ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.81 by jsr166, Mon Aug 22 01:57:42 2005 UTC vs.
Revision 1.318 by jsr166, Sat Aug 10 16:48:05 2019 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.atomic.AtomicReference;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42 > import jdk.internal.misc.Unsafe;
43  
44   /**
45   * A hash table supporting full concurrency of retrievals and
46 < * adjustable expected concurrency for updates. This class obeys the
46 > * high expected concurrency for updates. This class obeys the
47   * same functional specification as {@link java.util.Hashtable}, and
48   * includes versions of methods corresponding to each method of
49 < * <tt>Hashtable</tt>. However, even though all operations are
49 > * {@code Hashtable}. However, even though all operations are
50   * thread-safe, retrieval operations do <em>not</em> entail locking,
51   * and there is <em>not</em> any support for locking the entire table
52   * in a way that prevents all access.  This class is fully
53 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
53 > * interoperable with {@code Hashtable} in programs that rely on its
54   * thread safety but not on its synchronization details.
55   *
56 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
57 < * block, so may overlap with update operations (including
58 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
59 < * of the most recently <em>completed</em> update operations holding
60 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
61 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
62 < * removal of only some entries.  Similarly, Iterators and
63 < * Enumerations return elements reflecting the state of the hash table
64 < * at some point at or since the creation of the iterator/enumeration.
65 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
56 > * <p>Retrieval operations (including {@code get}) generally do not
57 > * block, so may overlap with update operations (including {@code put}
58 > * and {@code remove}). Retrievals reflect the results of the most
59 > * recently <em>completed</em> update operations holding upon their
60 > * onset. (More formally, an update operation for a given key bears a
61 > * <em>happens-before</em> relation with any (non-null) retrieval for
62 > * that key reporting the updated value.)  For aggregate operations
63 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 > * reflect insertion or removal of only some entries.  Similarly,
65 > * Iterators, Spliterators and Enumerations return elements reflecting the
66 > * state of the hash table at some point at or since the creation of the
67 > * iterator/enumeration.  They do <em>not</em> throw {@link
68 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
69   * However, iterators are designed to be used by only one thread at a time.
70 + * Bear in mind that the results of aggregate status methods including
71 + * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 + * useful only when a map is not undergoing concurrent updates in other threads.
73 + * Otherwise the results of these methods reflect transient states
74 + * that may be adequate for monitoring or estimation purposes, but not
75 + * for program control.
76 + *
77 + * <p>The table is dynamically expanded when there are too many
78 + * collisions (i.e., keys that have distinct hash codes but fall into
79 + * the same slot modulo the table size), with the expected average
80 + * effect of maintaining roughly two bins per mapping (corresponding
81 + * to a 0.75 load factor threshold for resizing). There may be much
82 + * variance around this average as mappings are added and removed, but
83 + * overall, this maintains a commonly accepted time/space tradeoff for
84 + * hash tables.  However, resizing this or any other kind of hash
85 + * table may be a relatively slow operation. When possible, it is a
86 + * good idea to provide a size estimate as an optional {@code
87 + * initialCapacity} constructor argument. An additional optional
88 + * {@code loadFactor} constructor argument provides a further means of
89 + * customizing initial table capacity by specifying the table density
90 + * to be used in calculating the amount of space to allocate for the
91 + * given number of elements.  Also, for compatibility with previous
92 + * versions of this class, constructors may optionally specify an
93 + * expected {@code concurrencyLevel} as an additional hint for
94 + * internal sizing.  Note that using many keys with exactly the same
95 + * {@code hashCode()} is a sure way to slow down performance of any
96 + * hash table. To ameliorate impact, when keys are {@link Comparable},
97 + * this class may use comparison order among keys to help break ties.
98 + *
99 + * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 + * (using {@link #keySet(Object)} when only keys are of interest, and the
102 + * mapped values are (perhaps transiently) not used or all take the
103 + * same mapping value.
104   *
105 < * <p> The allowed concurrency among update operations is guided by
106 < * the optional <tt>concurrencyLevel</tt> constructor argument
107 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
108 < * table is internally partitioned to try to permit the indicated
109 < * number of concurrent updates without contention. Because placement
110 < * in hash tables is essentially random, the actual concurrency will
45 < * vary.  Ideally, you should choose a value to accommodate as many
46 < * threads as will ever concurrently modify the table. Using a
47 < * significantly higher value than you need can waste space and time,
48 < * and a significantly lower value can lead to thread contention. But
49 < * overestimates and underestimates within an order of magnitude do
50 < * not usually have much noticeable impact. A value of one is
51 < * appropriate when it is known that only one thread will modify and
52 < * all others will only read. Also, resizing this or any other kind of
53 < * hash table is a relatively slow operation, so, when possible, it is
54 < * a good idea to provide estimates of expected table sizes in
55 < * constructors.
105 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 > * form of histogram or multiset) by using {@link
107 > * java.util.concurrent.atomic.LongAdder} values and initializing via
108 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111   *
112   * <p>This class and its views and iterators implement all of the
113   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114   * interfaces.
115   *
116 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
117 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
116 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 > * does <em>not</em> allow {@code null} to be used as a key or value.
118 > *
119 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 > * operations that, unlike most {@link Stream} methods, are designed
121 > * to be safely, and often sensibly, applied even with maps that are
122 > * being concurrently updated by other threads; for example, when
123 > * computing a snapshot summary of the values in a shared registry.
124 > * There are three kinds of operation, each with four forms, accepting
125 > * functions with keys, values, entries, and (key, value) pairs as
126 > * arguments and/or return values. Because the elements of a
127 > * ConcurrentHashMap are not ordered in any particular way, and may be
128 > * processed in different orders in different parallel executions, the
129 > * correctness of supplied functions should not depend on any
130 > * ordering, or on any other objects or values that may transiently
131 > * change while computation is in progress; and except for forEach
132 > * actions, should ideally be side-effect-free. Bulk operations on
133 > * {@link Map.Entry} objects do not support method {@code setValue}.
134 > *
135 > * <ul>
136 > * <li>forEach: Performs a given action on each element.
137 > * A variant form applies a given transformation on each element
138 > * before performing the action.
139 > *
140 > * <li>search: Returns the first available non-null result of
141 > * applying a given function on each element; skipping further
142 > * search when a result is found.
143 > *
144 > * <li>reduce: Accumulates each element.  The supplied reduction
145 > * function cannot rely on ordering (more formally, it should be
146 > * both associative and commutative).  There are five variants:
147 > *
148 > * <ul>
149 > *
150 > * <li>Plain reductions. (There is not a form of this method for
151 > * (key, value) function arguments since there is no corresponding
152 > * return type.)
153 > *
154 > * <li>Mapped reductions that accumulate the results of a given
155 > * function applied to each element.
156 > *
157 > * <li>Reductions to scalar doubles, longs, and ints, using a
158 > * given basis value.
159 > *
160 > * </ul>
161 > * </ul>
162 > *
163 > * <p>These bulk operations accept a {@code parallelismThreshold}
164 > * argument. Methods proceed sequentially if the current map size is
165 > * estimated to be less than the given threshold. Using a value of
166 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
167 > * of {@code 1} results in maximal parallelism by partitioning into
168 > * enough subtasks to fully utilize the {@link
169 > * ForkJoinPool#commonPool()} that is used for all parallel
170 > * computations. Normally, you would initially choose one of these
171 > * extreme values, and then measure performance of using in-between
172 > * values that trade off overhead versus throughput.
173 > *
174 > * <p>The concurrency properties of bulk operations follow
175 > * from those of ConcurrentHashMap: Any non-null result returned
176 > * from {@code get(key)} and related access methods bears a
177 > * happens-before relation with the associated insertion or
178 > * update.  The result of any bulk operation reflects the
179 > * composition of these per-element relations (but is not
180 > * necessarily atomic with respect to the map as a whole unless it
181 > * is somehow known to be quiescent).  Conversely, because keys
182 > * and values in the map are never null, null serves as a reliable
183 > * atomic indicator of the current lack of any result.  To
184 > * maintain this property, null serves as an implicit basis for
185 > * all non-scalar reduction operations. For the double, long, and
186 > * int versions, the basis should be one that, when combined with
187 > * any other value, returns that other value (more formally, it
188 > * should be the identity element for the reduction). Most common
189 > * reductions have these properties; for example, computing a sum
190 > * with basis 0 or a minimum with basis MAX_VALUE.
191 > *
192 > * <p>Search and transformation functions provided as arguments
193 > * should similarly return null to indicate the lack of any result
194 > * (in which case it is not used). In the case of mapped
195 > * reductions, this also enables transformations to serve as
196 > * filters, returning null (or, in the case of primitive
197 > * specializations, the identity basis) if the element should not
198 > * be combined. You can create compound transformations and
199 > * filterings by composing them yourself under this "null means
200 > * there is nothing there now" rule before using them in search or
201 > * reduce operations.
202 > *
203 > * <p>Methods accepting and/or returning Entry arguments maintain
204 > * key-value associations. They may be useful for example when
205 > * finding the key for the greatest value. Note that "plain" Entry
206 > * arguments can be supplied using {@code new
207 > * AbstractMap.SimpleEntry(k,v)}.
208 > *
209 > * <p>Bulk operations may complete abruptly, throwing an
210 > * exception encountered in the application of a supplied
211 > * function. Bear in mind when handling such exceptions that other
212 > * concurrently executing functions could also have thrown
213 > * exceptions, or would have done so if the first exception had
214 > * not occurred.
215 > *
216 > * <p>Speedups for parallel compared to sequential forms are common
217 > * but not guaranteed.  Parallel operations involving brief functions
218 > * on small maps may execute more slowly than sequential forms if the
219 > * underlying work to parallelize the computation is more expensive
220 > * than the computation itself.  Similarly, parallelization may not
221 > * lead to much actual parallelism if all processors are busy
222 > * performing unrelated tasks.
223 > *
224 > * <p>All arguments to all task methods must be non-null.
225   *
226   * <p>This class is a member of the
227 < * <a href="{@docRoot}/../guide/collections/index.html">
227 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
228   * Java Collections Framework</a>.
229   *
230   * @since 1.5
# Line 70 | Line 232 | import java.io.ObjectOutputStream;
232   * @param <K> the type of keys maintained by this map
233   * @param <V> the type of mapped values
234   */
235 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
236 <        implements ConcurrentMap<K, V>, Serializable {
235 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 >    implements ConcurrentMap<K,V>, Serializable {
237      private static final long serialVersionUID = 7249069246763182397L;
238  
239      /*
240 <     * The basic strategy is to subdivide the table among Segments,
241 <     * each of which itself is a concurrently readable hash table.
240 >     * Overview:
241 >     *
242 >     * The primary design goal of this hash table is to maintain
243 >     * concurrent readability (typically method get(), but also
244 >     * iterators and related methods) while minimizing update
245 >     * contention. Secondary goals are to keep space consumption about
246 >     * the same or better than java.util.HashMap, and to support high
247 >     * initial insertion rates on an empty table by many threads.
248 >     *
249 >     * This map usually acts as a binned (bucketed) hash table.  Each
250 >     * key-value mapping is held in a Node.  Most nodes are instances
251 >     * of the basic Node class with hash, key, value, and next
252 >     * fields. However, various subclasses exist: TreeNodes are
253 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
254 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 >     * of bins during resizing. ReservationNodes are used as
256 >     * placeholders while establishing values in computeIfAbsent and
257 >     * related methods.  The types TreeBin, ForwardingNode, and
258 >     * ReservationNode do not hold normal user keys, values, or
259 >     * hashes, and are readily distinguishable during search etc
260 >     * because they have negative hash fields and null key and value
261 >     * fields. (These special nodes are either uncommon or transient,
262 >     * so the impact of carrying around some unused fields is
263 >     * insignificant.)
264 >     *
265 >     * The table is lazily initialized to a power-of-two size upon the
266 >     * first insertion.  Each bin in the table normally contains a
267 >     * list of Nodes (most often, the list has only zero or one Node).
268 >     * Table accesses require volatile/atomic reads, writes, and
269 >     * CASes.  Because there is no other way to arrange this without
270 >     * adding further indirections, we use intrinsics
271 >     * (jdk.internal.misc.Unsafe) operations.
272 >     *
273 >     * We use the top (sign) bit of Node hash fields for control
274 >     * purposes -- it is available anyway because of addressing
275 >     * constraints.  Nodes with negative hash fields are specially
276 >     * handled or ignored in map methods.
277 >     *
278 >     * Insertion (via put or its variants) of the first node in an
279 >     * empty bin is performed by just CASing it to the bin.  This is
280 >     * by far the most common case for put operations under most
281 >     * key/hash distributions.  Other update operations (insert,
282 >     * delete, and replace) require locks.  We do not want to waste
283 >     * the space required to associate a distinct lock object with
284 >     * each bin, so instead use the first node of a bin list itself as
285 >     * a lock. Locking support for these locks relies on builtin
286 >     * "synchronized" monitors.
287 >     *
288 >     * Using the first node of a list as a lock does not by itself
289 >     * suffice though: When a node is locked, any update must first
290 >     * validate that it is still the first node after locking it, and
291 >     * retry if not. Because new nodes are always appended to lists,
292 >     * once a node is first in a bin, it remains first until deleted
293 >     * or the bin becomes invalidated (upon resizing).
294 >     *
295 >     * The main disadvantage of per-bin locks is that other update
296 >     * operations on other nodes in a bin list protected by the same
297 >     * lock can stall, for example when user equals() or mapping
298 >     * functions take a long time.  However, statistically, under
299 >     * random hash codes, this is not a common problem.  Ideally, the
300 >     * frequency of nodes in bins follows a Poisson distribution
301 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 >     * parameter of about 0.5 on average, given the resizing threshold
303 >     * of 0.75, although with a large variance because of resizing
304 >     * granularity. Ignoring variance, the expected occurrences of
305 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 >     * first values are:
307 >     *
308 >     * 0:    0.60653066
309 >     * 1:    0.30326533
310 >     * 2:    0.07581633
311 >     * 3:    0.01263606
312 >     * 4:    0.00157952
313 >     * 5:    0.00015795
314 >     * 6:    0.00001316
315 >     * 7:    0.00000094
316 >     * 8:    0.00000006
317 >     * more: less than 1 in ten million
318 >     *
319 >     * Lock contention probability for two threads accessing distinct
320 >     * elements is roughly 1 / (8 * #elements) under random hashes.
321 >     *
322 >     * Actual hash code distributions encountered in practice
323 >     * sometimes deviate significantly from uniform randomness.  This
324 >     * includes the case when N > (1<<30), so some keys MUST collide.
325 >     * Similarly for dumb or hostile usages in which multiple keys are
326 >     * designed to have identical hash codes or ones that differs only
327 >     * in masked-out high bits. So we use a secondary strategy that
328 >     * applies when the number of nodes in a bin exceeds a
329 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
330 >     * specialized form of red-black trees), bounding search time to
331 >     * O(log N).  Each search step in a TreeBin is at least twice as
332 >     * slow as in a regular list, but given that N cannot exceed
333 >     * (1<<64) (before running out of addresses) this bounds search
334 >     * steps, lock hold times, etc, to reasonable constants (roughly
335 >     * 100 nodes inspected per operation worst case) so long as keys
336 >     * are Comparable (which is very common -- String, Long, etc).
337 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
338 >     * traversal pointers as regular nodes, so can be traversed in
339 >     * iterators in the same way.
340 >     *
341 >     * The table is resized when occupancy exceeds a percentage
342 >     * threshold (nominally, 0.75, but see below).  Any thread
343 >     * noticing an overfull bin may assist in resizing after the
344 >     * initiating thread allocates and sets up the replacement array.
345 >     * However, rather than stalling, these other threads may proceed
346 >     * with insertions etc.  The use of TreeBins shields us from the
347 >     * worst case effects of overfilling while resizes are in
348 >     * progress.  Resizing proceeds by transferring bins, one by one,
349 >     * from the table to the next table. However, threads claim small
350 >     * blocks of indices to transfer (via field transferIndex) before
351 >     * doing so, reducing contention.  A generation stamp in field
352 >     * sizeCtl ensures that resizings do not overlap. Because we are
353 >     * using power-of-two expansion, the elements from each bin must
354 >     * either stay at same index, or move with a power of two
355 >     * offset. We eliminate unnecessary node creation by catching
356 >     * cases where old nodes can be reused because their next fields
357 >     * won't change.  On average, only about one-sixth of them need
358 >     * cloning when a table doubles. The nodes they replace will be
359 >     * garbage collectible as soon as they are no longer referenced by
360 >     * any reader thread that may be in the midst of concurrently
361 >     * traversing table.  Upon transfer, the old table bin contains
362 >     * only a special forwarding node (with hash field "MOVED") that
363 >     * contains the next table as its key. On encountering a
364 >     * forwarding node, access and update operations restart, using
365 >     * the new table.
366 >     *
367 >     * Each bin transfer requires its bin lock, which can stall
368 >     * waiting for locks while resizing. However, because other
369 >     * threads can join in and help resize rather than contend for
370 >     * locks, average aggregate waits become shorter as resizing
371 >     * progresses.  The transfer operation must also ensure that all
372 >     * accessible bins in both the old and new table are usable by any
373 >     * traversal.  This is arranged in part by proceeding from the
374 >     * last bin (table.length - 1) up towards the first.  Upon seeing
375 >     * a forwarding node, traversals (see class Traverser) arrange to
376 >     * move to the new table without revisiting nodes.  To ensure that
377 >     * no intervening nodes are skipped even when moved out of order,
378 >     * a stack (see class TableStack) is created on first encounter of
379 >     * a forwarding node during a traversal, to maintain its place if
380 >     * later processing the current table. The need for these
381 >     * save/restore mechanics is relatively rare, but when one
382 >     * forwarding node is encountered, typically many more will be.
383 >     * So Traversers use a simple caching scheme to avoid creating so
384 >     * many new TableStack nodes. (Thanks to Peter Levart for
385 >     * suggesting use of a stack here.)
386 >     *
387 >     * The traversal scheme also applies to partial traversals of
388 >     * ranges of bins (via an alternate Traverser constructor)
389 >     * to support partitioned aggregate operations.  Also, read-only
390 >     * operations give up if ever forwarded to a null table, which
391 >     * provides support for shutdown-style clearing, which is also not
392 >     * currently implemented.
393 >     *
394 >     * Lazy table initialization minimizes footprint until first use,
395 >     * and also avoids resizings when the first operation is from a
396 >     * putAll, constructor with map argument, or deserialization.
397 >     * These cases attempt to override the initial capacity settings,
398 >     * but harmlessly fail to take effect in cases of races.
399 >     *
400 >     * The element count is maintained using a specialization of
401 >     * LongAdder. We need to incorporate a specialization rather than
402 >     * just use a LongAdder in order to access implicit
403 >     * contention-sensing that leads to creation of multiple
404 >     * CounterCells.  The counter mechanics avoid contention on
405 >     * updates but can encounter cache thrashing if read too
406 >     * frequently during concurrent access. To avoid reading so often,
407 >     * resizing under contention is attempted only upon adding to a
408 >     * bin already holding two or more nodes. Under uniform hash
409 >     * distributions, the probability of this occurring at threshold
410 >     * is around 13%, meaning that only about 1 in 8 puts check
411 >     * threshold (and after resizing, many fewer do so).
412 >     *
413 >     * TreeBins use a special form of comparison for search and
414 >     * related operations (which is the main reason we cannot use
415 >     * existing collections such as TreeMaps). TreeBins contain
416 >     * Comparable elements, but may contain others, as well as
417 >     * elements that are Comparable but not necessarily Comparable for
418 >     * the same T, so we cannot invoke compareTo among them. To handle
419 >     * this, the tree is ordered primarily by hash value, then by
420 >     * Comparable.compareTo order if applicable.  On lookup at a node,
421 >     * if elements are not comparable or compare as 0 then both left
422 >     * and right children may need to be searched in the case of tied
423 >     * hash values. (This corresponds to the full list search that
424 >     * would be necessary if all elements were non-Comparable and had
425 >     * tied hashes.) On insertion, to keep a total ordering (or as
426 >     * close as is required here) across rebalancings, we compare
427 >     * classes and identityHashCodes as tie-breakers. The red-black
428 >     * balancing code is updated from pre-jdk-collections
429 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 >     * Algorithms" (CLR).
432 >     *
433 >     * TreeBins also require an additional locking mechanism.  While
434 >     * list traversal is always possible by readers even during
435 >     * updates, tree traversal is not, mainly because of tree-rotations
436 >     * that may change the root node and/or its linkages.  TreeBins
437 >     * include a simple read-write lock mechanism parasitic on the
438 >     * main bin-synchronization strategy: Structural adjustments
439 >     * associated with an insertion or removal are already bin-locked
440 >     * (and so cannot conflict with other writers) but must wait for
441 >     * ongoing readers to finish. Since there can be only one such
442 >     * waiter, we use a simple scheme using a single "waiter" field to
443 >     * block writers.  However, readers need never block.  If the root
444 >     * lock is held, they proceed along the slow traversal path (via
445 >     * next-pointers) until the lock becomes available or the list is
446 >     * exhausted, whichever comes first. These cases are not fast, but
447 >     * maximize aggregate expected throughput.
448 >     *
449 >     * Maintaining API and serialization compatibility with previous
450 >     * versions of this class introduces several oddities. Mainly: We
451 >     * leave untouched but unused constructor arguments referring to
452 >     * concurrencyLevel. We accept a loadFactor constructor argument,
453 >     * but apply it only to initial table capacity (which is the only
454 >     * time that we can guarantee to honor it.) We also declare an
455 >     * unused "Segment" class that is instantiated in minimal form
456 >     * only when serializing.
457 >     *
458 >     * Also, solely for compatibility with previous versions of this
459 >     * class, it extends AbstractMap, even though all of its methods
460 >     * are overridden, so it is just useless baggage.
461 >     *
462 >     * This file is organized to make things a little easier to follow
463 >     * while reading than they might otherwise: First the main static
464 >     * declarations and utilities, then fields, then main public
465 >     * methods (with a few factorings of multiple public methods into
466 >     * internal ones), then sizing methods, trees, traversers, and
467 >     * bulk operations.
468       */
469  
470      /* ---------------- Constants -------------- */
471  
472      /**
473 <     * The default initial capacity for this table,
474 <     * used when not otherwise specified in a constructor.
473 >     * The largest possible table capacity.  This value must be
474 >     * exactly 1<<30 to stay within Java array allocation and indexing
475 >     * bounds for power of two table sizes, and is further required
476 >     * because the top two bits of 32bit hash fields are used for
477 >     * control purposes.
478       */
479 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
479 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
480  
481      /**
482 <     * The default load factor for this table, used when not
483 <     * otherwise specified in a constructor.
482 >     * The default initial table capacity.  Must be a power of 2
483 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484       */
485 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
485 >    private static final int DEFAULT_CAPACITY = 16;
486  
487      /**
488 <     * The default concurrency level for this table, used when not
489 <     * otherwise specified in a constructor.
488 >     * The largest possible (non-power of two) array size.
489 >     * Needed by toArray and related methods.
490       */
491 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
491 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492  
493      /**
494 <     * The maximum capacity, used if a higher value is implicitly
495 <     * specified by either of the constructors with arguments.  MUST
105 <     * be a power of two <= 1<<30 to ensure that entries are indexable
106 <     * using ints.
494 >     * The default concurrency level for this table. Unused but
495 >     * defined for compatibility with previous versions of this class.
496       */
497 <    static final int MAXIMUM_CAPACITY = 1 << 30;
497 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498  
499      /**
500 <     * The maximum number of segments to allow; used to bound
501 <     * constructor arguments.
500 >     * The load factor for this table. Overrides of this value in
501 >     * constructors affect only the initial table capacity.  The
502 >     * actual floating point value isn't normally used -- it is
503 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
504 >     * the associated resizing threshold.
505       */
506 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
506 >    private static final float LOAD_FACTOR = 0.75f;
507  
508      /**
509 <     * Number of unsynchronized retries in size and containsValue
510 <     * methods before resorting to locking. This is used to avoid
511 <     * unbounded retries if tables undergo continuous modification
512 <     * which would make it impossible to obtain an accurate result.
509 >     * The bin count threshold for using a tree rather than list for a
510 >     * bin.  Bins are converted to trees when adding an element to a
511 >     * bin with at least this many nodes. The value must be greater
512 >     * than 2, and should be at least 8 to mesh with assumptions in
513 >     * tree removal about conversion back to plain bins upon
514 >     * shrinkage.
515       */
516 <    static final int RETRIES_BEFORE_LOCK = 2;
123 <
124 <    /* ---------------- Fields -------------- */
516 >    static final int TREEIFY_THRESHOLD = 8;
517  
518      /**
519 <     * Mask value for indexing into segments. The upper bits of a
520 <     * key's hash code are used to choose the segment.
519 >     * The bin count threshold for untreeifying a (split) bin during a
520 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 >     * most 6 to mesh with shrinkage detection under removal.
522       */
523 <    final int segmentMask;
523 >    static final int UNTREEIFY_THRESHOLD = 6;
524  
525      /**
526 <     * Shift value for indexing within segments.
526 >     * The smallest table capacity for which bins may be treeified.
527 >     * (Otherwise the table is resized if too many nodes in a bin.)
528 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 >     * conflicts between resizing and treeification thresholds.
530       */
531 <    final int segmentShift;
531 >    static final int MIN_TREEIFY_CAPACITY = 64;
532  
533      /**
534 <     * The segments, each of which is a specialized hash table
534 >     * Minimum number of rebinnings per transfer step. Ranges are
535 >     * subdivided to allow multiple resizer threads.  This value
536 >     * serves as a lower bound to avoid resizers encountering
537 >     * excessive memory contention.  The value should be at least
538 >     * DEFAULT_CAPACITY.
539       */
540 <    final Segment<K,V>[] segments;
141 <
142 <    transient Set<K> keySet;
143 <    transient Set<Map.Entry<K,V>> entrySet;
144 <    transient Collection<V> values;
540 >    private static final int MIN_TRANSFER_STRIDE = 16;
541  
542 <    /* ---------------- Small Utilities -------------- */
542 >    /**
543 >     * The number of bits used for generation stamp in sizeCtl.
544 >     * Must be at least 6 for 32bit arrays.
545 >     */
546 >    private static final int RESIZE_STAMP_BITS = 16;
547  
548      /**
549 <     * Returns a hash code for non-null Object x.
550 <     * Uses the same hash code spreader as most other java.util hash tables.
151 <     * @param x the object serving as a key
152 <     * @return the hash code
549 >     * The maximum number of threads that can help resize.
550 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551       */
552 <    static int hash(Object x) {
155 <        int h = x.hashCode();
156 <        h += ~(h << 9);
157 <        h ^=  (h >>> 14);
158 <        h +=  (h << 4);
159 <        h ^=  (h >>> 10);
160 <        return h;
161 <    }
552 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553  
554      /**
555 <     * Returns the segment that should be used for key with given hash
165 <     * @param hash the hash code for the key
166 <     * @return the segment
555 >     * The bit shift for recording size stamp in sizeCtl.
556       */
557 <    final Segment<K,V> segmentFor(int hash) {
169 <        return segments[(hash >>> segmentShift) & segmentMask];
170 <    }
557 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558  
559 <    /* ---------------- Inner Classes -------------- */
559 >    /*
560 >     * Encodings for Node hash fields. See above for explanation.
561 >     */
562 >    static final int MOVED     = -1; // hash for forwarding nodes
563 >    static final int TREEBIN   = -2; // hash for roots of trees
564 >    static final int RESERVED  = -3; // hash for transient reservations
565 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566 >
567 >    /** Number of CPUS, to place bounds on some sizings */
568 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
569  
570      /**
571 <     * ConcurrentHashMap list entry. Note that this is never exported
572 <     * out as a user-visible Map.Entry.
573 <     *
574 <     * Because the value field is volatile, not final, it is legal wrt
575 <     * the Java Memory Model for an unsynchronized reader to see null
576 <     * instead of initial value when read via a data race.  Although a
577 <     * reordering leading to this is not likely to ever actually
578 <     * occur, the Segment.readValueUnderLock method is used as a
579 <     * backup in case a null (pre-initialized) value is ever seen in
580 <     * an unsynchronized access method.
571 >     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 >     * @serialField segments Segment[]
573 >     *   The segments, each of which is a specialized hash table.
574 >     * @serialField segmentMask int
575 >     *   Mask value for indexing into segments. The upper bits of a
576 >     *   key's hash code are used to choose the segment.
577 >     * @serialField segmentShift int
578 >     *   Shift value for indexing within segments.
579 >     */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE),
584 >    };
585 >
586 >    /* ---------------- Nodes -------------- */
587 >
588 >    /**
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595       */
596 <    static final class HashEntry<K,V> {
187 <        final K key;
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597          final int hash;
598 <        volatile V value;
599 <        final HashEntry<K,V> next;
598 >        final K key;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601  
602 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 <            this.key = key;
602 >        Node(int hash, K key, V val) {
603              this.hash = hash;
604 +            this.key = key;
605 +            this.val = val;
606 +        }
607 +
608 +        Node(int hash, K key, V val, Node<K,V> next) {
609 +            this(hash, key, val);
610              this.next = next;
196            this.value = value;
611          }
612  
613 <        @SuppressWarnings("unchecked")
614 <        static final <K,V> HashEntry<K,V>[] newArray(int i) {
615 <            return new HashEntry[i];
616 <        }
613 >        public final K getKey()     { return key; }
614 >        public final V getValue()   { return val; }
615 >        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 >        public final String toString() {
617 >            return Helpers.mapEntryToString(key, val);
618 >        }
619 >        public final V setValue(V value) {
620 >            throw new UnsupportedOperationException();
621 >        }
622 >
623 >        public final boolean equals(Object o) {
624 >            Object k, v, u; Map.Entry<?,?> e;
625 >            return ((o instanceof Map.Entry) &&
626 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 >                    (v = e.getValue()) != null &&
628 >                    (k == key || k.equals(key)) &&
629 >                    (v == (u = val) || v.equals(u)));
630 >        }
631 >
632 >        /**
633 >         * Virtualized support for map.get(); overridden in subclasses.
634 >         */
635 >        Node<K,V> find(int h, Object k) {
636 >            Node<K,V> e = this;
637 >            if (k != null) {
638 >                do {
639 >                    K ek;
640 >                    if (e.hash == h &&
641 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 >                        return e;
643 >                } while ((e = e.next) != null);
644 >            }
645 >            return null;
646 >        }
647      }
648  
649 +    /* ---------------- Static utilities -------------- */
650 +
651      /**
652 <     * Segments are specialized versions of hash tables.  This
653 <     * subclasses from ReentrantLock opportunistically, just to
654 <     * simplify some locking and avoid separate construction.
652 >     * Spreads (XORs) higher bits of hash to lower and also forces top
653 >     * bit to 0. Because the table uses power-of-two masking, sets of
654 >     * hashes that vary only in bits above the current mask will
655 >     * always collide. (Among known examples are sets of Float keys
656 >     * holding consecutive whole numbers in small tables.)  So we
657 >     * apply a transform that spreads the impact of higher bits
658 >     * downward. There is a tradeoff between speed, utility, and
659 >     * quality of bit-spreading. Because many common sets of hashes
660 >     * are already reasonably distributed (so don't benefit from
661 >     * spreading), and because we use trees to handle large sets of
662 >     * collisions in bins, we just XOR some shifted bits in the
663 >     * cheapest possible way to reduce systematic lossage, as well as
664 >     * to incorporate impact of the highest bits that would otherwise
665 >     * never be used in index calculations because of table bounds.
666       */
667 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
668 <        /*
669 <         * Segments maintain a table of entry lists that are ALWAYS
213 <         * kept in a consistent state, so can be read without locking.
214 <         * Next fields of nodes are immutable (final).  All list
215 <         * additions are performed at the front of each bin. This
216 <         * makes it easy to check changes, and also fast to traverse.
217 <         * When nodes would otherwise be changed, new nodes are
218 <         * created to replace them. This works well for hash tables
219 <         * since the bin lists tend to be short. (The average length
220 <         * is less than two for the default load factor threshold.)
221 <         *
222 <         * Read operations can thus proceed without locking, but rely
223 <         * on selected uses of volatiles to ensure that completed
224 <         * write operations performed by other threads are
225 <         * noticed. For most purposes, the "count" field, tracking the
226 <         * number of elements, serves as that volatile variable
227 <         * ensuring visibility.  This is convenient because this field
228 <         * needs to be read in many read operations anyway:
229 <         *
230 <         *   - All (unsynchronized) read operations must first read the
231 <         *     "count" field, and should not look at table entries if
232 <         *     it is 0.
233 <         *
234 <         *   - All (synchronized) write operations should write to
235 <         *     the "count" field after structurally changing any bin.
236 <         *     The operations must not take any action that could even
237 <         *     momentarily cause a concurrent read operation to see
238 <         *     inconsistent data. This is made easier by the nature of
239 <         *     the read operations in Map. For example, no operation
240 <         *     can reveal that the table has grown but the threshold
241 <         *     has not yet been updated, so there are no atomicity
242 <         *     requirements for this with respect to reads.
243 <         *
244 <         * As a guide, all critical volatile reads and writes to the
245 <         * count field are marked in code comments.
246 <         */
667 >    static final int spread(int h) {
668 >        return (h ^ (h >>> 16)) & HASH_BITS;
669 >    }
670  
671 <        private static final long serialVersionUID = 2249069246763182397L;
671 >    /**
672 >     * Returns a power of two table size for the given desired capacity.
673 >     * See Hackers Delight, sec 3.2
674 >     */
675 >    private static final int tableSizeFor(int c) {
676 >        int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678 >    }
679  
680 <        /**
681 <         * The number of elements in this segment's region.
682 <         */
683 <        transient volatile int count;
680 >    /**
681 >     * Returns x's Class if it is of the form "class C implements
682 >     * Comparable<C>", else null.
683 >     */
684 >    static Class<?> comparableClassFor(Object x) {
685 >        if (x instanceof Comparable) {
686 >            Class<?> c; Type[] ts, as; ParameterizedType p;
687 >            if ((c = x.getClass()) == String.class) // bypass checks
688 >                return c;
689 >            if ((ts = c.getGenericInterfaces()) != null) {
690 >                for (Type t : ts) {
691 >                    if ((t instanceof ParameterizedType) &&
692 >                        ((p = (ParameterizedType)t).getRawType() ==
693 >                         Comparable.class) &&
694 >                        (as = p.getActualTypeArguments()) != null &&
695 >                        as.length == 1 && as[0] == c) // type arg is c
696 >                        return c;
697 >                }
698 >            }
699 >        }
700 >        return null;
701 >    }
702  
703 <        /**
704 <         * Number of updates that alter the size of the table. This is
705 <         * used during bulk-read methods to make sure they see a
706 <         * consistent snapshot: If modCounts change during a traversal
707 <         * of segments computing size or checking containsValue, then
708 <         * we might have an inconsistent view of state so (usually)
709 <         * must retry.
710 <         */
711 <        transient int modCount;
703 >    /**
704 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 >     * class), else 0.
706 >     */
707 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 >    static int compareComparables(Class<?> kc, Object k, Object x) {
709 >        return (x == null || x.getClass() != kc ? 0 :
710 >                ((Comparable)k).compareTo(x));
711 >    }
712  
713 <        /**
266 <         * The table is rehashed when its size exceeds this threshold.
267 <         * (The value of this field is always <tt>(int)(capacity *
268 <         * loadFactor)</tt>.)
269 <         */
270 <        transient int threshold;
713 >    /* ---------------- Table element access -------------- */
714  
715 <        /**
716 <         * The per-segment table.
717 <         */
718 <        transient volatile HashEntry<K,V>[] table;
715 >    /*
716 >     * Atomic access methods are used for table elements as well as
717 >     * elements of in-progress next table while resizing.  All uses of
718 >     * the tab arguments must be null checked by callers.  All callers
719 >     * also paranoically precheck that tab's length is not zero (or an
720 >     * equivalent check), thus ensuring that any index argument taking
721 >     * the form of a hash value anded with (length - 1) is a valid
722 >     * index.  Note that, to be correct wrt arbitrary concurrency
723 >     * errors by users, these checks must operate on local variables,
724 >     * which accounts for some odd-looking inline assignments below.
725 >     * Note that calls to setTabAt always occur within locked regions,
726 >     * and so require only release ordering.
727 >     */
728 >
729 >    @SuppressWarnings("unchecked")
730 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 >        return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 >    }
733  
734 <        /**
735 <         * The load factor for the hash table.  Even though this value
736 <         * is same for all segments, it is replicated to avoid needing
737 <         * links to outer object.
281 <         * @serial
282 <         */
283 <        final float loadFactor;
734 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 >                                        Node<K,V> c, Node<K,V> v) {
736 >        return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 >    }
738  
739 <        Segment(int initialCapacity, float lf) {
740 <            loadFactor = lf;
741 <            setTable(HashEntry.<K,V>newArray(initialCapacity));
288 <        }
739 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 >        U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741 >    }
742  
743 <        @SuppressWarnings("unchecked")
291 <        static final <K,V> Segment<K,V>[] newArray(int i) {
292 <            return new Segment[i];
293 <        }
743 >    /* ---------------- Fields -------------- */
744  
745 <        /**
746 <         * Sets table to new HashEntry array.
747 <         * Call only while holding lock or in constructor.
748 <         */
749 <        void setTable(HashEntry<K,V>[] newTable) {
300 <            threshold = (int)(newTable.length * loadFactor);
301 <            table = newTable;
302 <        }
745 >    /**
746 >     * The array of bins. Lazily initialized upon first insertion.
747 >     * Size is always a power of two. Accessed directly by iterators.
748 >     */
749 >    transient volatile Node<K,V>[] table;
750  
751 <        /**
752 <         * Returns properly casted first entry of bin for given hash.
753 <         */
754 <        HashEntry<K,V> getFirst(int hash) {
308 <            HashEntry<K,V>[] tab = table;
309 <            return tab[hash & (tab.length - 1)];
310 <        }
751 >    /**
752 >     * The next table to use; non-null only while resizing.
753 >     */
754 >    private transient volatile Node<K,V>[] nextTable;
755  
756 <        /**
757 <         * Reads value field of an entry under lock. Called if value
758 <         * field ever appears to be null. This is possible only if a
759 <         * compiler happens to reorder a HashEntry initialization with
760 <         * its table assignment, which is legal under memory model
761 <         * but is not known to ever occur.
318 <         */
319 <        V readValueUnderLock(HashEntry<K,V> e) {
320 <            lock();
321 <            try {
322 <                return e.value;
323 <            } finally {
324 <                unlock();
325 <            }
326 <        }
756 >    /**
757 >     * Base counter value, used mainly when there is no contention,
758 >     * but also as a fallback during table initialization
759 >     * races. Updated via CAS.
760 >     */
761 >    private transient volatile long baseCount;
762  
763 <        /* Specialized implementations of map methods */
763 >    /**
764 >     * Table initialization and resizing control.  When negative, the
765 >     * table is being initialized or resized: -1 for initialization,
766 >     * else -(1 + the number of active resizing threads).  Otherwise,
767 >     * when table is null, holds the initial table size to use upon
768 >     * creation, or 0 for default. After initialization, holds the
769 >     * next element count value upon which to resize the table.
770 >     */
771 >    private transient volatile int sizeCtl;
772  
773 <        V get(Object key, int hash) {
774 <            if (count != 0) { // read-volatile
775 <                HashEntry<K,V> e = getFirst(hash);
776 <                while (e != null) {
334 <                    if (e.hash == hash && key.equals(e.key)) {
335 <                        V v = e.value;
336 <                        if (v != null)
337 <                            return v;
338 <                        return readValueUnderLock(e); // recheck
339 <                    }
340 <                    e = e.next;
341 <                }
342 <            }
343 <            return null;
344 <        }
773 >    /**
774 >     * The next table index (plus one) to split while resizing.
775 >     */
776 >    private transient volatile int transferIndex;
777  
778 <        boolean containsKey(Object key, int hash) {
779 <            if (count != 0) { // read-volatile
780 <                HashEntry<K,V> e = getFirst(hash);
781 <                while (e != null) {
350 <                    if (e.hash == hash && key.equals(e.key))
351 <                        return true;
352 <                    e = e.next;
353 <                }
354 <            }
355 <            return false;
356 <        }
778 >    /**
779 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 >     */
781 >    private transient volatile int cellsBusy;
782  
783 <        boolean containsValue(Object value) {
784 <            if (count != 0) { // read-volatile
785 <                HashEntry<K,V>[] tab = table;
786 <                int len = tab.length;
362 <                for (int i = 0 ; i < len; i++) {
363 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
364 <                        V v = e.value;
365 <                        if (v == null) // recheck
366 <                            v = readValueUnderLock(e);
367 <                        if (value.equals(v))
368 <                            return true;
369 <                    }
370 <                }
371 <            }
372 <            return false;
373 <        }
783 >    /**
784 >     * Table of counter cells. When non-null, size is a power of 2.
785 >     */
786 >    private transient volatile CounterCell[] counterCells;
787  
788 <        boolean replace(K key, int hash, V oldValue, V newValue) {
789 <            lock();
790 <            try {
791 <                HashEntry<K,V> e = getFirst(hash);
792 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
793 <                    e = e.next;
794 <
795 <                boolean replaced = false;
796 <                if (e != null && oldValue.equals(e.value)) {
797 <                    replaced = true;
798 <                    e.value = newValue;
799 <                }
800 <                return replaced;
801 <            } finally {
802 <                unlock();
788 >    // views
789 >    private transient KeySetView<K,V> keySet;
790 >    private transient ValuesView<K,V> values;
791 >    private transient EntrySetView<K,V> entrySet;
792 >
793 >
794 >    /* ---------------- Public operations -------------- */
795 >
796 >    /**
797 >     * Creates a new, empty map with the default initial table size (16).
798 >     */
799 >    public ConcurrentHashMap() {
800 >    }
801 >
802 >    /**
803 >     * Creates a new, empty map with an initial table size
804 >     * accommodating the specified number of elements without the need
805 >     * to dynamically resize.
806 >     *
807 >     * @param initialCapacity The implementation performs internal
808 >     * sizing to accommodate this many elements.
809 >     * @throws IllegalArgumentException if the initial capacity of
810 >     * elements is negative
811 >     */
812 >    public ConcurrentHashMap(int initialCapacity) {
813 >        this(initialCapacity, LOAD_FACTOR, 1);
814 >    }
815 >
816 >    /**
817 >     * Creates a new map with the same mappings as the given map.
818 >     *
819 >     * @param m the map
820 >     */
821 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 >        this.sizeCtl = DEFAULT_CAPACITY;
823 >        putAll(m);
824 >    }
825 >
826 >    /**
827 >     * Creates a new, empty map with an initial table size based on
828 >     * the given number of elements ({@code initialCapacity}) and
829 >     * initial table density ({@code loadFactor}).
830 >     *
831 >     * @param initialCapacity the initial capacity. The implementation
832 >     * performs internal sizing to accommodate this many elements,
833 >     * given the specified load factor.
834 >     * @param loadFactor the load factor (table density) for
835 >     * establishing the initial table size
836 >     * @throws IllegalArgumentException if the initial capacity of
837 >     * elements is negative or the load factor is nonpositive
838 >     *
839 >     * @since 1.6
840 >     */
841 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 >        this(initialCapacity, loadFactor, 1);
843 >    }
844 >
845 >    /**
846 >     * Creates a new, empty map with an initial table size based on
847 >     * the given number of elements ({@code initialCapacity}), initial
848 >     * table density ({@code loadFactor}), and number of concurrently
849 >     * updating threads ({@code concurrencyLevel}).
850 >     *
851 >     * @param initialCapacity the initial capacity. The implementation
852 >     * performs internal sizing to accommodate this many elements,
853 >     * given the specified load factor.
854 >     * @param loadFactor the load factor (table density) for
855 >     * establishing the initial table size
856 >     * @param concurrencyLevel the estimated number of concurrently
857 >     * updating threads. The implementation may use this value as
858 >     * a sizing hint.
859 >     * @throws IllegalArgumentException if the initial capacity is
860 >     * negative or the load factor or concurrencyLevel are
861 >     * nonpositive
862 >     */
863 >    public ConcurrentHashMap(int initialCapacity,
864 >                             float loadFactor, int concurrencyLevel) {
865 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 >            throw new IllegalArgumentException();
867 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
868 >            initialCapacity = concurrencyLevel;   // as estimated threads
869 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 >        this.sizeCtl = cap;
873 >    }
874 >
875 >    // Original (since JDK1.2) Map methods
876 >
877 >    /**
878 >     * {@inheritDoc}
879 >     */
880 >    public int size() {
881 >        long n = sumCount();
882 >        return ((n < 0L) ? 0 :
883 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 >                (int)n);
885 >    }
886 >
887 >    /**
888 >     * {@inheritDoc}
889 >     */
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892 >    }
893 >
894 >    /**
895 >     * Returns the value to which the specified key is mapped,
896 >     * or {@code null} if this map contains no mapping for the key.
897 >     *
898 >     * <p>More formally, if this map contains a mapping from a key
899 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 >     * then this method returns {@code v}; otherwise it returns
901 >     * {@code null}.  (There can be at most one such mapping.)
902 >     *
903 >     * @throws NullPointerException if the specified key is null
904 >     */
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920              }
921          }
922 +        return null;
923 +    }
924  
925 <        V replace(K key, int hash, V newValue) {
926 <            lock();
927 <            try {
928 <                HashEntry<K,V> e = getFirst(hash);
929 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
930 <                    e = e.next;
931 <
932 <                V oldValue = null;
933 <                if (e != null) {
934 <                    oldValue = e.value;
935 <                    e.value = newValue;
936 <                }
937 <                return oldValue;
938 <            } finally {
939 <                unlock();
925 >    /**
926 >     * Tests if the specified object is a key in this table.
927 >     *
928 >     * @param  key possible key
929 >     * @return {@code true} if and only if the specified object
930 >     *         is a key in this table, as determined by the
931 >     *         {@code equals} method; {@code false} otherwise
932 >     * @throws NullPointerException if the specified key is null
933 >     */
934 >    public boolean containsKey(Object key) {
935 >        return get(key) != null;
936 >    }
937 >
938 >    /**
939 >     * Returns {@code true} if this map maps one or more keys to the
940 >     * specified value. Note: This method may require a full traversal
941 >     * of the map, and is much slower than method {@code containsKey}.
942 >     *
943 >     * @param value value whose presence in this map is to be tested
944 >     * @return {@code true} if this map maps one or more keys to the
945 >     *         specified value
946 >     * @throws NullPointerException if the specified value is null
947 >     */
948 >    public boolean containsValue(Object value) {
949 >        if (value == null)
950 >            throw new NullPointerException();
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958              }
959          }
960 +        return false;
961 +    }
962  
963 +    /**
964 +     * Maps the specified key to the specified value in this table.
965 +     * Neither the key nor the value can be null.
966 +     *
967 +     * <p>The value can be retrieved by calling the {@code get} method
968 +     * with a key that is equal to the original key.
969 +     *
970 +     * @param key key with which the specified value is to be associated
971 +     * @param value value to be associated with the specified key
972 +     * @return the previous value associated with {@code key}, or
973 +     *         {@code null} if there was no mapping for {@code key}
974 +     * @throws NullPointerException if the specified key or value is null
975 +     */
976 +    public V put(K key, V value) {
977 +        return putVal(key, value, false);
978 +    }
979  
980 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
981 <            lock();
982 <            try {
983 <                int c = count;
984 <                if (c++ > threshold) // ensure capacity
985 <                    rehash();
986 <                HashEntry<K,V>[] tab = table;
987 <                int index = hash & (tab.length - 1);
988 <                HashEntry<K,V> first = tab[index];
989 <                HashEntry<K,V> e = first;
990 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
991 <                    e = e.next;
992 <
993 <                V oldValue;
994 <                if (e != null) {
995 <                    oldValue = e.value;
996 <                    if (!onlyIfAbsent)
997 <                        e.value = value;
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh; K fk; V fv;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 >                    break;                   // no lock when adding to empty bin
992 >            }
993 >            else if ((fh = f.hash) == MOVED)
994 >                tab = helpTransfer(tab, f);
995 >            else if (onlyIfAbsent // check first node without acquiring lock
996 >                     && fh == hash
997 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998 >                     && (fv = f.val) != null)
999 >                return fv;
1000 >            else {
1001 >                V oldVal = null;
1002 >                synchronized (f) {
1003 >                    if (tabAt(tab, i) == f) {
1004 >                        if (fh >= 0) {
1005 >                            binCount = 1;
1006 >                            for (Node<K,V> e = f;; ++binCount) {
1007 >                                K ek;
1008 >                                if (e.hash == hash &&
1009 >                                    ((ek = e.key) == key ||
1010 >                                     (ek != null && key.equals(ek)))) {
1011 >                                    oldVal = e.val;
1012 >                                    if (!onlyIfAbsent)
1013 >                                        e.val = value;
1014 >                                    break;
1015 >                                }
1016 >                                Node<K,V> pred = e;
1017 >                                if ((e = e.next) == null) {
1018 >                                    pred.next = new Node<K,V>(hash, key, value);
1019 >                                    break;
1020 >                                }
1021 >                            }
1022 >                        }
1023 >                        else if (f instanceof TreeBin) {
1024 >                            Node<K,V> p;
1025 >                            binCount = 2;
1026 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027 >                                                           value)) != null) {
1028 >                                oldVal = p.val;
1029 >                                if (!onlyIfAbsent)
1030 >                                    p.val = value;
1031 >                            }
1032 >                        }
1033 >                        else if (f instanceof ReservationNode)
1034 >                            throw new IllegalStateException("Recursive update");
1035 >                    }
1036                  }
1037 <                else {
1038 <                    oldValue = null;
1039 <                    ++modCount;
1040 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
1041 <                    count = c; // write-volatile
1037 >                if (binCount != 0) {
1038 >                    if (binCount >= TREEIFY_THRESHOLD)
1039 >                        treeifyBin(tab, i);
1040 >                    if (oldVal != null)
1041 >                        return oldVal;
1042 >                    break;
1043                  }
437                return oldValue;
438            } finally {
439                unlock();
1044              }
1045          }
1046 +        addCount(1L, binCount);
1047 +        return null;
1048 +    }
1049  
1050 <        void rehash() {
1051 <            HashEntry<K,V>[] oldTable = table;
1052 <            int oldCapacity = oldTable.length;
1053 <            if (oldCapacity >= MAXIMUM_CAPACITY)
1054 <                return;
1050 >    /**
1051 >     * Copies all of the mappings from the specified map to this one.
1052 >     * These mappings replace any mappings that this map had for any of the
1053 >     * keys currently in the specified map.
1054 >     *
1055 >     * @param m mappings to be stored in this map
1056 >     */
1057 >    public void putAll(Map<? extends K, ? extends V> m) {
1058 >        tryPresize(m.size());
1059 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060 >            putVal(e.getKey(), e.getValue(), false);
1061 >    }
1062  
1063 <            /*
1064 <             * Reclassify nodes in each list to new Map.  Because we are
1065 <             * using power-of-two expansion, the elements from each bin
1066 <             * must either stay at same index, or move with a power of two
1067 <             * offset. We eliminate unnecessary node creation by catching
1068 <             * cases where old nodes can be reused because their next
1069 <             * fields won't change. Statistically, at the default
1070 <             * threshold, only about one-sixth of them need cloning when
1071 <             * a table doubles. The nodes they replace will be garbage
1072 <             * collectable as soon as they are no longer referenced by any
1073 <             * reader thread that may be in the midst of traversing table
1074 <             * right now.
461 <             */
462 <
463 <            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
464 <            threshold = (int)(newTable.length * loadFactor);
465 <            int sizeMask = newTable.length - 1;
466 <            for (int i = 0; i < oldCapacity ; i++) {
467 <                // We need to guarantee that any existing reads of old Map can
468 <                //  proceed. So we cannot yet null out each bin.
469 <                HashEntry<K,V> e = oldTable[i];
470 <
471 <                if (e != null) {
472 <                    HashEntry<K,V> next = e.next;
473 <                    int idx = e.hash & sizeMask;
474 <
475 <                    //  Single node on list
476 <                    if (next == null)
477 <                        newTable[idx] = e;
1063 >    /**
1064 >     * Removes the key (and its corresponding value) from this map.
1065 >     * This method does nothing if the key is not in the map.
1066 >     *
1067 >     * @param  key the key that needs to be removed
1068 >     * @return the previous value associated with {@code key}, or
1069 >     *         {@code null} if there was no mapping for {@code key}
1070 >     * @throws NullPointerException if the specified key is null
1071 >     */
1072 >    public V remove(Object key) {
1073 >        return replaceNode(key, null, null);
1074 >    }
1075  
1076 <                    else {
1077 <                        // Reuse trailing consecutive sequence at same slot
1078 <                        HashEntry<K,V> lastRun = e;
1079 <                        int lastIdx = idx;
1080 <                        for (HashEntry<K,V> last = next;
1081 <                             last != null;
1082 <                             last = last.next) {
1083 <                            int k = last.hash & sizeMask;
1084 <                            if (k != lastIdx) {
1085 <                                lastIdx = k;
1086 <                                lastRun = last;
1076 >    /**
1077 >     * Implementation for the four public remove/replace methods:
1078 >     * Replaces node value with v, conditional upon match of cv if
1079 >     * non-null.  If resulting value is null, delete.
1080 >     */
1081 >    final V replaceNode(Object key, V value, Object cv) {
1082 >        int hash = spread(key.hashCode());
1083 >        for (Node<K,V>[] tab = table;;) {
1084 >            Node<K,V> f; int n, i, fh;
1085 >            if (tab == null || (n = tab.length) == 0 ||
1086 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087 >                break;
1088 >            else if ((fh = f.hash) == MOVED)
1089 >                tab = helpTransfer(tab, f);
1090 >            else {
1091 >                V oldVal = null;
1092 >                boolean validated = false;
1093 >                synchronized (f) {
1094 >                    if (tabAt(tab, i) == f) {
1095 >                        if (fh >= 0) {
1096 >                            validated = true;
1097 >                            for (Node<K,V> e = f, pred = null;;) {
1098 >                                K ek;
1099 >                                if (e.hash == hash &&
1100 >                                    ((ek = e.key) == key ||
1101 >                                     (ek != null && key.equals(ek)))) {
1102 >                                    V ev = e.val;
1103 >                                    if (cv == null || cv == ev ||
1104 >                                        (ev != null && cv.equals(ev))) {
1105 >                                        oldVal = ev;
1106 >                                        if (value != null)
1107 >                                            e.val = value;
1108 >                                        else if (pred != null)
1109 >                                            pred.next = e.next;
1110 >                                        else
1111 >                                            setTabAt(tab, i, e.next);
1112 >                                    }
1113 >                                    break;
1114 >                                }
1115 >                                pred = e;
1116 >                                if ((e = e.next) == null)
1117 >                                    break;
1118                              }
1119                          }
1120 <                        newTable[lastIdx] = lastRun;
1121 <
1122 <                        // Clone all remaining nodes
1123 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1124 <                            int k = p.hash & sizeMask;
1125 <                            HashEntry<K,V> n = newTable[k];
1126 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
1127 <                                                             n, p.value);
1120 >                        else if (f instanceof TreeBin) {
1121 >                            validated = true;
1122 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1123 >                            TreeNode<K,V> r, p;
1124 >                            if ((r = t.root) != null &&
1125 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1126 >                                V pv = p.val;
1127 >                                if (cv == null || cv == pv ||
1128 >                                    (pv != null && cv.equals(pv))) {
1129 >                                    oldVal = pv;
1130 >                                    if (value != null)
1131 >                                        p.val = value;
1132 >                                    else if (t.removeTreeNode(p))
1133 >                                        setTabAt(tab, i, untreeify(t.first));
1134 >                                }
1135 >                            }
1136                          }
1137 +                        else if (f instanceof ReservationNode)
1138 +                            throw new IllegalStateException("Recursive update");
1139                      }
1140                  }
1141 <            }
1142 <            table = newTable;
1143 <        }
1144 <
1145 <        /**
508 <         * Remove; match on key only if value null, else match both.
509 <         */
510 <        V remove(Object key, int hash, Object value) {
511 <            lock();
512 <            try {
513 <                int c = count - 1;
514 <                HashEntry<K,V>[] tab = table;
515 <                int index = hash & (tab.length - 1);
516 <                HashEntry<K,V> first = tab[index];
517 <                HashEntry<K,V> e = first;
518 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
519 <                    e = e.next;
520 <
521 <                V oldValue = null;
522 <                if (e != null) {
523 <                    V v = e.value;
524 <                    if (value == null || value.equals(v)) {
525 <                        oldValue = v;
526 <                        // All entries following removed node can stay
527 <                        // in list, but all preceding ones need to be
528 <                        // cloned.
529 <                        ++modCount;
530 <                        HashEntry<K,V> newFirst = e.next;
531 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
532 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,
533 <                                                          newFirst, p.value);
534 <                        tab[index] = newFirst;
535 <                        count = c; // write-volatile
1141 >                if (validated) {
1142 >                    if (oldVal != null) {
1143 >                        if (value == null)
1144 >                            addCount(-1L, -1);
1145 >                        return oldVal;
1146                      }
1147 +                    break;
1148                  }
538                return oldValue;
539            } finally {
540                unlock();
1149              }
1150          }
1151 +        return null;
1152 +    }
1153  
1154 <        void clear() {
1155 <            if (count != 0) {
1156 <                lock();
1157 <                try {
1158 <                    HashEntry<K,V>[] tab = table;
1159 <                    for (int i = 0; i < tab.length ; i++)
1160 <                        tab[i] = null;
1161 <                    ++modCount;
1162 <                    count = 0; // write-volatile
1163 <                } finally {
1164 <                    unlock();
1154 >    /**
1155 >     * Removes all of the mappings from this map.
1156 >     */
1157 >    public void clear() {
1158 >        long delta = 0L; // negative number of deletions
1159 >        int i = 0;
1160 >        Node<K,V>[] tab = table;
1161 >        while (tab != null && i < tab.length) {
1162 >            int fh;
1163 >            Node<K,V> f = tabAt(tab, i);
1164 >            if (f == null)
1165 >                ++i;
1166 >            else if ((fh = f.hash) == MOVED) {
1167 >                tab = helpTransfer(tab, f);
1168 >                i = 0; // restart
1169 >            }
1170 >            else {
1171 >                synchronized (f) {
1172 >                    if (tabAt(tab, i) == f) {
1173 >                        Node<K,V> p = (fh >= 0 ? f :
1174 >                                       (f instanceof TreeBin) ?
1175 >                                       ((TreeBin<K,V>)f).first : null);
1176 >                        while (p != null) {
1177 >                            --delta;
1178 >                            p = p.next;
1179 >                        }
1180 >                        setTabAt(tab, i++, null);
1181 >                    }
1182                  }
1183              }
1184          }
1185 +        if (delta != 0L)
1186 +            addCount(delta, -1);
1187 +    }
1188 +
1189 +    /**
1190 +     * Returns a {@link Set} view of the keys contained in this map.
1191 +     * The set is backed by the map, so changes to the map are
1192 +     * reflected in the set, and vice-versa. The set supports element
1193 +     * removal, which removes the corresponding mapping from this map,
1194 +     * via the {@code Iterator.remove}, {@code Set.remove},
1195 +     * {@code removeAll}, {@code retainAll}, and {@code clear}
1196 +     * operations.  It does not support the {@code add} or
1197 +     * {@code addAll} operations.
1198 +     *
1199 +     * <p>The view's iterators and spliterators are
1200 +     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 +     *
1202 +     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203 +     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204 +     *
1205 +     * @return the set view
1206 +     */
1207 +    public KeySetView<K,V> keySet() {
1208 +        KeySetView<K,V> ks;
1209 +        if ((ks = keySet) != null) return ks;
1210 +        return keySet = new KeySetView<K,V>(this, null);
1211 +    }
1212 +
1213 +    /**
1214 +     * Returns a {@link Collection} view of the values contained in this map.
1215 +     * The collection is backed by the map, so changes to the map are
1216 +     * reflected in the collection, and vice-versa.  The collection
1217 +     * supports element removal, which removes the corresponding
1218 +     * mapping from this map, via the {@code Iterator.remove},
1219 +     * {@code Collection.remove}, {@code removeAll},
1220 +     * {@code retainAll}, and {@code clear} operations.  It does not
1221 +     * support the {@code add} or {@code addAll} operations.
1222 +     *
1223 +     * <p>The view's iterators and spliterators are
1224 +     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 +     *
1226 +     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227 +     * and {@link Spliterator#NONNULL}.
1228 +     *
1229 +     * @return the collection view
1230 +     */
1231 +    public Collection<V> values() {
1232 +        ValuesView<K,V> vs;
1233 +        if ((vs = values) != null) return vs;
1234 +        return values = new ValuesView<K,V>(this);
1235      }
1236  
1237 +    /**
1238 +     * Returns a {@link Set} view of the mappings contained in this map.
1239 +     * The set is backed by the map, so changes to the map are
1240 +     * reflected in the set, and vice-versa.  The set supports element
1241 +     * removal, which removes the corresponding mapping from the map,
1242 +     * via the {@code Iterator.remove}, {@code Set.remove},
1243 +     * {@code removeAll}, {@code retainAll}, and {@code clear}
1244 +     * operations.
1245 +     *
1246 +     * <p>The view's iterators and spliterators are
1247 +     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 +     *
1249 +     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250 +     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251 +     *
1252 +     * @return the set view
1253 +     */
1254 +    public Set<Map.Entry<K,V>> entrySet() {
1255 +        EntrySetView<K,V> es;
1256 +        if ((es = entrySet) != null) return es;
1257 +        return entrySet = new EntrySetView<K,V>(this);
1258 +    }
1259  
1260 +    /**
1261 +     * Returns the hash code value for this {@link Map}, i.e.,
1262 +     * the sum of, for each key-value pair in the map,
1263 +     * {@code key.hashCode() ^ value.hashCode()}.
1264 +     *
1265 +     * @return the hash code value for this map
1266 +     */
1267 +    public int hashCode() {
1268 +        int h = 0;
1269 +        Node<K,V>[] t;
1270 +        if ((t = table) != null) {
1271 +            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 +            for (Node<K,V> p; (p = it.advance()) != null; )
1273 +                h += p.key.hashCode() ^ p.val.hashCode();
1274 +        }
1275 +        return h;
1276 +    }
1277  
1278 <    /* ---------------- Public operations -------------- */
1278 >    /**
1279 >     * Returns a string representation of this map.  The string
1280 >     * representation consists of a list of key-value mappings (in no
1281 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1282 >     * mappings are separated by the characters {@code ", "} (comma
1283 >     * and space).  Each key-value mapping is rendered as the key
1284 >     * followed by an equals sign ("{@code =}") followed by the
1285 >     * associated value.
1286 >     *
1287 >     * @return a string representation of this map
1288 >     */
1289 >    public String toString() {
1290 >        Node<K,V>[] t;
1291 >        int f = (t = table) == null ? 0 : t.length;
1292 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 >        StringBuilder sb = new StringBuilder();
1294 >        sb.append('{');
1295 >        Node<K,V> p;
1296 >        if ((p = it.advance()) != null) {
1297 >            for (;;) {
1298 >                K k = p.key;
1299 >                V v = p.val;
1300 >                sb.append(k == this ? "(this Map)" : k);
1301 >                sb.append('=');
1302 >                sb.append(v == this ? "(this Map)" : v);
1303 >                if ((p = it.advance()) == null)
1304 >                    break;
1305 >                sb.append(',').append(' ');
1306 >            }
1307 >        }
1308 >        return sb.append('}').toString();
1309 >    }
1310  
1311      /**
1312 <     * Creates a new, empty map with the specified initial
1313 <     * capacity, load factor and concurrency level.
1312 >     * Compares the specified object with this map for equality.
1313 >     * Returns {@code true} if the given object is a map with the same
1314 >     * mappings as this map.  This operation may return misleading
1315 >     * results if either map is concurrently modified during execution
1316 >     * of this method.
1317       *
1318 <     * @param initialCapacity the initial capacity. The implementation
1319 <     * performs internal sizing to accommodate this many elements.
570 <     * @param loadFactor  the load factor threshold, used to control resizing.
571 <     * Resizing may be performed when the average number of elements per
572 <     * bin exceeds this threshold.
573 <     * @param concurrencyLevel the estimated number of concurrently
574 <     * updating threads. The implementation performs internal sizing
575 <     * to try to accommodate this many threads.
576 <     * @throws IllegalArgumentException if the initial capacity is
577 <     * negative or the load factor or concurrencyLevel are
578 <     * nonpositive.
1318 >     * @param o object to be compared for equality with this map
1319 >     * @return {@code true} if the specified object is equal to this map
1320       */
1321 <    public ConcurrentHashMap(int initialCapacity,
1322 <                             float loadFactor, int concurrencyLevel) {
1323 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
1324 <            throw new IllegalArgumentException();
1321 >    public boolean equals(Object o) {
1322 >        if (o != this) {
1323 >            if (!(o instanceof Map))
1324 >                return false;
1325 >            Map<?,?> m = (Map<?,?>) o;
1326 >            Node<K,V>[] t;
1327 >            int f = (t = table) == null ? 0 : t.length;
1328 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 >                V val = p.val;
1331 >                Object v = m.get(p.key);
1332 >                if (v == null || (v != val && !v.equals(val)))
1333 >                    return false;
1334 >            }
1335 >            for (Map.Entry<?,?> e : m.entrySet()) {
1336 >                Object mk, mv, v;
1337 >                if ((mk = e.getKey()) == null ||
1338 >                    (mv = e.getValue()) == null ||
1339 >                    (v = get(mk)) == null ||
1340 >                    (mv != v && !mv.equals(v)))
1341 >                    return false;
1342 >            }
1343 >        }
1344 >        return true;
1345 >    }
1346  
1347 <        if (concurrencyLevel > MAX_SEGMENTS)
1348 <            concurrencyLevel = MAX_SEGMENTS;
1347 >    /**
1348 >     * Stripped-down version of helper class used in previous version,
1349 >     * declared for the sake of serialization compatibility.
1350 >     */
1351 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 >        private static final long serialVersionUID = 2249069246763182397L;
1353 >        final float loadFactor;
1354 >        Segment(float lf) { this.loadFactor = lf; }
1355 >    }
1356  
1357 <        // Find power-of-two sizes best matching arguments
1357 >    /**
1358 >     * Saves this map to a stream (that is, serializes it).
1359 >     *
1360 >     * @param s the stream
1361 >     * @throws java.io.IOException if an I/O error occurs
1362 >     * @serialData
1363 >     * the serialized fields, followed by the key (Object) and value
1364 >     * (Object) for each key-value mapping, followed by a null pair.
1365 >     * The key-value mappings are emitted in no particular order.
1366 >     */
1367 >    private void writeObject(java.io.ObjectOutputStream s)
1368 >        throws java.io.IOException {
1369 >        // For serialization compatibility
1370 >        // Emulate segment calculation from previous version of this class
1371          int sshift = 0;
1372          int ssize = 1;
1373 <        while (ssize < concurrencyLevel) {
1373 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374              ++sshift;
1375              ssize <<= 1;
1376          }
1377 <        segmentShift = 32 - sshift;
1378 <        segmentMask = ssize - 1;
1379 <        this.segments = Segment.newArray(ssize);
1380 <
1381 <        if (initialCapacity > MAXIMUM_CAPACITY)
1382 <            initialCapacity = MAXIMUM_CAPACITY;
1383 <        int c = initialCapacity / ssize;
1384 <        if (c * ssize < initialCapacity)
1385 <            ++c;
1386 <        int cap = 1;
1387 <        while (cap < c)
1388 <            cap <<= 1;
1377 >        int segmentShift = 32 - sshift;
1378 >        int segmentMask = ssize - 1;
1379 >        @SuppressWarnings("unchecked")
1380 >        Segment<K,V>[] segments = (Segment<K,V>[])
1381 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382 >        for (int i = 0; i < segments.length; ++i)
1383 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385 >        streamFields.put("segments", segments);
1386 >        streamFields.put("segmentShift", segmentShift);
1387 >        streamFields.put("segmentMask", segmentMask);
1388 >        s.writeFields();
1389 >
1390 >        Node<K,V>[] t;
1391 >        if ((t = table) != null) {
1392 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1394 >                s.writeObject(p.key);
1395 >                s.writeObject(p.val);
1396 >            }
1397 >        }
1398 >        s.writeObject(null);
1399 >        s.writeObject(null);
1400 >    }
1401  
1402 <        for (int i = 0; i < this.segments.length; ++i)
1403 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
1402 >    /**
1403 >     * Reconstitutes this map from a stream (that is, deserializes it).
1404 >     * @param s the stream
1405 >     * @throws ClassNotFoundException if the class of a serialized object
1406 >     *         could not be found
1407 >     * @throws java.io.IOException if an I/O error occurs
1408 >     */
1409 >    private void readObject(java.io.ObjectInputStream s)
1410 >        throws java.io.IOException, ClassNotFoundException {
1411 >        /*
1412 >         * To improve performance in typical cases, we create nodes
1413 >         * while reading, then place in table once size is known.
1414 >         * However, we must also validate uniqueness and deal with
1415 >         * overpopulated bins while doing so, which requires
1416 >         * specialized versions of putVal mechanics.
1417 >         */
1418 >        sizeCtl = -1; // force exclusion for table construction
1419 >        s.defaultReadObject();
1420 >        long size = 0L;
1421 >        Node<K,V> p = null;
1422 >        for (;;) {
1423 >            @SuppressWarnings("unchecked")
1424 >            K k = (K) s.readObject();
1425 >            @SuppressWarnings("unchecked")
1426 >            V v = (V) s.readObject();
1427 >            if (k != null && v != null) {
1428 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429 >                ++size;
1430 >            }
1431 >            else
1432 >                break;
1433 >        }
1434 >        if (size == 0L)
1435 >            sizeCtl = 0;
1436 >        else {
1437 >            long ts = (long)(1.0 + size / LOAD_FACTOR);
1438 >            int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439 >                MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 >            @SuppressWarnings("unchecked")
1441 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 >            int mask = n - 1;
1443 >            long added = 0L;
1444 >            while (p != null) {
1445 >                boolean insertAtFront;
1446 >                Node<K,V> next = p.next, first;
1447 >                int h = p.hash, j = h & mask;
1448 >                if ((first = tabAt(tab, j)) == null)
1449 >                    insertAtFront = true;
1450 >                else {
1451 >                    K k = p.key;
1452 >                    if (first.hash < 0) {
1453 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1454 >                        if (t.putTreeVal(h, k, p.val) == null)
1455 >                            ++added;
1456 >                        insertAtFront = false;
1457 >                    }
1458 >                    else {
1459 >                        int binCount = 0;
1460 >                        insertAtFront = true;
1461 >                        Node<K,V> q; K qk;
1462 >                        for (q = first; q != null; q = q.next) {
1463 >                            if (q.hash == h &&
1464 >                                ((qk = q.key) == k ||
1465 >                                 (qk != null && k.equals(qk)))) {
1466 >                                insertAtFront = false;
1467 >                                break;
1468 >                            }
1469 >                            ++binCount;
1470 >                        }
1471 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472 >                            insertAtFront = false;
1473 >                            ++added;
1474 >                            p.next = first;
1475 >                            TreeNode<K,V> hd = null, tl = null;
1476 >                            for (q = p; q != null; q = q.next) {
1477 >                                TreeNode<K,V> t = new TreeNode<K,V>
1478 >                                    (q.hash, q.key, q.val, null, null);
1479 >                                if ((t.prev = tl) == null)
1480 >                                    hd = t;
1481 >                                else
1482 >                                    tl.next = t;
1483 >                                tl = t;
1484 >                            }
1485 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 >                        }
1487 >                    }
1488 >                }
1489 >                if (insertAtFront) {
1490 >                    ++added;
1491 >                    p.next = first;
1492 >                    setTabAt(tab, j, p);
1493 >                }
1494 >                p = next;
1495 >            }
1496 >            table = tab;
1497 >            sizeCtl = n - (n >>> 2);
1498 >            baseCount = added;
1499 >        }
1500      }
1501  
1502 +    // ConcurrentMap methods
1503 +
1504      /**
1505 <     * Creates a new, empty map with the specified initial capacity
614 <     * and load factor and with the default concurrencyLevel (16).
615 <     *
616 <     * @param initialCapacity The implementation performs internal
617 <     * sizing to accommodate this many elements.
618 <     * @param loadFactor  the load factor threshold, used to control resizing.
619 <     * Resizing may be performed when the average number of elements per
620 <     * bin exceeds this threshold.
621 <     * @throws IllegalArgumentException if the initial capacity of
622 <     * elements is negative or the load factor is nonpositive
1505 >     * {@inheritDoc}
1506       *
1507 <     * @since 1.6
1507 >     * @return the previous value associated with the specified key,
1508 >     *         or {@code null} if there was no mapping for the key
1509 >     * @throws NullPointerException if the specified key or value is null
1510       */
1511 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
1512 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
1511 >    public V putIfAbsent(K key, V value) {
1512 >        return putVal(key, value, true);
1513      }
1514  
1515      /**
1516 <     * Creates a new, empty map with the specified initial capacity,
632 <     * and with default load factor (0.75) and concurrencyLevel (16).
1516 >     * {@inheritDoc}
1517       *
1518 <     * @param initialCapacity the initial capacity. The implementation
635 <     * performs internal sizing to accommodate this many elements.
636 <     * @throws IllegalArgumentException if the initial capacity of
637 <     * elements is negative.
1518 >     * @throws NullPointerException if the specified key is null
1519       */
1520 <    public ConcurrentHashMap(int initialCapacity) {
1521 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1520 >    public boolean remove(Object key, Object value) {
1521 >        if (key == null)
1522 >            throw new NullPointerException();
1523 >        return value != null && replaceNode(key, null, value) != null;
1524      }
1525  
1526      /**
1527 <     * Creates a new, empty map with a default initial capacity (16),
1528 <     * load factor (0.75) and concurrencyLevel (16).
1527 >     * {@inheritDoc}
1528 >     *
1529 >     * @throws NullPointerException if any of the arguments are null
1530       */
1531 <    public ConcurrentHashMap() {
1532 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1531 >    public boolean replace(K key, V oldValue, V newValue) {
1532 >        if (key == null || oldValue == null || newValue == null)
1533 >            throw new NullPointerException();
1534 >        return replaceNode(key, newValue, oldValue) != null;
1535      }
1536  
1537      /**
1538 <     * Creates a new map with the same mappings as the given map.
653 <     * The map is created with a capacity of 1.5 times the number
654 <     * of mappings in the given map or 16 (whichever is greater),
655 <     * and a default load factor (0.75) and concurrencyLevel (16).
1538 >     * {@inheritDoc}
1539       *
1540 <     * @param m the map
1540 >     * @return the previous value associated with the specified key,
1541 >     *         or {@code null} if there was no mapping for the key
1542 >     * @throws NullPointerException if the specified key or value is null
1543       */
1544 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
1545 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
1546 <                      DEFAULT_INITIAL_CAPACITY),
1547 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
663 <        putAll(m);
1544 >    public V replace(K key, V value) {
1545 >        if (key == null || value == null)
1546 >            throw new NullPointerException();
1547 >        return replaceNode(key, value, null);
1548      }
1549  
1550 +    // Overrides of JDK8+ Map extension method defaults
1551 +
1552      /**
1553 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
1553 >     * Returns the value to which the specified key is mapped, or the
1554 >     * given default value if this map contains no mapping for the
1555 >     * key.
1556       *
1557 <     * @return <tt>true</tt> if this map contains no key-value mappings
1557 >     * @param key the key whose associated value is to be returned
1558 >     * @param defaultValue the value to return if this map contains
1559 >     * no mapping for the given key
1560 >     * @return the mapping for the key, if present; else the default value
1561 >     * @throws NullPointerException if the specified key is null
1562       */
1563 <    public boolean isEmpty() {
1564 <        final Segment<K,V>[] segments = this.segments;
1565 <        /*
1566 <         * We keep track of per-segment modCounts to avoid ABA
1567 <         * problems in which an element in one segment was added and
1568 <         * in another removed during traversal, in which case the
1569 <         * table was never actually empty at any point. Note the
1570 <         * similar use of modCounts in the size() and containsValue()
1571 <         * methods, which are the only other methods also susceptible
1572 <         * to ABA problems.
1573 <         */
1574 <        int[] mc = new int[segments.length];
1575 <        int mcsum = 0;
684 <        for (int i = 0; i < segments.length; ++i) {
685 <            if (segments[i].count != 0)
686 <                return false;
687 <            else
688 <                mcsum += mc[i] = segments[i].modCount;
1563 >    public V getOrDefault(Object key, V defaultValue) {
1564 >        V v;
1565 >        return (v = get(key)) == null ? defaultValue : v;
1566 >    }
1567 >
1568 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1569 >        if (action == null) throw new NullPointerException();
1570 >        Node<K,V>[] t;
1571 >        if ((t = table) != null) {
1572 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1574 >                action.accept(p.key, p.val);
1575 >            }
1576          }
1577 <        // If mcsum happens to be zero, then we know we got a snapshot
1578 <        // before any modifications at all were made.  This is
1579 <        // probably common enough to bother tracking.
1580 <        if (mcsum != 0) {
1581 <            for (int i = 0; i < segments.length; ++i) {
1582 <                if (segments[i].count != 0 ||
1583 <                    mc[i] != segments[i].modCount)
1584 <                    return false;
1577 >    }
1578 >
1579 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580 >        if (function == null) throw new NullPointerException();
1581 >        Node<K,V>[] t;
1582 >        if ((t = table) != null) {
1583 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 >                V oldValue = p.val;
1586 >                for (K key = p.key;;) {
1587 >                    V newValue = function.apply(key, oldValue);
1588 >                    if (newValue == null)
1589 >                        throw new NullPointerException();
1590 >                    if (replaceNode(key, newValue, oldValue) != null ||
1591 >                        (oldValue = get(key)) == null)
1592 >                        break;
1593 >                }
1594              }
1595          }
700        return true;
1596      }
1597  
1598      /**
1599 <     * Returns the number of key-value mappings in this map.  If the
705 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
706 <     * <tt>Integer.MAX_VALUE</tt>.
707 <     *
708 <     * @return the number of key-value mappings in this map
1599 >     * Helper method for EntrySetView.removeIf.
1600       */
1601 <    public int size() {
1602 <        final Segment<K,V>[] segments = this.segments;
1603 <        long sum = 0;
1604 <        long check = 0;
1605 <        int[] mc = new int[segments.length];
1606 <        // Try a few times to get accurate count. On failure due to
1607 <        // continuous async changes in table, resort to locking.
1608 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
1609 <            check = 0;
1610 <            sum = 0;
1611 <            int mcsum = 0;
1612 <            for (int i = 0; i < segments.length; ++i) {
722 <                sum += segments[i].count;
723 <                mcsum += mc[i] = segments[i].modCount;
724 <            }
725 <            if (mcsum != 0) {
726 <                for (int i = 0; i < segments.length; ++i) {
727 <                    check += segments[i].count;
728 <                    if (mc[i] != segments[i].modCount) {
729 <                        check = -1; // force retry
730 <                        break;
731 <                    }
732 <                }
1601 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 >        if (function == null) throw new NullPointerException();
1603 >        Node<K,V>[] t;
1604 >        boolean removed = false;
1605 >        if ((t = table) != null) {
1606 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1608 >                K k = p.key;
1609 >                V v = p.val;
1610 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611 >                if (function.test(e) && replaceNode(k, null, v) != null)
1612 >                    removed = true;
1613              }
734            if (check == sum)
735                break;
1614          }
1615 <        if (check != sum) { // Resort to locking all segments
738 <            sum = 0;
739 <            for (int i = 0; i < segments.length; ++i)
740 <                segments[i].lock();
741 <            for (int i = 0; i < segments.length; ++i)
742 <                sum += segments[i].count;
743 <            for (int i = 0; i < segments.length; ++i)
744 <                segments[i].unlock();
745 <        }
746 <        if (sum > Integer.MAX_VALUE)
747 <            return Integer.MAX_VALUE;
748 <        else
749 <            return (int)sum;
1615 >        return removed;
1616      }
1617  
1618      /**
1619 <     * Returns the value to which this map maps the specified key, or
754 <     * <tt>null</tt> if the map contains no mapping for the key.
755 <     *
756 <     * @param key key whose associated value is to be returned
757 <     * @return the value to which this map maps the specified key, or
758 <     *         <tt>null</tt> if the map contains no mapping for the key
759 <     * @throws NullPointerException if the specified key is null
1619 >     * Helper method for ValuesView.removeIf.
1620       */
1621 <    public V get(Object key) {
1622 <        int hash = hash(key); // throws NullPointerException if key null
1623 <        return segmentFor(hash).get(key, hash);
1621 >    boolean removeValueIf(Predicate<? super V> function) {
1622 >        if (function == null) throw new NullPointerException();
1623 >        Node<K,V>[] t;
1624 >        boolean removed = false;
1625 >        if ((t = table) != null) {
1626 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1628 >                K k = p.key;
1629 >                V v = p.val;
1630 >                if (function.test(v) && replaceNode(k, null, v) != null)
1631 >                    removed = true;
1632 >            }
1633 >        }
1634 >        return removed;
1635      }
1636  
1637      /**
1638 <     * Tests if the specified object is a key in this table.
1638 >     * If the specified key is not already associated with a value,
1639 >     * attempts to compute its value using the given mapping function
1640 >     * and enters it into this map unless {@code null}.  The entire
1641 >     * method invocation is performed atomically, so the function is
1642 >     * applied at most once per key.  Some attempted update operations
1643 >     * on this map by other threads may be blocked while computation
1644 >     * is in progress, so the computation should be short and simple,
1645 >     * and must not attempt to update any other mappings of this map.
1646       *
1647 <     * @param  key   possible key
1648 <     * @return <tt>true</tt> if and only if the specified object
1649 <     *         is a key in this table, as determined by the
1650 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
1651 <     * @throws NullPointerException if the specified key is null
1647 >     * @param key key with which the specified value is to be associated
1648 >     * @param mappingFunction the function to compute a value
1649 >     * @return the current (existing or computed) value associated with
1650 >     *         the specified key, or null if the computed value is null
1651 >     * @throws NullPointerException if the specified key or mappingFunction
1652 >     *         is null
1653 >     * @throws IllegalStateException if the computation detectably
1654 >     *         attempts a recursive update to this map that would
1655 >     *         otherwise never complete
1656 >     * @throws RuntimeException or Error if the mappingFunction does so,
1657 >     *         in which case the mapping is left unestablished
1658       */
1659 <    public boolean containsKey(Object key) {
1660 <        int hash = hash(key); // throws NullPointerException if key null
1661 <        return segmentFor(hash).containsKey(key, hash);
1659 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1660 >        if (key == null || mappingFunction == null)
1661 >            throw new NullPointerException();
1662 >        int h = spread(key.hashCode());
1663 >        V val = null;
1664 >        int binCount = 0;
1665 >        for (Node<K,V>[] tab = table;;) {
1666 >            Node<K,V> f; int n, i, fh; K fk; V fv;
1667 >            if (tab == null || (n = tab.length) == 0)
1668 >                tab = initTable();
1669 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1670 >                Node<K,V> r = new ReservationNode<K,V>();
1671 >                synchronized (r) {
1672 >                    if (casTabAt(tab, i, null, r)) {
1673 >                        binCount = 1;
1674 >                        Node<K,V> node = null;
1675 >                        try {
1676 >                            if ((val = mappingFunction.apply(key)) != null)
1677 >                                node = new Node<K,V>(h, key, val);
1678 >                        } finally {
1679 >                            setTabAt(tab, i, node);
1680 >                        }
1681 >                    }
1682 >                }
1683 >                if (binCount != 0)
1684 >                    break;
1685 >            }
1686 >            else if ((fh = f.hash) == MOVED)
1687 >                tab = helpTransfer(tab, f);
1688 >            else if (fh == h    // check first node without acquiring lock
1689 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1690 >                     && (fv = f.val) != null)
1691 >                return fv;
1692 >            else {
1693 >                boolean added = false;
1694 >                synchronized (f) {
1695 >                    if (tabAt(tab, i) == f) {
1696 >                        if (fh >= 0) {
1697 >                            binCount = 1;
1698 >                            for (Node<K,V> e = f;; ++binCount) {
1699 >                                K ek;
1700 >                                if (e.hash == h &&
1701 >                                    ((ek = e.key) == key ||
1702 >                                     (ek != null && key.equals(ek)))) {
1703 >                                    val = e.val;
1704 >                                    break;
1705 >                                }
1706 >                                Node<K,V> pred = e;
1707 >                                if ((e = e.next) == null) {
1708 >                                    if ((val = mappingFunction.apply(key)) != null) {
1709 >                                        if (pred.next != null)
1710 >                                            throw new IllegalStateException("Recursive update");
1711 >                                        added = true;
1712 >                                        pred.next = new Node<K,V>(h, key, val);
1713 >                                    }
1714 >                                    break;
1715 >                                }
1716 >                            }
1717 >                        }
1718 >                        else if (f instanceof TreeBin) {
1719 >                            binCount = 2;
1720 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1721 >                            TreeNode<K,V> r, p;
1722 >                            if ((r = t.root) != null &&
1723 >                                (p = r.findTreeNode(h, key, null)) != null)
1724 >                                val = p.val;
1725 >                            else if ((val = mappingFunction.apply(key)) != null) {
1726 >                                added = true;
1727 >                                t.putTreeVal(h, key, val);
1728 >                            }
1729 >                        }
1730 >                        else if (f instanceof ReservationNode)
1731 >                            throw new IllegalStateException("Recursive update");
1732 >                    }
1733 >                }
1734 >                if (binCount != 0) {
1735 >                    if (binCount >= TREEIFY_THRESHOLD)
1736 >                        treeifyBin(tab, i);
1737 >                    if (!added)
1738 >                        return val;
1739 >                    break;
1740 >                }
1741 >            }
1742 >        }
1743 >        if (val != null)
1744 >            addCount(1L, binCount);
1745 >        return val;
1746      }
1747  
1748      /**
1749 <     * Returns <tt>true</tt> if this map maps one or more keys to the
1750 <     * specified value. Note: This method requires a full internal
1751 <     * traversal of the hash table, and so is much slower than
1752 <     * method <tt>containsKey</tt>.
1749 >     * If the value for the specified key is present, attempts to
1750 >     * compute a new mapping given the key and its current mapped
1751 >     * value.  The entire method invocation is performed atomically.
1752 >     * Some attempted update operations on this map by other threads
1753 >     * may be blocked while computation is in progress, so the
1754 >     * computation should be short and simple, and must not attempt to
1755 >     * update any other mappings of this map.
1756       *
1757 <     * @param value value whose presence in this map is to be tested
1758 <     * @return <tt>true</tt> if this map maps one or more keys to the
1759 <     *         specified value
1760 <     * @throws NullPointerException if the specified value is null
1757 >     * @param key key with which a value may be associated
1758 >     * @param remappingFunction the function to compute a value
1759 >     * @return the new value associated with the specified key, or null if none
1760 >     * @throws NullPointerException if the specified key or remappingFunction
1761 >     *         is null
1762 >     * @throws IllegalStateException if the computation detectably
1763 >     *         attempts a recursive update to this map that would
1764 >     *         otherwise never complete
1765 >     * @throws RuntimeException or Error if the remappingFunction does so,
1766 >     *         in which case the mapping is unchanged
1767       */
1768 <    public boolean containsValue(Object value) {
1769 <        if (value == null)
1768 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1769 >        if (key == null || remappingFunction == null)
1770              throw new NullPointerException();
1771 +        int h = spread(key.hashCode());
1772 +        V val = null;
1773 +        int delta = 0;
1774 +        int binCount = 0;
1775 +        for (Node<K,V>[] tab = table;;) {
1776 +            Node<K,V> f; int n, i, fh;
1777 +            if (tab == null || (n = tab.length) == 0)
1778 +                tab = initTable();
1779 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1780 +                break;
1781 +            else if ((fh = f.hash) == MOVED)
1782 +                tab = helpTransfer(tab, f);
1783 +            else {
1784 +                synchronized (f) {
1785 +                    if (tabAt(tab, i) == f) {
1786 +                        if (fh >= 0) {
1787 +                            binCount = 1;
1788 +                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1789 +                                K ek;
1790 +                                if (e.hash == h &&
1791 +                                    ((ek = e.key) == key ||
1792 +                                     (ek != null && key.equals(ek)))) {
1793 +                                    val = remappingFunction.apply(key, e.val);
1794 +                                    if (val != null)
1795 +                                        e.val = val;
1796 +                                    else {
1797 +                                        delta = -1;
1798 +                                        Node<K,V> en = e.next;
1799 +                                        if (pred != null)
1800 +                                            pred.next = en;
1801 +                                        else
1802 +                                            setTabAt(tab, i, en);
1803 +                                    }
1804 +                                    break;
1805 +                                }
1806 +                                pred = e;
1807 +                                if ((e = e.next) == null)
1808 +                                    break;
1809 +                            }
1810 +                        }
1811 +                        else if (f instanceof TreeBin) {
1812 +                            binCount = 2;
1813 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1814 +                            TreeNode<K,V> r, p;
1815 +                            if ((r = t.root) != null &&
1816 +                                (p = r.findTreeNode(h, key, null)) != null) {
1817 +                                val = remappingFunction.apply(key, p.val);
1818 +                                if (val != null)
1819 +                                    p.val = val;
1820 +                                else {
1821 +                                    delta = -1;
1822 +                                    if (t.removeTreeNode(p))
1823 +                                        setTabAt(tab, i, untreeify(t.first));
1824 +                                }
1825 +                            }
1826 +                        }
1827 +                        else if (f instanceof ReservationNode)
1828 +                            throw new IllegalStateException("Recursive update");
1829 +                    }
1830 +                }
1831 +                if (binCount != 0)
1832 +                    break;
1833 +            }
1834 +        }
1835 +        if (delta != 0)
1836 +            addCount((long)delta, binCount);
1837 +        return val;
1838 +    }
1839  
1840 <        // See explanation of modCount use above
1841 <
1842 <        final Segment<K,V>[] segments = this.segments;
1843 <        int[] mc = new int[segments.length];
1844 <
1845 <        // Try a few times without locking
1846 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
1847 <            int sum = 0;
1848 <            int mcsum = 0;
1849 <            for (int i = 0; i < segments.length; ++i) {
1850 <                int c = segments[i].count;
1851 <                mcsum += mc[i] = segments[i].modCount;
1852 <                if (segments[i].containsValue(value))
1853 <                    return true;
1840 >    /**
1841 >     * Attempts to compute a mapping for the specified key and its
1842 >     * current mapped value (or {@code null} if there is no current
1843 >     * mapping). The entire method invocation is performed atomically.
1844 >     * Some attempted update operations on this map by other threads
1845 >     * may be blocked while computation is in progress, so the
1846 >     * computation should be short and simple, and must not attempt to
1847 >     * update any other mappings of this Map.
1848 >     *
1849 >     * @param key key with which the specified value is to be associated
1850 >     * @param remappingFunction the function to compute a value
1851 >     * @return the new value associated with the specified key, or null if none
1852 >     * @throws NullPointerException if the specified key or remappingFunction
1853 >     *         is null
1854 >     * @throws IllegalStateException if the computation detectably
1855 >     *         attempts a recursive update to this map that would
1856 >     *         otherwise never complete
1857 >     * @throws RuntimeException or Error if the remappingFunction does so,
1858 >     *         in which case the mapping is unchanged
1859 >     */
1860 >    public V compute(K key,
1861 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1862 >        if (key == null || remappingFunction == null)
1863 >            throw new NullPointerException();
1864 >        int h = spread(key.hashCode());
1865 >        V val = null;
1866 >        int delta = 0;
1867 >        int binCount = 0;
1868 >        for (Node<K,V>[] tab = table;;) {
1869 >            Node<K,V> f; int n, i, fh;
1870 >            if (tab == null || (n = tab.length) == 0)
1871 >                tab = initTable();
1872 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1873 >                Node<K,V> r = new ReservationNode<K,V>();
1874 >                synchronized (r) {
1875 >                    if (casTabAt(tab, i, null, r)) {
1876 >                        binCount = 1;
1877 >                        Node<K,V> node = null;
1878 >                        try {
1879 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1880 >                                delta = 1;
1881 >                                node = new Node<K,V>(h, key, val);
1882 >                            }
1883 >                        } finally {
1884 >                            setTabAt(tab, i, node);
1885 >                        }
1886 >                    }
1887 >                }
1888 >                if (binCount != 0)
1889 >                    break;
1890              }
1891 <            boolean cleanSweep = true;
1892 <            if (mcsum != 0) {
1893 <                for (int i = 0; i < segments.length; ++i) {
1894 <                    int c = segments[i].count;
1895 <                    if (mc[i] != segments[i].modCount) {
1896 <                        cleanSweep = false;
1897 <                        break;
1891 >            else if ((fh = f.hash) == MOVED)
1892 >                tab = helpTransfer(tab, f);
1893 >            else {
1894 >                synchronized (f) {
1895 >                    if (tabAt(tab, i) == f) {
1896 >                        if (fh >= 0) {
1897 >                            binCount = 1;
1898 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1899 >                                K ek;
1900 >                                if (e.hash == h &&
1901 >                                    ((ek = e.key) == key ||
1902 >                                     (ek != null && key.equals(ek)))) {
1903 >                                    val = remappingFunction.apply(key, e.val);
1904 >                                    if (val != null)
1905 >                                        e.val = val;
1906 >                                    else {
1907 >                                        delta = -1;
1908 >                                        Node<K,V> en = e.next;
1909 >                                        if (pred != null)
1910 >                                            pred.next = en;
1911 >                                        else
1912 >                                            setTabAt(tab, i, en);
1913 >                                    }
1914 >                                    break;
1915 >                                }
1916 >                                pred = e;
1917 >                                if ((e = e.next) == null) {
1918 >                                    val = remappingFunction.apply(key, null);
1919 >                                    if (val != null) {
1920 >                                        if (pred.next != null)
1921 >                                            throw new IllegalStateException("Recursive update");
1922 >                                        delta = 1;
1923 >                                        pred.next = new Node<K,V>(h, key, val);
1924 >                                    }
1925 >                                    break;
1926 >                                }
1927 >                            }
1928 >                        }
1929 >                        else if (f instanceof TreeBin) {
1930 >                            binCount = 1;
1931 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1932 >                            TreeNode<K,V> r, p;
1933 >                            if ((r = t.root) != null)
1934 >                                p = r.findTreeNode(h, key, null);
1935 >                            else
1936 >                                p = null;
1937 >                            V pv = (p == null) ? null : p.val;
1938 >                            val = remappingFunction.apply(key, pv);
1939 >                            if (val != null) {
1940 >                                if (p != null)
1941 >                                    p.val = val;
1942 >                                else {
1943 >                                    delta = 1;
1944 >                                    t.putTreeVal(h, key, val);
1945 >                                }
1946 >                            }
1947 >                            else if (p != null) {
1948 >                                delta = -1;
1949 >                                if (t.removeTreeNode(p))
1950 >                                    setTabAt(tab, i, untreeify(t.first));
1951 >                            }
1952 >                        }
1953 >                        else if (f instanceof ReservationNode)
1954 >                            throw new IllegalStateException("Recursive update");
1955                      }
1956                  }
1957 +                if (binCount != 0) {
1958 +                    if (binCount >= TREEIFY_THRESHOLD)
1959 +                        treeifyBin(tab, i);
1960 +                    break;
1961 +                }
1962              }
820            if (cleanSweep)
821                return false;
1963          }
1964 <        // Resort to locking all segments
1965 <        for (int i = 0; i < segments.length; ++i)
1966 <            segments[i].lock();
1967 <        boolean found = false;
1968 <        try {
1969 <            for (int i = 0; i < segments.length; ++i) {
1970 <                if (segments[i].containsValue(value)) {
1971 <                    found = true;
1964 >        if (delta != 0)
1965 >            addCount((long)delta, binCount);
1966 >        return val;
1967 >    }
1968 >
1969 >    /**
1970 >     * If the specified key is not already associated with a
1971 >     * (non-null) value, associates it with the given value.
1972 >     * Otherwise, replaces the value with the results of the given
1973 >     * remapping function, or removes if {@code null}. The entire
1974 >     * method invocation is performed atomically.  Some attempted
1975 >     * update operations on this map by other threads may be blocked
1976 >     * while computation is in progress, so the computation should be
1977 >     * short and simple, and must not attempt to update any other
1978 >     * mappings of this Map.
1979 >     *
1980 >     * @param key key with which the specified value is to be associated
1981 >     * @param value the value to use if absent
1982 >     * @param remappingFunction the function to recompute a value if present
1983 >     * @return the new value associated with the specified key, or null if none
1984 >     * @throws NullPointerException if the specified key or the
1985 >     *         remappingFunction is null
1986 >     * @throws RuntimeException or Error if the remappingFunction does so,
1987 >     *         in which case the mapping is unchanged
1988 >     */
1989 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1990 >        if (key == null || value == null || remappingFunction == null)
1991 >            throw new NullPointerException();
1992 >        int h = spread(key.hashCode());
1993 >        V val = null;
1994 >        int delta = 0;
1995 >        int binCount = 0;
1996 >        for (Node<K,V>[] tab = table;;) {
1997 >            Node<K,V> f; int n, i, fh;
1998 >            if (tab == null || (n = tab.length) == 0)
1999 >                tab = initTable();
2000 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2001 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2002 >                    delta = 1;
2003 >                    val = value;
2004 >                    break;
2005 >                }
2006 >            }
2007 >            else if ((fh = f.hash) == MOVED)
2008 >                tab = helpTransfer(tab, f);
2009 >            else {
2010 >                synchronized (f) {
2011 >                    if (tabAt(tab, i) == f) {
2012 >                        if (fh >= 0) {
2013 >                            binCount = 1;
2014 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2015 >                                K ek;
2016 >                                if (e.hash == h &&
2017 >                                    ((ek = e.key) == key ||
2018 >                                     (ek != null && key.equals(ek)))) {
2019 >                                    val = remappingFunction.apply(e.val, value);
2020 >                                    if (val != null)
2021 >                                        e.val = val;
2022 >                                    else {
2023 >                                        delta = -1;
2024 >                                        Node<K,V> en = e.next;
2025 >                                        if (pred != null)
2026 >                                            pred.next = en;
2027 >                                        else
2028 >                                            setTabAt(tab, i, en);
2029 >                                    }
2030 >                                    break;
2031 >                                }
2032 >                                pred = e;
2033 >                                if ((e = e.next) == null) {
2034 >                                    delta = 1;
2035 >                                    val = value;
2036 >                                    pred.next = new Node<K,V>(h, key, val);
2037 >                                    break;
2038 >                                }
2039 >                            }
2040 >                        }
2041 >                        else if (f instanceof TreeBin) {
2042 >                            binCount = 2;
2043 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2044 >                            TreeNode<K,V> r = t.root;
2045 >                            TreeNode<K,V> p = (r == null) ? null :
2046 >                                r.findTreeNode(h, key, null);
2047 >                            val = (p == null) ? value :
2048 >                                remappingFunction.apply(p.val, value);
2049 >                            if (val != null) {
2050 >                                if (p != null)
2051 >                                    p.val = val;
2052 >                                else {
2053 >                                    delta = 1;
2054 >                                    t.putTreeVal(h, key, val);
2055 >                                }
2056 >                            }
2057 >                            else if (p != null) {
2058 >                                delta = -1;
2059 >                                if (t.removeTreeNode(p))
2060 >                                    setTabAt(tab, i, untreeify(t.first));
2061 >                            }
2062 >                        }
2063 >                        else if (f instanceof ReservationNode)
2064 >                            throw new IllegalStateException("Recursive update");
2065 >                    }
2066 >                }
2067 >                if (binCount != 0) {
2068 >                    if (binCount >= TREEIFY_THRESHOLD)
2069 >                        treeifyBin(tab, i);
2070                      break;
2071                  }
2072              }
834        } finally {
835            for (int i = 0; i < segments.length; ++i)
836                segments[i].unlock();
2073          }
2074 <        return found;
2074 >        if (delta != 0)
2075 >            addCount((long)delta, binCount);
2076 >        return val;
2077      }
2078  
2079 +    // Hashtable legacy methods
2080 +
2081      /**
2082 <     * Legacy method testing if some key maps into the specified value
2083 <     * in this table.  This method is identical in functionality to
2084 <     * {@link #containsValue}, and exists solely to ensure
2082 >     * Tests if some key maps into the specified value in this table.
2083 >     *
2084 >     * <p>Note that this method is identical in functionality to
2085 >     * {@link #containsValue(Object)}, and exists solely to ensure
2086       * full compatibility with class {@link java.util.Hashtable},
2087       * which supported this method prior to introduction of the
2088 <     * Java Collections framework.
2089 <
2088 >     * Java Collections Framework.
2089 >     *
2090       * @param  value a value to search for
2091 <     * @return <tt>true</tt> if and only if some key maps to the
2092 <     *         <tt>value</tt> argument in this table as
2093 <     *         determined by the <tt>equals</tt> method;
2094 <     *         <tt>false</tt> otherwise
2091 >     * @return {@code true} if and only if some key maps to the
2092 >     *         {@code value} argument in this table as
2093 >     *         determined by the {@code equals} method;
2094 >     *         {@code false} otherwise
2095       * @throws NullPointerException if the specified value is null
2096       */
2097      public boolean contains(Object value) {
# Line 858 | Line 2099 | public class ConcurrentHashMap<K, V> ext
2099      }
2100  
2101      /**
2102 <     * Maps the specified key to the specified value in this table.
862 <     * Neither the key nor the value can be null.
863 <     *
864 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
865 <     * with a key that is equal to the original key.
2102 >     * Returns an enumeration of the keys in this table.
2103       *
2104 <     * @param key key with which the specified value is to be associated
2105 <     * @param value value to be associated with the specified key
869 <     * @return the previous value associated with <tt>key</tt>, or
870 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
871 <     * @throws NullPointerException if the specified key or value is null
2104 >     * @return an enumeration of the keys in this table
2105 >     * @see #keySet()
2106       */
2107 <    public V put(K key, V value) {
2108 <        if (value == null)
2109 <            throw new NullPointerException();
2110 <        int hash = hash(key);
877 <        return segmentFor(hash).put(key, hash, value, false);
2107 >    public Enumeration<K> keys() {
2108 >        Node<K,V>[] t;
2109 >        int f = (t = table) == null ? 0 : t.length;
2110 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2111      }
2112  
2113      /**
2114 <     * {@inheritDoc}
2114 >     * Returns an enumeration of the values in this table.
2115       *
2116 <     * @return the previous value associated with the specified key,
2117 <     *         or <tt>null</tt> if there was no mapping for the key
885 <     * @throws NullPointerException if the specified key or value is null
2116 >     * @return an enumeration of the values in this table
2117 >     * @see #values()
2118       */
2119 <    public V putIfAbsent(K key, V value) {
2120 <        if (value == null)
2121 <            throw new NullPointerException();
2122 <        int hash = hash(key);
891 <        return segmentFor(hash).put(key, hash, value, true);
2119 >    public Enumeration<V> elements() {
2120 >        Node<K,V>[] t;
2121 >        int f = (t = table) == null ? 0 : t.length;
2122 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2123      }
2124  
2125 +    // ConcurrentHashMap-only methods
2126 +
2127      /**
2128 <     * Copies all of the mappings from the specified map to this one.
2129 <     * These mappings replace any mappings that this map had for any of the
2130 <     * keys currently in the specified map.
2128 >     * Returns the number of mappings. This method should be used
2129 >     * instead of {@link #size} because a ConcurrentHashMap may
2130 >     * contain more mappings than can be represented as an int. The
2131 >     * value returned is an estimate; the actual count may differ if
2132 >     * there are concurrent insertions or removals.
2133       *
2134 <     * @param m mappings to be stored in this map
2134 >     * @return the number of mappings
2135 >     * @since 1.8
2136       */
2137 <    public void putAll(Map<? extends K, ? extends V> m) {
2138 <        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) m.entrySet().iterator(); it.hasNext(); ) {
2139 <            Entry<? extends K, ? extends V> e = it.next();
904 <            put(e.getKey(), e.getValue());
905 <        }
2137 >    public long mappingCount() {
2138 >        long n = sumCount();
2139 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2140      }
2141  
2142      /**
2143 <     * Removes the key (and its corresponding value) from this map.
2144 <     * This method does nothing if the key is not in the map.
2143 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2144 >     * from the given type to {@code Boolean.TRUE}.
2145       *
2146 <     * @param  key the key that needs to be removed
2147 <     * @return the previous value associated with <tt>key</tt>, or
2148 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
2149 <     * @throws NullPointerException if the specified key is null
2150 <     */
2151 <    public V remove(Object key) {
2152 <        int hash = hash(key);
919 <        return segmentFor(hash).remove(key, hash, null);
2146 >     * @param <K> the element type of the returned set
2147 >     * @return the new set
2148 >     * @since 1.8
2149 >     */
2150 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2151 >        return new KeySetView<K,Boolean>
2152 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2153      }
2154  
2155      /**
2156 <     * {@inheritDoc}
2156 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2157 >     * from the given type to {@code Boolean.TRUE}.
2158       *
2159 <     * @throws NullPointerException if the specified key is null
2159 >     * @param initialCapacity The implementation performs internal
2160 >     * sizing to accommodate this many elements.
2161 >     * @param <K> the element type of the returned set
2162 >     * @return the new set
2163 >     * @throws IllegalArgumentException if the initial capacity of
2164 >     * elements is negative
2165 >     * @since 1.8
2166       */
2167 <    public boolean remove(Object key, Object value) {
2168 <        if (value == null)
2169 <            return false;
930 <        int hash = hash(key);
931 <        return segmentFor(hash).remove(key, hash, value) != null;
2167 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2168 >        return new KeySetView<K,Boolean>
2169 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2170      }
2171  
2172      /**
2173 <     * {@inheritDoc}
2173 >     * Returns a {@link Set} view of the keys in this map, using the
2174 >     * given common mapped value for any additions (i.e., {@link
2175 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2176 >     * This is of course only appropriate if it is acceptable to use
2177 >     * the same value for all additions from this view.
2178       *
2179 <     * @throws NullPointerException if any of the arguments are null
2179 >     * @param mappedValue the mapped value to use for any additions
2180 >     * @return the set view
2181 >     * @throws NullPointerException if the mappedValue is null
2182       */
2183 <    public boolean replace(K key, V oldValue, V newValue) {
2184 <        if (oldValue == null || newValue == null)
2183 >    public KeySetView<K,V> keySet(V mappedValue) {
2184 >        if (mappedValue == null)
2185              throw new NullPointerException();
2186 <        int hash = hash(key);
943 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
2186 >        return new KeySetView<K,V>(this, mappedValue);
2187      }
2188  
2189 +    /* ---------------- Special Nodes -------------- */
2190 +
2191      /**
2192 <     * {@inheritDoc}
948 <     *
949 <     * @return the previous value associated with the specified key,
950 <     *         or <tt>null</tt> if there was no mapping for the key
951 <     * @throws NullPointerException if the specified key or value is null
2192 >     * A node inserted at head of bins during transfer operations.
2193       */
2194 <    public V replace(K key, V value) {
2195 <        if (value == null)
2196 <            throw new NullPointerException();
2197 <        int hash = hash(key);
2198 <        return segmentFor(hash).replace(key, hash, value);
2194 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2195 >        final Node<K,V>[] nextTable;
2196 >        ForwardingNode(Node<K,V>[] tab) {
2197 >            super(MOVED, null, null);
2198 >            this.nextTable = tab;
2199 >        }
2200 >
2201 >        Node<K,V> find(int h, Object k) {
2202 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2203 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2204 >                Node<K,V> e; int n;
2205 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2206 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2207 >                    return null;
2208 >                for (;;) {
2209 >                    int eh; K ek;
2210 >                    if ((eh = e.hash) == h &&
2211 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2212 >                        return e;
2213 >                    if (eh < 0) {
2214 >                        if (e instanceof ForwardingNode) {
2215 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2216 >                            continue outer;
2217 >                        }
2218 >                        else
2219 >                            return e.find(h, k);
2220 >                    }
2221 >                    if ((e = e.next) == null)
2222 >                        return null;
2223 >                }
2224 >            }
2225 >        }
2226      }
2227  
2228      /**
2229 <     * Removes all of the mappings from this map.
2229 >     * A place-holder node used in computeIfAbsent and compute.
2230       */
2231 <    public void clear() {
2232 <        for (int i = 0; i < segments.length; ++i)
2233 <            segments[i].clear();
2231 >    static final class ReservationNode<K,V> extends Node<K,V> {
2232 >        ReservationNode() {
2233 >            super(RESERVED, null, null);
2234 >        }
2235 >
2236 >        Node<K,V> find(int h, Object k) {
2237 >            return null;
2238 >        }
2239      }
2240  
2241 +    /* ---------------- Table Initialization and Resizing -------------- */
2242 +
2243      /**
2244 <     * Returns a {@link Set} view of the keys contained in this map.
2245 <     * The set is backed by the map, so changes to the map are
2246 <     * reflected in the set, and vice-versa.  The set supports element
2247 <     * removal, which removes the corresponding mapping from this map,
2248 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
974 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
975 <     * operations.  It does not support the <tt>add</tt> or
976 <     * <tt>addAll</tt> operations.
977 <     *
978 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
979 <     * that will never throw {@link ConcurrentModificationException},
980 <     * and guarantees to traverse elements as they existed upon
981 <     * construction of the iterator, and may (but is not guaranteed to)
982 <     * reflect any modifications subsequent to construction.
983 <     */
984 <    public Set<K> keySet() {
985 <        Set<K> ks = keySet;
986 <        return (ks != null) ? ks : (keySet = new KeySet());
2244 >     * Returns the stamp bits for resizing a table of size n.
2245 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2246 >     */
2247 >    static final int resizeStamp(int n) {
2248 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2249      }
2250  
2251      /**
2252 <     * Returns a {@link Collection} view of the values contained in this map.
991 <     * The collection is backed by the map, so changes to the map are
992 <     * reflected in the collection, and vice-versa.  The collection
993 <     * supports element removal, which removes the corresponding
994 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
995 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
996 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
997 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
998 <     *
999 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1000 <     * that will never throw {@link ConcurrentModificationException},
1001 <     * and guarantees to traverse elements as they existed upon
1002 <     * construction of the iterator, and may (but is not guaranteed to)
1003 <     * reflect any modifications subsequent to construction.
2252 >     * Initializes table, using the size recorded in sizeCtl.
2253       */
2254 <    public Collection<V> values() {
2255 <        Collection<V> vs = values;
2256 <        return (vs != null) ? vs : (values = new Values());
2254 >    private final Node<K,V>[] initTable() {
2255 >        Node<K,V>[] tab; int sc;
2256 >        while ((tab = table) == null || tab.length == 0) {
2257 >            if ((sc = sizeCtl) < 0)
2258 >                Thread.yield(); // lost initialization race; just spin
2259 >            else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2260 >                try {
2261 >                    if ((tab = table) == null || tab.length == 0) {
2262 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2263 >                        @SuppressWarnings("unchecked")
2264 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2265 >                        table = tab = nt;
2266 >                        sc = n - (n >>> 2);
2267 >                    }
2268 >                } finally {
2269 >                    sizeCtl = sc;
2270 >                }
2271 >                break;
2272 >            }
2273 >        }
2274 >        return tab;
2275      }
2276  
2277      /**
2278 <     * Returns a {@link Set} view of the mappings contained in this map.
2279 <     * The set is backed by the map, so changes to the map are
2280 <     * reflected in the set, and vice-versa.  The set supports element
2281 <     * removal, which removes the corresponding mapping from the map,
2282 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2283 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2284 <     * operations.  It does not support the <tt>add</tt> or
2285 <     * <tt>addAll</tt> operations.
1019 <     *
1020 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1021 <     * that will never throw {@link ConcurrentModificationException},
1022 <     * and guarantees to traverse elements as they existed upon
1023 <     * construction of the iterator, and may (but is not guaranteed to)
1024 <     * reflect any modifications subsequent to construction.
2278 >     * Adds to count, and if table is too small and not already
2279 >     * resizing, initiates transfer. If already resizing, helps
2280 >     * perform transfer if work is available.  Rechecks occupancy
2281 >     * after a transfer to see if another resize is already needed
2282 >     * because resizings are lagging additions.
2283 >     *
2284 >     * @param x the count to add
2285 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2286       */
2287 <    public Set<Map.Entry<K,V>> entrySet() {
2288 <        Set<Map.Entry<K,V>> es = entrySet;
2289 <        return (es != null) ? es : (entrySet = new EntrySet());
2287 >    private final void addCount(long x, int check) {
2288 >        CounterCell[] cs; long b, s;
2289 >        if ((cs = counterCells) != null ||
2290 >            !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2291 >            CounterCell c; long v; int m;
2292 >            boolean uncontended = true;
2293 >            if (cs == null || (m = cs.length - 1) < 0 ||
2294 >                (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2295 >                !(uncontended =
2296 >                  U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2297 >                fullAddCount(x, uncontended);
2298 >                return;
2299 >            }
2300 >            if (check <= 1)
2301 >                return;
2302 >            s = sumCount();
2303 >        }
2304 >        if (check >= 0) {
2305 >            Node<K,V>[] tab, nt; int n, sc;
2306 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2307 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2308 >                int rs = resizeStamp(n) << RESIZE_STAMP_SHIFT;
2309 >                if (sc < 0) {
2310 >                    if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2311 >                        (nt = nextTable) == null || transferIndex <= 0)
2312 >                        break;
2313 >                    if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2314 >                        transfer(tab, nt);
2315 >                }
2316 >                else if (U.compareAndSetInt(this, SIZECTL, sc, rs + 2))
2317 >                    transfer(tab, null);
2318 >                s = sumCount();
2319 >            }
2320 >        }
2321      }
2322  
2323      /**
2324 <     * Returns an enumeration of the keys in this table.
1033 <     *
1034 <     * @return an enumeration of the keys in this table
1035 <     * @see #keySet
2324 >     * Helps transfer if a resize is in progress.
2325       */
2326 <    public Enumeration<K> keys() {
2327 <        return new KeyIterator();
2326 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2327 >        Node<K,V>[] nextTab; int sc;
2328 >        if (tab != null && (f instanceof ForwardingNode) &&
2329 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2330 >            int rs = resizeStamp(tab.length) << RESIZE_STAMP_SHIFT;
2331 >            while (nextTab == nextTable && table == tab &&
2332 >                   (sc = sizeCtl) < 0) {
2333 >                if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2334 >                    transferIndex <= 0)
2335 >                    break;
2336 >                if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2337 >                    transfer(tab, nextTab);
2338 >                    break;
2339 >                }
2340 >            }
2341 >            return nextTab;
2342 >        }
2343 >        return table;
2344      }
2345  
2346      /**
2347 <     * Returns an enumeration of the values in this table.
2347 >     * Tries to presize table to accommodate the given number of elements.
2348       *
2349 <     * @return an enumeration of the values in this table
1045 <     * @see #values
2349 >     * @param size number of elements (doesn't need to be perfectly accurate)
2350       */
2351 <    public Enumeration<V> elements() {
2352 <        return new ValueIterator();
2351 >    private final void tryPresize(int size) {
2352 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2353 >            tableSizeFor(size + (size >>> 1) + 1);
2354 >        int sc;
2355 >        while ((sc = sizeCtl) >= 0) {
2356 >            Node<K,V>[] tab = table; int n;
2357 >            if (tab == null || (n = tab.length) == 0) {
2358 >                n = (sc > c) ? sc : c;
2359 >                if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2360 >                    try {
2361 >                        if (table == tab) {
2362 >                            @SuppressWarnings("unchecked")
2363 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2364 >                            table = nt;
2365 >                            sc = n - (n >>> 2);
2366 >                        }
2367 >                    } finally {
2368 >                        sizeCtl = sc;
2369 >                    }
2370 >                }
2371 >            }
2372 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2373 >                break;
2374 >            else if (tab == table) {
2375 >                int rs = resizeStamp(n);
2376 >                if (U.compareAndSetInt(this, SIZECTL, sc,
2377 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2378 >                    transfer(tab, null);
2379 >            }
2380 >        }
2381 >    }
2382 >
2383 >    /**
2384 >     * Moves and/or copies the nodes in each bin to new table. See
2385 >     * above for explanation.
2386 >     */
2387 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2388 >        int n = tab.length, stride;
2389 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2390 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2391 >        if (nextTab == null) {            // initiating
2392 >            try {
2393 >                @SuppressWarnings("unchecked")
2394 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2395 >                nextTab = nt;
2396 >            } catch (Throwable ex) {      // try to cope with OOME
2397 >                sizeCtl = Integer.MAX_VALUE;
2398 >                return;
2399 >            }
2400 >            nextTable = nextTab;
2401 >            transferIndex = n;
2402 >        }
2403 >        int nextn = nextTab.length;
2404 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2405 >        boolean advance = true;
2406 >        boolean finishing = false; // to ensure sweep before committing nextTab
2407 >        for (int i = 0, bound = 0;;) {
2408 >            Node<K,V> f; int fh;
2409 >            while (advance) {
2410 >                int nextIndex, nextBound;
2411 >                if (--i >= bound || finishing)
2412 >                    advance = false;
2413 >                else if ((nextIndex = transferIndex) <= 0) {
2414 >                    i = -1;
2415 >                    advance = false;
2416 >                }
2417 >                else if (U.compareAndSetInt
2418 >                         (this, TRANSFERINDEX, nextIndex,
2419 >                          nextBound = (nextIndex > stride ?
2420 >                                       nextIndex - stride : 0))) {
2421 >                    bound = nextBound;
2422 >                    i = nextIndex - 1;
2423 >                    advance = false;
2424 >                }
2425 >            }
2426 >            if (i < 0 || i >= n || i + n >= nextn) {
2427 >                int sc;
2428 >                if (finishing) {
2429 >                    nextTable = null;
2430 >                    table = nextTab;
2431 >                    sizeCtl = (n << 1) - (n >>> 1);
2432 >                    return;
2433 >                }
2434 >                if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2435 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2436 >                        return;
2437 >                    finishing = advance = true;
2438 >                    i = n; // recheck before commit
2439 >                }
2440 >            }
2441 >            else if ((f = tabAt(tab, i)) == null)
2442 >                advance = casTabAt(tab, i, null, fwd);
2443 >            else if ((fh = f.hash) == MOVED)
2444 >                advance = true; // already processed
2445 >            else {
2446 >                synchronized (f) {
2447 >                    if (tabAt(tab, i) == f) {
2448 >                        Node<K,V> ln, hn;
2449 >                        if (fh >= 0) {
2450 >                            int runBit = fh & n;
2451 >                            Node<K,V> lastRun = f;
2452 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2453 >                                int b = p.hash & n;
2454 >                                if (b != runBit) {
2455 >                                    runBit = b;
2456 >                                    lastRun = p;
2457 >                                }
2458 >                            }
2459 >                            if (runBit == 0) {
2460 >                                ln = lastRun;
2461 >                                hn = null;
2462 >                            }
2463 >                            else {
2464 >                                hn = lastRun;
2465 >                                ln = null;
2466 >                            }
2467 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2468 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2469 >                                if ((ph & n) == 0)
2470 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2471 >                                else
2472 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2473 >                            }
2474 >                            setTabAt(nextTab, i, ln);
2475 >                            setTabAt(nextTab, i + n, hn);
2476 >                            setTabAt(tab, i, fwd);
2477 >                            advance = true;
2478 >                        }
2479 >                        else if (f instanceof TreeBin) {
2480 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2481 >                            TreeNode<K,V> lo = null, loTail = null;
2482 >                            TreeNode<K,V> hi = null, hiTail = null;
2483 >                            int lc = 0, hc = 0;
2484 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2485 >                                int h = e.hash;
2486 >                                TreeNode<K,V> p = new TreeNode<K,V>
2487 >                                    (h, e.key, e.val, null, null);
2488 >                                if ((h & n) == 0) {
2489 >                                    if ((p.prev = loTail) == null)
2490 >                                        lo = p;
2491 >                                    else
2492 >                                        loTail.next = p;
2493 >                                    loTail = p;
2494 >                                    ++lc;
2495 >                                }
2496 >                                else {
2497 >                                    if ((p.prev = hiTail) == null)
2498 >                                        hi = p;
2499 >                                    else
2500 >                                        hiTail.next = p;
2501 >                                    hiTail = p;
2502 >                                    ++hc;
2503 >                                }
2504 >                            }
2505 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2506 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2507 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2508 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2509 >                            setTabAt(nextTab, i, ln);
2510 >                            setTabAt(nextTab, i + n, hn);
2511 >                            setTabAt(tab, i, fwd);
2512 >                            advance = true;
2513 >                        }
2514 >                        else if (f instanceof ReservationNode)
2515 >                            throw new IllegalStateException("Recursive update");
2516 >                    }
2517 >                }
2518 >            }
2519 >        }
2520      }
2521  
2522 <    /* ---------------- Iterator Support -------------- */
2522 >    /* ---------------- Counter support -------------- */
2523  
2524 <    class HashIterator {
2525 <        int nextSegmentIndex;
2526 <        int nextTableIndex;
2527 <        HashEntry<K,V>[] currentTable;
2528 <        HashEntry<K, V> nextEntry;
2529 <        HashEntry<K, V> lastReturned;
2524 >    /**
2525 >     * A padded cell for distributing counts.  Adapted from LongAdder
2526 >     * and Striped64.  See their internal docs for explanation.
2527 >     */
2528 >    @jdk.internal.vm.annotation.Contended static final class CounterCell {
2529 >        volatile long value;
2530 >        CounterCell(long x) { value = x; }
2531 >    }
2532  
2533 <        HashIterator() {
2534 <            nextSegmentIndex = segments.length - 1;
2535 <            nextTableIndex = -1;
2536 <            advance();
2533 >    final long sumCount() {
2534 >        CounterCell[] cs = counterCells;
2535 >        long sum = baseCount;
2536 >        if (cs != null) {
2537 >            for (CounterCell c : cs)
2538 >                if (c != null)
2539 >                    sum += c.value;
2540          }
2541 +        return sum;
2542 +    }
2543  
2544 <        public boolean hasMoreElements() { return hasNext(); }
2544 >    // See LongAdder version for explanation
2545 >    private final void fullAddCount(long x, boolean wasUncontended) {
2546 >        int h;
2547 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2548 >            ThreadLocalRandom.localInit();      // force initialization
2549 >            h = ThreadLocalRandom.getProbe();
2550 >            wasUncontended = true;
2551 >        }
2552 >        boolean collide = false;                // True if last slot nonempty
2553 >        for (;;) {
2554 >            CounterCell[] cs; CounterCell c; int n; long v;
2555 >            if ((cs = counterCells) != null && (n = cs.length) > 0) {
2556 >                if ((c = cs[(n - 1) & h]) == null) {
2557 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2558 >                        CounterCell r = new CounterCell(x); // Optimistic create
2559 >                        if (cellsBusy == 0 &&
2560 >                            U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2561 >                            boolean created = false;
2562 >                            try {               // Recheck under lock
2563 >                                CounterCell[] rs; int m, j;
2564 >                                if ((rs = counterCells) != null &&
2565 >                                    (m = rs.length) > 0 &&
2566 >                                    rs[j = (m - 1) & h] == null) {
2567 >                                    rs[j] = r;
2568 >                                    created = true;
2569 >                                }
2570 >                            } finally {
2571 >                                cellsBusy = 0;
2572 >                            }
2573 >                            if (created)
2574 >                                break;
2575 >                            continue;           // Slot is now non-empty
2576 >                        }
2577 >                    }
2578 >                    collide = false;
2579 >                }
2580 >                else if (!wasUncontended)       // CAS already known to fail
2581 >                    wasUncontended = true;      // Continue after rehash
2582 >                else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2583 >                    break;
2584 >                else if (counterCells != cs || n >= NCPU)
2585 >                    collide = false;            // At max size or stale
2586 >                else if (!collide)
2587 >                    collide = true;
2588 >                else if (cellsBusy == 0 &&
2589 >                         U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2590 >                    try {
2591 >                        if (counterCells == cs) // Expand table unless stale
2592 >                            counterCells = Arrays.copyOf(cs, n << 1);
2593 >                    } finally {
2594 >                        cellsBusy = 0;
2595 >                    }
2596 >                    collide = false;
2597 >                    continue;                   // Retry with expanded table
2598 >                }
2599 >                h = ThreadLocalRandom.advanceProbe(h);
2600 >            }
2601 >            else if (cellsBusy == 0 && counterCells == cs &&
2602 >                     U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2603 >                boolean init = false;
2604 >                try {                           // Initialize table
2605 >                    if (counterCells == cs) {
2606 >                        CounterCell[] rs = new CounterCell[2];
2607 >                        rs[h & 1] = new CounterCell(x);
2608 >                        counterCells = rs;
2609 >                        init = true;
2610 >                    }
2611 >                } finally {
2612 >                    cellsBusy = 0;
2613 >                }
2614 >                if (init)
2615 >                    break;
2616 >            }
2617 >            else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2618 >                break;                          // Fall back on using base
2619 >        }
2620 >    }
2621  
2622 <        final void advance() {
1069 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1070 <                return;
2622 >    /* ---------------- Conversion from/to TreeBins -------------- */
2623  
2624 <            while (nextTableIndex >= 0) {
2625 <                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
2626 <                    return;
2624 >    /**
2625 >     * Replaces all linked nodes in bin at given index unless table is
2626 >     * too small, in which case resizes instead.
2627 >     */
2628 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2629 >        Node<K,V> b; int n;
2630 >        if (tab != null) {
2631 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2632 >                tryPresize(n << 1);
2633 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2634 >                synchronized (b) {
2635 >                    if (tabAt(tab, index) == b) {
2636 >                        TreeNode<K,V> hd = null, tl = null;
2637 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2638 >                            TreeNode<K,V> p =
2639 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2640 >                                                  null, null);
2641 >                            if ((p.prev = tl) == null)
2642 >                                hd = p;
2643 >                            else
2644 >                                tl.next = p;
2645 >                            tl = p;
2646 >                        }
2647 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2648 >                    }
2649 >                }
2650              }
2651 +        }
2652 +    }
2653  
2654 <            while (nextSegmentIndex >= 0) {
2655 <                Segment<K,V> seg = segments[nextSegmentIndex--];
2656 <                if (seg.count != 0) {
2657 <                    currentTable = seg.table;
2658 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
2659 <                        if ( (nextEntry = currentTable[j]) != null) {
2660 <                            nextTableIndex = j - 1;
2661 <                            return;
2654 >    /**
2655 >     * Returns a list of non-TreeNodes replacing those in given list.
2656 >     */
2657 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2658 >        Node<K,V> hd = null, tl = null;
2659 >        for (Node<K,V> q = b; q != null; q = q.next) {
2660 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2661 >            if (tl == null)
2662 >                hd = p;
2663 >            else
2664 >                tl.next = p;
2665 >            tl = p;
2666 >        }
2667 >        return hd;
2668 >    }
2669 >
2670 >    /* ---------------- TreeNodes -------------- */
2671 >
2672 >    /**
2673 >     * Nodes for use in TreeBins.
2674 >     */
2675 >    static final class TreeNode<K,V> extends Node<K,V> {
2676 >        TreeNode<K,V> parent;  // red-black tree links
2677 >        TreeNode<K,V> left;
2678 >        TreeNode<K,V> right;
2679 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2680 >        boolean red;
2681 >
2682 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2683 >                 TreeNode<K,V> parent) {
2684 >            super(hash, key, val, next);
2685 >            this.parent = parent;
2686 >        }
2687 >
2688 >        Node<K,V> find(int h, Object k) {
2689 >            return findTreeNode(h, k, null);
2690 >        }
2691 >
2692 >        /**
2693 >         * Returns the TreeNode (or null if not found) for the given key
2694 >         * starting at given root.
2695 >         */
2696 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2697 >            if (k != null) {
2698 >                TreeNode<K,V> p = this;
2699 >                do {
2700 >                    int ph, dir; K pk; TreeNode<K,V> q;
2701 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2702 >                    if ((ph = p.hash) > h)
2703 >                        p = pl;
2704 >                    else if (ph < h)
2705 >                        p = pr;
2706 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707 >                        return p;
2708 >                    else if (pl == null)
2709 >                        p = pr;
2710 >                    else if (pr == null)
2711 >                        p = pl;
2712 >                    else if ((kc != null ||
2713 >                              (kc = comparableClassFor(k)) != null) &&
2714 >                             (dir = compareComparables(kc, k, pk)) != 0)
2715 >                        p = (dir < 0) ? pl : pr;
2716 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2717 >                        return q;
2718 >                    else
2719 >                        p = pl;
2720 >                } while (p != null);
2721 >            }
2722 >            return null;
2723 >        }
2724 >    }
2725 >
2726 >    /* ---------------- TreeBins -------------- */
2727 >
2728 >    /**
2729 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2730 >     * keys or values, but instead point to list of TreeNodes and
2731 >     * their root. They also maintain a parasitic read-write lock
2732 >     * forcing writers (who hold bin lock) to wait for readers (who do
2733 >     * not) to complete before tree restructuring operations.
2734 >     */
2735 >    static final class TreeBin<K,V> extends Node<K,V> {
2736 >        TreeNode<K,V> root;
2737 >        volatile TreeNode<K,V> first;
2738 >        volatile Thread waiter;
2739 >        volatile int lockState;
2740 >        // values for lockState
2741 >        static final int WRITER = 1; // set while holding write lock
2742 >        static final int WAITER = 2; // set when waiting for write lock
2743 >        static final int READER = 4; // increment value for setting read lock
2744 >
2745 >        /**
2746 >         * Tie-breaking utility for ordering insertions when equal
2747 >         * hashCodes and non-comparable. We don't require a total
2748 >         * order, just a consistent insertion rule to maintain
2749 >         * equivalence across rebalancings. Tie-breaking further than
2750 >         * necessary simplifies testing a bit.
2751 >         */
2752 >        static int tieBreakOrder(Object a, Object b) {
2753 >            int d;
2754 >            if (a == null || b == null ||
2755 >                (d = a.getClass().getName().
2756 >                 compareTo(b.getClass().getName())) == 0)
2757 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2758 >                     -1 : 1);
2759 >            return d;
2760 >        }
2761 >
2762 >        /**
2763 >         * Creates bin with initial set of nodes headed by b.
2764 >         */
2765 >        TreeBin(TreeNode<K,V> b) {
2766 >            super(TREEBIN, null, null);
2767 >            this.first = b;
2768 >            TreeNode<K,V> r = null;
2769 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2770 >                next = (TreeNode<K,V>)x.next;
2771 >                x.left = x.right = null;
2772 >                if (r == null) {
2773 >                    x.parent = null;
2774 >                    x.red = false;
2775 >                    r = x;
2776 >                }
2777 >                else {
2778 >                    K k = x.key;
2779 >                    int h = x.hash;
2780 >                    Class<?> kc = null;
2781 >                    for (TreeNode<K,V> p = r;;) {
2782 >                        int dir, ph;
2783 >                        K pk = p.key;
2784 >                        if ((ph = p.hash) > h)
2785 >                            dir = -1;
2786 >                        else if (ph < h)
2787 >                            dir = 1;
2788 >                        else if ((kc == null &&
2789 >                                  (kc = comparableClassFor(k)) == null) ||
2790 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2791 >                            dir = tieBreakOrder(k, pk);
2792 >                        TreeNode<K,V> xp = p;
2793 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2794 >                            x.parent = xp;
2795 >                            if (dir <= 0)
2796 >                                xp.left = x;
2797 >                            else
2798 >                                xp.right = x;
2799 >                            r = balanceInsertion(r, x);
2800 >                            break;
2801                          }
2802                      }
2803                  }
2804              }
2805 +            this.root = r;
2806 +            assert checkInvariants(root);
2807          }
2808  
2809 <        public boolean hasNext() { return nextEntry != null; }
2809 >        /**
2810 >         * Acquires write lock for tree restructuring.
2811 >         */
2812 >        private final void lockRoot() {
2813 >            if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2814 >                contendedLock(); // offload to separate method
2815 >        }
2816  
2817 <        HashEntry<K,V> nextEntry() {
2818 <            if (nextEntry == null)
2819 <                throw new NoSuchElementException();
2820 <            lastReturned = nextEntry;
2817 >        /**
2818 >         * Releases write lock for tree restructuring.
2819 >         */
2820 >        private final void unlockRoot() {
2821 >            lockState = 0;
2822 >        }
2823 >
2824 >        /**
2825 >         * Possibly blocks awaiting root lock.
2826 >         */
2827 >        private final void contendedLock() {
2828 >            boolean waiting = false;
2829 >            for (int s;;) {
2830 >                if (((s = lockState) & ~WAITER) == 0) {
2831 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2832 >                        if (waiting)
2833 >                            waiter = null;
2834 >                        return;
2835 >                    }
2836 >                }
2837 >                else if ((s & WAITER) == 0) {
2838 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2839 >                        waiting = true;
2840 >                        waiter = Thread.currentThread();
2841 >                    }
2842 >                }
2843 >                else if (waiting)
2844 >                    LockSupport.park(this);
2845 >            }
2846 >        }
2847 >
2848 >        /**
2849 >         * Returns matching node or null if none. Tries to search
2850 >         * using tree comparisons from root, but continues linear
2851 >         * search when lock not available.
2852 >         */
2853 >        final Node<K,V> find(int h, Object k) {
2854 >            if (k != null) {
2855 >                for (Node<K,V> e = first; e != null; ) {
2856 >                    int s; K ek;
2857 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2858 >                        if (e.hash == h &&
2859 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2860 >                            return e;
2861 >                        e = e.next;
2862 >                    }
2863 >                    else if (U.compareAndSetInt(this, LOCKSTATE, s,
2864 >                                                 s + READER)) {
2865 >                        TreeNode<K,V> r, p;
2866 >                        try {
2867 >                            p = ((r = root) == null ? null :
2868 >                                 r.findTreeNode(h, k, null));
2869 >                        } finally {
2870 >                            Thread w;
2871 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2872 >                                (READER|WAITER) && (w = waiter) != null)
2873 >                                LockSupport.unpark(w);
2874 >                        }
2875 >                        return p;
2876 >                    }
2877 >                }
2878 >            }
2879 >            return null;
2880 >        }
2881 >
2882 >        /**
2883 >         * Finds or adds a node.
2884 >         * @return null if added
2885 >         */
2886 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2887 >            Class<?> kc = null;
2888 >            boolean searched = false;
2889 >            for (TreeNode<K,V> p = root;;) {
2890 >                int dir, ph; K pk;
2891 >                if (p == null) {
2892 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2893 >                    break;
2894 >                }
2895 >                else if ((ph = p.hash) > h)
2896 >                    dir = -1;
2897 >                else if (ph < h)
2898 >                    dir = 1;
2899 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2900 >                    return p;
2901 >                else if ((kc == null &&
2902 >                          (kc = comparableClassFor(k)) == null) ||
2903 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2904 >                    if (!searched) {
2905 >                        TreeNode<K,V> q, ch;
2906 >                        searched = true;
2907 >                        if (((ch = p.left) != null &&
2908 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2909 >                            ((ch = p.right) != null &&
2910 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2911 >                            return q;
2912 >                    }
2913 >                    dir = tieBreakOrder(k, pk);
2914 >                }
2915 >
2916 >                TreeNode<K,V> xp = p;
2917 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2918 >                    TreeNode<K,V> x, f = first;
2919 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2920 >                    if (f != null)
2921 >                        f.prev = x;
2922 >                    if (dir <= 0)
2923 >                        xp.left = x;
2924 >                    else
2925 >                        xp.right = x;
2926 >                    if (!xp.red)
2927 >                        x.red = true;
2928 >                    else {
2929 >                        lockRoot();
2930 >                        try {
2931 >                            root = balanceInsertion(root, x);
2932 >                        } finally {
2933 >                            unlockRoot();
2934 >                        }
2935 >                    }
2936 >                    break;
2937 >                }
2938 >            }
2939 >            assert checkInvariants(root);
2940 >            return null;
2941 >        }
2942 >
2943 >        /**
2944 >         * Removes the given node, that must be present before this
2945 >         * call.  This is messier than typical red-black deletion code
2946 >         * because we cannot swap the contents of an interior node
2947 >         * with a leaf successor that is pinned by "next" pointers
2948 >         * that are accessible independently of lock. So instead we
2949 >         * swap the tree linkages.
2950 >         *
2951 >         * @return true if now too small, so should be untreeified
2952 >         */
2953 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2954 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2955 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2956 >            TreeNode<K,V> r, rl;
2957 >            if (pred == null)
2958 >                first = next;
2959 >            else
2960 >                pred.next = next;
2961 >            if (next != null)
2962 >                next.prev = pred;
2963 >            if (first == null) {
2964 >                root = null;
2965 >                return true;
2966 >            }
2967 >            if ((r = root) == null || r.right == null || // too small
2968 >                (rl = r.left) == null || rl.left == null)
2969 >                return true;
2970 >            lockRoot();
2971 >            try {
2972 >                TreeNode<K,V> replacement;
2973 >                TreeNode<K,V> pl = p.left;
2974 >                TreeNode<K,V> pr = p.right;
2975 >                if (pl != null && pr != null) {
2976 >                    TreeNode<K,V> s = pr, sl;
2977 >                    while ((sl = s.left) != null) // find successor
2978 >                        s = sl;
2979 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2980 >                    TreeNode<K,V> sr = s.right;
2981 >                    TreeNode<K,V> pp = p.parent;
2982 >                    if (s == pr) { // p was s's direct parent
2983 >                        p.parent = s;
2984 >                        s.right = p;
2985 >                    }
2986 >                    else {
2987 >                        TreeNode<K,V> sp = s.parent;
2988 >                        if ((p.parent = sp) != null) {
2989 >                            if (s == sp.left)
2990 >                                sp.left = p;
2991 >                            else
2992 >                                sp.right = p;
2993 >                        }
2994 >                        if ((s.right = pr) != null)
2995 >                            pr.parent = s;
2996 >                    }
2997 >                    p.left = null;
2998 >                    if ((p.right = sr) != null)
2999 >                        sr.parent = p;
3000 >                    if ((s.left = pl) != null)
3001 >                        pl.parent = s;
3002 >                    if ((s.parent = pp) == null)
3003 >                        r = s;
3004 >                    else if (p == pp.left)
3005 >                        pp.left = s;
3006 >                    else
3007 >                        pp.right = s;
3008 >                    if (sr != null)
3009 >                        replacement = sr;
3010 >                    else
3011 >                        replacement = p;
3012 >                }
3013 >                else if (pl != null)
3014 >                    replacement = pl;
3015 >                else if (pr != null)
3016 >                    replacement = pr;
3017 >                else
3018 >                    replacement = p;
3019 >                if (replacement != p) {
3020 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
3021 >                    if (pp == null)
3022 >                        r = replacement;
3023 >                    else if (p == pp.left)
3024 >                        pp.left = replacement;
3025 >                    else
3026 >                        pp.right = replacement;
3027 >                    p.left = p.right = p.parent = null;
3028 >                }
3029 >
3030 >                root = (p.red) ? r : balanceDeletion(r, replacement);
3031 >
3032 >                if (p == replacement) {  // detach pointers
3033 >                    TreeNode<K,V> pp;
3034 >                    if ((pp = p.parent) != null) {
3035 >                        if (p == pp.left)
3036 >                            pp.left = null;
3037 >                        else if (p == pp.right)
3038 >                            pp.right = null;
3039 >                        p.parent = null;
3040 >                    }
3041 >                }
3042 >            } finally {
3043 >                unlockRoot();
3044 >            }
3045 >            assert checkInvariants(root);
3046 >            return false;
3047 >        }
3048 >
3049 >        /* ------------------------------------------------------------ */
3050 >        // Red-black tree methods, all adapted from CLR
3051 >
3052 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3053 >                                              TreeNode<K,V> p) {
3054 >            TreeNode<K,V> r, pp, rl;
3055 >            if (p != null && (r = p.right) != null) {
3056 >                if ((rl = p.right = r.left) != null)
3057 >                    rl.parent = p;
3058 >                if ((pp = r.parent = p.parent) == null)
3059 >                    (root = r).red = false;
3060 >                else if (pp.left == p)
3061 >                    pp.left = r;
3062 >                else
3063 >                    pp.right = r;
3064 >                r.left = p;
3065 >                p.parent = r;
3066 >            }
3067 >            return root;
3068 >        }
3069 >
3070 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3071 >                                               TreeNode<K,V> p) {
3072 >            TreeNode<K,V> l, pp, lr;
3073 >            if (p != null && (l = p.left) != null) {
3074 >                if ((lr = p.left = l.right) != null)
3075 >                    lr.parent = p;
3076 >                if ((pp = l.parent = p.parent) == null)
3077 >                    (root = l).red = false;
3078 >                else if (pp.right == p)
3079 >                    pp.right = l;
3080 >                else
3081 >                    pp.left = l;
3082 >                l.right = p;
3083 >                p.parent = l;
3084 >            }
3085 >            return root;
3086 >        }
3087 >
3088 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3089 >                                                    TreeNode<K,V> x) {
3090 >            x.red = true;
3091 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3092 >                if ((xp = x.parent) == null) {
3093 >                    x.red = false;
3094 >                    return x;
3095 >                }
3096 >                else if (!xp.red || (xpp = xp.parent) == null)
3097 >                    return root;
3098 >                if (xp == (xppl = xpp.left)) {
3099 >                    if ((xppr = xpp.right) != null && xppr.red) {
3100 >                        xppr.red = false;
3101 >                        xp.red = false;
3102 >                        xpp.red = true;
3103 >                        x = xpp;
3104 >                    }
3105 >                    else {
3106 >                        if (x == xp.right) {
3107 >                            root = rotateLeft(root, x = xp);
3108 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3109 >                        }
3110 >                        if (xp != null) {
3111 >                            xp.red = false;
3112 >                            if (xpp != null) {
3113 >                                xpp.red = true;
3114 >                                root = rotateRight(root, xpp);
3115 >                            }
3116 >                        }
3117 >                    }
3118 >                }
3119 >                else {
3120 >                    if (xppl != null && xppl.red) {
3121 >                        xppl.red = false;
3122 >                        xp.red = false;
3123 >                        xpp.red = true;
3124 >                        x = xpp;
3125 >                    }
3126 >                    else {
3127 >                        if (x == xp.left) {
3128 >                            root = rotateRight(root, x = xp);
3129 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3130 >                        }
3131 >                        if (xp != null) {
3132 >                            xp.red = false;
3133 >                            if (xpp != null) {
3134 >                                xpp.red = true;
3135 >                                root = rotateLeft(root, xpp);
3136 >                            }
3137 >                        }
3138 >                    }
3139 >                }
3140 >            }
3141 >        }
3142 >
3143 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3144 >                                                   TreeNode<K,V> x) {
3145 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3146 >                if (x == null || x == root)
3147 >                    return root;
3148 >                else if ((xp = x.parent) == null) {
3149 >                    x.red = false;
3150 >                    return x;
3151 >                }
3152 >                else if (x.red) {
3153 >                    x.red = false;
3154 >                    return root;
3155 >                }
3156 >                else if ((xpl = xp.left) == x) {
3157 >                    if ((xpr = xp.right) != null && xpr.red) {
3158 >                        xpr.red = false;
3159 >                        xp.red = true;
3160 >                        root = rotateLeft(root, xp);
3161 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3162 >                    }
3163 >                    if (xpr == null)
3164 >                        x = xp;
3165 >                    else {
3166 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3167 >                        if ((sr == null || !sr.red) &&
3168 >                            (sl == null || !sl.red)) {
3169 >                            xpr.red = true;
3170 >                            x = xp;
3171 >                        }
3172 >                        else {
3173 >                            if (sr == null || !sr.red) {
3174 >                                if (sl != null)
3175 >                                    sl.red = false;
3176 >                                xpr.red = true;
3177 >                                root = rotateRight(root, xpr);
3178 >                                xpr = (xp = x.parent) == null ?
3179 >                                    null : xp.right;
3180 >                            }
3181 >                            if (xpr != null) {
3182 >                                xpr.red = (xp == null) ? false : xp.red;
3183 >                                if ((sr = xpr.right) != null)
3184 >                                    sr.red = false;
3185 >                            }
3186 >                            if (xp != null) {
3187 >                                xp.red = false;
3188 >                                root = rotateLeft(root, xp);
3189 >                            }
3190 >                            x = root;
3191 >                        }
3192 >                    }
3193 >                }
3194 >                else { // symmetric
3195 >                    if (xpl != null && xpl.red) {
3196 >                        xpl.red = false;
3197 >                        xp.red = true;
3198 >                        root = rotateRight(root, xp);
3199 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3200 >                    }
3201 >                    if (xpl == null)
3202 >                        x = xp;
3203 >                    else {
3204 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3205 >                        if ((sl == null || !sl.red) &&
3206 >                            (sr == null || !sr.red)) {
3207 >                            xpl.red = true;
3208 >                            x = xp;
3209 >                        }
3210 >                        else {
3211 >                            if (sl == null || !sl.red) {
3212 >                                if (sr != null)
3213 >                                    sr.red = false;
3214 >                                xpl.red = true;
3215 >                                root = rotateLeft(root, xpl);
3216 >                                xpl = (xp = x.parent) == null ?
3217 >                                    null : xp.left;
3218 >                            }
3219 >                            if (xpl != null) {
3220 >                                xpl.red = (xp == null) ? false : xp.red;
3221 >                                if ((sl = xpl.left) != null)
3222 >                                    sl.red = false;
3223 >                            }
3224 >                            if (xp != null) {
3225 >                                xp.red = false;
3226 >                                root = rotateRight(root, xp);
3227 >                            }
3228 >                            x = root;
3229 >                        }
3230 >                    }
3231 >                }
3232 >            }
3233 >        }
3234 >
3235 >        /**
3236 >         * Checks invariants recursively for the tree of Nodes rooted at t.
3237 >         */
3238 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3239 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3240 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3241 >            if (tb != null && tb.next != t)
3242 >                return false;
3243 >            if (tn != null && tn.prev != t)
3244 >                return false;
3245 >            if (tp != null && t != tp.left && t != tp.right)
3246 >                return false;
3247 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3248 >                return false;
3249 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3250 >                return false;
3251 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3252 >                return false;
3253 >            if (tl != null && !checkInvariants(tl))
3254 >                return false;
3255 >            if (tr != null && !checkInvariants(tr))
3256 >                return false;
3257 >            return true;
3258 >        }
3259 >
3260 >        private static final Unsafe U = Unsafe.getUnsafe();
3261 >        private static final long LOCKSTATE
3262 >                = U.objectFieldOffset(TreeBin.class, "lockState");
3263 >    }
3264 >
3265 >    /* ----------------Table Traversal -------------- */
3266 >
3267 >    /**
3268 >     * Records the table, its length, and current traversal index for a
3269 >     * traverser that must process a region of a forwarded table before
3270 >     * proceeding with current table.
3271 >     */
3272 >    static final class TableStack<K,V> {
3273 >        int length;
3274 >        int index;
3275 >        Node<K,V>[] tab;
3276 >        TableStack<K,V> next;
3277 >    }
3278 >
3279 >    /**
3280 >     * Encapsulates traversal for methods such as containsValue; also
3281 >     * serves as a base class for other iterators and spliterators.
3282 >     *
3283 >     * Method advance visits once each still-valid node that was
3284 >     * reachable upon iterator construction. It might miss some that
3285 >     * were added to a bin after the bin was visited, which is OK wrt
3286 >     * consistency guarantees. Maintaining this property in the face
3287 >     * of possible ongoing resizes requires a fair amount of
3288 >     * bookkeeping state that is difficult to optimize away amidst
3289 >     * volatile accesses.  Even so, traversal maintains reasonable
3290 >     * throughput.
3291 >     *
3292 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3293 >     * However, if the table has been resized, then all future steps
3294 >     * must traverse both the bin at the current index as well as at
3295 >     * (index + baseSize); and so on for further resizings. To
3296 >     * paranoically cope with potential sharing by users of iterators
3297 >     * across threads, iteration terminates if a bounds checks fails
3298 >     * for a table read.
3299 >     */
3300 >    static class Traverser<K,V> {
3301 >        Node<K,V>[] tab;        // current table; updated if resized
3302 >        Node<K,V> next;         // the next entry to use
3303 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3304 >        int index;              // index of bin to use next
3305 >        int baseIndex;          // current index of initial table
3306 >        int baseLimit;          // index bound for initial table
3307 >        final int baseSize;     // initial table size
3308 >
3309 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3310 >            this.tab = tab;
3311 >            this.baseSize = size;
3312 >            this.baseIndex = this.index = index;
3313 >            this.baseLimit = limit;
3314 >            this.next = null;
3315 >        }
3316 >
3317 >        /**
3318 >         * Advances if possible, returning next valid node, or null if none.
3319 >         */
3320 >        final Node<K,V> advance() {
3321 >            Node<K,V> e;
3322 >            if ((e = next) != null)
3323 >                e = e.next;
3324 >            for (;;) {
3325 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3326 >                if (e != null)
3327 >                    return next = e;
3328 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3329 >                    (n = t.length) <= (i = index) || i < 0)
3330 >                    return next = null;
3331 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3332 >                    if (e instanceof ForwardingNode) {
3333 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3334 >                        e = null;
3335 >                        pushState(t, i, n);
3336 >                        continue;
3337 >                    }
3338 >                    else if (e instanceof TreeBin)
3339 >                        e = ((TreeBin<K,V>)e).first;
3340 >                    else
3341 >                        e = null;
3342 >                }
3343 >                if (stack != null)
3344 >                    recoverState(n);
3345 >                else if ((index = i + baseSize) >= n)
3346 >                    index = ++baseIndex; // visit upper slots if present
3347 >            }
3348 >        }
3349 >
3350 >        /**
3351 >         * Saves traversal state upon encountering a forwarding node.
3352 >         */
3353 >        private void pushState(Node<K,V>[] t, int i, int n) {
3354 >            TableStack<K,V> s = spare;  // reuse if possible
3355 >            if (s != null)
3356 >                spare = s.next;
3357 >            else
3358 >                s = new TableStack<K,V>();
3359 >            s.tab = t;
3360 >            s.length = n;
3361 >            s.index = i;
3362 >            s.next = stack;
3363 >            stack = s;
3364 >        }
3365 >
3366 >        /**
3367 >         * Possibly pops traversal state.
3368 >         *
3369 >         * @param n length of current table
3370 >         */
3371 >        private void recoverState(int n) {
3372 >            TableStack<K,V> s; int len;
3373 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3374 >                n = len;
3375 >                index = s.index;
3376 >                tab = s.tab;
3377 >                s.tab = null;
3378 >                TableStack<K,V> next = s.next;
3379 >                s.next = spare; // save for reuse
3380 >                stack = next;
3381 >                spare = s;
3382 >            }
3383 >            if (s == null && (index += baseSize) >= n)
3384 >                index = ++baseIndex;
3385 >        }
3386 >    }
3387 >
3388 >    /**
3389 >     * Base of key, value, and entry Iterators. Adds fields to
3390 >     * Traverser to support iterator.remove.
3391 >     */
3392 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3393 >        final ConcurrentHashMap<K,V> map;
3394 >        Node<K,V> lastReturned;
3395 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3396 >                    ConcurrentHashMap<K,V> map) {
3397 >            super(tab, size, index, limit);
3398 >            this.map = map;
3399              advance();
1098            return lastReturned;
3400          }
3401  
3402 <        public void remove() {
3403 <            if (lastReturned == null)
3402 >        public final boolean hasNext() { return next != null; }
3403 >        public final boolean hasMoreElements() { return next != null; }
3404 >
3405 >        public final void remove() {
3406 >            Node<K,V> p;
3407 >            if ((p = lastReturned) == null)
3408                  throw new IllegalStateException();
1104            ConcurrentHashMap.this.remove(lastReturned.key);
3409              lastReturned = null;
3410 +            map.replaceNode(p.key, null, null);
3411          }
3412      }
3413  
3414 <    final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
3415 <        public K next() { return super.nextEntry().key; }
3416 <        public K nextElement() { return super.nextEntry().key; }
3414 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3415 >        implements Iterator<K>, Enumeration<K> {
3416 >        KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3417 >                    ConcurrentHashMap<K,V> map) {
3418 >            super(tab, size, index, limit, map);
3419 >        }
3420 >
3421 >        public final K next() {
3422 >            Node<K,V> p;
3423 >            if ((p = next) == null)
3424 >                throw new NoSuchElementException();
3425 >            K k = p.key;
3426 >            lastReturned = p;
3427 >            advance();
3428 >            return k;
3429 >        }
3430 >
3431 >        public final K nextElement() { return next(); }
3432      }
3433  
3434 <    final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
3435 <        public V next() { return super.nextEntry().value; }
3436 <        public V nextElement() { return super.nextEntry().value; }
3434 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3435 >        implements Iterator<V>, Enumeration<V> {
3436 >        ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3437 >                      ConcurrentHashMap<K,V> map) {
3438 >            super(tab, size, index, limit, map);
3439 >        }
3440 >
3441 >        public final V next() {
3442 >            Node<K,V> p;
3443 >            if ((p = next) == null)
3444 >                throw new NoSuchElementException();
3445 >            V v = p.val;
3446 >            lastReturned = p;
3447 >            advance();
3448 >            return v;
3449 >        }
3450 >
3451 >        public final V nextElement() { return next(); }
3452      }
3453  
3454 +    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3455 +        implements Iterator<Map.Entry<K,V>> {
3456 +        EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3457 +                      ConcurrentHashMap<K,V> map) {
3458 +            super(tab, size, index, limit, map);
3459 +        }
3460 +
3461 +        public final Map.Entry<K,V> next() {
3462 +            Node<K,V> p;
3463 +            if ((p = next) == null)
3464 +                throw new NoSuchElementException();
3465 +            K k = p.key;
3466 +            V v = p.val;
3467 +            lastReturned = p;
3468 +            advance();
3469 +            return new MapEntry<K,V>(k, v, map);
3470 +        }
3471 +    }
3472  
3473      /**
3474 <     * Custom Entry class used by EntryIterator.next(), that relays
1122 <     * setValue changes to the underlying map.
3474 >     * Exported Entry for EntryIterator.
3475       */
3476 <    static final class WriteThroughEntry<K,V>
3477 <        extends AbstractMap.SimpleEntry<K,V>
3478 <    {
3479 <        private final ConcurrentHashMap<K,V> map;
3480 <        WriteThroughEntry(ConcurrentHashMap map, K k, V v) {
3481 <            super(k,v);
3476 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3477 >        final K key; // non-null
3478 >        V val;       // non-null
3479 >        final ConcurrentHashMap<K,V> map;
3480 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3481 >            this.key = key;
3482 >            this.val = val;
3483              this.map = map;
3484          }
3485 +        public K getKey()        { return key; }
3486 +        public V getValue()      { return val; }
3487 +        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3488 +        public String toString() {
3489 +            return Helpers.mapEntryToString(key, val);
3490 +        }
3491 +
3492 +        public boolean equals(Object o) {
3493 +            Object k, v; Map.Entry<?,?> e;
3494 +            return ((o instanceof Map.Entry) &&
3495 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3496 +                    (v = e.getValue()) != null &&
3497 +                    (k == key || k.equals(key)) &&
3498 +                    (v == val || v.equals(val)));
3499 +        }
3500  
3501          /**
3502 <         * Set our entry's value and write through to the map. The
3503 <         * value to return is somewhat arbitrary here. Since a
3504 <         * WriteThroughEntry does not necessarily track asynchronous
3505 <         * changes, the most recent "previous" value could be
3506 <         * different from what we return (or could even have been
3507 <         * removed in which case the put will re-establish). We do not
1140 <         * and cannot guarantee more.
3502 >         * Sets our entry's value and writes through to the map. The
3503 >         * value to return is somewhat arbitrary here. Since we do not
3504 >         * necessarily track asynchronous changes, the most recent
3505 >         * "previous" value could be different from what we return (or
3506 >         * could even have been removed, in which case the put will
3507 >         * re-establish). We do not and cannot guarantee more.
3508           */
3509 <        public V setValue(V value) {
3509 >        public V setValue(V value) {
3510              if (value == null) throw new NullPointerException();
3511 <            V v = super.setValue(value);
3512 <            map.put(getKey(), value);
3511 >            V v = val;
3512 >            val = value;
3513 >            map.put(key, value);
3514              return v;
3515          }
3516      }
3517  
3518 <    final class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
3519 <        public Map.Entry<K,V> next() {
3520 <            HashEntry<K,V> e = super.nextEntry();
3521 <            return new WriteThroughEntry<K,V>(ConcurrentHashMap.this,
3522 <                                              e.key, e.value);
3518 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3519 >        implements Spliterator<K> {
3520 >        long est;               // size estimate
3521 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3522 >                       long est) {
3523 >            super(tab, size, index, limit);
3524 >            this.est = est;
3525 >        }
3526 >
3527 >        public KeySpliterator<K,V> trySplit() {
3528 >            int i, f, h;
3529 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3530 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3531 >                                        f, est >>>= 1);
3532 >        }
3533 >
3534 >        public void forEachRemaining(Consumer<? super K> action) {
3535 >            if (action == null) throw new NullPointerException();
3536 >            for (Node<K,V> p; (p = advance()) != null;)
3537 >                action.accept(p.key);
3538 >        }
3539 >
3540 >        public boolean tryAdvance(Consumer<? super K> action) {
3541 >            if (action == null) throw new NullPointerException();
3542 >            Node<K,V> p;
3543 >            if ((p = advance()) == null)
3544 >                return false;
3545 >            action.accept(p.key);
3546 >            return true;
3547 >        }
3548 >
3549 >        public long estimateSize() { return est; }
3550 >
3551 >        public int characteristics() {
3552 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3553 >                Spliterator.NONNULL;
3554          }
3555      }
3556  
3557 <    final class KeySet extends AbstractSet<K> {
3558 <        public Iterator<K> iterator() {
3559 <            return new KeyIterator();
3557 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3558 >        implements Spliterator<V> {
3559 >        long est;               // size estimate
3560 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3561 >                         long est) {
3562 >            super(tab, size, index, limit);
3563 >            this.est = est;
3564 >        }
3565 >
3566 >        public ValueSpliterator<K,V> trySplit() {
3567 >            int i, f, h;
3568 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3569 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3570 >                                          f, est >>>= 1);
3571 >        }
3572 >
3573 >        public void forEachRemaining(Consumer<? super V> action) {
3574 >            if (action == null) throw new NullPointerException();
3575 >            for (Node<K,V> p; (p = advance()) != null;)
3576 >                action.accept(p.val);
3577 >        }
3578 >
3579 >        public boolean tryAdvance(Consumer<? super V> action) {
3580 >            if (action == null) throw new NullPointerException();
3581 >            Node<K,V> p;
3582 >            if ((p = advance()) == null)
3583 >                return false;
3584 >            action.accept(p.val);
3585 >            return true;
3586          }
3587 <        public int size() {
3588 <            return ConcurrentHashMap.this.size();
3587 >
3588 >        public long estimateSize() { return est; }
3589 >
3590 >        public int characteristics() {
3591 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3592          }
3593 <        public boolean contains(Object o) {
3594 <            return ConcurrentHashMap.this.containsKey(o);
3593 >    }
3594 >
3595 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3596 >        implements Spliterator<Map.Entry<K,V>> {
3597 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3598 >        long est;               // size estimate
3599 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3600 >                         long est, ConcurrentHashMap<K,V> map) {
3601 >            super(tab, size, index, limit);
3602 >            this.map = map;
3603 >            this.est = est;
3604          }
3605 <        public boolean remove(Object o) {
3606 <            return ConcurrentHashMap.this.remove(o) != null;
3605 >
3606 >        public EntrySpliterator<K,V> trySplit() {
3607 >            int i, f, h;
3608 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3609 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3610 >                                          f, est >>>= 1, map);
3611          }
3612 <        public void clear() {
3613 <            ConcurrentHashMap.this.clear();
3612 >
3613 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3614 >            if (action == null) throw new NullPointerException();
3615 >            for (Node<K,V> p; (p = advance()) != null; )
3616 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3617          }
3618 <        public Object[] toArray() {
3619 <            Collection<K> c = new ArrayList<K>();
3620 <            for (Iterator<K> i = iterator(); i.hasNext(); )
3621 <                c.add(i.next());
3622 <            return c.toArray();
3618 >
3619 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3620 >            if (action == null) throw new NullPointerException();
3621 >            Node<K,V> p;
3622 >            if ((p = advance()) == null)
3623 >                return false;
3624 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3625 >            return true;
3626          }
3627 <        public <T> T[] toArray(T[] a) {
3628 <            Collection<K> c = new ArrayList<K>();
3629 <            for (Iterator<K> i = iterator(); i.hasNext(); )
3630 <                c.add(i.next());
3631 <            return c.toArray(a);
3627 >
3628 >        public long estimateSize() { return est; }
3629 >
3630 >        public int characteristics() {
3631 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3632 >                Spliterator.NONNULL;
3633          }
3634      }
3635  
3636 <    final class Values extends AbstractCollection<V> {
3637 <        public Iterator<V> iterator() {
3638 <            return new ValueIterator();
3636 >    // Parallel bulk operations
3637 >
3638 >    /**
3639 >     * Computes initial batch value for bulk tasks. The returned value
3640 >     * is approximately exp2 of the number of times (minus one) to
3641 >     * split task by two before executing leaf action. This value is
3642 >     * faster to compute and more convenient to use as a guide to
3643 >     * splitting than is the depth, since it is used while dividing by
3644 >     * two anyway.
3645 >     */
3646 >    final int batchFor(long b) {
3647 >        long n;
3648 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3649 >            return 0;
3650 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3651 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3652 >    }
3653 >
3654 >    /**
3655 >     * Performs the given action for each (key, value).
3656 >     *
3657 >     * @param parallelismThreshold the (estimated) number of elements
3658 >     * needed for this operation to be executed in parallel
3659 >     * @param action the action
3660 >     * @since 1.8
3661 >     */
3662 >    public void forEach(long parallelismThreshold,
3663 >                        BiConsumer<? super K,? super V> action) {
3664 >        if (action == null) throw new NullPointerException();
3665 >        new ForEachMappingTask<K,V>
3666 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3667 >             action).invoke();
3668 >    }
3669 >
3670 >    /**
3671 >     * Performs the given action for each non-null transformation
3672 >     * of each (key, value).
3673 >     *
3674 >     * @param parallelismThreshold the (estimated) number of elements
3675 >     * needed for this operation to be executed in parallel
3676 >     * @param transformer a function returning the transformation
3677 >     * for an element, or null if there is no transformation (in
3678 >     * which case the action is not applied)
3679 >     * @param action the action
3680 >     * @param <U> the return type of the transformer
3681 >     * @since 1.8
3682 >     */
3683 >    public <U> void forEach(long parallelismThreshold,
3684 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3685 >                            Consumer<? super U> action) {
3686 >        if (transformer == null || action == null)
3687 >            throw new NullPointerException();
3688 >        new ForEachTransformedMappingTask<K,V,U>
3689 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3690 >             transformer, action).invoke();
3691 >    }
3692 >
3693 >    /**
3694 >     * Returns a non-null result from applying the given search
3695 >     * function on each (key, value), or null if none.  Upon
3696 >     * success, further element processing is suppressed and the
3697 >     * results of any other parallel invocations of the search
3698 >     * function are ignored.
3699 >     *
3700 >     * @param parallelismThreshold the (estimated) number of elements
3701 >     * needed for this operation to be executed in parallel
3702 >     * @param searchFunction a function returning a non-null
3703 >     * result on success, else null
3704 >     * @param <U> the return type of the search function
3705 >     * @return a non-null result from applying the given search
3706 >     * function on each (key, value), or null if none
3707 >     * @since 1.8
3708 >     */
3709 >    public <U> U search(long parallelismThreshold,
3710 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3711 >        if (searchFunction == null) throw new NullPointerException();
3712 >        return new SearchMappingsTask<K,V,U>
3713 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3714 >             searchFunction, new AtomicReference<U>()).invoke();
3715 >    }
3716 >
3717 >    /**
3718 >     * Returns the result of accumulating the given transformation
3719 >     * of all (key, value) pairs using the given reducer to
3720 >     * combine values, or null if none.
3721 >     *
3722 >     * @param parallelismThreshold the (estimated) number of elements
3723 >     * needed for this operation to be executed in parallel
3724 >     * @param transformer a function returning the transformation
3725 >     * for an element, or null if there is no transformation (in
3726 >     * which case it is not combined)
3727 >     * @param reducer a commutative associative combining function
3728 >     * @param <U> the return type of the transformer
3729 >     * @return the result of accumulating the given transformation
3730 >     * of all (key, value) pairs
3731 >     * @since 1.8
3732 >     */
3733 >    public <U> U reduce(long parallelismThreshold,
3734 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3735 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3736 >        if (transformer == null || reducer == null)
3737 >            throw new NullPointerException();
3738 >        return new MapReduceMappingsTask<K,V,U>
3739 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3740 >             null, transformer, reducer).invoke();
3741 >    }
3742 >
3743 >    /**
3744 >     * Returns the result of accumulating the given transformation
3745 >     * of all (key, value) pairs using the given reducer to
3746 >     * combine values, and the given basis as an identity value.
3747 >     *
3748 >     * @param parallelismThreshold the (estimated) number of elements
3749 >     * needed for this operation to be executed in parallel
3750 >     * @param transformer a function returning the transformation
3751 >     * for an element
3752 >     * @param basis the identity (initial default value) for the reduction
3753 >     * @param reducer a commutative associative combining function
3754 >     * @return the result of accumulating the given transformation
3755 >     * of all (key, value) pairs
3756 >     * @since 1.8
3757 >     */
3758 >    public double reduceToDouble(long parallelismThreshold,
3759 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3760 >                                 double basis,
3761 >                                 DoubleBinaryOperator reducer) {
3762 >        if (transformer == null || reducer == null)
3763 >            throw new NullPointerException();
3764 >        return new MapReduceMappingsToDoubleTask<K,V>
3765 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3766 >             null, transformer, basis, reducer).invoke();
3767 >    }
3768 >
3769 >    /**
3770 >     * Returns the result of accumulating the given transformation
3771 >     * of all (key, value) pairs using the given reducer to
3772 >     * combine values, and the given basis as an identity value.
3773 >     *
3774 >     * @param parallelismThreshold the (estimated) number of elements
3775 >     * needed for this operation to be executed in parallel
3776 >     * @param transformer a function returning the transformation
3777 >     * for an element
3778 >     * @param basis the identity (initial default value) for the reduction
3779 >     * @param reducer a commutative associative combining function
3780 >     * @return the result of accumulating the given transformation
3781 >     * of all (key, value) pairs
3782 >     * @since 1.8
3783 >     */
3784 >    public long reduceToLong(long parallelismThreshold,
3785 >                             ToLongBiFunction<? super K, ? super V> transformer,
3786 >                             long basis,
3787 >                             LongBinaryOperator reducer) {
3788 >        if (transformer == null || reducer == null)
3789 >            throw new NullPointerException();
3790 >        return new MapReduceMappingsToLongTask<K,V>
3791 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3792 >             null, transformer, basis, reducer).invoke();
3793 >    }
3794 >
3795 >    /**
3796 >     * Returns the result of accumulating the given transformation
3797 >     * of all (key, value) pairs using the given reducer to
3798 >     * combine values, and the given basis as an identity value.
3799 >     *
3800 >     * @param parallelismThreshold the (estimated) number of elements
3801 >     * needed for this operation to be executed in parallel
3802 >     * @param transformer a function returning the transformation
3803 >     * for an element
3804 >     * @param basis the identity (initial default value) for the reduction
3805 >     * @param reducer a commutative associative combining function
3806 >     * @return the result of accumulating the given transformation
3807 >     * of all (key, value) pairs
3808 >     * @since 1.8
3809 >     */
3810 >    public int reduceToInt(long parallelismThreshold,
3811 >                           ToIntBiFunction<? super K, ? super V> transformer,
3812 >                           int basis,
3813 >                           IntBinaryOperator reducer) {
3814 >        if (transformer == null || reducer == null)
3815 >            throw new NullPointerException();
3816 >        return new MapReduceMappingsToIntTask<K,V>
3817 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3818 >             null, transformer, basis, reducer).invoke();
3819 >    }
3820 >
3821 >    /**
3822 >     * Performs the given action for each key.
3823 >     *
3824 >     * @param parallelismThreshold the (estimated) number of elements
3825 >     * needed for this operation to be executed in parallel
3826 >     * @param action the action
3827 >     * @since 1.8
3828 >     */
3829 >    public void forEachKey(long parallelismThreshold,
3830 >                           Consumer<? super K> action) {
3831 >        if (action == null) throw new NullPointerException();
3832 >        new ForEachKeyTask<K,V>
3833 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3834 >             action).invoke();
3835 >    }
3836 >
3837 >    /**
3838 >     * Performs the given action for each non-null transformation
3839 >     * of each key.
3840 >     *
3841 >     * @param parallelismThreshold the (estimated) number of elements
3842 >     * needed for this operation to be executed in parallel
3843 >     * @param transformer a function returning the transformation
3844 >     * for an element, or null if there is no transformation (in
3845 >     * which case the action is not applied)
3846 >     * @param action the action
3847 >     * @param <U> the return type of the transformer
3848 >     * @since 1.8
3849 >     */
3850 >    public <U> void forEachKey(long parallelismThreshold,
3851 >                               Function<? super K, ? extends U> transformer,
3852 >                               Consumer<? super U> action) {
3853 >        if (transformer == null || action == null)
3854 >            throw new NullPointerException();
3855 >        new ForEachTransformedKeyTask<K,V,U>
3856 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3857 >             transformer, action).invoke();
3858 >    }
3859 >
3860 >    /**
3861 >     * Returns a non-null result from applying the given search
3862 >     * function on each key, or null if none. Upon success,
3863 >     * further element processing is suppressed and the results of
3864 >     * any other parallel invocations of the search function are
3865 >     * ignored.
3866 >     *
3867 >     * @param parallelismThreshold the (estimated) number of elements
3868 >     * needed for this operation to be executed in parallel
3869 >     * @param searchFunction a function returning a non-null
3870 >     * result on success, else null
3871 >     * @param <U> the return type of the search function
3872 >     * @return a non-null result from applying the given search
3873 >     * function on each key, or null if none
3874 >     * @since 1.8
3875 >     */
3876 >    public <U> U searchKeys(long parallelismThreshold,
3877 >                            Function<? super K, ? extends U> searchFunction) {
3878 >        if (searchFunction == null) throw new NullPointerException();
3879 >        return new SearchKeysTask<K,V,U>
3880 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3881 >             searchFunction, new AtomicReference<U>()).invoke();
3882 >    }
3883 >
3884 >    /**
3885 >     * Returns the result of accumulating all keys using the given
3886 >     * reducer to combine values, or null if none.
3887 >     *
3888 >     * @param parallelismThreshold the (estimated) number of elements
3889 >     * needed for this operation to be executed in parallel
3890 >     * @param reducer a commutative associative combining function
3891 >     * @return the result of accumulating all keys using the given
3892 >     * reducer to combine values, or null if none
3893 >     * @since 1.8
3894 >     */
3895 >    public K reduceKeys(long parallelismThreshold,
3896 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3897 >        if (reducer == null) throw new NullPointerException();
3898 >        return new ReduceKeysTask<K,V>
3899 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3900 >             null, reducer).invoke();
3901 >    }
3902 >
3903 >    /**
3904 >     * Returns the result of accumulating the given transformation
3905 >     * of all keys using the given reducer to combine values, or
3906 >     * null if none.
3907 >     *
3908 >     * @param parallelismThreshold the (estimated) number of elements
3909 >     * needed for this operation to be executed in parallel
3910 >     * @param transformer a function returning the transformation
3911 >     * for an element, or null if there is no transformation (in
3912 >     * which case it is not combined)
3913 >     * @param reducer a commutative associative combining function
3914 >     * @param <U> the return type of the transformer
3915 >     * @return the result of accumulating the given transformation
3916 >     * of all keys
3917 >     * @since 1.8
3918 >     */
3919 >    public <U> U reduceKeys(long parallelismThreshold,
3920 >                            Function<? super K, ? extends U> transformer,
3921 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3922 >        if (transformer == null || reducer == null)
3923 >            throw new NullPointerException();
3924 >        return new MapReduceKeysTask<K,V,U>
3925 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3926 >             null, transformer, reducer).invoke();
3927 >    }
3928 >
3929 >    /**
3930 >     * Returns the result of accumulating the given transformation
3931 >     * of all keys using the given reducer to combine values, and
3932 >     * the given basis as an identity value.
3933 >     *
3934 >     * @param parallelismThreshold the (estimated) number of elements
3935 >     * needed for this operation to be executed in parallel
3936 >     * @param transformer a function returning the transformation
3937 >     * for an element
3938 >     * @param basis the identity (initial default value) for the reduction
3939 >     * @param reducer a commutative associative combining function
3940 >     * @return the result of accumulating the given transformation
3941 >     * of all keys
3942 >     * @since 1.8
3943 >     */
3944 >    public double reduceKeysToDouble(long parallelismThreshold,
3945 >                                     ToDoubleFunction<? super K> transformer,
3946 >                                     double basis,
3947 >                                     DoubleBinaryOperator reducer) {
3948 >        if (transformer == null || reducer == null)
3949 >            throw new NullPointerException();
3950 >        return new MapReduceKeysToDoubleTask<K,V>
3951 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3952 >             null, transformer, basis, reducer).invoke();
3953 >    }
3954 >
3955 >    /**
3956 >     * Returns the result of accumulating the given transformation
3957 >     * of all keys using the given reducer to combine values, and
3958 >     * the given basis as an identity value.
3959 >     *
3960 >     * @param parallelismThreshold the (estimated) number of elements
3961 >     * needed for this operation to be executed in parallel
3962 >     * @param transformer a function returning the transformation
3963 >     * for an element
3964 >     * @param basis the identity (initial default value) for the reduction
3965 >     * @param reducer a commutative associative combining function
3966 >     * @return the result of accumulating the given transformation
3967 >     * of all keys
3968 >     * @since 1.8
3969 >     */
3970 >    public long reduceKeysToLong(long parallelismThreshold,
3971 >                                 ToLongFunction<? super K> transformer,
3972 >                                 long basis,
3973 >                                 LongBinaryOperator reducer) {
3974 >        if (transformer == null || reducer == null)
3975 >            throw new NullPointerException();
3976 >        return new MapReduceKeysToLongTask<K,V>
3977 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3978 >             null, transformer, basis, reducer).invoke();
3979 >    }
3980 >
3981 >    /**
3982 >     * Returns the result of accumulating the given transformation
3983 >     * of all keys using the given reducer to combine values, and
3984 >     * the given basis as an identity value.
3985 >     *
3986 >     * @param parallelismThreshold the (estimated) number of elements
3987 >     * needed for this operation to be executed in parallel
3988 >     * @param transformer a function returning the transformation
3989 >     * for an element
3990 >     * @param basis the identity (initial default value) for the reduction
3991 >     * @param reducer a commutative associative combining function
3992 >     * @return the result of accumulating the given transformation
3993 >     * of all keys
3994 >     * @since 1.8
3995 >     */
3996 >    public int reduceKeysToInt(long parallelismThreshold,
3997 >                               ToIntFunction<? super K> transformer,
3998 >                               int basis,
3999 >                               IntBinaryOperator reducer) {
4000 >        if (transformer == null || reducer == null)
4001 >            throw new NullPointerException();
4002 >        return new MapReduceKeysToIntTask<K,V>
4003 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4004 >             null, transformer, basis, reducer).invoke();
4005 >    }
4006 >
4007 >    /**
4008 >     * Performs the given action for each value.
4009 >     *
4010 >     * @param parallelismThreshold the (estimated) number of elements
4011 >     * needed for this operation to be executed in parallel
4012 >     * @param action the action
4013 >     * @since 1.8
4014 >     */
4015 >    public void forEachValue(long parallelismThreshold,
4016 >                             Consumer<? super V> action) {
4017 >        if (action == null)
4018 >            throw new NullPointerException();
4019 >        new ForEachValueTask<K,V>
4020 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4021 >             action).invoke();
4022 >    }
4023 >
4024 >    /**
4025 >     * Performs the given action for each non-null transformation
4026 >     * of each value.
4027 >     *
4028 >     * @param parallelismThreshold the (estimated) number of elements
4029 >     * needed for this operation to be executed in parallel
4030 >     * @param transformer a function returning the transformation
4031 >     * for an element, or null if there is no transformation (in
4032 >     * which case the action is not applied)
4033 >     * @param action the action
4034 >     * @param <U> the return type of the transformer
4035 >     * @since 1.8
4036 >     */
4037 >    public <U> void forEachValue(long parallelismThreshold,
4038 >                                 Function<? super V, ? extends U> transformer,
4039 >                                 Consumer<? super U> action) {
4040 >        if (transformer == null || action == null)
4041 >            throw new NullPointerException();
4042 >        new ForEachTransformedValueTask<K,V,U>
4043 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4044 >             transformer, action).invoke();
4045 >    }
4046 >
4047 >    /**
4048 >     * Returns a non-null result from applying the given search
4049 >     * function on each value, or null if none.  Upon success,
4050 >     * further element processing is suppressed and the results of
4051 >     * any other parallel invocations of the search function are
4052 >     * ignored.
4053 >     *
4054 >     * @param parallelismThreshold the (estimated) number of elements
4055 >     * needed for this operation to be executed in parallel
4056 >     * @param searchFunction a function returning a non-null
4057 >     * result on success, else null
4058 >     * @param <U> the return type of the search function
4059 >     * @return a non-null result from applying the given search
4060 >     * function on each value, or null if none
4061 >     * @since 1.8
4062 >     */
4063 >    public <U> U searchValues(long parallelismThreshold,
4064 >                              Function<? super V, ? extends U> searchFunction) {
4065 >        if (searchFunction == null) throw new NullPointerException();
4066 >        return new SearchValuesTask<K,V,U>
4067 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4068 >             searchFunction, new AtomicReference<U>()).invoke();
4069 >    }
4070 >
4071 >    /**
4072 >     * Returns the result of accumulating all values using the
4073 >     * given reducer to combine values, or null if none.
4074 >     *
4075 >     * @param parallelismThreshold the (estimated) number of elements
4076 >     * needed for this operation to be executed in parallel
4077 >     * @param reducer a commutative associative combining function
4078 >     * @return the result of accumulating all values
4079 >     * @since 1.8
4080 >     */
4081 >    public V reduceValues(long parallelismThreshold,
4082 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4083 >        if (reducer == null) throw new NullPointerException();
4084 >        return new ReduceValuesTask<K,V>
4085 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4086 >             null, reducer).invoke();
4087 >    }
4088 >
4089 >    /**
4090 >     * Returns the result of accumulating the given transformation
4091 >     * of all values using the given reducer to combine values, or
4092 >     * null if none.
4093 >     *
4094 >     * @param parallelismThreshold the (estimated) number of elements
4095 >     * needed for this operation to be executed in parallel
4096 >     * @param transformer a function returning the transformation
4097 >     * for an element, or null if there is no transformation (in
4098 >     * which case it is not combined)
4099 >     * @param reducer a commutative associative combining function
4100 >     * @param <U> the return type of the transformer
4101 >     * @return the result of accumulating the given transformation
4102 >     * of all values
4103 >     * @since 1.8
4104 >     */
4105 >    public <U> U reduceValues(long parallelismThreshold,
4106 >                              Function<? super V, ? extends U> transformer,
4107 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4108 >        if (transformer == null || reducer == null)
4109 >            throw new NullPointerException();
4110 >        return new MapReduceValuesTask<K,V,U>
4111 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4112 >             null, transformer, reducer).invoke();
4113 >    }
4114 >
4115 >    /**
4116 >     * Returns the result of accumulating the given transformation
4117 >     * of all values using the given reducer to combine values,
4118 >     * and the given basis as an identity value.
4119 >     *
4120 >     * @param parallelismThreshold the (estimated) number of elements
4121 >     * needed for this operation to be executed in parallel
4122 >     * @param transformer a function returning the transformation
4123 >     * for an element
4124 >     * @param basis the identity (initial default value) for the reduction
4125 >     * @param reducer a commutative associative combining function
4126 >     * @return the result of accumulating the given transformation
4127 >     * of all values
4128 >     * @since 1.8
4129 >     */
4130 >    public double reduceValuesToDouble(long parallelismThreshold,
4131 >                                       ToDoubleFunction<? super V> transformer,
4132 >                                       double basis,
4133 >                                       DoubleBinaryOperator reducer) {
4134 >        if (transformer == null || reducer == null)
4135 >            throw new NullPointerException();
4136 >        return new MapReduceValuesToDoubleTask<K,V>
4137 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4138 >             null, transformer, basis, reducer).invoke();
4139 >    }
4140 >
4141 >    /**
4142 >     * Returns the result of accumulating the given transformation
4143 >     * of all values using the given reducer to combine values,
4144 >     * and the given basis as an identity value.
4145 >     *
4146 >     * @param parallelismThreshold the (estimated) number of elements
4147 >     * needed for this operation to be executed in parallel
4148 >     * @param transformer a function returning the transformation
4149 >     * for an element
4150 >     * @param basis the identity (initial default value) for the reduction
4151 >     * @param reducer a commutative associative combining function
4152 >     * @return the result of accumulating the given transformation
4153 >     * of all values
4154 >     * @since 1.8
4155 >     */
4156 >    public long reduceValuesToLong(long parallelismThreshold,
4157 >                                   ToLongFunction<? super V> transformer,
4158 >                                   long basis,
4159 >                                   LongBinaryOperator reducer) {
4160 >        if (transformer == null || reducer == null)
4161 >            throw new NullPointerException();
4162 >        return new MapReduceValuesToLongTask<K,V>
4163 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4164 >             null, transformer, basis, reducer).invoke();
4165 >    }
4166 >
4167 >    /**
4168 >     * Returns the result of accumulating the given transformation
4169 >     * of all values using the given reducer to combine values,
4170 >     * and the given basis as an identity value.
4171 >     *
4172 >     * @param parallelismThreshold the (estimated) number of elements
4173 >     * needed for this operation to be executed in parallel
4174 >     * @param transformer a function returning the transformation
4175 >     * for an element
4176 >     * @param basis the identity (initial default value) for the reduction
4177 >     * @param reducer a commutative associative combining function
4178 >     * @return the result of accumulating the given transformation
4179 >     * of all values
4180 >     * @since 1.8
4181 >     */
4182 >    public int reduceValuesToInt(long parallelismThreshold,
4183 >                                 ToIntFunction<? super V> transformer,
4184 >                                 int basis,
4185 >                                 IntBinaryOperator reducer) {
4186 >        if (transformer == null || reducer == null)
4187 >            throw new NullPointerException();
4188 >        return new MapReduceValuesToIntTask<K,V>
4189 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4190 >             null, transformer, basis, reducer).invoke();
4191 >    }
4192 >
4193 >    /**
4194 >     * Performs the given action for each entry.
4195 >     *
4196 >     * @param parallelismThreshold the (estimated) number of elements
4197 >     * needed for this operation to be executed in parallel
4198 >     * @param action the action
4199 >     * @since 1.8
4200 >     */
4201 >    public void forEachEntry(long parallelismThreshold,
4202 >                             Consumer<? super Map.Entry<K,V>> action) {
4203 >        if (action == null) throw new NullPointerException();
4204 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4205 >                                  action).invoke();
4206 >    }
4207 >
4208 >    /**
4209 >     * Performs the given action for each non-null transformation
4210 >     * of each entry.
4211 >     *
4212 >     * @param parallelismThreshold the (estimated) number of elements
4213 >     * needed for this operation to be executed in parallel
4214 >     * @param transformer a function returning the transformation
4215 >     * for an element, or null if there is no transformation (in
4216 >     * which case the action is not applied)
4217 >     * @param action the action
4218 >     * @param <U> the return type of the transformer
4219 >     * @since 1.8
4220 >     */
4221 >    public <U> void forEachEntry(long parallelismThreshold,
4222 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4223 >                                 Consumer<? super U> action) {
4224 >        if (transformer == null || action == null)
4225 >            throw new NullPointerException();
4226 >        new ForEachTransformedEntryTask<K,V,U>
4227 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4228 >             transformer, action).invoke();
4229 >    }
4230 >
4231 >    /**
4232 >     * Returns a non-null result from applying the given search
4233 >     * function on each entry, or null if none.  Upon success,
4234 >     * further element processing is suppressed and the results of
4235 >     * any other parallel invocations of the search function are
4236 >     * ignored.
4237 >     *
4238 >     * @param parallelismThreshold the (estimated) number of elements
4239 >     * needed for this operation to be executed in parallel
4240 >     * @param searchFunction a function returning a non-null
4241 >     * result on success, else null
4242 >     * @param <U> the return type of the search function
4243 >     * @return a non-null result from applying the given search
4244 >     * function on each entry, or null if none
4245 >     * @since 1.8
4246 >     */
4247 >    public <U> U searchEntries(long parallelismThreshold,
4248 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4249 >        if (searchFunction == null) throw new NullPointerException();
4250 >        return new SearchEntriesTask<K,V,U>
4251 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4252 >             searchFunction, new AtomicReference<U>()).invoke();
4253 >    }
4254 >
4255 >    /**
4256 >     * Returns the result of accumulating all entries using the
4257 >     * given reducer to combine values, or null if none.
4258 >     *
4259 >     * @param parallelismThreshold the (estimated) number of elements
4260 >     * needed for this operation to be executed in parallel
4261 >     * @param reducer a commutative associative combining function
4262 >     * @return the result of accumulating all entries
4263 >     * @since 1.8
4264 >     */
4265 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4266 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4267 >        if (reducer == null) throw new NullPointerException();
4268 >        return new ReduceEntriesTask<K,V>
4269 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4270 >             null, reducer).invoke();
4271 >    }
4272 >
4273 >    /**
4274 >     * Returns the result of accumulating the given transformation
4275 >     * of all entries using the given reducer to combine values,
4276 >     * or null if none.
4277 >     *
4278 >     * @param parallelismThreshold the (estimated) number of elements
4279 >     * needed for this operation to be executed in parallel
4280 >     * @param transformer a function returning the transformation
4281 >     * for an element, or null if there is no transformation (in
4282 >     * which case it is not combined)
4283 >     * @param reducer a commutative associative combining function
4284 >     * @param <U> the return type of the transformer
4285 >     * @return the result of accumulating the given transformation
4286 >     * of all entries
4287 >     * @since 1.8
4288 >     */
4289 >    public <U> U reduceEntries(long parallelismThreshold,
4290 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4291 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4292 >        if (transformer == null || reducer == null)
4293 >            throw new NullPointerException();
4294 >        return new MapReduceEntriesTask<K,V,U>
4295 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4296 >             null, transformer, reducer).invoke();
4297 >    }
4298 >
4299 >    /**
4300 >     * Returns the result of accumulating the given transformation
4301 >     * of all entries using the given reducer to combine values,
4302 >     * and the given basis as an identity value.
4303 >     *
4304 >     * @param parallelismThreshold the (estimated) number of elements
4305 >     * needed for this operation to be executed in parallel
4306 >     * @param transformer a function returning the transformation
4307 >     * for an element
4308 >     * @param basis the identity (initial default value) for the reduction
4309 >     * @param reducer a commutative associative combining function
4310 >     * @return the result of accumulating the given transformation
4311 >     * of all entries
4312 >     * @since 1.8
4313 >     */
4314 >    public double reduceEntriesToDouble(long parallelismThreshold,
4315 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4316 >                                        double basis,
4317 >                                        DoubleBinaryOperator reducer) {
4318 >        if (transformer == null || reducer == null)
4319 >            throw new NullPointerException();
4320 >        return new MapReduceEntriesToDoubleTask<K,V>
4321 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4322 >             null, transformer, basis, reducer).invoke();
4323 >    }
4324 >
4325 >    /**
4326 >     * Returns the result of accumulating the given transformation
4327 >     * of all entries using the given reducer to combine values,
4328 >     * and the given basis as an identity value.
4329 >     *
4330 >     * @param parallelismThreshold the (estimated) number of elements
4331 >     * needed for this operation to be executed in parallel
4332 >     * @param transformer a function returning the transformation
4333 >     * for an element
4334 >     * @param basis the identity (initial default value) for the reduction
4335 >     * @param reducer a commutative associative combining function
4336 >     * @return the result of accumulating the given transformation
4337 >     * of all entries
4338 >     * @since 1.8
4339 >     */
4340 >    public long reduceEntriesToLong(long parallelismThreshold,
4341 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4342 >                                    long basis,
4343 >                                    LongBinaryOperator reducer) {
4344 >        if (transformer == null || reducer == null)
4345 >            throw new NullPointerException();
4346 >        return new MapReduceEntriesToLongTask<K,V>
4347 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4348 >             null, transformer, basis, reducer).invoke();
4349 >    }
4350 >
4351 >    /**
4352 >     * Returns the result of accumulating the given transformation
4353 >     * of all entries using the given reducer to combine values,
4354 >     * and the given basis as an identity value.
4355 >     *
4356 >     * @param parallelismThreshold the (estimated) number of elements
4357 >     * needed for this operation to be executed in parallel
4358 >     * @param transformer a function returning the transformation
4359 >     * for an element
4360 >     * @param basis the identity (initial default value) for the reduction
4361 >     * @param reducer a commutative associative combining function
4362 >     * @return the result of accumulating the given transformation
4363 >     * of all entries
4364 >     * @since 1.8
4365 >     */
4366 >    public int reduceEntriesToInt(long parallelismThreshold,
4367 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4368 >                                  int basis,
4369 >                                  IntBinaryOperator reducer) {
4370 >        if (transformer == null || reducer == null)
4371 >            throw new NullPointerException();
4372 >        return new MapReduceEntriesToIntTask<K,V>
4373 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4374 >             null, transformer, basis, reducer).invoke();
4375 >    }
4376 >
4377 >
4378 >    /* ----------------Views -------------- */
4379 >
4380 >    /**
4381 >     * Base class for views.
4382 >     */
4383 >    abstract static class CollectionView<K,V,E>
4384 >        implements Collection<E>, java.io.Serializable {
4385 >        private static final long serialVersionUID = 7249069246763182397L;
4386 >        final ConcurrentHashMap<K,V> map;
4387 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4388 >
4389 >        /**
4390 >         * Returns the map backing this view.
4391 >         *
4392 >         * @return the map backing this view
4393 >         */
4394 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4395 >
4396 >        /**
4397 >         * Removes all of the elements from this view, by removing all
4398 >         * the mappings from the map backing this view.
4399 >         */
4400 >        public final void clear()      { map.clear(); }
4401 >        public final int size()        { return map.size(); }
4402 >        public final boolean isEmpty() { return map.isEmpty(); }
4403 >
4404 >        // implementations below rely on concrete classes supplying these
4405 >        // abstract methods
4406 >        /**
4407 >         * Returns an iterator over the elements in this collection.
4408 >         *
4409 >         * <p>The returned iterator is
4410 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4411 >         *
4412 >         * @return an iterator over the elements in this collection
4413 >         */
4414 >        public abstract Iterator<E> iterator();
4415 >        public abstract boolean contains(Object o);
4416 >        public abstract boolean remove(Object o);
4417 >
4418 >        private static final String OOME_MSG = "Required array size too large";
4419 >
4420 >        public final Object[] toArray() {
4421 >            long sz = map.mappingCount();
4422 >            if (sz > MAX_ARRAY_SIZE)
4423 >                throw new OutOfMemoryError(OOME_MSG);
4424 >            int n = (int)sz;
4425 >            Object[] r = new Object[n];
4426 >            int i = 0;
4427 >            for (E e : this) {
4428 >                if (i == n) {
4429 >                    if (n >= MAX_ARRAY_SIZE)
4430 >                        throw new OutOfMemoryError(OOME_MSG);
4431 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4432 >                        n = MAX_ARRAY_SIZE;
4433 >                    else
4434 >                        n += (n >>> 1) + 1;
4435 >                    r = Arrays.copyOf(r, n);
4436 >                }
4437 >                r[i++] = e;
4438 >            }
4439 >            return (i == n) ? r : Arrays.copyOf(r, i);
4440          }
4441 <        public int size() {
4442 <            return ConcurrentHashMap.this.size();
4441 >
4442 >        @SuppressWarnings("unchecked")
4443 >        public final <T> T[] toArray(T[] a) {
4444 >            long sz = map.mappingCount();
4445 >            if (sz > MAX_ARRAY_SIZE)
4446 >                throw new OutOfMemoryError(OOME_MSG);
4447 >            int m = (int)sz;
4448 >            T[] r = (a.length >= m) ? a :
4449 >                (T[])java.lang.reflect.Array
4450 >                .newInstance(a.getClass().getComponentType(), m);
4451 >            int n = r.length;
4452 >            int i = 0;
4453 >            for (E e : this) {
4454 >                if (i == n) {
4455 >                    if (n >= MAX_ARRAY_SIZE)
4456 >                        throw new OutOfMemoryError(OOME_MSG);
4457 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4458 >                        n = MAX_ARRAY_SIZE;
4459 >                    else
4460 >                        n += (n >>> 1) + 1;
4461 >                    r = Arrays.copyOf(r, n);
4462 >                }
4463 >                r[i++] = (T)e;
4464 >            }
4465 >            if (a == r && i < n) {
4466 >                r[i] = null; // null-terminate
4467 >                return r;
4468 >            }
4469 >            return (i == n) ? r : Arrays.copyOf(r, i);
4470          }
4471 <        public boolean contains(Object o) {
4472 <            return ConcurrentHashMap.this.containsValue(o);
4471 >
4472 >        /**
4473 >         * Returns a string representation of this collection.
4474 >         * The string representation consists of the string representations
4475 >         * of the collection's elements in the order they are returned by
4476 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4477 >         * Adjacent elements are separated by the characters {@code ", "}
4478 >         * (comma and space).  Elements are converted to strings as by
4479 >         * {@link String#valueOf(Object)}.
4480 >         *
4481 >         * @return a string representation of this collection
4482 >         */
4483 >        public final String toString() {
4484 >            StringBuilder sb = new StringBuilder();
4485 >            sb.append('[');
4486 >            Iterator<E> it = iterator();
4487 >            if (it.hasNext()) {
4488 >                for (;;) {
4489 >                    Object e = it.next();
4490 >                    sb.append(e == this ? "(this Collection)" : e);
4491 >                    if (!it.hasNext())
4492 >                        break;
4493 >                    sb.append(',').append(' ');
4494 >                }
4495 >            }
4496 >            return sb.append(']').toString();
4497          }
4498 <        public void clear() {
4499 <            ConcurrentHashMap.this.clear();
4498 >
4499 >        public final boolean containsAll(Collection<?> c) {
4500 >            if (c != this) {
4501 >                for (Object e : c) {
4502 >                    if (e == null || !contains(e))
4503 >                        return false;
4504 >                }
4505 >            }
4506 >            return true;
4507          }
4508 <        public Object[] toArray() {
4509 <            Collection<V> c = new ArrayList<V>();
4510 <            for (Iterator<V> i = iterator(); i.hasNext(); )
4511 <                c.add(i.next());
4512 <            return c.toArray();
4508 >
4509 >        public boolean removeAll(Collection<?> c) {
4510 >            if (c == null) throw new NullPointerException();
4511 >            boolean modified = false;
4512 >            // Use (c instanceof Set) as a hint that lookup in c is as
4513 >            // efficient as this view
4514 >            Node<K,V>[] t;
4515 >            if ((t = map.table) == null) {
4516 >                return false;
4517 >            } else if (c instanceof Set<?> && c.size() > t.length) {
4518 >                for (Iterator<?> it = iterator(); it.hasNext(); ) {
4519 >                    if (c.contains(it.next())) {
4520 >                        it.remove();
4521 >                        modified = true;
4522 >                    }
4523 >                }
4524 >            } else {
4525 >                for (Object e : c)
4526 >                    modified |= remove(e);
4527 >            }
4528 >            return modified;
4529          }
4530 <        public <T> T[] toArray(T[] a) {
4531 <            Collection<V> c = new ArrayList<V>();
4532 <            for (Iterator<V> i = iterator(); i.hasNext(); )
4533 <                c.add(i.next());
4534 <            return c.toArray(a);
4530 >
4531 >        public final boolean retainAll(Collection<?> c) {
4532 >            if (c == null) throw new NullPointerException();
4533 >            boolean modified = false;
4534 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4535 >                if (!c.contains(it.next())) {
4536 >                    it.remove();
4537 >                    modified = true;
4538 >                }
4539 >            }
4540 >            return modified;
4541          }
4542 +
4543      }
4544  
4545 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4546 <        public Iterator<Map.Entry<K,V>> iterator() {
4547 <            return new EntryIterator();
4545 >    /**
4546 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4547 >     * which additions may optionally be enabled by mapping to a
4548 >     * common value.  This class cannot be directly instantiated.
4549 >     * See {@link #keySet() keySet()},
4550 >     * {@link #keySet(Object) keySet(V)},
4551 >     * {@link #newKeySet() newKeySet()},
4552 >     * {@link #newKeySet(int) newKeySet(int)}.
4553 >     *
4554 >     * @since 1.8
4555 >     */
4556 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4557 >        implements Set<K>, java.io.Serializable {
4558 >        private static final long serialVersionUID = 7249069246763182397L;
4559 >        private final V value;
4560 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4561 >            super(map);
4562 >            this.value = value;
4563 >        }
4564 >
4565 >        /**
4566 >         * Returns the default mapped value for additions,
4567 >         * or {@code null} if additions are not supported.
4568 >         *
4569 >         * @return the default mapped value for additions, or {@code null}
4570 >         * if not supported
4571 >         */
4572 >        public V getMappedValue() { return value; }
4573 >
4574 >        /**
4575 >         * {@inheritDoc}
4576 >         * @throws NullPointerException if the specified key is null
4577 >         */
4578 >        public boolean contains(Object o) { return map.containsKey(o); }
4579 >
4580 >        /**
4581 >         * Removes the key from this map view, by removing the key (and its
4582 >         * corresponding value) from the backing map.  This method does
4583 >         * nothing if the key is not in the map.
4584 >         *
4585 >         * @param  o the key to be removed from the backing map
4586 >         * @return {@code true} if the backing map contained the specified key
4587 >         * @throws NullPointerException if the specified key is null
4588 >         */
4589 >        public boolean remove(Object o) { return map.remove(o) != null; }
4590 >
4591 >        /**
4592 >         * @return an iterator over the keys of the backing map
4593 >         */
4594 >        public Iterator<K> iterator() {
4595 >            Node<K,V>[] t;
4596 >            ConcurrentHashMap<K,V> m = map;
4597 >            int f = (t = m.table) == null ? 0 : t.length;
4598 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4599 >        }
4600 >
4601 >        /**
4602 >         * Adds the specified key to this set view by mapping the key to
4603 >         * the default mapped value in the backing map, if defined.
4604 >         *
4605 >         * @param e key to be added
4606 >         * @return {@code true} if this set changed as a result of the call
4607 >         * @throws NullPointerException if the specified key is null
4608 >         * @throws UnsupportedOperationException if no default mapped value
4609 >         * for additions was provided
4610 >         */
4611 >        public boolean add(K e) {
4612 >            V v;
4613 >            if ((v = value) == null)
4614 >                throw new UnsupportedOperationException();
4615 >            return map.putVal(e, v, true) == null;
4616 >        }
4617 >
4618 >        /**
4619 >         * Adds all of the elements in the specified collection to this set,
4620 >         * as if by calling {@link #add} on each one.
4621 >         *
4622 >         * @param c the elements to be inserted into this set
4623 >         * @return {@code true} if this set changed as a result of the call
4624 >         * @throws NullPointerException if the collection or any of its
4625 >         * elements are {@code null}
4626 >         * @throws UnsupportedOperationException if no default mapped value
4627 >         * for additions was provided
4628 >         */
4629 >        public boolean addAll(Collection<? extends K> c) {
4630 >            boolean added = false;
4631 >            V v;
4632 >            if ((v = value) == null)
4633 >                throw new UnsupportedOperationException();
4634 >            for (K e : c) {
4635 >                if (map.putVal(e, v, true) == null)
4636 >                    added = true;
4637 >            }
4638 >            return added;
4639 >        }
4640 >
4641 >        public int hashCode() {
4642 >            int h = 0;
4643 >            for (K e : this)
4644 >                h += e.hashCode();
4645 >            return h;
4646 >        }
4647 >
4648 >        public boolean equals(Object o) {
4649 >            Set<?> c;
4650 >            return ((o instanceof Set) &&
4651 >                    ((c = (Set<?>)o) == this ||
4652 >                     (containsAll(c) && c.containsAll(this))));
4653 >        }
4654 >
4655 >        public Spliterator<K> spliterator() {
4656 >            Node<K,V>[] t;
4657 >            ConcurrentHashMap<K,V> m = map;
4658 >            long n = m.sumCount();
4659 >            int f = (t = m.table) == null ? 0 : t.length;
4660 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4661 >        }
4662 >
4663 >        public void forEach(Consumer<? super K> action) {
4664 >            if (action == null) throw new NullPointerException();
4665 >            Node<K,V>[] t;
4666 >            if ((t = map.table) != null) {
4667 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4668 >                for (Node<K,V> p; (p = it.advance()) != null; )
4669 >                    action.accept(p.key);
4670 >            }
4671 >        }
4672 >    }
4673 >
4674 >    /**
4675 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4676 >     * values, in which additions are disabled. This class cannot be
4677 >     * directly instantiated. See {@link #values()}.
4678 >     */
4679 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4680 >        implements Collection<V>, java.io.Serializable {
4681 >        private static final long serialVersionUID = 2249069246763182397L;
4682 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4683 >        public final boolean contains(Object o) {
4684 >            return map.containsValue(o);
4685 >        }
4686 >
4687 >        public final boolean remove(Object o) {
4688 >            if (o != null) {
4689 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4690 >                    if (o.equals(it.next())) {
4691 >                        it.remove();
4692 >                        return true;
4693 >                    }
4694 >                }
4695 >            }
4696 >            return false;
4697 >        }
4698 >
4699 >        public final Iterator<V> iterator() {
4700 >            ConcurrentHashMap<K,V> m = map;
4701 >            Node<K,V>[] t;
4702 >            int f = (t = m.table) == null ? 0 : t.length;
4703 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4704 >        }
4705 >
4706 >        public final boolean add(V e) {
4707 >            throw new UnsupportedOperationException();
4708 >        }
4709 >        public final boolean addAll(Collection<? extends V> c) {
4710 >            throw new UnsupportedOperationException();
4711 >        }
4712 >
4713 >        @Override public boolean removeAll(Collection<?> c) {
4714 >            if (c == null) throw new NullPointerException();
4715 >            boolean modified = false;
4716 >            for (Iterator<V> it = iterator(); it.hasNext();) {
4717 >                if (c.contains(it.next())) {
4718 >                    it.remove();
4719 >                    modified = true;
4720 >                }
4721 >            }
4722 >            return modified;
4723 >        }
4724 >
4725 >        public boolean removeIf(Predicate<? super V> filter) {
4726 >            return map.removeValueIf(filter);
4727 >        }
4728 >
4729 >        public Spliterator<V> spliterator() {
4730 >            Node<K,V>[] t;
4731 >            ConcurrentHashMap<K,V> m = map;
4732 >            long n = m.sumCount();
4733 >            int f = (t = m.table) == null ? 0 : t.length;
4734 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4735          }
4736 +
4737 +        public void forEach(Consumer<? super V> action) {
4738 +            if (action == null) throw new NullPointerException();
4739 +            Node<K,V>[] t;
4740 +            if ((t = map.table) != null) {
4741 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4742 +                for (Node<K,V> p; (p = it.advance()) != null; )
4743 +                    action.accept(p.val);
4744 +            }
4745 +        }
4746 +    }
4747 +
4748 +    /**
4749 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4750 +     * entries.  This class cannot be directly instantiated. See
4751 +     * {@link #entrySet()}.
4752 +     */
4753 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4754 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4755 +        private static final long serialVersionUID = 2249069246763182397L;
4756 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4757 +
4758          public boolean contains(Object o) {
4759 <            if (!(o instanceof Map.Entry))
4760 <                return false;
4761 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4762 <            V v = ConcurrentHashMap.this.get(e.getKey());
4763 <            return v != null && v.equals(e.getValue());
4759 >            Object k, v, r; Map.Entry<?,?> e;
4760 >            return ((o instanceof Map.Entry) &&
4761 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4762 >                    (r = map.get(k)) != null &&
4763 >                    (v = e.getValue()) != null &&
4764 >                    (v == r || v.equals(r)));
4765          }
4766 +
4767          public boolean remove(Object o) {
4768 <            if (!(o instanceof Map.Entry))
4769 <                return false;
4770 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4771 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4768 >            Object k, v; Map.Entry<?,?> e;
4769 >            return ((o instanceof Map.Entry) &&
4770 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4771 >                    (v = e.getValue()) != null &&
4772 >                    map.remove(k, v));
4773 >        }
4774 >
4775 >        /**
4776 >         * @return an iterator over the entries of the backing map
4777 >         */
4778 >        public Iterator<Map.Entry<K,V>> iterator() {
4779 >            ConcurrentHashMap<K,V> m = map;
4780 >            Node<K,V>[] t;
4781 >            int f = (t = m.table) == null ? 0 : t.length;
4782 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4783          }
4784 <        public int size() {
4785 <            return ConcurrentHashMap.this.size();
4784 >
4785 >        public boolean add(Entry<K,V> e) {
4786 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4787 >        }
4788 >
4789 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4790 >            boolean added = false;
4791 >            for (Entry<K,V> e : c) {
4792 >                if (add(e))
4793 >                    added = true;
4794 >            }
4795 >            return added;
4796          }
4797 <        public void clear() {
4798 <            ConcurrentHashMap.this.clear();
4797 >
4798 >        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4799 >            return map.removeEntryIf(filter);
4800          }
4801 <        public Object[] toArray() {
4802 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4803 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
4804 <                c.add(i.next());
4805 <            return c.toArray();
4801 >
4802 >        public final int hashCode() {
4803 >            int h = 0;
4804 >            Node<K,V>[] t;
4805 >            if ((t = map.table) != null) {
4806 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4807 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4808 >                    h += p.hashCode();
4809 >                }
4810 >            }
4811 >            return h;
4812          }
4813 <        public <T> T[] toArray(T[] a) {
4814 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4815 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
4816 <                c.add(i.next());
4817 <            return c.toArray(a);
4813 >
4814 >        public final boolean equals(Object o) {
4815 >            Set<?> c;
4816 >            return ((o instanceof Set) &&
4817 >                    ((c = (Set<?>)o) == this ||
4818 >                     (containsAll(c) && c.containsAll(this))));
4819 >        }
4820 >
4821 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4822 >            Node<K,V>[] t;
4823 >            ConcurrentHashMap<K,V> m = map;
4824 >            long n = m.sumCount();
4825 >            int f = (t = m.table) == null ? 0 : t.length;
4826 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4827 >        }
4828 >
4829 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4830 >            if (action == null) throw new NullPointerException();
4831 >            Node<K,V>[] t;
4832 >            if ((t = map.table) != null) {
4833 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4834 >                for (Node<K,V> p; (p = it.advance()) != null; )
4835 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4836 >            }
4837          }
4838 +
4839      }
4840  
4841 <    /* ---------------- Serialization Support -------------- */
4841 >    // -------------------------------------------------------
4842  
4843      /**
4844 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
4845 <     * stream (i.e., serialize it).
1257 <     * @param s the stream
1258 <     * @serialData
1259 <     * the key (Object) and value (Object)
1260 <     * for each key-value mapping, followed by a null pair.
1261 <     * The key-value mappings are emitted in no particular order.
4844 >     * Base class for bulk tasks. Repeats some fields and code from
4845 >     * class Traverser, because we need to subclass CountedCompleter.
4846       */
4847 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
4848 <        s.defaultWriteObject();
4847 >    @SuppressWarnings("serial")
4848 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4849 >        Node<K,V>[] tab;        // same as Traverser
4850 >        Node<K,V> next;
4851 >        TableStack<K,V> stack, spare;
4852 >        int index;
4853 >        int baseIndex;
4854 >        int baseLimit;
4855 >        final int baseSize;
4856 >        int batch;              // split control
4857 >
4858 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4859 >            super(par);
4860 >            this.batch = b;
4861 >            this.index = this.baseIndex = i;
4862 >            if ((this.tab = t) == null)
4863 >                this.baseSize = this.baseLimit = 0;
4864 >            else if (par == null)
4865 >                this.baseSize = this.baseLimit = t.length;
4866 >            else {
4867 >                this.baseLimit = f;
4868 >                this.baseSize = par.baseSize;
4869 >            }
4870 >        }
4871  
4872 <        for (int k = 0; k < segments.length; ++k) {
4873 <            Segment<K,V> seg = segments[k];
4874 <            seg.lock();
4875 <            try {
4876 <                HashEntry<K,V>[] tab = seg.table;
4877 <                for (int i = 0; i < tab.length; ++i) {
4878 <                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
4879 <                        s.writeObject(e.key);
4880 <                        s.writeObject(e.value);
4872 >        /**
4873 >         * Same as Traverser version.
4874 >         */
4875 >        final Node<K,V> advance() {
4876 >            Node<K,V> e;
4877 >            if ((e = next) != null)
4878 >                e = e.next;
4879 >            for (;;) {
4880 >                Node<K,V>[] t; int i, n;
4881 >                if (e != null)
4882 >                    return next = e;
4883 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4884 >                    (n = t.length) <= (i = index) || i < 0)
4885 >                    return next = null;
4886 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4887 >                    if (e instanceof ForwardingNode) {
4888 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4889 >                        e = null;
4890 >                        pushState(t, i, n);
4891 >                        continue;
4892                      }
4893 +                    else if (e instanceof TreeBin)
4894 +                        e = ((TreeBin<K,V>)e).first;
4895 +                    else
4896 +                        e = null;
4897                  }
4898 <            } finally {
4899 <                seg.unlock();
4898 >                if (stack != null)
4899 >                    recoverState(n);
4900 >                else if ((index = i + baseSize) >= n)
4901 >                    index = ++baseIndex;
4902              }
4903          }
4904 <        s.writeObject(null);
4905 <        s.writeObject(null);
4904 >
4905 >        private void pushState(Node<K,V>[] t, int i, int n) {
4906 >            TableStack<K,V> s = spare;
4907 >            if (s != null)
4908 >                spare = s.next;
4909 >            else
4910 >                s = new TableStack<K,V>();
4911 >            s.tab = t;
4912 >            s.length = n;
4913 >            s.index = i;
4914 >            s.next = stack;
4915 >            stack = s;
4916 >        }
4917 >
4918 >        private void recoverState(int n) {
4919 >            TableStack<K,V> s; int len;
4920 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4921 >                n = len;
4922 >                index = s.index;
4923 >                tab = s.tab;
4924 >                s.tab = null;
4925 >                TableStack<K,V> next = s.next;
4926 >                s.next = spare; // save for reuse
4927 >                stack = next;
4928 >                spare = s;
4929 >            }
4930 >            if (s == null && (index += baseSize) >= n)
4931 >                index = ++baseIndex;
4932 >        }
4933      }
4934  
4935 <    /**
4936 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
4937 <     * stream (i.e., deserialize it).
4938 <     * @param s the stream
4939 <     */
4940 <    private void readObject(java.io.ObjectInputStream s)
4941 <        throws IOException, ClassNotFoundException  {
4942 <        s.defaultReadObject();
4935 >    /*
4936 >     * Task classes. Coded in a regular but ugly format/style to
4937 >     * simplify checks that each variant differs in the right way from
4938 >     * others. The null screenings exist because compilers cannot tell
4939 >     * that we've already null-checked task arguments, so we force
4940 >     * simplest hoisted bypass to help avoid convoluted traps.
4941 >     */
4942 >    @SuppressWarnings("serial")
4943 >    static final class ForEachKeyTask<K,V>
4944 >        extends BulkTask<K,V,Void> {
4945 >        final Consumer<? super K> action;
4946 >        ForEachKeyTask
4947 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4948 >             Consumer<? super K> action) {
4949 >            super(p, b, i, f, t);
4950 >            this.action = action;
4951 >        }
4952 >        public final void compute() {
4953 >            final Consumer<? super K> action;
4954 >            if ((action = this.action) != null) {
4955 >                for (int i = baseIndex, f, h; batch > 0 &&
4956 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4957 >                    addToPendingCount(1);
4958 >                    new ForEachKeyTask<K,V>
4959 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4960 >                         action).fork();
4961 >                }
4962 >                for (Node<K,V> p; (p = advance()) != null;)
4963 >                    action.accept(p.key);
4964 >                propagateCompletion();
4965 >            }
4966 >        }
4967 >    }
4968  
4969 <        // Initialize each segment to be minimally sized, and let grow.
4970 <        for (int i = 0; i < segments.length; ++i) {
4971 <            segments[i].setTable(new HashEntry[1]);
4969 >    @SuppressWarnings("serial")
4970 >    static final class ForEachValueTask<K,V>
4971 >        extends BulkTask<K,V,Void> {
4972 >        final Consumer<? super V> action;
4973 >        ForEachValueTask
4974 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4975 >             Consumer<? super V> action) {
4976 >            super(p, b, i, f, t);
4977 >            this.action = action;
4978 >        }
4979 >        public final void compute() {
4980 >            final Consumer<? super V> action;
4981 >            if ((action = this.action) != null) {
4982 >                for (int i = baseIndex, f, h; batch > 0 &&
4983 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4984 >                    addToPendingCount(1);
4985 >                    new ForEachValueTask<K,V>
4986 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4987 >                         action).fork();
4988 >                }
4989 >                for (Node<K,V> p; (p = advance()) != null;)
4990 >                    action.accept(p.val);
4991 >                propagateCompletion();
4992 >            }
4993          }
4994 +    }
4995  
4996 <        // Read the keys and values, and put the mappings in the table
4997 <        for (;;) {
4998 <            K key = (K) s.readObject();
4999 <            V value = (V) s.readObject();
5000 <            if (key == null)
5001 <                break;
5002 <            put(key, value);
4996 >    @SuppressWarnings("serial")
4997 >    static final class ForEachEntryTask<K,V>
4998 >        extends BulkTask<K,V,Void> {
4999 >        final Consumer<? super Entry<K,V>> action;
5000 >        ForEachEntryTask
5001 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5002 >             Consumer<? super Entry<K,V>> action) {
5003 >            super(p, b, i, f, t);
5004 >            this.action = action;
5005 >        }
5006 >        public final void compute() {
5007 >            final Consumer<? super Entry<K,V>> action;
5008 >            if ((action = this.action) != null) {
5009 >                for (int i = baseIndex, f, h; batch > 0 &&
5010 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5011 >                    addToPendingCount(1);
5012 >                    new ForEachEntryTask<K,V>
5013 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5014 >                         action).fork();
5015 >                }
5016 >                for (Node<K,V> p; (p = advance()) != null; )
5017 >                    action.accept(p);
5018 >                propagateCompletion();
5019 >            }
5020 >        }
5021 >    }
5022 >
5023 >    @SuppressWarnings("serial")
5024 >    static final class ForEachMappingTask<K,V>
5025 >        extends BulkTask<K,V,Void> {
5026 >        final BiConsumer<? super K, ? super V> action;
5027 >        ForEachMappingTask
5028 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5029 >             BiConsumer<? super K,? super V> action) {
5030 >            super(p, b, i, f, t);
5031 >            this.action = action;
5032 >        }
5033 >        public final void compute() {
5034 >            final BiConsumer<? super K, ? super V> action;
5035 >            if ((action = this.action) != null) {
5036 >                for (int i = baseIndex, f, h; batch > 0 &&
5037 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5038 >                    addToPendingCount(1);
5039 >                    new ForEachMappingTask<K,V>
5040 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5041 >                         action).fork();
5042 >                }
5043 >                for (Node<K,V> p; (p = advance()) != null; )
5044 >                    action.accept(p.key, p.val);
5045 >                propagateCompletion();
5046 >            }
5047 >        }
5048 >    }
5049 >
5050 >    @SuppressWarnings("serial")
5051 >    static final class ForEachTransformedKeyTask<K,V,U>
5052 >        extends BulkTask<K,V,Void> {
5053 >        final Function<? super K, ? extends U> transformer;
5054 >        final Consumer<? super U> action;
5055 >        ForEachTransformedKeyTask
5056 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5057 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5058 >            super(p, b, i, f, t);
5059 >            this.transformer = transformer; this.action = action;
5060 >        }
5061 >        public final void compute() {
5062 >            final Function<? super K, ? extends U> transformer;
5063 >            final Consumer<? super U> action;
5064 >            if ((transformer = this.transformer) != null &&
5065 >                (action = this.action) != null) {
5066 >                for (int i = baseIndex, f, h; batch > 0 &&
5067 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5068 >                    addToPendingCount(1);
5069 >                    new ForEachTransformedKeyTask<K,V,U>
5070 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5071 >                         transformer, action).fork();
5072 >                }
5073 >                for (Node<K,V> p; (p = advance()) != null; ) {
5074 >                    U u;
5075 >                    if ((u = transformer.apply(p.key)) != null)
5076 >                        action.accept(u);
5077 >                }
5078 >                propagateCompletion();
5079 >            }
5080 >        }
5081 >    }
5082 >
5083 >    @SuppressWarnings("serial")
5084 >    static final class ForEachTransformedValueTask<K,V,U>
5085 >        extends BulkTask<K,V,Void> {
5086 >        final Function<? super V, ? extends U> transformer;
5087 >        final Consumer<? super U> action;
5088 >        ForEachTransformedValueTask
5089 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5090 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5091 >            super(p, b, i, f, t);
5092 >            this.transformer = transformer; this.action = action;
5093 >        }
5094 >        public final void compute() {
5095 >            final Function<? super V, ? extends U> transformer;
5096 >            final Consumer<? super U> action;
5097 >            if ((transformer = this.transformer) != null &&
5098 >                (action = this.action) != null) {
5099 >                for (int i = baseIndex, f, h; batch > 0 &&
5100 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5101 >                    addToPendingCount(1);
5102 >                    new ForEachTransformedValueTask<K,V,U>
5103 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5104 >                         transformer, action).fork();
5105 >                }
5106 >                for (Node<K,V> p; (p = advance()) != null; ) {
5107 >                    U u;
5108 >                    if ((u = transformer.apply(p.val)) != null)
5109 >                        action.accept(u);
5110 >                }
5111 >                propagateCompletion();
5112 >            }
5113 >        }
5114 >    }
5115 >
5116 >    @SuppressWarnings("serial")
5117 >    static final class ForEachTransformedEntryTask<K,V,U>
5118 >        extends BulkTask<K,V,Void> {
5119 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5120 >        final Consumer<? super U> action;
5121 >        ForEachTransformedEntryTask
5122 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5123 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5124 >            super(p, b, i, f, t);
5125 >            this.transformer = transformer; this.action = action;
5126 >        }
5127 >        public final void compute() {
5128 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5129 >            final Consumer<? super U> action;
5130 >            if ((transformer = this.transformer) != null &&
5131 >                (action = this.action) != null) {
5132 >                for (int i = baseIndex, f, h; batch > 0 &&
5133 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5134 >                    addToPendingCount(1);
5135 >                    new ForEachTransformedEntryTask<K,V,U>
5136 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5137 >                         transformer, action).fork();
5138 >                }
5139 >                for (Node<K,V> p; (p = advance()) != null; ) {
5140 >                    U u;
5141 >                    if ((u = transformer.apply(p)) != null)
5142 >                        action.accept(u);
5143 >                }
5144 >                propagateCompletion();
5145 >            }
5146 >        }
5147 >    }
5148 >
5149 >    @SuppressWarnings("serial")
5150 >    static final class ForEachTransformedMappingTask<K,V,U>
5151 >        extends BulkTask<K,V,Void> {
5152 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5153 >        final Consumer<? super U> action;
5154 >        ForEachTransformedMappingTask
5155 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5156 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5157 >             Consumer<? super U> action) {
5158 >            super(p, b, i, f, t);
5159 >            this.transformer = transformer; this.action = action;
5160 >        }
5161 >        public final void compute() {
5162 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5163 >            final Consumer<? super U> action;
5164 >            if ((transformer = this.transformer) != null &&
5165 >                (action = this.action) != null) {
5166 >                for (int i = baseIndex, f, h; batch > 0 &&
5167 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5168 >                    addToPendingCount(1);
5169 >                    new ForEachTransformedMappingTask<K,V,U>
5170 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5171 >                         transformer, action).fork();
5172 >                }
5173 >                for (Node<K,V> p; (p = advance()) != null; ) {
5174 >                    U u;
5175 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5176 >                        action.accept(u);
5177 >                }
5178 >                propagateCompletion();
5179 >            }
5180 >        }
5181 >    }
5182 >
5183 >    @SuppressWarnings("serial")
5184 >    static final class SearchKeysTask<K,V,U>
5185 >        extends BulkTask<K,V,U> {
5186 >        final Function<? super K, ? extends U> searchFunction;
5187 >        final AtomicReference<U> result;
5188 >        SearchKeysTask
5189 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5190 >             Function<? super K, ? extends U> searchFunction,
5191 >             AtomicReference<U> result) {
5192 >            super(p, b, i, f, t);
5193 >            this.searchFunction = searchFunction; this.result = result;
5194 >        }
5195 >        public final U getRawResult() { return result.get(); }
5196 >        public final void compute() {
5197 >            final Function<? super K, ? extends U> searchFunction;
5198 >            final AtomicReference<U> result;
5199 >            if ((searchFunction = this.searchFunction) != null &&
5200 >                (result = this.result) != null) {
5201 >                for (int i = baseIndex, f, h; batch > 0 &&
5202 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5203 >                    if (result.get() != null)
5204 >                        return;
5205 >                    addToPendingCount(1);
5206 >                    new SearchKeysTask<K,V,U>
5207 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5208 >                         searchFunction, result).fork();
5209 >                }
5210 >                while (result.get() == null) {
5211 >                    U u;
5212 >                    Node<K,V> p;
5213 >                    if ((p = advance()) == null) {
5214 >                        propagateCompletion();
5215 >                        break;
5216 >                    }
5217 >                    if ((u = searchFunction.apply(p.key)) != null) {
5218 >                        if (result.compareAndSet(null, u))
5219 >                            quietlyCompleteRoot();
5220 >                        break;
5221 >                    }
5222 >                }
5223 >            }
5224 >        }
5225 >    }
5226 >
5227 >    @SuppressWarnings("serial")
5228 >    static final class SearchValuesTask<K,V,U>
5229 >        extends BulkTask<K,V,U> {
5230 >        final Function<? super V, ? extends U> searchFunction;
5231 >        final AtomicReference<U> result;
5232 >        SearchValuesTask
5233 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5234 >             Function<? super V, ? extends U> searchFunction,
5235 >             AtomicReference<U> result) {
5236 >            super(p, b, i, f, t);
5237 >            this.searchFunction = searchFunction; this.result = result;
5238 >        }
5239 >        public final U getRawResult() { return result.get(); }
5240 >        public final void compute() {
5241 >            final Function<? super V, ? extends U> searchFunction;
5242 >            final AtomicReference<U> result;
5243 >            if ((searchFunction = this.searchFunction) != null &&
5244 >                (result = this.result) != null) {
5245 >                for (int i = baseIndex, f, h; batch > 0 &&
5246 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5247 >                    if (result.get() != null)
5248 >                        return;
5249 >                    addToPendingCount(1);
5250 >                    new SearchValuesTask<K,V,U>
5251 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5252 >                         searchFunction, result).fork();
5253 >                }
5254 >                while (result.get() == null) {
5255 >                    U u;
5256 >                    Node<K,V> p;
5257 >                    if ((p = advance()) == null) {
5258 >                        propagateCompletion();
5259 >                        break;
5260 >                    }
5261 >                    if ((u = searchFunction.apply(p.val)) != null) {
5262 >                        if (result.compareAndSet(null, u))
5263 >                            quietlyCompleteRoot();
5264 >                        break;
5265 >                    }
5266 >                }
5267 >            }
5268 >        }
5269 >    }
5270 >
5271 >    @SuppressWarnings("serial")
5272 >    static final class SearchEntriesTask<K,V,U>
5273 >        extends BulkTask<K,V,U> {
5274 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5275 >        final AtomicReference<U> result;
5276 >        SearchEntriesTask
5277 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5278 >             Function<Entry<K,V>, ? extends U> searchFunction,
5279 >             AtomicReference<U> result) {
5280 >            super(p, b, i, f, t);
5281 >            this.searchFunction = searchFunction; this.result = result;
5282 >        }
5283 >        public final U getRawResult() { return result.get(); }
5284 >        public final void compute() {
5285 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5286 >            final AtomicReference<U> result;
5287 >            if ((searchFunction = this.searchFunction) != null &&
5288 >                (result = this.result) != null) {
5289 >                for (int i = baseIndex, f, h; batch > 0 &&
5290 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5291 >                    if (result.get() != null)
5292 >                        return;
5293 >                    addToPendingCount(1);
5294 >                    new SearchEntriesTask<K,V,U>
5295 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5296 >                         searchFunction, result).fork();
5297 >                }
5298 >                while (result.get() == null) {
5299 >                    U u;
5300 >                    Node<K,V> p;
5301 >                    if ((p = advance()) == null) {
5302 >                        propagateCompletion();
5303 >                        break;
5304 >                    }
5305 >                    if ((u = searchFunction.apply(p)) != null) {
5306 >                        if (result.compareAndSet(null, u))
5307 >                            quietlyCompleteRoot();
5308 >                        return;
5309 >                    }
5310 >                }
5311 >            }
5312 >        }
5313 >    }
5314 >
5315 >    @SuppressWarnings("serial")
5316 >    static final class SearchMappingsTask<K,V,U>
5317 >        extends BulkTask<K,V,U> {
5318 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5319 >        final AtomicReference<U> result;
5320 >        SearchMappingsTask
5321 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5322 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5323 >             AtomicReference<U> result) {
5324 >            super(p, b, i, f, t);
5325 >            this.searchFunction = searchFunction; this.result = result;
5326 >        }
5327 >        public final U getRawResult() { return result.get(); }
5328 >        public final void compute() {
5329 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5330 >            final AtomicReference<U> result;
5331 >            if ((searchFunction = this.searchFunction) != null &&
5332 >                (result = this.result) != null) {
5333 >                for (int i = baseIndex, f, h; batch > 0 &&
5334 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5335 >                    if (result.get() != null)
5336 >                        return;
5337 >                    addToPendingCount(1);
5338 >                    new SearchMappingsTask<K,V,U>
5339 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5340 >                         searchFunction, result).fork();
5341 >                }
5342 >                while (result.get() == null) {
5343 >                    U u;
5344 >                    Node<K,V> p;
5345 >                    if ((p = advance()) == null) {
5346 >                        propagateCompletion();
5347 >                        break;
5348 >                    }
5349 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5350 >                        if (result.compareAndSet(null, u))
5351 >                            quietlyCompleteRoot();
5352 >                        break;
5353 >                    }
5354 >                }
5355 >            }
5356 >        }
5357 >    }
5358 >
5359 >    @SuppressWarnings("serial")
5360 >    static final class ReduceKeysTask<K,V>
5361 >        extends BulkTask<K,V,K> {
5362 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5363 >        K result;
5364 >        ReduceKeysTask<K,V> rights, nextRight;
5365 >        ReduceKeysTask
5366 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5367 >             ReduceKeysTask<K,V> nextRight,
5368 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5369 >            super(p, b, i, f, t); this.nextRight = nextRight;
5370 >            this.reducer = reducer;
5371 >        }
5372 >        public final K getRawResult() { return result; }
5373 >        public final void compute() {
5374 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5375 >            if ((reducer = this.reducer) != null) {
5376 >                for (int i = baseIndex, f, h; batch > 0 &&
5377 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5378 >                    addToPendingCount(1);
5379 >                    (rights = new ReduceKeysTask<K,V>
5380 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5381 >                      rights, reducer)).fork();
5382 >                }
5383 >                K r = null;
5384 >                for (Node<K,V> p; (p = advance()) != null; ) {
5385 >                    K u = p.key;
5386 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5387 >                }
5388 >                result = r;
5389 >                CountedCompleter<?> c;
5390 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5391 >                    @SuppressWarnings("unchecked")
5392 >                    ReduceKeysTask<K,V>
5393 >                        t = (ReduceKeysTask<K,V>)c,
5394 >                        s = t.rights;
5395 >                    while (s != null) {
5396 >                        K tr, sr;
5397 >                        if ((sr = s.result) != null)
5398 >                            t.result = (((tr = t.result) == null) ? sr :
5399 >                                        reducer.apply(tr, sr));
5400 >                        s = t.rights = s.nextRight;
5401 >                    }
5402 >                }
5403 >            }
5404 >        }
5405 >    }
5406 >
5407 >    @SuppressWarnings("serial")
5408 >    static final class ReduceValuesTask<K,V>
5409 >        extends BulkTask<K,V,V> {
5410 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5411 >        V result;
5412 >        ReduceValuesTask<K,V> rights, nextRight;
5413 >        ReduceValuesTask
5414 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5415 >             ReduceValuesTask<K,V> nextRight,
5416 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5417 >            super(p, b, i, f, t); this.nextRight = nextRight;
5418 >            this.reducer = reducer;
5419 >        }
5420 >        public final V getRawResult() { return result; }
5421 >        public final void compute() {
5422 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5423 >            if ((reducer = this.reducer) != null) {
5424 >                for (int i = baseIndex, f, h; batch > 0 &&
5425 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5426 >                    addToPendingCount(1);
5427 >                    (rights = new ReduceValuesTask<K,V>
5428 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5429 >                      rights, reducer)).fork();
5430 >                }
5431 >                V r = null;
5432 >                for (Node<K,V> p; (p = advance()) != null; ) {
5433 >                    V v = p.val;
5434 >                    r = (r == null) ? v : reducer.apply(r, v);
5435 >                }
5436 >                result = r;
5437 >                CountedCompleter<?> c;
5438 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5439 >                    @SuppressWarnings("unchecked")
5440 >                    ReduceValuesTask<K,V>
5441 >                        t = (ReduceValuesTask<K,V>)c,
5442 >                        s = t.rights;
5443 >                    while (s != null) {
5444 >                        V tr, sr;
5445 >                        if ((sr = s.result) != null)
5446 >                            t.result = (((tr = t.result) == null) ? sr :
5447 >                                        reducer.apply(tr, sr));
5448 >                        s = t.rights = s.nextRight;
5449 >                    }
5450 >                }
5451 >            }
5452 >        }
5453 >    }
5454 >
5455 >    @SuppressWarnings("serial")
5456 >    static final class ReduceEntriesTask<K,V>
5457 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5458 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5459 >        Map.Entry<K,V> result;
5460 >        ReduceEntriesTask<K,V> rights, nextRight;
5461 >        ReduceEntriesTask
5462 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5463 >             ReduceEntriesTask<K,V> nextRight,
5464 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5465 >            super(p, b, i, f, t); this.nextRight = nextRight;
5466 >            this.reducer = reducer;
5467 >        }
5468 >        public final Map.Entry<K,V> getRawResult() { return result; }
5469 >        public final void compute() {
5470 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5471 >            if ((reducer = this.reducer) != null) {
5472 >                for (int i = baseIndex, f, h; batch > 0 &&
5473 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5474 >                    addToPendingCount(1);
5475 >                    (rights = new ReduceEntriesTask<K,V>
5476 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5477 >                      rights, reducer)).fork();
5478 >                }
5479 >                Map.Entry<K,V> r = null;
5480 >                for (Node<K,V> p; (p = advance()) != null; )
5481 >                    r = (r == null) ? p : reducer.apply(r, p);
5482 >                result = r;
5483 >                CountedCompleter<?> c;
5484 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5485 >                    @SuppressWarnings("unchecked")
5486 >                    ReduceEntriesTask<K,V>
5487 >                        t = (ReduceEntriesTask<K,V>)c,
5488 >                        s = t.rights;
5489 >                    while (s != null) {
5490 >                        Map.Entry<K,V> tr, sr;
5491 >                        if ((sr = s.result) != null)
5492 >                            t.result = (((tr = t.result) == null) ? sr :
5493 >                                        reducer.apply(tr, sr));
5494 >                        s = t.rights = s.nextRight;
5495 >                    }
5496 >                }
5497 >            }
5498 >        }
5499 >    }
5500 >
5501 >    @SuppressWarnings("serial")
5502 >    static final class MapReduceKeysTask<K,V,U>
5503 >        extends BulkTask<K,V,U> {
5504 >        final Function<? super K, ? extends U> transformer;
5505 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5506 >        U result;
5507 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5508 >        MapReduceKeysTask
5509 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5510 >             MapReduceKeysTask<K,V,U> nextRight,
5511 >             Function<? super K, ? extends U> transformer,
5512 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5513 >            super(p, b, i, f, t); this.nextRight = nextRight;
5514 >            this.transformer = transformer;
5515 >            this.reducer = reducer;
5516 >        }
5517 >        public final U getRawResult() { return result; }
5518 >        public final void compute() {
5519 >            final Function<? super K, ? extends U> transformer;
5520 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5521 >            if ((transformer = this.transformer) != null &&
5522 >                (reducer = this.reducer) != null) {
5523 >                for (int i = baseIndex, f, h; batch > 0 &&
5524 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5525 >                    addToPendingCount(1);
5526 >                    (rights = new MapReduceKeysTask<K,V,U>
5527 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5528 >                      rights, transformer, reducer)).fork();
5529 >                }
5530 >                U r = null;
5531 >                for (Node<K,V> p; (p = advance()) != null; ) {
5532 >                    U u;
5533 >                    if ((u = transformer.apply(p.key)) != null)
5534 >                        r = (r == null) ? u : reducer.apply(r, u);
5535 >                }
5536 >                result = r;
5537 >                CountedCompleter<?> c;
5538 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5539 >                    @SuppressWarnings("unchecked")
5540 >                    MapReduceKeysTask<K,V,U>
5541 >                        t = (MapReduceKeysTask<K,V,U>)c,
5542 >                        s = t.rights;
5543 >                    while (s != null) {
5544 >                        U tr, sr;
5545 >                        if ((sr = s.result) != null)
5546 >                            t.result = (((tr = t.result) == null) ? sr :
5547 >                                        reducer.apply(tr, sr));
5548 >                        s = t.rights = s.nextRight;
5549 >                    }
5550 >                }
5551 >            }
5552 >        }
5553 >    }
5554 >
5555 >    @SuppressWarnings("serial")
5556 >    static final class MapReduceValuesTask<K,V,U>
5557 >        extends BulkTask<K,V,U> {
5558 >        final Function<? super V, ? extends U> transformer;
5559 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5560 >        U result;
5561 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5562 >        MapReduceValuesTask
5563 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5564 >             MapReduceValuesTask<K,V,U> nextRight,
5565 >             Function<? super V, ? extends U> transformer,
5566 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5567 >            super(p, b, i, f, t); this.nextRight = nextRight;
5568 >            this.transformer = transformer;
5569 >            this.reducer = reducer;
5570 >        }
5571 >        public final U getRawResult() { return result; }
5572 >        public final void compute() {
5573 >            final Function<? super V, ? extends U> transformer;
5574 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5575 >            if ((transformer = this.transformer) != null &&
5576 >                (reducer = this.reducer) != null) {
5577 >                for (int i = baseIndex, f, h; batch > 0 &&
5578 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5579 >                    addToPendingCount(1);
5580 >                    (rights = new MapReduceValuesTask<K,V,U>
5581 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5582 >                      rights, transformer, reducer)).fork();
5583 >                }
5584 >                U r = null;
5585 >                for (Node<K,V> p; (p = advance()) != null; ) {
5586 >                    U u;
5587 >                    if ((u = transformer.apply(p.val)) != null)
5588 >                        r = (r == null) ? u : reducer.apply(r, u);
5589 >                }
5590 >                result = r;
5591 >                CountedCompleter<?> c;
5592 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5593 >                    @SuppressWarnings("unchecked")
5594 >                    MapReduceValuesTask<K,V,U>
5595 >                        t = (MapReduceValuesTask<K,V,U>)c,
5596 >                        s = t.rights;
5597 >                    while (s != null) {
5598 >                        U tr, sr;
5599 >                        if ((sr = s.result) != null)
5600 >                            t.result = (((tr = t.result) == null) ? sr :
5601 >                                        reducer.apply(tr, sr));
5602 >                        s = t.rights = s.nextRight;
5603 >                    }
5604 >                }
5605 >            }
5606 >        }
5607 >    }
5608 >
5609 >    @SuppressWarnings("serial")
5610 >    static final class MapReduceEntriesTask<K,V,U>
5611 >        extends BulkTask<K,V,U> {
5612 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5613 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5614 >        U result;
5615 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5616 >        MapReduceEntriesTask
5617 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5618 >             MapReduceEntriesTask<K,V,U> nextRight,
5619 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5620 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5621 >            super(p, b, i, f, t); this.nextRight = nextRight;
5622 >            this.transformer = transformer;
5623 >            this.reducer = reducer;
5624 >        }
5625 >        public final U getRawResult() { return result; }
5626 >        public final void compute() {
5627 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5628 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5629 >            if ((transformer = this.transformer) != null &&
5630 >                (reducer = this.reducer) != null) {
5631 >                for (int i = baseIndex, f, h; batch > 0 &&
5632 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5633 >                    addToPendingCount(1);
5634 >                    (rights = new MapReduceEntriesTask<K,V,U>
5635 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5636 >                      rights, transformer, reducer)).fork();
5637 >                }
5638 >                U r = null;
5639 >                for (Node<K,V> p; (p = advance()) != null; ) {
5640 >                    U u;
5641 >                    if ((u = transformer.apply(p)) != null)
5642 >                        r = (r == null) ? u : reducer.apply(r, u);
5643 >                }
5644 >                result = r;
5645 >                CountedCompleter<?> c;
5646 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5647 >                    @SuppressWarnings("unchecked")
5648 >                    MapReduceEntriesTask<K,V,U>
5649 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5650 >                        s = t.rights;
5651 >                    while (s != null) {
5652 >                        U tr, sr;
5653 >                        if ((sr = s.result) != null)
5654 >                            t.result = (((tr = t.result) == null) ? sr :
5655 >                                        reducer.apply(tr, sr));
5656 >                        s = t.rights = s.nextRight;
5657 >                    }
5658 >                }
5659 >            }
5660 >        }
5661 >    }
5662 >
5663 >    @SuppressWarnings("serial")
5664 >    static final class MapReduceMappingsTask<K,V,U>
5665 >        extends BulkTask<K,V,U> {
5666 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5667 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5668 >        U result;
5669 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5670 >        MapReduceMappingsTask
5671 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5672 >             MapReduceMappingsTask<K,V,U> nextRight,
5673 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5674 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5675 >            super(p, b, i, f, t); this.nextRight = nextRight;
5676 >            this.transformer = transformer;
5677 >            this.reducer = reducer;
5678 >        }
5679 >        public final U getRawResult() { return result; }
5680 >        public final void compute() {
5681 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5682 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5683 >            if ((transformer = this.transformer) != null &&
5684 >                (reducer = this.reducer) != null) {
5685 >                for (int i = baseIndex, f, h; batch > 0 &&
5686 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5687 >                    addToPendingCount(1);
5688 >                    (rights = new MapReduceMappingsTask<K,V,U>
5689 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5690 >                      rights, transformer, reducer)).fork();
5691 >                }
5692 >                U r = null;
5693 >                for (Node<K,V> p; (p = advance()) != null; ) {
5694 >                    U u;
5695 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5696 >                        r = (r == null) ? u : reducer.apply(r, u);
5697 >                }
5698 >                result = r;
5699 >                CountedCompleter<?> c;
5700 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5701 >                    @SuppressWarnings("unchecked")
5702 >                    MapReduceMappingsTask<K,V,U>
5703 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5704 >                        s = t.rights;
5705 >                    while (s != null) {
5706 >                        U tr, sr;
5707 >                        if ((sr = s.result) != null)
5708 >                            t.result = (((tr = t.result) == null) ? sr :
5709 >                                        reducer.apply(tr, sr));
5710 >                        s = t.rights = s.nextRight;
5711 >                    }
5712 >                }
5713 >            }
5714 >        }
5715 >    }
5716 >
5717 >    @SuppressWarnings("serial")
5718 >    static final class MapReduceKeysToDoubleTask<K,V>
5719 >        extends BulkTask<K,V,Double> {
5720 >        final ToDoubleFunction<? super K> transformer;
5721 >        final DoubleBinaryOperator reducer;
5722 >        final double basis;
5723 >        double result;
5724 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5725 >        MapReduceKeysToDoubleTask
5726 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5727 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5728 >             ToDoubleFunction<? super K> transformer,
5729 >             double basis,
5730 >             DoubleBinaryOperator reducer) {
5731 >            super(p, b, i, f, t); this.nextRight = nextRight;
5732 >            this.transformer = transformer;
5733 >            this.basis = basis; this.reducer = reducer;
5734 >        }
5735 >        public final Double getRawResult() { return result; }
5736 >        public final void compute() {
5737 >            final ToDoubleFunction<? super K> transformer;
5738 >            final DoubleBinaryOperator reducer;
5739 >            if ((transformer = this.transformer) != null &&
5740 >                (reducer = this.reducer) != null) {
5741 >                double r = this.basis;
5742 >                for (int i = baseIndex, f, h; batch > 0 &&
5743 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5744 >                    addToPendingCount(1);
5745 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5746 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5747 >                      rights, transformer, r, reducer)).fork();
5748 >                }
5749 >                for (Node<K,V> p; (p = advance()) != null; )
5750 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5751 >                result = r;
5752 >                CountedCompleter<?> c;
5753 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5754 >                    @SuppressWarnings("unchecked")
5755 >                    MapReduceKeysToDoubleTask<K,V>
5756 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5757 >                        s = t.rights;
5758 >                    while (s != null) {
5759 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5760 >                        s = t.rights = s.nextRight;
5761 >                    }
5762 >                }
5763 >            }
5764 >        }
5765 >    }
5766 >
5767 >    @SuppressWarnings("serial")
5768 >    static final class MapReduceValuesToDoubleTask<K,V>
5769 >        extends BulkTask<K,V,Double> {
5770 >        final ToDoubleFunction<? super V> transformer;
5771 >        final DoubleBinaryOperator reducer;
5772 >        final double basis;
5773 >        double result;
5774 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5775 >        MapReduceValuesToDoubleTask
5776 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5777 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5778 >             ToDoubleFunction<? super V> transformer,
5779 >             double basis,
5780 >             DoubleBinaryOperator reducer) {
5781 >            super(p, b, i, f, t); this.nextRight = nextRight;
5782 >            this.transformer = transformer;
5783 >            this.basis = basis; this.reducer = reducer;
5784 >        }
5785 >        public final Double getRawResult() { return result; }
5786 >        public final void compute() {
5787 >            final ToDoubleFunction<? super V> transformer;
5788 >            final DoubleBinaryOperator reducer;
5789 >            if ((transformer = this.transformer) != null &&
5790 >                (reducer = this.reducer) != null) {
5791 >                double r = this.basis;
5792 >                for (int i = baseIndex, f, h; batch > 0 &&
5793 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5794 >                    addToPendingCount(1);
5795 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5796 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5797 >                      rights, transformer, r, reducer)).fork();
5798 >                }
5799 >                for (Node<K,V> p; (p = advance()) != null; )
5800 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5801 >                result = r;
5802 >                CountedCompleter<?> c;
5803 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5804 >                    @SuppressWarnings("unchecked")
5805 >                    MapReduceValuesToDoubleTask<K,V>
5806 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5807 >                        s = t.rights;
5808 >                    while (s != null) {
5809 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5810 >                        s = t.rights = s.nextRight;
5811 >                    }
5812 >                }
5813 >            }
5814 >        }
5815 >    }
5816 >
5817 >    @SuppressWarnings("serial")
5818 >    static final class MapReduceEntriesToDoubleTask<K,V>
5819 >        extends BulkTask<K,V,Double> {
5820 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5821 >        final DoubleBinaryOperator reducer;
5822 >        final double basis;
5823 >        double result;
5824 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5825 >        MapReduceEntriesToDoubleTask
5826 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5827 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5828 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5829 >             double basis,
5830 >             DoubleBinaryOperator reducer) {
5831 >            super(p, b, i, f, t); this.nextRight = nextRight;
5832 >            this.transformer = transformer;
5833 >            this.basis = basis; this.reducer = reducer;
5834 >        }
5835 >        public final Double getRawResult() { return result; }
5836 >        public final void compute() {
5837 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5838 >            final DoubleBinaryOperator reducer;
5839 >            if ((transformer = this.transformer) != null &&
5840 >                (reducer = this.reducer) != null) {
5841 >                double r = this.basis;
5842 >                for (int i = baseIndex, f, h; batch > 0 &&
5843 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5844 >                    addToPendingCount(1);
5845 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5846 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5847 >                      rights, transformer, r, reducer)).fork();
5848 >                }
5849 >                for (Node<K,V> p; (p = advance()) != null; )
5850 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5851 >                result = r;
5852 >                CountedCompleter<?> c;
5853 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5854 >                    @SuppressWarnings("unchecked")
5855 >                    MapReduceEntriesToDoubleTask<K,V>
5856 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5857 >                        s = t.rights;
5858 >                    while (s != null) {
5859 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5860 >                        s = t.rights = s.nextRight;
5861 >                    }
5862 >                }
5863 >            }
5864 >        }
5865 >    }
5866 >
5867 >    @SuppressWarnings("serial")
5868 >    static final class MapReduceMappingsToDoubleTask<K,V>
5869 >        extends BulkTask<K,V,Double> {
5870 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5871 >        final DoubleBinaryOperator reducer;
5872 >        final double basis;
5873 >        double result;
5874 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5875 >        MapReduceMappingsToDoubleTask
5876 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5877 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5878 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5879 >             double basis,
5880 >             DoubleBinaryOperator reducer) {
5881 >            super(p, b, i, f, t); this.nextRight = nextRight;
5882 >            this.transformer = transformer;
5883 >            this.basis = basis; this.reducer = reducer;
5884 >        }
5885 >        public final Double getRawResult() { return result; }
5886 >        public final void compute() {
5887 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5888 >            final DoubleBinaryOperator reducer;
5889 >            if ((transformer = this.transformer) != null &&
5890 >                (reducer = this.reducer) != null) {
5891 >                double r = this.basis;
5892 >                for (int i = baseIndex, f, h; batch > 0 &&
5893 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5894 >                    addToPendingCount(1);
5895 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5896 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5897 >                      rights, transformer, r, reducer)).fork();
5898 >                }
5899 >                for (Node<K,V> p; (p = advance()) != null; )
5900 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5901 >                result = r;
5902 >                CountedCompleter<?> c;
5903 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5904 >                    @SuppressWarnings("unchecked")
5905 >                    MapReduceMappingsToDoubleTask<K,V>
5906 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5907 >                        s = t.rights;
5908 >                    while (s != null) {
5909 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5910 >                        s = t.rights = s.nextRight;
5911 >                    }
5912 >                }
5913 >            }
5914 >        }
5915 >    }
5916 >
5917 >    @SuppressWarnings("serial")
5918 >    static final class MapReduceKeysToLongTask<K,V>
5919 >        extends BulkTask<K,V,Long> {
5920 >        final ToLongFunction<? super K> transformer;
5921 >        final LongBinaryOperator reducer;
5922 >        final long basis;
5923 >        long result;
5924 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5925 >        MapReduceKeysToLongTask
5926 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5927 >             MapReduceKeysToLongTask<K,V> nextRight,
5928 >             ToLongFunction<? super K> transformer,
5929 >             long basis,
5930 >             LongBinaryOperator reducer) {
5931 >            super(p, b, i, f, t); this.nextRight = nextRight;
5932 >            this.transformer = transformer;
5933 >            this.basis = basis; this.reducer = reducer;
5934 >        }
5935 >        public final Long getRawResult() { return result; }
5936 >        public final void compute() {
5937 >            final ToLongFunction<? super K> transformer;
5938 >            final LongBinaryOperator reducer;
5939 >            if ((transformer = this.transformer) != null &&
5940 >                (reducer = this.reducer) != null) {
5941 >                long r = this.basis;
5942 >                for (int i = baseIndex, f, h; batch > 0 &&
5943 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5944 >                    addToPendingCount(1);
5945 >                    (rights = new MapReduceKeysToLongTask<K,V>
5946 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5947 >                      rights, transformer, r, reducer)).fork();
5948 >                }
5949 >                for (Node<K,V> p; (p = advance()) != null; )
5950 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5951 >                result = r;
5952 >                CountedCompleter<?> c;
5953 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5954 >                    @SuppressWarnings("unchecked")
5955 >                    MapReduceKeysToLongTask<K,V>
5956 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5957 >                        s = t.rights;
5958 >                    while (s != null) {
5959 >                        t.result = reducer.applyAsLong(t.result, s.result);
5960 >                        s = t.rights = s.nextRight;
5961 >                    }
5962 >                }
5963 >            }
5964 >        }
5965 >    }
5966 >
5967 >    @SuppressWarnings("serial")
5968 >    static final class MapReduceValuesToLongTask<K,V>
5969 >        extends BulkTask<K,V,Long> {
5970 >        final ToLongFunction<? super V> transformer;
5971 >        final LongBinaryOperator reducer;
5972 >        final long basis;
5973 >        long result;
5974 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5975 >        MapReduceValuesToLongTask
5976 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5977 >             MapReduceValuesToLongTask<K,V> nextRight,
5978 >             ToLongFunction<? super V> transformer,
5979 >             long basis,
5980 >             LongBinaryOperator reducer) {
5981 >            super(p, b, i, f, t); this.nextRight = nextRight;
5982 >            this.transformer = transformer;
5983 >            this.basis = basis; this.reducer = reducer;
5984 >        }
5985 >        public final Long getRawResult() { return result; }
5986 >        public final void compute() {
5987 >            final ToLongFunction<? super V> transformer;
5988 >            final LongBinaryOperator reducer;
5989 >            if ((transformer = this.transformer) != null &&
5990 >                (reducer = this.reducer) != null) {
5991 >                long r = this.basis;
5992 >                for (int i = baseIndex, f, h; batch > 0 &&
5993 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5994 >                    addToPendingCount(1);
5995 >                    (rights = new MapReduceValuesToLongTask<K,V>
5996 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5997 >                      rights, transformer, r, reducer)).fork();
5998 >                }
5999 >                for (Node<K,V> p; (p = advance()) != null; )
6000 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6001 >                result = r;
6002 >                CountedCompleter<?> c;
6003 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6004 >                    @SuppressWarnings("unchecked")
6005 >                    MapReduceValuesToLongTask<K,V>
6006 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6007 >                        s = t.rights;
6008 >                    while (s != null) {
6009 >                        t.result = reducer.applyAsLong(t.result, s.result);
6010 >                        s = t.rights = s.nextRight;
6011 >                    }
6012 >                }
6013 >            }
6014 >        }
6015 >    }
6016 >
6017 >    @SuppressWarnings("serial")
6018 >    static final class MapReduceEntriesToLongTask<K,V>
6019 >        extends BulkTask<K,V,Long> {
6020 >        final ToLongFunction<Map.Entry<K,V>> transformer;
6021 >        final LongBinaryOperator reducer;
6022 >        final long basis;
6023 >        long result;
6024 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6025 >        MapReduceEntriesToLongTask
6026 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6027 >             MapReduceEntriesToLongTask<K,V> nextRight,
6028 >             ToLongFunction<Map.Entry<K,V>> transformer,
6029 >             long basis,
6030 >             LongBinaryOperator reducer) {
6031 >            super(p, b, i, f, t); this.nextRight = nextRight;
6032 >            this.transformer = transformer;
6033 >            this.basis = basis; this.reducer = reducer;
6034 >        }
6035 >        public final Long getRawResult() { return result; }
6036 >        public final void compute() {
6037 >            final ToLongFunction<Map.Entry<K,V>> transformer;
6038 >            final LongBinaryOperator reducer;
6039 >            if ((transformer = this.transformer) != null &&
6040 >                (reducer = this.reducer) != null) {
6041 >                long r = this.basis;
6042 >                for (int i = baseIndex, f, h; batch > 0 &&
6043 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6044 >                    addToPendingCount(1);
6045 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6046 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6047 >                      rights, transformer, r, reducer)).fork();
6048 >                }
6049 >                for (Node<K,V> p; (p = advance()) != null; )
6050 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6051 >                result = r;
6052 >                CountedCompleter<?> c;
6053 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6054 >                    @SuppressWarnings("unchecked")
6055 >                    MapReduceEntriesToLongTask<K,V>
6056 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6057 >                        s = t.rights;
6058 >                    while (s != null) {
6059 >                        t.result = reducer.applyAsLong(t.result, s.result);
6060 >                        s = t.rights = s.nextRight;
6061 >                    }
6062 >                }
6063 >            }
6064 >        }
6065 >    }
6066 >
6067 >    @SuppressWarnings("serial")
6068 >    static final class MapReduceMappingsToLongTask<K,V>
6069 >        extends BulkTask<K,V,Long> {
6070 >        final ToLongBiFunction<? super K, ? super V> transformer;
6071 >        final LongBinaryOperator reducer;
6072 >        final long basis;
6073 >        long result;
6074 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6075 >        MapReduceMappingsToLongTask
6076 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6077 >             MapReduceMappingsToLongTask<K,V> nextRight,
6078 >             ToLongBiFunction<? super K, ? super V> transformer,
6079 >             long basis,
6080 >             LongBinaryOperator reducer) {
6081 >            super(p, b, i, f, t); this.nextRight = nextRight;
6082 >            this.transformer = transformer;
6083 >            this.basis = basis; this.reducer = reducer;
6084 >        }
6085 >        public final Long getRawResult() { return result; }
6086 >        public final void compute() {
6087 >            final ToLongBiFunction<? super K, ? super V> transformer;
6088 >            final LongBinaryOperator reducer;
6089 >            if ((transformer = this.transformer) != null &&
6090 >                (reducer = this.reducer) != null) {
6091 >                long r = this.basis;
6092 >                for (int i = baseIndex, f, h; batch > 0 &&
6093 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6094 >                    addToPendingCount(1);
6095 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6096 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6097 >                      rights, transformer, r, reducer)).fork();
6098 >                }
6099 >                for (Node<K,V> p; (p = advance()) != null; )
6100 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6101 >                result = r;
6102 >                CountedCompleter<?> c;
6103 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6104 >                    @SuppressWarnings("unchecked")
6105 >                    MapReduceMappingsToLongTask<K,V>
6106 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6107 >                        s = t.rights;
6108 >                    while (s != null) {
6109 >                        t.result = reducer.applyAsLong(t.result, s.result);
6110 >                        s = t.rights = s.nextRight;
6111 >                    }
6112 >                }
6113 >            }
6114 >        }
6115 >    }
6116 >
6117 >    @SuppressWarnings("serial")
6118 >    static final class MapReduceKeysToIntTask<K,V>
6119 >        extends BulkTask<K,V,Integer> {
6120 >        final ToIntFunction<? super K> transformer;
6121 >        final IntBinaryOperator reducer;
6122 >        final int basis;
6123 >        int result;
6124 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6125 >        MapReduceKeysToIntTask
6126 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6127 >             MapReduceKeysToIntTask<K,V> nextRight,
6128 >             ToIntFunction<? super K> transformer,
6129 >             int basis,
6130 >             IntBinaryOperator reducer) {
6131 >            super(p, b, i, f, t); this.nextRight = nextRight;
6132 >            this.transformer = transformer;
6133 >            this.basis = basis; this.reducer = reducer;
6134 >        }
6135 >        public final Integer getRawResult() { return result; }
6136 >        public final void compute() {
6137 >            final ToIntFunction<? super K> transformer;
6138 >            final IntBinaryOperator reducer;
6139 >            if ((transformer = this.transformer) != null &&
6140 >                (reducer = this.reducer) != null) {
6141 >                int r = this.basis;
6142 >                for (int i = baseIndex, f, h; batch > 0 &&
6143 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6144 >                    addToPendingCount(1);
6145 >                    (rights = new MapReduceKeysToIntTask<K,V>
6146 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6147 >                      rights, transformer, r, reducer)).fork();
6148 >                }
6149 >                for (Node<K,V> p; (p = advance()) != null; )
6150 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6151 >                result = r;
6152 >                CountedCompleter<?> c;
6153 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6154 >                    @SuppressWarnings("unchecked")
6155 >                    MapReduceKeysToIntTask<K,V>
6156 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6157 >                        s = t.rights;
6158 >                    while (s != null) {
6159 >                        t.result = reducer.applyAsInt(t.result, s.result);
6160 >                        s = t.rights = s.nextRight;
6161 >                    }
6162 >                }
6163 >            }
6164 >        }
6165 >    }
6166 >
6167 >    @SuppressWarnings("serial")
6168 >    static final class MapReduceValuesToIntTask<K,V>
6169 >        extends BulkTask<K,V,Integer> {
6170 >        final ToIntFunction<? super V> transformer;
6171 >        final IntBinaryOperator reducer;
6172 >        final int basis;
6173 >        int result;
6174 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6175 >        MapReduceValuesToIntTask
6176 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6177 >             MapReduceValuesToIntTask<K,V> nextRight,
6178 >             ToIntFunction<? super V> transformer,
6179 >             int basis,
6180 >             IntBinaryOperator reducer) {
6181 >            super(p, b, i, f, t); this.nextRight = nextRight;
6182 >            this.transformer = transformer;
6183 >            this.basis = basis; this.reducer = reducer;
6184 >        }
6185 >        public final Integer getRawResult() { return result; }
6186 >        public final void compute() {
6187 >            final ToIntFunction<? super V> transformer;
6188 >            final IntBinaryOperator reducer;
6189 >            if ((transformer = this.transformer) != null &&
6190 >                (reducer = this.reducer) != null) {
6191 >                int r = this.basis;
6192 >                for (int i = baseIndex, f, h; batch > 0 &&
6193 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6194 >                    addToPendingCount(1);
6195 >                    (rights = new MapReduceValuesToIntTask<K,V>
6196 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6197 >                      rights, transformer, r, reducer)).fork();
6198 >                }
6199 >                for (Node<K,V> p; (p = advance()) != null; )
6200 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6201 >                result = r;
6202 >                CountedCompleter<?> c;
6203 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6204 >                    @SuppressWarnings("unchecked")
6205 >                    MapReduceValuesToIntTask<K,V>
6206 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6207 >                        s = t.rights;
6208 >                    while (s != null) {
6209 >                        t.result = reducer.applyAsInt(t.result, s.result);
6210 >                        s = t.rights = s.nextRight;
6211 >                    }
6212 >                }
6213 >            }
6214          }
6215      }
6216 +
6217 +    @SuppressWarnings("serial")
6218 +    static final class MapReduceEntriesToIntTask<K,V>
6219 +        extends BulkTask<K,V,Integer> {
6220 +        final ToIntFunction<Map.Entry<K,V>> transformer;
6221 +        final IntBinaryOperator reducer;
6222 +        final int basis;
6223 +        int result;
6224 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6225 +        MapReduceEntriesToIntTask
6226 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6227 +             MapReduceEntriesToIntTask<K,V> nextRight,
6228 +             ToIntFunction<Map.Entry<K,V>> transformer,
6229 +             int basis,
6230 +             IntBinaryOperator reducer) {
6231 +            super(p, b, i, f, t); this.nextRight = nextRight;
6232 +            this.transformer = transformer;
6233 +            this.basis = basis; this.reducer = reducer;
6234 +        }
6235 +        public final Integer getRawResult() { return result; }
6236 +        public final void compute() {
6237 +            final ToIntFunction<Map.Entry<K,V>> transformer;
6238 +            final IntBinaryOperator reducer;
6239 +            if ((transformer = this.transformer) != null &&
6240 +                (reducer = this.reducer) != null) {
6241 +                int r = this.basis;
6242 +                for (int i = baseIndex, f, h; batch > 0 &&
6243 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6244 +                    addToPendingCount(1);
6245 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6246 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6247 +                      rights, transformer, r, reducer)).fork();
6248 +                }
6249 +                for (Node<K,V> p; (p = advance()) != null; )
6250 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6251 +                result = r;
6252 +                CountedCompleter<?> c;
6253 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6254 +                    @SuppressWarnings("unchecked")
6255 +                    MapReduceEntriesToIntTask<K,V>
6256 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
6257 +                        s = t.rights;
6258 +                    while (s != null) {
6259 +                        t.result = reducer.applyAsInt(t.result, s.result);
6260 +                        s = t.rights = s.nextRight;
6261 +                    }
6262 +                }
6263 +            }
6264 +        }
6265 +    }
6266 +
6267 +    @SuppressWarnings("serial")
6268 +    static final class MapReduceMappingsToIntTask<K,V>
6269 +        extends BulkTask<K,V,Integer> {
6270 +        final ToIntBiFunction<? super K, ? super V> transformer;
6271 +        final IntBinaryOperator reducer;
6272 +        final int basis;
6273 +        int result;
6274 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6275 +        MapReduceMappingsToIntTask
6276 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6277 +             MapReduceMappingsToIntTask<K,V> nextRight,
6278 +             ToIntBiFunction<? super K, ? super V> transformer,
6279 +             int basis,
6280 +             IntBinaryOperator reducer) {
6281 +            super(p, b, i, f, t); this.nextRight = nextRight;
6282 +            this.transformer = transformer;
6283 +            this.basis = basis; this.reducer = reducer;
6284 +        }
6285 +        public final Integer getRawResult() { return result; }
6286 +        public final void compute() {
6287 +            final ToIntBiFunction<? super K, ? super V> transformer;
6288 +            final IntBinaryOperator reducer;
6289 +            if ((transformer = this.transformer) != null &&
6290 +                (reducer = this.reducer) != null) {
6291 +                int r = this.basis;
6292 +                for (int i = baseIndex, f, h; batch > 0 &&
6293 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6294 +                    addToPendingCount(1);
6295 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6296 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
6297 +                      rights, transformer, r, reducer)).fork();
6298 +                }
6299 +                for (Node<K,V> p; (p = advance()) != null; )
6300 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6301 +                result = r;
6302 +                CountedCompleter<?> c;
6303 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6304 +                    @SuppressWarnings("unchecked")
6305 +                    MapReduceMappingsToIntTask<K,V>
6306 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6307 +                        s = t.rights;
6308 +                    while (s != null) {
6309 +                        t.result = reducer.applyAsInt(t.result, s.result);
6310 +                        s = t.rights = s.nextRight;
6311 +                    }
6312 +                }
6313 +            }
6314 +        }
6315 +    }
6316 +
6317 +    // Unsafe mechanics
6318 +    private static final Unsafe U = Unsafe.getUnsafe();
6319 +    private static final long SIZECTL;
6320 +    private static final long TRANSFERINDEX;
6321 +    private static final long BASECOUNT;
6322 +    private static final long CELLSBUSY;
6323 +    private static final long CELLVALUE;
6324 +    private static final int ABASE;
6325 +    private static final int ASHIFT;
6326 +
6327 +    static {
6328 +        SIZECTL = U.objectFieldOffset
6329 +            (ConcurrentHashMap.class, "sizeCtl");
6330 +        TRANSFERINDEX = U.objectFieldOffset
6331 +            (ConcurrentHashMap.class, "transferIndex");
6332 +        BASECOUNT = U.objectFieldOffset
6333 +            (ConcurrentHashMap.class, "baseCount");
6334 +        CELLSBUSY = U.objectFieldOffset
6335 +            (ConcurrentHashMap.class, "cellsBusy");
6336 +
6337 +        CELLVALUE = U.objectFieldOffset
6338 +            (CounterCell.class, "value");
6339 +
6340 +        ABASE = U.arrayBaseOffset(Node[].class);
6341 +        int scale = U.arrayIndexScale(Node[].class);
6342 +        if ((scale & (scale - 1)) != 0)
6343 +            throw new ExceptionInInitializerError("array index scale not a power of two");
6344 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6345 +
6346 +        // Reduce the risk of rare disastrous classloading in first call to
6347 +        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6348 +        Class<?> ensureLoaded = LockSupport.class;
6349 +
6350 +        // Eager class load observed to help JIT during startup
6351 +        ensureLoaded = ReservationNode.class;
6352 +    }
6353   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines