threshold
411 >     * is around 13%, meaning that only about 1 in 8 puts check
412 >     * threshold (and after resizing, many fewer do so).
413 >     *
414 >     * TreeBins use a special form of comparison for search and
415 >     * related operations (which is the main reason we cannot use
416 >     * existing collections such as TreeMaps). TreeBins contain
417 >     * Comparable elements, but may contain others, as well as
418 >     * elements that are Comparable but not necessarily Comparable for
419 >     * the same T, so we cannot invoke compareTo among them. To handle
420 >     * this, the tree is ordered primarily by hash value, then by
421 >     * Comparable.compareTo order if applicable.  On lookup at a node,
422 >     * if elements are not comparable or compare as 0 then both left
423 >     * and right children may need to be searched in the case of tied
424 >     * hash values. (This corresponds to the full list search that
425 >     * would be necessary if all elements were non-Comparable and had
426 >     * tied hashes.) On insertion, to keep a total ordering (or as
427 >     * close as is required here) across rebalancings, we compare
428 >     * classes and identityHashCodes as tie-breakers. The red-black
429 >     * balancing code is updated from pre-jdk-collections
430 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432 >     * Algorithms" (CLR).
433 >     *
434 >     * TreeBins also require an additional locking mechanism.  While
435 >     * list traversal is always possible by readers even during
436 >     * updates, tree traversal is not, mainly because of tree-rotations
437 >     * that may change the root node and/or its linkages.  TreeBins
438 >     * include a simple read-write lock mechanism parasitic on the
439 >     * main bin-synchronization strategy: Structural adjustments
440 >     * associated with an insertion or removal are already bin-locked
441 >     * (and so cannot conflict with other writers) but must wait for
442 >     * ongoing readers to finish. Since there can be only one such
443 >     * waiter, we use a simple scheme using a single "waiter" field to
444 >     * block writers.  However, readers need never block.  If the root
445 >     * lock is held, they proceed along the slow traversal path (via
446 >     * next-pointers) until the lock becomes available or the list is
447 >     * exhausted, whichever comes first. These cases are not fast, but
448 >     * maximize aggregate expected throughput.
449 >     *
450 >     * Maintaining API and serialization compatibility with previous
451 >     * versions of this class introduces several oddities. Mainly: We
452 >     * leave untouched but unused constructor arguments referring to
453 >     * concurrencyLevel. We accept a loadFactor constructor argument,
454 >     * but apply it only to initial table capacity (which is the only
455 >     * time that we can guarantee to honor it.) We also declare an
456 >     * unused "Segment" class that is instantiated in minimal form
457 >     * only when serializing.
458 >     *
459 >     * Also, solely for compatibility with previous versions of this
460 >     * class, it extends AbstractMap, even though all of its methods
461 >     * are overridden, so it is just useless baggage.
462 >     *
463 >     * This file is organized to make things a little easier to follow
464 >     * while reading than they might otherwise: First the main static
465 >     * declarations and utilities, then fields, then main public
466 >     * methods (with a few factorings of multiple public methods into
467 >     * internal ones), then sizing methods, trees, traversers, and
468 >     * bulk operations.
469       */
470  
471      /* ---------------- Constants -------------- */
472  
473      /**
474 <     * The default initial capacity for this table,
475 <     * used when not otherwise specified in a constructor.
474 >     * The largest possible table capacity.  This value must be
475 >     * exactly 1<<30 to stay within Java array allocation and indexing
476 >     * bounds for power of two table sizes, and is further required
477 >     * because the top two bits of 32bit hash fields are used for
478 >     * control purposes.
479       */
480 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
480 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
481  
482      /**
483 <     * The default load factor for this table, used when not
484 <     * otherwise specified in a constructor.
483 >     * The default initial table capacity.  Must be a power of 2
484 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
485       */
486 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
486 >    private static final int DEFAULT_CAPACITY = 16;
487  
488      /**
489 <     * The default concurrency level for this table, used when not
490 <     * otherwise specified in a constructor.
489 >     * The largest possible (non-power of two) array size.
490 >     * Needed by toArray and related methods.
491       */
492 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
492 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
493  
494      /**
495 <     * The maximum capacity, used if a higher value is implicitly
496 <     * specified by either of the constructors with arguments.  MUST
123 <     * be a power of two <= 1<<30 to ensure that entries are indexable
124 <     * using ints.
495 >     * The default concurrency level for this table. Unused but
496 >     * defined for compatibility with previous versions of this class.
497       */
498 <    static final int MAXIMUM_CAPACITY = 1 << 30;
498 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
499  
500      /**
501 <     * The minimum capacity for per-segment tables.  Must be a power
502 <     * of two, at least two to avoid immediate resizing on next use
503 <     * after lazy construction.
501 >     * The load factor for this table. Overrides of this value in
502 >     * constructors affect only the initial table capacity.  The
503 >     * actual floating point value isn't normally used -- it is
504 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
505 >     * the associated resizing threshold.
506       */
507 <    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
507 >    private static final float LOAD_FACTOR = 0.75f;
508  
509      /**
510 <     * The maximum number of segments to allow; used to bound
511 <     * constructor arguments. Must be power of two less than 1 << 24.
510 >     * The bin count threshold for using a tree rather than list for a
511 >     * bin.  Bins are converted to trees when adding an element to a
512 >     * bin with at least this many nodes. The value must be greater
513 >     * than 2, and should be at least 8 to mesh with assumptions in
514 >     * tree removal about conversion back to plain bins upon
515 >     * shrinkage.
516       */
517 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
517 >    static final int TREEIFY_THRESHOLD = 8;
518  
519      /**
520 <     * Number of unsynchronized retries in size and containsValue
521 <     * methods before resorting to locking. This is used to avoid
522 <     * unbounded retries if tables undergo continuous modification
145 <     * which would make it impossible to obtain an accurate result.
520 >     * The bin count threshold for untreeifying a (split) bin during a
521 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522 >     * most 6 to mesh with shrinkage detection under removal.
523       */
524 <    static final int RETRIES_BEFORE_LOCK = 2;
148 <
149 <    /* ---------------- Fields -------------- */
524 >    static final int UNTREEIFY_THRESHOLD = 6;
525  
526      /**
527 <     * Mask value for indexing into segments. The upper bits of a
528 <     * key's hash code are used to choose the segment.
527 >     * The smallest table capacity for which bins may be treeified.
528 >     * (Otherwise the table is resized if too many nodes in a bin.)
529 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530 >     * conflicts between resizing and treeification thresholds.
531       */
532 <    final int segmentMask;
532 >    static final int MIN_TREEIFY_CAPACITY = 64;
533  
534      /**
535 <     * Shift value for indexing within segments.
535 >     * Minimum number of rebinnings per transfer step. Ranges are
536 >     * subdivided to allow multiple resizer threads.  This value
537 >     * serves as a lower bound to avoid resizers encountering
538 >     * excessive memory contention.  The value should be at least
539 >     * DEFAULT_CAPACITY.
540       */
541 <    final int segmentShift;
541 >    private static final int MIN_TRANSFER_STRIDE = 16;
542  
543      /**
544 <     * The segments, each of which is a specialized hash table.
544 >     * The number of bits used for generation stamp in sizeCtl.
545 >     * Must be at least 6 for 32bit arrays.
546       */
547 <    final Segment<K,V>[] segments;
547 >    private static int RESIZE_STAMP_BITS = 16;
548  
549 <    transient Set<K> keySet;
550 <    transient Set<Map.Entry<K,V>> entrySet;
551 <    transient Collection<V> values;
549 >    /**
550 >     * The maximum number of threads that can help resize.
551 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
552 >     */
553 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
554  
555      /**
556 <     * ConcurrentHashMap list entry. Note that this is never exported
557 <     * out as a user-visible Map.Entry.
556 >     * The bit shift for recording size stamp in sizeCtl.
557 >     */
558 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
559 >
560 >    /*
561 >     * Encodings for Node hash fields. See above for explanation.
562 >     */
563 >    static final int MOVED     = -1; // hash for forwarding nodes
564 >    static final int TREEBIN   = -2; // hash for roots of trees
565 >    static final int RESERVED  = -3; // hash for transient reservations
566 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
567 >
568 >    /** Number of CPUS, to place bounds on some sizings */
569 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
570 >
571 >    /** For serialization compatibility. */
572 >    private static final ObjectStreamField[] serialPersistentFields = {
573 >        new ObjectStreamField("segments", Segment[].class),
574 >        new ObjectStreamField("segmentMask", Integer.TYPE),
575 >        new ObjectStreamField("segmentShift", Integer.TYPE)
576 >    };
577 >
578 >    /* ---------------- Nodes -------------- */
579 >
580 >    /**
581 >     * Key-value entry.  This class is never exported out as a
582 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
583 >     * MapEntry below), but can be used for read-only traversals used
584 >     * in bulk tasks.  Subclasses of Node with a negative hash field
585 >     * are special, and contain null keys and values (but are never
586 >     * exported).  Otherwise, keys and vals are never null.
587       */
588 <    static final class HashEntry<K,V> {
588 >    static class Node<K,V> implements Map.Entry<K,V> {
589          final int hash;
590          final K key;
591 <        volatile V value;
592 <        volatile HashEntry<K,V> next;
591 >        volatile V val;
592 >        volatile Node<K,V> next;
593  
594 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
594 >        Node(int hash, K key, V val, Node<K,V> next) {
595              this.hash = hash;
596              this.key = key;
597 <            this.value = value;
597 >            this.val = val;
598              this.next = next;
599          }
600  
601 +        public final K getKey()     { return key; }
602 +        public final V getValue()   { return val; }
603 +        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
604 +        public final String toString() {
605 +            return Helpers.mapEntryToString(key, val);
606 +        }
607 +        public final V setValue(V value) {
608 +            throw new UnsupportedOperationException();
609 +        }
610 +
611 +        public final boolean equals(Object o) {
612 +            Object k, v, u; Map.Entry<?,?> e;
613 +            return ((o instanceof Map.Entry) &&
614 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615 +                    (v = e.getValue()) != null &&
616 +                    (k == key || k.equals(key)) &&
617 +                    (v == (u = val) || v.equals(u)));
618 +        }
619 +
620          /**
621 <         * Sets next field with volatile write semantics.  (See above
190 <         * about use of putOrderedObject.)
621 >         * Virtualized support for map.get(); overridden in subclasses.
622           */
623 <        final void setNext(HashEntry<K,V> n) {
624 <            UNSAFE.putOrderedObject(this, nextOffset, n);
623 >        Node<K,V> find(int h, Object k) {
624 >            Node<K,V> e = this;
625 >            if (k != null) {
626 >                do {
627 >                    K ek;
628 >                    if (e.hash == h &&
629 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
630 >                        return e;
631 >                } while ((e = e.next) != null);
632 >            }
633 >            return null;
634          }
635 +    }
636  
637 <        // Unsafe mechanics
638 <        static final sun.misc.Unsafe UNSAFE;
639 <        static final long nextOffset;
640 <        static {
641 <            try {
642 <                UNSAFE = sun.misc.Unsafe.getUnsafe();
643 <                Class k = HashEntry.class;
644 <                nextOffset = UNSAFE.objectFieldOffset
645 <                    (k.getDeclaredField("next"));
646 <            } catch (Exception e) {
647 <                throw new Error(e);
637 >    /* ---------------- Static utilities -------------- */
638 >
639 >    /**
640 >     * Spreads (XORs) higher bits of hash to lower and also forces top
641 >     * bit to 0. Because the table uses power-of-two masking, sets of
642 >     * hashes that vary only in bits above the current mask will
643 >     * always collide. (Among known examples are sets of Float keys
644 >     * holding consecutive whole numbers in small tables.)  So we
645 >     * apply a transform that spreads the impact of higher bits
646 >     * downward. There is a tradeoff between speed, utility, and
647 >     * quality of bit-spreading. Because many common sets of hashes
648 >     * are already reasonably distributed (so don't benefit from
649 >     * spreading), and because we use trees to handle large sets of
650 >     * collisions in bins, we just XOR some shifted bits in the
651 >     * cheapest possible way to reduce systematic lossage, as well as
652 >     * to incorporate impact of the highest bits that would otherwise
653 >     * never be used in index calculations because of table bounds.
654 >     */
655 >    static final int spread(int h) {
656 >        return (h ^ (h >>> 16)) & HASH_BITS;
657 >    }
658 >
659 >    /**
660 >     * Returns a power of two table size for the given desired capacity.
661 >     * See Hackers Delight, sec 3.2
662 >     */
663 >    private static final int tableSizeFor(int c) {
664 >        int n = c - 1;
665 >        n |= n >>> 1;
666 >        n |= n >>> 2;
667 >        n |= n >>> 4;
668 >        n |= n >>> 8;
669 >        n |= n >>> 16;
670 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671 >    }
672 >
673 >    /**
674 >     * Returns x's Class if it is of the form "class C implements
675 >     * Comparable<C>", else null.
676 >     */
677 >    static Class<?> comparableClassFor(Object x) {
678 >        if (x instanceof Comparable) {
679 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680 >            if ((c = x.getClass()) == String.class) // bypass checks
681 >                return c;
682 >            if ((ts = c.getGenericInterfaces()) != null) {
683 >                for (int i = 0; i < ts.length; ++i) {
684 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
685 >                        ((p = (ParameterizedType)t).getRawType() ==
686 >                         Comparable.class) &&
687 >                        (as = p.getActualTypeArguments()) != null &&
688 >                        as.length == 1 && as[0] == c) // type arg is c
689 >                        return c;
690 >                }
691              }
692          }
693 +        return null;
694      }
695  
696      /**
697 <     * Gets the ith element of given table (if nonnull) with volatile
698 <     * read semantics. Note: This is manually integrated into a few
214 <     * performance-sensitive methods to reduce call overhead.
697 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
698 >     * class), else 0.
699       */
700 +    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701 +    static int compareComparables(Class<?> kc, Object k, Object x) {
702 +        return (x == null || x.getClass() != kc ? 0 :
703 +                ((Comparable)k).compareTo(x));
704 +    }
705 +
706 +    /* ---------------- Table element access -------------- */
707 +
708 +    /*
709 +     * Volatile access methods are used for table elements as well as
710 +     * elements of in-progress next table while resizing.  All uses of
711 +     * the tab arguments must be null checked by callers.  All callers
712 +     * also paranoically precheck that tab's length is not zero (or an
713 +     * equivalent check), thus ensuring that any index argument taking
714 +     * the form of a hash value anded with (length - 1) is a valid
715 +     * index.  Note that, to be correct wrt arbitrary concurrency
716 +     * errors by users, these checks must operate on local variables,
717 +     * which accounts for some odd-looking inline assignments below.
718 +     * Note that calls to setTabAt always occur within locked regions,
719 +     * and so in principle require only release ordering, not
720 +     * full volatile semantics, but are currently coded as volatile
721 +     * writes to be conservative.
722 +     */
723 +
724      @SuppressWarnings("unchecked")
725 <    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
726 <        return (tab == null) ? null :
219 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
220 <            (tab, ((long)i << TSHIFT) + TBASE);
725 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727      }
728  
729 +    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730 +                                        Node<K,V> c, Node<K,V> v) {
731 +        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732 +    }
733 +
734 +    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 +        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736 +    }
737 +
738 +    /* ---------------- Fields -------------- */
739 +
740 +    /**
741 +     * The array of bins. Lazily initialized upon first insertion.
742 +     * Size is always a power of two. Accessed directly by iterators.
743 +     */
744 +    transient volatile Node<K,V>[] table;
745 +
746 +    /**
747 +     * The next table to use; non-null only while resizing.
748 +     */
749 +    private transient volatile Node<K,V>[] nextTable;
750 +
751 +    /**
752 +     * Base counter value, used mainly when there is no contention,
753 +     * but also as a fallback during table initialization
754 +     * races. Updated via CAS.
755 +     */
756 +    private transient volatile long baseCount;
757 +
758 +    /**
759 +     * Table initialization and resizing control.  When negative, the
760 +     * table is being initialized or resized: -1 for initialization,
761 +     * else -(1 + the number of active resizing threads).  Otherwise,
762 +     * when table is null, holds the initial table size to use upon
763 +     * creation, or 0 for default. After initialization, holds the
764 +     * next element count value upon which to resize the table.
765 +     */
766 +    private transient volatile int sizeCtl;
767 +
768 +    /**
769 +     * The next table index (plus one) to split while resizing.
770 +     */
771 +    private transient volatile int transferIndex;
772 +
773 +    /**
774 +     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775 +     */
776 +    private transient volatile int cellsBusy;
777 +
778 +    /**
779 +     * Table of counter cells. When non-null, size is a power of 2.
780 +     */
781 +    private transient volatile CounterCell[] counterCells;
782 +
783 +    // views
784 +    private transient KeySetView<K,V> keySet;
785 +    private transient ValuesView<K,V> values;
786 +    private transient EntrySetView<K,V> entrySet;
787 +
788 +
789 +    /* ---------------- Public operations -------------- */
790 +
791      /**
792 <     * Sets the ith element of given table, with volatile write
225 <     * semantics. (See above about use of putOrderedObject.)
792 >     * Creates a new, empty map with the default initial table size (16).
793       */
794 <    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
228 <                                       HashEntry<K,V> e) {
229 <        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
794 >    public ConcurrentHashMap() {
795      }
796  
797      /**
798 <     * Applies a supplemental hash function to a given hashCode, which
799 <     * defends against poor quality hash functions.  This is critical
800 <     * because ConcurrentHashMap uses power-of-two length hash tables,
801 <     * that otherwise encounter collisions for hashCodes that do not
802 <     * differ in lower or upper bits.
798 >     * Creates a new, empty map with an initial table size
799 >     * accommodating the specified number of elements without the need
800 >     * to dynamically resize.
801 >     *
802 >     * @param initialCapacity The implementation performs internal
803 >     * sizing to accommodate this many elements.
804 >     * @throws IllegalArgumentException if the initial capacity of
805 >     * elements is negative
806       */
807 <    private static int hash(int h) {
808 <        // Spread bits to regularize both segment and index locations,
809 <        // using variant of single-word Wang/Jenkins hash.
810 <        h += (h <<  15) ^ 0xffffcd7d;
811 <        h ^= (h >>> 10);
812 <        h += (h <<   3);
813 <        h ^= (h >>>  6);
246 <        h += (h <<   2) + (h << 14);
247 <        return h ^ (h >>> 16);
807 >    public ConcurrentHashMap(int initialCapacity) {
808 >        if (initialCapacity < 0)
809 >            throw new IllegalArgumentException();
810 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811 >                   MAXIMUM_CAPACITY :
812 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
813 >        this.sizeCtl = cap;
814      }
815  
816      /**
817 <     * Segments are specialized versions of hash tables.  This
818 <     * subclasses from ReentrantLock opportunistically, just to
819 <     * simplify some locking and avoid separate construction.
817 >     * Creates a new map with the same mappings as the given map.
818 >     *
819 >     * @param m the map
820       */
821 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
822 <        /*
823 <         * Segments maintain a table of entry lists that are always
824 <         * kept in a consistent state, so can be read (via volatile
259 <         * reads of segments and tables) without locking.  This
260 <         * requires replicating nodes when necessary during table
261 <         * resizing, so the old lists can be traversed by readers
262 <         * still using old version of table.
263 <         *
264 <         * This class defines only mutative methods requiring locking.
265 <         * Except as noted, the methods of this class perform the
266 <         * per-segment versions of ConcurrentHashMap methods.  (Other
267 <         * methods are integrated directly into ConcurrentHashMap
268 <         * methods.) These mutative methods use a form of controlled
269 <         * spinning on contention via methods scanAndLock and
270 <         * scanAndLockForPut. These intersperse tryLocks with
271 <         * traversals to locate nodes.  The main benefit is to absorb
272 <         * cache misses (which are very common for hash tables) while
273 <         * obtaining locks so that traversal is faster once
274 <         * acquired. We do not actually use the found nodes since they
275 <         * must be re-acquired under lock anyway to ensure sequential
276 <         * consistency of updates (and in any case may be undetectably
277 <         * stale), but they will normally be much faster to re-locate.
278 <         * Also, scanAndLockForPut speculatively creates a fresh node
279 <         * to use in put if no node is found.
280 <         */
821 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 >        this.sizeCtl = DEFAULT_CAPACITY;
823 >        putAll(m);
824 >    }
825  
826 <        private static final long serialVersionUID = 2249069246763182397L;
826 >    /**
827 >     * Creates a new, empty map with an initial table size based on
828 >     * the given number of elements ({@code initialCapacity}) and
829 >     * initial table density ({@code loadFactor}).
830 >     *
831 >     * @param initialCapacity the initial capacity. The implementation
832 >     * performs internal sizing to accommodate this many elements,
833 >     * given the specified load factor.
834 >     * @param loadFactor the load factor (table density) for
835 >     * establishing the initial table size
836 >     * @throws IllegalArgumentException if the initial capacity of
837 >     * elements is negative or the load factor is nonpositive
838 >     *
839 >     * @since 1.6
840 >     */
841 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 >        this(initialCapacity, loadFactor, 1);
843 >    }
844  
845 <        /**
846 <         * The maximum number of times to tryLock in a prescan before
847 <         * possibly blocking on acquire in preparation for a locked
848 <         * segment operation. On multiprocessors, using a bounded
849 <         * number of retries maintains cache acquired while locating
850 <         * nodes.
851 <         */
852 <        static final int MAX_SCAN_RETRIES =
853 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
845 >    /**
846 >     * Creates a new, empty map with an initial table size based on
847 >     * the given number of elements ({@code initialCapacity}), table
848 >     * density ({@code loadFactor}), and number of concurrently
849 >     * updating threads ({@code concurrencyLevel}).
850 >     *
851 >     * @param initialCapacity the initial capacity. The implementation
852 >     * performs internal sizing to accommodate this many elements,
853 >     * given the specified load factor.
854 >     * @param loadFactor the load factor (table density) for
855 >     * establishing the initial table size
856 >     * @param concurrencyLevel the estimated number of concurrently
857 >     * updating threads. The implementation may use this value as
858 >     * a sizing hint.
859 >     * @throws IllegalArgumentException if the initial capacity is
860 >     * negative or the load factor or concurrencyLevel are
861 >     * nonpositive
862 >     */
863 >    public ConcurrentHashMap(int initialCapacity,
864 >                             float loadFactor, int concurrencyLevel) {
865 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 >            throw new IllegalArgumentException();
867 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
868 >            initialCapacity = concurrencyLevel;   // as estimated threads
869 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 >        this.sizeCtl = cap;
873 >    }
874  
875 <        /**
295 <         * The per-segment table. Elements are accessed via
296 <         * entryAt/setEntryAt providing volatile semantics.
297 <         */
298 <        transient volatile HashEntry<K,V>[] table;
875 >    // Original (since JDK1.2) Map methods
876  
877 <        /**
878 <         * The number of elements. Accessed only either within locks
879 <         * or among other volatile reads that maintain visibility.
880 <         */
881 <        transient int count;
877 >    /**
878 >     * {@inheritDoc}
879 >     */
880 >    public int size() {
881 >        long n = sumCount();
882 >        return ((n < 0L) ? 0 :
883 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 >                (int)n);
885 >    }
886  
887 <        /**
888 <         * The total number of mutative operations in this segment.
889 <         * Even though this may overflows 32 bits, it provides
890 <         * sufficient accuracy for stability checks in CHM isEmpty()
891 <         * and size() methods.  Accessed only either within locks or
892 <         * among other volatile reads that maintain visibility.
312 <         */
313 <        transient int modCount;
887 >    /**
888 >     * {@inheritDoc}
889 >     */
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892 >    }
893  
894 <        /**
895 <         * The table is rehashed when its size exceeds this threshold.
896 <         * (The value of this field is always <tt>(int)(capacity *
897 <         * loadFactor)</tt>.)
898 <         */
899 <        transient int threshold;
894 >    /**
895 >     * Returns the value to which the specified key is mapped,
896 >     * or {@code null} if this map contains no mapping for the key.
897 >     *
898 >     * <p>More formally, if this map contains a mapping from a key
899 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 >     * then this method returns {@code v}; otherwise it returns
901 >     * {@code null}.  (There can be at most one such mapping.)
902 >     *
903 >     * @throws NullPointerException if the specified key is null
904 >     */
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920 >            }
921 >        }
922 >        return null;
923 >    }
924  
925 <        /**
926 <         * The load factor for the hash table.  Even though this value
927 <         * is same for all segments, it is replicated to avoid needing
928 <         * links to outer object.
929 <         * @serial
930 <         */
931 <        final float loadFactor;
925 >    /**
926 >     * Tests if the specified object is a key in this table.
927 >     *
928 >     * @param  key possible key
929 >     * @return {@code true} if and only if the specified object
930 >     *         is a key in this table, as determined by the
931 >     *         {@code equals} method; {@code false} otherwise
932 >     * @throws NullPointerException if the specified key is null
933 >     */
934 >    public boolean containsKey(Object key) {
935 >        return get(key) != null;
936 >    }
937  
938 <        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
939 <            this.loadFactor = lf;
940 <            this.threshold = threshold;
941 <            this.table = tab;
938 >    /**
939 >     * Returns {@code true} if this map maps one or more keys to the
940 >     * specified value. Note: This method may require a full traversal
941 >     * of the map, and is much slower than method {@code containsKey}.
942 >     *
943 >     * @param value value whose presence in this map is to be tested
944 >     * @return {@code true} if this map maps one or more keys to the
945 >     *         specified value
946 >     * @throws NullPointerException if the specified value is null
947 >     */
948 >    public boolean containsValue(Object value) {
949 >        if (value == null)
950 >            throw new NullPointerException();
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958 >            }
959          }
960 +        return false;
961 +    }
962  
963 <        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
964 <            HashEntry<K,V> node = tryLock() ? null :
965 <                scanAndLockForPut(key, hash, value);
966 <            V oldValue;
967 <            try {
968 <                HashEntry<K,V>[] tab = table;
969 <                int index = (tab.length - 1) & hash;
970 <                HashEntry<K,V> first = entryAt(tab, index);
971 <                for (HashEntry<K,V> e = first;;) {
972 <                    if (e != null) {
973 <                        K k;
974 <                        if ((k = e.key) == key ||
975 <                            (e.hash == hash && key.equals(k))) {
976 <                            oldValue = e.value;
977 <                            if (!onlyIfAbsent) {
978 <                                e.value = value;
979 <                                ++modCount;
963 >    /**
964 >     * Maps the specified key to the specified value in this table.
965 >     * Neither the key nor the value can be null.
966 >     *
967 >     * <p>The value can be retrieved by calling the {@code get} method
968 >     * with a key that is equal to the original key.
969 >     *
970 >     * @param key key with which the specified value is to be associated
971 >     * @param value value to be associated with the specified key
972 >     * @return the previous value associated with {@code key}, or
973 >     *         {@code null} if there was no mapping for {@code key}
974 >     * @throws NullPointerException if the specified key or value is null
975 >     */
976 >    public V put(K key, V value) {
977 >        return putVal(key, value, false);
978 >    }
979 >
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null,
991 >                             new Node<K,V>(hash, key, value, null)))
992 >                    break;                   // no lock when adding to empty bin
993 >            }
994 >            else if ((fh = f.hash) == MOVED)
995 >                tab = helpTransfer(tab, f);
996 >            else {
997 >                V oldVal = null;
998 >                synchronized (f) {
999 >                    if (tabAt(tab, i) == f) {
1000 >                        if (fh >= 0) {
1001 >                            binCount = 1;
1002 >                            for (Node<K,V> e = f;; ++binCount) {
1003 >                                K ek;
1004 >                                if (e.hash == hash &&
1005 >                                    ((ek = e.key) == key ||
1006 >                                     (ek != null && key.equals(ek)))) {
1007 >                                    oldVal = e.val;
1008 >                                    if (!onlyIfAbsent)
1009 >                                        e.val = value;
1010 >                                    break;
1011 >                                }
1012 >                                Node<K,V> pred = e;
1013 >                                if ((e = e.next) == null) {
1014 >                                    pred.next = new Node<K,V>(hash, key,
1015 >                                                              value, null);
1016 >                                    break;
1017 >                                }
1018                              }
354                            break;
1019                          }
1020 <                        e = e.next;
1021 <                    }
1022 <                    else {
1023 <                        if (node != null)
1024 <                            node.setNext(first);
1025 <                        else
1026 <                            node = new HashEntry<K,V>(hash, key, value, first);
1027 <                        int c = count + 1;
1028 <                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
1029 <                            rehash(node);
1030 <                        else
1031 <                            setEntryAt(tab, index, node);
368 <                        ++modCount;
369 <                        count = c;
370 <                        oldValue = null;
371 <                        break;
372 <                    }
373 <                }
374 <            } finally {
375 <                unlock();
376 <            }
377 <            return oldValue;
378 <        }
379 <
380 <        /**
381 <         * Doubles size of table and repacks entries, also adding the
382 <         * given node to new table
383 <         */
384 <        @SuppressWarnings("unchecked")
385 <        private void rehash(HashEntry<K,V> node) {
386 <            /*
387 <             * Reclassify nodes in each list to new table.  Because we
388 <             * are using power-of-two expansion, the elements from
389 <             * each bin must either stay at same index, or move with a
390 <             * power of two offset. We eliminate unnecessary node
391 <             * creation by catching cases where old nodes can be
392 <             * reused because their next fields won't change.
393 <             * Statistically, at the default threshold, only about
394 <             * one-sixth of them need cloning when a table
395 <             * doubles. The nodes they replace will be garbage
396 <             * collectable as soon as they are no longer referenced by
397 <             * any reader thread that may be in the midst of
398 <             * concurrently traversing table. Entry accesses use plain
399 <             * array indexing because they are followed by volatile
400 <             * table write.
401 <             */
402 <            HashEntry<K,V>[] oldTable = table;
403 <            int oldCapacity = oldTable.length;
404 <            int newCapacity = oldCapacity << 1;
405 <            threshold = (int)(newCapacity * loadFactor);
406 <            HashEntry<K,V>[] newTable =
407 <                (HashEntry<K,V>[]) new HashEntry[newCapacity];
408 <            int sizeMask = newCapacity - 1;
409 <            for (int i = 0; i < oldCapacity ; i++) {
410 <                HashEntry<K,V> e = oldTable[i];
411 <                if (e != null) {
412 <                    HashEntry<K,V> next = e.next;
413 <                    int idx = e.hash & sizeMask;
414 <                    if (next == null)   //  Single node on list
415 <                        newTable[idx] = e;
416 <                    else { // Reuse consecutive sequence at same slot
417 <                        HashEntry<K,V> lastRun = e;
418 <                        int lastIdx = idx;
419 <                        for (HashEntry<K,V> last = next;
420 <                             last != null;
421 <                             last = last.next) {
422 <                            int k = last.hash & sizeMask;
423 <                            if (k != lastIdx) {
424 <                                lastIdx = k;
425 <                                lastRun = last;
426 <                            }
427 <                        }
428 <                        newTable[lastIdx] = lastRun;
429 <                        // Clone remaining nodes
430 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
431 <                            V v = p.value;
432 <                            int h = p.hash;
433 <                            int k = h & sizeMask;
434 <                            HashEntry<K,V> n = newTable[k];
435 <                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
436 <                        }
437 <                    }
438 <                }
439 <            }
440 <            int nodeIndex = node.hash & sizeMask; // add the new node
441 <            node.setNext(newTable[nodeIndex]);
442 <            newTable[nodeIndex] = node;
443 <            table = newTable;
444 <        }
445 <
446 <        /**
447 <         * Scans for a node containing given key while trying to
448 <         * acquire lock, creating and returning one if not found. Upon
449 <         * return, guarantees that lock is held. Unlike in most
450 <         * methods, calls to method equals are not screened: Since
451 <         * traversal speed doesn't matter, we might as well help warm
452 <         * up the associated code and accesses as well.
453 <         *
454 <         * @return a new node if key not found, else null
455 <         */
456 <        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
457 <            HashEntry<K,V> first = entryForHash(this, hash);
458 <            HashEntry<K,V> e = first;
459 <            HashEntry<K,V> node = null;
460 <            int retries = -1; // negative while locating node
461 <            while (!tryLock()) {
462 <                HashEntry<K,V> f; // to recheck first below
463 <                if (retries < 0) {
464 <                    if (e == null) {
465 <                        if (node == null) // speculatively create node
466 <                            node = new HashEntry<K,V>(hash, key, value, null);
467 <                        retries = 0;
1020 >                        else if (f instanceof TreeBin) {
1021 >                            Node<K,V> p;
1022 >                            binCount = 2;
1023 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024 >                                                           value)) != null) {
1025 >                                oldVal = p.val;
1026 >                                if (!onlyIfAbsent)
1027 >                                    p.val = value;
1028 >                            }
1029 >                        }
1030 >                        else if (f instanceof ReservationNode)
1031 >                            throw new IllegalStateException("Recursive update");
1032                      }
469                    else if (key.equals(e.key))
470                        retries = 0;
471                    else
472                        e = e.next;
473                }
474                else if (++retries > MAX_SCAN_RETRIES) {
475                    lock();
476                    break;
477                }
478                else if ((retries & 1) == 0 &&
479                         (f = entryForHash(this, hash)) != first) {
480                    e = first = f; // re-traverse if entry changed
481                    retries = -1;
482                }
483            }
484            return node;
485        }
486
487        /**
488         * Scans for a node containing the given key while trying to
489         * acquire lock for a remove or replace operation. Upon
490         * return, guarantees that lock is held.  Note that we must
491         * lock even if the key is not found, to ensure sequential
492         * consistency of updates.
493         */
494        private void scanAndLock(Object key, int hash) {
495            // similar to but simpler than scanAndLockForPut
496            HashEntry<K,V> first = entryForHash(this, hash);
497            HashEntry<K,V> e = first;
498            int retries = -1;
499            while (!tryLock()) {
500                HashEntry<K,V> f;
501                if (retries < 0) {
502                    if (e == null || key.equals(e.key))
503                        retries = 0;
504                    else
505                        e = e.next;
1033                  }
1034 <                else if (++retries > MAX_SCAN_RETRIES) {
1035 <                    lock();
1034 >                if (binCount != 0) {
1035 >                    if (binCount >= TREEIFY_THRESHOLD)
1036 >                        treeifyBin(tab, i);
1037 >                    if (oldVal != null)
1038 >                        return oldVal;
1039                      break;
1040                  }
511                else if ((retries & 1) == 0 &&
512                         (f = entryForHash(this, hash)) != first) {
513                    e = first = f;
514                    retries = -1;
515                }
1041              }
1042          }
1043 +        addCount(1L, binCount);
1044 +        return null;
1045 +    }
1046  
1047 <        /**
1048 <         * Remove; match on key only if value null, else match both.
1049 <         */
1050 <        final V remove(Object key, int hash, Object value) {
1051 <            if (!tryLock())
1052 <                scanAndLock(key, hash);
1053 <            V oldValue = null;
1054 <            try {
1055 <                HashEntry<K,V>[] tab = table;
1056 <                int index = (tab.length - 1) & hash;
1057 <                HashEntry<K,V> e = entryAt(tab, index);
1058 <                HashEntry<K,V> pred = null;
1059 <                while (e != null) {
1060 <                    K k;
1061 <                    HashEntry<K,V> next = e.next;
1062 <                    if ((k = e.key) == key ||
1063 <                        (e.hash == hash && key.equals(k))) {
1064 <                        V v = e.value;
1065 <                        if (value == null || value == v || value.equals(v)) {
1066 <                            if (pred == null)
1067 <                                setEntryAt(tab, index, next);
1068 <                            else
1069 <                                pred.setNext(next);
1070 <                            ++modCount;
1071 <                            --count;
1072 <                            oldValue = v;
1047 >    /**
1048 >     * Copies all of the mappings from the specified map to this one.
1049 >     * These mappings replace any mappings that this map had for any of the
1050 >     * keys currently in the specified map.
1051 >     *
1052 >     * @param m mappings to be stored in this map
1053 >     */
1054 >    public void putAll(Map<? extends K, ? extends V> m) {
1055 >        tryPresize(m.size());
1056 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1057 >            putVal(e.getKey(), e.getValue(), false);
1058 >    }
1059 >
1060 >    /**
1061 >     * Removes the key (and its corresponding value) from this map.
1062 >     * This method does nothing if the key is not in the map.
1063 >     *
1064 >     * @param  key the key that needs to be removed
1065 >     * @return the previous value associated with {@code key}, or
1066 >     *         {@code null} if there was no mapping for {@code key}
1067 >     * @throws NullPointerException if the specified key is null
1068 >     */
1069 >    public V remove(Object key) {
1070 >        return replaceNode(key, null, null);
1071 >    }
1072 >
1073 >    /**
1074 >     * Implementation for the four public remove/replace methods:
1075 >     * Replaces node value with v, conditional upon match of cv if
1076 >     * non-null.  If resulting value is null, delete.
1077 >     */
1078 >    final V replaceNode(Object key, V value, Object cv) {
1079 >        int hash = spread(key.hashCode());
1080 >        for (Node<K,V>[] tab = table;;) {
1081 >            Node<K,V> f; int n, i, fh;
1082 >            if (tab == null || (n = tab.length) == 0 ||
1083 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1084 >                break;
1085 >            else if ((fh = f.hash) == MOVED)
1086 >                tab = helpTransfer(tab, f);
1087 >            else {
1088 >                V oldVal = null;
1089 >                boolean validated = false;
1090 >                synchronized (f) {
1091 >                    if (tabAt(tab, i) == f) {
1092 >                        if (fh >= 0) {
1093 >                            validated = true;
1094 >                            for (Node<K,V> e = f, pred = null;;) {
1095 >                                K ek;
1096 >                                if (e.hash == hash &&
1097 >                                    ((ek = e.key) == key ||
1098 >                                     (ek != null && key.equals(ek)))) {
1099 >                                    V ev = e.val;
1100 >                                    if (cv == null || cv == ev ||
1101 >                                        (ev != null && cv.equals(ev))) {
1102 >                                        oldVal = ev;
1103 >                                        if (value != null)
1104 >                                            e.val = value;
1105 >                                        else if (pred != null)
1106 >                                            pred.next = e.next;
1107 >                                        else
1108 >                                            setTabAt(tab, i, e.next);
1109 >                                    }
1110 >                                    break;
1111 >                                }
1112 >                                pred = e;
1113 >                                if ((e = e.next) == null)
1114 >                                    break;
1115 >                            }
1116                          }
1117 <                        break;
1117 >                        else if (f instanceof TreeBin) {
1118 >                            validated = true;
1119 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1120 >                            TreeNode<K,V> r, p;
1121 >                            if ((r = t.root) != null &&
1122 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1123 >                                V pv = p.val;
1124 >                                if (cv == null || cv == pv ||
1125 >                                    (pv != null && cv.equals(pv))) {
1126 >                                    oldVal = pv;
1127 >                                    if (value != null)
1128 >                                        p.val = value;
1129 >                                    else if (t.removeTreeNode(p))
1130 >                                        setTabAt(tab, i, untreeify(t.first));
1131 >                                }
1132 >                            }
1133 >                        }
1134 >                        else if (f instanceof ReservationNode)
1135 >                            throw new IllegalStateException("Recursive update");
1136                      }
548                    pred = e;
549                    e = next;
1137                  }
1138 <            } finally {
1139 <                unlock();
1140 <            }
1141 <            return oldValue;
1142 <        }
556 <
557 <        final boolean replace(K key, int hash, V oldValue, V newValue) {
558 <            if (!tryLock())
559 <                scanAndLock(key, hash);
560 <            boolean replaced = false;
561 <            try {
562 <                HashEntry<K,V> e;
563 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
564 <                    K k;
565 <                    if ((k = e.key) == key ||
566 <                        (e.hash == hash && key.equals(k))) {
567 <                        if (oldValue.equals(e.value)) {
568 <                            e.value = newValue;
569 <                            ++modCount;
570 <                            replaced = true;
571 <                        }
572 <                        break;
1138 >                if (validated) {
1139 >                    if (oldVal != null) {
1140 >                        if (value == null)
1141 >                            addCount(-1L, -1);
1142 >                        return oldVal;
1143                      }
1144 +                    break;
1145                  }
575            } finally {
576                unlock();
1146              }
578            return replaced;
1147          }
1148 +        return null;
1149 +    }
1150  
1151 <        final V replace(K key, int hash, V value) {
1152 <            if (!tryLock())
1153 <                scanAndLock(key, hash);
1154 <            V oldValue = null;
1155 <            try {
1156 <                HashEntry<K,V> e;
1157 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1158 <                    K k;
1159 <                    if ((k = e.key) == key ||
1160 <                        (e.hash == hash && key.equals(k))) {
1161 <                        oldValue = e.value;
1162 <                        e.value = value;
1163 <                        ++modCount;
1164 <                        break;
1151 >    /**
1152 >     * Removes all of the mappings from this map.
1153 >     */
1154 >    public void clear() {
1155 >        long delta = 0L; // negative number of deletions
1156 >        int i = 0;
1157 >        Node<K,V>[] tab = table;
1158 >        while (tab != null && i < tab.length) {
1159 >            int fh;
1160 >            Node<K,V> f = tabAt(tab, i);
1161 >            if (f == null)
1162 >                ++i;
1163 >            else if ((fh = f.hash) == MOVED) {
1164 >                tab = helpTransfer(tab, f);
1165 >                i = 0; // restart
1166 >            }
1167 >            else {
1168 >                synchronized (f) {
1169 >                    if (tabAt(tab, i) == f) {
1170 >                        Node<K,V> p = (fh >= 0 ? f :
1171 >                                       (f instanceof TreeBin) ?
1172 >                                       ((TreeBin<K,V>)f).first : null);
1173 >                        while (p != null) {
1174 >                            --delta;
1175 >                            p = p.next;
1176 >                        }
1177 >                        setTabAt(tab, i++, null);
1178                      }
1179                  }
597            } finally {
598                unlock();
1180              }
600            return oldValue;
1181          }
1182 +        if (delta != 0L)
1183 +            addCount(delta, -1);
1184 +    }
1185  
1186 <        final void clear() {
1187 <            lock();
1188 <            try {
1189 <                HashEntry<K,V>[] tab = table;
1190 <                for (int i = 0; i < tab.length ; i++)
1191 <                    setEntryAt(tab, i, null);
1192 <                ++modCount;
1193 <                count = 0;
1194 <            } finally {
1195 <                unlock();
1196 <            }
1197 <        }
1186 >    /**
1187 >     * Returns a {@link Set} view of the keys contained in this map.
1188 >     * The set is backed by the map, so changes to the map are
1189 >     * reflected in the set, and vice-versa. The set supports element
1190 >     * removal, which removes the corresponding mapping from this map,
1191 >     * via the {@code Iterator.remove}, {@code Set.remove},
1192 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1193 >     * operations.  It does not support the {@code add} or
1194 >     * {@code addAll} operations.
1195 >     *
1196 >     * <p>The view's iterators and spliterators are
1197 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 >     *
1199 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1200 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1201 >     *
1202 >     * @return the set view
1203 >     */
1204 >    public KeySetView<K,V> keySet() {
1205 >        KeySetView<K,V> ks;
1206 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1207      }
1208  
1209 <    // Accessing segments
1209 >    /**
1210 >     * Returns a {@link Collection} view of the values contained in this map.
1211 >     * The collection is backed by the map, so changes to the map are
1212 >     * reflected in the collection, and vice-versa.  The collection
1213 >     * supports element removal, which removes the corresponding
1214 >     * mapping from this map, via the {@code Iterator.remove},
1215 >     * {@code Collection.remove}, {@code removeAll},
1216 >     * {@code retainAll}, and {@code clear} operations.  It does not
1217 >     * support the {@code add} or {@code addAll} operations.
1218 >     *
1219 >     * <p>The view's iterators and spliterators are
1220 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1221 >     *
1222 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1223 >     * and {@link Spliterator#NONNULL}.
1224 >     *
1225 >     * @return the collection view
1226 >     */
1227 >    public Collection<V> values() {
1228 >        ValuesView<K,V> vs;
1229 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1230 >    }
1231  
1232      /**
1233 <     * Gets the jth element of given segment array (if nonnull) with
1234 <     * volatile element access semantics via Unsafe. (The null check
1235 <     * can trigger harmlessly only during deserialization.) Note:
1236 <     * because each element of segments array is set only once (using
1237 <     * fully ordered writes), some performance-sensitive methods rely
1238 <     * on this method only as a recheck upon null reads.
1233 >     * Returns a {@link Set} view of the mappings contained in this map.
1234 >     * The set is backed by the map, so changes to the map are
1235 >     * reflected in the set, and vice-versa.  The set supports element
1236 >     * removal, which removes the corresponding mapping from the map,
1237 >     * via the {@code Iterator.remove}, {@code Set.remove},
1238 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1239 >     * operations.
1240 >     *
1241 >     * <p>The view's iterators and spliterators are
1242 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1243 >     *
1244 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1245 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1246 >     *
1247 >     * @return the set view
1248       */
1249 <    @SuppressWarnings("unchecked")
1250 <    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
1251 <        long u = (j << SSHIFT) + SBASE;
630 <        return ss == null ? null :
631 <            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
1249 >    public Set<Map.Entry<K,V>> entrySet() {
1250 >        EntrySetView<K,V> es;
1251 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1252      }
1253  
1254      /**
1255 <     * Returns the segment for the given index, creating it and
1256 <     * recording in segment table (via CAS) if not already present.
1255 >     * Returns the hash code value for this {@link Map}, i.e.,
1256 >     * the sum of, for each key-value pair in the map,
1257 >     * {@code key.hashCode() ^ value.hashCode()}.
1258       *
1259 <     * @param k the index
639 <     * @return the segment
1259 >     * @return the hash code value for this map
1260       */
1261 <    @SuppressWarnings("unchecked")
1262 <    private Segment<K,V> ensureSegment(int k) {
1263 <        final Segment<K,V>[] ss = this.segments;
1264 <        long u = (k << SSHIFT) + SBASE; // raw offset
1265 <        Segment<K,V> seg;
1266 <        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
1267 <            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
1268 <            int cap = proto.table.length;
1269 <            float lf = proto.loadFactor;
1270 <            int threshold = (int)(cap * lf);
1271 <            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
1272 <            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1273 <                == null) { // recheck
1274 <                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
1275 <                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1276 <                       == null) {
1277 <                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
1278 <                        break;
1279 <                }
1261 >    public int hashCode() {
1262 >        int h = 0;
1263 >        Node<K,V>[] t;
1264 >        if ((t = table) != null) {
1265 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1266 >            for (Node<K,V> p; (p = it.advance()) != null; )
1267 >                h += p.key.hashCode() ^ p.val.hashCode();
1268 >        }
1269 >        return h;
1270 >    }
1271 >
1272 >    /**
1273 >     * Returns a string representation of this map.  The string
1274 >     * representation consists of a list of key-value mappings (in no
1275 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1276 >     * mappings are separated by the characters {@code ", "} (comma
1277 >     * and space).  Each key-value mapping is rendered as the key
1278 >     * followed by an equals sign ("{@code =}") followed by the
1279 >     * associated value.
1280 >     *
1281 >     * @return a string representation of this map
1282 >     */
1283 >    public String toString() {
1284 >        Node<K,V>[] t;
1285 >        int f = (t = table) == null ? 0 : t.length;
1286 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1287 >        StringBuilder sb = new StringBuilder();
1288 >        sb.append('{');
1289 >        Node<K,V> p;
1290 >        if ((p = it.advance()) != null) {
1291 >            for (;;) {
1292 >                K k = p.key;
1293 >                V v = p.val;
1294 >                sb.append(k == this ? "(this Map)" : k);
1295 >                sb.append('=');
1296 >                sb.append(v == this ? "(this Map)" : v);
1297 >                if ((p = it.advance()) == null)
1298 >                    break;
1299 >                sb.append(',').append(' ');
1300              }
1301          }
1302 <        return seg;
1302 >        return sb.append('}').toString();
1303      }
1304  
665    // Hash-based segment and entry accesses
666
1305      /**
1306 <     * Gets the segment for the given hash code.
1306 >     * Compares the specified object with this map for equality.
1307 >     * Returns {@code true} if the given object is a map with the same
1308 >     * mappings as this map.  This operation may return misleading
1309 >     * results if either map is concurrently modified during execution
1310 >     * of this method.
1311 >     *
1312 >     * @param o object to be compared for equality with this map
1313 >     * @return {@code true} if the specified object is equal to this map
1314       */
1315 <    @SuppressWarnings("unchecked")
1316 <    private Segment<K,V> segmentForHash(int h) {
1317 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1318 <        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
1315 >    public boolean equals(Object o) {
1316 >        if (o != this) {
1317 >            if (!(o instanceof Map))
1318 >                return false;
1319 >            Map<?,?> m = (Map<?,?>) o;
1320 >            Node<K,V>[] t;
1321 >            int f = (t = table) == null ? 0 : t.length;
1322 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1323 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1324 >                V val = p.val;
1325 >                Object v = m.get(p.key);
1326 >                if (v == null || (v != val && !v.equals(val)))
1327 >                    return false;
1328 >            }
1329 >            for (Map.Entry<?,?> e : m.entrySet()) {
1330 >                Object mk, mv, v;
1331 >                if ((mk = e.getKey()) == null ||
1332 >                    (mv = e.getValue()) == null ||
1333 >                    (v = get(mk)) == null ||
1334 >                    (mv != v && !mv.equals(v)))
1335 >                    return false;
1336 >            }
1337 >        }
1338 >        return true;
1339      }
1340  
1341      /**
1342 <     * Gets the table entry for the given segment and hash code.
1342 >     * Stripped-down version of helper class used in previous version,
1343 >     * declared for the sake of serialization compatibility
1344       */
1345 <    @SuppressWarnings("unchecked")
1346 <    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
1347 <        HashEntry<K,V>[] tab;
1348 <        return (seg == null || (tab = seg.table) == null) ? null :
683 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
684 <            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1345 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1346 >        private static final long serialVersionUID = 2249069246763182397L;
1347 >        final float loadFactor;
1348 >        Segment(float lf) { this.loadFactor = lf; }
1349      }
1350  
687    /* ---------------- Public operations -------------- */
688
1351      /**
1352 <     * Creates a new, empty map with the specified initial
1353 <     * capacity, load factor and concurrency level.
1354 <     *
1355 <     * @param initialCapacity the initial capacity. The implementation
1356 <     * performs internal sizing to accommodate this many elements.
1357 <     * @param loadFactor  the load factor threshold, used to control resizing.
1358 <     * Resizing may be performed when the average number of elements per
1359 <     * bin exceeds this threshold.
698 <     * @param concurrencyLevel the estimated number of concurrently
699 <     * updating threads. The implementation performs internal sizing
700 <     * to try to accommodate this many threads.
701 <     * @throws IllegalArgumentException if the initial capacity is
702 <     * negative or the load factor or concurrencyLevel are
703 <     * nonpositive.
1352 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1353 >     * stream (i.e., serializes it).
1354 >     * @param s the stream
1355 >     * @throws java.io.IOException if an I/O error occurs
1356 >     * @serialData
1357 >     * the key (Object) and value (Object)
1358 >     * for each key-value mapping, followed by a null pair.
1359 >     * The key-value mappings are emitted in no particular order.
1360       */
1361 <    @SuppressWarnings("unchecked")
1362 <    public ConcurrentHashMap(int initialCapacity,
1363 <                             float loadFactor, int concurrencyLevel) {
1364 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
709 <            throw new IllegalArgumentException();
710 <        if (concurrencyLevel > MAX_SEGMENTS)
711 <            concurrencyLevel = MAX_SEGMENTS;
712 <        // Find power-of-two sizes best matching arguments
1361 >    private void writeObject(java.io.ObjectOutputStream s)
1362 >        throws java.io.IOException {
1363 >        // For serialization compatibility
1364 >        // Emulate segment calculation from previous version of this class
1365          int sshift = 0;
1366          int ssize = 1;
1367 <        while (ssize < concurrencyLevel) {
1367 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1368              ++sshift;
1369              ssize <<= 1;
1370          }
1371 <        this.segmentShift = 32 - sshift;
1372 <        this.segmentMask = ssize - 1;
1373 <        if (initialCapacity > MAXIMUM_CAPACITY)
1374 <            initialCapacity = MAXIMUM_CAPACITY;
1375 <        int c = initialCapacity / ssize;
1376 <        if (c * ssize < initialCapacity)
1377 <            ++c;
1378 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
1379 <        while (cap < c)
1380 <            cap <<= 1;
1381 <        // create segments and segments[0]
1382 <        Segment<K,V> s0 =
1383 <            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
1384 <                             (HashEntry<K,V>[])new HashEntry[cap]);
1385 <        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
1386 <        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
1387 <        this.segments = ss;
1371 >        int segmentShift = 32 - sshift;
1372 >        int segmentMask = ssize - 1;
1373 >        @SuppressWarnings("unchecked")
1374 >        Segment<K,V>[] segments = (Segment<K,V>[])
1375 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1376 >        for (int i = 0; i < segments.length; ++i)
1377 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1378 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1379 >        streamFields.put("segments", segments);
1380 >        streamFields.put("segmentShift", segmentShift);
1381 >        streamFields.put("segmentMask", segmentMask);
1382 >        s.writeFields();
1383 >
1384 >        Node<K,V>[] t;
1385 >        if ((t = table) != null) {
1386 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1387 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1388 >                s.writeObject(p.key);
1389 >                s.writeObject(p.val);
1390 >            }
1391 >        }
1392 >        s.writeObject(null);
1393 >        s.writeObject(null);
1394 >        segments = null; // throw away
1395      }
1396  
1397      /**
1398 <     * Creates a new, empty map with the specified initial capacity
1399 <     * and load factor and with the default concurrencyLevel (16).
1400 <     *
1401 <     * @param initialCapacity The implementation performs internal
1402 <     * sizing to accommodate this many elements.
1403 <     * @param loadFactor  the load factor threshold, used to control resizing.
1404 <     * Resizing may be performed when the average number of elements per
1405 <     * bin exceeds this threshold.
1406 <     * @throws IllegalArgumentException if the initial capacity of
1407 <     * elements is negative or the load factor is nonpositive
1398 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1399 >     * @param s the stream
1400 >     * @throws ClassNotFoundException if the class of a serialized object
1401 >     *         could not be found
1402 >     * @throws java.io.IOException if an I/O error occurs
1403 >     */
1404 >    private void readObject(java.io.ObjectInputStream s)
1405 >        throws java.io.IOException, ClassNotFoundException {
1406 >        /*
1407 >         * To improve performance in typical cases, we create nodes
1408 >         * while reading, then place in table once size is known.
1409 >         * However, we must also validate uniqueness and deal with
1410 >         * overpopulated bins while doing so, which requires
1411 >         * specialized versions of putVal mechanics.
1412 >         */
1413 >        sizeCtl = -1; // force exclusion for table construction
1414 >        s.defaultReadObject();
1415 >        long size = 0L;
1416 >        Node<K,V> p = null;
1417 >        for (;;) {
1418 >            @SuppressWarnings("unchecked")
1419 >            K k = (K) s.readObject();
1420 >            @SuppressWarnings("unchecked")
1421 >            V v = (V) s.readObject();
1422 >            if (k != null && v != null) {
1423 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1424 >                ++size;
1425 >            }
1426 >            else
1427 >                break;
1428 >        }
1429 >        if (size == 0L)
1430 >            sizeCtl = 0;
1431 >        else {
1432 >            int n;
1433 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1434 >                n = MAXIMUM_CAPACITY;
1435 >            else {
1436 >                int sz = (int)size;
1437 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1438 >            }
1439 >            @SuppressWarnings("unchecked")
1440 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1441 >            int mask = n - 1;
1442 >            long added = 0L;
1443 >            while (p != null) {
1444 >                boolean insertAtFront;
1445 >                Node<K,V> next = p.next, first;
1446 >                int h = p.hash, j = h & mask;
1447 >                if ((first = tabAt(tab, j)) == null)
1448 >                    insertAtFront = true;
1449 >                else {
1450 >                    K k = p.key;
1451 >                    if (first.hash < 0) {
1452 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1453 >                        if (t.putTreeVal(h, k, p.val) == null)
1454 >                            ++added;
1455 >                        insertAtFront = false;
1456 >                    }
1457 >                    else {
1458 >                        int binCount = 0;
1459 >                        insertAtFront = true;
1460 >                        Node<K,V> q; K qk;
1461 >                        for (q = first; q != null; q = q.next) {
1462 >                            if (q.hash == h &&
1463 >                                ((qk = q.key) == k ||
1464 >                                 (qk != null && k.equals(qk)))) {
1465 >                                insertAtFront = false;
1466 >                                break;
1467 >                            }
1468 >                            ++binCount;
1469 >                        }
1470 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1471 >                            insertAtFront = false;
1472 >                            ++added;
1473 >                            p.next = first;
1474 >                            TreeNode<K,V> hd = null, tl = null;
1475 >                            for (q = p; q != null; q = q.next) {
1476 >                                TreeNode<K,V> t = new TreeNode<K,V>
1477 >                                    (q.hash, q.key, q.val, null, null);
1478 >                                if ((t.prev = tl) == null)
1479 >                                    hd = t;
1480 >                                else
1481 >                                    tl.next = t;
1482 >                                tl = t;
1483 >                            }
1484 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1485 >                        }
1486 >                    }
1487 >                }
1488 >                if (insertAtFront) {
1489 >                    ++added;
1490 >                    p.next = first;
1491 >                    setTabAt(tab, j, p);
1492 >                }
1493 >                p = next;
1494 >            }
1495 >            table = tab;
1496 >            sizeCtl = n - (n >>> 2);
1497 >            baseCount = added;
1498 >        }
1499 >    }
1500 >
1501 >    // ConcurrentMap methods
1502 >
1503 >    /**
1504 >     * {@inheritDoc}
1505       *
1506 <     * @since 1.6
1506 >     * @return the previous value associated with the specified key,
1507 >     *         or {@code null} if there was no mapping for the key
1508 >     * @throws NullPointerException if the specified key or value is null
1509       */
1510 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
1511 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
1510 >    public V putIfAbsent(K key, V value) {
1511 >        return putVal(key, value, true);
1512      }
1513  
1514      /**
1515 <     * Creates a new, empty map with the specified initial capacity,
758 <     * and with default load factor (0.75) and concurrencyLevel (16).
1515 >     * {@inheritDoc}
1516       *
1517 <     * @param initialCapacity the initial capacity. The implementation
761 <     * performs internal sizing to accommodate this many elements.
762 <     * @throws IllegalArgumentException if the initial capacity of
763 <     * elements is negative.
1517 >     * @throws NullPointerException if the specified key is null
1518       */
1519 <    public ConcurrentHashMap(int initialCapacity) {
1520 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1519 >    public boolean remove(Object key, Object value) {
1520 >        if (key == null)
1521 >            throw new NullPointerException();
1522 >        return value != null && replaceNode(key, null, value) != null;
1523      }
1524  
1525      /**
1526 <     * Creates a new, empty map with a default initial capacity (16),
1527 <     * load factor (0.75) and concurrencyLevel (16).
1526 >     * {@inheritDoc}
1527 >     *
1528 >     * @throws NullPointerException if any of the arguments are null
1529       */
1530 <    public ConcurrentHashMap() {
1531 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1530 >    public boolean replace(K key, V oldValue, V newValue) {
1531 >        if (key == null || oldValue == null || newValue == null)
1532 >            throw new NullPointerException();
1533 >        return replaceNode(key, newValue, oldValue) != null;
1534      }
1535  
1536      /**
1537 <     * Creates a new map with the same mappings as the given map.
779 <     * The map is created with a capacity of 1.5 times the number
780 <     * of mappings in the given map or 16 (whichever is greater),
781 <     * and a default load factor (0.75) and concurrencyLevel (16).
1537 >     * {@inheritDoc}
1538       *
1539 <     * @param m the map
1539 >     * @return the previous value associated with the specified key,
1540 >     *         or {@code null} if there was no mapping for the key
1541 >     * @throws NullPointerException if the specified key or value is null
1542       */
1543 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
1544 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
1545 <                      DEFAULT_INITIAL_CAPACITY),
1546 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
789 <        putAll(m);
1543 >    public V replace(K key, V value) {
1544 >        if (key == null || value == null)
1545 >            throw new NullPointerException();
1546 >        return replaceNode(key, value, null);
1547      }
1548  
1549 +    // Overrides of JDK8+ Map extension method defaults
1550 +
1551      /**
1552 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
1552 >     * Returns the value to which the specified key is mapped, or the
1553 >     * given default value if this map contains no mapping for the
1554 >     * key.
1555       *
1556 <     * @return <tt>true</tt> if this map contains no key-value mappings
1556 >     * @param key the key whose associated value is to be returned
1557 >     * @param defaultValue the value to return if this map contains
1558 >     * no mapping for the given key
1559 >     * @return the mapping for the key, if present; else the default value
1560 >     * @throws NullPointerException if the specified key is null
1561       */
1562 <    public boolean isEmpty() {
1563 <        /*
1564 <         * Sum per-segment modCounts to avoid mis-reporting when
1565 <         * elements are concurrently added and removed in one segment
1566 <         * while checking another, in which case the table was never
1567 <         * actually empty at any point. (The sum ensures accuracy up
1568 <         * through at least 1<<31 per-segment modifications before
1569 <         * recheck.)  Methods size() and containsValue() use similar
1570 <         * constructions for stability checks.
1571 <         */
1572 <        long sum = 0L;
1573 <        final Segment<K,V>[] segments = this.segments;
809 <        for (int j = 0; j < segments.length; ++j) {
810 <            Segment<K,V> seg = segmentAt(segments, j);
811 <            if (seg != null) {
812 <                if (seg.count != 0)
813 <                    return false;
814 <                sum += seg.modCount;
1562 >    public V getOrDefault(Object key, V defaultValue) {
1563 >        V v;
1564 >        return (v = get(key)) == null ? defaultValue : v;
1565 >    }
1566 >
1567 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1568 >        if (action == null) throw new NullPointerException();
1569 >        Node<K,V>[] t;
1570 >        if ((t = table) != null) {
1571 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1572 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1573 >                action.accept(p.key, p.val);
1574              }
1575          }
1576 <        if (sum != 0L) { // recheck unless no modifications
1577 <            for (int j = 0; j < segments.length; ++j) {
1578 <                Segment<K,V> seg = segmentAt(segments, j);
1579 <                if (seg != null) {
1580 <                    if (seg.count != 0)
1581 <                        return false;
1582 <                    sum -= seg.modCount;
1576 >    }
1577 >
1578 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1579 >        if (function == null) throw new NullPointerException();
1580 >        Node<K,V>[] t;
1581 >        if ((t = table) != null) {
1582 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1583 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1584 >                V oldValue = p.val;
1585 >                for (K key = p.key;;) {
1586 >                    V newValue = function.apply(key, oldValue);
1587 >                    if (newValue == null)
1588 >                        throw new NullPointerException();
1589 >                    if (replaceNode(key, newValue, oldValue) != null ||
1590 >                        (oldValue = get(key)) == null)
1591 >                        break;
1592                  }
1593              }
826            if (sum != 0L)
827                return false;
1594          }
829        return true;
1595      }
1596  
1597      /**
1598 <     * Returns the number of key-value mappings in this map.  If the
834 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
835 <     * <tt>Integer.MAX_VALUE</tt>.
836 <     *
837 <     * @return the number of key-value mappings in this map
1598 >     * Helper method for EntrySetView.removeIf
1599       */
1600 <    public int size() {
1601 <        // Try a few times to get accurate count. On failure due to
1602 <        // continuous async changes in table, resort to locking.
1603 <        final Segment<K,V>[] segments = this.segments;
1604 <        final int segmentCount = segments.length;
1605 <
1606 <        long previousSum = 0L;
1607 <        for (int retries = -1; retries < RETRIES_BEFORE_LOCK; retries++) {
1608 <            long sum = 0L;    // sum of modCounts
1609 <            long size = 0L;
1610 <            for (int i = 0; i < segmentCount; i++) {
1611 <                Segment<K,V> segment = segmentAt(segments, i);
1612 <                if (segment != null) {
852 <                    sum += segment.modCount;
853 <                    size += segment.count;
854 <                }
855 <            }
856 <            if (sum == previousSum)
857 <                return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
858 <            previousSum = sum;
1600 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1601 >        if (function == null) throw new NullPointerException();
1602 >        Node<K,V>[] t;
1603 >        boolean removed = false;
1604 >        if ((t = table) != null) {
1605 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1606 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1607 >                K k = p.key;
1608 >                V v = p.val;
1609 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1610 >                if (function.test(e) && replaceNode(k, null, v) != null)
1611 >                    removed = true;
1612 >            }
1613          }
1614 +        return removed;
1615 +    }
1616  
1617 <        long size = 0L;
1618 <        for (int i = 0; i < segmentCount; i++) {
1619 <            Segment<K,V> segment = ensureSegment(i);
1620 <            segment.lock();
1621 <            size += segment.count;
1622 <        }
1623 <        for (int i = 0; i < segmentCount; i++)
1624 <            segments[i].unlock();
1625 <        return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
1617 >    /**
1618 >     * Helper method for ValuesView.removeIf
1619 >     */
1620 >    boolean removeValueIf(Predicate<? super V> function) {
1621 >        if (function == null) throw new NullPointerException();
1622 >        Node<K,V>[] t;
1623 >        boolean removed = false;
1624 >        if ((t = table) != null) {
1625 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1626 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1627 >                K k = p.key;
1628 >                V v = p.val;
1629 >                if (function.test(v) && replaceNode(k, null, v) != null)
1630 >                    removed = true;
1631 >            }
1632 >        }
1633 >        return removed;
1634      }
1635  
1636      /**
1637 <     * Returns the value to which the specified key is mapped,
1638 <     * or {@code null} if this map contains no mapping for the key.
1637 >     * If the specified key is not already associated with a value,
1638 >     * attempts to compute its value using the given mapping function
1639 >     * and enters it into this map unless {@code null}.  The entire
1640 >     * method invocation is performed atomically, so the function is
1641 >     * applied at most once per key.  Some attempted update operations
1642 >     * on this map by other threads may be blocked while computation
1643 >     * is in progress, so the computation should be short and simple,
1644 >     * and must not attempt to update any other mappings of this map.
1645       *
1646 <     * <p>More formally, if this map contains a mapping from a key
1647 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
1648 <     * then this method returns {@code v}; otherwise it returns
1649 <     * {@code null}.  (There can be at most one such mapping.)
1650 <     *
1651 <     * @throws NullPointerException if the specified key is null
1646 >     * @param key key with which the specified value is to be associated
1647 >     * @param mappingFunction the function to compute a value
1648 >     * @return the current (existing or computed) value associated with
1649 >     *         the specified key, or null if the computed value is null
1650 >     * @throws NullPointerException if the specified key or mappingFunction
1651 >     *         is null
1652 >     * @throws IllegalStateException if the computation detectably
1653 >     *         attempts a recursive update to this map that would
1654 >     *         otherwise never complete
1655 >     * @throws RuntimeException or Error if the mappingFunction does so,
1656 >     *         in which case the mapping is left unestablished
1657       */
1658 <    public V get(Object key) {
1659 <        Segment<K,V> s; // manually integrate access methods to reduce overhead
1660 <        HashEntry<K,V>[] tab;
1661 <        int h = hash(key.hashCode());
1662 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1663 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
1664 <            (tab = s.table) != null) {
1665 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
1666 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1667 <                 e != null; e = e.next) {
1668 <                K k;
1669 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
1670 <                    return e.value;
1658 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1659 >        if (key == null || mappingFunction == null)
1660 >            throw new NullPointerException();
1661 >        int h = spread(key.hashCode());
1662 >        V val = null;
1663 >        int binCount = 0;
1664 >        for (Node<K,V>[] tab = table;;) {
1665 >            Node<K,V> f; int n, i, fh;
1666 >            if (tab == null || (n = tab.length) == 0)
1667 >                tab = initTable();
1668 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1669 >                Node<K,V> r = new ReservationNode<K,V>();
1670 >                synchronized (r) {
1671 >                    if (casTabAt(tab, i, null, r)) {
1672 >                        binCount = 1;
1673 >                        Node<K,V> node = null;
1674 >                        try {
1675 >                            if ((val = mappingFunction.apply(key)) != null)
1676 >                                node = new Node<K,V>(h, key, val, null);
1677 >                        } finally {
1678 >                            setTabAt(tab, i, node);
1679 >                        }
1680 >                    }
1681 >                }
1682 >                if (binCount != 0)
1683 >                    break;
1684 >            }
1685 >            else if ((fh = f.hash) == MOVED)
1686 >                tab = helpTransfer(tab, f);
1687 >            else {
1688 >                boolean added = false;
1689 >                synchronized (f) {
1690 >                    if (tabAt(tab, i) == f) {
1691 >                        if (fh >= 0) {
1692 >                            binCount = 1;
1693 >                            for (Node<K,V> e = f;; ++binCount) {
1694 >                                K ek;
1695 >                                if (e.hash == h &&
1696 >                                    ((ek = e.key) == key ||
1697 >                                     (ek != null && key.equals(ek)))) {
1698 >                                    val = e.val;
1699 >                                    break;
1700 >                                }
1701 >                                Node<K,V> pred = e;
1702 >                                if ((e = e.next) == null) {
1703 >                                    if ((val = mappingFunction.apply(key)) != null) {
1704 >                                        if (pred.next != null)
1705 >                                            throw new IllegalStateException("Recursive update");
1706 >                                        added = true;
1707 >                                        pred.next = new Node<K,V>(h, key, val, null);
1708 >                                    }
1709 >                                    break;
1710 >                                }
1711 >                            }
1712 >                        }
1713 >                        else if (f instanceof TreeBin) {
1714 >                            binCount = 2;
1715 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1716 >                            TreeNode<K,V> r, p;
1717 >                            if ((r = t.root) != null &&
1718 >                                (p = r.findTreeNode(h, key, null)) != null)
1719 >                                val = p.val;
1720 >                            else if ((val = mappingFunction.apply(key)) != null) {
1721 >                                added = true;
1722 >                                t.putTreeVal(h, key, val);
1723 >                            }
1724 >                        }
1725 >                        else if (f instanceof ReservationNode)
1726 >                            throw new IllegalStateException("Recursive update");
1727 >                    }
1728 >                }
1729 >                if (binCount != 0) {
1730 >                    if (binCount >= TREEIFY_THRESHOLD)
1731 >                        treeifyBin(tab, i);
1732 >                    if (!added)
1733 >                        return val;
1734 >                    break;
1735 >                }
1736              }
1737          }
1738 <        return null;
1738 >        if (val != null)
1739 >            addCount(1L, binCount);
1740 >        return val;
1741      }
1742  
1743      /**
1744 <     * Tests if the specified object is a key in this table.
1744 >     * If the value for the specified key is present, attempts to
1745 >     * compute a new mapping given the key and its current mapped
1746 >     * value.  The entire method invocation is performed atomically.
1747 >     * Some attempted update operations on this map by other threads
1748 >     * may be blocked while computation is in progress, so the
1749 >     * computation should be short and simple, and must not attempt to
1750 >     * update any other mappings of this map.
1751       *
1752 <     * @param  key   possible key
1753 <     * @return <tt>true</tt> if and only if the specified object
1754 <     *         is a key in this table, as determined by the
1755 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
1756 <     * @throws NullPointerException if the specified key is null
1752 >     * @param key key with which a value may be associated
1753 >     * @param remappingFunction the function to compute a value
1754 >     * @return the new value associated with the specified key, or null if none
1755 >     * @throws NullPointerException if the specified key or remappingFunction
1756 >     *         is null
1757 >     * @throws IllegalStateException if the computation detectably
1758 >     *         attempts a recursive update to this map that would
1759 >     *         otherwise never complete
1760 >     * @throws RuntimeException or Error if the remappingFunction does so,
1761 >     *         in which case the mapping is unchanged
1762       */
1763 <    @SuppressWarnings("unchecked")
1764 <    public boolean containsKey(Object key) {
1765 <        Segment<K,V> s; // same as get() except no need for volatile value read
1766 <        HashEntry<K,V>[] tab;
1767 <        int h = hash(key.hashCode());
1768 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1769 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
1770 <            (tab = s.table) != null) {
1771 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
1772 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1773 <                 e != null; e = e.next) {
1774 <                K k;
1775 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
1776 <                    return true;
1763 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1764 >        if (key == null || remappingFunction == null)
1765 >            throw new NullPointerException();
1766 >        int h = spread(key.hashCode());
1767 >        V val = null;
1768 >        int delta = 0;
1769 >        int binCount = 0;
1770 >        for (Node<K,V>[] tab = table;;) {
1771 >            Node<K,V> f; int n, i, fh;
1772 >            if (tab == null || (n = tab.length) == 0)
1773 >                tab = initTable();
1774 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1775 >                break;
1776 >            else if ((fh = f.hash) == MOVED)
1777 >                tab = helpTransfer(tab, f);
1778 >            else {
1779 >                synchronized (f) {
1780 >                    if (tabAt(tab, i) == f) {
1781 >                        if (fh >= 0) {
1782 >                            binCount = 1;
1783 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1784 >                                K ek;
1785 >                                if (e.hash == h &&
1786 >                                    ((ek = e.key) == key ||
1787 >                                     (ek != null && key.equals(ek)))) {
1788 >                                    val = remappingFunction.apply(key, e.val);
1789 >                                    if (val != null)
1790 >                                        e.val = val;
1791 >                                    else {
1792 >                                        delta = -1;
1793 >                                        Node<K,V> en = e.next;
1794 >                                        if (pred != null)
1795 >                                            pred.next = en;
1796 >                                        else
1797 >                                            setTabAt(tab, i, en);
1798 >                                    }
1799 >                                    break;
1800 >                                }
1801 >                                pred = e;
1802 >                                if ((e = e.next) == null)
1803 >                                    break;
1804 >                            }
1805 >                        }
1806 >                        else if (f instanceof TreeBin) {
1807 >                            binCount = 2;
1808 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1809 >                            TreeNode<K,V> r, p;
1810 >                            if ((r = t.root) != null &&
1811 >                                (p = r.findTreeNode(h, key, null)) != null) {
1812 >                                val = remappingFunction.apply(key, p.val);
1813 >                                if (val != null)
1814 >                                    p.val = val;
1815 >                                else {
1816 >                                    delta = -1;
1817 >                                    if (t.removeTreeNode(p))
1818 >                                        setTabAt(tab, i, untreeify(t.first));
1819 >                                }
1820 >                            }
1821 >                        }
1822 >                        else if (f instanceof ReservationNode)
1823 >                            throw new IllegalStateException("Recursive update");
1824 >                    }
1825 >                }
1826 >                if (binCount != 0)
1827 >                    break;
1828              }
1829          }
1830 <        return false;
1830 >        if (delta != 0)
1831 >            addCount((long)delta, binCount);
1832 >        return val;
1833      }
1834  
1835      /**
1836 <     * Returns <tt>true</tt> if this map maps one or more keys to the
1837 <     * specified value. Note: This method requires a full internal
1838 <     * traversal of the hash table, and so is much slower than
1839 <     * method <tt>containsKey</tt>.
1836 >     * Attempts to compute a mapping for the specified key and its
1837 >     * current mapped value (or {@code null} if there is no current
1838 >     * mapping). The entire method invocation is performed atomically.
1839 >     * Some attempted update operations on this map by other threads
1840 >     * may be blocked while computation is in progress, so the
1841 >     * computation should be short and simple, and must not attempt to
1842 >     * update any other mappings of this Map.
1843       *
1844 <     * @param value value whose presence in this map is to be tested
1845 <     * @return <tt>true</tt> if this map maps one or more keys to the
1846 <     *         specified value
1847 <     * @throws NullPointerException if the specified value is null
1844 >     * @param key key with which the specified value is to be associated
1845 >     * @param remappingFunction the function to compute a value
1846 >     * @return the new value associated with the specified key, or null if none
1847 >     * @throws NullPointerException if the specified key or remappingFunction
1848 >     *         is null
1849 >     * @throws IllegalStateException if the computation detectably
1850 >     *         attempts a recursive update to this map that would
1851 >     *         otherwise never complete
1852 >     * @throws RuntimeException or Error if the remappingFunction does so,
1853 >     *         in which case the mapping is unchanged
1854 >     */
1855 >    public V compute(K key,
1856 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1857 >        if (key == null || remappingFunction == null)
1858 >            throw new NullPointerException();
1859 >        int h = spread(key.hashCode());
1860 >        V val = null;
1861 >        int delta = 0;
1862 >        int binCount = 0;
1863 >        for (Node<K,V>[] tab = table;;) {
1864 >            Node<K,V> f; int n, i, fh;
1865 >            if (tab == null || (n = tab.length) == 0)
1866 >                tab = initTable();
1867 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1868 >                Node<K,V> r = new ReservationNode<K,V>();
1869 >                synchronized (r) {
1870 >                    if (casTabAt(tab, i, null, r)) {
1871 >                        binCount = 1;
1872 >                        Node<K,V> node = null;
1873 >                        try {
1874 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1875 >                                delta = 1;
1876 >                                node = new Node<K,V>(h, key, val, null);
1877 >                            }
1878 >                        } finally {
1879 >                            setTabAt(tab, i, node);
1880 >                        }
1881 >                    }
1882 >                }
1883 >                if (binCount != 0)
1884 >                    break;
1885 >            }
1886 >            else if ((fh = f.hash) == MOVED)
1887 >                tab = helpTransfer(tab, f);
1888 >            else {
1889 >                synchronized (f) {
1890 >                    if (tabAt(tab, i) == f) {
1891 >                        if (fh >= 0) {
1892 >                            binCount = 1;
1893 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1894 >                                K ek;
1895 >                                if (e.hash == h &&
1896 >                                    ((ek = e.key) == key ||
1897 >                                     (ek != null && key.equals(ek)))) {
1898 >                                    val = remappingFunction.apply(key, e.val);
1899 >                                    if (val != null)
1900 >                                        e.val = val;
1901 >                                    else {
1902 >                                        delta = -1;
1903 >                                        Node<K,V> en = e.next;
1904 >                                        if (pred != null)
1905 >                                            pred.next = en;
1906 >                                        else
1907 >                                            setTabAt(tab, i, en);
1908 >                                    }
1909 >                                    break;
1910 >                                }
1911 >                                pred = e;
1912 >                                if ((e = e.next) == null) {
1913 >                                    val = remappingFunction.apply(key, null);
1914 >                                    if (val != null) {
1915 >                                        if (pred.next != null)
1916 >                                            throw new IllegalStateException("Recursive update");
1917 >                                        delta = 1;
1918 >                                        pred.next =
1919 >                                            new Node<K,V>(h, key, val, null);
1920 >                                    }
1921 >                                    break;
1922 >                                }
1923 >                            }
1924 >                        }
1925 >                        else if (f instanceof TreeBin) {
1926 >                            binCount = 1;
1927 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1928 >                            TreeNode<K,V> r, p;
1929 >                            if ((r = t.root) != null)
1930 >                                p = r.findTreeNode(h, key, null);
1931 >                            else
1932 >                                p = null;
1933 >                            V pv = (p == null) ? null : p.val;
1934 >                            val = remappingFunction.apply(key, pv);
1935 >                            if (val != null) {
1936 >                                if (p != null)
1937 >                                    p.val = val;
1938 >                                else {
1939 >                                    delta = 1;
1940 >                                    t.putTreeVal(h, key, val);
1941 >                                }
1942 >                            }
1943 >                            else if (p != null) {
1944 >                                delta = -1;
1945 >                                if (t.removeTreeNode(p))
1946 >                                    setTabAt(tab, i, untreeify(t.first));
1947 >                            }
1948 >                        }
1949 >                        else if (f instanceof ReservationNode)
1950 >                            throw new IllegalStateException("Recursive update");
1951 >                    }
1952 >                }
1953 >                if (binCount != 0) {
1954 >                    if (binCount >= TREEIFY_THRESHOLD)
1955 >                        treeifyBin(tab, i);
1956 >                    break;
1957 >                }
1958 >            }
1959 >        }
1960 >        if (delta != 0)
1961 >            addCount((long)delta, binCount);
1962 >        return val;
1963 >    }
1964 >
1965 >    /**
1966 >     * If the specified key is not already associated with a
1967 >     * (non-null) value, associates it with the given value.
1968 >     * Otherwise, replaces the value with the results of the given
1969 >     * remapping function, or removes if {@code null}. The entire
1970 >     * method invocation is performed atomically.  Some attempted
1971 >     * update operations on this map by other threads may be blocked
1972 >     * while computation is in progress, so the computation should be
1973 >     * short and simple, and must not attempt to update any other
1974 >     * mappings of this Map.
1975 >     *
1976 >     * @param key key with which the specified value is to be associated
1977 >     * @param value the value to use if absent
1978 >     * @param remappingFunction the function to recompute a value if present
1979 >     * @return the new value associated with the specified key, or null if none
1980 >     * @throws NullPointerException if the specified key or the
1981 >     *         remappingFunction is null
1982 >     * @throws RuntimeException or Error if the remappingFunction does so,
1983 >     *         in which case the mapping is unchanged
1984       */
1985 <    public boolean containsValue(Object value) {
1986 <        // Same idea as size()
942 <        if (value == null)
1985 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1986 >        if (key == null || value == null || remappingFunction == null)
1987              throw new NullPointerException();
1988 <        final Segment<K,V>[] segments = this.segments;
1989 <        long previousSum = 0L;
1990 <        int lockCount = 0;
1991 <        try {
1992 <            for (int retries = -1; ; retries++) {
1993 <                long sum = 0L;    // sum of modCounts
1994 <                for (int j = 0; j < segments.length; j++) {
1995 <                    Segment<K,V> segment;
1996 <                    if (retries == RETRIES_BEFORE_LOCK) {
1997 <                        segment = ensureSegment(j);
1998 <                        segment.lock();
1999 <                        lockCount++;
2000 <                    } else {
2001 <                        segment = segmentAt(segments, j);
2002 <                        if (segment == null)
2003 <                            continue;
2004 <                    }
2005 <                    HashEntry<K,V>[] tab = segment.table;
2006 <                    if (tab != null) {
2007 <                        for (int i = 0 ; i < tab.length; i++) {
2008 <                            HashEntry<K,V> e;
2009 <                            for (e = entryAt(tab, i); e != null; e = e.next) {
2010 <                                V v = e.value;
2011 <                                if (v != null && value.equals(v))
2012 <                                    return true;
1988 >        int h = spread(key.hashCode());
1989 >        V val = null;
1990 >        int delta = 0;
1991 >        int binCount = 0;
1992 >        for (Node<K,V>[] tab = table;;) {
1993 >            Node<K,V> f; int n, i, fh;
1994 >            if (tab == null || (n = tab.length) == 0)
1995 >                tab = initTable();
1996 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1997 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1998 >                    delta = 1;
1999 >                    val = value;
2000 >                    break;
2001 >                }
2002 >            }
2003 >            else if ((fh = f.hash) == MOVED)
2004 >                tab = helpTransfer(tab, f);
2005 >            else {
2006 >                synchronized (f) {
2007 >                    if (tabAt(tab, i) == f) {
2008 >                        if (fh >= 0) {
2009 >                            binCount = 1;
2010 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2011 >                                K ek;
2012 >                                if (e.hash == h &&
2013 >                                    ((ek = e.key) == key ||
2014 >                                     (ek != null && key.equals(ek)))) {
2015 >                                    val = remappingFunction.apply(e.val, value);
2016 >                                    if (val != null)
2017 >                                        e.val = val;
2018 >                                    else {
2019 >                                        delta = -1;
2020 >                                        Node<K,V> en = e.next;
2021 >                                        if (pred != null)
2022 >                                            pred.next = en;
2023 >                                        else
2024 >                                            setTabAt(tab, i, en);
2025 >                                    }
2026 >                                    break;
2027 >                                }
2028 >                                pred = e;
2029 >                                if ((e = e.next) == null) {
2030 >                                    delta = 1;
2031 >                                    val = value;
2032 >                                    pred.next =
2033 >                                        new Node<K,V>(h, key, val, null);
2034 >                                    break;
2035 >                                }
2036 >                            }
2037 >                        }
2038 >                        else if (f instanceof TreeBin) {
2039 >                            binCount = 2;
2040 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2041 >                            TreeNode<K,V> r = t.root;
2042 >                            TreeNode<K,V> p = (r == null) ? null :
2043 >                                r.findTreeNode(h, key, null);
2044 >                            val = (p == null) ? value :
2045 >                                remappingFunction.apply(p.val, value);
2046 >                            if (val != null) {
2047 >                                if (p != null)
2048 >                                    p.val = val;
2049 >                                else {
2050 >                                    delta = 1;
2051 >                                    t.putTreeVal(h, key, val);
2052 >                                }
2053 >                            }
2054 >                            else if (p != null) {
2055 >                                delta = -1;
2056 >                                if (t.removeTreeNode(p))
2057 >                                    setTabAt(tab, i, untreeify(t.first));
2058                              }
2059                          }
2060 <                        sum += segment.modCount;
2060 >                        else if (f instanceof ReservationNode)
2061 >                            throw new IllegalStateException("Recursive update");
2062                      }
2063                  }
2064 <                if ((retries >= 0 && sum == previousSum) || lockCount > 0)
2065 <                    return false;
2066 <                previousSum = sum;
2064 >                if (binCount != 0) {
2065 >                    if (binCount >= TREEIFY_THRESHOLD)
2066 >                        treeifyBin(tab, i);
2067 >                    break;
2068 >                }
2069              }
978        } finally {
979            for (int j = 0; j < lockCount; j++)
980                segments[j].unlock();
2070          }
2071 +        if (delta != 0)
2072 +            addCount((long)delta, binCount);
2073 +        return val;
2074      }
2075  
2076 +    // Hashtable legacy methods
2077 +
2078      /**
2079 <     * Legacy method testing if some key maps into the specified value
2080 <     * in this table.  This method is identical in functionality to
2081 <     * {@link #containsValue}, and exists solely to ensure
2079 >     * Tests if some key maps into the specified value in this table.
2080 >     *
2081 >     * <p>Note that this method is identical in functionality to
2082 >     * {@link #containsValue(Object)}, and exists solely to ensure
2083       * full compatibility with class {@link java.util.Hashtable},
2084 <     * which supported this method prior to introduction of the
2085 <     * Java Collections framework.
2084 >     * which supported this method prior to introduction of the Java
2085 >     * Collections Framework.
2086       *
2087       * @param  value a value to search for
2088 <     * @return <tt>true</tt> if and only if some key maps to the
2089 <     *         <tt>value</tt> argument in this table as
2090 <     *         determined by the <tt>equals</tt> method;
2091 <     *         <tt>false</tt> otherwise
2088 >     * @return {@code true} if and only if some key maps to the
2089 >     *         {@code value} argument in this table as
2090 >     *         determined by the {@code equals} method;
2091 >     *         {@code false} otherwise
2092       * @throws NullPointerException if the specified value is null
2093       */
2094      public boolean contains(Object value) {
# Line 1001 | Line 2096 | public class ConcurrentHashMap<K, V> ext
2096      }
2097  
2098      /**
2099 <     * Maps the specified key to the specified value in this table.
1005 <     * Neither the key nor the value can be null.
1006 <     *
1007 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
1008 <     * with a key that is equal to the original key.
2099 >     * Returns an enumeration of the keys in this table.
2100       *
2101 <     * @param key key with which the specified value is to be associated
2102 <     * @param value value to be associated with the specified key
1012 <     * @return the previous value associated with <tt>key</tt>, or
1013 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1014 <     * @throws NullPointerException if the specified key or value is null
2101 >     * @return an enumeration of the keys in this table
2102 >     * @see #keySet()
2103       */
2104 <    @SuppressWarnings("unchecked")
2105 <    public V put(K key, V value) {
2106 <        Segment<K,V> s;
2107 <        if (value == null)
1020 <            throw new NullPointerException();
1021 <        int hash = hash(key.hashCode());
1022 <        int j = (hash >>> segmentShift) & segmentMask;
1023 <        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1024 <             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1025 <            s = ensureSegment(j);
1026 <        return s.put(key, hash, value, false);
2104 >    public Enumeration<K> keys() {
2105 >        Node<K,V>[] t;
2106 >        int f = (t = table) == null ? 0 : t.length;
2107 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2108      }
2109  
2110      /**
2111 <     * {@inheritDoc}
2111 >     * Returns an enumeration of the values in this table.
2112       *
2113 <     * @return the previous value associated with the specified key,
2114 <     *         or <tt>null</tt> if there was no mapping for the key
1034 <     * @throws NullPointerException if the specified key or value is null
2113 >     * @return an enumeration of the values in this table
2114 >     * @see #values()
2115       */
2116 <    @SuppressWarnings("unchecked")
2117 <    public V putIfAbsent(K key, V value) {
2118 <        Segment<K,V> s;
2119 <        if (value == null)
1040 <            throw new NullPointerException();
1041 <        int hash = hash(key.hashCode());
1042 <        int j = (hash >>> segmentShift) & segmentMask;
1043 <        if ((s = (Segment<K,V>)UNSAFE.getObject
1044 <             (segments, (j << SSHIFT) + SBASE)) == null)
1045 <            s = ensureSegment(j);
1046 <        return s.put(key, hash, value, true);
2116 >    public Enumeration<V> elements() {
2117 >        Node<K,V>[] t;
2118 >        int f = (t = table) == null ? 0 : t.length;
2119 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2120      }
2121  
2122 +    // ConcurrentHashMap-only methods
2123 +
2124      /**
2125 <     * Copies all of the mappings from the specified map to this one.
2126 <     * These mappings replace any mappings that this map had for any of the
2127 <     * keys currently in the specified map.
2125 >     * Returns the number of mappings. This method should be used
2126 >     * instead of {@link #size} because a ConcurrentHashMap may
2127 >     * contain more mappings than can be represented as an int. The
2128 >     * value returned is an estimate; the actual count may differ if
2129 >     * there are concurrent insertions or removals.
2130       *
2131 <     * @param m mappings to be stored in this map
2131 >     * @return the number of mappings
2132 >     * @since 1.8
2133       */
2134 <    public void putAll(Map<? extends K, ? extends V> m) {
2135 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2136 <            put(e.getKey(), e.getValue());
2134 >    public long mappingCount() {
2135 >        long n = sumCount();
2136 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2137      }
2138  
2139      /**
2140 <     * Removes the key (and its corresponding value) from this map.
2141 <     * This method does nothing if the key is not in the map.
2140 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2141 >     * from the given type to {@code Boolean.TRUE}.
2142       *
2143 <     * @param  key the key that needs to be removed
2144 <     * @return the previous value associated with <tt>key</tt>, or
2145 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1068 <     * @throws NullPointerException if the specified key is null
2143 >     * @param <K> the element type of the returned set
2144 >     * @return the new set
2145 >     * @since 1.8
2146       */
2147 <    public V remove(Object key) {
2148 <        int hash = hash(key.hashCode());
2149 <        Segment<K,V> s = segmentForHash(hash);
1073 <        return s == null ? null : s.remove(key, hash, null);
2147 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2148 >        return new KeySetView<K,Boolean>
2149 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2150      }
2151  
2152      /**
2153 <     * {@inheritDoc}
2153 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2154 >     * from the given type to {@code Boolean.TRUE}.
2155       *
2156 <     * @throws NullPointerException if the specified key is null
2156 >     * @param initialCapacity The implementation performs internal
2157 >     * sizing to accommodate this many elements.
2158 >     * @param <K> the element type of the returned set
2159 >     * @return the new set
2160 >     * @throws IllegalArgumentException if the initial capacity of
2161 >     * elements is negative
2162 >     * @since 1.8
2163       */
2164 <    public boolean remove(Object key, Object value) {
2165 <        int hash = hash(key.hashCode());
2166 <        Segment<K,V> s;
1084 <        return value != null && (s = segmentForHash(hash)) != null &&
1085 <            s.remove(key, hash, value) != null;
2164 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2165 >        return new KeySetView<K,Boolean>
2166 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2167      }
2168  
2169      /**
2170 <     * {@inheritDoc}
2170 >     * Returns a {@link Set} view of the keys in this map, using the
2171 >     * given common mapped value for any additions (i.e., {@link
2172 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2173 >     * This is of course only appropriate if it is acceptable to use
2174 >     * the same value for all additions from this view.
2175       *
2176 <     * @throws NullPointerException if any of the arguments are null
2176 >     * @param mappedValue the mapped value to use for any additions
2177 >     * @return the set view
2178 >     * @throws NullPointerException if the mappedValue is null
2179       */
2180 <    public boolean replace(K key, V oldValue, V newValue) {
2181 <        int hash = hash(key.hashCode());
1095 <        if (oldValue == null || newValue == null)
2180 >    public KeySetView<K,V> keySet(V mappedValue) {
2181 >        if (mappedValue == null)
2182              throw new NullPointerException();
2183 <        Segment<K,V> s = segmentForHash(hash);
1098 <        return s != null && s.replace(key, hash, oldValue, newValue);
2183 >        return new KeySetView<K,V>(this, mappedValue);
2184      }
2185  
2186 +    /* ---------------- Special Nodes -------------- */
2187 +
2188      /**
2189 <     * {@inheritDoc}
1103 <     *
1104 <     * @return the previous value associated with the specified key,
1105 <     *         or <tt>null</tt> if there was no mapping for the key
1106 <     * @throws NullPointerException if the specified key or value is null
2189 >     * A node inserted at head of bins during transfer operations.
2190       */
2191 <    public V replace(K key, V value) {
2192 <        int hash = hash(key.hashCode());
2193 <        if (value == null)
2194 <            throw new NullPointerException();
2195 <        Segment<K,V> s = segmentForHash(hash);
2196 <        return s == null ? null : s.replace(key, hash, value);
2191 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2192 >        final Node<K,V>[] nextTable;
2193 >        ForwardingNode(Node<K,V>[] tab) {
2194 >            super(MOVED, null, null, null);
2195 >            this.nextTable = tab;
2196 >        }
2197 >
2198 >        Node<K,V> find(int h, Object k) {
2199 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2200 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2201 >                Node<K,V> e; int n;
2202 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2203 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2204 >                    return null;
2205 >                for (;;) {
2206 >                    int eh; K ek;
2207 >                    if ((eh = e.hash) == h &&
2208 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2209 >                        return e;
2210 >                    if (eh < 0) {
2211 >                        if (e instanceof ForwardingNode) {
2212 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2213 >                            continue outer;
2214 >                        }
2215 >                        else
2216 >                            return e.find(h, k);
2217 >                    }
2218 >                    if ((e = e.next) == null)
2219 >                        return null;
2220 >                }
2221 >            }
2222 >        }
2223      }
2224  
2225      /**
2226 <     * Removes all of the mappings from this map.
2226 >     * A place-holder node used in computeIfAbsent and compute
2227       */
2228 <    public void clear() {
2229 <        final Segment<K,V>[] segments = this.segments;
2230 <        for (int j = 0; j < segments.length; ++j) {
2231 <            Segment<K,V> s = segmentAt(segments, j);
2232 <            if (s != null)
2233 <                s.clear();
2228 >    static final class ReservationNode<K,V> extends Node<K,V> {
2229 >        ReservationNode() {
2230 >            super(RESERVED, null, null, null);
2231 >        }
2232 >
2233 >        Node<K,V> find(int h, Object k) {
2234 >            return null;
2235          }
2236      }
2237  
2238 +    /* ---------------- Table Initialization and Resizing -------------- */
2239 +
2240      /**
2241 <     * Returns a {@link Set} view of the keys contained in this map.
2242 <     * The set is backed by the map, so changes to the map are
2243 <     * reflected in the set, and vice-versa.  The set supports element
2244 <     * removal, which removes the corresponding mapping from this map,
2245 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1134 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1135 <     * operations.  It does not support the <tt>add</tt> or
1136 <     * <tt>addAll</tt> operations.
1137 <     *
1138 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1139 <     * that will never throw {@link ConcurrentModificationException},
1140 <     * and guarantees to traverse elements as they existed upon
1141 <     * construction of the iterator, and may (but is not guaranteed to)
1142 <     * reflect any modifications subsequent to construction.
1143 <     */
1144 <    public Set<K> keySet() {
1145 <        Set<K> ks = keySet;
1146 <        return (ks != null) ? ks : (keySet = new KeySet());
2241 >     * Returns the stamp bits for resizing a table of size n.
2242 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2243 >     */
2244 >    static final int resizeStamp(int n) {
2245 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2246      }
2247  
2248      /**
2249 <     * Returns a {@link Collection} view of the values contained in this map.
1151 <     * The collection is backed by the map, so changes to the map are
1152 <     * reflected in the collection, and vice-versa.  The collection
1153 <     * supports element removal, which removes the corresponding
1154 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1155 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1156 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1157 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1158 <     *
1159 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1160 <     * that will never throw {@link ConcurrentModificationException},
1161 <     * and guarantees to traverse elements as they existed upon
1162 <     * construction of the iterator, and may (but is not guaranteed to)
1163 <     * reflect any modifications subsequent to construction.
2249 >     * Initializes table, using the size recorded in sizeCtl.
2250       */
2251 <    public Collection<V> values() {
2252 <        Collection<V> vs = values;
2253 <        return (vs != null) ? vs : (values = new Values());
2251 >    private final Node<K,V>[] initTable() {
2252 >        Node<K,V>[] tab; int sc;
2253 >        while ((tab = table) == null || tab.length == 0) {
2254 >            if ((sc = sizeCtl) < 0)
2255 >                Thread.yield(); // lost initialization race; just spin
2256 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2257 >                try {
2258 >                    if ((tab = table) == null || tab.length == 0) {
2259 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2260 >                        @SuppressWarnings("unchecked")
2261 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2262 >                        table = tab = nt;
2263 >                        sc = n - (n >>> 2);
2264 >                    }
2265 >                } finally {
2266 >                    sizeCtl = sc;
2267 >                }
2268 >                break;
2269 >            }
2270 >        }
2271 >        return tab;
2272      }
2273  
2274      /**
2275 <     * Returns a {@link Set} view of the mappings contained in this map.
2276 <     * The set is backed by the map, so changes to the map are
2277 <     * reflected in the set, and vice-versa.  The set supports element
2278 <     * removal, which removes the corresponding mapping from the map,
2279 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2280 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2281 <     * operations.  It does not support the <tt>add</tt> or
2282 <     * <tt>addAll</tt> operations.
1179 <     *
1180 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1181 <     * that will never throw {@link ConcurrentModificationException},
1182 <     * and guarantees to traverse elements as they existed upon
1183 <     * construction of the iterator, and may (but is not guaranteed to)
1184 <     * reflect any modifications subsequent to construction.
2275 >     * Adds to count, and if table is too small and not already
2276 >     * resizing, initiates transfer. If already resizing, helps
2277 >     * perform transfer if work is available.  Rechecks occupancy
2278 >     * after a transfer to see if another resize is already needed
2279 >     * because resizings are lagging additions.
2280 >     *
2281 >     * @param x the count to add
2282 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2283       */
2284 <    public Set<Map.Entry<K,V>> entrySet() {
2285 <        Set<Map.Entry<K,V>> es = entrySet;
2286 <        return (es != null) ? es : (entrySet = new EntrySet());
2284 >    private final void addCount(long x, int check) {
2285 >        CounterCell[] as; long b, s;
2286 >        if ((as = counterCells) != null ||
2287 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2288 >            CounterCell a; long v; int m;
2289 >            boolean uncontended = true;
2290 >            if (as == null || (m = as.length - 1) < 0 ||
2291 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2292 >                !(uncontended =
2293 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2294 >                fullAddCount(x, uncontended);
2295 >                return;
2296 >            }
2297 >            if (check <= 1)
2298 >                return;
2299 >            s = sumCount();
2300 >        }
2301 >        if (check >= 0) {
2302 >            Node<K,V>[] tab, nt; int n, sc;
2303 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2304 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2305 >                int rs = resizeStamp(n);
2306 >                if (sc < 0) {
2307 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2308 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2309 >                        transferIndex <= 0)
2310 >                        break;
2311 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2312 >                        transfer(tab, nt);
2313 >                }
2314 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2315 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2316 >                    transfer(tab, null);
2317 >                s = sumCount();
2318 >            }
2319 >        }
2320      }
2321  
2322      /**
2323 <     * Returns an enumeration of the keys in this table.
1193 <     *
1194 <     * @return an enumeration of the keys in this table
1195 <     * @see #keySet()
2323 >     * Helps transfer if a resize is in progress.
2324       */
2325 <    public Enumeration<K> keys() {
2326 <        return new KeyIterator();
2325 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2326 >        Node<K,V>[] nextTab; int sc;
2327 >        if (tab != null && (f instanceof ForwardingNode) &&
2328 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2329 >            int rs = resizeStamp(tab.length);
2330 >            while (nextTab == nextTable && table == tab &&
2331 >                   (sc = sizeCtl) < 0) {
2332 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2333 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2334 >                    break;
2335 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2336 >                    transfer(tab, nextTab);
2337 >                    break;
2338 >                }
2339 >            }
2340 >            return nextTab;
2341 >        }
2342 >        return table;
2343      }
2344  
2345      /**
2346 <     * Returns an enumeration of the values in this table.
2346 >     * Tries to presize table to accommodate the given number of elements.
2347       *
2348 <     * @return an enumeration of the values in this table
1205 <     * @see #values()
2348 >     * @param size number of elements (doesn't need to be perfectly accurate)
2349       */
2350 <    public Enumeration<V> elements() {
2351 <        return new ValueIterator();
2350 >    private final void tryPresize(int size) {
2351 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2352 >            tableSizeFor(size + (size >>> 1) + 1);
2353 >        int sc;
2354 >        while ((sc = sizeCtl) >= 0) {
2355 >            Node<K,V>[] tab = table; int n;
2356 >            if (tab == null || (n = tab.length) == 0) {
2357 >                n = (sc > c) ? sc : c;
2358 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2359 >                    try {
2360 >                        if (table == tab) {
2361 >                            @SuppressWarnings("unchecked")
2362 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2363 >                            table = nt;
2364 >                            sc = n - (n >>> 2);
2365 >                        }
2366 >                    } finally {
2367 >                        sizeCtl = sc;
2368 >                    }
2369 >                }
2370 >            }
2371 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2372 >                break;
2373 >            else if (tab == table) {
2374 >                int rs = resizeStamp(n);
2375 >                if (U.compareAndSwapInt(this, SIZECTL, sc,
2376 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2377 >                    transfer(tab, null);
2378 >            }
2379 >        }
2380      }
2381  
2382 <    /* ---------------- Iterator Support -------------- */
2382 >    /**
2383 >     * Moves and/or copies the nodes in each bin to new table. See
2384 >     * above for explanation.
2385 >     */
2386 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2387 >        int n = tab.length, stride;
2388 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2389 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2390 >        if (nextTab == null) {            // initiating
2391 >            try {
2392 >                @SuppressWarnings("unchecked")
2393 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2394 >                nextTab = nt;
2395 >            } catch (Throwable ex) {      // try to cope with OOME
2396 >                sizeCtl = Integer.MAX_VALUE;
2397 >                return;
2398 >            }
2399 >            nextTable = nextTab;
2400 >            transferIndex = n;
2401 >        }
2402 >        int nextn = nextTab.length;
2403 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2404 >        boolean advance = true;
2405 >        boolean finishing = false; // to ensure sweep before committing nextTab
2406 >        for (int i = 0, bound = 0;;) {
2407 >            Node<K,V> f; int fh;
2408 >            while (advance) {
2409 >                int nextIndex, nextBound;
2410 >                if (--i >= bound || finishing)
2411 >                    advance = false;
2412 >                else if ((nextIndex = transferIndex) <= 0) {
2413 >                    i = -1;
2414 >                    advance = false;
2415 >                }
2416 >                else if (U.compareAndSwapInt
2417 >                         (this, TRANSFERINDEX, nextIndex,
2418 >                          nextBound = (nextIndex > stride ?
2419 >                                       nextIndex - stride : 0))) {
2420 >                    bound = nextBound;
2421 >                    i = nextIndex - 1;
2422 >                    advance = false;
2423 >                }
2424 >            }
2425 >            if (i < 0 || i >= n || i + n >= nextn) {
2426 >                int sc;
2427 >                if (finishing) {
2428 >                    nextTable = null;
2429 >                    table = nextTab;
2430 >                    sizeCtl = (n << 1) - (n >>> 1);
2431 >                    return;
2432 >                }
2433 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2434 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2435 >                        return;
2436 >                    finishing = advance = true;
2437 >                    i = n; // recheck before commit
2438 >                }
2439 >            }
2440 >            else if ((f = tabAt(tab, i)) == null)
2441 >                advance = casTabAt(tab, i, null, fwd);
2442 >            else if ((fh = f.hash) == MOVED)
2443 >                advance = true; // already processed
2444 >            else {
2445 >                synchronized (f) {
2446 >                    if (tabAt(tab, i) == f) {
2447 >                        Node<K,V> ln, hn;
2448 >                        if (fh >= 0) {
2449 >                            int runBit = fh & n;
2450 >                            Node<K,V> lastRun = f;
2451 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2452 >                                int b = p.hash & n;
2453 >                                if (b != runBit) {
2454 >                                    runBit = b;
2455 >                                    lastRun = p;
2456 >                                }
2457 >                            }
2458 >                            if (runBit == 0) {
2459 >                                ln = lastRun;
2460 >                                hn = null;
2461 >                            }
2462 >                            else {
2463 >                                hn = lastRun;
2464 >                                ln = null;
2465 >                            }
2466 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2467 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2468 >                                if ((ph & n) == 0)
2469 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2470 >                                else
2471 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2472 >                            }
2473 >                            setTabAt(nextTab, i, ln);
2474 >                            setTabAt(nextTab, i + n, hn);
2475 >                            setTabAt(tab, i, fwd);
2476 >                            advance = true;
2477 >                        }
2478 >                        else if (f instanceof TreeBin) {
2479 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2480 >                            TreeNode<K,V> lo = null, loTail = null;
2481 >                            TreeNode<K,V> hi = null, hiTail = null;
2482 >                            int lc = 0, hc = 0;
2483 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2484 >                                int h = e.hash;
2485 >                                TreeNode<K,V> p = new TreeNode<K,V>
2486 >                                    (h, e.key, e.val, null, null);
2487 >                                if ((h & n) == 0) {
2488 >                                    if ((p.prev = loTail) == null)
2489 >                                        lo = p;
2490 >                                    else
2491 >                                        loTail.next = p;
2492 >                                    loTail = p;
2493 >                                    ++lc;
2494 >                                }
2495 >                                else {
2496 >                                    if ((p.prev = hiTail) == null)
2497 >                                        hi = p;
2498 >                                    else
2499 >                                        hiTail.next = p;
2500 >                                    hiTail = p;
2501 >                                    ++hc;
2502 >                                }
2503 >                            }
2504 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2505 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2506 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2507 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2508 >                            setTabAt(nextTab, i, ln);
2509 >                            setTabAt(nextTab, i + n, hn);
2510 >                            setTabAt(tab, i, fwd);
2511 >                            advance = true;
2512 >                        }
2513 >                    }
2514 >                }
2515 >            }
2516 >        }
2517 >    }
2518  
2519 <    abstract class HashIterator {
1214 <        int nextSegmentIndex;
1215 <        int nextTableIndex;
1216 <        HashEntry<K,V>[] currentTable;
1217 <        HashEntry<K, V> nextEntry;
1218 <        HashEntry<K, V> lastReturned;
2519 >    /* ---------------- Counter support -------------- */
2520  
2521 <        HashIterator() {
2522 <            nextSegmentIndex = segments.length - 1;
2523 <            nextTableIndex = -1;
2524 <            advance();
2521 >    /**
2522 >     * A padded cell for distributing counts.  Adapted from LongAdder
2523 >     * and Striped64.  See their internal docs for explanation.
2524 >     */
2525 >    @sun.misc.Contended static final class CounterCell {
2526 >        volatile long value;
2527 >        CounterCell(long x) { value = x; }
2528 >    }
2529 >
2530 >    final long sumCount() {
2531 >        CounterCell[] as = counterCells; CounterCell a;
2532 >        long sum = baseCount;
2533 >        if (as != null) {
2534 >            for (int i = 0; i < as.length; ++i) {
2535 >                if ((a = as[i]) != null)
2536 >                    sum += a.value;
2537 >            }
2538 >        }
2539 >        return sum;
2540 >    }
2541 >
2542 >    // See LongAdder version for explanation
2543 >    private final void fullAddCount(long x, boolean wasUncontended) {
2544 >        int h;
2545 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2546 >            ThreadLocalRandom.localInit();      // force initialization
2547 >            h = ThreadLocalRandom.getProbe();
2548 >            wasUncontended = true;
2549 >        }
2550 >        boolean collide = false;                // True if last slot nonempty
2551 >        for (;;) {
2552 >            CounterCell[] as; CounterCell a; int n; long v;
2553 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2554 >                if ((a = as[(n - 1) & h]) == null) {
2555 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2556 >                        CounterCell r = new CounterCell(x); // Optimistic create
2557 >                        if (cellsBusy == 0 &&
2558 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2559 >                            boolean created = false;
2560 >                            try {               // Recheck under lock
2561 >                                CounterCell[] rs; int m, j;
2562 >                                if ((rs = counterCells) != null &&
2563 >                                    (m = rs.length) > 0 &&
2564 >                                    rs[j = (m - 1) & h] == null) {
2565 >                                    rs[j] = r;
2566 >                                    created = true;
2567 >                                }
2568 >                            } finally {
2569 >                                cellsBusy = 0;
2570 >                            }
2571 >                            if (created)
2572 >                                break;
2573 >                            continue;           // Slot is now non-empty
2574 >                        }
2575 >                    }
2576 >                    collide = false;
2577 >                }
2578 >                else if (!wasUncontended)       // CAS already known to fail
2579 >                    wasUncontended = true;      // Continue after rehash
2580 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2581 >                    break;
2582 >                else if (counterCells != as || n >= NCPU)
2583 >                    collide = false;            // At max size or stale
2584 >                else if (!collide)
2585 >                    collide = true;
2586 >                else if (cellsBusy == 0 &&
2587 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2588 >                    try {
2589 >                        if (counterCells == as) {// Expand table unless stale
2590 >                            CounterCell[] rs = new CounterCell[n << 1];
2591 >                            for (int i = 0; i < n; ++i)
2592 >                                rs[i] = as[i];
2593 >                            counterCells = rs;
2594 >                        }
2595 >                    } finally {
2596 >                        cellsBusy = 0;
2597 >                    }
2598 >                    collide = false;
2599 >                    continue;                   // Retry with expanded table
2600 >                }
2601 >                h = ThreadLocalRandom.advanceProbe(h);
2602 >            }
2603 >            else if (cellsBusy == 0 && counterCells == as &&
2604 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2605 >                boolean init = false;
2606 >                try {                           // Initialize table
2607 >                    if (counterCells == as) {
2608 >                        CounterCell[] rs = new CounterCell[2];
2609 >                        rs[h & 1] = new CounterCell(x);
2610 >                        counterCells = rs;
2611 >                        init = true;
2612 >                    }
2613 >                } finally {
2614 >                    cellsBusy = 0;
2615 >                }
2616 >                if (init)
2617 >                    break;
2618 >            }
2619 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2620 >                break;                          // Fall back on using base
2621 >        }
2622 >    }
2623 >
2624 >    /* ---------------- Conversion from/to TreeBins -------------- */
2625 >
2626 >    /**
2627 >     * Replaces all linked nodes in bin at given index unless table is
2628 >     * too small, in which case resizes instead.
2629 >     */
2630 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2631 >        Node<K,V> b; int n;
2632 >        if (tab != null) {
2633 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2634 >                tryPresize(n << 1);
2635 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2636 >                synchronized (b) {
2637 >                    if (tabAt(tab, index) == b) {
2638 >                        TreeNode<K,V> hd = null, tl = null;
2639 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2640 >                            TreeNode<K,V> p =
2641 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2642 >                                                  null, null);
2643 >                            if ((p.prev = tl) == null)
2644 >                                hd = p;
2645 >                            else
2646 >                                tl.next = p;
2647 >                            tl = p;
2648 >                        }
2649 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2650 >                    }
2651 >                }
2652 >            }
2653 >        }
2654 >    }
2655 >
2656 >    /**
2657 >     * Returns a list on non-TreeNodes replacing those in given list.
2658 >     */
2659 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2660 >        Node<K,V> hd = null, tl = null;
2661 >        for (Node<K,V> q = b; q != null; q = q.next) {
2662 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2663 >            if (tl == null)
2664 >                hd = p;
2665 >            else
2666 >                tl.next = p;
2667 >            tl = p;
2668 >        }
2669 >        return hd;
2670 >    }
2671 >
2672 >    /* ---------------- TreeNodes -------------- */
2673 >
2674 >    /**
2675 >     * Nodes for use in TreeBins
2676 >     */
2677 >    static final class TreeNode<K,V> extends Node<K,V> {
2678 >        TreeNode<K,V> parent;  // red-black tree links
2679 >        TreeNode<K,V> left;
2680 >        TreeNode<K,V> right;
2681 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2682 >        boolean red;
2683 >
2684 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2685 >                 TreeNode<K,V> parent) {
2686 >            super(hash, key, val, next);
2687 >            this.parent = parent;
2688 >        }
2689 >
2690 >        Node<K,V> find(int h, Object k) {
2691 >            return findTreeNode(h, k, null);
2692          }
2693  
2694          /**
2695 <         * Sets nextEntry to first node of next non-empty table
2696 <         * (in backwards order, to simplify checks).
2695 >         * Returns the TreeNode (or null if not found) for the given key
2696 >         * starting at given root.
2697           */
2698 <        final void advance() {
2699 <            for (;;) {
2700 <                if (nextTableIndex >= 0) {
2701 <                    if ((nextEntry = entryAt(currentTable,
2702 <                                             nextTableIndex--)) != null)
2703 <                        break;
2698 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2699 >            if (k != null) {
2700 >                TreeNode<K,V> p = this;
2701 >                do {
2702 >                    int ph, dir; K pk; TreeNode<K,V> q;
2703 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2704 >                    if ((ph = p.hash) > h)
2705 >                        p = pl;
2706 >                    else if (ph < h)
2707 >                        p = pr;
2708 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2709 >                        return p;
2710 >                    else if (pl == null)
2711 >                        p = pr;
2712 >                    else if (pr == null)
2713 >                        p = pl;
2714 >                    else if ((kc != null ||
2715 >                              (kc = comparableClassFor(k)) != null) &&
2716 >                             (dir = compareComparables(kc, k, pk)) != 0)
2717 >                        p = (dir < 0) ? pl : pr;
2718 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2719 >                        return q;
2720 >                    else
2721 >                        p = pl;
2722 >                } while (p != null);
2723 >            }
2724 >            return null;
2725 >        }
2726 >    }
2727 >
2728 >    /* ---------------- TreeBins -------------- */
2729 >
2730 >    /**
2731 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2732 >     * keys or values, but instead point to list of TreeNodes and
2733 >     * their root. They also maintain a parasitic read-write lock
2734 >     * forcing writers (who hold bin lock) to wait for readers (who do
2735 >     * not) to complete before tree restructuring operations.
2736 >     */
2737 >    static final class TreeBin<K,V> extends Node<K,V> {
2738 >        TreeNode<K,V> root;
2739 >        volatile TreeNode<K,V> first;
2740 >        volatile Thread waiter;
2741 >        volatile int lockState;
2742 >        // values for lockState
2743 >        static final int WRITER = 1; // set while holding write lock
2744 >        static final int WAITER = 2; // set when waiting for write lock
2745 >        static final int READER = 4; // increment value for setting read lock
2746 >
2747 >        /**
2748 >         * Tie-breaking utility for ordering insertions when equal
2749 >         * hashCodes and non-comparable. We don't require a total
2750 >         * order, just a consistent insertion rule to maintain
2751 >         * equivalence across rebalancings. Tie-breaking further than
2752 >         * necessary simplifies testing a bit.
2753 >         */
2754 >        static int tieBreakOrder(Object a, Object b) {
2755 >            int d;
2756 >            if (a == null || b == null ||
2757 >                (d = a.getClass().getName().
2758 >                 compareTo(b.getClass().getName())) == 0)
2759 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2760 >                     -1 : 1);
2761 >            return d;
2762 >        }
2763 >
2764 >        /**
2765 >         * Creates bin with initial set of nodes headed by b.
2766 >         */
2767 >        TreeBin(TreeNode<K,V> b) {
2768 >            super(TREEBIN, null, null, null);
2769 >            this.first = b;
2770 >            TreeNode<K,V> r = null;
2771 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2772 >                next = (TreeNode<K,V>)x.next;
2773 >                x.left = x.right = null;
2774 >                if (r == null) {
2775 >                    x.parent = null;
2776 >                    x.red = false;
2777 >                    r = x;
2778 >                }
2779 >                else {
2780 >                    K k = x.key;
2781 >                    int h = x.hash;
2782 >                    Class<?> kc = null;
2783 >                    for (TreeNode<K,V> p = r;;) {
2784 >                        int dir, ph;
2785 >                        K pk = p.key;
2786 >                        if ((ph = p.hash) > h)
2787 >                            dir = -1;
2788 >                        else if (ph < h)
2789 >                            dir = 1;
2790 >                        else if ((kc == null &&
2791 >                                  (kc = comparableClassFor(k)) == null) ||
2792 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2793 >                            dir = tieBreakOrder(k, pk);
2794 >                        TreeNode<K,V> xp = p;
2795 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2796 >                            x.parent = xp;
2797 >                            if (dir <= 0)
2798 >                                xp.left = x;
2799 >                            else
2800 >                                xp.right = x;
2801 >                            r = balanceInsertion(r, x);
2802 >                            break;
2803 >                        }
2804 >                    }
2805 >                }
2806 >            }
2807 >            this.root = r;
2808 >            assert checkInvariants(root);
2809 >        }
2810 >
2811 >        /**
2812 >         * Acquires write lock for tree restructuring.
2813 >         */
2814 >        private final void lockRoot() {
2815 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2816 >                contendedLock(); // offload to separate method
2817 >        }
2818 >
2819 >        /**
2820 >         * Releases write lock for tree restructuring.
2821 >         */
2822 >        private final void unlockRoot() {
2823 >            lockState = 0;
2824 >        }
2825 >
2826 >        /**
2827 >         * Possibly blocks awaiting root lock.
2828 >         */
2829 >        private final void contendedLock() {
2830 >            boolean waiting = false;
2831 >            for (int s;;) {
2832 >                if (((s = lockState) & ~WAITER) == 0) {
2833 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2834 >                        if (waiting)
2835 >                            waiter = null;
2836 >                        return;
2837 >                    }
2838                  }
2839 <                else if (nextSegmentIndex >= 0) {
2840 <                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
2841 <                    if (seg != null && (currentTable = seg.table) != null)
2842 <                        nextTableIndex = currentTable.length - 1;
2839 >                else if ((s & WAITER) == 0) {
2840 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2841 >                        waiting = true;
2842 >                        waiter = Thread.currentThread();
2843 >                    }
2844                  }
2845 <                else
2845 >                else if (waiting)
2846 >                    LockSupport.park(this);
2847 >            }
2848 >        }
2849 >
2850 >        /**
2851 >         * Returns matching node or null if none. Tries to search
2852 >         * using tree comparisons from root, but continues linear
2853 >         * search when lock not available.
2854 >         */
2855 >        final Node<K,V> find(int h, Object k) {
2856 >            if (k != null) {
2857 >                for (Node<K,V> e = first; e != null; ) {
2858 >                    int s; K ek;
2859 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2860 >                        if (e.hash == h &&
2861 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2862 >                            return e;
2863 >                        e = e.next;
2864 >                    }
2865 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2866 >                                                 s + READER)) {
2867 >                        TreeNode<K,V> r, p;
2868 >                        try {
2869 >                            p = ((r = root) == null ? null :
2870 >                                 r.findTreeNode(h, k, null));
2871 >                        } finally {
2872 >                            Thread w;
2873 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2874 >                                (READER|WAITER) && (w = waiter) != null)
2875 >                                LockSupport.unpark(w);
2876 >                        }
2877 >                        return p;
2878 >                    }
2879 >                }
2880 >            }
2881 >            return null;
2882 >        }
2883 >
2884 >        /**
2885 >         * Finds or adds a node.
2886 >         * @return null if added
2887 >         */
2888 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2889 >            Class<?> kc = null;
2890 >            boolean searched = false;
2891 >            for (TreeNode<K,V> p = root;;) {
2892 >                int dir, ph; K pk;
2893 >                if (p == null) {
2894 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2895                      break;
2896 +                }
2897 +                else if ((ph = p.hash) > h)
2898 +                    dir = -1;
2899 +                else if (ph < h)
2900 +                    dir = 1;
2901 +                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2902 +                    return p;
2903 +                else if ((kc == null &&
2904 +                          (kc = comparableClassFor(k)) == null) ||
2905 +                         (dir = compareComparables(kc, k, pk)) == 0) {
2906 +                    if (!searched) {
2907 +                        TreeNode<K,V> q, ch;
2908 +                        searched = true;
2909 +                        if (((ch = p.left) != null &&
2910 +                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2911 +                            ((ch = p.right) != null &&
2912 +                             (q = ch.findTreeNode(h, k, kc)) != null))
2913 +                            return q;
2914 +                    }
2915 +                    dir = tieBreakOrder(k, pk);
2916 +                }
2917 +
2918 +                TreeNode<K,V> xp = p;
2919 +                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2920 +                    TreeNode<K,V> x, f = first;
2921 +                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2922 +                    if (f != null)
2923 +                        f.prev = x;
2924 +                    if (dir <= 0)
2925 +                        xp.left = x;
2926 +                    else
2927 +                        xp.right = x;
2928 +                    if (!xp.red)
2929 +                        x.red = true;
2930 +                    else {
2931 +                        lockRoot();
2932 +                        try {
2933 +                            root = balanceInsertion(root, x);
2934 +                        } finally {
2935 +                            unlockRoot();
2936 +                        }
2937 +                    }
2938 +                    break;
2939 +                }
2940              }
2941 +            assert checkInvariants(root);
2942 +            return null;
2943          }
2944  
2945 <        final HashEntry<K,V> nextEntry() {
2946 <            HashEntry<K,V> e = nextEntry;
2947 <            if (e == null)
2948 <                throw new NoSuchElementException();
2949 <            lastReturned = e; // cannot assign until after null check
2950 <            if ((nextEntry = e.next) == null)
2951 <                advance();
2952 <            return e;
2945 >        /**
2946 >         * Removes the given node, that must be present before this
2947 >         * call.  This is messier than typical red-black deletion code
2948 >         * because we cannot swap the contents of an interior node
2949 >         * with a leaf successor that is pinned by "next" pointers
2950 >         * that are accessible independently of lock. So instead we
2951 >         * swap the tree linkages.
2952 >         *
2953 >         * @return true if now too small, so should be untreeified
2954 >         */
2955 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2956 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2957 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2958 >            TreeNode<K,V> r, rl;
2959 >            if (pred == null)
2960 >                first = next;
2961 >            else
2962 >                pred.next = next;
2963 >            if (next != null)
2964 >                next.prev = pred;
2965 >            if (first == null) {
2966 >                root = null;
2967 >                return true;
2968 >            }
2969 >            if ((r = root) == null || r.right == null || // too small
2970 >                (rl = r.left) == null || rl.left == null)
2971 >                return true;
2972 >            lockRoot();
2973 >            try {
2974 >                TreeNode<K,V> replacement;
2975 >                TreeNode<K,V> pl = p.left;
2976 >                TreeNode<K,V> pr = p.right;
2977 >                if (pl != null && pr != null) {
2978 >                    TreeNode<K,V> s = pr, sl;
2979 >                    while ((sl = s.left) != null) // find successor
2980 >                        s = sl;
2981 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2982 >                    TreeNode<K,V> sr = s.right;
2983 >                    TreeNode<K,V> pp = p.parent;
2984 >                    if (s == pr) { // p was s's direct parent
2985 >                        p.parent = s;
2986 >                        s.right = p;
2987 >                    }
2988 >                    else {
2989 >                        TreeNode<K,V> sp = s.parent;
2990 >                        if ((p.parent = sp) != null) {
2991 >                            if (s == sp.left)
2992 >                                sp.left = p;
2993 >                            else
2994 >                                sp.right = p;
2995 >                        }
2996 >                        if ((s.right = pr) != null)
2997 >                            pr.parent = s;
2998 >                    }
2999 >                    p.left = null;
3000 >                    if ((p.right = sr) != null)
3001 >                        sr.parent = p;
3002 >                    if ((s.left = pl) != null)
3003 >                        pl.parent = s;
3004 >                    if ((s.parent = pp) == null)
3005 >                        r = s;
3006 >                    else if (p == pp.left)
3007 >                        pp.left = s;
3008 >                    else
3009 >                        pp.right = s;
3010 >                    if (sr != null)
3011 >                        replacement = sr;
3012 >                    else
3013 >                        replacement = p;
3014 >                }
3015 >                else if (pl != null)
3016 >                    replacement = pl;
3017 >                else if (pr != null)
3018 >                    replacement = pr;
3019 >                else
3020 >                    replacement = p;
3021 >                if (replacement != p) {
3022 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
3023 >                    if (pp == null)
3024 >                        r = replacement;
3025 >                    else if (p == pp.left)
3026 >                        pp.left = replacement;
3027 >                    else
3028 >                        pp.right = replacement;
3029 >                    p.left = p.right = p.parent = null;
3030 >                }
3031 >
3032 >                root = (p.red) ? r : balanceDeletion(r, replacement);
3033 >
3034 >                if (p == replacement) {  // detach pointers
3035 >                    TreeNode<K,V> pp;
3036 >                    if ((pp = p.parent) != null) {
3037 >                        if (p == pp.left)
3038 >                            pp.left = null;
3039 >                        else if (p == pp.right)
3040 >                            pp.right = null;
3041 >                        p.parent = null;
3042 >                    }
3043 >                }
3044 >            } finally {
3045 >                unlockRoot();
3046 >            }
3047 >            assert checkInvariants(root);
3048 >            return false;
3049 >        }
3050 >
3051 >        /* ------------------------------------------------------------ */
3052 >        // Red-black tree methods, all adapted from CLR
3053 >
3054 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3055 >                                              TreeNode<K,V> p) {
3056 >            TreeNode<K,V> r, pp, rl;
3057 >            if (p != null && (r = p.right) != null) {
3058 >                if ((rl = p.right = r.left) != null)
3059 >                    rl.parent = p;
3060 >                if ((pp = r.parent = p.parent) == null)
3061 >                    (root = r).red = false;
3062 >                else if (pp.left == p)
3063 >                    pp.left = r;
3064 >                else
3065 >                    pp.right = r;
3066 >                r.left = p;
3067 >                p.parent = r;
3068 >            }
3069 >            return root;
3070 >        }
3071 >
3072 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3073 >                                               TreeNode<K,V> p) {
3074 >            TreeNode<K,V> l, pp, lr;
3075 >            if (p != null && (l = p.left) != null) {
3076 >                if ((lr = p.left = l.right) != null)
3077 >                    lr.parent = p;
3078 >                if ((pp = l.parent = p.parent) == null)
3079 >                    (root = l).red = false;
3080 >                else if (pp.right == p)
3081 >                    pp.right = l;
3082 >                else
3083 >                    pp.left = l;
3084 >                l.right = p;
3085 >                p.parent = l;
3086 >            }
3087 >            return root;
3088 >        }
3089 >
3090 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3091 >                                                    TreeNode<K,V> x) {
3092 >            x.red = true;
3093 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3094 >                if ((xp = x.parent) == null) {
3095 >                    x.red = false;
3096 >                    return x;
3097 >                }
3098 >                else if (!xp.red || (xpp = xp.parent) == null)
3099 >                    return root;
3100 >                if (xp == (xppl = xpp.left)) {
3101 >                    if ((xppr = xpp.right) != null && xppr.red) {
3102 >                        xppr.red = false;
3103 >                        xp.red = false;
3104 >                        xpp.red = true;
3105 >                        x = xpp;
3106 >                    }
3107 >                    else {
3108 >                        if (x == xp.right) {
3109 >                            root = rotateLeft(root, x = xp);
3110 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3111 >                        }
3112 >                        if (xp != null) {
3113 >                            xp.red = false;
3114 >                            if (xpp != null) {
3115 >                                xpp.red = true;
3116 >                                root = rotateRight(root, xpp);
3117 >                            }
3118 >                        }
3119 >                    }
3120 >                }
3121 >                else {
3122 >                    if (xppl != null && xppl.red) {
3123 >                        xppl.red = false;
3124 >                        xp.red = false;
3125 >                        xpp.red = true;
3126 >                        x = xpp;
3127 >                    }
3128 >                    else {
3129 >                        if (x == xp.left) {
3130 >                            root = rotateRight(root, x = xp);
3131 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3132 >                        }
3133 >                        if (xp != null) {
3134 >                            xp.red = false;
3135 >                            if (xpp != null) {
3136 >                                xpp.red = true;
3137 >                                root = rotateLeft(root, xpp);
3138 >                            }
3139 >                        }
3140 >                    }
3141 >                }
3142 >            }
3143          }
3144  
3145 <        public final boolean hasNext() { return nextEntry != null; }
3146 <        public final boolean hasMoreElements() { return nextEntry != null; }
3145 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3146 >                                                   TreeNode<K,V> x) {
3147 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3148 >                if (x == null || x == root)
3149 >                    return root;
3150 >                else if ((xp = x.parent) == null) {
3151 >                    x.red = false;
3152 >                    return x;
3153 >                }
3154 >                else if (x.red) {
3155 >                    x.red = false;
3156 >                    return root;
3157 >                }
3158 >                else if ((xpl = xp.left) == x) {
3159 >                    if ((xpr = xp.right) != null && xpr.red) {
3160 >                        xpr.red = false;
3161 >                        xp.red = true;
3162 >                        root = rotateLeft(root, xp);
3163 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3164 >                    }
3165 >                    if (xpr == null)
3166 >                        x = xp;
3167 >                    else {
3168 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3169 >                        if ((sr == null || !sr.red) &&
3170 >                            (sl == null || !sl.red)) {
3171 >                            xpr.red = true;
3172 >                            x = xp;
3173 >                        }
3174 >                        else {
3175 >                            if (sr == null || !sr.red) {
3176 >                                if (sl != null)
3177 >                                    sl.red = false;
3178 >                                xpr.red = true;
3179 >                                root = rotateRight(root, xpr);
3180 >                                xpr = (xp = x.parent) == null ?
3181 >                                    null : xp.right;
3182 >                            }
3183 >                            if (xpr != null) {
3184 >                                xpr.red = (xp == null) ? false : xp.red;
3185 >                                if ((sr = xpr.right) != null)
3186 >                                    sr.red = false;
3187 >                            }
3188 >                            if (xp != null) {
3189 >                                xp.red = false;
3190 >                                root = rotateLeft(root, xp);
3191 >                            }
3192 >                            x = root;
3193 >                        }
3194 >                    }
3195 >                }
3196 >                else { // symmetric
3197 >                    if (xpl != null && xpl.red) {
3198 >                        xpl.red = false;
3199 >                        xp.red = true;
3200 >                        root = rotateRight(root, xp);
3201 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3202 >                    }
3203 >                    if (xpl == null)
3204 >                        x = xp;
3205 >                    else {
3206 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3207 >                        if ((sl == null || !sl.red) &&
3208 >                            (sr == null || !sr.red)) {
3209 >                            xpl.red = true;
3210 >                            x = xp;
3211 >                        }
3212 >                        else {
3213 >                            if (sl == null || !sl.red) {
3214 >                                if (sr != null)
3215 >                                    sr.red = false;
3216 >                                xpl.red = true;
3217 >                                root = rotateLeft(root, xpl);
3218 >                                xpl = (xp = x.parent) == null ?
3219 >                                    null : xp.left;
3220 >                            }
3221 >                            if (xpl != null) {
3222 >                                xpl.red = (xp == null) ? false : xp.red;
3223 >                                if ((sl = xpl.left) != null)
3224 >                                    sl.red = false;
3225 >                            }
3226 >                            if (xp != null) {
3227 >                                xp.red = false;
3228 >                                root = rotateRight(root, xp);
3229 >                            }
3230 >                            x = root;
3231 >                        }
3232 >                    }
3233 >                }
3234 >            }
3235 >        }
3236 >
3237 >        /**
3238 >         * Recursive invariant check
3239 >         */
3240 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3241 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3242 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3243 >            if (tb != null && tb.next != t)
3244 >                return false;
3245 >            if (tn != null && tn.prev != t)
3246 >                return false;
3247 >            if (tp != null && t != tp.left && t != tp.right)
3248 >                return false;
3249 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3250 >                return false;
3251 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3252 >                return false;
3253 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3254 >                return false;
3255 >            if (tl != null && !checkInvariants(tl))
3256 >                return false;
3257 >            if (tr != null && !checkInvariants(tr))
3258 >                return false;
3259 >            return true;
3260 >        }
3261 >
3262 >        private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3263 >        private static final long LOCKSTATE;
3264 >        static {
3265 >            try {
3266 >                LOCKSTATE = U.objectFieldOffset
3267 >                    (TreeBin.class.getDeclaredField("lockState"));
3268 >            } catch (ReflectiveOperationException e) {
3269 >                throw new Error(e);
3270 >            }
3271 >        }
3272 >    }
3273 >
3274 >    /* ----------------Table Traversal -------------- */
3275 >
3276 >    /**
3277 >     * Records the table, its length, and current traversal index for a
3278 >     * traverser that must process a region of a forwarded table before
3279 >     * proceeding with current table.
3280 >     */
3281 >    static final class TableStack<K,V> {
3282 >        int length;
3283 >        int index;
3284 >        Node<K,V>[] tab;
3285 >        TableStack<K,V> next;
3286 >    }
3287 >
3288 >    /**
3289 >     * Encapsulates traversal for methods such as containsValue; also
3290 >     * serves as a base class for other iterators and spliterators.
3291 >     *
3292 >     * Method advance visits once each still-valid node that was
3293 >     * reachable upon iterator construction. It might miss some that
3294 >     * were added to a bin after the bin was visited, which is OK wrt
3295 >     * consistency guarantees. Maintaining this property in the face
3296 >     * of possible ongoing resizes requires a fair amount of
3297 >     * bookkeeping state that is difficult to optimize away amidst
3298 >     * volatile accesses.  Even so, traversal maintains reasonable
3299 >     * throughput.
3300 >     *
3301 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3302 >     * However, if the table has been resized, then all future steps
3303 >     * must traverse both the bin at the current index as well as at
3304 >     * (index + baseSize); and so on for further resizings. To
3305 >     * paranoically cope with potential sharing by users of iterators
3306 >     * across threads, iteration terminates if a bounds checks fails
3307 >     * for a table read.
3308 >     */
3309 >    static class Traverser<K,V> {
3310 >        Node<K,V>[] tab;        // current table; updated if resized
3311 >        Node<K,V> next;         // the next entry to use
3312 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3313 >        int index;              // index of bin to use next
3314 >        int baseIndex;          // current index of initial table
3315 >        int baseLimit;          // index bound for initial table
3316 >        final int baseSize;     // initial table size
3317 >
3318 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3319 >            this.tab = tab;
3320 >            this.baseSize = size;
3321 >            this.baseIndex = this.index = index;
3322 >            this.baseLimit = limit;
3323 >            this.next = null;
3324 >        }
3325 >
3326 >        /**
3327 >         * Advances if possible, returning next valid node, or null if none.
3328 >         */
3329 >        final Node<K,V> advance() {
3330 >            Node<K,V> e;
3331 >            if ((e = next) != null)
3332 >                e = e.next;
3333 >            for (;;) {
3334 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3335 >                if (e != null)
3336 >                    return next = e;
3337 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3338 >                    (n = t.length) <= (i = index) || i < 0)
3339 >                    return next = null;
3340 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3341 >                    if (e instanceof ForwardingNode) {
3342 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3343 >                        e = null;
3344 >                        pushState(t, i, n);
3345 >                        continue;
3346 >                    }
3347 >                    else if (e instanceof TreeBin)
3348 >                        e = ((TreeBin<K,V>)e).first;
3349 >                    else
3350 >                        e = null;
3351 >                }
3352 >                if (stack != null)
3353 >                    recoverState(n);
3354 >                else if ((index = i + baseSize) >= n)
3355 >                    index = ++baseIndex; // visit upper slots if present
3356 >            }
3357 >        }
3358 >
3359 >        /**
3360 >         * Saves traversal state upon encountering a forwarding node.
3361 >         */
3362 >        private void pushState(Node<K,V>[] t, int i, int n) {
3363 >            TableStack<K,V> s = spare;  // reuse if possible
3364 >            if (s != null)
3365 >                spare = s.next;
3366 >            else
3367 >                s = new TableStack<K,V>();
3368 >            s.tab = t;
3369 >            s.length = n;
3370 >            s.index = i;
3371 >            s.next = stack;
3372 >            stack = s;
3373 >        }
3374 >
3375 >        /**
3376 >         * Possibly pops traversal state.
3377 >         *
3378 >         * @param n length of current table
3379 >         */
3380 >        private void recoverState(int n) {
3381 >            TableStack<K,V> s; int len;
3382 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3383 >                n = len;
3384 >                index = s.index;
3385 >                tab = s.tab;
3386 >                s.tab = null;
3387 >                TableStack<K,V> next = s.next;
3388 >                s.next = spare; // save for reuse
3389 >                stack = next;
3390 >                spare = s;
3391 >            }
3392 >            if (s == null && (index += baseSize) >= n)
3393 >                index = ++baseIndex;
3394 >        }
3395 >    }
3396 >
3397 >    /**
3398 >     * Base of key, value, and entry Iterators. Adds fields to
3399 >     * Traverser to support iterator.remove.
3400 >     */
3401 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3402 >        final ConcurrentHashMap<K,V> map;
3403 >        Node<K,V> lastReturned;
3404 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3405 >                    ConcurrentHashMap<K,V> map) {
3406 >            super(tab, size, index, limit);
3407 >            this.map = map;
3408 >            advance();
3409 >        }
3410 >
3411 >        public final boolean hasNext() { return next != null; }
3412 >        public final boolean hasMoreElements() { return next != null; }
3413  
3414          public final void remove() {
3415 <            if (lastReturned == null)
3415 >            Node<K,V> p;
3416 >            if ((p = lastReturned) == null)
3417                  throw new IllegalStateException();
1263            ConcurrentHashMap.this.remove(lastReturned.key);
3418              lastReturned = null;
3419 +            map.replaceNode(p.key, null, null);
3420          }
3421      }
3422  
3423 <    final class KeyIterator
3424 <        extends HashIterator
3425 <        implements Iterator<K>, Enumeration<K>
3426 <    {
3427 <        public final K next()        { return super.nextEntry().key; }
3428 <        public final K nextElement() { return super.nextEntry().key; }
3429 <    }
3430 <
3431 <    final class ValueIterator
3432 <        extends HashIterator
3433 <        implements Iterator<V>, Enumeration<V>
3434 <    {
3435 <        public final V next()        { return super.nextEntry().value; }
3436 <        public final V nextElement() { return super.nextEntry().value; }
3423 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3424 >        implements Iterator<K>, Enumeration<K> {
3425 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3426 >                    ConcurrentHashMap<K,V> map) {
3427 >            super(tab, index, size, limit, map);
3428 >        }
3429 >
3430 >        public final K next() {
3431 >            Node<K,V> p;
3432 >            if ((p = next) == null)
3433 >                throw new NoSuchElementException();
3434 >            K k = p.key;
3435 >            lastReturned = p;
3436 >            advance();
3437 >            return k;
3438 >        }
3439 >
3440 >        public final K nextElement() { return next(); }
3441 >    }
3442 >
3443 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3444 >        implements Iterator<V>, Enumeration<V> {
3445 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3446 >                      ConcurrentHashMap<K,V> map) {
3447 >            super(tab, index, size, limit, map);
3448 >        }
3449 >
3450 >        public final V next() {
3451 >            Node<K,V> p;
3452 >            if ((p = next) == null)
3453 >                throw new NoSuchElementException();
3454 >            V v = p.val;
3455 >            lastReturned = p;
3456 >            advance();
3457 >            return v;
3458 >        }
3459 >
3460 >        public final V nextElement() { return next(); }
3461 >    }
3462 >
3463 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3464 >        implements Iterator<Map.Entry<K,V>> {
3465 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3466 >                      ConcurrentHashMap<K,V> map) {
3467 >            super(tab, index, size, limit, map);
3468 >        }
3469 >
3470 >        public final Map.Entry<K,V> next() {
3471 >            Node<K,V> p;
3472 >            if ((p = next) == null)
3473 >                throw new NoSuchElementException();
3474 >            K k = p.key;
3475 >            V v = p.val;
3476 >            lastReturned = p;
3477 >            advance();
3478 >            return new MapEntry<K,V>(k, v, map);
3479 >        }
3480      }
3481  
3482      /**
3483 <     * Custom Entry class used by EntryIterator.next(), that relays
3484 <     * setValue changes to the underlying map.
3485 <     */
3486 <    final class WriteThroughEntry
3487 <        extends AbstractMap.SimpleEntry<K,V>
3488 <    {
3489 <        WriteThroughEntry(K k, V v) {
3490 <            super(k,v);
3483 >     * Exported Entry for EntryIterator
3484 >     */
3485 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3486 >        final K key; // non-null
3487 >        V val;       // non-null
3488 >        final ConcurrentHashMap<K,V> map;
3489 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3490 >            this.key = key;
3491 >            this.val = val;
3492 >            this.map = map;
3493 >        }
3494 >        public K getKey()        { return key; }
3495 >        public V getValue()      { return val; }
3496 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3497 >        public String toString() {
3498 >            return Helpers.mapEntryToString(key, val);
3499 >        }
3500 >
3501 >        public boolean equals(Object o) {
3502 >            Object k, v; Map.Entry<?,?> e;
3503 >            return ((o instanceof Map.Entry) &&
3504 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3505 >                    (v = e.getValue()) != null &&
3506 >                    (k == key || k.equals(key)) &&
3507 >                    (v == val || v.equals(val)));
3508          }
3509  
3510          /**
3511           * Sets our entry's value and writes through to the map. The
3512 <         * value to return is somewhat arbitrary here. Since a
3513 <         * WriteThroughEntry does not necessarily track asynchronous
3514 <         * changes, the most recent "previous" value could be
3515 <         * different from what we return (or could even have been
3516 <         * removed in which case the put will re-establish). We do not
1302 <         * and cannot guarantee more.
3512 >         * value to return is somewhat arbitrary here. Since we do not
3513 >         * necessarily track asynchronous changes, the most recent
3514 >         * "previous" value could be different from what we return (or
3515 >         * could even have been removed, in which case the put will
3516 >         * re-establish). We do not and cannot guarantee more.
3517           */
3518          public V setValue(V value) {
3519              if (value == null) throw new NullPointerException();
3520 <            V v = super.setValue(value);
3521 <            ConcurrentHashMap.this.put(getKey(), value);
3520 >            V v = val;
3521 >            val = value;
3522 >            map.put(key, value);
3523              return v;
3524          }
3525      }
3526  
3527 <    final class EntryIterator
3528 <        extends HashIterator
3529 <        implements Iterator<Entry<K,V>>
3530 <    {
3531 <        public Map.Entry<K,V> next() {
3532 <            HashEntry<K,V> e = super.nextEntry();
3533 <            return new WriteThroughEntry(e.key, e.value);
3527 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3528 >        implements Spliterator<K> {
3529 >        long est;               // size estimate
3530 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3531 >                       long est) {
3532 >            super(tab, size, index, limit);
3533 >            this.est = est;
3534 >        }
3535 >
3536 >        public Spliterator<K> trySplit() {
3537 >            int i, f, h;
3538 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3539 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3540 >                                        f, est >>>= 1);
3541 >        }
3542 >
3543 >        public void forEachRemaining(Consumer<? super K> action) {
3544 >            if (action == null) throw new NullPointerException();
3545 >            for (Node<K,V> p; (p = advance()) != null;)
3546 >                action.accept(p.key);
3547 >        }
3548 >
3549 >        public boolean tryAdvance(Consumer<? super K> action) {
3550 >            if (action == null) throw new NullPointerException();
3551 >            Node<K,V> p;
3552 >            if ((p = advance()) == null)
3553 >                return false;
3554 >            action.accept(p.key);
3555 >            return true;
3556 >        }
3557 >
3558 >        public long estimateSize() { return est; }
3559 >
3560 >        public int characteristics() {
3561 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3562 >                Spliterator.NONNULL;
3563          }
3564      }
3565  
3566 <    final class KeySet extends AbstractSet<K> {
3567 <        public Iterator<K> iterator() {
3568 <            return new KeyIterator();
3566 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3567 >        implements Spliterator<V> {
3568 >        long est;               // size estimate
3569 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3570 >                         long est) {
3571 >            super(tab, size, index, limit);
3572 >            this.est = est;
3573          }
3574 <        public int size() {
3575 <            return ConcurrentHashMap.this.size();
3574 >
3575 >        public Spliterator<V> trySplit() {
3576 >            int i, f, h;
3577 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3578 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3579 >                                          f, est >>>= 1);
3580          }
3581 <        public boolean isEmpty() {
3582 <            return ConcurrentHashMap.this.isEmpty();
3581 >
3582 >        public void forEachRemaining(Consumer<? super V> action) {
3583 >            if (action == null) throw new NullPointerException();
3584 >            for (Node<K,V> p; (p = advance()) != null;)
3585 >                action.accept(p.val);
3586          }
3587 <        public boolean contains(Object o) {
3588 <            return ConcurrentHashMap.this.containsKey(o);
3587 >
3588 >        public boolean tryAdvance(Consumer<? super V> action) {
3589 >            if (action == null) throw new NullPointerException();
3590 >            Node<K,V> p;
3591 >            if ((p = advance()) == null)
3592 >                return false;
3593 >            action.accept(p.val);
3594 >            return true;
3595          }
3596 <        public boolean remove(Object o) {
3597 <            return ConcurrentHashMap.this.remove(o) != null;
3596 >
3597 >        public long estimateSize() { return est; }
3598 >
3599 >        public int characteristics() {
3600 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3601          }
3602 <        public void clear() {
3603 <            ConcurrentHashMap.this.clear();
3602 >    }
3603 >
3604 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3605 >        implements Spliterator<Map.Entry<K,V>> {
3606 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3607 >        long est;               // size estimate
3608 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3609 >                         long est, ConcurrentHashMap<K,V> map) {
3610 >            super(tab, size, index, limit);
3611 >            this.map = map;
3612 >            this.est = est;
3613          }
3614 +
3615 +        public Spliterator<Map.Entry<K,V>> trySplit() {
3616 +            int i, f, h;
3617 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3618 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3619 +                                          f, est >>>= 1, map);
3620 +        }
3621 +
3622 +        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3623 +            if (action == null) throw new NullPointerException();
3624 +            for (Node<K,V> p; (p = advance()) != null; )
3625 +                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3626 +        }
3627 +
3628 +        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3629 +            if (action == null) throw new NullPointerException();
3630 +            Node<K,V> p;
3631 +            if ((p = advance()) == null)
3632 +                return false;
3633 +            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3634 +            return true;
3635 +        }
3636 +
3637 +        public long estimateSize() { return est; }
3638 +
3639 +        public int characteristics() {
3640 +            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3641 +                Spliterator.NONNULL;
3642 +        }
3643 +    }
3644 +
3645 +    // Parallel bulk operations
3646 +
3647 +    /**
3648 +     * Computes initial batch value for bulk tasks. The returned value
3649 +     * is approximately exp2 of the number of times (minus one) to
3650 +     * split task by two before executing leaf action. This value is
3651 +     * faster to compute and more convenient to use as a guide to
3652 +     * splitting than is the depth, since it is used while dividing by
3653 +     * two anyway.
3654 +     */
3655 +    final int batchFor(long b) {
3656 +        long n;
3657 +        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3658 +            return 0;
3659 +        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3660 +        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3661 +    }
3662 +
3663 +    /**
3664 +     * Performs the given action for each (key, value).
3665 +     *
3666 +     * @param parallelismThreshold the (estimated) number of elements
3667 +     * needed for this operation to be executed in parallel
3668 +     * @param action the action
3669 +     * @since 1.8
3670 +     */
3671 +    public void forEach(long parallelismThreshold,
3672 +                        BiConsumer<? super K,? super V> action) {
3673 +        if (action == null) throw new NullPointerException();
3674 +        new ForEachMappingTask<K,V>
3675 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3676 +             action).invoke();
3677 +    }
3678 +
3679 +    /**
3680 +     * Performs the given action for each non-null transformation
3681 +     * of each (key, value).
3682 +     *
3683 +     * @param parallelismThreshold the (estimated) number of elements
3684 +     * needed for this operation to be executed in parallel
3685 +     * @param transformer a function returning the transformation
3686 +     * for an element, or null if there is no transformation (in
3687 +     * which case the action is not applied)
3688 +     * @param action the action
3689 +     * @param <U> the return type of the transformer
3690 +     * @since 1.8
3691 +     */
3692 +    public <U> void forEach(long parallelismThreshold,
3693 +                            BiFunction<? super K, ? super V, ? extends U> transformer,
3694 +                            Consumer<? super U> action) {
3695 +        if (transformer == null || action == null)
3696 +            throw new NullPointerException();
3697 +        new ForEachTransformedMappingTask<K,V,U>
3698 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3699 +             transformer, action).invoke();
3700 +    }
3701 +
3702 +    /**
3703 +     * Returns a non-null result from applying the given search
3704 +     * function on each (key, value), or null if none.  Upon
3705 +     * success, further element processing is suppressed and the
3706 +     * results of any other parallel invocations of the search
3707 +     * function are ignored.
3708 +     *
3709 +     * @param parallelismThreshold the (estimated) number of elements
3710 +     * needed for this operation to be executed in parallel
3711 +     * @param searchFunction a function returning a non-null
3712 +     * result on success, else null
3713 +     * @param <U> the return type of the search function
3714 +     * @return a non-null result from applying the given search
3715 +     * function on each (key, value), or null if none
3716 +     * @since 1.8
3717 +     */
3718 +    public <U> U search(long parallelismThreshold,
3719 +                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3720 +        if (searchFunction == null) throw new NullPointerException();
3721 +        return new SearchMappingsTask<K,V,U>
3722 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3723 +             searchFunction, new AtomicReference<U>()).invoke();
3724 +    }
3725 +
3726 +    /**
3727 +     * Returns the result of accumulating the given transformation
3728 +     * of all (key, value) pairs using the given reducer to
3729 +     * combine values, or null if none.
3730 +     *
3731 +     * @param parallelismThreshold the (estimated) number of elements
3732 +     * needed for this operation to be executed in parallel
3733 +     * @param transformer a function returning the transformation
3734 +     * for an element, or null if there is no transformation (in
3735 +     * which case it is not combined)
3736 +     * @param reducer a commutative associative combining function
3737 +     * @param <U> the return type of the transformer
3738 +     * @return the result of accumulating the given transformation
3739 +     * of all (key, value) pairs
3740 +     * @since 1.8
3741 +     */
3742 +    public <U> U reduce(long parallelismThreshold,
3743 +                        BiFunction<? super K, ? super V, ? extends U> transformer,
3744 +                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3745 +        if (transformer == null || reducer == null)
3746 +            throw new NullPointerException();
3747 +        return new MapReduceMappingsTask<K,V,U>
3748 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3749 +             null, transformer, reducer).invoke();
3750 +    }
3751 +
3752 +    /**
3753 +     * Returns the result of accumulating the given transformation
3754 +     * of all (key, value) pairs using the given reducer to
3755 +     * combine values, and the given basis as an identity value.
3756 +     *
3757 +     * @param parallelismThreshold the (estimated) number of elements
3758 +     * needed for this operation to be executed in parallel
3759 +     * @param transformer a function returning the transformation
3760 +     * for an element
3761 +     * @param basis the identity (initial default value) for the reduction
3762 +     * @param reducer a commutative associative combining function
3763 +     * @return the result of accumulating the given transformation
3764 +     * of all (key, value) pairs
3765 +     * @since 1.8
3766 +     */
3767 +    public double reduceToDouble(long parallelismThreshold,
3768 +                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3769 +                                 double basis,
3770 +                                 DoubleBinaryOperator reducer) {
3771 +        if (transformer == null || reducer == null)
3772 +            throw new NullPointerException();
3773 +        return new MapReduceMappingsToDoubleTask<K,V>
3774 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3775 +             null, transformer, basis, reducer).invoke();
3776 +    }
3777 +
3778 +    /**
3779 +     * Returns the result of accumulating the given transformation
3780 +     * of all (key, value) pairs using the given reducer to
3781 +     * combine values, and the given basis as an identity value.
3782 +     *
3783 +     * @param parallelismThreshold the (estimated) number of elements
3784 +     * needed for this operation to be executed in parallel
3785 +     * @param transformer a function returning the transformation
3786 +     * for an element
3787 +     * @param basis the identity (initial default value) for the reduction
3788 +     * @param reducer a commutative associative combining function
3789 +     * @return the result of accumulating the given transformation
3790 +     * of all (key, value) pairs
3791 +     * @since 1.8
3792 +     */
3793 +    public long reduceToLong(long parallelismThreshold,
3794 +                             ToLongBiFunction<? super K, ? super V> transformer,
3795 +                             long basis,
3796 +                             LongBinaryOperator reducer) {
3797 +        if (transformer == null || reducer == null)
3798 +            throw new NullPointerException();
3799 +        return new MapReduceMappingsToLongTask<K,V>
3800 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3801 +             null, transformer, basis, reducer).invoke();
3802 +    }
3803 +
3804 +    /**
3805 +     * Returns the result of accumulating the given transformation
3806 +     * of all (key, value) pairs using the given reducer to
3807 +     * combine values, and the given basis as an identity value.
3808 +     *
3809 +     * @param parallelismThreshold the (estimated) number of elements
3810 +     * needed for this operation to be executed in parallel
3811 +     * @param transformer a function returning the transformation
3812 +     * for an element
3813 +     * @param basis the identity (initial default value) for the reduction
3814 +     * @param reducer a commutative associative combining function
3815 +     * @return the result of accumulating the given transformation
3816 +     * of all (key, value) pairs
3817 +     * @since 1.8
3818 +     */
3819 +    public int reduceToInt(long parallelismThreshold,
3820 +                           ToIntBiFunction<? super K, ? super V> transformer,
3821 +                           int basis,
3822 +                           IntBinaryOperator reducer) {
3823 +        if (transformer == null || reducer == null)
3824 +            throw new NullPointerException();
3825 +        return new MapReduceMappingsToIntTask<K,V>
3826 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3827 +             null, transformer, basis, reducer).invoke();
3828 +    }
3829 +
3830 +    /**
3831 +     * Performs the given action for each key.
3832 +     *
3833 +     * @param parallelismThreshold the (estimated) number of elements
3834 +     * needed for this operation to be executed in parallel
3835 +     * @param action the action
3836 +     * @since 1.8
3837 +     */
3838 +    public void forEachKey(long parallelismThreshold,
3839 +                           Consumer<? super K> action) {
3840 +        if (action == null) throw new NullPointerException();
3841 +        new ForEachKeyTask<K,V>
3842 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3843 +             action).invoke();
3844 +    }
3845 +
3846 +    /**
3847 +     * Performs the given action for each non-null transformation
3848 +     * of each key.
3849 +     *
3850 +     * @param parallelismThreshold the (estimated) number of elements
3851 +     * needed for this operation to be executed in parallel
3852 +     * @param transformer a function returning the transformation
3853 +     * for an element, or null if there is no transformation (in
3854 +     * which case the action is not applied)
3855 +     * @param action the action
3856 +     * @param <U> the return type of the transformer
3857 +     * @since 1.8
3858 +     */
3859 +    public <U> void forEachKey(long parallelismThreshold,
3860 +                               Function<? super K, ? extends U> transformer,
3861 +                               Consumer<? super U> action) {
3862 +        if (transformer == null || action == null)
3863 +            throw new NullPointerException();
3864 +        new ForEachTransformedKeyTask<K,V,U>
3865 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3866 +             transformer, action).invoke();
3867 +    }
3868 +
3869 +    /**
3870 +     * Returns a non-null result from applying the given search
3871 +     * function on each key, or null if none. Upon success,
3872 +     * further element processing is suppressed and the results of
3873 +     * any other parallel invocations of the search function are
3874 +     * ignored.
3875 +     *
3876 +     * @param parallelismThreshold the (estimated) number of elements
3877 +     * needed for this operation to be executed in parallel
3878 +     * @param searchFunction a function returning a non-null
3879 +     * result on success, else null
3880 +     * @param <U> the return type of the search function
3881 +     * @return a non-null result from applying the given search
3882 +     * function on each key, or null if none
3883 +     * @since 1.8
3884 +     */
3885 +    public <U> U searchKeys(long parallelismThreshold,
3886 +                            Function<? super K, ? extends U> searchFunction) {
3887 +        if (searchFunction == null) throw new NullPointerException();
3888 +        return new SearchKeysTask<K,V,U>
3889 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3890 +             searchFunction, new AtomicReference<U>()).invoke();
3891 +    }
3892 +
3893 +    /**
3894 +     * Returns the result of accumulating all keys using the given
3895 +     * reducer to combine values, or null if none.
3896 +     *
3897 +     * @param parallelismThreshold the (estimated) number of elements
3898 +     * needed for this operation to be executed in parallel
3899 +     * @param reducer a commutative associative combining function
3900 +     * @return the result of accumulating all keys using the given
3901 +     * reducer to combine values, or null if none
3902 +     * @since 1.8
3903 +     */
3904 +    public K reduceKeys(long parallelismThreshold,
3905 +                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3906 +        if (reducer == null) throw new NullPointerException();
3907 +        return new ReduceKeysTask<K,V>
3908 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3909 +             null, reducer).invoke();
3910 +    }
3911 +
3912 +    /**
3913 +     * Returns the result of accumulating the given transformation
3914 +     * of all keys using the given reducer to combine values, or
3915 +     * null if none.
3916 +     *
3917 +     * @param parallelismThreshold the (estimated) number of elements
3918 +     * needed for this operation to be executed in parallel
3919 +     * @param transformer a function returning the transformation
3920 +     * for an element, or null if there is no transformation (in
3921 +     * which case it is not combined)
3922 +     * @param reducer a commutative associative combining function
3923 +     * @param <U> the return type of the transformer
3924 +     * @return the result of accumulating the given transformation
3925 +     * of all keys
3926 +     * @since 1.8
3927 +     */
3928 +    public <U> U reduceKeys(long parallelismThreshold,
3929 +                            Function<? super K, ? extends U> transformer,
3930 +         BiFunction<? super U, ? super U, ? extends U> reducer) {
3931 +        if (transformer == null || reducer == null)
3932 +            throw new NullPointerException();
3933 +        return new MapReduceKeysTask<K,V,U>
3934 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3935 +             null, transformer, reducer).invoke();
3936      }
3937  
3938 <    final class Values extends AbstractCollection<V> {
3939 <        public Iterator<V> iterator() {
3940 <            return new ValueIterator();
3938 >    /**
3939 >     * Returns the result of accumulating the given transformation
3940 >     * of all keys using the given reducer to combine values, and
3941 >     * the given basis as an identity value.
3942 >     *
3943 >     * @param parallelismThreshold the (estimated) number of elements
3944 >     * needed for this operation to be executed in parallel
3945 >     * @param transformer a function returning the transformation
3946 >     * for an element
3947 >     * @param basis the identity (initial default value) for the reduction
3948 >     * @param reducer a commutative associative combining function
3949 >     * @return the result of accumulating the given transformation
3950 >     * of all keys
3951 >     * @since 1.8
3952 >     */
3953 >    public double reduceKeysToDouble(long parallelismThreshold,
3954 >                                     ToDoubleFunction<? super K> transformer,
3955 >                                     double basis,
3956 >                                     DoubleBinaryOperator reducer) {
3957 >        if (transformer == null || reducer == null)
3958 >            throw new NullPointerException();
3959 >        return new MapReduceKeysToDoubleTask<K,V>
3960 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3961 >             null, transformer, basis, reducer).invoke();
3962 >    }
3963 >
3964 >    /**
3965 >     * Returns the result of accumulating the given transformation
3966 >     * of all keys using the given reducer to combine values, and
3967 >     * the given basis as an identity value.
3968 >     *
3969 >     * @param parallelismThreshold the (estimated) number of elements
3970 >     * needed for this operation to be executed in parallel
3971 >     * @param transformer a function returning the transformation
3972 >     * for an element
3973 >     * @param basis the identity (initial default value) for the reduction
3974 >     * @param reducer a commutative associative combining function
3975 >     * @return the result of accumulating the given transformation
3976 >     * of all keys
3977 >     * @since 1.8
3978 >     */
3979 >    public long reduceKeysToLong(long parallelismThreshold,
3980 >                                 ToLongFunction<? super K> transformer,
3981 >                                 long basis,
3982 >                                 LongBinaryOperator reducer) {
3983 >        if (transformer == null || reducer == null)
3984 >            throw new NullPointerException();
3985 >        return new MapReduceKeysToLongTask<K,V>
3986 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3987 >             null, transformer, basis, reducer).invoke();
3988 >    }
3989 >
3990 >    /**
3991 >     * Returns the result of accumulating the given transformation
3992 >     * of all keys using the given reducer to combine values, and
3993 >     * the given basis as an identity value.
3994 >     *
3995 >     * @param parallelismThreshold the (estimated) number of elements
3996 >     * needed for this operation to be executed in parallel
3997 >     * @param transformer a function returning the transformation
3998 >     * for an element
3999 >     * @param basis the identity (initial default value) for the reduction
4000 >     * @param reducer a commutative associative combining function
4001 >     * @return the result of accumulating the given transformation
4002 >     * of all keys
4003 >     * @since 1.8
4004 >     */
4005 >    public int reduceKeysToInt(long parallelismThreshold,
4006 >                               ToIntFunction<? super K> transformer,
4007 >                               int basis,
4008 >                               IntBinaryOperator reducer) {
4009 >        if (transformer == null || reducer == null)
4010 >            throw new NullPointerException();
4011 >        return new MapReduceKeysToIntTask<K,V>
4012 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4013 >             null, transformer, basis, reducer).invoke();
4014 >    }
4015 >
4016 >    /**
4017 >     * Performs the given action for each value.
4018 >     *
4019 >     * @param parallelismThreshold the (estimated) number of elements
4020 >     * needed for this operation to be executed in parallel
4021 >     * @param action the action
4022 >     * @since 1.8
4023 >     */
4024 >    public void forEachValue(long parallelismThreshold,
4025 >                             Consumer<? super V> action) {
4026 >        if (action == null)
4027 >            throw new NullPointerException();
4028 >        new ForEachValueTask<K,V>
4029 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4030 >             action).invoke();
4031 >    }
4032 >
4033 >    /**
4034 >     * Performs the given action for each non-null transformation
4035 >     * of each value.
4036 >     *
4037 >     * @param parallelismThreshold the (estimated) number of elements
4038 >     * needed for this operation to be executed in parallel
4039 >     * @param transformer a function returning the transformation
4040 >     * for an element, or null if there is no transformation (in
4041 >     * which case the action is not applied)
4042 >     * @param action the action
4043 >     * @param <U> the return type of the transformer
4044 >     * @since 1.8
4045 >     */
4046 >    public <U> void forEachValue(long parallelismThreshold,
4047 >                                 Function<? super V, ? extends U> transformer,
4048 >                                 Consumer<? super U> action) {
4049 >        if (transformer == null || action == null)
4050 >            throw new NullPointerException();
4051 >        new ForEachTransformedValueTask<K,V,U>
4052 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4053 >             transformer, action).invoke();
4054 >    }
4055 >
4056 >    /**
4057 >     * Returns a non-null result from applying the given search
4058 >     * function on each value, or null if none.  Upon success,
4059 >     * further element processing is suppressed and the results of
4060 >     * any other parallel invocations of the search function are
4061 >     * ignored.
4062 >     *
4063 >     * @param parallelismThreshold the (estimated) number of elements
4064 >     * needed for this operation to be executed in parallel
4065 >     * @param searchFunction a function returning a non-null
4066 >     * result on success, else null
4067 >     * @param <U> the return type of the search function
4068 >     * @return a non-null result from applying the given search
4069 >     * function on each value, or null if none
4070 >     * @since 1.8
4071 >     */
4072 >    public <U> U searchValues(long parallelismThreshold,
4073 >                              Function<? super V, ? extends U> searchFunction) {
4074 >        if (searchFunction == null) throw new NullPointerException();
4075 >        return new SearchValuesTask<K,V,U>
4076 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4077 >             searchFunction, new AtomicReference<U>()).invoke();
4078 >    }
4079 >
4080 >    /**
4081 >     * Returns the result of accumulating all values using the
4082 >     * given reducer to combine values, or null if none.
4083 >     *
4084 >     * @param parallelismThreshold the (estimated) number of elements
4085 >     * needed for this operation to be executed in parallel
4086 >     * @param reducer a commutative associative combining function
4087 >     * @return the result of accumulating all values
4088 >     * @since 1.8
4089 >     */
4090 >    public V reduceValues(long parallelismThreshold,
4091 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4092 >        if (reducer == null) throw new NullPointerException();
4093 >        return new ReduceValuesTask<K,V>
4094 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4095 >             null, reducer).invoke();
4096 >    }
4097 >
4098 >    /**
4099 >     * Returns the result of accumulating the given transformation
4100 >     * of all values using the given reducer to combine values, or
4101 >     * null if none.
4102 >     *
4103 >     * @param parallelismThreshold the (estimated) number of elements
4104 >     * needed for this operation to be executed in parallel
4105 >     * @param transformer a function returning the transformation
4106 >     * for an element, or null if there is no transformation (in
4107 >     * which case it is not combined)
4108 >     * @param reducer a commutative associative combining function
4109 >     * @param <U> the return type of the transformer
4110 >     * @return the result of accumulating the given transformation
4111 >     * of all values
4112 >     * @since 1.8
4113 >     */
4114 >    public <U> U reduceValues(long parallelismThreshold,
4115 >                              Function<? super V, ? extends U> transformer,
4116 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4117 >        if (transformer == null || reducer == null)
4118 >            throw new NullPointerException();
4119 >        return new MapReduceValuesTask<K,V,U>
4120 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4121 >             null, transformer, reducer).invoke();
4122 >    }
4123 >
4124 >    /**
4125 >     * Returns the result of accumulating the given transformation
4126 >     * of all values using the given reducer to combine values,
4127 >     * and the given basis as an identity value.
4128 >     *
4129 >     * @param parallelismThreshold the (estimated) number of elements
4130 >     * needed for this operation to be executed in parallel
4131 >     * @param transformer a function returning the transformation
4132 >     * for an element
4133 >     * @param basis the identity (initial default value) for the reduction
4134 >     * @param reducer a commutative associative combining function
4135 >     * @return the result of accumulating the given transformation
4136 >     * of all values
4137 >     * @since 1.8
4138 >     */
4139 >    public double reduceValuesToDouble(long parallelismThreshold,
4140 >                                       ToDoubleFunction<? super V> transformer,
4141 >                                       double basis,
4142 >                                       DoubleBinaryOperator reducer) {
4143 >        if (transformer == null || reducer == null)
4144 >            throw new NullPointerException();
4145 >        return new MapReduceValuesToDoubleTask<K,V>
4146 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4147 >             null, transformer, basis, reducer).invoke();
4148 >    }
4149 >
4150 >    /**
4151 >     * Returns the result of accumulating the given transformation
4152 >     * of all values using the given reducer to combine values,
4153 >     * and the given basis as an identity value.
4154 >     *
4155 >     * @param parallelismThreshold the (estimated) number of elements
4156 >     * needed for this operation to be executed in parallel
4157 >     * @param transformer a function returning the transformation
4158 >     * for an element
4159 >     * @param basis the identity (initial default value) for the reduction
4160 >     * @param reducer a commutative associative combining function
4161 >     * @return the result of accumulating the given transformation
4162 >     * of all values
4163 >     * @since 1.8
4164 >     */
4165 >    public long reduceValuesToLong(long parallelismThreshold,
4166 >                                   ToLongFunction<? super V> transformer,
4167 >                                   long basis,
4168 >                                   LongBinaryOperator reducer) {
4169 >        if (transformer == null || reducer == null)
4170 >            throw new NullPointerException();
4171 >        return new MapReduceValuesToLongTask<K,V>
4172 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4173 >             null, transformer, basis, reducer).invoke();
4174 >    }
4175 >
4176 >    /**
4177 >     * Returns the result of accumulating the given transformation
4178 >     * of all values using the given reducer to combine values,
4179 >     * and the given basis as an identity value.
4180 >     *
4181 >     * @param parallelismThreshold the (estimated) number of elements
4182 >     * needed for this operation to be executed in parallel
4183 >     * @param transformer a function returning the transformation
4184 >     * for an element
4185 >     * @param basis the identity (initial default value) for the reduction
4186 >     * @param reducer a commutative associative combining function
4187 >     * @return the result of accumulating the given transformation
4188 >     * of all values
4189 >     * @since 1.8
4190 >     */
4191 >    public int reduceValuesToInt(long parallelismThreshold,
4192 >                                 ToIntFunction<? super V> transformer,
4193 >                                 int basis,
4194 >                                 IntBinaryOperator reducer) {
4195 >        if (transformer == null || reducer == null)
4196 >            throw new NullPointerException();
4197 >        return new MapReduceValuesToIntTask<K,V>
4198 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4199 >             null, transformer, basis, reducer).invoke();
4200 >    }
4201 >
4202 >    /**
4203 >     * Performs the given action for each entry.
4204 >     *
4205 >     * @param parallelismThreshold the (estimated) number of elements
4206 >     * needed for this operation to be executed in parallel
4207 >     * @param action the action
4208 >     * @since 1.8
4209 >     */
4210 >    public void forEachEntry(long parallelismThreshold,
4211 >                             Consumer<? super Map.Entry<K,V>> action) {
4212 >        if (action == null) throw new NullPointerException();
4213 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4214 >                                  action).invoke();
4215 >    }
4216 >
4217 >    /**
4218 >     * Performs the given action for each non-null transformation
4219 >     * of each entry.
4220 >     *
4221 >     * @param parallelismThreshold the (estimated) number of elements
4222 >     * needed for this operation to be executed in parallel
4223 >     * @param transformer a function returning the transformation
4224 >     * for an element, or null if there is no transformation (in
4225 >     * which case the action is not applied)
4226 >     * @param action the action
4227 >     * @param <U> the return type of the transformer
4228 >     * @since 1.8
4229 >     */
4230 >    public <U> void forEachEntry(long parallelismThreshold,
4231 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4232 >                                 Consumer<? super U> action) {
4233 >        if (transformer == null || action == null)
4234 >            throw new NullPointerException();
4235 >        new ForEachTransformedEntryTask<K,V,U>
4236 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4237 >             transformer, action).invoke();
4238 >    }
4239 >
4240 >    /**
4241 >     * Returns a non-null result from applying the given search
4242 >     * function on each entry, or null if none.  Upon success,
4243 >     * further element processing is suppressed and the results of
4244 >     * any other parallel invocations of the search function are
4245 >     * ignored.
4246 >     *
4247 >     * @param parallelismThreshold the (estimated) number of elements
4248 >     * needed for this operation to be executed in parallel
4249 >     * @param searchFunction a function returning a non-null
4250 >     * result on success, else null
4251 >     * @param <U> the return type of the search function
4252 >     * @return a non-null result from applying the given search
4253 >     * function on each entry, or null if none
4254 >     * @since 1.8
4255 >     */
4256 >    public <U> U searchEntries(long parallelismThreshold,
4257 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4258 >        if (searchFunction == null) throw new NullPointerException();
4259 >        return new SearchEntriesTask<K,V,U>
4260 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4261 >             searchFunction, new AtomicReference<U>()).invoke();
4262 >    }
4263 >
4264 >    /**
4265 >     * Returns the result of accumulating all entries using the
4266 >     * given reducer to combine values, or null if none.
4267 >     *
4268 >     * @param parallelismThreshold the (estimated) number of elements
4269 >     * needed for this operation to be executed in parallel
4270 >     * @param reducer a commutative associative combining function
4271 >     * @return the result of accumulating all entries
4272 >     * @since 1.8
4273 >     */
4274 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4275 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4276 >        if (reducer == null) throw new NullPointerException();
4277 >        return new ReduceEntriesTask<K,V>
4278 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4279 >             null, reducer).invoke();
4280 >    }
4281 >
4282 >    /**
4283 >     * Returns the result of accumulating the given transformation
4284 >     * of all entries using the given reducer to combine values,
4285 >     * or null if none.
4286 >     *
4287 >     * @param parallelismThreshold the (estimated) number of elements
4288 >     * needed for this operation to be executed in parallel
4289 >     * @param transformer a function returning the transformation
4290 >     * for an element, or null if there is no transformation (in
4291 >     * which case it is not combined)
4292 >     * @param reducer a commutative associative combining function
4293 >     * @param <U> the return type of the transformer
4294 >     * @return the result of accumulating the given transformation
4295 >     * of all entries
4296 >     * @since 1.8
4297 >     */
4298 >    public <U> U reduceEntries(long parallelismThreshold,
4299 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4300 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4301 >        if (transformer == null || reducer == null)
4302 >            throw new NullPointerException();
4303 >        return new MapReduceEntriesTask<K,V,U>
4304 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4305 >             null, transformer, reducer).invoke();
4306 >    }
4307 >
4308 >    /**
4309 >     * Returns the result of accumulating the given transformation
4310 >     * of all entries using the given reducer to combine values,
4311 >     * and the given basis as an identity value.
4312 >     *
4313 >     * @param parallelismThreshold the (estimated) number of elements
4314 >     * needed for this operation to be executed in parallel
4315 >     * @param transformer a function returning the transformation
4316 >     * for an element
4317 >     * @param basis the identity (initial default value) for the reduction
4318 >     * @param reducer a commutative associative combining function
4319 >     * @return the result of accumulating the given transformation
4320 >     * of all entries
4321 >     * @since 1.8
4322 >     */
4323 >    public double reduceEntriesToDouble(long parallelismThreshold,
4324 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4325 >                                        double basis,
4326 >                                        DoubleBinaryOperator reducer) {
4327 >        if (transformer == null || reducer == null)
4328 >            throw new NullPointerException();
4329 >        return new MapReduceEntriesToDoubleTask<K,V>
4330 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4331 >             null, transformer, basis, reducer).invoke();
4332 >    }
4333 >
4334 >    /**
4335 >     * Returns the result of accumulating the given transformation
4336 >     * of all entries using the given reducer to combine values,
4337 >     * and the given basis as an identity value.
4338 >     *
4339 >     * @param parallelismThreshold the (estimated) number of elements
4340 >     * needed for this operation to be executed in parallel
4341 >     * @param transformer a function returning the transformation
4342 >     * for an element
4343 >     * @param basis the identity (initial default value) for the reduction
4344 >     * @param reducer a commutative associative combining function
4345 >     * @return the result of accumulating the given transformation
4346 >     * of all entries
4347 >     * @since 1.8
4348 >     */
4349 >    public long reduceEntriesToLong(long parallelismThreshold,
4350 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4351 >                                    long basis,
4352 >                                    LongBinaryOperator reducer) {
4353 >        if (transformer == null || reducer == null)
4354 >            throw new NullPointerException();
4355 >        return new MapReduceEntriesToLongTask<K,V>
4356 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4357 >             null, transformer, basis, reducer).invoke();
4358 >    }
4359 >
4360 >    /**
4361 >     * Returns the result of accumulating the given transformation
4362 >     * of all entries using the given reducer to combine values,
4363 >     * and the given basis as an identity value.
4364 >     *
4365 >     * @param parallelismThreshold the (estimated) number of elements
4366 >     * needed for this operation to be executed in parallel
4367 >     * @param transformer a function returning the transformation
4368 >     * for an element
4369 >     * @param basis the identity (initial default value) for the reduction
4370 >     * @param reducer a commutative associative combining function
4371 >     * @return the result of accumulating the given transformation
4372 >     * of all entries
4373 >     * @since 1.8
4374 >     */
4375 >    public int reduceEntriesToInt(long parallelismThreshold,
4376 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4377 >                                  int basis,
4378 >                                  IntBinaryOperator reducer) {
4379 >        if (transformer == null || reducer == null)
4380 >            throw new NullPointerException();
4381 >        return new MapReduceEntriesToIntTask<K,V>
4382 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4383 >             null, transformer, basis, reducer).invoke();
4384 >    }
4385 >
4386 >
4387 >    /* ----------------Views -------------- */
4388 >
4389 >    /**
4390 >     * Base class for views.
4391 >     */
4392 >    abstract static class CollectionView<K,V,E>
4393 >        implements Collection<E>, java.io.Serializable {
4394 >        private static final long serialVersionUID = 7249069246763182397L;
4395 >        final ConcurrentHashMap<K,V> map;
4396 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4397 >
4398 >        /**
4399 >         * Returns the map backing this view.
4400 >         *
4401 >         * @return the map backing this view
4402 >         */
4403 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4404 >
4405 >        /**
4406 >         * Removes all of the elements from this view, by removing all
4407 >         * the mappings from the map backing this view.
4408 >         */
4409 >        public final void clear()      { map.clear(); }
4410 >        public final int size()        { return map.size(); }
4411 >        public final boolean isEmpty() { return map.isEmpty(); }
4412 >
4413 >        // implementations below rely on concrete classes supplying these
4414 >        // abstract methods
4415 >        /**
4416 >         * Returns an iterator over the elements in this collection.
4417 >         *
4418 >         * <p>The returned iterator is
4419 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4420 >         *
4421 >         * @return an iterator over the elements in this collection
4422 >         */
4423 >        public abstract Iterator<E> iterator();
4424 >        public abstract boolean contains(Object o);
4425 >        public abstract boolean remove(Object o);
4426 >
4427 >        private static final String oomeMsg = "Required array size too large";
4428 >
4429 >        public final Object[] toArray() {
4430 >            long sz = map.mappingCount();
4431 >            if (sz > MAX_ARRAY_SIZE)
4432 >                throw new OutOfMemoryError(oomeMsg);
4433 >            int n = (int)sz;
4434 >            Object[] r = new Object[n];
4435 >            int i = 0;
4436 >            for (E e : this) {
4437 >                if (i == n) {
4438 >                    if (n >= MAX_ARRAY_SIZE)
4439 >                        throw new OutOfMemoryError(oomeMsg);
4440 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4441 >                        n = MAX_ARRAY_SIZE;
4442 >                    else
4443 >                        n += (n >>> 1) + 1;
4444 >                    r = Arrays.copyOf(r, n);
4445 >                }
4446 >                r[i++] = e;
4447 >            }
4448 >            return (i == n) ? r : Arrays.copyOf(r, i);
4449          }
4450 <        public int size() {
4451 <            return ConcurrentHashMap.this.size();
4450 >
4451 >        @SuppressWarnings("unchecked")
4452 >        public final <T> T[] toArray(T[] a) {
4453 >            long sz = map.mappingCount();
4454 >            if (sz > MAX_ARRAY_SIZE)
4455 >                throw new OutOfMemoryError(oomeMsg);
4456 >            int m = (int)sz;
4457 >            T[] r = (a.length >= m) ? a :
4458 >                (T[])java.lang.reflect.Array
4459 >                .newInstance(a.getClass().getComponentType(), m);
4460 >            int n = r.length;
4461 >            int i = 0;
4462 >            for (E e : this) {
4463 >                if (i == n) {
4464 >                    if (n >= MAX_ARRAY_SIZE)
4465 >                        throw new OutOfMemoryError(oomeMsg);
4466 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4467 >                        n = MAX_ARRAY_SIZE;
4468 >                    else
4469 >                        n += (n >>> 1) + 1;
4470 >                    r = Arrays.copyOf(r, n);
4471 >                }
4472 >                r[i++] = (T)e;
4473 >            }
4474 >            if (a == r && i < n) {
4475 >                r[i] = null; // null-terminate
4476 >                return r;
4477 >            }
4478 >            return (i == n) ? r : Arrays.copyOf(r, i);
4479          }
4480 <        public boolean isEmpty() {
4481 <            return ConcurrentHashMap.this.isEmpty();
4480 >
4481 >        /**
4482 >         * Returns a string representation of this collection.
4483 >         * The string representation consists of the string representations
4484 >         * of the collection's elements in the order they are returned by
4485 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4486 >         * Adjacent elements are separated by the characters {@code ", "}
4487 >         * (comma and space).  Elements are converted to strings as by
4488 >         * {@link String#valueOf(Object)}.
4489 >         *
4490 >         * @return a string representation of this collection
4491 >         */
4492 >        public final String toString() {
4493 >            StringBuilder sb = new StringBuilder();
4494 >            sb.append('[');
4495 >            Iterator<E> it = iterator();
4496 >            if (it.hasNext()) {
4497 >                for (;;) {
4498 >                    Object e = it.next();
4499 >                    sb.append(e == this ? "(this Collection)" : e);
4500 >                    if (!it.hasNext())
4501 >                        break;
4502 >                    sb.append(',').append(' ');
4503 >                }
4504 >            }
4505 >            return sb.append(']').toString();
4506          }
4507 <        public boolean contains(Object o) {
4508 <            return ConcurrentHashMap.this.containsValue(o);
4507 >
4508 >        public final boolean containsAll(Collection<?> c) {
4509 >            if (c != this) {
4510 >                for (Object e : c) {
4511 >                    if (e == null || !contains(e))
4512 >                        return false;
4513 >                }
4514 >            }
4515 >            return true;
4516          }
4517 <        public void clear() {
4518 <            ConcurrentHashMap.this.clear();
4517 >
4518 >        public final boolean removeAll(Collection<?> c) {
4519 >            if (c == null) throw new NullPointerException();
4520 >            boolean modified = false;
4521 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4522 >                if (c.contains(it.next())) {
4523 >                    it.remove();
4524 >                    modified = true;
4525 >                }
4526 >            }
4527 >            return modified;
4528 >        }
4529 >
4530 >        public final boolean retainAll(Collection<?> c) {
4531 >            if (c == null) throw new NullPointerException();
4532 >            boolean modified = false;
4533 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4534 >                if (!c.contains(it.next())) {
4535 >                    it.remove();
4536 >                    modified = true;
4537 >                }
4538 >            }
4539 >            return modified;
4540          }
4541 +
4542      }
4543  
4544 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4545 <        public Iterator<Map.Entry<K,V>> iterator() {
4546 <            return new EntryIterator();
4544 >    /**
4545 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4546 >     * which additions may optionally be enabled by mapping to a
4547 >     * common value.  This class cannot be directly instantiated.
4548 >     * See {@link #keySet() keySet()},
4549 >     * {@link #keySet(Object) keySet(V)},
4550 >     * {@link #newKeySet() newKeySet()},
4551 >     * {@link #newKeySet(int) newKeySet(int)}.
4552 >     *
4553 >     * @since 1.8
4554 >     */
4555 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4556 >        implements Set<K>, java.io.Serializable {
4557 >        private static final long serialVersionUID = 7249069246763182397L;
4558 >        private final V value;
4559 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4560 >            super(map);
4561 >            this.value = value;
4562 >        }
4563 >
4564 >        /**
4565 >         * Returns the default mapped value for additions,
4566 >         * or {@code null} if additions are not supported.
4567 >         *
4568 >         * @return the default mapped value for additions, or {@code null}
4569 >         * if not supported
4570 >         */
4571 >        public V getMappedValue() { return value; }
4572 >
4573 >        /**
4574 >         * {@inheritDoc}
4575 >         * @throws NullPointerException if the specified key is null
4576 >         */
4577 >        public boolean contains(Object o) { return map.containsKey(o); }
4578 >
4579 >        /**
4580 >         * Removes the key from this map view, by removing the key (and its
4581 >         * corresponding value) from the backing map.  This method does
4582 >         * nothing if the key is not in the map.
4583 >         *
4584 >         * @param  o the key to be removed from the backing map
4585 >         * @return {@code true} if the backing map contained the specified key
4586 >         * @throws NullPointerException if the specified key is null
4587 >         */
4588 >        public boolean remove(Object o) { return map.remove(o) != null; }
4589 >
4590 >        /**
4591 >         * @return an iterator over the keys of the backing map
4592 >         */
4593 >        public Iterator<K> iterator() {
4594 >            Node<K,V>[] t;
4595 >            ConcurrentHashMap<K,V> m = map;
4596 >            int f = (t = m.table) == null ? 0 : t.length;
4597 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4598 >        }
4599 >
4600 >        /**
4601 >         * Adds the specified key to this set view by mapping the key to
4602 >         * the default mapped value in the backing map, if defined.
4603 >         *
4604 >         * @param e key to be added
4605 >         * @return {@code true} if this set changed as a result of the call
4606 >         * @throws NullPointerException if the specified key is null
4607 >         * @throws UnsupportedOperationException if no default mapped value
4608 >         * for additions was provided
4609 >         */
4610 >        public boolean add(K e) {
4611 >            V v;
4612 >            if ((v = value) == null)
4613 >                throw new UnsupportedOperationException();
4614 >            return map.putVal(e, v, true) == null;
4615 >        }
4616 >
4617 >        /**
4618 >         * Adds all of the elements in the specified collection to this set,
4619 >         * as if by calling {@link #add} on each one.
4620 >         *
4621 >         * @param c the elements to be inserted into this set
4622 >         * @return {@code true} if this set changed as a result of the call
4623 >         * @throws NullPointerException if the collection or any of its
4624 >         * elements are {@code null}
4625 >         * @throws UnsupportedOperationException if no default mapped value
4626 >         * for additions was provided
4627 >         */
4628 >        public boolean addAll(Collection<? extends K> c) {
4629 >            boolean added = false;
4630 >            V v;
4631 >            if ((v = value) == null)
4632 >                throw new UnsupportedOperationException();
4633 >            for (K e : c) {
4634 >                if (map.putVal(e, v, true) == null)
4635 >                    added = true;
4636 >            }
4637 >            return added;
4638 >        }
4639 >
4640 >        public int hashCode() {
4641 >            int h = 0;
4642 >            for (K e : this)
4643 >                h += e.hashCode();
4644 >            return h;
4645 >        }
4646 >
4647 >        public boolean equals(Object o) {
4648 >            Set<?> c;
4649 >            return ((o instanceof Set) &&
4650 >                    ((c = (Set<?>)o) == this ||
4651 >                     (containsAll(c) && c.containsAll(this))));
4652 >        }
4653 >
4654 >        public Spliterator<K> spliterator() {
4655 >            Node<K,V>[] t;
4656 >            ConcurrentHashMap<K,V> m = map;
4657 >            long n = m.sumCount();
4658 >            int f = (t = m.table) == null ? 0 : t.length;
4659 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4660 >        }
4661 >
4662 >        public void forEach(Consumer<? super K> action) {
4663 >            if (action == null) throw new NullPointerException();
4664 >            Node<K,V>[] t;
4665 >            if ((t = map.table) != null) {
4666 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4667 >                for (Node<K,V> p; (p = it.advance()) != null; )
4668 >                    action.accept(p.key);
4669 >            }
4670 >        }
4671 >    }
4672 >
4673 >    /**
4674 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4675 >     * values, in which additions are disabled. This class cannot be
4676 >     * directly instantiated. See {@link #values()}.
4677 >     */
4678 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4679 >        implements Collection<V>, java.io.Serializable {
4680 >        private static final long serialVersionUID = 2249069246763182397L;
4681 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4682 >        public final boolean contains(Object o) {
4683 >            return map.containsValue(o);
4684 >        }
4685 >
4686 >        public final boolean remove(Object o) {
4687 >            if (o != null) {
4688 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4689 >                    if (o.equals(it.next())) {
4690 >                        it.remove();
4691 >                        return true;
4692 >                    }
4693 >                }
4694 >            }
4695 >            return false;
4696 >        }
4697 >
4698 >        public final Iterator<V> iterator() {
4699 >            ConcurrentHashMap<K,V> m = map;
4700 >            Node<K,V>[] t;
4701 >            int f = (t = m.table) == null ? 0 : t.length;
4702 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4703 >        }
4704 >
4705 >        public final boolean add(V e) {
4706 >            throw new UnsupportedOperationException();
4707 >        }
4708 >        public final boolean addAll(Collection<? extends V> c) {
4709 >            throw new UnsupportedOperationException();
4710          }
4711 +
4712 +        public boolean removeIf(Predicate<? super V> filter) {
4713 +            return map.removeValueIf(filter);
4714 +        }
4715 +
4716 +        public Spliterator<V> spliterator() {
4717 +            Node<K,V>[] t;
4718 +            ConcurrentHashMap<K,V> m = map;
4719 +            long n = m.sumCount();
4720 +            int f = (t = m.table) == null ? 0 : t.length;
4721 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4722 +        }
4723 +
4724 +        public void forEach(Consumer<? super V> action) {
4725 +            if (action == null) throw new NullPointerException();
4726 +            Node<K,V>[] t;
4727 +            if ((t = map.table) != null) {
4728 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4729 +                for (Node<K,V> p; (p = it.advance()) != null; )
4730 +                    action.accept(p.val);
4731 +            }
4732 +        }
4733 +    }
4734 +
4735 +    /**
4736 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4737 +     * entries.  This class cannot be directly instantiated. See
4738 +     * {@link #entrySet()}.
4739 +     */
4740 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4741 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4742 +        private static final long serialVersionUID = 2249069246763182397L;
4743 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4744 +
4745          public boolean contains(Object o) {
4746 <            if (!(o instanceof Map.Entry))
4747 <                return false;
4748 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4749 <            V v = ConcurrentHashMap.this.get(e.getKey());
4750 <            return v != null && v.equals(e.getValue());
4746 >            Object k, v, r; Map.Entry<?,?> e;
4747 >            return ((o instanceof Map.Entry) &&
4748 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4749 >                    (r = map.get(k)) != null &&
4750 >                    (v = e.getValue()) != null &&
4751 >                    (v == r || v.equals(r)));
4752          }
4753 +
4754          public boolean remove(Object o) {
4755 <            if (!(o instanceof Map.Entry))
4756 <                return false;
4757 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4758 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4755 >            Object k, v; Map.Entry<?,?> e;
4756 >            return ((o instanceof Map.Entry) &&
4757 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4758 >                    (v = e.getValue()) != null &&
4759 >                    map.remove(k, v));
4760          }
4761 <        public int size() {
4762 <            return ConcurrentHashMap.this.size();
4761 >
4762 >        /**
4763 >         * @return an iterator over the entries of the backing map
4764 >         */
4765 >        public Iterator<Map.Entry<K,V>> iterator() {
4766 >            ConcurrentHashMap<K,V> m = map;
4767 >            Node<K,V>[] t;
4768 >            int f = (t = m.table) == null ? 0 : t.length;
4769 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4770          }
4771 <        public boolean isEmpty() {
4772 <            return ConcurrentHashMap.this.isEmpty();
4771 >
4772 >        public boolean add(Entry<K,V> e) {
4773 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4774          }
4775 <        public void clear() {
4776 <            ConcurrentHashMap.this.clear();
4775 >
4776 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4777 >            boolean added = false;
4778 >            for (Entry<K,V> e : c) {
4779 >                if (add(e))
4780 >                    added = true;
4781 >            }
4782 >            return added;
4783          }
4784 +
4785 +        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4786 +            return map.removeEntryIf(filter);
4787 +        }
4788 +
4789 +        public final int hashCode() {
4790 +            int h = 0;
4791 +            Node<K,V>[] t;
4792 +            if ((t = map.table) != null) {
4793 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4794 +                for (Node<K,V> p; (p = it.advance()) != null; ) {
4795 +                    h += p.hashCode();
4796 +                }
4797 +            }
4798 +            return h;
4799 +        }
4800 +
4801 +        public final boolean equals(Object o) {
4802 +            Set<?> c;
4803 +            return ((o instanceof Set) &&
4804 +                    ((c = (Set<?>)o) == this ||
4805 +                     (containsAll(c) && c.containsAll(this))));
4806 +        }
4807 +
4808 +        public Spliterator<Map.Entry<K,V>> spliterator() {
4809 +            Node<K,V>[] t;
4810 +            ConcurrentHashMap<K,V> m = map;
4811 +            long n = m.sumCount();
4812 +            int f = (t = m.table) == null ? 0 : t.length;
4813 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4814 +        }
4815 +
4816 +        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4817 +            if (action == null) throw new NullPointerException();
4818 +            Node<K,V>[] t;
4819 +            if ((t = map.table) != null) {
4820 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4821 +                for (Node<K,V> p; (p = it.advance()) != null; )
4822 +                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4823 +            }
4824 +        }
4825 +
4826      }
4827  
4828 <    /* ---------------- Serialization Support -------------- */
4828 >    // -------------------------------------------------------
4829  
4830      /**
4831 <     * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
4832 <     * stream (i.e., serializes it).
1394 <     * @param s the stream
1395 <     * @serialData
1396 <     * the key (Object) and value (Object)
1397 <     * for each key-value mapping, followed by a null pair.
1398 <     * The key-value mappings are emitted in no particular order.
4831 >     * Base class for bulk tasks. Repeats some fields and code from
4832 >     * class Traverser, because we need to subclass CountedCompleter.
4833       */
4834 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
4835 <        // force all segments for serialization compatibility
4836 <        for (int k = 0; k < segments.length; ++k)
4837 <            ensureSegment(k);
4838 <        s.defaultWriteObject();
4839 <
4840 <        final Segment<K,V>[] segments = this.segments;
4841 <        for (int k = 0; k < segments.length; ++k) {
4842 <            Segment<K,V> seg = segmentAt(segments, k);
4843 <            seg.lock();
4844 <            try {
4845 <                HashEntry<K,V>[] tab = seg.table;
4846 <                for (int i = 0; i < tab.length; ++i) {
4847 <                    HashEntry<K,V> e;
4848 <                    for (e = entryAt(tab, i); e != null; e = e.next) {
4849 <                        s.writeObject(e.key);
4850 <                        s.writeObject(e.value);
4834 >    @SuppressWarnings("serial")
4835 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4836 >        Node<K,V>[] tab;        // same as Traverser
4837 >        Node<K,V> next;
4838 >        TableStack<K,V> stack, spare;
4839 >        int index;
4840 >        int baseIndex;
4841 >        int baseLimit;
4842 >        final int baseSize;
4843 >        int batch;              // split control
4844 >
4845 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4846 >            super(par);
4847 >            this.batch = b;
4848 >            this.index = this.baseIndex = i;
4849 >            if ((this.tab = t) == null)
4850 >                this.baseSize = this.baseLimit = 0;
4851 >            else if (par == null)
4852 >                this.baseSize = this.baseLimit = t.length;
4853 >            else {
4854 >                this.baseLimit = f;
4855 >                this.baseSize = par.baseSize;
4856 >            }
4857 >        }
4858 >
4859 >        /**
4860 >         * Same as Traverser version
4861 >         */
4862 >        final Node<K,V> advance() {
4863 >            Node<K,V> e;
4864 >            if ((e = next) != null)
4865 >                e = e.next;
4866 >            for (;;) {
4867 >                Node<K,V>[] t; int i, n;
4868 >                if (e != null)
4869 >                    return next = e;
4870 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4871 >                    (n = t.length) <= (i = index) || i < 0)
4872 >                    return next = null;
4873 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4874 >                    if (e instanceof ForwardingNode) {
4875 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4876 >                        e = null;
4877 >                        pushState(t, i, n);
4878 >                        continue;
4879                      }
4880 +                    else if (e instanceof TreeBin)
4881 +                        e = ((TreeBin<K,V>)e).first;
4882 +                    else
4883 +                        e = null;
4884                  }
4885 <            } finally {
4886 <                seg.unlock();
4885 >                if (stack != null)
4886 >                    recoverState(n);
4887 >                else if ((index = i + baseSize) >= n)
4888 >                    index = ++baseIndex;
4889              }
4890          }
4891 <        s.writeObject(null);
4892 <        s.writeObject(null);
4891 >
4892 >        private void pushState(Node<K,V>[] t, int i, int n) {
4893 >            TableStack<K,V> s = spare;
4894 >            if (s != null)
4895 >                spare = s.next;
4896 >            else
4897 >                s = new TableStack<K,V>();
4898 >            s.tab = t;
4899 >            s.length = n;
4900 >            s.index = i;
4901 >            s.next = stack;
4902 >            stack = s;
4903 >        }
4904 >
4905 >        private void recoverState(int n) {
4906 >            TableStack<K,V> s; int len;
4907 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4908 >                n = len;
4909 >                index = s.index;
4910 >                tab = s.tab;
4911 >                s.tab = null;
4912 >                TableStack<K,V> next = s.next;
4913 >                s.next = spare; // save for reuse
4914 >                stack = next;
4915 >                spare = s;
4916 >            }
4917 >            if (s == null && (index += baseSize) >= n)
4918 >                index = ++baseIndex;
4919 >        }
4920      }
4921  
4922 <    /**
4923 <     * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
4924 <     * stream (i.e., deserializes it).
4925 <     * @param s the stream
4926 <     */
4927 <    @SuppressWarnings("unchecked")
4928 <    private void readObject(java.io.ObjectInputStream s)
4929 <        throws IOException, ClassNotFoundException {
4930 <        s.defaultReadObject();
4922 >    /*
4923 >     * Task classes. Coded in a regular but ugly format/style to
4924 >     * simplify checks that each variant differs in the right way from
4925 >     * others. The null screenings exist because compilers cannot tell
4926 >     * that we've already null-checked task arguments, so we force
4927 >     * simplest hoisted bypass to help avoid convoluted traps.
4928 >     */
4929 >    @SuppressWarnings("serial")
4930 >    static final class ForEachKeyTask<K,V>
4931 >        extends BulkTask<K,V,Void> {
4932 >        final Consumer<? super K> action;
4933 >        ForEachKeyTask
4934 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4935 >             Consumer<? super K> action) {
4936 >            super(p, b, i, f, t);
4937 >            this.action = action;
4938 >        }
4939 >        public final void compute() {
4940 >            final Consumer<? super K> action;
4941 >            if ((action = this.action) != null) {
4942 >                for (int i = baseIndex, f, h; batch > 0 &&
4943 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4944 >                    addToPendingCount(1);
4945 >                    new ForEachKeyTask<K,V>
4946 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4947 >                         action).fork();
4948 >                }
4949 >                for (Node<K,V> p; (p = advance()) != null;)
4950 >                    action.accept(p.key);
4951 >                propagateCompletion();
4952 >            }
4953 >        }
4954 >    }
4955  
4956 <        // Re-initialize segments to be minimally sized, and let grow.
4957 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
4958 <        final Segment<K,V>[] segments = this.segments;
4959 <        for (int k = 0; k < segments.length; ++k) {
4960 <            Segment<K,V> seg = segments[k];
4961 <            if (seg != null) {
4962 <                seg.threshold = (int)(cap * seg.loadFactor);
4963 <                seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
4956 >    @SuppressWarnings("serial")
4957 >    static final class ForEachValueTask<K,V>
4958 >        extends BulkTask<K,V,Void> {
4959 >        final Consumer<? super V> action;
4960 >        ForEachValueTask
4961 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4962 >             Consumer<? super V> action) {
4963 >            super(p, b, i, f, t);
4964 >            this.action = action;
4965 >        }
4966 >        public final void compute() {
4967 >            final Consumer<? super V> action;
4968 >            if ((action = this.action) != null) {
4969 >                for (int i = baseIndex, f, h; batch > 0 &&
4970 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971 >                    addToPendingCount(1);
4972 >                    new ForEachValueTask<K,V>
4973 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4974 >                         action).fork();
4975 >                }
4976 >                for (Node<K,V> p; (p = advance()) != null;)
4977 >                    action.accept(p.val);
4978 >                propagateCompletion();
4979              }
4980          }
4981 +    }
4982  
4983 <        // Read the keys and values, and put the mappings in the table
4984 <        for (;;) {
4985 <            K key = (K) s.readObject();
4986 <            V value = (V) s.readObject();
4987 <            if (key == null)
4988 <                break;
4989 <            put(key, value);
4983 >    @SuppressWarnings("serial")
4984 >    static final class ForEachEntryTask<K,V>
4985 >        extends BulkTask<K,V,Void> {
4986 >        final Consumer<? super Entry<K,V>> action;
4987 >        ForEachEntryTask
4988 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4989 >             Consumer<? super Entry<K,V>> action) {
4990 >            super(p, b, i, f, t);
4991 >            this.action = action;
4992 >        }
4993 >        public final void compute() {
4994 >            final Consumer<? super Entry<K,V>> action;
4995 >            if ((action = this.action) != null) {
4996 >                for (int i = baseIndex, f, h; batch > 0 &&
4997 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4998 >                    addToPendingCount(1);
4999 >                    new ForEachEntryTask<K,V>
5000 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5001 >                         action).fork();
5002 >                }
5003 >                for (Node<K,V> p; (p = advance()) != null; )
5004 >                    action.accept(p);
5005 >                propagateCompletion();
5006 >            }
5007 >        }
5008 >    }
5009 >
5010 >    @SuppressWarnings("serial")
5011 >    static final class ForEachMappingTask<K,V>
5012 >        extends BulkTask<K,V,Void> {
5013 >        final BiConsumer<? super K, ? super V> action;
5014 >        ForEachMappingTask
5015 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5016 >             BiConsumer<? super K,? super V> action) {
5017 >            super(p, b, i, f, t);
5018 >            this.action = action;
5019 >        }
5020 >        public final void compute() {
5021 >            final BiConsumer<? super K, ? super V> action;
5022 >            if ((action = this.action) != null) {
5023 >                for (int i = baseIndex, f, h; batch > 0 &&
5024 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5025 >                    addToPendingCount(1);
5026 >                    new ForEachMappingTask<K,V>
5027 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5028 >                         action).fork();
5029 >                }
5030 >                for (Node<K,V> p; (p = advance()) != null; )
5031 >                    action.accept(p.key, p.val);
5032 >                propagateCompletion();
5033 >            }
5034 >        }
5035 >    }
5036 >
5037 >    @SuppressWarnings("serial")
5038 >    static final class ForEachTransformedKeyTask<K,V,U>
5039 >        extends BulkTask<K,V,Void> {
5040 >        final Function<? super K, ? extends U> transformer;
5041 >        final Consumer<? super U> action;
5042 >        ForEachTransformedKeyTask
5043 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5044 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5045 >            super(p, b, i, f, t);
5046 >            this.transformer = transformer; this.action = action;
5047 >        }
5048 >        public final void compute() {
5049 >            final Function<? super K, ? extends U> transformer;
5050 >            final Consumer<? super U> action;
5051 >            if ((transformer = this.transformer) != null &&
5052 >                (action = this.action) != null) {
5053 >                for (int i = baseIndex, f, h; batch > 0 &&
5054 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5055 >                    addToPendingCount(1);
5056 >                    new ForEachTransformedKeyTask<K,V,U>
5057 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5058 >                         transformer, action).fork();
5059 >                }
5060 >                for (Node<K,V> p; (p = advance()) != null; ) {
5061 >                    U u;
5062 >                    if ((u = transformer.apply(p.key)) != null)
5063 >                        action.accept(u);
5064 >                }
5065 >                propagateCompletion();
5066 >            }
5067 >        }
5068 >    }
5069 >
5070 >    @SuppressWarnings("serial")
5071 >    static final class ForEachTransformedValueTask<K,V,U>
5072 >        extends BulkTask<K,V,Void> {
5073 >        final Function<? super V, ? extends U> transformer;
5074 >        final Consumer<? super U> action;
5075 >        ForEachTransformedValueTask
5076 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5077 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5078 >            super(p, b, i, f, t);
5079 >            this.transformer = transformer; this.action = action;
5080 >        }
5081 >        public final void compute() {
5082 >            final Function<? super V, ? extends U> transformer;
5083 >            final Consumer<? super U> action;
5084 >            if ((transformer = this.transformer) != null &&
5085 >                (action = this.action) != null) {
5086 >                for (int i = baseIndex, f, h; batch > 0 &&
5087 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5088 >                    addToPendingCount(1);
5089 >                    new ForEachTransformedValueTask<K,V,U>
5090 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5091 >                         transformer, action).fork();
5092 >                }
5093 >                for (Node<K,V> p; (p = advance()) != null; ) {
5094 >                    U u;
5095 >                    if ((u = transformer.apply(p.val)) != null)
5096 >                        action.accept(u);
5097 >                }
5098 >                propagateCompletion();
5099 >            }
5100 >        }
5101 >    }
5102 >
5103 >    @SuppressWarnings("serial")
5104 >    static final class ForEachTransformedEntryTask<K,V,U>
5105 >        extends BulkTask<K,V,Void> {
5106 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5107 >        final Consumer<? super U> action;
5108 >        ForEachTransformedEntryTask
5109 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5110 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5111 >            super(p, b, i, f, t);
5112 >            this.transformer = transformer; this.action = action;
5113 >        }
5114 >        public final void compute() {
5115 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5116 >            final Consumer<? super U> action;
5117 >            if ((transformer = this.transformer) != null &&
5118 >                (action = this.action) != null) {
5119 >                for (int i = baseIndex, f, h; batch > 0 &&
5120 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5121 >                    addToPendingCount(1);
5122 >                    new ForEachTransformedEntryTask<K,V,U>
5123 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5124 >                         transformer, action).fork();
5125 >                }
5126 >                for (Node<K,V> p; (p = advance()) != null; ) {
5127 >                    U u;
5128 >                    if ((u = transformer.apply(p)) != null)
5129 >                        action.accept(u);
5130 >                }
5131 >                propagateCompletion();
5132 >            }
5133 >        }
5134 >    }
5135 >
5136 >    @SuppressWarnings("serial")
5137 >    static final class ForEachTransformedMappingTask<K,V,U>
5138 >        extends BulkTask<K,V,Void> {
5139 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5140 >        final Consumer<? super U> action;
5141 >        ForEachTransformedMappingTask
5142 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5143 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5144 >             Consumer<? super U> action) {
5145 >            super(p, b, i, f, t);
5146 >            this.transformer = transformer; this.action = action;
5147 >        }
5148 >        public final void compute() {
5149 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5150 >            final Consumer<? super U> action;
5151 >            if ((transformer = this.transformer) != null &&
5152 >                (action = this.action) != null) {
5153 >                for (int i = baseIndex, f, h; batch > 0 &&
5154 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5155 >                    addToPendingCount(1);
5156 >                    new ForEachTransformedMappingTask<K,V,U>
5157 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5158 >                         transformer, action).fork();
5159 >                }
5160 >                for (Node<K,V> p; (p = advance()) != null; ) {
5161 >                    U u;
5162 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5163 >                        action.accept(u);
5164 >                }
5165 >                propagateCompletion();
5166 >            }
5167 >        }
5168 >    }
5169 >
5170 >    @SuppressWarnings("serial")
5171 >    static final class SearchKeysTask<K,V,U>
5172 >        extends BulkTask<K,V,U> {
5173 >        final Function<? super K, ? extends U> searchFunction;
5174 >        final AtomicReference<U> result;
5175 >        SearchKeysTask
5176 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5177 >             Function<? super K, ? extends U> searchFunction,
5178 >             AtomicReference<U> result) {
5179 >            super(p, b, i, f, t);
5180 >            this.searchFunction = searchFunction; this.result = result;
5181 >        }
5182 >        public final U getRawResult() { return result.get(); }
5183 >        public final void compute() {
5184 >            final Function<? super K, ? extends U> searchFunction;
5185 >            final AtomicReference<U> result;
5186 >            if ((searchFunction = this.searchFunction) != null &&
5187 >                (result = this.result) != null) {
5188 >                for (int i = baseIndex, f, h; batch > 0 &&
5189 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5190 >                    if (result.get() != null)
5191 >                        return;
5192 >                    addToPendingCount(1);
5193 >                    new SearchKeysTask<K,V,U>
5194 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5195 >                         searchFunction, result).fork();
5196 >                }
5197 >                while (result.get() == null) {
5198 >                    U u;
5199 >                    Node<K,V> p;
5200 >                    if ((p = advance()) == null) {
5201 >                        propagateCompletion();
5202 >                        break;
5203 >                    }
5204 >                    if ((u = searchFunction.apply(p.key)) != null) {
5205 >                        if (result.compareAndSet(null, u))
5206 >                            quietlyCompleteRoot();
5207 >                        break;
5208 >                    }
5209 >                }
5210 >            }
5211 >        }
5212 >    }
5213 >
5214 >    @SuppressWarnings("serial")
5215 >    static final class SearchValuesTask<K,V,U>
5216 >        extends BulkTask<K,V,U> {
5217 >        final Function<? super V, ? extends U> searchFunction;
5218 >        final AtomicReference<U> result;
5219 >        SearchValuesTask
5220 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5221 >             Function<? super V, ? extends U> searchFunction,
5222 >             AtomicReference<U> result) {
5223 >            super(p, b, i, f, t);
5224 >            this.searchFunction = searchFunction; this.result = result;
5225 >        }
5226 >        public final U getRawResult() { return result.get(); }
5227 >        public final void compute() {
5228 >            final Function<? super V, ? extends U> searchFunction;
5229 >            final AtomicReference<U> result;
5230 >            if ((searchFunction = this.searchFunction) != null &&
5231 >                (result = this.result) != null) {
5232 >                for (int i = baseIndex, f, h; batch > 0 &&
5233 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5234 >                    if (result.get() != null)
5235 >                        return;
5236 >                    addToPendingCount(1);
5237 >                    new SearchValuesTask<K,V,U>
5238 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5239 >                         searchFunction, result).fork();
5240 >                }
5241 >                while (result.get() == null) {
5242 >                    U u;
5243 >                    Node<K,V> p;
5244 >                    if ((p = advance()) == null) {
5245 >                        propagateCompletion();
5246 >                        break;
5247 >                    }
5248 >                    if ((u = searchFunction.apply(p.val)) != null) {
5249 >                        if (result.compareAndSet(null, u))
5250 >                            quietlyCompleteRoot();
5251 >                        break;
5252 >                    }
5253 >                }
5254 >            }
5255 >        }
5256 >    }
5257 >
5258 >    @SuppressWarnings("serial")
5259 >    static final class SearchEntriesTask<K,V,U>
5260 >        extends BulkTask<K,V,U> {
5261 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5262 >        final AtomicReference<U> result;
5263 >        SearchEntriesTask
5264 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5265 >             Function<Entry<K,V>, ? extends U> searchFunction,
5266 >             AtomicReference<U> result) {
5267 >            super(p, b, i, f, t);
5268 >            this.searchFunction = searchFunction; this.result = result;
5269 >        }
5270 >        public final U getRawResult() { return result.get(); }
5271 >        public final void compute() {
5272 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5273 >            final AtomicReference<U> result;
5274 >            if ((searchFunction = this.searchFunction) != null &&
5275 >                (result = this.result) != null) {
5276 >                for (int i = baseIndex, f, h; batch > 0 &&
5277 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5278 >                    if (result.get() != null)
5279 >                        return;
5280 >                    addToPendingCount(1);
5281 >                    new SearchEntriesTask<K,V,U>
5282 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5283 >                         searchFunction, result).fork();
5284 >                }
5285 >                while (result.get() == null) {
5286 >                    U u;
5287 >                    Node<K,V> p;
5288 >                    if ((p = advance()) == null) {
5289 >                        propagateCompletion();
5290 >                        break;
5291 >                    }
5292 >                    if ((u = searchFunction.apply(p)) != null) {
5293 >                        if (result.compareAndSet(null, u))
5294 >                            quietlyCompleteRoot();
5295 >                        return;
5296 >                    }
5297 >                }
5298 >            }
5299 >        }
5300 >    }
5301 >
5302 >    @SuppressWarnings("serial")
5303 >    static final class SearchMappingsTask<K,V,U>
5304 >        extends BulkTask<K,V,U> {
5305 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5306 >        final AtomicReference<U> result;
5307 >        SearchMappingsTask
5308 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5309 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5310 >             AtomicReference<U> result) {
5311 >            super(p, b, i, f, t);
5312 >            this.searchFunction = searchFunction; this.result = result;
5313 >        }
5314 >        public final U getRawResult() { return result.get(); }
5315 >        public final void compute() {
5316 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5317 >            final AtomicReference<U> result;
5318 >            if ((searchFunction = this.searchFunction) != null &&
5319 >                (result = this.result) != null) {
5320 >                for (int i = baseIndex, f, h; batch > 0 &&
5321 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5322 >                    if (result.get() != null)
5323 >                        return;
5324 >                    addToPendingCount(1);
5325 >                    new SearchMappingsTask<K,V,U>
5326 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5327 >                         searchFunction, result).fork();
5328 >                }
5329 >                while (result.get() == null) {
5330 >                    U u;
5331 >                    Node<K,V> p;
5332 >                    if ((p = advance()) == null) {
5333 >                        propagateCompletion();
5334 >                        break;
5335 >                    }
5336 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5337 >                        if (result.compareAndSet(null, u))
5338 >                            quietlyCompleteRoot();
5339 >                        break;
5340 >                    }
5341 >                }
5342 >            }
5343 >        }
5344 >    }
5345 >
5346 >    @SuppressWarnings("serial")
5347 >    static final class ReduceKeysTask<K,V>
5348 >        extends BulkTask<K,V,K> {
5349 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5350 >        K result;
5351 >        ReduceKeysTask<K,V> rights, nextRight;
5352 >        ReduceKeysTask
5353 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5354 >             ReduceKeysTask<K,V> nextRight,
5355 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5356 >            super(p, b, i, f, t); this.nextRight = nextRight;
5357 >            this.reducer = reducer;
5358 >        }
5359 >        public final K getRawResult() { return result; }
5360 >        public final void compute() {
5361 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5362 >            if ((reducer = this.reducer) != null) {
5363 >                for (int i = baseIndex, f, h; batch > 0 &&
5364 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5365 >                    addToPendingCount(1);
5366 >                    (rights = new ReduceKeysTask<K,V>
5367 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5368 >                      rights, reducer)).fork();
5369 >                }
5370 >                K r = null;
5371 >                for (Node<K,V> p; (p = advance()) != null; ) {
5372 >                    K u = p.key;
5373 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5374 >                }
5375 >                result = r;
5376 >                CountedCompleter<?> c;
5377 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5378 >                    @SuppressWarnings("unchecked")
5379 >                    ReduceKeysTask<K,V>
5380 >                        t = (ReduceKeysTask<K,V>)c,
5381 >                        s = t.rights;
5382 >                    while (s != null) {
5383 >                        K tr, sr;
5384 >                        if ((sr = s.result) != null)
5385 >                            t.result = (((tr = t.result) == null) ? sr :
5386 >                                        reducer.apply(tr, sr));
5387 >                        s = t.rights = s.nextRight;
5388 >                    }
5389 >                }
5390 >            }
5391 >        }
5392 >    }
5393 >
5394 >    @SuppressWarnings("serial")
5395 >    static final class ReduceValuesTask<K,V>
5396 >        extends BulkTask<K,V,V> {
5397 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5398 >        V result;
5399 >        ReduceValuesTask<K,V> rights, nextRight;
5400 >        ReduceValuesTask
5401 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5402 >             ReduceValuesTask<K,V> nextRight,
5403 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5404 >            super(p, b, i, f, t); this.nextRight = nextRight;
5405 >            this.reducer = reducer;
5406 >        }
5407 >        public final V getRawResult() { return result; }
5408 >        public final void compute() {
5409 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5410 >            if ((reducer = this.reducer) != null) {
5411 >                for (int i = baseIndex, f, h; batch > 0 &&
5412 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5413 >                    addToPendingCount(1);
5414 >                    (rights = new ReduceValuesTask<K,V>
5415 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5416 >                      rights, reducer)).fork();
5417 >                }
5418 >                V r = null;
5419 >                for (Node<K,V> p; (p = advance()) != null; ) {
5420 >                    V v = p.val;
5421 >                    r = (r == null) ? v : reducer.apply(r, v);
5422 >                }
5423 >                result = r;
5424 >                CountedCompleter<?> c;
5425 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5426 >                    @SuppressWarnings("unchecked")
5427 >                    ReduceValuesTask<K,V>
5428 >                        t = (ReduceValuesTask<K,V>)c,
5429 >                        s = t.rights;
5430 >                    while (s != null) {
5431 >                        V tr, sr;
5432 >                        if ((sr = s.result) != null)
5433 >                            t.result = (((tr = t.result) == null) ? sr :
5434 >                                        reducer.apply(tr, sr));
5435 >                        s = t.rights = s.nextRight;
5436 >                    }
5437 >                }
5438 >            }
5439 >        }
5440 >    }
5441 >
5442 >    @SuppressWarnings("serial")
5443 >    static final class ReduceEntriesTask<K,V>
5444 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5445 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5446 >        Map.Entry<K,V> result;
5447 >        ReduceEntriesTask<K,V> rights, nextRight;
5448 >        ReduceEntriesTask
5449 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5450 >             ReduceEntriesTask<K,V> nextRight,
5451 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5452 >            super(p, b, i, f, t); this.nextRight = nextRight;
5453 >            this.reducer = reducer;
5454 >        }
5455 >        public final Map.Entry<K,V> getRawResult() { return result; }
5456 >        public final void compute() {
5457 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5458 >            if ((reducer = this.reducer) != null) {
5459 >                for (int i = baseIndex, f, h; batch > 0 &&
5460 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5461 >                    addToPendingCount(1);
5462 >                    (rights = new ReduceEntriesTask<K,V>
5463 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5464 >                      rights, reducer)).fork();
5465 >                }
5466 >                Map.Entry<K,V> r = null;
5467 >                for (Node<K,V> p; (p = advance()) != null; )
5468 >                    r = (r == null) ? p : reducer.apply(r, p);
5469 >                result = r;
5470 >                CountedCompleter<?> c;
5471 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5472 >                    @SuppressWarnings("unchecked")
5473 >                    ReduceEntriesTask<K,V>
5474 >                        t = (ReduceEntriesTask<K,V>)c,
5475 >                        s = t.rights;
5476 >                    while (s != null) {
5477 >                        Map.Entry<K,V> tr, sr;
5478 >                        if ((sr = s.result) != null)
5479 >                            t.result = (((tr = t.result) == null) ? sr :
5480 >                                        reducer.apply(tr, sr));
5481 >                        s = t.rights = s.nextRight;
5482 >                    }
5483 >                }
5484 >            }
5485 >        }
5486 >    }
5487 >
5488 >    @SuppressWarnings("serial")
5489 >    static final class MapReduceKeysTask<K,V,U>
5490 >        extends BulkTask<K,V,U> {
5491 >        final Function<? super K, ? extends U> transformer;
5492 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5493 >        U result;
5494 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5495 >        MapReduceKeysTask
5496 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5497 >             MapReduceKeysTask<K,V,U> nextRight,
5498 >             Function<? super K, ? extends U> transformer,
5499 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5500 >            super(p, b, i, f, t); this.nextRight = nextRight;
5501 >            this.transformer = transformer;
5502 >            this.reducer = reducer;
5503 >        }
5504 >        public final U getRawResult() { return result; }
5505 >        public final void compute() {
5506 >            final Function<? super K, ? extends U> transformer;
5507 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5508 >            if ((transformer = this.transformer) != null &&
5509 >                (reducer = this.reducer) != null) {
5510 >                for (int i = baseIndex, f, h; batch > 0 &&
5511 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5512 >                    addToPendingCount(1);
5513 >                    (rights = new MapReduceKeysTask<K,V,U>
5514 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5515 >                      rights, transformer, reducer)).fork();
5516 >                }
5517 >                U r = null;
5518 >                for (Node<K,V> p; (p = advance()) != null; ) {
5519 >                    U u;
5520 >                    if ((u = transformer.apply(p.key)) != null)
5521 >                        r = (r == null) ? u : reducer.apply(r, u);
5522 >                }
5523 >                result = r;
5524 >                CountedCompleter<?> c;
5525 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5526 >                    @SuppressWarnings("unchecked")
5527 >                    MapReduceKeysTask<K,V,U>
5528 >                        t = (MapReduceKeysTask<K,V,U>)c,
5529 >                        s = t.rights;
5530 >                    while (s != null) {
5531 >                        U tr, sr;
5532 >                        if ((sr = s.result) != null)
5533 >                            t.result = (((tr = t.result) == null) ? sr :
5534 >                                        reducer.apply(tr, sr));
5535 >                        s = t.rights = s.nextRight;
5536 >                    }
5537 >                }
5538 >            }
5539 >        }
5540 >    }
5541 >
5542 >    @SuppressWarnings("serial")
5543 >    static final class MapReduceValuesTask<K,V,U>
5544 >        extends BulkTask<K,V,U> {
5545 >        final Function<? super V, ? extends U> transformer;
5546 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5547 >        U result;
5548 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5549 >        MapReduceValuesTask
5550 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5551 >             MapReduceValuesTask<K,V,U> nextRight,
5552 >             Function<? super V, ? extends U> transformer,
5553 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5554 >            super(p, b, i, f, t); this.nextRight = nextRight;
5555 >            this.transformer = transformer;
5556 >            this.reducer = reducer;
5557 >        }
5558 >        public final U getRawResult() { return result; }
5559 >        public final void compute() {
5560 >            final Function<? super V, ? extends U> transformer;
5561 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5562 >            if ((transformer = this.transformer) != null &&
5563 >                (reducer = this.reducer) != null) {
5564 >                for (int i = baseIndex, f, h; batch > 0 &&
5565 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566 >                    addToPendingCount(1);
5567 >                    (rights = new MapReduceValuesTask<K,V,U>
5568 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5569 >                      rights, transformer, reducer)).fork();
5570 >                }
5571 >                U r = null;
5572 >                for (Node<K,V> p; (p = advance()) != null; ) {
5573 >                    U u;
5574 >                    if ((u = transformer.apply(p.val)) != null)
5575 >                        r = (r == null) ? u : reducer.apply(r, u);
5576 >                }
5577 >                result = r;
5578 >                CountedCompleter<?> c;
5579 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5580 >                    @SuppressWarnings("unchecked")
5581 >                    MapReduceValuesTask<K,V,U>
5582 >                        t = (MapReduceValuesTask<K,V,U>)c,
5583 >                        s = t.rights;
5584 >                    while (s != null) {
5585 >                        U tr, sr;
5586 >                        if ((sr = s.result) != null)
5587 >                            t.result = (((tr = t.result) == null) ? sr :
5588 >                                        reducer.apply(tr, sr));
5589 >                        s = t.rights = s.nextRight;
5590 >                    }
5591 >                }
5592 >            }
5593 >        }
5594 >    }
5595 >
5596 >    @SuppressWarnings("serial")
5597 >    static final class MapReduceEntriesTask<K,V,U>
5598 >        extends BulkTask<K,V,U> {
5599 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5600 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5601 >        U result;
5602 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5603 >        MapReduceEntriesTask
5604 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5605 >             MapReduceEntriesTask<K,V,U> nextRight,
5606 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5607 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5608 >            super(p, b, i, f, t); this.nextRight = nextRight;
5609 >            this.transformer = transformer;
5610 >            this.reducer = reducer;
5611 >        }
5612 >        public final U getRawResult() { return result; }
5613 >        public final void compute() {
5614 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5615 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5616 >            if ((transformer = this.transformer) != null &&
5617 >                (reducer = this.reducer) != null) {
5618 >                for (int i = baseIndex, f, h; batch > 0 &&
5619 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5620 >                    addToPendingCount(1);
5621 >                    (rights = new MapReduceEntriesTask<K,V,U>
5622 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5623 >                      rights, transformer, reducer)).fork();
5624 >                }
5625 >                U r = null;
5626 >                for (Node<K,V> p; (p = advance()) != null; ) {
5627 >                    U u;
5628 >                    if ((u = transformer.apply(p)) != null)
5629 >                        r = (r == null) ? u : reducer.apply(r, u);
5630 >                }
5631 >                result = r;
5632 >                CountedCompleter<?> c;
5633 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5634 >                    @SuppressWarnings("unchecked")
5635 >                    MapReduceEntriesTask<K,V,U>
5636 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5637 >                        s = t.rights;
5638 >                    while (s != null) {
5639 >                        U tr, sr;
5640 >                        if ((sr = s.result) != null)
5641 >                            t.result = (((tr = t.result) == null) ? sr :
5642 >                                        reducer.apply(tr, sr));
5643 >                        s = t.rights = s.nextRight;
5644 >                    }
5645 >                }
5646 >            }
5647 >        }
5648 >    }
5649 >
5650 >    @SuppressWarnings("serial")
5651 >    static final class MapReduceMappingsTask<K,V,U>
5652 >        extends BulkTask<K,V,U> {
5653 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5654 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5655 >        U result;
5656 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5657 >        MapReduceMappingsTask
5658 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5659 >             MapReduceMappingsTask<K,V,U> nextRight,
5660 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5661 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5662 >            super(p, b, i, f, t); this.nextRight = nextRight;
5663 >            this.transformer = transformer;
5664 >            this.reducer = reducer;
5665 >        }
5666 >        public final U getRawResult() { return result; }
5667 >        public final void compute() {
5668 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5669 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5670 >            if ((transformer = this.transformer) != null &&
5671 >                (reducer = this.reducer) != null) {
5672 >                for (int i = baseIndex, f, h; batch > 0 &&
5673 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5674 >                    addToPendingCount(1);
5675 >                    (rights = new MapReduceMappingsTask<K,V,U>
5676 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5677 >                      rights, transformer, reducer)).fork();
5678 >                }
5679 >                U r = null;
5680 >                for (Node<K,V> p; (p = advance()) != null; ) {
5681 >                    U u;
5682 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5683 >                        r = (r == null) ? u : reducer.apply(r, u);
5684 >                }
5685 >                result = r;
5686 >                CountedCompleter<?> c;
5687 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5688 >                    @SuppressWarnings("unchecked")
5689 >                    MapReduceMappingsTask<K,V,U>
5690 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5691 >                        s = t.rights;
5692 >                    while (s != null) {
5693 >                        U tr, sr;
5694 >                        if ((sr = s.result) != null)
5695 >                            t.result = (((tr = t.result) == null) ? sr :
5696 >                                        reducer.apply(tr, sr));
5697 >                        s = t.rights = s.nextRight;
5698 >                    }
5699 >                }
5700 >            }
5701 >        }
5702 >    }
5703 >
5704 >    @SuppressWarnings("serial")
5705 >    static final class MapReduceKeysToDoubleTask<K,V>
5706 >        extends BulkTask<K,V,Double> {
5707 >        final ToDoubleFunction<? super K> transformer;
5708 >        final DoubleBinaryOperator reducer;
5709 >        final double basis;
5710 >        double result;
5711 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5712 >        MapReduceKeysToDoubleTask
5713 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5714 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5715 >             ToDoubleFunction<? super K> transformer,
5716 >             double basis,
5717 >             DoubleBinaryOperator reducer) {
5718 >            super(p, b, i, f, t); this.nextRight = nextRight;
5719 >            this.transformer = transformer;
5720 >            this.basis = basis; this.reducer = reducer;
5721 >        }
5722 >        public final Double getRawResult() { return result; }
5723 >        public final void compute() {
5724 >            final ToDoubleFunction<? super K> transformer;
5725 >            final DoubleBinaryOperator reducer;
5726 >            if ((transformer = this.transformer) != null &&
5727 >                (reducer = this.reducer) != null) {
5728 >                double r = this.basis;
5729 >                for (int i = baseIndex, f, h; batch > 0 &&
5730 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5731 >                    addToPendingCount(1);
5732 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5733 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5734 >                      rights, transformer, r, reducer)).fork();
5735 >                }
5736 >                for (Node<K,V> p; (p = advance()) != null; )
5737 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5738 >                result = r;
5739 >                CountedCompleter<?> c;
5740 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5741 >                    @SuppressWarnings("unchecked")
5742 >                    MapReduceKeysToDoubleTask<K,V>
5743 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5744 >                        s = t.rights;
5745 >                    while (s != null) {
5746 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5747 >                        s = t.rights = s.nextRight;
5748 >                    }
5749 >                }
5750 >            }
5751 >        }
5752 >    }
5753 >
5754 >    @SuppressWarnings("serial")
5755 >    static final class MapReduceValuesToDoubleTask<K,V>
5756 >        extends BulkTask<K,V,Double> {
5757 >        final ToDoubleFunction<? super V> transformer;
5758 >        final DoubleBinaryOperator reducer;
5759 >        final double basis;
5760 >        double result;
5761 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5762 >        MapReduceValuesToDoubleTask
5763 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5764 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5765 >             ToDoubleFunction<? super V> transformer,
5766 >             double basis,
5767 >             DoubleBinaryOperator reducer) {
5768 >            super(p, b, i, f, t); this.nextRight = nextRight;
5769 >            this.transformer = transformer;
5770 >            this.basis = basis; this.reducer = reducer;
5771 >        }
5772 >        public final Double getRawResult() { return result; }
5773 >        public final void compute() {
5774 >            final ToDoubleFunction<? super V> transformer;
5775 >            final DoubleBinaryOperator reducer;
5776 >            if ((transformer = this.transformer) != null &&
5777 >                (reducer = this.reducer) != null) {
5778 >                double r = this.basis;
5779 >                for (int i = baseIndex, f, h; batch > 0 &&
5780 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5781 >                    addToPendingCount(1);
5782 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5783 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5784 >                      rights, transformer, r, reducer)).fork();
5785 >                }
5786 >                for (Node<K,V> p; (p = advance()) != null; )
5787 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5788 >                result = r;
5789 >                CountedCompleter<?> c;
5790 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5791 >                    @SuppressWarnings("unchecked")
5792 >                    MapReduceValuesToDoubleTask<K,V>
5793 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5794 >                        s = t.rights;
5795 >                    while (s != null) {
5796 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5797 >                        s = t.rights = s.nextRight;
5798 >                    }
5799 >                }
5800 >            }
5801 >        }
5802 >    }
5803 >
5804 >    @SuppressWarnings("serial")
5805 >    static final class MapReduceEntriesToDoubleTask<K,V>
5806 >        extends BulkTask<K,V,Double> {
5807 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5808 >        final DoubleBinaryOperator reducer;
5809 >        final double basis;
5810 >        double result;
5811 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5812 >        MapReduceEntriesToDoubleTask
5813 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5814 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5815 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5816 >             double basis,
5817 >             DoubleBinaryOperator reducer) {
5818 >            super(p, b, i, f, t); this.nextRight = nextRight;
5819 >            this.transformer = transformer;
5820 >            this.basis = basis; this.reducer = reducer;
5821 >        }
5822 >        public final Double getRawResult() { return result; }
5823 >        public final void compute() {
5824 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5825 >            final DoubleBinaryOperator reducer;
5826 >            if ((transformer = this.transformer) != null &&
5827 >                (reducer = this.reducer) != null) {
5828 >                double r = this.basis;
5829 >                for (int i = baseIndex, f, h; batch > 0 &&
5830 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5831 >                    addToPendingCount(1);
5832 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5833 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5834 >                      rights, transformer, r, reducer)).fork();
5835 >                }
5836 >                for (Node<K,V> p; (p = advance()) != null; )
5837 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5838 >                result = r;
5839 >                CountedCompleter<?> c;
5840 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5841 >                    @SuppressWarnings("unchecked")
5842 >                    MapReduceEntriesToDoubleTask<K,V>
5843 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5844 >                        s = t.rights;
5845 >                    while (s != null) {
5846 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5847 >                        s = t.rights = s.nextRight;
5848 >                    }
5849 >                }
5850 >            }
5851 >        }
5852 >    }
5853 >
5854 >    @SuppressWarnings("serial")
5855 >    static final class MapReduceMappingsToDoubleTask<K,V>
5856 >        extends BulkTask<K,V,Double> {
5857 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5858 >        final DoubleBinaryOperator reducer;
5859 >        final double basis;
5860 >        double result;
5861 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5862 >        MapReduceMappingsToDoubleTask
5863 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5864 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5865 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5866 >             double basis,
5867 >             DoubleBinaryOperator reducer) {
5868 >            super(p, b, i, f, t); this.nextRight = nextRight;
5869 >            this.transformer = transformer;
5870 >            this.basis = basis; this.reducer = reducer;
5871 >        }
5872 >        public final Double getRawResult() { return result; }
5873 >        public final void compute() {
5874 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5875 >            final DoubleBinaryOperator reducer;
5876 >            if ((transformer = this.transformer) != null &&
5877 >                (reducer = this.reducer) != null) {
5878 >                double r = this.basis;
5879 >                for (int i = baseIndex, f, h; batch > 0 &&
5880 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5881 >                    addToPendingCount(1);
5882 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5883 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5884 >                      rights, transformer, r, reducer)).fork();
5885 >                }
5886 >                for (Node<K,V> p; (p = advance()) != null; )
5887 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5888 >                result = r;
5889 >                CountedCompleter<?> c;
5890 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5891 >                    @SuppressWarnings("unchecked")
5892 >                    MapReduceMappingsToDoubleTask<K,V>
5893 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5894 >                        s = t.rights;
5895 >                    while (s != null) {
5896 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5897 >                        s = t.rights = s.nextRight;
5898 >                    }
5899 >                }
5900 >            }
5901 >        }
5902 >    }
5903 >
5904 >    @SuppressWarnings("serial")
5905 >    static final class MapReduceKeysToLongTask<K,V>
5906 >        extends BulkTask<K,V,Long> {
5907 >        final ToLongFunction<? super K> transformer;
5908 >        final LongBinaryOperator reducer;
5909 >        final long basis;
5910 >        long result;
5911 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5912 >        MapReduceKeysToLongTask
5913 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5914 >             MapReduceKeysToLongTask<K,V> nextRight,
5915 >             ToLongFunction<? super K> transformer,
5916 >             long basis,
5917 >             LongBinaryOperator reducer) {
5918 >            super(p, b, i, f, t); this.nextRight = nextRight;
5919 >            this.transformer = transformer;
5920 >            this.basis = basis; this.reducer = reducer;
5921 >        }
5922 >        public final Long getRawResult() { return result; }
5923 >        public final void compute() {
5924 >            final ToLongFunction<? super K> transformer;
5925 >            final LongBinaryOperator reducer;
5926 >            if ((transformer = this.transformer) != null &&
5927 >                (reducer = this.reducer) != null) {
5928 >                long r = this.basis;
5929 >                for (int i = baseIndex, f, h; batch > 0 &&
5930 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5931 >                    addToPendingCount(1);
5932 >                    (rights = new MapReduceKeysToLongTask<K,V>
5933 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5934 >                      rights, transformer, r, reducer)).fork();
5935 >                }
5936 >                for (Node<K,V> p; (p = advance()) != null; )
5937 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5938 >                result = r;
5939 >                CountedCompleter<?> c;
5940 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 >                    @SuppressWarnings("unchecked")
5942 >                    MapReduceKeysToLongTask<K,V>
5943 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5944 >                        s = t.rights;
5945 >                    while (s != null) {
5946 >                        t.result = reducer.applyAsLong(t.result, s.result);
5947 >                        s = t.rights = s.nextRight;
5948 >                    }
5949 >                }
5950 >            }
5951 >        }
5952 >    }
5953 >
5954 >    @SuppressWarnings("serial")
5955 >    static final class MapReduceValuesToLongTask<K,V>
5956 >        extends BulkTask<K,V,Long> {
5957 >        final ToLongFunction<? super V> transformer;
5958 >        final LongBinaryOperator reducer;
5959 >        final long basis;
5960 >        long result;
5961 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5962 >        MapReduceValuesToLongTask
5963 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5964 >             MapReduceValuesToLongTask<K,V> nextRight,
5965 >             ToLongFunction<? super V> transformer,
5966 >             long basis,
5967 >             LongBinaryOperator reducer) {
5968 >            super(p, b, i, f, t); this.nextRight = nextRight;
5969 >            this.transformer = transformer;
5970 >            this.basis = basis; this.reducer = reducer;
5971 >        }
5972 >        public final Long getRawResult() { return result; }
5973 >        public final void compute() {
5974 >            final ToLongFunction<? super V> transformer;
5975 >            final LongBinaryOperator reducer;
5976 >            if ((transformer = this.transformer) != null &&
5977 >                (reducer = this.reducer) != null) {
5978 >                long r = this.basis;
5979 >                for (int i = baseIndex, f, h; batch > 0 &&
5980 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5981 >                    addToPendingCount(1);
5982 >                    (rights = new MapReduceValuesToLongTask<K,V>
5983 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5984 >                      rights, transformer, r, reducer)).fork();
5985 >                }
5986 >                for (Node<K,V> p; (p = advance()) != null; )
5987 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5988 >                result = r;
5989 >                CountedCompleter<?> c;
5990 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 >                    @SuppressWarnings("unchecked")
5992 >                    MapReduceValuesToLongTask<K,V>
5993 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5994 >                        s = t.rights;
5995 >                    while (s != null) {
5996 >                        t.result = reducer.applyAsLong(t.result, s.result);
5997 >                        s = t.rights = s.nextRight;
5998 >                    }
5999 >                }
6000 >            }
6001 >        }
6002 >    }
6003 >
6004 >    @SuppressWarnings("serial")
6005 >    static final class MapReduceEntriesToLongTask<K,V>
6006 >        extends BulkTask<K,V,Long> {
6007 >        final ToLongFunction<Map.Entry<K,V>> transformer;
6008 >        final LongBinaryOperator reducer;
6009 >        final long basis;
6010 >        long result;
6011 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6012 >        MapReduceEntriesToLongTask
6013 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6014 >             MapReduceEntriesToLongTask<K,V> nextRight,
6015 >             ToLongFunction<Map.Entry<K,V>> transformer,
6016 >             long basis,
6017 >             LongBinaryOperator reducer) {
6018 >            super(p, b, i, f, t); this.nextRight = nextRight;
6019 >            this.transformer = transformer;
6020 >            this.basis = basis; this.reducer = reducer;
6021 >        }
6022 >        public final Long getRawResult() { return result; }
6023 >        public final void compute() {
6024 >            final ToLongFunction<Map.Entry<K,V>> transformer;
6025 >            final LongBinaryOperator reducer;
6026 >            if ((transformer = this.transformer) != null &&
6027 >                (reducer = this.reducer) != null) {
6028 >                long r = this.basis;
6029 >                for (int i = baseIndex, f, h; batch > 0 &&
6030 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6031 >                    addToPendingCount(1);
6032 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6033 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6034 >                      rights, transformer, r, reducer)).fork();
6035 >                }
6036 >                for (Node<K,V> p; (p = advance()) != null; )
6037 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6038 >                result = r;
6039 >                CountedCompleter<?> c;
6040 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6041 >                    @SuppressWarnings("unchecked")
6042 >                    MapReduceEntriesToLongTask<K,V>
6043 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6044 >                        s = t.rights;
6045 >                    while (s != null) {
6046 >                        t.result = reducer.applyAsLong(t.result, s.result);
6047 >                        s = t.rights = s.nextRight;
6048 >                    }
6049 >                }
6050 >            }
6051 >        }
6052 >    }
6053 >
6054 >    @SuppressWarnings("serial")
6055 >    static final class MapReduceMappingsToLongTask<K,V>
6056 >        extends BulkTask<K,V,Long> {
6057 >        final ToLongBiFunction<? super K, ? super V> transformer;
6058 >        final LongBinaryOperator reducer;
6059 >        final long basis;
6060 >        long result;
6061 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6062 >        MapReduceMappingsToLongTask
6063 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6064 >             MapReduceMappingsToLongTask<K,V> nextRight,
6065 >             ToLongBiFunction<? super K, ? super V> transformer,
6066 >             long basis,
6067 >             LongBinaryOperator reducer) {
6068 >            super(p, b, i, f, t); this.nextRight = nextRight;
6069 >            this.transformer = transformer;
6070 >            this.basis = basis; this.reducer = reducer;
6071 >        }
6072 >        public final Long getRawResult() { return result; }
6073 >        public final void compute() {
6074 >            final ToLongBiFunction<? super K, ? super V> transformer;
6075 >            final LongBinaryOperator reducer;
6076 >            if ((transformer = this.transformer) != null &&
6077 >                (reducer = this.reducer) != null) {
6078 >                long r = this.basis;
6079 >                for (int i = baseIndex, f, h; batch > 0 &&
6080 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6081 >                    addToPendingCount(1);
6082 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6083 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6084 >                      rights, transformer, r, reducer)).fork();
6085 >                }
6086 >                for (Node<K,V> p; (p = advance()) != null; )
6087 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6088 >                result = r;
6089 >                CountedCompleter<?> c;
6090 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6091 >                    @SuppressWarnings("unchecked")
6092 >                    MapReduceMappingsToLongTask<K,V>
6093 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6094 >                        s = t.rights;
6095 >                    while (s != null) {
6096 >                        t.result = reducer.applyAsLong(t.result, s.result);
6097 >                        s = t.rights = s.nextRight;
6098 >                    }
6099 >                }
6100 >            }
6101 >        }
6102 >    }
6103 >
6104 >    @SuppressWarnings("serial")
6105 >    static final class MapReduceKeysToIntTask<K,V>
6106 >        extends BulkTask<K,V,Integer> {
6107 >        final ToIntFunction<? super K> transformer;
6108 >        final IntBinaryOperator reducer;
6109 >        final int basis;
6110 >        int result;
6111 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6112 >        MapReduceKeysToIntTask
6113 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6114 >             MapReduceKeysToIntTask<K,V> nextRight,
6115 >             ToIntFunction<? super K> transformer,
6116 >             int basis,
6117 >             IntBinaryOperator reducer) {
6118 >            super(p, b, i, f, t); this.nextRight = nextRight;
6119 >            this.transformer = transformer;
6120 >            this.basis = basis; this.reducer = reducer;
6121 >        }
6122 >        public final Integer getRawResult() { return result; }
6123 >        public final void compute() {
6124 >            final ToIntFunction<? super K> transformer;
6125 >            final IntBinaryOperator reducer;
6126 >            if ((transformer = this.transformer) != null &&
6127 >                (reducer = this.reducer) != null) {
6128 >                int r = this.basis;
6129 >                for (int i = baseIndex, f, h; batch > 0 &&
6130 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6131 >                    addToPendingCount(1);
6132 >                    (rights = new MapReduceKeysToIntTask<K,V>
6133 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6134 >                      rights, transformer, r, reducer)).fork();
6135 >                }
6136 >                for (Node<K,V> p; (p = advance()) != null; )
6137 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6138 >                result = r;
6139 >                CountedCompleter<?> c;
6140 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6141 >                    @SuppressWarnings("unchecked")
6142 >                    MapReduceKeysToIntTask<K,V>
6143 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6144 >                        s = t.rights;
6145 >                    while (s != null) {
6146 >                        t.result = reducer.applyAsInt(t.result, s.result);
6147 >                        s = t.rights = s.nextRight;
6148 >                    }
6149 >                }
6150 >            }
6151 >        }
6152 >    }
6153 >
6154 >    @SuppressWarnings("serial")
6155 >    static final class MapReduceValuesToIntTask<K,V>
6156 >        extends BulkTask<K,V,Integer> {
6157 >        final ToIntFunction<? super V> transformer;
6158 >        final IntBinaryOperator reducer;
6159 >        final int basis;
6160 >        int result;
6161 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6162 >        MapReduceValuesToIntTask
6163 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6164 >             MapReduceValuesToIntTask<K,V> nextRight,
6165 >             ToIntFunction<? super V> transformer,
6166 >             int basis,
6167 >             IntBinaryOperator reducer) {
6168 >            super(p, b, i, f, t); this.nextRight = nextRight;
6169 >            this.transformer = transformer;
6170 >            this.basis = basis; this.reducer = reducer;
6171 >        }
6172 >        public final Integer getRawResult() { return result; }
6173 >        public final void compute() {
6174 >            final ToIntFunction<? super V> transformer;
6175 >            final IntBinaryOperator reducer;
6176 >            if ((transformer = this.transformer) != null &&
6177 >                (reducer = this.reducer) != null) {
6178 >                int r = this.basis;
6179 >                for (int i = baseIndex, f, h; batch > 0 &&
6180 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6181 >                    addToPendingCount(1);
6182 >                    (rights = new MapReduceValuesToIntTask<K,V>
6183 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6184 >                      rights, transformer, r, reducer)).fork();
6185 >                }
6186 >                for (Node<K,V> p; (p = advance()) != null; )
6187 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6188 >                result = r;
6189 >                CountedCompleter<?> c;
6190 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6191 >                    @SuppressWarnings("unchecked")
6192 >                    MapReduceValuesToIntTask<K,V>
6193 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6194 >                        s = t.rights;
6195 >                    while (s != null) {
6196 >                        t.result = reducer.applyAsInt(t.result, s.result);
6197 >                        s = t.rights = s.nextRight;
6198 >                    }
6199 >                }
6200 >            }
6201 >        }
6202 >    }
6203 >
6204 >    @SuppressWarnings("serial")
6205 >    static final class MapReduceEntriesToIntTask<K,V>
6206 >        extends BulkTask<K,V,Integer> {
6207 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6208 >        final IntBinaryOperator reducer;
6209 >        final int basis;
6210 >        int result;
6211 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6212 >        MapReduceEntriesToIntTask
6213 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6214 >             MapReduceEntriesToIntTask<K,V> nextRight,
6215 >             ToIntFunction<Map.Entry<K,V>> transformer,
6216 >             int basis,
6217 >             IntBinaryOperator reducer) {
6218 >            super(p, b, i, f, t); this.nextRight = nextRight;
6219 >            this.transformer = transformer;
6220 >            this.basis = basis; this.reducer = reducer;
6221 >        }
6222 >        public final Integer getRawResult() { return result; }
6223 >        public final void compute() {
6224 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6225 >            final IntBinaryOperator reducer;
6226 >            if ((transformer = this.transformer) != null &&
6227 >                (reducer = this.reducer) != null) {
6228 >                int r = this.basis;
6229 >                for (int i = baseIndex, f, h; batch > 0 &&
6230 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6231 >                    addToPendingCount(1);
6232 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6233 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6234 >                      rights, transformer, r, reducer)).fork();
6235 >                }
6236 >                for (Node<K,V> p; (p = advance()) != null; )
6237 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6238 >                result = r;
6239 >                CountedCompleter<?> c;
6240 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6241 >                    @SuppressWarnings("unchecked")
6242 >                    MapReduceEntriesToIntTask<K,V>
6243 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6244 >                        s = t.rights;
6245 >                    while (s != null) {
6246 >                        t.result = reducer.applyAsInt(t.result, s.result);
6247 >                        s = t.rights = s.nextRight;
6248 >                    }
6249 >                }
6250 >            }
6251 >        }
6252 >    }
6253 >
6254 >    @SuppressWarnings("serial")
6255 >    static final class MapReduceMappingsToIntTask<K,V>
6256 >        extends BulkTask<K,V,Integer> {
6257 >        final ToIntBiFunction<? super K, ? super V> transformer;
6258 >        final IntBinaryOperator reducer;
6259 >        final int basis;
6260 >        int result;
6261 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6262 >        MapReduceMappingsToIntTask
6263 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6264 >             MapReduceMappingsToIntTask<K,V> nextRight,
6265 >             ToIntBiFunction<? super K, ? super V> transformer,
6266 >             int basis,
6267 >             IntBinaryOperator reducer) {
6268 >            super(p, b, i, f, t); this.nextRight = nextRight;
6269 >            this.transformer = transformer;
6270 >            this.basis = basis; this.reducer = reducer;
6271 >        }
6272 >        public final Integer getRawResult() { return result; }
6273 >        public final void compute() {
6274 >            final ToIntBiFunction<? super K, ? super V> transformer;
6275 >            final IntBinaryOperator reducer;
6276 >            if ((transformer = this.transformer) != null &&
6277 >                (reducer = this.reducer) != null) {
6278 >                int r = this.basis;
6279 >                for (int i = baseIndex, f, h; batch > 0 &&
6280 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6281 >                    addToPendingCount(1);
6282 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6283 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6284 >                      rights, transformer, r, reducer)).fork();
6285 >                }
6286 >                for (Node<K,V> p; (p = advance()) != null; )
6287 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6288 >                result = r;
6289 >                CountedCompleter<?> c;
6290 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6291 >                    @SuppressWarnings("unchecked")
6292 >                    MapReduceMappingsToIntTask<K,V>
6293 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6294 >                        s = t.rights;
6295 >                    while (s != null) {
6296 >                        t.result = reducer.applyAsInt(t.result, s.result);
6297 >                        s = t.rights = s.nextRight;
6298 >                    }
6299 >                }
6300 >            }
6301          }
6302      }
6303  
6304      // Unsafe mechanics
6305 <    private static final sun.misc.Unsafe UNSAFE;
6306 <    private static final long SBASE;
6307 <    private static final int SSHIFT;
6308 <    private static final long TBASE;
6309 <    private static final int TSHIFT;
6305 >    private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6306 >    private static final long SIZECTL;
6307 >    private static final long TRANSFERINDEX;
6308 >    private static final long BASECOUNT;
6309 >    private static final long CELLSBUSY;
6310 >    private static final long CELLVALUE;
6311 >    private static final int ABASE;
6312 >    private static final int ASHIFT;
6313  
6314      static {
1466        int ss, ts;
6315          try {
6316 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6317 <            Class tc = HashEntry[].class;
6318 <            Class sc = Segment[].class;
6319 <            TBASE = UNSAFE.arrayBaseOffset(tc);
6320 <            SBASE = UNSAFE.arrayBaseOffset(sc);
6321 <            ts = UNSAFE.arrayIndexScale(tc);
6322 <            ss = UNSAFE.arrayIndexScale(sc);
6323 <        } catch (Exception e) {
6316 >            SIZECTL = U.objectFieldOffset
6317 >                (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6318 >            TRANSFERINDEX = U.objectFieldOffset
6319 >                (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6320 >            BASECOUNT = U.objectFieldOffset
6321 >                (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6322 >            CELLSBUSY = U.objectFieldOffset
6323 >                (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6324 >
6325 >            CELLVALUE = U.objectFieldOffset
6326 >                (CounterCell.class.getDeclaredField("value"));
6327 >
6328 >            ABASE = U.arrayBaseOffset(Node[].class);
6329 >            int scale = U.arrayIndexScale(Node[].class);
6330 >            if ((scale & (scale - 1)) != 0)
6331 >                throw new Error("array index scale not a power of two");
6332 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6333 >        } catch (ReflectiveOperationException e) {
6334              throw new Error(e);
6335          }
1478        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1479            throw new Error("data type scale not a power of two");
1480        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1481        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
1482    }
6336  
6337 +        // Reduce the risk of rare disastrous classloading in first call to
6338 +        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6339 +        Class<?> ensureLoaded = LockSupport.class;
6340 +    }
6341   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines