ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.199 by dl, Wed Mar 27 19:46:34 2013 UTC vs.
Revision 1.278 by jsr166, Sat Sep 12 21:55:08 2015 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.Spliterator;
11 import java.util.stream.Stream;
12 import java.util.stream.Streams;
13 import java.util.function.*;
14 import java.util.function.Consumer;
15 import java.util.function.Function;
16 import java.util.function.BiFunction;
8  
9 < import java.util.Comparator;
9 > import java.io.ObjectStreamField;
10 > import java.io.Serializable;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14   import java.util.Arrays;
20 import java.util.Map;
21 import java.util.Set;
15   import java.util.Collection;
16 < import java.util.AbstractMap;
24 < import java.util.AbstractSet;
25 < import java.util.AbstractCollection;
26 < import java.util.Hashtable;
16 > import java.util.Enumeration;
17   import java.util.HashMap;
18 + import java.util.Hashtable;
19   import java.util.Iterator;
20 < import java.util.Enumeration;
30 < import java.util.ConcurrentModificationException;
20 > import java.util.Map;
21   import java.util.NoSuchElementException;
22 < import java.util.concurrent.ConcurrentMap;
23 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
34 < import java.util.concurrent.atomic.AtomicInteger;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24   import java.util.concurrent.atomic.AtomicReference;
25 < import java.io.Serializable;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42  
43   /**
44   * A hash table supporting full concurrency of retrievals and
# Line 56 | Line 61 | import java.io.Serializable;
61   * that key reporting the updated value.)  For aggregate operations
62   * such as {@code putAll} and {@code clear}, concurrent retrievals may
63   * reflect insertion or removal of only some entries.  Similarly,
64 < * Iterators and Enumerations return elements reflecting the state of
65 < * the hash table at some point at or since the creation of the
64 > * Iterators, Spliterators and Enumerations return elements reflecting the
65 > * state of the hash table at some point at or since the creation of the
66   * iterator/enumeration.  They do <em>not</em> throw {@link
67 < * ConcurrentModificationException}.  However, iterators are designed
68 < * to be used by only one thread at a time.  Bear in mind that the
69 < * results of aggregate status methods including {@code size}, {@code
70 < * isEmpty}, and {@code containsValue} are typically useful only when
71 < * a map is not undergoing concurrent updates in other threads.
67 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
68 > * However, iterators are designed to be used by only one thread at a time.
69 > * Bear in mind that the results of aggregate status methods including
70 > * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 > * useful only when a map is not undergoing concurrent updates in other threads.
72   * Otherwise the results of these methods reflect transient states
73   * that may be adequate for monitoring or estimation purposes, but not
74   * for program control.
# Line 87 | Line 92 | import java.io.Serializable;
92   * expected {@code concurrencyLevel} as an additional hint for
93   * internal sizing.  Note that using many keys with exactly the same
94   * {@code hashCode()} is a sure way to slow down performance of any
95 < * hash table.
95 > * hash table. To ameliorate impact, when keys are {@link Comparable},
96 > * this class may use comparison order among keys to help break ties.
97   *
98   * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 95 | Line 101 | import java.io.Serializable;
101   * mapped values are (perhaps transiently) not used or all take the
102   * same mapping value.
103   *
104 < * <p>A ConcurrentHashMap can be used as scalable frequency map (a
104 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105   * form of histogram or multiset) by using {@link
106   * java.util.concurrent.atomic.LongAdder} values and initializing via
107   * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108   * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 < * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
109 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110   *
111   * <p>This class and its views and iterators implement all of the
112   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
# Line 109 | Line 115 | import java.io.Serializable;
115   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116   * does <em>not</em> allow {@code null} to be used as a key or value.
117   *
118 < * <p>ConcurrentHashMaps support sequential and parallel operations
119 < * bulk operations. (Parallel forms use the {@link
120 < * ForkJoinPool#commonPool()}). Tasks that may be used in other
121 < * contexts are available in class {@link ForkJoinTasks}. These
122 < * operations are designed to be safely, and often sensibly, applied
123 < * even with maps that are being concurrently updated by other
124 < * threads; for example, when computing a snapshot summary of the
125 < * values in a shared registry.  There are three kinds of operation,
126 < * each with four forms, accepting functions with Keys, Values,
127 < * Entries, and (Key, Value) arguments and/or return values. Because
128 < * the elements of a ConcurrentHashMap are not ordered in any
129 < * particular way, and may be processed in different orders in
130 < * different parallel executions, the correctness of supplied
131 < * functions should not depend on any ordering, or on any other
132 < * objects or values that may transiently change while computation is
133 < * in progress; and except for forEach actions, should ideally be
128 < * side-effect-free.
118 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 > * operations that, unlike most {@link Stream} methods, are designed
120 > * to be safely, and often sensibly, applied even with maps that are
121 > * being concurrently updated by other threads; for example, when
122 > * computing a snapshot summary of the values in a shared registry.
123 > * There are three kinds of operation, each with four forms, accepting
124 > * functions with keys, values, entries, and (key, value) pairs as
125 > * arguments and/or return values. Because the elements of a
126 > * ConcurrentHashMap are not ordered in any particular way, and may be
127 > * processed in different orders in different parallel executions, the
128 > * correctness of supplied functions should not depend on any
129 > * ordering, or on any other objects or values that may transiently
130 > * change while computation is in progress; and except for forEach
131 > * actions, should ideally be side-effect-free. Bulk operations on
132 > * {@link java.util.Map.Entry} objects do not support method {@code
133 > * setValue}.
134   *
135   * <ul>
136   * <li> forEach: Perform a given action on each element.
# Line 156 | Line 161 | import java.io.Serializable;
161   * </li>
162   * </ul>
163   *
164 + * <p>These bulk operations accept a {@code parallelismThreshold}
165 + * argument. Methods proceed sequentially if the current map size is
166 + * estimated to be less than the given threshold. Using a value of
167 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
168 + * of {@code 1} results in maximal parallelism by partitioning into
169 + * enough subtasks to fully utilize the {@link
170 + * ForkJoinPool#commonPool()} that is used for all parallel
171 + * computations. Normally, you would initially choose one of these
172 + * extreme values, and then measure performance of using in-between
173 + * values that trade off overhead versus throughput.
174 + *
175   * <p>The concurrency properties of bulk operations follow
176   * from those of ConcurrentHashMap: Any non-null result returned
177   * from {@code get(key)} and related access methods bears a
# Line 217 | Line 233 | import java.io.Serializable;
233   * @param <K> the type of keys maintained by this map
234   * @param <V> the type of mapped values
235   */
236 < public class ConcurrentHashMap<K,V>
236 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
237      implements ConcurrentMap<K,V>, Serializable {
238      private static final long serialVersionUID = 7249069246763182397L;
239  
# Line 231 | Line 247 | public class ConcurrentHashMap<K,V>
247       * the same or better than java.util.HashMap, and to support high
248       * initial insertion rates on an empty table by many threads.
249       *
250 <     * Each key-value mapping is held in a Node.  Because Node key
251 <     * fields can contain special values, they are defined using plain
252 <     * Object types (not type "K"). This leads to a lot of explicit
253 <     * casting (and many explicit warning suppressions to tell
254 <     * compilers not to complain about it). It also allows some of the
255 <     * public methods to be factored into a smaller number of internal
256 <     * methods (although sadly not so for the five variants of
257 <     * put-related operations). The validation-based approach
258 <     * explained below leads to a lot of code sprawl because
259 <     * retry-control precludes factoring into smaller methods.
250 >     * This map usually acts as a binned (bucketed) hash table.  Each
251 >     * key-value mapping is held in a Node.  Most nodes are instances
252 >     * of the basic Node class with hash, key, value, and next
253 >     * fields. However, various subclasses exist: TreeNodes are
254 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
255 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
256 >     * of bins during resizing. ReservationNodes are used as
257 >     * placeholders while establishing values in computeIfAbsent and
258 >     * related methods.  The types TreeBin, ForwardingNode, and
259 >     * ReservationNode do not hold normal user keys, values, or
260 >     * hashes, and are readily distinguishable during search etc
261 >     * because they have negative hash fields and null key and value
262 >     * fields. (These special nodes are either uncommon or transient,
263 >     * so the impact of carrying around some unused fields is
264 >     * insignificant.)
265       *
266       * The table is lazily initialized to a power-of-two size upon the
267       * first insertion.  Each bin in the table normally contains a
# Line 248 | Line 269 | public class ConcurrentHashMap<K,V>
269       * Table accesses require volatile/atomic reads, writes, and
270       * CASes.  Because there is no other way to arrange this without
271       * adding further indirections, we use intrinsics
272 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
252 <     * are always accurately traversable under volatile reads, so long
253 <     * as lookups check hash code and non-nullness of value before
254 <     * checking key equality.
272 >     * (sun.misc.Unsafe) operations.
273       *
274       * We use the top (sign) bit of Node hash fields for control
275       * purposes -- it is available anyway because of addressing
276 <     * constraints.  Nodes with negative hash fields are forwarding
277 <     * nodes to either TreeBins or resized tables.  The lower 31 bits
260 <     * of each normal Node's hash field contain a transformation of
261 <     * the key's hash code.
276 >     * constraints.  Nodes with negative hash fields are specially
277 >     * handled or ignored in map methods.
278       *
279       * Insertion (via put or its variants) of the first node in an
280       * empty bin is performed by just CASing it to the bin.  This is
# Line 275 | Line 291 | public class ConcurrentHashMap<K,V>
291       * validate that it is still the first node after locking it, and
292       * retry if not. Because new nodes are always appended to lists,
293       * once a node is first in a bin, it remains first until deleted
294 <     * or the bin becomes invalidated (upon resizing).  However,
279 <     * operations that only conditionally update may inspect nodes
280 <     * until the point of update. This is a converse of sorts to the
281 <     * lazy locking technique described by Herlihy & Shavit.
294 >     * or the bin becomes invalidated (upon resizing).
295       *
296       * The main disadvantage of per-bin locks is that other update
297       * operations on other nodes in a bin list protected by the same
# Line 311 | Line 324 | public class ConcurrentHashMap<K,V>
324       * sometimes deviate significantly from uniform randomness.  This
325       * includes the case when N > (1<<30), so some keys MUST collide.
326       * Similarly for dumb or hostile usages in which multiple keys are
327 <     * designed to have identical hash codes. Also, although we guard
328 <     * against the worst effects of this (see method spread), sets of
329 <     * hashes may differ only in bits that do not impact their bin
330 <     * index for a given power-of-two mask.  So we use a secondary
331 <     * strategy that applies when the number of nodes in a bin exceeds
332 <     * a threshold, and at least one of the keys implements
320 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
321 <     * (a specialized form of red-black trees), bounding search time
322 <     * to O(log N).  Each search step in a TreeBin is around twice as
327 >     * designed to have identical hash codes or ones that differs only
328 >     * in masked-out high bits. So we use a secondary strategy that
329 >     * applies when the number of nodes in a bin exceeds a
330 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
331 >     * specialized form of red-black trees), bounding search time to
332 >     * O(log N).  Each search step in a TreeBin is at least twice as
333       * slow as in a regular list, but given that N cannot exceed
334       * (1<<64) (before running out of addresses) this bounds search
335       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 332 | Line 342 | public class ConcurrentHashMap<K,V>
342       * The table is resized when occupancy exceeds a percentage
343       * threshold (nominally, 0.75, but see below).  Any thread
344       * noticing an overfull bin may assist in resizing after the
345 <     * initiating thread allocates and sets up the replacement
346 <     * array. However, rather than stalling, these other threads may
347 <     * proceed with insertions etc.  The use of TreeBins shields us
348 <     * from the worst case effects of overfilling while resizes are in
345 >     * initiating thread allocates and sets up the replacement array.
346 >     * However, rather than stalling, these other threads may proceed
347 >     * with insertions etc.  The use of TreeBins shields us from the
348 >     * worst case effects of overfilling while resizes are in
349       * progress.  Resizing proceeds by transferring bins, one by one,
350 <     * from the table to the next table. To enable concurrency, the
351 <     * next table must be (incrementally) prefilled with place-holders
352 <     * serving as reverse forwarders to the old table.  Because we are
350 >     * from the table to the next table. However, threads claim small
351 >     * blocks of indices to transfer (via field transferIndex) before
352 >     * doing so, reducing contention.  A generation stamp in field
353 >     * sizeCtl ensures that resizings do not overlap. Because we are
354       * using power-of-two expansion, the elements from each bin must
355       * either stay at same index, or move with a power of two
356       * offset. We eliminate unnecessary node creation by catching
# Line 360 | Line 371 | public class ConcurrentHashMap<K,V>
371       * locks, average aggregate waits become shorter as resizing
372       * progresses.  The transfer operation must also ensure that all
373       * accessible bins in both the old and new table are usable by any
374 <     * traversal.  This is arranged by proceeding from the last bin
375 <     * (table.length - 1) up towards the first.  Upon seeing a
376 <     * forwarding node, traversals (see class Traverser) arrange to
377 <     * move to the new table without revisiting nodes.  However, to
378 <     * ensure that no intervening nodes are skipped, bin splitting can
379 <     * only begin after the associated reverse-forwarders are in
380 <     * place.
374 >     * traversal.  This is arranged in part by proceeding from the
375 >     * last bin (table.length - 1) up towards the first.  Upon seeing
376 >     * a forwarding node, traversals (see class Traverser) arrange to
377 >     * move to the new table without revisiting nodes.  To ensure that
378 >     * no intervening nodes are skipped even when moved out of order,
379 >     * a stack (see class TableStack) is created on first encounter of
380 >     * a forwarding node during a traversal, to maintain its place if
381 >     * later processing the current table. The need for these
382 >     * save/restore mechanics is relatively rare, but when one
383 >     * forwarding node is encountered, typically many more will be.
384 >     * So Traversers use a simple caching scheme to avoid creating so
385 >     * many new TableStack nodes. (Thanks to Peter Levart for
386 >     * suggesting use of a stack here.)
387       *
388       * The traversal scheme also applies to partial traversals of
389       * ranges of bins (via an alternate Traverser constructor)
# Line 385 | Line 402 | public class ConcurrentHashMap<K,V>
402       * LongAdder. We need to incorporate a specialization rather than
403       * just use a LongAdder in order to access implicit
404       * contention-sensing that leads to creation of multiple
405 <     * Cells.  The counter mechanics avoid contention on
405 >     * CounterCells.  The counter mechanics avoid contention on
406       * updates but can encounter cache thrashing if read too
407       * frequently during concurrent access. To avoid reading so often,
408       * resizing under contention is attempted only upon adding to a
409       * bin already holding two or more nodes. Under uniform hash
410       * distributions, the probability of this occurring at threshold
411       * is around 13%, meaning that only about 1 in 8 puts check
412 <     * threshold (and after resizing, many fewer do so). The bulk
413 <     * putAll operation further reduces contention by only committing
414 <     * count updates upon these size checks.
412 >     * threshold (and after resizing, many fewer do so).
413 >     *
414 >     * TreeBins use a special form of comparison for search and
415 >     * related operations (which is the main reason we cannot use
416 >     * existing collections such as TreeMaps). TreeBins contain
417 >     * Comparable elements, but may contain others, as well as
418 >     * elements that are Comparable but not necessarily Comparable for
419 >     * the same T, so we cannot invoke compareTo among them. To handle
420 >     * this, the tree is ordered primarily by hash value, then by
421 >     * Comparable.compareTo order if applicable.  On lookup at a node,
422 >     * if elements are not comparable or compare as 0 then both left
423 >     * and right children may need to be searched in the case of tied
424 >     * hash values. (This corresponds to the full list search that
425 >     * would be necessary if all elements were non-Comparable and had
426 >     * tied hashes.) On insertion, to keep a total ordering (or as
427 >     * close as is required here) across rebalancings, we compare
428 >     * classes and identityHashCodes as tie-breakers. The red-black
429 >     * balancing code is updated from pre-jdk-collections
430 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432 >     * Algorithms" (CLR).
433 >     *
434 >     * TreeBins also require an additional locking mechanism.  While
435 >     * list traversal is always possible by readers even during
436 >     * updates, tree traversal is not, mainly because of tree-rotations
437 >     * that may change the root node and/or its linkages.  TreeBins
438 >     * include a simple read-write lock mechanism parasitic on the
439 >     * main bin-synchronization strategy: Structural adjustments
440 >     * associated with an insertion or removal are already bin-locked
441 >     * (and so cannot conflict with other writers) but must wait for
442 >     * ongoing readers to finish. Since there can be only one such
443 >     * waiter, we use a simple scheme using a single "waiter" field to
444 >     * block writers.  However, readers need never block.  If the root
445 >     * lock is held, they proceed along the slow traversal path (via
446 >     * next-pointers) until the lock becomes available or the list is
447 >     * exhausted, whichever comes first. These cases are not fast, but
448 >     * maximize aggregate expected throughput.
449       *
450       * Maintaining API and serialization compatibility with previous
451       * versions of this class introduces several oddities. Mainly: We
452 <     * leave untouched but unused constructor arguments refering to
452 >     * leave untouched but unused constructor arguments referring to
453       * concurrencyLevel. We accept a loadFactor constructor argument,
454       * but apply it only to initial table capacity (which is the only
455       * time that we can guarantee to honor it.) We also declare an
456       * unused "Segment" class that is instantiated in minimal form
457       * only when serializing.
458 +     *
459 +     * Also, solely for compatibility with previous versions of this
460 +     * class, it extends AbstractMap, even though all of its methods
461 +     * are overridden, so it is just useless baggage.
462 +     *
463 +     * This file is organized to make things a little easier to follow
464 +     * while reading than they might otherwise: First the main static
465 +     * declarations and utilities, then fields, then main public
466 +     * methods (with a few factorings of multiple public methods into
467 +     * internal ones), then sizing methods, trees, traversers, and
468 +     * bulk operations.
469       */
470  
471      /* ---------------- Constants -------------- */
# Line 446 | Line 508 | public class ConcurrentHashMap<K,V>
508  
509      /**
510       * The bin count threshold for using a tree rather than list for a
511 <     * bin.  The value reflects the approximate break-even point for
512 <     * using tree-based operations.
511 >     * bin.  Bins are converted to trees when adding an element to a
512 >     * bin with at least this many nodes. The value must be greater
513 >     * than 2, and should be at least 8 to mesh with assumptions in
514 >     * tree removal about conversion back to plain bins upon
515 >     * shrinkage.
516       */
517 <    private static final int TREE_THRESHOLD = 8;
517 >    static final int TREEIFY_THRESHOLD = 8;
518 >
519 >    /**
520 >     * The bin count threshold for untreeifying a (split) bin during a
521 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522 >     * most 6 to mesh with shrinkage detection under removal.
523 >     */
524 >    static final int UNTREEIFY_THRESHOLD = 6;
525 >
526 >    /**
527 >     * The smallest table capacity for which bins may be treeified.
528 >     * (Otherwise the table is resized if too many nodes in a bin.)
529 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530 >     * conflicts between resizing and treeification thresholds.
531 >     */
532 >    static final int MIN_TREEIFY_CAPACITY = 64;
533  
534      /**
535       * Minimum number of rebinnings per transfer step. Ranges are
# Line 460 | Line 540 | public class ConcurrentHashMap<K,V>
540       */
541      private static final int MIN_TRANSFER_STRIDE = 16;
542  
543 +    /**
544 +     * The number of bits used for generation stamp in sizeCtl.
545 +     * Must be at least 6 for 32bit arrays.
546 +     */
547 +    private static int RESIZE_STAMP_BITS = 16;
548 +
549 +    /**
550 +     * The maximum number of threads that can help resize.
551 +     * Must fit in 32 - RESIZE_STAMP_BITS bits.
552 +     */
553 +    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
554 +
555 +    /**
556 +     * The bit shift for recording size stamp in sizeCtl.
557 +     */
558 +    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
559 +
560      /*
561       * Encodings for Node hash fields. See above for explanation.
562       */
563 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
563 >    static final int MOVED     = -1; // hash for forwarding nodes
564 >    static final int TREEBIN   = -2; // hash for roots of trees
565 >    static final int RESERVED  = -3; // hash for transient reservations
566      static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
567  
568      /** Number of CPUS, to place bounds on some sizings */
569      static final int NCPU = Runtime.getRuntime().availableProcessors();
570  
571 <    /* ---------------- Counters -------------- */
571 >    /** For serialization compatibility. */
572 >    private static final ObjectStreamField[] serialPersistentFields = {
573 >        new ObjectStreamField("segments", Segment[].class),
574 >        new ObjectStreamField("segmentMask", Integer.TYPE),
575 >        new ObjectStreamField("segmentShift", Integer.TYPE)
576 >    };
577  
578 <    // Adapted from LongAdder and Striped64.
475 <    // See their internal docs for explanation.
578 >    /* ---------------- Nodes -------------- */
579  
580 <    // A padded cell for distributing counts
581 <    static final class Cell {
582 <        volatile long p0, p1, p2, p3, p4, p5, p6;
583 <        volatile long value;
584 <        volatile long q0, q1, q2, q3, q4, q5, q6;
585 <        Cell(long x) { value = x; }
580 >    /**
581 >     * Key-value entry.  This class is never exported out as a
582 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
583 >     * MapEntry below), but can be used for read-only traversals used
584 >     * in bulk tasks.  Subclasses of Node with a negative hash field
585 >     * are special, and contain null keys and values (but are never
586 >     * exported).  Otherwise, keys and vals are never null.
587 >     */
588 >    static class Node<K,V> implements Map.Entry<K,V> {
589 >        final int hash;
590 >        final K key;
591 >        volatile V val;
592 >        volatile Node<K,V> next;
593 >
594 >        Node(int hash, K key, V val, Node<K,V> next) {
595 >            this.hash = hash;
596 >            this.key = key;
597 >            this.val = val;
598 >            this.next = next;
599 >        }
600 >
601 >        public final K getKey()     { return key; }
602 >        public final V getValue()   { return val; }
603 >        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
604 >        public final String toString() {
605 >            return Helpers.mapEntryToString(key, val);
606 >        }
607 >        public final V setValue(V value) {
608 >            throw new UnsupportedOperationException();
609 >        }
610 >
611 >        public final boolean equals(Object o) {
612 >            Object k, v, u; Map.Entry<?,?> e;
613 >            return ((o instanceof Map.Entry) &&
614 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615 >                    (v = e.getValue()) != null &&
616 >                    (k == key || k.equals(key)) &&
617 >                    (v == (u = val) || v.equals(u)));
618 >        }
619 >
620 >        /**
621 >         * Virtualized support for map.get(); overridden in subclasses.
622 >         */
623 >        Node<K,V> find(int h, Object k) {
624 >            Node<K,V> e = this;
625 >            if (k != null) {
626 >                do {
627 >                    K ek;
628 >                    if (e.hash == h &&
629 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
630 >                        return e;
631 >                } while ((e = e.next) != null);
632 >            }
633 >            return null;
634 >        }
635 >    }
636 >
637 >    /* ---------------- Static utilities -------------- */
638 >
639 >    /**
640 >     * Spreads (XORs) higher bits of hash to lower and also forces top
641 >     * bit to 0. Because the table uses power-of-two masking, sets of
642 >     * hashes that vary only in bits above the current mask will
643 >     * always collide. (Among known examples are sets of Float keys
644 >     * holding consecutive whole numbers in small tables.)  So we
645 >     * apply a transform that spreads the impact of higher bits
646 >     * downward. There is a tradeoff between speed, utility, and
647 >     * quality of bit-spreading. Because many common sets of hashes
648 >     * are already reasonably distributed (so don't benefit from
649 >     * spreading), and because we use trees to handle large sets of
650 >     * collisions in bins, we just XOR some shifted bits in the
651 >     * cheapest possible way to reduce systematic lossage, as well as
652 >     * to incorporate impact of the highest bits that would otherwise
653 >     * never be used in index calculations because of table bounds.
654 >     */
655 >    static final int spread(int h) {
656 >        return (h ^ (h >>> 16)) & HASH_BITS;
657 >    }
658 >
659 >    /**
660 >     * Returns a power of two table size for the given desired capacity.
661 >     * See Hackers Delight, sec 3.2
662 >     */
663 >    private static final int tableSizeFor(int c) {
664 >        int n = c - 1;
665 >        n |= n >>> 1;
666 >        n |= n >>> 2;
667 >        n |= n >>> 4;
668 >        n |= n >>> 8;
669 >        n |= n >>> 16;
670 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671 >    }
672 >
673 >    /**
674 >     * Returns x's Class if it is of the form "class C implements
675 >     * Comparable<C>", else null.
676 >     */
677 >    static Class<?> comparableClassFor(Object x) {
678 >        if (x instanceof Comparable) {
679 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680 >            if ((c = x.getClass()) == String.class) // bypass checks
681 >                return c;
682 >            if ((ts = c.getGenericInterfaces()) != null) {
683 >                for (int i = 0; i < ts.length; ++i) {
684 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
685 >                        ((p = (ParameterizedType)t).getRawType() ==
686 >                         Comparable.class) &&
687 >                        (as = p.getActualTypeArguments()) != null &&
688 >                        as.length == 1 && as[0] == c) // type arg is c
689 >                        return c;
690 >                }
691 >            }
692 >        }
693 >        return null;
694 >    }
695 >
696 >    /**
697 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
698 >     * class), else 0.
699 >     */
700 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701 >    static int compareComparables(Class<?> kc, Object k, Object x) {
702 >        return (x == null || x.getClass() != kc ? 0 :
703 >                ((Comparable)k).compareTo(x));
704 >    }
705 >
706 >    /* ---------------- Table element access -------------- */
707 >
708 >    /*
709 >     * Volatile access methods are used for table elements as well as
710 >     * elements of in-progress next table while resizing.  All uses of
711 >     * the tab arguments must be null checked by callers.  All callers
712 >     * also paranoically precheck that tab's length is not zero (or an
713 >     * equivalent check), thus ensuring that any index argument taking
714 >     * the form of a hash value anded with (length - 1) is a valid
715 >     * index.  Note that, to be correct wrt arbitrary concurrency
716 >     * errors by users, these checks must operate on local variables,
717 >     * which accounts for some odd-looking inline assignments below.
718 >     * Note that calls to setTabAt always occur within locked regions,
719 >     * and so in principle require only release ordering, not
720 >     * full volatile semantics, but are currently coded as volatile
721 >     * writes to be conservative.
722 >     */
723 >
724 >    @SuppressWarnings("unchecked")
725 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727 >    }
728 >
729 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730 >                                        Node<K,V> c, Node<K,V> v) {
731 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732 >    }
733 >
734 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736      }
737  
738      /* ---------------- Fields -------------- */
# Line 488 | Line 741 | public class ConcurrentHashMap<K,V>
741       * The array of bins. Lazily initialized upon first insertion.
742       * Size is always a power of two. Accessed directly by iterators.
743       */
744 <    transient volatile Node<V>[] table;
744 >    transient volatile Node<K,V>[] table;
745  
746      /**
747       * The next table to use; non-null only while resizing.
748       */
749 <    private transient volatile Node<V>[] nextTable;
749 >    private transient volatile Node<K,V>[] nextTable;
750  
751      /**
752       * Base counter value, used mainly when there is no contention,
# Line 518 | Line 771 | public class ConcurrentHashMap<K,V>
771      private transient volatile int transferIndex;
772  
773      /**
774 <     * The least available table index to split while resizing.
522 <     */
523 <    private transient volatile int transferOrigin;
524 <
525 <    /**
526 <     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
774 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775       */
776      private transient volatile int cellsBusy;
777  
778      /**
779       * Table of counter cells. When non-null, size is a power of 2.
780       */
781 <    private transient volatile Cell[] counterCells;
781 >    private transient volatile CounterCell[] counterCells;
782  
783      // views
784      private transient KeySetView<K,V> keySet;
785      private transient ValuesView<K,V> values;
786      private transient EntrySetView<K,V> entrySet;
787  
540    /** For serialization compatibility. Null unless serialized; see below */
541    private Segment<K,V>[] segments;
788  
789 <    /* ---------------- Table element access -------------- */
789 >    /* ---------------- Public operations -------------- */
790  
791 <    /*
792 <     * Volatile access methods are used for table elements as well as
793 <     * elements of in-progress next table while resizing.  Uses are
794 <     * null checked by callers, and implicitly bounds-checked, relying
549 <     * on the invariants that tab arrays have non-zero size, and all
550 <     * indices are masked with (tab.length - 1) which is never
551 <     * negative and always less than length. Note that, to be correct
552 <     * wrt arbitrary concurrency errors by users, bounds checks must
553 <     * operate on local variables, which accounts for some odd-looking
554 <     * inline assignments below.
555 <     */
556 <
557 <    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
558 <        (Node<V>[] tab, int i) { // used by Traverser
559 <        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
791 >    /**
792 >     * Creates a new, empty map with the default initial table size (16).
793 >     */
794 >    public ConcurrentHashMap() {
795      }
796  
797 <    private static final <V> boolean casTabAt
798 <        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
799 <        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
797 >    /**
798 >     * Creates a new, empty map with an initial table size
799 >     * accommodating the specified number of elements without the need
800 >     * to dynamically resize.
801 >     *
802 >     * @param initialCapacity The implementation performs internal
803 >     * sizing to accommodate this many elements.
804 >     * @throws IllegalArgumentException if the initial capacity of
805 >     * elements is negative
806 >     */
807 >    public ConcurrentHashMap(int initialCapacity) {
808 >        if (initialCapacity < 0)
809 >            throw new IllegalArgumentException();
810 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811 >                   MAXIMUM_CAPACITY :
812 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
813 >        this.sizeCtl = cap;
814      }
815  
816 <    private static final <V> void setTabAt
817 <        (Node<V>[] tab, int i, Node<V> v) {
818 <        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
816 >    /**
817 >     * Creates a new map with the same mappings as the given map.
818 >     *
819 >     * @param m the map
820 >     */
821 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 >        this.sizeCtl = DEFAULT_CAPACITY;
823 >        putAll(m);
824      }
825  
572    /* ---------------- Nodes -------------- */
573
826      /**
827 <     * Key-value entry. Note that this is never exported out as a
828 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
829 <     * field of MOVED are special, and do not contain user keys or
830 <     * values.  Otherwise, keys are never null, and null val fields
831 <     * indicate that a node is in the process of being deleted or
832 <     * created. For purposes of read-only access, a key may be read
833 <     * before a val, but can only be used after checking val to be
834 <     * non-null.
827 >     * Creates a new, empty map with an initial table size based on
828 >     * the given number of elements ({@code initialCapacity}) and
829 >     * initial table density ({@code loadFactor}).
830 >     *
831 >     * @param initialCapacity the initial capacity. The implementation
832 >     * performs internal sizing to accommodate this many elements,
833 >     * given the specified load factor.
834 >     * @param loadFactor the load factor (table density) for
835 >     * establishing the initial table size
836 >     * @throws IllegalArgumentException if the initial capacity of
837 >     * elements is negative or the load factor is nonpositive
838 >     *
839 >     * @since 1.6
840       */
841 <    static class Node<V> {
842 <        final int hash;
843 <        final Object key;
587 <        volatile V val;
588 <        volatile Node<V> next;
841 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 >        this(initialCapacity, loadFactor, 1);
843 >    }
844  
845 <        Node(int hash, Object key, V val, Node<V> next) {
846 <            this.hash = hash;
847 <            this.key = key;
848 <            this.val = val;
849 <            this.next = next;
850 <        }
845 >    /**
846 >     * Creates a new, empty map with an initial table size based on
847 >     * the given number of elements ({@code initialCapacity}), table
848 >     * density ({@code loadFactor}), and number of concurrently
849 >     * updating threads ({@code concurrencyLevel}).
850 >     *
851 >     * @param initialCapacity the initial capacity. The implementation
852 >     * performs internal sizing to accommodate this many elements,
853 >     * given the specified load factor.
854 >     * @param loadFactor the load factor (table density) for
855 >     * establishing the initial table size
856 >     * @param concurrencyLevel the estimated number of concurrently
857 >     * updating threads. The implementation may use this value as
858 >     * a sizing hint.
859 >     * @throws IllegalArgumentException if the initial capacity is
860 >     * negative or the load factor or concurrencyLevel are
861 >     * nonpositive
862 >     */
863 >    public ConcurrentHashMap(int initialCapacity,
864 >                             float loadFactor, int concurrencyLevel) {
865 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 >            throw new IllegalArgumentException();
867 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
868 >            initialCapacity = concurrencyLevel;   // as estimated threads
869 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 >        this.sizeCtl = cap;
873      }
874  
875 <    /* ---------------- TreeBins -------------- */
875 >    // Original (since JDK1.2) Map methods
876  
877      /**
878 <     * Nodes for use in TreeBins
878 >     * {@inheritDoc}
879       */
880 <    static final class TreeNode<V> extends Node<V> {
881 <        TreeNode<V> parent;  // red-black tree links
882 <        TreeNode<V> left;
883 <        TreeNode<V> right;
884 <        TreeNode<V> prev;    // needed to unlink next upon deletion
885 <        boolean red;
880 >    public int size() {
881 >        long n = sumCount();
882 >        return ((n < 0L) ? 0 :
883 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 >                (int)n);
885 >    }
886  
887 <        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
888 <            super(hash, key, val, next);
889 <            this.parent = parent;
890 <        }
887 >    /**
888 >     * {@inheritDoc}
889 >     */
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892      }
893  
894      /**
895 <     * A specialized form of red-black tree for use in bins
896 <     * whose size exceeds a threshold.
895 >     * Returns the value to which the specified key is mapped,
896 >     * or {@code null} if this map contains no mapping for the key.
897       *
898 <     * TreeBins use a special form of comparison for search and
899 <     * related operations (which is the main reason we cannot use
900 <     * existing collections such as TreeMaps). TreeBins contain
901 <     * Comparable elements, but may contain others, as well as
624 <     * elements that are Comparable but not necessarily Comparable<T>
625 <     * for the same T, so we cannot invoke compareTo among them. To
626 <     * handle this, the tree is ordered primarily by hash value, then
627 <     * by getClass().getName() order, and then by Comparator order
628 <     * among elements of the same class.  On lookup at a node, if
629 <     * elements are not comparable or compare as 0, both left and
630 <     * right children may need to be searched in the case of tied hash
631 <     * values. (This corresponds to the full list search that would be
632 <     * necessary if all elements were non-Comparable and had tied
633 <     * hashes.)  The red-black balancing code is updated from
634 <     * pre-jdk-collections
635 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
636 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
637 <     * Algorithms" (CLR).
898 >     * <p>More formally, if this map contains a mapping from a key
899 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 >     * then this method returns {@code v}; otherwise it returns
901 >     * {@code null}.  (There can be at most one such mapping.)
902       *
903 <     * TreeBins also maintain a separate locking discipline than
640 <     * regular bins. Because they are forwarded via special MOVED
641 <     * nodes at bin heads (which can never change once established),
642 <     * we cannot use those nodes as locks. Instead, TreeBin
643 <     * extends AbstractQueuedSynchronizer to support a simple form of
644 <     * read-write lock. For update operations and table validation,
645 <     * the exclusive form of lock behaves in the same way as bin-head
646 <     * locks. However, lookups use shared read-lock mechanics to allow
647 <     * multiple readers in the absence of writers.  Additionally,
648 <     * these lookups do not ever block: While the lock is not
649 <     * available, they proceed along the slow traversal path (via
650 <     * next-pointers) until the lock becomes available or the list is
651 <     * exhausted, whichever comes first. (These cases are not fast,
652 <     * but maximize aggregate expected throughput.)  The AQS mechanics
653 <     * for doing this are straightforward.  The lock state is held as
654 <     * AQS getState().  Read counts are negative; the write count (1)
655 <     * is positive.  There are no signalling preferences among readers
656 <     * and writers. Since we don't need to export full Lock API, we
657 <     * just override the minimal AQS methods and use them directly.
903 >     * @throws NullPointerException if the specified key is null
904       */
905 <    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
906 <        private static final long serialVersionUID = 2249069246763182397L;
907 <        transient TreeNode<V> root;  // root of tree
908 <        transient TreeNode<V> first; // head of next-pointer list
909 <
910 <        /* AQS overrides */
911 <        public final boolean isHeldExclusively() { return getState() > 0; }
912 <        public final boolean tryAcquire(int ignore) {
913 <            if (compareAndSetState(0, 1)) {
914 <                setExclusiveOwnerThread(Thread.currentThread());
915 <                return true;
916 <            }
917 <            return false;
918 <        }
919 <        public final boolean tryRelease(int ignore) {
674 <            setExclusiveOwnerThread(null);
675 <            setState(0);
676 <            return true;
677 <        }
678 <        public final int tryAcquireShared(int ignore) {
679 <            for (int c;;) {
680 <                if ((c = getState()) > 0)
681 <                    return -1;
682 <                if (compareAndSetState(c, c -1))
683 <                    return 1;
684 <            }
685 <        }
686 <        public final boolean tryReleaseShared(int ignore) {
687 <            int c;
688 <            do {} while (!compareAndSetState(c = getState(), c + 1));
689 <            return c == -1;
690 <        }
691 <
692 <        /** From CLR */
693 <        private void rotateLeft(TreeNode<V> p) {
694 <            if (p != null) {
695 <                TreeNode<V> r = p.right, pp, rl;
696 <                if ((rl = p.right = r.left) != null)
697 <                    rl.parent = p;
698 <                if ((pp = r.parent = p.parent) == null)
699 <                    root = r;
700 <                else if (pp.left == p)
701 <                    pp.left = r;
702 <                else
703 <                    pp.right = r;
704 <                r.left = p;
705 <                p.parent = r;
706 <            }
707 <        }
708 <
709 <        /** From CLR */
710 <        private void rotateRight(TreeNode<V> p) {
711 <            if (p != null) {
712 <                TreeNode<V> l = p.left, pp, lr;
713 <                if ((lr = p.left = l.right) != null)
714 <                    lr.parent = p;
715 <                if ((pp = l.parent = p.parent) == null)
716 <                    root = l;
717 <                else if (pp.right == p)
718 <                    pp.right = l;
719 <                else
720 <                    pp.left = l;
721 <                l.right = p;
722 <                p.parent = l;
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920              }
921          }
922 +        return null;
923 +    }
924  
925 <        /**
926 <         * Returns the TreeNode (or null if not found) for the given key
927 <         * starting at given root.
928 <         */
929 <        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
930 <            (int h, Object k, TreeNode<V> p) {
931 <            Class<?> c = k.getClass();
932 <            while (p != null) {
933 <                int dir, ph;  Object pk; Class<?> pc;
934 <                if ((ph = p.hash) == h) {
935 <                    if ((pk = p.key) == k || k.equals(pk))
936 <                        return p;
738 <                    if (c != (pc = pk.getClass()) ||
739 <                        !(k instanceof Comparable) ||
740 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
741 <                        if ((dir = (c == pc) ? 0 :
742 <                             c.getName().compareTo(pc.getName())) == 0) {
743 <                            TreeNode<V> r = null, pl, pr; // check both sides
744 <                            if ((pr = p.right) != null && h >= pr.hash &&
745 <                                (r = getTreeNode(h, k, pr)) != null)
746 <                                return r;
747 <                            else if ((pl = p.left) != null && h <= pl.hash)
748 <                                dir = -1;
749 <                            else // nothing there
750 <                                return null;
751 <                        }
752 <                    }
753 <                }
754 <                else
755 <                    dir = (h < ph) ? -1 : 1;
756 <                p = (dir > 0) ? p.right : p.left;
757 <            }
758 <            return null;
759 <        }
925 >    /**
926 >     * Tests if the specified object is a key in this table.
927 >     *
928 >     * @param  key possible key
929 >     * @return {@code true} if and only if the specified object
930 >     *         is a key in this table, as determined by the
931 >     *         {@code equals} method; {@code false} otherwise
932 >     * @throws NullPointerException if the specified key is null
933 >     */
934 >    public boolean containsKey(Object key) {
935 >        return get(key) != null;
936 >    }
937  
938 <        /**
939 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
940 <         * read-lock to call getTreeNode, but during failure to get
941 <         * lock, searches along next links.
942 <         */
943 <        final V getValue(int h, Object k) {
944 <            Node<V> r = null;
945 <            int c = getState(); // Must read lock state first
946 <            for (Node<V> e = first; e != null; e = e.next) {
947 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
948 <                    try {
949 <                        r = getTreeNode(h, k, root);
950 <                    } finally {
951 <                        releaseShared(0);
952 <                    }
953 <                    break;
954 <                }
955 <                else if (e.hash == h && k.equals(e.key)) {
956 <                    r = e;
957 <                    break;
781 <                }
782 <                else
783 <                    c = getState();
938 >    /**
939 >     * Returns {@code true} if this map maps one or more keys to the
940 >     * specified value. Note: This method may require a full traversal
941 >     * of the map, and is much slower than method {@code containsKey}.
942 >     *
943 >     * @param value value whose presence in this map is to be tested
944 >     * @return {@code true} if this map maps one or more keys to the
945 >     *         specified value
946 >     * @throws NullPointerException if the specified value is null
947 >     */
948 >    public boolean containsValue(Object value) {
949 >        if (value == null)
950 >            throw new NullPointerException();
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958              }
785            return r == null ? null : r.val;
959          }
960 +        return false;
961 +    }
962  
963 <        /**
964 <         * Finds or adds a node.
965 <         * @return null if added
966 <         */
967 <        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
968 <            (int h, Object k, V v) {
969 <            Class<?> c = k.getClass();
970 <            TreeNode<V> pp = root, p = null;
971 <            int dir = 0;
972 <            while (pp != null) { // find existing node or leaf to insert at
973 <                int ph;  Object pk; Class<?> pc;
974 <                p = pp;
975 <                if ((ph = p.hash) == h) {
976 <                    if ((pk = p.key) == k || k.equals(pk))
977 <                        return p;
978 <                    if (c != (pc = pk.getClass()) ||
804 <                        !(k instanceof Comparable) ||
805 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
806 <                        TreeNode<V> s = null, r = null, pr;
807 <                        if ((dir = (c == pc) ? 0 :
808 <                             c.getName().compareTo(pc.getName())) == 0) {
809 <                            if ((pr = p.right) != null && h >= pr.hash &&
810 <                                (r = getTreeNode(h, k, pr)) != null)
811 <                                return r;
812 <                            else // continue left
813 <                                dir = -1;
814 <                        }
815 <                        else if ((pr = p.right) != null && h >= pr.hash)
816 <                            s = pr;
817 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
818 <                            return r;
819 <                    }
820 <                }
821 <                else
822 <                    dir = (h < ph) ? -1 : 1;
823 <                pp = (dir > 0) ? p.right : p.left;
824 <            }
825 <
826 <            TreeNode<V> f = first;
827 <            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
828 <            if (p == null)
829 <                root = x;
830 <            else { // attach and rebalance; adapted from CLR
831 <                TreeNode<V> xp, xpp;
832 <                if (f != null)
833 <                    f.prev = x;
834 <                if (dir <= 0)
835 <                    p.left = x;
836 <                else
837 <                    p.right = x;
838 <                x.red = true;
839 <                while (x != null && (xp = x.parent) != null && xp.red &&
840 <                       (xpp = xp.parent) != null) {
841 <                    TreeNode<V> xppl = xpp.left;
842 <                    if (xp == xppl) {
843 <                        TreeNode<V> y = xpp.right;
844 <                        if (y != null && y.red) {
845 <                            y.red = false;
846 <                            xp.red = false;
847 <                            xpp.red = true;
848 <                            x = xpp;
849 <                        }
850 <                        else {
851 <                            if (x == xp.right) {
852 <                                rotateLeft(x = xp);
853 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
854 <                            }
855 <                            if (xp != null) {
856 <                                xp.red = false;
857 <                                if (xpp != null) {
858 <                                    xpp.red = true;
859 <                                    rotateRight(xpp);
860 <                                }
861 <                            }
862 <                        }
863 <                    }
864 <                    else {
865 <                        TreeNode<V> y = xppl;
866 <                        if (y != null && y.red) {
867 <                            y.red = false;
868 <                            xp.red = false;
869 <                            xpp.red = true;
870 <                            x = xpp;
871 <                        }
872 <                        else {
873 <                            if (x == xp.left) {
874 <                                rotateRight(x = xp);
875 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
876 <                            }
877 <                            if (xp != null) {
878 <                                xp.red = false;
879 <                                if (xpp != null) {
880 <                                    xpp.red = true;
881 <                                    rotateLeft(xpp);
882 <                                }
883 <                            }
884 <                        }
885 <                    }
886 <                }
887 <                TreeNode<V> r = root;
888 <                if (r != null && r.red)
889 <                    r.red = false;
890 <            }
891 <            return null;
892 <        }
963 >    /**
964 >     * Maps the specified key to the specified value in this table.
965 >     * Neither the key nor the value can be null.
966 >     *
967 >     * <p>The value can be retrieved by calling the {@code get} method
968 >     * with a key that is equal to the original key.
969 >     *
970 >     * @param key key with which the specified value is to be associated
971 >     * @param value value to be associated with the specified key
972 >     * @return the previous value associated with {@code key}, or
973 >     *         {@code null} if there was no mapping for {@code key}
974 >     * @throws NullPointerException if the specified key or value is null
975 >     */
976 >    public V put(K key, V value) {
977 >        return putVal(key, value, false);
978 >    }
979  
980 <        /**
981 <         * Removes the given node, that must be present before this
982 <         * call.  This is messier than typical red-black deletion code
983 <         * because we cannot swap the contents of an interior node
984 <         * with a leaf successor that is pinned by "next" pointers
985 <         * that are accessible independently of lock. So instead we
986 <         * swap the tree linkages.
987 <         */
988 <        final void deleteTreeNode(TreeNode<V> p) {
989 <            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
990 <            TreeNode<V> pred = p.prev;
991 <            if (pred == null)
992 <                first = next;
907 <            else
908 <                pred.next = next;
909 <            if (next != null)
910 <                next.prev = pred;
911 <            TreeNode<V> replacement;
912 <            TreeNode<V> pl = p.left;
913 <            TreeNode<V> pr = p.right;
914 <            if (pl != null && pr != null) {
915 <                TreeNode<V> s = pr, sl;
916 <                while ((sl = s.left) != null) // find successor
917 <                    s = sl;
918 <                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
919 <                TreeNode<V> sr = s.right;
920 <                TreeNode<V> pp = p.parent;
921 <                if (s == pr) { // p was s's direct parent
922 <                    p.parent = s;
923 <                    s.right = p;
924 <                }
925 <                else {
926 <                    TreeNode<V> sp = s.parent;
927 <                    if ((p.parent = sp) != null) {
928 <                        if (s == sp.left)
929 <                            sp.left = p;
930 <                        else
931 <                            sp.right = p;
932 <                    }
933 <                    if ((s.right = pr) != null)
934 <                        pr.parent = s;
935 <                }
936 <                p.left = null;
937 <                if ((p.right = sr) != null)
938 <                    sr.parent = p;
939 <                if ((s.left = pl) != null)
940 <                    pl.parent = s;
941 <                if ((s.parent = pp) == null)
942 <                    root = s;
943 <                else if (p == pp.left)
944 <                    pp.left = s;
945 <                else
946 <                    pp.right = s;
947 <                replacement = sr;
948 <            }
949 <            else
950 <                replacement = (pl != null) ? pl : pr;
951 <            TreeNode<V> pp = p.parent;
952 <            if (replacement == null) {
953 <                if (pp == null) {
954 <                    root = null;
955 <                    return;
956 <                }
957 <                replacement = p;
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null,
991 >                             new Node<K,V>(hash, key, value, null)))
992 >                    break;                   // no lock when adding to empty bin
993              }
994 +            else if ((fh = f.hash) == MOVED)
995 +                tab = helpTransfer(tab, f);
996              else {
997 <                replacement.parent = pp;
998 <                if (pp == null)
999 <                    root = replacement;
1000 <                else if (p == pp.left)
1001 <                    pp.left = replacement;
1002 <                else
1003 <                    pp.right = replacement;
1004 <                p.left = p.right = p.parent = null;
1005 <            }
1006 <            if (!p.red) { // rebalance, from CLR
1007 <                TreeNode<V> x = replacement;
1008 <                while (x != null) {
1009 <                    TreeNode<V> xp, xpl;
1010 <                    if (x.red || (xp = x.parent) == null) {
974 <                        x.red = false;
975 <                        break;
976 <                    }
977 <                    if (x == (xpl = xp.left)) {
978 <                        TreeNode<V> sib = xp.right;
979 <                        if (sib != null && sib.red) {
980 <                            sib.red = false;
981 <                            xp.red = true;
982 <                            rotateLeft(xp);
983 <                            sib = (xp = x.parent) == null ? null : xp.right;
984 <                        }
985 <                        if (sib == null)
986 <                            x = xp;
987 <                        else {
988 <                            TreeNode<V> sl = sib.left, sr = sib.right;
989 <                            if ((sr == null || !sr.red) &&
990 <                                (sl == null || !sl.red)) {
991 <                                sib.red = true;
992 <                                x = xp;
993 <                            }
994 <                            else {
995 <                                if (sr == null || !sr.red) {
996 <                                    if (sl != null)
997 <                                        sl.red = false;
998 <                                    sib.red = true;
999 <                                    rotateRight(sib);
1000 <                                    sib = (xp = x.parent) == null ?
1001 <                                        null : xp.right;
1002 <                                }
1003 <                                if (sib != null) {
1004 <                                    sib.red = (xp == null) ? false : xp.red;
1005 <                                    if ((sr = sib.right) != null)
1006 <                                        sr.red = false;
997 >                V oldVal = null;
998 >                synchronized (f) {
999 >                    if (tabAt(tab, i) == f) {
1000 >                        if (fh >= 0) {
1001 >                            binCount = 1;
1002 >                            for (Node<K,V> e = f;; ++binCount) {
1003 >                                K ek;
1004 >                                if (e.hash == hash &&
1005 >                                    ((ek = e.key) == key ||
1006 >                                     (ek != null && key.equals(ek)))) {
1007 >                                    oldVal = e.val;
1008 >                                    if (!onlyIfAbsent)
1009 >                                        e.val = value;
1010 >                                    break;
1011                                  }
1012 <                                if (xp != null) {
1013 <                                    xp.red = false;
1014 <                                    rotateLeft(xp);
1012 >                                Node<K,V> pred = e;
1013 >                                if ((e = e.next) == null) {
1014 >                                    pred.next = new Node<K,V>(hash, key,
1015 >                                                              value, null);
1016 >                                    break;
1017                                  }
1012                                x = root;
1018                              }
1019                          }
1020 <                    }
1021 <                    else { // symmetric
1022 <                        TreeNode<V> sib = xpl;
1023 <                        if (sib != null && sib.red) {
1024 <                            sib.red = false;
1025 <                            xp.red = true;
1026 <                            rotateRight(xp);
1027 <                            sib = (xp = x.parent) == null ? null : xp.left;
1023 <                        }
1024 <                        if (sib == null)
1025 <                            x = xp;
1026 <                        else {
1027 <                            TreeNode<V> sl = sib.left, sr = sib.right;
1028 <                            if ((sl == null || !sl.red) &&
1029 <                                (sr == null || !sr.red)) {
1030 <                                sib.red = true;
1031 <                                x = xp;
1032 <                            }
1033 <                            else {
1034 <                                if (sl == null || !sl.red) {
1035 <                                    if (sr != null)
1036 <                                        sr.red = false;
1037 <                                    sib.red = true;
1038 <                                    rotateLeft(sib);
1039 <                                    sib = (xp = x.parent) == null ?
1040 <                                        null : xp.left;
1041 <                                }
1042 <                                if (sib != null) {
1043 <                                    sib.red = (xp == null) ? false : xp.red;
1044 <                                    if ((sl = sib.left) != null)
1045 <                                        sl.red = false;
1046 <                                }
1047 <                                if (xp != null) {
1048 <                                    xp.red = false;
1049 <                                    rotateRight(xp);
1050 <                                }
1051 <                                x = root;
1020 >                        else if (f instanceof TreeBin) {
1021 >                            Node<K,V> p;
1022 >                            binCount = 2;
1023 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024 >                                                           value)) != null) {
1025 >                                oldVal = p.val;
1026 >                                if (!onlyIfAbsent)
1027 >                                    p.val = value;
1028                              }
1029                          }
1030 +                        else if (f instanceof ReservationNode)
1031 +                            throw new IllegalStateException("Recursive update");
1032                      }
1033                  }
1034 <            }
1035 <            if (p == replacement && (pp = p.parent) != null) {
1036 <                if (p == pp.left) // detach pointers
1037 <                    pp.left = null;
1038 <                else if (p == pp.right)
1039 <                    pp.right = null;
1040 <                p.parent = null;
1034 >                if (binCount != 0) {
1035 >                    if (binCount >= TREEIFY_THRESHOLD)
1036 >                        treeifyBin(tab, i);
1037 >                    if (oldVal != null)
1038 >                        return oldVal;
1039 >                    break;
1040 >                }
1041              }
1042          }
1043 +        addCount(1L, binCount);
1044 +        return null;
1045      }
1046  
1067    /* ---------------- Collision reduction methods -------------- */
1068
1047      /**
1048 <     * Spreads higher bits to lower, and also forces top bit to 0.
1049 <     * Because the table uses power-of-two masking, sets of hashes
1050 <     * that vary only in bits above the current mask will always
1051 <     * collide. (Among known examples are sets of Float keys holding
1052 <     * consecutive whole numbers in small tables.)  To counter this,
1075 <     * we apply a transform that spreads the impact of higher bits
1076 <     * downward. There is a tradeoff between speed, utility, and
1077 <     * quality of bit-spreading. Because many common sets of hashes
1078 <     * are already reasonably distributed across bits (so don't benefit
1079 <     * from spreading), and because we use trees to handle large sets
1080 <     * of collisions in bins, we don't need excessively high quality.
1048 >     * Copies all of the mappings from the specified map to this one.
1049 >     * These mappings replace any mappings that this map had for any of the
1050 >     * keys currently in the specified map.
1051 >     *
1052 >     * @param m mappings to be stored in this map
1053       */
1054 <    private static final int spread(int h) {
1055 <        h ^= (h >>> 18) ^ (h >>> 12);
1056 <        return (h ^ (h >>> 10)) & HASH_BITS;
1054 >    public void putAll(Map<? extends K, ? extends V> m) {
1055 >        tryPresize(m.size());
1056 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1057 >            putVal(e.getKey(), e.getValue(), false);
1058      }
1059  
1060      /**
1061 <     * Replaces a list bin with a tree bin if key is comparable.  Call
1062 <     * only when locked.
1061 >     * Removes the key (and its corresponding value) from this map.
1062 >     * This method does nothing if the key is not in the map.
1063 >     *
1064 >     * @param  key the key that needs to be removed
1065 >     * @return the previous value associated with {@code key}, or
1066 >     *         {@code null} if there was no mapping for {@code key}
1067 >     * @throws NullPointerException if the specified key is null
1068       */
1069 <    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1070 <        if (key instanceof Comparable) {
1093 <            TreeBin<V> t = new TreeBin<V>();
1094 <            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1095 <                t.putTreeNode(e.hash, e.key, e.val);
1096 <            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1097 <        }
1098 <    }
1099 <
1100 <    /* ---------------- Internal access and update methods -------------- */
1101 <
1102 <    /** Implementation for get and containsKey */
1103 <    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1104 <        int h = spread(k.hashCode());
1105 <        retry: for (Node<V>[] tab = table; tab != null;) {
1106 <            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1107 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1108 <                if ((eh = e.hash) < 0) {
1109 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1110 <                        return ((TreeBin<V>)ek).getValue(h, k);
1111 <                    else {                      // restart with new table
1112 <                        tab = (Node<V>[])ek;
1113 <                        continue retry;
1114 <                    }
1115 <                }
1116 <                else if (eh == h && (ev = e.val) != null &&
1117 <                         ((ek = e.key) == k || k.equals(ek)))
1118 <                    return ev;
1119 <            }
1120 <            break;
1121 <        }
1122 <        return null;
1069 >    public V remove(Object key) {
1070 >        return replaceNode(key, null, null);
1071      }
1072  
1073      /**
# Line 1127 | Line 1075 | public class ConcurrentHashMap<K,V>
1075       * Replaces node value with v, conditional upon match of cv if
1076       * non-null.  If resulting value is null, delete.
1077       */
1078 <    @SuppressWarnings("unchecked") private final V internalReplace
1079 <        (Object k, V v, Object cv) {
1080 <        int h = spread(k.hashCode());
1081 <        V oldVal = null;
1082 <        for (Node<V>[] tab = table;;) {
1083 <            Node<V> f; int i, fh; Object fk;
1136 <            if (tab == null ||
1137 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1078 >    final V replaceNode(Object key, V value, Object cv) {
1079 >        int hash = spread(key.hashCode());
1080 >        for (Node<K,V>[] tab = table;;) {
1081 >            Node<K,V> f; int n, i, fh;
1082 >            if (tab == null || (n = tab.length) == 0 ||
1083 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1084                  break;
1085 <            else if ((fh = f.hash) < 0) {
1086 <                if ((fk = f.key) instanceof TreeBin) {
1087 <                    TreeBin<V> t = (TreeBin<V>)fk;
1088 <                    boolean validated = false;
1089 <                    boolean deleted = false;
1090 <                    t.acquire(0);
1091 <                    try {
1092 <                        if (tabAt(tab, i) == f) {
1085 >            else if ((fh = f.hash) == MOVED)
1086 >                tab = helpTransfer(tab, f);
1087 >            else {
1088 >                V oldVal = null;
1089 >                boolean validated = false;
1090 >                synchronized (f) {
1091 >                    if (tabAt(tab, i) == f) {
1092 >                        if (fh >= 0) {
1093 >                            validated = true;
1094 >                            for (Node<K,V> e = f, pred = null;;) {
1095 >                                K ek;
1096 >                                if (e.hash == hash &&
1097 >                                    ((ek = e.key) == key ||
1098 >                                     (ek != null && key.equals(ek)))) {
1099 >                                    V ev = e.val;
1100 >                                    if (cv == null || cv == ev ||
1101 >                                        (ev != null && cv.equals(ev))) {
1102 >                                        oldVal = ev;
1103 >                                        if (value != null)
1104 >                                            e.val = value;
1105 >                                        else if (pred != null)
1106 >                                            pred.next = e.next;
1107 >                                        else
1108 >                                            setTabAt(tab, i, e.next);
1109 >                                    }
1110 >                                    break;
1111 >                                }
1112 >                                pred = e;
1113 >                                if ((e = e.next) == null)
1114 >                                    break;
1115 >                            }
1116 >                        }
1117 >                        else if (f instanceof TreeBin) {
1118                              validated = true;
1119 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1120 <                            if (p != null) {
1119 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1120 >                            TreeNode<K,V> r, p;
1121 >                            if ((r = t.root) != null &&
1122 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1123                                  V pv = p.val;
1124 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1124 >                                if (cv == null || cv == pv ||
1125 >                                    (pv != null && cv.equals(pv))) {
1126                                      oldVal = pv;
1127 <                                    if ((p.val = v) == null) {
1128 <                                        deleted = true;
1129 <                                        t.deleteTreeNode(p);
1130 <                                    }
1127 >                                    if (value != null)
1128 >                                        p.val = value;
1129 >                                    else if (t.removeTreeNode(p))
1130 >                                        setTabAt(tab, i, untreeify(t.first));
1131                                  }
1132                              }
1133                          }
1134 <                    } finally {
1135 <                        t.release(0);
1134 >                        else if (f instanceof ReservationNode)
1135 >                            throw new IllegalStateException("Recursive update");
1136                      }
1137 <                    if (validated) {
1138 <                        if (deleted)
1137 >                }
1138 >                if (validated) {
1139 >                    if (oldVal != null) {
1140 >                        if (value == null)
1141                              addCount(-1L, -1);
1142 <                        break;
1142 >                        return oldVal;
1143                      }
1144 +                    break;
1145                  }
1169                else
1170                    tab = (Node<V>[])fk;
1146              }
1147 <            else if (fh != h && f.next == null) // precheck
1148 <                break;                          // rules out possible existence
1147 >        }
1148 >        return null;
1149 >    }
1150 >
1151 >    /**
1152 >     * Removes all of the mappings from this map.
1153 >     */
1154 >    public void clear() {
1155 >        long delta = 0L; // negative number of deletions
1156 >        int i = 0;
1157 >        Node<K,V>[] tab = table;
1158 >        while (tab != null && i < tab.length) {
1159 >            int fh;
1160 >            Node<K,V> f = tabAt(tab, i);
1161 >            if (f == null)
1162 >                ++i;
1163 >            else if ((fh = f.hash) == MOVED) {
1164 >                tab = helpTransfer(tab, f);
1165 >                i = 0; // restart
1166 >            }
1167              else {
1175                boolean validated = false;
1176                boolean deleted = false;
1168                  synchronized (f) {
1169                      if (tabAt(tab, i) == f) {
1170 <                        validated = true;
1171 <                        for (Node<V> e = f, pred = null;;) {
1172 <                            Object ek; V ev;
1173 <                            if (e.hash == h &&
1174 <                                ((ev = e.val) != null) &&
1175 <                                ((ek = e.key) == k || k.equals(ek))) {
1185 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1186 <                                    oldVal = ev;
1187 <                                    if ((e.val = v) == null) {
1188 <                                        deleted = true;
1189 <                                        Node<V> en = e.next;
1190 <                                        if (pred != null)
1191 <                                            pred.next = en;
1192 <                                        else
1193 <                                            setTabAt(tab, i, en);
1194 <                                    }
1195 <                                }
1196 <                                break;
1197 <                            }
1198 <                            pred = e;
1199 <                            if ((e = e.next) == null)
1200 <                                break;
1170 >                        Node<K,V> p = (fh >= 0 ? f :
1171 >                                       (f instanceof TreeBin) ?
1172 >                                       ((TreeBin<K,V>)f).first : null);
1173 >                        while (p != null) {
1174 >                            --delta;
1175 >                            p = p.next;
1176                          }
1177 +                        setTabAt(tab, i++, null);
1178                      }
1179                  }
1180 <                if (validated) {
1181 <                    if (deleted)
1182 <                        addCount(-1L, -1);
1180 >            }
1181 >        }
1182 >        if (delta != 0L)
1183 >            addCount(delta, -1);
1184 >    }
1185 >
1186 >    /**
1187 >     * Returns a {@link Set} view of the keys contained in this map.
1188 >     * The set is backed by the map, so changes to the map are
1189 >     * reflected in the set, and vice-versa. The set supports element
1190 >     * removal, which removes the corresponding mapping from this map,
1191 >     * via the {@code Iterator.remove}, {@code Set.remove},
1192 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1193 >     * operations.  It does not support the {@code add} or
1194 >     * {@code addAll} operations.
1195 >     *
1196 >     * <p>The view's iterators and spliterators are
1197 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 >     *
1199 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1200 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1201 >     *
1202 >     * @return the set view
1203 >     */
1204 >    public KeySetView<K,V> keySet() {
1205 >        KeySetView<K,V> ks;
1206 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1207 >    }
1208 >
1209 >    /**
1210 >     * Returns a {@link Collection} view of the values contained in this map.
1211 >     * The collection is backed by the map, so changes to the map are
1212 >     * reflected in the collection, and vice-versa.  The collection
1213 >     * supports element removal, which removes the corresponding
1214 >     * mapping from this map, via the {@code Iterator.remove},
1215 >     * {@code Collection.remove}, {@code removeAll},
1216 >     * {@code retainAll}, and {@code clear} operations.  It does not
1217 >     * support the {@code add} or {@code addAll} operations.
1218 >     *
1219 >     * <p>The view's iterators and spliterators are
1220 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1221 >     *
1222 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1223 >     * and {@link Spliterator#NONNULL}.
1224 >     *
1225 >     * @return the collection view
1226 >     */
1227 >    public Collection<V> values() {
1228 >        ValuesView<K,V> vs;
1229 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1230 >    }
1231 >
1232 >    /**
1233 >     * Returns a {@link Set} view of the mappings contained in this map.
1234 >     * The set is backed by the map, so changes to the map are
1235 >     * reflected in the set, and vice-versa.  The set supports element
1236 >     * removal, which removes the corresponding mapping from the map,
1237 >     * via the {@code Iterator.remove}, {@code Set.remove},
1238 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1239 >     * operations.
1240 >     *
1241 >     * <p>The view's iterators and spliterators are
1242 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1243 >     *
1244 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1245 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1246 >     *
1247 >     * @return the set view
1248 >     */
1249 >    public Set<Map.Entry<K,V>> entrySet() {
1250 >        EntrySetView<K,V> es;
1251 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1252 >    }
1253 >
1254 >    /**
1255 >     * Returns the hash code value for this {@link Map}, i.e.,
1256 >     * the sum of, for each key-value pair in the map,
1257 >     * {@code key.hashCode() ^ value.hashCode()}.
1258 >     *
1259 >     * @return the hash code value for this map
1260 >     */
1261 >    public int hashCode() {
1262 >        int h = 0;
1263 >        Node<K,V>[] t;
1264 >        if ((t = table) != null) {
1265 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1266 >            for (Node<K,V> p; (p = it.advance()) != null; )
1267 >                h += p.key.hashCode() ^ p.val.hashCode();
1268 >        }
1269 >        return h;
1270 >    }
1271 >
1272 >    /**
1273 >     * Returns a string representation of this map.  The string
1274 >     * representation consists of a list of key-value mappings (in no
1275 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1276 >     * mappings are separated by the characters {@code ", "} (comma
1277 >     * and space).  Each key-value mapping is rendered as the key
1278 >     * followed by an equals sign ("{@code =}") followed by the
1279 >     * associated value.
1280 >     *
1281 >     * @return a string representation of this map
1282 >     */
1283 >    public String toString() {
1284 >        Node<K,V>[] t;
1285 >        int f = (t = table) == null ? 0 : t.length;
1286 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1287 >        StringBuilder sb = new StringBuilder();
1288 >        sb.append('{');
1289 >        Node<K,V> p;
1290 >        if ((p = it.advance()) != null) {
1291 >            for (;;) {
1292 >                K k = p.key;
1293 >                V v = p.val;
1294 >                sb.append(k == this ? "(this Map)" : k);
1295 >                sb.append('=');
1296 >                sb.append(v == this ? "(this Map)" : v);
1297 >                if ((p = it.advance()) == null)
1298                      break;
1299 <                }
1299 >                sb.append(',').append(' ');
1300              }
1301          }
1302 <        return oldVal;
1302 >        return sb.append('}').toString();
1303      }
1304  
1305 <    /*
1306 <     * Internal versions of insertion methods
1307 <     * All have the same basic structure as the first (internalPut):
1308 <     *  1. If table uninitialized, create
1309 <     *  2. If bin empty, try to CAS new node
1310 <     *  3. If bin stale, use new table
1311 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1312 <     *  5. Lock and validate; if valid, scan and add or update
1313 <     *
1223 <     * The putAll method differs mainly in attempting to pre-allocate
1224 <     * enough table space, and also more lazily performs count updates
1225 <     * and checks.
1226 <     *
1227 <     * Most of the function-accepting methods can't be factored nicely
1228 <     * because they require different functional forms, so instead
1229 <     * sprawl out similar mechanics.
1305 >    /**
1306 >     * Compares the specified object with this map for equality.
1307 >     * Returns {@code true} if the given object is a map with the same
1308 >     * mappings as this map.  This operation may return misleading
1309 >     * results if either map is concurrently modified during execution
1310 >     * of this method.
1311 >     *
1312 >     * @param o object to be compared for equality with this map
1313 >     * @return {@code true} if the specified object is equal to this map
1314       */
1315 +    public boolean equals(Object o) {
1316 +        if (o != this) {
1317 +            if (!(o instanceof Map))
1318 +                return false;
1319 +            Map<?,?> m = (Map<?,?>) o;
1320 +            Node<K,V>[] t;
1321 +            int f = (t = table) == null ? 0 : t.length;
1322 +            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1323 +            for (Node<K,V> p; (p = it.advance()) != null; ) {
1324 +                V val = p.val;
1325 +                Object v = m.get(p.key);
1326 +                if (v == null || (v != val && !v.equals(val)))
1327 +                    return false;
1328 +            }
1329 +            for (Map.Entry<?,?> e : m.entrySet()) {
1330 +                Object mk, mv, v;
1331 +                if ((mk = e.getKey()) == null ||
1332 +                    (mv = e.getValue()) == null ||
1333 +                    (v = get(mk)) == null ||
1334 +                    (mv != v && !mv.equals(v)))
1335 +                    return false;
1336 +            }
1337 +        }
1338 +        return true;
1339 +    }
1340  
1341 <    /** Implementation for put and putIfAbsent */
1342 <    @SuppressWarnings("unchecked") private final V internalPut
1343 <        (K k, V v, boolean onlyIfAbsent) {
1344 <        if (k == null || v == null) throw new NullPointerException();
1345 <        int h = spread(k.hashCode());
1346 <        int len = 0;
1347 <        for (Node<V>[] tab = table;;) {
1348 <            int i, fh; Node<V> f; Object fk; V fv;
1349 <            if (tab == null)
1350 <                tab = initTable();
1351 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1352 <                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1353 <                    break;                   // no lock when adding to empty bin
1341 >    /**
1342 >     * Stripped-down version of helper class used in previous version,
1343 >     * declared for the sake of serialization compatibility
1344 >     */
1345 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1346 >        private static final long serialVersionUID = 2249069246763182397L;
1347 >        final float loadFactor;
1348 >        Segment(float lf) { this.loadFactor = lf; }
1349 >    }
1350 >
1351 >    /**
1352 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1353 >     * stream (i.e., serializes it).
1354 >     * @param s the stream
1355 >     * @throws java.io.IOException if an I/O error occurs
1356 >     * @serialData
1357 >     * the key (Object) and value (Object)
1358 >     * for each key-value mapping, followed by a null pair.
1359 >     * The key-value mappings are emitted in no particular order.
1360 >     */
1361 >    private void writeObject(java.io.ObjectOutputStream s)
1362 >        throws java.io.IOException {
1363 >        // For serialization compatibility
1364 >        // Emulate segment calculation from previous version of this class
1365 >        int sshift = 0;
1366 >        int ssize = 1;
1367 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1368 >            ++sshift;
1369 >            ssize <<= 1;
1370 >        }
1371 >        int segmentShift = 32 - sshift;
1372 >        int segmentMask = ssize - 1;
1373 >        @SuppressWarnings("unchecked")
1374 >        Segment<K,V>[] segments = (Segment<K,V>[])
1375 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1376 >        for (int i = 0; i < segments.length; ++i)
1377 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1378 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1379 >        streamFields.put("segments", segments);
1380 >        streamFields.put("segmentShift", segmentShift);
1381 >        streamFields.put("segmentMask", segmentMask);
1382 >        s.writeFields();
1383 >
1384 >        Node<K,V>[] t;
1385 >        if ((t = table) != null) {
1386 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1387 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1388 >                s.writeObject(p.key);
1389 >                s.writeObject(p.val);
1390              }
1391 <            else if ((fh = f.hash) < 0) {
1392 <                if ((fk = f.key) instanceof TreeBin) {
1393 <                    TreeBin<V> t = (TreeBin<V>)fk;
1394 <                    V oldVal = null;
1395 <                    t.acquire(0);
1396 <                    try {
1397 <                        if (tabAt(tab, i) == f) {
1398 <                            len = 2;
1399 <                            TreeNode<V> p = t.putTreeNode(h, k, v);
1400 <                            if (p != null) {
1401 <                                oldVal = p.val;
1402 <                                if (!onlyIfAbsent)
1403 <                                    p.val = v;
1404 <                            }
1405 <                        }
1406 <                    } finally {
1407 <                        t.release(0);
1408 <                    }
1409 <                    if (len != 0) {
1410 <                        if (oldVal != null)
1411 <                            return oldVal;
1412 <                        break;
1413 <                    }
1414 <                }
1415 <                else
1416 <                    tab = (Node<V>[])fk;
1391 >        }
1392 >        s.writeObject(null);
1393 >        s.writeObject(null);
1394 >        segments = null; // throw away
1395 >    }
1396 >
1397 >    /**
1398 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1399 >     * @param s the stream
1400 >     * @throws ClassNotFoundException if the class of a serialized object
1401 >     *         could not be found
1402 >     * @throws java.io.IOException if an I/O error occurs
1403 >     */
1404 >    private void readObject(java.io.ObjectInputStream s)
1405 >        throws java.io.IOException, ClassNotFoundException {
1406 >        /*
1407 >         * To improve performance in typical cases, we create nodes
1408 >         * while reading, then place in table once size is known.
1409 >         * However, we must also validate uniqueness and deal with
1410 >         * overpopulated bins while doing so, which requires
1411 >         * specialized versions of putVal mechanics.
1412 >         */
1413 >        sizeCtl = -1; // force exclusion for table construction
1414 >        s.defaultReadObject();
1415 >        long size = 0L;
1416 >        Node<K,V> p = null;
1417 >        for (;;) {
1418 >            @SuppressWarnings("unchecked")
1419 >            K k = (K) s.readObject();
1420 >            @SuppressWarnings("unchecked")
1421 >            V v = (V) s.readObject();
1422 >            if (k != null && v != null) {
1423 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1424 >                ++size;
1425              }
1426 <            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1427 <                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1428 <                return fv;
1426 >            else
1427 >                break;
1428 >        }
1429 >        if (size == 0L)
1430 >            sizeCtl = 0;
1431 >        else {
1432 >            int n;
1433 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1434 >                n = MAXIMUM_CAPACITY;
1435              else {
1436 <                V oldVal = null;
1437 <                synchronized (f) {
1438 <                    if (tabAt(tab, i) == f) {
1439 <                        len = 1;
1440 <                        for (Node<V> e = f;; ++len) {
1441 <                            Object ek; V ev;
1442 <                            if (e.hash == h &&
1443 <                                (ev = e.val) != null &&
1444 <                                ((ek = e.key) == k || k.equals(ek))) {
1445 <                                oldVal = ev;
1446 <                                if (!onlyIfAbsent)
1447 <                                    e.val = v;
1436 >                int sz = (int)size;
1437 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1438 >            }
1439 >            @SuppressWarnings("unchecked")
1440 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1441 >            int mask = n - 1;
1442 >            long added = 0L;
1443 >            while (p != null) {
1444 >                boolean insertAtFront;
1445 >                Node<K,V> next = p.next, first;
1446 >                int h = p.hash, j = h & mask;
1447 >                if ((first = tabAt(tab, j)) == null)
1448 >                    insertAtFront = true;
1449 >                else {
1450 >                    K k = p.key;
1451 >                    if (first.hash < 0) {
1452 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1453 >                        if (t.putTreeVal(h, k, p.val) == null)
1454 >                            ++added;
1455 >                        insertAtFront = false;
1456 >                    }
1457 >                    else {
1458 >                        int binCount = 0;
1459 >                        insertAtFront = true;
1460 >                        Node<K,V> q; K qk;
1461 >                        for (q = first; q != null; q = q.next) {
1462 >                            if (q.hash == h &&
1463 >                                ((qk = q.key) == k ||
1464 >                                 (qk != null && k.equals(qk)))) {
1465 >                                insertAtFront = false;
1466                                  break;
1467                              }
1468 <                            Node<V> last = e;
1469 <                            if ((e = e.next) == null) {
1470 <                                last.next = new Node<V>(h, k, v, null);
1471 <                                if (len >= TREE_THRESHOLD)
1472 <                                    replaceWithTreeBin(tab, i, k);
1473 <                                break;
1468 >                            ++binCount;
1469 >                        }
1470 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1471 >                            insertAtFront = false;
1472 >                            ++added;
1473 >                            p.next = first;
1474 >                            TreeNode<K,V> hd = null, tl = null;
1475 >                            for (q = p; q != null; q = q.next) {
1476 >                                TreeNode<K,V> t = new TreeNode<K,V>
1477 >                                    (q.hash, q.key, q.val, null, null);
1478 >                                if ((t.prev = tl) == null)
1479 >                                    hd = t;
1480 >                                else
1481 >                                    tl.next = t;
1482 >                                tl = t;
1483                              }
1484 +                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1485                          }
1486                      }
1487                  }
1488 <                if (len != 0) {
1489 <                    if (oldVal != null)
1490 <                        return oldVal;
1491 <                    break;
1488 >                if (insertAtFront) {
1489 >                    ++added;
1490 >                    p.next = first;
1491 >                    setTabAt(tab, j, p);
1492                  }
1493 +                p = next;
1494              }
1495 +            table = tab;
1496 +            sizeCtl = n - (n >>> 2);
1497 +            baseCount = added;
1498          }
1308        addCount(1L, len);
1309        return null;
1499      }
1500  
1501 <    /** Implementation for computeIfAbsent */
1502 <    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1503 <        (K k, Function<? super K, ? extends V> mf) {
1504 <        if (k == null || mf == null)
1501 >    // ConcurrentMap methods
1502 >
1503 >    /**
1504 >     * {@inheritDoc}
1505 >     *
1506 >     * @return the previous value associated with the specified key,
1507 >     *         or {@code null} if there was no mapping for the key
1508 >     * @throws NullPointerException if the specified key or value is null
1509 >     */
1510 >    public V putIfAbsent(K key, V value) {
1511 >        return putVal(key, value, true);
1512 >    }
1513 >
1514 >    /**
1515 >     * {@inheritDoc}
1516 >     *
1517 >     * @throws NullPointerException if the specified key is null
1518 >     */
1519 >    public boolean remove(Object key, Object value) {
1520 >        if (key == null)
1521 >            throw new NullPointerException();
1522 >        return value != null && replaceNode(key, null, value) != null;
1523 >    }
1524 >
1525 >    /**
1526 >     * {@inheritDoc}
1527 >     *
1528 >     * @throws NullPointerException if any of the arguments are null
1529 >     */
1530 >    public boolean replace(K key, V oldValue, V newValue) {
1531 >        if (key == null || oldValue == null || newValue == null)
1532              throw new NullPointerException();
1533 <        int h = spread(k.hashCode());
1533 >        return replaceNode(key, newValue, oldValue) != null;
1534 >    }
1535 >
1536 >    /**
1537 >     * {@inheritDoc}
1538 >     *
1539 >     * @return the previous value associated with the specified key,
1540 >     *         or {@code null} if there was no mapping for the key
1541 >     * @throws NullPointerException if the specified key or value is null
1542 >     */
1543 >    public V replace(K key, V value) {
1544 >        if (key == null || value == null)
1545 >            throw new NullPointerException();
1546 >        return replaceNode(key, value, null);
1547 >    }
1548 >
1549 >    // Overrides of JDK8+ Map extension method defaults
1550 >
1551 >    /**
1552 >     * Returns the value to which the specified key is mapped, or the
1553 >     * given default value if this map contains no mapping for the
1554 >     * key.
1555 >     *
1556 >     * @param key the key whose associated value is to be returned
1557 >     * @param defaultValue the value to return if this map contains
1558 >     * no mapping for the given key
1559 >     * @return the mapping for the key, if present; else the default value
1560 >     * @throws NullPointerException if the specified key is null
1561 >     */
1562 >    public V getOrDefault(Object key, V defaultValue) {
1563 >        V v;
1564 >        return (v = get(key)) == null ? defaultValue : v;
1565 >    }
1566 >
1567 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1568 >        if (action == null) throw new NullPointerException();
1569 >        Node<K,V>[] t;
1570 >        if ((t = table) != null) {
1571 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1572 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1573 >                action.accept(p.key, p.val);
1574 >            }
1575 >        }
1576 >    }
1577 >
1578 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1579 >        if (function == null) throw new NullPointerException();
1580 >        Node<K,V>[] t;
1581 >        if ((t = table) != null) {
1582 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1583 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1584 >                V oldValue = p.val;
1585 >                for (K key = p.key;;) {
1586 >                    V newValue = function.apply(key, oldValue);
1587 >                    if (newValue == null)
1588 >                        throw new NullPointerException();
1589 >                    if (replaceNode(key, newValue, oldValue) != null ||
1590 >                        (oldValue = get(key)) == null)
1591 >                        break;
1592 >                }
1593 >            }
1594 >        }
1595 >    }
1596 >
1597 >    /**
1598 >     * Helper method for EntrySetView.removeIf
1599 >     */
1600 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1601 >        if (function == null) throw new NullPointerException();
1602 >        Node<K,V>[] t;
1603 >        boolean removed = false;
1604 >        if ((t = table) != null) {
1605 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1606 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1607 >                K k = p.key;
1608 >                V v = p.val;
1609 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1610 >                if (function.test(e) && replaceNode(k, null, v) != null)
1611 >                    removed = true;
1612 >            }
1613 >        }
1614 >        return removed;
1615 >    }
1616 >
1617 >    /**
1618 >     * Helper method for ValuesView.removeIf
1619 >     */
1620 >    boolean removeValueIf(Predicate<? super V> function) {
1621 >        if (function == null) throw new NullPointerException();
1622 >        Node<K,V>[] t;
1623 >        boolean removed = false;
1624 >        if ((t = table) != null) {
1625 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1626 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1627 >                K k = p.key;
1628 >                V v = p.val;
1629 >                if (function.test(v) && replaceNode(k, null, v) != null)
1630 >                    removed = true;
1631 >            }
1632 >        }
1633 >        return removed;
1634 >    }
1635 >
1636 >    /**
1637 >     * If the specified key is not already associated with a value,
1638 >     * attempts to compute its value using the given mapping function
1639 >     * and enters it into this map unless {@code null}.  The entire
1640 >     * method invocation is performed atomically, so the function is
1641 >     * applied at most once per key.  Some attempted update operations
1642 >     * on this map by other threads may be blocked while computation
1643 >     * is in progress, so the computation should be short and simple,
1644 >     * and must not attempt to update any other mappings of this map.
1645 >     *
1646 >     * @param key key with which the specified value is to be associated
1647 >     * @param mappingFunction the function to compute a value
1648 >     * @return the current (existing or computed) value associated with
1649 >     *         the specified key, or null if the computed value is null
1650 >     * @throws NullPointerException if the specified key or mappingFunction
1651 >     *         is null
1652 >     * @throws IllegalStateException if the computation detectably
1653 >     *         attempts a recursive update to this map that would
1654 >     *         otherwise never complete
1655 >     * @throws RuntimeException or Error if the mappingFunction does so,
1656 >     *         in which case the mapping is left unestablished
1657 >     */
1658 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1659 >        if (key == null || mappingFunction == null)
1660 >            throw new NullPointerException();
1661 >        int h = spread(key.hashCode());
1662          V val = null;
1663 <        int len = 0;
1664 <        for (Node<V>[] tab = table;;) {
1665 <            Node<V> f; int i; Object fk;
1666 <            if (tab == null)
1663 >        int binCount = 0;
1664 >        for (Node<K,V>[] tab = table;;) {
1665 >            Node<K,V> f; int n, i, fh;
1666 >            if (tab == null || (n = tab.length) == 0)
1667                  tab = initTable();
1668 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1669 <                Node<V> node = new Node<V>(h, k, null, null);
1670 <                synchronized (node) {
1671 <                    if (casTabAt(tab, i, null, node)) {
1672 <                        len = 1;
1668 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1669 >                Node<K,V> r = new ReservationNode<K,V>();
1670 >                synchronized (r) {
1671 >                    if (casTabAt(tab, i, null, r)) {
1672 >                        binCount = 1;
1673 >                        Node<K,V> node = null;
1674                          try {
1675 <                            if ((val = mf.apply(k)) != null)
1676 <                                node.val = val;
1675 >                            if ((val = mappingFunction.apply(key)) != null)
1676 >                                node = new Node<K,V>(h, key, val, null);
1677                          } finally {
1678 <                            if (val == null)
1334 <                                setTabAt(tab, i, null);
1678 >                            setTabAt(tab, i, node);
1679                          }
1680                      }
1681                  }
1682 <                if (len != 0)
1682 >                if (binCount != 0)
1683                      break;
1684              }
1685 <            else if (f.hash < 0) {
1686 <                if ((fk = f.key) instanceof TreeBin) {
1687 <                    TreeBin<V> t = (TreeBin<V>)fk;
1688 <                    boolean added = false;
1689 <                    t.acquire(0);
1690 <                    try {
1691 <                        if (tabAt(tab, i) == f) {
1692 <                            len = 1;
1693 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1694 <                            if (p != null)
1685 >            else if ((fh = f.hash) == MOVED)
1686 >                tab = helpTransfer(tab, f);
1687 >            else {
1688 >                boolean added = false;
1689 >                synchronized (f) {
1690 >                    if (tabAt(tab, i) == f) {
1691 >                        if (fh >= 0) {
1692 >                            binCount = 1;
1693 >                            for (Node<K,V> e = f;; ++binCount) {
1694 >                                K ek;
1695 >                                if (e.hash == h &&
1696 >                                    ((ek = e.key) == key ||
1697 >                                     (ek != null && key.equals(ek)))) {
1698 >                                    val = e.val;
1699 >                                    break;
1700 >                                }
1701 >                                Node<K,V> pred = e;
1702 >                                if ((e = e.next) == null) {
1703 >                                    if ((val = mappingFunction.apply(key)) != null) {
1704 >                                        if (pred.next != null)
1705 >                                            throw new IllegalStateException("Recursive update");
1706 >                                        added = true;
1707 >                                        pred.next = new Node<K,V>(h, key, val, null);
1708 >                                    }
1709 >                                    break;
1710 >                                }
1711 >                            }
1712 >                        }
1713 >                        else if (f instanceof TreeBin) {
1714 >                            binCount = 2;
1715 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1716 >                            TreeNode<K,V> r, p;
1717 >                            if ((r = t.root) != null &&
1718 >                                (p = r.findTreeNode(h, key, null)) != null)
1719                                  val = p.val;
1720 <                            else if ((val = mf.apply(k)) != null) {
1720 >                            else if ((val = mappingFunction.apply(key)) != null) {
1721                                  added = true;
1722 <                                len = 2;
1355 <                                t.putTreeNode(h, k, val);
1722 >                                t.putTreeVal(h, key, val);
1723                              }
1724                          }
1725 <                    } finally {
1726 <                        t.release(0);
1360 <                    }
1361 <                    if (len != 0) {
1362 <                        if (!added)
1363 <                            return val;
1364 <                        break;
1725 >                        else if (f instanceof ReservationNode)
1726 >                            throw new IllegalStateException("Recursive update");
1727                      }
1728                  }
1729 <                else
1730 <                    tab = (Node<V>[])fk;
1729 >                if (binCount != 0) {
1730 >                    if (binCount >= TREEIFY_THRESHOLD)
1731 >                        treeifyBin(tab, i);
1732 >                    if (!added)
1733 >                        return val;
1734 >                    break;
1735 >                }
1736              }
1737 +        }
1738 +        if (val != null)
1739 +            addCount(1L, binCount);
1740 +        return val;
1741 +    }
1742 +
1743 +    /**
1744 +     * If the value for the specified key is present, attempts to
1745 +     * compute a new mapping given the key and its current mapped
1746 +     * value.  The entire method invocation is performed atomically.
1747 +     * Some attempted update operations on this map by other threads
1748 +     * may be blocked while computation is in progress, so the
1749 +     * computation should be short and simple, and must not attempt to
1750 +     * update any other mappings of this map.
1751 +     *
1752 +     * @param key key with which a value may be associated
1753 +     * @param remappingFunction the function to compute a value
1754 +     * @return the new value associated with the specified key, or null if none
1755 +     * @throws NullPointerException if the specified key or remappingFunction
1756 +     *         is null
1757 +     * @throws IllegalStateException if the computation detectably
1758 +     *         attempts a recursive update to this map that would
1759 +     *         otherwise never complete
1760 +     * @throws RuntimeException or Error if the remappingFunction does so,
1761 +     *         in which case the mapping is unchanged
1762 +     */
1763 +    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1764 +        if (key == null || remappingFunction == null)
1765 +            throw new NullPointerException();
1766 +        int h = spread(key.hashCode());
1767 +        V val = null;
1768 +        int delta = 0;
1769 +        int binCount = 0;
1770 +        for (Node<K,V>[] tab = table;;) {
1771 +            Node<K,V> f; int n, i, fh;
1772 +            if (tab == null || (n = tab.length) == 0)
1773 +                tab = initTable();
1774 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1775 +                break;
1776 +            else if ((fh = f.hash) == MOVED)
1777 +                tab = helpTransfer(tab, f);
1778              else {
1371                for (Node<V> e = f; e != null; e = e.next) { // prescan
1372                    Object ek; V ev;
1373                    if (e.hash == h && (ev = e.val) != null &&
1374                        ((ek = e.key) == k || k.equals(ek)))
1375                        return ev;
1376                }
1377                boolean added = false;
1779                  synchronized (f) {
1780                      if (tabAt(tab, i) == f) {
1781 <                        len = 1;
1782 <                        for (Node<V> e = f;; ++len) {
1783 <                            Object ek; V ev;
1784 <                            if (e.hash == h &&
1785 <                                (ev = e.val) != null &&
1786 <                                ((ek = e.key) == k || k.equals(ek))) {
1787 <                                val = ev;
1788 <                                break;
1781 >                        if (fh >= 0) {
1782 >                            binCount = 1;
1783 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1784 >                                K ek;
1785 >                                if (e.hash == h &&
1786 >                                    ((ek = e.key) == key ||
1787 >                                     (ek != null && key.equals(ek)))) {
1788 >                                    val = remappingFunction.apply(key, e.val);
1789 >                                    if (val != null)
1790 >                                        e.val = val;
1791 >                                    else {
1792 >                                        delta = -1;
1793 >                                        Node<K,V> en = e.next;
1794 >                                        if (pred != null)
1795 >                                            pred.next = en;
1796 >                                        else
1797 >                                            setTabAt(tab, i, en);
1798 >                                    }
1799 >                                    break;
1800 >                                }
1801 >                                pred = e;
1802 >                                if ((e = e.next) == null)
1803 >                                    break;
1804                              }
1805 <                            Node<V> last = e;
1806 <                            if ((e = e.next) == null) {
1807 <                                if ((val = mf.apply(k)) != null) {
1808 <                                    added = true;
1809 <                                    last.next = new Node<V>(h, k, val, null);
1810 <                                    if (len >= TREE_THRESHOLD)
1811 <                                        replaceWithTreeBin(tab, i, k);
1805 >                        }
1806 >                        else if (f instanceof TreeBin) {
1807 >                            binCount = 2;
1808 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1809 >                            TreeNode<K,V> r, p;
1810 >                            if ((r = t.root) != null &&
1811 >                                (p = r.findTreeNode(h, key, null)) != null) {
1812 >                                val = remappingFunction.apply(key, p.val);
1813 >                                if (val != null)
1814 >                                    p.val = val;
1815 >                                else {
1816 >                                    delta = -1;
1817 >                                    if (t.removeTreeNode(p))
1818 >                                        setTabAt(tab, i, untreeify(t.first));
1819                                  }
1397                                break;
1820                              }
1821                          }
1822 +                        else if (f instanceof ReservationNode)
1823 +                            throw new IllegalStateException("Recursive update");
1824                      }
1825                  }
1826 <                if (len != 0) {
1403 <                    if (!added)
1404 <                        return val;
1826 >                if (binCount != 0)
1827                      break;
1406                }
1828              }
1829          }
1830 <        if (val != null)
1831 <            addCount(1L, len);
1830 >        if (delta != 0)
1831 >            addCount((long)delta, binCount);
1832          return val;
1833      }
1834  
1835 <    /** Implementation for compute */
1836 <    @SuppressWarnings("unchecked") private final V internalCompute
1837 <        (K k, boolean onlyIfPresent,
1838 <         BiFunction<? super K, ? super V, ? extends V> mf) {
1839 <        if (k == null || mf == null)
1835 >    /**
1836 >     * Attempts to compute a mapping for the specified key and its
1837 >     * current mapped value (or {@code null} if there is no current
1838 >     * mapping). The entire method invocation is performed atomically.
1839 >     * Some attempted update operations on this map by other threads
1840 >     * may be blocked while computation is in progress, so the
1841 >     * computation should be short and simple, and must not attempt to
1842 >     * update any other mappings of this Map.
1843 >     *
1844 >     * @param key key with which the specified value is to be associated
1845 >     * @param remappingFunction the function to compute a value
1846 >     * @return the new value associated with the specified key, or null if none
1847 >     * @throws NullPointerException if the specified key or remappingFunction
1848 >     *         is null
1849 >     * @throws IllegalStateException if the computation detectably
1850 >     *         attempts a recursive update to this map that would
1851 >     *         otherwise never complete
1852 >     * @throws RuntimeException or Error if the remappingFunction does so,
1853 >     *         in which case the mapping is unchanged
1854 >     */
1855 >    public V compute(K key,
1856 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1857 >        if (key == null || remappingFunction == null)
1858              throw new NullPointerException();
1859 <        int h = spread(k.hashCode());
1859 >        int h = spread(key.hashCode());
1860          V val = null;
1861          int delta = 0;
1862 <        int len = 0;
1863 <        for (Node<V>[] tab = table;;) {
1864 <            Node<V> f; int i, fh; Object fk;
1865 <            if (tab == null)
1862 >        int binCount = 0;
1863 >        for (Node<K,V>[] tab = table;;) {
1864 >            Node<K,V> f; int n, i, fh;
1865 >            if (tab == null || (n = tab.length) == 0)
1866                  tab = initTable();
1867 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1868 <                if (onlyIfPresent)
1869 <                    break;
1870 <                Node<V> node = new Node<V>(h, k, null, null);
1871 <                synchronized (node) {
1872 <                    if (casTabAt(tab, i, null, node)) {
1867 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1868 >                Node<K,V> r = new ReservationNode<K,V>();
1869 >                synchronized (r) {
1870 >                    if (casTabAt(tab, i, null, r)) {
1871 >                        binCount = 1;
1872 >                        Node<K,V> node = null;
1873                          try {
1874 <                            len = 1;
1436 <                            if ((val = mf.apply(k, null)) != null) {
1437 <                                node.val = val;
1874 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1875                                  delta = 1;
1876 +                                node = new Node<K,V>(h, key, val, null);
1877                              }
1878                          } finally {
1879 <                            if (delta == 0)
1442 <                                setTabAt(tab, i, null);
1879 >                            setTabAt(tab, i, node);
1880                          }
1881                      }
1882                  }
1883 <                if (len != 0)
1883 >                if (binCount != 0)
1884                      break;
1885              }
1886 <            else if ((fh = f.hash) < 0) {
1887 <                if ((fk = f.key) instanceof TreeBin) {
1888 <                    TreeBin<V> t = (TreeBin<V>)fk;
1889 <                    t.acquire(0);
1890 <                    try {
1891 <                        if (tabAt(tab, i) == f) {
1892 <                            len = 1;
1893 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1894 <                            if (p == null && onlyIfPresent)
1895 <                                break;
1886 >            else if ((fh = f.hash) == MOVED)
1887 >                tab = helpTransfer(tab, f);
1888 >            else {
1889 >                synchronized (f) {
1890 >                    if (tabAt(tab, i) == f) {
1891 >                        if (fh >= 0) {
1892 >                            binCount = 1;
1893 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1894 >                                K ek;
1895 >                                if (e.hash == h &&
1896 >                                    ((ek = e.key) == key ||
1897 >                                     (ek != null && key.equals(ek)))) {
1898 >                                    val = remappingFunction.apply(key, e.val);
1899 >                                    if (val != null)
1900 >                                        e.val = val;
1901 >                                    else {
1902 >                                        delta = -1;
1903 >                                        Node<K,V> en = e.next;
1904 >                                        if (pred != null)
1905 >                                            pred.next = en;
1906 >                                        else
1907 >                                            setTabAt(tab, i, en);
1908 >                                    }
1909 >                                    break;
1910 >                                }
1911 >                                pred = e;
1912 >                                if ((e = e.next) == null) {
1913 >                                    val = remappingFunction.apply(key, null);
1914 >                                    if (val != null) {
1915 >                                        if (pred.next != null)
1916 >                                            throw new IllegalStateException("Recursive update");
1917 >                                        delta = 1;
1918 >                                        pred.next =
1919 >                                            new Node<K,V>(h, key, val, null);
1920 >                                    }
1921 >                                    break;
1922 >                                }
1923 >                            }
1924 >                        }
1925 >                        else if (f instanceof TreeBin) {
1926 >                            binCount = 1;
1927 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1928 >                            TreeNode<K,V> r, p;
1929 >                            if ((r = t.root) != null)
1930 >                                p = r.findTreeNode(h, key, null);
1931 >                            else
1932 >                                p = null;
1933                              V pv = (p == null) ? null : p.val;
1934 <                            if ((val = mf.apply(k, pv)) != null) {
1934 >                            val = remappingFunction.apply(key, pv);
1935 >                            if (val != null) {
1936                                  if (p != null)
1937                                      p.val = val;
1938                                  else {
1464                                    len = 2;
1939                                      delta = 1;
1940 <                                    t.putTreeNode(h, k, val);
1940 >                                    t.putTreeVal(h, key, val);
1941                                  }
1942                              }
1943                              else if (p != null) {
1944                                  delta = -1;
1945 <                                t.deleteTreeNode(p);
1945 >                                if (t.removeTreeNode(p))
1946 >                                    setTabAt(tab, i, untreeify(t.first));
1947                              }
1948                          }
1949 <                    } finally {
1950 <                        t.release(0);
1949 >                        else if (f instanceof ReservationNode)
1950 >                            throw new IllegalStateException("Recursive update");
1951                      }
1477                    if (len != 0)
1478                        break;
1952                  }
1953 <                else
1954 <                    tab = (Node<V>[])fk;
1955 <            }
1483 <            else {
1484 <                synchronized (f) {
1485 <                    if (tabAt(tab, i) == f) {
1486 <                        len = 1;
1487 <                        for (Node<V> e = f, pred = null;; ++len) {
1488 <                            Object ek; V ev;
1489 <                            if (e.hash == h &&
1490 <                                (ev = e.val) != null &&
1491 <                                ((ek = e.key) == k || k.equals(ek))) {
1492 <                                val = mf.apply(k, ev);
1493 <                                if (val != null)
1494 <                                    e.val = val;
1495 <                                else {
1496 <                                    delta = -1;
1497 <                                    Node<V> en = e.next;
1498 <                                    if (pred != null)
1499 <                                        pred.next = en;
1500 <                                    else
1501 <                                        setTabAt(tab, i, en);
1502 <                                }
1503 <                                break;
1504 <                            }
1505 <                            pred = e;
1506 <                            if ((e = e.next) == null) {
1507 <                                if (!onlyIfPresent &&
1508 <                                    (val = mf.apply(k, null)) != null) {
1509 <                                    pred.next = new Node<V>(h, k, val, null);
1510 <                                    delta = 1;
1511 <                                    if (len >= TREE_THRESHOLD)
1512 <                                        replaceWithTreeBin(tab, i, k);
1513 <                                }
1514 <                                break;
1515 <                            }
1516 <                        }
1517 <                    }
1518 <                }
1519 <                if (len != 0)
1953 >                if (binCount != 0) {
1954 >                    if (binCount >= TREEIFY_THRESHOLD)
1955 >                        treeifyBin(tab, i);
1956                      break;
1957 +                }
1958              }
1959          }
1960          if (delta != 0)
1961 <            addCount((long)delta, len);
1961 >            addCount((long)delta, binCount);
1962          return val;
1963      }
1964  
1965 <    /** Implementation for merge */
1966 <    @SuppressWarnings("unchecked") private final V internalMerge
1967 <        (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1968 <        if (k == null || v == null || mf == null)
1965 >    /**
1966 >     * If the specified key is not already associated with a
1967 >     * (non-null) value, associates it with the given value.
1968 >     * Otherwise, replaces the value with the results of the given
1969 >     * remapping function, or removes if {@code null}. The entire
1970 >     * method invocation is performed atomically.  Some attempted
1971 >     * update operations on this map by other threads may be blocked
1972 >     * while computation is in progress, so the computation should be
1973 >     * short and simple, and must not attempt to update any other
1974 >     * mappings of this Map.
1975 >     *
1976 >     * @param key key with which the specified value is to be associated
1977 >     * @param value the value to use if absent
1978 >     * @param remappingFunction the function to recompute a value if present
1979 >     * @return the new value associated with the specified key, or null if none
1980 >     * @throws NullPointerException if the specified key or the
1981 >     *         remappingFunction is null
1982 >     * @throws RuntimeException or Error if the remappingFunction does so,
1983 >     *         in which case the mapping is unchanged
1984 >     */
1985 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1986 >        if (key == null || value == null || remappingFunction == null)
1987              throw new NullPointerException();
1988 <        int h = spread(k.hashCode());
1988 >        int h = spread(key.hashCode());
1989          V val = null;
1990          int delta = 0;
1991 <        int len = 0;
1992 <        for (Node<V>[] tab = table;;) {
1993 <            int i; Node<V> f; Object fk; V fv;
1994 <            if (tab == null)
1991 >        int binCount = 0;
1992 >        for (Node<K,V>[] tab = table;;) {
1993 >            Node<K,V> f; int n, i, fh;
1994 >            if (tab == null || (n = tab.length) == 0)
1995                  tab = initTable();
1996 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1997 <                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1996 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1997 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1998                      delta = 1;
1999 <                    val = v;
1999 >                    val = value;
2000                      break;
2001                  }
2002              }
2003 <            else if (f.hash < 0) {
2004 <                if ((fk = f.key) instanceof TreeBin) {
2005 <                    TreeBin<V> t = (TreeBin<V>)fk;
2006 <                    t.acquire(0);
2007 <                    try {
2008 <                        if (tabAt(tab, i) == f) {
2009 <                            len = 1;
2010 <                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
2011 <                            val = (p == null) ? v : mf.apply(p.val, v);
2003 >            else if ((fh = f.hash) == MOVED)
2004 >                tab = helpTransfer(tab, f);
2005 >            else {
2006 >                synchronized (f) {
2007 >                    if (tabAt(tab, i) == f) {
2008 >                        if (fh >= 0) {
2009 >                            binCount = 1;
2010 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2011 >                                K ek;
2012 >                                if (e.hash == h &&
2013 >                                    ((ek = e.key) == key ||
2014 >                                     (ek != null && key.equals(ek)))) {
2015 >                                    val = remappingFunction.apply(e.val, value);
2016 >                                    if (val != null)
2017 >                                        e.val = val;
2018 >                                    else {
2019 >                                        delta = -1;
2020 >                                        Node<K,V> en = e.next;
2021 >                                        if (pred != null)
2022 >                                            pred.next = en;
2023 >                                        else
2024 >                                            setTabAt(tab, i, en);
2025 >                                    }
2026 >                                    break;
2027 >                                }
2028 >                                pred = e;
2029 >                                if ((e = e.next) == null) {
2030 >                                    delta = 1;
2031 >                                    val = value;
2032 >                                    pred.next =
2033 >                                        new Node<K,V>(h, key, val, null);
2034 >                                    break;
2035 >                                }
2036 >                            }
2037 >                        }
2038 >                        else if (f instanceof TreeBin) {
2039 >                            binCount = 2;
2040 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2041 >                            TreeNode<K,V> r = t.root;
2042 >                            TreeNode<K,V> p = (r == null) ? null :
2043 >                                r.findTreeNode(h, key, null);
2044 >                            val = (p == null) ? value :
2045 >                                remappingFunction.apply(p.val, value);
2046                              if (val != null) {
2047                                  if (p != null)
2048                                      p.val = val;
2049                                  else {
1561                                    len = 2;
2050                                      delta = 1;
2051 <                                    t.putTreeNode(h, k, val);
2051 >                                    t.putTreeVal(h, key, val);
2052                                  }
2053                              }
2054                              else if (p != null) {
2055                                  delta = -1;
2056 <                                t.deleteTreeNode(p);
2056 >                                if (t.removeTreeNode(p))
2057 >                                    setTabAt(tab, i, untreeify(t.first));
2058                              }
2059                          }
2060 <                    } finally {
2061 <                        t.release(0);
2060 >                        else if (f instanceof ReservationNode)
2061 >                            throw new IllegalStateException("Recursive update");
2062                      }
1574                    if (len != 0)
1575                        break;
2063                  }
2064 <                else
2065 <                    tab = (Node<V>[])fk;
2066 <            }
1580 <            else {
1581 <                synchronized (f) {
1582 <                    if (tabAt(tab, i) == f) {
1583 <                        len = 1;
1584 <                        for (Node<V> e = f, pred = null;; ++len) {
1585 <                            Object ek; V ev;
1586 <                            if (e.hash == h &&
1587 <                                (ev = e.val) != null &&
1588 <                                ((ek = e.key) == k || k.equals(ek))) {
1589 <                                val = mf.apply(ev, v);
1590 <                                if (val != null)
1591 <                                    e.val = val;
1592 <                                else {
1593 <                                    delta = -1;
1594 <                                    Node<V> en = e.next;
1595 <                                    if (pred != null)
1596 <                                        pred.next = en;
1597 <                                    else
1598 <                                        setTabAt(tab, i, en);
1599 <                                }
1600 <                                break;
1601 <                            }
1602 <                            pred = e;
1603 <                            if ((e = e.next) == null) {
1604 <                                val = v;
1605 <                                pred.next = new Node<V>(h, k, val, null);
1606 <                                delta = 1;
1607 <                                if (len >= TREE_THRESHOLD)
1608 <                                    replaceWithTreeBin(tab, i, k);
1609 <                                break;
1610 <                            }
1611 <                        }
1612 <                    }
1613 <                }
1614 <                if (len != 0)
2064 >                if (binCount != 0) {
2065 >                    if (binCount >= TREEIFY_THRESHOLD)
2066 >                        treeifyBin(tab, i);
2067                      break;
2068 +                }
2069              }
2070          }
2071          if (delta != 0)
2072 <            addCount((long)delta, len);
2072 >            addCount((long)delta, binCount);
2073          return val;
2074      }
2075  
2076 <    /** Implementation for putAll */
2077 <    @SuppressWarnings("unchecked") private final void internalPutAll
2078 <        (Map<? extends K, ? extends V> m) {
2079 <        tryPresize(m.size());
2080 <        long delta = 0L;     // number of uncommitted additions
2081 <        boolean npe = false; // to throw exception on exit for nulls
2082 <        try {                // to clean up counts on other exceptions
2083 <            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
2084 <                Object k; V v;
2085 <                if (entry == null || (k = entry.getKey()) == null ||
2086 <                    (v = entry.getValue()) == null) {
2087 <                    npe = true;
2088 <                    break;
2089 <                }
2090 <                int h = spread(k.hashCode());
2091 <                for (Node<V>[] tab = table;;) {
2092 <                    int i; Node<V> f; int fh; Object fk;
2093 <                    if (tab == null)
2094 <                        tab = initTable();
2095 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
2096 <                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
2097 <                            ++delta;
2098 <                            break;
2099 <                        }
2100 <                    }
2101 <                    else if ((fh = f.hash) < 0) {
2102 <                        if ((fk = f.key) instanceof TreeBin) {
2103 <                            TreeBin<V> t = (TreeBin<V>)fk;
2104 <                            boolean validated = false;
2105 <                            t.acquire(0);
2106 <                            try {
2107 <                                if (tabAt(tab, i) == f) {
2108 <                                    validated = true;
2109 <                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
2110 <                                    if (p != null)
2111 <                                        p.val = v;
2112 <                                    else {
2113 <                                        t.putTreeNode(h, k, v);
2114 <                                        ++delta;
2115 <                                    }
2116 <                                }
2117 <                            } finally {
2118 <                                t.release(0);
2119 <                            }
2120 <                            if (validated)
2121 <                                break;
2076 >    // Hashtable legacy methods
2077 >
2078 >    /**
2079 >     * Tests if some key maps into the specified value in this table.
2080 >     *
2081 >     * <p>Note that this method is identical in functionality to
2082 >     * {@link #containsValue(Object)}, and exists solely to ensure
2083 >     * full compatibility with class {@link java.util.Hashtable},
2084 >     * which supported this method prior to introduction of the Java
2085 >     * Collections Framework.
2086 >     *
2087 >     * @param  value a value to search for
2088 >     * @return {@code true} if and only if some key maps to the
2089 >     *         {@code value} argument in this table as
2090 >     *         determined by the {@code equals} method;
2091 >     *         {@code false} otherwise
2092 >     * @throws NullPointerException if the specified value is null
2093 >     */
2094 >    public boolean contains(Object value) {
2095 >        return containsValue(value);
2096 >    }
2097 >
2098 >    /**
2099 >     * Returns an enumeration of the keys in this table.
2100 >     *
2101 >     * @return an enumeration of the keys in this table
2102 >     * @see #keySet()
2103 >     */
2104 >    public Enumeration<K> keys() {
2105 >        Node<K,V>[] t;
2106 >        int f = (t = table) == null ? 0 : t.length;
2107 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2108 >    }
2109 >
2110 >    /**
2111 >     * Returns an enumeration of the values in this table.
2112 >     *
2113 >     * @return an enumeration of the values in this table
2114 >     * @see #values()
2115 >     */
2116 >    public Enumeration<V> elements() {
2117 >        Node<K,V>[] t;
2118 >        int f = (t = table) == null ? 0 : t.length;
2119 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2120 >    }
2121 >
2122 >    // ConcurrentHashMap-only methods
2123 >
2124 >    /**
2125 >     * Returns the number of mappings. This method should be used
2126 >     * instead of {@link #size} because a ConcurrentHashMap may
2127 >     * contain more mappings than can be represented as an int. The
2128 >     * value returned is an estimate; the actual count may differ if
2129 >     * there are concurrent insertions or removals.
2130 >     *
2131 >     * @return the number of mappings
2132 >     * @since 1.8
2133 >     */
2134 >    public long mappingCount() {
2135 >        long n = sumCount();
2136 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2137 >    }
2138 >
2139 >    /**
2140 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2141 >     * from the given type to {@code Boolean.TRUE}.
2142 >     *
2143 >     * @param <K> the element type of the returned set
2144 >     * @return the new set
2145 >     * @since 1.8
2146 >     */
2147 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2148 >        return new KeySetView<K,Boolean>
2149 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2150 >    }
2151 >
2152 >    /**
2153 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2154 >     * from the given type to {@code Boolean.TRUE}.
2155 >     *
2156 >     * @param initialCapacity The implementation performs internal
2157 >     * sizing to accommodate this many elements.
2158 >     * @param <K> the element type of the returned set
2159 >     * @return the new set
2160 >     * @throws IllegalArgumentException if the initial capacity of
2161 >     * elements is negative
2162 >     * @since 1.8
2163 >     */
2164 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2165 >        return new KeySetView<K,Boolean>
2166 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2167 >    }
2168 >
2169 >    /**
2170 >     * Returns a {@link Set} view of the keys in this map, using the
2171 >     * given common mapped value for any additions (i.e., {@link
2172 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2173 >     * This is of course only appropriate if it is acceptable to use
2174 >     * the same value for all additions from this view.
2175 >     *
2176 >     * @param mappedValue the mapped value to use for any additions
2177 >     * @return the set view
2178 >     * @throws NullPointerException if the mappedValue is null
2179 >     */
2180 >    public KeySetView<K,V> keySet(V mappedValue) {
2181 >        if (mappedValue == null)
2182 >            throw new NullPointerException();
2183 >        return new KeySetView<K,V>(this, mappedValue);
2184 >    }
2185 >
2186 >    /* ---------------- Special Nodes -------------- */
2187 >
2188 >    /**
2189 >     * A node inserted at head of bins during transfer operations.
2190 >     */
2191 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2192 >        final Node<K,V>[] nextTable;
2193 >        ForwardingNode(Node<K,V>[] tab) {
2194 >            super(MOVED, null, null, null);
2195 >            this.nextTable = tab;
2196 >        }
2197 >
2198 >        Node<K,V> find(int h, Object k) {
2199 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2200 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2201 >                Node<K,V> e; int n;
2202 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2203 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2204 >                    return null;
2205 >                for (;;) {
2206 >                    int eh; K ek;
2207 >                    if ((eh = e.hash) == h &&
2208 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2209 >                        return e;
2210 >                    if (eh < 0) {
2211 >                        if (e instanceof ForwardingNode) {
2212 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2213 >                            continue outer;
2214                          }
2215                          else
2216 <                            tab = (Node<V>[])fk;
1672 <                    }
1673 <                    else {
1674 <                        int len = 0;
1675 <                        synchronized (f) {
1676 <                            if (tabAt(tab, i) == f) {
1677 <                                len = 1;
1678 <                                for (Node<V> e = f;; ++len) {
1679 <                                    Object ek; V ev;
1680 <                                    if (e.hash == h &&
1681 <                                        (ev = e.val) != null &&
1682 <                                        ((ek = e.key) == k || k.equals(ek))) {
1683 <                                        e.val = v;
1684 <                                        break;
1685 <                                    }
1686 <                                    Node<V> last = e;
1687 <                                    if ((e = e.next) == null) {
1688 <                                        ++delta;
1689 <                                        last.next = new Node<V>(h, k, v, null);
1690 <                                        if (len >= TREE_THRESHOLD)
1691 <                                            replaceWithTreeBin(tab, i, k);
1692 <                                        break;
1693 <                                    }
1694 <                                }
1695 <                            }
1696 <                        }
1697 <                        if (len != 0) {
1698 <                            if (len > 1) {
1699 <                                addCount(delta, len);
1700 <                                delta = 0L;
1701 <                            }
1702 <                            break;
1703 <                        }
2216 >                            return e.find(h, k);
2217                      }
2218 +                    if ((e = e.next) == null)
2219 +                        return null;
2220                  }
2221              }
1707        } finally {
1708            if (delta != 0L)
1709                addCount(delta, 2);
2222          }
1711        if (npe)
1712            throw new NullPointerException();
2223      }
2224  
2225      /**
2226 <     * Implementation for clear. Steps through each bin, removing all
1717 <     * nodes.
2226 >     * A place-holder node used in computeIfAbsent and compute
2227       */
2228 <    @SuppressWarnings("unchecked") private final void internalClear() {
2229 <        long delta = 0L; // negative number of deletions
2230 <        int i = 0;
2231 <        Node<V>[] tab = table;
2232 <        while (tab != null && i < tab.length) {
2233 <            Node<V> f = tabAt(tab, i);
2234 <            if (f == null)
1726 <                ++i;
1727 <            else if (f.hash < 0) {
1728 <                Object fk;
1729 <                if ((fk = f.key) instanceof TreeBin) {
1730 <                    TreeBin<V> t = (TreeBin<V>)fk;
1731 <                    t.acquire(0);
1732 <                    try {
1733 <                        if (tabAt(tab, i) == f) {
1734 <                            for (Node<V> p = t.first; p != null; p = p.next) {
1735 <                                if (p.val != null) { // (currently always true)
1736 <                                    p.val = null;
1737 <                                    --delta;
1738 <                                }
1739 <                            }
1740 <                            t.first = null;
1741 <                            t.root = null;
1742 <                            ++i;
1743 <                        }
1744 <                    } finally {
1745 <                        t.release(0);
1746 <                    }
1747 <                }
1748 <                else
1749 <                    tab = (Node<V>[])fk;
1750 <            }
1751 <            else {
1752 <                synchronized (f) {
1753 <                    if (tabAt(tab, i) == f) {
1754 <                        for (Node<V> e = f; e != null; e = e.next) {
1755 <                            if (e.val != null) {  // (currently always true)
1756 <                                e.val = null;
1757 <                                --delta;
1758 <                            }
1759 <                        }
1760 <                        setTabAt(tab, i, null);
1761 <                        ++i;
1762 <                    }
1763 <                }
1764 <            }
2228 >    static final class ReservationNode<K,V> extends Node<K,V> {
2229 >        ReservationNode() {
2230 >            super(RESERVED, null, null, null);
2231 >        }
2232 >
2233 >        Node<K,V> find(int h, Object k) {
2234 >            return null;
2235          }
1766        if (delta != 0L)
1767            addCount(delta, -1);
2236      }
2237  
2238      /* ---------------- Table Initialization and Resizing -------------- */
2239  
2240      /**
2241 <     * Returns a power of two table size for the given desired capacity.
2242 <     * See Hackers Delight, sec 3.2
2241 >     * Returns the stamp bits for resizing a table of size n.
2242 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2243       */
2244 <    private static final int tableSizeFor(int c) {
2245 <        int n = c - 1;
1778 <        n |= n >>> 1;
1779 <        n |= n >>> 2;
1780 <        n |= n >>> 4;
1781 <        n |= n >>> 8;
1782 <        n |= n >>> 16;
1783 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2244 >    static final int resizeStamp(int n) {
2245 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2246      }
2247  
2248      /**
2249       * Initializes table, using the size recorded in sizeCtl.
2250       */
2251 <    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
2252 <        Node<V>[] tab; int sc;
2253 <        while ((tab = table) == null) {
2251 >    private final Node<K,V>[] initTable() {
2252 >        Node<K,V>[] tab; int sc;
2253 >        while ((tab = table) == null || tab.length == 0) {
2254              if ((sc = sizeCtl) < 0)
2255                  Thread.yield(); // lost initialization race; just spin
2256              else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2257                  try {
2258 <                    if ((tab = table) == null) {
2258 >                    if ((tab = table) == null || tab.length == 0) {
2259                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2260 <                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
2261 <                        table = tab = (Node<V>[])tb;
2260 >                        @SuppressWarnings("unchecked")
2261 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2262 >                        table = tab = nt;
2263                          sc = n - (n >>> 2);
2264                      }
2265                  } finally {
# Line 1819 | Line 2282 | public class ConcurrentHashMap<K,V>
2282       * @param check if <0, don't check resize, if <= 1 only check if uncontended
2283       */
2284      private final void addCount(long x, int check) {
2285 <        Cell[] as; long b, s;
2285 >        CounterCell[] as; long b, s;
2286          if ((as = counterCells) != null ||
2287              !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2288 <            Cell a; long v; int m;
2288 >            CounterCell a; long v; int m;
2289              boolean uncontended = true;
2290              if (as == null || (m = as.length - 1) < 0 ||
2291                  (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
# Line 1836 | Line 2299 | public class ConcurrentHashMap<K,V>
2299              s = sumCount();
2300          }
2301          if (check >= 0) {
2302 <            Node<V>[] tab, nt; int sc;
2302 >            Node<K,V>[] tab, nt; int n, sc;
2303              while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2304 <                   tab.length < MAXIMUM_CAPACITY) {
2304 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2305 >                int rs = resizeStamp(n);
2306                  if (sc < 0) {
2307 <                    if (sc == -1 || transferIndex <= transferOrigin ||
2308 <                        (nt = nextTable) == null)
2307 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2308 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2309 >                        transferIndex <= 0)
2310                          break;
2311 <                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2311 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2312                          transfer(tab, nt);
2313                  }
2314 <                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2314 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2315 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2316                      transfer(tab, null);
2317                  s = sumCount();
2318              }
# Line 1854 | Line 2320 | public class ConcurrentHashMap<K,V>
2320      }
2321  
2322      /**
2323 +     * Helps transfer if a resize is in progress.
2324 +     */
2325 +    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2326 +        Node<K,V>[] nextTab; int sc;
2327 +        if (tab != null && (f instanceof ForwardingNode) &&
2328 +            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2329 +            int rs = resizeStamp(tab.length);
2330 +            while (nextTab == nextTable && table == tab &&
2331 +                   (sc = sizeCtl) < 0) {
2332 +                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2333 +                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2334 +                    break;
2335 +                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2336 +                    transfer(tab, nextTab);
2337 +                    break;
2338 +                }
2339 +            }
2340 +            return nextTab;
2341 +        }
2342 +        return table;
2343 +    }
2344 +
2345 +    /**
2346       * Tries to presize table to accommodate the given number of elements.
2347       *
2348       * @param size number of elements (doesn't need to be perfectly accurate)
2349       */
2350 <    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
2350 >    private final void tryPresize(int size) {
2351          int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2352              tableSizeFor(size + (size >>> 1) + 1);
2353          int sc;
2354          while ((sc = sizeCtl) >= 0) {
2355 <            Node<V>[] tab = table; int n;
2355 >            Node<K,V>[] tab = table; int n;
2356              if (tab == null || (n = tab.length) == 0) {
2357                  n = (sc > c) ? sc : c;
2358                  if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2359                      try {
2360                          if (table == tab) {
2361 <                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
2362 <                            table = (Node<V>[])tb;
2361 >                            @SuppressWarnings("unchecked")
2362 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2363 >                            table = nt;
2364                              sc = n - (n >>> 2);
2365                          }
2366                      } finally {
# Line 1880 | Line 2370 | public class ConcurrentHashMap<K,V>
2370              }
2371              else if (c <= sc || n >= MAXIMUM_CAPACITY)
2372                  break;
2373 <            else if (tab == table &&
2374 <                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2375 <                transfer(tab, null);
2373 >            else if (tab == table) {
2374 >                int rs = resizeStamp(n);
2375 >                if (U.compareAndSwapInt(this, SIZECTL, sc,
2376 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2377 >                    transfer(tab, null);
2378 >            }
2379          }
2380      }
2381  
# Line 1890 | Line 2383 | public class ConcurrentHashMap<K,V>
2383       * Moves and/or copies the nodes in each bin to new table. See
2384       * above for explanation.
2385       */
2386 <    @SuppressWarnings("unchecked") private final void transfer
1894 <        (Node<V>[] tab, Node<V>[] nextTab) {
2386 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2387          int n = tab.length, stride;
2388          if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2389              stride = MIN_TRANSFER_STRIDE; // subdivide range
2390          if (nextTab == null) {            // initiating
2391              try {
2392 <                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
2393 <                nextTab = (Node<V>[])tb;
2392 >                @SuppressWarnings("unchecked")
2393 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2394 >                nextTab = nt;
2395              } catch (Throwable ex) {      // try to cope with OOME
2396                  sizeCtl = Integer.MAX_VALUE;
2397                  return;
2398              }
2399              nextTable = nextTab;
1907            transferOrigin = n;
2400              transferIndex = n;
1909            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1910            for (int k = n; k > 0;) {    // progressively reveal ready slots
1911                int nextk = (k > stride) ? k - stride : 0;
1912                for (int m = nextk; m < k; ++m)
1913                    nextTab[m] = rev;
1914                for (int m = n + nextk; m < n + k; ++m)
1915                    nextTab[m] = rev;
1916                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1917            }
2401          }
2402          int nextn = nextTab.length;
2403 <        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2403 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2404          boolean advance = true;
2405 +        boolean finishing = false; // to ensure sweep before committing nextTab
2406          for (int i = 0, bound = 0;;) {
2407 <            int nextIndex, nextBound; Node<V> f; Object fk;
2407 >            Node<K,V> f; int fh;
2408              while (advance) {
2409 <                if (--i >= bound)
2409 >                int nextIndex, nextBound;
2410 >                if (--i >= bound || finishing)
2411                      advance = false;
2412 <                else if ((nextIndex = transferIndex) <= transferOrigin) {
2412 >                else if ((nextIndex = transferIndex) <= 0) {
2413                      i = -1;
2414                      advance = false;
2415                  }
# Line 1938 | Line 2423 | public class ConcurrentHashMap<K,V>
2423                  }
2424              }
2425              if (i < 0 || i >= n || i + n >= nextn) {
2426 <                for (int sc;;) {
2427 <                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2428 <                        if (sc == -1) {
2429 <                            nextTable = null;
2430 <                            table = nextTab;
2431 <                            sizeCtl = (n << 1) - (n >>> 1);
1947 <                        }
1948 <                        return;
1949 <                    }
2426 >                int sc;
2427 >                if (finishing) {
2428 >                    nextTable = null;
2429 >                    table = nextTab;
2430 >                    sizeCtl = (n << 1) - (n >>> 1);
2431 >                    return;
2432                  }
2433 <            }
2434 <            else if ((f = tabAt(tab, i)) == null) {
2435 <                if (casTabAt(tab, i, null, fwd)) {
2436 <                    setTabAt(nextTab, i, null);
2437 <                    setTabAt(nextTab, i + n, null);
1956 <                    advance = true;
2433 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2434 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2435 >                        return;
2436 >                    finishing = advance = true;
2437 >                    i = n; // recheck before commit
2438                  }
2439              }
2440 <            else if (f.hash >= 0) {
2440 >            else if ((f = tabAt(tab, i)) == null)
2441 >                advance = casTabAt(tab, i, null, fwd);
2442 >            else if ((fh = f.hash) == MOVED)
2443 >                advance = true; // already processed
2444 >            else {
2445                  synchronized (f) {
2446                      if (tabAt(tab, i) == f) {
2447 <                        int runBit = f.hash & n;
2448 <                        Node<V> lastRun = f, lo = null, hi = null;
2449 <                        for (Node<V> p = f.next; p != null; p = p.next) {
2450 <                            int b = p.hash & n;
2451 <                            if (b != runBit) {
2452 <                                runBit = b;
2453 <                                lastRun = p;
2447 >                        Node<K,V> ln, hn;
2448 >                        if (fh >= 0) {
2449 >                            int runBit = fh & n;
2450 >                            Node<K,V> lastRun = f;
2451 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2452 >                                int b = p.hash & n;
2453 >                                if (b != runBit) {
2454 >                                    runBit = b;
2455 >                                    lastRun = p;
2456 >                                }
2457                              }
2458 <                        }
2459 <                        if (runBit == 0)
2460 <                            lo = lastRun;
1973 <                        else
1974 <                            hi = lastRun;
1975 <                        for (Node<V> p = f; p != lastRun; p = p.next) {
1976 <                            int ph = p.hash;
1977 <                            Object pk = p.key; V pv = p.val;
1978 <                            if ((ph & n) == 0)
1979 <                                lo = new Node<V>(ph, pk, pv, lo);
1980 <                            else
1981 <                                hi = new Node<V>(ph, pk, pv, hi);
1982 <                        }
1983 <                        setTabAt(nextTab, i, lo);
1984 <                        setTabAt(nextTab, i + n, hi);
1985 <                        setTabAt(tab, i, fwd);
1986 <                        advance = true;
1987 <                    }
1988 <                }
1989 <            }
1990 <            else if ((fk = f.key) instanceof TreeBin) {
1991 <                TreeBin<V> t = (TreeBin<V>)fk;
1992 <                t.acquire(0);
1993 <                try {
1994 <                    if (tabAt(tab, i) == f) {
1995 <                        TreeBin<V> lt = new TreeBin<V>();
1996 <                        TreeBin<V> ht = new TreeBin<V>();
1997 <                        int lc = 0, hc = 0;
1998 <                        for (Node<V> e = t.first; e != null; e = e.next) {
1999 <                            int h = e.hash;
2000 <                            Object k = e.key; V v = e.val;
2001 <                            if ((h & n) == 0) {
2002 <                                ++lc;
2003 <                                lt.putTreeNode(h, k, v);
2458 >                            if (runBit == 0) {
2459 >                                ln = lastRun;
2460 >                                hn = null;
2461                              }
2462                              else {
2463 <                                ++hc;
2464 <                                ht.putTreeNode(h, k, v);
2463 >                                hn = lastRun;
2464 >                                ln = null;
2465                              }
2466 +                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2467 +                                int ph = p.hash; K pk = p.key; V pv = p.val;
2468 +                                if ((ph & n) == 0)
2469 +                                    ln = new Node<K,V>(ph, pk, pv, ln);
2470 +                                else
2471 +                                    hn = new Node<K,V>(ph, pk, pv, hn);
2472 +                            }
2473 +                            setTabAt(nextTab, i, ln);
2474 +                            setTabAt(nextTab, i + n, hn);
2475 +                            setTabAt(tab, i, fwd);
2476 +                            advance = true;
2477 +                        }
2478 +                        else if (f instanceof TreeBin) {
2479 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2480 +                            TreeNode<K,V> lo = null, loTail = null;
2481 +                            TreeNode<K,V> hi = null, hiTail = null;
2482 +                            int lc = 0, hc = 0;
2483 +                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2484 +                                int h = e.hash;
2485 +                                TreeNode<K,V> p = new TreeNode<K,V>
2486 +                                    (h, e.key, e.val, null, null);
2487 +                                if ((h & n) == 0) {
2488 +                                    if ((p.prev = loTail) == null)
2489 +                                        lo = p;
2490 +                                    else
2491 +                                        loTail.next = p;
2492 +                                    loTail = p;
2493 +                                    ++lc;
2494 +                                }
2495 +                                else {
2496 +                                    if ((p.prev = hiTail) == null)
2497 +                                        hi = p;
2498 +                                    else
2499 +                                        hiTail.next = p;
2500 +                                    hiTail = p;
2501 +                                    ++hc;
2502 +                                }
2503 +                            }
2504 +                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2505 +                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2506 +                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2507 +                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2508 +                            setTabAt(nextTab, i, ln);
2509 +                            setTabAt(nextTab, i + n, hn);
2510 +                            setTabAt(tab, i, fwd);
2511 +                            advance = true;
2512                          }
2010                        Node<V> ln, hn; // throw away trees if too small
2011                        if (lc < TREE_THRESHOLD) {
2012                            ln = null;
2013                            for (Node<V> p = lt.first; p != null; p = p.next)
2014                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2015                        }
2016                        else
2017                            ln = new Node<V>(MOVED, lt, null, null);
2018                        setTabAt(nextTab, i, ln);
2019                        if (hc < TREE_THRESHOLD) {
2020                            hn = null;
2021                            for (Node<V> p = ht.first; p != null; p = p.next)
2022                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2023                        }
2024                        else
2025                            hn = new Node<V>(MOVED, ht, null, null);
2026                        setTabAt(nextTab, i + n, hn);
2027                        setTabAt(tab, i, fwd);
2028                        advance = true;
2513                      }
2030                } finally {
2031                    t.release(0);
2514                  }
2515              }
2034            else
2035                advance = true; // already processed
2516          }
2517      }
2518  
2519      /* ---------------- Counter support -------------- */
2520  
2521 +    /**
2522 +     * A padded cell for distributing counts.  Adapted from LongAdder
2523 +     * and Striped64.  See their internal docs for explanation.
2524 +     */
2525 +    @sun.misc.Contended static final class CounterCell {
2526 +        volatile long value;
2527 +        CounterCell(long x) { value = x; }
2528 +    }
2529 +
2530      final long sumCount() {
2531 <        Cell[] as = counterCells; Cell a;
2531 >        CounterCell[] as = counterCells; CounterCell a;
2532          long sum = baseCount;
2533          if (as != null) {
2534              for (int i = 0; i < as.length; ++i) {
# Line 2060 | Line 2549 | public class ConcurrentHashMap<K,V>
2549          }
2550          boolean collide = false;                // True if last slot nonempty
2551          for (;;) {
2552 <            Cell[] as; Cell a; int n; long v;
2552 >            CounterCell[] as; CounterCell a; int n; long v;
2553              if ((as = counterCells) != null && (n = as.length) > 0) {
2554                  if ((a = as[(n - 1) & h]) == null) {
2555                      if (cellsBusy == 0) {            // Try to attach new Cell
2556 <                        Cell r = new Cell(x); // Optimistic create
2556 >                        CounterCell r = new CounterCell(x); // Optimistic create
2557                          if (cellsBusy == 0 &&
2558                              U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2559                              boolean created = false;
2560                              try {               // Recheck under lock
2561 <                                Cell[] rs; int m, j;
2561 >                                CounterCell[] rs; int m, j;
2562                                  if ((rs = counterCells) != null &&
2563                                      (m = rs.length) > 0 &&
2564                                      rs[j = (m - 1) & h] == null) {
# Line 2098 | Line 2587 | public class ConcurrentHashMap<K,V>
2587                           U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2588                      try {
2589                          if (counterCells == as) {// Expand table unless stale
2590 <                            Cell[] rs = new Cell[n << 1];
2590 >                            CounterCell[] rs = new CounterCell[n << 1];
2591                              for (int i = 0; i < n; ++i)
2592                                  rs[i] = as[i];
2593                              counterCells = rs;
# Line 2116 | Line 2605 | public class ConcurrentHashMap<K,V>
2605                  boolean init = false;
2606                  try {                           // Initialize table
2607                      if (counterCells == as) {
2608 <                        Cell[] rs = new Cell[2];
2609 <                        rs[h & 1] = new Cell(x);
2608 >                        CounterCell[] rs = new CounterCell[2];
2609 >                        rs[h & 1] = new CounterCell(x);
2610                          counterCells = rs;
2611                          init = true;
2612                      }
# Line 2132 | Line 2621 | public class ConcurrentHashMap<K,V>
2621          }
2622      }
2623  
2624 <    /* ----------------Table Traversal -------------- */
2624 >    /* ---------------- Conversion from/to TreeBins -------------- */
2625  
2626      /**
2627 <     * Encapsulates traversal for methods such as containsValue; also
2628 <     * serves as a base class for other iterators and bulk tasks.
2140 <     *
2141 <     * At each step, the iterator snapshots the key ("nextKey") and
2142 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2143 <     * snapshot, has a non-null user value). Because val fields can
2144 <     * change (including to null, indicating deletion), field nextVal
2145 <     * might not be accurate at point of use, but still maintains the
2146 <     * weak consistency property of holding a value that was once
2147 <     * valid. To support iterator.remove, the nextKey field is not
2148 <     * updated (nulled out) when the iterator cannot advance.
2149 <     *
2150 <     * Exported iterators must track whether the iterator has advanced
2151 <     * (in hasNext vs next) (by setting/checking/nulling field
2152 <     * nextVal), and then extract key, value, or key-value pairs as
2153 <     * return values of next().
2154 <     *
2155 <     * Method advance visits once each still-valid node that was
2156 <     * reachable upon iterator construction. It might miss some that
2157 <     * were added to a bin after the bin was visited, which is OK wrt
2158 <     * consistency guarantees. Maintaining this property in the face
2159 <     * of possible ongoing resizes requires a fair amount of
2160 <     * bookkeeping state that is difficult to optimize away amidst
2161 <     * volatile accesses.  Even so, traversal maintains reasonable
2162 <     * throughput.
2163 <     *
2164 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2165 <     * However, if the table has been resized, then all future steps
2166 <     * must traverse both the bin at the current index as well as at
2167 <     * (index + baseSize); and so on for further resizings. To
2168 <     * paranoically cope with potential sharing by users of iterators
2169 <     * across threads, iteration terminates if a bounds checks fails
2170 <     * for a table read.
2171 <     *
2172 <     * Methods advanceKey and advanceValue are specializations of the
2173 <     * common cases of advance, relaying to the full version
2174 <     * otherwise. The forEachKey and forEachValue methods further
2175 <     * specialize, bypassing all incremental field updates in most cases.
2176 <     *
2177 <     * This class supports both Spliterator-based traversal and
2178 <     * CountedCompleter-based bulk tasks. The same "batch" field is
2179 <     * used, but in slightly different ways, in the two cases.  For
2180 <     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2181 <     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2182 <     * size that halves down to zero for leaf tasks, that is only
2183 <     * computed upon execution of the task. (Tasks can be submitted to
2184 <     * any pool, of any size, so we don't know scale factors until
2185 <     * running.)
2186 <     *
2187 <     * This class extends CountedCompleter to streamline parallel
2188 <     * iteration in bulk operations. This adds only a few fields of
2189 <     * space overhead, which is small enough in cases where it is not
2190 <     * needed to not worry about it.  Because CountedCompleter is
2191 <     * Serializable, but iterators need not be, we need to add warning
2192 <     * suppressions.
2627 >     * Replaces all linked nodes in bin at given index unless table is
2628 >     * too small, in which case resizes instead.
2629       */
2630 <    @SuppressWarnings("serial") static class Traverser<K,V,R>
2631 <        extends CountedCompleter<R> {
2632 <        final ConcurrentHashMap<K,V> map;
2633 <        Node<V> next;        // the next entry to use
2634 <        K nextKey;           // cached key field of next
2635 <        V nextVal;           // cached val field of next
2636 <        Node<V>[] tab;       // current table; updated if resized
2637 <        int index;           // index of bin to use next
2638 <        int baseIndex;       // current index of initial table
2639 <        int baseLimit;       // index bound for initial table
2640 <        final int baseSize;  // initial table size
2641 <        int batch;           // split control
2630 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2631 >        Node<K,V> b; int n;
2632 >        if (tab != null) {
2633 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2634 >                tryPresize(n << 1);
2635 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2636 >                synchronized (b) {
2637 >                    if (tabAt(tab, index) == b) {
2638 >                        TreeNode<K,V> hd = null, tl = null;
2639 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2640 >                            TreeNode<K,V> p =
2641 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2642 >                                                  null, null);
2643 >                            if ((p.prev = tl) == null)
2644 >                                hd = p;
2645 >                            else
2646 >                                tl.next = p;
2647 >                            tl = p;
2648 >                        }
2649 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2650 >                    }
2651 >                }
2652 >            }
2653 >        }
2654 >    }
2655  
2656 <        /** Creates iterator for all entries in the table. */
2657 <        Traverser(ConcurrentHashMap<K,V> map) {
2658 <            this.map = map;
2659 <            Node<V>[] t = this.tab = map.table;
2660 <            baseLimit = baseSize = (t == null) ? 0 : t.length;
2656 >    /**
2657 >     * Returns a list on non-TreeNodes replacing those in given list.
2658 >     */
2659 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2660 >        Node<K,V> hd = null, tl = null;
2661 >        for (Node<K,V> q = b; q != null; q = q.next) {
2662 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2663 >            if (tl == null)
2664 >                hd = p;
2665 >            else
2666 >                tl.next = p;
2667 >            tl = p;
2668          }
2669 +        return hd;
2670 +    }
2671  
2672 <        /** Task constructor */
2673 <        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2674 <            super(it);
2675 <            this.map = map;
2676 <            this.batch = batch; // -1 if unknown
2677 <            if (it == null) {
2678 <                Node<V>[] t = this.tab = map.table;
2679 <                baseLimit = baseSize = (t == null) ? 0 : t.length;
2680 <            }
2681 <            else { // split parent
2682 <                this.tab = it.tab;
2683 <                this.baseSize = it.baseSize;
2684 <                int hi = this.baseLimit = it.baseLimit;
2685 <                it.baseLimit = this.index = this.baseIndex =
2686 <                    (hi + it.baseIndex) >>> 1;
2687 <            }
2672 >    /* ---------------- TreeNodes -------------- */
2673 >
2674 >    /**
2675 >     * Nodes for use in TreeBins
2676 >     */
2677 >    static final class TreeNode<K,V> extends Node<K,V> {
2678 >        TreeNode<K,V> parent;  // red-black tree links
2679 >        TreeNode<K,V> left;
2680 >        TreeNode<K,V> right;
2681 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2682 >        boolean red;
2683 >
2684 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2685 >                 TreeNode<K,V> parent) {
2686 >            super(hash, key, val, next);
2687 >            this.parent = parent;
2688          }
2689  
2690 <        /** Spliterator constructor */
2691 <        Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2234 <            super(it);
2235 <            this.map = map;
2236 <            if (it == null) {
2237 <                Node<V>[] t = this.tab = map.table;
2238 <                baseLimit = baseSize = (t == null) ? 0 : t.length;
2239 <                long n = map.sumCount();
2240 <                batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2241 <                         (int)n);
2242 <            }
2243 <            else {
2244 <                this.tab = it.tab;
2245 <                this.baseSize = it.baseSize;
2246 <                int hi = this.baseLimit = it.baseLimit;
2247 <                it.baseLimit = this.index = this.baseIndex =
2248 <                    (hi + it.baseIndex) >>> 1;
2249 <                this.batch = it.batch >>>= 1;
2250 <            }
2690 >        Node<K,V> find(int h, Object k) {
2691 >            return findTreeNode(h, k, null);
2692          }
2693  
2694          /**
2695 <         * Advances if possible, returning next valid value, or null if none.
2695 >         * Returns the TreeNode (or null if not found) for the given key
2696 >         * starting at given root.
2697           */
2698 <        @SuppressWarnings("unchecked") final V advance() {
2699 <            for (Node<V> e = next;;) {
2700 <                if (e != null)                  // advance past used/skipped node
2701 <                    e = next = e.next;
2702 <                while (e == null) {             // get to next non-null bin
2703 <                    Node<V>[] t; int i, n;      // must use locals in checks
2704 <                    if (baseIndex >= baseLimit || (t = tab) == null ||
2705 <                        (n = t.length) <= (i = index) || i < 0)
2706 <                        return nextVal = null;
2707 <                    if ((e = next = tabAt(t, index)) != null && e.hash < 0) {
2708 <                        Object ek;
2709 <                        if ((ek = e.key) instanceof TreeBin)
2710 <                            e = ((TreeBin<V>)ek).first;
2711 <                        else {
2712 <                            tab = (Node<V>[])ek;
2713 <                            continue;           // restarts due to null val
2698 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2699 >            if (k != null) {
2700 >                TreeNode<K,V> p = this;
2701 >                do {
2702 >                    int ph, dir; K pk; TreeNode<K,V> q;
2703 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2704 >                    if ((ph = p.hash) > h)
2705 >                        p = pl;
2706 >                    else if (ph < h)
2707 >                        p = pr;
2708 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2709 >                        return p;
2710 >                    else if (pl == null)
2711 >                        p = pr;
2712 >                    else if (pr == null)
2713 >                        p = pl;
2714 >                    else if ((kc != null ||
2715 >                              (kc = comparableClassFor(k)) != null) &&
2716 >                             (dir = compareComparables(kc, k, pk)) != 0)
2717 >                        p = (dir < 0) ? pl : pr;
2718 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2719 >                        return q;
2720 >                    else
2721 >                        p = pl;
2722 >                } while (p != null);
2723 >            }
2724 >            return null;
2725 >        }
2726 >    }
2727 >
2728 >    /* ---------------- TreeBins -------------- */
2729 >
2730 >    /**
2731 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2732 >     * keys or values, but instead point to list of TreeNodes and
2733 >     * their root. They also maintain a parasitic read-write lock
2734 >     * forcing writers (who hold bin lock) to wait for readers (who do
2735 >     * not) to complete before tree restructuring operations.
2736 >     */
2737 >    static final class TreeBin<K,V> extends Node<K,V> {
2738 >        TreeNode<K,V> root;
2739 >        volatile TreeNode<K,V> first;
2740 >        volatile Thread waiter;
2741 >        volatile int lockState;
2742 >        // values for lockState
2743 >        static final int WRITER = 1; // set while holding write lock
2744 >        static final int WAITER = 2; // set when waiting for write lock
2745 >        static final int READER = 4; // increment value for setting read lock
2746 >
2747 >        /**
2748 >         * Tie-breaking utility for ordering insertions when equal
2749 >         * hashCodes and non-comparable. We don't require a total
2750 >         * order, just a consistent insertion rule to maintain
2751 >         * equivalence across rebalancings. Tie-breaking further than
2752 >         * necessary simplifies testing a bit.
2753 >         */
2754 >        static int tieBreakOrder(Object a, Object b) {
2755 >            int d;
2756 >            if (a == null || b == null ||
2757 >                (d = a.getClass().getName().
2758 >                 compareTo(b.getClass().getName())) == 0)
2759 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2760 >                     -1 : 1);
2761 >            return d;
2762 >        }
2763 >
2764 >        /**
2765 >         * Creates bin with initial set of nodes headed by b.
2766 >         */
2767 >        TreeBin(TreeNode<K,V> b) {
2768 >            super(TREEBIN, null, null, null);
2769 >            this.first = b;
2770 >            TreeNode<K,V> r = null;
2771 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2772 >                next = (TreeNode<K,V>)x.next;
2773 >                x.left = x.right = null;
2774 >                if (r == null) {
2775 >                    x.parent = null;
2776 >                    x.red = false;
2777 >                    r = x;
2778 >                }
2779 >                else {
2780 >                    K k = x.key;
2781 >                    int h = x.hash;
2782 >                    Class<?> kc = null;
2783 >                    for (TreeNode<K,V> p = r;;) {
2784 >                        int dir, ph;
2785 >                        K pk = p.key;
2786 >                        if ((ph = p.hash) > h)
2787 >                            dir = -1;
2788 >                        else if (ph < h)
2789 >                            dir = 1;
2790 >                        else if ((kc == null &&
2791 >                                  (kc = comparableClassFor(k)) == null) ||
2792 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2793 >                            dir = tieBreakOrder(k, pk);
2794 >                        TreeNode<K,V> xp = p;
2795 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2796 >                            x.parent = xp;
2797 >                            if (dir <= 0)
2798 >                                xp.left = x;
2799 >                            else
2800 >                                xp.right = x;
2801 >                            r = balanceInsertion(r, x);
2802 >                            break;
2803                          }
2804                      }
2274                    if ((index += baseSize) >= n)
2275                        index = ++baseIndex;    // visit upper slots if present
2805                  }
2277                nextKey = (K)e.key;
2278                if ((nextVal = e.val) != null) // skip deleted or special nodes
2279                    return nextVal;
2806              }
2807 +            this.root = r;
2808 +            assert checkInvariants(root);
2809          }
2810  
2811          /**
2812 <         * Common case version for value traversal
2812 >         * Acquires write lock for tree restructuring.
2813           */
2814 <        @SuppressWarnings("unchecked") final V advanceValue() {
2815 <            outer: for (Node<V> e = next;;) {
2816 <                if (e == null || (e = e.next) == null) {
2817 <                    Node<V>[] t; int i, len, n; Object ek;
2818 <                    if ((t = tab) == null ||
2819 <                        baseSize != (len = t.length) ||
2820 <                        len < (n = baseLimit) ||
2821 <                        baseIndex != (i = index))
2822 <                        break;
2823 <                    do {
2824 <                        if (i < 0 || i >= n) {
2825 <                            index = baseIndex = n;
2826 <                            next = null;
2827 <                            return nextVal = null;
2828 <                        }
2829 <                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2830 <                            if ((ek = e.key) instanceof TreeBin)
2831 <                                e = ((TreeBin<V>)ek).first;
2832 <                            else {
2833 <                                index = baseIndex = i;
2834 <                                next = null;
2835 <                                tab = (Node<V>[])ek;
2836 <                                break outer;
2837 <                            }
2310 <                        }
2311 <                        ++i;
2312 <                    } while (e == null);
2313 <                    index = baseIndex = i;
2814 >        private final void lockRoot() {
2815 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2816 >                contendedLock(); // offload to separate method
2817 >        }
2818 >
2819 >        /**
2820 >         * Releases write lock for tree restructuring.
2821 >         */
2822 >        private final void unlockRoot() {
2823 >            lockState = 0;
2824 >        }
2825 >
2826 >        /**
2827 >         * Possibly blocks awaiting root lock.
2828 >         */
2829 >        private final void contendedLock() {
2830 >            boolean waiting = false;
2831 >            for (int s;;) {
2832 >                if (((s = lockState) & ~WAITER) == 0) {
2833 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2834 >                        if (waiting)
2835 >                            waiter = null;
2836 >                        return;
2837 >                    }
2838                  }
2839 <                V v;
2840 <                K k = (K)e.key;
2841 <                if ((v = e.val) != null) {
2842 <                    nextVal = v;
2843 <                    nextKey = k;
2320 <                    next = e;
2321 <                    return v;
2839 >                else if ((s & WAITER) == 0) {
2840 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2841 >                        waiting = true;
2842 >                        waiter = Thread.currentThread();
2843 >                    }
2844                  }
2845 +                else if (waiting)
2846 +                    LockSupport.park(this);
2847              }
2324            return advance();
2848          }
2849  
2850          /**
2851 <         * Common case version for key traversal
2851 >         * Returns matching node or null if none. Tries to search
2852 >         * using tree comparisons from root, but continues linear
2853 >         * search when lock not available.
2854           */
2855 <        @SuppressWarnings("unchecked") final K advanceKey() {
2856 <            outer: for (Node<V> e = next;;) {
2857 <                if (e == null || (e = e.next) == null) {
2858 <                    Node<V>[] t; int i, len, n; Object ek;
2859 <                    if ((t = tab) == null ||
2860 <                        baseSize != (len = t.length) ||
2861 <                        len < (n = baseLimit) ||
2862 <                        baseIndex != (i = index))
2863 <                        break;
2864 <                    do {
2865 <                        if (i < 0 || i >= n) {
2866 <                            index = baseIndex = n;
2867 <                            next = null;
2868 <                            nextVal = null;
2869 <                            return null;
2870 <                        }
2871 <                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2872 <                            if ((ek = e.key) instanceof TreeBin)
2873 <                                e = ((TreeBin<V>)ek).first;
2874 <                            else {
2875 <                                index = baseIndex = i;
2351 <                                next = null;
2352 <                                tab = (Node<V>[])ek;
2353 <                                break outer;
2354 <                            }
2855 >        final Node<K,V> find(int h, Object k) {
2856 >            if (k != null) {
2857 >                for (Node<K,V> e = first; e != null; ) {
2858 >                    int s; K ek;
2859 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2860 >                        if (e.hash == h &&
2861 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2862 >                            return e;
2863 >                        e = e.next;
2864 >                    }
2865 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2866 >                                                 s + READER)) {
2867 >                        TreeNode<K,V> r, p;
2868 >                        try {
2869 >                            p = ((r = root) == null ? null :
2870 >                                 r.findTreeNode(h, k, null));
2871 >                        } finally {
2872 >                            Thread w;
2873 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2874 >                                (READER|WAITER) && (w = waiter) != null)
2875 >                                LockSupport.unpark(w);
2876                          }
2877 <                        ++i;
2878 <                    } while (e == null);
2358 <                    index = baseIndex = i;
2359 <                }
2360 <                V v;
2361 <                K k = (K)e.key;
2362 <                if ((v = e.val) != null) {
2363 <                    nextVal = v;
2364 <                    nextKey = k;
2365 <                    next = e;
2366 <                    return k;
2877 >                        return p;
2878 >                    }
2879                  }
2880              }
2881 <            return (advance() == null) ? null : nextKey;
2881 >            return null;
2882          }
2883  
2884 <        @SuppressWarnings("unchecked") final void forEachValue(Consumer<? super V> action) {
2885 <            if (action == null) throw new NullPointerException();
2886 <            Node<V>[] t; int i, len, n;
2887 <            if ((t = tab) != null && baseSize == (len = t.length) &&
2888 <                len >= (n = baseLimit) && baseIndex == (i = index)) {
2889 <                index = baseIndex = n;
2890 <                nextVal = null;
2891 <                Node<V> e = next;
2892 <                next = null;
2893 <                if (e != null)
2894 <                    e = e.next;
2895 <                outer: for (;; e = e.next) {
2896 <                    V v; Object ek;
2897 <                    for (; e == null; ++i) {
2898 <                        if (i < 0 || i >= n)
2899 <                            return;
2900 <                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2901 <                            if ((ek = e.key) instanceof TreeBin)
2902 <                                e = ((TreeBin<V>)ek).first;
2903 <                            else {
2904 <                                index = baseIndex = i;
2905 <                                tab = (Node<V>[])ek;
2906 <                                break outer;
2907 <                            }
2884 >        /**
2885 >         * Finds or adds a node.
2886 >         * @return null if added
2887 >         */
2888 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2889 >            Class<?> kc = null;
2890 >            boolean searched = false;
2891 >            for (TreeNode<K,V> p = root;;) {
2892 >                int dir, ph; K pk;
2893 >                if (p == null) {
2894 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2895 >                    break;
2896 >                }
2897 >                else if ((ph = p.hash) > h)
2898 >                    dir = -1;
2899 >                else if (ph < h)
2900 >                    dir = 1;
2901 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2902 >                    return p;
2903 >                else if ((kc == null &&
2904 >                          (kc = comparableClassFor(k)) == null) ||
2905 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2906 >                    if (!searched) {
2907 >                        TreeNode<K,V> q, ch;
2908 >                        searched = true;
2909 >                        if (((ch = p.left) != null &&
2910 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2911 >                            ((ch = p.right) != null &&
2912 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2913 >                            return q;
2914 >                    }
2915 >                    dir = tieBreakOrder(k, pk);
2916 >                }
2917 >
2918 >                TreeNode<K,V> xp = p;
2919 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2920 >                    TreeNode<K,V> x, f = first;
2921 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2922 >                    if (f != null)
2923 >                        f.prev = x;
2924 >                    if (dir <= 0)
2925 >                        xp.left = x;
2926 >                    else
2927 >                        xp.right = x;
2928 >                    if (!xp.red)
2929 >                        x.red = true;
2930 >                    else {
2931 >                        lockRoot();
2932 >                        try {
2933 >                            root = balanceInsertion(root, x);
2934 >                        } finally {
2935 >                            unlockRoot();
2936                          }
2937                      }
2938 <                    if ((v = e.val) != null)
2399 <                        action.accept(v);
2938 >                    break;
2939                  }
2940              }
2941 <            V v;
2942 <            while ((v = advance()) != null)
2404 <                action.accept(v);
2941 >            assert checkInvariants(root);
2942 >            return null;
2943          }
2944  
2945 <        @SuppressWarnings("unchecked") final void forEachKey(Consumer<? super K> action) {
2946 <            if (action == null) throw new NullPointerException();
2947 <            Node<V>[] t; int i, len, n;
2948 <            if ((t = tab) != null && baseSize == (len = t.length) &&
2949 <                len >= (n = baseLimit) && baseIndex == (i = index)) {
2950 <                index = baseIndex = n;
2951 <                nextVal = null;
2952 <                Node<V> e = next;
2953 <                next = null;
2954 <                if (e != null)
2955 <                    e = e.next;
2956 <                outer: for (;; e = e.next) {
2957 <                    for (; e == null; ++i) {
2958 <                        if (i < 0 || i >= n)
2959 <                            return;
2960 <                        if ((e = tabAt(t, i)) != null && e.hash < 0) {
2961 <                            Object ek;
2962 <                            if ((ek = e.key) instanceof TreeBin)
2963 <                                e = ((TreeBin<V>)ek).first;
2964 <                            else {
2965 <                                index = baseIndex = i;
2966 <                                tab = (Node<V>[])ek;
2967 <                                break outer;
2968 <                            }
2945 >        /**
2946 >         * Removes the given node, that must be present before this
2947 >         * call.  This is messier than typical red-black deletion code
2948 >         * because we cannot swap the contents of an interior node
2949 >         * with a leaf successor that is pinned by "next" pointers
2950 >         * that are accessible independently of lock. So instead we
2951 >         * swap the tree linkages.
2952 >         *
2953 >         * @return true if now too small, so should be untreeified
2954 >         */
2955 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2956 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2957 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2958 >            TreeNode<K,V> r, rl;
2959 >            if (pred == null)
2960 >                first = next;
2961 >            else
2962 >                pred.next = next;
2963 >            if (next != null)
2964 >                next.prev = pred;
2965 >            if (first == null) {
2966 >                root = null;
2967 >                return true;
2968 >            }
2969 >            if ((r = root) == null || r.right == null || // too small
2970 >                (rl = r.left) == null || rl.left == null)
2971 >                return true;
2972 >            lockRoot();
2973 >            try {
2974 >                TreeNode<K,V> replacement;
2975 >                TreeNode<K,V> pl = p.left;
2976 >                TreeNode<K,V> pr = p.right;
2977 >                if (pl != null && pr != null) {
2978 >                    TreeNode<K,V> s = pr, sl;
2979 >                    while ((sl = s.left) != null) // find successor
2980 >                        s = sl;
2981 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2982 >                    TreeNode<K,V> sr = s.right;
2983 >                    TreeNode<K,V> pp = p.parent;
2984 >                    if (s == pr) { // p was s's direct parent
2985 >                        p.parent = s;
2986 >                        s.right = p;
2987 >                    }
2988 >                    else {
2989 >                        TreeNode<K,V> sp = s.parent;
2990 >                        if ((p.parent = sp) != null) {
2991 >                            if (s == sp.left)
2992 >                                sp.left = p;
2993 >                            else
2994 >                                sp.right = p;
2995                          }
2996 +                        if ((s.right = pr) != null)
2997 +                            pr.parent = s;
2998 +                    }
2999 +                    p.left = null;
3000 +                    if ((p.right = sr) != null)
3001 +                        sr.parent = p;
3002 +                    if ((s.left = pl) != null)
3003 +                        pl.parent = s;
3004 +                    if ((s.parent = pp) == null)
3005 +                        r = s;
3006 +                    else if (p == pp.left)
3007 +                        pp.left = s;
3008 +                    else
3009 +                        pp.right = s;
3010 +                    if (sr != null)
3011 +                        replacement = sr;
3012 +                    else
3013 +                        replacement = p;
3014 +                }
3015 +                else if (pl != null)
3016 +                    replacement = pl;
3017 +                else if (pr != null)
3018 +                    replacement = pr;
3019 +                else
3020 +                    replacement = p;
3021 +                if (replacement != p) {
3022 +                    TreeNode<K,V> pp = replacement.parent = p.parent;
3023 +                    if (pp == null)
3024 +                        r = replacement;
3025 +                    else if (p == pp.left)
3026 +                        pp.left = replacement;
3027 +                    else
3028 +                        pp.right = replacement;
3029 +                    p.left = p.right = p.parent = null;
3030 +                }
3031 +
3032 +                root = (p.red) ? r : balanceDeletion(r, replacement);
3033 +
3034 +                if (p == replacement) {  // detach pointers
3035 +                    TreeNode<K,V> pp;
3036 +                    if ((pp = p.parent) != null) {
3037 +                        if (p == pp.left)
3038 +                            pp.left = null;
3039 +                        else if (p == pp.right)
3040 +                            pp.right = null;
3041 +                        p.parent = null;
3042                      }
2433                    Object k = e.key;
2434                    if (e.val != null)
2435                        action.accept((K)k);
3043                  }
3044 +            } finally {
3045 +                unlockRoot();
3046              }
3047 <            while (advance() != null)
3048 <                action.accept(nextKey);
3047 >            assert checkInvariants(root);
3048 >            return false;
3049          }
3050  
3051 <        public final void remove() {
3052 <            K k = nextKey;
2444 <            if (k == null && (advanceValue() == null || (k = nextKey) == null))
2445 <                throw new IllegalStateException();
2446 <            map.internalReplace(k, null, null);
2447 <        }
3051 >        /* ------------------------------------------------------------ */
3052 >        // Red-black tree methods, all adapted from CLR
3053  
3054 <        public final boolean hasNext() {
3055 <            return nextVal != null || advanceValue() != null;
3054 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3055 >                                              TreeNode<K,V> p) {
3056 >            TreeNode<K,V> r, pp, rl;
3057 >            if (p != null && (r = p.right) != null) {
3058 >                if ((rl = p.right = r.left) != null)
3059 >                    rl.parent = p;
3060 >                if ((pp = r.parent = p.parent) == null)
3061 >                    (root = r).red = false;
3062 >                else if (pp.left == p)
3063 >                    pp.left = r;
3064 >                else
3065 >                    pp.right = r;
3066 >                r.left = p;
3067 >                p.parent = r;
3068 >            }
3069 >            return root;
3070          }
3071  
3072 <        public final boolean hasMoreElements() { return hasNext(); }
3072 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3073 >                                               TreeNode<K,V> p) {
3074 >            TreeNode<K,V> l, pp, lr;
3075 >            if (p != null && (l = p.left) != null) {
3076 >                if ((lr = p.left = l.right) != null)
3077 >                    lr.parent = p;
3078 >                if ((pp = l.parent = p.parent) == null)
3079 >                    (root = l).red = false;
3080 >                else if (pp.right == p)
3081 >                    pp.right = l;
3082 >                else
3083 >                    pp.left = l;
3084 >                l.right = p;
3085 >                p.parent = l;
3086 >            }
3087 >            return root;
3088 >        }
3089  
3090 <        public void compute() { } // default no-op CountedCompleter body
3090 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3091 >                                                    TreeNode<K,V> x) {
3092 >            x.red = true;
3093 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3094 >                if ((xp = x.parent) == null) {
3095 >                    x.red = false;
3096 >                    return x;
3097 >                }
3098 >                else if (!xp.red || (xpp = xp.parent) == null)
3099 >                    return root;
3100 >                if (xp == (xppl = xpp.left)) {
3101 >                    if ((xppr = xpp.right) != null && xppr.red) {
3102 >                        xppr.red = false;
3103 >                        xp.red = false;
3104 >                        xpp.red = true;
3105 >                        x = xpp;
3106 >                    }
3107 >                    else {
3108 >                        if (x == xp.right) {
3109 >                            root = rotateLeft(root, x = xp);
3110 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3111 >                        }
3112 >                        if (xp != null) {
3113 >                            xp.red = false;
3114 >                            if (xpp != null) {
3115 >                                xpp.red = true;
3116 >                                root = rotateRight(root, xpp);
3117 >                            }
3118 >                        }
3119 >                    }
3120 >                }
3121 >                else {
3122 >                    if (xppl != null && xppl.red) {
3123 >                        xppl.red = false;
3124 >                        xp.red = false;
3125 >                        xpp.red = true;
3126 >                        x = xpp;
3127 >                    }
3128 >                    else {
3129 >                        if (x == xp.left) {
3130 >                            root = rotateRight(root, x = xp);
3131 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3132 >                        }
3133 >                        if (xp != null) {
3134 >                            xp.red = false;
3135 >                            if (xpp != null) {
3136 >                                xpp.red = true;
3137 >                                root = rotateLeft(root, xpp);
3138 >                            }
3139 >                        }
3140 >                    }
3141 >                }
3142 >            }
3143 >        }
3144  
3145 <        public long estimateSize() { return batch; }
3145 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3146 >                                                   TreeNode<K,V> x) {
3147 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3148 >                if (x == null || x == root)
3149 >                    return root;
3150 >                else if ((xp = x.parent) == null) {
3151 >                    x.red = false;
3152 >                    return x;
3153 >                }
3154 >                else if (x.red) {
3155 >                    x.red = false;
3156 >                    return root;
3157 >                }
3158 >                else if ((xpl = xp.left) == x) {
3159 >                    if ((xpr = xp.right) != null && xpr.red) {
3160 >                        xpr.red = false;
3161 >                        xp.red = true;
3162 >                        root = rotateLeft(root, xp);
3163 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3164 >                    }
3165 >                    if (xpr == null)
3166 >                        x = xp;
3167 >                    else {
3168 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3169 >                        if ((sr == null || !sr.red) &&
3170 >                            (sl == null || !sl.red)) {
3171 >                            xpr.red = true;
3172 >                            x = xp;
3173 >                        }
3174 >                        else {
3175 >                            if (sr == null || !sr.red) {
3176 >                                if (sl != null)
3177 >                                    sl.red = false;
3178 >                                xpr.red = true;
3179 >                                root = rotateRight(root, xpr);
3180 >                                xpr = (xp = x.parent) == null ?
3181 >                                    null : xp.right;
3182 >                            }
3183 >                            if (xpr != null) {
3184 >                                xpr.red = (xp == null) ? false : xp.red;
3185 >                                if ((sr = xpr.right) != null)
3186 >                                    sr.red = false;
3187 >                            }
3188 >                            if (xp != null) {
3189 >                                xp.red = false;
3190 >                                root = rotateLeft(root, xp);
3191 >                            }
3192 >                            x = root;
3193 >                        }
3194 >                    }
3195 >                }
3196 >                else { // symmetric
3197 >                    if (xpl != null && xpl.red) {
3198 >                        xpl.red = false;
3199 >                        xp.red = true;
3200 >                        root = rotateRight(root, xp);
3201 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3202 >                    }
3203 >                    if (xpl == null)
3204 >                        x = xp;
3205 >                    else {
3206 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3207 >                        if ((sl == null || !sl.red) &&
3208 >                            (sr == null || !sr.red)) {
3209 >                            xpl.red = true;
3210 >                            x = xp;
3211 >                        }
3212 >                        else {
3213 >                            if (sl == null || !sl.red) {
3214 >                                if (sr != null)
3215 >                                    sr.red = false;
3216 >                                xpl.red = true;
3217 >                                root = rotateLeft(root, xpl);
3218 >                                xpl = (xp = x.parent) == null ?
3219 >                                    null : xp.left;
3220 >                            }
3221 >                            if (xpl != null) {
3222 >                                xpl.red = (xp == null) ? false : xp.red;
3223 >                                if ((sl = xpl.left) != null)
3224 >                                    sl.red = false;
3225 >                            }
3226 >                            if (xp != null) {
3227 >                                xp.red = false;
3228 >                                root = rotateRight(root, xp);
3229 >                            }
3230 >                            x = root;
3231 >                        }
3232 >                    }
3233 >                }
3234 >            }
3235 >        }
3236  
3237          /**
3238 <         * Returns a batch value > 0 if this task should (and must) be
2461 <         * split, if so, adding to pending count, and in any case
2462 <         * updating batch value. The initial batch value is approx
2463 <         * exp2 of the number of times (minus one) to split task by
2464 <         * two before executing leaf action. This value is faster to
2465 <         * compute and more convenient to use as a guide to splitting
2466 <         * than is the depth, since it is used while dividing by two
2467 <         * anyway.
3238 >         * Recursive invariant check
3239           */
3240 <        final int preSplit() {
3241 <            int b;  ForkJoinPool pool;
3242 <            if ((b = batch) < 0) { // force initialization
3243 <                int sp = (((pool = getPool()) == null) ?
3244 <                          ForkJoinPool.getCommonPoolParallelism() :
3245 <                          pool.getParallelism()) << 3; // slack of 8
3246 <                long n = map.sumCount();
3247 <                b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
3248 <            }
3249 <            b = (b <= 1 || baseIndex >= baseLimit) ? 0 : (b >>> 1);
3250 <            if ((batch = b) > 0)
3251 <                addToPendingCount(1);
3252 <            return b;
3240 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3241 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3242 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3243 >            if (tb != null && tb.next != t)
3244 >                return false;
3245 >            if (tn != null && tn.prev != t)
3246 >                return false;
3247 >            if (tp != null && t != tp.left && t != tp.right)
3248 >                return false;
3249 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3250 >                return false;
3251 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3252 >                return false;
3253 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3254 >                return false;
3255 >            if (tl != null && !checkInvariants(tl))
3256 >                return false;
3257 >            if (tr != null && !checkInvariants(tr))
3258 >                return false;
3259 >            return true;
3260          }
2483    }
2484
2485    /* ---------------- Public operations -------------- */
2486
2487    /**
2488     * Creates a new, empty map with the default initial table size (16).
2489     */
2490    public ConcurrentHashMap() {
2491    }
3261  
3262 <    /**
3263 <     * Creates a new, empty map with an initial table size
3264 <     * accommodating the specified number of elements without the need
3265 <     * to dynamically resize.
3266 <     *
3267 <     * @param initialCapacity The implementation performs internal
3268 <     * sizing to accommodate this many elements.
3269 <     * @throws IllegalArgumentException if the initial capacity of
3270 <     * elements is negative
2502 <     */
2503 <    public ConcurrentHashMap(int initialCapacity) {
2504 <        if (initialCapacity < 0)
2505 <            throw new IllegalArgumentException();
2506 <        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2507 <                   MAXIMUM_CAPACITY :
2508 <                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2509 <        this.sizeCtl = cap;
2510 <    }
2511 <
2512 <    /**
2513 <     * Creates a new map with the same mappings as the given map.
2514 <     *
2515 <     * @param m the map
2516 <     */
2517 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2518 <        this.sizeCtl = DEFAULT_CAPACITY;
2519 <        internalPutAll(m);
2520 <    }
2521 <
2522 <    /**
2523 <     * Creates a new, empty map with an initial table size based on
2524 <     * the given number of elements ({@code initialCapacity}) and
2525 <     * initial table density ({@code loadFactor}).
2526 <     *
2527 <     * @param initialCapacity the initial capacity. The implementation
2528 <     * performs internal sizing to accommodate this many elements,
2529 <     * given the specified load factor.
2530 <     * @param loadFactor the load factor (table density) for
2531 <     * establishing the initial table size
2532 <     * @throws IllegalArgumentException if the initial capacity of
2533 <     * elements is negative or the load factor is nonpositive
2534 <     *
2535 <     * @since 1.6
2536 <     */
2537 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2538 <        this(initialCapacity, loadFactor, 1);
2539 <    }
2540 <
2541 <    /**
2542 <     * Creates a new, empty map with an initial table size based on
2543 <     * the given number of elements ({@code initialCapacity}), table
2544 <     * density ({@code loadFactor}), and number of concurrently
2545 <     * updating threads ({@code concurrencyLevel}).
2546 <     *
2547 <     * @param initialCapacity the initial capacity. The implementation
2548 <     * performs internal sizing to accommodate this many elements,
2549 <     * given the specified load factor.
2550 <     * @param loadFactor the load factor (table density) for
2551 <     * establishing the initial table size
2552 <     * @param concurrencyLevel the estimated number of concurrently
2553 <     * updating threads. The implementation may use this value as
2554 <     * a sizing hint.
2555 <     * @throws IllegalArgumentException if the initial capacity is
2556 <     * negative or the load factor or concurrencyLevel are
2557 <     * nonpositive
2558 <     */
2559 <    public ConcurrentHashMap(int initialCapacity,
2560 <                               float loadFactor, int concurrencyLevel) {
2561 <        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2562 <            throw new IllegalArgumentException();
2563 <        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2564 <            initialCapacity = concurrencyLevel;   // as estimated threads
2565 <        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2566 <        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2567 <            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2568 <        this.sizeCtl = cap;
2569 <    }
2570 <
2571 <    /**
2572 <     * Creates a new {@link Set} backed by a ConcurrentHashMap
2573 <     * from the given type to {@code Boolean.TRUE}.
2574 <     *
2575 <     * @return the new set
2576 <     */
2577 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2578 <        return new KeySetView<K,Boolean>
2579 <            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2580 <    }
2581 <
2582 <    /**
2583 <     * Creates a new {@link Set} backed by a ConcurrentHashMap
2584 <     * from the given type to {@code Boolean.TRUE}.
2585 <     *
2586 <     * @param initialCapacity The implementation performs internal
2587 <     * sizing to accommodate this many elements.
2588 <     * @throws IllegalArgumentException if the initial capacity of
2589 <     * elements is negative
2590 <     * @return the new set
2591 <     */
2592 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2593 <        return new KeySetView<K,Boolean>
2594 <            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2595 <    }
2596 <
2597 <    /**
2598 <     * {@inheritDoc}
2599 <     */
2600 <    public boolean isEmpty() {
2601 <        return sumCount() <= 0L; // ignore transient negative values
2602 <    }
2603 <
2604 <    /**
2605 <     * {@inheritDoc}
2606 <     */
2607 <    public int size() {
2608 <        long n = sumCount();
2609 <        return ((n < 0L) ? 0 :
2610 <                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2611 <                (int)n);
2612 <    }
2613 <
2614 <    /**
2615 <     * Returns the number of mappings. This method should be used
2616 <     * instead of {@link #size} because a ConcurrentHashMap may
2617 <     * contain more mappings than can be represented as an int. The
2618 <     * value returned is an estimate; the actual count may differ if
2619 <     * there are concurrent insertions or removals.
2620 <     *
2621 <     * @return the number of mappings
2622 <     */
2623 <    public long mappingCount() {
2624 <        long n = sumCount();
2625 <        return (n < 0L) ? 0L : n; // ignore transient negative values
2626 <    }
2627 <
2628 <    /**
2629 <     * Returns the value to which the specified key is mapped,
2630 <     * or {@code null} if this map contains no mapping for the key.
2631 <     *
2632 <     * <p>More formally, if this map contains a mapping from a key
2633 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2634 <     * then this method returns {@code v}; otherwise it returns
2635 <     * {@code null}.  (There can be at most one such mapping.)
2636 <     *
2637 <     * @throws NullPointerException if the specified key is null
2638 <     */
2639 <    public V get(Object key) {
2640 <        return internalGet(key);
2641 <    }
2642 <
2643 <    /**
2644 <     * Returns the value to which the specified key is mapped,
2645 <     * or the given defaultValue if this map contains no mapping for the key.
2646 <     *
2647 <     * @param key the key
2648 <     * @param defaultValue the value to return if this map contains
2649 <     * no mapping for the given key
2650 <     * @return the mapping for the key, if present; else the defaultValue
2651 <     * @throws NullPointerException if the specified key is null
2652 <     */
2653 <    public V getOrDefault(Object key, V defaultValue) {
2654 <        V v;
2655 <        return (v = internalGet(key)) == null ? defaultValue : v;
2656 <    }
2657 <
2658 <    /**
2659 <     * Tests if the specified object is a key in this table.
2660 <     *
2661 <     * @param  key possible key
2662 <     * @return {@code true} if and only if the specified object
2663 <     *         is a key in this table, as determined by the
2664 <     *         {@code equals} method; {@code false} otherwise
2665 <     * @throws NullPointerException if the specified key is null
2666 <     */
2667 <    public boolean containsKey(Object key) {
2668 <        return internalGet(key) != null;
2669 <    }
2670 <
2671 <    /**
2672 <     * Returns {@code true} if this map maps one or more keys to the
2673 <     * specified value. Note: This method may require a full traversal
2674 <     * of the map, and is much slower than method {@code containsKey}.
2675 <     *
2676 <     * @param value value whose presence in this map is to be tested
2677 <     * @return {@code true} if this map maps one or more keys to the
2678 <     *         specified value
2679 <     * @throws NullPointerException if the specified value is null
2680 <     */
2681 <    public boolean containsValue(Object value) {
2682 <        if (value == null)
2683 <            throw new NullPointerException();
2684 <        V v;
2685 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2686 <        while ((v = it.advanceValue()) != null) {
2687 <            if (v == value || value.equals(v))
2688 <                return true;
3262 >        private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3263 >        private static final long LOCKSTATE;
3264 >        static {
3265 >            try {
3266 >                LOCKSTATE = U.objectFieldOffset
3267 >                    (TreeBin.class.getDeclaredField("lockState"));
3268 >            } catch (ReflectiveOperationException e) {
3269 >                throw new Error(e);
3270 >            }
3271          }
2690        return false;
2691    }
2692
2693    /**
2694     * Legacy method testing if some key maps into the specified value
2695     * in this table.  This method is identical in functionality to
2696     * {@link #containsValue(Object)}, and exists solely to ensure
2697     * full compatibility with class {@link java.util.Hashtable},
2698     * which supported this method prior to introduction of the
2699     * Java Collections framework.
2700     *
2701     * @param  value a value to search for
2702     * @return {@code true} if and only if some key maps to the
2703     *         {@code value} argument in this table as
2704     *         determined by the {@code equals} method;
2705     *         {@code false} otherwise
2706     * @throws NullPointerException if the specified value is null
2707     */
2708    @Deprecated public boolean contains(Object value) {
2709        return containsValue(value);
2710    }
2711
2712    /**
2713     * Maps the specified key to the specified value in this table.
2714     * Neither the key nor the value can be null.
2715     *
2716     * <p>The value can be retrieved by calling the {@code get} method
2717     * with a key that is equal to the original key.
2718     *
2719     * @param key key with which the specified value is to be associated
2720     * @param value value to be associated with the specified key
2721     * @return the previous value associated with {@code key}, or
2722     *         {@code null} if there was no mapping for {@code key}
2723     * @throws NullPointerException if the specified key or value is null
2724     */
2725    public V put(K key, V value) {
2726        return internalPut(key, value, false);
3272      }
3273  
3274 <    /**
2730 <     * {@inheritDoc}
2731 <     *
2732 <     * @return the previous value associated with the specified key,
2733 <     *         or {@code null} if there was no mapping for the key
2734 <     * @throws NullPointerException if the specified key or value is null
2735 <     */
2736 <    public V putIfAbsent(K key, V value) {
2737 <        return internalPut(key, value, true);
2738 <    }
2739 <
2740 <    /**
2741 <     * Copies all of the mappings from the specified map to this one.
2742 <     * These mappings replace any mappings that this map had for any of the
2743 <     * keys currently in the specified map.
2744 <     *
2745 <     * @param m mappings to be stored in this map
2746 <     */
2747 <    public void putAll(Map<? extends K, ? extends V> m) {
2748 <        internalPutAll(m);
2749 <    }
2750 <
2751 <    /**
2752 <     * If the specified key is not already associated with a value (or
2753 <     * is mapped to {@code null}), attempts to compute its value using
2754 <     * the given mapping function and enters it into this map unless
2755 <     * {@code null}. The entire method invocation is performed
2756 <     * atomically, so the function is applied at most once per key.
2757 <     * Some attempted update operations on this map by other threads
2758 <     * may be blocked while computation is in progress, so the
2759 <     * computation should be short and simple, and must not attempt to
2760 <     * update any other mappings of this Map.
2761 <     *
2762 <     * @param key key with which the specified value is to be associated
2763 <     * @param mappingFunction the function to compute a value
2764 <     * @return the current (existing or computed) value associated with
2765 <     *         the specified key, or null if the computed value is null
2766 <     * @throws NullPointerException if the specified key or mappingFunction
2767 <     *         is null
2768 <     * @throws IllegalStateException if the computation detectably
2769 <     *         attempts a recursive update to this map that would
2770 <     *         otherwise never complete
2771 <     * @throws RuntimeException or Error if the mappingFunction does so,
2772 <     *         in which case the mapping is left unestablished
2773 <     */
2774 <    public V computeIfAbsent
2775 <        (K key, Function<? super K, ? extends V> mappingFunction) {
2776 <        return internalComputeIfAbsent(key, mappingFunction);
2777 <    }
2778 <
2779 <    /**
2780 <     * If the value for the specified key is present and non-null,
2781 <     * attempts to compute a new mapping given the key and its current
2782 <     * mapped value.  The entire method invocation is performed
2783 <     * atomically.  Some attempted update operations on this map by
2784 <     * other threads may be blocked while computation is in progress,
2785 <     * so the computation should be short and simple, and must not
2786 <     * attempt to update any other mappings of this Map.
2787 <     *
2788 <     * @param key key with which a value may be associated
2789 <     * @param remappingFunction the function to compute a value
2790 <     * @return the new value associated with the specified key, or null if none
2791 <     * @throws NullPointerException if the specified key or remappingFunction
2792 <     *         is null
2793 <     * @throws IllegalStateException if the computation detectably
2794 <     *         attempts a recursive update to this map that would
2795 <     *         otherwise never complete
2796 <     * @throws RuntimeException or Error if the remappingFunction does so,
2797 <     *         in which case the mapping is unchanged
2798 <     */
2799 <    public V computeIfPresent
2800 <        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2801 <        return internalCompute(key, true, remappingFunction);
2802 <    }
2803 <
2804 <    /**
2805 <     * Attempts to compute a mapping for the specified key and its
2806 <     * current mapped value (or {@code null} if there is no current
2807 <     * mapping). The entire method invocation is performed atomically.
2808 <     * Some attempted update operations on this map by other threads
2809 <     * may be blocked while computation is in progress, so the
2810 <     * computation should be short and simple, and must not attempt to
2811 <     * update any other mappings of this Map.
2812 <     *
2813 <     * @param key key with which the specified value is to be associated
2814 <     * @param remappingFunction the function to compute a value
2815 <     * @return the new value associated with the specified key, or null if none
2816 <     * @throws NullPointerException if the specified key or remappingFunction
2817 <     *         is null
2818 <     * @throws IllegalStateException if the computation detectably
2819 <     *         attempts a recursive update to this map that would
2820 <     *         otherwise never complete
2821 <     * @throws RuntimeException or Error if the remappingFunction does so,
2822 <     *         in which case the mapping is unchanged
2823 <     */
2824 <    public V compute
2825 <        (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2826 <        return internalCompute(key, false, remappingFunction);
2827 <    }
2828 <
2829 <    /**
2830 <     * If the specified key is not already associated with a
2831 <     * (non-null) value, associates it with the given value.
2832 <     * Otherwise, replaces the value with the results of the given
2833 <     * remapping function, or removes if {@code null}. The entire
2834 <     * method invocation is performed atomically.  Some attempted
2835 <     * update operations on this map by other threads may be blocked
2836 <     * while computation is in progress, so the computation should be
2837 <     * short and simple, and must not attempt to update any other
2838 <     * mappings of this Map.
2839 <     *
2840 <     * @param key key with which the specified value is to be associated
2841 <     * @param value the value to use if absent
2842 <     * @param remappingFunction the function to recompute a value if present
2843 <     * @return the new value associated with the specified key, or null if none
2844 <     * @throws NullPointerException if the specified key or the
2845 <     *         remappingFunction is null
2846 <     * @throws RuntimeException or Error if the remappingFunction does so,
2847 <     *         in which case the mapping is unchanged
2848 <     */
2849 <    public V merge
2850 <        (K key, V value,
2851 <         BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2852 <        return internalMerge(key, value, remappingFunction);
2853 <    }
2854 <
2855 <    /**
2856 <     * Removes the key (and its corresponding value) from this map.
2857 <     * This method does nothing if the key is not in the map.
2858 <     *
2859 <     * @param  key the key that needs to be removed
2860 <     * @return the previous value associated with {@code key}, or
2861 <     *         {@code null} if there was no mapping for {@code key}
2862 <     * @throws NullPointerException if the specified key is null
2863 <     */
2864 <    public V remove(Object key) {
2865 <        return internalReplace(key, null, null);
2866 <    }
2867 <
2868 <    /**
2869 <     * {@inheritDoc}
2870 <     *
2871 <     * @throws NullPointerException if the specified key is null
2872 <     */
2873 <    public boolean remove(Object key, Object value) {
2874 <        if (key == null)
2875 <            throw new NullPointerException();
2876 <        return value != null && internalReplace(key, null, value) != null;
2877 <    }
2878 <
2879 <    /**
2880 <     * {@inheritDoc}
2881 <     *
2882 <     * @throws NullPointerException if any of the arguments are null
2883 <     */
2884 <    public boolean replace(K key, V oldValue, V newValue) {
2885 <        if (key == null || oldValue == null || newValue == null)
2886 <            throw new NullPointerException();
2887 <        return internalReplace(key, newValue, oldValue) != null;
2888 <    }
2889 <
2890 <    /**
2891 <     * {@inheritDoc}
2892 <     *
2893 <     * @return the previous value associated with the specified key,
2894 <     *         or {@code null} if there was no mapping for the key
2895 <     * @throws NullPointerException if the specified key or value is null
2896 <     */
2897 <    public V replace(K key, V value) {
2898 <        if (key == null || value == null)
2899 <            throw new NullPointerException();
2900 <        return internalReplace(key, value, null);
2901 <    }
2902 <
2903 <    /**
2904 <     * Removes all of the mappings from this map.
2905 <     */
2906 <    public void clear() {
2907 <        internalClear();
2908 <    }
2909 <
2910 <    /**
2911 <     * Returns a {@link Set} view of the keys contained in this map.
2912 <     * The set is backed by the map, so changes to the map are
2913 <     * reflected in the set, and vice-versa.
2914 <     *
2915 <     * @return the set view
2916 <     */
2917 <    public KeySetView<K,V> keySet() {
2918 <        KeySetView<K,V> ks = keySet;
2919 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2920 <    }
2921 <
2922 <    /**
2923 <     * Returns a {@link Set} view of the keys in this map, using the
2924 <     * given common mapped value for any additions (i.e., {@link
2925 <     * Collection#add} and {@link Collection#addAll(Collection)}).
2926 <     * This is of course only appropriate if it is acceptable to use
2927 <     * the same value for all additions from this view.
2928 <     *
2929 <     * @param mappedValue the mapped value to use for any additions
2930 <     * @return the set view
2931 <     * @throws NullPointerException if the mappedValue is null
2932 <     */
2933 <    public KeySetView<K,V> keySet(V mappedValue) {
2934 <        if (mappedValue == null)
2935 <            throw new NullPointerException();
2936 <        return new KeySetView<K,V>(this, mappedValue);
2937 <    }
3274 >    /* ----------------Table Traversal -------------- */
3275  
3276      /**
3277 <     * Returns a {@link Collection} view of the values contained in this map.
3278 <     * The collection is backed by the map, so changes to the map are
3279 <     * reflected in the collection, and vice-versa.
3280 <     *
3281 <     * @return the collection view
3282 <     */
3283 <    public ValuesView<K,V> values() {
3284 <        ValuesView<K,V> vs = values;
3285 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3277 >     * Records the table, its length, and current traversal index for a
3278 >     * traverser that must process a region of a forwarded table before
3279 >     * proceeding with current table.
3280 >     */
3281 >    static final class TableStack<K,V> {
3282 >        int length;
3283 >        int index;
3284 >        Node<K,V>[] tab;
3285 >        TableStack<K,V> next;
3286      }
3287  
3288      /**
3289 <     * Returns a {@link Set} view of the mappings contained in this map.
3290 <     * The set is backed by the map, so changes to the map are
2954 <     * reflected in the set, and vice-versa.  The set supports element
2955 <     * removal, which removes the corresponding mapping from the map,
2956 <     * via the {@code Iterator.remove}, {@code Set.remove},
2957 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
2958 <     * operations.  It does not support the {@code add} or
2959 <     * {@code addAll} operations.
2960 <     *
2961 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2962 <     * that will never throw {@link ConcurrentModificationException},
2963 <     * and guarantees to traverse elements as they existed upon
2964 <     * construction of the iterator, and may (but is not guaranteed to)
2965 <     * reflect any modifications subsequent to construction.
3289 >     * Encapsulates traversal for methods such as containsValue; also
3290 >     * serves as a base class for other iterators and spliterators.
3291       *
3292 <     * @return the set view
3293 <     */
3294 <    public Set<Map.Entry<K,V>> entrySet() {
3295 <        EntrySetView<K,V> es = entrySet;
3296 <        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3297 <    }
3298 <
3299 <    /**
2975 <     * Returns an enumeration of the keys in this table.
3292 >     * Method advance visits once each still-valid node that was
3293 >     * reachable upon iterator construction. It might miss some that
3294 >     * were added to a bin after the bin was visited, which is OK wrt
3295 >     * consistency guarantees. Maintaining this property in the face
3296 >     * of possible ongoing resizes requires a fair amount of
3297 >     * bookkeeping state that is difficult to optimize away amidst
3298 >     * volatile accesses.  Even so, traversal maintains reasonable
3299 >     * throughput.
3300       *
3301 <     * @return an enumeration of the keys in this table
3302 <     * @see #keySet()
3301 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3302 >     * However, if the table has been resized, then all future steps
3303 >     * must traverse both the bin at the current index as well as at
3304 >     * (index + baseSize); and so on for further resizings. To
3305 >     * paranoically cope with potential sharing by users of iterators
3306 >     * across threads, iteration terminates if a bounds checks fails
3307 >     * for a table read.
3308       */
3309 <    public Enumeration<K> keys() {
3310 <        return new KeyIterator<K,V>(this);
3311 <    }
3309 >    static class Traverser<K,V> {
3310 >        Node<K,V>[] tab;        // current table; updated if resized
3311 >        Node<K,V> next;         // the next entry to use
3312 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3313 >        int index;              // index of bin to use next
3314 >        int baseIndex;          // current index of initial table
3315 >        int baseLimit;          // index bound for initial table
3316 >        final int baseSize;     // initial table size
3317 >
3318 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3319 >            this.tab = tab;
3320 >            this.baseSize = size;
3321 >            this.baseIndex = this.index = index;
3322 >            this.baseLimit = limit;
3323 >            this.next = null;
3324 >        }
3325  
3326 <    /**
3327 <     * Returns an enumeration of the values in this table.
3328 <     *
3329 <     * @return an enumeration of the values in this table
3330 <     * @see #values()
3331 <     */
3332 <    public Enumeration<V> elements() {
3333 <        return new ValueIterator<K,V>(this);
3334 <    }
3326 >        /**
3327 >         * Advances if possible, returning next valid node, or null if none.
3328 >         */
3329 >        final Node<K,V> advance() {
3330 >            Node<K,V> e;
3331 >            if ((e = next) != null)
3332 >                e = e.next;
3333 >            for (;;) {
3334 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3335 >                if (e != null)
3336 >                    return next = e;
3337 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3338 >                    (n = t.length) <= (i = index) || i < 0)
3339 >                    return next = null;
3340 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3341 >                    if (e instanceof ForwardingNode) {
3342 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3343 >                        e = null;
3344 >                        pushState(t, i, n);
3345 >                        continue;
3346 >                    }
3347 >                    else if (e instanceof TreeBin)
3348 >                        e = ((TreeBin<K,V>)e).first;
3349 >                    else
3350 >                        e = null;
3351 >                }
3352 >                if (stack != null)
3353 >                    recoverState(n);
3354 >                else if ((index = i + baseSize) >= n)
3355 >                    index = ++baseIndex; // visit upper slots if present
3356 >            }
3357 >        }
3358  
3359 <    /**
3360 <     * Returns the hash code value for this {@link Map}, i.e.,
3361 <     * the sum of, for each key-value pair in the map,
3362 <     * {@code key.hashCode() ^ value.hashCode()}.
3363 <     *
3364 <     * @return the hash code value for this map
3365 <     */
3366 <    public int hashCode() {
3367 <        int h = 0;
3368 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3369 <        V v;
3370 <        while ((v = it.advanceValue()) != null) {
3371 <            h += it.nextKey.hashCode() ^ v.hashCode();
3359 >        /**
3360 >         * Saves traversal state upon encountering a forwarding node.
3361 >         */
3362 >        private void pushState(Node<K,V>[] t, int i, int n) {
3363 >            TableStack<K,V> s = spare;  // reuse if possible
3364 >            if (s != null)
3365 >                spare = s.next;
3366 >            else
3367 >                s = new TableStack<K,V>();
3368 >            s.tab = t;
3369 >            s.length = n;
3370 >            s.index = i;
3371 >            s.next = stack;
3372 >            stack = s;
3373          }
3008        return h;
3009    }
3374  
3375 <    /**
3376 <     * Returns a string representation of this map.  The string
3377 <     * representation consists of a list of key-value mappings (in no
3378 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3379 <     * mappings are separated by the characters {@code ", "} (comma
3380 <     * and space).  Each key-value mapping is rendered as the key
3381 <     * followed by an equals sign ("{@code =}") followed by the
3382 <     * associated value.
3383 <     *
3384 <     * @return a string representation of this map
3385 <     */
3386 <    public String toString() {
3387 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3388 <        StringBuilder sb = new StringBuilder();
3389 <        sb.append('{');
3390 <        V v;
3027 <        if ((v = it.advanceValue()) != null) {
3028 <            for (;;) {
3029 <                K k = it.nextKey;
3030 <                sb.append(k == this ? "(this Map)" : k);
3031 <                sb.append('=');
3032 <                sb.append(v == this ? "(this Map)" : v);
3033 <                if ((v = it.advanceValue()) == null)
3034 <                    break;
3035 <                sb.append(',').append(' ');
3375 >        /**
3376 >         * Possibly pops traversal state.
3377 >         *
3378 >         * @param n length of current table
3379 >         */
3380 >        private void recoverState(int n) {
3381 >            TableStack<K,V> s; int len;
3382 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3383 >                n = len;
3384 >                index = s.index;
3385 >                tab = s.tab;
3386 >                s.tab = null;
3387 >                TableStack<K,V> next = s.next;
3388 >                s.next = spare; // save for reuse
3389 >                stack = next;
3390 >                spare = s;
3391              }
3392 +            if (s == null && (index += baseSize) >= n)
3393 +                index = ++baseIndex;
3394          }
3038        return sb.append('}').toString();
3395      }
3396  
3397      /**
3398 <     * Compares the specified object with this map for equality.
3399 <     * Returns {@code true} if the given object is a map with the same
3044 <     * mappings as this map.  This operation may return misleading
3045 <     * results if either map is concurrently modified during execution
3046 <     * of this method.
3047 <     *
3048 <     * @param o object to be compared for equality with this map
3049 <     * @return {@code true} if the specified object is equal to this map
3398 >     * Base of key, value, and entry Iterators. Adds fields to
3399 >     * Traverser to support iterator.remove.
3400       */
3401 <    public boolean equals(Object o) {
3402 <        if (o != this) {
3403 <            if (!(o instanceof Map))
3404 <                return false;
3405 <            Map<?,?> m = (Map<?,?>) o;
3406 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3407 <            V val;
3408 <            while ((val = it.advanceValue()) != null) {
3059 <                Object v = m.get(it.nextKey);
3060 <                if (v == null || (v != val && !v.equals(val)))
3061 <                    return false;
3062 <            }
3063 <            for (Map.Entry<?,?> e : m.entrySet()) {
3064 <                Object mk, mv, v;
3065 <                if ((mk = e.getKey()) == null ||
3066 <                    (mv = e.getValue()) == null ||
3067 <                    (v = internalGet(mk)) == null ||
3068 <                    (mv != v && !mv.equals(v)))
3069 <                    return false;
3070 <            }
3401 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3402 >        final ConcurrentHashMap<K,V> map;
3403 >        Node<K,V> lastReturned;
3404 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3405 >                    ConcurrentHashMap<K,V> map) {
3406 >            super(tab, size, index, limit);
3407 >            this.map = map;
3408 >            advance();
3409          }
3072        return true;
3073    }
3410  
3411 <    /* ----------------Iterators -------------- */
3411 >        public final boolean hasNext() { return next != null; }
3412 >        public final boolean hasMoreElements() { return next != null; }
3413  
3414 <    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3415 <        extends Traverser<K,V,Object>
3416 <        implements Spliterator<K>, Iterator<K>, Enumeration<K> {
3417 <        KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
3418 <        KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3419 <            super(map, it);
3414 >        public final void remove() {
3415 >            Node<K,V> p;
3416 >            if ((p = lastReturned) == null)
3417 >                throw new IllegalStateException();
3418 >            lastReturned = null;
3419 >            map.replaceNode(p.key, null, null);
3420          }
3421 <        public Spliterator<K> trySplit() {
3422 <            return (baseLimit - baseIndex <= 1) ? null :
3423 <                new KeyIterator<K,V>(map, this);
3421 >    }
3422 >
3423 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3424 >        implements Iterator<K>, Enumeration<K> {
3425 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3426 >                    ConcurrentHashMap<K,V> map) {
3427 >            super(tab, index, size, limit, map);
3428          }
3429 +
3430          public final K next() {
3431 <            K k;
3432 <            if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
3431 >            Node<K,V> p;
3432 >            if ((p = next) == null)
3433                  throw new NoSuchElementException();
3434 <            nextVal = null;
3434 >            K k = p.key;
3435 >            lastReturned = p;
3436 >            advance();
3437              return k;
3438          }
3439  
3440          public final K nextElement() { return next(); }
3097
3098        public Iterator<K> iterator() { return this; }
3099
3100        public void forEachRemaining(Consumer<? super K> action) {
3101            forEachKey(action);
3102        }
3103
3104        public boolean tryAdvance(Consumer<? super K> block) {
3105            if (block == null) throw new NullPointerException();
3106            K k;
3107            if ((k = advanceKey()) == null)
3108                return false;
3109            block.accept(k);
3110            return true;
3111        }
3112
3113        public int characteristics() {
3114            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3115                Spliterator.NONNULL;
3116        }
3117
3441      }
3442  
3443 <    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3444 <        extends Traverser<K,V,Object>
3445 <        implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3446 <        ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3447 <        ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3125 <            super(map, it);
3126 <        }
3127 <        public Spliterator<V> trySplit() {
3128 <            return (baseLimit - baseIndex <= 1) ? null :
3129 <                new ValueIterator<K,V>(map, this);
3443 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3444 >        implements Iterator<V>, Enumeration<V> {
3445 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3446 >                      ConcurrentHashMap<K,V> map) {
3447 >            super(tab, index, size, limit, map);
3448          }
3449  
3450          public final V next() {
3451 <            V v;
3452 <            if ((v = nextVal) == null && (v = advanceValue()) == null)
3451 >            Node<K,V> p;
3452 >            if ((p = next) == null)
3453                  throw new NoSuchElementException();
3454 <            nextVal = null;
3454 >            V v = p.val;
3455 >            lastReturned = p;
3456 >            advance();
3457              return v;
3458          }
3459  
3460          public final V nextElement() { return next(); }
3141
3142        public Iterator<V> iterator() { return this; }
3143
3144        public void forEachRemaining(Consumer<? super V> action) {
3145            forEachValue(action);
3146        }
3147
3148        public boolean tryAdvance(Consumer<? super V> block) {
3149            V v;
3150            if (block == null) throw new NullPointerException();
3151            if ((v = advanceValue()) == null)
3152                return false;
3153            block.accept(v);
3154            return true;
3155        }
3156
3157        public int characteristics() {
3158            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3159        }
3461      }
3462  
3463 <    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3464 <        extends Traverser<K,V,Object>
3465 <        implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3466 <        EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3467 <        EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3167 <            super(map, it);
3168 <        }
3169 <        public Spliterator<Map.Entry<K,V>> trySplit() {
3170 <            return (baseLimit - baseIndex <= 1) ? null :
3171 <                new EntryIterator<K,V>(map, this);
3463 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3464 >        implements Iterator<Map.Entry<K,V>> {
3465 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3466 >                      ConcurrentHashMap<K,V> map) {
3467 >            super(tab, index, size, limit, map);
3468          }
3469  
3470          public final Map.Entry<K,V> next() {
3471 <            V v;
3472 <            if ((v = nextVal) == null && (v = advanceValue()) == null)
3471 >            Node<K,V> p;
3472 >            if ((p = next) == null)
3473                  throw new NoSuchElementException();
3474 <            K k = nextKey;
3475 <            nextVal = null;
3474 >            K k = p.key;
3475 >            V v = p.val;
3476 >            lastReturned = p;
3477 >            advance();
3478              return new MapEntry<K,V>(k, v, map);
3479          }
3182
3183        public Iterator<Map.Entry<K,V>> iterator() { return this; }
3184
3185        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3186            if (action == null) throw new NullPointerException();
3187            V v;
3188            while ((v = advanceValue()) != null)
3189                action.accept(entryFor(nextKey, v));
3190        }
3191
3192        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3193            V v;
3194            if (block == null) throw new NullPointerException();
3195            if ((v = advanceValue()) == null)
3196                return false;
3197            block.accept(entryFor(nextKey, v));
3198            return true;
3199        }
3200
3201        public int characteristics() {
3202            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3203                Spliterator.NONNULL;
3204        }
3480      }
3481  
3482      /**
3483 <     * Exported Entry for iterators
3483 >     * Exported Entry for EntryIterator
3484       */
3485      static final class MapEntry<K,V> implements Map.Entry<K,V> {
3486          final K key; // non-null
# Line 3216 | Line 3491 | public class ConcurrentHashMap<K,V>
3491              this.val = val;
3492              this.map = map;
3493          }
3494 <        public final K getKey()       { return key; }
3495 <        public final V getValue()     { return val; }
3496 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3497 <        public final String toString(){ return key + "=" + val; }
3494 >        public K getKey()        { return key; }
3495 >        public V getValue()      { return val; }
3496 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3497 >        public String toString() {
3498 >            return Helpers.mapEntryToString(key, val);
3499 >        }
3500  
3501 <        public final boolean equals(Object o) {
3501 >        public boolean equals(Object o) {
3502              Object k, v; Map.Entry<?,?> e;
3503              return ((o instanceof Map.Entry) &&
3504                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3235 | Line 3512 | public class ConcurrentHashMap<K,V>
3512           * value to return is somewhat arbitrary here. Since we do not
3513           * necessarily track asynchronous changes, the most recent
3514           * "previous" value could be different from what we return (or
3515 <         * could even have been removed in which case the put will
3515 >         * could even have been removed, in which case the put will
3516           * re-establish). We do not and cannot guarantee more.
3517           */
3518 <        public final V setValue(V value) {
3518 >        public V setValue(V value) {
3519              if (value == null) throw new NullPointerException();
3520              V v = val;
3521              val = value;
# Line 3247 | Line 3524 | public class ConcurrentHashMap<K,V>
3524          }
3525      }
3526  
3527 <    /**
3528 <     * Returns exportable snapshot entry for the given key and value
3529 <     * when write-through can't or shouldn't be used.
3530 <     */
3531 <    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3532 <        return new AbstractMap.SimpleEntry<K,V>(k, v);
3533 <    }
3527 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3528 >        implements Spliterator<K> {
3529 >        long est;               // size estimate
3530 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3531 >                       long est) {
3532 >            super(tab, size, index, limit);
3533 >            this.est = est;
3534 >        }
3535  
3536 <    /* ---------------- Serialization Support -------------- */
3536 >        public Spliterator<K> trySplit() {
3537 >            int i, f, h;
3538 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3539 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3540 >                                        f, est >>>= 1);
3541 >        }
3542  
3543 <    /**
3544 <     * Stripped-down version of helper class used in previous version,
3545 <     * declared for the sake of serialization compatibility
3546 <     */
3547 <    static class Segment<K,V> implements Serializable {
3548 <        private static final long serialVersionUID = 2249069246763182397L;
3549 <        final float loadFactor;
3550 <        Segment(float lf) { this.loadFactor = lf; }
3543 >        public void forEachRemaining(Consumer<? super K> action) {
3544 >            if (action == null) throw new NullPointerException();
3545 >            for (Node<K,V> p; (p = advance()) != null;)
3546 >                action.accept(p.key);
3547 >        }
3548 >
3549 >        public boolean tryAdvance(Consumer<? super K> action) {
3550 >            if (action == null) throw new NullPointerException();
3551 >            Node<K,V> p;
3552 >            if ((p = advance()) == null)
3553 >                return false;
3554 >            action.accept(p.key);
3555 >            return true;
3556 >        }
3557 >
3558 >        public long estimateSize() { return est; }
3559 >
3560 >        public int characteristics() {
3561 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3562 >                Spliterator.NONNULL;
3563 >        }
3564      }
3565  
3566 <    /**
3567 <     * Saves the state of the {@code ConcurrentHashMap} instance to a
3568 <     * stream (i.e., serializes it).
3569 <     * @param s the stream
3570 <     * @serialData
3571 <     * the key (Object) and value (Object)
3572 <     * for each key-value mapping, followed by a null pair.
3277 <     * The key-value mappings are emitted in no particular order.
3278 <     */
3279 <    @SuppressWarnings("unchecked") private void writeObject
3280 <        (java.io.ObjectOutputStream s)
3281 <        throws java.io.IOException {
3282 <        if (segments == null) { // for serialization compatibility
3283 <            segments = (Segment<K,V>[])
3284 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3285 <            for (int i = 0; i < segments.length; ++i)
3286 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3566 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3567 >        implements Spliterator<V> {
3568 >        long est;               // size estimate
3569 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3570 >                         long est) {
3571 >            super(tab, size, index, limit);
3572 >            this.est = est;
3573          }
3574 <        s.defaultWriteObject();
3575 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3576 <        V v;
3577 <        while ((v = it.advanceValue()) != null) {
3578 <            s.writeObject(it.nextKey);
3579 <            s.writeObject(v);
3574 >
3575 >        public Spliterator<V> trySplit() {
3576 >            int i, f, h;
3577 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3578 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3579 >                                          f, est >>>= 1);
3580 >        }
3581 >
3582 >        public void forEachRemaining(Consumer<? super V> action) {
3583 >            if (action == null) throw new NullPointerException();
3584 >            for (Node<K,V> p; (p = advance()) != null;)
3585 >                action.accept(p.val);
3586 >        }
3587 >
3588 >        public boolean tryAdvance(Consumer<? super V> action) {
3589 >            if (action == null) throw new NullPointerException();
3590 >            Node<K,V> p;
3591 >            if ((p = advance()) == null)
3592 >                return false;
3593 >            action.accept(p.val);
3594 >            return true;
3595 >        }
3596 >
3597 >        public long estimateSize() { return est; }
3598 >
3599 >        public int characteristics() {
3600 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3601          }
3295        s.writeObject(null);
3296        s.writeObject(null);
3297        segments = null; // throw away
3602      }
3603  
3604 <    /**
3605 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3606 <     * @param s the stream
3607 <     */
3608 <    @SuppressWarnings("unchecked") private void readObject
3609 <        (java.io.ObjectInputStream s)
3610 <        throws java.io.IOException, ClassNotFoundException {
3611 <        s.defaultReadObject();
3612 <        this.segments = null; // unneeded
3604 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3605 >        implements Spliterator<Map.Entry<K,V>> {
3606 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3607 >        long est;               // size estimate
3608 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3609 >                         long est, ConcurrentHashMap<K,V> map) {
3610 >            super(tab, size, index, limit);
3611 >            this.map = map;
3612 >            this.est = est;
3613 >        }
3614  
3615 <        // Create all nodes, then place in table once size is known
3616 <        long size = 0L;
3617 <        Node<V> p = null;
3618 <        for (;;) {
3619 <            K k = (K) s.readObject();
3315 <            V v = (V) s.readObject();
3316 <            if (k != null && v != null) {
3317 <                int h = spread(k.hashCode());
3318 <                p = new Node<V>(h, k, v, p);
3319 <                ++size;
3320 <            }
3321 <            else
3322 <                break;
3615 >        public Spliterator<Map.Entry<K,V>> trySplit() {
3616 >            int i, f, h;
3617 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3618 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3619 >                                          f, est >>>= 1, map);
3620          }
3621 <        if (p != null) {
3622 <            boolean init = false;
3623 <            int n;
3624 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3625 <                n = MAXIMUM_CAPACITY;
3626 <            else {
3627 <                int sz = (int)size;
3628 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3629 <            }
3630 <            int sc = sizeCtl;
3631 <            boolean collide = false;
3632 <            if (n > sc &&
3633 <                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3634 <                try {
3635 <                    if (table == null) {
3636 <                        init = true;
3637 <                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3638 <                        Node<V>[] tab = (Node<V>[])rt;
3639 <                        int mask = n - 1;
3640 <                        while (p != null) {
3641 <                            int j = p.hash & mask;
3345 <                            Node<V> next = p.next;
3346 <                            Node<V> q = p.next = tabAt(tab, j);
3347 <                            setTabAt(tab, j, p);
3348 <                            if (!collide && q != null && q.hash == p.hash)
3349 <                                collide = true;
3350 <                            p = next;
3351 <                        }
3352 <                        table = tab;
3353 <                        addCount(size, -1);
3354 <                        sc = n - (n >>> 2);
3355 <                    }
3356 <                } finally {
3357 <                    sizeCtl = sc;
3358 <                }
3359 <                if (collide) { // rescan and convert to TreeBins
3360 <                    Node<V>[] tab = table;
3361 <                    for (int i = 0; i < tab.length; ++i) {
3362 <                        int c = 0;
3363 <                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3364 <                            if (++c > TREE_THRESHOLD &&
3365 <                                (e.key instanceof Comparable)) {
3366 <                                replaceWithTreeBin(tab, i, e.key);
3367 <                                break;
3368 <                            }
3369 <                        }
3370 <                    }
3371 <                }
3372 <            }
3373 <            if (!init) { // Can only happen if unsafely published.
3374 <                while (p != null) {
3375 <                    internalPut((K)p.key, p.val, false);
3376 <                    p = p.next;
3377 <                }
3378 <            }
3621 >
3622 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3623 >            if (action == null) throw new NullPointerException();
3624 >            for (Node<K,V> p; (p = advance()) != null; )
3625 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3626 >        }
3627 >
3628 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3629 >            if (action == null) throw new NullPointerException();
3630 >            Node<K,V> p;
3631 >            if ((p = advance()) == null)
3632 >                return false;
3633 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3634 >            return true;
3635 >        }
3636 >
3637 >        public long estimateSize() { return est; }
3638 >
3639 >        public int characteristics() {
3640 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3641 >                Spliterator.NONNULL;
3642          }
3643      }
3644  
3645 <    // -------------------------------------------------------
3645 >    // Parallel bulk operations
3646  
3647 <    // Sequential bulk operations
3647 >    /**
3648 >     * Computes initial batch value for bulk tasks. The returned value
3649 >     * is approximately exp2 of the number of times (minus one) to
3650 >     * split task by two before executing leaf action. This value is
3651 >     * faster to compute and more convenient to use as a guide to
3652 >     * splitting than is the depth, since it is used while dividing by
3653 >     * two anyway.
3654 >     */
3655 >    final int batchFor(long b) {
3656 >        long n;
3657 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3658 >            return 0;
3659 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3660 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3661 >    }
3662  
3663      /**
3664       * Performs the given action for each (key, value).
3665       *
3666 +     * @param parallelismThreshold the (estimated) number of elements
3667 +     * needed for this operation to be executed in parallel
3668       * @param action the action
3669 +     * @since 1.8
3670       */
3671 <    public void forEachSequentially
3672 <        (BiConsumer<? super K, ? super V> action) {
3671 >    public void forEach(long parallelismThreshold,
3672 >                        BiConsumer<? super K,? super V> action) {
3673          if (action == null) throw new NullPointerException();
3674 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3675 <        V v;
3676 <        while ((v = it.advanceValue()) != null)
3397 <            action.accept(it.nextKey, v);
3674 >        new ForEachMappingTask<K,V>
3675 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3676 >             action).invoke();
3677      }
3678  
3679      /**
3680       * Performs the given action for each non-null transformation
3681       * of each (key, value).
3682       *
3683 +     * @param parallelismThreshold the (estimated) number of elements
3684 +     * needed for this operation to be executed in parallel
3685       * @param transformer a function returning the transformation
3686       * for an element, or null if there is no transformation (in
3687       * which case the action is not applied)
3688       * @param action the action
3689 +     * @param <U> the return type of the transformer
3690 +     * @since 1.8
3691       */
3692 <    public <U> void forEachSequentially
3693 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
3694 <         Consumer<? super U> action) {
3692 >    public <U> void forEach(long parallelismThreshold,
3693 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3694 >                            Consumer<? super U> action) {
3695          if (transformer == null || action == null)
3696              throw new NullPointerException();
3697 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3698 <        V v; U u;
3699 <        while ((v = it.advanceValue()) != null) {
3417 <            if ((u = transformer.apply(it.nextKey, v)) != null)
3418 <                action.accept(u);
3419 <        }
3697 >        new ForEachTransformedMappingTask<K,V,U>
3698 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3699 >             transformer, action).invoke();
3700      }
3701  
3702      /**
3703       * Returns a non-null result from applying the given search
3704 <     * function on each (key, value), or null if none.
3704 >     * function on each (key, value), or null if none.  Upon
3705 >     * success, further element processing is suppressed and the
3706 >     * results of any other parallel invocations of the search
3707 >     * function are ignored.
3708       *
3709 +     * @param parallelismThreshold the (estimated) number of elements
3710 +     * needed for this operation to be executed in parallel
3711       * @param searchFunction a function returning a non-null
3712       * result on success, else null
3713 +     * @param <U> the return type of the search function
3714       * @return a non-null result from applying the given search
3715       * function on each (key, value), or null if none
3716 +     * @since 1.8
3717       */
3718 <    public <U> U searchSequentially
3719 <        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3718 >    public <U> U search(long parallelismThreshold,
3719 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3720          if (searchFunction == null) throw new NullPointerException();
3721 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3722 <        V v; U u;
3723 <        while ((v = it.advanceValue()) != null) {
3437 <            if ((u = searchFunction.apply(it.nextKey, v)) != null)
3438 <                return u;
3439 <        }
3440 <        return null;
3721 >        return new SearchMappingsTask<K,V,U>
3722 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3723 >             searchFunction, new AtomicReference<U>()).invoke();
3724      }
3725  
3726      /**
# Line 3445 | Line 3728 | public class ConcurrentHashMap<K,V>
3728       * of all (key, value) pairs using the given reducer to
3729       * combine values, or null if none.
3730       *
3731 +     * @param parallelismThreshold the (estimated) number of elements
3732 +     * needed for this operation to be executed in parallel
3733       * @param transformer a function returning the transformation
3734       * for an element, or null if there is no transformation (in
3735       * which case it is not combined)
3736       * @param reducer a commutative associative combining function
3737 +     * @param <U> the return type of the transformer
3738       * @return the result of accumulating the given transformation
3739       * of all (key, value) pairs
3740 +     * @since 1.8
3741       */
3742 <    public <U> U reduceSequentially
3743 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
3744 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
3742 >    public <U> U reduce(long parallelismThreshold,
3743 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3744 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3745          if (transformer == null || reducer == null)
3746              throw new NullPointerException();
3747 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3748 <        U r = null, u; V v;
3749 <        while ((v = it.advanceValue()) != null) {
3463 <            if ((u = transformer.apply(it.nextKey, v)) != null)
3464 <                r = (r == null) ? u : reducer.apply(r, u);
3465 <        }
3466 <        return r;
3747 >        return new MapReduceMappingsTask<K,V,U>
3748 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3749 >             null, transformer, reducer).invoke();
3750      }
3751  
3752      /**
# Line 3471 | Line 3754 | public class ConcurrentHashMap<K,V>
3754       * of all (key, value) pairs using the given reducer to
3755       * combine values, and the given basis as an identity value.
3756       *
3757 +     * @param parallelismThreshold the (estimated) number of elements
3758 +     * needed for this operation to be executed in parallel
3759       * @param transformer a function returning the transformation
3760       * for an element
3761       * @param basis the identity (initial default value) for the reduction
3762       * @param reducer a commutative associative combining function
3763       * @return the result of accumulating the given transformation
3764       * of all (key, value) pairs
3765 +     * @since 1.8
3766       */
3767 <    public double reduceToDoubleSequentially
3768 <        (ToDoubleBiFunction<? super K, ? super V> transformer,
3769 <         double basis,
3770 <         DoubleBinaryOperator reducer) {
3767 >    public double reduceToDouble(long parallelismThreshold,
3768 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3769 >                                 double basis,
3770 >                                 DoubleBinaryOperator reducer) {
3771          if (transformer == null || reducer == null)
3772              throw new NullPointerException();
3773 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3774 <        double r = basis; V v;
3775 <        while ((v = it.advanceValue()) != null)
3490 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3491 <        return r;
3773 >        return new MapReduceMappingsToDoubleTask<K,V>
3774 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3775 >             null, transformer, basis, reducer).invoke();
3776      }
3777  
3778      /**
# Line 3496 | Line 3780 | public class ConcurrentHashMap<K,V>
3780       * of all (key, value) pairs using the given reducer to
3781       * combine values, and the given basis as an identity value.
3782       *
3783 +     * @param parallelismThreshold the (estimated) number of elements
3784 +     * needed for this operation to be executed in parallel
3785       * @param transformer a function returning the transformation
3786       * for an element
3787       * @param basis the identity (initial default value) for the reduction
3788       * @param reducer a commutative associative combining function
3789       * @return the result of accumulating the given transformation
3790       * of all (key, value) pairs
3791 +     * @since 1.8
3792       */
3793 <    public long reduceToLongSequentially
3794 <        (ToLongBiFunction<? super K, ? super V> transformer,
3795 <         long basis,
3796 <         LongBinaryOperator reducer) {
3793 >    public long reduceToLong(long parallelismThreshold,
3794 >                             ToLongBiFunction<? super K, ? super V> transformer,
3795 >                             long basis,
3796 >                             LongBinaryOperator reducer) {
3797          if (transformer == null || reducer == null)
3798              throw new NullPointerException();
3799 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3800 <        long r = basis; V v;
3801 <        while ((v = it.advanceValue()) != null)
3515 <            r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3516 <        return r;
3799 >        return new MapReduceMappingsToLongTask<K,V>
3800 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3801 >             null, transformer, basis, reducer).invoke();
3802      }
3803  
3804      /**
# Line 3521 | Line 3806 | public class ConcurrentHashMap<K,V>
3806       * of all (key, value) pairs using the given reducer to
3807       * combine values, and the given basis as an identity value.
3808       *
3809 +     * @param parallelismThreshold the (estimated) number of elements
3810 +     * needed for this operation to be executed in parallel
3811       * @param transformer a function returning the transformation
3812       * for an element
3813       * @param basis the identity (initial default value) for the reduction
3814       * @param reducer a commutative associative combining function
3815       * @return the result of accumulating the given transformation
3816       * of all (key, value) pairs
3817 +     * @since 1.8
3818       */
3819 <    public int reduceToIntSequentially
3820 <        (ToIntBiFunction<? super K, ? super V> transformer,
3821 <         int basis,
3822 <         IntBinaryOperator reducer) {
3819 >    public int reduceToInt(long parallelismThreshold,
3820 >                           ToIntBiFunction<? super K, ? super V> transformer,
3821 >                           int basis,
3822 >                           IntBinaryOperator reducer) {
3823          if (transformer == null || reducer == null)
3824              throw new NullPointerException();
3825 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3826 <        int r = basis; V v;
3827 <        while ((v = it.advanceValue()) != null)
3540 <            r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3541 <        return r;
3825 >        return new MapReduceMappingsToIntTask<K,V>
3826 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3827 >             null, transformer, basis, reducer).invoke();
3828      }
3829  
3830      /**
3831       * Performs the given action for each key.
3832       *
3833 +     * @param parallelismThreshold the (estimated) number of elements
3834 +     * needed for this operation to be executed in parallel
3835       * @param action the action
3836 +     * @since 1.8
3837       */
3838 <    public void forEachKeySequentially
3839 <        (Consumer<? super K> action) {
3840 <        new Traverser<K,V,Object>(this).forEachKey(action);
3838 >    public void forEachKey(long parallelismThreshold,
3839 >                           Consumer<? super K> action) {
3840 >        if (action == null) throw new NullPointerException();
3841 >        new ForEachKeyTask<K,V>
3842 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3843 >             action).invoke();
3844      }
3845  
3846      /**
3847       * Performs the given action for each non-null transformation
3848       * of each key.
3849       *
3850 +     * @param parallelismThreshold the (estimated) number of elements
3851 +     * needed for this operation to be executed in parallel
3852       * @param transformer a function returning the transformation
3853       * for an element, or null if there is no transformation (in
3854       * which case the action is not applied)
3855       * @param action the action
3856 +     * @param <U> the return type of the transformer
3857 +     * @since 1.8
3858       */
3859 <    public <U> void forEachKeySequentially
3860 <        (Function<? super K, ? extends U> transformer,
3861 <         Consumer<? super U> action) {
3859 >    public <U> void forEachKey(long parallelismThreshold,
3860 >                               Function<? super K, ? extends U> transformer,
3861 >                               Consumer<? super U> action) {
3862          if (transformer == null || action == null)
3863              throw new NullPointerException();
3864 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3865 <        K k; U u;
3866 <        while ((k = it.advanceKey()) != null) {
3571 <            if ((u = transformer.apply(k)) != null)
3572 <                action.accept(u);
3573 <        }
3864 >        new ForEachTransformedKeyTask<K,V,U>
3865 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3866 >             transformer, action).invoke();
3867      }
3868  
3869      /**
3870       * Returns a non-null result from applying the given search
3871 <     * function on each key, or null if none.
3871 >     * function on each key, or null if none. Upon success,
3872 >     * further element processing is suppressed and the results of
3873 >     * any other parallel invocations of the search function are
3874 >     * ignored.
3875       *
3876 +     * @param parallelismThreshold the (estimated) number of elements
3877 +     * needed for this operation to be executed in parallel
3878       * @param searchFunction a function returning a non-null
3879       * result on success, else null
3880 +     * @param <U> the return type of the search function
3881       * @return a non-null result from applying the given search
3882       * function on each key, or null if none
3883 +     * @since 1.8
3884       */
3885 <    public <U> U searchKeysSequentially
3886 <        (Function<? super K, ? extends U> searchFunction) {
3887 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3888 <        K k; U u;
3889 <        while ((k = it.advanceKey()) != null) {
3890 <            if ((u = searchFunction.apply(k)) != null)
3591 <                return u;
3592 <        }
3593 <        return null;
3885 >    public <U> U searchKeys(long parallelismThreshold,
3886 >                            Function<? super K, ? extends U> searchFunction) {
3887 >        if (searchFunction == null) throw new NullPointerException();
3888 >        return new SearchKeysTask<K,V,U>
3889 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3890 >             searchFunction, new AtomicReference<U>()).invoke();
3891      }
3892  
3893      /**
3894       * Returns the result of accumulating all keys using the given
3895       * reducer to combine values, or null if none.
3896       *
3897 +     * @param parallelismThreshold the (estimated) number of elements
3898 +     * needed for this operation to be executed in parallel
3899       * @param reducer a commutative associative combining function
3900       * @return the result of accumulating all keys using the given
3901       * reducer to combine values, or null if none
3902 +     * @since 1.8
3903       */
3904 <    public K reduceKeysSequentially
3905 <        (BiFunction<? super K, ? super K, ? extends K> reducer) {
3904 >    public K reduceKeys(long parallelismThreshold,
3905 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3906          if (reducer == null) throw new NullPointerException();
3907 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3908 <        K u, r = null;
3909 <        while ((u = it.advanceKey()) != null) {
3610 <            r = (r == null) ? u : reducer.apply(r, u);
3611 <        }
3612 <        return r;
3907 >        return new ReduceKeysTask<K,V>
3908 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3909 >             null, reducer).invoke();
3910      }
3911  
3912      /**
# Line 3617 | Line 3914 | public class ConcurrentHashMap<K,V>
3914       * of all keys using the given reducer to combine values, or
3915       * null if none.
3916       *
3917 +     * @param parallelismThreshold the (estimated) number of elements
3918 +     * needed for this operation to be executed in parallel
3919       * @param transformer a function returning the transformation
3920       * for an element, or null if there is no transformation (in
3921       * which case it is not combined)
3922       * @param reducer a commutative associative combining function
3923 +     * @param <U> the return type of the transformer
3924       * @return the result of accumulating the given transformation
3925       * of all keys
3926 +     * @since 1.8
3927       */
3928 <    public <U> U reduceKeysSequentially
3929 <        (Function<? super K, ? extends U> transformer,
3928 >    public <U> U reduceKeys(long parallelismThreshold,
3929 >                            Function<? super K, ? extends U> transformer,
3930           BiFunction<? super U, ? super U, ? extends U> reducer) {
3931          if (transformer == null || reducer == null)
3932              throw new NullPointerException();
3933 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3934 <        K k; U r = null, u;
3935 <        while ((k = it.advanceKey()) != null) {
3635 <            if ((u = transformer.apply(k)) != null)
3636 <                r = (r == null) ? u : reducer.apply(r, u);
3637 <        }
3638 <        return r;
3933 >        return new MapReduceKeysTask<K,V,U>
3934 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3935 >             null, transformer, reducer).invoke();
3936      }
3937  
3938      /**
# Line 3643 | Line 3940 | public class ConcurrentHashMap<K,V>
3940       * of all keys using the given reducer to combine values, and
3941       * the given basis as an identity value.
3942       *
3943 +     * @param parallelismThreshold the (estimated) number of elements
3944 +     * needed for this operation to be executed in parallel
3945       * @param transformer a function returning the transformation
3946       * for an element
3947       * @param basis the identity (initial default value) for the reduction
3948       * @param reducer a commutative associative combining function
3949       * @return the result of accumulating the given transformation
3950       * of all keys
3951 +     * @since 1.8
3952       */
3953 <    public double reduceKeysToDoubleSequentially
3954 <        (ToDoubleFunction<? super K> transformer,
3955 <         double basis,
3956 <         DoubleBinaryOperator reducer) {
3953 >    public double reduceKeysToDouble(long parallelismThreshold,
3954 >                                     ToDoubleFunction<? super K> transformer,
3955 >                                     double basis,
3956 >                                     DoubleBinaryOperator reducer) {
3957          if (transformer == null || reducer == null)
3958              throw new NullPointerException();
3959 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3960 <        double r = basis;
3961 <        K k;
3662 <        while ((k = it.advanceKey()) != null)
3663 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3664 <        return r;
3959 >        return new MapReduceKeysToDoubleTask<K,V>
3960 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3961 >             null, transformer, basis, reducer).invoke();
3962      }
3963  
3964      /**
# Line 3669 | Line 3966 | public class ConcurrentHashMap<K,V>
3966       * of all keys using the given reducer to combine values, and
3967       * the given basis as an identity value.
3968       *
3969 +     * @param parallelismThreshold the (estimated) number of elements
3970 +     * needed for this operation to be executed in parallel
3971       * @param transformer a function returning the transformation
3972       * for an element
3973       * @param basis the identity (initial default value) for the reduction
3974       * @param reducer a commutative associative combining function
3975       * @return the result of accumulating the given transformation
3976       * of all keys
3977 +     * @since 1.8
3978       */
3979 <    public long reduceKeysToLongSequentially
3980 <        (ToLongFunction<? super K> transformer,
3981 <         long basis,
3982 <         LongBinaryOperator reducer) {
3979 >    public long reduceKeysToLong(long parallelismThreshold,
3980 >                                 ToLongFunction<? super K> transformer,
3981 >                                 long basis,
3982 >                                 LongBinaryOperator reducer) {
3983          if (transformer == null || reducer == null)
3984              throw new NullPointerException();
3985 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3986 <        long r = basis;
3987 <        K k;
3688 <        while ((k = it.advanceKey()) != null)
3689 <            r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3690 <        return r;
3985 >        return new MapReduceKeysToLongTask<K,V>
3986 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3987 >             null, transformer, basis, reducer).invoke();
3988      }
3989  
3990      /**
# Line 3695 | Line 3992 | public class ConcurrentHashMap<K,V>
3992       * of all keys using the given reducer to combine values, and
3993       * the given basis as an identity value.
3994       *
3995 +     * @param parallelismThreshold the (estimated) number of elements
3996 +     * needed for this operation to be executed in parallel
3997       * @param transformer a function returning the transformation
3998       * for an element
3999       * @param basis the identity (initial default value) for the reduction
4000       * @param reducer a commutative associative combining function
4001       * @return the result of accumulating the given transformation
4002       * of all keys
4003 +     * @since 1.8
4004       */
4005 <    public int reduceKeysToIntSequentially
4006 <        (ToIntFunction<? super K> transformer,
4007 <         int basis,
4008 <         IntBinaryOperator reducer) {
4005 >    public int reduceKeysToInt(long parallelismThreshold,
4006 >                               ToIntFunction<? super K> transformer,
4007 >                               int basis,
4008 >                               IntBinaryOperator reducer) {
4009          if (transformer == null || reducer == null)
4010              throw new NullPointerException();
4011 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4012 <        int r = basis;
4013 <        K k;
3714 <        while ((k = it.advanceKey()) != null)
3715 <            r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3716 <        return r;
4011 >        return new MapReduceKeysToIntTask<K,V>
4012 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4013 >             null, transformer, basis, reducer).invoke();
4014      }
4015  
4016      /**
4017       * Performs the given action for each value.
4018       *
4019 +     * @param parallelismThreshold the (estimated) number of elements
4020 +     * needed for this operation to be executed in parallel
4021       * @param action the action
4022 +     * @since 1.8
4023       */
4024 <    public void forEachValueSequentially(Consumer<? super V> action) {
4025 <        new Traverser<K,V,Object>(this).forEachValue(action);
4024 >    public void forEachValue(long parallelismThreshold,
4025 >                             Consumer<? super V> action) {
4026 >        if (action == null)
4027 >            throw new NullPointerException();
4028 >        new ForEachValueTask<K,V>
4029 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4030 >             action).invoke();
4031      }
4032  
4033      /**
4034       * Performs the given action for each non-null transformation
4035       * of each value.
4036       *
4037 +     * @param parallelismThreshold the (estimated) number of elements
4038 +     * needed for this operation to be executed in parallel
4039       * @param transformer a function returning the transformation
4040       * for an element, or null if there is no transformation (in
4041       * which case the action is not applied)
4042       * @param action the action
4043 +     * @param <U> the return type of the transformer
4044 +     * @since 1.8
4045       */
4046 <    public <U> void forEachValueSequentially
4047 <        (Function<? super V, ? extends U> transformer,
4048 <         Consumer<? super U> action) {
4046 >    public <U> void forEachValue(long parallelismThreshold,
4047 >                                 Function<? super V, ? extends U> transformer,
4048 >                                 Consumer<? super U> action) {
4049          if (transformer == null || action == null)
4050              throw new NullPointerException();
4051 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4052 <        V v; U u;
4053 <        while ((v = it.advanceValue()) != null) {
3745 <            if ((u = transformer.apply(v)) != null)
3746 <                action.accept(u);
3747 <        }
4051 >        new ForEachTransformedValueTask<K,V,U>
4052 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4053 >             transformer, action).invoke();
4054      }
4055  
4056      /**
4057       * Returns a non-null result from applying the given search
4058 <     * function on each value, or null if none.
4058 >     * function on each value, or null if none.  Upon success,
4059 >     * further element processing is suppressed and the results of
4060 >     * any other parallel invocations of the search function are
4061 >     * ignored.
4062       *
4063 +     * @param parallelismThreshold the (estimated) number of elements
4064 +     * needed for this operation to be executed in parallel
4065       * @param searchFunction a function returning a non-null
4066       * result on success, else null
4067 +     * @param <U> the return type of the search function
4068       * @return a non-null result from applying the given search
4069       * function on each value, or null if none
4070 +     * @since 1.8
4071       */
4072 <    public <U> U searchValuesSequentially
4073 <        (Function<? super V, ? extends U> searchFunction) {
4072 >    public <U> U searchValues(long parallelismThreshold,
4073 >                              Function<? super V, ? extends U> searchFunction) {
4074          if (searchFunction == null) throw new NullPointerException();
4075 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4076 <        V v; U u;
4077 <        while ((v = it.advanceValue()) != null) {
3765 <            if ((u = searchFunction.apply(v)) != null)
3766 <                return u;
3767 <        }
3768 <        return null;
4075 >        return new SearchValuesTask<K,V,U>
4076 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4077 >             searchFunction, new AtomicReference<U>()).invoke();
4078      }
4079  
4080      /**
4081       * Returns the result of accumulating all values using the
4082       * given reducer to combine values, or null if none.
4083       *
4084 +     * @param parallelismThreshold the (estimated) number of elements
4085 +     * needed for this operation to be executed in parallel
4086       * @param reducer a commutative associative combining function
4087       * @return the result of accumulating all values
4088 +     * @since 1.8
4089       */
4090 <    public V reduceValuesSequentially
4091 <        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4090 >    public V reduceValues(long parallelismThreshold,
4091 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4092          if (reducer == null) throw new NullPointerException();
4093 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4094 <        V r = null; V v;
4095 <        while ((v = it.advanceValue()) != null)
3784 <            r = (r == null) ? v : reducer.apply(r, v);
3785 <        return r;
4093 >        return new ReduceValuesTask<K,V>
4094 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4095 >             null, reducer).invoke();
4096      }
4097  
4098      /**
# Line 3790 | Line 4100 | public class ConcurrentHashMap<K,V>
4100       * of all values using the given reducer to combine values, or
4101       * null if none.
4102       *
4103 +     * @param parallelismThreshold the (estimated) number of elements
4104 +     * needed for this operation to be executed in parallel
4105       * @param transformer a function returning the transformation
4106       * for an element, or null if there is no transformation (in
4107       * which case it is not combined)
4108       * @param reducer a commutative associative combining function
4109 +     * @param <U> the return type of the transformer
4110       * @return the result of accumulating the given transformation
4111       * of all values
4112 +     * @since 1.8
4113       */
4114 <    public <U> U reduceValuesSequentially
4115 <        (Function<? super V, ? extends U> transformer,
4116 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4114 >    public <U> U reduceValues(long parallelismThreshold,
4115 >                              Function<? super V, ? extends U> transformer,
4116 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4117          if (transformer == null || reducer == null)
4118              throw new NullPointerException();
4119 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4120 <        U r = null, u; V v;
4121 <        while ((v = it.advanceValue()) != null) {
3808 <            if ((u = transformer.apply(v)) != null)
3809 <                r = (r == null) ? u : reducer.apply(r, u);
3810 <        }
3811 <        return r;
4119 >        return new MapReduceValuesTask<K,V,U>
4120 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4121 >             null, transformer, reducer).invoke();
4122      }
4123  
4124      /**
# Line 3816 | Line 4126 | public class ConcurrentHashMap<K,V>
4126       * of all values using the given reducer to combine values,
4127       * and the given basis as an identity value.
4128       *
4129 +     * @param parallelismThreshold the (estimated) number of elements
4130 +     * needed for this operation to be executed in parallel
4131       * @param transformer a function returning the transformation
4132       * for an element
4133       * @param basis the identity (initial default value) for the reduction
4134       * @param reducer a commutative associative combining function
4135       * @return the result of accumulating the given transformation
4136       * of all values
4137 +     * @since 1.8
4138       */
4139 <    public double reduceValuesToDoubleSequentially
4140 <        (ToDoubleFunction<? super V> transformer,
4141 <         double basis,
4142 <         DoubleBinaryOperator reducer) {
4139 >    public double reduceValuesToDouble(long parallelismThreshold,
4140 >                                       ToDoubleFunction<? super V> transformer,
4141 >                                       double basis,
4142 >                                       DoubleBinaryOperator reducer) {
4143          if (transformer == null || reducer == null)
4144              throw new NullPointerException();
4145 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4146 <        double r = basis; V v;
4147 <        while ((v = it.advanceValue()) != null)
3835 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3836 <        return r;
4145 >        return new MapReduceValuesToDoubleTask<K,V>
4146 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4147 >             null, transformer, basis, reducer).invoke();
4148      }
4149  
4150      /**
# Line 3841 | Line 4152 | public class ConcurrentHashMap<K,V>
4152       * of all values using the given reducer to combine values,
4153       * and the given basis as an identity value.
4154       *
4155 +     * @param parallelismThreshold the (estimated) number of elements
4156 +     * needed for this operation to be executed in parallel
4157       * @param transformer a function returning the transformation
4158       * for an element
4159       * @param basis the identity (initial default value) for the reduction
4160       * @param reducer a commutative associative combining function
4161       * @return the result of accumulating the given transformation
4162       * of all values
4163 +     * @since 1.8
4164       */
4165 <    public long reduceValuesToLongSequentially
4166 <        (ToLongFunction<? super V> transformer,
4167 <         long basis,
4168 <         LongBinaryOperator reducer) {
4165 >    public long reduceValuesToLong(long parallelismThreshold,
4166 >                                   ToLongFunction<? super V> transformer,
4167 >                                   long basis,
4168 >                                   LongBinaryOperator reducer) {
4169          if (transformer == null || reducer == null)
4170              throw new NullPointerException();
4171 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4172 <        long r = basis; V v;
4173 <        while ((v = it.advanceValue()) != null)
3860 <            r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3861 <        return r;
4171 >        return new MapReduceValuesToLongTask<K,V>
4172 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4173 >             null, transformer, basis, reducer).invoke();
4174      }
4175  
4176      /**
# Line 3866 | Line 4178 | public class ConcurrentHashMap<K,V>
4178       * of all values using the given reducer to combine values,
4179       * and the given basis as an identity value.
4180       *
4181 +     * @param parallelismThreshold the (estimated) number of elements
4182 +     * needed for this operation to be executed in parallel
4183       * @param transformer a function returning the transformation
4184       * for an element
4185       * @param basis the identity (initial default value) for the reduction
4186       * @param reducer a commutative associative combining function
4187       * @return the result of accumulating the given transformation
4188       * of all values
4189 +     * @since 1.8
4190       */
4191 <    public int reduceValuesToIntSequentially
4192 <        (ToIntFunction<? super V> transformer,
4193 <         int basis,
4194 <         IntBinaryOperator reducer) {
4191 >    public int reduceValuesToInt(long parallelismThreshold,
4192 >                                 ToIntFunction<? super V> transformer,
4193 >                                 int basis,
4194 >                                 IntBinaryOperator reducer) {
4195          if (transformer == null || reducer == null)
4196              throw new NullPointerException();
4197 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4198 <        int r = basis; V v;
4199 <        while ((v = it.advanceValue()) != null)
3885 <            r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3886 <        return r;
4197 >        return new MapReduceValuesToIntTask<K,V>
4198 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4199 >             null, transformer, basis, reducer).invoke();
4200      }
4201  
4202      /**
4203       * Performs the given action for each entry.
4204       *
4205 +     * @param parallelismThreshold the (estimated) number of elements
4206 +     * needed for this operation to be executed in parallel
4207       * @param action the action
4208 +     * @since 1.8
4209       */
4210 <    public void forEachEntrySequentially
4211 <        (Consumer<? super Map.Entry<K,V>> action) {
4210 >    public void forEachEntry(long parallelismThreshold,
4211 >                             Consumer<? super Map.Entry<K,V>> action) {
4212          if (action == null) throw new NullPointerException();
4213 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4214 <        V v;
3899 <        while ((v = it.advanceValue()) != null)
3900 <            action.accept(entryFor(it.nextKey, v));
4213 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4214 >                                  action).invoke();
4215      }
4216  
4217      /**
4218       * Performs the given action for each non-null transformation
4219       * of each entry.
4220       *
4221 +     * @param parallelismThreshold the (estimated) number of elements
4222 +     * needed for this operation to be executed in parallel
4223       * @param transformer a function returning the transformation
4224       * for an element, or null if there is no transformation (in
4225       * which case the action is not applied)
4226       * @param action the action
4227 +     * @param <U> the return type of the transformer
4228 +     * @since 1.8
4229       */
4230 <    public <U> void forEachEntrySequentially
4231 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4232 <         Consumer<? super U> action) {
4230 >    public <U> void forEachEntry(long parallelismThreshold,
4231 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4232 >                                 Consumer<? super U> action) {
4233          if (transformer == null || action == null)
4234              throw new NullPointerException();
4235 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4236 <        V v; U u;
4237 <        while ((v = it.advanceValue()) != null) {
3920 <            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3921 <                action.accept(u);
3922 <        }
4235 >        new ForEachTransformedEntryTask<K,V,U>
4236 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4237 >             transformer, action).invoke();
4238      }
4239  
4240      /**
4241       * Returns a non-null result from applying the given search
4242 <     * function on each entry, or null if none.
4242 >     * function on each entry, or null if none.  Upon success,
4243 >     * further element processing is suppressed and the results of
4244 >     * any other parallel invocations of the search function are
4245 >     * ignored.
4246       *
4247 +     * @param parallelismThreshold the (estimated) number of elements
4248 +     * needed for this operation to be executed in parallel
4249       * @param searchFunction a function returning a non-null
4250       * result on success, else null
4251 +     * @param <U> the return type of the search function
4252       * @return a non-null result from applying the given search
4253       * function on each entry, or null if none
4254 +     * @since 1.8
4255       */
4256 <    public <U> U searchEntriesSequentially
4257 <        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4256 >    public <U> U searchEntries(long parallelismThreshold,
4257 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4258          if (searchFunction == null) throw new NullPointerException();
4259 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4260 <        V v; U u;
4261 <        while ((v = it.advanceValue()) != null) {
3940 <            if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3941 <                return u;
3942 <        }
3943 <        return null;
4259 >        return new SearchEntriesTask<K,V,U>
4260 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4261 >             searchFunction, new AtomicReference<U>()).invoke();
4262      }
4263  
4264      /**
4265       * Returns the result of accumulating all entries using the
4266       * given reducer to combine values, or null if none.
4267       *
4268 +     * @param parallelismThreshold the (estimated) number of elements
4269 +     * needed for this operation to be executed in parallel
4270       * @param reducer a commutative associative combining function
4271       * @return the result of accumulating all entries
4272 +     * @since 1.8
4273       */
4274 <    public Map.Entry<K,V> reduceEntriesSequentially
4275 <        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4274 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4275 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4276          if (reducer == null) throw new NullPointerException();
4277 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4278 <        Map.Entry<K,V> r = null; V v;
4279 <        while ((v = it.advanceValue()) != null) {
3959 <            Map.Entry<K,V> u = entryFor(it.nextKey, v);
3960 <            r = (r == null) ? u : reducer.apply(r, u);
3961 <        }
3962 <        return r;
4277 >        return new ReduceEntriesTask<K,V>
4278 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4279 >             null, reducer).invoke();
4280      }
4281  
4282      /**
# Line 3967 | Line 4284 | public class ConcurrentHashMap<K,V>
4284       * of all entries using the given reducer to combine values,
4285       * or null if none.
4286       *
4287 +     * @param parallelismThreshold the (estimated) number of elements
4288 +     * needed for this operation to be executed in parallel
4289       * @param transformer a function returning the transformation
4290       * for an element, or null if there is no transformation (in
4291       * which case it is not combined)
4292       * @param reducer a commutative associative combining function
4293 +     * @param <U> the return type of the transformer
4294       * @return the result of accumulating the given transformation
4295       * of all entries
4296 +     * @since 1.8
4297       */
4298 <    public <U> U reduceEntriesSequentially
4299 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4300 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4298 >    public <U> U reduceEntries(long parallelismThreshold,
4299 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4300 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4301          if (transformer == null || reducer == null)
4302              throw new NullPointerException();
4303 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4304 <        U r = null, u; V v;
4305 <        while ((v = it.advanceValue()) != null) {
3985 <            if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3986 <                r = (r == null) ? u : reducer.apply(r, u);
3987 <        }
3988 <        return r;
4303 >        return new MapReduceEntriesTask<K,V,U>
4304 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4305 >             null, transformer, reducer).invoke();
4306      }
4307  
4308      /**
# Line 3993 | Line 4310 | public class ConcurrentHashMap<K,V>
4310       * of all entries using the given reducer to combine values,
4311       * and the given basis as an identity value.
4312       *
4313 +     * @param parallelismThreshold the (estimated) number of elements
4314 +     * needed for this operation to be executed in parallel
4315       * @param transformer a function returning the transformation
4316       * for an element
4317       * @param basis the identity (initial default value) for the reduction
4318       * @param reducer a commutative associative combining function
4319       * @return the result of accumulating the given transformation
4320       * of all entries
4321 +     * @since 1.8
4322       */
4323 <    public double reduceEntriesToDoubleSequentially
4324 <        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4325 <         double basis,
4326 <         DoubleBinaryOperator reducer) {
4323 >    public double reduceEntriesToDouble(long parallelismThreshold,
4324 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4325 >                                        double basis,
4326 >                                        DoubleBinaryOperator reducer) {
4327          if (transformer == null || reducer == null)
4328              throw new NullPointerException();
4329 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4330 <        double r = basis; V v;
4331 <        while ((v = it.advanceValue()) != null)
4012 <            r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
4013 <        return r;
4329 >        return new MapReduceEntriesToDoubleTask<K,V>
4330 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4331 >             null, transformer, basis, reducer).invoke();
4332      }
4333  
4334      /**
# Line 4018 | Line 4336 | public class ConcurrentHashMap<K,V>
4336       * of all entries using the given reducer to combine values,
4337       * and the given basis as an identity value.
4338       *
4339 +     * @param parallelismThreshold the (estimated) number of elements
4340 +     * needed for this operation to be executed in parallel
4341       * @param transformer a function returning the transformation
4342       * for an element
4343       * @param basis the identity (initial default value) for the reduction
4344       * @param reducer a commutative associative combining function
4345       * @return the result of accumulating the given transformation
4346       * of all entries
4347 +     * @since 1.8
4348       */
4349 <    public long reduceEntriesToLongSequentially
4350 <        (ToLongFunction<Map.Entry<K,V>> transformer,
4351 <         long basis,
4352 <         LongBinaryOperator reducer) {
4349 >    public long reduceEntriesToLong(long parallelismThreshold,
4350 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4351 >                                    long basis,
4352 >                                    LongBinaryOperator reducer) {
4353          if (transformer == null || reducer == null)
4354              throw new NullPointerException();
4355 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4356 <        long r = basis; V v;
4357 <        while ((v = it.advanceValue()) != null)
4037 <            r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
4038 <        return r;
4355 >        return new MapReduceEntriesToLongTask<K,V>
4356 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4357 >             null, transformer, basis, reducer).invoke();
4358      }
4359  
4360      /**
# Line 4043 | Line 4362 | public class ConcurrentHashMap<K,V>
4362       * of all entries using the given reducer to combine values,
4363       * and the given basis as an identity value.
4364       *
4365 +     * @param parallelismThreshold the (estimated) number of elements
4366 +     * needed for this operation to be executed in parallel
4367       * @param transformer a function returning the transformation
4368       * for an element
4369       * @param basis the identity (initial default value) for the reduction
4370       * @param reducer a commutative associative combining function
4371       * @return the result of accumulating the given transformation
4372       * of all entries
4373 +     * @since 1.8
4374       */
4375 <    public int reduceEntriesToIntSequentially
4376 <        (ToIntFunction<Map.Entry<K,V>> transformer,
4377 <         int basis,
4378 <         IntBinaryOperator reducer) {
4375 >    public int reduceEntriesToInt(long parallelismThreshold,
4376 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4377 >                                  int basis,
4378 >                                  IntBinaryOperator reducer) {
4379          if (transformer == null || reducer == null)
4380              throw new NullPointerException();
4381 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4382 <        int r = basis; V v;
4383 <        while ((v = it.advanceValue()) != null)
4062 <            r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
4063 <        return r;
4064 <    }
4065 <
4066 <    // Parallel bulk operations
4067 <
4068 <    /**
4069 <     * Performs the given action for each (key, value).
4070 <     *
4071 <     * @param action the action
4072 <     */
4073 <    public void forEachInParallel(BiConsumer<? super K,? super V> action) {
4074 <        ForkJoinTasks.forEach
4075 <            (this, action).invoke();
4076 <    }
4077 <
4078 <    /**
4079 <     * Performs the given action for each non-null transformation
4080 <     * of each (key, value).
4081 <     *
4082 <     * @param transformer a function returning the transformation
4083 <     * for an element, or null if there is no transformation (in
4084 <     * which case the action is not applied)
4085 <     * @param action the action
4086 <     */
4087 <    public <U> void forEachInParallel
4088 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
4089 <                            Consumer<? super U> action) {
4090 <        ForkJoinTasks.forEach
4091 <            (this, transformer, action).invoke();
4092 <    }
4093 <
4094 <    /**
4095 <     * Returns a non-null result from applying the given search
4096 <     * function on each (key, value), or null if none.  Upon
4097 <     * success, further element processing is suppressed and the
4098 <     * results of any other parallel invocations of the search
4099 <     * function are ignored.
4100 <     *
4101 <     * @param searchFunction a function returning a non-null
4102 <     * result on success, else null
4103 <     * @return a non-null result from applying the given search
4104 <     * function on each (key, value), or null if none
4105 <     */
4106 <    public <U> U searchInParallel
4107 <        (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4108 <        return ForkJoinTasks.search
4109 <            (this, searchFunction).invoke();
4110 <    }
4111 <
4112 <    /**
4113 <     * Returns the result of accumulating the given transformation
4114 <     * of all (key, value) pairs using the given reducer to
4115 <     * combine values, or null if none.
4116 <     *
4117 <     * @param transformer a function returning the transformation
4118 <     * for an element, or null if there is no transformation (in
4119 <     * which case it is not combined)
4120 <     * @param reducer a commutative associative combining function
4121 <     * @return the result of accumulating the given transformation
4122 <     * of all (key, value) pairs
4123 <     */
4124 <    public <U> U reduceInParallel
4125 <        (BiFunction<? super K, ? super V, ? extends U> transformer,
4126 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4127 <        return ForkJoinTasks.reduce
4128 <            (this, transformer, reducer).invoke();
4129 <    }
4130 <
4131 <    /**
4132 <     * Returns the result of accumulating the given transformation
4133 <     * of all (key, value) pairs using the given reducer to
4134 <     * combine values, and the given basis as an identity value.
4135 <     *
4136 <     * @param transformer a function returning the transformation
4137 <     * for an element
4138 <     * @param basis the identity (initial default value) for the reduction
4139 <     * @param reducer a commutative associative combining function
4140 <     * @return the result of accumulating the given transformation
4141 <     * of all (key, value) pairs
4142 <     */
4143 <    public double reduceToDoubleInParallel
4144 <        (ToDoubleBiFunction<? super K, ? super V> transformer,
4145 <         double basis,
4146 <         DoubleBinaryOperator reducer) {
4147 <        return ForkJoinTasks.reduceToDouble
4148 <            (this, transformer, basis, reducer).invoke();
4149 <    }
4150 <
4151 <    /**
4152 <     * Returns the result of accumulating the given transformation
4153 <     * of all (key, value) pairs using the given reducer to
4154 <     * combine values, and the given basis as an identity value.
4155 <     *
4156 <     * @param transformer a function returning the transformation
4157 <     * for an element
4158 <     * @param basis the identity (initial default value) for the reduction
4159 <     * @param reducer a commutative associative combining function
4160 <     * @return the result of accumulating the given transformation
4161 <     * of all (key, value) pairs
4162 <     */
4163 <    public long reduceToLongInParallel
4164 <        (ToLongBiFunction<? super K, ? super V> transformer,
4165 <         long basis,
4166 <         LongBinaryOperator reducer) {
4167 <        return ForkJoinTasks.reduceToLong
4168 <            (this, transformer, basis, reducer).invoke();
4169 <    }
4170 <
4171 <    /**
4172 <     * Returns the result of accumulating the given transformation
4173 <     * of all (key, value) pairs using the given reducer to
4174 <     * combine values, and the given basis as an identity value.
4175 <     *
4176 <     * @param transformer a function returning the transformation
4177 <     * for an element
4178 <     * @param basis the identity (initial default value) for the reduction
4179 <     * @param reducer a commutative associative combining function
4180 <     * @return the result of accumulating the given transformation
4181 <     * of all (key, value) pairs
4182 <     */
4183 <    public int reduceToIntInParallel
4184 <        (ToIntBiFunction<? super K, ? super V> transformer,
4185 <         int basis,
4186 <         IntBinaryOperator reducer) {
4187 <        return ForkJoinTasks.reduceToInt
4188 <            (this, transformer, basis, reducer).invoke();
4189 <    }
4190 <
4191 <    /**
4192 <     * Performs the given action for each key.
4193 <     *
4194 <     * @param action the action
4195 <     */
4196 <    public void forEachKeyInParallel(Consumer<? super K> action) {
4197 <        ForkJoinTasks.forEachKey
4198 <            (this, action).invoke();
4199 <    }
4200 <
4201 <    /**
4202 <     * Performs the given action for each non-null transformation
4203 <     * of each key.
4204 <     *
4205 <     * @param transformer a function returning the transformation
4206 <     * for an element, or null if there is no transformation (in
4207 <     * which case the action is not applied)
4208 <     * @param action the action
4209 <     */
4210 <    public <U> void forEachKeyInParallel
4211 <        (Function<? super K, ? extends U> transformer,
4212 <         Consumer<? super U> action) {
4213 <        ForkJoinTasks.forEachKey
4214 <            (this, transformer, action).invoke();
4215 <    }
4216 <
4217 <    /**
4218 <     * Returns a non-null result from applying the given search
4219 <     * function on each key, or null if none. Upon success,
4220 <     * further element processing is suppressed and the results of
4221 <     * any other parallel invocations of the search function are
4222 <     * ignored.
4223 <     *
4224 <     * @param searchFunction a function returning a non-null
4225 <     * result on success, else null
4226 <     * @return a non-null result from applying the given search
4227 <     * function on each key, or null if none
4228 <     */
4229 <    public <U> U searchKeysInParallel
4230 <        (Function<? super K, ? extends U> searchFunction) {
4231 <        return ForkJoinTasks.searchKeys
4232 <            (this, searchFunction).invoke();
4233 <    }
4234 <
4235 <    /**
4236 <     * Returns the result of accumulating all keys using the given
4237 <     * reducer to combine values, or null if none.
4238 <     *
4239 <     * @param reducer a commutative associative combining function
4240 <     * @return the result of accumulating all keys using the given
4241 <     * reducer to combine values, or null if none
4242 <     */
4243 <    public K reduceKeysInParallel
4244 <        (BiFunction<? super K, ? super K, ? extends K> reducer) {
4245 <        return ForkJoinTasks.reduceKeys
4246 <            (this, reducer).invoke();
4247 <    }
4248 <
4249 <    /**
4250 <     * Returns the result of accumulating the given transformation
4251 <     * of all keys using the given reducer to combine values, or
4252 <     * null if none.
4253 <     *
4254 <     * @param transformer a function returning the transformation
4255 <     * for an element, or null if there is no transformation (in
4256 <     * which case it is not combined)
4257 <     * @param reducer a commutative associative combining function
4258 <     * @return the result of accumulating the given transformation
4259 <     * of all keys
4260 <     */
4261 <    public <U> U reduceKeysInParallel
4262 <        (Function<? super K, ? extends U> transformer,
4263 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4264 <        return ForkJoinTasks.reduceKeys
4265 <            (this, transformer, reducer).invoke();
4266 <    }
4267 <
4268 <    /**
4269 <     * Returns the result of accumulating the given transformation
4270 <     * of all keys using the given reducer to combine values, and
4271 <     * the given basis as an identity value.
4272 <     *
4273 <     * @param transformer a function returning the transformation
4274 <     * for an element
4275 <     * @param basis the identity (initial default value) for the reduction
4276 <     * @param reducer a commutative associative combining function
4277 <     * @return the result of accumulating the given transformation
4278 <     * of all keys
4279 <     */
4280 <    public double reduceKeysToDoubleInParallel
4281 <        (ToDoubleFunction<? super K> transformer,
4282 <         double basis,
4283 <         DoubleBinaryOperator reducer) {
4284 <        return ForkJoinTasks.reduceKeysToDouble
4285 <            (this, transformer, basis, reducer).invoke();
4286 <    }
4287 <
4288 <    /**
4289 <     * Returns the result of accumulating the given transformation
4290 <     * of all keys using the given reducer to combine values, and
4291 <     * the given basis as an identity value.
4292 <     *
4293 <     * @param transformer a function returning the transformation
4294 <     * for an element
4295 <     * @param basis the identity (initial default value) for the reduction
4296 <     * @param reducer a commutative associative combining function
4297 <     * @return the result of accumulating the given transformation
4298 <     * of all keys
4299 <     */
4300 <    public long reduceKeysToLongInParallel
4301 <        (ToLongFunction<? super K> transformer,
4302 <         long basis,
4303 <         LongBinaryOperator reducer) {
4304 <        return ForkJoinTasks.reduceKeysToLong
4305 <            (this, transformer, basis, reducer).invoke();
4306 <    }
4307 <
4308 <    /**
4309 <     * Returns the result of accumulating the given transformation
4310 <     * of all keys using the given reducer to combine values, and
4311 <     * the given basis as an identity value.
4312 <     *
4313 <     * @param transformer a function returning the transformation
4314 <     * for an element
4315 <     * @param basis the identity (initial default value) for the reduction
4316 <     * @param reducer a commutative associative combining function
4317 <     * @return the result of accumulating the given transformation
4318 <     * of all keys
4319 <     */
4320 <    public int reduceKeysToIntInParallel
4321 <        (ToIntFunction<? super K> transformer,
4322 <         int basis,
4323 <         IntBinaryOperator reducer) {
4324 <        return ForkJoinTasks.reduceKeysToInt
4325 <            (this, transformer, basis, reducer).invoke();
4326 <    }
4327 <
4328 <    /**
4329 <     * Performs the given action for each value.
4330 <     *
4331 <     * @param action the action
4332 <     */
4333 <    public void forEachValueInParallel(Consumer<? super V> action) {
4334 <        ForkJoinTasks.forEachValue
4335 <            (this, action).invoke();
4336 <    }
4337 <
4338 <    /**
4339 <     * Performs the given action for each non-null transformation
4340 <     * of each value.
4341 <     *
4342 <     * @param transformer a function returning the transformation
4343 <     * for an element, or null if there is no transformation (in
4344 <     * which case the action is not applied)
4345 <     * @param action the action
4346 <     */
4347 <    public <U> void forEachValueInParallel
4348 <        (Function<? super V, ? extends U> transformer,
4349 <         Consumer<? super U> action) {
4350 <        ForkJoinTasks.forEachValue
4351 <            (this, transformer, action).invoke();
4352 <    }
4353 <
4354 <    /**
4355 <     * Returns a non-null result from applying the given search
4356 <     * function on each value, or null if none.  Upon success,
4357 <     * further element processing is suppressed and the results of
4358 <     * any other parallel invocations of the search function are
4359 <     * ignored.
4360 <     *
4361 <     * @param searchFunction a function returning a non-null
4362 <     * result on success, else null
4363 <     * @return a non-null result from applying the given search
4364 <     * function on each value, or null if none
4365 <     */
4366 <    public <U> U searchValuesInParallel
4367 <        (Function<? super V, ? extends U> searchFunction) {
4368 <        return ForkJoinTasks.searchValues
4369 <            (this, searchFunction).invoke();
4370 <    }
4371 <
4372 <    /**
4373 <     * Returns the result of accumulating all values using the
4374 <     * given reducer to combine values, or null if none.
4375 <     *
4376 <     * @param reducer a commutative associative combining function
4377 <     * @return the result of accumulating all values
4378 <     */
4379 <    public V reduceValuesInParallel
4380 <        (BiFunction<? super V, ? super V, ? extends V> reducer) {
4381 <        return ForkJoinTasks.reduceValues
4382 <            (this, reducer).invoke();
4383 <    }
4384 <
4385 <    /**
4386 <     * Returns the result of accumulating the given transformation
4387 <     * of all values using the given reducer to combine values, or
4388 <     * null if none.
4389 <     *
4390 <     * @param transformer a function returning the transformation
4391 <     * for an element, or null if there is no transformation (in
4392 <     * which case it is not combined)
4393 <     * @param reducer a commutative associative combining function
4394 <     * @return the result of accumulating the given transformation
4395 <     * of all values
4396 <     */
4397 <    public <U> U reduceValuesInParallel
4398 <        (Function<? super V, ? extends U> transformer,
4399 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4400 <        return ForkJoinTasks.reduceValues
4401 <            (this, transformer, reducer).invoke();
4402 <    }
4403 <
4404 <    /**
4405 <     * Returns the result of accumulating the given transformation
4406 <     * of all values using the given reducer to combine values,
4407 <     * and the given basis as an identity value.
4408 <     *
4409 <     * @param transformer a function returning the transformation
4410 <     * for an element
4411 <     * @param basis the identity (initial default value) for the reduction
4412 <     * @param reducer a commutative associative combining function
4413 <     * @return the result of accumulating the given transformation
4414 <     * of all values
4415 <     */
4416 <    public double reduceValuesToDoubleInParallel
4417 <        (ToDoubleFunction<? super V> transformer,
4418 <         double basis,
4419 <         DoubleBinaryOperator reducer) {
4420 <        return ForkJoinTasks.reduceValuesToDouble
4421 <            (this, transformer, basis, reducer).invoke();
4422 <    }
4423 <
4424 <    /**
4425 <     * Returns the result of accumulating the given transformation
4426 <     * of all values using the given reducer to combine values,
4427 <     * and the given basis as an identity value.
4428 <     *
4429 <     * @param transformer a function returning the transformation
4430 <     * for an element
4431 <     * @param basis the identity (initial default value) for the reduction
4432 <     * @param reducer a commutative associative combining function
4433 <     * @return the result of accumulating the given transformation
4434 <     * of all values
4435 <     */
4436 <    public long reduceValuesToLongInParallel
4437 <        (ToLongFunction<? super V> transformer,
4438 <         long basis,
4439 <         LongBinaryOperator reducer) {
4440 <        return ForkJoinTasks.reduceValuesToLong
4441 <            (this, transformer, basis, reducer).invoke();
4442 <    }
4443 <
4444 <    /**
4445 <     * Returns the result of accumulating the given transformation
4446 <     * of all values using the given reducer to combine values,
4447 <     * and the given basis as an identity value.
4448 <     *
4449 <     * @param transformer a function returning the transformation
4450 <     * for an element
4451 <     * @param basis the identity (initial default value) for the reduction
4452 <     * @param reducer a commutative associative combining function
4453 <     * @return the result of accumulating the given transformation
4454 <     * of all values
4455 <     */
4456 <    public int reduceValuesToIntInParallel
4457 <        (ToIntFunction<? super V> transformer,
4458 <         int basis,
4459 <         IntBinaryOperator reducer) {
4460 <        return ForkJoinTasks.reduceValuesToInt
4461 <            (this, transformer, basis, reducer).invoke();
4462 <    }
4463 <
4464 <    /**
4465 <     * Performs the given action for each entry.
4466 <     *
4467 <     * @param action the action
4468 <     */
4469 <    public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4470 <        ForkJoinTasks.forEachEntry
4471 <            (this, action).invoke();
4472 <    }
4473 <
4474 <    /**
4475 <     * Performs the given action for each non-null transformation
4476 <     * of each entry.
4477 <     *
4478 <     * @param transformer a function returning the transformation
4479 <     * for an element, or null if there is no transformation (in
4480 <     * which case the action is not applied)
4481 <     * @param action the action
4482 <     */
4483 <    public <U> void forEachEntryInParallel
4484 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4485 <         Consumer<? super U> action) {
4486 <        ForkJoinTasks.forEachEntry
4487 <            (this, transformer, action).invoke();
4488 <    }
4489 <
4490 <    /**
4491 <     * Returns a non-null result from applying the given search
4492 <     * function on each entry, or null if none.  Upon success,
4493 <     * further element processing is suppressed and the results of
4494 <     * any other parallel invocations of the search function are
4495 <     * ignored.
4496 <     *
4497 <     * @param searchFunction a function returning a non-null
4498 <     * result on success, else null
4499 <     * @return a non-null result from applying the given search
4500 <     * function on each entry, or null if none
4501 <     */
4502 <    public <U> U searchEntriesInParallel
4503 <        (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4504 <        return ForkJoinTasks.searchEntries
4505 <            (this, searchFunction).invoke();
4506 <    }
4507 <
4508 <    /**
4509 <     * Returns the result of accumulating all entries using the
4510 <     * given reducer to combine values, or null if none.
4511 <     *
4512 <     * @param reducer a commutative associative combining function
4513 <     * @return the result of accumulating all entries
4514 <     */
4515 <    public Map.Entry<K,V> reduceEntriesInParallel
4516 <        (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4517 <        return ForkJoinTasks.reduceEntries
4518 <            (this, reducer).invoke();
4519 <    }
4520 <
4521 <    /**
4522 <     * Returns the result of accumulating the given transformation
4523 <     * of all entries using the given reducer to combine values,
4524 <     * or null if none.
4525 <     *
4526 <     * @param transformer a function returning the transformation
4527 <     * for an element, or null if there is no transformation (in
4528 <     * which case it is not combined)
4529 <     * @param reducer a commutative associative combining function
4530 <     * @return the result of accumulating the given transformation
4531 <     * of all entries
4532 <     */
4533 <    public <U> U reduceEntriesInParallel
4534 <        (Function<Map.Entry<K,V>, ? extends U> transformer,
4535 <         BiFunction<? super U, ? super U, ? extends U> reducer) {
4536 <        return ForkJoinTasks.reduceEntries
4537 <            (this, transformer, reducer).invoke();
4538 <    }
4539 <
4540 <    /**
4541 <     * Returns the result of accumulating the given transformation
4542 <     * of all entries using the given reducer to combine values,
4543 <     * and the given basis as an identity value.
4544 <     *
4545 <     * @param transformer a function returning the transformation
4546 <     * for an element
4547 <     * @param basis the identity (initial default value) for the reduction
4548 <     * @param reducer a commutative associative combining function
4549 <     * @return the result of accumulating the given transformation
4550 <     * of all entries
4551 <     */
4552 <    public double reduceEntriesToDoubleInParallel
4553 <        (ToDoubleFunction<Map.Entry<K,V>> transformer,
4554 <         double basis,
4555 <         DoubleBinaryOperator reducer) {
4556 <        return ForkJoinTasks.reduceEntriesToDouble
4557 <            (this, transformer, basis, reducer).invoke();
4558 <    }
4559 <
4560 <    /**
4561 <     * Returns the result of accumulating the given transformation
4562 <     * of all entries using the given reducer to combine values,
4563 <     * and the given basis as an identity value.
4564 <     *
4565 <     * @param transformer a function returning the transformation
4566 <     * for an element
4567 <     * @param basis the identity (initial default value) for the reduction
4568 <     * @param reducer a commutative associative combining function
4569 <     * @return the result of accumulating the given transformation
4570 <     * of all entries
4571 <     */
4572 <    public long reduceEntriesToLongInParallel
4573 <        (ToLongFunction<Map.Entry<K,V>> transformer,
4574 <         long basis,
4575 <         LongBinaryOperator reducer) {
4576 <        return ForkJoinTasks.reduceEntriesToLong
4577 <            (this, transformer, basis, reducer).invoke();
4578 <    }
4579 <
4580 <    /**
4581 <     * Returns the result of accumulating the given transformation
4582 <     * of all entries using the given reducer to combine values,
4583 <     * and the given basis as an identity value.
4584 <     *
4585 <     * @param transformer a function returning the transformation
4586 <     * for an element
4587 <     * @param basis the identity (initial default value) for the reduction
4588 <     * @param reducer a commutative associative combining function
4589 <     * @return the result of accumulating the given transformation
4590 <     * of all entries
4591 <     */
4592 <    public int reduceEntriesToIntInParallel
4593 <        (ToIntFunction<Map.Entry<K,V>> transformer,
4594 <         int basis,
4595 <         IntBinaryOperator reducer) {
4596 <        return ForkJoinTasks.reduceEntriesToInt
4597 <            (this, transformer, basis, reducer).invoke();
4381 >        return new MapReduceEntriesToIntTask<K,V>
4382 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4383 >             null, transformer, basis, reducer).invoke();
4384      }
4385  
4386  
# Line 4603 | Line 4389 | public class ConcurrentHashMap<K,V>
4389      /**
4390       * Base class for views.
4391       */
4392 <    abstract static class CHMCollectionView<K,V,E>
4393 <            implements Collection<E>, java.io.Serializable {
4392 >    abstract static class CollectionView<K,V,E>
4393 >        implements Collection<E>, java.io.Serializable {
4394          private static final long serialVersionUID = 7249069246763182397L;
4395          final ConcurrentHashMap<K,V> map;
4396 <        CHMCollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4396 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4397  
4398          /**
4399           * Returns the map backing this view.
# Line 4627 | Line 4413 | public class ConcurrentHashMap<K,V>
4413          // implementations below rely on concrete classes supplying these
4414          // abstract methods
4415          /**
4416 <         * Returns a "weakly consistent" iterator that will never
4417 <         * throw {@link ConcurrentModificationException}, and
4418 <         * guarantees to traverse elements as they existed upon
4419 <         * construction of the iterator, and may (but is not
4420 <         * guaranteed to) reflect any modifications subsequent to
4421 <         * construction.
4416 >         * Returns an iterator over the elements in this collection.
4417 >         *
4418 >         * <p>The returned iterator is
4419 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4420 >         *
4421 >         * @return an iterator over the elements in this collection
4422           */
4423          public abstract Iterator<E> iterator();
4424          public abstract boolean contains(Object o);
# Line 4730 | Line 4516 | public class ConcurrentHashMap<K,V>
4516          }
4517  
4518          public final boolean removeAll(Collection<?> c) {
4519 +            if (c == null) throw new NullPointerException();
4520              boolean modified = false;
4521              for (Iterator<E> it = iterator(); it.hasNext();) {
4522                  if (c.contains(it.next())) {
# Line 4741 | Line 4528 | public class ConcurrentHashMap<K,V>
4528          }
4529  
4530          public final boolean retainAll(Collection<?> c) {
4531 +            if (c == null) throw new NullPointerException();
4532              boolean modified = false;
4533              for (Iterator<E> it = iterator(); it.hasNext();) {
4534                  if (!c.contains(it.next())) {
# Line 4753 | Line 4541 | public class ConcurrentHashMap<K,V>
4541  
4542      }
4543  
4756    abstract static class CHMSetView<K,V,E>
4757            extends CHMCollectionView<K,V,E>
4758            implements Set<E>, java.io.Serializable {
4759        private static final long serialVersionUID = 7249069246763182397L;
4760        CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4761
4762        // Implement Set API
4763
4764        /**
4765         * Implements {@link Set#hashCode()}.
4766         * @return the hash code value for this set
4767         */
4768        public final int hashCode() {
4769            int h = 0;
4770            for (E e : this)
4771                h += e.hashCode();
4772            return h;
4773        }
4774
4775        /**
4776         * Implements {@link Set#equals(Object)}.
4777         * @param o object to be compared for equality with this set
4778         * @return {@code true} if the specified object is equal to this set
4779        */
4780        public final boolean equals(Object o) {
4781            Set<?> c;
4782            return ((o instanceof Set) &&
4783                    ((c = (Set<?>)o) == this ||
4784                     (containsAll(c) && c.containsAll(this))));
4785        }
4786    }
4787
4544      /**
4545       * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4546       * which additions may optionally be enabled by mapping to a
# Line 4793 | Line 4549 | public class ConcurrentHashMap<K,V>
4549       * {@link #keySet(Object) keySet(V)},
4550       * {@link #newKeySet() newKeySet()},
4551       * {@link #newKeySet(int) newKeySet(int)}.
4552 +     *
4553 +     * @since 1.8
4554       */
4555 <    public static class KeySetView<K,V>
4556 <            extends CHMSetView<K,V,K>
4799 <            implements Set<K>, java.io.Serializable {
4555 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4556 >        implements Set<K>, java.io.Serializable {
4557          private static final long serialVersionUID = 7249069246763182397L;
4558          private final V value;
4559          KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
# Line 4833 | Line 4590 | public class ConcurrentHashMap<K,V>
4590          /**
4591           * @return an iterator over the keys of the backing map
4592           */
4593 <        public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4593 >        public Iterator<K> iterator() {
4594 >            Node<K,V>[] t;
4595 >            ConcurrentHashMap<K,V> m = map;
4596 >            int f = (t = m.table) == null ? 0 : t.length;
4597 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4598 >        }
4599  
4600          /**
4601           * Adds the specified key to this set view by mapping the key to
# Line 4849 | Line 4611 | public class ConcurrentHashMap<K,V>
4611              V v;
4612              if ((v = value) == null)
4613                  throw new UnsupportedOperationException();
4614 <            return map.internalPut(e, v, true) == null;
4614 >            return map.putVal(e, v, true) == null;
4615          }
4616  
4617          /**
# Line 4869 | Line 4631 | public class ConcurrentHashMap<K,V>
4631              if ((v = value) == null)
4632                  throw new UnsupportedOperationException();
4633              for (K e : c) {
4634 <                if (map.internalPut(e, v, true) == null)
4634 >                if (map.putVal(e, v, true) == null)
4635                      added = true;
4636              }
4637              return added;
4638          }
4639  
4640 +        public int hashCode() {
4641 +            int h = 0;
4642 +            for (K e : this)
4643 +                h += e.hashCode();
4644 +            return h;
4645 +        }
4646 +
4647 +        public boolean equals(Object o) {
4648 +            Set<?> c;
4649 +            return ((o instanceof Set) &&
4650 +                    ((c = (Set<?>)o) == this ||
4651 +                     (containsAll(c) && c.containsAll(this))));
4652 +        }
4653 +
4654          public Spliterator<K> spliterator() {
4655 <            return new KeyIterator<>(map, null);
4655 >            Node<K,V>[] t;
4656 >            ConcurrentHashMap<K,V> m = map;
4657 >            long n = m.sumCount();
4658 >            int f = (t = m.table) == null ? 0 : t.length;
4659 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4660          }
4661  
4662 +        public void forEach(Consumer<? super K> action) {
4663 +            if (action == null) throw new NullPointerException();
4664 +            Node<K,V>[] t;
4665 +            if ((t = map.table) != null) {
4666 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4667 +                for (Node<K,V> p; (p = it.advance()) != null; )
4668 +                    action.accept(p.key);
4669 +            }
4670 +        }
4671      }
4672  
4673      /**
4674       * A view of a ConcurrentHashMap as a {@link Collection} of
4675       * values, in which additions are disabled. This class cannot be
4676       * directly instantiated. See {@link #values()}.
4677 <     *
4678 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4679 <     * that will never throw {@link ConcurrentModificationException},
4891 <     * and guarantees to traverse elements as they existed upon
4892 <     * construction of the iterator, and may (but is not guaranteed to)
4893 <     * reflect any modifications subsequent to construction.
4894 <     */
4895 <    public static final class ValuesView<K,V>
4896 <            extends CHMCollectionView<K,V,V>
4897 <            implements Collection<V>, java.io.Serializable {
4677 >     */
4678 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4679 >        implements Collection<V>, java.io.Serializable {
4680          private static final long serialVersionUID = 2249069246763182397L;
4681          ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4682          public final boolean contains(Object o) {
4683              return map.containsValue(o);
4684          }
4685 +
4686          public final boolean remove(Object o) {
4687              if (o != null) {
4688                  for (Iterator<V> it = iterator(); it.hasNext();) {
# Line 4912 | Line 4695 | public class ConcurrentHashMap<K,V>
4695              return false;
4696          }
4697  
4915        /**
4916         * @return an iterator over the values of the backing map
4917         */
4698          public final Iterator<V> iterator() {
4699 <            return new ValueIterator<K,V>(map);
4699 >            ConcurrentHashMap<K,V> m = map;
4700 >            Node<K,V>[] t;
4701 >            int f = (t = m.table) == null ? 0 : t.length;
4702 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4703          }
4704  
4922        /** Always throws {@link UnsupportedOperationException}. */
4705          public final boolean add(V e) {
4706              throw new UnsupportedOperationException();
4707          }
4926        /** Always throws {@link UnsupportedOperationException}. */
4708          public final boolean addAll(Collection<? extends V> c) {
4709              throw new UnsupportedOperationException();
4710          }
4711  
4712 +        public boolean removeIf(Predicate<? super V> filter) {
4713 +            return map.removeValueIf(filter);
4714 +        }
4715 +
4716          public Spliterator<V> spliterator() {
4717 <            return new ValueIterator<K,V>(map, null);
4717 >            Node<K,V>[] t;
4718 >            ConcurrentHashMap<K,V> m = map;
4719 >            long n = m.sumCount();
4720 >            int f = (t = m.table) == null ? 0 : t.length;
4721 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4722          }
4723  
4724 +        public void forEach(Consumer<? super V> action) {
4725 +            if (action == null) throw new NullPointerException();
4726 +            Node<K,V>[] t;
4727 +            if ((t = map.table) != null) {
4728 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4729 +                for (Node<K,V> p; (p = it.advance()) != null; )
4730 +                    action.accept(p.val);
4731 +            }
4732 +        }
4733      }
4734  
4735      /**
# Line 4939 | Line 4737 | public class ConcurrentHashMap<K,V>
4737       * entries.  This class cannot be directly instantiated. See
4738       * {@link #entrySet()}.
4739       */
4740 <    public static final class EntrySetView<K,V>
4741 <            extends CHMSetView<K,V,Map.Entry<K,V>>
4944 <            implements Set<Map.Entry<K,V>>, java.io.Serializable {
4740 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4741 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4742          private static final long serialVersionUID = 2249069246763182397L;
4743          EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4744  
4745 <        public final boolean contains(Object o) {
4745 >        public boolean contains(Object o) {
4746              Object k, v, r; Map.Entry<?,?> e;
4747              return ((o instanceof Map.Entry) &&
4748                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4953 | Line 4750 | public class ConcurrentHashMap<K,V>
4750                      (v = e.getValue()) != null &&
4751                      (v == r || v.equals(r)));
4752          }
4753 <        public final boolean remove(Object o) {
4753 >
4754 >        public boolean remove(Object o) {
4755              Object k, v; Map.Entry<?,?> e;
4756              return ((o instanceof Map.Entry) &&
4757                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4964 | Line 4762 | public class ConcurrentHashMap<K,V>
4762          /**
4763           * @return an iterator over the entries of the backing map
4764           */
4765 <        public final Iterator<Map.Entry<K,V>> iterator() {
4766 <            return new EntryIterator<K,V>(map);
4765 >        public Iterator<Map.Entry<K,V>> iterator() {
4766 >            ConcurrentHashMap<K,V> m = map;
4767 >            Node<K,V>[] t;
4768 >            int f = (t = m.table) == null ? 0 : t.length;
4769 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4770          }
4771  
4772 <        /**
4773 <         * Adds the specified mapping to this view.
4973 <         *
4974 <         * @param e mapping to be added
4975 <         * @return {@code true} if this set changed as a result of the call
4976 <         * @throws NullPointerException if the entry, its key, or its
4977 <         * value is null
4978 <         */
4979 <        public final boolean add(Entry<K,V> e) {
4980 <            return map.internalPut(e.getKey(), e.getValue(), false) == null;
4772 >        public boolean add(Entry<K,V> e) {
4773 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4774          }
4775 <        /**
4776 <         * Adds all of the mappings in the specified collection to this
4984 <         * set, as if by calling {@link #add(Map.Entry)} on each one.
4985 <         * @param c the mappings to be inserted into this set
4986 <         * @return {@code true} if this set changed as a result of the call
4987 <         * @throws NullPointerException if the collection or any of its
4988 <         * entries, keys, or values are null
4989 <         */
4990 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4775 >
4776 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4777              boolean added = false;
4778              for (Entry<K,V> e : c) {
4779                  if (add(e))
# Line 4996 | Line 4782 | public class ConcurrentHashMap<K,V>
4782              return added;
4783          }
4784  
4785 <        public Spliterator<Map.Entry<K,V>> spliterator() {
4786 <            return new EntryIterator<K,V>(map, null);
5001 <        }
5002 <
5003 <    }
5004 <
5005 <    // ---------------------------------------------------------------------
5006 <
5007 <    /**
5008 <     * Predefined tasks for performing bulk parallel operations on
5009 <     * ConcurrentHashMaps. These tasks follow the forms and rules used
5010 <     * for bulk operations. Each method has the same name, but returns
5011 <     * a task rather than invoking it. These methods may be useful in
5012 <     * custom applications such as submitting a task without waiting
5013 <     * for completion, using a custom pool, or combining with other
5014 <     * tasks.
5015 <     */
5016 <    public static class ForkJoinTasks {
5017 <        private ForkJoinTasks() {}
5018 <
5019 <        /**
5020 <         * Returns a task that when invoked, performs the given
5021 <         * action for each (key, value)
5022 <         *
5023 <         * @param map the map
5024 <         * @param action the action
5025 <         * @return the task
5026 <         */
5027 <        public static <K,V> ForkJoinTask<Void> forEach
5028 <            (ConcurrentHashMap<K,V> map,
5029 <             BiConsumer<? super K, ? super V> action) {
5030 <            if (action == null) throw new NullPointerException();
5031 <            return new ForEachMappingTask<K,V>(map, null, -1, action);
5032 <        }
5033 <
5034 <        /**
5035 <         * Returns a task that when invoked, performs the given
5036 <         * action for each non-null transformation of each (key, value)
5037 <         *
5038 <         * @param map the map
5039 <         * @param transformer a function returning the transformation
5040 <         * for an element, or null if there is no transformation (in
5041 <         * which case the action is not applied)
5042 <         * @param action the action
5043 <         * @return the task
5044 <         */
5045 <        public static <K,V,U> ForkJoinTask<Void> forEach
5046 <            (ConcurrentHashMap<K,V> map,
5047 <             BiFunction<? super K, ? super V, ? extends U> transformer,
5048 <             Consumer<? super U> action) {
5049 <            if (transformer == null || action == null)
5050 <                throw new NullPointerException();
5051 <            return new ForEachTransformedMappingTask<K,V,U>
5052 <                (map, null, -1, transformer, action);
5053 <        }
5054 <
5055 <        /**
5056 <         * Returns a task that when invoked, returns a non-null result
5057 <         * from applying the given search function on each (key,
5058 <         * value), or null if none. Upon success, further element
5059 <         * processing is suppressed and the results of any other
5060 <         * parallel invocations of the search function are ignored.
5061 <         *
5062 <         * @param map the map
5063 <         * @param searchFunction a function returning a non-null
5064 <         * result on success, else null
5065 <         * @return the task
5066 <         */
5067 <        public static <K,V,U> ForkJoinTask<U> search
5068 <            (ConcurrentHashMap<K,V> map,
5069 <             BiFunction<? super K, ? super V, ? extends U> searchFunction) {
5070 <            if (searchFunction == null) throw new NullPointerException();
5071 <            return new SearchMappingsTask<K,V,U>
5072 <                (map, null, -1, searchFunction,
5073 <                 new AtomicReference<U>());
5074 <        }
5075 <
5076 <        /**
5077 <         * Returns a task that when invoked, returns the result of
5078 <         * accumulating the given transformation of all (key, value) pairs
5079 <         * using the given reducer to combine values, or null if none.
5080 <         *
5081 <         * @param map the map
5082 <         * @param transformer a function returning the transformation
5083 <         * for an element, or null if there is no transformation (in
5084 <         * which case it is not combined)
5085 <         * @param reducer a commutative associative combining function
5086 <         * @return the task
5087 <         */
5088 <        public static <K,V,U> ForkJoinTask<U> reduce
5089 <            (ConcurrentHashMap<K,V> map,
5090 <             BiFunction<? super K, ? super V, ? extends U> transformer,
5091 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5092 <            if (transformer == null || reducer == null)
5093 <                throw new NullPointerException();
5094 <            return new MapReduceMappingsTask<K,V,U>
5095 <                (map, null, -1, null, transformer, reducer);
5096 <        }
5097 <
5098 <        /**
5099 <         * Returns a task that when invoked, returns the result of
5100 <         * accumulating the given transformation of all (key, value) pairs
5101 <         * using the given reducer to combine values, and the given
5102 <         * basis as an identity value.
5103 <         *
5104 <         * @param map the map
5105 <         * @param transformer a function returning the transformation
5106 <         * for an element
5107 <         * @param basis the identity (initial default value) for the reduction
5108 <         * @param reducer a commutative associative combining function
5109 <         * @return the task
5110 <         */
5111 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
5112 <            (ConcurrentHashMap<K,V> map,
5113 <             ToDoubleBiFunction<? super K, ? super V> transformer,
5114 <             double basis,
5115 <             DoubleBinaryOperator reducer) {
5116 <            if (transformer == null || reducer == null)
5117 <                throw new NullPointerException();
5118 <            return new MapReduceMappingsToDoubleTask<K,V>
5119 <                (map, null, -1, null, transformer, basis, reducer);
5120 <        }
5121 <
5122 <        /**
5123 <         * Returns a task that when invoked, returns the result of
5124 <         * accumulating the given transformation of all (key, value) pairs
5125 <         * using the given reducer to combine values, and the given
5126 <         * basis as an identity value.
5127 <         *
5128 <         * @param map the map
5129 <         * @param transformer a function returning the transformation
5130 <         * for an element
5131 <         * @param basis the identity (initial default value) for the reduction
5132 <         * @param reducer a commutative associative combining function
5133 <         * @return the task
5134 <         */
5135 <        public static <K,V> ForkJoinTask<Long> reduceToLong
5136 <            (ConcurrentHashMap<K,V> map,
5137 <             ToLongBiFunction<? super K, ? super V> transformer,
5138 <             long basis,
5139 <             LongBinaryOperator reducer) {
5140 <            if (transformer == null || reducer == null)
5141 <                throw new NullPointerException();
5142 <            return new MapReduceMappingsToLongTask<K,V>
5143 <                (map, null, -1, null, transformer, basis, reducer);
5144 <        }
5145 <
5146 <        /**
5147 <         * Returns a task that when invoked, returns the result of
5148 <         * accumulating the given transformation of all (key, value) pairs
5149 <         * using the given reducer to combine values, and the given
5150 <         * basis as an identity value.
5151 <         *
5152 <         * @param map the map
5153 <         * @param transformer a function returning the transformation
5154 <         * for an element
5155 <         * @param basis the identity (initial default value) for the reduction
5156 <         * @param reducer a commutative associative combining function
5157 <         * @return the task
5158 <         */
5159 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
5160 <            (ConcurrentHashMap<K,V> map,
5161 <             ToIntBiFunction<? super K, ? super V> transformer,
5162 <             int basis,
5163 <             IntBinaryOperator reducer) {
5164 <            if (transformer == null || reducer == null)
5165 <                throw new NullPointerException();
5166 <            return new MapReduceMappingsToIntTask<K,V>
5167 <                (map, null, -1, null, transformer, basis, reducer);
5168 <        }
5169 <
5170 <        /**
5171 <         * Returns a task that when invoked, performs the given action
5172 <         * for each key.
5173 <         *
5174 <         * @param map the map
5175 <         * @param action the action
5176 <         * @return the task
5177 <         */
5178 <        public static <K,V> ForkJoinTask<Void> forEachKey
5179 <            (ConcurrentHashMap<K,V> map,
5180 <             Consumer<? super K> action) {
5181 <            if (action == null) throw new NullPointerException();
5182 <            return new ForEachKeyTask<K,V>(map, null, -1, action);
5183 <        }
5184 <
5185 <        /**
5186 <         * Returns a task that when invoked, performs the given action
5187 <         * for each non-null transformation of each key.
5188 <         *
5189 <         * @param map the map
5190 <         * @param transformer a function returning the transformation
5191 <         * for an element, or null if there is no transformation (in
5192 <         * which case the action is not applied)
5193 <         * @param action the action
5194 <         * @return the task
5195 <         */
5196 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
5197 <            (ConcurrentHashMap<K,V> map,
5198 <             Function<? super K, ? extends U> transformer,
5199 <             Consumer<? super U> action) {
5200 <            if (transformer == null || action == null)
5201 <                throw new NullPointerException();
5202 <            return new ForEachTransformedKeyTask<K,V,U>
5203 <                (map, null, -1, transformer, action);
5204 <        }
5205 <
5206 <        /**
5207 <         * Returns a task that when invoked, returns a non-null result
5208 <         * from applying the given search function on each key, or
5209 <         * null if none.  Upon success, further element processing is
5210 <         * suppressed and the results of any other parallel
5211 <         * invocations of the search function are ignored.
5212 <         *
5213 <         * @param map the map
5214 <         * @param searchFunction a function returning a non-null
5215 <         * result on success, else null
5216 <         * @return the task
5217 <         */
5218 <        public static <K,V,U> ForkJoinTask<U> searchKeys
5219 <            (ConcurrentHashMap<K,V> map,
5220 <             Function<? super K, ? extends U> searchFunction) {
5221 <            if (searchFunction == null) throw new NullPointerException();
5222 <            return new SearchKeysTask<K,V,U>
5223 <                (map, null, -1, searchFunction,
5224 <                 new AtomicReference<U>());
5225 <        }
5226 <
5227 <        /**
5228 <         * Returns a task that when invoked, returns the result of
5229 <         * accumulating all keys using the given reducer to combine
5230 <         * values, or null if none.
5231 <         *
5232 <         * @param map the map
5233 <         * @param reducer a commutative associative combining function
5234 <         * @return the task
5235 <         */
5236 <        public static <K,V> ForkJoinTask<K> reduceKeys
5237 <            (ConcurrentHashMap<K,V> map,
5238 <             BiFunction<? super K, ? super K, ? extends K> reducer) {
5239 <            if (reducer == null) throw new NullPointerException();
5240 <            return new ReduceKeysTask<K,V>
5241 <                (map, null, -1, null, reducer);
5242 <        }
5243 <
5244 <        /**
5245 <         * Returns a task that when invoked, returns the result of
5246 <         * accumulating the given transformation of all keys using the given
5247 <         * reducer to combine values, or null if none.
5248 <         *
5249 <         * @param map the map
5250 <         * @param transformer a function returning the transformation
5251 <         * for an element, or null if there is no transformation (in
5252 <         * which case it is not combined)
5253 <         * @param reducer a commutative associative combining function
5254 <         * @return the task
5255 <         */
5256 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
5257 <            (ConcurrentHashMap<K,V> map,
5258 <             Function<? super K, ? extends U> transformer,
5259 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5260 <            if (transformer == null || reducer == null)
5261 <                throw new NullPointerException();
5262 <            return new MapReduceKeysTask<K,V,U>
5263 <                (map, null, -1, null, transformer, reducer);
5264 <        }
5265 <
5266 <        /**
5267 <         * Returns a task that when invoked, returns the result of
5268 <         * accumulating the given transformation of all keys using the given
5269 <         * reducer to combine values, and the given basis as an
5270 <         * identity value.
5271 <         *
5272 <         * @param map the map
5273 <         * @param transformer a function returning the transformation
5274 <         * for an element
5275 <         * @param basis the identity (initial default value) for the reduction
5276 <         * @param reducer a commutative associative combining function
5277 <         * @return the task
5278 <         */
5279 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5280 <            (ConcurrentHashMap<K,V> map,
5281 <             ToDoubleFunction<? super K> transformer,
5282 <             double basis,
5283 <             DoubleBinaryOperator reducer) {
5284 <            if (transformer == null || reducer == null)
5285 <                throw new NullPointerException();
5286 <            return new MapReduceKeysToDoubleTask<K,V>
5287 <                (map, null, -1, null, transformer, basis, reducer);
5288 <        }
5289 <
5290 <        /**
5291 <         * Returns a task that when invoked, returns the result of
5292 <         * accumulating the given transformation of all keys using the given
5293 <         * reducer to combine values, and the given basis as an
5294 <         * identity value.
5295 <         *
5296 <         * @param map the map
5297 <         * @param transformer a function returning the transformation
5298 <         * for an element
5299 <         * @param basis the identity (initial default value) for the reduction
5300 <         * @param reducer a commutative associative combining function
5301 <         * @return the task
5302 <         */
5303 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5304 <            (ConcurrentHashMap<K,V> map,
5305 <             ToLongFunction<? super K> transformer,
5306 <             long basis,
5307 <             LongBinaryOperator reducer) {
5308 <            if (transformer == null || reducer == null)
5309 <                throw new NullPointerException();
5310 <            return new MapReduceKeysToLongTask<K,V>
5311 <                (map, null, -1, null, transformer, basis, reducer);
5312 <        }
5313 <
5314 <        /**
5315 <         * Returns a task that when invoked, returns the result of
5316 <         * accumulating the given transformation of all keys using the given
5317 <         * reducer to combine values, and the given basis as an
5318 <         * identity value.
5319 <         *
5320 <         * @param map the map
5321 <         * @param transformer a function returning the transformation
5322 <         * for an element
5323 <         * @param basis the identity (initial default value) for the reduction
5324 <         * @param reducer a commutative associative combining function
5325 <         * @return the task
5326 <         */
5327 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5328 <            (ConcurrentHashMap<K,V> map,
5329 <             ToIntFunction<? super K> transformer,
5330 <             int basis,
5331 <             IntBinaryOperator reducer) {
5332 <            if (transformer == null || reducer == null)
5333 <                throw new NullPointerException();
5334 <            return new MapReduceKeysToIntTask<K,V>
5335 <                (map, null, -1, null, transformer, basis, reducer);
5336 <        }
5337 <
5338 <        /**
5339 <         * Returns a task that when invoked, performs the given action
5340 <         * for each value.
5341 <         *
5342 <         * @param map the map
5343 <         * @param action the action
5344 <         * @return the task
5345 <         */
5346 <        public static <K,V> ForkJoinTask<Void> forEachValue
5347 <            (ConcurrentHashMap<K,V> map,
5348 <             Consumer<? super V> action) {
5349 <            if (action == null) throw new NullPointerException();
5350 <            return new ForEachValueTask<K,V>(map, null, -1, action);
5351 <        }
5352 <
5353 <        /**
5354 <         * Returns a task that when invoked, performs the given action
5355 <         * for each non-null transformation of each value.
5356 <         *
5357 <         * @param map the map
5358 <         * @param transformer a function returning the transformation
5359 <         * for an element, or null if there is no transformation (in
5360 <         * which case the action is not applied)
5361 <         * @param action the action
5362 <         * @return the task
5363 <         */
5364 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
5365 <            (ConcurrentHashMap<K,V> map,
5366 <             Function<? super V, ? extends U> transformer,
5367 <             Consumer<? super U> action) {
5368 <            if (transformer == null || action == null)
5369 <                throw new NullPointerException();
5370 <            return new ForEachTransformedValueTask<K,V,U>
5371 <                (map, null, -1, transformer, action);
5372 <        }
5373 <
5374 <        /**
5375 <         * Returns a task that when invoked, returns a non-null result
5376 <         * from applying the given search function on each value, or
5377 <         * null if none.  Upon success, further element processing is
5378 <         * suppressed and the results of any other parallel
5379 <         * invocations of the search function are ignored.
5380 <         *
5381 <         * @param map the map
5382 <         * @param searchFunction a function returning a non-null
5383 <         * result on success, else null
5384 <         * @return the task
5385 <         */
5386 <        public static <K,V,U> ForkJoinTask<U> searchValues
5387 <            (ConcurrentHashMap<K,V> map,
5388 <             Function<? super V, ? extends U> searchFunction) {
5389 <            if (searchFunction == null) throw new NullPointerException();
5390 <            return new SearchValuesTask<K,V,U>
5391 <                (map, null, -1, searchFunction,
5392 <                 new AtomicReference<U>());
4785 >        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4786 >            return map.removeEntryIf(filter);
4787          }
4788  
4789 <        /**
4790 <         * Returns a task that when invoked, returns the result of
4791 <         * accumulating all values using the given reducer to combine
4792 <         * values, or null if none.
4793 <         *
4794 <         * @param map the map
4795 <         * @param reducer a commutative associative combining function
4796 <         * @return the task
4797 <         */
4798 <        public static <K,V> ForkJoinTask<V> reduceValues
5405 <            (ConcurrentHashMap<K,V> map,
5406 <             BiFunction<? super V, ? super V, ? extends V> reducer) {
5407 <            if (reducer == null) throw new NullPointerException();
5408 <            return new ReduceValuesTask<K,V>
5409 <                (map, null, -1, null, reducer);
5410 <        }
5411 <
5412 <        /**
5413 <         * Returns a task that when invoked, returns the result of
5414 <         * accumulating the given transformation of all values using the
5415 <         * given reducer to combine values, or null if none.
5416 <         *
5417 <         * @param map the map
5418 <         * @param transformer a function returning the transformation
5419 <         * for an element, or null if there is no transformation (in
5420 <         * which case it is not combined)
5421 <         * @param reducer a commutative associative combining function
5422 <         * @return the task
5423 <         */
5424 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5425 <            (ConcurrentHashMap<K,V> map,
5426 <             Function<? super V, ? extends U> transformer,
5427 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5428 <            if (transformer == null || reducer == null)
5429 <                throw new NullPointerException();
5430 <            return new MapReduceValuesTask<K,V,U>
5431 <                (map, null, -1, null, transformer, reducer);
5432 <        }
5433 <
5434 <        /**
5435 <         * Returns a task that when invoked, returns the result of
5436 <         * accumulating the given transformation of all values using the
5437 <         * given reducer to combine values, and the given basis as an
5438 <         * identity value.
5439 <         *
5440 <         * @param map the map
5441 <         * @param transformer a function returning the transformation
5442 <         * for an element
5443 <         * @param basis the identity (initial default value) for the reduction
5444 <         * @param reducer a commutative associative combining function
5445 <         * @return the task
5446 <         */
5447 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5448 <            (ConcurrentHashMap<K,V> map,
5449 <             ToDoubleFunction<? super V> transformer,
5450 <             double basis,
5451 <             DoubleBinaryOperator reducer) {
5452 <            if (transformer == null || reducer == null)
5453 <                throw new NullPointerException();
5454 <            return new MapReduceValuesToDoubleTask<K,V>
5455 <                (map, null, -1, null, transformer, basis, reducer);
4789 >        public final int hashCode() {
4790 >            int h = 0;
4791 >            Node<K,V>[] t;
4792 >            if ((t = map.table) != null) {
4793 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4794 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4795 >                    h += p.hashCode();
4796 >                }
4797 >            }
4798 >            return h;
4799          }
4800  
4801 <        /**
4802 <         * Returns a task that when invoked, returns the result of
4803 <         * accumulating the given transformation of all values using the
4804 <         * given reducer to combine values, and the given basis as an
4805 <         * identity value.
5463 <         *
5464 <         * @param map the map
5465 <         * @param transformer a function returning the transformation
5466 <         * for an element
5467 <         * @param basis the identity (initial default value) for the reduction
5468 <         * @param reducer a commutative associative combining function
5469 <         * @return the task
5470 <         */
5471 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5472 <            (ConcurrentHashMap<K,V> map,
5473 <             ToLongFunction<? super V> transformer,
5474 <             long basis,
5475 <             LongBinaryOperator reducer) {
5476 <            if (transformer == null || reducer == null)
5477 <                throw new NullPointerException();
5478 <            return new MapReduceValuesToLongTask<K,V>
5479 <                (map, null, -1, null, transformer, basis, reducer);
4801 >        public final boolean equals(Object o) {
4802 >            Set<?> c;
4803 >            return ((o instanceof Set) &&
4804 >                    ((c = (Set<?>)o) == this ||
4805 >                     (containsAll(c) && c.containsAll(this))));
4806          }
4807  
4808 <        /**
4809 <         * Returns a task that when invoked, returns the result of
4810 <         * accumulating the given transformation of all values using the
4811 <         * given reducer to combine values, and the given basis as an
4812 <         * identity value.
4813 <         *
5488 <         * @param map the map
5489 <         * @param transformer a function returning the transformation
5490 <         * for an element
5491 <         * @param basis the identity (initial default value) for the reduction
5492 <         * @param reducer a commutative associative combining function
5493 <         * @return the task
5494 <         */
5495 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5496 <            (ConcurrentHashMap<K,V> map,
5497 <             ToIntFunction<? super V> transformer,
5498 <             int basis,
5499 <             IntBinaryOperator reducer) {
5500 <            if (transformer == null || reducer == null)
5501 <                throw new NullPointerException();
5502 <            return new MapReduceValuesToIntTask<K,V>
5503 <                (map, null, -1, null, transformer, basis, reducer);
4808 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4809 >            Node<K,V>[] t;
4810 >            ConcurrentHashMap<K,V> m = map;
4811 >            long n = m.sumCount();
4812 >            int f = (t = m.table) == null ? 0 : t.length;
4813 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4814          }
4815  
4816 <        /**
5507 <         * Returns a task that when invoked, perform the given action
5508 <         * for each entry.
5509 <         *
5510 <         * @param map the map
5511 <         * @param action the action
5512 <         * @return the task
5513 <         */
5514 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5515 <            (ConcurrentHashMap<K,V> map,
5516 <             Consumer<? super Map.Entry<K,V>> action) {
4816 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4817              if (action == null) throw new NullPointerException();
4818 <            return new ForEachEntryTask<K,V>(map, null, -1, action);
4819 <        }
4820 <
4821 <        /**
4822 <         * Returns a task that when invoked, perform the given action
4823 <         * for each non-null transformation of each entry.
5524 <         *
5525 <         * @param map the map
5526 <         * @param transformer a function returning the transformation
5527 <         * for an element, or null if there is no transformation (in
5528 <         * which case the action is not applied)
5529 <         * @param action the action
5530 <         * @return the task
5531 <         */
5532 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5533 <            (ConcurrentHashMap<K,V> map,
5534 <             Function<Map.Entry<K,V>, ? extends U> transformer,
5535 <             Consumer<? super U> action) {
5536 <            if (transformer == null || action == null)
5537 <                throw new NullPointerException();
5538 <            return new ForEachTransformedEntryTask<K,V,U>
5539 <                (map, null, -1, transformer, action);
5540 <        }
5541 <
5542 <        /**
5543 <         * Returns a task that when invoked, returns a non-null result
5544 <         * from applying the given search function on each entry, or
5545 <         * null if none.  Upon success, further element processing is
5546 <         * suppressed and the results of any other parallel
5547 <         * invocations of the search function are ignored.
5548 <         *
5549 <         * @param map the map
5550 <         * @param searchFunction a function returning a non-null
5551 <         * result on success, else null
5552 <         * @return the task
5553 <         */
5554 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5555 <            (ConcurrentHashMap<K,V> map,
5556 <             Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5557 <            if (searchFunction == null) throw new NullPointerException();
5558 <            return new SearchEntriesTask<K,V,U>
5559 <                (map, null, -1, searchFunction,
5560 <                 new AtomicReference<U>());
4818 >            Node<K,V>[] t;
4819 >            if ((t = map.table) != null) {
4820 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4821 >                for (Node<K,V> p; (p = it.advance()) != null; )
4822 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4823 >            }
4824          }
4825  
4826 <        /**
5564 <         * Returns a task that when invoked, returns the result of
5565 <         * accumulating all entries using the given reducer to combine
5566 <         * values, or null if none.
5567 <         *
5568 <         * @param map the map
5569 <         * @param reducer a commutative associative combining function
5570 <         * @return the task
5571 <         */
5572 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5573 <            (ConcurrentHashMap<K,V> map,
5574 <             BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5575 <            if (reducer == null) throw new NullPointerException();
5576 <            return new ReduceEntriesTask<K,V>
5577 <                (map, null, -1, null, reducer);
5578 <        }
4826 >    }
4827  
4828 <        /**
5581 <         * Returns a task that when invoked, returns the result of
5582 <         * accumulating the given transformation of all entries using the
5583 <         * given reducer to combine values, or null if none.
5584 <         *
5585 <         * @param map the map
5586 <         * @param transformer a function returning the transformation
5587 <         * for an element, or null if there is no transformation (in
5588 <         * which case it is not combined)
5589 <         * @param reducer a commutative associative combining function
5590 <         * @return the task
5591 <         */
5592 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5593 <            (ConcurrentHashMap<K,V> map,
5594 <             Function<Map.Entry<K,V>, ? extends U> transformer,
5595 <             BiFunction<? super U, ? super U, ? extends U> reducer) {
5596 <            if (transformer == null || reducer == null)
5597 <                throw new NullPointerException();
5598 <            return new MapReduceEntriesTask<K,V,U>
5599 <                (map, null, -1, null, transformer, reducer);
5600 <        }
4828 >    // -------------------------------------------------------
4829  
4830 <        /**
4831 <         * Returns a task that when invoked, returns the result of
4832 <         * accumulating the given transformation of all entries using the
4833 <         * given reducer to combine values, and the given basis as an
4834 <         * identity value.
4835 <         *
4836 <         * @param map the map
4837 <         * @param transformer a function returning the transformation
4838 <         * for an element
4839 <         * @param basis the identity (initial default value) for the reduction
4840 <         * @param reducer a commutative associative combining function
4841 <         * @return the task
4842 <         */
4843 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4844 <            (ConcurrentHashMap<K,V> map,
4845 <             ToDoubleFunction<Map.Entry<K,V>> transformer,
4846 <             double basis,
4847 <             DoubleBinaryOperator reducer) {
4848 <            if (transformer == null || reducer == null)
4849 <                throw new NullPointerException();
4850 <            return new MapReduceEntriesToDoubleTask<K,V>
4851 <                (map, null, -1, null, transformer, basis, reducer);
4830 >    /**
4831 >     * Base class for bulk tasks. Repeats some fields and code from
4832 >     * class Traverser, because we need to subclass CountedCompleter.
4833 >     */
4834 >    @SuppressWarnings("serial")
4835 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4836 >        Node<K,V>[] tab;        // same as Traverser
4837 >        Node<K,V> next;
4838 >        TableStack<K,V> stack, spare;
4839 >        int index;
4840 >        int baseIndex;
4841 >        int baseLimit;
4842 >        final int baseSize;
4843 >        int batch;              // split control
4844 >
4845 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4846 >            super(par);
4847 >            this.batch = b;
4848 >            this.index = this.baseIndex = i;
4849 >            if ((this.tab = t) == null)
4850 >                this.baseSize = this.baseLimit = 0;
4851 >            else if (par == null)
4852 >                this.baseSize = this.baseLimit = t.length;
4853 >            else {
4854 >                this.baseLimit = f;
4855 >                this.baseSize = par.baseSize;
4856 >            }
4857          }
4858  
4859          /**
4860 <         * Returns a task that when invoked, returns the result of
5628 <         * accumulating the given transformation of all entries using the
5629 <         * given reducer to combine values, and the given basis as an
5630 <         * identity value.
5631 <         *
5632 <         * @param map the map
5633 <         * @param transformer a function returning the transformation
5634 <         * for an element
5635 <         * @param basis the identity (initial default value) for the reduction
5636 <         * @param reducer a commutative associative combining function
5637 <         * @return the task
4860 >         * Same as Traverser version
4861           */
4862 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4863 <            (ConcurrentHashMap<K,V> map,
4864 <             ToLongFunction<Map.Entry<K,V>> transformer,
4865 <             long basis,
4866 <             LongBinaryOperator reducer) {
4867 <            if (transformer == null || reducer == null)
4868 <                throw new NullPointerException();
4869 <            return new MapReduceEntriesToLongTask<K,V>
4870 <                (map, null, -1, null, transformer, basis, reducer);
4862 >        final Node<K,V> advance() {
4863 >            Node<K,V> e;
4864 >            if ((e = next) != null)
4865 >                e = e.next;
4866 >            for (;;) {
4867 >                Node<K,V>[] t; int i, n;
4868 >                if (e != null)
4869 >                    return next = e;
4870 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4871 >                    (n = t.length) <= (i = index) || i < 0)
4872 >                    return next = null;
4873 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4874 >                    if (e instanceof ForwardingNode) {
4875 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4876 >                        e = null;
4877 >                        pushState(t, i, n);
4878 >                        continue;
4879 >                    }
4880 >                    else if (e instanceof TreeBin)
4881 >                        e = ((TreeBin<K,V>)e).first;
4882 >                    else
4883 >                        e = null;
4884 >                }
4885 >                if (stack != null)
4886 >                    recoverState(n);
4887 >                else if ((index = i + baseSize) >= n)
4888 >                    index = ++baseIndex;
4889 >            }
4890          }
4891  
4892 <        /**
4893 <         * Returns a task that when invoked, returns the result of
4894 <         * accumulating the given transformation of all entries using the
4895 <         * given reducer to combine values, and the given basis as an
4896 <         * identity value.
4897 <         *
4898 <         * @param map the map
4899 <         * @param transformer a function returning the transformation
4900 <         * for an element
4901 <         * @param basis the identity (initial default value) for the reduction
4902 <         * @param reducer a commutative associative combining function
4903 <         * @return the task
4904 <         */
4905 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4906 <            (ConcurrentHashMap<K,V> map,
4907 <             ToIntFunction<Map.Entry<K,V>> transformer,
4908 <             int basis,
4909 <             IntBinaryOperator reducer) {
4910 <            if (transformer == null || reducer == null)
4911 <                throw new NullPointerException();
4912 <            return new MapReduceEntriesToIntTask<K,V>
4913 <                (map, null, -1, null, transformer, basis, reducer);
4892 >        private void pushState(Node<K,V>[] t, int i, int n) {
4893 >            TableStack<K,V> s = spare;
4894 >            if (s != null)
4895 >                spare = s.next;
4896 >            else
4897 >                s = new TableStack<K,V>();
4898 >            s.tab = t;
4899 >            s.length = n;
4900 >            s.index = i;
4901 >            s.next = stack;
4902 >            stack = s;
4903 >        }
4904 >
4905 >        private void recoverState(int n) {
4906 >            TableStack<K,V> s; int len;
4907 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4908 >                n = len;
4909 >                index = s.index;
4910 >                tab = s.tab;
4911 >                s.tab = null;
4912 >                TableStack<K,V> next = s.next;
4913 >                s.next = spare; // save for reuse
4914 >                stack = next;
4915 >                spare = s;
4916 >            }
4917 >            if (s == null && (index += baseSize) >= n)
4918 >                index = ++baseIndex;
4919          }
4920      }
4921  
5675    // -------------------------------------------------------
5676
4922      /*
4923       * Task classes. Coded in a regular but ugly format/style to
4924       * simplify checks that each variant differs in the right way from
# Line 5681 | Line 4926 | public class ConcurrentHashMap<K,V>
4926       * that we've already null-checked task arguments, so we force
4927       * simplest hoisted bypass to help avoid convoluted traps.
4928       */
4929 <
4930 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4931 <        extends Traverser<K,V,Void> {
4929 >    @SuppressWarnings("serial")
4930 >    static final class ForEachKeyTask<K,V>
4931 >        extends BulkTask<K,V,Void> {
4932          final Consumer<? super K> action;
4933          ForEachKeyTask
4934 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4934 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4935               Consumer<? super K> action) {
4936 <            super(m, p, b);
4936 >            super(p, b, i, f, t);
4937              this.action = action;
4938          }
4939          public final void compute() {
4940              final Consumer<? super K> action;
4941              if ((action = this.action) != null) {
4942 <                for (int b; (b = preSplit()) > 0;)
4943 <                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
4944 <                forEachKey(action);
4942 >                for (int i = baseIndex, f, h; batch > 0 &&
4943 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4944 >                    addToPendingCount(1);
4945 >                    new ForEachKeyTask<K,V>
4946 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4947 >                         action).fork();
4948 >                }
4949 >                for (Node<K,V> p; (p = advance()) != null;)
4950 >                    action.accept(p.key);
4951                  propagateCompletion();
4952              }
4953          }
4954      }
4955  
4956 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4957 <        extends Traverser<K,V,Void> {
4956 >    @SuppressWarnings("serial")
4957 >    static final class ForEachValueTask<K,V>
4958 >        extends BulkTask<K,V,Void> {
4959          final Consumer<? super V> action;
4960          ForEachValueTask
4961 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4961 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4962               Consumer<? super V> action) {
4963 <            super(m, p, b);
4963 >            super(p, b, i, f, t);
4964              this.action = action;
4965          }
4966          public final void compute() {
4967              final Consumer<? super V> action;
4968              if ((action = this.action) != null) {
4969 <                for (int b; (b = preSplit()) > 0;)
4970 <                    new ForEachValueTask<K,V>(map, this, b, action).fork();
4971 <                forEachValue(action);
4969 >                for (int i = baseIndex, f, h; batch > 0 &&
4970 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971 >                    addToPendingCount(1);
4972 >                    new ForEachValueTask<K,V>
4973 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4974 >                         action).fork();
4975 >                }
4976 >                for (Node<K,V> p; (p = advance()) != null;)
4977 >                    action.accept(p.val);
4978                  propagateCompletion();
4979              }
4980          }
4981      }
4982  
4983 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4984 <        extends Traverser<K,V,Void> {
4983 >    @SuppressWarnings("serial")
4984 >    static final class ForEachEntryTask<K,V>
4985 >        extends BulkTask<K,V,Void> {
4986          final Consumer<? super Entry<K,V>> action;
4987          ForEachEntryTask
4988 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
4988 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4989               Consumer<? super Entry<K,V>> action) {
4990 <            super(m, p, b);
4990 >            super(p, b, i, f, t);
4991              this.action = action;
4992          }
4993          public final void compute() {
4994              final Consumer<? super Entry<K,V>> action;
4995              if ((action = this.action) != null) {
4996 <                for (int b; (b = preSplit()) > 0;)
4997 <                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
4998 <                V v;
4999 <                while ((v = advanceValue()) != null)
5000 <                    action.accept(entryFor(nextKey, v));
4996 >                for (int i = baseIndex, f, h; batch > 0 &&
4997 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4998 >                    addToPendingCount(1);
4999 >                    new ForEachEntryTask<K,V>
5000 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5001 >                         action).fork();
5002 >                }
5003 >                for (Node<K,V> p; (p = advance()) != null; )
5004 >                    action.accept(p);
5005                  propagateCompletion();
5006              }
5007          }
5008      }
5009  
5010 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5011 <        extends Traverser<K,V,Void> {
5010 >    @SuppressWarnings("serial")
5011 >    static final class ForEachMappingTask<K,V>
5012 >        extends BulkTask<K,V,Void> {
5013          final BiConsumer<? super K, ? super V> action;
5014          ForEachMappingTask
5015 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5015 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5016               BiConsumer<? super K,? super V> action) {
5017 <            super(m, p, b);
5017 >            super(p, b, i, f, t);
5018              this.action = action;
5019          }
5020          public final void compute() {
5021              final BiConsumer<? super K, ? super V> action;
5022              if ((action = this.action) != null) {
5023 <                for (int b; (b = preSplit()) > 0;)
5024 <                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5025 <                V v;
5026 <                while ((v = advanceValue()) != null)
5027 <                    action.accept(nextKey, v);
5023 >                for (int i = baseIndex, f, h; batch > 0 &&
5024 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5025 >                    addToPendingCount(1);
5026 >                    new ForEachMappingTask<K,V>
5027 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5028 >                         action).fork();
5029 >                }
5030 >                for (Node<K,V> p; (p = advance()) != null; )
5031 >                    action.accept(p.key, p.val);
5032                  propagateCompletion();
5033              }
5034          }
5035      }
5036  
5037 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5038 <        extends Traverser<K,V,Void> {
5037 >    @SuppressWarnings("serial")
5038 >    static final class ForEachTransformedKeyTask<K,V,U>
5039 >        extends BulkTask<K,V,Void> {
5040          final Function<? super K, ? extends U> transformer;
5041          final Consumer<? super U> action;
5042          ForEachTransformedKeyTask
5043 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5043 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5044               Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5045 <            super(m, p, b);
5045 >            super(p, b, i, f, t);
5046              this.transformer = transformer; this.action = action;
5047          }
5048          public final void compute() {
# Line 5781 | Line 5050 | public class ConcurrentHashMap<K,V>
5050              final Consumer<? super U> action;
5051              if ((transformer = this.transformer) != null &&
5052                  (action = this.action) != null) {
5053 <                for (int b; (b = preSplit()) > 0;)
5053 >                for (int i = baseIndex, f, h; batch > 0 &&
5054 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5055 >                    addToPendingCount(1);
5056                      new ForEachTransformedKeyTask<K,V,U>
5057 <                        (map, this, b, transformer, action).fork();
5058 <                K k; U u;
5059 <                while ((k = advanceKey()) != null) {
5060 <                    if ((u = transformer.apply(k)) != null)
5057 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5058 >                         transformer, action).fork();
5059 >                }
5060 >                for (Node<K,V> p; (p = advance()) != null; ) {
5061 >                    U u;
5062 >                    if ((u = transformer.apply(p.key)) != null)
5063                          action.accept(u);
5064                  }
5065                  propagateCompletion();
# Line 5794 | Line 5067 | public class ConcurrentHashMap<K,V>
5067          }
5068      }
5069  
5070 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5071 <        extends Traverser<K,V,Void> {
5070 >    @SuppressWarnings("serial")
5071 >    static final class ForEachTransformedValueTask<K,V,U>
5072 >        extends BulkTask<K,V,Void> {
5073          final Function<? super V, ? extends U> transformer;
5074          final Consumer<? super U> action;
5075          ForEachTransformedValueTask
5076 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5076 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5077               Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5078 <            super(m, p, b);
5078 >            super(p, b, i, f, t);
5079              this.transformer = transformer; this.action = action;
5080          }
5081          public final void compute() {
# Line 5809 | Line 5083 | public class ConcurrentHashMap<K,V>
5083              final Consumer<? super U> action;
5084              if ((transformer = this.transformer) != null &&
5085                  (action = this.action) != null) {
5086 <                for (int b; (b = preSplit()) > 0;)
5086 >                for (int i = baseIndex, f, h; batch > 0 &&
5087 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5088 >                    addToPendingCount(1);
5089                      new ForEachTransformedValueTask<K,V,U>
5090 <                        (map, this, b, transformer, action).fork();
5091 <                V v; U u;
5092 <                while ((v = advanceValue()) != null) {
5093 <                    if ((u = transformer.apply(v)) != null)
5090 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5091 >                         transformer, action).fork();
5092 >                }
5093 >                for (Node<K,V> p; (p = advance()) != null; ) {
5094 >                    U u;
5095 >                    if ((u = transformer.apply(p.val)) != null)
5096                          action.accept(u);
5097                  }
5098                  propagateCompletion();
# Line 5822 | Line 5100 | public class ConcurrentHashMap<K,V>
5100          }
5101      }
5102  
5103 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5104 <        extends Traverser<K,V,Void> {
5103 >    @SuppressWarnings("serial")
5104 >    static final class ForEachTransformedEntryTask<K,V,U>
5105 >        extends BulkTask<K,V,Void> {
5106          final Function<Map.Entry<K,V>, ? extends U> transformer;
5107          final Consumer<? super U> action;
5108          ForEachTransformedEntryTask
5109 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5109 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5110               Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5111 <            super(m, p, b);
5111 >            super(p, b, i, f, t);
5112              this.transformer = transformer; this.action = action;
5113          }
5114          public final void compute() {
# Line 5837 | Line 5116 | public class ConcurrentHashMap<K,V>
5116              final Consumer<? super U> action;
5117              if ((transformer = this.transformer) != null &&
5118                  (action = this.action) != null) {
5119 <                for (int b; (b = preSplit()) > 0;)
5119 >                for (int i = baseIndex, f, h; batch > 0 &&
5120 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5121 >                    addToPendingCount(1);
5122                      new ForEachTransformedEntryTask<K,V,U>
5123 <                        (map, this, b, transformer, action).fork();
5124 <                V v; U u;
5125 <                while ((v = advanceValue()) != null) {
5126 <                    if ((u = transformer.apply(entryFor(nextKey,
5127 <                                                        v))) != null)
5123 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5124 >                         transformer, action).fork();
5125 >                }
5126 >                for (Node<K,V> p; (p = advance()) != null; ) {
5127 >                    U u;
5128 >                    if ((u = transformer.apply(p)) != null)
5129                          action.accept(u);
5130                  }
5131                  propagateCompletion();
# Line 5851 | Line 5133 | public class ConcurrentHashMap<K,V>
5133          }
5134      }
5135  
5136 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5137 <        extends Traverser<K,V,Void> {
5136 >    @SuppressWarnings("serial")
5137 >    static final class ForEachTransformedMappingTask<K,V,U>
5138 >        extends BulkTask<K,V,Void> {
5139          final BiFunction<? super K, ? super V, ? extends U> transformer;
5140          final Consumer<? super U> action;
5141          ForEachTransformedMappingTask
5142 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5142 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5143               BiFunction<? super K, ? super V, ? extends U> transformer,
5144               Consumer<? super U> action) {
5145 <            super(m, p, b);
5145 >            super(p, b, i, f, t);
5146              this.transformer = transformer; this.action = action;
5147          }
5148          public final void compute() {
# Line 5867 | Line 5150 | public class ConcurrentHashMap<K,V>
5150              final Consumer<? super U> action;
5151              if ((transformer = this.transformer) != null &&
5152                  (action = this.action) != null) {
5153 <                for (int b; (b = preSplit()) > 0;)
5153 >                for (int i = baseIndex, f, h; batch > 0 &&
5154 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5155 >                    addToPendingCount(1);
5156                      new ForEachTransformedMappingTask<K,V,U>
5157 <                        (map, this, b, transformer, action).fork();
5158 <                V v; U u;
5159 <                while ((v = advanceValue()) != null) {
5160 <                    if ((u = transformer.apply(nextKey, v)) != null)
5157 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5158 >                         transformer, action).fork();
5159 >                }
5160 >                for (Node<K,V> p; (p = advance()) != null; ) {
5161 >                    U u;
5162 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5163                          action.accept(u);
5164                  }
5165                  propagateCompletion();
# Line 5880 | Line 5167 | public class ConcurrentHashMap<K,V>
5167          }
5168      }
5169  
5170 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5171 <        extends Traverser<K,V,U> {
5170 >    @SuppressWarnings("serial")
5171 >    static final class SearchKeysTask<K,V,U>
5172 >        extends BulkTask<K,V,U> {
5173          final Function<? super K, ? extends U> searchFunction;
5174          final AtomicReference<U> result;
5175          SearchKeysTask
5176 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5176 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5177               Function<? super K, ? extends U> searchFunction,
5178               AtomicReference<U> result) {
5179 <            super(m, p, b);
5179 >            super(p, b, i, f, t);
5180              this.searchFunction = searchFunction; this.result = result;
5181          }
5182          public final U getRawResult() { return result.get(); }
# Line 5897 | Line 5185 | public class ConcurrentHashMap<K,V>
5185              final AtomicReference<U> result;
5186              if ((searchFunction = this.searchFunction) != null &&
5187                  (result = this.result) != null) {
5188 <                for (int b;;) {
5188 >                for (int i = baseIndex, f, h; batch > 0 &&
5189 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5190                      if (result.get() != null)
5191                          return;
5192 <                    if ((b = preSplit()) <= 0)
5904 <                        break;
5192 >                    addToPendingCount(1);
5193                      new SearchKeysTask<K,V,U>
5194 <                        (map, this, b, searchFunction, result).fork();
5194 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5195 >                         searchFunction, result).fork();
5196                  }
5197                  while (result.get() == null) {
5198 <                    K k; U u;
5199 <                    if ((k = advanceKey()) == null) {
5198 >                    U u;
5199 >                    Node<K,V> p;
5200 >                    if ((p = advance()) == null) {
5201                          propagateCompletion();
5202                          break;
5203                      }
5204 <                    if ((u = searchFunction.apply(k)) != null) {
5204 >                    if ((u = searchFunction.apply(p.key)) != null) {
5205                          if (result.compareAndSet(null, u))
5206                              quietlyCompleteRoot();
5207                          break;
# Line 5921 | Line 5211 | public class ConcurrentHashMap<K,V>
5211          }
5212      }
5213  
5214 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5215 <        extends Traverser<K,V,U> {
5214 >    @SuppressWarnings("serial")
5215 >    static final class SearchValuesTask<K,V,U>
5216 >        extends BulkTask<K,V,U> {
5217          final Function<? super V, ? extends U> searchFunction;
5218          final AtomicReference<U> result;
5219          SearchValuesTask
5220 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5220 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5221               Function<? super V, ? extends U> searchFunction,
5222               AtomicReference<U> result) {
5223 <            super(m, p, b);
5223 >            super(p, b, i, f, t);
5224              this.searchFunction = searchFunction; this.result = result;
5225          }
5226          public final U getRawResult() { return result.get(); }
# Line 5938 | Line 5229 | public class ConcurrentHashMap<K,V>
5229              final AtomicReference<U> result;
5230              if ((searchFunction = this.searchFunction) != null &&
5231                  (result = this.result) != null) {
5232 <                for (int b;;) {
5232 >                for (int i = baseIndex, f, h; batch > 0 &&
5233 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5234                      if (result.get() != null)
5235                          return;
5236 <                    if ((b = preSplit()) <= 0)
5945 <                        break;
5236 >                    addToPendingCount(1);
5237                      new SearchValuesTask<K,V,U>
5238 <                        (map, this, b, searchFunction, result).fork();
5238 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5239 >                         searchFunction, result).fork();
5240                  }
5241                  while (result.get() == null) {
5242 <                    V v; U u;
5243 <                    if ((v = advanceValue()) == null) {
5242 >                    U u;
5243 >                    Node<K,V> p;
5244 >                    if ((p = advance()) == null) {
5245                          propagateCompletion();
5246                          break;
5247                      }
5248 <                    if ((u = searchFunction.apply(v)) != null) {
5248 >                    if ((u = searchFunction.apply(p.val)) != null) {
5249                          if (result.compareAndSet(null, u))
5250                              quietlyCompleteRoot();
5251                          break;
# Line 5962 | Line 5255 | public class ConcurrentHashMap<K,V>
5255          }
5256      }
5257  
5258 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5259 <        extends Traverser<K,V,U> {
5258 >    @SuppressWarnings("serial")
5259 >    static final class SearchEntriesTask<K,V,U>
5260 >        extends BulkTask<K,V,U> {
5261          final Function<Entry<K,V>, ? extends U> searchFunction;
5262          final AtomicReference<U> result;
5263          SearchEntriesTask
5264 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5264 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5265               Function<Entry<K,V>, ? extends U> searchFunction,
5266               AtomicReference<U> result) {
5267 <            super(m, p, b);
5267 >            super(p, b, i, f, t);
5268              this.searchFunction = searchFunction; this.result = result;
5269          }
5270          public final U getRawResult() { return result.get(); }
# Line 5979 | Line 5273 | public class ConcurrentHashMap<K,V>
5273              final AtomicReference<U> result;
5274              if ((searchFunction = this.searchFunction) != null &&
5275                  (result = this.result) != null) {
5276 <                for (int b;;) {
5276 >                for (int i = baseIndex, f, h; batch > 0 &&
5277 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5278                      if (result.get() != null)
5279                          return;
5280 <                    if ((b = preSplit()) <= 0)
5986 <                        break;
5280 >                    addToPendingCount(1);
5281                      new SearchEntriesTask<K,V,U>
5282 <                        (map, this, b, searchFunction, result).fork();
5282 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5283 >                         searchFunction, result).fork();
5284                  }
5285                  while (result.get() == null) {
5286 <                    V v; U u;
5287 <                    if ((v = advanceValue()) == null) {
5286 >                    U u;
5287 >                    Node<K,V> p;
5288 >                    if ((p = advance()) == null) {
5289                          propagateCompletion();
5290                          break;
5291                      }
5292 <                    if ((u = searchFunction.apply(entryFor(nextKey,
5997 <                                                           v))) != null) {
5292 >                    if ((u = searchFunction.apply(p)) != null) {
5293                          if (result.compareAndSet(null, u))
5294                              quietlyCompleteRoot();
5295                          return;
# Line 6004 | Line 5299 | public class ConcurrentHashMap<K,V>
5299          }
5300      }
5301  
5302 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5303 <        extends Traverser<K,V,U> {
5302 >    @SuppressWarnings("serial")
5303 >    static final class SearchMappingsTask<K,V,U>
5304 >        extends BulkTask<K,V,U> {
5305          final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5306          final AtomicReference<U> result;
5307          SearchMappingsTask
5308 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5308 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5309               BiFunction<? super K, ? super V, ? extends U> searchFunction,
5310               AtomicReference<U> result) {
5311 <            super(m, p, b);
5311 >            super(p, b, i, f, t);
5312              this.searchFunction = searchFunction; this.result = result;
5313          }
5314          public final U getRawResult() { return result.get(); }
# Line 6021 | Line 5317 | public class ConcurrentHashMap<K,V>
5317              final AtomicReference<U> result;
5318              if ((searchFunction = this.searchFunction) != null &&
5319                  (result = this.result) != null) {
5320 <                for (int b;;) {
5320 >                for (int i = baseIndex, f, h; batch > 0 &&
5321 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5322                      if (result.get() != null)
5323                          return;
5324 <                    if ((b = preSplit()) <= 0)
6028 <                        break;
5324 >                    addToPendingCount(1);
5325                      new SearchMappingsTask<K,V,U>
5326 <                        (map, this, b, searchFunction, result).fork();
5326 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5327 >                         searchFunction, result).fork();
5328                  }
5329                  while (result.get() == null) {
5330 <                    V v; U u;
5331 <                    if ((v = advanceValue()) == null) {
5330 >                    U u;
5331 >                    Node<K,V> p;
5332 >                    if ((p = advance()) == null) {
5333                          propagateCompletion();
5334                          break;
5335                      }
5336 <                    if ((u = searchFunction.apply(nextKey, v)) != null) {
5336 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5337                          if (result.compareAndSet(null, u))
5338                              quietlyCompleteRoot();
5339                          break;
# Line 6045 | Line 5343 | public class ConcurrentHashMap<K,V>
5343          }
5344      }
5345  
5346 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5347 <        extends Traverser<K,V,K> {
5346 >    @SuppressWarnings("serial")
5347 >    static final class ReduceKeysTask<K,V>
5348 >        extends BulkTask<K,V,K> {
5349          final BiFunction<? super K, ? super K, ? extends K> reducer;
5350          K result;
5351          ReduceKeysTask<K,V> rights, nextRight;
5352          ReduceKeysTask
5353 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5353 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5354               ReduceKeysTask<K,V> nextRight,
5355               BiFunction<? super K, ? super K, ? extends K> reducer) {
5356 <            super(m, p, b); this.nextRight = nextRight;
5356 >            super(p, b, i, f, t); this.nextRight = nextRight;
5357              this.reducer = reducer;
5358          }
5359          public final K getRawResult() { return result; }
5360 <        @SuppressWarnings("unchecked") public final void compute() {
5360 >        public final void compute() {
5361              final BiFunction<? super K, ? super K, ? extends K> reducer;
5362              if ((reducer = this.reducer) != null) {
5363 <                for (int b; (b = preSplit()) > 0;)
5363 >                for (int i = baseIndex, f, h; batch > 0 &&
5364 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5365 >                    addToPendingCount(1);
5366                      (rights = new ReduceKeysTask<K,V>
5367 <                     (map, this, b, rights, reducer)).fork();
5368 <                K u, r = null;
5369 <                while ((u = advanceKey()) != null) {
5367 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5368 >                      rights, reducer)).fork();
5369 >                }
5370 >                K r = null;
5371 >                for (Node<K,V> p; (p = advance()) != null; ) {
5372 >                    K u = p.key;
5373                      r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5374                  }
5375                  result = r;
5376                  CountedCompleter<?> c;
5377                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5378 +                    @SuppressWarnings("unchecked")
5379                      ReduceKeysTask<K,V>
5380                          t = (ReduceKeysTask<K,V>)c,
5381                          s = t.rights;
# Line 6086 | Line 5391 | public class ConcurrentHashMap<K,V>
5391          }
5392      }
5393  
5394 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5395 <        extends Traverser<K,V,V> {
5394 >    @SuppressWarnings("serial")
5395 >    static final class ReduceValuesTask<K,V>
5396 >        extends BulkTask<K,V,V> {
5397          final BiFunction<? super V, ? super V, ? extends V> reducer;
5398          V result;
5399          ReduceValuesTask<K,V> rights, nextRight;
5400          ReduceValuesTask
5401 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5401 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5402               ReduceValuesTask<K,V> nextRight,
5403               BiFunction<? super V, ? super V, ? extends V> reducer) {
5404 <            super(m, p, b); this.nextRight = nextRight;
5404 >            super(p, b, i, f, t); this.nextRight = nextRight;
5405              this.reducer = reducer;
5406          }
5407          public final V getRawResult() { return result; }
5408 <        @SuppressWarnings("unchecked") public final void compute() {
5408 >        public final void compute() {
5409              final BiFunction<? super V, ? super V, ? extends V> reducer;
5410              if ((reducer = this.reducer) != null) {
5411 <                for (int b; (b = preSplit()) > 0;)
5411 >                for (int i = baseIndex, f, h; batch > 0 &&
5412 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5413 >                    addToPendingCount(1);
5414                      (rights = new ReduceValuesTask<K,V>
5415 <                     (map, this, b, rights, reducer)).fork();
5416 <                V r = null, v;
5417 <                while ((v = advanceValue()) != null)
5415 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5416 >                      rights, reducer)).fork();
5417 >                }
5418 >                V r = null;
5419 >                for (Node<K,V> p; (p = advance()) != null; ) {
5420 >                    V v = p.val;
5421                      r = (r == null) ? v : reducer.apply(r, v);
5422 +                }
5423                  result = r;
5424                  CountedCompleter<?> c;
5425                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5426 +                    @SuppressWarnings("unchecked")
5427                      ReduceValuesTask<K,V>
5428                          t = (ReduceValuesTask<K,V>)c,
5429                          s = t.rights;
# Line 6126 | Line 5439 | public class ConcurrentHashMap<K,V>
5439          }
5440      }
5441  
5442 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5443 <        extends Traverser<K,V,Map.Entry<K,V>> {
5442 >    @SuppressWarnings("serial")
5443 >    static final class ReduceEntriesTask<K,V>
5444 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5445          final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5446          Map.Entry<K,V> result;
5447          ReduceEntriesTask<K,V> rights, nextRight;
5448          ReduceEntriesTask
5449 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5449 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5450               ReduceEntriesTask<K,V> nextRight,
5451               BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5452 <            super(m, p, b); this.nextRight = nextRight;
5452 >            super(p, b, i, f, t); this.nextRight = nextRight;
5453              this.reducer = reducer;
5454          }
5455          public final Map.Entry<K,V> getRawResult() { return result; }
5456 <        @SuppressWarnings("unchecked") public final void compute() {
5456 >        public final void compute() {
5457              final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5458              if ((reducer = this.reducer) != null) {
5459 <                for (int b; (b = preSplit()) > 0;)
5459 >                for (int i = baseIndex, f, h; batch > 0 &&
5460 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5461 >                    addToPendingCount(1);
5462                      (rights = new ReduceEntriesTask<K,V>
5463 <                     (map, this, b, rights, reducer)).fork();
5464 <                Map.Entry<K,V> r = null;
6149 <                V v;
6150 <                while ((v = advanceValue()) != null) {
6151 <                    Map.Entry<K,V> u = entryFor(nextKey, v);
6152 <                    r = (r == null) ? u : reducer.apply(r, u);
5463 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5464 >                      rights, reducer)).fork();
5465                  }
5466 +                Map.Entry<K,V> r = null;
5467 +                for (Node<K,V> p; (p = advance()) != null; )
5468 +                    r = (r == null) ? p : reducer.apply(r, p);
5469                  result = r;
5470                  CountedCompleter<?> c;
5471                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5472 +                    @SuppressWarnings("unchecked")
5473                      ReduceEntriesTask<K,V>
5474                          t = (ReduceEntriesTask<K,V>)c,
5475                          s = t.rights;
# Line 6169 | Line 5485 | public class ConcurrentHashMap<K,V>
5485          }
5486      }
5487  
5488 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5489 <        extends Traverser<K,V,U> {
5488 >    @SuppressWarnings("serial")
5489 >    static final class MapReduceKeysTask<K,V,U>
5490 >        extends BulkTask<K,V,U> {
5491          final Function<? super K, ? extends U> transformer;
5492          final BiFunction<? super U, ? super U, ? extends U> reducer;
5493          U result;
5494          MapReduceKeysTask<K,V,U> rights, nextRight;
5495          MapReduceKeysTask
5496 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5496 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5497               MapReduceKeysTask<K,V,U> nextRight,
5498               Function<? super K, ? extends U> transformer,
5499               BiFunction<? super U, ? super U, ? extends U> reducer) {
5500 <            super(m, p, b); this.nextRight = nextRight;
5500 >            super(p, b, i, f, t); this.nextRight = nextRight;
5501              this.transformer = transformer;
5502              this.reducer = reducer;
5503          }
5504          public final U getRawResult() { return result; }
5505 <        @SuppressWarnings("unchecked") public final void compute() {
5505 >        public final void compute() {
5506              final Function<? super K, ? extends U> transformer;
5507              final BiFunction<? super U, ? super U, ? extends U> reducer;
5508              if ((transformer = this.transformer) != null &&
5509                  (reducer = this.reducer) != null) {
5510 <                for (int b; (b = preSplit()) > 0;)
5510 >                for (int i = baseIndex, f, h; batch > 0 &&
5511 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5512 >                    addToPendingCount(1);
5513                      (rights = new MapReduceKeysTask<K,V,U>
5514 <                     (map, this, b, rights, transformer, reducer)).fork();
5515 <                K k; U r = null, u;
5516 <                while ((k = advanceKey()) != null) {
5517 <                    if ((u = transformer.apply(k)) != null)
5514 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5515 >                      rights, transformer, reducer)).fork();
5516 >                }
5517 >                U r = null;
5518 >                for (Node<K,V> p; (p = advance()) != null; ) {
5519 >                    U u;
5520 >                    if ((u = transformer.apply(p.key)) != null)
5521                          r = (r == null) ? u : reducer.apply(r, u);
5522                  }
5523                  result = r;
5524                  CountedCompleter<?> c;
5525                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5526 +                    @SuppressWarnings("unchecked")
5527                      MapReduceKeysTask<K,V,U>
5528                          t = (MapReduceKeysTask<K,V,U>)c,
5529                          s = t.rights;
# Line 6216 | Line 5539 | public class ConcurrentHashMap<K,V>
5539          }
5540      }
5541  
5542 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5543 <        extends Traverser<K,V,U> {
5542 >    @SuppressWarnings("serial")
5543 >    static final class MapReduceValuesTask<K,V,U>
5544 >        extends BulkTask<K,V,U> {
5545          final Function<? super V, ? extends U> transformer;
5546          final BiFunction<? super U, ? super U, ? extends U> reducer;
5547          U result;
5548          MapReduceValuesTask<K,V,U> rights, nextRight;
5549          MapReduceValuesTask
5550 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5550 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5551               MapReduceValuesTask<K,V,U> nextRight,
5552               Function<? super V, ? extends U> transformer,
5553               BiFunction<? super U, ? super U, ? extends U> reducer) {
5554 <            super(m, p, b); this.nextRight = nextRight;
5554 >            super(p, b, i, f, t); this.nextRight = nextRight;
5555              this.transformer = transformer;
5556              this.reducer = reducer;
5557          }
5558          public final U getRawResult() { return result; }
5559 <        @SuppressWarnings("unchecked") public final void compute() {
5559 >        public final void compute() {
5560              final Function<? super V, ? extends U> transformer;
5561              final BiFunction<? super U, ? super U, ? extends U> reducer;
5562              if ((transformer = this.transformer) != null &&
5563                  (reducer = this.reducer) != null) {
5564 <                for (int b; (b = preSplit()) > 0;)
5564 >                for (int i = baseIndex, f, h; batch > 0 &&
5565 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566 >                    addToPendingCount(1);
5567                      (rights = new MapReduceValuesTask<K,V,U>
5568 <                     (map, this, b, rights, transformer, reducer)).fork();
5569 <                U r = null, u;
5570 <                V v;
5571 <                while ((v = advanceValue()) != null) {
5572 <                    if ((u = transformer.apply(v)) != null)
5568 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5569 >                      rights, transformer, reducer)).fork();
5570 >                }
5571 >                U r = null;
5572 >                for (Node<K,V> p; (p = advance()) != null; ) {
5573 >                    U u;
5574 >                    if ((u = transformer.apply(p.val)) != null)
5575                          r = (r == null) ? u : reducer.apply(r, u);
5576                  }
5577                  result = r;
5578                  CountedCompleter<?> c;
5579                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5580 +                    @SuppressWarnings("unchecked")
5581                      MapReduceValuesTask<K,V,U>
5582                          t = (MapReduceValuesTask<K,V,U>)c,
5583                          s = t.rights;
# Line 6264 | Line 5593 | public class ConcurrentHashMap<K,V>
5593          }
5594      }
5595  
5596 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5597 <        extends Traverser<K,V,U> {
5596 >    @SuppressWarnings("serial")
5597 >    static final class MapReduceEntriesTask<K,V,U>
5598 >        extends BulkTask<K,V,U> {
5599          final Function<Map.Entry<K,V>, ? extends U> transformer;
5600          final BiFunction<? super U, ? super U, ? extends U> reducer;
5601          U result;
5602          MapReduceEntriesTask<K,V,U> rights, nextRight;
5603          MapReduceEntriesTask
5604 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5604 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5605               MapReduceEntriesTask<K,V,U> nextRight,
5606               Function<Map.Entry<K,V>, ? extends U> transformer,
5607               BiFunction<? super U, ? super U, ? extends U> reducer) {
5608 <            super(m, p, b); this.nextRight = nextRight;
5608 >            super(p, b, i, f, t); this.nextRight = nextRight;
5609              this.transformer = transformer;
5610              this.reducer = reducer;
5611          }
5612          public final U getRawResult() { return result; }
5613 <        @SuppressWarnings("unchecked") public final void compute() {
5613 >        public final void compute() {
5614              final Function<Map.Entry<K,V>, ? extends U> transformer;
5615              final BiFunction<? super U, ? super U, ? extends U> reducer;
5616              if ((transformer = this.transformer) != null &&
5617                  (reducer = this.reducer) != null) {
5618 <                for (int b; (b = preSplit()) > 0;)
5618 >                for (int i = baseIndex, f, h; batch > 0 &&
5619 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5620 >                    addToPendingCount(1);
5621                      (rights = new MapReduceEntriesTask<K,V,U>
5622 <                     (map, this, b, rights, transformer, reducer)).fork();
5623 <                U r = null, u;
5624 <                V v;
5625 <                while ((v = advanceValue()) != null) {
5626 <                    if ((u = transformer.apply(entryFor(nextKey,
5627 <                                                        v))) != null)
5622 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5623 >                      rights, transformer, reducer)).fork();
5624 >                }
5625 >                U r = null;
5626 >                for (Node<K,V> p; (p = advance()) != null; ) {
5627 >                    U u;
5628 >                    if ((u = transformer.apply(p)) != null)
5629                          r = (r == null) ? u : reducer.apply(r, u);
5630                  }
5631                  result = r;
5632                  CountedCompleter<?> c;
5633                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5634 +                    @SuppressWarnings("unchecked")
5635                      MapReduceEntriesTask<K,V,U>
5636                          t = (MapReduceEntriesTask<K,V,U>)c,
5637                          s = t.rights;
# Line 6313 | Line 5647 | public class ConcurrentHashMap<K,V>
5647          }
5648      }
5649  
5650 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5651 <        extends Traverser<K,V,U> {
5650 >    @SuppressWarnings("serial")
5651 >    static final class MapReduceMappingsTask<K,V,U>
5652 >        extends BulkTask<K,V,U> {
5653          final BiFunction<? super K, ? super V, ? extends U> transformer;
5654          final BiFunction<? super U, ? super U, ? extends U> reducer;
5655          U result;
5656          MapReduceMappingsTask<K,V,U> rights, nextRight;
5657          MapReduceMappingsTask
5658 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5658 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5659               MapReduceMappingsTask<K,V,U> nextRight,
5660               BiFunction<? super K, ? super V, ? extends U> transformer,
5661               BiFunction<? super U, ? super U, ? extends U> reducer) {
5662 <            super(m, p, b); this.nextRight = nextRight;
5662 >            super(p, b, i, f, t); this.nextRight = nextRight;
5663              this.transformer = transformer;
5664              this.reducer = reducer;
5665          }
5666          public final U getRawResult() { return result; }
5667 <        @SuppressWarnings("unchecked") public final void compute() {
5667 >        public final void compute() {
5668              final BiFunction<? super K, ? super V, ? extends U> transformer;
5669              final BiFunction<? super U, ? super U, ? extends U> reducer;
5670              if ((transformer = this.transformer) != null &&
5671                  (reducer = this.reducer) != null) {
5672 <                for (int b; (b = preSplit()) > 0;)
5672 >                for (int i = baseIndex, f, h; batch > 0 &&
5673 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5674 >                    addToPendingCount(1);
5675                      (rights = new MapReduceMappingsTask<K,V,U>
5676 <                     (map, this, b, rights, transformer, reducer)).fork();
5677 <                U r = null, u;
5678 <                V v;
5679 <                while ((v = advanceValue()) != null) {
5680 <                    if ((u = transformer.apply(nextKey, v)) != null)
5676 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5677 >                      rights, transformer, reducer)).fork();
5678 >                }
5679 >                U r = null;
5680 >                for (Node<K,V> p; (p = advance()) != null; ) {
5681 >                    U u;
5682 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5683                          r = (r == null) ? u : reducer.apply(r, u);
5684                  }
5685                  result = r;
5686                  CountedCompleter<?> c;
5687                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5688 +                    @SuppressWarnings("unchecked")
5689                      MapReduceMappingsTask<K,V,U>
5690                          t = (MapReduceMappingsTask<K,V,U>)c,
5691                          s = t.rights;
# Line 6361 | Line 5701 | public class ConcurrentHashMap<K,V>
5701          }
5702      }
5703  
5704 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5705 <        extends Traverser<K,V,Double> {
5704 >    @SuppressWarnings("serial")
5705 >    static final class MapReduceKeysToDoubleTask<K,V>
5706 >        extends BulkTask<K,V,Double> {
5707          final ToDoubleFunction<? super K> transformer;
5708          final DoubleBinaryOperator reducer;
5709          final double basis;
5710          double result;
5711          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5712          MapReduceKeysToDoubleTask
5713 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5713 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5714               MapReduceKeysToDoubleTask<K,V> nextRight,
5715               ToDoubleFunction<? super K> transformer,
5716               double basis,
5717               DoubleBinaryOperator reducer) {
5718 <            super(m, p, b); this.nextRight = nextRight;
5718 >            super(p, b, i, f, t); this.nextRight = nextRight;
5719              this.transformer = transformer;
5720              this.basis = basis; this.reducer = reducer;
5721          }
5722          public final Double getRawResult() { return result; }
5723 <        @SuppressWarnings("unchecked") public final void compute() {
5723 >        public final void compute() {
5724              final ToDoubleFunction<? super K> transformer;
5725              final DoubleBinaryOperator reducer;
5726              if ((transformer = this.transformer) != null &&
5727                  (reducer = this.reducer) != null) {
5728                  double r = this.basis;
5729 <                for (int b; (b = preSplit()) > 0;)
5729 >                for (int i = baseIndex, f, h; batch > 0 &&
5730 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5731 >                    addToPendingCount(1);
5732                      (rights = new MapReduceKeysToDoubleTask<K,V>
5733 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5734 <                K k;
5735 <                while ((k = advanceKey()) != null)
5736 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
5733 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5734 >                      rights, transformer, r, reducer)).fork();
5735 >                }
5736 >                for (Node<K,V> p; (p = advance()) != null; )
5737 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5738                  result = r;
5739                  CountedCompleter<?> c;
5740                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5741 +                    @SuppressWarnings("unchecked")
5742                      MapReduceKeysToDoubleTask<K,V>
5743                          t = (MapReduceKeysToDoubleTask<K,V>)c,
5744                          s = t.rights;
# Line 6406 | Line 5751 | public class ConcurrentHashMap<K,V>
5751          }
5752      }
5753  
5754 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5755 <        extends Traverser<K,V,Double> {
5754 >    @SuppressWarnings("serial")
5755 >    static final class MapReduceValuesToDoubleTask<K,V>
5756 >        extends BulkTask<K,V,Double> {
5757          final ToDoubleFunction<? super V> transformer;
5758          final DoubleBinaryOperator reducer;
5759          final double basis;
5760          double result;
5761          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5762          MapReduceValuesToDoubleTask
5763 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5763 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5764               MapReduceValuesToDoubleTask<K,V> nextRight,
5765               ToDoubleFunction<? super V> transformer,
5766               double basis,
5767               DoubleBinaryOperator reducer) {
5768 <            super(m, p, b); this.nextRight = nextRight;
5768 >            super(p, b, i, f, t); this.nextRight = nextRight;
5769              this.transformer = transformer;
5770              this.basis = basis; this.reducer = reducer;
5771          }
5772          public final Double getRawResult() { return result; }
5773 <        @SuppressWarnings("unchecked") public final void compute() {
5773 >        public final void compute() {
5774              final ToDoubleFunction<? super V> transformer;
5775              final DoubleBinaryOperator reducer;
5776              if ((transformer = this.transformer) != null &&
5777                  (reducer = this.reducer) != null) {
5778                  double r = this.basis;
5779 <                for (int b; (b = preSplit()) > 0;)
5779 >                for (int i = baseIndex, f, h; batch > 0 &&
5780 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5781 >                    addToPendingCount(1);
5782                      (rights = new MapReduceValuesToDoubleTask<K,V>
5783 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5784 <                V v;
5785 <                while ((v = advanceValue()) != null)
5786 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
5783 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5784 >                      rights, transformer, r, reducer)).fork();
5785 >                }
5786 >                for (Node<K,V> p; (p = advance()) != null; )
5787 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5788                  result = r;
5789                  CountedCompleter<?> c;
5790                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5791 +                    @SuppressWarnings("unchecked")
5792                      MapReduceValuesToDoubleTask<K,V>
5793                          t = (MapReduceValuesToDoubleTask<K,V>)c,
5794                          s = t.rights;
# Line 6451 | Line 5801 | public class ConcurrentHashMap<K,V>
5801          }
5802      }
5803  
5804 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5805 <        extends Traverser<K,V,Double> {
5804 >    @SuppressWarnings("serial")
5805 >    static final class MapReduceEntriesToDoubleTask<K,V>
5806 >        extends BulkTask<K,V,Double> {
5807          final ToDoubleFunction<Map.Entry<K,V>> transformer;
5808          final DoubleBinaryOperator reducer;
5809          final double basis;
5810          double result;
5811          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5812          MapReduceEntriesToDoubleTask
5813 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5813 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5814               MapReduceEntriesToDoubleTask<K,V> nextRight,
5815               ToDoubleFunction<Map.Entry<K,V>> transformer,
5816               double basis,
5817               DoubleBinaryOperator reducer) {
5818 <            super(m, p, b); this.nextRight = nextRight;
5818 >            super(p, b, i, f, t); this.nextRight = nextRight;
5819              this.transformer = transformer;
5820              this.basis = basis; this.reducer = reducer;
5821          }
5822          public final Double getRawResult() { return result; }
5823 <        @SuppressWarnings("unchecked") public final void compute() {
5823 >        public final void compute() {
5824              final ToDoubleFunction<Map.Entry<K,V>> transformer;
5825              final DoubleBinaryOperator reducer;
5826              if ((transformer = this.transformer) != null &&
5827                  (reducer = this.reducer) != null) {
5828                  double r = this.basis;
5829 <                for (int b; (b = preSplit()) > 0;)
5829 >                for (int i = baseIndex, f, h; batch > 0 &&
5830 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5831 >                    addToPendingCount(1);
5832                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5833 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5834 <                V v;
5835 <                while ((v = advanceValue()) != null)
5836 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
5837 <                                                                    v)));
5833 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5834 >                      rights, transformer, r, reducer)).fork();
5835 >                }
5836 >                for (Node<K,V> p; (p = advance()) != null; )
5837 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5838                  result = r;
5839                  CountedCompleter<?> c;
5840                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5841 +                    @SuppressWarnings("unchecked")
5842                      MapReduceEntriesToDoubleTask<K,V>
5843                          t = (MapReduceEntriesToDoubleTask<K,V>)c,
5844                          s = t.rights;
# Line 6497 | Line 5851 | public class ConcurrentHashMap<K,V>
5851          }
5852      }
5853  
5854 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5855 <        extends Traverser<K,V,Double> {
5854 >    @SuppressWarnings("serial")
5855 >    static final class MapReduceMappingsToDoubleTask<K,V>
5856 >        extends BulkTask<K,V,Double> {
5857          final ToDoubleBiFunction<? super K, ? super V> transformer;
5858          final DoubleBinaryOperator reducer;
5859          final double basis;
5860          double result;
5861          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5862          MapReduceMappingsToDoubleTask
5863 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5863 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5864               MapReduceMappingsToDoubleTask<K,V> nextRight,
5865               ToDoubleBiFunction<? super K, ? super V> transformer,
5866               double basis,
5867               DoubleBinaryOperator reducer) {
5868 <            super(m, p, b); this.nextRight = nextRight;
5868 >            super(p, b, i, f, t); this.nextRight = nextRight;
5869              this.transformer = transformer;
5870              this.basis = basis; this.reducer = reducer;
5871          }
5872          public final Double getRawResult() { return result; }
5873 <        @SuppressWarnings("unchecked") public final void compute() {
5873 >        public final void compute() {
5874              final ToDoubleBiFunction<? super K, ? super V> transformer;
5875              final DoubleBinaryOperator reducer;
5876              if ((transformer = this.transformer) != null &&
5877                  (reducer = this.reducer) != null) {
5878                  double r = this.basis;
5879 <                for (int b; (b = preSplit()) > 0;)
5879 >                for (int i = baseIndex, f, h; batch > 0 &&
5880 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5881 >                    addToPendingCount(1);
5882                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5883 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5884 <                V v;
5885 <                while ((v = advanceValue()) != null)
5886 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
5883 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5884 >                      rights, transformer, r, reducer)).fork();
5885 >                }
5886 >                for (Node<K,V> p; (p = advance()) != null; )
5887 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5888                  result = r;
5889                  CountedCompleter<?> c;
5890                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5891 +                    @SuppressWarnings("unchecked")
5892                      MapReduceMappingsToDoubleTask<K,V>
5893                          t = (MapReduceMappingsToDoubleTask<K,V>)c,
5894                          s = t.rights;
# Line 6542 | Line 5901 | public class ConcurrentHashMap<K,V>
5901          }
5902      }
5903  
5904 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5905 <        extends Traverser<K,V,Long> {
5904 >    @SuppressWarnings("serial")
5905 >    static final class MapReduceKeysToLongTask<K,V>
5906 >        extends BulkTask<K,V,Long> {
5907          final ToLongFunction<? super K> transformer;
5908          final LongBinaryOperator reducer;
5909          final long basis;
5910          long result;
5911          MapReduceKeysToLongTask<K,V> rights, nextRight;
5912          MapReduceKeysToLongTask
5913 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5913 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5914               MapReduceKeysToLongTask<K,V> nextRight,
5915               ToLongFunction<? super K> transformer,
5916               long basis,
5917               LongBinaryOperator reducer) {
5918 <            super(m, p, b); this.nextRight = nextRight;
5918 >            super(p, b, i, f, t); this.nextRight = nextRight;
5919              this.transformer = transformer;
5920              this.basis = basis; this.reducer = reducer;
5921          }
5922          public final Long getRawResult() { return result; }
5923 <        @SuppressWarnings("unchecked") public final void compute() {
5923 >        public final void compute() {
5924              final ToLongFunction<? super K> transformer;
5925              final LongBinaryOperator reducer;
5926              if ((transformer = this.transformer) != null &&
5927                  (reducer = this.reducer) != null) {
5928                  long r = this.basis;
5929 <                for (int b; (b = preSplit()) > 0;)
5929 >                for (int i = baseIndex, f, h; batch > 0 &&
5930 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5931 >                    addToPendingCount(1);
5932                      (rights = new MapReduceKeysToLongTask<K,V>
5933 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5934 <                K k;
5935 <                while ((k = advanceKey()) != null)
5936 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(k));
5933 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5934 >                      rights, transformer, r, reducer)).fork();
5935 >                }
5936 >                for (Node<K,V> p; (p = advance()) != null; )
5937 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5938                  result = r;
5939                  CountedCompleter<?> c;
5940                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 +                    @SuppressWarnings("unchecked")
5942                      MapReduceKeysToLongTask<K,V>
5943                          t = (MapReduceKeysToLongTask<K,V>)c,
5944                          s = t.rights;
# Line 6587 | Line 5951 | public class ConcurrentHashMap<K,V>
5951          }
5952      }
5953  
5954 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5955 <        extends Traverser<K,V,Long> {
5954 >    @SuppressWarnings("serial")
5955 >    static final class MapReduceValuesToLongTask<K,V>
5956 >        extends BulkTask<K,V,Long> {
5957          final ToLongFunction<? super V> transformer;
5958          final LongBinaryOperator reducer;
5959          final long basis;
5960          long result;
5961          MapReduceValuesToLongTask<K,V> rights, nextRight;
5962          MapReduceValuesToLongTask
5963 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5963 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5964               MapReduceValuesToLongTask<K,V> nextRight,
5965               ToLongFunction<? super V> transformer,
5966               long basis,
5967               LongBinaryOperator reducer) {
5968 <            super(m, p, b); this.nextRight = nextRight;
5968 >            super(p, b, i, f, t); this.nextRight = nextRight;
5969              this.transformer = transformer;
5970              this.basis = basis; this.reducer = reducer;
5971          }
5972          public final Long getRawResult() { return result; }
5973 <        @SuppressWarnings("unchecked") public final void compute() {
5973 >        public final void compute() {
5974              final ToLongFunction<? super V> transformer;
5975              final LongBinaryOperator reducer;
5976              if ((transformer = this.transformer) != null &&
5977                  (reducer = this.reducer) != null) {
5978                  long r = this.basis;
5979 <                for (int b; (b = preSplit()) > 0;)
5979 >                for (int i = baseIndex, f, h; batch > 0 &&
5980 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5981 >                    addToPendingCount(1);
5982                      (rights = new MapReduceValuesToLongTask<K,V>
5983 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5984 <                V v;
5985 <                while ((v = advanceValue()) != null)
5986 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(v));
5983 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5984 >                      rights, transformer, r, reducer)).fork();
5985 >                }
5986 >                for (Node<K,V> p; (p = advance()) != null; )
5987 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5988                  result = r;
5989                  CountedCompleter<?> c;
5990                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 +                    @SuppressWarnings("unchecked")
5992                      MapReduceValuesToLongTask<K,V>
5993                          t = (MapReduceValuesToLongTask<K,V>)c,
5994                          s = t.rights;
# Line 6632 | Line 6001 | public class ConcurrentHashMap<K,V>
6001          }
6002      }
6003  
6004 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6005 <        extends Traverser<K,V,Long> {
6004 >    @SuppressWarnings("serial")
6005 >    static final class MapReduceEntriesToLongTask<K,V>
6006 >        extends BulkTask<K,V,Long> {
6007          final ToLongFunction<Map.Entry<K,V>> transformer;
6008          final LongBinaryOperator reducer;
6009          final long basis;
6010          long result;
6011          MapReduceEntriesToLongTask<K,V> rights, nextRight;
6012          MapReduceEntriesToLongTask
6013 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6013 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6014               MapReduceEntriesToLongTask<K,V> nextRight,
6015               ToLongFunction<Map.Entry<K,V>> transformer,
6016               long basis,
6017               LongBinaryOperator reducer) {
6018 <            super(m, p, b); this.nextRight = nextRight;
6018 >            super(p, b, i, f, t); this.nextRight = nextRight;
6019              this.transformer = transformer;
6020              this.basis = basis; this.reducer = reducer;
6021          }
6022          public final Long getRawResult() { return result; }
6023 <        @SuppressWarnings("unchecked") public final void compute() {
6023 >        public final void compute() {
6024              final ToLongFunction<Map.Entry<K,V>> transformer;
6025              final LongBinaryOperator reducer;
6026              if ((transformer = this.transformer) != null &&
6027                  (reducer = this.reducer) != null) {
6028                  long r = this.basis;
6029 <                for (int b; (b = preSplit()) > 0;)
6029 >                for (int i = baseIndex, f, h; batch > 0 &&
6030 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6031 >                    addToPendingCount(1);
6032                      (rights = new MapReduceEntriesToLongTask<K,V>
6033 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6034 <                V v;
6035 <                while ((v = advanceValue()) != null)
6036 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6033 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6034 >                      rights, transformer, r, reducer)).fork();
6035 >                }
6036 >                for (Node<K,V> p; (p = advance()) != null; )
6037 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6038                  result = r;
6039                  CountedCompleter<?> c;
6040                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6041 +                    @SuppressWarnings("unchecked")
6042                      MapReduceEntriesToLongTask<K,V>
6043                          t = (MapReduceEntriesToLongTask<K,V>)c,
6044                          s = t.rights;
# Line 6677 | Line 6051 | public class ConcurrentHashMap<K,V>
6051          }
6052      }
6053  
6054 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6055 <        extends Traverser<K,V,Long> {
6054 >    @SuppressWarnings("serial")
6055 >    static final class MapReduceMappingsToLongTask<K,V>
6056 >        extends BulkTask<K,V,Long> {
6057          final ToLongBiFunction<? super K, ? super V> transformer;
6058          final LongBinaryOperator reducer;
6059          final long basis;
6060          long result;
6061          MapReduceMappingsToLongTask<K,V> rights, nextRight;
6062          MapReduceMappingsToLongTask
6063 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6063 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6064               MapReduceMappingsToLongTask<K,V> nextRight,
6065               ToLongBiFunction<? super K, ? super V> transformer,
6066               long basis,
6067               LongBinaryOperator reducer) {
6068 <            super(m, p, b); this.nextRight = nextRight;
6068 >            super(p, b, i, f, t); this.nextRight = nextRight;
6069              this.transformer = transformer;
6070              this.basis = basis; this.reducer = reducer;
6071          }
6072          public final Long getRawResult() { return result; }
6073 <        @SuppressWarnings("unchecked") public final void compute() {
6073 >        public final void compute() {
6074              final ToLongBiFunction<? super K, ? super V> transformer;
6075              final LongBinaryOperator reducer;
6076              if ((transformer = this.transformer) != null &&
6077                  (reducer = this.reducer) != null) {
6078                  long r = this.basis;
6079 <                for (int b; (b = preSplit()) > 0;)
6079 >                for (int i = baseIndex, f, h; batch > 0 &&
6080 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6081 >                    addToPendingCount(1);
6082                      (rights = new MapReduceMappingsToLongTask<K,V>
6083 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6084 <                V v;
6085 <                while ((v = advanceValue()) != null)
6086 <                    r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6083 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6084 >                      rights, transformer, r, reducer)).fork();
6085 >                }
6086 >                for (Node<K,V> p; (p = advance()) != null; )
6087 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6088                  result = r;
6089                  CountedCompleter<?> c;
6090                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6091 +                    @SuppressWarnings("unchecked")
6092                      MapReduceMappingsToLongTask<K,V>
6093                          t = (MapReduceMappingsToLongTask<K,V>)c,
6094                          s = t.rights;
# Line 6722 | Line 6101 | public class ConcurrentHashMap<K,V>
6101          }
6102      }
6103  
6104 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6105 <        extends Traverser<K,V,Integer> {
6104 >    @SuppressWarnings("serial")
6105 >    static final class MapReduceKeysToIntTask<K,V>
6106 >        extends BulkTask<K,V,Integer> {
6107          final ToIntFunction<? super K> transformer;
6108          final IntBinaryOperator reducer;
6109          final int basis;
6110          int result;
6111          MapReduceKeysToIntTask<K,V> rights, nextRight;
6112          MapReduceKeysToIntTask
6113 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6113 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6114               MapReduceKeysToIntTask<K,V> nextRight,
6115               ToIntFunction<? super K> transformer,
6116               int basis,
6117               IntBinaryOperator reducer) {
6118 <            super(m, p, b); this.nextRight = nextRight;
6118 >            super(p, b, i, f, t); this.nextRight = nextRight;
6119              this.transformer = transformer;
6120              this.basis = basis; this.reducer = reducer;
6121          }
6122          public final Integer getRawResult() { return result; }
6123 <        @SuppressWarnings("unchecked") public final void compute() {
6123 >        public final void compute() {
6124              final ToIntFunction<? super K> transformer;
6125              final IntBinaryOperator reducer;
6126              if ((transformer = this.transformer) != null &&
6127                  (reducer = this.reducer) != null) {
6128                  int r = this.basis;
6129 <                for (int b; (b = preSplit()) > 0;)
6129 >                for (int i = baseIndex, f, h; batch > 0 &&
6130 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6131 >                    addToPendingCount(1);
6132                      (rights = new MapReduceKeysToIntTask<K,V>
6133 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6134 <                K k;
6135 <                while ((k = advanceKey()) != null)
6136 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(k));
6133 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6134 >                      rights, transformer, r, reducer)).fork();
6135 >                }
6136 >                for (Node<K,V> p; (p = advance()) != null; )
6137 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6138                  result = r;
6139                  CountedCompleter<?> c;
6140                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6141 +                    @SuppressWarnings("unchecked")
6142                      MapReduceKeysToIntTask<K,V>
6143                          t = (MapReduceKeysToIntTask<K,V>)c,
6144                          s = t.rights;
# Line 6767 | Line 6151 | public class ConcurrentHashMap<K,V>
6151          }
6152      }
6153  
6154 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6155 <        extends Traverser<K,V,Integer> {
6154 >    @SuppressWarnings("serial")
6155 >    static final class MapReduceValuesToIntTask<K,V>
6156 >        extends BulkTask<K,V,Integer> {
6157          final ToIntFunction<? super V> transformer;
6158          final IntBinaryOperator reducer;
6159          final int basis;
6160          int result;
6161          MapReduceValuesToIntTask<K,V> rights, nextRight;
6162          MapReduceValuesToIntTask
6163 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6163 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6164               MapReduceValuesToIntTask<K,V> nextRight,
6165               ToIntFunction<? super V> transformer,
6166               int basis,
6167               IntBinaryOperator reducer) {
6168 <            super(m, p, b); this.nextRight = nextRight;
6168 >            super(p, b, i, f, t); this.nextRight = nextRight;
6169              this.transformer = transformer;
6170              this.basis = basis; this.reducer = reducer;
6171          }
6172          public final Integer getRawResult() { return result; }
6173 <        @SuppressWarnings("unchecked") public final void compute() {
6173 >        public final void compute() {
6174              final ToIntFunction<? super V> transformer;
6175              final IntBinaryOperator reducer;
6176              if ((transformer = this.transformer) != null &&
6177                  (reducer = this.reducer) != null) {
6178                  int r = this.basis;
6179 <                for (int b; (b = preSplit()) > 0;)
6179 >                for (int i = baseIndex, f, h; batch > 0 &&
6180 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6181 >                    addToPendingCount(1);
6182                      (rights = new MapReduceValuesToIntTask<K,V>
6183 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6184 <                V v;
6185 <                while ((v = advanceValue()) != null)
6186 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6183 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6184 >                      rights, transformer, r, reducer)).fork();
6185 >                }
6186 >                for (Node<K,V> p; (p = advance()) != null; )
6187 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6188                  result = r;
6189                  CountedCompleter<?> c;
6190                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6191 +                    @SuppressWarnings("unchecked")
6192                      MapReduceValuesToIntTask<K,V>
6193                          t = (MapReduceValuesToIntTask<K,V>)c,
6194                          s = t.rights;
# Line 6812 | Line 6201 | public class ConcurrentHashMap<K,V>
6201          }
6202      }
6203  
6204 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6205 <        extends Traverser<K,V,Integer> {
6204 >    @SuppressWarnings("serial")
6205 >    static final class MapReduceEntriesToIntTask<K,V>
6206 >        extends BulkTask<K,V,Integer> {
6207          final ToIntFunction<Map.Entry<K,V>> transformer;
6208          final IntBinaryOperator reducer;
6209          final int basis;
6210          int result;
6211          MapReduceEntriesToIntTask<K,V> rights, nextRight;
6212          MapReduceEntriesToIntTask
6213 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6213 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6214               MapReduceEntriesToIntTask<K,V> nextRight,
6215               ToIntFunction<Map.Entry<K,V>> transformer,
6216               int basis,
6217               IntBinaryOperator reducer) {
6218 <            super(m, p, b); this.nextRight = nextRight;
6218 >            super(p, b, i, f, t); this.nextRight = nextRight;
6219              this.transformer = transformer;
6220              this.basis = basis; this.reducer = reducer;
6221          }
6222          public final Integer getRawResult() { return result; }
6223 <        @SuppressWarnings("unchecked") public final void compute() {
6223 >        public final void compute() {
6224              final ToIntFunction<Map.Entry<K,V>> transformer;
6225              final IntBinaryOperator reducer;
6226              if ((transformer = this.transformer) != null &&
6227                  (reducer = this.reducer) != null) {
6228                  int r = this.basis;
6229 <                for (int b; (b = preSplit()) > 0;)
6229 >                for (int i = baseIndex, f, h; batch > 0 &&
6230 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6231 >                    addToPendingCount(1);
6232                      (rights = new MapReduceEntriesToIntTask<K,V>
6233 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6234 <                V v;
6235 <                while ((v = advanceValue()) != null)
6236 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6237 <                                                                    v)));
6233 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6234 >                      rights, transformer, r, reducer)).fork();
6235 >                }
6236 >                for (Node<K,V> p; (p = advance()) != null; )
6237 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6238                  result = r;
6239                  CountedCompleter<?> c;
6240                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6241 +                    @SuppressWarnings("unchecked")
6242                      MapReduceEntriesToIntTask<K,V>
6243                          t = (MapReduceEntriesToIntTask<K,V>)c,
6244                          s = t.rights;
# Line 6858 | Line 6251 | public class ConcurrentHashMap<K,V>
6251          }
6252      }
6253  
6254 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6255 <        extends Traverser<K,V,Integer> {
6254 >    @SuppressWarnings("serial")
6255 >    static final class MapReduceMappingsToIntTask<K,V>
6256 >        extends BulkTask<K,V,Integer> {
6257          final ToIntBiFunction<? super K, ? super V> transformer;
6258          final IntBinaryOperator reducer;
6259          final int basis;
6260          int result;
6261          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6262          MapReduceMappingsToIntTask
6263 <            (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6263 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6264               MapReduceMappingsToIntTask<K,V> nextRight,
6265               ToIntBiFunction<? super K, ? super V> transformer,
6266               int basis,
6267               IntBinaryOperator reducer) {
6268 <            super(m, p, b); this.nextRight = nextRight;
6268 >            super(p, b, i, f, t); this.nextRight = nextRight;
6269              this.transformer = transformer;
6270              this.basis = basis; this.reducer = reducer;
6271          }
6272          public final Integer getRawResult() { return result; }
6273 <        @SuppressWarnings("unchecked") public final void compute() {
6273 >        public final void compute() {
6274              final ToIntBiFunction<? super K, ? super V> transformer;
6275              final IntBinaryOperator reducer;
6276              if ((transformer = this.transformer) != null &&
6277                  (reducer = this.reducer) != null) {
6278                  int r = this.basis;
6279 <                for (int b; (b = preSplit()) > 0;)
6279 >                for (int i = baseIndex, f, h; batch > 0 &&
6280 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6281 >                    addToPendingCount(1);
6282                      (rights = new MapReduceMappingsToIntTask<K,V>
6283 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6284 <                V v;
6285 <                while ((v = advanceValue()) != null)
6286 <                    r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6283 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6284 >                      rights, transformer, r, reducer)).fork();
6285 >                }
6286 >                for (Node<K,V> p; (p = advance()) != null; )
6287 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6288                  result = r;
6289                  CountedCompleter<?> c;
6290                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6291 +                    @SuppressWarnings("unchecked")
6292                      MapReduceMappingsToIntTask<K,V>
6293                          t = (MapReduceMappingsToIntTask<K,V>)c,
6294                          s = t.rights;
# Line 6904 | Line 6302 | public class ConcurrentHashMap<K,V>
6302      }
6303  
6304      // Unsafe mechanics
6305 <    private static final sun.misc.Unsafe U;
6305 >    private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6306      private static final long SIZECTL;
6307      private static final long TRANSFERINDEX;
6910    private static final long TRANSFERORIGIN;
6308      private static final long BASECOUNT;
6309      private static final long CELLSBUSY;
6310      private static final long CELLVALUE;
6311 <    private static final long ABASE;
6311 >    private static final int ABASE;
6312      private static final int ASHIFT;
6313  
6314      static {
6315          try {
6919            U = sun.misc.Unsafe.getUnsafe();
6920            Class<?> k = ConcurrentHashMap.class;
6316              SIZECTL = U.objectFieldOffset
6317 <                (k.getDeclaredField("sizeCtl"));
6317 >                (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6318              TRANSFERINDEX = U.objectFieldOffset
6319 <                (k.getDeclaredField("transferIndex"));
6925 <            TRANSFERORIGIN = U.objectFieldOffset
6926 <                (k.getDeclaredField("transferOrigin"));
6319 >                (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6320              BASECOUNT = U.objectFieldOffset
6321 <                (k.getDeclaredField("baseCount"));
6321 >                (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6322              CELLSBUSY = U.objectFieldOffset
6323 <                (k.getDeclaredField("cellsBusy"));
6324 <            Class<?> ck = Cell.class;
6323 >                (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6324 >
6325              CELLVALUE = U.objectFieldOffset
6326 <                (ck.getDeclaredField("value"));
6327 <            Class<?> sc = Node[].class;
6328 <            ABASE = U.arrayBaseOffset(sc);
6329 <            int scale = U.arrayIndexScale(sc);
6326 >                (CounterCell.class.getDeclaredField("value"));
6327 >
6328 >            ABASE = U.arrayBaseOffset(Node[].class);
6329 >            int scale = U.arrayIndexScale(Node[].class);
6330              if ((scale & (scale - 1)) != 0)
6331 <                throw new Error("data type scale not a power of two");
6331 >                throw new Error("array index scale not a power of two");
6332              ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6333 <        } catch (Exception e) {
6333 >        } catch (ReflectiveOperationException e) {
6334              throw new Error(e);
6335          }
6943    }
6336  
6337 +        // Reduce the risk of rare disastrous classloading in first call to
6338 +        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6339 +        Class<?> ensureLoaded = LockSupport.class;
6340 +    }
6341   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines