ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.99 by dl, Tue Apr 12 22:52:07 2011 UTC vs.
Revision 1.299 by jsr166, Sat Mar 18 19:19:04 2017 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommhons.org/publicdomain/zero/1.0/
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.atomic.AtomicReference;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42 > import jdk.internal.misc.Unsafe;
43  
44   /**
45   * A hash table supporting full concurrency of retrievals and
46 < * adjustable expected concurrency for updates. This class obeys the
46 > * high expected concurrency for updates. This class obeys the
47   * same functional specification as {@link java.util.Hashtable}, and
48   * includes versions of methods corresponding to each method of
49 < * <tt>Hashtable</tt>. However, even though all operations are
49 > * {@code Hashtable}. However, even though all operations are
50   * thread-safe, retrieval operations do <em>not</em> entail locking,
51   * and there is <em>not</em> any support for locking the entire table
52   * in a way that prevents all access.  This class is fully
53 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
53 > * interoperable with {@code Hashtable} in programs that rely on its
54   * thread safety but not on its synchronization details.
55   *
56 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
57 < * block, so may overlap with update operations (including
58 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
59 < * of the most recently <em>completed</em> update operations holding
60 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
61 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
62 < * removal of only some entries.  Similarly, Iterators and
63 < * Enumerations return elements reflecting the state of the hash table
64 < * at some point at or since the creation of the iterator/enumeration.
65 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
56 > * <p>Retrieval operations (including {@code get}) generally do not
57 > * block, so may overlap with update operations (including {@code put}
58 > * and {@code remove}). Retrievals reflect the results of the most
59 > * recently <em>completed</em> update operations holding upon their
60 > * onset. (More formally, an update operation for a given key bears a
61 > * <em>happens-before</em> relation with any (non-null) retrieval for
62 > * that key reporting the updated value.)  For aggregate operations
63 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 > * reflect insertion or removal of only some entries.  Similarly,
65 > * Iterators, Spliterators and Enumerations return elements reflecting the
66 > * state of the hash table at some point at or since the creation of the
67 > * iterator/enumeration.  They do <em>not</em> throw {@link
68 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
69   * However, iterators are designed to be used by only one thread at a time.
70 + * Bear in mind that the results of aggregate status methods including
71 + * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 + * useful only when a map is not undergoing concurrent updates in other threads.
73 + * Otherwise the results of these methods reflect transient states
74 + * that may be adequate for monitoring or estimation purposes, but not
75 + * for program control.
76 + *
77 + * <p>The table is dynamically expanded when there are too many
78 + * collisions (i.e., keys that have distinct hash codes but fall into
79 + * the same slot modulo the table size), with the expected average
80 + * effect of maintaining roughly two bins per mapping (corresponding
81 + * to a 0.75 load factor threshold for resizing). There may be much
82 + * variance around this average as mappings are added and removed, but
83 + * overall, this maintains a commonly accepted time/space tradeoff for
84 + * hash tables.  However, resizing this or any other kind of hash
85 + * table may be a relatively slow operation. When possible, it is a
86 + * good idea to provide a size estimate as an optional {@code
87 + * initialCapacity} constructor argument. An additional optional
88 + * {@code loadFactor} constructor argument provides a further means of
89 + * customizing initial table capacity by specifying the table density
90 + * to be used in calculating the amount of space to allocate for the
91 + * given number of elements.  Also, for compatibility with previous
92 + * versions of this class, constructors may optionally specify an
93 + * expected {@code concurrencyLevel} as an additional hint for
94 + * internal sizing.  Note that using many keys with exactly the same
95 + * {@code hashCode()} is a sure way to slow down performance of any
96 + * hash table. To ameliorate impact, when keys are {@link Comparable},
97 + * this class may use comparison order among keys to help break ties.
98 + *
99 + * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 + * (using {@link #keySet(Object)} when only keys are of interest, and the
102 + * mapped values are (perhaps transiently) not used or all take the
103 + * same mapping value.
104   *
105 < * <p> The allowed concurrency among update operations is guided by
106 < * the optional <tt>concurrencyLevel</tt> constructor argument
107 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
108 < * table is internally partitioned to try to permit the indicated
109 < * number of concurrent updates without contention. Because placement
110 < * in hash tables is essentially random, the actual concurrency will
45 < * vary.  Ideally, you should choose a value to accommodate as many
46 < * threads as will ever concurrently modify the table. Using a
47 < * significantly higher value than you need can waste space and time,
48 < * and a significantly lower value can lead to thread contention. But
49 < * overestimates and underestimates within an order of magnitude do
50 < * not usually have much noticeable impact. A value of one is
51 < * appropriate when it is known that only one thread will modify and
52 < * all others will only read. Also, resizing this or any other kind of
53 < * hash table is a relatively slow operation, so, when possible, it is
54 < * a good idea to provide estimates of expected table sizes in
55 < * constructors.
105 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 > * form of histogram or multiset) by using {@link
107 > * java.util.concurrent.atomic.LongAdder} values and initializing via
108 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111   *
112   * <p>This class and its views and iterators implement all of the
113   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114   * interfaces.
115   *
116 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
117 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
116 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 > * does <em>not</em> allow {@code null} to be used as a key or value.
118 > *
119 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 > * operations that, unlike most {@link Stream} methods, are designed
121 > * to be safely, and often sensibly, applied even with maps that are
122 > * being concurrently updated by other threads; for example, when
123 > * computing a snapshot summary of the values in a shared registry.
124 > * There are three kinds of operation, each with four forms, accepting
125 > * functions with keys, values, entries, and (key, value) pairs as
126 > * arguments and/or return values. Because the elements of a
127 > * ConcurrentHashMap are not ordered in any particular way, and may be
128 > * processed in different orders in different parallel executions, the
129 > * correctness of supplied functions should not depend on any
130 > * ordering, or on any other objects or values that may transiently
131 > * change while computation is in progress; and except for forEach
132 > * actions, should ideally be side-effect-free. Bulk operations on
133 > * {@link java.util.Map.Entry} objects do not support method {@code
134 > * setValue}.
135 > *
136 > * <ul>
137 > * <li>forEach: Performs a given action on each element.
138 > * A variant form applies a given transformation on each element
139 > * before performing the action.
140 > *
141 > * <li>search: Returns the first available non-null result of
142 > * applying a given function on each element; skipping further
143 > * search when a result is found.
144 > *
145 > * <li>reduce: Accumulates each element.  The supplied reduction
146 > * function cannot rely on ordering (more formally, it should be
147 > * both associative and commutative).  There are five variants:
148 > *
149 > * <ul>
150 > *
151 > * <li>Plain reductions. (There is not a form of this method for
152 > * (key, value) function arguments since there is no corresponding
153 > * return type.)
154 > *
155 > * <li>Mapped reductions that accumulate the results of a given
156 > * function applied to each element.
157 > *
158 > * <li>Reductions to scalar doubles, longs, and ints, using a
159 > * given basis value.
160 > *
161 > * </ul>
162 > * </ul>
163 > *
164 > * <p>These bulk operations accept a {@code parallelismThreshold}
165 > * argument. Methods proceed sequentially if the current map size is
166 > * estimated to be less than the given threshold. Using a value of
167 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
168 > * of {@code 1} results in maximal parallelism by partitioning into
169 > * enough subtasks to fully utilize the {@link
170 > * ForkJoinPool#commonPool()} that is used for all parallel
171 > * computations. Normally, you would initially choose one of these
172 > * extreme values, and then measure performance of using in-between
173 > * values that trade off overhead versus throughput.
174 > *
175 > * <p>The concurrency properties of bulk operations follow
176 > * from those of ConcurrentHashMap: Any non-null result returned
177 > * from {@code get(key)} and related access methods bears a
178 > * happens-before relation with the associated insertion or
179 > * update.  The result of any bulk operation reflects the
180 > * composition of these per-element relations (but is not
181 > * necessarily atomic with respect to the map as a whole unless it
182 > * is somehow known to be quiescent).  Conversely, because keys
183 > * and values in the map are never null, null serves as a reliable
184 > * atomic indicator of the current lack of any result.  To
185 > * maintain this property, null serves as an implicit basis for
186 > * all non-scalar reduction operations. For the double, long, and
187 > * int versions, the basis should be one that, when combined with
188 > * any other value, returns that other value (more formally, it
189 > * should be the identity element for the reduction). Most common
190 > * reductions have these properties; for example, computing a sum
191 > * with basis 0 or a minimum with basis MAX_VALUE.
192 > *
193 > * <p>Search and transformation functions provided as arguments
194 > * should similarly return null to indicate the lack of any result
195 > * (in which case it is not used). In the case of mapped
196 > * reductions, this also enables transformations to serve as
197 > * filters, returning null (or, in the case of primitive
198 > * specializations, the identity basis) if the element should not
199 > * be combined. You can create compound transformations and
200 > * filterings by composing them yourself under this "null means
201 > * there is nothing there now" rule before using them in search or
202 > * reduce operations.
203 > *
204 > * <p>Methods accepting and/or returning Entry arguments maintain
205 > * key-value associations. They may be useful for example when
206 > * finding the key for the greatest value. Note that "plain" Entry
207 > * arguments can be supplied using {@code new
208 > * AbstractMap.SimpleEntry(k,v)}.
209 > *
210 > * <p>Bulk operations may complete abruptly, throwing an
211 > * exception encountered in the application of a supplied
212 > * function. Bear in mind when handling such exceptions that other
213 > * concurrently executing functions could also have thrown
214 > * exceptions, or would have done so if the first exception had
215 > * not occurred.
216 > *
217 > * <p>Speedups for parallel compared to sequential forms are common
218 > * but not guaranteed.  Parallel operations involving brief functions
219 > * on small maps may execute more slowly than sequential forms if the
220 > * underlying work to parallelize the computation is more expensive
221 > * than the computation itself.  Similarly, parallelization may not
222 > * lead to much actual parallelism if all processors are busy
223 > * performing unrelated tasks.
224 > *
225 > * <p>All arguments to all task methods must be non-null.
226   *
227   * <p>This class is a member of the
228   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 70 | Line 233 | import java.io.ObjectOutputStream;
233   * @param <K> the type of keys maintained by this map
234   * @param <V> the type of mapped values
235   */
236 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
237 <        implements ConcurrentMap<K, V>, Serializable {
236 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
237 >    implements ConcurrentMap<K,V>, Serializable {
238      private static final long serialVersionUID = 7249069246763182397L;
239  
240      /*
241 <     * The basic strategy is to subdivide the table among Segments,
242 <     * each of which itself is a concurrently readable hash table.  To
243 <     * reduce footprint, all but one segments are constructed only
244 <     * when first needed (see ensureSegment). To maintain visibility
245 <     * in the presence of lazy construction, accesses to segments as
246 <     * well as elements of segment's table must use volatile access,
247 <     * which is done via Unsafe within methods segmentAt etc
248 <     * below. These provide the functionality of AtomicReferenceArrays
249 <     * but reduce the levels of indirection. Additionally,
250 <     * volatile-writes of table elements and entry "next" fields
251 <     * within locked operations use the cheaper "lazySet" forms of
252 <     * writes (via putOrderedObject) because these write are always
253 <     * followed by lock releases that maintain sequential consistency
254 <     * of table updates.
255 <     *
256 <     * Historical note: The previous version of this class relied
257 <     * heavily on "final" fields, which avoided some volatile reads at
258 <     * the expense of a large initial footprint.  Some remnants of
259 <     * that design (including forced construction of segment 0) exist
260 <     * to ensure serialization compatibility.
241 >     * Overview:
242 >     *
243 >     * The primary design goal of this hash table is to maintain
244 >     * concurrent readability (typically method get(), but also
245 >     * iterators and related methods) while minimizing update
246 >     * contention. Secondary goals are to keep space consumption about
247 >     * the same or better than java.util.HashMap, and to support high
248 >     * initial insertion rates on an empty table by many threads.
249 >     *
250 >     * This map usually acts as a binned (bucketed) hash table.  Each
251 >     * key-value mapping is held in a Node.  Most nodes are instances
252 >     * of the basic Node class with hash, key, value, and next
253 >     * fields. However, various subclasses exist: TreeNodes are
254 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
255 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
256 >     * of bins during resizing. ReservationNodes are used as
257 >     * placeholders while establishing values in computeIfAbsent and
258 >     * related methods.  The types TreeBin, ForwardingNode, and
259 >     * ReservationNode do not hold normal user keys, values, or
260 >     * hashes, and are readily distinguishable during search etc
261 >     * because they have negative hash fields and null key and value
262 >     * fields. (These special nodes are either uncommon or transient,
263 >     * so the impact of carrying around some unused fields is
264 >     * insignificant.)
265 >     *
266 >     * The table is lazily initialized to a power-of-two size upon the
267 >     * first insertion.  Each bin in the table normally contains a
268 >     * list of Nodes (most often, the list has only zero or one Node).
269 >     * Table accesses require volatile/atomic reads, writes, and
270 >     * CASes.  Because there is no other way to arrange this without
271 >     * adding further indirections, we use intrinsics
272 >     * (jdk.internal.misc.Unsafe) operations.
273 >     *
274 >     * We use the top (sign) bit of Node hash fields for control
275 >     * purposes -- it is available anyway because of addressing
276 >     * constraints.  Nodes with negative hash fields are specially
277 >     * handled or ignored in map methods.
278 >     *
279 >     * Insertion (via put or its variants) of the first node in an
280 >     * empty bin is performed by just CASing it to the bin.  This is
281 >     * by far the most common case for put operations under most
282 >     * key/hash distributions.  Other update operations (insert,
283 >     * delete, and replace) require locks.  We do not want to waste
284 >     * the space required to associate a distinct lock object with
285 >     * each bin, so instead use the first node of a bin list itself as
286 >     * a lock. Locking support for these locks relies on builtin
287 >     * "synchronized" monitors.
288 >     *
289 >     * Using the first node of a list as a lock does not by itself
290 >     * suffice though: When a node is locked, any update must first
291 >     * validate that it is still the first node after locking it, and
292 >     * retry if not. Because new nodes are always appended to lists,
293 >     * once a node is first in a bin, it remains first until deleted
294 >     * or the bin becomes invalidated (upon resizing).
295 >     *
296 >     * The main disadvantage of per-bin locks is that other update
297 >     * operations on other nodes in a bin list protected by the same
298 >     * lock can stall, for example when user equals() or mapping
299 >     * functions take a long time.  However, statistically, under
300 >     * random hash codes, this is not a common problem.  Ideally, the
301 >     * frequency of nodes in bins follows a Poisson distribution
302 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
303 >     * parameter of about 0.5 on average, given the resizing threshold
304 >     * of 0.75, although with a large variance because of resizing
305 >     * granularity. Ignoring variance, the expected occurrences of
306 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
307 >     * first values are:
308 >     *
309 >     * 0:    0.60653066
310 >     * 1:    0.30326533
311 >     * 2:    0.07581633
312 >     * 3:    0.01263606
313 >     * 4:    0.00157952
314 >     * 5:    0.00015795
315 >     * 6:    0.00001316
316 >     * 7:    0.00000094
317 >     * 8:    0.00000006
318 >     * more: less than 1 in ten million
319 >     *
320 >     * Lock contention probability for two threads accessing distinct
321 >     * elements is roughly 1 / (8 * #elements) under random hashes.
322 >     *
323 >     * Actual hash code distributions encountered in practice
324 >     * sometimes deviate significantly from uniform randomness.  This
325 >     * includes the case when N > (1<<30), so some keys MUST collide.
326 >     * Similarly for dumb or hostile usages in which multiple keys are
327 >     * designed to have identical hash codes or ones that differs only
328 >     * in masked-out high bits. So we use a secondary strategy that
329 >     * applies when the number of nodes in a bin exceeds a
330 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
331 >     * specialized form of red-black trees), bounding search time to
332 >     * O(log N).  Each search step in a TreeBin is at least twice as
333 >     * slow as in a regular list, but given that N cannot exceed
334 >     * (1<<64) (before running out of addresses) this bounds search
335 >     * steps, lock hold times, etc, to reasonable constants (roughly
336 >     * 100 nodes inspected per operation worst case) so long as keys
337 >     * are Comparable (which is very common -- String, Long, etc).
338 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
339 >     * traversal pointers as regular nodes, so can be traversed in
340 >     * iterators in the same way.
341 >     *
342 >     * The table is resized when occupancy exceeds a percentage
343 >     * threshold (nominally, 0.75, but see below).  Any thread
344 >     * noticing an overfull bin may assist in resizing after the
345 >     * initiating thread allocates and sets up the replacement array.
346 >     * However, rather than stalling, these other threads may proceed
347 >     * with insertions etc.  The use of TreeBins shields us from the
348 >     * worst case effects of overfilling while resizes are in
349 >     * progress.  Resizing proceeds by transferring bins, one by one,
350 >     * from the table to the next table. However, threads claim small
351 >     * blocks of indices to transfer (via field transferIndex) before
352 >     * doing so, reducing contention.  A generation stamp in field
353 >     * sizeCtl ensures that resizings do not overlap. Because we are
354 >     * using power-of-two expansion, the elements from each bin must
355 >     * either stay at same index, or move with a power of two
356 >     * offset. We eliminate unnecessary node creation by catching
357 >     * cases where old nodes can be reused because their next fields
358 >     * won't change.  On average, only about one-sixth of them need
359 >     * cloning when a table doubles. The nodes they replace will be
360 >     * garbage collectable as soon as they are no longer referenced by
361 >     * any reader thread that may be in the midst of concurrently
362 >     * traversing table.  Upon transfer, the old table bin contains
363 >     * only a special forwarding node (with hash field "MOVED") that
364 >     * contains the next table as its key. On encountering a
365 >     * forwarding node, access and update operations restart, using
366 >     * the new table.
367 >     *
368 >     * Each bin transfer requires its bin lock, which can stall
369 >     * waiting for locks while resizing. However, because other
370 >     * threads can join in and help resize rather than contend for
371 >     * locks, average aggregate waits become shorter as resizing
372 >     * progresses.  The transfer operation must also ensure that all
373 >     * accessible bins in both the old and new table are usable by any
374 >     * traversal.  This is arranged in part by proceeding from the
375 >     * last bin (table.length - 1) up towards the first.  Upon seeing
376 >     * a forwarding node, traversals (see class Traverser) arrange to
377 >     * move to the new table without revisiting nodes.  To ensure that
378 >     * no intervening nodes are skipped even when moved out of order,
379 >     * a stack (see class TableStack) is created on first encounter of
380 >     * a forwarding node during a traversal, to maintain its place if
381 >     * later processing the current table. The need for these
382 >     * save/restore mechanics is relatively rare, but when one
383 >     * forwarding node is encountered, typically many more will be.
384 >     * So Traversers use a simple caching scheme to avoid creating so
385 >     * many new TableStack nodes. (Thanks to Peter Levart for
386 >     * suggesting use of a stack here.)
387 >     *
388 >     * The traversal scheme also applies to partial traversals of
389 >     * ranges of bins (via an alternate Traverser constructor)
390 >     * to support partitioned aggregate operations.  Also, read-only
391 >     * operations give up if ever forwarded to a null table, which
392 >     * provides support for shutdown-style clearing, which is also not
393 >     * currently implemented.
394 >     *
395 >     * Lazy table initialization minimizes footprint until first use,
396 >     * and also avoids resizings when the first operation is from a
397 >     * putAll, constructor with map argument, or deserialization.
398 >     * These cases attempt to override the initial capacity settings,
399 >     * but harmlessly fail to take effect in cases of races.
400 >     *
401 >     * The element count is maintained using a specialization of
402 >     * LongAdder. We need to incorporate a specialization rather than
403 >     * just use a LongAdder in order to access implicit
404 >     * contention-sensing that leads to creation of multiple
405 >     * CounterCells.  The counter mechanics avoid contention on
406 >     * updates but can encounter cache thrashing if read too
407 >     * frequently during concurrent access. To avoid reading so often,
408 >     * resizing under contention is attempted only upon adding to a
409 >     * bin already holding two or more nodes. Under uniform hash
410 >     * distributions, the probability of this occurring at threshold
411 >     * is around 13%, meaning that only about 1 in 8 puts check
412 >     * threshold (and after resizing, many fewer do so).
413 >     *
414 >     * TreeBins use a special form of comparison for search and
415 >     * related operations (which is the main reason we cannot use
416 >     * existing collections such as TreeMaps). TreeBins contain
417 >     * Comparable elements, but may contain others, as well as
418 >     * elements that are Comparable but not necessarily Comparable for
419 >     * the same T, so we cannot invoke compareTo among them. To handle
420 >     * this, the tree is ordered primarily by hash value, then by
421 >     * Comparable.compareTo order if applicable.  On lookup at a node,
422 >     * if elements are not comparable or compare as 0 then both left
423 >     * and right children may need to be searched in the case of tied
424 >     * hash values. (This corresponds to the full list search that
425 >     * would be necessary if all elements were non-Comparable and had
426 >     * tied hashes.) On insertion, to keep a total ordering (or as
427 >     * close as is required here) across rebalancings, we compare
428 >     * classes and identityHashCodes as tie-breakers. The red-black
429 >     * balancing code is updated from pre-jdk-collections
430 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432 >     * Algorithms" (CLR).
433 >     *
434 >     * TreeBins also require an additional locking mechanism.  While
435 >     * list traversal is always possible by readers even during
436 >     * updates, tree traversal is not, mainly because of tree-rotations
437 >     * that may change the root node and/or its linkages.  TreeBins
438 >     * include a simple read-write lock mechanism parasitic on the
439 >     * main bin-synchronization strategy: Structural adjustments
440 >     * associated with an insertion or removal are already bin-locked
441 >     * (and so cannot conflict with other writers) but must wait for
442 >     * ongoing readers to finish. Since there can be only one such
443 >     * waiter, we use a simple scheme using a single "waiter" field to
444 >     * block writers.  However, readers need never block.  If the root
445 >     * lock is held, they proceed along the slow traversal path (via
446 >     * next-pointers) until the lock becomes available or the list is
447 >     * exhausted, whichever comes first. These cases are not fast, but
448 >     * maximize aggregate expected throughput.
449 >     *
450 >     * Maintaining API and serialization compatibility with previous
451 >     * versions of this class introduces several oddities. Mainly: We
452 >     * leave untouched but unused constructor arguments referring to
453 >     * concurrencyLevel. We accept a loadFactor constructor argument,
454 >     * but apply it only to initial table capacity (which is the only
455 >     * time that we can guarantee to honor it.) We also declare an
456 >     * unused "Segment" class that is instantiated in minimal form
457 >     * only when serializing.
458 >     *
459 >     * Also, solely for compatibility with previous versions of this
460 >     * class, it extends AbstractMap, even though all of its methods
461 >     * are overridden, so it is just useless baggage.
462 >     *
463 >     * This file is organized to make things a little easier to follow
464 >     * while reading than they might otherwise: First the main static
465 >     * declarations and utilities, then fields, then main public
466 >     * methods (with a few factorings of multiple public methods into
467 >     * internal ones), then sizing methods, trees, traversers, and
468 >     * bulk operations.
469       */
470  
471      /* ---------------- Constants -------------- */
472  
473      /**
474 <     * The default initial capacity for this table,
475 <     * used when not otherwise specified in a constructor.
474 >     * The largest possible table capacity.  This value must be
475 >     * exactly 1<<30 to stay within Java array allocation and indexing
476 >     * bounds for power of two table sizes, and is further required
477 >     * because the top two bits of 32bit hash fields are used for
478 >     * control purposes.
479       */
480 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
480 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
481  
482      /**
483 <     * The default load factor for this table, used when not
484 <     * otherwise specified in a constructor.
483 >     * The default initial table capacity.  Must be a power of 2
484 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
485       */
486 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
486 >    private static final int DEFAULT_CAPACITY = 16;
487  
488      /**
489 <     * The default concurrency level for this table, used when not
490 <     * otherwise specified in a constructor.
489 >     * The largest possible (non-power of two) array size.
490 >     * Needed by toArray and related methods.
491       */
492 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
492 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
493  
494      /**
495 <     * The maximum capacity, used if a higher value is implicitly
496 <     * specified by either of the constructors with arguments.  MUST
123 <     * be a power of two <= 1<<30 to ensure that entries are indexable
124 <     * using ints.
495 >     * The default concurrency level for this table. Unused but
496 >     * defined for compatibility with previous versions of this class.
497       */
498 <    static final int MAXIMUM_CAPACITY = 1 << 30;
498 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
499  
500      /**
501 <     * The minimum capacity for per-segment tables.  Must be a power
502 <     * of two, at least two to avoid immediate resizing on next use
503 <     * after lazy construction.
501 >     * The load factor for this table. Overrides of this value in
502 >     * constructors affect only the initial table capacity.  The
503 >     * actual floating point value isn't normally used -- it is
504 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
505 >     * the associated resizing threshold.
506       */
507 <    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
507 >    private static final float LOAD_FACTOR = 0.75f;
508  
509      /**
510 <     * The maximum number of segments to allow; used to bound
511 <     * constructor arguments. Must be power of two less than 1 << 24.
510 >     * The bin count threshold for using a tree rather than list for a
511 >     * bin.  Bins are converted to trees when adding an element to a
512 >     * bin with at least this many nodes. The value must be greater
513 >     * than 2, and should be at least 8 to mesh with assumptions in
514 >     * tree removal about conversion back to plain bins upon
515 >     * shrinkage.
516       */
517 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
517 >    static final int TREEIFY_THRESHOLD = 8;
518  
519      /**
520 <     * Number of unsynchronized retries in size and containsValue
521 <     * methods before resorting to locking. This is used to avoid
522 <     * unbounded retries if tables undergo continuous modification
145 <     * which would make it impossible to obtain an accurate result.
520 >     * The bin count threshold for untreeifying a (split) bin during a
521 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522 >     * most 6 to mesh with shrinkage detection under removal.
523       */
524 <    static final int RETRIES_BEFORE_LOCK = 2;
148 <
149 <    /* ---------------- Fields -------------- */
524 >    static final int UNTREEIFY_THRESHOLD = 6;
525  
526      /**
527 <     * Mask value for indexing into segments. The upper bits of a
528 <     * key's hash code are used to choose the segment.
527 >     * The smallest table capacity for which bins may be treeified.
528 >     * (Otherwise the table is resized if too many nodes in a bin.)
529 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530 >     * conflicts between resizing and treeification thresholds.
531       */
532 <    final int segmentMask;
532 >    static final int MIN_TREEIFY_CAPACITY = 64;
533  
534      /**
535 <     * Shift value for indexing within segments.
535 >     * Minimum number of rebinnings per transfer step. Ranges are
536 >     * subdivided to allow multiple resizer threads.  This value
537 >     * serves as a lower bound to avoid resizers encountering
538 >     * excessive memory contention.  The value should be at least
539 >     * DEFAULT_CAPACITY.
540       */
541 <    final int segmentShift;
541 >    private static final int MIN_TRANSFER_STRIDE = 16;
542  
543      /**
544 <     * The segments, each of which is a specialized hash table.
544 >     * The number of bits used for generation stamp in sizeCtl.
545 >     * Must be at least 6 for 32bit arrays.
546       */
547 <    final Segment<K,V>[] segments;
547 >    private static final int RESIZE_STAMP_BITS = 16;
548  
549 <    transient Set<K> keySet;
550 <    transient Set<Map.Entry<K,V>> entrySet;
551 <    transient Collection<V> values;
549 >    /**
550 >     * The maximum number of threads that can help resize.
551 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
552 >     */
553 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
554  
555      /**
556 <     * ConcurrentHashMap list entry. Note that this is never exported
557 <     * out as a user-visible Map.Entry.
556 >     * The bit shift for recording size stamp in sizeCtl.
557 >     */
558 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
559 >
560 >    /*
561 >     * Encodings for Node hash fields. See above for explanation.
562 >     */
563 >    static final int MOVED     = -1; // hash for forwarding nodes
564 >    static final int TREEBIN   = -2; // hash for roots of trees
565 >    static final int RESERVED  = -3; // hash for transient reservations
566 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
567 >
568 >    /** Number of CPUS, to place bounds on some sizings */
569 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
570 >
571 >    /**
572 >     * Serialized pseudo-fields, provided only for jdk7 compatibility.
573 >     * @serialField segments Segment[]
574 >     *   The segments, each of which is a specialized hash table.
575 >     * @serialField segmentMask int
576 >     *   Mask value for indexing into segments. The upper bits of a
577 >     *   key's hash code are used to choose the segment.
578 >     * @serialField segmentShift int
579 >     *   Shift value for indexing within segments.
580 >     */
581 >    private static final ObjectStreamField[] serialPersistentFields = {
582 >        new ObjectStreamField("segments", Segment[].class),
583 >        new ObjectStreamField("segmentMask", Integer.TYPE),
584 >        new ObjectStreamField("segmentShift", Integer.TYPE),
585 >    };
586 >
587 >    /* ---------------- Nodes -------------- */
588 >
589 >    /**
590 >     * Key-value entry.  This class is never exported out as a
591 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
592 >     * MapEntry below), but can be used for read-only traversals used
593 >     * in bulk tasks.  Subclasses of Node with a negative hash field
594 >     * are special, and contain null keys and values (but are never
595 >     * exported).  Otherwise, keys and vals are never null.
596       */
597 <    static final class HashEntry<K,V> {
597 >    static class Node<K,V> implements Map.Entry<K,V> {
598          final int hash;
599          final K key;
600 <        volatile V value;
601 <        volatile HashEntry<K,V> next;
600 >        volatile V val;
601 >        volatile Node<K,V> next;
602  
603 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
603 >        Node(int hash, K key, V val) {
604              this.hash = hash;
605              this.key = key;
606 <            this.value = value;
606 >            this.val = val;
607 >        }
608 >
609 >        Node(int hash, K key, V val, Node<K,V> next) {
610 >            this(hash, key, val);
611              this.next = next;
612          }
613  
614 +        public final K getKey()     { return key; }
615 +        public final V getValue()   { return val; }
616 +        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
617 +        public final String toString() {
618 +            return Helpers.mapEntryToString(key, val);
619 +        }
620 +        public final V setValue(V value) {
621 +            throw new UnsupportedOperationException();
622 +        }
623 +
624 +        public final boolean equals(Object o) {
625 +            Object k, v, u; Map.Entry<?,?> e;
626 +            return ((o instanceof Map.Entry) &&
627 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
628 +                    (v = e.getValue()) != null &&
629 +                    (k == key || k.equals(key)) &&
630 +                    (v == (u = val) || v.equals(u)));
631 +        }
632 +
633          /**
634 <         * Sets next field with volatile write semantics.  (See above
190 <         * about use of putOrderedObject.)
634 >         * Virtualized support for map.get(); overridden in subclasses.
635           */
636 <        final void setNext(HashEntry<K,V> n) {
637 <            UNSAFE.putOrderedObject(this, nextOffset, n);
636 >        Node<K,V> find(int h, Object k) {
637 >            Node<K,V> e = this;
638 >            if (k != null) {
639 >                do {
640 >                    K ek;
641 >                    if (e.hash == h &&
642 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
643 >                        return e;
644 >                } while ((e = e.next) != null);
645 >            }
646 >            return null;
647          }
648 +    }
649  
650 <        // Unsafe mechanics
651 <        static final sun.misc.Unsafe UNSAFE;
652 <        static final long nextOffset;
653 <        static {
654 <            try {
655 <                UNSAFE = sun.misc.Unsafe.getUnsafe();
656 <                Class k = HashEntry.class;
657 <                nextOffset = UNSAFE.objectFieldOffset
658 <                    (k.getDeclaredField("next"));
659 <            } catch (Exception e) {
660 <                throw new Error(e);
650 >    /* ---------------- Static utilities -------------- */
651 >
652 >    /**
653 >     * Spreads (XORs) higher bits of hash to lower and also forces top
654 >     * bit to 0. Because the table uses power-of-two masking, sets of
655 >     * hashes that vary only in bits above the current mask will
656 >     * always collide. (Among known examples are sets of Float keys
657 >     * holding consecutive whole numbers in small tables.)  So we
658 >     * apply a transform that spreads the impact of higher bits
659 >     * downward. There is a tradeoff between speed, utility, and
660 >     * quality of bit-spreading. Because many common sets of hashes
661 >     * are already reasonably distributed (so don't benefit from
662 >     * spreading), and because we use trees to handle large sets of
663 >     * collisions in bins, we just XOR some shifted bits in the
664 >     * cheapest possible way to reduce systematic lossage, as well as
665 >     * to incorporate impact of the highest bits that would otherwise
666 >     * never be used in index calculations because of table bounds.
667 >     */
668 >    static final int spread(int h) {
669 >        return (h ^ (h >>> 16)) & HASH_BITS;
670 >    }
671 >
672 >    /**
673 >     * Returns a power of two table size for the given desired capacity.
674 >     * See Hackers Delight, sec 3.2
675 >     */
676 >    private static final int tableSizeFor(int c) {
677 >        int n = c - 1;
678 >        n |= n >>> 1;
679 >        n |= n >>> 2;
680 >        n |= n >>> 4;
681 >        n |= n >>> 8;
682 >        n |= n >>> 16;
683 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
684 >    }
685 >
686 >    /**
687 >     * Returns x's Class if it is of the form "class C implements
688 >     * Comparable<C>", else null.
689 >     */
690 >    static Class<?> comparableClassFor(Object x) {
691 >        if (x instanceof Comparable) {
692 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
693 >            if ((c = x.getClass()) == String.class) // bypass checks
694 >                return c;
695 >            if ((ts = c.getGenericInterfaces()) != null) {
696 >                for (int i = 0; i < ts.length; ++i) {
697 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
698 >                        ((p = (ParameterizedType)t).getRawType() ==
699 >                         Comparable.class) &&
700 >                        (as = p.getActualTypeArguments()) != null &&
701 >                        as.length == 1 && as[0] == c) // type arg is c
702 >                        return c;
703 >                }
704              }
705          }
706 +        return null;
707      }
708  
709      /**
710 <     * Gets the ith element of given table (if nonnull) with volatile
711 <     * read semantics.
710 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
711 >     * class), else 0.
712 >     */
713 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
714 >    static int compareComparables(Class<?> kc, Object k, Object x) {
715 >        return (x == null || x.getClass() != kc ? 0 :
716 >                ((Comparable)k).compareTo(x));
717 >    }
718 >
719 >    /* ---------------- Table element access -------------- */
720 >
721 >    /*
722 >     * Atomic access methods are used for table elements as well as
723 >     * elements of in-progress next table while resizing.  All uses of
724 >     * the tab arguments must be null checked by callers.  All callers
725 >     * also paranoically precheck that tab's length is not zero (or an
726 >     * equivalent check), thus ensuring that any index argument taking
727 >     * the form of a hash value anded with (length - 1) is a valid
728 >     * index.  Note that, to be correct wrt arbitrary concurrency
729 >     * errors by users, these checks must operate on local variables,
730 >     * which accounts for some odd-looking inline assignments below.
731 >     * Note that calls to setTabAt always occur within locked regions,
732 >     * and so require only release ordering.
733       */
734 +
735      @SuppressWarnings("unchecked")
736 <    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
737 <        return tab == null? null :
738 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
739 <            (tab, ((long)i << TSHIFT) + TBASE);
736 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
737 >        return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
738 >    }
739 >
740 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
741 >                                        Node<K,V> c, Node<K,V> v) {
742 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
743      }
744  
745 +    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
746 +        U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
747 +    }
748 +
749 +    /* ---------------- Fields -------------- */
750 +
751      /**
752 <     * Sets the ith element of given table, with volatile write
753 <     * semantics. (See above about use of putOrderedObject.)
752 >     * The array of bins. Lazily initialized upon first insertion.
753 >     * Size is always a power of two. Accessed directly by iterators.
754       */
755 <    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
227 <                                       HashEntry<K,V> e) {
228 <        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
229 <    }
755 >    transient volatile Node<K,V>[] table;
756  
757      /**
758 <     * Applies a supplemental hash function to a given hashCode, which
233 <     * defends against poor quality hash functions.  This is critical
234 <     * because ConcurrentHashMap uses power-of-two length hash tables,
235 <     * that otherwise encounter collisions for hashCodes that do not
236 <     * differ in lower or upper bits.
758 >     * The next table to use; non-null only while resizing.
759       */
760 <    private static int hash(int h) {
239 <        // Spread bits to regularize both segment and index locations,
240 <        // using variant of single-word Wang/Jenkins hash.
241 <        h += (h <<  15) ^ 0xffffcd7d;
242 <        h ^= (h >>> 10);
243 <        h += (h <<   3);
244 <        h ^= (h >>>  6);
245 <        h += (h <<   2) + (h << 14);
246 <        return h ^ (h >>> 16);
247 <    }
760 >    private transient volatile Node<K,V>[] nextTable;
761  
762      /**
763 <     * Segments are specialized versions of hash tables.  This
764 <     * subclasses from ReentrantLock opportunistically, just to
765 <     * simplify some locking and avoid separate construction.
763 >     * Base counter value, used mainly when there is no contention,
764 >     * but also as a fallback during table initialization
765 >     * races. Updated via CAS.
766       */
767 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
255 <        /*
256 <         * Segments maintain a table of entry lists that are always
257 <         * kept in a consistent state, so can be read (via volatile
258 <         * reads of segments and tables) without locking.  This
259 <         * requires replicating nodes when necessary during table
260 <         * resizing, so the old lists can be traversed by readers
261 <         * still using old version of table.
262 <         *
263 <         * This class defines only mutative methods requiring locking.
264 <         * Except as noted, the methods of this class perform the
265 <         * per-segment versions of ConcurrentHashMap methods.  (Other
266 <         * methods are integrated directly into ConcurrentHashMap
267 <         * methods.) These mutative methods use a form of controlled
268 <         * spinning on contention via methods scanAndLock and
269 <         * scanAndLockForPut. These intersperse tryLocks with
270 <         * traversals to locate nodes.  The main benefit is to absorb
271 <         * cache misses (which are very common for hash tables) while
272 <         * obtaining locks so that traversal is faster once
273 <         * acquired. We do not actually use the found nodes since they
274 <         * must be re-acquired under lock anyway to ensure sequential
275 <         * consistency of updates (and in any case may be undetectably
276 <         * stale), but they will normally be much faster to re-locate.
277 <         * Also, scanAndLockForPut speculatively creates a fresh node
278 <         * to use in put if no node is found.
279 <         */
767 >    private transient volatile long baseCount;
768  
769 <        private static final long serialVersionUID = 2249069246763182397L;
769 >    /**
770 >     * Table initialization and resizing control.  When negative, the
771 >     * table is being initialized or resized: -1 for initialization,
772 >     * else -(1 + the number of active resizing threads).  Otherwise,
773 >     * when table is null, holds the initial table size to use upon
774 >     * creation, or 0 for default. After initialization, holds the
775 >     * next element count value upon which to resize the table.
776 >     */
777 >    private transient volatile int sizeCtl;
778  
779 <        /**
780 <         * The maximum number of times to tryLock in a prescan before
781 <         * possibly blocking on acquire in preparation for a locked
782 <         * segment operation. On multiprocessors, using a bounded
287 <         * number of retries maintains cache acquired while locating
288 <         * nodes.
289 <         */
290 <        static final int MAX_SCAN_RETRIES =
291 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
779 >    /**
780 >     * The next table index (plus one) to split while resizing.
781 >     */
782 >    private transient volatile int transferIndex;
783  
784 <        /**
785 <         * The per-segment table. Elements are accessed via
786 <         * entryAt/setEntryAt providing volatile semantics.
787 <         */
297 <        transient volatile HashEntry<K,V>[] table;
784 >    /**
785 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
786 >     */
787 >    private transient volatile int cellsBusy;
788  
789 <        /**
790 <         * The number of elements. Accessed only either within locks
791 <         * or among other volatile reads that maintain visibility.
792 <         */
303 <        transient int count;
789 >    /**
790 >     * Table of counter cells. When non-null, size is a power of 2.
791 >     */
792 >    private transient volatile CounterCell[] counterCells;
793  
794 <        /**
795 <         * The total number of insertions and removals in this
796 <         * segment.  Even though this may overflows 32 bits, it
797 <         * provides sufficient accuracy for stability checks in CHM
309 <         * isEmpty() and size() methods.  Accessed only either within
310 <         * locks or among other volatile reads that maintain
311 <         * visibility.
312 <         */
313 <        transient int modCount;
794 >    // views
795 >    private transient KeySetView<K,V> keySet;
796 >    private transient ValuesView<K,V> values;
797 >    private transient EntrySetView<K,V> entrySet;
798  
315        /**
316         * The table is rehashed when its size exceeds this threshold.
317         * (The value of this field is always <tt>(int)(capacity *
318         * loadFactor)</tt>.)
319         */
320        transient int threshold;
799  
800 <        /**
323 <         * The load factor for the hash table.  Even though this value
324 <         * is same for all segments, it is replicated to avoid needing
325 <         * links to outer object.
326 <         * @serial
327 <         */
328 <        final float loadFactor;
800 >    /* ---------------- Public operations -------------- */
801  
802 <        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
803 <            this.loadFactor = lf;
804 <            this.threshold = threshold;
805 <            this.table = tab;
806 <        }
802 >    /**
803 >     * Creates a new, empty map with the default initial table size (16).
804 >     */
805 >    public ConcurrentHashMap() {
806 >    }
807  
808 <        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
809 <            HashEntry<K,V> node = tryLock() ? null :
810 <                scanAndLockForPut(key, hash, value);
811 <            V oldValue;
812 <            try {
813 <                HashEntry<K,V>[] tab = table;
814 <                int index = (tab.length - 1) & hash;
815 <                HashEntry<K,V> first = entryAt(tab, index);
816 <                for (HashEntry<K,V> e = first;;) {
817 <                    if (e != null) {
818 <                        K k;
819 <                        if ((k = e.key) == key ||
820 <                            (e.hash == hash && key.equals(k))) {
821 <                            oldValue = e.value;
822 <                            if (!onlyIfAbsent)
823 <                                e.value = value;
824 <                            break;
825 <                        }
826 <                        e = e.next;
827 <                    }
828 <                    else {
829 <                        if (node != null)
830 <                            node.setNext(first);
831 <                        else
832 <                            node = new HashEntry<K,V>(hash, key, value, first);
833 <                        int c = count + 1;
834 <                        if (c > threshold && first != null &&
835 <                            tab.length < MAXIMUM_CAPACITY)
836 <                            rehash(node);
837 <                        else
838 <                            setEntryAt(tab, index, node);
839 <                        ++modCount;
840 <                        count = c;
841 <                        oldValue = null;
842 <                        break;
843 <                    }
844 <                }
845 <            } finally {
846 <                unlock();
808 >    /**
809 >     * Creates a new, empty map with an initial table size
810 >     * accommodating the specified number of elements without the need
811 >     * to dynamically resize.
812 >     *
813 >     * @param initialCapacity The implementation performs internal
814 >     * sizing to accommodate this many elements.
815 >     * @throws IllegalArgumentException if the initial capacity of
816 >     * elements is negative
817 >     */
818 >    public ConcurrentHashMap(int initialCapacity) {
819 >        if (initialCapacity < 0)
820 >            throw new IllegalArgumentException();
821 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
822 >                   MAXIMUM_CAPACITY :
823 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
824 >        this.sizeCtl = cap;
825 >    }
826 >
827 >    /**
828 >     * Creates a new map with the same mappings as the given map.
829 >     *
830 >     * @param m the map
831 >     */
832 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
833 >        this.sizeCtl = DEFAULT_CAPACITY;
834 >        putAll(m);
835 >    }
836 >
837 >    /**
838 >     * Creates a new, empty map with an initial table size based on
839 >     * the given number of elements ({@code initialCapacity}) and
840 >     * initial table density ({@code loadFactor}).
841 >     *
842 >     * @param initialCapacity the initial capacity. The implementation
843 >     * performs internal sizing to accommodate this many elements,
844 >     * given the specified load factor.
845 >     * @param loadFactor the load factor (table density) for
846 >     * establishing the initial table size
847 >     * @throws IllegalArgumentException if the initial capacity of
848 >     * elements is negative or the load factor is nonpositive
849 >     *
850 >     * @since 1.6
851 >     */
852 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
853 >        this(initialCapacity, loadFactor, 1);
854 >    }
855 >
856 >    /**
857 >     * Creates a new, empty map with an initial table size based on
858 >     * the given number of elements ({@code initialCapacity}), table
859 >     * density ({@code loadFactor}), and number of concurrently
860 >     * updating threads ({@code concurrencyLevel}).
861 >     *
862 >     * @param initialCapacity the initial capacity. The implementation
863 >     * performs internal sizing to accommodate this many elements,
864 >     * given the specified load factor.
865 >     * @param loadFactor the load factor (table density) for
866 >     * establishing the initial table size
867 >     * @param concurrencyLevel the estimated number of concurrently
868 >     * updating threads. The implementation may use this value as
869 >     * a sizing hint.
870 >     * @throws IllegalArgumentException if the initial capacity is
871 >     * negative or the load factor or concurrencyLevel are
872 >     * nonpositive
873 >     */
874 >    public ConcurrentHashMap(int initialCapacity,
875 >                             float loadFactor, int concurrencyLevel) {
876 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
877 >            throw new IllegalArgumentException();
878 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
879 >            initialCapacity = concurrencyLevel;   // as estimated threads
880 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
881 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
882 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
883 >        this.sizeCtl = cap;
884 >    }
885 >
886 >    // Original (since JDK1.2) Map methods
887 >
888 >    /**
889 >     * {@inheritDoc}
890 >     */
891 >    public int size() {
892 >        long n = sumCount();
893 >        return ((n < 0L) ? 0 :
894 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
895 >                (int)n);
896 >    }
897 >
898 >    /**
899 >     * {@inheritDoc}
900 >     */
901 >    public boolean isEmpty() {
902 >        return sumCount() <= 0L; // ignore transient negative values
903 >    }
904 >
905 >    /**
906 >     * Returns the value to which the specified key is mapped,
907 >     * or {@code null} if this map contains no mapping for the key.
908 >     *
909 >     * <p>More formally, if this map contains a mapping from a key
910 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
911 >     * then this method returns {@code v}; otherwise it returns
912 >     * {@code null}.  (There can be at most one such mapping.)
913 >     *
914 >     * @throws NullPointerException if the specified key is null
915 >     */
916 >    public V get(Object key) {
917 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
918 >        int h = spread(key.hashCode());
919 >        if ((tab = table) != null && (n = tab.length) > 0 &&
920 >            (e = tabAt(tab, (n - 1) & h)) != null) {
921 >            if ((eh = e.hash) == h) {
922 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
923 >                    return e.val;
924 >            }
925 >            else if (eh < 0)
926 >                return (p = e.find(h, key)) != null ? p.val : null;
927 >            while ((e = e.next) != null) {
928 >                if (e.hash == h &&
929 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
930 >                    return e.val;
931              }
376            return oldValue;
932          }
933 +        return null;
934 +    }
935  
936 <        /**
937 <         * Doubles size of table and repacks entries, also adding the
938 <         * given node to new table
939 <         */
940 <        @SuppressWarnings("unchecked")
941 <        private void rehash(HashEntry<K,V> node) {
942 <            /*
943 <             * Reclassify nodes in each list to new table.  Because we
944 <             * are using power-of-two expansion, the elements from
945 <             * each bin must either stay at same index, or move with a
946 <             * power of two offset. We eliminate unnecessary node
947 <             * creation by catching cases where old nodes can be
391 <             * reused because their next fields won't change.
392 <             * Statistically, at the default threshold, only about
393 <             * one-sixth of them need cloning when a table
394 <             * doubles. The nodes they replace will be garbage
395 <             * collectable as soon as they are no longer referenced by
396 <             * any reader thread that may be in the midst of
397 <             * concurrently traversing table. Entry accesses use plain
398 <             * array indexing because they are followed by volatile
399 <             * table write.
400 <             */
401 <            HashEntry<K,V>[] oldTable = table;
402 <            int oldCapacity = oldTable.length;
403 <            int newCapacity = oldCapacity << 1;
404 <            threshold = (int)(newCapacity * loadFactor);
405 <            HashEntry<K,V>[] newTable =
406 <                (HashEntry<K,V>[]) new HashEntry[newCapacity];
407 <            int sizeMask = newCapacity - 1;
408 <            for (int i = 0; i < oldCapacity ; i++) {
409 <                HashEntry<K,V> e = oldTable[i];
410 <                if (e != null) {
411 <                    HashEntry<K,V> next = e.next;
412 <                    int idx = e.hash & sizeMask;
413 <                    if (next == null)   //  Single node on list
414 <                        newTable[idx] = e;
415 <                    else { // Reuse consecutive sequence at same slot
416 <                        HashEntry<K,V> lastRun = e;
417 <                        int lastIdx = idx;
418 <                        for (HashEntry<K,V> last = next;
419 <                             last != null;
420 <                             last = last.next) {
421 <                            int k = last.hash & sizeMask;
422 <                            if (k != lastIdx) {
423 <                                lastIdx = k;
424 <                                lastRun = last;
425 <                            }
426 <                        }
427 <                        newTable[lastIdx] = lastRun;
428 <                        // Clone remaining nodes
429 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
430 <                            V v = p.value;
431 <                            int h = p.hash;
432 <                            int k = h & sizeMask;
433 <                            HashEntry<K,V> n = newTable[k];
434 <                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
435 <                        }
436 <                    }
437 <                }
438 <            }
439 <            int nodeIndex = node.hash & sizeMask; // add the new node
440 <            node.setNext(newTable[nodeIndex]);
441 <            newTable[nodeIndex] = node;
442 <            table = newTable;
443 <        }
444 <
445 <        /**
446 <         * Scans for a node containing given key while trying to
447 <         * acquire lock, creating and returning one if not found. Upon
448 <         * return, guarantees that lock is held.
449 <         *
450 <         * @return a new node if key not found, else null
451 <         */
452 <        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
453 <            HashEntry<K,V> first = entryForHash(this, hash);
454 <            HashEntry<K,V> e = first;
455 <            HashEntry<K,V> node = null;
456 <            int retries = -1; // negative while locating node
457 <            while (!tryLock()) {
458 <                HashEntry<K,V> f; // to recheck first below
459 <                if (retries < 0) {
460 <                    if (e == null) {
461 <                        if (node == null) // speculatively create node
462 <                            node = new HashEntry<K,V>(hash, key, value, null);
463 <                        retries = 0;
464 <                    }
465 <                    else if (key.equals(e.key))
466 <                        retries = 0;
467 <                    else
468 <                        e = e.next;
469 <                }
470 <                else if (++retries > MAX_SCAN_RETRIES) {
471 <                    lock();
472 <                    break;
473 <                }
474 <                else if ((retries & 1) == 0 &&
475 <                         (f = entryForHash(this, hash)) != first) {
476 <                    e = first = f; // re-traverse if entry changed
477 <                    retries = -1;
478 <                }
479 <            }
480 <            return node;
481 <        }
936 >    /**
937 >     * Tests if the specified object is a key in this table.
938 >     *
939 >     * @param  key possible key
940 >     * @return {@code true} if and only if the specified object
941 >     *         is a key in this table, as determined by the
942 >     *         {@code equals} method; {@code false} otherwise
943 >     * @throws NullPointerException if the specified key is null
944 >     */
945 >    public boolean containsKey(Object key) {
946 >        return get(key) != null;
947 >    }
948  
949 <        /**
950 <         * Scans for a node containing the given key while trying to
951 <         * acquire lock for a remove or replace operation. Upon
952 <         * return, guarantees that lock is held.  Note that we must
953 <         * lock even if the key is not found, to ensure sequential
954 <         * consistency of updates.
955 <         */
956 <        private void scanAndLock(Object key, int hash) {
957 <            // similar to but simpler than scanAndLockForPut
958 <            HashEntry<K,V> first = entryForHash(this, hash);
959 <            HashEntry<K,V> e = first;
960 <            int retries = -1;
961 <            while (!tryLock()) {
962 <                HashEntry<K,V> f;
963 <                if (retries < 0) {
964 <                    if (e == null || key.equals(e.key))
965 <                        retries = 0;
966 <                    else
967 <                        e = e.next;
968 <                }
503 <                else if (++retries > MAX_SCAN_RETRIES) {
504 <                    lock();
505 <                    break;
506 <                }
507 <                else if ((retries & 1) == 0 &&
508 <                         (f = entryForHash(this, hash)) != first) {
509 <                    e = first = f;
510 <                    retries = -1;
511 <                }
949 >    /**
950 >     * Returns {@code true} if this map maps one or more keys to the
951 >     * specified value. Note: This method may require a full traversal
952 >     * of the map, and is much slower than method {@code containsKey}.
953 >     *
954 >     * @param value value whose presence in this map is to be tested
955 >     * @return {@code true} if this map maps one or more keys to the
956 >     *         specified value
957 >     * @throws NullPointerException if the specified value is null
958 >     */
959 >    public boolean containsValue(Object value) {
960 >        if (value == null)
961 >            throw new NullPointerException();
962 >        Node<K,V>[] t;
963 >        if ((t = table) != null) {
964 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
965 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
966 >                V v;
967 >                if ((v = p.val) == value || (v != null && value.equals(v)))
968 >                    return true;
969              }
970          }
971 +        return false;
972 +    }
973  
974 <        /**
975 <         * Remove; match on key only if value null, else match both.
976 <         */
977 <        final V remove(Object key, int hash, Object value) {
978 <            if (!tryLock())
979 <                scanAndLock(key, hash);
980 <            V oldValue = null;
981 <            try {
982 <                HashEntry<K,V>[] tab = table;
983 <                int index = (tab.length - 1) & hash;
984 <                HashEntry<K,V> e = entryAt(tab, index);
985 <                HashEntry<K,V> pred = null;
986 <                while (e != null) {
987 <                    K k;
988 <                    HashEntry<K,V> next = e.next;
989 <                    if ((k = e.key) == key ||
990 <                        (e.hash == hash && key.equals(k))) {
991 <                        V v = e.value;
992 <                        if (value == null || value == v || value.equals(v)) {
993 <                            if (pred == null)
994 <                                setEntryAt(tab, index, next);
995 <                            else
996 <                                pred.setNext(next);
997 <                            ++modCount;
998 <                            --count;
999 <                            oldValue = v;
974 >    /**
975 >     * Maps the specified key to the specified value in this table.
976 >     * Neither the key nor the value can be null.
977 >     *
978 >     * <p>The value can be retrieved by calling the {@code get} method
979 >     * with a key that is equal to the original key.
980 >     *
981 >     * @param key key with which the specified value is to be associated
982 >     * @param value value to be associated with the specified key
983 >     * @return the previous value associated with {@code key}, or
984 >     *         {@code null} if there was no mapping for {@code key}
985 >     * @throws NullPointerException if the specified key or value is null
986 >     */
987 >    public V put(K key, V value) {
988 >        return putVal(key, value, false);
989 >    }
990 >
991 >    /** Implementation for put and putIfAbsent */
992 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
993 >        if (key == null || value == null) throw new NullPointerException();
994 >        int hash = spread(key.hashCode());
995 >        int binCount = 0;
996 >        for (Node<K,V>[] tab = table;;) {
997 >            Node<K,V> f; int n, i, fh; K fk; V fv;
998 >            if (tab == null || (n = tab.length) == 0)
999 >                tab = initTable();
1000 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1001 >                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1002 >                    break;                   // no lock when adding to empty bin
1003 >            }
1004 >            else if ((fh = f.hash) == MOVED)
1005 >                tab = helpTransfer(tab, f);
1006 >            else if (onlyIfAbsent // check first node without acquiring lock
1007 >                     && fh == hash
1008 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1009 >                     && (fv = f.val) != null)
1010 >                return fv;
1011 >            else {
1012 >                V oldVal = null;
1013 >                synchronized (f) {
1014 >                    if (tabAt(tab, i) == f) {
1015 >                        if (fh >= 0) {
1016 >                            binCount = 1;
1017 >                            for (Node<K,V> e = f;; ++binCount) {
1018 >                                K ek;
1019 >                                if (e.hash == hash &&
1020 >                                    ((ek = e.key) == key ||
1021 >                                     (ek != null && key.equals(ek)))) {
1022 >                                    oldVal = e.val;
1023 >                                    if (!onlyIfAbsent)
1024 >                                        e.val = value;
1025 >                                    break;
1026 >                                }
1027 >                                Node<K,V> pred = e;
1028 >                                if ((e = e.next) == null) {
1029 >                                    pred.next = new Node<K,V>(hash, key, value);
1030 >                                    break;
1031 >                                }
1032 >                            }
1033                          }
1034 <                        break;
1034 >                        else if (f instanceof TreeBin) {
1035 >                            Node<K,V> p;
1036 >                            binCount = 2;
1037 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1038 >                                                           value)) != null) {
1039 >                                oldVal = p.val;
1040 >                                if (!onlyIfAbsent)
1041 >                                    p.val = value;
1042 >                            }
1043 >                        }
1044 >                        else if (f instanceof ReservationNode)
1045 >                            throw new IllegalStateException("Recursive update");
1046                      }
544                    pred = e;
545                    e = next;
1047                  }
1048 <            } finally {
1049 <                unlock();
1048 >                if (binCount != 0) {
1049 >                    if (binCount >= TREEIFY_THRESHOLD)
1050 >                        treeifyBin(tab, i);
1051 >                    if (oldVal != null)
1052 >                        return oldVal;
1053 >                    break;
1054 >                }
1055              }
550            return oldValue;
1056          }
1057 +        addCount(1L, binCount);
1058 +        return null;
1059 +    }
1060  
1061 <        final boolean replace(K key, int hash, V oldValue, V newValue) {
1062 <            if (!tryLock())
1063 <                scanAndLock(key, hash);
1064 <            boolean replaced = false;
1065 <            try {
1066 <                HashEntry<K,V> e;
1067 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1068 <                    K k;
1069 <                    if ((k = e.key) == key ||
1070 <                        (e.hash == hash && key.equals(k))) {
1071 <                        if (oldValue.equals(e.value)) {
1072 <                            e.value = newValue;
1073 <                            replaced = true;
1061 >    /**
1062 >     * Copies all of the mappings from the specified map to this one.
1063 >     * These mappings replace any mappings that this map had for any of the
1064 >     * keys currently in the specified map.
1065 >     *
1066 >     * @param m mappings to be stored in this map
1067 >     */
1068 >    public void putAll(Map<? extends K, ? extends V> m) {
1069 >        tryPresize(m.size());
1070 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1071 >            putVal(e.getKey(), e.getValue(), false);
1072 >    }
1073 >
1074 >    /**
1075 >     * Removes the key (and its corresponding value) from this map.
1076 >     * This method does nothing if the key is not in the map.
1077 >     *
1078 >     * @param  key the key that needs to be removed
1079 >     * @return the previous value associated with {@code key}, or
1080 >     *         {@code null} if there was no mapping for {@code key}
1081 >     * @throws NullPointerException if the specified key is null
1082 >     */
1083 >    public V remove(Object key) {
1084 >        return replaceNode(key, null, null);
1085 >    }
1086 >
1087 >    /**
1088 >     * Implementation for the four public remove/replace methods:
1089 >     * Replaces node value with v, conditional upon match of cv if
1090 >     * non-null.  If resulting value is null, delete.
1091 >     */
1092 >    final V replaceNode(Object key, V value, Object cv) {
1093 >        int hash = spread(key.hashCode());
1094 >        for (Node<K,V>[] tab = table;;) {
1095 >            Node<K,V> f; int n, i, fh;
1096 >            if (tab == null || (n = tab.length) == 0 ||
1097 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1098 >                break;
1099 >            else if ((fh = f.hash) == MOVED)
1100 >                tab = helpTransfer(tab, f);
1101 >            else {
1102 >                V oldVal = null;
1103 >                boolean validated = false;
1104 >                synchronized (f) {
1105 >                    if (tabAt(tab, i) == f) {
1106 >                        if (fh >= 0) {
1107 >                            validated = true;
1108 >                            for (Node<K,V> e = f, pred = null;;) {
1109 >                                K ek;
1110 >                                if (e.hash == hash &&
1111 >                                    ((ek = e.key) == key ||
1112 >                                     (ek != null && key.equals(ek)))) {
1113 >                                    V ev = e.val;
1114 >                                    if (cv == null || cv == ev ||
1115 >                                        (ev != null && cv.equals(ev))) {
1116 >                                        oldVal = ev;
1117 >                                        if (value != null)
1118 >                                            e.val = value;
1119 >                                        else if (pred != null)
1120 >                                            pred.next = e.next;
1121 >                                        else
1122 >                                            setTabAt(tab, i, e.next);
1123 >                                    }
1124 >                                    break;
1125 >                                }
1126 >                                pred = e;
1127 >                                if ((e = e.next) == null)
1128 >                                    break;
1129 >                            }
1130                          }
1131 <                        break;
1131 >                        else if (f instanceof TreeBin) {
1132 >                            validated = true;
1133 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1134 >                            TreeNode<K,V> r, p;
1135 >                            if ((r = t.root) != null &&
1136 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1137 >                                V pv = p.val;
1138 >                                if (cv == null || cv == pv ||
1139 >                                    (pv != null && cv.equals(pv))) {
1140 >                                    oldVal = pv;
1141 >                                    if (value != null)
1142 >                                        p.val = value;
1143 >                                    else if (t.removeTreeNode(p))
1144 >                                        setTabAt(tab, i, untreeify(t.first));
1145 >                                }
1146 >                            }
1147 >                        }
1148 >                        else if (f instanceof ReservationNode)
1149 >                            throw new IllegalStateException("Recursive update");
1150                      }
1151                  }
1152 <            } finally {
1153 <                unlock();
1152 >                if (validated) {
1153 >                    if (oldVal != null) {
1154 >                        if (value == null)
1155 >                            addCount(-1L, -1);
1156 >                        return oldVal;
1157 >                    }
1158 >                    break;
1159 >                }
1160              }
573            return replaced;
1161          }
1162 +        return null;
1163 +    }
1164  
1165 <        final V replace(K key, int hash, V value) {
1166 <            if (!tryLock())
1167 <                scanAndLock(key, hash);
1168 <            V oldValue = null;
1169 <            try {
1170 <                HashEntry<K,V> e;
1171 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1172 <                    K k;
1173 <                    if ((k = e.key) == key ||
1174 <                        (e.hash == hash && key.equals(k))) {
1175 <                        oldValue = e.value;
1176 <                        e.value = value;
1177 <                        break;
1165 >    /**
1166 >     * Removes all of the mappings from this map.
1167 >     */
1168 >    public void clear() {
1169 >        long delta = 0L; // negative number of deletions
1170 >        int i = 0;
1171 >        Node<K,V>[] tab = table;
1172 >        while (tab != null && i < tab.length) {
1173 >            int fh;
1174 >            Node<K,V> f = tabAt(tab, i);
1175 >            if (f == null)
1176 >                ++i;
1177 >            else if ((fh = f.hash) == MOVED) {
1178 >                tab = helpTransfer(tab, f);
1179 >                i = 0; // restart
1180 >            }
1181 >            else {
1182 >                synchronized (f) {
1183 >                    if (tabAt(tab, i) == f) {
1184 >                        Node<K,V> p = (fh >= 0 ? f :
1185 >                                       (f instanceof TreeBin) ?
1186 >                                       ((TreeBin<K,V>)f).first : null);
1187 >                        while (p != null) {
1188 >                            --delta;
1189 >                            p = p.next;
1190 >                        }
1191 >                        setTabAt(tab, i++, null);
1192                      }
1193                  }
591            } finally {
592                unlock();
1194              }
594            return oldValue;
1195          }
1196 +        if (delta != 0L)
1197 +            addCount(delta, -1);
1198 +    }
1199  
1200 <        final void clear() {
1201 <            lock();
1202 <            try {
1203 <                HashEntry<K,V>[] tab = table;
1204 <                for (int i = 0; i < tab.length ; i++)
1205 <                    setEntryAt(tab, i, null);
1206 <                ++modCount;
1207 <                count = 0;
1208 <            } finally {
1209 <                unlock();
1210 <            }
1211 <        }
1200 >    /**
1201 >     * Returns a {@link Set} view of the keys contained in this map.
1202 >     * The set is backed by the map, so changes to the map are
1203 >     * reflected in the set, and vice-versa. The set supports element
1204 >     * removal, which removes the corresponding mapping from this map,
1205 >     * via the {@code Iterator.remove}, {@code Set.remove},
1206 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1207 >     * operations.  It does not support the {@code add} or
1208 >     * {@code addAll} operations.
1209 >     *
1210 >     * <p>The view's iterators and spliterators are
1211 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1212 >     *
1213 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1214 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1215 >     *
1216 >     * @return the set view
1217 >     */
1218 >    public KeySetView<K,V> keySet() {
1219 >        KeySetView<K,V> ks;
1220 >        if ((ks = keySet) != null) return ks;
1221 >        return keySet = new KeySetView<K,V>(this, null);
1222 >    }
1223 >
1224 >    /**
1225 >     * Returns a {@link Collection} view of the values contained in this map.
1226 >     * The collection is backed by the map, so changes to the map are
1227 >     * reflected in the collection, and vice-versa.  The collection
1228 >     * supports element removal, which removes the corresponding
1229 >     * mapping from this map, via the {@code Iterator.remove},
1230 >     * {@code Collection.remove}, {@code removeAll},
1231 >     * {@code retainAll}, and {@code clear} operations.  It does not
1232 >     * support the {@code add} or {@code addAll} operations.
1233 >     *
1234 >     * <p>The view's iterators and spliterators are
1235 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1236 >     *
1237 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1238 >     * and {@link Spliterator#NONNULL}.
1239 >     *
1240 >     * @return the collection view
1241 >     */
1242 >    public Collection<V> values() {
1243 >        ValuesView<K,V> vs;
1244 >        if ((vs = values) != null) return vs;
1245 >        return values = new ValuesView<K,V>(this);
1246      }
1247  
1248 <    // Accessing segments
1248 >    /**
1249 >     * Returns a {@link Set} view of the mappings contained in this map.
1250 >     * The set is backed by the map, so changes to the map are
1251 >     * reflected in the set, and vice-versa.  The set supports element
1252 >     * removal, which removes the corresponding mapping from the map,
1253 >     * via the {@code Iterator.remove}, {@code Set.remove},
1254 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1255 >     * operations.
1256 >     *
1257 >     * <p>The view's iterators and spliterators are
1258 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1259 >     *
1260 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1261 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1262 >     *
1263 >     * @return the set view
1264 >     */
1265 >    public Set<Map.Entry<K,V>> entrySet() {
1266 >        EntrySetView<K,V> es;
1267 >        if ((es = entrySet) != null) return es;
1268 >        return entrySet = new EntrySetView<K,V>(this);
1269 >    }
1270  
1271      /**
1272 <     * Gets the jth element of given segment array (if nonnull) with
1273 <     * volatile element access semantics via Unsafe.
1272 >     * Returns the hash code value for this {@link Map}, i.e.,
1273 >     * the sum of, for each key-value pair in the map,
1274 >     * {@code key.hashCode() ^ value.hashCode()}.
1275 >     *
1276 >     * @return the hash code value for this map
1277       */
1278 <    @SuppressWarnings("unchecked")
1279 <    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
1280 <        long u = (j << SSHIFT) + SBASE;
1281 <        return ss == null ? null :
1282 <            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
1278 >    public int hashCode() {
1279 >        int h = 0;
1280 >        Node<K,V>[] t;
1281 >        if ((t = table) != null) {
1282 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1283 >            for (Node<K,V> p; (p = it.advance()) != null; )
1284 >                h += p.key.hashCode() ^ p.val.hashCode();
1285 >        }
1286 >        return h;
1287      }
1288  
1289      /**
1290 <     * Returns the segment for the given index, creating it and
1291 <     * recording in segment table (via CAS) if not already present.
1290 >     * Returns a string representation of this map.  The string
1291 >     * representation consists of a list of key-value mappings (in no
1292 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1293 >     * mappings are separated by the characters {@code ", "} (comma
1294 >     * and space).  Each key-value mapping is rendered as the key
1295 >     * followed by an equals sign ("{@code =}") followed by the
1296 >     * associated value.
1297       *
1298 <     * @param k the index
629 <     * @return the segment
1298 >     * @return a string representation of this map
1299       */
1300 <    @SuppressWarnings("unchecked")
1301 <    private Segment<K,V> ensureSegment(int k) {
1302 <        final Segment<K,V>[] ss = this.segments;
1303 <        long u = (k << SSHIFT) + SBASE; // raw offset
1304 <        Segment<K,V> seg;
1305 <        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
1306 <            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
1307 <            int cap = proto.table.length;
1308 <            float lf = proto.loadFactor;
1309 <            int threshold = (int)(cap * lf);
1310 <            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
1311 <            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1312 <                == null) { // recheck
1313 <                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
1314 <                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1315 <                       == null) {
1316 <                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
648 <                        break;
649 <                }
1300 >    public String toString() {
1301 >        Node<K,V>[] t;
1302 >        int f = (t = table) == null ? 0 : t.length;
1303 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1304 >        StringBuilder sb = new StringBuilder();
1305 >        sb.append('{');
1306 >        Node<K,V> p;
1307 >        if ((p = it.advance()) != null) {
1308 >            for (;;) {
1309 >                K k = p.key;
1310 >                V v = p.val;
1311 >                sb.append(k == this ? "(this Map)" : k);
1312 >                sb.append('=');
1313 >                sb.append(v == this ? "(this Map)" : v);
1314 >                if ((p = it.advance()) == null)
1315 >                    break;
1316 >                sb.append(',').append(' ');
1317              }
1318          }
1319 <        return seg;
1319 >        return sb.append('}').toString();
1320      }
1321  
655    // Hash-based segment and entry accesses
656
1322      /**
1323 <     * Get the segment for the given hash
1323 >     * Compares the specified object with this map for equality.
1324 >     * Returns {@code true} if the given object is a map with the same
1325 >     * mappings as this map.  This operation may return misleading
1326 >     * results if either map is concurrently modified during execution
1327 >     * of this method.
1328 >     *
1329 >     * @param o object to be compared for equality with this map
1330 >     * @return {@code true} if the specified object is equal to this map
1331       */
1332 <    @SuppressWarnings("unchecked")
1333 <    private Segment<K,V> segmentForHash(int h) {
1334 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1335 <        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
1332 >    public boolean equals(Object o) {
1333 >        if (o != this) {
1334 >            if (!(o instanceof Map))
1335 >                return false;
1336 >            Map<?,?> m = (Map<?,?>) o;
1337 >            Node<K,V>[] t;
1338 >            int f = (t = table) == null ? 0 : t.length;
1339 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1340 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1341 >                V val = p.val;
1342 >                Object v = m.get(p.key);
1343 >                if (v == null || (v != val && !v.equals(val)))
1344 >                    return false;
1345 >            }
1346 >            for (Map.Entry<?,?> e : m.entrySet()) {
1347 >                Object mk, mv, v;
1348 >                if ((mk = e.getKey()) == null ||
1349 >                    (mv = e.getValue()) == null ||
1350 >                    (v = get(mk)) == null ||
1351 >                    (mv != v && !mv.equals(v)))
1352 >                    return false;
1353 >            }
1354 >        }
1355 >        return true;
1356      }
1357  
1358      /**
1359 <     * Gets the table entry for the given segment and hash
1359 >     * Stripped-down version of helper class used in previous version,
1360 >     * declared for the sake of serialization compatibility.
1361       */
1362 <    @SuppressWarnings("unchecked")
1363 <    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
1364 <        HashEntry<K,V>[] tab;
1365 <        return seg == null || (tab = seg.table) == null? null :
673 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
674 <            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1362 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1363 >        private static final long serialVersionUID = 2249069246763182397L;
1364 >        final float loadFactor;
1365 >        Segment(float lf) { this.loadFactor = lf; }
1366      }
1367  
677    /* ---------------- Public operations -------------- */
678
1368      /**
1369 <     * Creates a new, empty map with the specified initial
1370 <     * capacity, load factor and concurrency level.
1371 <     *
1372 <     * @param initialCapacity the initial capacity. The implementation
1373 <     * performs internal sizing to accommodate this many elements.
1374 <     * @param loadFactor  the load factor threshold, used to control resizing.
1375 <     * Resizing may be performed when the average number of elements per
1376 <     * bin exceeds this threshold.
688 <     * @param concurrencyLevel the estimated number of concurrently
689 <     * updating threads. The implementation performs internal sizing
690 <     * to try to accommodate this many threads.
691 <     * @throws IllegalArgumentException if the initial capacity is
692 <     * negative or the load factor or concurrencyLevel are
693 <     * nonpositive.
1369 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
1370 >     * stream (i.e., serializes it).
1371 >     * @param s the stream
1372 >     * @throws java.io.IOException if an I/O error occurs
1373 >     * @serialData
1374 >     * the serialized fields, followed by the key (Object) and value
1375 >     * (Object) for each key-value mapping, followed by a null pair.
1376 >     * The key-value mappings are emitted in no particular order.
1377       */
1378 <    @SuppressWarnings("unchecked")
1379 <    public ConcurrentHashMap(int initialCapacity,
1380 <                             float loadFactor, int concurrencyLevel) {
1381 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
699 <            throw new IllegalArgumentException();
700 <        if (concurrencyLevel > MAX_SEGMENTS)
701 <            concurrencyLevel = MAX_SEGMENTS;
702 <        // Find power-of-two sizes best matching arguments
1378 >    private void writeObject(java.io.ObjectOutputStream s)
1379 >        throws java.io.IOException {
1380 >        // For serialization compatibility
1381 >        // Emulate segment calculation from previous version of this class
1382          int sshift = 0;
1383          int ssize = 1;
1384 <        while (ssize < concurrencyLevel) {
1384 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1385              ++sshift;
1386              ssize <<= 1;
1387          }
1388 <        this.segmentShift = 32 - sshift;
1389 <        this.segmentMask = ssize - 1;
1390 <        if (initialCapacity > MAXIMUM_CAPACITY)
1391 <            initialCapacity = MAXIMUM_CAPACITY;
1392 <        int c = initialCapacity / ssize;
1393 <        if (c * ssize < initialCapacity)
1394 <            ++c;
1395 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
1396 <        while (cap < c)
1397 <            cap <<= 1;
1398 <        // create segments and segments[0]
1399 <        Segment<K,V> s0 =
1400 <            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
1401 <                             (HashEntry<K,V>[])new HashEntry[cap]);
1402 <        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
1403 <        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
1404 <        this.segments = ss;
1388 >        int segmentShift = 32 - sshift;
1389 >        int segmentMask = ssize - 1;
1390 >        @SuppressWarnings("unchecked")
1391 >        Segment<K,V>[] segments = (Segment<K,V>[])
1392 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1393 >        for (int i = 0; i < segments.length; ++i)
1394 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1395 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1396 >        streamFields.put("segments", segments);
1397 >        streamFields.put("segmentShift", segmentShift);
1398 >        streamFields.put("segmentMask", segmentMask);
1399 >        s.writeFields();
1400 >
1401 >        Node<K,V>[] t;
1402 >        if ((t = table) != null) {
1403 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1404 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1405 >                s.writeObject(p.key);
1406 >                s.writeObject(p.val);
1407 >            }
1408 >        }
1409 >        s.writeObject(null);
1410 >        s.writeObject(null);
1411      }
1412  
1413      /**
1414 <     * Creates a new, empty map with the specified initial capacity
1415 <     * and load factor and with the default concurrencyLevel (16).
1416 <     *
1417 <     * @param initialCapacity The implementation performs internal
1418 <     * sizing to accommodate this many elements.
1419 <     * @param loadFactor  the load factor threshold, used to control resizing.
1420 <     * Resizing may be performed when the average number of elements per
1421 <     * bin exceeds this threshold.
1422 <     * @throws IllegalArgumentException if the initial capacity of
1423 <     * elements is negative or the load factor is nonpositive
1414 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1415 >     * @param s the stream
1416 >     * @throws ClassNotFoundException if the class of a serialized object
1417 >     *         could not be found
1418 >     * @throws java.io.IOException if an I/O error occurs
1419 >     */
1420 >    private void readObject(java.io.ObjectInputStream s)
1421 >        throws java.io.IOException, ClassNotFoundException {
1422 >        /*
1423 >         * To improve performance in typical cases, we create nodes
1424 >         * while reading, then place in table once size is known.
1425 >         * However, we must also validate uniqueness and deal with
1426 >         * overpopulated bins while doing so, which requires
1427 >         * specialized versions of putVal mechanics.
1428 >         */
1429 >        sizeCtl = -1; // force exclusion for table construction
1430 >        s.defaultReadObject();
1431 >        long size = 0L;
1432 >        Node<K,V> p = null;
1433 >        for (;;) {
1434 >            @SuppressWarnings("unchecked")
1435 >            K k = (K) s.readObject();
1436 >            @SuppressWarnings("unchecked")
1437 >            V v = (V) s.readObject();
1438 >            if (k != null && v != null) {
1439 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1440 >                ++size;
1441 >            }
1442 >            else
1443 >                break;
1444 >        }
1445 >        if (size == 0L)
1446 >            sizeCtl = 0;
1447 >        else {
1448 >            int n;
1449 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1450 >                n = MAXIMUM_CAPACITY;
1451 >            else {
1452 >                int sz = (int)size;
1453 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1454 >            }
1455 >            @SuppressWarnings("unchecked")
1456 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1457 >            int mask = n - 1;
1458 >            long added = 0L;
1459 >            while (p != null) {
1460 >                boolean insertAtFront;
1461 >                Node<K,V> next = p.next, first;
1462 >                int h = p.hash, j = h & mask;
1463 >                if ((first = tabAt(tab, j)) == null)
1464 >                    insertAtFront = true;
1465 >                else {
1466 >                    K k = p.key;
1467 >                    if (first.hash < 0) {
1468 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1469 >                        if (t.putTreeVal(h, k, p.val) == null)
1470 >                            ++added;
1471 >                        insertAtFront = false;
1472 >                    }
1473 >                    else {
1474 >                        int binCount = 0;
1475 >                        insertAtFront = true;
1476 >                        Node<K,V> q; K qk;
1477 >                        for (q = first; q != null; q = q.next) {
1478 >                            if (q.hash == h &&
1479 >                                ((qk = q.key) == k ||
1480 >                                 (qk != null && k.equals(qk)))) {
1481 >                                insertAtFront = false;
1482 >                                break;
1483 >                            }
1484 >                            ++binCount;
1485 >                        }
1486 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1487 >                            insertAtFront = false;
1488 >                            ++added;
1489 >                            p.next = first;
1490 >                            TreeNode<K,V> hd = null, tl = null;
1491 >                            for (q = p; q != null; q = q.next) {
1492 >                                TreeNode<K,V> t = new TreeNode<K,V>
1493 >                                    (q.hash, q.key, q.val, null, null);
1494 >                                if ((t.prev = tl) == null)
1495 >                                    hd = t;
1496 >                                else
1497 >                                    tl.next = t;
1498 >                                tl = t;
1499 >                            }
1500 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1501 >                        }
1502 >                    }
1503 >                }
1504 >                if (insertAtFront) {
1505 >                    ++added;
1506 >                    p.next = first;
1507 >                    setTabAt(tab, j, p);
1508 >                }
1509 >                p = next;
1510 >            }
1511 >            table = tab;
1512 >            sizeCtl = n - (n >>> 2);
1513 >            baseCount = added;
1514 >        }
1515 >    }
1516 >
1517 >    // ConcurrentMap methods
1518 >
1519 >    /**
1520 >     * {@inheritDoc}
1521       *
1522 <     * @since 1.6
1522 >     * @return the previous value associated with the specified key,
1523 >     *         or {@code null} if there was no mapping for the key
1524 >     * @throws NullPointerException if the specified key or value is null
1525       */
1526 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
1527 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
1526 >    public V putIfAbsent(K key, V value) {
1527 >        return putVal(key, value, true);
1528      }
1529  
1530      /**
1531 <     * Creates a new, empty map with the specified initial capacity,
748 <     * and with default load factor (0.75) and concurrencyLevel (16).
1531 >     * {@inheritDoc}
1532       *
1533 <     * @param initialCapacity the initial capacity. The implementation
751 <     * performs internal sizing to accommodate this many elements.
752 <     * @throws IllegalArgumentException if the initial capacity of
753 <     * elements is negative.
1533 >     * @throws NullPointerException if the specified key is null
1534       */
1535 <    public ConcurrentHashMap(int initialCapacity) {
1536 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1535 >    public boolean remove(Object key, Object value) {
1536 >        if (key == null)
1537 >            throw new NullPointerException();
1538 >        return value != null && replaceNode(key, null, value) != null;
1539      }
1540  
1541      /**
1542 <     * Creates a new, empty map with a default initial capacity (16),
1543 <     * load factor (0.75) and concurrencyLevel (16).
1542 >     * {@inheritDoc}
1543 >     *
1544 >     * @throws NullPointerException if any of the arguments are null
1545       */
1546 <    public ConcurrentHashMap() {
1547 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1546 >    public boolean replace(K key, V oldValue, V newValue) {
1547 >        if (key == null || oldValue == null || newValue == null)
1548 >            throw new NullPointerException();
1549 >        return replaceNode(key, newValue, oldValue) != null;
1550      }
1551  
1552      /**
1553 <     * Creates a new map with the same mappings as the given map.
769 <     * The map is created with a capacity of 1.5 times the number
770 <     * of mappings in the given map or 16 (whichever is greater),
771 <     * and a default load factor (0.75) and concurrencyLevel (16).
1553 >     * {@inheritDoc}
1554       *
1555 <     * @param m the map
1555 >     * @return the previous value associated with the specified key,
1556 >     *         or {@code null} if there was no mapping for the key
1557 >     * @throws NullPointerException if the specified key or value is null
1558       */
1559 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
1560 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
1561 <                      DEFAULT_INITIAL_CAPACITY),
1562 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
779 <        putAll(m);
1559 >    public V replace(K key, V value) {
1560 >        if (key == null || value == null)
1561 >            throw new NullPointerException();
1562 >        return replaceNode(key, value, null);
1563      }
1564  
1565 +    // Overrides of JDK8+ Map extension method defaults
1566 +
1567      /**
1568 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
1568 >     * Returns the value to which the specified key is mapped, or the
1569 >     * given default value if this map contains no mapping for the
1570 >     * key.
1571       *
1572 <     * @return <tt>true</tt> if this map contains no key-value mappings
1572 >     * @param key the key whose associated value is to be returned
1573 >     * @param defaultValue the value to return if this map contains
1574 >     * no mapping for the given key
1575 >     * @return the mapping for the key, if present; else the default value
1576 >     * @throws NullPointerException if the specified key is null
1577       */
1578 <    public boolean isEmpty() {
1579 <        /*
1580 <         * Sum per-segment modCounts to avoid mis-reporting when
1581 <         * elements are concurrently added and removed in one segment
1582 <         * while checking another, in which case the table was never
1583 <         * actually empty at any point. (The sum ensures accuracy up
1584 <         * through at least 1<<31 per-segment modifications before
1585 <         * recheck.)  Methods size() and containsValue() use similar
1586 <         * constructions for stability checks.
1587 <         */
1588 <        long sum = 0L;
1589 <        final Segment<K,V>[] segments = this.segments;
799 <        for (int j = 0; j < segments.length; ++j) {
800 <            Segment<K,V> seg = segmentAt(segments, j);
801 <            if (seg != null) {
802 <                if (seg.count != 0)
803 <                    return false;
804 <                sum += seg.modCount;
1578 >    public V getOrDefault(Object key, V defaultValue) {
1579 >        V v;
1580 >        return (v = get(key)) == null ? defaultValue : v;
1581 >    }
1582 >
1583 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1584 >        if (action == null) throw new NullPointerException();
1585 >        Node<K,V>[] t;
1586 >        if ((t = table) != null) {
1587 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1588 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1589 >                action.accept(p.key, p.val);
1590              }
1591          }
1592 <        if (sum != 0L) { // recheck unless no modifications
1593 <            for (int j = 0; j < segments.length; ++j) {
1594 <                Segment<K,V> seg = segmentAt(segments, j);
1595 <                if (seg != null) {
1596 <                    if (seg.count != 0)
1597 <                        return false;
1598 <                    sum -= seg.modCount;
1592 >    }
1593 >
1594 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1595 >        if (function == null) throw new NullPointerException();
1596 >        Node<K,V>[] t;
1597 >        if ((t = table) != null) {
1598 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1599 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1600 >                V oldValue = p.val;
1601 >                for (K key = p.key;;) {
1602 >                    V newValue = function.apply(key, oldValue);
1603 >                    if (newValue == null)
1604 >                        throw new NullPointerException();
1605 >                    if (replaceNode(key, newValue, oldValue) != null ||
1606 >                        (oldValue = get(key)) == null)
1607 >                        break;
1608                  }
1609              }
816            if (sum != 0L)
817                return false;
1610          }
819        return true;
1611      }
1612  
1613      /**
1614 <     * Returns the number of key-value mappings in this map.  If the
1615 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
1616 <     * <tt>Integer.MAX_VALUE</tt>.
1614 >     * Helper method for EntrySetView.removeIf.
1615 >     */
1616 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1617 >        if (function == null) throw new NullPointerException();
1618 >        Node<K,V>[] t;
1619 >        boolean removed = false;
1620 >        if ((t = table) != null) {
1621 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1622 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1623 >                K k = p.key;
1624 >                V v = p.val;
1625 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1626 >                if (function.test(e) && replaceNode(k, null, v) != null)
1627 >                    removed = true;
1628 >            }
1629 >        }
1630 >        return removed;
1631 >    }
1632 >
1633 >    /**
1634 >     * Helper method for ValuesView.removeIf.
1635 >     */
1636 >    boolean removeValueIf(Predicate<? super V> function) {
1637 >        if (function == null) throw new NullPointerException();
1638 >        Node<K,V>[] t;
1639 >        boolean removed = false;
1640 >        if ((t = table) != null) {
1641 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1642 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1643 >                K k = p.key;
1644 >                V v = p.val;
1645 >                if (function.test(v) && replaceNode(k, null, v) != null)
1646 >                    removed = true;
1647 >            }
1648 >        }
1649 >        return removed;
1650 >    }
1651 >
1652 >    /**
1653 >     * If the specified key is not already associated with a value,
1654 >     * attempts to compute its value using the given mapping function
1655 >     * and enters it into this map unless {@code null}.  The entire
1656 >     * method invocation is performed atomically, so the function is
1657 >     * applied at most once per key.  Some attempted update operations
1658 >     * on this map by other threads may be blocked while computation
1659 >     * is in progress, so the computation should be short and simple,
1660 >     * and must not attempt to update any other mappings of this map.
1661       *
1662 <     * @return the number of key-value mappings in this map
1662 >     * @param key key with which the specified value is to be associated
1663 >     * @param mappingFunction the function to compute a value
1664 >     * @return the current (existing or computed) value associated with
1665 >     *         the specified key, or null if the computed value is null
1666 >     * @throws NullPointerException if the specified key or mappingFunction
1667 >     *         is null
1668 >     * @throws IllegalStateException if the computation detectably
1669 >     *         attempts a recursive update to this map that would
1670 >     *         otherwise never complete
1671 >     * @throws RuntimeException or Error if the mappingFunction does so,
1672 >     *         in which case the mapping is left unestablished
1673       */
1674 <    public int size() {
1675 <        // Try a few times to get accurate count. On failure due to
1676 <        // continuous async changes in table, resort to locking.
1677 <        final Segment<K,V>[] segments = this.segments;
1678 <        int size;
1679 <        boolean overflow; // true if size overflows 32 bits
1680 <        long sum;         // sum of modCounts
1681 <        long last = 0L;   // previous sum
1682 <        int retries = -1; // first iteration isn't retry
1683 <        try {
1684 <            for (;;) {
1685 <                if (retries++ == RETRIES_BEFORE_LOCK) {
1686 <                    for (int j = 0; j < segments.length; ++j)
1687 <                        ensureSegment(j).lock(); // force creation
1688 <                }
1689 <                sum = 0L;
1690 <                size = 0;
1691 <                overflow = false;
1692 <                for (int j = 0; j < segments.length; ++j) {
1693 <                    Segment<K,V> seg = segmentAt(segments, j);
1694 <                    if (seg != null) {
1695 <                        sum += seg.modCount;
851 <                        int c = seg.count;
852 <                        if (c < 0 || (size += c) < 0)
853 <                            overflow = true;
1674 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1675 >        if (key == null || mappingFunction == null)
1676 >            throw new NullPointerException();
1677 >        int h = spread(key.hashCode());
1678 >        V val = null;
1679 >        int binCount = 0;
1680 >        for (Node<K,V>[] tab = table;;) {
1681 >            Node<K,V> f; int n, i, fh; K fk; V fv;
1682 >            if (tab == null || (n = tab.length) == 0)
1683 >                tab = initTable();
1684 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1685 >                Node<K,V> r = new ReservationNode<K,V>();
1686 >                synchronized (r) {
1687 >                    if (casTabAt(tab, i, null, r)) {
1688 >                        binCount = 1;
1689 >                        Node<K,V> node = null;
1690 >                        try {
1691 >                            if ((val = mappingFunction.apply(key)) != null)
1692 >                                node = new Node<K,V>(h, key, val);
1693 >                        } finally {
1694 >                            setTabAt(tab, i, node);
1695 >                        }
1696                      }
1697                  }
1698 <                if (sum == last)
1698 >                if (binCount != 0)
1699                      break;
858                last = sum;
1700              }
1701 <        } finally {
1702 <            if (retries > RETRIES_BEFORE_LOCK) {
1703 <                for (int j = 0; j < segments.length; ++j)
1704 <                    segmentAt(segments, j).unlock();
1701 >            else if ((fh = f.hash) == MOVED)
1702 >                tab = helpTransfer(tab, f);
1703 >            else if (fh == h    // check first node without acquiring lock
1704 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1705 >                     && (fv = f.val) != null)
1706 >                return fv;
1707 >            else {
1708 >                boolean added = false;
1709 >                synchronized (f) {
1710 >                    if (tabAt(tab, i) == f) {
1711 >                        if (fh >= 0) {
1712 >                            binCount = 1;
1713 >                            for (Node<K,V> e = f;; ++binCount) {
1714 >                                K ek;
1715 >                                if (e.hash == h &&
1716 >                                    ((ek = e.key) == key ||
1717 >                                     (ek != null && key.equals(ek)))) {
1718 >                                    val = e.val;
1719 >                                    break;
1720 >                                }
1721 >                                Node<K,V> pred = e;
1722 >                                if ((e = e.next) == null) {
1723 >                                    if ((val = mappingFunction.apply(key)) != null) {
1724 >                                        if (pred.next != null)
1725 >                                            throw new IllegalStateException("Recursive update");
1726 >                                        added = true;
1727 >                                        pred.next = new Node<K,V>(h, key, val);
1728 >                                    }
1729 >                                    break;
1730 >                                }
1731 >                            }
1732 >                        }
1733 >                        else if (f instanceof TreeBin) {
1734 >                            binCount = 2;
1735 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1736 >                            TreeNode<K,V> r, p;
1737 >                            if ((r = t.root) != null &&
1738 >                                (p = r.findTreeNode(h, key, null)) != null)
1739 >                                val = p.val;
1740 >                            else if ((val = mappingFunction.apply(key)) != null) {
1741 >                                added = true;
1742 >                                t.putTreeVal(h, key, val);
1743 >                            }
1744 >                        }
1745 >                        else if (f instanceof ReservationNode)
1746 >                            throw new IllegalStateException("Recursive update");
1747 >                    }
1748 >                }
1749 >                if (binCount != 0) {
1750 >                    if (binCount >= TREEIFY_THRESHOLD)
1751 >                        treeifyBin(tab, i);
1752 >                    if (!added)
1753 >                        return val;
1754 >                    break;
1755 >                }
1756              }
1757          }
1758 <        return overflow ? Integer.MAX_VALUE : size;
1758 >        if (val != null)
1759 >            addCount(1L, binCount);
1760 >        return val;
1761      }
1762  
1763      /**
1764 <     * Returns the value to which the specified key is mapped,
1765 <     * or {@code null} if this map contains no mapping for the key.
1766 <     *
1767 <     * <p>More formally, if this map contains a mapping from a key
1768 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
1769 <     * then this method returns {@code v}; otherwise it returns
1770 <     * {@code null}.  (There can be at most one such mapping.)
1764 >     * If the value for the specified key is present, attempts to
1765 >     * compute a new mapping given the key and its current mapped
1766 >     * value.  The entire method invocation is performed atomically.
1767 >     * Some attempted update operations on this map by other threads
1768 >     * may be blocked while computation is in progress, so the
1769 >     * computation should be short and simple, and must not attempt to
1770 >     * update any other mappings of this map.
1771       *
1772 <     * @throws NullPointerException if the specified key is null
1772 >     * @param key key with which a value may be associated
1773 >     * @param remappingFunction the function to compute a value
1774 >     * @return the new value associated with the specified key, or null if none
1775 >     * @throws NullPointerException if the specified key or remappingFunction
1776 >     *         is null
1777 >     * @throws IllegalStateException if the computation detectably
1778 >     *         attempts a recursive update to this map that would
1779 >     *         otherwise never complete
1780 >     * @throws RuntimeException or Error if the remappingFunction does so,
1781 >     *         in which case the mapping is unchanged
1782       */
1783 <    public V get(Object key) {
1784 <        int hash = hash(key.hashCode());
1785 <        for (HashEntry<K,V> e = entryForHash(segmentForHash(hash), hash);
1786 <             e != null; e = e.next) {
1787 <            K k;
1788 <            if ((k = e.key) == key || (e.hash == hash && key.equals(k)))
1789 <                return e.value;
1783 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1784 >        if (key == null || remappingFunction == null)
1785 >            throw new NullPointerException();
1786 >        int h = spread(key.hashCode());
1787 >        V val = null;
1788 >        int delta = 0;
1789 >        int binCount = 0;
1790 >        for (Node<K,V>[] tab = table;;) {
1791 >            Node<K,V> f; int n, i, fh;
1792 >            if (tab == null || (n = tab.length) == 0)
1793 >                tab = initTable();
1794 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1795 >                break;
1796 >            else if ((fh = f.hash) == MOVED)
1797 >                tab = helpTransfer(tab, f);
1798 >            else {
1799 >                synchronized (f) {
1800 >                    if (tabAt(tab, i) == f) {
1801 >                        if (fh >= 0) {
1802 >                            binCount = 1;
1803 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1804 >                                K ek;
1805 >                                if (e.hash == h &&
1806 >                                    ((ek = e.key) == key ||
1807 >                                     (ek != null && key.equals(ek)))) {
1808 >                                    val = remappingFunction.apply(key, e.val);
1809 >                                    if (val != null)
1810 >                                        e.val = val;
1811 >                                    else {
1812 >                                        delta = -1;
1813 >                                        Node<K,V> en = e.next;
1814 >                                        if (pred != null)
1815 >                                            pred.next = en;
1816 >                                        else
1817 >                                            setTabAt(tab, i, en);
1818 >                                    }
1819 >                                    break;
1820 >                                }
1821 >                                pred = e;
1822 >                                if ((e = e.next) == null)
1823 >                                    break;
1824 >                            }
1825 >                        }
1826 >                        else if (f instanceof TreeBin) {
1827 >                            binCount = 2;
1828 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1829 >                            TreeNode<K,V> r, p;
1830 >                            if ((r = t.root) != null &&
1831 >                                (p = r.findTreeNode(h, key, null)) != null) {
1832 >                                val = remappingFunction.apply(key, p.val);
1833 >                                if (val != null)
1834 >                                    p.val = val;
1835 >                                else {
1836 >                                    delta = -1;
1837 >                                    if (t.removeTreeNode(p))
1838 >                                        setTabAt(tab, i, untreeify(t.first));
1839 >                                }
1840 >                            }
1841 >                        }
1842 >                        else if (f instanceof ReservationNode)
1843 >                            throw new IllegalStateException("Recursive update");
1844 >                    }
1845 >                }
1846 >                if (binCount != 0)
1847 >                    break;
1848 >            }
1849          }
1850 <        return null;
1850 >        if (delta != 0)
1851 >            addCount((long)delta, binCount);
1852 >        return val;
1853      }
1854  
1855      /**
1856 <     * Tests if the specified object is a key in this table.
1856 >     * Attempts to compute a mapping for the specified key and its
1857 >     * current mapped value (or {@code null} if there is no current
1858 >     * mapping). The entire method invocation is performed atomically.
1859 >     * Some attempted update operations on this map by other threads
1860 >     * may be blocked while computation is in progress, so the
1861 >     * computation should be short and simple, and must not attempt to
1862 >     * update any other mappings of this Map.
1863       *
1864 <     * @param  key   possible key
1865 <     * @return <tt>true</tt> if and only if the specified object
1866 <     *         is a key in this table, as determined by the
1867 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
1868 <     * @throws NullPointerException if the specified key is null
1869 <     */
1870 <    public boolean containsKey(Object key) {
1871 <        int hash = hash(key.hashCode());
1872 <        for (HashEntry<K,V> e = entryForHash(segmentForHash(hash), hash);
1873 <             e != null; e = e.next) {
1874 <            K k;
1875 <            if ((k = e.key) == key || (e.hash == hash && key.equals(k)))
1876 <                return true;
1864 >     * @param key key with which the specified value is to be associated
1865 >     * @param remappingFunction the function to compute a value
1866 >     * @return the new value associated with the specified key, or null if none
1867 >     * @throws NullPointerException if the specified key or remappingFunction
1868 >     *         is null
1869 >     * @throws IllegalStateException if the computation detectably
1870 >     *         attempts a recursive update to this map that would
1871 >     *         otherwise never complete
1872 >     * @throws RuntimeException or Error if the remappingFunction does so,
1873 >     *         in which case the mapping is unchanged
1874 >     */
1875 >    public V compute(K key,
1876 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1877 >        if (key == null || remappingFunction == null)
1878 >            throw new NullPointerException();
1879 >        int h = spread(key.hashCode());
1880 >        V val = null;
1881 >        int delta = 0;
1882 >        int binCount = 0;
1883 >        for (Node<K,V>[] tab = table;;) {
1884 >            Node<K,V> f; int n, i, fh;
1885 >            if (tab == null || (n = tab.length) == 0)
1886 >                tab = initTable();
1887 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1888 >                Node<K,V> r = new ReservationNode<K,V>();
1889 >                synchronized (r) {
1890 >                    if (casTabAt(tab, i, null, r)) {
1891 >                        binCount = 1;
1892 >                        Node<K,V> node = null;
1893 >                        try {
1894 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1895 >                                delta = 1;
1896 >                                node = new Node<K,V>(h, key, val);
1897 >                            }
1898 >                        } finally {
1899 >                            setTabAt(tab, i, node);
1900 >                        }
1901 >                    }
1902 >                }
1903 >                if (binCount != 0)
1904 >                    break;
1905 >            }
1906 >            else if ((fh = f.hash) == MOVED)
1907 >                tab = helpTransfer(tab, f);
1908 >            else {
1909 >                synchronized (f) {
1910 >                    if (tabAt(tab, i) == f) {
1911 >                        if (fh >= 0) {
1912 >                            binCount = 1;
1913 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1914 >                                K ek;
1915 >                                if (e.hash == h &&
1916 >                                    ((ek = e.key) == key ||
1917 >                                     (ek != null && key.equals(ek)))) {
1918 >                                    val = remappingFunction.apply(key, e.val);
1919 >                                    if (val != null)
1920 >                                        e.val = val;
1921 >                                    else {
1922 >                                        delta = -1;
1923 >                                        Node<K,V> en = e.next;
1924 >                                        if (pred != null)
1925 >                                            pred.next = en;
1926 >                                        else
1927 >                                            setTabAt(tab, i, en);
1928 >                                    }
1929 >                                    break;
1930 >                                }
1931 >                                pred = e;
1932 >                                if ((e = e.next) == null) {
1933 >                                    val = remappingFunction.apply(key, null);
1934 >                                    if (val != null) {
1935 >                                        if (pred.next != null)
1936 >                                            throw new IllegalStateException("Recursive update");
1937 >                                        delta = 1;
1938 >                                        pred.next = new Node<K,V>(h, key, val);
1939 >                                    }
1940 >                                    break;
1941 >                                }
1942 >                            }
1943 >                        }
1944 >                        else if (f instanceof TreeBin) {
1945 >                            binCount = 1;
1946 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1947 >                            TreeNode<K,V> r, p;
1948 >                            if ((r = t.root) != null)
1949 >                                p = r.findTreeNode(h, key, null);
1950 >                            else
1951 >                                p = null;
1952 >                            V pv = (p == null) ? null : p.val;
1953 >                            val = remappingFunction.apply(key, pv);
1954 >                            if (val != null) {
1955 >                                if (p != null)
1956 >                                    p.val = val;
1957 >                                else {
1958 >                                    delta = 1;
1959 >                                    t.putTreeVal(h, key, val);
1960 >                                }
1961 >                            }
1962 >                            else if (p != null) {
1963 >                                delta = -1;
1964 >                                if (t.removeTreeNode(p))
1965 >                                    setTabAt(tab, i, untreeify(t.first));
1966 >                            }
1967 >                        }
1968 >                        else if (f instanceof ReservationNode)
1969 >                            throw new IllegalStateException("Recursive update");
1970 >                    }
1971 >                }
1972 >                if (binCount != 0) {
1973 >                    if (binCount >= TREEIFY_THRESHOLD)
1974 >                        treeifyBin(tab, i);
1975 >                    break;
1976 >                }
1977 >            }
1978          }
1979 <        return false;
1979 >        if (delta != 0)
1980 >            addCount((long)delta, binCount);
1981 >        return val;
1982      }
1983  
1984      /**
1985 <     * Returns <tt>true</tt> if this map maps one or more keys to the
1986 <     * specified value. Note: This method requires a full internal
1987 <     * traversal of the hash table, and so is much slower than
1988 <     * method <tt>containsKey</tt>.
1985 >     * If the specified key is not already associated with a
1986 >     * (non-null) value, associates it with the given value.
1987 >     * Otherwise, replaces the value with the results of the given
1988 >     * remapping function, or removes if {@code null}. The entire
1989 >     * method invocation is performed atomically.  Some attempted
1990 >     * update operations on this map by other threads may be blocked
1991 >     * while computation is in progress, so the computation should be
1992 >     * short and simple, and must not attempt to update any other
1993 >     * mappings of this Map.
1994       *
1995 <     * @param value value whose presence in this map is to be tested
1996 <     * @return <tt>true</tt> if this map maps one or more keys to the
1997 <     *         specified value
1998 <     * @throws NullPointerException if the specified value is null
1995 >     * @param key key with which the specified value is to be associated
1996 >     * @param value the value to use if absent
1997 >     * @param remappingFunction the function to recompute a value if present
1998 >     * @return the new value associated with the specified key, or null if none
1999 >     * @throws NullPointerException if the specified key or the
2000 >     *         remappingFunction is null
2001 >     * @throws RuntimeException or Error if the remappingFunction does so,
2002 >     *         in which case the mapping is unchanged
2003       */
2004 <    public boolean containsValue(Object value) {
2005 <        // Same idea as size() but using hashes as checksum
924 <        if (value == null)
2004 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2005 >        if (key == null || value == null || remappingFunction == null)
2006              throw new NullPointerException();
2007 <        final Segment<K,V>[] segments = this.segments;
2008 <        boolean found = false;
2009 <        long last = 0L;
2010 <        int retries = -1;
2011 <        try {
2012 <            outer: for (;;) {
2013 <                if (retries++ == RETRIES_BEFORE_LOCK) {
2014 <                    for (int j = 0; j < segments.length; ++j)
2015 <                        ensureSegment(j).lock(); // force creation
2016 <                }
2017 <                long sum = 0L;
2018 <                for (int j = 0; j < segments.length; ++j) {
2019 <                    HashEntry<K,V>[] tab;
2020 <                    Segment<K,V> seg = segmentAt(segments, j);
2021 <                    if (seg != null && (tab = seg.table) != null) {
2022 <                        for (int i = 0 ; i < tab.length; i++) {
2023 <                            HashEntry<K,V> e;
2024 <                            for (e = entryAt(tab, i); e != null; e = e.next) {
2025 <                                V v = e.value;
2026 <                                if (v != null && value.equals(v)) {
2027 <                                    found = true;
2028 <                                    break outer;
2007 >        int h = spread(key.hashCode());
2008 >        V val = null;
2009 >        int delta = 0;
2010 >        int binCount = 0;
2011 >        for (Node<K,V>[] tab = table;;) {
2012 >            Node<K,V> f; int n, i, fh;
2013 >            if (tab == null || (n = tab.length) == 0)
2014 >                tab = initTable();
2015 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2016 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2017 >                    delta = 1;
2018 >                    val = value;
2019 >                    break;
2020 >                }
2021 >            }
2022 >            else if ((fh = f.hash) == MOVED)
2023 >                tab = helpTransfer(tab, f);
2024 >            else {
2025 >                synchronized (f) {
2026 >                    if (tabAt(tab, i) == f) {
2027 >                        if (fh >= 0) {
2028 >                            binCount = 1;
2029 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2030 >                                K ek;
2031 >                                if (e.hash == h &&
2032 >                                    ((ek = e.key) == key ||
2033 >                                     (ek != null && key.equals(ek)))) {
2034 >                                    val = remappingFunction.apply(e.val, value);
2035 >                                    if (val != null)
2036 >                                        e.val = val;
2037 >                                    else {
2038 >                                        delta = -1;
2039 >                                        Node<K,V> en = e.next;
2040 >                                        if (pred != null)
2041 >                                            pred.next = en;
2042 >                                        else
2043 >                                            setTabAt(tab, i, en);
2044 >                                    }
2045 >                                    break;
2046 >                                }
2047 >                                pred = e;
2048 >                                if ((e = e.next) == null) {
2049 >                                    delta = 1;
2050 >                                    val = value;
2051 >                                    pred.next = new Node<K,V>(h, key, val);
2052 >                                    break;
2053                                  }
949                                sum += e.hash;
2054                              }
2055                          }
2056 +                        else if (f instanceof TreeBin) {
2057 +                            binCount = 2;
2058 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2059 +                            TreeNode<K,V> r = t.root;
2060 +                            TreeNode<K,V> p = (r == null) ? null :
2061 +                                r.findTreeNode(h, key, null);
2062 +                            val = (p == null) ? value :
2063 +                                remappingFunction.apply(p.val, value);
2064 +                            if (val != null) {
2065 +                                if (p != null)
2066 +                                    p.val = val;
2067 +                                else {
2068 +                                    delta = 1;
2069 +                                    t.putTreeVal(h, key, val);
2070 +                                }
2071 +                            }
2072 +                            else if (p != null) {
2073 +                                delta = -1;
2074 +                                if (t.removeTreeNode(p))
2075 +                                    setTabAt(tab, i, untreeify(t.first));
2076 +                            }
2077 +                        }
2078 +                        else if (f instanceof ReservationNode)
2079 +                            throw new IllegalStateException("Recursive update");
2080                      }
2081                  }
2082 <                if (sum == last)
2082 >                if (binCount != 0) {
2083 >                    if (binCount >= TREEIFY_THRESHOLD)
2084 >                        treeifyBin(tab, i);
2085                      break;
2086 <                last = sum;
957 <            }
958 <        } finally {
959 <            if (retries > RETRIES_BEFORE_LOCK) {
960 <                for (int j = 0; j < segments.length; ++j)
961 <                    segmentAt(segments, j).unlock();
2086 >                }
2087              }
2088          }
2089 <        return found;
2089 >        if (delta != 0)
2090 >            addCount((long)delta, binCount);
2091 >        return val;
2092      }
2093  
2094 +    // Hashtable legacy methods
2095 +
2096      /**
2097 <     * Legacy method testing if some key maps into the specified value
2098 <     * in this table.  This method is identical in functionality to
2099 <     * {@link #containsValue}, and exists solely to ensure
2097 >     * Tests if some key maps into the specified value in this table.
2098 >     *
2099 >     * <p>Note that this method is identical in functionality to
2100 >     * {@link #containsValue(Object)}, and exists solely to ensure
2101       * full compatibility with class {@link java.util.Hashtable},
2102       * which supported this method prior to introduction of the
2103 <     * Java Collections framework.
2104 <
2103 >     * Java Collections Framework.
2104 >     *
2105       * @param  value a value to search for
2106 <     * @return <tt>true</tt> if and only if some key maps to the
2107 <     *         <tt>value</tt> argument in this table as
2108 <     *         determined by the <tt>equals</tt> method;
2109 <     *         <tt>false</tt> otherwise
2106 >     * @return {@code true} if and only if some key maps to the
2107 >     *         {@code value} argument in this table as
2108 >     *         determined by the {@code equals} method;
2109 >     *         {@code false} otherwise
2110       * @throws NullPointerException if the specified value is null
2111       */
2112      public boolean contains(Object value) {
# Line 984 | Line 2114 | public class ConcurrentHashMap<K, V> ext
2114      }
2115  
2116      /**
2117 <     * Maps the specified key to the specified value in this table.
988 <     * Neither the key nor the value can be null.
989 <     *
990 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
991 <     * with a key that is equal to the original key.
2117 >     * Returns an enumeration of the keys in this table.
2118       *
2119 <     * @param key key with which the specified value is to be associated
2120 <     * @param value value to be associated with the specified key
995 <     * @return the previous value associated with <tt>key</tt>, or
996 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
997 <     * @throws NullPointerException if the specified key or value is null
2119 >     * @return an enumeration of the keys in this table
2120 >     * @see #keySet()
2121       */
2122 <    public V put(K key, V value) {
2123 <        Segment<K,V> s;
2124 <        if (value == null)
2125 <            throw new NullPointerException();
1003 <        int hash = hash(key.hashCode());
1004 <        int j = (hash >>> segmentShift) & segmentMask;
1005 <        return ((s = segmentAt(segments, j)) == null? ensureSegment(j) : s).
1006 <            put(key, hash, value, false);
2122 >    public Enumeration<K> keys() {
2123 >        Node<K,V>[] t;
2124 >        int f = (t = table) == null ? 0 : t.length;
2125 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2126      }
2127  
2128      /**
2129 <     * {@inheritDoc}
2129 >     * Returns an enumeration of the values in this table.
2130       *
2131 <     * @return the previous value associated with the specified key,
2132 <     *         or <tt>null</tt> if there was no mapping for the key
1014 <     * @throws NullPointerException if the specified key or value is null
2131 >     * @return an enumeration of the values in this table
2132 >     * @see #values()
2133       */
2134 <    public V putIfAbsent(K key, V value) {
2135 <        Segment<K,V> s;
2136 <        if (value == null)
2137 <            throw new NullPointerException();
1020 <        int hash = hash(key.hashCode());
1021 <        int j = (hash >>> segmentShift) & segmentMask;
1022 <        return ((s = segmentAt(segments, j)) == null? ensureSegment(j) : s).
1023 <            put(key, hash, value, true);
2134 >    public Enumeration<V> elements() {
2135 >        Node<K,V>[] t;
2136 >        int f = (t = table) == null ? 0 : t.length;
2137 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2138      }
2139  
2140 +    // ConcurrentHashMap-only methods
2141 +
2142      /**
2143 <     * Copies all of the mappings from the specified map to this one.
2144 <     * These mappings replace any mappings that this map had for any of the
2145 <     * keys currently in the specified map.
2143 >     * Returns the number of mappings. This method should be used
2144 >     * instead of {@link #size} because a ConcurrentHashMap may
2145 >     * contain more mappings than can be represented as an int. The
2146 >     * value returned is an estimate; the actual count may differ if
2147 >     * there are concurrent insertions or removals.
2148       *
2149 <     * @param m mappings to be stored in this map
2149 >     * @return the number of mappings
2150 >     * @since 1.8
2151       */
2152 <    public void putAll(Map<? extends K, ? extends V> m) {
2153 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2154 <            put(e.getKey(), e.getValue());
2152 >    public long mappingCount() {
2153 >        long n = sumCount();
2154 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2155      }
2156  
2157      /**
2158 <     * Removes the key (and its corresponding value) from this map.
2159 <     * This method does nothing if the key is not in the map.
2158 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2159 >     * from the given type to {@code Boolean.TRUE}.
2160       *
2161 <     * @param  key the key that needs to be removed
2162 <     * @return the previous value associated with <tt>key</tt>, or
2163 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1045 <     * @throws NullPointerException if the specified key is null
2161 >     * @param <K> the element type of the returned set
2162 >     * @return the new set
2163 >     * @since 1.8
2164       */
2165 <    public V remove(Object key) {
2166 <        int hash = hash(key.hashCode());
2167 <        Segment<K,V> s = segmentForHash(hash);
1050 <        return s == null ? null : s.remove(key, hash, null);
2165 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2166 >        return new KeySetView<K,Boolean>
2167 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2168      }
2169  
2170      /**
2171 <     * {@inheritDoc}
2171 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2172 >     * from the given type to {@code Boolean.TRUE}.
2173       *
2174 <     * @throws NullPointerException if the specified key is null
2174 >     * @param initialCapacity The implementation performs internal
2175 >     * sizing to accommodate this many elements.
2176 >     * @param <K> the element type of the returned set
2177 >     * @return the new set
2178 >     * @throws IllegalArgumentException if the initial capacity of
2179 >     * elements is negative
2180 >     * @since 1.8
2181       */
2182 <    public boolean remove(Object key, Object value) {
2183 <        int hash = hash(key.hashCode());
2184 <        Segment<K,V> s;
1061 <        return value != null && (s = segmentForHash(hash)) != null &&
1062 <            s.remove(key, hash, value) != null;
2182 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2183 >        return new KeySetView<K,Boolean>
2184 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2185      }
2186  
2187      /**
2188 <     * {@inheritDoc}
2188 >     * Returns a {@link Set} view of the keys in this map, using the
2189 >     * given common mapped value for any additions (i.e., {@link
2190 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2191 >     * This is of course only appropriate if it is acceptable to use
2192 >     * the same value for all additions from this view.
2193       *
2194 <     * @throws NullPointerException if any of the arguments are null
2194 >     * @param mappedValue the mapped value to use for any additions
2195 >     * @return the set view
2196 >     * @throws NullPointerException if the mappedValue is null
2197       */
2198 <    public boolean replace(K key, V oldValue, V newValue) {
2199 <        int hash = hash(key.hashCode());
1072 <        if (oldValue == null || newValue == null)
2198 >    public KeySetView<K,V> keySet(V mappedValue) {
2199 >        if (mappedValue == null)
2200              throw new NullPointerException();
2201 <        Segment<K,V> s = segmentForHash(hash);
1075 <        return s != null && s.replace(key, hash, oldValue, newValue);
2201 >        return new KeySetView<K,V>(this, mappedValue);
2202      }
2203  
2204 +    /* ---------------- Special Nodes -------------- */
2205 +
2206      /**
2207 <     * {@inheritDoc}
1080 <     *
1081 <     * @return the previous value associated with the specified key,
1082 <     *         or <tt>null</tt> if there was no mapping for the key
1083 <     * @throws NullPointerException if the specified key or value is null
2207 >     * A node inserted at head of bins during transfer operations.
2208       */
2209 <    public V replace(K key, V value) {
2210 <        int hash = hash(key.hashCode());
2211 <        if (value == null)
2212 <            throw new NullPointerException();
2213 <        Segment<K,V> s = segmentForHash(hash);
2214 <        return s == null ? null : s.replace(key, hash, value);
2209 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2210 >        final Node<K,V>[] nextTable;
2211 >        ForwardingNode(Node<K,V>[] tab) {
2212 >            super(MOVED, null, null);
2213 >            this.nextTable = tab;
2214 >        }
2215 >
2216 >        Node<K,V> find(int h, Object k) {
2217 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2218 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2219 >                Node<K,V> e; int n;
2220 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2221 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2222 >                    return null;
2223 >                for (;;) {
2224 >                    int eh; K ek;
2225 >                    if ((eh = e.hash) == h &&
2226 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2227 >                        return e;
2228 >                    if (eh < 0) {
2229 >                        if (e instanceof ForwardingNode) {
2230 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2231 >                            continue outer;
2232 >                        }
2233 >                        else
2234 >                            return e.find(h, k);
2235 >                    }
2236 >                    if ((e = e.next) == null)
2237 >                        return null;
2238 >                }
2239 >            }
2240 >        }
2241      }
2242  
2243      /**
2244 <     * Removes all of the mappings from this map.
2244 >     * A place-holder node used in computeIfAbsent and compute.
2245       */
2246 <    public void clear() {
2247 <        final Segment<K,V>[] segments = this.segments;
2248 <        for (int j = 0; j < segments.length; ++j) {
2249 <            Segment<K,V> s = segmentAt(segments, j);
2250 <            if (s != null)
2251 <                s.clear();
2246 >    static final class ReservationNode<K,V> extends Node<K,V> {
2247 >        ReservationNode() {
2248 >            super(RESERVED, null, null);
2249 >        }
2250 >
2251 >        Node<K,V> find(int h, Object k) {
2252 >            return null;
2253          }
2254      }
2255  
2256 +    /* ---------------- Table Initialization and Resizing -------------- */
2257 +
2258      /**
2259 <     * Returns a {@link Set} view of the keys contained in this map.
2260 <     * The set is backed by the map, so changes to the map are
2261 <     * reflected in the set, and vice-versa.  The set supports element
2262 <     * removal, which removes the corresponding mapping from this map,
2263 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1111 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1112 <     * operations.  It does not support the <tt>add</tt> or
1113 <     * <tt>addAll</tt> operations.
1114 <     *
1115 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1116 <     * that will never throw {@link ConcurrentModificationException},
1117 <     * and guarantees to traverse elements as they existed upon
1118 <     * construction of the iterator, and may (but is not guaranteed to)
1119 <     * reflect any modifications subsequent to construction.
1120 <     */
1121 <    public Set<K> keySet() {
1122 <        Set<K> ks = keySet;
1123 <        return (ks != null) ? ks : (keySet = new KeySet());
2259 >     * Returns the stamp bits for resizing a table of size n.
2260 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2261 >     */
2262 >    static final int resizeStamp(int n) {
2263 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2264      }
2265  
2266      /**
2267 <     * Returns a {@link Collection} view of the values contained in this map.
1128 <     * The collection is backed by the map, so changes to the map are
1129 <     * reflected in the collection, and vice-versa.  The collection
1130 <     * supports element removal, which removes the corresponding
1131 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1132 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1133 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1134 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1135 <     *
1136 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1137 <     * that will never throw {@link ConcurrentModificationException},
1138 <     * and guarantees to traverse elements as they existed upon
1139 <     * construction of the iterator, and may (but is not guaranteed to)
1140 <     * reflect any modifications subsequent to construction.
2267 >     * Initializes table, using the size recorded in sizeCtl.
2268       */
2269 <    public Collection<V> values() {
2270 <        Collection<V> vs = values;
2271 <        return (vs != null) ? vs : (values = new Values());
2269 >    private final Node<K,V>[] initTable() {
2270 >        Node<K,V>[] tab; int sc;
2271 >        while ((tab = table) == null || tab.length == 0) {
2272 >            if ((sc = sizeCtl) < 0)
2273 >                Thread.yield(); // lost initialization race; just spin
2274 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2275 >                try {
2276 >                    if ((tab = table) == null || tab.length == 0) {
2277 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2278 >                        @SuppressWarnings("unchecked")
2279 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2280 >                        table = tab = nt;
2281 >                        sc = n - (n >>> 2);
2282 >                    }
2283 >                } finally {
2284 >                    sizeCtl = sc;
2285 >                }
2286 >                break;
2287 >            }
2288 >        }
2289 >        return tab;
2290      }
2291  
2292      /**
2293 <     * Returns a {@link Set} view of the mappings contained in this map.
2294 <     * The set is backed by the map, so changes to the map are
2295 <     * reflected in the set, and vice-versa.  The set supports element
2296 <     * removal, which removes the corresponding mapping from the map,
2297 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2298 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2299 <     * operations.  It does not support the <tt>add</tt> or
2300 <     * <tt>addAll</tt> operations.
1156 <     *
1157 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1158 <     * that will never throw {@link ConcurrentModificationException},
1159 <     * and guarantees to traverse elements as they existed upon
1160 <     * construction of the iterator, and may (but is not guaranteed to)
1161 <     * reflect any modifications subsequent to construction.
2293 >     * Adds to count, and if table is too small and not already
2294 >     * resizing, initiates transfer. If already resizing, helps
2295 >     * perform transfer if work is available.  Rechecks occupancy
2296 >     * after a transfer to see if another resize is already needed
2297 >     * because resizings are lagging additions.
2298 >     *
2299 >     * @param x the count to add
2300 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2301       */
2302 <    public Set<Map.Entry<K,V>> entrySet() {
2303 <        Set<Map.Entry<K,V>> es = entrySet;
2304 <        return (es != null) ? es : (entrySet = new EntrySet());
2302 >    private final void addCount(long x, int check) {
2303 >        CounterCell[] as; long b, s;
2304 >        if ((as = counterCells) != null ||
2305 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2306 >            CounterCell a; long v; int m;
2307 >            boolean uncontended = true;
2308 >            if (as == null || (m = as.length - 1) < 0 ||
2309 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2310 >                !(uncontended =
2311 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2312 >                fullAddCount(x, uncontended);
2313 >                return;
2314 >            }
2315 >            if (check <= 1)
2316 >                return;
2317 >            s = sumCount();
2318 >        }
2319 >        if (check >= 0) {
2320 >            Node<K,V>[] tab, nt; int n, sc;
2321 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2322 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2323 >                int rs = resizeStamp(n);
2324 >                if (sc < 0) {
2325 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2326 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2327 >                        transferIndex <= 0)
2328 >                        break;
2329 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2330 >                        transfer(tab, nt);
2331 >                }
2332 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2333 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2334 >                    transfer(tab, null);
2335 >                s = sumCount();
2336 >            }
2337 >        }
2338      }
2339  
2340      /**
2341 <     * Returns an enumeration of the keys in this table.
1170 <     *
1171 <     * @return an enumeration of the keys in this table
1172 <     * @see #keySet()
2341 >     * Helps transfer if a resize is in progress.
2342       */
2343 <    public Enumeration<K> keys() {
2344 <        return new KeyIterator();
2343 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2344 >        Node<K,V>[] nextTab; int sc;
2345 >        if (tab != null && (f instanceof ForwardingNode) &&
2346 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2347 >            int rs = resizeStamp(tab.length);
2348 >            while (nextTab == nextTable && table == tab &&
2349 >                   (sc = sizeCtl) < 0) {
2350 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2351 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2352 >                    break;
2353 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2354 >                    transfer(tab, nextTab);
2355 >                    break;
2356 >                }
2357 >            }
2358 >            return nextTab;
2359 >        }
2360 >        return table;
2361      }
2362  
2363      /**
2364 <     * Returns an enumeration of the values in this table.
2364 >     * Tries to presize table to accommodate the given number of elements.
2365       *
2366 <     * @return an enumeration of the values in this table
1182 <     * @see #values()
2366 >     * @param size number of elements (doesn't need to be perfectly accurate)
2367       */
2368 <    public Enumeration<V> elements() {
2369 <        return new ValueIterator();
2368 >    private final void tryPresize(int size) {
2369 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2370 >            tableSizeFor(size + (size >>> 1) + 1);
2371 >        int sc;
2372 >        while ((sc = sizeCtl) >= 0) {
2373 >            Node<K,V>[] tab = table; int n;
2374 >            if (tab == null || (n = tab.length) == 0) {
2375 >                n = (sc > c) ? sc : c;
2376 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2377 >                    try {
2378 >                        if (table == tab) {
2379 >                            @SuppressWarnings("unchecked")
2380 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2381 >                            table = nt;
2382 >                            sc = n - (n >>> 2);
2383 >                        }
2384 >                    } finally {
2385 >                        sizeCtl = sc;
2386 >                    }
2387 >                }
2388 >            }
2389 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2390 >                break;
2391 >            else if (tab == table) {
2392 >                int rs = resizeStamp(n);
2393 >                if (U.compareAndSwapInt(this, SIZECTL, sc,
2394 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2395 >                    transfer(tab, null);
2396 >            }
2397 >        }
2398      }
2399  
2400 <    /* ---------------- Iterator Support -------------- */
2400 >    /**
2401 >     * Moves and/or copies the nodes in each bin to new table. See
2402 >     * above for explanation.
2403 >     */
2404 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2405 >        int n = tab.length, stride;
2406 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2407 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2408 >        if (nextTab == null) {            // initiating
2409 >            try {
2410 >                @SuppressWarnings("unchecked")
2411 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2412 >                nextTab = nt;
2413 >            } catch (Throwable ex) {      // try to cope with OOME
2414 >                sizeCtl = Integer.MAX_VALUE;
2415 >                return;
2416 >            }
2417 >            nextTable = nextTab;
2418 >            transferIndex = n;
2419 >        }
2420 >        int nextn = nextTab.length;
2421 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2422 >        boolean advance = true;
2423 >        boolean finishing = false; // to ensure sweep before committing nextTab
2424 >        for (int i = 0, bound = 0;;) {
2425 >            Node<K,V> f; int fh;
2426 >            while (advance) {
2427 >                int nextIndex, nextBound;
2428 >                if (--i >= bound || finishing)
2429 >                    advance = false;
2430 >                else if ((nextIndex = transferIndex) <= 0) {
2431 >                    i = -1;
2432 >                    advance = false;
2433 >                }
2434 >                else if (U.compareAndSwapInt
2435 >                         (this, TRANSFERINDEX, nextIndex,
2436 >                          nextBound = (nextIndex > stride ?
2437 >                                       nextIndex - stride : 0))) {
2438 >                    bound = nextBound;
2439 >                    i = nextIndex - 1;
2440 >                    advance = false;
2441 >                }
2442 >            }
2443 >            if (i < 0 || i >= n || i + n >= nextn) {
2444 >                int sc;
2445 >                if (finishing) {
2446 >                    nextTable = null;
2447 >                    table = nextTab;
2448 >                    sizeCtl = (n << 1) - (n >>> 1);
2449 >                    return;
2450 >                }
2451 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2452 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2453 >                        return;
2454 >                    finishing = advance = true;
2455 >                    i = n; // recheck before commit
2456 >                }
2457 >            }
2458 >            else if ((f = tabAt(tab, i)) == null)
2459 >                advance = casTabAt(tab, i, null, fwd);
2460 >            else if ((fh = f.hash) == MOVED)
2461 >                advance = true; // already processed
2462 >            else {
2463 >                synchronized (f) {
2464 >                    if (tabAt(tab, i) == f) {
2465 >                        Node<K,V> ln, hn;
2466 >                        if (fh >= 0) {
2467 >                            int runBit = fh & n;
2468 >                            Node<K,V> lastRun = f;
2469 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2470 >                                int b = p.hash & n;
2471 >                                if (b != runBit) {
2472 >                                    runBit = b;
2473 >                                    lastRun = p;
2474 >                                }
2475 >                            }
2476 >                            if (runBit == 0) {
2477 >                                ln = lastRun;
2478 >                                hn = null;
2479 >                            }
2480 >                            else {
2481 >                                hn = lastRun;
2482 >                                ln = null;
2483 >                            }
2484 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2485 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2486 >                                if ((ph & n) == 0)
2487 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2488 >                                else
2489 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2490 >                            }
2491 >                            setTabAt(nextTab, i, ln);
2492 >                            setTabAt(nextTab, i + n, hn);
2493 >                            setTabAt(tab, i, fwd);
2494 >                            advance = true;
2495 >                        }
2496 >                        else if (f instanceof TreeBin) {
2497 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2498 >                            TreeNode<K,V> lo = null, loTail = null;
2499 >                            TreeNode<K,V> hi = null, hiTail = null;
2500 >                            int lc = 0, hc = 0;
2501 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2502 >                                int h = e.hash;
2503 >                                TreeNode<K,V> p = new TreeNode<K,V>
2504 >                                    (h, e.key, e.val, null, null);
2505 >                                if ((h & n) == 0) {
2506 >                                    if ((p.prev = loTail) == null)
2507 >                                        lo = p;
2508 >                                    else
2509 >                                        loTail.next = p;
2510 >                                    loTail = p;
2511 >                                    ++lc;
2512 >                                }
2513 >                                else {
2514 >                                    if ((p.prev = hiTail) == null)
2515 >                                        hi = p;
2516 >                                    else
2517 >                                        hiTail.next = p;
2518 >                                    hiTail = p;
2519 >                                    ++hc;
2520 >                                }
2521 >                            }
2522 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2523 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2524 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2525 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2526 >                            setTabAt(nextTab, i, ln);
2527 >                            setTabAt(nextTab, i + n, hn);
2528 >                            setTabAt(tab, i, fwd);
2529 >                            advance = true;
2530 >                        }
2531 >                    }
2532 >                }
2533 >            }
2534 >        }
2535 >    }
2536  
2537 <    abstract class HashIterator {
1191 <        int nextSegmentIndex;
1192 <        int nextTableIndex;
1193 <        HashEntry<K,V>[] currentTable;
1194 <        HashEntry<K, V> nextEntry;
1195 <        HashEntry<K, V> lastReturned;
2537 >    /* ---------------- Counter support -------------- */
2538  
2539 <        HashIterator() {
2540 <            nextSegmentIndex = segments.length - 1;
2541 <            nextTableIndex = -1;
2542 <            advance();
2539 >    /**
2540 >     * A padded cell for distributing counts.  Adapted from LongAdder
2541 >     * and Striped64.  See their internal docs for explanation.
2542 >     */
2543 >    @jdk.internal.vm.annotation.Contended static final class CounterCell {
2544 >        volatile long value;
2545 >        CounterCell(long x) { value = x; }
2546 >    }
2547 >
2548 >    final long sumCount() {
2549 >        CounterCell[] as = counterCells; CounterCell a;
2550 >        long sum = baseCount;
2551 >        if (as != null) {
2552 >            for (int i = 0; i < as.length; ++i) {
2553 >                if ((a = as[i]) != null)
2554 >                    sum += a.value;
2555 >            }
2556 >        }
2557 >        return sum;
2558 >    }
2559 >
2560 >    // See LongAdder version for explanation
2561 >    private final void fullAddCount(long x, boolean wasUncontended) {
2562 >        int h;
2563 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2564 >            ThreadLocalRandom.localInit();      // force initialization
2565 >            h = ThreadLocalRandom.getProbe();
2566 >            wasUncontended = true;
2567 >        }
2568 >        boolean collide = false;                // True if last slot nonempty
2569 >        for (;;) {
2570 >            CounterCell[] as; CounterCell a; int n; long v;
2571 >            if ((as = counterCells) != null && (n = as.length) > 0) {
2572 >                if ((a = as[(n - 1) & h]) == null) {
2573 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2574 >                        CounterCell r = new CounterCell(x); // Optimistic create
2575 >                        if (cellsBusy == 0 &&
2576 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2577 >                            boolean created = false;
2578 >                            try {               // Recheck under lock
2579 >                                CounterCell[] rs; int m, j;
2580 >                                if ((rs = counterCells) != null &&
2581 >                                    (m = rs.length) > 0 &&
2582 >                                    rs[j = (m - 1) & h] == null) {
2583 >                                    rs[j] = r;
2584 >                                    created = true;
2585 >                                }
2586 >                            } finally {
2587 >                                cellsBusy = 0;
2588 >                            }
2589 >                            if (created)
2590 >                                break;
2591 >                            continue;           // Slot is now non-empty
2592 >                        }
2593 >                    }
2594 >                    collide = false;
2595 >                }
2596 >                else if (!wasUncontended)       // CAS already known to fail
2597 >                    wasUncontended = true;      // Continue after rehash
2598 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2599 >                    break;
2600 >                else if (counterCells != as || n >= NCPU)
2601 >                    collide = false;            // At max size or stale
2602 >                else if (!collide)
2603 >                    collide = true;
2604 >                else if (cellsBusy == 0 &&
2605 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2606 >                    try {
2607 >                        if (counterCells == as) {// Expand table unless stale
2608 >                            CounterCell[] rs = new CounterCell[n << 1];
2609 >                            for (int i = 0; i < n; ++i)
2610 >                                rs[i] = as[i];
2611 >                            counterCells = rs;
2612 >                        }
2613 >                    } finally {
2614 >                        cellsBusy = 0;
2615 >                    }
2616 >                    collide = false;
2617 >                    continue;                   // Retry with expanded table
2618 >                }
2619 >                h = ThreadLocalRandom.advanceProbe(h);
2620 >            }
2621 >            else if (cellsBusy == 0 && counterCells == as &&
2622 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2623 >                boolean init = false;
2624 >                try {                           // Initialize table
2625 >                    if (counterCells == as) {
2626 >                        CounterCell[] rs = new CounterCell[2];
2627 >                        rs[h & 1] = new CounterCell(x);
2628 >                        counterCells = rs;
2629 >                        init = true;
2630 >                    }
2631 >                } finally {
2632 >                    cellsBusy = 0;
2633 >                }
2634 >                if (init)
2635 >                    break;
2636 >            }
2637 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2638 >                break;                          // Fall back on using base
2639 >        }
2640 >    }
2641 >
2642 >    /* ---------------- Conversion from/to TreeBins -------------- */
2643 >
2644 >    /**
2645 >     * Replaces all linked nodes in bin at given index unless table is
2646 >     * too small, in which case resizes instead.
2647 >     */
2648 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2649 >        Node<K,V> b; int n;
2650 >        if (tab != null) {
2651 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2652 >                tryPresize(n << 1);
2653 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2654 >                synchronized (b) {
2655 >                    if (tabAt(tab, index) == b) {
2656 >                        TreeNode<K,V> hd = null, tl = null;
2657 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2658 >                            TreeNode<K,V> p =
2659 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2660 >                                                  null, null);
2661 >                            if ((p.prev = tl) == null)
2662 >                                hd = p;
2663 >                            else
2664 >                                tl.next = p;
2665 >                            tl = p;
2666 >                        }
2667 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2668 >                    }
2669 >                }
2670 >            }
2671 >        }
2672 >    }
2673 >
2674 >    /**
2675 >     * Returns a list of non-TreeNodes replacing those in given list.
2676 >     */
2677 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2678 >        Node<K,V> hd = null, tl = null;
2679 >        for (Node<K,V> q = b; q != null; q = q.next) {
2680 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2681 >            if (tl == null)
2682 >                hd = p;
2683 >            else
2684 >                tl.next = p;
2685 >            tl = p;
2686 >        }
2687 >        return hd;
2688 >    }
2689 >
2690 >    /* ---------------- TreeNodes -------------- */
2691 >
2692 >    /**
2693 >     * Nodes for use in TreeBins.
2694 >     */
2695 >    static final class TreeNode<K,V> extends Node<K,V> {
2696 >        TreeNode<K,V> parent;  // red-black tree links
2697 >        TreeNode<K,V> left;
2698 >        TreeNode<K,V> right;
2699 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2700 >        boolean red;
2701 >
2702 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2703 >                 TreeNode<K,V> parent) {
2704 >            super(hash, key, val, next);
2705 >            this.parent = parent;
2706 >        }
2707 >
2708 >        Node<K,V> find(int h, Object k) {
2709 >            return findTreeNode(h, k, null);
2710          }
2711  
2712          /**
2713 <         * Set nextEntry to first node of next non-empty table
2714 <         * (in backwards order, to simplify checks).
2713 >         * Returns the TreeNode (or null if not found) for the given key
2714 >         * starting at given root.
2715           */
2716 <        final void advance() {
2717 <            for (;;) {
2718 <                if (nextTableIndex >= 0) {
2719 <                    if ((nextEntry = entryAt(currentTable,
2720 <                                             nextTableIndex--)) != null)
2721 <                        break;
2716 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2717 >            if (k != null) {
2718 >                TreeNode<K,V> p = this;
2719 >                do {
2720 >                    int ph, dir; K pk; TreeNode<K,V> q;
2721 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2722 >                    if ((ph = p.hash) > h)
2723 >                        p = pl;
2724 >                    else if (ph < h)
2725 >                        p = pr;
2726 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2727 >                        return p;
2728 >                    else if (pl == null)
2729 >                        p = pr;
2730 >                    else if (pr == null)
2731 >                        p = pl;
2732 >                    else if ((kc != null ||
2733 >                              (kc = comparableClassFor(k)) != null) &&
2734 >                             (dir = compareComparables(kc, k, pk)) != 0)
2735 >                        p = (dir < 0) ? pl : pr;
2736 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2737 >                        return q;
2738 >                    else
2739 >                        p = pl;
2740 >                } while (p != null);
2741 >            }
2742 >            return null;
2743 >        }
2744 >    }
2745 >
2746 >    /* ---------------- TreeBins -------------- */
2747 >
2748 >    /**
2749 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2750 >     * keys or values, but instead point to list of TreeNodes and
2751 >     * their root. They also maintain a parasitic read-write lock
2752 >     * forcing writers (who hold bin lock) to wait for readers (who do
2753 >     * not) to complete before tree restructuring operations.
2754 >     */
2755 >    static final class TreeBin<K,V> extends Node<K,V> {
2756 >        TreeNode<K,V> root;
2757 >        volatile TreeNode<K,V> first;
2758 >        volatile Thread waiter;
2759 >        volatile int lockState;
2760 >        // values for lockState
2761 >        static final int WRITER = 1; // set while holding write lock
2762 >        static final int WAITER = 2; // set when waiting for write lock
2763 >        static final int READER = 4; // increment value for setting read lock
2764 >
2765 >        /**
2766 >         * Tie-breaking utility for ordering insertions when equal
2767 >         * hashCodes and non-comparable. We don't require a total
2768 >         * order, just a consistent insertion rule to maintain
2769 >         * equivalence across rebalancings. Tie-breaking further than
2770 >         * necessary simplifies testing a bit.
2771 >         */
2772 >        static int tieBreakOrder(Object a, Object b) {
2773 >            int d;
2774 >            if (a == null || b == null ||
2775 >                (d = a.getClass().getName().
2776 >                 compareTo(b.getClass().getName())) == 0)
2777 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2778 >                     -1 : 1);
2779 >            return d;
2780 >        }
2781 >
2782 >        /**
2783 >         * Creates bin with initial set of nodes headed by b.
2784 >         */
2785 >        TreeBin(TreeNode<K,V> b) {
2786 >            super(TREEBIN, null, null);
2787 >            this.first = b;
2788 >            TreeNode<K,V> r = null;
2789 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2790 >                next = (TreeNode<K,V>)x.next;
2791 >                x.left = x.right = null;
2792 >                if (r == null) {
2793 >                    x.parent = null;
2794 >                    x.red = false;
2795 >                    r = x;
2796                  }
2797 <                else if (nextSegmentIndex >= 0) {
2798 <                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
2799 <                    if (seg != null && (currentTable = seg.table) != null)
2800 <                        nextTableIndex = currentTable.length - 1;
2797 >                else {
2798 >                    K k = x.key;
2799 >                    int h = x.hash;
2800 >                    Class<?> kc = null;
2801 >                    for (TreeNode<K,V> p = r;;) {
2802 >                        int dir, ph;
2803 >                        K pk = p.key;
2804 >                        if ((ph = p.hash) > h)
2805 >                            dir = -1;
2806 >                        else if (ph < h)
2807 >                            dir = 1;
2808 >                        else if ((kc == null &&
2809 >                                  (kc = comparableClassFor(k)) == null) ||
2810 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2811 >                            dir = tieBreakOrder(k, pk);
2812 >                        TreeNode<K,V> xp = p;
2813 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2814 >                            x.parent = xp;
2815 >                            if (dir <= 0)
2816 >                                xp.left = x;
2817 >                            else
2818 >                                xp.right = x;
2819 >                            r = balanceInsertion(r, x);
2820 >                            break;
2821 >                        }
2822 >                    }
2823                  }
2824 <                else
2824 >            }
2825 >            this.root = r;
2826 >            assert checkInvariants(root);
2827 >        }
2828 >
2829 >        /**
2830 >         * Acquires write lock for tree restructuring.
2831 >         */
2832 >        private final void lockRoot() {
2833 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2834 >                contendedLock(); // offload to separate method
2835 >        }
2836 >
2837 >        /**
2838 >         * Releases write lock for tree restructuring.
2839 >         */
2840 >        private final void unlockRoot() {
2841 >            lockState = 0;
2842 >        }
2843 >
2844 >        /**
2845 >         * Possibly blocks awaiting root lock.
2846 >         */
2847 >        private final void contendedLock() {
2848 >            boolean waiting = false;
2849 >            for (int s;;) {
2850 >                if (((s = lockState) & ~WAITER) == 0) {
2851 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2852 >                        if (waiting)
2853 >                            waiter = null;
2854 >                        return;
2855 >                    }
2856 >                }
2857 >                else if ((s & WAITER) == 0) {
2858 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2859 >                        waiting = true;
2860 >                        waiter = Thread.currentThread();
2861 >                    }
2862 >                }
2863 >                else if (waiting)
2864 >                    LockSupport.park(this);
2865 >            }
2866 >        }
2867 >
2868 >        /**
2869 >         * Returns matching node or null if none. Tries to search
2870 >         * using tree comparisons from root, but continues linear
2871 >         * search when lock not available.
2872 >         */
2873 >        final Node<K,V> find(int h, Object k) {
2874 >            if (k != null) {
2875 >                for (Node<K,V> e = first; e != null; ) {
2876 >                    int s; K ek;
2877 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2878 >                        if (e.hash == h &&
2879 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2880 >                            return e;
2881 >                        e = e.next;
2882 >                    }
2883 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2884 >                                                 s + READER)) {
2885 >                        TreeNode<K,V> r, p;
2886 >                        try {
2887 >                            p = ((r = root) == null ? null :
2888 >                                 r.findTreeNode(h, k, null));
2889 >                        } finally {
2890 >                            Thread w;
2891 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2892 >                                (READER|WAITER) && (w = waiter) != null)
2893 >                                LockSupport.unpark(w);
2894 >                        }
2895 >                        return p;
2896 >                    }
2897 >                }
2898 >            }
2899 >            return null;
2900 >        }
2901 >
2902 >        /**
2903 >         * Finds or adds a node.
2904 >         * @return null if added
2905 >         */
2906 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2907 >            Class<?> kc = null;
2908 >            boolean searched = false;
2909 >            for (TreeNode<K,V> p = root;;) {
2910 >                int dir, ph; K pk;
2911 >                if (p == null) {
2912 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2913 >                    break;
2914 >                }
2915 >                else if ((ph = p.hash) > h)
2916 >                    dir = -1;
2917 >                else if (ph < h)
2918 >                    dir = 1;
2919 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2920 >                    return p;
2921 >                else if ((kc == null &&
2922 >                          (kc = comparableClassFor(k)) == null) ||
2923 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2924 >                    if (!searched) {
2925 >                        TreeNode<K,V> q, ch;
2926 >                        searched = true;
2927 >                        if (((ch = p.left) != null &&
2928 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2929 >                            ((ch = p.right) != null &&
2930 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2931 >                            return q;
2932 >                    }
2933 >                    dir = tieBreakOrder(k, pk);
2934 >                }
2935 >
2936 >                TreeNode<K,V> xp = p;
2937 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2938 >                    TreeNode<K,V> x, f = first;
2939 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2940 >                    if (f != null)
2941 >                        f.prev = x;
2942 >                    if (dir <= 0)
2943 >                        xp.left = x;
2944 >                    else
2945 >                        xp.right = x;
2946 >                    if (!xp.red)
2947 >                        x.red = true;
2948 >                    else {
2949 >                        lockRoot();
2950 >                        try {
2951 >                            root = balanceInsertion(root, x);
2952 >                        } finally {
2953 >                            unlockRoot();
2954 >                        }
2955 >                    }
2956                      break;
2957 +                }
2958              }
2959 +            assert checkInvariants(root);
2960 +            return null;
2961          }
2962  
2963 <        final HashEntry<K,V> nextEntry() {
2964 <            HashEntry<K,V> e = lastReturned = nextEntry;
2965 <            if (e == null)
2966 <                throw new NoSuchElementException();
2967 <            if ((nextEntry = e.next) == null)
2968 <                advance();
2969 <            return e;
2963 >        /**
2964 >         * Removes the given node, that must be present before this
2965 >         * call.  This is messier than typical red-black deletion code
2966 >         * because we cannot swap the contents of an interior node
2967 >         * with a leaf successor that is pinned by "next" pointers
2968 >         * that are accessible independently of lock. So instead we
2969 >         * swap the tree linkages.
2970 >         *
2971 >         * @return true if now too small, so should be untreeified
2972 >         */
2973 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2974 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2975 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2976 >            TreeNode<K,V> r, rl;
2977 >            if (pred == null)
2978 >                first = next;
2979 >            else
2980 >                pred.next = next;
2981 >            if (next != null)
2982 >                next.prev = pred;
2983 >            if (first == null) {
2984 >                root = null;
2985 >                return true;
2986 >            }
2987 >            if ((r = root) == null || r.right == null || // too small
2988 >                (rl = r.left) == null || rl.left == null)
2989 >                return true;
2990 >            lockRoot();
2991 >            try {
2992 >                TreeNode<K,V> replacement;
2993 >                TreeNode<K,V> pl = p.left;
2994 >                TreeNode<K,V> pr = p.right;
2995 >                if (pl != null && pr != null) {
2996 >                    TreeNode<K,V> s = pr, sl;
2997 >                    while ((sl = s.left) != null) // find successor
2998 >                        s = sl;
2999 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
3000 >                    TreeNode<K,V> sr = s.right;
3001 >                    TreeNode<K,V> pp = p.parent;
3002 >                    if (s == pr) { // p was s's direct parent
3003 >                        p.parent = s;
3004 >                        s.right = p;
3005 >                    }
3006 >                    else {
3007 >                        TreeNode<K,V> sp = s.parent;
3008 >                        if ((p.parent = sp) != null) {
3009 >                            if (s == sp.left)
3010 >                                sp.left = p;
3011 >                            else
3012 >                                sp.right = p;
3013 >                        }
3014 >                        if ((s.right = pr) != null)
3015 >                            pr.parent = s;
3016 >                    }
3017 >                    p.left = null;
3018 >                    if ((p.right = sr) != null)
3019 >                        sr.parent = p;
3020 >                    if ((s.left = pl) != null)
3021 >                        pl.parent = s;
3022 >                    if ((s.parent = pp) == null)
3023 >                        r = s;
3024 >                    else if (p == pp.left)
3025 >                        pp.left = s;
3026 >                    else
3027 >                        pp.right = s;
3028 >                    if (sr != null)
3029 >                        replacement = sr;
3030 >                    else
3031 >                        replacement = p;
3032 >                }
3033 >                else if (pl != null)
3034 >                    replacement = pl;
3035 >                else if (pr != null)
3036 >                    replacement = pr;
3037 >                else
3038 >                    replacement = p;
3039 >                if (replacement != p) {
3040 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
3041 >                    if (pp == null)
3042 >                        r = replacement;
3043 >                    else if (p == pp.left)
3044 >                        pp.left = replacement;
3045 >                    else
3046 >                        pp.right = replacement;
3047 >                    p.left = p.right = p.parent = null;
3048 >                }
3049 >
3050 >                root = (p.red) ? r : balanceDeletion(r, replacement);
3051 >
3052 >                if (p == replacement) {  // detach pointers
3053 >                    TreeNode<K,V> pp;
3054 >                    if ((pp = p.parent) != null) {
3055 >                        if (p == pp.left)
3056 >                            pp.left = null;
3057 >                        else if (p == pp.right)
3058 >                            pp.right = null;
3059 >                        p.parent = null;
3060 >                    }
3061 >                }
3062 >            } finally {
3063 >                unlockRoot();
3064 >            }
3065 >            assert checkInvariants(root);
3066 >            return false;
3067 >        }
3068 >
3069 >        /* ------------------------------------------------------------ */
3070 >        // Red-black tree methods, all adapted from CLR
3071 >
3072 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3073 >                                              TreeNode<K,V> p) {
3074 >            TreeNode<K,V> r, pp, rl;
3075 >            if (p != null && (r = p.right) != null) {
3076 >                if ((rl = p.right = r.left) != null)
3077 >                    rl.parent = p;
3078 >                if ((pp = r.parent = p.parent) == null)
3079 >                    (root = r).red = false;
3080 >                else if (pp.left == p)
3081 >                    pp.left = r;
3082 >                else
3083 >                    pp.right = r;
3084 >                r.left = p;
3085 >                p.parent = r;
3086 >            }
3087 >            return root;
3088          }
3089  
3090 <        public final boolean hasNext() { return nextEntry != null; }
3091 <        public final boolean hasMoreElements() { return nextEntry != null; }
3090 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3091 >                                               TreeNode<K,V> p) {
3092 >            TreeNode<K,V> l, pp, lr;
3093 >            if (p != null && (l = p.left) != null) {
3094 >                if ((lr = p.left = l.right) != null)
3095 >                    lr.parent = p;
3096 >                if ((pp = l.parent = p.parent) == null)
3097 >                    (root = l).red = false;
3098 >                else if (pp.right == p)
3099 >                    pp.right = l;
3100 >                else
3101 >                    pp.left = l;
3102 >                l.right = p;
3103 >                p.parent = l;
3104 >            }
3105 >            return root;
3106 >        }
3107 >
3108 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3109 >                                                    TreeNode<K,V> x) {
3110 >            x.red = true;
3111 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3112 >                if ((xp = x.parent) == null) {
3113 >                    x.red = false;
3114 >                    return x;
3115 >                }
3116 >                else if (!xp.red || (xpp = xp.parent) == null)
3117 >                    return root;
3118 >                if (xp == (xppl = xpp.left)) {
3119 >                    if ((xppr = xpp.right) != null && xppr.red) {
3120 >                        xppr.red = false;
3121 >                        xp.red = false;
3122 >                        xpp.red = true;
3123 >                        x = xpp;
3124 >                    }
3125 >                    else {
3126 >                        if (x == xp.right) {
3127 >                            root = rotateLeft(root, x = xp);
3128 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3129 >                        }
3130 >                        if (xp != null) {
3131 >                            xp.red = false;
3132 >                            if (xpp != null) {
3133 >                                xpp.red = true;
3134 >                                root = rotateRight(root, xpp);
3135 >                            }
3136 >                        }
3137 >                    }
3138 >                }
3139 >                else {
3140 >                    if (xppl != null && xppl.red) {
3141 >                        xppl.red = false;
3142 >                        xp.red = false;
3143 >                        xpp.red = true;
3144 >                        x = xpp;
3145 >                    }
3146 >                    else {
3147 >                        if (x == xp.left) {
3148 >                            root = rotateRight(root, x = xp);
3149 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3150 >                        }
3151 >                        if (xp != null) {
3152 >                            xp.red = false;
3153 >                            if (xpp != null) {
3154 >                                xpp.red = true;
3155 >                                root = rotateLeft(root, xpp);
3156 >                            }
3157 >                        }
3158 >                    }
3159 >                }
3160 >            }
3161 >        }
3162 >
3163 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3164 >                                                   TreeNode<K,V> x) {
3165 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3166 >                if (x == null || x == root)
3167 >                    return root;
3168 >                else if ((xp = x.parent) == null) {
3169 >                    x.red = false;
3170 >                    return x;
3171 >                }
3172 >                else if (x.red) {
3173 >                    x.red = false;
3174 >                    return root;
3175 >                }
3176 >                else if ((xpl = xp.left) == x) {
3177 >                    if ((xpr = xp.right) != null && xpr.red) {
3178 >                        xpr.red = false;
3179 >                        xp.red = true;
3180 >                        root = rotateLeft(root, xp);
3181 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3182 >                    }
3183 >                    if (xpr == null)
3184 >                        x = xp;
3185 >                    else {
3186 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3187 >                        if ((sr == null || !sr.red) &&
3188 >                            (sl == null || !sl.red)) {
3189 >                            xpr.red = true;
3190 >                            x = xp;
3191 >                        }
3192 >                        else {
3193 >                            if (sr == null || !sr.red) {
3194 >                                if (sl != null)
3195 >                                    sl.red = false;
3196 >                                xpr.red = true;
3197 >                                root = rotateRight(root, xpr);
3198 >                                xpr = (xp = x.parent) == null ?
3199 >                                    null : xp.right;
3200 >                            }
3201 >                            if (xpr != null) {
3202 >                                xpr.red = (xp == null) ? false : xp.red;
3203 >                                if ((sr = xpr.right) != null)
3204 >                                    sr.red = false;
3205 >                            }
3206 >                            if (xp != null) {
3207 >                                xp.red = false;
3208 >                                root = rotateLeft(root, xp);
3209 >                            }
3210 >                            x = root;
3211 >                        }
3212 >                    }
3213 >                }
3214 >                else { // symmetric
3215 >                    if (xpl != null && xpl.red) {
3216 >                        xpl.red = false;
3217 >                        xp.red = true;
3218 >                        root = rotateRight(root, xp);
3219 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3220 >                    }
3221 >                    if (xpl == null)
3222 >                        x = xp;
3223 >                    else {
3224 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3225 >                        if ((sl == null || !sl.red) &&
3226 >                            (sr == null || !sr.red)) {
3227 >                            xpl.red = true;
3228 >                            x = xp;
3229 >                        }
3230 >                        else {
3231 >                            if (sl == null || !sl.red) {
3232 >                                if (sr != null)
3233 >                                    sr.red = false;
3234 >                                xpl.red = true;
3235 >                                root = rotateLeft(root, xpl);
3236 >                                xpl = (xp = x.parent) == null ?
3237 >                                    null : xp.left;
3238 >                            }
3239 >                            if (xpl != null) {
3240 >                                xpl.red = (xp == null) ? false : xp.red;
3241 >                                if ((sl = xpl.left) != null)
3242 >                                    sl.red = false;
3243 >                            }
3244 >                            if (xp != null) {
3245 >                                xp.red = false;
3246 >                                root = rotateRight(root, xp);
3247 >                            }
3248 >                            x = root;
3249 >                        }
3250 >                    }
3251 >                }
3252 >            }
3253 >        }
3254 >
3255 >        /**
3256 >         * Checks invariants recursively for the tree of Nodes rooted at t.
3257 >         */
3258 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3259 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3260 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3261 >            if (tb != null && tb.next != t)
3262 >                return false;
3263 >            if (tn != null && tn.prev != t)
3264 >                return false;
3265 >            if (tp != null && t != tp.left && t != tp.right)
3266 >                return false;
3267 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3268 >                return false;
3269 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3270 >                return false;
3271 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3272 >                return false;
3273 >            if (tl != null && !checkInvariants(tl))
3274 >                return false;
3275 >            if (tr != null && !checkInvariants(tr))
3276 >                return false;
3277 >            return true;
3278 >        }
3279 >
3280 >        private static final Unsafe U = Unsafe.getUnsafe();
3281 >        private static final long LOCKSTATE;
3282 >        static {
3283 >            try {
3284 >                LOCKSTATE = U.objectFieldOffset
3285 >                    (TreeBin.class.getDeclaredField("lockState"));
3286 >            } catch (ReflectiveOperationException e) {
3287 >                throw new Error(e);
3288 >            }
3289 >        }
3290 >    }
3291 >
3292 >    /* ----------------Table Traversal -------------- */
3293 >
3294 >    /**
3295 >     * Records the table, its length, and current traversal index for a
3296 >     * traverser that must process a region of a forwarded table before
3297 >     * proceeding with current table.
3298 >     */
3299 >    static final class TableStack<K,V> {
3300 >        int length;
3301 >        int index;
3302 >        Node<K,V>[] tab;
3303 >        TableStack<K,V> next;
3304 >    }
3305 >
3306 >    /**
3307 >     * Encapsulates traversal for methods such as containsValue; also
3308 >     * serves as a base class for other iterators and spliterators.
3309 >     *
3310 >     * Method advance visits once each still-valid node that was
3311 >     * reachable upon iterator construction. It might miss some that
3312 >     * were added to a bin after the bin was visited, which is OK wrt
3313 >     * consistency guarantees. Maintaining this property in the face
3314 >     * of possible ongoing resizes requires a fair amount of
3315 >     * bookkeeping state that is difficult to optimize away amidst
3316 >     * volatile accesses.  Even so, traversal maintains reasonable
3317 >     * throughput.
3318 >     *
3319 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3320 >     * However, if the table has been resized, then all future steps
3321 >     * must traverse both the bin at the current index as well as at
3322 >     * (index + baseSize); and so on for further resizings. To
3323 >     * paranoically cope with potential sharing by users of iterators
3324 >     * across threads, iteration terminates if a bounds checks fails
3325 >     * for a table read.
3326 >     */
3327 >    static class Traverser<K,V> {
3328 >        Node<K,V>[] tab;        // current table; updated if resized
3329 >        Node<K,V> next;         // the next entry to use
3330 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3331 >        int index;              // index of bin to use next
3332 >        int baseIndex;          // current index of initial table
3333 >        int baseLimit;          // index bound for initial table
3334 >        final int baseSize;     // initial table size
3335 >
3336 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3337 >            this.tab = tab;
3338 >            this.baseSize = size;
3339 >            this.baseIndex = this.index = index;
3340 >            this.baseLimit = limit;
3341 >            this.next = null;
3342 >        }
3343 >
3344 >        /**
3345 >         * Advances if possible, returning next valid node, or null if none.
3346 >         */
3347 >        final Node<K,V> advance() {
3348 >            Node<K,V> e;
3349 >            if ((e = next) != null)
3350 >                e = e.next;
3351 >            for (;;) {
3352 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3353 >                if (e != null)
3354 >                    return next = e;
3355 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3356 >                    (n = t.length) <= (i = index) || i < 0)
3357 >                    return next = null;
3358 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3359 >                    if (e instanceof ForwardingNode) {
3360 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3361 >                        e = null;
3362 >                        pushState(t, i, n);
3363 >                        continue;
3364 >                    }
3365 >                    else if (e instanceof TreeBin)
3366 >                        e = ((TreeBin<K,V>)e).first;
3367 >                    else
3368 >                        e = null;
3369 >                }
3370 >                if (stack != null)
3371 >                    recoverState(n);
3372 >                else if ((index = i + baseSize) >= n)
3373 >                    index = ++baseIndex; // visit upper slots if present
3374 >            }
3375 >        }
3376 >
3377 >        /**
3378 >         * Saves traversal state upon encountering a forwarding node.
3379 >         */
3380 >        private void pushState(Node<K,V>[] t, int i, int n) {
3381 >            TableStack<K,V> s = spare;  // reuse if possible
3382 >            if (s != null)
3383 >                spare = s.next;
3384 >            else
3385 >                s = new TableStack<K,V>();
3386 >            s.tab = t;
3387 >            s.length = n;
3388 >            s.index = i;
3389 >            s.next = stack;
3390 >            stack = s;
3391 >        }
3392 >
3393 >        /**
3394 >         * Possibly pops traversal state.
3395 >         *
3396 >         * @param n length of current table
3397 >         */
3398 >        private void recoverState(int n) {
3399 >            TableStack<K,V> s; int len;
3400 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3401 >                n = len;
3402 >                index = s.index;
3403 >                tab = s.tab;
3404 >                s.tab = null;
3405 >                TableStack<K,V> next = s.next;
3406 >                s.next = spare; // save for reuse
3407 >                stack = next;
3408 >                spare = s;
3409 >            }
3410 >            if (s == null && (index += baseSize) >= n)
3411 >                index = ++baseIndex;
3412 >        }
3413 >    }
3414 >
3415 >    /**
3416 >     * Base of key, value, and entry Iterators. Adds fields to
3417 >     * Traverser to support iterator.remove.
3418 >     */
3419 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3420 >        final ConcurrentHashMap<K,V> map;
3421 >        Node<K,V> lastReturned;
3422 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3423 >                    ConcurrentHashMap<K,V> map) {
3424 >            super(tab, size, index, limit);
3425 >            this.map = map;
3426 >            advance();
3427 >        }
3428 >
3429 >        public final boolean hasNext() { return next != null; }
3430 >        public final boolean hasMoreElements() { return next != null; }
3431  
3432          public final void remove() {
3433 <            if (lastReturned == null)
3433 >            Node<K,V> p;
3434 >            if ((p = lastReturned) == null)
3435                  throw new IllegalStateException();
1239            ConcurrentHashMap.this.remove(lastReturned.key);
3436              lastReturned = null;
3437 +            map.replaceNode(p.key, null, null);
3438          }
3439      }
3440  
3441 <    final class KeyIterator
3442 <        extends HashIterator
3443 <        implements Iterator<K>, Enumeration<K>
3444 <    {
3445 <        public final K next()        { return super.nextEntry().key; }
3446 <        public final K nextElement() { return super.nextEntry().key; }
3441 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3442 >        implements Iterator<K>, Enumeration<K> {
3443 >        KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3444 >                    ConcurrentHashMap<K,V> map) {
3445 >            super(tab, size, index, limit, map);
3446 >        }
3447 >
3448 >        public final K next() {
3449 >            Node<K,V> p;
3450 >            if ((p = next) == null)
3451 >                throw new NoSuchElementException();
3452 >            K k = p.key;
3453 >            lastReturned = p;
3454 >            advance();
3455 >            return k;
3456 >        }
3457 >
3458 >        public final K nextElement() { return next(); }
3459 >    }
3460 >
3461 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3462 >        implements Iterator<V>, Enumeration<V> {
3463 >        ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3464 >                      ConcurrentHashMap<K,V> map) {
3465 >            super(tab, size, index, limit, map);
3466 >        }
3467 >
3468 >        public final V next() {
3469 >            Node<K,V> p;
3470 >            if ((p = next) == null)
3471 >                throw new NoSuchElementException();
3472 >            V v = p.val;
3473 >            lastReturned = p;
3474 >            advance();
3475 >            return v;
3476 >        }
3477 >
3478 >        public final V nextElement() { return next(); }
3479      }
3480  
3481 <    final class ValueIterator
3482 <        extends HashIterator
3483 <        implements Iterator<V>, Enumeration<V>
3484 <    {
3485 <        public final V next()        { return super.nextEntry().value; }
3486 <        public final V nextElement() { return super.nextEntry().value; }
3481 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3482 >        implements Iterator<Map.Entry<K,V>> {
3483 >        EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3484 >                      ConcurrentHashMap<K,V> map) {
3485 >            super(tab, size, index, limit, map);
3486 >        }
3487 >
3488 >        public final Map.Entry<K,V> next() {
3489 >            Node<K,V> p;
3490 >            if ((p = next) == null)
3491 >                throw new NoSuchElementException();
3492 >            K k = p.key;
3493 >            V v = p.val;
3494 >            lastReturned = p;
3495 >            advance();
3496 >            return new MapEntry<K,V>(k, v, map);
3497 >        }
3498      }
3499  
3500      /**
3501 <     * Custom Entry class used by EntryIterator.next(), that relays
1262 <     * setValue changes to the underlying map.
3501 >     * Exported Entry for EntryIterator.
3502       */
3503 <    final class WriteThroughEntry
3504 <        extends AbstractMap.SimpleEntry<K,V>
3505 <    {
3506 <        WriteThroughEntry(K k, V v) {
3507 <            super(k,v);
3503 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3504 >        final K key; // non-null
3505 >        V val;       // non-null
3506 >        final ConcurrentHashMap<K,V> map;
3507 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3508 >            this.key = key;
3509 >            this.val = val;
3510 >            this.map = map;
3511 >        }
3512 >        public K getKey()        { return key; }
3513 >        public V getValue()      { return val; }
3514 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3515 >        public String toString() {
3516 >            return Helpers.mapEntryToString(key, val);
3517 >        }
3518 >
3519 >        public boolean equals(Object o) {
3520 >            Object k, v; Map.Entry<?,?> e;
3521 >            return ((o instanceof Map.Entry) &&
3522 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3523 >                    (v = e.getValue()) != null &&
3524 >                    (k == key || k.equals(key)) &&
3525 >                    (v == val || v.equals(val)));
3526          }
3527  
3528          /**
3529 <         * Set our entry's value and write through to the map. The
3530 <         * value to return is somewhat arbitrary here. Since a
3531 <         * WriteThroughEntry does not necessarily track asynchronous
3532 <         * changes, the most recent "previous" value could be
3533 <         * different from what we return (or could even have been
3534 <         * removed in which case the put will re-establish). We do not
1278 <         * and cannot guarantee more.
3529 >         * Sets our entry's value and writes through to the map. The
3530 >         * value to return is somewhat arbitrary here. Since we do not
3531 >         * necessarily track asynchronous changes, the most recent
3532 >         * "previous" value could be different from what we return (or
3533 >         * could even have been removed, in which case the put will
3534 >         * re-establish). We do not and cannot guarantee more.
3535           */
3536          public V setValue(V value) {
3537              if (value == null) throw new NullPointerException();
3538 <            V v = super.setValue(value);
3539 <            ConcurrentHashMap.this.put(getKey(), value);
3538 >            V v = val;
3539 >            val = value;
3540 >            map.put(key, value);
3541              return v;
3542          }
3543      }
3544  
3545 <    final class EntryIterator
3546 <        extends HashIterator
3547 <        implements Iterator<Entry<K,V>>
3548 <    {
3549 <        public Map.Entry<K,V> next() {
3550 <            HashEntry<K,V> e = super.nextEntry();
3551 <            return new WriteThroughEntry(e.key, e.value);
3545 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3546 >        implements Spliterator<K> {
3547 >        long est;               // size estimate
3548 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3549 >                       long est) {
3550 >            super(tab, size, index, limit);
3551 >            this.est = est;
3552 >        }
3553 >
3554 >        public KeySpliterator<K,V> trySplit() {
3555 >            int i, f, h;
3556 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3557 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3558 >                                        f, est >>>= 1);
3559 >        }
3560 >
3561 >        public void forEachRemaining(Consumer<? super K> action) {
3562 >            if (action == null) throw new NullPointerException();
3563 >            for (Node<K,V> p; (p = advance()) != null;)
3564 >                action.accept(p.key);
3565 >        }
3566 >
3567 >        public boolean tryAdvance(Consumer<? super K> action) {
3568 >            if (action == null) throw new NullPointerException();
3569 >            Node<K,V> p;
3570 >            if ((p = advance()) == null)
3571 >                return false;
3572 >            action.accept(p.key);
3573 >            return true;
3574 >        }
3575 >
3576 >        public long estimateSize() { return est; }
3577 >
3578 >        public int characteristics() {
3579 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3580 >                Spliterator.NONNULL;
3581          }
3582      }
3583  
3584 <    final class KeySet extends AbstractSet<K> {
3585 <        public Iterator<K> iterator() {
3586 <            return new KeyIterator();
3584 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3585 >        implements Spliterator<V> {
3586 >        long est;               // size estimate
3587 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3588 >                         long est) {
3589 >            super(tab, size, index, limit);
3590 >            this.est = est;
3591          }
3592 <        public int size() {
3593 <            return ConcurrentHashMap.this.size();
3592 >
3593 >        public ValueSpliterator<K,V> trySplit() {
3594 >            int i, f, h;
3595 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3596 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3597 >                                          f, est >>>= 1);
3598          }
3599 <        public boolean isEmpty() {
3600 <            return ConcurrentHashMap.this.isEmpty();
3599 >
3600 >        public void forEachRemaining(Consumer<? super V> action) {
3601 >            if (action == null) throw new NullPointerException();
3602 >            for (Node<K,V> p; (p = advance()) != null;)
3603 >                action.accept(p.val);
3604          }
3605 <        public boolean contains(Object o) {
3606 <            return ConcurrentHashMap.this.containsKey(o);
3605 >
3606 >        public boolean tryAdvance(Consumer<? super V> action) {
3607 >            if (action == null) throw new NullPointerException();
3608 >            Node<K,V> p;
3609 >            if ((p = advance()) == null)
3610 >                return false;
3611 >            action.accept(p.val);
3612 >            return true;
3613          }
3614 <        public boolean remove(Object o) {
3615 <            return ConcurrentHashMap.this.remove(o) != null;
3614 >
3615 >        public long estimateSize() { return est; }
3616 >
3617 >        public int characteristics() {
3618 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3619 >        }
3620 >    }
3621 >
3622 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3623 >        implements Spliterator<Map.Entry<K,V>> {
3624 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3625 >        long est;               // size estimate
3626 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3627 >                         long est, ConcurrentHashMap<K,V> map) {
3628 >            super(tab, size, index, limit);
3629 >            this.map = map;
3630 >            this.est = est;
3631 >        }
3632 >
3633 >        public EntrySpliterator<K,V> trySplit() {
3634 >            int i, f, h;
3635 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3636 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3637 >                                          f, est >>>= 1, map);
3638 >        }
3639 >
3640 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3641 >            if (action == null) throw new NullPointerException();
3642 >            for (Node<K,V> p; (p = advance()) != null; )
3643 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3644 >        }
3645 >
3646 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3647 >            if (action == null) throw new NullPointerException();
3648 >            Node<K,V> p;
3649 >            if ((p = advance()) == null)
3650 >                return false;
3651 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3652 >            return true;
3653 >        }
3654 >
3655 >        public long estimateSize() { return est; }
3656 >
3657 >        public int characteristics() {
3658 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3659 >                Spliterator.NONNULL;
3660 >        }
3661 >    }
3662 >
3663 >    // Parallel bulk operations
3664 >
3665 >    /**
3666 >     * Computes initial batch value for bulk tasks. The returned value
3667 >     * is approximately exp2 of the number of times (minus one) to
3668 >     * split task by two before executing leaf action. This value is
3669 >     * faster to compute and more convenient to use as a guide to
3670 >     * splitting than is the depth, since it is used while dividing by
3671 >     * two anyway.
3672 >     */
3673 >    final int batchFor(long b) {
3674 >        long n;
3675 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3676 >            return 0;
3677 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3678 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3679 >    }
3680 >
3681 >    /**
3682 >     * Performs the given action for each (key, value).
3683 >     *
3684 >     * @param parallelismThreshold the (estimated) number of elements
3685 >     * needed for this operation to be executed in parallel
3686 >     * @param action the action
3687 >     * @since 1.8
3688 >     */
3689 >    public void forEach(long parallelismThreshold,
3690 >                        BiConsumer<? super K,? super V> action) {
3691 >        if (action == null) throw new NullPointerException();
3692 >        new ForEachMappingTask<K,V>
3693 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3694 >             action).invoke();
3695 >    }
3696 >
3697 >    /**
3698 >     * Performs the given action for each non-null transformation
3699 >     * of each (key, value).
3700 >     *
3701 >     * @param parallelismThreshold the (estimated) number of elements
3702 >     * needed for this operation to be executed in parallel
3703 >     * @param transformer a function returning the transformation
3704 >     * for an element, or null if there is no transformation (in
3705 >     * which case the action is not applied)
3706 >     * @param action the action
3707 >     * @param <U> the return type of the transformer
3708 >     * @since 1.8
3709 >     */
3710 >    public <U> void forEach(long parallelismThreshold,
3711 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3712 >                            Consumer<? super U> action) {
3713 >        if (transformer == null || action == null)
3714 >            throw new NullPointerException();
3715 >        new ForEachTransformedMappingTask<K,V,U>
3716 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3717 >             transformer, action).invoke();
3718 >    }
3719 >
3720 >    /**
3721 >     * Returns a non-null result from applying the given search
3722 >     * function on each (key, value), or null if none.  Upon
3723 >     * success, further element processing is suppressed and the
3724 >     * results of any other parallel invocations of the search
3725 >     * function are ignored.
3726 >     *
3727 >     * @param parallelismThreshold the (estimated) number of elements
3728 >     * needed for this operation to be executed in parallel
3729 >     * @param searchFunction a function returning a non-null
3730 >     * result on success, else null
3731 >     * @param <U> the return type of the search function
3732 >     * @return a non-null result from applying the given search
3733 >     * function on each (key, value), or null if none
3734 >     * @since 1.8
3735 >     */
3736 >    public <U> U search(long parallelismThreshold,
3737 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3738 >        if (searchFunction == null) throw new NullPointerException();
3739 >        return new SearchMappingsTask<K,V,U>
3740 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3741 >             searchFunction, new AtomicReference<U>()).invoke();
3742 >    }
3743 >
3744 >    /**
3745 >     * Returns the result of accumulating the given transformation
3746 >     * of all (key, value) pairs using the given reducer to
3747 >     * combine values, or null if none.
3748 >     *
3749 >     * @param parallelismThreshold the (estimated) number of elements
3750 >     * needed for this operation to be executed in parallel
3751 >     * @param transformer a function returning the transformation
3752 >     * for an element, or null if there is no transformation (in
3753 >     * which case it is not combined)
3754 >     * @param reducer a commutative associative combining function
3755 >     * @param <U> the return type of the transformer
3756 >     * @return the result of accumulating the given transformation
3757 >     * of all (key, value) pairs
3758 >     * @since 1.8
3759 >     */
3760 >    public <U> U reduce(long parallelismThreshold,
3761 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3762 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3763 >        if (transformer == null || reducer == null)
3764 >            throw new NullPointerException();
3765 >        return new MapReduceMappingsTask<K,V,U>
3766 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3767 >             null, transformer, reducer).invoke();
3768 >    }
3769 >
3770 >    /**
3771 >     * Returns the result of accumulating the given transformation
3772 >     * of all (key, value) pairs using the given reducer to
3773 >     * combine values, and the given basis as an identity value.
3774 >     *
3775 >     * @param parallelismThreshold the (estimated) number of elements
3776 >     * needed for this operation to be executed in parallel
3777 >     * @param transformer a function returning the transformation
3778 >     * for an element
3779 >     * @param basis the identity (initial default value) for the reduction
3780 >     * @param reducer a commutative associative combining function
3781 >     * @return the result of accumulating the given transformation
3782 >     * of all (key, value) pairs
3783 >     * @since 1.8
3784 >     */
3785 >    public double reduceToDouble(long parallelismThreshold,
3786 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3787 >                                 double basis,
3788 >                                 DoubleBinaryOperator reducer) {
3789 >        if (transformer == null || reducer == null)
3790 >            throw new NullPointerException();
3791 >        return new MapReduceMappingsToDoubleTask<K,V>
3792 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3793 >             null, transformer, basis, reducer).invoke();
3794 >    }
3795 >
3796 >    /**
3797 >     * Returns the result of accumulating the given transformation
3798 >     * of all (key, value) pairs using the given reducer to
3799 >     * combine values, and the given basis as an identity value.
3800 >     *
3801 >     * @param parallelismThreshold the (estimated) number of elements
3802 >     * needed for this operation to be executed in parallel
3803 >     * @param transformer a function returning the transformation
3804 >     * for an element
3805 >     * @param basis the identity (initial default value) for the reduction
3806 >     * @param reducer a commutative associative combining function
3807 >     * @return the result of accumulating the given transformation
3808 >     * of all (key, value) pairs
3809 >     * @since 1.8
3810 >     */
3811 >    public long reduceToLong(long parallelismThreshold,
3812 >                             ToLongBiFunction<? super K, ? super V> transformer,
3813 >                             long basis,
3814 >                             LongBinaryOperator reducer) {
3815 >        if (transformer == null || reducer == null)
3816 >            throw new NullPointerException();
3817 >        return new MapReduceMappingsToLongTask<K,V>
3818 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3819 >             null, transformer, basis, reducer).invoke();
3820 >    }
3821 >
3822 >    /**
3823 >     * Returns the result of accumulating the given transformation
3824 >     * of all (key, value) pairs using the given reducer to
3825 >     * combine values, and the given basis as an identity value.
3826 >     *
3827 >     * @param parallelismThreshold the (estimated) number of elements
3828 >     * needed for this operation to be executed in parallel
3829 >     * @param transformer a function returning the transformation
3830 >     * for an element
3831 >     * @param basis the identity (initial default value) for the reduction
3832 >     * @param reducer a commutative associative combining function
3833 >     * @return the result of accumulating the given transformation
3834 >     * of all (key, value) pairs
3835 >     * @since 1.8
3836 >     */
3837 >    public int reduceToInt(long parallelismThreshold,
3838 >                           ToIntBiFunction<? super K, ? super V> transformer,
3839 >                           int basis,
3840 >                           IntBinaryOperator reducer) {
3841 >        if (transformer == null || reducer == null)
3842 >            throw new NullPointerException();
3843 >        return new MapReduceMappingsToIntTask<K,V>
3844 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3845 >             null, transformer, basis, reducer).invoke();
3846 >    }
3847 >
3848 >    /**
3849 >     * Performs the given action for each key.
3850 >     *
3851 >     * @param parallelismThreshold the (estimated) number of elements
3852 >     * needed for this operation to be executed in parallel
3853 >     * @param action the action
3854 >     * @since 1.8
3855 >     */
3856 >    public void forEachKey(long parallelismThreshold,
3857 >                           Consumer<? super K> action) {
3858 >        if (action == null) throw new NullPointerException();
3859 >        new ForEachKeyTask<K,V>
3860 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3861 >             action).invoke();
3862 >    }
3863 >
3864 >    /**
3865 >     * Performs the given action for each non-null transformation
3866 >     * of each key.
3867 >     *
3868 >     * @param parallelismThreshold the (estimated) number of elements
3869 >     * needed for this operation to be executed in parallel
3870 >     * @param transformer a function returning the transformation
3871 >     * for an element, or null if there is no transformation (in
3872 >     * which case the action is not applied)
3873 >     * @param action the action
3874 >     * @param <U> the return type of the transformer
3875 >     * @since 1.8
3876 >     */
3877 >    public <U> void forEachKey(long parallelismThreshold,
3878 >                               Function<? super K, ? extends U> transformer,
3879 >                               Consumer<? super U> action) {
3880 >        if (transformer == null || action == null)
3881 >            throw new NullPointerException();
3882 >        new ForEachTransformedKeyTask<K,V,U>
3883 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3884 >             transformer, action).invoke();
3885 >    }
3886 >
3887 >    /**
3888 >     * Returns a non-null result from applying the given search
3889 >     * function on each key, or null if none. Upon success,
3890 >     * further element processing is suppressed and the results of
3891 >     * any other parallel invocations of the search function are
3892 >     * ignored.
3893 >     *
3894 >     * @param parallelismThreshold the (estimated) number of elements
3895 >     * needed for this operation to be executed in parallel
3896 >     * @param searchFunction a function returning a non-null
3897 >     * result on success, else null
3898 >     * @param <U> the return type of the search function
3899 >     * @return a non-null result from applying the given search
3900 >     * function on each key, or null if none
3901 >     * @since 1.8
3902 >     */
3903 >    public <U> U searchKeys(long parallelismThreshold,
3904 >                            Function<? super K, ? extends U> searchFunction) {
3905 >        if (searchFunction == null) throw new NullPointerException();
3906 >        return new SearchKeysTask<K,V,U>
3907 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3908 >             searchFunction, new AtomicReference<U>()).invoke();
3909 >    }
3910 >
3911 >    /**
3912 >     * Returns the result of accumulating all keys using the given
3913 >     * reducer to combine values, or null if none.
3914 >     *
3915 >     * @param parallelismThreshold the (estimated) number of elements
3916 >     * needed for this operation to be executed in parallel
3917 >     * @param reducer a commutative associative combining function
3918 >     * @return the result of accumulating all keys using the given
3919 >     * reducer to combine values, or null if none
3920 >     * @since 1.8
3921 >     */
3922 >    public K reduceKeys(long parallelismThreshold,
3923 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3924 >        if (reducer == null) throw new NullPointerException();
3925 >        return new ReduceKeysTask<K,V>
3926 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3927 >             null, reducer).invoke();
3928 >    }
3929 >
3930 >    /**
3931 >     * Returns the result of accumulating the given transformation
3932 >     * of all keys using the given reducer to combine values, or
3933 >     * null if none.
3934 >     *
3935 >     * @param parallelismThreshold the (estimated) number of elements
3936 >     * needed for this operation to be executed in parallel
3937 >     * @param transformer a function returning the transformation
3938 >     * for an element, or null if there is no transformation (in
3939 >     * which case it is not combined)
3940 >     * @param reducer a commutative associative combining function
3941 >     * @param <U> the return type of the transformer
3942 >     * @return the result of accumulating the given transformation
3943 >     * of all keys
3944 >     * @since 1.8
3945 >     */
3946 >    public <U> U reduceKeys(long parallelismThreshold,
3947 >                            Function<? super K, ? extends U> transformer,
3948 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3949 >        if (transformer == null || reducer == null)
3950 >            throw new NullPointerException();
3951 >        return new MapReduceKeysTask<K,V,U>
3952 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3953 >             null, transformer, reducer).invoke();
3954 >    }
3955 >
3956 >    /**
3957 >     * Returns the result of accumulating the given transformation
3958 >     * of all keys using the given reducer to combine values, and
3959 >     * the given basis as an identity value.
3960 >     *
3961 >     * @param parallelismThreshold the (estimated) number of elements
3962 >     * needed for this operation to be executed in parallel
3963 >     * @param transformer a function returning the transformation
3964 >     * for an element
3965 >     * @param basis the identity (initial default value) for the reduction
3966 >     * @param reducer a commutative associative combining function
3967 >     * @return the result of accumulating the given transformation
3968 >     * of all keys
3969 >     * @since 1.8
3970 >     */
3971 >    public double reduceKeysToDouble(long parallelismThreshold,
3972 >                                     ToDoubleFunction<? super K> transformer,
3973 >                                     double basis,
3974 >                                     DoubleBinaryOperator reducer) {
3975 >        if (transformer == null || reducer == null)
3976 >            throw new NullPointerException();
3977 >        return new MapReduceKeysToDoubleTask<K,V>
3978 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3979 >             null, transformer, basis, reducer).invoke();
3980 >    }
3981 >
3982 >    /**
3983 >     * Returns the result of accumulating the given transformation
3984 >     * of all keys using the given reducer to combine values, and
3985 >     * the given basis as an identity value.
3986 >     *
3987 >     * @param parallelismThreshold the (estimated) number of elements
3988 >     * needed for this operation to be executed in parallel
3989 >     * @param transformer a function returning the transformation
3990 >     * for an element
3991 >     * @param basis the identity (initial default value) for the reduction
3992 >     * @param reducer a commutative associative combining function
3993 >     * @return the result of accumulating the given transformation
3994 >     * of all keys
3995 >     * @since 1.8
3996 >     */
3997 >    public long reduceKeysToLong(long parallelismThreshold,
3998 >                                 ToLongFunction<? super K> transformer,
3999 >                                 long basis,
4000 >                                 LongBinaryOperator reducer) {
4001 >        if (transformer == null || reducer == null)
4002 >            throw new NullPointerException();
4003 >        return new MapReduceKeysToLongTask<K,V>
4004 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4005 >             null, transformer, basis, reducer).invoke();
4006 >    }
4007 >
4008 >    /**
4009 >     * Returns the result of accumulating the given transformation
4010 >     * of all keys using the given reducer to combine values, and
4011 >     * the given basis as an identity value.
4012 >     *
4013 >     * @param parallelismThreshold the (estimated) number of elements
4014 >     * needed for this operation to be executed in parallel
4015 >     * @param transformer a function returning the transformation
4016 >     * for an element
4017 >     * @param basis the identity (initial default value) for the reduction
4018 >     * @param reducer a commutative associative combining function
4019 >     * @return the result of accumulating the given transformation
4020 >     * of all keys
4021 >     * @since 1.8
4022 >     */
4023 >    public int reduceKeysToInt(long parallelismThreshold,
4024 >                               ToIntFunction<? super K> transformer,
4025 >                               int basis,
4026 >                               IntBinaryOperator reducer) {
4027 >        if (transformer == null || reducer == null)
4028 >            throw new NullPointerException();
4029 >        return new MapReduceKeysToIntTask<K,V>
4030 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4031 >             null, transformer, basis, reducer).invoke();
4032 >    }
4033 >
4034 >    /**
4035 >     * Performs the given action for each value.
4036 >     *
4037 >     * @param parallelismThreshold the (estimated) number of elements
4038 >     * needed for this operation to be executed in parallel
4039 >     * @param action the action
4040 >     * @since 1.8
4041 >     */
4042 >    public void forEachValue(long parallelismThreshold,
4043 >                             Consumer<? super V> action) {
4044 >        if (action == null)
4045 >            throw new NullPointerException();
4046 >        new ForEachValueTask<K,V>
4047 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4048 >             action).invoke();
4049 >    }
4050 >
4051 >    /**
4052 >     * Performs the given action for each non-null transformation
4053 >     * of each value.
4054 >     *
4055 >     * @param parallelismThreshold the (estimated) number of elements
4056 >     * needed for this operation to be executed in parallel
4057 >     * @param transformer a function returning the transformation
4058 >     * for an element, or null if there is no transformation (in
4059 >     * which case the action is not applied)
4060 >     * @param action the action
4061 >     * @param <U> the return type of the transformer
4062 >     * @since 1.8
4063 >     */
4064 >    public <U> void forEachValue(long parallelismThreshold,
4065 >                                 Function<? super V, ? extends U> transformer,
4066 >                                 Consumer<? super U> action) {
4067 >        if (transformer == null || action == null)
4068 >            throw new NullPointerException();
4069 >        new ForEachTransformedValueTask<K,V,U>
4070 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4071 >             transformer, action).invoke();
4072 >    }
4073 >
4074 >    /**
4075 >     * Returns a non-null result from applying the given search
4076 >     * function on each value, or null if none.  Upon success,
4077 >     * further element processing is suppressed and the results of
4078 >     * any other parallel invocations of the search function are
4079 >     * ignored.
4080 >     *
4081 >     * @param parallelismThreshold the (estimated) number of elements
4082 >     * needed for this operation to be executed in parallel
4083 >     * @param searchFunction a function returning a non-null
4084 >     * result on success, else null
4085 >     * @param <U> the return type of the search function
4086 >     * @return a non-null result from applying the given search
4087 >     * function on each value, or null if none
4088 >     * @since 1.8
4089 >     */
4090 >    public <U> U searchValues(long parallelismThreshold,
4091 >                              Function<? super V, ? extends U> searchFunction) {
4092 >        if (searchFunction == null) throw new NullPointerException();
4093 >        return new SearchValuesTask<K,V,U>
4094 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4095 >             searchFunction, new AtomicReference<U>()).invoke();
4096 >    }
4097 >
4098 >    /**
4099 >     * Returns the result of accumulating all values using the
4100 >     * given reducer to combine values, or null if none.
4101 >     *
4102 >     * @param parallelismThreshold the (estimated) number of elements
4103 >     * needed for this operation to be executed in parallel
4104 >     * @param reducer a commutative associative combining function
4105 >     * @return the result of accumulating all values
4106 >     * @since 1.8
4107 >     */
4108 >    public V reduceValues(long parallelismThreshold,
4109 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4110 >        if (reducer == null) throw new NullPointerException();
4111 >        return new ReduceValuesTask<K,V>
4112 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4113 >             null, reducer).invoke();
4114 >    }
4115 >
4116 >    /**
4117 >     * Returns the result of accumulating the given transformation
4118 >     * of all values using the given reducer to combine values, or
4119 >     * null if none.
4120 >     *
4121 >     * @param parallelismThreshold the (estimated) number of elements
4122 >     * needed for this operation to be executed in parallel
4123 >     * @param transformer a function returning the transformation
4124 >     * for an element, or null if there is no transformation (in
4125 >     * which case it is not combined)
4126 >     * @param reducer a commutative associative combining function
4127 >     * @param <U> the return type of the transformer
4128 >     * @return the result of accumulating the given transformation
4129 >     * of all values
4130 >     * @since 1.8
4131 >     */
4132 >    public <U> U reduceValues(long parallelismThreshold,
4133 >                              Function<? super V, ? extends U> transformer,
4134 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4135 >        if (transformer == null || reducer == null)
4136 >            throw new NullPointerException();
4137 >        return new MapReduceValuesTask<K,V,U>
4138 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4139 >             null, transformer, reducer).invoke();
4140 >    }
4141 >
4142 >    /**
4143 >     * Returns the result of accumulating the given transformation
4144 >     * of all values using the given reducer to combine values,
4145 >     * and the given basis as an identity value.
4146 >     *
4147 >     * @param parallelismThreshold the (estimated) number of elements
4148 >     * needed for this operation to be executed in parallel
4149 >     * @param transformer a function returning the transformation
4150 >     * for an element
4151 >     * @param basis the identity (initial default value) for the reduction
4152 >     * @param reducer a commutative associative combining function
4153 >     * @return the result of accumulating the given transformation
4154 >     * of all values
4155 >     * @since 1.8
4156 >     */
4157 >    public double reduceValuesToDouble(long parallelismThreshold,
4158 >                                       ToDoubleFunction<? super V> transformer,
4159 >                                       double basis,
4160 >                                       DoubleBinaryOperator reducer) {
4161 >        if (transformer == null || reducer == null)
4162 >            throw new NullPointerException();
4163 >        return new MapReduceValuesToDoubleTask<K,V>
4164 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4165 >             null, transformer, basis, reducer).invoke();
4166 >    }
4167 >
4168 >    /**
4169 >     * Returns the result of accumulating the given transformation
4170 >     * of all values using the given reducer to combine values,
4171 >     * and the given basis as an identity value.
4172 >     *
4173 >     * @param parallelismThreshold the (estimated) number of elements
4174 >     * needed for this operation to be executed in parallel
4175 >     * @param transformer a function returning the transformation
4176 >     * for an element
4177 >     * @param basis the identity (initial default value) for the reduction
4178 >     * @param reducer a commutative associative combining function
4179 >     * @return the result of accumulating the given transformation
4180 >     * of all values
4181 >     * @since 1.8
4182 >     */
4183 >    public long reduceValuesToLong(long parallelismThreshold,
4184 >                                   ToLongFunction<? super V> transformer,
4185 >                                   long basis,
4186 >                                   LongBinaryOperator reducer) {
4187 >        if (transformer == null || reducer == null)
4188 >            throw new NullPointerException();
4189 >        return new MapReduceValuesToLongTask<K,V>
4190 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4191 >             null, transformer, basis, reducer).invoke();
4192 >    }
4193 >
4194 >    /**
4195 >     * Returns the result of accumulating the given transformation
4196 >     * of all values using the given reducer to combine values,
4197 >     * and the given basis as an identity value.
4198 >     *
4199 >     * @param parallelismThreshold the (estimated) number of elements
4200 >     * needed for this operation to be executed in parallel
4201 >     * @param transformer a function returning the transformation
4202 >     * for an element
4203 >     * @param basis the identity (initial default value) for the reduction
4204 >     * @param reducer a commutative associative combining function
4205 >     * @return the result of accumulating the given transformation
4206 >     * of all values
4207 >     * @since 1.8
4208 >     */
4209 >    public int reduceValuesToInt(long parallelismThreshold,
4210 >                                 ToIntFunction<? super V> transformer,
4211 >                                 int basis,
4212 >                                 IntBinaryOperator reducer) {
4213 >        if (transformer == null || reducer == null)
4214 >            throw new NullPointerException();
4215 >        return new MapReduceValuesToIntTask<K,V>
4216 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4217 >             null, transformer, basis, reducer).invoke();
4218 >    }
4219 >
4220 >    /**
4221 >     * Performs the given action for each entry.
4222 >     *
4223 >     * @param parallelismThreshold the (estimated) number of elements
4224 >     * needed for this operation to be executed in parallel
4225 >     * @param action the action
4226 >     * @since 1.8
4227 >     */
4228 >    public void forEachEntry(long parallelismThreshold,
4229 >                             Consumer<? super Map.Entry<K,V>> action) {
4230 >        if (action == null) throw new NullPointerException();
4231 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4232 >                                  action).invoke();
4233 >    }
4234 >
4235 >    /**
4236 >     * Performs the given action for each non-null transformation
4237 >     * of each entry.
4238 >     *
4239 >     * @param parallelismThreshold the (estimated) number of elements
4240 >     * needed for this operation to be executed in parallel
4241 >     * @param transformer a function returning the transformation
4242 >     * for an element, or null if there is no transformation (in
4243 >     * which case the action is not applied)
4244 >     * @param action the action
4245 >     * @param <U> the return type of the transformer
4246 >     * @since 1.8
4247 >     */
4248 >    public <U> void forEachEntry(long parallelismThreshold,
4249 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4250 >                                 Consumer<? super U> action) {
4251 >        if (transformer == null || action == null)
4252 >            throw new NullPointerException();
4253 >        new ForEachTransformedEntryTask<K,V,U>
4254 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4255 >             transformer, action).invoke();
4256 >    }
4257 >
4258 >    /**
4259 >     * Returns a non-null result from applying the given search
4260 >     * function on each entry, or null if none.  Upon success,
4261 >     * further element processing is suppressed and the results of
4262 >     * any other parallel invocations of the search function are
4263 >     * ignored.
4264 >     *
4265 >     * @param parallelismThreshold the (estimated) number of elements
4266 >     * needed for this operation to be executed in parallel
4267 >     * @param searchFunction a function returning a non-null
4268 >     * result on success, else null
4269 >     * @param <U> the return type of the search function
4270 >     * @return a non-null result from applying the given search
4271 >     * function on each entry, or null if none
4272 >     * @since 1.8
4273 >     */
4274 >    public <U> U searchEntries(long parallelismThreshold,
4275 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4276 >        if (searchFunction == null) throw new NullPointerException();
4277 >        return new SearchEntriesTask<K,V,U>
4278 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4279 >             searchFunction, new AtomicReference<U>()).invoke();
4280 >    }
4281 >
4282 >    /**
4283 >     * Returns the result of accumulating all entries using the
4284 >     * given reducer to combine values, or null if none.
4285 >     *
4286 >     * @param parallelismThreshold the (estimated) number of elements
4287 >     * needed for this operation to be executed in parallel
4288 >     * @param reducer a commutative associative combining function
4289 >     * @return the result of accumulating all entries
4290 >     * @since 1.8
4291 >     */
4292 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4293 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4294 >        if (reducer == null) throw new NullPointerException();
4295 >        return new ReduceEntriesTask<K,V>
4296 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4297 >             null, reducer).invoke();
4298 >    }
4299 >
4300 >    /**
4301 >     * Returns the result of accumulating the given transformation
4302 >     * of all entries using the given reducer to combine values,
4303 >     * or null if none.
4304 >     *
4305 >     * @param parallelismThreshold the (estimated) number of elements
4306 >     * needed for this operation to be executed in parallel
4307 >     * @param transformer a function returning the transformation
4308 >     * for an element, or null if there is no transformation (in
4309 >     * which case it is not combined)
4310 >     * @param reducer a commutative associative combining function
4311 >     * @param <U> the return type of the transformer
4312 >     * @return the result of accumulating the given transformation
4313 >     * of all entries
4314 >     * @since 1.8
4315 >     */
4316 >    public <U> U reduceEntries(long parallelismThreshold,
4317 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4318 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4319 >        if (transformer == null || reducer == null)
4320 >            throw new NullPointerException();
4321 >        return new MapReduceEntriesTask<K,V,U>
4322 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4323 >             null, transformer, reducer).invoke();
4324 >    }
4325 >
4326 >    /**
4327 >     * Returns the result of accumulating the given transformation
4328 >     * of all entries using the given reducer to combine values,
4329 >     * and the given basis as an identity value.
4330 >     *
4331 >     * @param parallelismThreshold the (estimated) number of elements
4332 >     * needed for this operation to be executed in parallel
4333 >     * @param transformer a function returning the transformation
4334 >     * for an element
4335 >     * @param basis the identity (initial default value) for the reduction
4336 >     * @param reducer a commutative associative combining function
4337 >     * @return the result of accumulating the given transformation
4338 >     * of all entries
4339 >     * @since 1.8
4340 >     */
4341 >    public double reduceEntriesToDouble(long parallelismThreshold,
4342 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4343 >                                        double basis,
4344 >                                        DoubleBinaryOperator reducer) {
4345 >        if (transformer == null || reducer == null)
4346 >            throw new NullPointerException();
4347 >        return new MapReduceEntriesToDoubleTask<K,V>
4348 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4349 >             null, transformer, basis, reducer).invoke();
4350 >    }
4351 >
4352 >    /**
4353 >     * Returns the result of accumulating the given transformation
4354 >     * of all entries using the given reducer to combine values,
4355 >     * and the given basis as an identity value.
4356 >     *
4357 >     * @param parallelismThreshold the (estimated) number of elements
4358 >     * needed for this operation to be executed in parallel
4359 >     * @param transformer a function returning the transformation
4360 >     * for an element
4361 >     * @param basis the identity (initial default value) for the reduction
4362 >     * @param reducer a commutative associative combining function
4363 >     * @return the result of accumulating the given transformation
4364 >     * of all entries
4365 >     * @since 1.8
4366 >     */
4367 >    public long reduceEntriesToLong(long parallelismThreshold,
4368 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4369 >                                    long basis,
4370 >                                    LongBinaryOperator reducer) {
4371 >        if (transformer == null || reducer == null)
4372 >            throw new NullPointerException();
4373 >        return new MapReduceEntriesToLongTask<K,V>
4374 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4375 >             null, transformer, basis, reducer).invoke();
4376 >    }
4377 >
4378 >    /**
4379 >     * Returns the result of accumulating the given transformation
4380 >     * of all entries using the given reducer to combine values,
4381 >     * and the given basis as an identity value.
4382 >     *
4383 >     * @param parallelismThreshold the (estimated) number of elements
4384 >     * needed for this operation to be executed in parallel
4385 >     * @param transformer a function returning the transformation
4386 >     * for an element
4387 >     * @param basis the identity (initial default value) for the reduction
4388 >     * @param reducer a commutative associative combining function
4389 >     * @return the result of accumulating the given transformation
4390 >     * of all entries
4391 >     * @since 1.8
4392 >     */
4393 >    public int reduceEntriesToInt(long parallelismThreshold,
4394 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4395 >                                  int basis,
4396 >                                  IntBinaryOperator reducer) {
4397 >        if (transformer == null || reducer == null)
4398 >            throw new NullPointerException();
4399 >        return new MapReduceEntriesToIntTask<K,V>
4400 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4401 >             null, transformer, basis, reducer).invoke();
4402 >    }
4403 >
4404 >
4405 >    /* ----------------Views -------------- */
4406 >
4407 >    /**
4408 >     * Base class for views.
4409 >     */
4410 >    abstract static class CollectionView<K,V,E>
4411 >        implements Collection<E>, java.io.Serializable {
4412 >        private static final long serialVersionUID = 7249069246763182397L;
4413 >        final ConcurrentHashMap<K,V> map;
4414 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4415 >
4416 >        /**
4417 >         * Returns the map backing this view.
4418 >         *
4419 >         * @return the map backing this view
4420 >         */
4421 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4422 >
4423 >        /**
4424 >         * Removes all of the elements from this view, by removing all
4425 >         * the mappings from the map backing this view.
4426 >         */
4427 >        public final void clear()      { map.clear(); }
4428 >        public final int size()        { return map.size(); }
4429 >        public final boolean isEmpty() { return map.isEmpty(); }
4430 >
4431 >        // implementations below rely on concrete classes supplying these
4432 >        // abstract methods
4433 >        /**
4434 >         * Returns an iterator over the elements in this collection.
4435 >         *
4436 >         * <p>The returned iterator is
4437 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4438 >         *
4439 >         * @return an iterator over the elements in this collection
4440 >         */
4441 >        public abstract Iterator<E> iterator();
4442 >        public abstract boolean contains(Object o);
4443 >        public abstract boolean remove(Object o);
4444 >
4445 >        private static final String OOME_MSG = "Required array size too large";
4446 >
4447 >        public final Object[] toArray() {
4448 >            long sz = map.mappingCount();
4449 >            if (sz > MAX_ARRAY_SIZE)
4450 >                throw new OutOfMemoryError(OOME_MSG);
4451 >            int n = (int)sz;
4452 >            Object[] r = new Object[n];
4453 >            int i = 0;
4454 >            for (E e : this) {
4455 >                if (i == n) {
4456 >                    if (n >= MAX_ARRAY_SIZE)
4457 >                        throw new OutOfMemoryError(OOME_MSG);
4458 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4459 >                        n = MAX_ARRAY_SIZE;
4460 >                    else
4461 >                        n += (n >>> 1) + 1;
4462 >                    r = Arrays.copyOf(r, n);
4463 >                }
4464 >                r[i++] = e;
4465 >            }
4466 >            return (i == n) ? r : Arrays.copyOf(r, i);
4467 >        }
4468 >
4469 >        @SuppressWarnings("unchecked")
4470 >        public final <T> T[] toArray(T[] a) {
4471 >            long sz = map.mappingCount();
4472 >            if (sz > MAX_ARRAY_SIZE)
4473 >                throw new OutOfMemoryError(OOME_MSG);
4474 >            int m = (int)sz;
4475 >            T[] r = (a.length >= m) ? a :
4476 >                (T[])java.lang.reflect.Array
4477 >                .newInstance(a.getClass().getComponentType(), m);
4478 >            int n = r.length;
4479 >            int i = 0;
4480 >            for (E e : this) {
4481 >                if (i == n) {
4482 >                    if (n >= MAX_ARRAY_SIZE)
4483 >                        throw new OutOfMemoryError(OOME_MSG);
4484 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4485 >                        n = MAX_ARRAY_SIZE;
4486 >                    else
4487 >                        n += (n >>> 1) + 1;
4488 >                    r = Arrays.copyOf(r, n);
4489 >                }
4490 >                r[i++] = (T)e;
4491 >            }
4492 >            if (a == r && i < n) {
4493 >                r[i] = null; // null-terminate
4494 >                return r;
4495 >            }
4496 >            return (i == n) ? r : Arrays.copyOf(r, i);
4497 >        }
4498 >
4499 >        /**
4500 >         * Returns a string representation of this collection.
4501 >         * The string representation consists of the string representations
4502 >         * of the collection's elements in the order they are returned by
4503 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4504 >         * Adjacent elements are separated by the characters {@code ", "}
4505 >         * (comma and space).  Elements are converted to strings as by
4506 >         * {@link String#valueOf(Object)}.
4507 >         *
4508 >         * @return a string representation of this collection
4509 >         */
4510 >        public final String toString() {
4511 >            StringBuilder sb = new StringBuilder();
4512 >            sb.append('[');
4513 >            Iterator<E> it = iterator();
4514 >            if (it.hasNext()) {
4515 >                for (;;) {
4516 >                    Object e = it.next();
4517 >                    sb.append(e == this ? "(this Collection)" : e);
4518 >                    if (!it.hasNext())
4519 >                        break;
4520 >                    sb.append(',').append(' ');
4521 >                }
4522 >            }
4523 >            return sb.append(']').toString();
4524 >        }
4525 >
4526 >        public final boolean containsAll(Collection<?> c) {
4527 >            if (c != this) {
4528 >                for (Object e : c) {
4529 >                    if (e == null || !contains(e))
4530 >                        return false;
4531 >                }
4532 >            }
4533 >            return true;
4534          }
4535 <        public void clear() {
4536 <            ConcurrentHashMap.this.clear();
4535 >
4536 >        public boolean removeAll(Collection<?> c) {
4537 >            if (c == null) throw new NullPointerException();
4538 >            boolean modified = false;
4539 >            // Use (c instanceof Set) as a hint that lookup in c is as
4540 >            // efficient as this view
4541 >            Node<K,V>[] t;
4542 >            if ((t = map.table) == null) {
4543 >                return false;
4544 >            } else if (c instanceof Set<?> && c.size() > t.length) {
4545 >                for (Iterator<?> it = iterator(); it.hasNext(); ) {
4546 >                    if (c.contains(it.next())) {
4547 >                        it.remove();
4548 >                        modified = true;
4549 >                    }
4550 >                }
4551 >            } else {
4552 >                for (Object e : c)
4553 >                    modified |= remove(e);
4554 >            }
4555 >            return modified;
4556          }
4557 +
4558 +        public final boolean retainAll(Collection<?> c) {
4559 +            if (c == null) throw new NullPointerException();
4560 +            boolean modified = false;
4561 +            for (Iterator<E> it = iterator(); it.hasNext();) {
4562 +                if (!c.contains(it.next())) {
4563 +                    it.remove();
4564 +                    modified = true;
4565 +                }
4566 +            }
4567 +            return modified;
4568 +        }
4569 +
4570      }
4571  
4572 <    final class Values extends AbstractCollection<V> {
4573 <        public Iterator<V> iterator() {
4574 <            return new ValueIterator();
4572 >    /**
4573 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4574 >     * which additions may optionally be enabled by mapping to a
4575 >     * common value.  This class cannot be directly instantiated.
4576 >     * See {@link #keySet() keySet()},
4577 >     * {@link #keySet(Object) keySet(V)},
4578 >     * {@link #newKeySet() newKeySet()},
4579 >     * {@link #newKeySet(int) newKeySet(int)}.
4580 >     *
4581 >     * @since 1.8
4582 >     */
4583 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4584 >        implements Set<K>, java.io.Serializable {
4585 >        private static final long serialVersionUID = 7249069246763182397L;
4586 >        private final V value;
4587 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4588 >            super(map);
4589 >            this.value = value;
4590          }
4591 <        public int size() {
4592 <            return ConcurrentHashMap.this.size();
4591 >
4592 >        /**
4593 >         * Returns the default mapped value for additions,
4594 >         * or {@code null} if additions are not supported.
4595 >         *
4596 >         * @return the default mapped value for additions, or {@code null}
4597 >         * if not supported
4598 >         */
4599 >        public V getMappedValue() { return value; }
4600 >
4601 >        /**
4602 >         * {@inheritDoc}
4603 >         * @throws NullPointerException if the specified key is null
4604 >         */
4605 >        public boolean contains(Object o) { return map.containsKey(o); }
4606 >
4607 >        /**
4608 >         * Removes the key from this map view, by removing the key (and its
4609 >         * corresponding value) from the backing map.  This method does
4610 >         * nothing if the key is not in the map.
4611 >         *
4612 >         * @param  o the key to be removed from the backing map
4613 >         * @return {@code true} if the backing map contained the specified key
4614 >         * @throws NullPointerException if the specified key is null
4615 >         */
4616 >        public boolean remove(Object o) { return map.remove(o) != null; }
4617 >
4618 >        /**
4619 >         * @return an iterator over the keys of the backing map
4620 >         */
4621 >        public Iterator<K> iterator() {
4622 >            Node<K,V>[] t;
4623 >            ConcurrentHashMap<K,V> m = map;
4624 >            int f = (t = m.table) == null ? 0 : t.length;
4625 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4626          }
4627 <        public boolean isEmpty() {
4628 <            return ConcurrentHashMap.this.isEmpty();
4627 >
4628 >        /**
4629 >         * Adds the specified key to this set view by mapping the key to
4630 >         * the default mapped value in the backing map, if defined.
4631 >         *
4632 >         * @param e key to be added
4633 >         * @return {@code true} if this set changed as a result of the call
4634 >         * @throws NullPointerException if the specified key is null
4635 >         * @throws UnsupportedOperationException if no default mapped value
4636 >         * for additions was provided
4637 >         */
4638 >        public boolean add(K e) {
4639 >            V v;
4640 >            if ((v = value) == null)
4641 >                throw new UnsupportedOperationException();
4642 >            return map.putVal(e, v, true) == null;
4643          }
4644 <        public boolean contains(Object o) {
4645 <            return ConcurrentHashMap.this.containsValue(o);
4644 >
4645 >        /**
4646 >         * Adds all of the elements in the specified collection to this set,
4647 >         * as if by calling {@link #add} on each one.
4648 >         *
4649 >         * @param c the elements to be inserted into this set
4650 >         * @return {@code true} if this set changed as a result of the call
4651 >         * @throws NullPointerException if the collection or any of its
4652 >         * elements are {@code null}
4653 >         * @throws UnsupportedOperationException if no default mapped value
4654 >         * for additions was provided
4655 >         */
4656 >        public boolean addAll(Collection<? extends K> c) {
4657 >            boolean added = false;
4658 >            V v;
4659 >            if ((v = value) == null)
4660 >                throw new UnsupportedOperationException();
4661 >            for (K e : c) {
4662 >                if (map.putVal(e, v, true) == null)
4663 >                    added = true;
4664 >            }
4665 >            return added;
4666          }
4667 <        public void clear() {
4668 <            ConcurrentHashMap.this.clear();
4667 >
4668 >        public int hashCode() {
4669 >            int h = 0;
4670 >            for (K e : this)
4671 >                h += e.hashCode();
4672 >            return h;
4673 >        }
4674 >
4675 >        public boolean equals(Object o) {
4676 >            Set<?> c;
4677 >            return ((o instanceof Set) &&
4678 >                    ((c = (Set<?>)o) == this ||
4679 >                     (containsAll(c) && c.containsAll(this))));
4680 >        }
4681 >
4682 >        public Spliterator<K> spliterator() {
4683 >            Node<K,V>[] t;
4684 >            ConcurrentHashMap<K,V> m = map;
4685 >            long n = m.sumCount();
4686 >            int f = (t = m.table) == null ? 0 : t.length;
4687 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4688 >        }
4689 >
4690 >        public void forEach(Consumer<? super K> action) {
4691 >            if (action == null) throw new NullPointerException();
4692 >            Node<K,V>[] t;
4693 >            if ((t = map.table) != null) {
4694 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4695 >                for (Node<K,V> p; (p = it.advance()) != null; )
4696 >                    action.accept(p.key);
4697 >            }
4698          }
4699      }
4700  
4701 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4702 <        public Iterator<Map.Entry<K,V>> iterator() {
4703 <            return new EntryIterator();
4701 >    /**
4702 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4703 >     * values, in which additions are disabled. This class cannot be
4704 >     * directly instantiated. See {@link #values()}.
4705 >     */
4706 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4707 >        implements Collection<V>, java.io.Serializable {
4708 >        private static final long serialVersionUID = 2249069246763182397L;
4709 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4710 >        public final boolean contains(Object o) {
4711 >            return map.containsValue(o);
4712          }
4713 +
4714 +        public final boolean remove(Object o) {
4715 +            if (o != null) {
4716 +                for (Iterator<V> it = iterator(); it.hasNext();) {
4717 +                    if (o.equals(it.next())) {
4718 +                        it.remove();
4719 +                        return true;
4720 +                    }
4721 +                }
4722 +            }
4723 +            return false;
4724 +        }
4725 +
4726 +        public final Iterator<V> iterator() {
4727 +            ConcurrentHashMap<K,V> m = map;
4728 +            Node<K,V>[] t;
4729 +            int f = (t = m.table) == null ? 0 : t.length;
4730 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4731 +        }
4732 +
4733 +        public final boolean add(V e) {
4734 +            throw new UnsupportedOperationException();
4735 +        }
4736 +        public final boolean addAll(Collection<? extends V> c) {
4737 +            throw new UnsupportedOperationException();
4738 +        }
4739 +
4740 +        @Override public boolean removeAll(Collection<?> c) {
4741 +            if (c == null) throw new NullPointerException();
4742 +            boolean modified = false;
4743 +            for (Iterator<V> it = iterator(); it.hasNext();) {
4744 +                if (c.contains(it.next())) {
4745 +                    it.remove();
4746 +                    modified = true;
4747 +                }
4748 +            }
4749 +            return modified;
4750 +        }
4751 +
4752 +        public boolean removeIf(Predicate<? super V> filter) {
4753 +            return map.removeValueIf(filter);
4754 +        }
4755 +
4756 +        public Spliterator<V> spliterator() {
4757 +            Node<K,V>[] t;
4758 +            ConcurrentHashMap<K,V> m = map;
4759 +            long n = m.sumCount();
4760 +            int f = (t = m.table) == null ? 0 : t.length;
4761 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4762 +        }
4763 +
4764 +        public void forEach(Consumer<? super V> action) {
4765 +            if (action == null) throw new NullPointerException();
4766 +            Node<K,V>[] t;
4767 +            if ((t = map.table) != null) {
4768 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4769 +                for (Node<K,V> p; (p = it.advance()) != null; )
4770 +                    action.accept(p.val);
4771 +            }
4772 +        }
4773 +    }
4774 +
4775 +    /**
4776 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4777 +     * entries.  This class cannot be directly instantiated. See
4778 +     * {@link #entrySet()}.
4779 +     */
4780 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4781 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4782 +        private static final long serialVersionUID = 2249069246763182397L;
4783 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4784 +
4785          public boolean contains(Object o) {
4786 <            if (!(o instanceof Map.Entry))
4787 <                return false;
4788 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4789 <            V v = ConcurrentHashMap.this.get(e.getKey());
4790 <            return v != null && v.equals(e.getValue());
4786 >            Object k, v, r; Map.Entry<?,?> e;
4787 >            return ((o instanceof Map.Entry) &&
4788 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4789 >                    (r = map.get(k)) != null &&
4790 >                    (v = e.getValue()) != null &&
4791 >                    (v == r || v.equals(r)));
4792          }
4793 +
4794          public boolean remove(Object o) {
4795 <            if (!(o instanceof Map.Entry))
4796 <                return false;
4797 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4798 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4795 >            Object k, v; Map.Entry<?,?> e;
4796 >            return ((o instanceof Map.Entry) &&
4797 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4798 >                    (v = e.getValue()) != null &&
4799 >                    map.remove(k, v));
4800          }
4801 <        public int size() {
4802 <            return ConcurrentHashMap.this.size();
4801 >
4802 >        /**
4803 >         * @return an iterator over the entries of the backing map
4804 >         */
4805 >        public Iterator<Map.Entry<K,V>> iterator() {
4806 >            ConcurrentHashMap<K,V> m = map;
4807 >            Node<K,V>[] t;
4808 >            int f = (t = m.table) == null ? 0 : t.length;
4809 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4810 >        }
4811 >
4812 >        public boolean add(Entry<K,V> e) {
4813 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4814 >        }
4815 >
4816 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4817 >            boolean added = false;
4818 >            for (Entry<K,V> e : c) {
4819 >                if (add(e))
4820 >                    added = true;
4821 >            }
4822 >            return added;
4823          }
4824 <        public boolean isEmpty() {
4825 <            return ConcurrentHashMap.this.isEmpty();
4824 >
4825 >        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4826 >            return map.removeEntryIf(filter);
4827          }
4828 <        public void clear() {
4829 <            ConcurrentHashMap.this.clear();
4828 >
4829 >        public final int hashCode() {
4830 >            int h = 0;
4831 >            Node<K,V>[] t;
4832 >            if ((t = map.table) != null) {
4833 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4834 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4835 >                    h += p.hashCode();
4836 >                }
4837 >            }
4838 >            return h;
4839          }
4840 +
4841 +        public final boolean equals(Object o) {
4842 +            Set<?> c;
4843 +            return ((o instanceof Set) &&
4844 +                    ((c = (Set<?>)o) == this ||
4845 +                     (containsAll(c) && c.containsAll(this))));
4846 +        }
4847 +
4848 +        public Spliterator<Map.Entry<K,V>> spliterator() {
4849 +            Node<K,V>[] t;
4850 +            ConcurrentHashMap<K,V> m = map;
4851 +            long n = m.sumCount();
4852 +            int f = (t = m.table) == null ? 0 : t.length;
4853 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4854 +        }
4855 +
4856 +        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4857 +            if (action == null) throw new NullPointerException();
4858 +            Node<K,V>[] t;
4859 +            if ((t = map.table) != null) {
4860 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4861 +                for (Node<K,V> p; (p = it.advance()) != null; )
4862 +                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4863 +            }
4864 +        }
4865 +
4866      }
4867  
4868 <    /* ---------------- Serialization Support -------------- */
4868 >    // -------------------------------------------------------
4869  
4870      /**
4871 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
4872 <     * stream (i.e., serialize it).
1370 <     * @param s the stream
1371 <     * @serialData
1372 <     * the key (Object) and value (Object)
1373 <     * for each key-value mapping, followed by a null pair.
1374 <     * The key-value mappings are emitted in no particular order.
4871 >     * Base class for bulk tasks. Repeats some fields and code from
4872 >     * class Traverser, because we need to subclass CountedCompleter.
4873       */
4874 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
4875 <        // force all segments for serialization compatibility
4876 <        for (int k = 0; k < segments.length; ++k)
4877 <            ensureSegment(k);
4878 <        s.defaultWriteObject();
4879 <
4880 <        final Segment<K,V>[] segments = this.segments;
4881 <        for (int k = 0; k < segments.length; ++k) {
4882 <            Segment<K,V> seg = segmentAt(segments, k);
4883 <            seg.lock();
4884 <            try {
4885 <                HashEntry<K,V>[] tab = seg.table;
4886 <                for (int i = 0; i < tab.length; ++i) {
4887 <                    HashEntry<K,V> e;
4888 <                    for (e = entryAt(tab, i); e != null; e = e.next) {
4889 <                        s.writeObject(e.key);
4890 <                        s.writeObject(e.value);
4874 >    @SuppressWarnings("serial")
4875 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4876 >        Node<K,V>[] tab;        // same as Traverser
4877 >        Node<K,V> next;
4878 >        TableStack<K,V> stack, spare;
4879 >        int index;
4880 >        int baseIndex;
4881 >        int baseLimit;
4882 >        final int baseSize;
4883 >        int batch;              // split control
4884 >
4885 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4886 >            super(par);
4887 >            this.batch = b;
4888 >            this.index = this.baseIndex = i;
4889 >            if ((this.tab = t) == null)
4890 >                this.baseSize = this.baseLimit = 0;
4891 >            else if (par == null)
4892 >                this.baseSize = this.baseLimit = t.length;
4893 >            else {
4894 >                this.baseLimit = f;
4895 >                this.baseSize = par.baseSize;
4896 >            }
4897 >        }
4898 >
4899 >        /**
4900 >         * Same as Traverser version.
4901 >         */
4902 >        final Node<K,V> advance() {
4903 >            Node<K,V> e;
4904 >            if ((e = next) != null)
4905 >                e = e.next;
4906 >            for (;;) {
4907 >                Node<K,V>[] t; int i, n;
4908 >                if (e != null)
4909 >                    return next = e;
4910 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4911 >                    (n = t.length) <= (i = index) || i < 0)
4912 >                    return next = null;
4913 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4914 >                    if (e instanceof ForwardingNode) {
4915 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4916 >                        e = null;
4917 >                        pushState(t, i, n);
4918 >                        continue;
4919                      }
4920 +                    else if (e instanceof TreeBin)
4921 +                        e = ((TreeBin<K,V>)e).first;
4922 +                    else
4923 +                        e = null;
4924                  }
4925 <            } finally {
4926 <                seg.unlock();
4925 >                if (stack != null)
4926 >                    recoverState(n);
4927 >                else if ((index = i + baseSize) >= n)
4928 >                    index = ++baseIndex;
4929              }
4930          }
4931 <        s.writeObject(null);
4932 <        s.writeObject(null);
4931 >
4932 >        private void pushState(Node<K,V>[] t, int i, int n) {
4933 >            TableStack<K,V> s = spare;
4934 >            if (s != null)
4935 >                spare = s.next;
4936 >            else
4937 >                s = new TableStack<K,V>();
4938 >            s.tab = t;
4939 >            s.length = n;
4940 >            s.index = i;
4941 >            s.next = stack;
4942 >            stack = s;
4943 >        }
4944 >
4945 >        private void recoverState(int n) {
4946 >            TableStack<K,V> s; int len;
4947 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4948 >                n = len;
4949 >                index = s.index;
4950 >                tab = s.tab;
4951 >                s.tab = null;
4952 >                TableStack<K,V> next = s.next;
4953 >                s.next = spare; // save for reuse
4954 >                stack = next;
4955 >                spare = s;
4956 >            }
4957 >            if (s == null && (index += baseSize) >= n)
4958 >                index = ++baseIndex;
4959 >        }
4960      }
4961  
4962 <    /**
4963 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
4964 <     * stream (i.e., deserialize it).
4965 <     * @param s the stream
4966 <     */
4967 <    @SuppressWarnings("unchecked")
4968 <    private void readObject(java.io.ObjectInputStream s)
4969 <        throws IOException, ClassNotFoundException {
4970 <        s.defaultReadObject();
4962 >    /*
4963 >     * Task classes. Coded in a regular but ugly format/style to
4964 >     * simplify checks that each variant differs in the right way from
4965 >     * others. The null screenings exist because compilers cannot tell
4966 >     * that we've already null-checked task arguments, so we force
4967 >     * simplest hoisted bypass to help avoid convoluted traps.
4968 >     */
4969 >    @SuppressWarnings("serial")
4970 >    static final class ForEachKeyTask<K,V>
4971 >        extends BulkTask<K,V,Void> {
4972 >        final Consumer<? super K> action;
4973 >        ForEachKeyTask
4974 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4975 >             Consumer<? super K> action) {
4976 >            super(p, b, i, f, t);
4977 >            this.action = action;
4978 >        }
4979 >        public final void compute() {
4980 >            final Consumer<? super K> action;
4981 >            if ((action = this.action) != null) {
4982 >                for (int i = baseIndex, f, h; batch > 0 &&
4983 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4984 >                    addToPendingCount(1);
4985 >                    new ForEachKeyTask<K,V>
4986 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4987 >                         action).fork();
4988 >                }
4989 >                for (Node<K,V> p; (p = advance()) != null;)
4990 >                    action.accept(p.key);
4991 >                propagateCompletion();
4992 >            }
4993 >        }
4994 >    }
4995  
4996 <        // Re-initialize segments to be minimally sized, and let grow.
4997 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
4998 <        final Segment<K,V>[] segments = this.segments;
4999 <        for (int k = 0; k < segments.length; ++k) {
5000 <            Segment<K,V> seg = segments[k];
5001 <            if (seg != null) {
5002 <                seg.threshold = (int)(cap * seg.loadFactor);
5003 <                seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
4996 >    @SuppressWarnings("serial")
4997 >    static final class ForEachValueTask<K,V>
4998 >        extends BulkTask<K,V,Void> {
4999 >        final Consumer<? super V> action;
5000 >        ForEachValueTask
5001 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5002 >             Consumer<? super V> action) {
5003 >            super(p, b, i, f, t);
5004 >            this.action = action;
5005 >        }
5006 >        public final void compute() {
5007 >            final Consumer<? super V> action;
5008 >            if ((action = this.action) != null) {
5009 >                for (int i = baseIndex, f, h; batch > 0 &&
5010 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5011 >                    addToPendingCount(1);
5012 >                    new ForEachValueTask<K,V>
5013 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5014 >                         action).fork();
5015 >                }
5016 >                for (Node<K,V> p; (p = advance()) != null;)
5017 >                    action.accept(p.val);
5018 >                propagateCompletion();
5019              }
5020          }
5021 +    }
5022  
5023 <        // Read the keys and values, and put the mappings in the table
5024 <        for (;;) {
5025 <            K key = (K) s.readObject();
5026 <            V value = (V) s.readObject();
5027 <            if (key == null)
5028 <                break;
5029 <            put(key, value);
5023 >    @SuppressWarnings("serial")
5024 >    static final class ForEachEntryTask<K,V>
5025 >        extends BulkTask<K,V,Void> {
5026 >        final Consumer<? super Entry<K,V>> action;
5027 >        ForEachEntryTask
5028 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5029 >             Consumer<? super Entry<K,V>> action) {
5030 >            super(p, b, i, f, t);
5031 >            this.action = action;
5032 >        }
5033 >        public final void compute() {
5034 >            final Consumer<? super Entry<K,V>> action;
5035 >            if ((action = this.action) != null) {
5036 >                for (int i = baseIndex, f, h; batch > 0 &&
5037 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5038 >                    addToPendingCount(1);
5039 >                    new ForEachEntryTask<K,V>
5040 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5041 >                         action).fork();
5042 >                }
5043 >                for (Node<K,V> p; (p = advance()) != null; )
5044 >                    action.accept(p);
5045 >                propagateCompletion();
5046 >            }
5047 >        }
5048 >    }
5049 >
5050 >    @SuppressWarnings("serial")
5051 >    static final class ForEachMappingTask<K,V>
5052 >        extends BulkTask<K,V,Void> {
5053 >        final BiConsumer<? super K, ? super V> action;
5054 >        ForEachMappingTask
5055 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5056 >             BiConsumer<? super K,? super V> action) {
5057 >            super(p, b, i, f, t);
5058 >            this.action = action;
5059 >        }
5060 >        public final void compute() {
5061 >            final BiConsumer<? super K, ? super V> action;
5062 >            if ((action = this.action) != null) {
5063 >                for (int i = baseIndex, f, h; batch > 0 &&
5064 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5065 >                    addToPendingCount(1);
5066 >                    new ForEachMappingTask<K,V>
5067 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5068 >                         action).fork();
5069 >                }
5070 >                for (Node<K,V> p; (p = advance()) != null; )
5071 >                    action.accept(p.key, p.val);
5072 >                propagateCompletion();
5073 >            }
5074 >        }
5075 >    }
5076 >
5077 >    @SuppressWarnings("serial")
5078 >    static final class ForEachTransformedKeyTask<K,V,U>
5079 >        extends BulkTask<K,V,Void> {
5080 >        final Function<? super K, ? extends U> transformer;
5081 >        final Consumer<? super U> action;
5082 >        ForEachTransformedKeyTask
5083 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5084 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5085 >            super(p, b, i, f, t);
5086 >            this.transformer = transformer; this.action = action;
5087 >        }
5088 >        public final void compute() {
5089 >            final Function<? super K, ? extends U> transformer;
5090 >            final Consumer<? super U> action;
5091 >            if ((transformer = this.transformer) != null &&
5092 >                (action = this.action) != null) {
5093 >                for (int i = baseIndex, f, h; batch > 0 &&
5094 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5095 >                    addToPendingCount(1);
5096 >                    new ForEachTransformedKeyTask<K,V,U>
5097 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5098 >                         transformer, action).fork();
5099 >                }
5100 >                for (Node<K,V> p; (p = advance()) != null; ) {
5101 >                    U u;
5102 >                    if ((u = transformer.apply(p.key)) != null)
5103 >                        action.accept(u);
5104 >                }
5105 >                propagateCompletion();
5106 >            }
5107 >        }
5108 >    }
5109 >
5110 >    @SuppressWarnings("serial")
5111 >    static final class ForEachTransformedValueTask<K,V,U>
5112 >        extends BulkTask<K,V,Void> {
5113 >        final Function<? super V, ? extends U> transformer;
5114 >        final Consumer<? super U> action;
5115 >        ForEachTransformedValueTask
5116 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5117 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5118 >            super(p, b, i, f, t);
5119 >            this.transformer = transformer; this.action = action;
5120 >        }
5121 >        public final void compute() {
5122 >            final Function<? super V, ? extends U> transformer;
5123 >            final Consumer<? super U> action;
5124 >            if ((transformer = this.transformer) != null &&
5125 >                (action = this.action) != null) {
5126 >                for (int i = baseIndex, f, h; batch > 0 &&
5127 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5128 >                    addToPendingCount(1);
5129 >                    new ForEachTransformedValueTask<K,V,U>
5130 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5131 >                         transformer, action).fork();
5132 >                }
5133 >                for (Node<K,V> p; (p = advance()) != null; ) {
5134 >                    U u;
5135 >                    if ((u = transformer.apply(p.val)) != null)
5136 >                        action.accept(u);
5137 >                }
5138 >                propagateCompletion();
5139 >            }
5140 >        }
5141 >    }
5142 >
5143 >    @SuppressWarnings("serial")
5144 >    static final class ForEachTransformedEntryTask<K,V,U>
5145 >        extends BulkTask<K,V,Void> {
5146 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5147 >        final Consumer<? super U> action;
5148 >        ForEachTransformedEntryTask
5149 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5150 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5151 >            super(p, b, i, f, t);
5152 >            this.transformer = transformer; this.action = action;
5153 >        }
5154 >        public final void compute() {
5155 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5156 >            final Consumer<? super U> action;
5157 >            if ((transformer = this.transformer) != null &&
5158 >                (action = this.action) != null) {
5159 >                for (int i = baseIndex, f, h; batch > 0 &&
5160 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5161 >                    addToPendingCount(1);
5162 >                    new ForEachTransformedEntryTask<K,V,U>
5163 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5164 >                         transformer, action).fork();
5165 >                }
5166 >                for (Node<K,V> p; (p = advance()) != null; ) {
5167 >                    U u;
5168 >                    if ((u = transformer.apply(p)) != null)
5169 >                        action.accept(u);
5170 >                }
5171 >                propagateCompletion();
5172 >            }
5173 >        }
5174 >    }
5175 >
5176 >    @SuppressWarnings("serial")
5177 >    static final class ForEachTransformedMappingTask<K,V,U>
5178 >        extends BulkTask<K,V,Void> {
5179 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5180 >        final Consumer<? super U> action;
5181 >        ForEachTransformedMappingTask
5182 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5183 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5184 >             Consumer<? super U> action) {
5185 >            super(p, b, i, f, t);
5186 >            this.transformer = transformer; this.action = action;
5187 >        }
5188 >        public final void compute() {
5189 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5190 >            final Consumer<? super U> action;
5191 >            if ((transformer = this.transformer) != null &&
5192 >                (action = this.action) != null) {
5193 >                for (int i = baseIndex, f, h; batch > 0 &&
5194 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5195 >                    addToPendingCount(1);
5196 >                    new ForEachTransformedMappingTask<K,V,U>
5197 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5198 >                         transformer, action).fork();
5199 >                }
5200 >                for (Node<K,V> p; (p = advance()) != null; ) {
5201 >                    U u;
5202 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5203 >                        action.accept(u);
5204 >                }
5205 >                propagateCompletion();
5206 >            }
5207 >        }
5208 >    }
5209 >
5210 >    @SuppressWarnings("serial")
5211 >    static final class SearchKeysTask<K,V,U>
5212 >        extends BulkTask<K,V,U> {
5213 >        final Function<? super K, ? extends U> searchFunction;
5214 >        final AtomicReference<U> result;
5215 >        SearchKeysTask
5216 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5217 >             Function<? super K, ? extends U> searchFunction,
5218 >             AtomicReference<U> result) {
5219 >            super(p, b, i, f, t);
5220 >            this.searchFunction = searchFunction; this.result = result;
5221 >        }
5222 >        public final U getRawResult() { return result.get(); }
5223 >        public final void compute() {
5224 >            final Function<? super K, ? extends U> searchFunction;
5225 >            final AtomicReference<U> result;
5226 >            if ((searchFunction = this.searchFunction) != null &&
5227 >                (result = this.result) != null) {
5228 >                for (int i = baseIndex, f, h; batch > 0 &&
5229 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5230 >                    if (result.get() != null)
5231 >                        return;
5232 >                    addToPendingCount(1);
5233 >                    new SearchKeysTask<K,V,U>
5234 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5235 >                         searchFunction, result).fork();
5236 >                }
5237 >                while (result.get() == null) {
5238 >                    U u;
5239 >                    Node<K,V> p;
5240 >                    if ((p = advance()) == null) {
5241 >                        propagateCompletion();
5242 >                        break;
5243 >                    }
5244 >                    if ((u = searchFunction.apply(p.key)) != null) {
5245 >                        if (result.compareAndSet(null, u))
5246 >                            quietlyCompleteRoot();
5247 >                        break;
5248 >                    }
5249 >                }
5250 >            }
5251 >        }
5252 >    }
5253 >
5254 >    @SuppressWarnings("serial")
5255 >    static final class SearchValuesTask<K,V,U>
5256 >        extends BulkTask<K,V,U> {
5257 >        final Function<? super V, ? extends U> searchFunction;
5258 >        final AtomicReference<U> result;
5259 >        SearchValuesTask
5260 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5261 >             Function<? super V, ? extends U> searchFunction,
5262 >             AtomicReference<U> result) {
5263 >            super(p, b, i, f, t);
5264 >            this.searchFunction = searchFunction; this.result = result;
5265 >        }
5266 >        public final U getRawResult() { return result.get(); }
5267 >        public final void compute() {
5268 >            final Function<? super V, ? extends U> searchFunction;
5269 >            final AtomicReference<U> result;
5270 >            if ((searchFunction = this.searchFunction) != null &&
5271 >                (result = this.result) != null) {
5272 >                for (int i = baseIndex, f, h; batch > 0 &&
5273 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5274 >                    if (result.get() != null)
5275 >                        return;
5276 >                    addToPendingCount(1);
5277 >                    new SearchValuesTask<K,V,U>
5278 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5279 >                         searchFunction, result).fork();
5280 >                }
5281 >                while (result.get() == null) {
5282 >                    U u;
5283 >                    Node<K,V> p;
5284 >                    if ((p = advance()) == null) {
5285 >                        propagateCompletion();
5286 >                        break;
5287 >                    }
5288 >                    if ((u = searchFunction.apply(p.val)) != null) {
5289 >                        if (result.compareAndSet(null, u))
5290 >                            quietlyCompleteRoot();
5291 >                        break;
5292 >                    }
5293 >                }
5294 >            }
5295 >        }
5296 >    }
5297 >
5298 >    @SuppressWarnings("serial")
5299 >    static final class SearchEntriesTask<K,V,U>
5300 >        extends BulkTask<K,V,U> {
5301 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5302 >        final AtomicReference<U> result;
5303 >        SearchEntriesTask
5304 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5305 >             Function<Entry<K,V>, ? extends U> searchFunction,
5306 >             AtomicReference<U> result) {
5307 >            super(p, b, i, f, t);
5308 >            this.searchFunction = searchFunction; this.result = result;
5309 >        }
5310 >        public final U getRawResult() { return result.get(); }
5311 >        public final void compute() {
5312 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5313 >            final AtomicReference<U> result;
5314 >            if ((searchFunction = this.searchFunction) != null &&
5315 >                (result = this.result) != null) {
5316 >                for (int i = baseIndex, f, h; batch > 0 &&
5317 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5318 >                    if (result.get() != null)
5319 >                        return;
5320 >                    addToPendingCount(1);
5321 >                    new SearchEntriesTask<K,V,U>
5322 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5323 >                         searchFunction, result).fork();
5324 >                }
5325 >                while (result.get() == null) {
5326 >                    U u;
5327 >                    Node<K,V> p;
5328 >                    if ((p = advance()) == null) {
5329 >                        propagateCompletion();
5330 >                        break;
5331 >                    }
5332 >                    if ((u = searchFunction.apply(p)) != null) {
5333 >                        if (result.compareAndSet(null, u))
5334 >                            quietlyCompleteRoot();
5335 >                        return;
5336 >                    }
5337 >                }
5338 >            }
5339 >        }
5340 >    }
5341 >
5342 >    @SuppressWarnings("serial")
5343 >    static final class SearchMappingsTask<K,V,U>
5344 >        extends BulkTask<K,V,U> {
5345 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5346 >        final AtomicReference<U> result;
5347 >        SearchMappingsTask
5348 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5349 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5350 >             AtomicReference<U> result) {
5351 >            super(p, b, i, f, t);
5352 >            this.searchFunction = searchFunction; this.result = result;
5353 >        }
5354 >        public final U getRawResult() { return result.get(); }
5355 >        public final void compute() {
5356 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5357 >            final AtomicReference<U> result;
5358 >            if ((searchFunction = this.searchFunction) != null &&
5359 >                (result = this.result) != null) {
5360 >                for (int i = baseIndex, f, h; batch > 0 &&
5361 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5362 >                    if (result.get() != null)
5363 >                        return;
5364 >                    addToPendingCount(1);
5365 >                    new SearchMappingsTask<K,V,U>
5366 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5367 >                         searchFunction, result).fork();
5368 >                }
5369 >                while (result.get() == null) {
5370 >                    U u;
5371 >                    Node<K,V> p;
5372 >                    if ((p = advance()) == null) {
5373 >                        propagateCompletion();
5374 >                        break;
5375 >                    }
5376 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5377 >                        if (result.compareAndSet(null, u))
5378 >                            quietlyCompleteRoot();
5379 >                        break;
5380 >                    }
5381 >                }
5382 >            }
5383 >        }
5384 >    }
5385 >
5386 >    @SuppressWarnings("serial")
5387 >    static final class ReduceKeysTask<K,V>
5388 >        extends BulkTask<K,V,K> {
5389 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5390 >        K result;
5391 >        ReduceKeysTask<K,V> rights, nextRight;
5392 >        ReduceKeysTask
5393 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5394 >             ReduceKeysTask<K,V> nextRight,
5395 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5396 >            super(p, b, i, f, t); this.nextRight = nextRight;
5397 >            this.reducer = reducer;
5398 >        }
5399 >        public final K getRawResult() { return result; }
5400 >        public final void compute() {
5401 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5402 >            if ((reducer = this.reducer) != null) {
5403 >                for (int i = baseIndex, f, h; batch > 0 &&
5404 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5405 >                    addToPendingCount(1);
5406 >                    (rights = new ReduceKeysTask<K,V>
5407 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5408 >                      rights, reducer)).fork();
5409 >                }
5410 >                K r = null;
5411 >                for (Node<K,V> p; (p = advance()) != null; ) {
5412 >                    K u = p.key;
5413 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5414 >                }
5415 >                result = r;
5416 >                CountedCompleter<?> c;
5417 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5418 >                    @SuppressWarnings("unchecked")
5419 >                    ReduceKeysTask<K,V>
5420 >                        t = (ReduceKeysTask<K,V>)c,
5421 >                        s = t.rights;
5422 >                    while (s != null) {
5423 >                        K tr, sr;
5424 >                        if ((sr = s.result) != null)
5425 >                            t.result = (((tr = t.result) == null) ? sr :
5426 >                                        reducer.apply(tr, sr));
5427 >                        s = t.rights = s.nextRight;
5428 >                    }
5429 >                }
5430 >            }
5431 >        }
5432 >    }
5433 >
5434 >    @SuppressWarnings("serial")
5435 >    static final class ReduceValuesTask<K,V>
5436 >        extends BulkTask<K,V,V> {
5437 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5438 >        V result;
5439 >        ReduceValuesTask<K,V> rights, nextRight;
5440 >        ReduceValuesTask
5441 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5442 >             ReduceValuesTask<K,V> nextRight,
5443 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5444 >            super(p, b, i, f, t); this.nextRight = nextRight;
5445 >            this.reducer = reducer;
5446 >        }
5447 >        public final V getRawResult() { return result; }
5448 >        public final void compute() {
5449 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5450 >            if ((reducer = this.reducer) != null) {
5451 >                for (int i = baseIndex, f, h; batch > 0 &&
5452 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5453 >                    addToPendingCount(1);
5454 >                    (rights = new ReduceValuesTask<K,V>
5455 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5456 >                      rights, reducer)).fork();
5457 >                }
5458 >                V r = null;
5459 >                for (Node<K,V> p; (p = advance()) != null; ) {
5460 >                    V v = p.val;
5461 >                    r = (r == null) ? v : reducer.apply(r, v);
5462 >                }
5463 >                result = r;
5464 >                CountedCompleter<?> c;
5465 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5466 >                    @SuppressWarnings("unchecked")
5467 >                    ReduceValuesTask<K,V>
5468 >                        t = (ReduceValuesTask<K,V>)c,
5469 >                        s = t.rights;
5470 >                    while (s != null) {
5471 >                        V tr, sr;
5472 >                        if ((sr = s.result) != null)
5473 >                            t.result = (((tr = t.result) == null) ? sr :
5474 >                                        reducer.apply(tr, sr));
5475 >                        s = t.rights = s.nextRight;
5476 >                    }
5477 >                }
5478 >            }
5479 >        }
5480 >    }
5481 >
5482 >    @SuppressWarnings("serial")
5483 >    static final class ReduceEntriesTask<K,V>
5484 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5485 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5486 >        Map.Entry<K,V> result;
5487 >        ReduceEntriesTask<K,V> rights, nextRight;
5488 >        ReduceEntriesTask
5489 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5490 >             ReduceEntriesTask<K,V> nextRight,
5491 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5492 >            super(p, b, i, f, t); this.nextRight = nextRight;
5493 >            this.reducer = reducer;
5494 >        }
5495 >        public final Map.Entry<K,V> getRawResult() { return result; }
5496 >        public final void compute() {
5497 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5498 >            if ((reducer = this.reducer) != null) {
5499 >                for (int i = baseIndex, f, h; batch > 0 &&
5500 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5501 >                    addToPendingCount(1);
5502 >                    (rights = new ReduceEntriesTask<K,V>
5503 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5504 >                      rights, reducer)).fork();
5505 >                }
5506 >                Map.Entry<K,V> r = null;
5507 >                for (Node<K,V> p; (p = advance()) != null; )
5508 >                    r = (r == null) ? p : reducer.apply(r, p);
5509 >                result = r;
5510 >                CountedCompleter<?> c;
5511 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5512 >                    @SuppressWarnings("unchecked")
5513 >                    ReduceEntriesTask<K,V>
5514 >                        t = (ReduceEntriesTask<K,V>)c,
5515 >                        s = t.rights;
5516 >                    while (s != null) {
5517 >                        Map.Entry<K,V> tr, sr;
5518 >                        if ((sr = s.result) != null)
5519 >                            t.result = (((tr = t.result) == null) ? sr :
5520 >                                        reducer.apply(tr, sr));
5521 >                        s = t.rights = s.nextRight;
5522 >                    }
5523 >                }
5524 >            }
5525 >        }
5526 >    }
5527 >
5528 >    @SuppressWarnings("serial")
5529 >    static final class MapReduceKeysTask<K,V,U>
5530 >        extends BulkTask<K,V,U> {
5531 >        final Function<? super K, ? extends U> transformer;
5532 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5533 >        U result;
5534 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5535 >        MapReduceKeysTask
5536 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5537 >             MapReduceKeysTask<K,V,U> nextRight,
5538 >             Function<? super K, ? extends U> transformer,
5539 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5540 >            super(p, b, i, f, t); this.nextRight = nextRight;
5541 >            this.transformer = transformer;
5542 >            this.reducer = reducer;
5543 >        }
5544 >        public final U getRawResult() { return result; }
5545 >        public final void compute() {
5546 >            final Function<? super K, ? extends U> transformer;
5547 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5548 >            if ((transformer = this.transformer) != null &&
5549 >                (reducer = this.reducer) != null) {
5550 >                for (int i = baseIndex, f, h; batch > 0 &&
5551 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5552 >                    addToPendingCount(1);
5553 >                    (rights = new MapReduceKeysTask<K,V,U>
5554 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5555 >                      rights, transformer, reducer)).fork();
5556 >                }
5557 >                U r = null;
5558 >                for (Node<K,V> p; (p = advance()) != null; ) {
5559 >                    U u;
5560 >                    if ((u = transformer.apply(p.key)) != null)
5561 >                        r = (r == null) ? u : reducer.apply(r, u);
5562 >                }
5563 >                result = r;
5564 >                CountedCompleter<?> c;
5565 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5566 >                    @SuppressWarnings("unchecked")
5567 >                    MapReduceKeysTask<K,V,U>
5568 >                        t = (MapReduceKeysTask<K,V,U>)c,
5569 >                        s = t.rights;
5570 >                    while (s != null) {
5571 >                        U tr, sr;
5572 >                        if ((sr = s.result) != null)
5573 >                            t.result = (((tr = t.result) == null) ? sr :
5574 >                                        reducer.apply(tr, sr));
5575 >                        s = t.rights = s.nextRight;
5576 >                    }
5577 >                }
5578 >            }
5579 >        }
5580 >    }
5581 >
5582 >    @SuppressWarnings("serial")
5583 >    static final class MapReduceValuesTask<K,V,U>
5584 >        extends BulkTask<K,V,U> {
5585 >        final Function<? super V, ? extends U> transformer;
5586 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5587 >        U result;
5588 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5589 >        MapReduceValuesTask
5590 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5591 >             MapReduceValuesTask<K,V,U> nextRight,
5592 >             Function<? super V, ? extends U> transformer,
5593 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5594 >            super(p, b, i, f, t); this.nextRight = nextRight;
5595 >            this.transformer = transformer;
5596 >            this.reducer = reducer;
5597 >        }
5598 >        public final U getRawResult() { return result; }
5599 >        public final void compute() {
5600 >            final Function<? super V, ? extends U> transformer;
5601 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5602 >            if ((transformer = this.transformer) != null &&
5603 >                (reducer = this.reducer) != null) {
5604 >                for (int i = baseIndex, f, h; batch > 0 &&
5605 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5606 >                    addToPendingCount(1);
5607 >                    (rights = new MapReduceValuesTask<K,V,U>
5608 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5609 >                      rights, transformer, reducer)).fork();
5610 >                }
5611 >                U r = null;
5612 >                for (Node<K,V> p; (p = advance()) != null; ) {
5613 >                    U u;
5614 >                    if ((u = transformer.apply(p.val)) != null)
5615 >                        r = (r == null) ? u : reducer.apply(r, u);
5616 >                }
5617 >                result = r;
5618 >                CountedCompleter<?> c;
5619 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5620 >                    @SuppressWarnings("unchecked")
5621 >                    MapReduceValuesTask<K,V,U>
5622 >                        t = (MapReduceValuesTask<K,V,U>)c,
5623 >                        s = t.rights;
5624 >                    while (s != null) {
5625 >                        U tr, sr;
5626 >                        if ((sr = s.result) != null)
5627 >                            t.result = (((tr = t.result) == null) ? sr :
5628 >                                        reducer.apply(tr, sr));
5629 >                        s = t.rights = s.nextRight;
5630 >                    }
5631 >                }
5632 >            }
5633 >        }
5634 >    }
5635 >
5636 >    @SuppressWarnings("serial")
5637 >    static final class MapReduceEntriesTask<K,V,U>
5638 >        extends BulkTask<K,V,U> {
5639 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5640 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5641 >        U result;
5642 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5643 >        MapReduceEntriesTask
5644 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5645 >             MapReduceEntriesTask<K,V,U> nextRight,
5646 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5647 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5648 >            super(p, b, i, f, t); this.nextRight = nextRight;
5649 >            this.transformer = transformer;
5650 >            this.reducer = reducer;
5651 >        }
5652 >        public final U getRawResult() { return result; }
5653 >        public final void compute() {
5654 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5655 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5656 >            if ((transformer = this.transformer) != null &&
5657 >                (reducer = this.reducer) != null) {
5658 >                for (int i = baseIndex, f, h; batch > 0 &&
5659 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5660 >                    addToPendingCount(1);
5661 >                    (rights = new MapReduceEntriesTask<K,V,U>
5662 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5663 >                      rights, transformer, reducer)).fork();
5664 >                }
5665 >                U r = null;
5666 >                for (Node<K,V> p; (p = advance()) != null; ) {
5667 >                    U u;
5668 >                    if ((u = transformer.apply(p)) != null)
5669 >                        r = (r == null) ? u : reducer.apply(r, u);
5670 >                }
5671 >                result = r;
5672 >                CountedCompleter<?> c;
5673 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5674 >                    @SuppressWarnings("unchecked")
5675 >                    MapReduceEntriesTask<K,V,U>
5676 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5677 >                        s = t.rights;
5678 >                    while (s != null) {
5679 >                        U tr, sr;
5680 >                        if ((sr = s.result) != null)
5681 >                            t.result = (((tr = t.result) == null) ? sr :
5682 >                                        reducer.apply(tr, sr));
5683 >                        s = t.rights = s.nextRight;
5684 >                    }
5685 >                }
5686 >            }
5687 >        }
5688 >    }
5689 >
5690 >    @SuppressWarnings("serial")
5691 >    static final class MapReduceMappingsTask<K,V,U>
5692 >        extends BulkTask<K,V,U> {
5693 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5694 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5695 >        U result;
5696 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5697 >        MapReduceMappingsTask
5698 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5699 >             MapReduceMappingsTask<K,V,U> nextRight,
5700 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5701 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5702 >            super(p, b, i, f, t); this.nextRight = nextRight;
5703 >            this.transformer = transformer;
5704 >            this.reducer = reducer;
5705 >        }
5706 >        public final U getRawResult() { return result; }
5707 >        public final void compute() {
5708 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5709 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5710 >            if ((transformer = this.transformer) != null &&
5711 >                (reducer = this.reducer) != null) {
5712 >                for (int i = baseIndex, f, h; batch > 0 &&
5713 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5714 >                    addToPendingCount(1);
5715 >                    (rights = new MapReduceMappingsTask<K,V,U>
5716 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5717 >                      rights, transformer, reducer)).fork();
5718 >                }
5719 >                U r = null;
5720 >                for (Node<K,V> p; (p = advance()) != null; ) {
5721 >                    U u;
5722 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5723 >                        r = (r == null) ? u : reducer.apply(r, u);
5724 >                }
5725 >                result = r;
5726 >                CountedCompleter<?> c;
5727 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5728 >                    @SuppressWarnings("unchecked")
5729 >                    MapReduceMappingsTask<K,V,U>
5730 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5731 >                        s = t.rights;
5732 >                    while (s != null) {
5733 >                        U tr, sr;
5734 >                        if ((sr = s.result) != null)
5735 >                            t.result = (((tr = t.result) == null) ? sr :
5736 >                                        reducer.apply(tr, sr));
5737 >                        s = t.rights = s.nextRight;
5738 >                    }
5739 >                }
5740 >            }
5741 >        }
5742 >    }
5743 >
5744 >    @SuppressWarnings("serial")
5745 >    static final class MapReduceKeysToDoubleTask<K,V>
5746 >        extends BulkTask<K,V,Double> {
5747 >        final ToDoubleFunction<? super K> transformer;
5748 >        final DoubleBinaryOperator reducer;
5749 >        final double basis;
5750 >        double result;
5751 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5752 >        MapReduceKeysToDoubleTask
5753 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5754 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5755 >             ToDoubleFunction<? super K> transformer,
5756 >             double basis,
5757 >             DoubleBinaryOperator reducer) {
5758 >            super(p, b, i, f, t); this.nextRight = nextRight;
5759 >            this.transformer = transformer;
5760 >            this.basis = basis; this.reducer = reducer;
5761 >        }
5762 >        public final Double getRawResult() { return result; }
5763 >        public final void compute() {
5764 >            final ToDoubleFunction<? super K> transformer;
5765 >            final DoubleBinaryOperator reducer;
5766 >            if ((transformer = this.transformer) != null &&
5767 >                (reducer = this.reducer) != null) {
5768 >                double r = this.basis;
5769 >                for (int i = baseIndex, f, h; batch > 0 &&
5770 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5771 >                    addToPendingCount(1);
5772 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5773 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5774 >                      rights, transformer, r, reducer)).fork();
5775 >                }
5776 >                for (Node<K,V> p; (p = advance()) != null; )
5777 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5778 >                result = r;
5779 >                CountedCompleter<?> c;
5780 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5781 >                    @SuppressWarnings("unchecked")
5782 >                    MapReduceKeysToDoubleTask<K,V>
5783 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5784 >                        s = t.rights;
5785 >                    while (s != null) {
5786 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5787 >                        s = t.rights = s.nextRight;
5788 >                    }
5789 >                }
5790 >            }
5791 >        }
5792 >    }
5793 >
5794 >    @SuppressWarnings("serial")
5795 >    static final class MapReduceValuesToDoubleTask<K,V>
5796 >        extends BulkTask<K,V,Double> {
5797 >        final ToDoubleFunction<? super V> transformer;
5798 >        final DoubleBinaryOperator reducer;
5799 >        final double basis;
5800 >        double result;
5801 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5802 >        MapReduceValuesToDoubleTask
5803 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5804 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5805 >             ToDoubleFunction<? super V> transformer,
5806 >             double basis,
5807 >             DoubleBinaryOperator reducer) {
5808 >            super(p, b, i, f, t); this.nextRight = nextRight;
5809 >            this.transformer = transformer;
5810 >            this.basis = basis; this.reducer = reducer;
5811 >        }
5812 >        public final Double getRawResult() { return result; }
5813 >        public final void compute() {
5814 >            final ToDoubleFunction<? super V> transformer;
5815 >            final DoubleBinaryOperator reducer;
5816 >            if ((transformer = this.transformer) != null &&
5817 >                (reducer = this.reducer) != null) {
5818 >                double r = this.basis;
5819 >                for (int i = baseIndex, f, h; batch > 0 &&
5820 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5821 >                    addToPendingCount(1);
5822 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5823 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5824 >                      rights, transformer, r, reducer)).fork();
5825 >                }
5826 >                for (Node<K,V> p; (p = advance()) != null; )
5827 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5828 >                result = r;
5829 >                CountedCompleter<?> c;
5830 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5831 >                    @SuppressWarnings("unchecked")
5832 >                    MapReduceValuesToDoubleTask<K,V>
5833 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5834 >                        s = t.rights;
5835 >                    while (s != null) {
5836 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5837 >                        s = t.rights = s.nextRight;
5838 >                    }
5839 >                }
5840 >            }
5841 >        }
5842 >    }
5843 >
5844 >    @SuppressWarnings("serial")
5845 >    static final class MapReduceEntriesToDoubleTask<K,V>
5846 >        extends BulkTask<K,V,Double> {
5847 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5848 >        final DoubleBinaryOperator reducer;
5849 >        final double basis;
5850 >        double result;
5851 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5852 >        MapReduceEntriesToDoubleTask
5853 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5854 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5855 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5856 >             double basis,
5857 >             DoubleBinaryOperator reducer) {
5858 >            super(p, b, i, f, t); this.nextRight = nextRight;
5859 >            this.transformer = transformer;
5860 >            this.basis = basis; this.reducer = reducer;
5861 >        }
5862 >        public final Double getRawResult() { return result; }
5863 >        public final void compute() {
5864 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5865 >            final DoubleBinaryOperator reducer;
5866 >            if ((transformer = this.transformer) != null &&
5867 >                (reducer = this.reducer) != null) {
5868 >                double r = this.basis;
5869 >                for (int i = baseIndex, f, h; batch > 0 &&
5870 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5871 >                    addToPendingCount(1);
5872 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5873 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5874 >                      rights, transformer, r, reducer)).fork();
5875 >                }
5876 >                for (Node<K,V> p; (p = advance()) != null; )
5877 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5878 >                result = r;
5879 >                CountedCompleter<?> c;
5880 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5881 >                    @SuppressWarnings("unchecked")
5882 >                    MapReduceEntriesToDoubleTask<K,V>
5883 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5884 >                        s = t.rights;
5885 >                    while (s != null) {
5886 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5887 >                        s = t.rights = s.nextRight;
5888 >                    }
5889 >                }
5890 >            }
5891 >        }
5892 >    }
5893 >
5894 >    @SuppressWarnings("serial")
5895 >    static final class MapReduceMappingsToDoubleTask<K,V>
5896 >        extends BulkTask<K,V,Double> {
5897 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5898 >        final DoubleBinaryOperator reducer;
5899 >        final double basis;
5900 >        double result;
5901 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5902 >        MapReduceMappingsToDoubleTask
5903 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5904 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5905 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5906 >             double basis,
5907 >             DoubleBinaryOperator reducer) {
5908 >            super(p, b, i, f, t); this.nextRight = nextRight;
5909 >            this.transformer = transformer;
5910 >            this.basis = basis; this.reducer = reducer;
5911 >        }
5912 >        public final Double getRawResult() { return result; }
5913 >        public final void compute() {
5914 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5915 >            final DoubleBinaryOperator reducer;
5916 >            if ((transformer = this.transformer) != null &&
5917 >                (reducer = this.reducer) != null) {
5918 >                double r = this.basis;
5919 >                for (int i = baseIndex, f, h; batch > 0 &&
5920 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5921 >                    addToPendingCount(1);
5922 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5923 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5924 >                      rights, transformer, r, reducer)).fork();
5925 >                }
5926 >                for (Node<K,V> p; (p = advance()) != null; )
5927 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5928 >                result = r;
5929 >                CountedCompleter<?> c;
5930 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5931 >                    @SuppressWarnings("unchecked")
5932 >                    MapReduceMappingsToDoubleTask<K,V>
5933 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5934 >                        s = t.rights;
5935 >                    while (s != null) {
5936 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5937 >                        s = t.rights = s.nextRight;
5938 >                    }
5939 >                }
5940 >            }
5941 >        }
5942 >    }
5943 >
5944 >    @SuppressWarnings("serial")
5945 >    static final class MapReduceKeysToLongTask<K,V>
5946 >        extends BulkTask<K,V,Long> {
5947 >        final ToLongFunction<? super K> transformer;
5948 >        final LongBinaryOperator reducer;
5949 >        final long basis;
5950 >        long result;
5951 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5952 >        MapReduceKeysToLongTask
5953 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5954 >             MapReduceKeysToLongTask<K,V> nextRight,
5955 >             ToLongFunction<? super K> transformer,
5956 >             long basis,
5957 >             LongBinaryOperator reducer) {
5958 >            super(p, b, i, f, t); this.nextRight = nextRight;
5959 >            this.transformer = transformer;
5960 >            this.basis = basis; this.reducer = reducer;
5961 >        }
5962 >        public final Long getRawResult() { return result; }
5963 >        public final void compute() {
5964 >            final ToLongFunction<? super K> transformer;
5965 >            final LongBinaryOperator reducer;
5966 >            if ((transformer = this.transformer) != null &&
5967 >                (reducer = this.reducer) != null) {
5968 >                long r = this.basis;
5969 >                for (int i = baseIndex, f, h; batch > 0 &&
5970 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5971 >                    addToPendingCount(1);
5972 >                    (rights = new MapReduceKeysToLongTask<K,V>
5973 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5974 >                      rights, transformer, r, reducer)).fork();
5975 >                }
5976 >                for (Node<K,V> p; (p = advance()) != null; )
5977 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5978 >                result = r;
5979 >                CountedCompleter<?> c;
5980 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5981 >                    @SuppressWarnings("unchecked")
5982 >                    MapReduceKeysToLongTask<K,V>
5983 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5984 >                        s = t.rights;
5985 >                    while (s != null) {
5986 >                        t.result = reducer.applyAsLong(t.result, s.result);
5987 >                        s = t.rights = s.nextRight;
5988 >                    }
5989 >                }
5990 >            }
5991 >        }
5992 >    }
5993 >
5994 >    @SuppressWarnings("serial")
5995 >    static final class MapReduceValuesToLongTask<K,V>
5996 >        extends BulkTask<K,V,Long> {
5997 >        final ToLongFunction<? super V> transformer;
5998 >        final LongBinaryOperator reducer;
5999 >        final long basis;
6000 >        long result;
6001 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
6002 >        MapReduceValuesToLongTask
6003 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6004 >             MapReduceValuesToLongTask<K,V> nextRight,
6005 >             ToLongFunction<? super V> transformer,
6006 >             long basis,
6007 >             LongBinaryOperator reducer) {
6008 >            super(p, b, i, f, t); this.nextRight = nextRight;
6009 >            this.transformer = transformer;
6010 >            this.basis = basis; this.reducer = reducer;
6011 >        }
6012 >        public final Long getRawResult() { return result; }
6013 >        public final void compute() {
6014 >            final ToLongFunction<? super V> transformer;
6015 >            final LongBinaryOperator reducer;
6016 >            if ((transformer = this.transformer) != null &&
6017 >                (reducer = this.reducer) != null) {
6018 >                long r = this.basis;
6019 >                for (int i = baseIndex, f, h; batch > 0 &&
6020 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6021 >                    addToPendingCount(1);
6022 >                    (rights = new MapReduceValuesToLongTask<K,V>
6023 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6024 >                      rights, transformer, r, reducer)).fork();
6025 >                }
6026 >                for (Node<K,V> p; (p = advance()) != null; )
6027 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6028 >                result = r;
6029 >                CountedCompleter<?> c;
6030 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6031 >                    @SuppressWarnings("unchecked")
6032 >                    MapReduceValuesToLongTask<K,V>
6033 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6034 >                        s = t.rights;
6035 >                    while (s != null) {
6036 >                        t.result = reducer.applyAsLong(t.result, s.result);
6037 >                        s = t.rights = s.nextRight;
6038 >                    }
6039 >                }
6040 >            }
6041 >        }
6042 >    }
6043 >
6044 >    @SuppressWarnings("serial")
6045 >    static final class MapReduceEntriesToLongTask<K,V>
6046 >        extends BulkTask<K,V,Long> {
6047 >        final ToLongFunction<Map.Entry<K,V>> transformer;
6048 >        final LongBinaryOperator reducer;
6049 >        final long basis;
6050 >        long result;
6051 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6052 >        MapReduceEntriesToLongTask
6053 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6054 >             MapReduceEntriesToLongTask<K,V> nextRight,
6055 >             ToLongFunction<Map.Entry<K,V>> transformer,
6056 >             long basis,
6057 >             LongBinaryOperator reducer) {
6058 >            super(p, b, i, f, t); this.nextRight = nextRight;
6059 >            this.transformer = transformer;
6060 >            this.basis = basis; this.reducer = reducer;
6061 >        }
6062 >        public final Long getRawResult() { return result; }
6063 >        public final void compute() {
6064 >            final ToLongFunction<Map.Entry<K,V>> transformer;
6065 >            final LongBinaryOperator reducer;
6066 >            if ((transformer = this.transformer) != null &&
6067 >                (reducer = this.reducer) != null) {
6068 >                long r = this.basis;
6069 >                for (int i = baseIndex, f, h; batch > 0 &&
6070 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6071 >                    addToPendingCount(1);
6072 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6073 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6074 >                      rights, transformer, r, reducer)).fork();
6075 >                }
6076 >                for (Node<K,V> p; (p = advance()) != null; )
6077 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6078 >                result = r;
6079 >                CountedCompleter<?> c;
6080 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6081 >                    @SuppressWarnings("unchecked")
6082 >                    MapReduceEntriesToLongTask<K,V>
6083 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6084 >                        s = t.rights;
6085 >                    while (s != null) {
6086 >                        t.result = reducer.applyAsLong(t.result, s.result);
6087 >                        s = t.rights = s.nextRight;
6088 >                    }
6089 >                }
6090 >            }
6091 >        }
6092 >    }
6093 >
6094 >    @SuppressWarnings("serial")
6095 >    static final class MapReduceMappingsToLongTask<K,V>
6096 >        extends BulkTask<K,V,Long> {
6097 >        final ToLongBiFunction<? super K, ? super V> transformer;
6098 >        final LongBinaryOperator reducer;
6099 >        final long basis;
6100 >        long result;
6101 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6102 >        MapReduceMappingsToLongTask
6103 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6104 >             MapReduceMappingsToLongTask<K,V> nextRight,
6105 >             ToLongBiFunction<? super K, ? super V> transformer,
6106 >             long basis,
6107 >             LongBinaryOperator reducer) {
6108 >            super(p, b, i, f, t); this.nextRight = nextRight;
6109 >            this.transformer = transformer;
6110 >            this.basis = basis; this.reducer = reducer;
6111 >        }
6112 >        public final Long getRawResult() { return result; }
6113 >        public final void compute() {
6114 >            final ToLongBiFunction<? super K, ? super V> transformer;
6115 >            final LongBinaryOperator reducer;
6116 >            if ((transformer = this.transformer) != null &&
6117 >                (reducer = this.reducer) != null) {
6118 >                long r = this.basis;
6119 >                for (int i = baseIndex, f, h; batch > 0 &&
6120 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6121 >                    addToPendingCount(1);
6122 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6123 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6124 >                      rights, transformer, r, reducer)).fork();
6125 >                }
6126 >                for (Node<K,V> p; (p = advance()) != null; )
6127 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6128 >                result = r;
6129 >                CountedCompleter<?> c;
6130 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6131 >                    @SuppressWarnings("unchecked")
6132 >                    MapReduceMappingsToLongTask<K,V>
6133 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6134 >                        s = t.rights;
6135 >                    while (s != null) {
6136 >                        t.result = reducer.applyAsLong(t.result, s.result);
6137 >                        s = t.rights = s.nextRight;
6138 >                    }
6139 >                }
6140 >            }
6141 >        }
6142 >    }
6143 >
6144 >    @SuppressWarnings("serial")
6145 >    static final class MapReduceKeysToIntTask<K,V>
6146 >        extends BulkTask<K,V,Integer> {
6147 >        final ToIntFunction<? super K> transformer;
6148 >        final IntBinaryOperator reducer;
6149 >        final int basis;
6150 >        int result;
6151 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6152 >        MapReduceKeysToIntTask
6153 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6154 >             MapReduceKeysToIntTask<K,V> nextRight,
6155 >             ToIntFunction<? super K> transformer,
6156 >             int basis,
6157 >             IntBinaryOperator reducer) {
6158 >            super(p, b, i, f, t); this.nextRight = nextRight;
6159 >            this.transformer = transformer;
6160 >            this.basis = basis; this.reducer = reducer;
6161 >        }
6162 >        public final Integer getRawResult() { return result; }
6163 >        public final void compute() {
6164 >            final ToIntFunction<? super K> transformer;
6165 >            final IntBinaryOperator reducer;
6166 >            if ((transformer = this.transformer) != null &&
6167 >                (reducer = this.reducer) != null) {
6168 >                int r = this.basis;
6169 >                for (int i = baseIndex, f, h; batch > 0 &&
6170 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6171 >                    addToPendingCount(1);
6172 >                    (rights = new MapReduceKeysToIntTask<K,V>
6173 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6174 >                      rights, transformer, r, reducer)).fork();
6175 >                }
6176 >                for (Node<K,V> p; (p = advance()) != null; )
6177 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6178 >                result = r;
6179 >                CountedCompleter<?> c;
6180 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6181 >                    @SuppressWarnings("unchecked")
6182 >                    MapReduceKeysToIntTask<K,V>
6183 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6184 >                        s = t.rights;
6185 >                    while (s != null) {
6186 >                        t.result = reducer.applyAsInt(t.result, s.result);
6187 >                        s = t.rights = s.nextRight;
6188 >                    }
6189 >                }
6190 >            }
6191 >        }
6192 >    }
6193 >
6194 >    @SuppressWarnings("serial")
6195 >    static final class MapReduceValuesToIntTask<K,V>
6196 >        extends BulkTask<K,V,Integer> {
6197 >        final ToIntFunction<? super V> transformer;
6198 >        final IntBinaryOperator reducer;
6199 >        final int basis;
6200 >        int result;
6201 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6202 >        MapReduceValuesToIntTask
6203 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6204 >             MapReduceValuesToIntTask<K,V> nextRight,
6205 >             ToIntFunction<? super V> transformer,
6206 >             int basis,
6207 >             IntBinaryOperator reducer) {
6208 >            super(p, b, i, f, t); this.nextRight = nextRight;
6209 >            this.transformer = transformer;
6210 >            this.basis = basis; this.reducer = reducer;
6211 >        }
6212 >        public final Integer getRawResult() { return result; }
6213 >        public final void compute() {
6214 >            final ToIntFunction<? super V> transformer;
6215 >            final IntBinaryOperator reducer;
6216 >            if ((transformer = this.transformer) != null &&
6217 >                (reducer = this.reducer) != null) {
6218 >                int r = this.basis;
6219 >                for (int i = baseIndex, f, h; batch > 0 &&
6220 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6221 >                    addToPendingCount(1);
6222 >                    (rights = new MapReduceValuesToIntTask<K,V>
6223 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6224 >                      rights, transformer, r, reducer)).fork();
6225 >                }
6226 >                for (Node<K,V> p; (p = advance()) != null; )
6227 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6228 >                result = r;
6229 >                CountedCompleter<?> c;
6230 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6231 >                    @SuppressWarnings("unchecked")
6232 >                    MapReduceValuesToIntTask<K,V>
6233 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6234 >                        s = t.rights;
6235 >                    while (s != null) {
6236 >                        t.result = reducer.applyAsInt(t.result, s.result);
6237 >                        s = t.rights = s.nextRight;
6238 >                    }
6239 >                }
6240 >            }
6241 >        }
6242 >    }
6243 >
6244 >    @SuppressWarnings("serial")
6245 >    static final class MapReduceEntriesToIntTask<K,V>
6246 >        extends BulkTask<K,V,Integer> {
6247 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6248 >        final IntBinaryOperator reducer;
6249 >        final int basis;
6250 >        int result;
6251 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6252 >        MapReduceEntriesToIntTask
6253 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6254 >             MapReduceEntriesToIntTask<K,V> nextRight,
6255 >             ToIntFunction<Map.Entry<K,V>> transformer,
6256 >             int basis,
6257 >             IntBinaryOperator reducer) {
6258 >            super(p, b, i, f, t); this.nextRight = nextRight;
6259 >            this.transformer = transformer;
6260 >            this.basis = basis; this.reducer = reducer;
6261 >        }
6262 >        public final Integer getRawResult() { return result; }
6263 >        public final void compute() {
6264 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6265 >            final IntBinaryOperator reducer;
6266 >            if ((transformer = this.transformer) != null &&
6267 >                (reducer = this.reducer) != null) {
6268 >                int r = this.basis;
6269 >                for (int i = baseIndex, f, h; batch > 0 &&
6270 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6271 >                    addToPendingCount(1);
6272 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6273 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6274 >                      rights, transformer, r, reducer)).fork();
6275 >                }
6276 >                for (Node<K,V> p; (p = advance()) != null; )
6277 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6278 >                result = r;
6279 >                CountedCompleter<?> c;
6280 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6281 >                    @SuppressWarnings("unchecked")
6282 >                    MapReduceEntriesToIntTask<K,V>
6283 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6284 >                        s = t.rights;
6285 >                    while (s != null) {
6286 >                        t.result = reducer.applyAsInt(t.result, s.result);
6287 >                        s = t.rights = s.nextRight;
6288 >                    }
6289 >                }
6290 >            }
6291 >        }
6292 >    }
6293 >
6294 >    @SuppressWarnings("serial")
6295 >    static final class MapReduceMappingsToIntTask<K,V>
6296 >        extends BulkTask<K,V,Integer> {
6297 >        final ToIntBiFunction<? super K, ? super V> transformer;
6298 >        final IntBinaryOperator reducer;
6299 >        final int basis;
6300 >        int result;
6301 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6302 >        MapReduceMappingsToIntTask
6303 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6304 >             MapReduceMappingsToIntTask<K,V> nextRight,
6305 >             ToIntBiFunction<? super K, ? super V> transformer,
6306 >             int basis,
6307 >             IntBinaryOperator reducer) {
6308 >            super(p, b, i, f, t); this.nextRight = nextRight;
6309 >            this.transformer = transformer;
6310 >            this.basis = basis; this.reducer = reducer;
6311 >        }
6312 >        public final Integer getRawResult() { return result; }
6313 >        public final void compute() {
6314 >            final ToIntBiFunction<? super K, ? super V> transformer;
6315 >            final IntBinaryOperator reducer;
6316 >            if ((transformer = this.transformer) != null &&
6317 >                (reducer = this.reducer) != null) {
6318 >                int r = this.basis;
6319 >                for (int i = baseIndex, f, h; batch > 0 &&
6320 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6321 >                    addToPendingCount(1);
6322 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6323 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6324 >                      rights, transformer, r, reducer)).fork();
6325 >                }
6326 >                for (Node<K,V> p; (p = advance()) != null; )
6327 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6328 >                result = r;
6329 >                CountedCompleter<?> c;
6330 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6331 >                    @SuppressWarnings("unchecked")
6332 >                    MapReduceMappingsToIntTask<K,V>
6333 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6334 >                        s = t.rights;
6335 >                    while (s != null) {
6336 >                        t.result = reducer.applyAsInt(t.result, s.result);
6337 >                        s = t.rights = s.nextRight;
6338 >                    }
6339 >                }
6340 >            }
6341          }
6342      }
6343  
6344      // Unsafe mechanics
6345 <    private static final sun.misc.Unsafe UNSAFE;
6346 <    private static final long SBASE;
6347 <    private static final int SSHIFT;
6348 <    private static final long TBASE;
6349 <    private static final int TSHIFT;
6345 >    private static final Unsafe U = Unsafe.getUnsafe();
6346 >    private static final long SIZECTL;
6347 >    private static final long TRANSFERINDEX;
6348 >    private static final long BASECOUNT;
6349 >    private static final long CELLSBUSY;
6350 >    private static final long CELLVALUE;
6351 >    private static final int ABASE;
6352 >    private static final int ASHIFT;
6353  
6354      static {
1442        int ss, ts;
6355          try {
6356 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6357 <            Class tc = HashEntry[].class;
6358 <            Class sc = Segment[].class;
6359 <            TBASE = UNSAFE.arrayBaseOffset(tc);
6360 <            SBASE = UNSAFE.arrayBaseOffset(sc);
6361 <            ts = UNSAFE.arrayIndexScale(tc);
6362 <            ss = UNSAFE.arrayIndexScale(sc);
6363 <        } catch (Exception e) {
6356 >            SIZECTL = U.objectFieldOffset
6357 >                (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6358 >            TRANSFERINDEX = U.objectFieldOffset
6359 >                (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6360 >            BASECOUNT = U.objectFieldOffset
6361 >                (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6362 >            CELLSBUSY = U.objectFieldOffset
6363 >                (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6364 >
6365 >            CELLVALUE = U.objectFieldOffset
6366 >                (CounterCell.class.getDeclaredField("value"));
6367 >
6368 >            ABASE = U.arrayBaseOffset(Node[].class);
6369 >            int scale = U.arrayIndexScale(Node[].class);
6370 >            if ((scale & (scale - 1)) != 0)
6371 >                throw new Error("array index scale not a power of two");
6372 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6373 >        } catch (ReflectiveOperationException e) {
6374              throw new Error(e);
6375          }
1454        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1455            throw new Error("data type scale not a power of two");
1456        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1457        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
1458    }
6376  
6377 +        // Reduce the risk of rare disastrous classloading in first call to
6378 +        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6379 +        Class<?> ensureLoaded = LockSupport.class;
6380 +    }
6381   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines