ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.105 by dl, Wed Apr 20 15:36:08 2011 UTC vs.
Revision 1.324 by dl, Fri Mar 18 16:01:41 2022 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 >
9 > import java.io.ObjectStreamField;
10   import java.io.Serializable;
11 < import java.io.IOException;
12 < import java.io.ObjectInputStream;
13 < import java.io.ObjectOutputStream;
11 > import java.lang.reflect.ParameterizedType;
12 > import java.lang.reflect.Type;
13 > import java.util.AbstractMap;
14 > import java.util.Arrays;
15 > import java.util.Collection;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.atomic.AtomicReference;
25 > import java.util.concurrent.locks.LockSupport;
26 > import java.util.concurrent.locks.ReentrantLock;
27 > import java.util.function.BiConsumer;
28 > import java.util.function.BiFunction;
29 > import java.util.function.Consumer;
30 > import java.util.function.DoubleBinaryOperator;
31 > import java.util.function.Function;
32 > import java.util.function.IntBinaryOperator;
33 > import java.util.function.LongBinaryOperator;
34 > import java.util.function.Predicate;
35 > import java.util.function.ToDoubleBiFunction;
36 > import java.util.function.ToDoubleFunction;
37 > import java.util.function.ToIntBiFunction;
38 > import java.util.function.ToIntFunction;
39 > import java.util.function.ToLongBiFunction;
40 > import java.util.function.ToLongFunction;
41 > import java.util.stream.Stream;
42 > import jdk.internal.misc.Unsafe;
43  
44   /**
45   * A hash table supporting full concurrency of retrievals and
46 < * adjustable expected concurrency for updates. This class obeys the
46 > * high expected concurrency for updates. This class obeys the
47   * same functional specification as {@link java.util.Hashtable}, and
48   * includes versions of methods corresponding to each method of
49 < * <tt>Hashtable</tt>. However, even though all operations are
49 > * {@code Hashtable}. However, even though all operations are
50   * thread-safe, retrieval operations do <em>not</em> entail locking,
51   * and there is <em>not</em> any support for locking the entire table
52   * in a way that prevents all access.  This class is fully
53 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
53 > * interoperable with {@code Hashtable} in programs that rely on its
54   * thread safety but not on its synchronization details.
55   *
56 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
57 < * block, so may overlap with update operations (including
58 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
59 < * of the most recently <em>completed</em> update operations holding
60 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
61 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
62 < * removal of only some entries.  Similarly, Iterators and
63 < * Enumerations return elements reflecting the state of the hash table
64 < * at some point at or since the creation of the iterator/enumeration.
65 < * They do <em>not</em> throw {@link ConcurrentModificationException}.
56 > * <p>Retrieval operations (including {@code get}) generally do not
57 > * block, so may overlap with update operations (including {@code put}
58 > * and {@code remove}). Retrievals reflect the results of the most
59 > * recently <em>completed</em> update operations holding upon their
60 > * onset. (More formally, an update operation for a given key bears a
61 > * <em>happens-before</em> relation with any (non-null) retrieval for
62 > * that key reporting the updated value.)  For aggregate operations
63 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 > * reflect insertion or removal of only some entries.  Similarly,
65 > * Iterators, Spliterators and Enumerations return elements reflecting the
66 > * state of the hash table at some point at or since the creation of the
67 > * iterator/enumeration.  They do <em>not</em> throw {@link
68 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
69   * However, iterators are designed to be used by only one thread at a time.
70 + * Bear in mind that the results of aggregate status methods including
71 + * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 + * useful only when a map is not undergoing concurrent updates in other threads.
73 + * Otherwise the results of these methods reflect transient states
74 + * that may be adequate for monitoring or estimation purposes, but not
75 + * for program control.
76 + *
77 + * <p>The table is dynamically expanded when there are too many
78 + * collisions (i.e., keys that have distinct hash codes but fall into
79 + * the same slot modulo the table size), with the expected average
80 + * effect of maintaining roughly two bins per mapping (corresponding
81 + * to a 0.75 load factor threshold for resizing). There may be much
82 + * variance around this average as mappings are added and removed, but
83 + * overall, this maintains a commonly accepted time/space tradeoff for
84 + * hash tables.  However, resizing this or any other kind of hash
85 + * table may be a relatively slow operation. When possible, it is a
86 + * good idea to provide a size estimate as an optional {@code
87 + * initialCapacity} constructor argument. An additional optional
88 + * {@code loadFactor} constructor argument provides a further means of
89 + * customizing initial table capacity by specifying the table density
90 + * to be used in calculating the amount of space to allocate for the
91 + * given number of elements.  Also, for compatibility with previous
92 + * versions of this class, constructors may optionally specify an
93 + * expected {@code concurrencyLevel} as an additional hint for
94 + * internal sizing.  Note that using many keys with exactly the same
95 + * {@code hashCode()} is a sure way to slow down performance of any
96 + * hash table. To ameliorate impact, when keys are {@link Comparable},
97 + * this class may use comparison order among keys to help break ties.
98 + *
99 + * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 + * (using {@link #keySet(Object)} when only keys are of interest, and the
102 + * mapped values are (perhaps transiently) not used or all take the
103 + * same mapping value.
104   *
105 < * <p> The allowed concurrency among update operations is guided by
106 < * the optional <tt>concurrencyLevel</tt> constructor argument
107 < * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
108 < * table is internally partitioned to try to permit the indicated
109 < * number of concurrent updates without contention. Because placement
110 < * in hash tables is essentially random, the actual concurrency will
45 < * vary.  Ideally, you should choose a value to accommodate as many
46 < * threads as will ever concurrently modify the table. Using a
47 < * significantly higher value than you need can waste space and time,
48 < * and a significantly lower value can lead to thread contention. But
49 < * overestimates and underestimates within an order of magnitude do
50 < * not usually have much noticeable impact. A value of one is
51 < * appropriate when it is known that only one thread will modify and
52 < * all others will only read. Also, resizing this or any other kind of
53 < * hash table is a relatively slow operation, so, when possible, it is
54 < * a good idea to provide estimates of expected table sizes in
55 < * constructors.
105 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 > * form of histogram or multiset) by using {@link
107 > * java.util.concurrent.atomic.LongAdder} values and initializing via
108 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111   *
112   * <p>This class and its views and iterators implement all of the
113   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114   * interfaces.
115   *
116 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
117 < * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
116 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 > * does <em>not</em> allow {@code null} to be used as a key or value.
118 > *
119 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 > * operations that, unlike most {@link Stream} methods, are designed
121 > * to be safely, and often sensibly, applied even with maps that are
122 > * being concurrently updated by other threads; for example, when
123 > * computing a snapshot summary of the values in a shared registry.
124 > * There are three kinds of operation, each with four forms, accepting
125 > * functions with keys, values, entries, and (key, value) pairs as
126 > * arguments and/or return values. Because the elements of a
127 > * ConcurrentHashMap are not ordered in any particular way, and may be
128 > * processed in different orders in different parallel executions, the
129 > * correctness of supplied functions should not depend on any
130 > * ordering, or on any other objects or values that may transiently
131 > * change while computation is in progress; and except for forEach
132 > * actions, should ideally be side-effect-free. Bulk operations on
133 > * {@link Map.Entry} objects do not support method {@code setValue}.
134 > *
135 > * <ul>
136 > * <li>forEach: Performs a given action on each element.
137 > * A variant form applies a given transformation on each element
138 > * before performing the action.
139 > *
140 > * <li>search: Returns the first available non-null result of
141 > * applying a given function on each element; skipping further
142 > * search when a result is found.
143 > *
144 > * <li>reduce: Accumulates each element.  The supplied reduction
145 > * function cannot rely on ordering (more formally, it should be
146 > * both associative and commutative).  There are five variants:
147 > *
148 > * <ul>
149 > *
150 > * <li>Plain reductions. (There is not a form of this method for
151 > * (key, value) function arguments since there is no corresponding
152 > * return type.)
153 > *
154 > * <li>Mapped reductions that accumulate the results of a given
155 > * function applied to each element.
156 > *
157 > * <li>Reductions to scalar doubles, longs, and ints, using a
158 > * given basis value.
159 > *
160 > * </ul>
161 > * </ul>
162 > *
163 > * <p>These bulk operations accept a {@code parallelismThreshold}
164 > * argument. Methods proceed sequentially if the current map size is
165 > * estimated to be less than the given threshold. Using a value of
166 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
167 > * of {@code 1} results in maximal parallelism by partitioning into
168 > * enough subtasks to fully utilize the {@link
169 > * ForkJoinPool#commonPool()} that is used for all parallel
170 > * computations. Normally, you would initially choose one of these
171 > * extreme values, and then measure performance of using in-between
172 > * values that trade off overhead versus throughput.
173 > *
174 > * <p>The concurrency properties of bulk operations follow
175 > * from those of ConcurrentHashMap: Any non-null result returned
176 > * from {@code get(key)} and related access methods bears a
177 > * happens-before relation with the associated insertion or
178 > * update.  The result of any bulk operation reflects the
179 > * composition of these per-element relations (but is not
180 > * necessarily atomic with respect to the map as a whole unless it
181 > * is somehow known to be quiescent).  Conversely, because keys
182 > * and values in the map are never null, null serves as a reliable
183 > * atomic indicator of the current lack of any result.  To
184 > * maintain this property, null serves as an implicit basis for
185 > * all non-scalar reduction operations. For the double, long, and
186 > * int versions, the basis should be one that, when combined with
187 > * any other value, returns that other value (more formally, it
188 > * should be the identity element for the reduction). Most common
189 > * reductions have these properties; for example, computing a sum
190 > * with basis 0 or a minimum with basis MAX_VALUE.
191 > *
192 > * <p>Search and transformation functions provided as arguments
193 > * should similarly return null to indicate the lack of any result
194 > * (in which case it is not used). In the case of mapped
195 > * reductions, this also enables transformations to serve as
196 > * filters, returning null (or, in the case of primitive
197 > * specializations, the identity basis) if the element should not
198 > * be combined. You can create compound transformations and
199 > * filterings by composing them yourself under this "null means
200 > * there is nothing there now" rule before using them in search or
201 > * reduce operations.
202 > *
203 > * <p>Methods accepting and/or returning Entry arguments maintain
204 > * key-value associations. They may be useful for example when
205 > * finding the key for the greatest value. Note that "plain" Entry
206 > * arguments can be supplied using {@code new
207 > * AbstractMap.SimpleEntry(k,v)}.
208 > *
209 > * <p>Bulk operations may complete abruptly, throwing an
210 > * exception encountered in the application of a supplied
211 > * function. Bear in mind when handling such exceptions that other
212 > * concurrently executing functions could also have thrown
213 > * exceptions, or would have done so if the first exception had
214 > * not occurred.
215 > *
216 > * <p>Speedups for parallel compared to sequential forms are common
217 > * but not guaranteed.  Parallel operations involving brief functions
218 > * on small maps may execute more slowly than sequential forms if the
219 > * underlying work to parallelize the computation is more expensive
220 > * than the computation itself.  Similarly, parallelization may not
221 > * lead to much actual parallelism if all processors are busy
222 > * performing unrelated tasks.
223 > *
224 > * <p>All arguments to all task methods must be non-null.
225   *
226   * <p>This class is a member of the
227 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
227 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
228   * Java Collections Framework</a>.
229   *
230   * @since 1.5
# Line 70 | Line 232 | import java.io.ObjectOutputStream;
232   * @param <K> the type of keys maintained by this map
233   * @param <V> the type of mapped values
234   */
235 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
236 <        implements ConcurrentMap<K, V>, Serializable {
235 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 >    implements ConcurrentMap<K,V>, Serializable {
237      private static final long serialVersionUID = 7249069246763182397L;
238  
239      /*
240 <     * The basic strategy is to subdivide the table among Segments,
241 <     * each of which itself is a concurrently readable hash table.  To
242 <     * reduce footprint, all but one segments are constructed only
243 <     * when first needed (see ensureSegment). To maintain visibility
244 <     * in the presence of lazy construction, accesses to segments as
245 <     * well as elements of segment's table must use volatile access,
246 <     * which is done via Unsafe within methods segmentAt etc
247 <     * below. These provide the functionality of AtomicReferenceArrays
248 <     * but reduce the levels of indirection. Additionally,
249 <     * volatile-writes of table elements and entry "next" fields
250 <     * within locked operations use the cheaper "lazySet" forms of
251 <     * writes (via putOrderedObject) because these writes are always
252 <     * followed by lock releases that maintain sequential consistency
253 <     * of table updates.
254 <     *
255 <     * Historical note: The previous version of this class relied
256 <     * heavily on "final" fields, which avoided some volatile reads at
257 <     * the expense of a large initial footprint.  Some remnants of
258 <     * that design (including forced construction of segment 0) exist
259 <     * to ensure serialization compatibility.
240 >     * Overview:
241 >     *
242 >     * The primary design goal of this hash table is to maintain
243 >     * concurrent readability (typically method get(), but also
244 >     * iterators and related methods) while minimizing update
245 >     * contention. Secondary goals are to keep space consumption about
246 >     * the same or better than java.util.HashMap, and to support high
247 >     * initial insertion rates on an empty table by many threads.
248 >     *
249 >     * This map usually acts as a binned (bucketed) hash table.  Each
250 >     * key-value mapping is held in a Node.  Most nodes are instances
251 >     * of the basic Node class with hash, key, value, and next
252 >     * fields. However, various subclasses exist: TreeNodes are
253 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
254 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 >     * of bins during resizing. ReservationNodes are used as
256 >     * placeholders while establishing values in computeIfAbsent and
257 >     * related methods.  The types TreeBin, ForwardingNode, and
258 >     * ReservationNode do not hold normal user keys, values, or
259 >     * hashes, and are readily distinguishable during search etc
260 >     * because they have negative hash fields and null key and value
261 >     * fields. (These special nodes are either uncommon or transient,
262 >     * so the impact of carrying around some unused fields is
263 >     * insignificant.)
264 >     *
265 >     * The table is lazily initialized to a power-of-two size upon the
266 >     * first insertion.  Each bin in the table normally contains a
267 >     * list of Nodes (most often, the list has only zero or one Node).
268 >     * Table accesses require volatile/atomic reads, writes, and
269 >     * CASes.  Because there is no other way to arrange this without
270 >     * adding further indirections, we use intrinsics
271 >     * (jdk.internal.misc.Unsafe) operations.
272 >     *
273 >     * We use the top (sign) bit of Node hash fields for control
274 >     * purposes -- it is available anyway because of addressing
275 >     * constraints.  Nodes with negative hash fields are specially
276 >     * handled or ignored in map methods.
277 >     *
278 >     * Insertion (via put or its variants) of the first node in an
279 >     * empty bin is performed by just CASing it to the bin.  This is
280 >     * by far the most common case for put operations under most
281 >     * key/hash distributions.  Other update operations (insert,
282 >     * delete, and replace) require locks.  We do not want to waste
283 >     * the space required to associate a distinct lock object with
284 >     * each bin, so instead use the first node of a bin list itself as
285 >     * a lock. Locking support for these locks relies on builtin
286 >     * "synchronized" monitors.
287 >     *
288 >     * Using the first node of a list as a lock does not by itself
289 >     * suffice though: When a node is locked, any update must first
290 >     * validate that it is still the first node after locking it, and
291 >     * retry if not. Because new nodes are always appended to lists,
292 >     * once a node is first in a bin, it remains first until deleted
293 >     * or the bin becomes invalidated (upon resizing).
294 >     *
295 >     * The main disadvantage of per-bin locks is that other update
296 >     * operations on other nodes in a bin list protected by the same
297 >     * lock can stall, for example when user equals() or mapping
298 >     * functions take a long time.  However, statistically, under
299 >     * random hash codes, this is not a common problem.  Ideally, the
300 >     * frequency of nodes in bins follows a Poisson distribution
301 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 >     * parameter of about 0.5 on average, given the resizing threshold
303 >     * of 0.75, although with a large variance because of resizing
304 >     * granularity. Ignoring variance, the expected occurrences of
305 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 >     * first values are:
307 >     *
308 >     * 0:    0.60653066
309 >     * 1:    0.30326533
310 >     * 2:    0.07581633
311 >     * 3:    0.01263606
312 >     * 4:    0.00157952
313 >     * 5:    0.00015795
314 >     * 6:    0.00001316
315 >     * 7:    0.00000094
316 >     * 8:    0.00000006
317 >     * more: less than 1 in ten million
318 >     *
319 >     * Lock contention probability for two threads accessing distinct
320 >     * elements is roughly 1 / (8 * #elements) under random hashes.
321 >     *
322 >     * Actual hash code distributions encountered in practice
323 >     * sometimes deviate significantly from uniform randomness.  This
324 >     * includes the case when N > (1<<30), so some keys MUST collide.
325 >     * Similarly for dumb or hostile usages in which multiple keys are
326 >     * designed to have identical hash codes or ones that differs only
327 >     * in masked-out high bits. So we use a secondary strategy that
328 >     * applies when the number of nodes in a bin exceeds a
329 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
330 >     * specialized form of red-black trees), bounding search time to
331 >     * O(log N).  Each search step in a TreeBin is at least twice as
332 >     * slow as in a regular list, but given that N cannot exceed
333 >     * (1<<64) (before running out of addresses) this bounds search
334 >     * steps, lock hold times, etc, to reasonable constants (roughly
335 >     * 100 nodes inspected per operation worst case) so long as keys
336 >     * are Comparable (which is very common -- String, Long, etc).
337 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
338 >     * traversal pointers as regular nodes, so can be traversed in
339 >     * iterators in the same way.
340 >     *
341 >     * The table is resized when occupancy exceeds a percentage
342 >     * threshold (nominally, 0.75, but see below).  Any thread
343 >     * noticing an overfull bin may assist in resizing after the
344 >     * initiating thread allocates and sets up the replacement array.
345 >     * However, rather than stalling, these other threads may proceed
346 >     * with insertions etc.  The use of TreeBins shields us from the
347 >     * worst case effects of overfilling while resizes are in
348 >     * progress.  Resizing proceeds by transferring bins, one by one,
349 >     * from the table to the next table. However, threads claim small
350 >     * blocks of indices to transfer (via field transferIndex) before
351 >     * doing so, reducing contention.  A generation stamp in field
352 >     * sizeCtl ensures that resizings do not overlap. Because we are
353 >     * using power-of-two expansion, the elements from each bin must
354 >     * either stay at same index, or move with a power of two
355 >     * offset. We eliminate unnecessary node creation by catching
356 >     * cases where old nodes can be reused because their next fields
357 >     * won't change.  On average, only about one-sixth of them need
358 >     * cloning when a table doubles. The nodes they replace will be
359 >     * garbage collectible as soon as they are no longer referenced by
360 >     * any reader thread that may be in the midst of concurrently
361 >     * traversing table.  Upon transfer, the old table bin contains
362 >     * only a special forwarding node (with hash field "MOVED") that
363 >     * contains the next table as its key. On encountering a
364 >     * forwarding node, access and update operations restart, using
365 >     * the new table.
366 >     *
367 >     * Each bin transfer requires its bin lock, which can stall
368 >     * waiting for locks while resizing. However, because other
369 >     * threads can join in and help resize rather than contend for
370 >     * locks, average aggregate waits become shorter as resizing
371 >     * progresses.  The transfer operation must also ensure that all
372 >     * accessible bins in both the old and new table are usable by any
373 >     * traversal.  This is arranged in part by proceeding from the
374 >     * last bin (table.length - 1) up towards the first.  Upon seeing
375 >     * a forwarding node, traversals (see class Traverser) arrange to
376 >     * move to the new table without revisiting nodes.  To ensure that
377 >     * no intervening nodes are skipped even when moved out of order,
378 >     * a stack (see class TableStack) is created on first encounter of
379 >     * a forwarding node during a traversal, to maintain its place if
380 >     * later processing the current table. The need for these
381 >     * save/restore mechanics is relatively rare, but when one
382 >     * forwarding node is encountered, typically many more will be.
383 >     * So Traversers use a simple caching scheme to avoid creating so
384 >     * many new TableStack nodes. (Thanks to Peter Levart for
385 >     * suggesting use of a stack here.)
386 >     *
387 >     * The traversal scheme also applies to partial traversals of
388 >     * ranges of bins (via an alternate Traverser constructor)
389 >     * to support partitioned aggregate operations.  Also, read-only
390 >     * operations give up if ever forwarded to a null table, which
391 >     * provides support for shutdown-style clearing, which is also not
392 >     * currently implemented.
393 >     *
394 >     * Lazy table initialization minimizes footprint until first use,
395 >     * and also avoids resizings when the first operation is from a
396 >     * putAll, constructor with map argument, or deserialization.
397 >     * These cases attempt to override the initial capacity settings,
398 >     * but harmlessly fail to take effect in cases of races.
399 >     *
400 >     * The element count is maintained using a specialization of
401 >     * LongAdder. We need to incorporate a specialization rather than
402 >     * just use a LongAdder in order to access implicit
403 >     * contention-sensing that leads to creation of multiple
404 >     * CounterCells.  The counter mechanics avoid contention on
405 >     * updates but can encounter cache thrashing if read too
406 >     * frequently during concurrent access. To avoid reading so often,
407 >     * resizing under contention is attempted only upon adding to a
408 >     * bin already holding two or more nodes. Under uniform hash
409 >     * distributions, the probability of this occurring at threshold
410 >     * is around 13%, meaning that only about 1 in 8 puts check
411 >     * threshold (and after resizing, many fewer do so).
412 >     *
413 >     * TreeBins use a special form of comparison for search and
414 >     * related operations (which is the main reason we cannot use
415 >     * existing collections such as TreeMaps). TreeBins contain
416 >     * Comparable elements, but may contain others, as well as
417 >     * elements that are Comparable but not necessarily Comparable for
418 >     * the same T, so we cannot invoke compareTo among them. To handle
419 >     * this, the tree is ordered primarily by hash value, then by
420 >     * Comparable.compareTo order if applicable.  On lookup at a node,
421 >     * if elements are not comparable or compare as 0 then both left
422 >     * and right children may need to be searched in the case of tied
423 >     * hash values. (This corresponds to the full list search that
424 >     * would be necessary if all elements were non-Comparable and had
425 >     * tied hashes.) On insertion, to keep a total ordering (or as
426 >     * close as is required here) across rebalancings, we compare
427 >     * classes and identityHashCodes as tie-breakers. The red-black
428 >     * balancing code is updated from pre-jdk-collections
429 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 >     * Algorithms" (CLR).
432 >     *
433 >     * TreeBins also require an additional locking mechanism.  While
434 >     * list traversal is always possible by readers even during
435 >     * updates, tree traversal is not, mainly because of tree-rotations
436 >     * that may change the root node and/or its linkages.  TreeBins
437 >     * include a simple read-write lock mechanism parasitic on the
438 >     * main bin-synchronization strategy: Structural adjustments
439 >     * associated with an insertion or removal are already bin-locked
440 >     * (and so cannot conflict with other writers) but must wait for
441 >     * ongoing readers to finish. Since there can be only one such
442 >     * waiter, we use a simple scheme using a single "waiter" field to
443 >     * block writers.  However, readers need never block.  If the root
444 >     * lock is held, they proceed along the slow traversal path (via
445 >     * next-pointers) until the lock becomes available or the list is
446 >     * exhausted, whichever comes first. These cases are not fast, but
447 >     * maximize aggregate expected throughput.
448 >     *
449 >     * Maintaining API and serialization compatibility with previous
450 >     * versions of this class introduces several oddities. Mainly: We
451 >     * leave untouched but unused constructor arguments referring to
452 >     * concurrencyLevel. We accept a loadFactor constructor argument,
453 >     * but apply it only to initial table capacity (which is the only
454 >     * time that we can guarantee to honor it.) We also declare an
455 >     * unused "Segment" class that is instantiated in minimal form
456 >     * only when serializing.
457 >     *
458 >     * Also, solely for compatibility with previous versions of this
459 >     * class, it extends AbstractMap, even though all of its methods
460 >     * are overridden, so it is just useless baggage.
461 >     *
462 >     * This file is organized to make things a little easier to follow
463 >     * while reading than they might otherwise: First the main static
464 >     * declarations and utilities, then fields, then main public
465 >     * methods (with a few factorings of multiple public methods into
466 >     * internal ones), then sizing methods, trees, traversers, and
467 >     * bulk operations.
468       */
469  
470      /* ---------------- Constants -------------- */
471  
472      /**
473 <     * The default initial capacity for this table,
474 <     * used when not otherwise specified in a constructor.
473 >     * The largest possible table capacity.  This value must be
474 >     * exactly 1<<30 to stay within Java array allocation and indexing
475 >     * bounds for power of two table sizes, and is further required
476 >     * because the top two bits of 32bit hash fields are used for
477 >     * control purposes.
478       */
479 <    static final int DEFAULT_INITIAL_CAPACITY = 16;
479 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
480  
481      /**
482 <     * The default load factor for this table, used when not
483 <     * otherwise specified in a constructor.
482 >     * The default initial table capacity.  Must be a power of 2
483 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484       */
485 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
485 >    private static final int DEFAULT_CAPACITY = 16;
486  
487      /**
488 <     * The default concurrency level for this table, used when not
489 <     * otherwise specified in a constructor.
488 >     * The largest possible (non-power of two) array size.
489 >     * Needed by toArray and related methods.
490       */
491 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
491 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492  
493      /**
494 <     * The maximum capacity, used if a higher value is implicitly
495 <     * specified by either of the constructors with arguments.  MUST
123 <     * be a power of two <= 1<<30 to ensure that entries are indexable
124 <     * using ints.
494 >     * The default concurrency level for this table. Unused but
495 >     * defined for compatibility with previous versions of this class.
496       */
497 <    static final int MAXIMUM_CAPACITY = 1 << 30;
497 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498  
499      /**
500 <     * The minimum capacity for per-segment tables.  Must be a power
501 <     * of two, at least two to avoid immediate resizing on next use
502 <     * after lazy construction.
500 >     * The load factor for this table. Overrides of this value in
501 >     * constructors affect only the initial table capacity.  The
502 >     * actual floating point value isn't normally used -- it is
503 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
504 >     * the associated resizing threshold.
505       */
506 <    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
506 >    private static final float LOAD_FACTOR = 0.75f;
507  
508      /**
509 <     * The maximum number of segments to allow; used to bound
510 <     * constructor arguments. Must be power of two less than 1 << 24.
509 >     * The bin count threshold for using a tree rather than list for a
510 >     * bin.  Bins are converted to trees when adding an element to a
511 >     * bin with at least this many nodes. The value must be greater
512 >     * than 2, and should be at least 8 to mesh with assumptions in
513 >     * tree removal about conversion back to plain bins upon
514 >     * shrinkage.
515       */
516 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
516 >    static final int TREEIFY_THRESHOLD = 8;
517  
518      /**
519 <     * Number of unsynchronized retries in size and containsValue
520 <     * methods before resorting to locking. This is used to avoid
521 <     * unbounded retries if tables undergo continuous modification
145 <     * which would make it impossible to obtain an accurate result.
519 >     * The bin count threshold for untreeifying a (split) bin during a
520 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 >     * most 6 to mesh with shrinkage detection under removal.
522       */
523 <    static final int RETRIES_BEFORE_LOCK = 2;
148 <
149 <    /* ---------------- Fields -------------- */
523 >    static final int UNTREEIFY_THRESHOLD = 6;
524  
525      /**
526 <     * Mask value for indexing into segments. The upper bits of a
527 <     * key's hash code are used to choose the segment.
526 >     * The smallest table capacity for which bins may be treeified.
527 >     * (Otherwise the table is resized if too many nodes in a bin.)
528 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 >     * conflicts between resizing and treeification thresholds.
530       */
531 <    final int segmentMask;
531 >    static final int MIN_TREEIFY_CAPACITY = 64;
532  
533      /**
534 <     * Shift value for indexing within segments.
534 >     * Minimum number of rebinnings per transfer step. Ranges are
535 >     * subdivided to allow multiple resizer threads.  This value
536 >     * serves as a lower bound to avoid resizers encountering
537 >     * excessive memory contention.  The value should be at least
538 >     * DEFAULT_CAPACITY.
539       */
540 <    final int segmentShift;
540 >    private static final int MIN_TRANSFER_STRIDE = 16;
541  
542      /**
543 <     * The segments, each of which is a specialized hash table.
543 >     * The number of bits used for generation stamp in sizeCtl.
544 >     * Must be at least 6 for 32bit arrays.
545       */
546 <    final Segment<K,V>[] segments;
546 >    private static final int RESIZE_STAMP_BITS = 16;
547  
548 <    transient Set<K> keySet;
549 <    transient Set<Map.Entry<K,V>> entrySet;
550 <    transient Collection<V> values;
548 >    /**
549 >     * The maximum number of threads that can help resize.
550 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 >     */
552 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553  
554      /**
555 <     * ConcurrentHashMap list entry. Note that this is never exported
556 <     * out as a user-visible Map.Entry.
555 >     * The bit shift for recording size stamp in sizeCtl.
556 >     */
557 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558 >
559 >    /*
560 >     * Encodings for Node hash fields. See above for explanation.
561 >     */
562 >    static final int MOVED     = -1; // hash for forwarding nodes
563 >    static final int TREEBIN   = -2; // hash for roots of trees
564 >    static final int RESERVED  = -3; // hash for transient reservations
565 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566 >
567 >    /** Number of CPUS, to place bounds on some sizings */
568 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
569 >
570 >    /**
571 >     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 >     * @serialField segments Segment[]
573 >     *   The segments, each of which is a specialized hash table.
574 >     * @serialField segmentMask int
575 >     *   Mask value for indexing into segments. The upper bits of a
576 >     *   key's hash code are used to choose the segment.
577 >     * @serialField segmentShift int
578 >     *   Shift value for indexing within segments.
579 >     */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE),
584 >    };
585 >
586 >    /* ---------------- Nodes -------------- */
587 >
588 >    /**
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595       */
596 <    static final class HashEntry<K,V> {
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597          final int hash;
598          final K key;
599 <        volatile V value;
600 <        volatile HashEntry<K,V> next;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601  
602 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
602 >        Node(int hash, K key, V val) {
603              this.hash = hash;
604              this.key = key;
605 <            this.value = value;
605 >            this.val = val;
606 >        }
607 >
608 >        Node(int hash, K key, V val, Node<K,V> next) {
609 >            this(hash, key, val);
610              this.next = next;
611          }
612  
613 +        public final K getKey()     { return key; }
614 +        public final V getValue()   { return val; }
615 +        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 +        public final String toString() {
617 +            return Helpers.mapEntryToString(key, val);
618 +        }
619 +        public final V setValue(V value) {
620 +            throw new UnsupportedOperationException();
621 +        }
622 +
623 +        public final boolean equals(Object o) {
624 +            Object k, v, u; Map.Entry<?,?> e;
625 +            return ((o instanceof Map.Entry) &&
626 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 +                    (v = e.getValue()) != null &&
628 +                    (k == key || k.equals(key)) &&
629 +                    (v == (u = val) || v.equals(u)));
630 +        }
631 +
632          /**
633 <         * Sets next field with volatile write semantics.  (See above
190 <         * about use of putOrderedObject.)
633 >         * Virtualized support for map.get(); overridden in subclasses.
634           */
635 <        final void setNext(HashEntry<K,V> n) {
636 <            UNSAFE.putOrderedObject(this, nextOffset, n);
635 >        Node<K,V> find(int h, Object k) {
636 >            Node<K,V> e = this;
637 >            if (k != null) {
638 >                do {
639 >                    K ek;
640 >                    if (e.hash == h &&
641 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 >                        return e;
643 >                } while ((e = e.next) != null);
644 >            }
645 >            return null;
646          }
647 +    }
648  
649 <        // Unsafe mechanics
650 <        static final sun.misc.Unsafe UNSAFE;
651 <        static final long nextOffset;
652 <        static {
653 <            try {
654 <                UNSAFE = sun.misc.Unsafe.getUnsafe();
655 <                Class k = HashEntry.class;
656 <                nextOffset = UNSAFE.objectFieldOffset
657 <                    (k.getDeclaredField("next"));
658 <            } catch (Exception e) {
659 <                throw new Error(e);
649 >    /* ---------------- Static utilities -------------- */
650 >
651 >    /**
652 >     * Spreads (XORs) higher bits of hash to lower and also forces top
653 >     * bit to 0. Because the table uses power-of-two masking, sets of
654 >     * hashes that vary only in bits above the current mask will
655 >     * always collide. (Among known examples are sets of Float keys
656 >     * holding consecutive whole numbers in small tables.)  So we
657 >     * apply a transform that spreads the impact of higher bits
658 >     * downward. There is a tradeoff between speed, utility, and
659 >     * quality of bit-spreading. Because many common sets of hashes
660 >     * are already reasonably distributed (so don't benefit from
661 >     * spreading), and because we use trees to handle large sets of
662 >     * collisions in bins, we just XOR some shifted bits in the
663 >     * cheapest possible way to reduce systematic lossage, as well as
664 >     * to incorporate impact of the highest bits that would otherwise
665 >     * never be used in index calculations because of table bounds.
666 >     */
667 >    static final int spread(int h) {
668 >        return (h ^ (h >>> 16)) & HASH_BITS;
669 >    }
670 >
671 >    /**
672 >     * Returns a power of two table size for the given desired capacity.
673 >     * See Hackers Delight, sec 3.2
674 >     */
675 >    private static final int tableSizeFor(int c) {
676 >        int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678 >    }
679 >
680 >    /**
681 >     * Returns x's Class if it is of the form "class C implements
682 >     * Comparable<C>", else null.
683 >     */
684 >    static Class<?> comparableClassFor(Object x) {
685 >        if (x instanceof Comparable) {
686 >            Class<?> c; Type[] ts, as; ParameterizedType p;
687 >            if ((c = x.getClass()) == String.class) // bypass checks
688 >                return c;
689 >            if ((ts = c.getGenericInterfaces()) != null) {
690 >                for (Type t : ts) {
691 >                    if ((t instanceof ParameterizedType) &&
692 >                        ((p = (ParameterizedType)t).getRawType() ==
693 >                         Comparable.class) &&
694 >                        (as = p.getActualTypeArguments()) != null &&
695 >                        as.length == 1 && as[0] == c) // type arg is c
696 >                        return c;
697 >                }
698              }
699          }
700 +        return null;
701      }
702  
703      /**
704 <     * Gets the ith element of given table (if nonnull) with volatile
705 <     * read semantics. Note: This is manually integrated into a few
214 <     * performance-sensitive methods to reduce call overhead.
704 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 >     * class), else 0.
706       */
707 +    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 +    static int compareComparables(Class<?> kc, Object k, Object x) {
709 +        return (x == null || x.getClass() != kc ? 0 :
710 +                ((Comparable)k).compareTo(x));
711 +    }
712 +
713 +    /* ---------------- Table element access -------------- */
714 +
715 +    /*
716 +     * Atomic access methods are used for table elements as well as
717 +     * elements of in-progress next table while resizing.  All uses of
718 +     * the tab arguments must be null checked by callers.  All callers
719 +     * also paranoically precheck that tab's length is not zero (or an
720 +     * equivalent check), thus ensuring that any index argument taking
721 +     * the form of a hash value anded with (length - 1) is a valid
722 +     * index.  Note that, to be correct wrt arbitrary concurrency
723 +     * errors by users, these checks must operate on local variables,
724 +     * which accounts for some odd-looking inline assignments below.
725 +     * Note that calls to setTabAt always occur within locked regions,
726 +     * and so require only release ordering.
727 +     */
728 +
729      @SuppressWarnings("unchecked")
730 <    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
731 <        return (tab == null) ? null :
732 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
733 <            (tab, ((long)i << TSHIFT) + TBASE);
730 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 >        return (Node<K,V>)U.getReferenceAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 >    }
733 >
734 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 >                                        Node<K,V> c, Node<K,V> v) {
736 >        return U.compareAndSetReference(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 >    }
738 >
739 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 >        U.putReferenceRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741      }
742  
743 +    /* ---------------- Fields -------------- */
744 +
745 +    /**
746 +     * The array of bins. Lazily initialized upon first insertion.
747 +     * Size is always a power of two. Accessed directly by iterators.
748 +     */
749 +    transient volatile Node<K,V>[] table;
750 +
751 +    /**
752 +     * The next table to use; non-null only while resizing.
753 +     */
754 +    private transient volatile Node<K,V>[] nextTable;
755 +
756 +    /**
757 +     * Base counter value, used mainly when there is no contention,
758 +     * but also as a fallback during table initialization
759 +     * races. Updated via CAS.
760 +     */
761 +    private transient volatile long baseCount;
762 +
763 +    /**
764 +     * Table initialization and resizing control.  When negative, the
765 +     * table is being initialized or resized: -1 for initialization,
766 +     * else -(1 + the number of active resizing threads).  Otherwise,
767 +     * when table is null, holds the initial table size to use upon
768 +     * creation, or 0 for default. After initialization, holds the
769 +     * next element count value upon which to resize the table.
770 +     */
771 +    private transient volatile int sizeCtl;
772 +
773 +    /**
774 +     * The next table index (plus one) to split while resizing.
775 +     */
776 +    private transient volatile int transferIndex;
777 +
778 +    /**
779 +     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 +     */
781 +    private transient volatile int cellsBusy;
782 +
783 +    /**
784 +     * Table of counter cells. When non-null, size is a power of 2.
785 +     */
786 +    private transient volatile CounterCell[] counterCells;
787 +
788 +    // views
789 +    private transient KeySetView<K,V> keySet;
790 +    private transient ValuesView<K,V> values;
791 +    private transient EntrySetView<K,V> entrySet;
792 +
793 +
794 +    /* ---------------- Public operations -------------- */
795 +
796      /**
797 <     * Sets the ith element of given table, with volatile write
225 <     * semantics. (See above about use of putOrderedObject.)
797 >     * Creates a new, empty map with the default initial table size (16).
798       */
799 <    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
228 <                                       HashEntry<K,V> e) {
229 <        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
799 >    public ConcurrentHashMap() {
800      }
801  
802      /**
803 <     * Applies a supplemental hash function to a given hashCode, which
804 <     * defends against poor quality hash functions.  This is critical
805 <     * because ConcurrentHashMap uses power-of-two length hash tables,
806 <     * that otherwise encounter collisions for hashCodes that do not
807 <     * differ in lower or upper bits.
803 >     * Creates a new, empty map with an initial table size
804 >     * accommodating the specified number of elements without the need
805 >     * to dynamically resize.
806 >     *
807 >     * @param initialCapacity The implementation performs internal
808 >     * sizing to accommodate this many elements.
809 >     * @throws IllegalArgumentException if the initial capacity of
810 >     * elements is negative
811       */
812 <    private static int hash(int h) {
813 <        // Spread bits to regularize both segment and index locations,
241 <        // using variant of single-word Wang/Jenkins hash.
242 <        h += (h <<  15) ^ 0xffffcd7d;
243 <        h ^= (h >>> 10);
244 <        h += (h <<   3);
245 <        h ^= (h >>>  6);
246 <        h += (h <<   2) + (h << 14);
247 <        return h ^ (h >>> 16);
812 >    public ConcurrentHashMap(int initialCapacity) {
813 >        this(initialCapacity, LOAD_FACTOR, 1);
814      }
815  
816      /**
817 <     * Segments are specialized versions of hash tables.  This
818 <     * subclasses from ReentrantLock opportunistically, just to
819 <     * simplify some locking and avoid separate construction.
817 >     * Creates a new map with the same mappings as the given map.
818 >     *
819 >     * @param m the map
820       */
821 <    static final class Segment<K,V> extends ReentrantLock implements Serializable {
822 <        /*
823 <         * Segments maintain a table of entry lists that are always
824 <         * kept in a consistent state, so can be read (via volatile
259 <         * reads of segments and tables) without locking.  This
260 <         * requires replicating nodes when necessary during table
261 <         * resizing, so the old lists can be traversed by readers
262 <         * still using old version of table.
263 <         *
264 <         * This class defines only mutative methods requiring locking.
265 <         * Except as noted, the methods of this class perform the
266 <         * per-segment versions of ConcurrentHashMap methods.  (Other
267 <         * methods are integrated directly into ConcurrentHashMap
268 <         * methods.) These mutative methods use a form of controlled
269 <         * spinning on contention via methods scanAndLock and
270 <         * scanAndLockForPut. These intersperse tryLocks with
271 <         * traversals to locate nodes.  The main benefit is to absorb
272 <         * cache misses (which are very common for hash tables) while
273 <         * obtaining locks so that traversal is faster once
274 <         * acquired. We do not actually use the found nodes since they
275 <         * must be re-acquired under lock anyway to ensure sequential
276 <         * consistency of updates (and in any case may be undetectably
277 <         * stale), but they will normally be much faster to re-locate.
278 <         * Also, scanAndLockForPut speculatively creates a fresh node
279 <         * to use in put if no node is found.
280 <         */
821 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 >        this.sizeCtl = DEFAULT_CAPACITY;
823 >        putAll(m);
824 >    }
825  
826 <        private static final long serialVersionUID = 2249069246763182397L;
826 >    /**
827 >     * Creates a new, empty map with an initial table size based on
828 >     * the given number of elements ({@code initialCapacity}) and
829 >     * initial table density ({@code loadFactor}).
830 >     *
831 >     * @param initialCapacity the initial capacity. The implementation
832 >     * performs internal sizing to accommodate this many elements,
833 >     * given the specified load factor.
834 >     * @param loadFactor the load factor (table density) for
835 >     * establishing the initial table size
836 >     * @throws IllegalArgumentException if the initial capacity of
837 >     * elements is negative or the load factor is nonpositive
838 >     *
839 >     * @since 1.6
840 >     */
841 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 >        this(initialCapacity, loadFactor, 1);
843 >    }
844  
845 <        /**
846 <         * The maximum number of times to tryLock in a prescan before
847 <         * possibly blocking on acquire in preparation for a locked
848 <         * segment operation. On multiprocessors, using a bounded
849 <         * number of retries maintains cache acquired while locating
850 <         * nodes.
851 <         */
852 <        static final int MAX_SCAN_RETRIES =
853 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
845 >    /**
846 >     * Creates a new, empty map with an initial table size based on
847 >     * the given number of elements ({@code initialCapacity}), initial
848 >     * table density ({@code loadFactor}), and number of concurrently
849 >     * updating threads ({@code concurrencyLevel}).
850 >     *
851 >     * @param initialCapacity the initial capacity. The implementation
852 >     * performs internal sizing to accommodate this many elements,
853 >     * given the specified load factor.
854 >     * @param loadFactor the load factor (table density) for
855 >     * establishing the initial table size
856 >     * @param concurrencyLevel the estimated number of concurrently
857 >     * updating threads. The implementation may use this value as
858 >     * a sizing hint.
859 >     * @throws IllegalArgumentException if the initial capacity is
860 >     * negative or the load factor or concurrencyLevel are
861 >     * nonpositive
862 >     */
863 >    public ConcurrentHashMap(int initialCapacity,
864 >                             float loadFactor, int concurrencyLevel) {
865 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 >            throw new IllegalArgumentException();
867 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
868 >            initialCapacity = concurrencyLevel;   // as estimated threads
869 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 >        this.sizeCtl = cap;
873 >    }
874  
875 <        /**
295 <         * The per-segment table. Elements are accessed via
296 <         * entryAt/setEntryAt providing volatile semantics.
297 <         */
298 <        transient volatile HashEntry<K,V>[] table;
875 >    // Original (since JDK1.2) Map methods
876  
877 <        /**
878 <         * The number of elements. Accessed only either within locks
879 <         * or among other volatile reads that maintain visibility.
880 <         */
881 <        transient int count;
877 >    /**
878 >     * {@inheritDoc}
879 >     */
880 >    public int size() {
881 >        long n = sumCount();
882 >        return ((n < 0L) ? 0 :
883 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 >                (int)n);
885 >    }
886  
887 <        /**
888 <         * The total number of mutative operations in this segment.
889 <         * Even though this may overflows 32 bits, it provides
890 <         * sufficient accuracy for stability checks in CHM isEmpty()
891 <         * and size() methods.  Accessed only either within locks or
892 <         * among other volatile reads that maintain visibility.
312 <         */
313 <        transient int modCount;
887 >    /**
888 >     * {@inheritDoc}
889 >     */
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892 >    }
893  
894 <        /**
895 <         * The table is rehashed when its size exceeds this threshold.
896 <         * (The value of this field is always <tt>(int)(capacity *
897 <         * loadFactor)</tt>.)
898 <         */
899 <        transient int threshold;
894 >    /**
895 >     * Returns the value to which the specified key is mapped,
896 >     * or {@code null} if this map contains no mapping for the key.
897 >     *
898 >     * <p>More formally, if this map contains a mapping from a key
899 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 >     * then this method returns {@code v}; otherwise it returns
901 >     * {@code null}.  (There can be at most one such mapping.)
902 >     *
903 >     * @throws NullPointerException if the specified key is null
904 >     */
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920 >            }
921 >        }
922 >        return null;
923 >    }
924  
925 <        /**
926 <         * The load factor for the hash table.  Even though this value
927 <         * is same for all segments, it is replicated to avoid needing
928 <         * links to outer object.
929 <         * @serial
930 <         */
931 <        final float loadFactor;
925 >    /**
926 >     * Tests if the specified object is a key in this table.
927 >     *
928 >     * @param  key possible key
929 >     * @return {@code true} if and only if the specified object
930 >     *         is a key in this table, as determined by the
931 >     *         {@code equals} method; {@code false} otherwise
932 >     * @throws NullPointerException if the specified key is null
933 >     */
934 >    public boolean containsKey(Object key) {
935 >        return get(key) != null;
936 >    }
937  
938 <        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
939 <            this.loadFactor = lf;
940 <            this.threshold = threshold;
941 <            this.table = tab;
938 >    /**
939 >     * Returns {@code true} if this map maps one or more keys to the
940 >     * specified value. Note: This method may require a full traversal
941 >     * of the map, and is much slower than method {@code containsKey}.
942 >     *
943 >     * @param value value whose presence in this map is to be tested
944 >     * @return {@code true} if this map maps one or more keys to the
945 >     *         specified value
946 >     * @throws NullPointerException if the specified value is null
947 >     */
948 >    public boolean containsValue(Object value) {
949 >        if (value == null)
950 >            throw new NullPointerException();
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958 >            }
959          }
960 +        return false;
961 +    }
962  
963 <        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
964 <            HashEntry<K,V> node = tryLock() ? null :
965 <                scanAndLockForPut(key, hash, value);
966 <            V oldValue;
967 <            try {
968 <                HashEntry<K,V>[] tab = table;
969 <                int index = (tab.length - 1) & hash;
970 <                HashEntry<K,V> first = entryAt(tab, index);
971 <                for (HashEntry<K,V> e = first;;) {
972 <                    if (e != null) {
973 <                        K k;
974 <                        if ((k = e.key) == key ||
975 <                            (e.hash == hash && key.equals(k))) {
976 <                            oldValue = e.value;
977 <                            if (!onlyIfAbsent) {
978 <                                e.value = value;
979 <                                ++modCount;
963 >    /**
964 >     * Maps the specified key to the specified value in this table.
965 >     * Neither the key nor the value can be null.
966 >     *
967 >     * <p>The value can be retrieved by calling the {@code get} method
968 >     * with a key that is equal to the original key.
969 >     *
970 >     * @param key key with which the specified value is to be associated
971 >     * @param value value to be associated with the specified key
972 >     * @return the previous value associated with {@code key}, or
973 >     *         {@code null} if there was no mapping for {@code key}
974 >     * @throws NullPointerException if the specified key or value is null
975 >     */
976 >    public V put(K key, V value) {
977 >        return putVal(key, value, false);
978 >    }
979 >
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh; K fk; V fv;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 >                    break;                   // no lock when adding to empty bin
992 >            }
993 >            else if ((fh = f.hash) == MOVED)
994 >                tab = helpTransfer(tab, f);
995 >            else if (onlyIfAbsent // check first node without acquiring lock
996 >                     && fh == hash
997 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998 >                     && (fv = f.val) != null)
999 >                return fv;
1000 >            else {
1001 >                V oldVal = null;
1002 >                synchronized (f) {
1003 >                    if (tabAt(tab, i) == f) {
1004 >                        if (fh >= 0) {
1005 >                            binCount = 1;
1006 >                            for (Node<K,V> e = f;; ++binCount) {
1007 >                                K ek;
1008 >                                if (e.hash == hash &&
1009 >                                    ((ek = e.key) == key ||
1010 >                                     (ek != null && key.equals(ek)))) {
1011 >                                    oldVal = e.val;
1012 >                                    if (!onlyIfAbsent)
1013 >                                        e.val = value;
1014 >                                    break;
1015 >                                }
1016 >                                Node<K,V> pred = e;
1017 >                                if ((e = e.next) == null) {
1018 >                                    pred.next = new Node<K,V>(hash, key, value);
1019 >                                    break;
1020 >                                }
1021                              }
354                            break;
1022                          }
1023 <                        e = e.next;
1024 <                    }
1025 <                    else {
1026 <                        if (node != null)
1027 <                            node.setNext(first);
1028 <                        else
1029 <                            node = new HashEntry<K,V>(hash, key, value, first);
1030 <                        int c = count + 1;
1031 <                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
1032 <                            rehash(node);
1033 <                        else
1034 <                            setEntryAt(tab, index, node);
368 <                        ++modCount;
369 <                        count = c;
370 <                        oldValue = null;
371 <                        break;
372 <                    }
373 <                }
374 <            } finally {
375 <                unlock();
376 <            }
377 <            return oldValue;
378 <        }
379 <
380 <        /**
381 <         * Doubles size of table and repacks entries, also adding the
382 <         * given node to new table
383 <         */
384 <        @SuppressWarnings("unchecked")
385 <        private void rehash(HashEntry<K,V> node) {
386 <            /*
387 <             * Reclassify nodes in each list to new table.  Because we
388 <             * are using power-of-two expansion, the elements from
389 <             * each bin must either stay at same index, or move with a
390 <             * power of two offset. We eliminate unnecessary node
391 <             * creation by catching cases where old nodes can be
392 <             * reused because their next fields won't change.
393 <             * Statistically, at the default threshold, only about
394 <             * one-sixth of them need cloning when a table
395 <             * doubles. The nodes they replace will be garbage
396 <             * collectable as soon as they are no longer referenced by
397 <             * any reader thread that may be in the midst of
398 <             * concurrently traversing table. Entry accesses use plain
399 <             * array indexing because they are followed by volatile
400 <             * table write.
401 <             */
402 <            HashEntry<K,V>[] oldTable = table;
403 <            int oldCapacity = oldTable.length;
404 <            int newCapacity = oldCapacity << 1;
405 <            threshold = (int)(newCapacity * loadFactor);
406 <            HashEntry<K,V>[] newTable =
407 <                (HashEntry<K,V>[]) new HashEntry[newCapacity];
408 <            int sizeMask = newCapacity - 1;
409 <            for (int i = 0; i < oldCapacity ; i++) {
410 <                HashEntry<K,V> e = oldTable[i];
411 <                if (e != null) {
412 <                    HashEntry<K,V> next = e.next;
413 <                    int idx = e.hash & sizeMask;
414 <                    if (next == null)   //  Single node on list
415 <                        newTable[idx] = e;
416 <                    else { // Reuse consecutive sequence at same slot
417 <                        HashEntry<K,V> lastRun = e;
418 <                        int lastIdx = idx;
419 <                        for (HashEntry<K,V> last = next;
420 <                             last != null;
421 <                             last = last.next) {
422 <                            int k = last.hash & sizeMask;
423 <                            if (k != lastIdx) {
424 <                                lastIdx = k;
425 <                                lastRun = last;
426 <                            }
427 <                        }
428 <                        newTable[lastIdx] = lastRun;
429 <                        // Clone remaining nodes
430 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
431 <                            V v = p.value;
432 <                            int h = p.hash;
433 <                            int k = h & sizeMask;
434 <                            HashEntry<K,V> n = newTable[k];
435 <                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
436 <                        }
437 <                    }
438 <                }
439 <            }
440 <            int nodeIndex = node.hash & sizeMask; // add the new node
441 <            node.setNext(newTable[nodeIndex]);
442 <            newTable[nodeIndex] = node;
443 <            table = newTable;
444 <        }
445 <
446 <        /**
447 <         * Scans for a node containing given key while trying to
448 <         * acquire lock, creating and returning one if not found. Upon
449 <         * return, guarantees that lock is held. UNlike in most
450 <         * methods, calls to method equals are not screened: Since
451 <         * traversal speed doesn't matter, we might as well help warm
452 <         * up the associated code and accesses as well.
453 <         *
454 <         * @return a new node if key not found, else null
455 <         */
456 <        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
457 <            HashEntry<K,V> first = entryForHash(this, hash);
458 <            HashEntry<K,V> e = first;
459 <            HashEntry<K,V> node = null;
460 <            int retries = -1; // negative while locating node
461 <            while (!tryLock()) {
462 <                HashEntry<K,V> f; // to recheck first below
463 <                if (retries < 0) {
464 <                    if (e == null) {
465 <                        if (node == null) // speculatively create node
466 <                            node = new HashEntry<K,V>(hash, key, value, null);
467 <                        retries = 0;
1023 >                        else if (f instanceof TreeBin) {
1024 >                            Node<K,V> p;
1025 >                            binCount = 2;
1026 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027 >                                                           value)) != null) {
1028 >                                oldVal = p.val;
1029 >                                if (!onlyIfAbsent)
1030 >                                    p.val = value;
1031 >                            }
1032 >                        }
1033 >                        else if (f instanceof ReservationNode)
1034 >                            throw new IllegalStateException("Recursive update");
1035                      }
469                    else if (key.equals(e.key))
470                        retries = 0;
471                    else
472                        e = e.next;
473                }
474                else if (++retries > MAX_SCAN_RETRIES) {
475                    lock();
476                    break;
477                }
478                else if ((retries & 1) == 0 &&
479                         (f = entryForHash(this, hash)) != first) {
480                    e = first = f; // re-traverse if entry changed
481                    retries = -1;
482                }
483            }
484            return node;
485        }
486
487        /**
488         * Scans for a node containing the given key while trying to
489         * acquire lock for a remove or replace operation. Upon
490         * return, guarantees that lock is held.  Note that we must
491         * lock even if the key is not found, to ensure sequential
492         * consistency of updates.
493         */
494        private void scanAndLock(Object key, int hash) {
495            // similar to but simpler than scanAndLockForPut
496            HashEntry<K,V> first = entryForHash(this, hash);
497            HashEntry<K,V> e = first;
498            int retries = -1;
499            while (!tryLock()) {
500                HashEntry<K,V> f;
501                if (retries < 0) {
502                    if (e == null || key.equals(e.key))
503                        retries = 0;
504                    else
505                        e = e.next;
1036                  }
1037 <                else if (++retries > MAX_SCAN_RETRIES) {
1038 <                    lock();
1037 >                if (binCount != 0) {
1038 >                    if (binCount >= TREEIFY_THRESHOLD)
1039 >                        treeifyBin(tab, i);
1040 >                    if (oldVal != null)
1041 >                        return oldVal;
1042                      break;
1043                  }
511                else if ((retries & 1) == 0 &&
512                         (f = entryForHash(this, hash)) != first) {
513                    e = first = f;
514                    retries = -1;
515                }
1044              }
1045          }
1046 +        addCount(1L, binCount);
1047 +        return null;
1048 +    }
1049  
1050 <        /**
1051 <         * Remove; match on key only if value null, else match both.
1052 <         */
1053 <        final V remove(Object key, int hash, Object value) {
1054 <            if (!tryLock())
1055 <                scanAndLock(key, hash);
1056 <            V oldValue = null;
1057 <            try {
1058 <                HashEntry<K,V>[] tab = table;
1059 <                int index = (tab.length - 1) & hash;
1060 <                HashEntry<K,V> e = entryAt(tab, index);
1061 <                HashEntry<K,V> pred = null;
1062 <                while (e != null) {
1063 <                    K k;
1064 <                    HashEntry<K,V> next = e.next;
1065 <                    if ((k = e.key) == key ||
1066 <                        (e.hash == hash && key.equals(k))) {
1067 <                        V v = e.value;
1068 <                        if (value == null || value == v || value.equals(v)) {
1069 <                            if (pred == null)
1070 <                                setEntryAt(tab, index, next);
1071 <                            else
1072 <                                pred.setNext(next);
1073 <                            ++modCount;
1074 <                            --count;
1075 <                            oldValue = v;
1050 >    /**
1051 >     * Copies all of the mappings from the specified map to this one.
1052 >     * These mappings replace any mappings that this map had for any of the
1053 >     * keys currently in the specified map.
1054 >     *
1055 >     * @param m mappings to be stored in this map
1056 >     */
1057 >    public void putAll(Map<? extends K, ? extends V> m) {
1058 >        tryPresize(m.size());
1059 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060 >            putVal(e.getKey(), e.getValue(), false);
1061 >    }
1062 >
1063 >    /**
1064 >     * Removes the key (and its corresponding value) from this map.
1065 >     * This method does nothing if the key is not in the map.
1066 >     *
1067 >     * @param  key the key that needs to be removed
1068 >     * @return the previous value associated with {@code key}, or
1069 >     *         {@code null} if there was no mapping for {@code key}
1070 >     * @throws NullPointerException if the specified key is null
1071 >     */
1072 >    public V remove(Object key) {
1073 >        return replaceNode(key, null, null);
1074 >    }
1075 >
1076 >    /**
1077 >     * Implementation for the four public remove/replace methods:
1078 >     * Replaces node value with v, conditional upon match of cv if
1079 >     * non-null.  If resulting value is null, delete.
1080 >     */
1081 >    final V replaceNode(Object key, V value, Object cv) {
1082 >        int hash = spread(key.hashCode());
1083 >        for (Node<K,V>[] tab = table;;) {
1084 >            Node<K,V> f; int n, i, fh;
1085 >            if (tab == null || (n = tab.length) == 0 ||
1086 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087 >                break;
1088 >            else if ((fh = f.hash) == MOVED)
1089 >                tab = helpTransfer(tab, f);
1090 >            else {
1091 >                V oldVal = null;
1092 >                boolean validated = false;
1093 >                synchronized (f) {
1094 >                    if (tabAt(tab, i) == f) {
1095 >                        if (fh >= 0) {
1096 >                            validated = true;
1097 >                            for (Node<K,V> e = f, pred = null;;) {
1098 >                                K ek;
1099 >                                if (e.hash == hash &&
1100 >                                    ((ek = e.key) == key ||
1101 >                                     (ek != null && key.equals(ek)))) {
1102 >                                    V ev = e.val;
1103 >                                    if (cv == null || cv == ev ||
1104 >                                        (ev != null && cv.equals(ev))) {
1105 >                                        oldVal = ev;
1106 >                                        if (value != null)
1107 >                                            e.val = value;
1108 >                                        else if (pred != null)
1109 >                                            pred.next = e.next;
1110 >                                        else
1111 >                                            setTabAt(tab, i, e.next);
1112 >                                    }
1113 >                                    break;
1114 >                                }
1115 >                                pred = e;
1116 >                                if ((e = e.next) == null)
1117 >                                    break;
1118 >                            }
1119                          }
1120 <                        break;
1120 >                        else if (f instanceof TreeBin) {
1121 >                            validated = true;
1122 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1123 >                            TreeNode<K,V> r, p;
1124 >                            if ((r = t.root) != null &&
1125 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1126 >                                V pv = p.val;
1127 >                                if (cv == null || cv == pv ||
1128 >                                    (pv != null && cv.equals(pv))) {
1129 >                                    oldVal = pv;
1130 >                                    if (value != null)
1131 >                                        p.val = value;
1132 >                                    else if (t.removeTreeNode(p))
1133 >                                        setTabAt(tab, i, untreeify(t.first));
1134 >                                }
1135 >                            }
1136 >                        }
1137 >                        else if (f instanceof ReservationNode)
1138 >                            throw new IllegalStateException("Recursive update");
1139                      }
548                    pred = e;
549                    e = next;
1140                  }
1141 <            } finally {
1142 <                unlock();
1143 <            }
1144 <            return oldValue;
1145 <        }
556 <
557 <        final boolean replace(K key, int hash, V oldValue, V newValue) {
558 <            if (!tryLock())
559 <                scanAndLock(key, hash);
560 <            boolean replaced = false;
561 <            try {
562 <                HashEntry<K,V> e;
563 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
564 <                    K k;
565 <                    if ((k = e.key) == key ||
566 <                        (e.hash == hash && key.equals(k))) {
567 <                        if (oldValue.equals(e.value)) {
568 <                            e.value = newValue;
569 <                            ++modCount;
570 <                            replaced = true;
571 <                        }
572 <                        break;
1141 >                if (validated) {
1142 >                    if (oldVal != null) {
1143 >                        if (value == null)
1144 >                            addCount(-1L, -1);
1145 >                        return oldVal;
1146                      }
1147 +                    break;
1148                  }
575            } finally {
576                unlock();
1149              }
578            return replaced;
1150          }
1151 +        return null;
1152 +    }
1153  
1154 <        final V replace(K key, int hash, V value) {
1155 <            if (!tryLock())
1156 <                scanAndLock(key, hash);
1157 <            V oldValue = null;
1158 <            try {
1159 <                HashEntry<K,V> e;
1160 <                for (e = entryForHash(this, hash); e != null; e = e.next) {
1161 <                    K k;
1162 <                    if ((k = e.key) == key ||
1163 <                        (e.hash == hash && key.equals(k))) {
1164 <                        oldValue = e.value;
1165 <                        e.value = value;
1166 <                        ++modCount;
1167 <                        break;
1154 >    /**
1155 >     * Removes all of the mappings from this map.
1156 >     */
1157 >    public void clear() {
1158 >        long delta = 0L; // negative number of deletions
1159 >        int i = 0;
1160 >        Node<K,V>[] tab = table;
1161 >        while (tab != null && i < tab.length) {
1162 >            int fh;
1163 >            Node<K,V> f = tabAt(tab, i);
1164 >            if (f == null)
1165 >                ++i;
1166 >            else if ((fh = f.hash) == MOVED) {
1167 >                tab = helpTransfer(tab, f);
1168 >                i = 0; // restart
1169 >            }
1170 >            else {
1171 >                synchronized (f) {
1172 >                    if (tabAt(tab, i) == f) {
1173 >                        Node<K,V> p = (fh >= 0 ? f :
1174 >                                       (f instanceof TreeBin) ?
1175 >                                       ((TreeBin<K,V>)f).first : null);
1176 >                        while (p != null) {
1177 >                            --delta;
1178 >                            p = p.next;
1179 >                        }
1180 >                        setTabAt(tab, i++, null);
1181                      }
1182                  }
597            } finally {
598                unlock();
1183              }
600            return oldValue;
1184          }
1185 +        if (delta != 0L)
1186 +            addCount(delta, -1);
1187 +    }
1188  
1189 <        final void clear() {
1190 <            lock();
1191 <            try {
1192 <                HashEntry<K,V>[] tab = table;
1193 <                for (int i = 0; i < tab.length ; i++)
1194 <                    setEntryAt(tab, i, null);
1195 <                ++modCount;
1196 <                count = 0;
1197 <            } finally {
1198 <                unlock();
1199 <            }
1200 <        }
1189 >    /**
1190 >     * Returns a {@link Set} view of the keys contained in this map.
1191 >     * The set is backed by the map, so changes to the map are
1192 >     * reflected in the set, and vice-versa. The set supports element
1193 >     * removal, which removes the corresponding mapping from this map,
1194 >     * via the {@code Iterator.remove}, {@code Set.remove},
1195 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1196 >     * operations.  It does not support the {@code add} or
1197 >     * {@code addAll} operations.
1198 >     *
1199 >     * <p>The view's iterators and spliterators are
1200 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 >     *
1202 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204 >     *
1205 >     * @return the set view
1206 >     */
1207 >    public KeySetView<K,V> keySet() {
1208 >        KeySetView<K,V> ks;
1209 >        if ((ks = keySet) != null) return ks;
1210 >        return keySet = new KeySetView<K,V>(this, null);
1211 >    }
1212 >
1213 >    /**
1214 >     * Returns a {@link Collection} view of the values contained in this map.
1215 >     * The collection is backed by the map, so changes to the map are
1216 >     * reflected in the collection, and vice-versa.  The collection
1217 >     * supports element removal, which removes the corresponding
1218 >     * mapping from this map, via the {@code Iterator.remove},
1219 >     * {@code Collection.remove}, {@code removeAll},
1220 >     * {@code retainAll}, and {@code clear} operations.  It does not
1221 >     * support the {@code add} or {@code addAll} operations.
1222 >     *
1223 >     * <p>The view's iterators and spliterators are
1224 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 >     *
1226 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227 >     * and {@link Spliterator#NONNULL}.
1228 >     *
1229 >     * @return the collection view
1230 >     */
1231 >    public Collection<V> values() {
1232 >        ValuesView<K,V> vs;
1233 >        if ((vs = values) != null) return vs;
1234 >        return values = new ValuesView<K,V>(this);
1235      }
1236  
1237 <    // Accessing segments
1237 >    /**
1238 >     * Returns a {@link Set} view of the mappings contained in this map.
1239 >     * The set is backed by the map, so changes to the map are
1240 >     * reflected in the set, and vice-versa.  The set supports element
1241 >     * removal, which removes the corresponding mapping from the map,
1242 >     * via the {@code Iterator.remove}, {@code Set.remove},
1243 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1244 >     * operations.
1245 >     *
1246 >     * <p>The view's iterators and spliterators are
1247 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 >     *
1249 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251 >     *
1252 >     * @return the set view
1253 >     */
1254 >    public Set<Map.Entry<K,V>> entrySet() {
1255 >        EntrySetView<K,V> es;
1256 >        if ((es = entrySet) != null) return es;
1257 >        return entrySet = new EntrySetView<K,V>(this);
1258 >    }
1259  
1260      /**
1261 <     * Gets the jth element of given segment array (if nonnull) with
1262 <     * volatile element access semantics via Unsafe. (The null check
1263 <     * can trigger harmlessly only during deserialization.) Note:
1264 <     * because each element of segments array is set only once (using
1265 <     * fully ordered writes), some performance-sensitive methods rely
625 <     * on this method only as a recheck upon null reads.
1261 >     * Returns the hash code value for this {@link Map}, i.e.,
1262 >     * the sum of, for each key-value pair in the map,
1263 >     * {@code key.hashCode() ^ value.hashCode()}.
1264 >     *
1265 >     * @return the hash code value for this map
1266       */
1267 <    @SuppressWarnings("unchecked")
1268 <    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
1269 <        long u = (j << SSHIFT) + SBASE;
1270 <        return ss == null ? null :
1271 <            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
1267 >    public int hashCode() {
1268 >        int h = 0;
1269 >        Node<K,V>[] t;
1270 >        if ((t = table) != null) {
1271 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 >            for (Node<K,V> p; (p = it.advance()) != null; )
1273 >                h += p.key.hashCode() ^ p.val.hashCode();
1274 >        }
1275 >        return h;
1276      }
1277  
1278      /**
1279 <     * Returns the segment for the given index, creating it and
1280 <     * recording in segment table (via CAS) if not already present.
1279 >     * Returns a string representation of this map.  The string
1280 >     * representation consists of a list of key-value mappings (in no
1281 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1282 >     * mappings are separated by the characters {@code ", "} (comma
1283 >     * and space).  Each key-value mapping is rendered as the key
1284 >     * followed by an equals sign ("{@code =}") followed by the
1285 >     * associated value.
1286       *
1287 <     * @param k the index
639 <     * @return the segment
1287 >     * @return a string representation of this map
1288       */
1289 <    @SuppressWarnings("unchecked")
1290 <    private Segment<K,V> ensureSegment(int k) {
1291 <        final Segment<K,V>[] ss = this.segments;
1292 <        long u = (k << SSHIFT) + SBASE; // raw offset
1293 <        Segment<K,V> seg;
1294 <        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
1295 <            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
1296 <            int cap = proto.table.length;
1297 <            float lf = proto.loadFactor;
1298 <            int threshold = (int)(cap * lf);
1299 <            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
1300 <            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1301 <                == null) { // recheck
1302 <                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
1303 <                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
1304 <                       == null) {
1305 <                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
658 <                        break;
659 <                }
1289 >    public String toString() {
1290 >        Node<K,V>[] t;
1291 >        int f = (t = table) == null ? 0 : t.length;
1292 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 >        StringBuilder sb = new StringBuilder();
1294 >        sb.append('{');
1295 >        Node<K,V> p;
1296 >        if ((p = it.advance()) != null) {
1297 >            for (;;) {
1298 >                K k = p.key;
1299 >                V v = p.val;
1300 >                sb.append(k == this ? "(this Map)" : k);
1301 >                sb.append('=');
1302 >                sb.append(v == this ? "(this Map)" : v);
1303 >                if ((p = it.advance()) == null)
1304 >                    break;
1305 >                sb.append(',').append(' ');
1306              }
1307          }
1308 <        return seg;
1308 >        return sb.append('}').toString();
1309      }
1310  
665    // Hash-based segment and entry accesses
666
1311      /**
1312 <     * Get the segment for the given hash
1312 >     * Compares the specified object with this map for equality.
1313 >     * Returns {@code true} if the given object is a map with the same
1314 >     * mappings as this map.  This operation may return misleading
1315 >     * results if either map is concurrently modified during execution
1316 >     * of this method.
1317 >     *
1318 >     * @param o object to be compared for equality with this map
1319 >     * @return {@code true} if the specified object is equal to this map
1320       */
1321 <    @SuppressWarnings("unchecked")
1322 <    private Segment<K,V> segmentForHash(int h) {
1323 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1324 <        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
1321 >    public boolean equals(Object o) {
1322 >        if (o != this) {
1323 >            if (!(o instanceof Map))
1324 >                return false;
1325 >            Map<?,?> m = (Map<?,?>) o;
1326 >            Node<K,V>[] t;
1327 >            int f = (t = table) == null ? 0 : t.length;
1328 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 >                V val = p.val;
1331 >                Object v = m.get(p.key);
1332 >                if (v == null || (v != val && !v.equals(val)))
1333 >                    return false;
1334 >            }
1335 >            for (Map.Entry<?,?> e : m.entrySet()) {
1336 >                Object mk, mv, v;
1337 >                if ((mk = e.getKey()) == null ||
1338 >                    (mv = e.getValue()) == null ||
1339 >                    (v = get(mk)) == null ||
1340 >                    (mv != v && !mv.equals(v)))
1341 >                    return false;
1342 >            }
1343 >        }
1344 >        return true;
1345      }
1346  
1347      /**
1348 <     * Gets the table entry for the given segment and hash
1348 >     * Stripped-down version of helper class used in previous version,
1349 >     * declared for the sake of serialization compatibility.
1350       */
1351 <    @SuppressWarnings("unchecked")
1352 <    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
1353 <        HashEntry<K,V>[] tab;
1354 <        return (seg == null || (tab = seg.table) == null) ? null :
683 <            (HashEntry<K,V>) UNSAFE.getObjectVolatile
684 <            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1351 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 >        private static final long serialVersionUID = 2249069246763182397L;
1353 >        final float loadFactor;
1354 >        Segment(float lf) { this.loadFactor = lf; }
1355      }
1356  
687    /* ---------------- Public operations -------------- */
688
1357      /**
1358 <     * Creates a new, empty map with the specified initial
691 <     * capacity, load factor and concurrency level.
1358 >     * Saves this map to a stream (that is, serializes it).
1359       *
1360 <     * @param initialCapacity the initial capacity. The implementation
1361 <     * performs internal sizing to accommodate this many elements.
1362 <     * @param loadFactor  the load factor threshold, used to control resizing.
1363 <     * Resizing may be performed when the average number of elements per
1364 <     * bin exceeds this threshold.
1365 <     * @param concurrencyLevel the estimated number of concurrently
699 <     * updating threads. The implementation performs internal sizing
700 <     * to try to accommodate this many threads.
701 <     * @throws IllegalArgumentException if the initial capacity is
702 <     * negative or the load factor or concurrencyLevel are
703 <     * nonpositive.
1360 >     * @param s the stream
1361 >     * @throws java.io.IOException if an I/O error occurs
1362 >     * @serialData
1363 >     * the serialized fields, followed by the key (Object) and value
1364 >     * (Object) for each key-value mapping, followed by a null pair.
1365 >     * The key-value mappings are emitted in no particular order.
1366       */
1367 <    @SuppressWarnings("unchecked")
1368 <    public ConcurrentHashMap(int initialCapacity,
1369 <                             float loadFactor, int concurrencyLevel) {
1370 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
709 <            throw new IllegalArgumentException();
710 <        if (concurrencyLevel > MAX_SEGMENTS)
711 <            concurrencyLevel = MAX_SEGMENTS;
712 <        // Find power-of-two sizes best matching arguments
1367 >    private void writeObject(java.io.ObjectOutputStream s)
1368 >        throws java.io.IOException {
1369 >        // For serialization compatibility
1370 >        // Emulate segment calculation from previous version of this class
1371          int sshift = 0;
1372          int ssize = 1;
1373 <        while (ssize < concurrencyLevel) {
1373 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374              ++sshift;
1375              ssize <<= 1;
1376          }
1377 <        this.segmentShift = 32 - sshift;
1378 <        this.segmentMask = ssize - 1;
1379 <        if (initialCapacity > MAXIMUM_CAPACITY)
1380 <            initialCapacity = MAXIMUM_CAPACITY;
1381 <        int c = initialCapacity / ssize;
1382 <        if (c * ssize < initialCapacity)
1383 <            ++c;
1384 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
1385 <        while (cap < c)
1386 <            cap <<= 1;
1387 <        // create segments and segments[0]
1388 <        Segment<K,V> s0 =
1389 <            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
1390 <                             (HashEntry<K,V>[])new HashEntry[cap]);
1391 <        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
1392 <        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
1393 <        this.segments = ss;
1377 >        int segmentShift = 32 - sshift;
1378 >        int segmentMask = ssize - 1;
1379 >        @SuppressWarnings("unchecked")
1380 >        Segment<K,V>[] segments = (Segment<K,V>[])
1381 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382 >        for (int i = 0; i < segments.length; ++i)
1383 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385 >        streamFields.put("segments", segments);
1386 >        streamFields.put("segmentShift", segmentShift);
1387 >        streamFields.put("segmentMask", segmentMask);
1388 >        s.writeFields();
1389 >
1390 >        Node<K,V>[] t;
1391 >        if ((t = table) != null) {
1392 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1394 >                s.writeObject(p.key);
1395 >                s.writeObject(p.val);
1396 >            }
1397 >        }
1398 >        s.writeObject(null);
1399 >        s.writeObject(null);
1400      }
1401  
1402      /**
1403 <     * Creates a new, empty map with the specified initial capacity
1404 <     * and load factor and with the default concurrencyLevel (16).
1405 <     *
1406 <     * @param initialCapacity The implementation performs internal
1407 <     * sizing to accommodate this many elements.
1408 <     * @param loadFactor  the load factor threshold, used to control resizing.
1409 <     * Resizing may be performed when the average number of elements per
1410 <     * bin exceeds this threshold.
1411 <     * @throws IllegalArgumentException if the initial capacity of
1412 <     * elements is negative or the load factor is nonpositive
1403 >     * Reconstitutes this map from a stream (that is, deserializes it).
1404 >     * @param s the stream
1405 >     * @throws ClassNotFoundException if the class of a serialized object
1406 >     *         could not be found
1407 >     * @throws java.io.IOException if an I/O error occurs
1408 >     */
1409 >    private void readObject(java.io.ObjectInputStream s)
1410 >        throws java.io.IOException, ClassNotFoundException {
1411 >        /*
1412 >         * To improve performance in typical cases, we create nodes
1413 >         * while reading, then place in table once size is known.
1414 >         * However, we must also validate uniqueness and deal with
1415 >         * overpopulated bins while doing so, which requires
1416 >         * specialized versions of putVal mechanics.
1417 >         */
1418 >        sizeCtl = -1; // force exclusion for table construction
1419 >        s.defaultReadObject();
1420 >        long size = 0L;
1421 >        Node<K,V> p = null;
1422 >        for (;;) {
1423 >            @SuppressWarnings("unchecked")
1424 >            K k = (K) s.readObject();
1425 >            @SuppressWarnings("unchecked")
1426 >            V v = (V) s.readObject();
1427 >            if (k != null && v != null) {
1428 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429 >                ++size;
1430 >            }
1431 >            else
1432 >                break;
1433 >        }
1434 >        if (size == 0L)
1435 >            sizeCtl = 0;
1436 >        else {
1437 >            long ts = (long)(1.0 + size / LOAD_FACTOR);
1438 >            int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439 >                MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 >            @SuppressWarnings("unchecked")
1441 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 >            int mask = n - 1;
1443 >            long added = 0L;
1444 >            while (p != null) {
1445 >                boolean insertAtFront;
1446 >                Node<K,V> next = p.next, first;
1447 >                int h = p.hash, j = h & mask;
1448 >                if ((first = tabAt(tab, j)) == null)
1449 >                    insertAtFront = true;
1450 >                else {
1451 >                    K k = p.key;
1452 >                    if (first.hash < 0) {
1453 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1454 >                        if (t.putTreeVal(h, k, p.val) == null)
1455 >                            ++added;
1456 >                        insertAtFront = false;
1457 >                    }
1458 >                    else {
1459 >                        int binCount = 0;
1460 >                        insertAtFront = true;
1461 >                        Node<K,V> q; K qk;
1462 >                        for (q = first; q != null; q = q.next) {
1463 >                            if (q.hash == h &&
1464 >                                ((qk = q.key) == k ||
1465 >                                 (qk != null && k.equals(qk)))) {
1466 >                                insertAtFront = false;
1467 >                                break;
1468 >                            }
1469 >                            ++binCount;
1470 >                        }
1471 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472 >                            insertAtFront = false;
1473 >                            ++added;
1474 >                            p.next = first;
1475 >                            TreeNode<K,V> hd = null, tl = null;
1476 >                            for (q = p; q != null; q = q.next) {
1477 >                                TreeNode<K,V> t = new TreeNode<K,V>
1478 >                                    (q.hash, q.key, q.val, null, null);
1479 >                                if ((t.prev = tl) == null)
1480 >                                    hd = t;
1481 >                                else
1482 >                                    tl.next = t;
1483 >                                tl = t;
1484 >                            }
1485 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 >                        }
1487 >                    }
1488 >                }
1489 >                if (insertAtFront) {
1490 >                    ++added;
1491 >                    p.next = first;
1492 >                    setTabAt(tab, j, p);
1493 >                }
1494 >                p = next;
1495 >            }
1496 >            table = tab;
1497 >            sizeCtl = n - (n >>> 2);
1498 >            baseCount = added;
1499 >        }
1500 >    }
1501 >
1502 >    // ConcurrentMap methods
1503 >
1504 >    /**
1505 >     * {@inheritDoc}
1506       *
1507 <     * @since 1.6
1507 >     * @return the previous value associated with the specified key,
1508 >     *         or {@code null} if there was no mapping for the key
1509 >     * @throws NullPointerException if the specified key or value is null
1510       */
1511 <    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
1512 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
1511 >    public V putIfAbsent(K key, V value) {
1512 >        return putVal(key, value, true);
1513      }
1514  
1515      /**
1516 <     * Creates a new, empty map with the specified initial capacity,
758 <     * and with default load factor (0.75) and concurrencyLevel (16).
1516 >     * {@inheritDoc}
1517       *
1518 <     * @param initialCapacity the initial capacity. The implementation
761 <     * performs internal sizing to accommodate this many elements.
762 <     * @throws IllegalArgumentException if the initial capacity of
763 <     * elements is negative.
1518 >     * @throws NullPointerException if the specified key is null
1519       */
1520 <    public ConcurrentHashMap(int initialCapacity) {
1521 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1520 >    public boolean remove(Object key, Object value) {
1521 >        if (key == null)
1522 >            throw new NullPointerException();
1523 >        return value != null && replaceNode(key, null, value) != null;
1524      }
1525  
1526      /**
1527 <     * Creates a new, empty map with a default initial capacity (16),
1528 <     * load factor (0.75) and concurrencyLevel (16).
1527 >     * {@inheritDoc}
1528 >     *
1529 >     * @throws NullPointerException if any of the arguments are null
1530       */
1531 <    public ConcurrentHashMap() {
1532 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
1531 >    public boolean replace(K key, V oldValue, V newValue) {
1532 >        if (key == null || oldValue == null || newValue == null)
1533 >            throw new NullPointerException();
1534 >        return replaceNode(key, newValue, oldValue) != null;
1535      }
1536  
1537      /**
1538 <     * Creates a new map with the same mappings as the given map.
779 <     * The map is created with a capacity of 1.5 times the number
780 <     * of mappings in the given map or 16 (whichever is greater),
781 <     * and a default load factor (0.75) and concurrencyLevel (16).
1538 >     * {@inheritDoc}
1539       *
1540 <     * @param m the map
1540 >     * @return the previous value associated with the specified key,
1541 >     *         or {@code null} if there was no mapping for the key
1542 >     * @throws NullPointerException if the specified key or value is null
1543       */
1544 <    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
1545 <        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
1546 <                      DEFAULT_INITIAL_CAPACITY),
1547 <             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
789 <        putAll(m);
1544 >    public V replace(K key, V value) {
1545 >        if (key == null || value == null)
1546 >            throw new NullPointerException();
1547 >        return replaceNode(key, value, null);
1548      }
1549  
1550 +    // Overrides of JDK8+ Map extension method defaults
1551 +
1552      /**
1553 <     * Returns <tt>true</tt> if this map contains no key-value mappings.
1553 >     * Returns the value to which the specified key is mapped, or the
1554 >     * given default value if this map contains no mapping for the
1555 >     * key.
1556       *
1557 <     * @return <tt>true</tt> if this map contains no key-value mappings
1557 >     * @param key the key whose associated value is to be returned
1558 >     * @param defaultValue the value to return if this map contains
1559 >     * no mapping for the given key
1560 >     * @return the mapping for the key, if present; else the default value
1561 >     * @throws NullPointerException if the specified key is null
1562       */
1563 <    public boolean isEmpty() {
1564 <        /*
1565 <         * Sum per-segment modCounts to avoid mis-reporting when
1566 <         * elements are concurrently added and removed in one segment
1567 <         * while checking another, in which case the table was never
1568 <         * actually empty at any point. (The sum ensures accuracy up
1569 <         * through at least 1<<31 per-segment modifications before
1570 <         * recheck.)  Methods size() and containsValue() use similar
1571 <         * constructions for stability checks.
1572 <         */
1573 <        long sum = 0L;
1574 <        final Segment<K,V>[] segments = this.segments;
809 <        for (int j = 0; j < segments.length; ++j) {
810 <            Segment<K,V> seg = segmentAt(segments, j);
811 <            if (seg != null) {
812 <                if (seg.count != 0)
813 <                    return false;
814 <                sum += seg.modCount;
1563 >    public V getOrDefault(Object key, V defaultValue) {
1564 >        V v;
1565 >        return (v = get(key)) == null ? defaultValue : v;
1566 >    }
1567 >
1568 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1569 >        if (action == null) throw new NullPointerException();
1570 >        Node<K,V>[] t;
1571 >        if ((t = table) != null) {
1572 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1574 >                action.accept(p.key, p.val);
1575              }
1576          }
1577 <        if (sum != 0L) { // recheck unless no modifications
1578 <            for (int j = 0; j < segments.length; ++j) {
1579 <                Segment<K,V> seg = segmentAt(segments, j);
1580 <                if (seg != null) {
1581 <                    if (seg.count != 0)
1582 <                        return false;
1583 <                    sum -= seg.modCount;
1577 >    }
1578 >
1579 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580 >        if (function == null) throw new NullPointerException();
1581 >        Node<K,V>[] t;
1582 >        if ((t = table) != null) {
1583 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 >                V oldValue = p.val;
1586 >                for (K key = p.key;;) {
1587 >                    V newValue = function.apply(key, oldValue);
1588 >                    if (newValue == null)
1589 >                        throw new NullPointerException();
1590 >                    if (replaceNode(key, newValue, oldValue) != null ||
1591 >                        (oldValue = get(key)) == null)
1592 >                        break;
1593                  }
1594              }
826            if (sum != 0L)
827                return false;
1595          }
829        return true;
1596      }
1597  
1598      /**
1599 <     * Returns the number of key-value mappings in this map.  If the
1600 <     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
1601 <     * <tt>Integer.MAX_VALUE</tt>.
1599 >     * Helper method for EntrySetView.removeIf.
1600 >     */
1601 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 >        if (function == null) throw new NullPointerException();
1603 >        Node<K,V>[] t;
1604 >        boolean removed = false;
1605 >        if ((t = table) != null) {
1606 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1608 >                K k = p.key;
1609 >                V v = p.val;
1610 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611 >                if (function.test(e) && replaceNode(k, null, v) != null)
1612 >                    removed = true;
1613 >            }
1614 >        }
1615 >        return removed;
1616 >    }
1617 >
1618 >    /**
1619 >     * Helper method for ValuesView.removeIf.
1620 >     */
1621 >    boolean removeValueIf(Predicate<? super V> function) {
1622 >        if (function == null) throw new NullPointerException();
1623 >        Node<K,V>[] t;
1624 >        boolean removed = false;
1625 >        if ((t = table) != null) {
1626 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1628 >                K k = p.key;
1629 >                V v = p.val;
1630 >                if (function.test(v) && replaceNode(k, null, v) != null)
1631 >                    removed = true;
1632 >            }
1633 >        }
1634 >        return removed;
1635 >    }
1636 >
1637 >    /**
1638 >     * If the specified key is not already associated with a value,
1639 >     * attempts to compute its value using the given mapping function
1640 >     * and enters it into this map unless {@code null}.  The entire
1641 >     * method invocation is performed atomically.  The supplied
1642 >     * function is invoked exactly once per invocation of this method
1643 >     * if the key is absent, else not at all.  Some attempted update
1644 >     * operations on this map by other threads may be blocked while
1645 >     * computation is in progress, so the computation should be short
1646 >     * and simple.
1647 >     *
1648 >     * <p>The mapping function must not modify this map during computation.
1649       *
1650 <     * @return the number of key-value mappings in this map
1650 >     * @param key key with which the specified value is to be associated
1651 >     * @param mappingFunction the function to compute a value
1652 >     * @return the current (existing or computed) value associated with
1653 >     *         the specified key, or null if the computed value is null
1654 >     * @throws NullPointerException if the specified key or mappingFunction
1655 >     *         is null
1656 >     * @throws IllegalStateException if the computation detectably
1657 >     *         attempts a recursive update to this map that would
1658 >     *         otherwise never complete
1659 >     * @throws RuntimeException or Error if the mappingFunction does so,
1660 >     *         in which case the mapping is left unestablished
1661       */
1662 <    public int size() {
1663 <        // Try a few times to get accurate count. On failure due to
1664 <        // continuous async changes in table, resort to locking.
1665 <        final Segment<K,V>[] segments = this.segments;
1666 <        int size;
1667 <        boolean overflow; // true if size overflows 32 bits
1668 <        long sum;         // sum of modCounts
1669 <        long last = 0L;   // previous sum
1670 <        int retries = -1; // first iteration isn't retry
1671 <        try {
1672 <            for (;;) {
1673 <                if (retries++ == RETRIES_BEFORE_LOCK) {
1674 <                    for (int j = 0; j < segments.length; ++j)
1675 <                        ensureSegment(j).lock(); // force creation
1676 <                }
1677 <                sum = 0L;
1678 <                size = 0;
1679 <                overflow = false;
1680 <                for (int j = 0; j < segments.length; ++j) {
1681 <                    Segment<K,V> seg = segmentAt(segments, j);
1682 <                    if (seg != null) {
1683 <                        sum += seg.modCount;
861 <                        int c = seg.count;
862 <                        if (c < 0 || (size += c) < 0)
863 <                            overflow = true;
1662 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1663 >        if (key == null || mappingFunction == null)
1664 >            throw new NullPointerException();
1665 >        int h = spread(key.hashCode());
1666 >        V val = null;
1667 >        int binCount = 0;
1668 >        for (Node<K,V>[] tab = table;;) {
1669 >            Node<K,V> f; int n, i, fh; K fk; V fv;
1670 >            if (tab == null || (n = tab.length) == 0)
1671 >                tab = initTable();
1672 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1673 >                Node<K,V> r = new ReservationNode<K,V>();
1674 >                synchronized (r) {
1675 >                    if (casTabAt(tab, i, null, r)) {
1676 >                        binCount = 1;
1677 >                        Node<K,V> node = null;
1678 >                        try {
1679 >                            if ((val = mappingFunction.apply(key)) != null)
1680 >                                node = new Node<K,V>(h, key, val);
1681 >                        } finally {
1682 >                            setTabAt(tab, i, node);
1683 >                        }
1684                      }
1685                  }
1686 <                if (sum == last)
1686 >                if (binCount != 0)
1687                      break;
868                last = sum;
1688              }
1689 <        } finally {
1690 <            if (retries > RETRIES_BEFORE_LOCK) {
1691 <                for (int j = 0; j < segments.length; ++j)
1692 <                    segmentAt(segments, j).unlock();
1689 >            else if ((fh = f.hash) == MOVED)
1690 >                tab = helpTransfer(tab, f);
1691 >            else if (fh == h    // check first node without acquiring lock
1692 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1693 >                     && (fv = f.val) != null)
1694 >                return fv;
1695 >            else {
1696 >                boolean added = false;
1697 >                synchronized (f) {
1698 >                    if (tabAt(tab, i) == f) {
1699 >                        if (fh >= 0) {
1700 >                            binCount = 1;
1701 >                            for (Node<K,V> e = f;; ++binCount) {
1702 >                                K ek;
1703 >                                if (e.hash == h &&
1704 >                                    ((ek = e.key) == key ||
1705 >                                     (ek != null && key.equals(ek)))) {
1706 >                                    val = e.val;
1707 >                                    break;
1708 >                                }
1709 >                                Node<K,V> pred = e;
1710 >                                if ((e = e.next) == null) {
1711 >                                    if ((val = mappingFunction.apply(key)) != null) {
1712 >                                        if (pred.next != null)
1713 >                                            throw new IllegalStateException("Recursive update");
1714 >                                        added = true;
1715 >                                        pred.next = new Node<K,V>(h, key, val);
1716 >                                    }
1717 >                                    break;
1718 >                                }
1719 >                            }
1720 >                        }
1721 >                        else if (f instanceof TreeBin) {
1722 >                            binCount = 2;
1723 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1724 >                            TreeNode<K,V> r, p;
1725 >                            if ((r = t.root) != null &&
1726 >                                (p = r.findTreeNode(h, key, null)) != null)
1727 >                                val = p.val;
1728 >                            else if ((val = mappingFunction.apply(key)) != null) {
1729 >                                added = true;
1730 >                                t.putTreeVal(h, key, val);
1731 >                            }
1732 >                        }
1733 >                        else if (f instanceof ReservationNode)
1734 >                            throw new IllegalStateException("Recursive update");
1735 >                    }
1736 >                }
1737 >                if (binCount != 0) {
1738 >                    if (binCount >= TREEIFY_THRESHOLD)
1739 >                        treeifyBin(tab, i);
1740 >                    if (!added)
1741 >                        return val;
1742 >                    break;
1743 >                }
1744              }
1745          }
1746 <        return overflow ? Integer.MAX_VALUE : size;
1746 >        if (val != null)
1747 >            addCount(1L, binCount);
1748 >        return val;
1749      }
1750  
1751      /**
1752 <     * Returns the value to which the specified key is mapped,
1753 <     * or {@code null} if this map contains no mapping for the key.
1752 >     * If the value for the specified key is present, attempts to
1753 >     * compute a new mapping given the key and its current mapped
1754 >     * value.  The entire method invocation is performed atomically.
1755 >     * The supplied function is invoked exactly once per invocation of
1756 >     * this method if the key is present, else not at all.  Some
1757 >     * attempted update operations on this map by other threads may be
1758 >     * blocked while computation is in progress, so the computation
1759 >     * should be short and simple.
1760       *
1761 <     * <p>More formally, if this map contains a mapping from a key
884 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
885 <     * then this method returns {@code v}; otherwise it returns
886 <     * {@code null}.  (There can be at most one such mapping.)
1761 >     * <p>The remapping function must not modify this map during computation.
1762       *
1763 <     * @throws NullPointerException if the specified key is null
1763 >     * @param key key with which a value may be associated
1764 >     * @param remappingFunction the function to compute a value
1765 >     * @return the new value associated with the specified key, or null if none
1766 >     * @throws NullPointerException if the specified key or remappingFunction
1767 >     *         is null
1768 >     * @throws IllegalStateException if the computation detectably
1769 >     *         attempts a recursive update to this map that would
1770 >     *         otherwise never complete
1771 >     * @throws RuntimeException or Error if the remappingFunction does so,
1772 >     *         in which case the mapping is unchanged
1773       */
1774 <    public V get(Object key) {
1775 <        Segment<K,V> s; // manually integrate access methods to reduce overhead
1776 <        HashEntry<K,V>[] tab;
1777 <        int h = hash(key.hashCode());
1778 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1779 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
1780 <            (tab = s.table) != null) {
1781 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
1782 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1783 <                 e != null; e = e.next) {
1784 <                K k;
1785 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
1786 <                    return e.value;
1774 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1775 >        if (key == null || remappingFunction == null)
1776 >            throw new NullPointerException();
1777 >        int h = spread(key.hashCode());
1778 >        V val = null;
1779 >        int delta = 0;
1780 >        int binCount = 0;
1781 >        for (Node<K,V>[] tab = table;;) {
1782 >            Node<K,V> f; int n, i, fh;
1783 >            if (tab == null || (n = tab.length) == 0)
1784 >                tab = initTable();
1785 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1786 >                break;
1787 >            else if ((fh = f.hash) == MOVED)
1788 >                tab = helpTransfer(tab, f);
1789 >            else {
1790 >                synchronized (f) {
1791 >                    if (tabAt(tab, i) == f) {
1792 >                        if (fh >= 0) {
1793 >                            binCount = 1;
1794 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1795 >                                K ek;
1796 >                                if (e.hash == h &&
1797 >                                    ((ek = e.key) == key ||
1798 >                                     (ek != null && key.equals(ek)))) {
1799 >                                    val = remappingFunction.apply(key, e.val);
1800 >                                    if (val != null)
1801 >                                        e.val = val;
1802 >                                    else {
1803 >                                        delta = -1;
1804 >                                        Node<K,V> en = e.next;
1805 >                                        if (pred != null)
1806 >                                            pred.next = en;
1807 >                                        else
1808 >                                            setTabAt(tab, i, en);
1809 >                                    }
1810 >                                    break;
1811 >                                }
1812 >                                pred = e;
1813 >                                if ((e = e.next) == null)
1814 >                                    break;
1815 >                            }
1816 >                        }
1817 >                        else if (f instanceof TreeBin) {
1818 >                            binCount = 2;
1819 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1820 >                            TreeNode<K,V> r, p;
1821 >                            if ((r = t.root) != null &&
1822 >                                (p = r.findTreeNode(h, key, null)) != null) {
1823 >                                val = remappingFunction.apply(key, p.val);
1824 >                                if (val != null)
1825 >                                    p.val = val;
1826 >                                else {
1827 >                                    delta = -1;
1828 >                                    if (t.removeTreeNode(p))
1829 >                                        setTabAt(tab, i, untreeify(t.first));
1830 >                                }
1831 >                            }
1832 >                        }
1833 >                        else if (f instanceof ReservationNode)
1834 >                            throw new IllegalStateException("Recursive update");
1835 >                    }
1836 >                }
1837 >                if (binCount != 0)
1838 >                    break;
1839              }
1840          }
1841 <        return null;
1841 >        if (delta != 0)
1842 >            addCount((long)delta, binCount);
1843 >        return val;
1844      }
1845  
1846      /**
1847 <     * Tests if the specified object is a key in this table.
1847 >     * Attempts to compute a mapping for the specified key and its
1848 >     * current mapped value (or {@code null} if there is no current
1849 >     * mapping). The entire method invocation is performed atomically.
1850 >     * The supplied function is invoked exactly once per invocation of
1851 >     * this method.  Some attempted update operations on this map by
1852 >     * other threads may be blocked while computation is in progress,
1853 >     * so the computation should be short and simple.
1854       *
1855 <     * @param  key   possible key
1856 <     * @return <tt>true</tt> if and only if the specified object
1857 <     *         is a key in this table, as determined by the
1858 <     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
1859 <     * @throws NullPointerException if the specified key is null
1860 <     */
1861 <    @SuppressWarnings("unchecked")
1862 <    public boolean containsKey(Object key) {
1863 <        Segment<K,V> s; // same as get() except no need for volatile value read
1864 <        HashEntry<K,V>[] tab;
1865 <        int h = hash(key.hashCode());
1866 <        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
1867 <        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
1868 <            (tab = s.table) != null) {
1869 <            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
1870 <                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
1871 <                 e != null; e = e.next) {
1872 <                K k;
1873 <                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
1874 <                    return true;
1855 >     * <p>The remapping function must not modify this map during computation.
1856 >     *
1857 >     * @param key key with which the specified value is to be associated
1858 >     * @param remappingFunction the function to compute a value
1859 >     * @return the new value associated with the specified key, or null if none
1860 >     * @throws NullPointerException if the specified key or remappingFunction
1861 >     *         is null
1862 >     * @throws IllegalStateException if the computation detectably
1863 >     *         attempts a recursive update to this map that would
1864 >     *         otherwise never complete
1865 >     * @throws RuntimeException or Error if the remappingFunction does so,
1866 >     *         in which case the mapping is unchanged
1867 >     */
1868 >    public V compute(K key,
1869 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1870 >        if (key == null || remappingFunction == null)
1871 >            throw new NullPointerException();
1872 >        int h = spread(key.hashCode());
1873 >        V val = null;
1874 >        int delta = 0;
1875 >        int binCount = 0;
1876 >        for (Node<K,V>[] tab = table;;) {
1877 >            Node<K,V> f; int n, i, fh;
1878 >            if (tab == null || (n = tab.length) == 0)
1879 >                tab = initTable();
1880 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1881 >                Node<K,V> r = new ReservationNode<K,V>();
1882 >                synchronized (r) {
1883 >                    if (casTabAt(tab, i, null, r)) {
1884 >                        binCount = 1;
1885 >                        Node<K,V> node = null;
1886 >                        try {
1887 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1888 >                                delta = 1;
1889 >                                node = new Node<K,V>(h, key, val);
1890 >                            }
1891 >                        } finally {
1892 >                            setTabAt(tab, i, node);
1893 >                        }
1894 >                    }
1895 >                }
1896 >                if (binCount != 0)
1897 >                    break;
1898 >            }
1899 >            else if ((fh = f.hash) == MOVED)
1900 >                tab = helpTransfer(tab, f);
1901 >            else {
1902 >                synchronized (f) {
1903 >                    if (tabAt(tab, i) == f) {
1904 >                        if (fh >= 0) {
1905 >                            binCount = 1;
1906 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1907 >                                K ek;
1908 >                                if (e.hash == h &&
1909 >                                    ((ek = e.key) == key ||
1910 >                                     (ek != null && key.equals(ek)))) {
1911 >                                    val = remappingFunction.apply(key, e.val);
1912 >                                    if (val != null)
1913 >                                        e.val = val;
1914 >                                    else {
1915 >                                        delta = -1;
1916 >                                        Node<K,V> en = e.next;
1917 >                                        if (pred != null)
1918 >                                            pred.next = en;
1919 >                                        else
1920 >                                            setTabAt(tab, i, en);
1921 >                                    }
1922 >                                    break;
1923 >                                }
1924 >                                pred = e;
1925 >                                if ((e = e.next) == null) {
1926 >                                    val = remappingFunction.apply(key, null);
1927 >                                    if (val != null) {
1928 >                                        if (pred.next != null)
1929 >                                            throw new IllegalStateException("Recursive update");
1930 >                                        delta = 1;
1931 >                                        pred.next = new Node<K,V>(h, key, val);
1932 >                                    }
1933 >                                    break;
1934 >                                }
1935 >                            }
1936 >                        }
1937 >                        else if (f instanceof TreeBin) {
1938 >                            binCount = 1;
1939 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1940 >                            TreeNode<K,V> r, p;
1941 >                            if ((r = t.root) != null)
1942 >                                p = r.findTreeNode(h, key, null);
1943 >                            else
1944 >                                p = null;
1945 >                            V pv = (p == null) ? null : p.val;
1946 >                            val = remappingFunction.apply(key, pv);
1947 >                            if (val != null) {
1948 >                                if (p != null)
1949 >                                    p.val = val;
1950 >                                else {
1951 >                                    delta = 1;
1952 >                                    t.putTreeVal(h, key, val);
1953 >                                }
1954 >                            }
1955 >                            else if (p != null) {
1956 >                                delta = -1;
1957 >                                if (t.removeTreeNode(p))
1958 >                                    setTabAt(tab, i, untreeify(t.first));
1959 >                            }
1960 >                        }
1961 >                        else if (f instanceof ReservationNode)
1962 >                            throw new IllegalStateException("Recursive update");
1963 >                    }
1964 >                }
1965 >                if (binCount != 0) {
1966 >                    if (binCount >= TREEIFY_THRESHOLD)
1967 >                        treeifyBin(tab, i);
1968 >                    break;
1969 >                }
1970              }
1971          }
1972 <        return false;
1972 >        if (delta != 0)
1973 >            addCount((long)delta, binCount);
1974 >        return val;
1975      }
1976  
1977      /**
1978 <     * Returns <tt>true</tt> if this map maps one or more keys to the
1979 <     * specified value. Note: This method requires a full internal
1980 <     * traversal of the hash table, and so is much slower than
1981 <     * method <tt>containsKey</tt>.
1978 >     * If the specified key is not already associated with a
1979 >     * (non-null) value, associates it with the given value.
1980 >     * Otherwise, replaces the value with the results of the given
1981 >     * remapping function, or removes if {@code null}. The entire
1982 >     * method invocation is performed atomically.  Some attempted
1983 >     * update operations on this map by other threads may be blocked
1984 >     * while computation is in progress, so the computation should be
1985 >     * short and simple, and must not attempt to update any other
1986 >     * mappings of this Map.
1987       *
1988 <     * @param value value whose presence in this map is to be tested
1989 <     * @return <tt>true</tt> if this map maps one or more keys to the
1990 <     *         specified value
1991 <     * @throws NullPointerException if the specified value is null
1988 >     * @param key key with which the specified value is to be associated
1989 >     * @param value the value to use if absent
1990 >     * @param remappingFunction the function to recompute a value if present
1991 >     * @return the new value associated with the specified key, or null if none
1992 >     * @throws NullPointerException if the specified key or the
1993 >     *         remappingFunction is null
1994 >     * @throws RuntimeException or Error if the remappingFunction does so,
1995 >     *         in which case the mapping is unchanged
1996       */
1997 <    public boolean containsValue(Object value) {
1998 <        // Same idea as size()
949 <        if (value == null)
1997 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1998 >        if (key == null || value == null || remappingFunction == null)
1999              throw new NullPointerException();
2000 <        final Segment<K,V>[] segments = this.segments;
2001 <        boolean found = false;
2002 <        long last = 0;
2003 <        int retries = -1;
2004 <        try {
2005 <            outer: for (;;) {
2006 <                if (retries++ == RETRIES_BEFORE_LOCK) {
2007 <                    for (int j = 0; j < segments.length; ++j)
2008 <                        ensureSegment(j).lock(); // force creation
2009 <                }
2010 <                long hashSum = 0L;
2011 <                int sum = 0;
2012 <                for (int j = 0; j < segments.length; ++j) {
2013 <                    HashEntry<K,V>[] tab;
2014 <                    Segment<K,V> seg = segmentAt(segments, j);
2015 <                    if (seg != null && (tab = seg.table) != null) {
2016 <                        for (int i = 0 ; i < tab.length; i++) {
2017 <                            HashEntry<K,V> e;
2018 <                            for (e = entryAt(tab, i); e != null; e = e.next) {
2019 <                                V v = e.value;
2020 <                                if (v != null && value.equals(v)) {
2021 <                                    found = true;
2022 <                                    break outer;
2000 >        int h = spread(key.hashCode());
2001 >        V val = null;
2002 >        int delta = 0;
2003 >        int binCount = 0;
2004 >        for (Node<K,V>[] tab = table;;) {
2005 >            Node<K,V> f; int n, i, fh;
2006 >            if (tab == null || (n = tab.length) == 0)
2007 >                tab = initTable();
2008 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2009 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2010 >                    delta = 1;
2011 >                    val = value;
2012 >                    break;
2013 >                }
2014 >            }
2015 >            else if ((fh = f.hash) == MOVED)
2016 >                tab = helpTransfer(tab, f);
2017 >            else {
2018 >                synchronized (f) {
2019 >                    if (tabAt(tab, i) == f) {
2020 >                        if (fh >= 0) {
2021 >                            binCount = 1;
2022 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2023 >                                K ek;
2024 >                                if (e.hash == h &&
2025 >                                    ((ek = e.key) == key ||
2026 >                                     (ek != null && key.equals(ek)))) {
2027 >                                    val = remappingFunction.apply(e.val, value);
2028 >                                    if (val != null)
2029 >                                        e.val = val;
2030 >                                    else {
2031 >                                        delta = -1;
2032 >                                        Node<K,V> en = e.next;
2033 >                                        if (pred != null)
2034 >                                            pred.next = en;
2035 >                                        else
2036 >                                            setTabAt(tab, i, en);
2037 >                                    }
2038 >                                    break;
2039 >                                }
2040 >                                pred = e;
2041 >                                if ((e = e.next) == null) {
2042 >                                    delta = 1;
2043 >                                    val = value;
2044 >                                    pred.next = new Node<K,V>(h, key, val);
2045 >                                    break;
2046                                  }
2047                              }
2048                          }
2049 <                        sum += seg.modCount;
2049 >                        else if (f instanceof TreeBin) {
2050 >                            binCount = 2;
2051 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2052 >                            TreeNode<K,V> r = t.root;
2053 >                            TreeNode<K,V> p = (r == null) ? null :
2054 >                                r.findTreeNode(h, key, null);
2055 >                            val = (p == null) ? value :
2056 >                                remappingFunction.apply(p.val, value);
2057 >                            if (val != null) {
2058 >                                if (p != null)
2059 >                                    p.val = val;
2060 >                                else {
2061 >                                    delta = 1;
2062 >                                    t.putTreeVal(h, key, val);
2063 >                                }
2064 >                            }
2065 >                            else if (p != null) {
2066 >                                delta = -1;
2067 >                                if (t.removeTreeNode(p))
2068 >                                    setTabAt(tab, i, untreeify(t.first));
2069 >                            }
2070 >                        }
2071 >                        else if (f instanceof ReservationNode)
2072 >                            throw new IllegalStateException("Recursive update");
2073                      }
2074                  }
2075 <                if (retries > 0 && sum == last)
2075 >                if (binCount != 0) {
2076 >                    if (binCount >= TREEIFY_THRESHOLD)
2077 >                        treeifyBin(tab, i);
2078                      break;
2079 <                last = sum;
983 <            }
984 <        } finally {
985 <            if (retries > RETRIES_BEFORE_LOCK) {
986 <                for (int j = 0; j < segments.length; ++j)
987 <                    segmentAt(segments, j).unlock();
2079 >                }
2080              }
2081          }
2082 <        return found;
2082 >        if (delta != 0)
2083 >            addCount((long)delta, binCount);
2084 >        return val;
2085      }
2086  
2087 +    // Hashtable legacy methods
2088 +
2089      /**
2090 <     * Legacy method testing if some key maps into the specified value
2091 <     * in this table.  This method is identical in functionality to
2092 <     * {@link #containsValue}, and exists solely to ensure
2090 >     * Tests if some key maps into the specified value in this table.
2091 >     *
2092 >     * <p>Note that this method is identical in functionality to
2093 >     * {@link #containsValue(Object)}, and exists solely to ensure
2094       * full compatibility with class {@link java.util.Hashtable},
2095       * which supported this method prior to introduction of the
2096 <     * Java Collections framework.
2097 <
2096 >     * Java Collections Framework.
2097 >     *
2098       * @param  value a value to search for
2099 <     * @return <tt>true</tt> if and only if some key maps to the
2100 <     *         <tt>value</tt> argument in this table as
2101 <     *         determined by the <tt>equals</tt> method;
2102 <     *         <tt>false</tt> otherwise
2099 >     * @return {@code true} if and only if some key maps to the
2100 >     *         {@code value} argument in this table as
2101 >     *         determined by the {@code equals} method;
2102 >     *         {@code false} otherwise
2103       * @throws NullPointerException if the specified value is null
2104       */
2105      public boolean contains(Object value) {
# Line 1010 | Line 2107 | public class ConcurrentHashMap<K, V> ext
2107      }
2108  
2109      /**
2110 <     * Maps the specified key to the specified value in this table.
1014 <     * Neither the key nor the value can be null.
1015 <     *
1016 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
1017 <     * with a key that is equal to the original key.
2110 >     * Returns an enumeration of the keys in this table.
2111       *
2112 <     * @param key key with which the specified value is to be associated
2113 <     * @param value value to be associated with the specified key
1021 <     * @return the previous value associated with <tt>key</tt>, or
1022 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1023 <     * @throws NullPointerException if the specified key or value is null
2112 >     * @return an enumeration of the keys in this table
2113 >     * @see #keySet()
2114       */
2115 <    @SuppressWarnings("unchecked")
2116 <    public V put(K key, V value) {
2117 <        Segment<K,V> s;
2118 <        if (value == null)
1029 <            throw new NullPointerException();
1030 <        int hash = hash(key.hashCode());
1031 <        int j = (hash >>> segmentShift) & segmentMask;
1032 <        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1033 <             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1034 <            s = ensureSegment(j);
1035 <        return s.put(key, hash, value, false);
2115 >    public Enumeration<K> keys() {
2116 >        Node<K,V>[] t;
2117 >        int f = (t = table) == null ? 0 : t.length;
2118 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2119      }
2120  
2121      /**
2122 <     * {@inheritDoc}
2122 >     * Returns an enumeration of the values in this table.
2123       *
2124 <     * @return the previous value associated with the specified key,
2125 <     *         or <tt>null</tt> if there was no mapping for the key
1043 <     * @throws NullPointerException if the specified key or value is null
2124 >     * @return an enumeration of the values in this table
2125 >     * @see #values()
2126       */
2127 <    @SuppressWarnings("unchecked")
2128 <    public V putIfAbsent(K key, V value) {
2129 <        Segment<K,V> s;
2130 <        if (value == null)
1049 <            throw new NullPointerException();
1050 <        int hash = hash(key.hashCode());
1051 <        int j = (hash >>> segmentShift) & segmentMask;
1052 <        if ((s = (Segment<K,V>)UNSAFE.getObject
1053 <             (segments, (j << SSHIFT) + SBASE)) == null)
1054 <            s = ensureSegment(j);
1055 <        return s.put(key, hash, value, true);
2127 >    public Enumeration<V> elements() {
2128 >        Node<K,V>[] t;
2129 >        int f = (t = table) == null ? 0 : t.length;
2130 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2131      }
2132  
2133 +    // ConcurrentHashMap-only methods
2134 +
2135      /**
2136 <     * Copies all of the mappings from the specified map to this one.
2137 <     * These mappings replace any mappings that this map had for any of the
2138 <     * keys currently in the specified map.
2136 >     * Returns the number of mappings. This method should be used
2137 >     * instead of {@link #size} because a ConcurrentHashMap may
2138 >     * contain more mappings than can be represented as an int. The
2139 >     * value returned is an estimate; the actual count may differ if
2140 >     * there are concurrent insertions or removals.
2141       *
2142 <     * @param m mappings to be stored in this map
2142 >     * @return the number of mappings
2143 >     * @since 1.8
2144       */
2145 <    public void putAll(Map<? extends K, ? extends V> m) {
2146 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
2147 <            put(e.getKey(), e.getValue());
2145 >    public long mappingCount() {
2146 >        long n = sumCount();
2147 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2148      }
2149  
2150      /**
2151 <     * Removes the key (and its corresponding value) from this map.
2152 <     * This method does nothing if the key is not in the map.
2151 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2152 >     * from the given type to {@code Boolean.TRUE}.
2153       *
2154 <     * @param  key the key that needs to be removed
2155 <     * @return the previous value associated with <tt>key</tt>, or
2156 <     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1077 <     * @throws NullPointerException if the specified key is null
2154 >     * @param <K> the element type of the returned set
2155 >     * @return the new set
2156 >     * @since 1.8
2157       */
2158 <    public V remove(Object key) {
2159 <        int hash = hash(key.hashCode());
2160 <        Segment<K,V> s = segmentForHash(hash);
1082 <        return s == null ? null : s.remove(key, hash, null);
2158 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2159 >        return new KeySetView<K,Boolean>
2160 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2161      }
2162  
2163      /**
2164 <     * {@inheritDoc}
2164 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2165 >     * from the given type to {@code Boolean.TRUE}.
2166       *
2167 <     * @throws NullPointerException if the specified key is null
2167 >     * @param initialCapacity The implementation performs internal
2168 >     * sizing to accommodate this many elements.
2169 >     * @param <K> the element type of the returned set
2170 >     * @return the new set
2171 >     * @throws IllegalArgumentException if the initial capacity of
2172 >     * elements is negative
2173 >     * @since 1.8
2174       */
2175 <    public boolean remove(Object key, Object value) {
2176 <        int hash = hash(key.hashCode());
2177 <        Segment<K,V> s;
1093 <        return value != null && (s = segmentForHash(hash)) != null &&
1094 <            s.remove(key, hash, value) != null;
2175 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2176 >        return new KeySetView<K,Boolean>
2177 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2178      }
2179  
2180      /**
2181 <     * {@inheritDoc}
2181 >     * Returns a {@link Set} view of the keys in this map, using the
2182 >     * given common mapped value for any additions (i.e., {@link
2183 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2184 >     * This is of course only appropriate if it is acceptable to use
2185 >     * the same value for all additions from this view.
2186       *
2187 <     * @throws NullPointerException if any of the arguments are null
2187 >     * @param mappedValue the mapped value to use for any additions
2188 >     * @return the set view
2189 >     * @throws NullPointerException if the mappedValue is null
2190       */
2191 <    public boolean replace(K key, V oldValue, V newValue) {
2192 <        int hash = hash(key.hashCode());
1104 <        if (oldValue == null || newValue == null)
2191 >    public KeySetView<K,V> keySet(V mappedValue) {
2192 >        if (mappedValue == null)
2193              throw new NullPointerException();
2194 <        Segment<K,V> s = segmentForHash(hash);
1107 <        return s != null && s.replace(key, hash, oldValue, newValue);
2194 >        return new KeySetView<K,V>(this, mappedValue);
2195      }
2196  
2197 +    /* ---------------- Special Nodes -------------- */
2198 +
2199      /**
2200 <     * {@inheritDoc}
1112 <     *
1113 <     * @return the previous value associated with the specified key,
1114 <     *         or <tt>null</tt> if there was no mapping for the key
1115 <     * @throws NullPointerException if the specified key or value is null
2200 >     * A node inserted at head of bins during transfer operations.
2201       */
2202 <    public V replace(K key, V value) {
2203 <        int hash = hash(key.hashCode());
2204 <        if (value == null)
2205 <            throw new NullPointerException();
2206 <        Segment<K,V> s = segmentForHash(hash);
2207 <        return s == null ? null : s.replace(key, hash, value);
2202 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2203 >        final Node<K,V>[] nextTable;
2204 >        ForwardingNode(Node<K,V>[] tab) {
2205 >            super(MOVED, null, null);
2206 >            this.nextTable = tab;
2207 >        }
2208 >
2209 >        Node<K,V> find(int h, Object k) {
2210 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2211 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2212 >                Node<K,V> e; int n;
2213 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2214 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2215 >                    return null;
2216 >                for (;;) {
2217 >                    int eh; K ek;
2218 >                    if ((eh = e.hash) == h &&
2219 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2220 >                        return e;
2221 >                    if (eh < 0) {
2222 >                        if (e instanceof ForwardingNode) {
2223 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2224 >                            continue outer;
2225 >                        }
2226 >                        else
2227 >                            return e.find(h, k);
2228 >                    }
2229 >                    if ((e = e.next) == null)
2230 >                        return null;
2231 >                }
2232 >            }
2233 >        }
2234      }
2235  
2236      /**
2237 <     * Removes all of the mappings from this map.
2237 >     * A place-holder node used in computeIfAbsent and compute.
2238       */
2239 <    public void clear() {
2240 <        final Segment<K,V>[] segments = this.segments;
2241 <        for (int j = 0; j < segments.length; ++j) {
2242 <            Segment<K,V> s = segmentAt(segments, j);
2243 <            if (s != null)
2244 <                s.clear();
2239 >    static final class ReservationNode<K,V> extends Node<K,V> {
2240 >        ReservationNode() {
2241 >            super(RESERVED, null, null);
2242 >        }
2243 >
2244 >        Node<K,V> find(int h, Object k) {
2245 >            return null;
2246          }
2247      }
2248  
2249 +    /* ---------------- Table Initialization and Resizing -------------- */
2250 +
2251      /**
2252 <     * Returns a {@link Set} view of the keys contained in this map.
2253 <     * The set is backed by the map, so changes to the map are
2254 <     * reflected in the set, and vice-versa.  The set supports element
2255 <     * removal, which removes the corresponding mapping from this map,
2256 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1143 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1144 <     * operations.  It does not support the <tt>add</tt> or
1145 <     * <tt>addAll</tt> operations.
1146 <     *
1147 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1148 <     * that will never throw {@link ConcurrentModificationException},
1149 <     * and guarantees to traverse elements as they existed upon
1150 <     * construction of the iterator, and may (but is not guaranteed to)
1151 <     * reflect any modifications subsequent to construction.
1152 <     */
1153 <    public Set<K> keySet() {
1154 <        Set<K> ks = keySet;
1155 <        return (ks != null) ? ks : (keySet = new KeySet());
2252 >     * Returns the stamp bits for resizing a table of size n.
2253 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2254 >     */
2255 >    static final int resizeStamp(int n) {
2256 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2257      }
2258  
2259      /**
2260 <     * Returns a {@link Collection} view of the values contained in this map.
1160 <     * The collection is backed by the map, so changes to the map are
1161 <     * reflected in the collection, and vice-versa.  The collection
1162 <     * supports element removal, which removes the corresponding
1163 <     * mapping from this map, via the <tt>Iterator.remove</tt>,
1164 <     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1165 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1166 <     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1167 <     *
1168 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1169 <     * that will never throw {@link ConcurrentModificationException},
1170 <     * and guarantees to traverse elements as they existed upon
1171 <     * construction of the iterator, and may (but is not guaranteed to)
1172 <     * reflect any modifications subsequent to construction.
2260 >     * Initializes table, using the size recorded in sizeCtl.
2261       */
2262 <    public Collection<V> values() {
2263 <        Collection<V> vs = values;
2264 <        return (vs != null) ? vs : (values = new Values());
2262 >    private final Node<K,V>[] initTable() {
2263 >        Node<K,V>[] tab; int sc;
2264 >        while ((tab = table) == null || tab.length == 0) {
2265 >            if ((sc = sizeCtl) < 0)
2266 >                Thread.yield(); // lost initialization race; just spin
2267 >            else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2268 >                try {
2269 >                    if ((tab = table) == null || tab.length == 0) {
2270 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2271 >                        @SuppressWarnings("unchecked")
2272 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2273 >                        table = tab = nt;
2274 >                        sc = n - (n >>> 2);
2275 >                    }
2276 >                } finally {
2277 >                    sizeCtl = sc;
2278 >                }
2279 >                break;
2280 >            }
2281 >        }
2282 >        return tab;
2283      }
2284  
2285      /**
2286 <     * Returns a {@link Set} view of the mappings contained in this map.
2287 <     * The set is backed by the map, so changes to the map are
2288 <     * reflected in the set, and vice-versa.  The set supports element
2289 <     * removal, which removes the corresponding mapping from the map,
2290 <     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2291 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2292 <     * operations.  It does not support the <tt>add</tt> or
2293 <     * <tt>addAll</tt> operations.
1188 <     *
1189 <     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1190 <     * that will never throw {@link ConcurrentModificationException},
1191 <     * and guarantees to traverse elements as they existed upon
1192 <     * construction of the iterator, and may (but is not guaranteed to)
1193 <     * reflect any modifications subsequent to construction.
2286 >     * Adds to count, and if table is too small and not already
2287 >     * resizing, initiates transfer. If already resizing, helps
2288 >     * perform transfer if work is available.  Rechecks occupancy
2289 >     * after a transfer to see if another resize is already needed
2290 >     * because resizings are lagging additions.
2291 >     *
2292 >     * @param x the count to add
2293 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2294       */
2295 <    public Set<Map.Entry<K,V>> entrySet() {
2296 <        Set<Map.Entry<K,V>> es = entrySet;
2297 <        return (es != null) ? es : (entrySet = new EntrySet());
2295 >    private final void addCount(long x, int check) {
2296 >        CounterCell[] cs; long b, s;
2297 >        if ((cs = counterCells) != null ||
2298 >            !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2299 >            CounterCell c; long v; int m;
2300 >            boolean uncontended = true;
2301 >            if (cs == null || (m = cs.length - 1) < 0 ||
2302 >                (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2303 >                !(uncontended =
2304 >                  U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2305 >                fullAddCount(x, uncontended);
2306 >                return;
2307 >            }
2308 >            if (check <= 1)
2309 >                return;
2310 >            s = sumCount();
2311 >        }
2312 >        if (check >= 0) {
2313 >            Node<K,V>[] tab, nt; int n, sc;
2314 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2315 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2316 >                int rs = resizeStamp(n) << RESIZE_STAMP_SHIFT;
2317 >                if (sc < 0) {
2318 >                    if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2319 >                        (nt = nextTable) == null || transferIndex <= 0)
2320 >                        break;
2321 >                    if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2322 >                        transfer(tab, nt);
2323 >                }
2324 >                else if (U.compareAndSetInt(this, SIZECTL, sc, rs + 2))
2325 >                    transfer(tab, null);
2326 >                s = sumCount();
2327 >            }
2328 >        }
2329      }
2330  
2331      /**
2332 <     * Returns an enumeration of the keys in this table.
1202 <     *
1203 <     * @return an enumeration of the keys in this table
1204 <     * @see #keySet()
2332 >     * Helps transfer if a resize is in progress.
2333       */
2334 <    public Enumeration<K> keys() {
2335 <        return new KeyIterator();
2334 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2335 >        Node<K,V>[] nextTab; int sc;
2336 >        if (tab != null && (f instanceof ForwardingNode) &&
2337 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2338 >            int rs = resizeStamp(tab.length) << RESIZE_STAMP_SHIFT;
2339 >            while (nextTab == nextTable && table == tab &&
2340 >                   (sc = sizeCtl) < 0) {
2341 >                if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2342 >                    transferIndex <= 0)
2343 >                    break;
2344 >                if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2345 >                    transfer(tab, nextTab);
2346 >                    break;
2347 >                }
2348 >            }
2349 >            return nextTab;
2350 >        }
2351 >        return table;
2352      }
2353  
2354      /**
2355 <     * Returns an enumeration of the values in this table.
2355 >     * Tries to presize table to accommodate the given number of elements.
2356       *
2357 <     * @return an enumeration of the values in this table
1214 <     * @see #values()
2357 >     * @param size number of elements (doesn't need to be perfectly accurate)
2358       */
2359 <    public Enumeration<V> elements() {
2360 <        return new ValueIterator();
2359 >    private final void tryPresize(int size) {
2360 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2361 >            tableSizeFor(size + (size >>> 1) + 1);
2362 >        int sc;
2363 >        while ((sc = sizeCtl) >= 0) {
2364 >            Node<K,V>[] tab = table; int n;
2365 >            if (tab == null || (n = tab.length) == 0) {
2366 >                n = (sc > c) ? sc : c;
2367 >                if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2368 >                    try {
2369 >                        if (table == tab) {
2370 >                            @SuppressWarnings("unchecked")
2371 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2372 >                            table = nt;
2373 >                            sc = n - (n >>> 2);
2374 >                        }
2375 >                    } finally {
2376 >                        sizeCtl = sc;
2377 >                    }
2378 >                }
2379 >            }
2380 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2381 >                break;
2382 >            else if (tab == table) {
2383 >                int rs = resizeStamp(n);
2384 >                if (U.compareAndSetInt(this, SIZECTL, sc,
2385 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2386 >                    transfer(tab, null);
2387 >            }
2388 >        }
2389      }
2390  
2391 <    /* ---------------- Iterator Support -------------- */
2391 >    /**
2392 >     * Moves and/or copies the nodes in each bin to new table. See
2393 >     * above for explanation.
2394 >     */
2395 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2396 >        int n = tab.length, stride;
2397 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2398 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2399 >        if (nextTab == null) {            // initiating
2400 >            try {
2401 >                @SuppressWarnings("unchecked")
2402 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2403 >                nextTab = nt;
2404 >            } catch (Throwable ex) {      // try to cope with OOME
2405 >                sizeCtl = Integer.MAX_VALUE;
2406 >                return;
2407 >            }
2408 >            nextTable = nextTab;
2409 >            transferIndex = n;
2410 >        }
2411 >        int nextn = nextTab.length;
2412 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2413 >        boolean advance = true;
2414 >        boolean finishing = false; // to ensure sweep before committing nextTab
2415 >        for (int i = 0, bound = 0;;) {
2416 >            Node<K,V> f; int fh;
2417 >            while (advance) {
2418 >                int nextIndex, nextBound;
2419 >                if (--i >= bound || finishing)
2420 >                    advance = false;
2421 >                else if ((nextIndex = transferIndex) <= 0) {
2422 >                    i = -1;
2423 >                    advance = false;
2424 >                }
2425 >                else if (U.compareAndSetInt
2426 >                         (this, TRANSFERINDEX, nextIndex,
2427 >                          nextBound = (nextIndex > stride ?
2428 >                                       nextIndex - stride : 0))) {
2429 >                    bound = nextBound;
2430 >                    i = nextIndex - 1;
2431 >                    advance = false;
2432 >                }
2433 >            }
2434 >            if (i < 0 || i >= n || i + n >= nextn) {
2435 >                int sc;
2436 >                if (finishing) {
2437 >                    nextTable = null;
2438 >                    table = nextTab;
2439 >                    sizeCtl = (n << 1) - (n >>> 1);
2440 >                    return;
2441 >                }
2442 >                if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2443 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2444 >                        return;
2445 >                    finishing = advance = true;
2446 >                    i = n; // recheck before commit
2447 >                }
2448 >            }
2449 >            else if ((f = tabAt(tab, i)) == null)
2450 >                advance = casTabAt(tab, i, null, fwd);
2451 >            else if ((fh = f.hash) == MOVED)
2452 >                advance = true; // already processed
2453 >            else {
2454 >                synchronized (f) {
2455 >                    if (tabAt(tab, i) == f) {
2456 >                        Node<K,V> ln, hn;
2457 >                        if (fh >= 0) {
2458 >                            int runBit = fh & n;
2459 >                            Node<K,V> lastRun = f;
2460 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2461 >                                int b = p.hash & n;
2462 >                                if (b != runBit) {
2463 >                                    runBit = b;
2464 >                                    lastRun = p;
2465 >                                }
2466 >                            }
2467 >                            if (runBit == 0) {
2468 >                                ln = lastRun;
2469 >                                hn = null;
2470 >                            }
2471 >                            else {
2472 >                                hn = lastRun;
2473 >                                ln = null;
2474 >                            }
2475 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2476 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2477 >                                if ((ph & n) == 0)
2478 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2479 >                                else
2480 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2481 >                            }
2482 >                            setTabAt(nextTab, i, ln);
2483 >                            setTabAt(nextTab, i + n, hn);
2484 >                            setTabAt(tab, i, fwd);
2485 >                            advance = true;
2486 >                        }
2487 >                        else if (f instanceof TreeBin) {
2488 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2489 >                            TreeNode<K,V> lo = null, loTail = null;
2490 >                            TreeNode<K,V> hi = null, hiTail = null;
2491 >                            int lc = 0, hc = 0;
2492 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2493 >                                int h = e.hash;
2494 >                                TreeNode<K,V> p = new TreeNode<K,V>
2495 >                                    (h, e.key, e.val, null, null);
2496 >                                if ((h & n) == 0) {
2497 >                                    if ((p.prev = loTail) == null)
2498 >                                        lo = p;
2499 >                                    else
2500 >                                        loTail.next = p;
2501 >                                    loTail = p;
2502 >                                    ++lc;
2503 >                                }
2504 >                                else {
2505 >                                    if ((p.prev = hiTail) == null)
2506 >                                        hi = p;
2507 >                                    else
2508 >                                        hiTail.next = p;
2509 >                                    hiTail = p;
2510 >                                    ++hc;
2511 >                                }
2512 >                            }
2513 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2514 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2515 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2516 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2517 >                            setTabAt(nextTab, i, ln);
2518 >                            setTabAt(nextTab, i + n, hn);
2519 >                            setTabAt(tab, i, fwd);
2520 >                            advance = true;
2521 >                        }
2522 >                        else if (f instanceof ReservationNode)
2523 >                            throw new IllegalStateException("Recursive update");
2524 >                    }
2525 >                }
2526 >            }
2527 >        }
2528 >    }
2529  
2530 <    abstract class HashIterator {
1223 <        int nextSegmentIndex;
1224 <        int nextTableIndex;
1225 <        HashEntry<K,V>[] currentTable;
1226 <        HashEntry<K, V> nextEntry;
1227 <        HashEntry<K, V> lastReturned;
2530 >    /* ---------------- Counter support -------------- */
2531  
2532 <        HashIterator() {
2533 <            nextSegmentIndex = segments.length - 1;
2534 <            nextTableIndex = -1;
2535 <            advance();
2532 >    /**
2533 >     * A padded cell for distributing counts.  Adapted from LongAdder
2534 >     * and Striped64.  See their internal docs for explanation.
2535 >     */
2536 >    @jdk.internal.vm.annotation.Contended static final class CounterCell {
2537 >        volatile long value;
2538 >        CounterCell(long x) { value = x; }
2539 >    }
2540 >
2541 >    final long sumCount() {
2542 >        CounterCell[] cs = counterCells;
2543 >        long sum = baseCount;
2544 >        if (cs != null) {
2545 >            for (CounterCell c : cs)
2546 >                if (c != null)
2547 >                    sum += c.value;
2548 >        }
2549 >        return sum;
2550 >    }
2551 >
2552 >    // See LongAdder version for explanation
2553 >    private final void fullAddCount(long x, boolean wasUncontended) {
2554 >        int h;
2555 >        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2556 >            ThreadLocalRandom.localInit();      // force initialization
2557 >            h = ThreadLocalRandom.getProbe();
2558 >            wasUncontended = true;
2559 >        }
2560 >        boolean collide = false;                // True if last slot nonempty
2561 >        for (;;) {
2562 >            CounterCell[] cs; CounterCell c; int n; long v;
2563 >            if ((cs = counterCells) != null && (n = cs.length) > 0) {
2564 >                if ((c = cs[(n - 1) & h]) == null) {
2565 >                    if (cellsBusy == 0) {            // Try to attach new Cell
2566 >                        CounterCell r = new CounterCell(x); // Optimistic create
2567 >                        if (cellsBusy == 0 &&
2568 >                            U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2569 >                            boolean created = false;
2570 >                            try {               // Recheck under lock
2571 >                                CounterCell[] rs; int m, j;
2572 >                                if ((rs = counterCells) != null &&
2573 >                                    (m = rs.length) > 0 &&
2574 >                                    rs[j = (m - 1) & h] == null) {
2575 >                                    rs[j] = r;
2576 >                                    created = true;
2577 >                                }
2578 >                            } finally {
2579 >                                cellsBusy = 0;
2580 >                            }
2581 >                            if (created)
2582 >                                break;
2583 >                            continue;           // Slot is now non-empty
2584 >                        }
2585 >                    }
2586 >                    collide = false;
2587 >                }
2588 >                else if (!wasUncontended)       // CAS already known to fail
2589 >                    wasUncontended = true;      // Continue after rehash
2590 >                else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2591 >                    break;
2592 >                else if (counterCells != cs || n >= NCPU)
2593 >                    collide = false;            // At max size or stale
2594 >                else if (!collide)
2595 >                    collide = true;
2596 >                else if (cellsBusy == 0 &&
2597 >                         U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2598 >                    try {
2599 >                        if (counterCells == cs) // Expand table unless stale
2600 >                            counterCells = Arrays.copyOf(cs, n << 1);
2601 >                    } finally {
2602 >                        cellsBusy = 0;
2603 >                    }
2604 >                    collide = false;
2605 >                    continue;                   // Retry with expanded table
2606 >                }
2607 >                h = ThreadLocalRandom.advanceProbe(h);
2608 >            }
2609 >            else if (cellsBusy == 0 && counterCells == cs &&
2610 >                     U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2611 >                boolean init = false;
2612 >                try {                           // Initialize table
2613 >                    if (counterCells == cs) {
2614 >                        CounterCell[] rs = new CounterCell[2];
2615 >                        rs[h & 1] = new CounterCell(x);
2616 >                        counterCells = rs;
2617 >                        init = true;
2618 >                    }
2619 >                } finally {
2620 >                    cellsBusy = 0;
2621 >                }
2622 >                if (init)
2623 >                    break;
2624 >            }
2625 >            else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2626 >                break;                          // Fall back on using base
2627 >        }
2628 >    }
2629 >
2630 >    /* ---------------- Conversion from/to TreeBins -------------- */
2631 >
2632 >    /**
2633 >     * Replaces all linked nodes in bin at given index unless table is
2634 >     * too small, in which case resizes instead.
2635 >     */
2636 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2637 >        Node<K,V> b; int n;
2638 >        if (tab != null) {
2639 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2640 >                tryPresize(n << 1);
2641 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2642 >                synchronized (b) {
2643 >                    if (tabAt(tab, index) == b) {
2644 >                        TreeNode<K,V> hd = null, tl = null;
2645 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2646 >                            TreeNode<K,V> p =
2647 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2648 >                                                  null, null);
2649 >                            if ((p.prev = tl) == null)
2650 >                                hd = p;
2651 >                            else
2652 >                                tl.next = p;
2653 >                            tl = p;
2654 >                        }
2655 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2656 >                    }
2657 >                }
2658 >            }
2659 >        }
2660 >    }
2661 >
2662 >    /**
2663 >     * Returns a list of non-TreeNodes replacing those in given list.
2664 >     */
2665 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2666 >        Node<K,V> hd = null, tl = null;
2667 >        for (Node<K,V> q = b; q != null; q = q.next) {
2668 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2669 >            if (tl == null)
2670 >                hd = p;
2671 >            else
2672 >                tl.next = p;
2673 >            tl = p;
2674 >        }
2675 >        return hd;
2676 >    }
2677 >
2678 >    /* ---------------- TreeNodes -------------- */
2679 >
2680 >    /**
2681 >     * Nodes for use in TreeBins.
2682 >     */
2683 >    static final class TreeNode<K,V> extends Node<K,V> {
2684 >        TreeNode<K,V> parent;  // red-black tree links
2685 >        TreeNode<K,V> left;
2686 >        TreeNode<K,V> right;
2687 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2688 >        boolean red;
2689 >
2690 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2691 >                 TreeNode<K,V> parent) {
2692 >            super(hash, key, val, next);
2693 >            this.parent = parent;
2694 >        }
2695 >
2696 >        Node<K,V> find(int h, Object k) {
2697 >            return findTreeNode(h, k, null);
2698          }
2699  
2700          /**
2701 <         * Set nextEntry to first node of next non-empty table
2702 <         * (in backwards order, to simplify checks).
2701 >         * Returns the TreeNode (or null if not found) for the given key
2702 >         * starting at given root.
2703           */
2704 <        final void advance() {
2705 <            for (;;) {
2706 <                if (nextTableIndex >= 0) {
2707 <                    if ((nextEntry = entryAt(currentTable,
2708 <                                             nextTableIndex--)) != null)
2709 <                        break;
2704 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2705 >            if (k != null) {
2706 >                TreeNode<K,V> p = this;
2707 >                do {
2708 >                    int ph, dir; K pk; TreeNode<K,V> q;
2709 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2710 >                    if ((ph = p.hash) > h)
2711 >                        p = pl;
2712 >                    else if (ph < h)
2713 >                        p = pr;
2714 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2715 >                        return p;
2716 >                    else if (pl == null)
2717 >                        p = pr;
2718 >                    else if (pr == null)
2719 >                        p = pl;
2720 >                    else if ((kc != null ||
2721 >                              (kc = comparableClassFor(k)) != null) &&
2722 >                             (dir = compareComparables(kc, k, pk)) != 0)
2723 >                        p = (dir < 0) ? pl : pr;
2724 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2725 >                        return q;
2726 >                    else
2727 >                        p = pl;
2728 >                } while (p != null);
2729 >            }
2730 >            return null;
2731 >        }
2732 >    }
2733 >
2734 >    /* ---------------- TreeBins -------------- */
2735 >
2736 >    /**
2737 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2738 >     * keys or values, but instead point to list of TreeNodes and
2739 >     * their root. They also maintain a parasitic read-write lock
2740 >     * forcing writers (who hold bin lock) to wait for readers (who do
2741 >     * not) to complete before tree restructuring operations.
2742 >     */
2743 >    static final class TreeBin<K,V> extends Node<K,V> {
2744 >        TreeNode<K,V> root;
2745 >        volatile TreeNode<K,V> first;
2746 >        volatile Thread waiter;
2747 >        volatile int lockState;
2748 >        // values for lockState
2749 >        static final int WRITER = 1; // set while holding write lock
2750 >        static final int WAITER = 2; // set when waiting for write lock
2751 >        static final int READER = 4; // increment value for setting read lock
2752 >
2753 >        /**
2754 >         * Tie-breaking utility for ordering insertions when equal
2755 >         * hashCodes and non-comparable. We don't require a total
2756 >         * order, just a consistent insertion rule to maintain
2757 >         * equivalence across rebalancings. Tie-breaking further than
2758 >         * necessary simplifies testing a bit.
2759 >         */
2760 >        static int tieBreakOrder(Object a, Object b) {
2761 >            int d;
2762 >            if (a == null || b == null ||
2763 >                (d = a.getClass().getName().
2764 >                 compareTo(b.getClass().getName())) == 0)
2765 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2766 >                     -1 : 1);
2767 >            return d;
2768 >        }
2769 >
2770 >        /**
2771 >         * Creates bin with initial set of nodes headed by b.
2772 >         */
2773 >        TreeBin(TreeNode<K,V> b) {
2774 >            super(TREEBIN, null, null);
2775 >            this.first = b;
2776 >            TreeNode<K,V> r = null;
2777 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2778 >                next = (TreeNode<K,V>)x.next;
2779 >                x.left = x.right = null;
2780 >                if (r == null) {
2781 >                    x.parent = null;
2782 >                    x.red = false;
2783 >                    r = x;
2784                  }
2785 <                else if (nextSegmentIndex >= 0) {
2786 <                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
2787 <                    if (seg != null && (currentTable = seg.table) != null)
2788 <                        nextTableIndex = currentTable.length - 1;
2785 >                else {
2786 >                    K k = x.key;
2787 >                    int h = x.hash;
2788 >                    Class<?> kc = null;
2789 >                    for (TreeNode<K,V> p = r;;) {
2790 >                        int dir, ph;
2791 >                        K pk = p.key;
2792 >                        if ((ph = p.hash) > h)
2793 >                            dir = -1;
2794 >                        else if (ph < h)
2795 >                            dir = 1;
2796 >                        else if ((kc == null &&
2797 >                                  (kc = comparableClassFor(k)) == null) ||
2798 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2799 >                            dir = tieBreakOrder(k, pk);
2800 >                        TreeNode<K,V> xp = p;
2801 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2802 >                            x.parent = xp;
2803 >                            if (dir <= 0)
2804 >                                xp.left = x;
2805 >                            else
2806 >                                xp.right = x;
2807 >                            r = balanceInsertion(r, x);
2808 >                            break;
2809 >                        }
2810 >                    }
2811                  }
2812 <                else
2812 >            }
2813 >            this.root = r;
2814 >            assert checkInvariants(root);
2815 >        }
2816 >
2817 >        /**
2818 >         * Acquires write lock for tree restructuring.
2819 >         */
2820 >        private final void lockRoot() {
2821 >            if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2822 >                contendedLock(); // offload to separate method
2823 >        }
2824 >
2825 >        /**
2826 >         * Releases write lock for tree restructuring.
2827 >         */
2828 >        private final void unlockRoot() {
2829 >            lockState = 0;
2830 >        }
2831 >
2832 >        /**
2833 >         * Possibly blocks awaiting root lock.
2834 >         */
2835 >        private final void contendedLock() {
2836 >            boolean waiting = false;
2837 >            for (int s;;) {
2838 >                if (((s = lockState) & ~WAITER) == 0) {
2839 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2840 >                        if (waiting)
2841 >                            waiter = null;
2842 >                        return;
2843 >                    }
2844 >                }
2845 >                else if ((s & WAITER) == 0) {
2846 >                    if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2847 >                        waiting = true;
2848 >                        waiter = Thread.currentThread();
2849 >                    }
2850 >                }
2851 >                else if (waiting)
2852 >                    LockSupport.park(this);
2853 >            }
2854 >        }
2855 >
2856 >        /**
2857 >         * Returns matching node or null if none. Tries to search
2858 >         * using tree comparisons from root, but continues linear
2859 >         * search when lock not available.
2860 >         */
2861 >        final Node<K,V> find(int h, Object k) {
2862 >            if (k != null) {
2863 >                for (Node<K,V> e = first; e != null; ) {
2864 >                    int s; K ek;
2865 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2866 >                        if (e.hash == h &&
2867 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2868 >                            return e;
2869 >                        e = e.next;
2870 >                    }
2871 >                    else if (U.compareAndSetInt(this, LOCKSTATE, s,
2872 >                                                 s + READER)) {
2873 >                        TreeNode<K,V> r, p;
2874 >                        try {
2875 >                            p = ((r = root) == null ? null :
2876 >                                 r.findTreeNode(h, k, null));
2877 >                        } finally {
2878 >                            Thread w;
2879 >                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2880 >                                (READER|WAITER) && (w = waiter) != null)
2881 >                                LockSupport.unpark(w);
2882 >                        }
2883 >                        return p;
2884 >                    }
2885 >                }
2886 >            }
2887 >            return null;
2888 >        }
2889 >
2890 >        /**
2891 >         * Finds or adds a node.
2892 >         * @return null if added
2893 >         */
2894 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2895 >            Class<?> kc = null;
2896 >            boolean searched = false;
2897 >            for (TreeNode<K,V> p = root;;) {
2898 >                int dir, ph; K pk;
2899 >                if (p == null) {
2900 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2901 >                    break;
2902 >                }
2903 >                else if ((ph = p.hash) > h)
2904 >                    dir = -1;
2905 >                else if (ph < h)
2906 >                    dir = 1;
2907 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2908 >                    return p;
2909 >                else if ((kc == null &&
2910 >                          (kc = comparableClassFor(k)) == null) ||
2911 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2912 >                    if (!searched) {
2913 >                        TreeNode<K,V> q, ch;
2914 >                        searched = true;
2915 >                        if (((ch = p.left) != null &&
2916 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2917 >                            ((ch = p.right) != null &&
2918 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2919 >                            return q;
2920 >                    }
2921 >                    dir = tieBreakOrder(k, pk);
2922 >                }
2923 >
2924 >                TreeNode<K,V> xp = p;
2925 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2926 >                    TreeNode<K,V> x, f = first;
2927 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2928 >                    if (f != null)
2929 >                        f.prev = x;
2930 >                    if (dir <= 0)
2931 >                        xp.left = x;
2932 >                    else
2933 >                        xp.right = x;
2934 >                    if (!xp.red)
2935 >                        x.red = true;
2936 >                    else {
2937 >                        lockRoot();
2938 >                        try {
2939 >                            root = balanceInsertion(root, x);
2940 >                        } finally {
2941 >                            unlockRoot();
2942 >                        }
2943 >                    }
2944                      break;
2945 +                }
2946              }
2947 +            assert checkInvariants(root);
2948 +            return null;
2949          }
2950  
2951 <        final HashEntry<K,V> nextEntry() {
2952 <            HashEntry<K,V> e = nextEntry;
2953 <            if (e == null)
2954 <                throw new NoSuchElementException();
2955 <            lastReturned = e; // cannot assign until after null check
2956 <            if ((nextEntry = e.next) == null)
2957 <                advance();
2958 <            return e;
2951 >        /**
2952 >         * Removes the given node, that must be present before this
2953 >         * call.  This is messier than typical red-black deletion code
2954 >         * because we cannot swap the contents of an interior node
2955 >         * with a leaf successor that is pinned by "next" pointers
2956 >         * that are accessible independently of lock. So instead we
2957 >         * swap the tree linkages.
2958 >         *
2959 >         * @return true if now too small, so should be untreeified
2960 >         */
2961 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2962 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2963 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2964 >            TreeNode<K,V> r, rl;
2965 >            if (pred == null)
2966 >                first = next;
2967 >            else
2968 >                pred.next = next;
2969 >            if (next != null)
2970 >                next.prev = pred;
2971 >            if (first == null) {
2972 >                root = null;
2973 >                return true;
2974 >            }
2975 >            if ((r = root) == null || r.right == null || // too small
2976 >                (rl = r.left) == null || rl.left == null)
2977 >                return true;
2978 >            lockRoot();
2979 >            try {
2980 >                TreeNode<K,V> replacement;
2981 >                TreeNode<K,V> pl = p.left;
2982 >                TreeNode<K,V> pr = p.right;
2983 >                if (pl != null && pr != null) {
2984 >                    TreeNode<K,V> s = pr, sl;
2985 >                    while ((sl = s.left) != null) // find successor
2986 >                        s = sl;
2987 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2988 >                    TreeNode<K,V> sr = s.right;
2989 >                    TreeNode<K,V> pp = p.parent;
2990 >                    if (s == pr) { // p was s's direct parent
2991 >                        p.parent = s;
2992 >                        s.right = p;
2993 >                    }
2994 >                    else {
2995 >                        TreeNode<K,V> sp = s.parent;
2996 >                        if ((p.parent = sp) != null) {
2997 >                            if (s == sp.left)
2998 >                                sp.left = p;
2999 >                            else
3000 >                                sp.right = p;
3001 >                        }
3002 >                        if ((s.right = pr) != null)
3003 >                            pr.parent = s;
3004 >                    }
3005 >                    p.left = null;
3006 >                    if ((p.right = sr) != null)
3007 >                        sr.parent = p;
3008 >                    if ((s.left = pl) != null)
3009 >                        pl.parent = s;
3010 >                    if ((s.parent = pp) == null)
3011 >                        r = s;
3012 >                    else if (p == pp.left)
3013 >                        pp.left = s;
3014 >                    else
3015 >                        pp.right = s;
3016 >                    if (sr != null)
3017 >                        replacement = sr;
3018 >                    else
3019 >                        replacement = p;
3020 >                }
3021 >                else if (pl != null)
3022 >                    replacement = pl;
3023 >                else if (pr != null)
3024 >                    replacement = pr;
3025 >                else
3026 >                    replacement = p;
3027 >                if (replacement != p) {
3028 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
3029 >                    if (pp == null)
3030 >                        r = replacement;
3031 >                    else if (p == pp.left)
3032 >                        pp.left = replacement;
3033 >                    else
3034 >                        pp.right = replacement;
3035 >                    p.left = p.right = p.parent = null;
3036 >                }
3037 >
3038 >                root = (p.red) ? r : balanceDeletion(r, replacement);
3039 >
3040 >                if (p == replacement) {  // detach pointers
3041 >                    TreeNode<K,V> pp;
3042 >                    if ((pp = p.parent) != null) {
3043 >                        if (p == pp.left)
3044 >                            pp.left = null;
3045 >                        else if (p == pp.right)
3046 >                            pp.right = null;
3047 >                        p.parent = null;
3048 >                    }
3049 >                }
3050 >            } finally {
3051 >                unlockRoot();
3052 >            }
3053 >            assert checkInvariants(root);
3054 >            return false;
3055 >        }
3056 >
3057 >        /* ------------------------------------------------------------ */
3058 >        // Red-black tree methods, all adapted from CLR
3059 >
3060 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3061 >                                              TreeNode<K,V> p) {
3062 >            TreeNode<K,V> r, pp, rl;
3063 >            if (p != null && (r = p.right) != null) {
3064 >                if ((rl = p.right = r.left) != null)
3065 >                    rl.parent = p;
3066 >                if ((pp = r.parent = p.parent) == null)
3067 >                    (root = r).red = false;
3068 >                else if (pp.left == p)
3069 >                    pp.left = r;
3070 >                else
3071 >                    pp.right = r;
3072 >                r.left = p;
3073 >                p.parent = r;
3074 >            }
3075 >            return root;
3076 >        }
3077 >
3078 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3079 >                                               TreeNode<K,V> p) {
3080 >            TreeNode<K,V> l, pp, lr;
3081 >            if (p != null && (l = p.left) != null) {
3082 >                if ((lr = p.left = l.right) != null)
3083 >                    lr.parent = p;
3084 >                if ((pp = l.parent = p.parent) == null)
3085 >                    (root = l).red = false;
3086 >                else if (pp.right == p)
3087 >                    pp.right = l;
3088 >                else
3089 >                    pp.left = l;
3090 >                l.right = p;
3091 >                p.parent = l;
3092 >            }
3093 >            return root;
3094 >        }
3095 >
3096 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3097 >                                                    TreeNode<K,V> x) {
3098 >            x.red = true;
3099 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3100 >                if ((xp = x.parent) == null) {
3101 >                    x.red = false;
3102 >                    return x;
3103 >                }
3104 >                else if (!xp.red || (xpp = xp.parent) == null)
3105 >                    return root;
3106 >                if (xp == (xppl = xpp.left)) {
3107 >                    if ((xppr = xpp.right) != null && xppr.red) {
3108 >                        xppr.red = false;
3109 >                        xp.red = false;
3110 >                        xpp.red = true;
3111 >                        x = xpp;
3112 >                    }
3113 >                    else {
3114 >                        if (x == xp.right) {
3115 >                            root = rotateLeft(root, x = xp);
3116 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3117 >                        }
3118 >                        if (xp != null) {
3119 >                            xp.red = false;
3120 >                            if (xpp != null) {
3121 >                                xpp.red = true;
3122 >                                root = rotateRight(root, xpp);
3123 >                            }
3124 >                        }
3125 >                    }
3126 >                }
3127 >                else {
3128 >                    if (xppl != null && xppl.red) {
3129 >                        xppl.red = false;
3130 >                        xp.red = false;
3131 >                        xpp.red = true;
3132 >                        x = xpp;
3133 >                    }
3134 >                    else {
3135 >                        if (x == xp.left) {
3136 >                            root = rotateRight(root, x = xp);
3137 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3138 >                        }
3139 >                        if (xp != null) {
3140 >                            xp.red = false;
3141 >                            if (xpp != null) {
3142 >                                xpp.red = true;
3143 >                                root = rotateLeft(root, xpp);
3144 >                            }
3145 >                        }
3146 >                    }
3147 >                }
3148 >            }
3149 >        }
3150 >
3151 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3152 >                                                   TreeNode<K,V> x) {
3153 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3154 >                if (x == null || x == root)
3155 >                    return root;
3156 >                else if ((xp = x.parent) == null) {
3157 >                    x.red = false;
3158 >                    return x;
3159 >                }
3160 >                else if (x.red) {
3161 >                    x.red = false;
3162 >                    return root;
3163 >                }
3164 >                else if ((xpl = xp.left) == x) {
3165 >                    if ((xpr = xp.right) != null && xpr.red) {
3166 >                        xpr.red = false;
3167 >                        xp.red = true;
3168 >                        root = rotateLeft(root, xp);
3169 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3170 >                    }
3171 >                    if (xpr == null)
3172 >                        x = xp;
3173 >                    else {
3174 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3175 >                        if ((sr == null || !sr.red) &&
3176 >                            (sl == null || !sl.red)) {
3177 >                            xpr.red = true;
3178 >                            x = xp;
3179 >                        }
3180 >                        else {
3181 >                            if (sr == null || !sr.red) {
3182 >                                if (sl != null)
3183 >                                    sl.red = false;
3184 >                                xpr.red = true;
3185 >                                root = rotateRight(root, xpr);
3186 >                                xpr = (xp = x.parent) == null ?
3187 >                                    null : xp.right;
3188 >                            }
3189 >                            if (xpr != null) {
3190 >                                xpr.red = (xp == null) ? false : xp.red;
3191 >                                if ((sr = xpr.right) != null)
3192 >                                    sr.red = false;
3193 >                            }
3194 >                            if (xp != null) {
3195 >                                xp.red = false;
3196 >                                root = rotateLeft(root, xp);
3197 >                            }
3198 >                            x = root;
3199 >                        }
3200 >                    }
3201 >                }
3202 >                else { // symmetric
3203 >                    if (xpl != null && xpl.red) {
3204 >                        xpl.red = false;
3205 >                        xp.red = true;
3206 >                        root = rotateRight(root, xp);
3207 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3208 >                    }
3209 >                    if (xpl == null)
3210 >                        x = xp;
3211 >                    else {
3212 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3213 >                        if ((sl == null || !sl.red) &&
3214 >                            (sr == null || !sr.red)) {
3215 >                            xpl.red = true;
3216 >                            x = xp;
3217 >                        }
3218 >                        else {
3219 >                            if (sl == null || !sl.red) {
3220 >                                if (sr != null)
3221 >                                    sr.red = false;
3222 >                                xpl.red = true;
3223 >                                root = rotateLeft(root, xpl);
3224 >                                xpl = (xp = x.parent) == null ?
3225 >                                    null : xp.left;
3226 >                            }
3227 >                            if (xpl != null) {
3228 >                                xpl.red = (xp == null) ? false : xp.red;
3229 >                                if ((sl = xpl.left) != null)
3230 >                                    sl.red = false;
3231 >                            }
3232 >                            if (xp != null) {
3233 >                                xp.red = false;
3234 >                                root = rotateRight(root, xp);
3235 >                            }
3236 >                            x = root;
3237 >                        }
3238 >                    }
3239 >                }
3240 >            }
3241 >        }
3242 >
3243 >        /**
3244 >         * Checks invariants recursively for the tree of Nodes rooted at t.
3245 >         */
3246 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3247 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3248 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3249 >            if (tb != null && tb.next != t)
3250 >                return false;
3251 >            if (tn != null && tn.prev != t)
3252 >                return false;
3253 >            if (tp != null && t != tp.left && t != tp.right)
3254 >                return false;
3255 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3256 >                return false;
3257 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3258 >                return false;
3259 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3260 >                return false;
3261 >            if (tl != null && !checkInvariants(tl))
3262 >                return false;
3263 >            if (tr != null && !checkInvariants(tr))
3264 >                return false;
3265 >            return true;
3266 >        }
3267 >
3268 >        private static final long LOCKSTATE
3269 >            = U.objectFieldOffset(TreeBin.class, "lockState");
3270 >    }
3271 >
3272 >    /* ----------------Table Traversal -------------- */
3273 >
3274 >    /**
3275 >     * Records the table, its length, and current traversal index for a
3276 >     * traverser that must process a region of a forwarded table before
3277 >     * proceeding with current table.
3278 >     */
3279 >    static final class TableStack<K,V> {
3280 >        int length;
3281 >        int index;
3282 >        Node<K,V>[] tab;
3283 >        TableStack<K,V> next;
3284 >    }
3285 >
3286 >    /**
3287 >     * Encapsulates traversal for methods such as containsValue; also
3288 >     * serves as a base class for other iterators and spliterators.
3289 >     *
3290 >     * Method advance visits once each still-valid node that was
3291 >     * reachable upon iterator construction. It might miss some that
3292 >     * were added to a bin after the bin was visited, which is OK wrt
3293 >     * consistency guarantees. Maintaining this property in the face
3294 >     * of possible ongoing resizes requires a fair amount of
3295 >     * bookkeeping state that is difficult to optimize away amidst
3296 >     * volatile accesses.  Even so, traversal maintains reasonable
3297 >     * throughput.
3298 >     *
3299 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3300 >     * However, if the table has been resized, then all future steps
3301 >     * must traverse both the bin at the current index as well as at
3302 >     * (index + baseSize); and so on for further resizings. To
3303 >     * paranoically cope with potential sharing by users of iterators
3304 >     * across threads, iteration terminates if a bounds checks fails
3305 >     * for a table read.
3306 >     */
3307 >    static class Traverser<K,V> {
3308 >        Node<K,V>[] tab;        // current table; updated if resized
3309 >        Node<K,V> next;         // the next entry to use
3310 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3311 >        int index;              // index of bin to use next
3312 >        int baseIndex;          // current index of initial table
3313 >        int baseLimit;          // index bound for initial table
3314 >        final int baseSize;     // initial table size
3315 >
3316 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3317 >            this.tab = tab;
3318 >            this.baseSize = size;
3319 >            this.baseIndex = this.index = index;
3320 >            this.baseLimit = limit;
3321 >            this.next = null;
3322 >        }
3323 >
3324 >        /**
3325 >         * Advances if possible, returning next valid node, or null if none.
3326 >         */
3327 >        final Node<K,V> advance() {
3328 >            Node<K,V> e;
3329 >            if ((e = next) != null)
3330 >                e = e.next;
3331 >            for (;;) {
3332 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3333 >                if (e != null)
3334 >                    return next = e;
3335 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3336 >                    (n = t.length) <= (i = index) || i < 0)
3337 >                    return next = null;
3338 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3339 >                    if (e instanceof ForwardingNode) {
3340 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3341 >                        e = null;
3342 >                        pushState(t, i, n);
3343 >                        continue;
3344 >                    }
3345 >                    else if (e instanceof TreeBin)
3346 >                        e = ((TreeBin<K,V>)e).first;
3347 >                    else
3348 >                        e = null;
3349 >                }
3350 >                if (stack != null)
3351 >                    recoverState(n);
3352 >                else if ((index = i + baseSize) >= n)
3353 >                    index = ++baseIndex; // visit upper slots if present
3354 >            }
3355          }
3356  
3357 <        public final boolean hasNext() { return nextEntry != null; }
3358 <        public final boolean hasMoreElements() { return nextEntry != null; }
3357 >        /**
3358 >         * Saves traversal state upon encountering a forwarding node.
3359 >         */
3360 >        private void pushState(Node<K,V>[] t, int i, int n) {
3361 >            TableStack<K,V> s = spare;  // reuse if possible
3362 >            if (s != null)
3363 >                spare = s.next;
3364 >            else
3365 >                s = new TableStack<K,V>();
3366 >            s.tab = t;
3367 >            s.length = n;
3368 >            s.index = i;
3369 >            s.next = stack;
3370 >            stack = s;
3371 >        }
3372 >
3373 >        /**
3374 >         * Possibly pops traversal state.
3375 >         *
3376 >         * @param n length of current table
3377 >         */
3378 >        private void recoverState(int n) {
3379 >            TableStack<K,V> s; int len;
3380 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3381 >                n = len;
3382 >                index = s.index;
3383 >                tab = s.tab;
3384 >                s.tab = null;
3385 >                TableStack<K,V> next = s.next;
3386 >                s.next = spare; // save for reuse
3387 >                stack = next;
3388 >                spare = s;
3389 >            }
3390 >            if (s == null && (index += baseSize) >= n)
3391 >                index = ++baseIndex;
3392 >        }
3393 >    }
3394 >
3395 >    /**
3396 >     * Base of key, value, and entry Iterators. Adds fields to
3397 >     * Traverser to support iterator.remove.
3398 >     */
3399 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3400 >        final ConcurrentHashMap<K,V> map;
3401 >        Node<K,V> lastReturned;
3402 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3403 >                    ConcurrentHashMap<K,V> map) {
3404 >            super(tab, size, index, limit);
3405 >            this.map = map;
3406 >            advance();
3407 >        }
3408 >
3409 >        public final boolean hasNext() { return next != null; }
3410 >        public final boolean hasMoreElements() { return next != null; }
3411  
3412          public final void remove() {
3413 <            if (lastReturned == null)
3413 >            Node<K,V> p;
3414 >            if ((p = lastReturned) == null)
3415                  throw new IllegalStateException();
1272            ConcurrentHashMap.this.remove(lastReturned.key);
3416              lastReturned = null;
3417 +            map.replaceNode(p.key, null, null);
3418          }
3419      }
3420  
3421 <    final class KeyIterator
3422 <        extends HashIterator
3423 <        implements Iterator<K>, Enumeration<K>
3424 <    {
3425 <        public final K next()        { return super.nextEntry().key; }
3426 <        public final K nextElement() { return super.nextEntry().key; }
3421 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3422 >        implements Iterator<K>, Enumeration<K> {
3423 >        KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3424 >                    ConcurrentHashMap<K,V> map) {
3425 >            super(tab, size, index, limit, map);
3426 >        }
3427 >
3428 >        public final K next() {
3429 >            Node<K,V> p;
3430 >            if ((p = next) == null)
3431 >                throw new NoSuchElementException();
3432 >            K k = p.key;
3433 >            lastReturned = p;
3434 >            advance();
3435 >            return k;
3436 >        }
3437 >
3438 >        public final K nextElement() { return next(); }
3439      }
3440  
3441 <    final class ValueIterator
3442 <        extends HashIterator
3443 <        implements Iterator<V>, Enumeration<V>
3444 <    {
3445 <        public final V next()        { return super.nextEntry().value; }
3446 <        public final V nextElement() { return super.nextEntry().value; }
3441 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3442 >        implements Iterator<V>, Enumeration<V> {
3443 >        ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3444 >                      ConcurrentHashMap<K,V> map) {
3445 >            super(tab, size, index, limit, map);
3446 >        }
3447 >
3448 >        public final V next() {
3449 >            Node<K,V> p;
3450 >            if ((p = next) == null)
3451 >                throw new NoSuchElementException();
3452 >            V v = p.val;
3453 >            lastReturned = p;
3454 >            advance();
3455 >            return v;
3456 >        }
3457 >
3458 >        public final V nextElement() { return next(); }
3459 >    }
3460 >
3461 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3462 >        implements Iterator<Map.Entry<K,V>> {
3463 >        EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3464 >                      ConcurrentHashMap<K,V> map) {
3465 >            super(tab, size, index, limit, map);
3466 >        }
3467 >
3468 >        public final Map.Entry<K,V> next() {
3469 >            Node<K,V> p;
3470 >            if ((p = next) == null)
3471 >                throw new NoSuchElementException();
3472 >            K k = p.key;
3473 >            V v = p.val;
3474 >            lastReturned = p;
3475 >            advance();
3476 >            return new MapEntry<K,V>(k, v, map);
3477 >        }
3478      }
3479  
3480      /**
3481 <     * Custom Entry class used by EntryIterator.next(), that relays
1295 <     * setValue changes to the underlying map.
3481 >     * Exported Entry for EntryIterator.
3482       */
3483 <    final class WriteThroughEntry
3484 <        extends AbstractMap.SimpleEntry<K,V>
3485 <    {
3486 <        WriteThroughEntry(K k, V v) {
3487 <            super(k,v);
3483 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3484 >        final K key; // non-null
3485 >        V val;       // non-null
3486 >        final ConcurrentHashMap<K,V> map;
3487 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3488 >            this.key = key;
3489 >            this.val = val;
3490 >            this.map = map;
3491 >        }
3492 >        public K getKey()        { return key; }
3493 >        public V getValue()      { return val; }
3494 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3495 >        public String toString() {
3496 >            return Helpers.mapEntryToString(key, val);
3497 >        }
3498 >
3499 >        public boolean equals(Object o) {
3500 >            Object k, v; Map.Entry<?,?> e;
3501 >            return ((o instanceof Map.Entry) &&
3502 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3503 >                    (v = e.getValue()) != null &&
3504 >                    (k == key || k.equals(key)) &&
3505 >                    (v == val || v.equals(val)));
3506          }
3507  
3508          /**
3509 <         * Set our entry's value and write through to the map. The
3510 <         * value to return is somewhat arbitrary here. Since a
3511 <         * WriteThroughEntry does not necessarily track asynchronous
3512 <         * changes, the most recent "previous" value could be
3513 <         * different from what we return (or could even have been
3514 <         * removed in which case the put will re-establish). We do not
1311 <         * and cannot guarantee more.
3509 >         * Sets our entry's value and writes through to the map. The
3510 >         * value to return is somewhat arbitrary here. Since we do not
3511 >         * necessarily track asynchronous changes, the most recent
3512 >         * "previous" value could be different from what we return (or
3513 >         * could even have been removed, in which case the put will
3514 >         * re-establish). We do not and cannot guarantee more.
3515           */
3516          public V setValue(V value) {
3517              if (value == null) throw new NullPointerException();
3518 <            V v = super.setValue(value);
3519 <            ConcurrentHashMap.this.put(getKey(), value);
3518 >            V v = val;
3519 >            val = value;
3520 >            map.put(key, value);
3521              return v;
3522          }
3523      }
3524  
3525 <    final class EntryIterator
3526 <        extends HashIterator
3527 <        implements Iterator<Entry<K,V>>
3528 <    {
3529 <        public Map.Entry<K,V> next() {
3530 <            HashEntry<K,V> e = super.nextEntry();
3531 <            return new WriteThroughEntry(e.key, e.value);
3525 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3526 >        implements Spliterator<K> {
3527 >        long est;               // size estimate
3528 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3529 >                       long est) {
3530 >            super(tab, size, index, limit);
3531 >            this.est = est;
3532 >        }
3533 >
3534 >        public KeySpliterator<K,V> trySplit() {
3535 >            int i, f, h;
3536 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3537 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3538 >                                        f, est >>>= 1);
3539 >        }
3540 >
3541 >        public void forEachRemaining(Consumer<? super K> action) {
3542 >            if (action == null) throw new NullPointerException();
3543 >            for (Node<K,V> p; (p = advance()) != null;)
3544 >                action.accept(p.key);
3545 >        }
3546 >
3547 >        public boolean tryAdvance(Consumer<? super K> action) {
3548 >            if (action == null) throw new NullPointerException();
3549 >            Node<K,V> p;
3550 >            if ((p = advance()) == null)
3551 >                return false;
3552 >            action.accept(p.key);
3553 >            return true;
3554 >        }
3555 >
3556 >        public long estimateSize() { return est; }
3557 >
3558 >        public int characteristics() {
3559 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3560 >                Spliterator.NONNULL;
3561          }
3562      }
3563  
3564 <    final class KeySet extends AbstractSet<K> {
3565 <        public Iterator<K> iterator() {
3566 <            return new KeyIterator();
3564 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3565 >        implements Spliterator<V> {
3566 >        long est;               // size estimate
3567 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3568 >                         long est) {
3569 >            super(tab, size, index, limit);
3570 >            this.est = est;
3571          }
3572 <        public int size() {
3573 <            return ConcurrentHashMap.this.size();
3572 >
3573 >        public ValueSpliterator<K,V> trySplit() {
3574 >            int i, f, h;
3575 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3576 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3577 >                                          f, est >>>= 1);
3578          }
3579 <        public boolean isEmpty() {
3580 <            return ConcurrentHashMap.this.isEmpty();
3579 >
3580 >        public void forEachRemaining(Consumer<? super V> action) {
3581 >            if (action == null) throw new NullPointerException();
3582 >            for (Node<K,V> p; (p = advance()) != null;)
3583 >                action.accept(p.val);
3584          }
3585 <        public boolean contains(Object o) {
3586 <            return ConcurrentHashMap.this.containsKey(o);
3585 >
3586 >        public boolean tryAdvance(Consumer<? super V> action) {
3587 >            if (action == null) throw new NullPointerException();
3588 >            Node<K,V> p;
3589 >            if ((p = advance()) == null)
3590 >                return false;
3591 >            action.accept(p.val);
3592 >            return true;
3593          }
3594 <        public boolean remove(Object o) {
3595 <            return ConcurrentHashMap.this.remove(o) != null;
3594 >
3595 >        public long estimateSize() { return est; }
3596 >
3597 >        public int characteristics() {
3598 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
3599 >        }
3600 >    }
3601 >
3602 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3603 >        implements Spliterator<Map.Entry<K,V>> {
3604 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
3605 >        long est;               // size estimate
3606 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3607 >                         long est, ConcurrentHashMap<K,V> map) {
3608 >            super(tab, size, index, limit);
3609 >            this.map = map;
3610 >            this.est = est;
3611 >        }
3612 >
3613 >        public EntrySpliterator<K,V> trySplit() {
3614 >            int i, f, h;
3615 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3616 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3617 >                                          f, est >>>= 1, map);
3618 >        }
3619 >
3620 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3621 >            if (action == null) throw new NullPointerException();
3622 >            for (Node<K,V> p; (p = advance()) != null; )
3623 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3624 >        }
3625 >
3626 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3627 >            if (action == null) throw new NullPointerException();
3628 >            Node<K,V> p;
3629 >            if ((p = advance()) == null)
3630 >                return false;
3631 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3632 >            return true;
3633 >        }
3634 >
3635 >        public long estimateSize() { return est; }
3636 >
3637 >        public int characteristics() {
3638 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3639 >                Spliterator.NONNULL;
3640 >        }
3641 >    }
3642 >
3643 >    // Parallel bulk operations
3644 >
3645 >    /**
3646 >     * Computes initial batch value for bulk tasks. The returned value
3647 >     * is approximately exp2 of the number of times (minus one) to
3648 >     * split task by two before executing leaf action. This value is
3649 >     * faster to compute and more convenient to use as a guide to
3650 >     * splitting than is the depth, since it is used while dividing by
3651 >     * two anyway.
3652 >     */
3653 >    final int batchFor(long b) {
3654 >        long n;
3655 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3656 >            return 0;
3657 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3658 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3659 >    }
3660 >
3661 >    /**
3662 >     * Performs the given action for each (key, value).
3663 >     *
3664 >     * @param parallelismThreshold the (estimated) number of elements
3665 >     * needed for this operation to be executed in parallel
3666 >     * @param action the action
3667 >     * @since 1.8
3668 >     */
3669 >    public void forEach(long parallelismThreshold,
3670 >                        BiConsumer<? super K,? super V> action) {
3671 >        if (action == null) throw new NullPointerException();
3672 >        new ForEachMappingTask<K,V>
3673 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3674 >             action).invoke();
3675 >    }
3676 >
3677 >    /**
3678 >     * Performs the given action for each non-null transformation
3679 >     * of each (key, value).
3680 >     *
3681 >     * @param parallelismThreshold the (estimated) number of elements
3682 >     * needed for this operation to be executed in parallel
3683 >     * @param transformer a function returning the transformation
3684 >     * for an element, or null if there is no transformation (in
3685 >     * which case the action is not applied)
3686 >     * @param action the action
3687 >     * @param <U> the return type of the transformer
3688 >     * @since 1.8
3689 >     */
3690 >    public <U> void forEach(long parallelismThreshold,
3691 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3692 >                            Consumer<? super U> action) {
3693 >        if (transformer == null || action == null)
3694 >            throw new NullPointerException();
3695 >        new ForEachTransformedMappingTask<K,V,U>
3696 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3697 >             transformer, action).invoke();
3698 >    }
3699 >
3700 >    /**
3701 >     * Returns a non-null result from applying the given search
3702 >     * function on each (key, value), or null if none.  Upon
3703 >     * success, further element processing is suppressed and the
3704 >     * results of any other parallel invocations of the search
3705 >     * function are ignored.
3706 >     *
3707 >     * @param parallelismThreshold the (estimated) number of elements
3708 >     * needed for this operation to be executed in parallel
3709 >     * @param searchFunction a function returning a non-null
3710 >     * result on success, else null
3711 >     * @param <U> the return type of the search function
3712 >     * @return a non-null result from applying the given search
3713 >     * function on each (key, value), or null if none
3714 >     * @since 1.8
3715 >     */
3716 >    public <U> U search(long parallelismThreshold,
3717 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3718 >        if (searchFunction == null) throw new NullPointerException();
3719 >        return new SearchMappingsTask<K,V,U>
3720 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3721 >             searchFunction, new AtomicReference<U>()).invoke();
3722 >    }
3723 >
3724 >    /**
3725 >     * Returns the result of accumulating the given transformation
3726 >     * of all (key, value) pairs using the given reducer to
3727 >     * combine values, or null if none.
3728 >     *
3729 >     * @param parallelismThreshold the (estimated) number of elements
3730 >     * needed for this operation to be executed in parallel
3731 >     * @param transformer a function returning the transformation
3732 >     * for an element, or null if there is no transformation (in
3733 >     * which case it is not combined)
3734 >     * @param reducer a commutative associative combining function
3735 >     * @param <U> the return type of the transformer
3736 >     * @return the result of accumulating the given transformation
3737 >     * of all (key, value) pairs
3738 >     * @since 1.8
3739 >     */
3740 >    public <U> U reduce(long parallelismThreshold,
3741 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3742 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3743 >        if (transformer == null || reducer == null)
3744 >            throw new NullPointerException();
3745 >        return new MapReduceMappingsTask<K,V,U>
3746 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3747 >             null, transformer, reducer).invoke();
3748 >    }
3749 >
3750 >    /**
3751 >     * Returns the result of accumulating the given transformation
3752 >     * of all (key, value) pairs using the given reducer to
3753 >     * combine values, and the given basis as an identity value.
3754 >     *
3755 >     * @param parallelismThreshold the (estimated) number of elements
3756 >     * needed for this operation to be executed in parallel
3757 >     * @param transformer a function returning the transformation
3758 >     * for an element
3759 >     * @param basis the identity (initial default value) for the reduction
3760 >     * @param reducer a commutative associative combining function
3761 >     * @return the result of accumulating the given transformation
3762 >     * of all (key, value) pairs
3763 >     * @since 1.8
3764 >     */
3765 >    public double reduceToDouble(long parallelismThreshold,
3766 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3767 >                                 double basis,
3768 >                                 DoubleBinaryOperator reducer) {
3769 >        if (transformer == null || reducer == null)
3770 >            throw new NullPointerException();
3771 >        return new MapReduceMappingsToDoubleTask<K,V>
3772 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3773 >             null, transformer, basis, reducer).invoke();
3774 >    }
3775 >
3776 >    /**
3777 >     * Returns the result of accumulating the given transformation
3778 >     * of all (key, value) pairs using the given reducer to
3779 >     * combine values, and the given basis as an identity value.
3780 >     *
3781 >     * @param parallelismThreshold the (estimated) number of elements
3782 >     * needed for this operation to be executed in parallel
3783 >     * @param transformer a function returning the transformation
3784 >     * for an element
3785 >     * @param basis the identity (initial default value) for the reduction
3786 >     * @param reducer a commutative associative combining function
3787 >     * @return the result of accumulating the given transformation
3788 >     * of all (key, value) pairs
3789 >     * @since 1.8
3790 >     */
3791 >    public long reduceToLong(long parallelismThreshold,
3792 >                             ToLongBiFunction<? super K, ? super V> transformer,
3793 >                             long basis,
3794 >                             LongBinaryOperator reducer) {
3795 >        if (transformer == null || reducer == null)
3796 >            throw new NullPointerException();
3797 >        return new MapReduceMappingsToLongTask<K,V>
3798 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3799 >             null, transformer, basis, reducer).invoke();
3800 >    }
3801 >
3802 >    /**
3803 >     * Returns the result of accumulating the given transformation
3804 >     * of all (key, value) pairs using the given reducer to
3805 >     * combine values, and the given basis as an identity value.
3806 >     *
3807 >     * @param parallelismThreshold the (estimated) number of elements
3808 >     * needed for this operation to be executed in parallel
3809 >     * @param transformer a function returning the transformation
3810 >     * for an element
3811 >     * @param basis the identity (initial default value) for the reduction
3812 >     * @param reducer a commutative associative combining function
3813 >     * @return the result of accumulating the given transformation
3814 >     * of all (key, value) pairs
3815 >     * @since 1.8
3816 >     */
3817 >    public int reduceToInt(long parallelismThreshold,
3818 >                           ToIntBiFunction<? super K, ? super V> transformer,
3819 >                           int basis,
3820 >                           IntBinaryOperator reducer) {
3821 >        if (transformer == null || reducer == null)
3822 >            throw new NullPointerException();
3823 >        return new MapReduceMappingsToIntTask<K,V>
3824 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3825 >             null, transformer, basis, reducer).invoke();
3826 >    }
3827 >
3828 >    /**
3829 >     * Performs the given action for each key.
3830 >     *
3831 >     * @param parallelismThreshold the (estimated) number of elements
3832 >     * needed for this operation to be executed in parallel
3833 >     * @param action the action
3834 >     * @since 1.8
3835 >     */
3836 >    public void forEachKey(long parallelismThreshold,
3837 >                           Consumer<? super K> action) {
3838 >        if (action == null) throw new NullPointerException();
3839 >        new ForEachKeyTask<K,V>
3840 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3841 >             action).invoke();
3842 >    }
3843 >
3844 >    /**
3845 >     * Performs the given action for each non-null transformation
3846 >     * of each key.
3847 >     *
3848 >     * @param parallelismThreshold the (estimated) number of elements
3849 >     * needed for this operation to be executed in parallel
3850 >     * @param transformer a function returning the transformation
3851 >     * for an element, or null if there is no transformation (in
3852 >     * which case the action is not applied)
3853 >     * @param action the action
3854 >     * @param <U> the return type of the transformer
3855 >     * @since 1.8
3856 >     */
3857 >    public <U> void forEachKey(long parallelismThreshold,
3858 >                               Function<? super K, ? extends U> transformer,
3859 >                               Consumer<? super U> action) {
3860 >        if (transformer == null || action == null)
3861 >            throw new NullPointerException();
3862 >        new ForEachTransformedKeyTask<K,V,U>
3863 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3864 >             transformer, action).invoke();
3865 >    }
3866 >
3867 >    /**
3868 >     * Returns a non-null result from applying the given search
3869 >     * function on each key, or null if none. Upon success,
3870 >     * further element processing is suppressed and the results of
3871 >     * any other parallel invocations of the search function are
3872 >     * ignored.
3873 >     *
3874 >     * @param parallelismThreshold the (estimated) number of elements
3875 >     * needed for this operation to be executed in parallel
3876 >     * @param searchFunction a function returning a non-null
3877 >     * result on success, else null
3878 >     * @param <U> the return type of the search function
3879 >     * @return a non-null result from applying the given search
3880 >     * function on each key, or null if none
3881 >     * @since 1.8
3882 >     */
3883 >    public <U> U searchKeys(long parallelismThreshold,
3884 >                            Function<? super K, ? extends U> searchFunction) {
3885 >        if (searchFunction == null) throw new NullPointerException();
3886 >        return new SearchKeysTask<K,V,U>
3887 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3888 >             searchFunction, new AtomicReference<U>()).invoke();
3889 >    }
3890 >
3891 >    /**
3892 >     * Returns the result of accumulating all keys using the given
3893 >     * reducer to combine values, or null if none.
3894 >     *
3895 >     * @param parallelismThreshold the (estimated) number of elements
3896 >     * needed for this operation to be executed in parallel
3897 >     * @param reducer a commutative associative combining function
3898 >     * @return the result of accumulating all keys using the given
3899 >     * reducer to combine values, or null if none
3900 >     * @since 1.8
3901 >     */
3902 >    public K reduceKeys(long parallelismThreshold,
3903 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3904 >        if (reducer == null) throw new NullPointerException();
3905 >        return new ReduceKeysTask<K,V>
3906 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3907 >             null, reducer).invoke();
3908 >    }
3909 >
3910 >    /**
3911 >     * Returns the result of accumulating the given transformation
3912 >     * of all keys using the given reducer to combine values, or
3913 >     * null if none.
3914 >     *
3915 >     * @param parallelismThreshold the (estimated) number of elements
3916 >     * needed for this operation to be executed in parallel
3917 >     * @param transformer a function returning the transformation
3918 >     * for an element, or null if there is no transformation (in
3919 >     * which case it is not combined)
3920 >     * @param reducer a commutative associative combining function
3921 >     * @param <U> the return type of the transformer
3922 >     * @return the result of accumulating the given transformation
3923 >     * of all keys
3924 >     * @since 1.8
3925 >     */
3926 >    public <U> U reduceKeys(long parallelismThreshold,
3927 >                            Function<? super K, ? extends U> transformer,
3928 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3929 >        if (transformer == null || reducer == null)
3930 >            throw new NullPointerException();
3931 >        return new MapReduceKeysTask<K,V,U>
3932 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3933 >             null, transformer, reducer).invoke();
3934 >    }
3935 >
3936 >    /**
3937 >     * Returns the result of accumulating the given transformation
3938 >     * of all keys using the given reducer to combine values, and
3939 >     * the given basis as an identity value.
3940 >     *
3941 >     * @param parallelismThreshold the (estimated) number of elements
3942 >     * needed for this operation to be executed in parallel
3943 >     * @param transformer a function returning the transformation
3944 >     * for an element
3945 >     * @param basis the identity (initial default value) for the reduction
3946 >     * @param reducer a commutative associative combining function
3947 >     * @return the result of accumulating the given transformation
3948 >     * of all keys
3949 >     * @since 1.8
3950 >     */
3951 >    public double reduceKeysToDouble(long parallelismThreshold,
3952 >                                     ToDoubleFunction<? super K> transformer,
3953 >                                     double basis,
3954 >                                     DoubleBinaryOperator reducer) {
3955 >        if (transformer == null || reducer == null)
3956 >            throw new NullPointerException();
3957 >        return new MapReduceKeysToDoubleTask<K,V>
3958 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3959 >             null, transformer, basis, reducer).invoke();
3960 >    }
3961 >
3962 >    /**
3963 >     * Returns the result of accumulating the given transformation
3964 >     * of all keys using the given reducer to combine values, and
3965 >     * the given basis as an identity value.
3966 >     *
3967 >     * @param parallelismThreshold the (estimated) number of elements
3968 >     * needed for this operation to be executed in parallel
3969 >     * @param transformer a function returning the transformation
3970 >     * for an element
3971 >     * @param basis the identity (initial default value) for the reduction
3972 >     * @param reducer a commutative associative combining function
3973 >     * @return the result of accumulating the given transformation
3974 >     * of all keys
3975 >     * @since 1.8
3976 >     */
3977 >    public long reduceKeysToLong(long parallelismThreshold,
3978 >                                 ToLongFunction<? super K> transformer,
3979 >                                 long basis,
3980 >                                 LongBinaryOperator reducer) {
3981 >        if (transformer == null || reducer == null)
3982 >            throw new NullPointerException();
3983 >        return new MapReduceKeysToLongTask<K,V>
3984 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3985 >             null, transformer, basis, reducer).invoke();
3986 >    }
3987 >
3988 >    /**
3989 >     * Returns the result of accumulating the given transformation
3990 >     * of all keys using the given reducer to combine values, and
3991 >     * the given basis as an identity value.
3992 >     *
3993 >     * @param parallelismThreshold the (estimated) number of elements
3994 >     * needed for this operation to be executed in parallel
3995 >     * @param transformer a function returning the transformation
3996 >     * for an element
3997 >     * @param basis the identity (initial default value) for the reduction
3998 >     * @param reducer a commutative associative combining function
3999 >     * @return the result of accumulating the given transformation
4000 >     * of all keys
4001 >     * @since 1.8
4002 >     */
4003 >    public int reduceKeysToInt(long parallelismThreshold,
4004 >                               ToIntFunction<? super K> transformer,
4005 >                               int basis,
4006 >                               IntBinaryOperator reducer) {
4007 >        if (transformer == null || reducer == null)
4008 >            throw new NullPointerException();
4009 >        return new MapReduceKeysToIntTask<K,V>
4010 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4011 >             null, transformer, basis, reducer).invoke();
4012 >    }
4013 >
4014 >    /**
4015 >     * Performs the given action for each value.
4016 >     *
4017 >     * @param parallelismThreshold the (estimated) number of elements
4018 >     * needed for this operation to be executed in parallel
4019 >     * @param action the action
4020 >     * @since 1.8
4021 >     */
4022 >    public void forEachValue(long parallelismThreshold,
4023 >                             Consumer<? super V> action) {
4024 >        if (action == null)
4025 >            throw new NullPointerException();
4026 >        new ForEachValueTask<K,V>
4027 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4028 >             action).invoke();
4029 >    }
4030 >
4031 >    /**
4032 >     * Performs the given action for each non-null transformation
4033 >     * of each value.
4034 >     *
4035 >     * @param parallelismThreshold the (estimated) number of elements
4036 >     * needed for this operation to be executed in parallel
4037 >     * @param transformer a function returning the transformation
4038 >     * for an element, or null if there is no transformation (in
4039 >     * which case the action is not applied)
4040 >     * @param action the action
4041 >     * @param <U> the return type of the transformer
4042 >     * @since 1.8
4043 >     */
4044 >    public <U> void forEachValue(long parallelismThreshold,
4045 >                                 Function<? super V, ? extends U> transformer,
4046 >                                 Consumer<? super U> action) {
4047 >        if (transformer == null || action == null)
4048 >            throw new NullPointerException();
4049 >        new ForEachTransformedValueTask<K,V,U>
4050 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4051 >             transformer, action).invoke();
4052 >    }
4053 >
4054 >    /**
4055 >     * Returns a non-null result from applying the given search
4056 >     * function on each value, or null if none.  Upon success,
4057 >     * further element processing is suppressed and the results of
4058 >     * any other parallel invocations of the search function are
4059 >     * ignored.
4060 >     *
4061 >     * @param parallelismThreshold the (estimated) number of elements
4062 >     * needed for this operation to be executed in parallel
4063 >     * @param searchFunction a function returning a non-null
4064 >     * result on success, else null
4065 >     * @param <U> the return type of the search function
4066 >     * @return a non-null result from applying the given search
4067 >     * function on each value, or null if none
4068 >     * @since 1.8
4069 >     */
4070 >    public <U> U searchValues(long parallelismThreshold,
4071 >                              Function<? super V, ? extends U> searchFunction) {
4072 >        if (searchFunction == null) throw new NullPointerException();
4073 >        return new SearchValuesTask<K,V,U>
4074 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4075 >             searchFunction, new AtomicReference<U>()).invoke();
4076 >    }
4077 >
4078 >    /**
4079 >     * Returns the result of accumulating all values using the
4080 >     * given reducer to combine values, or null if none.
4081 >     *
4082 >     * @param parallelismThreshold the (estimated) number of elements
4083 >     * needed for this operation to be executed in parallel
4084 >     * @param reducer a commutative associative combining function
4085 >     * @return the result of accumulating all values
4086 >     * @since 1.8
4087 >     */
4088 >    public V reduceValues(long parallelismThreshold,
4089 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
4090 >        if (reducer == null) throw new NullPointerException();
4091 >        return new ReduceValuesTask<K,V>
4092 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4093 >             null, reducer).invoke();
4094 >    }
4095 >
4096 >    /**
4097 >     * Returns the result of accumulating the given transformation
4098 >     * of all values using the given reducer to combine values, or
4099 >     * null if none.
4100 >     *
4101 >     * @param parallelismThreshold the (estimated) number of elements
4102 >     * needed for this operation to be executed in parallel
4103 >     * @param transformer a function returning the transformation
4104 >     * for an element, or null if there is no transformation (in
4105 >     * which case it is not combined)
4106 >     * @param reducer a commutative associative combining function
4107 >     * @param <U> the return type of the transformer
4108 >     * @return the result of accumulating the given transformation
4109 >     * of all values
4110 >     * @since 1.8
4111 >     */
4112 >    public <U> U reduceValues(long parallelismThreshold,
4113 >                              Function<? super V, ? extends U> transformer,
4114 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
4115 >        if (transformer == null || reducer == null)
4116 >            throw new NullPointerException();
4117 >        return new MapReduceValuesTask<K,V,U>
4118 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4119 >             null, transformer, reducer).invoke();
4120 >    }
4121 >
4122 >    /**
4123 >     * Returns the result of accumulating the given transformation
4124 >     * of all values using the given reducer to combine values,
4125 >     * and the given basis as an identity value.
4126 >     *
4127 >     * @param parallelismThreshold the (estimated) number of elements
4128 >     * needed for this operation to be executed in parallel
4129 >     * @param transformer a function returning the transformation
4130 >     * for an element
4131 >     * @param basis the identity (initial default value) for the reduction
4132 >     * @param reducer a commutative associative combining function
4133 >     * @return the result of accumulating the given transformation
4134 >     * of all values
4135 >     * @since 1.8
4136 >     */
4137 >    public double reduceValuesToDouble(long parallelismThreshold,
4138 >                                       ToDoubleFunction<? super V> transformer,
4139 >                                       double basis,
4140 >                                       DoubleBinaryOperator reducer) {
4141 >        if (transformer == null || reducer == null)
4142 >            throw new NullPointerException();
4143 >        return new MapReduceValuesToDoubleTask<K,V>
4144 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4145 >             null, transformer, basis, reducer).invoke();
4146 >    }
4147 >
4148 >    /**
4149 >     * Returns the result of accumulating the given transformation
4150 >     * of all values using the given reducer to combine values,
4151 >     * and the given basis as an identity value.
4152 >     *
4153 >     * @param parallelismThreshold the (estimated) number of elements
4154 >     * needed for this operation to be executed in parallel
4155 >     * @param transformer a function returning the transformation
4156 >     * for an element
4157 >     * @param basis the identity (initial default value) for the reduction
4158 >     * @param reducer a commutative associative combining function
4159 >     * @return the result of accumulating the given transformation
4160 >     * of all values
4161 >     * @since 1.8
4162 >     */
4163 >    public long reduceValuesToLong(long parallelismThreshold,
4164 >                                   ToLongFunction<? super V> transformer,
4165 >                                   long basis,
4166 >                                   LongBinaryOperator reducer) {
4167 >        if (transformer == null || reducer == null)
4168 >            throw new NullPointerException();
4169 >        return new MapReduceValuesToLongTask<K,V>
4170 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4171 >             null, transformer, basis, reducer).invoke();
4172 >    }
4173 >
4174 >    /**
4175 >     * Returns the result of accumulating the given transformation
4176 >     * of all values using the given reducer to combine values,
4177 >     * and the given basis as an identity value.
4178 >     *
4179 >     * @param parallelismThreshold the (estimated) number of elements
4180 >     * needed for this operation to be executed in parallel
4181 >     * @param transformer a function returning the transformation
4182 >     * for an element
4183 >     * @param basis the identity (initial default value) for the reduction
4184 >     * @param reducer a commutative associative combining function
4185 >     * @return the result of accumulating the given transformation
4186 >     * of all values
4187 >     * @since 1.8
4188 >     */
4189 >    public int reduceValuesToInt(long parallelismThreshold,
4190 >                                 ToIntFunction<? super V> transformer,
4191 >                                 int basis,
4192 >                                 IntBinaryOperator reducer) {
4193 >        if (transformer == null || reducer == null)
4194 >            throw new NullPointerException();
4195 >        return new MapReduceValuesToIntTask<K,V>
4196 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4197 >             null, transformer, basis, reducer).invoke();
4198 >    }
4199 >
4200 >    /**
4201 >     * Performs the given action for each entry.
4202 >     *
4203 >     * @param parallelismThreshold the (estimated) number of elements
4204 >     * needed for this operation to be executed in parallel
4205 >     * @param action the action
4206 >     * @since 1.8
4207 >     */
4208 >    public void forEachEntry(long parallelismThreshold,
4209 >                             Consumer<? super Map.Entry<K,V>> action) {
4210 >        if (action == null) throw new NullPointerException();
4211 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4212 >                                  action).invoke();
4213 >    }
4214 >
4215 >    /**
4216 >     * Performs the given action for each non-null transformation
4217 >     * of each entry.
4218 >     *
4219 >     * @param parallelismThreshold the (estimated) number of elements
4220 >     * needed for this operation to be executed in parallel
4221 >     * @param transformer a function returning the transformation
4222 >     * for an element, or null if there is no transformation (in
4223 >     * which case the action is not applied)
4224 >     * @param action the action
4225 >     * @param <U> the return type of the transformer
4226 >     * @since 1.8
4227 >     */
4228 >    public <U> void forEachEntry(long parallelismThreshold,
4229 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
4230 >                                 Consumer<? super U> action) {
4231 >        if (transformer == null || action == null)
4232 >            throw new NullPointerException();
4233 >        new ForEachTransformedEntryTask<K,V,U>
4234 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4235 >             transformer, action).invoke();
4236 >    }
4237 >
4238 >    /**
4239 >     * Returns a non-null result from applying the given search
4240 >     * function on each entry, or null if none.  Upon success,
4241 >     * further element processing is suppressed and the results of
4242 >     * any other parallel invocations of the search function are
4243 >     * ignored.
4244 >     *
4245 >     * @param parallelismThreshold the (estimated) number of elements
4246 >     * needed for this operation to be executed in parallel
4247 >     * @param searchFunction a function returning a non-null
4248 >     * result on success, else null
4249 >     * @param <U> the return type of the search function
4250 >     * @return a non-null result from applying the given search
4251 >     * function on each entry, or null if none
4252 >     * @since 1.8
4253 >     */
4254 >    public <U> U searchEntries(long parallelismThreshold,
4255 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4256 >        if (searchFunction == null) throw new NullPointerException();
4257 >        return new SearchEntriesTask<K,V,U>
4258 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4259 >             searchFunction, new AtomicReference<U>()).invoke();
4260 >    }
4261 >
4262 >    /**
4263 >     * Returns the result of accumulating all entries using the
4264 >     * given reducer to combine values, or null if none.
4265 >     *
4266 >     * @param parallelismThreshold the (estimated) number of elements
4267 >     * needed for this operation to be executed in parallel
4268 >     * @param reducer a commutative associative combining function
4269 >     * @return the result of accumulating all entries
4270 >     * @since 1.8
4271 >     */
4272 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4273 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4274 >        if (reducer == null) throw new NullPointerException();
4275 >        return new ReduceEntriesTask<K,V>
4276 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4277 >             null, reducer).invoke();
4278 >    }
4279 >
4280 >    /**
4281 >     * Returns the result of accumulating the given transformation
4282 >     * of all entries using the given reducer to combine values,
4283 >     * or null if none.
4284 >     *
4285 >     * @param parallelismThreshold the (estimated) number of elements
4286 >     * needed for this operation to be executed in parallel
4287 >     * @param transformer a function returning the transformation
4288 >     * for an element, or null if there is no transformation (in
4289 >     * which case it is not combined)
4290 >     * @param reducer a commutative associative combining function
4291 >     * @param <U> the return type of the transformer
4292 >     * @return the result of accumulating the given transformation
4293 >     * of all entries
4294 >     * @since 1.8
4295 >     */
4296 >    public <U> U reduceEntries(long parallelismThreshold,
4297 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
4298 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4299 >        if (transformer == null || reducer == null)
4300 >            throw new NullPointerException();
4301 >        return new MapReduceEntriesTask<K,V,U>
4302 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4303 >             null, transformer, reducer).invoke();
4304 >    }
4305 >
4306 >    /**
4307 >     * Returns the result of accumulating the given transformation
4308 >     * of all entries using the given reducer to combine values,
4309 >     * and the given basis as an identity value.
4310 >     *
4311 >     * @param parallelismThreshold the (estimated) number of elements
4312 >     * needed for this operation to be executed in parallel
4313 >     * @param transformer a function returning the transformation
4314 >     * for an element
4315 >     * @param basis the identity (initial default value) for the reduction
4316 >     * @param reducer a commutative associative combining function
4317 >     * @return the result of accumulating the given transformation
4318 >     * of all entries
4319 >     * @since 1.8
4320 >     */
4321 >    public double reduceEntriesToDouble(long parallelismThreshold,
4322 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
4323 >                                        double basis,
4324 >                                        DoubleBinaryOperator reducer) {
4325 >        if (transformer == null || reducer == null)
4326 >            throw new NullPointerException();
4327 >        return new MapReduceEntriesToDoubleTask<K,V>
4328 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4329 >             null, transformer, basis, reducer).invoke();
4330 >    }
4331 >
4332 >    /**
4333 >     * Returns the result of accumulating the given transformation
4334 >     * of all entries using the given reducer to combine values,
4335 >     * and the given basis as an identity value.
4336 >     *
4337 >     * @param parallelismThreshold the (estimated) number of elements
4338 >     * needed for this operation to be executed in parallel
4339 >     * @param transformer a function returning the transformation
4340 >     * for an element
4341 >     * @param basis the identity (initial default value) for the reduction
4342 >     * @param reducer a commutative associative combining function
4343 >     * @return the result of accumulating the given transformation
4344 >     * of all entries
4345 >     * @since 1.8
4346 >     */
4347 >    public long reduceEntriesToLong(long parallelismThreshold,
4348 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
4349 >                                    long basis,
4350 >                                    LongBinaryOperator reducer) {
4351 >        if (transformer == null || reducer == null)
4352 >            throw new NullPointerException();
4353 >        return new MapReduceEntriesToLongTask<K,V>
4354 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4355 >             null, transformer, basis, reducer).invoke();
4356 >    }
4357 >
4358 >    /**
4359 >     * Returns the result of accumulating the given transformation
4360 >     * of all entries using the given reducer to combine values,
4361 >     * and the given basis as an identity value.
4362 >     *
4363 >     * @param parallelismThreshold the (estimated) number of elements
4364 >     * needed for this operation to be executed in parallel
4365 >     * @param transformer a function returning the transformation
4366 >     * for an element
4367 >     * @param basis the identity (initial default value) for the reduction
4368 >     * @param reducer a commutative associative combining function
4369 >     * @return the result of accumulating the given transformation
4370 >     * of all entries
4371 >     * @since 1.8
4372 >     */
4373 >    public int reduceEntriesToInt(long parallelismThreshold,
4374 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
4375 >                                  int basis,
4376 >                                  IntBinaryOperator reducer) {
4377 >        if (transformer == null || reducer == null)
4378 >            throw new NullPointerException();
4379 >        return new MapReduceEntriesToIntTask<K,V>
4380 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4381 >             null, transformer, basis, reducer).invoke();
4382 >    }
4383 >
4384 >
4385 >    /* ----------------Views -------------- */
4386 >
4387 >    /**
4388 >     * Base class for views.
4389 >     */
4390 >    abstract static class CollectionView<K,V,E>
4391 >        implements Collection<E>, java.io.Serializable {
4392 >        private static final long serialVersionUID = 7249069246763182397L;
4393 >        final ConcurrentHashMap<K,V> map;
4394 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4395 >
4396 >        /**
4397 >         * Returns the map backing this view.
4398 >         *
4399 >         * @return the map backing this view
4400 >         */
4401 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4402 >
4403 >        /**
4404 >         * Removes all of the elements from this view, by removing all
4405 >         * the mappings from the map backing this view.
4406 >         */
4407 >        public final void clear()      { map.clear(); }
4408 >        public final int size()        { return map.size(); }
4409 >        public final boolean isEmpty() { return map.isEmpty(); }
4410 >
4411 >        // implementations below rely on concrete classes supplying these
4412 >        // abstract methods
4413 >        /**
4414 >         * Returns an iterator over the elements in this collection.
4415 >         *
4416 >         * <p>The returned iterator is
4417 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4418 >         *
4419 >         * @return an iterator over the elements in this collection
4420 >         */
4421 >        public abstract Iterator<E> iterator();
4422 >        public abstract boolean contains(Object o);
4423 >        public abstract boolean remove(Object o);
4424 >
4425 >        private static final String OOME_MSG = "Required array size too large";
4426 >
4427 >        public final Object[] toArray() {
4428 >            long sz = map.mappingCount();
4429 >            if (sz > MAX_ARRAY_SIZE)
4430 >                throw new OutOfMemoryError(OOME_MSG);
4431 >            int n = (int)sz;
4432 >            Object[] r = new Object[n];
4433 >            int i = 0;
4434 >            for (E e : this) {
4435 >                if (i == n) {
4436 >                    if (n >= MAX_ARRAY_SIZE)
4437 >                        throw new OutOfMemoryError(OOME_MSG);
4438 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4439 >                        n = MAX_ARRAY_SIZE;
4440 >                    else
4441 >                        n += (n >>> 1) + 1;
4442 >                    r = Arrays.copyOf(r, n);
4443 >                }
4444 >                r[i++] = e;
4445 >            }
4446 >            return (i == n) ? r : Arrays.copyOf(r, i);
4447          }
4448 <        public void clear() {
4449 <            ConcurrentHashMap.this.clear();
4448 >
4449 >        @SuppressWarnings("unchecked")
4450 >        public final <T> T[] toArray(T[] a) {
4451 >            long sz = map.mappingCount();
4452 >            if (sz > MAX_ARRAY_SIZE)
4453 >                throw new OutOfMemoryError(OOME_MSG);
4454 >            int m = (int)sz;
4455 >            T[] r = (a.length >= m) ? a :
4456 >                (T[])java.lang.reflect.Array
4457 >                .newInstance(a.getClass().getComponentType(), m);
4458 >            int n = r.length;
4459 >            int i = 0;
4460 >            for (E e : this) {
4461 >                if (i == n) {
4462 >                    if (n >= MAX_ARRAY_SIZE)
4463 >                        throw new OutOfMemoryError(OOME_MSG);
4464 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4465 >                        n = MAX_ARRAY_SIZE;
4466 >                    else
4467 >                        n += (n >>> 1) + 1;
4468 >                    r = Arrays.copyOf(r, n);
4469 >                }
4470 >                r[i++] = (T)e;
4471 >            }
4472 >            if (a == r && i < n) {
4473 >                r[i] = null; // null-terminate
4474 >                return r;
4475 >            }
4476 >            return (i == n) ? r : Arrays.copyOf(r, i);
4477 >        }
4478 >
4479 >        /**
4480 >         * Returns a string representation of this collection.
4481 >         * The string representation consists of the string representations
4482 >         * of the collection's elements in the order they are returned by
4483 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4484 >         * Adjacent elements are separated by the characters {@code ", "}
4485 >         * (comma and space).  Elements are converted to strings as by
4486 >         * {@link String#valueOf(Object)}.
4487 >         *
4488 >         * @return a string representation of this collection
4489 >         */
4490 >        public final String toString() {
4491 >            StringBuilder sb = new StringBuilder();
4492 >            sb.append('[');
4493 >            Iterator<E> it = iterator();
4494 >            if (it.hasNext()) {
4495 >                for (;;) {
4496 >                    Object e = it.next();
4497 >                    sb.append(e == this ? "(this Collection)" : e);
4498 >                    if (!it.hasNext())
4499 >                        break;
4500 >                    sb.append(',').append(' ');
4501 >                }
4502 >            }
4503 >            return sb.append(']').toString();
4504 >        }
4505 >
4506 >        public final boolean containsAll(Collection<?> c) {
4507 >            if (c != this) {
4508 >                for (Object e : c) {
4509 >                    if (e == null || !contains(e))
4510 >                        return false;
4511 >                }
4512 >            }
4513 >            return true;
4514 >        }
4515 >
4516 >        public boolean removeAll(Collection<?> c) {
4517 >            if (c == null) throw new NullPointerException();
4518 >            boolean modified = false;
4519 >            // Use (c instanceof Set) as a hint that lookup in c is as
4520 >            // efficient as this view
4521 >            Node<K,V>[] t;
4522 >            if ((t = map.table) == null) {
4523 >                return false;
4524 >            } else if (c instanceof Set<?> && c.size() > t.length) {
4525 >                for (Iterator<?> it = iterator(); it.hasNext(); ) {
4526 >                    if (c.contains(it.next())) {
4527 >                        it.remove();
4528 >                        modified = true;
4529 >                    }
4530 >                }
4531 >            } else {
4532 >                for (Object e : c)
4533 >                    modified |= remove(e);
4534 >            }
4535 >            return modified;
4536 >        }
4537 >
4538 >        public final boolean retainAll(Collection<?> c) {
4539 >            if (c == null) throw new NullPointerException();
4540 >            boolean modified = false;
4541 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4542 >                if (!c.contains(it.next())) {
4543 >                    it.remove();
4544 >                    modified = true;
4545 >                }
4546 >            }
4547 >            return modified;
4548          }
4549 +
4550      }
4551  
4552 <    final class Values extends AbstractCollection<V> {
4553 <        public Iterator<V> iterator() {
4554 <            return new ValueIterator();
4552 >    /**
4553 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4554 >     * which additions may optionally be enabled by mapping to a
4555 >     * common value.  This class cannot be directly instantiated.
4556 >     * See {@link #keySet() keySet()},
4557 >     * {@link #keySet(Object) keySet(V)},
4558 >     * {@link #newKeySet() newKeySet()},
4559 >     * {@link #newKeySet(int) newKeySet(int)}.
4560 >     *
4561 >     * @since 1.8
4562 >     */
4563 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4564 >        implements Set<K>, java.io.Serializable {
4565 >        private static final long serialVersionUID = 7249069246763182397L;
4566 >        @SuppressWarnings("serial") // Conditionally serializable
4567 >        private final V value;
4568 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4569 >            super(map);
4570 >            this.value = value;
4571          }
4572 <        public int size() {
4573 <            return ConcurrentHashMap.this.size();
4572 >
4573 >        /**
4574 >         * Returns the default mapped value for additions,
4575 >         * or {@code null} if additions are not supported.
4576 >         *
4577 >         * @return the default mapped value for additions, or {@code null}
4578 >         * if not supported
4579 >         */
4580 >        public V getMappedValue() { return value; }
4581 >
4582 >        /**
4583 >         * {@inheritDoc}
4584 >         * @throws NullPointerException if the specified key is null
4585 >         */
4586 >        public boolean contains(Object o) { return map.containsKey(o); }
4587 >
4588 >        /**
4589 >         * Removes the key from this map view, by removing the key (and its
4590 >         * corresponding value) from the backing map.  This method does
4591 >         * nothing if the key is not in the map.
4592 >         *
4593 >         * @param  o the key to be removed from the backing map
4594 >         * @return {@code true} if the backing map contained the specified key
4595 >         * @throws NullPointerException if the specified key is null
4596 >         */
4597 >        public boolean remove(Object o) { return map.remove(o) != null; }
4598 >
4599 >        /**
4600 >         * @return an iterator over the keys of the backing map
4601 >         */
4602 >        public Iterator<K> iterator() {
4603 >            Node<K,V>[] t;
4604 >            ConcurrentHashMap<K,V> m = map;
4605 >            int f = (t = m.table) == null ? 0 : t.length;
4606 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4607          }
4608 <        public boolean isEmpty() {
4609 <            return ConcurrentHashMap.this.isEmpty();
4608 >
4609 >        /**
4610 >         * Adds the specified key to this set view by mapping the key to
4611 >         * the default mapped value in the backing map, if defined.
4612 >         *
4613 >         * @param e key to be added
4614 >         * @return {@code true} if this set changed as a result of the call
4615 >         * @throws NullPointerException if the specified key is null
4616 >         * @throws UnsupportedOperationException if no default mapped value
4617 >         * for additions was provided
4618 >         */
4619 >        public boolean add(K e) {
4620 >            V v;
4621 >            if ((v = value) == null)
4622 >                throw new UnsupportedOperationException();
4623 >            return map.putVal(e, v, true) == null;
4624          }
4625 <        public boolean contains(Object o) {
4626 <            return ConcurrentHashMap.this.containsValue(o);
4625 >
4626 >        /**
4627 >         * Adds all of the elements in the specified collection to this set,
4628 >         * as if by calling {@link #add} on each one.
4629 >         *
4630 >         * @param c the elements to be inserted into this set
4631 >         * @return {@code true} if this set changed as a result of the call
4632 >         * @throws NullPointerException if the collection or any of its
4633 >         * elements are {@code null}
4634 >         * @throws UnsupportedOperationException if no default mapped value
4635 >         * for additions was provided
4636 >         */
4637 >        public boolean addAll(Collection<? extends K> c) {
4638 >            boolean added = false;
4639 >            V v;
4640 >            if ((v = value) == null)
4641 >                throw new UnsupportedOperationException();
4642 >            for (K e : c) {
4643 >                if (map.putVal(e, v, true) == null)
4644 >                    added = true;
4645 >            }
4646 >            return added;
4647          }
4648 <        public void clear() {
4649 <            ConcurrentHashMap.this.clear();
4648 >
4649 >        public int hashCode() {
4650 >            int h = 0;
4651 >            for (K e : this)
4652 >                h += e.hashCode();
4653 >            return h;
4654 >        }
4655 >
4656 >        public boolean equals(Object o) {
4657 >            Set<?> c;
4658 >            return ((o instanceof Set) &&
4659 >                    ((c = (Set<?>)o) == this ||
4660 >                     (containsAll(c) && c.containsAll(this))));
4661 >        }
4662 >
4663 >        public Spliterator<K> spliterator() {
4664 >            Node<K,V>[] t;
4665 >            ConcurrentHashMap<K,V> m = map;
4666 >            long n = m.sumCount();
4667 >            int f = (t = m.table) == null ? 0 : t.length;
4668 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4669 >        }
4670 >
4671 >        public void forEach(Consumer<? super K> action) {
4672 >            if (action == null) throw new NullPointerException();
4673 >            Node<K,V>[] t;
4674 >            if ((t = map.table) != null) {
4675 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4676 >                for (Node<K,V> p; (p = it.advance()) != null; )
4677 >                    action.accept(p.key);
4678 >            }
4679          }
4680      }
4681  
4682 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4683 <        public Iterator<Map.Entry<K,V>> iterator() {
4684 <            return new EntryIterator();
4682 >    /**
4683 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4684 >     * values, in which additions are disabled. This class cannot be
4685 >     * directly instantiated. See {@link #values()}.
4686 >     */
4687 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4688 >        implements Collection<V>, java.io.Serializable {
4689 >        private static final long serialVersionUID = 2249069246763182397L;
4690 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4691 >        public final boolean contains(Object o) {
4692 >            return map.containsValue(o);
4693 >        }
4694 >
4695 >        public final boolean remove(Object o) {
4696 >            if (o != null) {
4697 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4698 >                    if (o.equals(it.next())) {
4699 >                        it.remove();
4700 >                        return true;
4701 >                    }
4702 >                }
4703 >            }
4704 >            return false;
4705 >        }
4706 >
4707 >        public final Iterator<V> iterator() {
4708 >            ConcurrentHashMap<K,V> m = map;
4709 >            Node<K,V>[] t;
4710 >            int f = (t = m.table) == null ? 0 : t.length;
4711 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4712 >        }
4713 >
4714 >        public final boolean add(V e) {
4715 >            throw new UnsupportedOperationException();
4716 >        }
4717 >        public final boolean addAll(Collection<? extends V> c) {
4718 >            throw new UnsupportedOperationException();
4719          }
4720 +
4721 +        @Override public boolean removeAll(Collection<?> c) {
4722 +            if (c == null) throw new NullPointerException();
4723 +            boolean modified = false;
4724 +            for (Iterator<V> it = iterator(); it.hasNext();) {
4725 +                if (c.contains(it.next())) {
4726 +                    it.remove();
4727 +                    modified = true;
4728 +                }
4729 +            }
4730 +            return modified;
4731 +        }
4732 +
4733 +        public boolean removeIf(Predicate<? super V> filter) {
4734 +            return map.removeValueIf(filter);
4735 +        }
4736 +
4737 +        public Spliterator<V> spliterator() {
4738 +            Node<K,V>[] t;
4739 +            ConcurrentHashMap<K,V> m = map;
4740 +            long n = m.sumCount();
4741 +            int f = (t = m.table) == null ? 0 : t.length;
4742 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4743 +        }
4744 +
4745 +        public void forEach(Consumer<? super V> action) {
4746 +            if (action == null) throw new NullPointerException();
4747 +            Node<K,V>[] t;
4748 +            if ((t = map.table) != null) {
4749 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4750 +                for (Node<K,V> p; (p = it.advance()) != null; )
4751 +                    action.accept(p.val);
4752 +            }
4753 +        }
4754 +    }
4755 +
4756 +    /**
4757 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4758 +     * entries.  This class cannot be directly instantiated. See
4759 +     * {@link #entrySet()}.
4760 +     */
4761 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4762 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4763 +        private static final long serialVersionUID = 2249069246763182397L;
4764 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4765 +
4766          public boolean contains(Object o) {
4767 <            if (!(o instanceof Map.Entry))
4768 <                return false;
4769 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4770 <            V v = ConcurrentHashMap.this.get(e.getKey());
4771 <            return v != null && v.equals(e.getValue());
4767 >            Object k, v, r; Map.Entry<?,?> e;
4768 >            return ((o instanceof Map.Entry) &&
4769 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4770 >                    (r = map.get(k)) != null &&
4771 >                    (v = e.getValue()) != null &&
4772 >                    (v == r || v.equals(r)));
4773          }
4774 +
4775          public boolean remove(Object o) {
4776 <            if (!(o instanceof Map.Entry))
4777 <                return false;
4778 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
4779 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4776 >            Object k, v; Map.Entry<?,?> e;
4777 >            return ((o instanceof Map.Entry) &&
4778 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4779 >                    (v = e.getValue()) != null &&
4780 >                    map.remove(k, v));
4781          }
4782 <        public int size() {
4783 <            return ConcurrentHashMap.this.size();
4782 >
4783 >        /**
4784 >         * @return an iterator over the entries of the backing map
4785 >         */
4786 >        public Iterator<Map.Entry<K,V>> iterator() {
4787 >            ConcurrentHashMap<K,V> m = map;
4788 >            Node<K,V>[] t;
4789 >            int f = (t = m.table) == null ? 0 : t.length;
4790 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4791          }
4792 <        public boolean isEmpty() {
4793 <            return ConcurrentHashMap.this.isEmpty();
4792 >
4793 >        public boolean add(Entry<K,V> e) {
4794 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4795 >        }
4796 >
4797 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4798 >            boolean added = false;
4799 >            for (Entry<K,V> e : c) {
4800 >                if (add(e))
4801 >                    added = true;
4802 >            }
4803 >            return added;
4804 >        }
4805 >
4806 >        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4807 >            return map.removeEntryIf(filter);
4808          }
4809 <        public void clear() {
4810 <            ConcurrentHashMap.this.clear();
4809 >
4810 >        public final int hashCode() {
4811 >            int h = 0;
4812 >            Node<K,V>[] t;
4813 >            if ((t = map.table) != null) {
4814 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4815 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4816 >                    h += p.hashCode();
4817 >                }
4818 >            }
4819 >            return h;
4820 >        }
4821 >
4822 >        public final boolean equals(Object o) {
4823 >            Set<?> c;
4824 >            return ((o instanceof Set) &&
4825 >                    ((c = (Set<?>)o) == this ||
4826 >                     (containsAll(c) && c.containsAll(this))));
4827 >        }
4828 >
4829 >        public Spliterator<Map.Entry<K,V>> spliterator() {
4830 >            Node<K,V>[] t;
4831 >            ConcurrentHashMap<K,V> m = map;
4832 >            long n = m.sumCount();
4833 >            int f = (t = m.table) == null ? 0 : t.length;
4834 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4835 >        }
4836 >
4837 >        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4838 >            if (action == null) throw new NullPointerException();
4839 >            Node<K,V>[] t;
4840 >            if ((t = map.table) != null) {
4841 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4842 >                for (Node<K,V> p; (p = it.advance()) != null; )
4843 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4844 >            }
4845          }
4846 +
4847      }
4848  
4849 <    /* ---------------- Serialization Support -------------- */
4849 >    // -------------------------------------------------------
4850  
4851      /**
4852 <     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
4853 <     * stream (i.e., serialize it).
1403 <     * @param s the stream
1404 <     * @serialData
1405 <     * the key (Object) and value (Object)
1406 <     * for each key-value mapping, followed by a null pair.
1407 <     * The key-value mappings are emitted in no particular order.
4852 >     * Base class for bulk tasks. Repeats some fields and code from
4853 >     * class Traverser, because we need to subclass CountedCompleter.
4854       */
4855 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
4856 <        // force all segments for serialization compatibility
4857 <        for (int k = 0; k < segments.length; ++k)
4858 <            ensureSegment(k);
4859 <        s.defaultWriteObject();
4860 <
4861 <        final Segment<K,V>[] segments = this.segments;
4862 <        for (int k = 0; k < segments.length; ++k) {
4863 <            Segment<K,V> seg = segmentAt(segments, k);
4864 <            seg.lock();
4865 <            try {
4866 <                HashEntry<K,V>[] tab = seg.table;
4867 <                for (int i = 0; i < tab.length; ++i) {
4868 <                    HashEntry<K,V> e;
4869 <                    for (e = entryAt(tab, i); e != null; e = e.next) {
4870 <                        s.writeObject(e.key);
4871 <                        s.writeObject(e.value);
4855 >    @SuppressWarnings("serial")
4856 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4857 >        Node<K,V>[] tab;        // same as Traverser
4858 >        Node<K,V> next;
4859 >        TableStack<K,V> stack, spare;
4860 >        int index;
4861 >        int baseIndex;
4862 >        int baseLimit;
4863 >        final int baseSize;
4864 >        int batch;              // split control
4865 >
4866 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4867 >            super(par);
4868 >            this.batch = b;
4869 >            this.index = this.baseIndex = i;
4870 >            if ((this.tab = t) == null)
4871 >                this.baseSize = this.baseLimit = 0;
4872 >            else if (par == null)
4873 >                this.baseSize = this.baseLimit = t.length;
4874 >            else {
4875 >                this.baseLimit = f;
4876 >                this.baseSize = par.baseSize;
4877 >            }
4878 >        }
4879 >
4880 >        /**
4881 >         * Same as Traverser version.
4882 >         */
4883 >        final Node<K,V> advance() {
4884 >            Node<K,V> e;
4885 >            if ((e = next) != null)
4886 >                e = e.next;
4887 >            for (;;) {
4888 >                Node<K,V>[] t; int i, n;
4889 >                if (e != null)
4890 >                    return next = e;
4891 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4892 >                    (n = t.length) <= (i = index) || i < 0)
4893 >                    return next = null;
4894 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4895 >                    if (e instanceof ForwardingNode) {
4896 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4897 >                        e = null;
4898 >                        pushState(t, i, n);
4899 >                        continue;
4900                      }
4901 +                    else if (e instanceof TreeBin)
4902 +                        e = ((TreeBin<K,V>)e).first;
4903 +                    else
4904 +                        e = null;
4905                  }
4906 <            } finally {
4907 <                seg.unlock();
4906 >                if (stack != null)
4907 >                    recoverState(n);
4908 >                else if ((index = i + baseSize) >= n)
4909 >                    index = ++baseIndex;
4910              }
4911          }
4912 <        s.writeObject(null);
4913 <        s.writeObject(null);
4912 >
4913 >        private void pushState(Node<K,V>[] t, int i, int n) {
4914 >            TableStack<K,V> s = spare;
4915 >            if (s != null)
4916 >                spare = s.next;
4917 >            else
4918 >                s = new TableStack<K,V>();
4919 >            s.tab = t;
4920 >            s.length = n;
4921 >            s.index = i;
4922 >            s.next = stack;
4923 >            stack = s;
4924 >        }
4925 >
4926 >        private void recoverState(int n) {
4927 >            TableStack<K,V> s; int len;
4928 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4929 >                n = len;
4930 >                index = s.index;
4931 >                tab = s.tab;
4932 >                s.tab = null;
4933 >                TableStack<K,V> next = s.next;
4934 >                s.next = spare; // save for reuse
4935 >                stack = next;
4936 >                spare = s;
4937 >            }
4938 >            if (s == null && (index += baseSize) >= n)
4939 >                index = ++baseIndex;
4940 >        }
4941      }
4942  
4943 <    /**
4944 <     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
4945 <     * stream (i.e., deserialize it).
4946 <     * @param s the stream
4947 <     */
4948 <    @SuppressWarnings("unchecked")
4949 <    private void readObject(java.io.ObjectInputStream s)
4950 <        throws IOException, ClassNotFoundException {
4951 <        s.defaultReadObject();
4943 >    /*
4944 >     * Task classes. Coded in a regular but ugly format/style to
4945 >     * simplify checks that each variant differs in the right way from
4946 >     * others. The null screenings exist because compilers cannot tell
4947 >     * that we've already null-checked task arguments, so we force
4948 >     * simplest hoisted bypass to help avoid convoluted traps.
4949 >     */
4950 >    @SuppressWarnings("serial")
4951 >    static final class ForEachKeyTask<K,V>
4952 >        extends BulkTask<K,V,Void> {
4953 >        final Consumer<? super K> action;
4954 >        ForEachKeyTask
4955 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4956 >             Consumer<? super K> action) {
4957 >            super(p, b, i, f, t);
4958 >            this.action = action;
4959 >        }
4960 >        public final void compute() {
4961 >            final Consumer<? super K> action;
4962 >            if ((action = this.action) != null) {
4963 >                for (int i = baseIndex, f, h; batch > 0 &&
4964 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4965 >                    addToPendingCount(1);
4966 >                    new ForEachKeyTask<K,V>
4967 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4968 >                         action).fork();
4969 >                }
4970 >                for (Node<K,V> p; (p = advance()) != null;)
4971 >                    action.accept(p.key);
4972 >                propagateCompletion();
4973 >            }
4974 >        }
4975 >    }
4976  
4977 <        // Re-initialize segments to be minimally sized, and let grow.
4978 <        int cap = MIN_SEGMENT_TABLE_CAPACITY;
4979 <        final Segment<K,V>[] segments = this.segments;
4980 <        for (int k = 0; k < segments.length; ++k) {
4981 <            Segment<K,V> seg = segments[k];
4982 <            if (seg != null) {
4983 <                seg.threshold = (int)(cap * seg.loadFactor);
4984 <                seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
4977 >    @SuppressWarnings("serial")
4978 >    static final class ForEachValueTask<K,V>
4979 >        extends BulkTask<K,V,Void> {
4980 >        final Consumer<? super V> action;
4981 >        ForEachValueTask
4982 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4983 >             Consumer<? super V> action) {
4984 >            super(p, b, i, f, t);
4985 >            this.action = action;
4986 >        }
4987 >        public final void compute() {
4988 >            final Consumer<? super V> action;
4989 >            if ((action = this.action) != null) {
4990 >                for (int i = baseIndex, f, h; batch > 0 &&
4991 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4992 >                    addToPendingCount(1);
4993 >                    new ForEachValueTask<K,V>
4994 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4995 >                         action).fork();
4996 >                }
4997 >                for (Node<K,V> p; (p = advance()) != null;)
4998 >                    action.accept(p.val);
4999 >                propagateCompletion();
5000              }
5001          }
5002 +    }
5003  
5004 <        // Read the keys and values, and put the mappings in the table
5005 <        for (;;) {
5006 <            K key = (K) s.readObject();
5007 <            V value = (V) s.readObject();
5008 <            if (key == null)
5009 <                break;
5010 <            put(key, value);
5004 >    @SuppressWarnings("serial")
5005 >    static final class ForEachEntryTask<K,V>
5006 >        extends BulkTask<K,V,Void> {
5007 >        final Consumer<? super Entry<K,V>> action;
5008 >        ForEachEntryTask
5009 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5010 >             Consumer<? super Entry<K,V>> action) {
5011 >            super(p, b, i, f, t);
5012 >            this.action = action;
5013 >        }
5014 >        public final void compute() {
5015 >            final Consumer<? super Entry<K,V>> action;
5016 >            if ((action = this.action) != null) {
5017 >                for (int i = baseIndex, f, h; batch > 0 &&
5018 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5019 >                    addToPendingCount(1);
5020 >                    new ForEachEntryTask<K,V>
5021 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5022 >                         action).fork();
5023 >                }
5024 >                for (Node<K,V> p; (p = advance()) != null; )
5025 >                    action.accept(p);
5026 >                propagateCompletion();
5027 >            }
5028 >        }
5029 >    }
5030 >
5031 >    @SuppressWarnings("serial")
5032 >    static final class ForEachMappingTask<K,V>
5033 >        extends BulkTask<K,V,Void> {
5034 >        final BiConsumer<? super K, ? super V> action;
5035 >        ForEachMappingTask
5036 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037 >             BiConsumer<? super K,? super V> action) {
5038 >            super(p, b, i, f, t);
5039 >            this.action = action;
5040 >        }
5041 >        public final void compute() {
5042 >            final BiConsumer<? super K, ? super V> action;
5043 >            if ((action = this.action) != null) {
5044 >                for (int i = baseIndex, f, h; batch > 0 &&
5045 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5046 >                    addToPendingCount(1);
5047 >                    new ForEachMappingTask<K,V>
5048 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5049 >                         action).fork();
5050 >                }
5051 >                for (Node<K,V> p; (p = advance()) != null; )
5052 >                    action.accept(p.key, p.val);
5053 >                propagateCompletion();
5054 >            }
5055 >        }
5056 >    }
5057 >
5058 >    @SuppressWarnings("serial")
5059 >    static final class ForEachTransformedKeyTask<K,V,U>
5060 >        extends BulkTask<K,V,Void> {
5061 >        final Function<? super K, ? extends U> transformer;
5062 >        final Consumer<? super U> action;
5063 >        ForEachTransformedKeyTask
5064 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5065 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5066 >            super(p, b, i, f, t);
5067 >            this.transformer = transformer; this.action = action;
5068 >        }
5069 >        public final void compute() {
5070 >            final Function<? super K, ? extends U> transformer;
5071 >            final Consumer<? super U> action;
5072 >            if ((transformer = this.transformer) != null &&
5073 >                (action = this.action) != null) {
5074 >                for (int i = baseIndex, f, h; batch > 0 &&
5075 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5076 >                    addToPendingCount(1);
5077 >                    new ForEachTransformedKeyTask<K,V,U>
5078 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5079 >                         transformer, action).fork();
5080 >                }
5081 >                for (Node<K,V> p; (p = advance()) != null; ) {
5082 >                    U u;
5083 >                    if ((u = transformer.apply(p.key)) != null)
5084 >                        action.accept(u);
5085 >                }
5086 >                propagateCompletion();
5087 >            }
5088 >        }
5089 >    }
5090 >
5091 >    @SuppressWarnings("serial")
5092 >    static final class ForEachTransformedValueTask<K,V,U>
5093 >        extends BulkTask<K,V,Void> {
5094 >        final Function<? super V, ? extends U> transformer;
5095 >        final Consumer<? super U> action;
5096 >        ForEachTransformedValueTask
5097 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5098 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5099 >            super(p, b, i, f, t);
5100 >            this.transformer = transformer; this.action = action;
5101 >        }
5102 >        public final void compute() {
5103 >            final Function<? super V, ? extends U> transformer;
5104 >            final Consumer<? super U> action;
5105 >            if ((transformer = this.transformer) != null &&
5106 >                (action = this.action) != null) {
5107 >                for (int i = baseIndex, f, h; batch > 0 &&
5108 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5109 >                    addToPendingCount(1);
5110 >                    new ForEachTransformedValueTask<K,V,U>
5111 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5112 >                         transformer, action).fork();
5113 >                }
5114 >                for (Node<K,V> p; (p = advance()) != null; ) {
5115 >                    U u;
5116 >                    if ((u = transformer.apply(p.val)) != null)
5117 >                        action.accept(u);
5118 >                }
5119 >                propagateCompletion();
5120 >            }
5121 >        }
5122 >    }
5123 >
5124 >    @SuppressWarnings("serial")
5125 >    static final class ForEachTransformedEntryTask<K,V,U>
5126 >        extends BulkTask<K,V,Void> {
5127 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5128 >        final Consumer<? super U> action;
5129 >        ForEachTransformedEntryTask
5130 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5131 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5132 >            super(p, b, i, f, t);
5133 >            this.transformer = transformer; this.action = action;
5134 >        }
5135 >        public final void compute() {
5136 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5137 >            final Consumer<? super U> action;
5138 >            if ((transformer = this.transformer) != null &&
5139 >                (action = this.action) != null) {
5140 >                for (int i = baseIndex, f, h; batch > 0 &&
5141 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5142 >                    addToPendingCount(1);
5143 >                    new ForEachTransformedEntryTask<K,V,U>
5144 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5145 >                         transformer, action).fork();
5146 >                }
5147 >                for (Node<K,V> p; (p = advance()) != null; ) {
5148 >                    U u;
5149 >                    if ((u = transformer.apply(p)) != null)
5150 >                        action.accept(u);
5151 >                }
5152 >                propagateCompletion();
5153 >            }
5154 >        }
5155 >    }
5156 >
5157 >    @SuppressWarnings("serial")
5158 >    static final class ForEachTransformedMappingTask<K,V,U>
5159 >        extends BulkTask<K,V,Void> {
5160 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5161 >        final Consumer<? super U> action;
5162 >        ForEachTransformedMappingTask
5163 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5164 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5165 >             Consumer<? super U> action) {
5166 >            super(p, b, i, f, t);
5167 >            this.transformer = transformer; this.action = action;
5168 >        }
5169 >        public final void compute() {
5170 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5171 >            final Consumer<? super U> action;
5172 >            if ((transformer = this.transformer) != null &&
5173 >                (action = this.action) != null) {
5174 >                for (int i = baseIndex, f, h; batch > 0 &&
5175 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5176 >                    addToPendingCount(1);
5177 >                    new ForEachTransformedMappingTask<K,V,U>
5178 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5179 >                         transformer, action).fork();
5180 >                }
5181 >                for (Node<K,V> p; (p = advance()) != null; ) {
5182 >                    U u;
5183 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5184 >                        action.accept(u);
5185 >                }
5186 >                propagateCompletion();
5187 >            }
5188 >        }
5189 >    }
5190 >
5191 >    @SuppressWarnings("serial")
5192 >    static final class SearchKeysTask<K,V,U>
5193 >        extends BulkTask<K,V,U> {
5194 >        final Function<? super K, ? extends U> searchFunction;
5195 >        final AtomicReference<U> result;
5196 >        SearchKeysTask
5197 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5198 >             Function<? super K, ? extends U> searchFunction,
5199 >             AtomicReference<U> result) {
5200 >            super(p, b, i, f, t);
5201 >            this.searchFunction = searchFunction; this.result = result;
5202 >        }
5203 >        public final U getRawResult() { return result.get(); }
5204 >        public final void compute() {
5205 >            final Function<? super K, ? extends U> searchFunction;
5206 >            final AtomicReference<U> result;
5207 >            if ((searchFunction = this.searchFunction) != null &&
5208 >                (result = this.result) != null) {
5209 >                for (int i = baseIndex, f, h; batch > 0 &&
5210 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5211 >                    if (result.get() != null)
5212 >                        return;
5213 >                    addToPendingCount(1);
5214 >                    new SearchKeysTask<K,V,U>
5215 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5216 >                         searchFunction, result).fork();
5217 >                }
5218 >                while (result.get() == null) {
5219 >                    U u;
5220 >                    Node<K,V> p;
5221 >                    if ((p = advance()) == null) {
5222 >                        propagateCompletion();
5223 >                        break;
5224 >                    }
5225 >                    if ((u = searchFunction.apply(p.key)) != null) {
5226 >                        if (result.compareAndSet(null, u))
5227 >                            quietlyCompleteRoot();
5228 >                        break;
5229 >                    }
5230 >                }
5231 >            }
5232 >        }
5233 >    }
5234 >
5235 >    @SuppressWarnings("serial")
5236 >    static final class SearchValuesTask<K,V,U>
5237 >        extends BulkTask<K,V,U> {
5238 >        final Function<? super V, ? extends U> searchFunction;
5239 >        final AtomicReference<U> result;
5240 >        SearchValuesTask
5241 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5242 >             Function<? super V, ? extends U> searchFunction,
5243 >             AtomicReference<U> result) {
5244 >            super(p, b, i, f, t);
5245 >            this.searchFunction = searchFunction; this.result = result;
5246 >        }
5247 >        public final U getRawResult() { return result.get(); }
5248 >        public final void compute() {
5249 >            final Function<? super V, ? extends U> searchFunction;
5250 >            final AtomicReference<U> result;
5251 >            if ((searchFunction = this.searchFunction) != null &&
5252 >                (result = this.result) != null) {
5253 >                for (int i = baseIndex, f, h; batch > 0 &&
5254 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5255 >                    if (result.get() != null)
5256 >                        return;
5257 >                    addToPendingCount(1);
5258 >                    new SearchValuesTask<K,V,U>
5259 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5260 >                         searchFunction, result).fork();
5261 >                }
5262 >                while (result.get() == null) {
5263 >                    U u;
5264 >                    Node<K,V> p;
5265 >                    if ((p = advance()) == null) {
5266 >                        propagateCompletion();
5267 >                        break;
5268 >                    }
5269 >                    if ((u = searchFunction.apply(p.val)) != null) {
5270 >                        if (result.compareAndSet(null, u))
5271 >                            quietlyCompleteRoot();
5272 >                        break;
5273 >                    }
5274 >                }
5275 >            }
5276 >        }
5277 >    }
5278 >
5279 >    @SuppressWarnings("serial")
5280 >    static final class SearchEntriesTask<K,V,U>
5281 >        extends BulkTask<K,V,U> {
5282 >        final Function<Entry<K,V>, ? extends U> searchFunction;
5283 >        final AtomicReference<U> result;
5284 >        SearchEntriesTask
5285 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5286 >             Function<Entry<K,V>, ? extends U> searchFunction,
5287 >             AtomicReference<U> result) {
5288 >            super(p, b, i, f, t);
5289 >            this.searchFunction = searchFunction; this.result = result;
5290 >        }
5291 >        public final U getRawResult() { return result.get(); }
5292 >        public final void compute() {
5293 >            final Function<Entry<K,V>, ? extends U> searchFunction;
5294 >            final AtomicReference<U> result;
5295 >            if ((searchFunction = this.searchFunction) != null &&
5296 >                (result = this.result) != null) {
5297 >                for (int i = baseIndex, f, h; batch > 0 &&
5298 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5299 >                    if (result.get() != null)
5300 >                        return;
5301 >                    addToPendingCount(1);
5302 >                    new SearchEntriesTask<K,V,U>
5303 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5304 >                         searchFunction, result).fork();
5305 >                }
5306 >                while (result.get() == null) {
5307 >                    U u;
5308 >                    Node<K,V> p;
5309 >                    if ((p = advance()) == null) {
5310 >                        propagateCompletion();
5311 >                        break;
5312 >                    }
5313 >                    if ((u = searchFunction.apply(p)) != null) {
5314 >                        if (result.compareAndSet(null, u))
5315 >                            quietlyCompleteRoot();
5316 >                        return;
5317 >                    }
5318 >                }
5319 >            }
5320 >        }
5321 >    }
5322 >
5323 >    @SuppressWarnings("serial")
5324 >    static final class SearchMappingsTask<K,V,U>
5325 >        extends BulkTask<K,V,U> {
5326 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5327 >        final AtomicReference<U> result;
5328 >        SearchMappingsTask
5329 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5330 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
5331 >             AtomicReference<U> result) {
5332 >            super(p, b, i, f, t);
5333 >            this.searchFunction = searchFunction; this.result = result;
5334 >        }
5335 >        public final U getRawResult() { return result.get(); }
5336 >        public final void compute() {
5337 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5338 >            final AtomicReference<U> result;
5339 >            if ((searchFunction = this.searchFunction) != null &&
5340 >                (result = this.result) != null) {
5341 >                for (int i = baseIndex, f, h; batch > 0 &&
5342 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5343 >                    if (result.get() != null)
5344 >                        return;
5345 >                    addToPendingCount(1);
5346 >                    new SearchMappingsTask<K,V,U>
5347 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5348 >                         searchFunction, result).fork();
5349 >                }
5350 >                while (result.get() == null) {
5351 >                    U u;
5352 >                    Node<K,V> p;
5353 >                    if ((p = advance()) == null) {
5354 >                        propagateCompletion();
5355 >                        break;
5356 >                    }
5357 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5358 >                        if (result.compareAndSet(null, u))
5359 >                            quietlyCompleteRoot();
5360 >                        break;
5361 >                    }
5362 >                }
5363 >            }
5364 >        }
5365 >    }
5366 >
5367 >    @SuppressWarnings("serial")
5368 >    static final class ReduceKeysTask<K,V>
5369 >        extends BulkTask<K,V,K> {
5370 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
5371 >        K result;
5372 >        ReduceKeysTask<K,V> rights, nextRight;
5373 >        ReduceKeysTask
5374 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5375 >             ReduceKeysTask<K,V> nextRight,
5376 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
5377 >            super(p, b, i, f, t); this.nextRight = nextRight;
5378 >            this.reducer = reducer;
5379 >        }
5380 >        public final K getRawResult() { return result; }
5381 >        public final void compute() {
5382 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
5383 >            if ((reducer = this.reducer) != null) {
5384 >                for (int i = baseIndex, f, h; batch > 0 &&
5385 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5386 >                    addToPendingCount(1);
5387 >                    (rights = new ReduceKeysTask<K,V>
5388 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5389 >                      rights, reducer)).fork();
5390 >                }
5391 >                K r = null;
5392 >                for (Node<K,V> p; (p = advance()) != null; ) {
5393 >                    K u = p.key;
5394 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5395 >                }
5396 >                result = r;
5397 >                CountedCompleter<?> c;
5398 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5399 >                    @SuppressWarnings("unchecked")
5400 >                    ReduceKeysTask<K,V>
5401 >                        t = (ReduceKeysTask<K,V>)c,
5402 >                        s = t.rights;
5403 >                    while (s != null) {
5404 >                        K tr, sr;
5405 >                        if ((sr = s.result) != null)
5406 >                            t.result = (((tr = t.result) == null) ? sr :
5407 >                                        reducer.apply(tr, sr));
5408 >                        s = t.rights = s.nextRight;
5409 >                    }
5410 >                }
5411 >            }
5412 >        }
5413 >    }
5414 >
5415 >    @SuppressWarnings("serial")
5416 >    static final class ReduceValuesTask<K,V>
5417 >        extends BulkTask<K,V,V> {
5418 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
5419 >        V result;
5420 >        ReduceValuesTask<K,V> rights, nextRight;
5421 >        ReduceValuesTask
5422 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5423 >             ReduceValuesTask<K,V> nextRight,
5424 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
5425 >            super(p, b, i, f, t); this.nextRight = nextRight;
5426 >            this.reducer = reducer;
5427 >        }
5428 >        public final V getRawResult() { return result; }
5429 >        public final void compute() {
5430 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
5431 >            if ((reducer = this.reducer) != null) {
5432 >                for (int i = baseIndex, f, h; batch > 0 &&
5433 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5434 >                    addToPendingCount(1);
5435 >                    (rights = new ReduceValuesTask<K,V>
5436 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5437 >                      rights, reducer)).fork();
5438 >                }
5439 >                V r = null;
5440 >                for (Node<K,V> p; (p = advance()) != null; ) {
5441 >                    V v = p.val;
5442 >                    r = (r == null) ? v : reducer.apply(r, v);
5443 >                }
5444 >                result = r;
5445 >                CountedCompleter<?> c;
5446 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5447 >                    @SuppressWarnings("unchecked")
5448 >                    ReduceValuesTask<K,V>
5449 >                        t = (ReduceValuesTask<K,V>)c,
5450 >                        s = t.rights;
5451 >                    while (s != null) {
5452 >                        V tr, sr;
5453 >                        if ((sr = s.result) != null)
5454 >                            t.result = (((tr = t.result) == null) ? sr :
5455 >                                        reducer.apply(tr, sr));
5456 >                        s = t.rights = s.nextRight;
5457 >                    }
5458 >                }
5459 >            }
5460 >        }
5461 >    }
5462 >
5463 >    @SuppressWarnings("serial")
5464 >    static final class ReduceEntriesTask<K,V>
5465 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5466 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5467 >        Map.Entry<K,V> result;
5468 >        ReduceEntriesTask<K,V> rights, nextRight;
5469 >        ReduceEntriesTask
5470 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5471 >             ReduceEntriesTask<K,V> nextRight,
5472 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5473 >            super(p, b, i, f, t); this.nextRight = nextRight;
5474 >            this.reducer = reducer;
5475 >        }
5476 >        public final Map.Entry<K,V> getRawResult() { return result; }
5477 >        public final void compute() {
5478 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5479 >            if ((reducer = this.reducer) != null) {
5480 >                for (int i = baseIndex, f, h; batch > 0 &&
5481 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5482 >                    addToPendingCount(1);
5483 >                    (rights = new ReduceEntriesTask<K,V>
5484 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5485 >                      rights, reducer)).fork();
5486 >                }
5487 >                Map.Entry<K,V> r = null;
5488 >                for (Node<K,V> p; (p = advance()) != null; )
5489 >                    r = (r == null) ? p : reducer.apply(r, p);
5490 >                result = r;
5491 >                CountedCompleter<?> c;
5492 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5493 >                    @SuppressWarnings("unchecked")
5494 >                    ReduceEntriesTask<K,V>
5495 >                        t = (ReduceEntriesTask<K,V>)c,
5496 >                        s = t.rights;
5497 >                    while (s != null) {
5498 >                        Map.Entry<K,V> tr, sr;
5499 >                        if ((sr = s.result) != null)
5500 >                            t.result = (((tr = t.result) == null) ? sr :
5501 >                                        reducer.apply(tr, sr));
5502 >                        s = t.rights = s.nextRight;
5503 >                    }
5504 >                }
5505 >            }
5506 >        }
5507 >    }
5508 >
5509 >    @SuppressWarnings("serial")
5510 >    static final class MapReduceKeysTask<K,V,U>
5511 >        extends BulkTask<K,V,U> {
5512 >        final Function<? super K, ? extends U> transformer;
5513 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5514 >        U result;
5515 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5516 >        MapReduceKeysTask
5517 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5518 >             MapReduceKeysTask<K,V,U> nextRight,
5519 >             Function<? super K, ? extends U> transformer,
5520 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5521 >            super(p, b, i, f, t); this.nextRight = nextRight;
5522 >            this.transformer = transformer;
5523 >            this.reducer = reducer;
5524 >        }
5525 >        public final U getRawResult() { return result; }
5526 >        public final void compute() {
5527 >            final Function<? super K, ? extends U> transformer;
5528 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5529 >            if ((transformer = this.transformer) != null &&
5530 >                (reducer = this.reducer) != null) {
5531 >                for (int i = baseIndex, f, h; batch > 0 &&
5532 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5533 >                    addToPendingCount(1);
5534 >                    (rights = new MapReduceKeysTask<K,V,U>
5535 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5536 >                      rights, transformer, reducer)).fork();
5537 >                }
5538 >                U r = null;
5539 >                for (Node<K,V> p; (p = advance()) != null; ) {
5540 >                    U u;
5541 >                    if ((u = transformer.apply(p.key)) != null)
5542 >                        r = (r == null) ? u : reducer.apply(r, u);
5543 >                }
5544 >                result = r;
5545 >                CountedCompleter<?> c;
5546 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5547 >                    @SuppressWarnings("unchecked")
5548 >                    MapReduceKeysTask<K,V,U>
5549 >                        t = (MapReduceKeysTask<K,V,U>)c,
5550 >                        s = t.rights;
5551 >                    while (s != null) {
5552 >                        U tr, sr;
5553 >                        if ((sr = s.result) != null)
5554 >                            t.result = (((tr = t.result) == null) ? sr :
5555 >                                        reducer.apply(tr, sr));
5556 >                        s = t.rights = s.nextRight;
5557 >                    }
5558 >                }
5559 >            }
5560 >        }
5561 >    }
5562 >
5563 >    @SuppressWarnings("serial")
5564 >    static final class MapReduceValuesTask<K,V,U>
5565 >        extends BulkTask<K,V,U> {
5566 >        final Function<? super V, ? extends U> transformer;
5567 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5568 >        U result;
5569 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5570 >        MapReduceValuesTask
5571 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5572 >             MapReduceValuesTask<K,V,U> nextRight,
5573 >             Function<? super V, ? extends U> transformer,
5574 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5575 >            super(p, b, i, f, t); this.nextRight = nextRight;
5576 >            this.transformer = transformer;
5577 >            this.reducer = reducer;
5578 >        }
5579 >        public final U getRawResult() { return result; }
5580 >        public final void compute() {
5581 >            final Function<? super V, ? extends U> transformer;
5582 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5583 >            if ((transformer = this.transformer) != null &&
5584 >                (reducer = this.reducer) != null) {
5585 >                for (int i = baseIndex, f, h; batch > 0 &&
5586 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5587 >                    addToPendingCount(1);
5588 >                    (rights = new MapReduceValuesTask<K,V,U>
5589 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5590 >                      rights, transformer, reducer)).fork();
5591 >                }
5592 >                U r = null;
5593 >                for (Node<K,V> p; (p = advance()) != null; ) {
5594 >                    U u;
5595 >                    if ((u = transformer.apply(p.val)) != null)
5596 >                        r = (r == null) ? u : reducer.apply(r, u);
5597 >                }
5598 >                result = r;
5599 >                CountedCompleter<?> c;
5600 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5601 >                    @SuppressWarnings("unchecked")
5602 >                    MapReduceValuesTask<K,V,U>
5603 >                        t = (MapReduceValuesTask<K,V,U>)c,
5604 >                        s = t.rights;
5605 >                    while (s != null) {
5606 >                        U tr, sr;
5607 >                        if ((sr = s.result) != null)
5608 >                            t.result = (((tr = t.result) == null) ? sr :
5609 >                                        reducer.apply(tr, sr));
5610 >                        s = t.rights = s.nextRight;
5611 >                    }
5612 >                }
5613 >            }
5614 >        }
5615 >    }
5616 >
5617 >    @SuppressWarnings("serial")
5618 >    static final class MapReduceEntriesTask<K,V,U>
5619 >        extends BulkTask<K,V,U> {
5620 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5621 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5622 >        U result;
5623 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5624 >        MapReduceEntriesTask
5625 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5626 >             MapReduceEntriesTask<K,V,U> nextRight,
5627 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5628 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5629 >            super(p, b, i, f, t); this.nextRight = nextRight;
5630 >            this.transformer = transformer;
5631 >            this.reducer = reducer;
5632 >        }
5633 >        public final U getRawResult() { return result; }
5634 >        public final void compute() {
5635 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5636 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5637 >            if ((transformer = this.transformer) != null &&
5638 >                (reducer = this.reducer) != null) {
5639 >                for (int i = baseIndex, f, h; batch > 0 &&
5640 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5641 >                    addToPendingCount(1);
5642 >                    (rights = new MapReduceEntriesTask<K,V,U>
5643 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5644 >                      rights, transformer, reducer)).fork();
5645 >                }
5646 >                U r = null;
5647 >                for (Node<K,V> p; (p = advance()) != null; ) {
5648 >                    U u;
5649 >                    if ((u = transformer.apply(p)) != null)
5650 >                        r = (r == null) ? u : reducer.apply(r, u);
5651 >                }
5652 >                result = r;
5653 >                CountedCompleter<?> c;
5654 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5655 >                    @SuppressWarnings("unchecked")
5656 >                    MapReduceEntriesTask<K,V,U>
5657 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5658 >                        s = t.rights;
5659 >                    while (s != null) {
5660 >                        U tr, sr;
5661 >                        if ((sr = s.result) != null)
5662 >                            t.result = (((tr = t.result) == null) ? sr :
5663 >                                        reducer.apply(tr, sr));
5664 >                        s = t.rights = s.nextRight;
5665 >                    }
5666 >                }
5667 >            }
5668 >        }
5669 >    }
5670 >
5671 >    @SuppressWarnings("serial")
5672 >    static final class MapReduceMappingsTask<K,V,U>
5673 >        extends BulkTask<K,V,U> {
5674 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5675 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5676 >        U result;
5677 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5678 >        MapReduceMappingsTask
5679 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5680 >             MapReduceMappingsTask<K,V,U> nextRight,
5681 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5682 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5683 >            super(p, b, i, f, t); this.nextRight = nextRight;
5684 >            this.transformer = transformer;
5685 >            this.reducer = reducer;
5686 >        }
5687 >        public final U getRawResult() { return result; }
5688 >        public final void compute() {
5689 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5690 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5691 >            if ((transformer = this.transformer) != null &&
5692 >                (reducer = this.reducer) != null) {
5693 >                for (int i = baseIndex, f, h; batch > 0 &&
5694 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5695 >                    addToPendingCount(1);
5696 >                    (rights = new MapReduceMappingsTask<K,V,U>
5697 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5698 >                      rights, transformer, reducer)).fork();
5699 >                }
5700 >                U r = null;
5701 >                for (Node<K,V> p; (p = advance()) != null; ) {
5702 >                    U u;
5703 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5704 >                        r = (r == null) ? u : reducer.apply(r, u);
5705 >                }
5706 >                result = r;
5707 >                CountedCompleter<?> c;
5708 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5709 >                    @SuppressWarnings("unchecked")
5710 >                    MapReduceMappingsTask<K,V,U>
5711 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5712 >                        s = t.rights;
5713 >                    while (s != null) {
5714 >                        U tr, sr;
5715 >                        if ((sr = s.result) != null)
5716 >                            t.result = (((tr = t.result) == null) ? sr :
5717 >                                        reducer.apply(tr, sr));
5718 >                        s = t.rights = s.nextRight;
5719 >                    }
5720 >                }
5721 >            }
5722 >        }
5723 >    }
5724 >
5725 >    @SuppressWarnings("serial")
5726 >    static final class MapReduceKeysToDoubleTask<K,V>
5727 >        extends BulkTask<K,V,Double> {
5728 >        final ToDoubleFunction<? super K> transformer;
5729 >        final DoubleBinaryOperator reducer;
5730 >        final double basis;
5731 >        double result;
5732 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5733 >        MapReduceKeysToDoubleTask
5734 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5735 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5736 >             ToDoubleFunction<? super K> transformer,
5737 >             double basis,
5738 >             DoubleBinaryOperator reducer) {
5739 >            super(p, b, i, f, t); this.nextRight = nextRight;
5740 >            this.transformer = transformer;
5741 >            this.basis = basis; this.reducer = reducer;
5742 >        }
5743 >        public final Double getRawResult() { return result; }
5744 >        public final void compute() {
5745 >            final ToDoubleFunction<? super K> transformer;
5746 >            final DoubleBinaryOperator reducer;
5747 >            if ((transformer = this.transformer) != null &&
5748 >                (reducer = this.reducer) != null) {
5749 >                double r = this.basis;
5750 >                for (int i = baseIndex, f, h; batch > 0 &&
5751 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5752 >                    addToPendingCount(1);
5753 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5754 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5755 >                      rights, transformer, r, reducer)).fork();
5756 >                }
5757 >                for (Node<K,V> p; (p = advance()) != null; )
5758 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5759 >                result = r;
5760 >                CountedCompleter<?> c;
5761 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5762 >                    @SuppressWarnings("unchecked")
5763 >                    MapReduceKeysToDoubleTask<K,V>
5764 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5765 >                        s = t.rights;
5766 >                    while (s != null) {
5767 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5768 >                        s = t.rights = s.nextRight;
5769 >                    }
5770 >                }
5771 >            }
5772 >        }
5773 >    }
5774 >
5775 >    @SuppressWarnings("serial")
5776 >    static final class MapReduceValuesToDoubleTask<K,V>
5777 >        extends BulkTask<K,V,Double> {
5778 >        final ToDoubleFunction<? super V> transformer;
5779 >        final DoubleBinaryOperator reducer;
5780 >        final double basis;
5781 >        double result;
5782 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5783 >        MapReduceValuesToDoubleTask
5784 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5785 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5786 >             ToDoubleFunction<? super V> transformer,
5787 >             double basis,
5788 >             DoubleBinaryOperator reducer) {
5789 >            super(p, b, i, f, t); this.nextRight = nextRight;
5790 >            this.transformer = transformer;
5791 >            this.basis = basis; this.reducer = reducer;
5792 >        }
5793 >        public final Double getRawResult() { return result; }
5794 >        public final void compute() {
5795 >            final ToDoubleFunction<? super V> transformer;
5796 >            final DoubleBinaryOperator reducer;
5797 >            if ((transformer = this.transformer) != null &&
5798 >                (reducer = this.reducer) != null) {
5799 >                double r = this.basis;
5800 >                for (int i = baseIndex, f, h; batch > 0 &&
5801 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5802 >                    addToPendingCount(1);
5803 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5804 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5805 >                      rights, transformer, r, reducer)).fork();
5806 >                }
5807 >                for (Node<K,V> p; (p = advance()) != null; )
5808 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5809 >                result = r;
5810 >                CountedCompleter<?> c;
5811 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5812 >                    @SuppressWarnings("unchecked")
5813 >                    MapReduceValuesToDoubleTask<K,V>
5814 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5815 >                        s = t.rights;
5816 >                    while (s != null) {
5817 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5818 >                        s = t.rights = s.nextRight;
5819 >                    }
5820 >                }
5821 >            }
5822 >        }
5823 >    }
5824 >
5825 >    @SuppressWarnings("serial")
5826 >    static final class MapReduceEntriesToDoubleTask<K,V>
5827 >        extends BulkTask<K,V,Double> {
5828 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5829 >        final DoubleBinaryOperator reducer;
5830 >        final double basis;
5831 >        double result;
5832 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5833 >        MapReduceEntriesToDoubleTask
5834 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5835 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5836 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5837 >             double basis,
5838 >             DoubleBinaryOperator reducer) {
5839 >            super(p, b, i, f, t); this.nextRight = nextRight;
5840 >            this.transformer = transformer;
5841 >            this.basis = basis; this.reducer = reducer;
5842 >        }
5843 >        public final Double getRawResult() { return result; }
5844 >        public final void compute() {
5845 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5846 >            final DoubleBinaryOperator reducer;
5847 >            if ((transformer = this.transformer) != null &&
5848 >                (reducer = this.reducer) != null) {
5849 >                double r = this.basis;
5850 >                for (int i = baseIndex, f, h; batch > 0 &&
5851 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5852 >                    addToPendingCount(1);
5853 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5854 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5855 >                      rights, transformer, r, reducer)).fork();
5856 >                }
5857 >                for (Node<K,V> p; (p = advance()) != null; )
5858 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5859 >                result = r;
5860 >                CountedCompleter<?> c;
5861 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5862 >                    @SuppressWarnings("unchecked")
5863 >                    MapReduceEntriesToDoubleTask<K,V>
5864 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5865 >                        s = t.rights;
5866 >                    while (s != null) {
5867 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5868 >                        s = t.rights = s.nextRight;
5869 >                    }
5870 >                }
5871 >            }
5872 >        }
5873 >    }
5874 >
5875 >    @SuppressWarnings("serial")
5876 >    static final class MapReduceMappingsToDoubleTask<K,V>
5877 >        extends BulkTask<K,V,Double> {
5878 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5879 >        final DoubleBinaryOperator reducer;
5880 >        final double basis;
5881 >        double result;
5882 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5883 >        MapReduceMappingsToDoubleTask
5884 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5885 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5886 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5887 >             double basis,
5888 >             DoubleBinaryOperator reducer) {
5889 >            super(p, b, i, f, t); this.nextRight = nextRight;
5890 >            this.transformer = transformer;
5891 >            this.basis = basis; this.reducer = reducer;
5892 >        }
5893 >        public final Double getRawResult() { return result; }
5894 >        public final void compute() {
5895 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5896 >            final DoubleBinaryOperator reducer;
5897 >            if ((transformer = this.transformer) != null &&
5898 >                (reducer = this.reducer) != null) {
5899 >                double r = this.basis;
5900 >                for (int i = baseIndex, f, h; batch > 0 &&
5901 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5902 >                    addToPendingCount(1);
5903 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5904 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5905 >                      rights, transformer, r, reducer)).fork();
5906 >                }
5907 >                for (Node<K,V> p; (p = advance()) != null; )
5908 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5909 >                result = r;
5910 >                CountedCompleter<?> c;
5911 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5912 >                    @SuppressWarnings("unchecked")
5913 >                    MapReduceMappingsToDoubleTask<K,V>
5914 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5915 >                        s = t.rights;
5916 >                    while (s != null) {
5917 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5918 >                        s = t.rights = s.nextRight;
5919 >                    }
5920 >                }
5921 >            }
5922 >        }
5923 >    }
5924 >
5925 >    @SuppressWarnings("serial")
5926 >    static final class MapReduceKeysToLongTask<K,V>
5927 >        extends BulkTask<K,V,Long> {
5928 >        final ToLongFunction<? super K> transformer;
5929 >        final LongBinaryOperator reducer;
5930 >        final long basis;
5931 >        long result;
5932 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5933 >        MapReduceKeysToLongTask
5934 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5935 >             MapReduceKeysToLongTask<K,V> nextRight,
5936 >             ToLongFunction<? super K> transformer,
5937 >             long basis,
5938 >             LongBinaryOperator reducer) {
5939 >            super(p, b, i, f, t); this.nextRight = nextRight;
5940 >            this.transformer = transformer;
5941 >            this.basis = basis; this.reducer = reducer;
5942 >        }
5943 >        public final Long getRawResult() { return result; }
5944 >        public final void compute() {
5945 >            final ToLongFunction<? super K> transformer;
5946 >            final LongBinaryOperator reducer;
5947 >            if ((transformer = this.transformer) != null &&
5948 >                (reducer = this.reducer) != null) {
5949 >                long r = this.basis;
5950 >                for (int i = baseIndex, f, h; batch > 0 &&
5951 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5952 >                    addToPendingCount(1);
5953 >                    (rights = new MapReduceKeysToLongTask<K,V>
5954 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5955 >                      rights, transformer, r, reducer)).fork();
5956 >                }
5957 >                for (Node<K,V> p; (p = advance()) != null; )
5958 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5959 >                result = r;
5960 >                CountedCompleter<?> c;
5961 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5962 >                    @SuppressWarnings("unchecked")
5963 >                    MapReduceKeysToLongTask<K,V>
5964 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5965 >                        s = t.rights;
5966 >                    while (s != null) {
5967 >                        t.result = reducer.applyAsLong(t.result, s.result);
5968 >                        s = t.rights = s.nextRight;
5969 >                    }
5970 >                }
5971 >            }
5972 >        }
5973 >    }
5974 >
5975 >    @SuppressWarnings("serial")
5976 >    static final class MapReduceValuesToLongTask<K,V>
5977 >        extends BulkTask<K,V,Long> {
5978 >        final ToLongFunction<? super V> transformer;
5979 >        final LongBinaryOperator reducer;
5980 >        final long basis;
5981 >        long result;
5982 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5983 >        MapReduceValuesToLongTask
5984 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5985 >             MapReduceValuesToLongTask<K,V> nextRight,
5986 >             ToLongFunction<? super V> transformer,
5987 >             long basis,
5988 >             LongBinaryOperator reducer) {
5989 >            super(p, b, i, f, t); this.nextRight = nextRight;
5990 >            this.transformer = transformer;
5991 >            this.basis = basis; this.reducer = reducer;
5992 >        }
5993 >        public final Long getRawResult() { return result; }
5994 >        public final void compute() {
5995 >            final ToLongFunction<? super V> transformer;
5996 >            final LongBinaryOperator reducer;
5997 >            if ((transformer = this.transformer) != null &&
5998 >                (reducer = this.reducer) != null) {
5999 >                long r = this.basis;
6000 >                for (int i = baseIndex, f, h; batch > 0 &&
6001 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6002 >                    addToPendingCount(1);
6003 >                    (rights = new MapReduceValuesToLongTask<K,V>
6004 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6005 >                      rights, transformer, r, reducer)).fork();
6006 >                }
6007 >                for (Node<K,V> p; (p = advance()) != null; )
6008 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6009 >                result = r;
6010 >                CountedCompleter<?> c;
6011 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6012 >                    @SuppressWarnings("unchecked")
6013 >                    MapReduceValuesToLongTask<K,V>
6014 >                        t = (MapReduceValuesToLongTask<K,V>)c,
6015 >                        s = t.rights;
6016 >                    while (s != null) {
6017 >                        t.result = reducer.applyAsLong(t.result, s.result);
6018 >                        s = t.rights = s.nextRight;
6019 >                    }
6020 >                }
6021 >            }
6022 >        }
6023 >    }
6024 >
6025 >    @SuppressWarnings("serial")
6026 >    static final class MapReduceEntriesToLongTask<K,V>
6027 >        extends BulkTask<K,V,Long> {
6028 >        final ToLongFunction<Map.Entry<K,V>> transformer;
6029 >        final LongBinaryOperator reducer;
6030 >        final long basis;
6031 >        long result;
6032 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6033 >        MapReduceEntriesToLongTask
6034 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6035 >             MapReduceEntriesToLongTask<K,V> nextRight,
6036 >             ToLongFunction<Map.Entry<K,V>> transformer,
6037 >             long basis,
6038 >             LongBinaryOperator reducer) {
6039 >            super(p, b, i, f, t); this.nextRight = nextRight;
6040 >            this.transformer = transformer;
6041 >            this.basis = basis; this.reducer = reducer;
6042 >        }
6043 >        public final Long getRawResult() { return result; }
6044 >        public final void compute() {
6045 >            final ToLongFunction<Map.Entry<K,V>> transformer;
6046 >            final LongBinaryOperator reducer;
6047 >            if ((transformer = this.transformer) != null &&
6048 >                (reducer = this.reducer) != null) {
6049 >                long r = this.basis;
6050 >                for (int i = baseIndex, f, h; batch > 0 &&
6051 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6052 >                    addToPendingCount(1);
6053 >                    (rights = new MapReduceEntriesToLongTask<K,V>
6054 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6055 >                      rights, transformer, r, reducer)).fork();
6056 >                }
6057 >                for (Node<K,V> p; (p = advance()) != null; )
6058 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6059 >                result = r;
6060 >                CountedCompleter<?> c;
6061 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6062 >                    @SuppressWarnings("unchecked")
6063 >                    MapReduceEntriesToLongTask<K,V>
6064 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
6065 >                        s = t.rights;
6066 >                    while (s != null) {
6067 >                        t.result = reducer.applyAsLong(t.result, s.result);
6068 >                        s = t.rights = s.nextRight;
6069 >                    }
6070 >                }
6071 >            }
6072 >        }
6073 >    }
6074 >
6075 >    @SuppressWarnings("serial")
6076 >    static final class MapReduceMappingsToLongTask<K,V>
6077 >        extends BulkTask<K,V,Long> {
6078 >        final ToLongBiFunction<? super K, ? super V> transformer;
6079 >        final LongBinaryOperator reducer;
6080 >        final long basis;
6081 >        long result;
6082 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6083 >        MapReduceMappingsToLongTask
6084 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6085 >             MapReduceMappingsToLongTask<K,V> nextRight,
6086 >             ToLongBiFunction<? super K, ? super V> transformer,
6087 >             long basis,
6088 >             LongBinaryOperator reducer) {
6089 >            super(p, b, i, f, t); this.nextRight = nextRight;
6090 >            this.transformer = transformer;
6091 >            this.basis = basis; this.reducer = reducer;
6092 >        }
6093 >        public final Long getRawResult() { return result; }
6094 >        public final void compute() {
6095 >            final ToLongBiFunction<? super K, ? super V> transformer;
6096 >            final LongBinaryOperator reducer;
6097 >            if ((transformer = this.transformer) != null &&
6098 >                (reducer = this.reducer) != null) {
6099 >                long r = this.basis;
6100 >                for (int i = baseIndex, f, h; batch > 0 &&
6101 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6102 >                    addToPendingCount(1);
6103 >                    (rights = new MapReduceMappingsToLongTask<K,V>
6104 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6105 >                      rights, transformer, r, reducer)).fork();
6106 >                }
6107 >                for (Node<K,V> p; (p = advance()) != null; )
6108 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6109 >                result = r;
6110 >                CountedCompleter<?> c;
6111 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6112 >                    @SuppressWarnings("unchecked")
6113 >                    MapReduceMappingsToLongTask<K,V>
6114 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
6115 >                        s = t.rights;
6116 >                    while (s != null) {
6117 >                        t.result = reducer.applyAsLong(t.result, s.result);
6118 >                        s = t.rights = s.nextRight;
6119 >                    }
6120 >                }
6121 >            }
6122 >        }
6123 >    }
6124 >
6125 >    @SuppressWarnings("serial")
6126 >    static final class MapReduceKeysToIntTask<K,V>
6127 >        extends BulkTask<K,V,Integer> {
6128 >        final ToIntFunction<? super K> transformer;
6129 >        final IntBinaryOperator reducer;
6130 >        final int basis;
6131 >        int result;
6132 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6133 >        MapReduceKeysToIntTask
6134 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6135 >             MapReduceKeysToIntTask<K,V> nextRight,
6136 >             ToIntFunction<? super K> transformer,
6137 >             int basis,
6138 >             IntBinaryOperator reducer) {
6139 >            super(p, b, i, f, t); this.nextRight = nextRight;
6140 >            this.transformer = transformer;
6141 >            this.basis = basis; this.reducer = reducer;
6142 >        }
6143 >        public final Integer getRawResult() { return result; }
6144 >        public final void compute() {
6145 >            final ToIntFunction<? super K> transformer;
6146 >            final IntBinaryOperator reducer;
6147 >            if ((transformer = this.transformer) != null &&
6148 >                (reducer = this.reducer) != null) {
6149 >                int r = this.basis;
6150 >                for (int i = baseIndex, f, h; batch > 0 &&
6151 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6152 >                    addToPendingCount(1);
6153 >                    (rights = new MapReduceKeysToIntTask<K,V>
6154 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6155 >                      rights, transformer, r, reducer)).fork();
6156 >                }
6157 >                for (Node<K,V> p; (p = advance()) != null; )
6158 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6159 >                result = r;
6160 >                CountedCompleter<?> c;
6161 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6162 >                    @SuppressWarnings("unchecked")
6163 >                    MapReduceKeysToIntTask<K,V>
6164 >                        t = (MapReduceKeysToIntTask<K,V>)c,
6165 >                        s = t.rights;
6166 >                    while (s != null) {
6167 >                        t.result = reducer.applyAsInt(t.result, s.result);
6168 >                        s = t.rights = s.nextRight;
6169 >                    }
6170 >                }
6171 >            }
6172 >        }
6173 >    }
6174 >
6175 >    @SuppressWarnings("serial")
6176 >    static final class MapReduceValuesToIntTask<K,V>
6177 >        extends BulkTask<K,V,Integer> {
6178 >        final ToIntFunction<? super V> transformer;
6179 >        final IntBinaryOperator reducer;
6180 >        final int basis;
6181 >        int result;
6182 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6183 >        MapReduceValuesToIntTask
6184 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6185 >             MapReduceValuesToIntTask<K,V> nextRight,
6186 >             ToIntFunction<? super V> transformer,
6187 >             int basis,
6188 >             IntBinaryOperator reducer) {
6189 >            super(p, b, i, f, t); this.nextRight = nextRight;
6190 >            this.transformer = transformer;
6191 >            this.basis = basis; this.reducer = reducer;
6192 >        }
6193 >        public final Integer getRawResult() { return result; }
6194 >        public final void compute() {
6195 >            final ToIntFunction<? super V> transformer;
6196 >            final IntBinaryOperator reducer;
6197 >            if ((transformer = this.transformer) != null &&
6198 >                (reducer = this.reducer) != null) {
6199 >                int r = this.basis;
6200 >                for (int i = baseIndex, f, h; batch > 0 &&
6201 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6202 >                    addToPendingCount(1);
6203 >                    (rights = new MapReduceValuesToIntTask<K,V>
6204 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6205 >                      rights, transformer, r, reducer)).fork();
6206 >                }
6207 >                for (Node<K,V> p; (p = advance()) != null; )
6208 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6209 >                result = r;
6210 >                CountedCompleter<?> c;
6211 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6212 >                    @SuppressWarnings("unchecked")
6213 >                    MapReduceValuesToIntTask<K,V>
6214 >                        t = (MapReduceValuesToIntTask<K,V>)c,
6215 >                        s = t.rights;
6216 >                    while (s != null) {
6217 >                        t.result = reducer.applyAsInt(t.result, s.result);
6218 >                        s = t.rights = s.nextRight;
6219 >                    }
6220 >                }
6221 >            }
6222 >        }
6223 >    }
6224 >
6225 >    @SuppressWarnings("serial")
6226 >    static final class MapReduceEntriesToIntTask<K,V>
6227 >        extends BulkTask<K,V,Integer> {
6228 >        final ToIntFunction<Map.Entry<K,V>> transformer;
6229 >        final IntBinaryOperator reducer;
6230 >        final int basis;
6231 >        int result;
6232 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6233 >        MapReduceEntriesToIntTask
6234 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6235 >             MapReduceEntriesToIntTask<K,V> nextRight,
6236 >             ToIntFunction<Map.Entry<K,V>> transformer,
6237 >             int basis,
6238 >             IntBinaryOperator reducer) {
6239 >            super(p, b, i, f, t); this.nextRight = nextRight;
6240 >            this.transformer = transformer;
6241 >            this.basis = basis; this.reducer = reducer;
6242 >        }
6243 >        public final Integer getRawResult() { return result; }
6244 >        public final void compute() {
6245 >            final ToIntFunction<Map.Entry<K,V>> transformer;
6246 >            final IntBinaryOperator reducer;
6247 >            if ((transformer = this.transformer) != null &&
6248 >                (reducer = this.reducer) != null) {
6249 >                int r = this.basis;
6250 >                for (int i = baseIndex, f, h; batch > 0 &&
6251 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6252 >                    addToPendingCount(1);
6253 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6254 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6255 >                      rights, transformer, r, reducer)).fork();
6256 >                }
6257 >                for (Node<K,V> p; (p = advance()) != null; )
6258 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6259 >                result = r;
6260 >                CountedCompleter<?> c;
6261 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6262 >                    @SuppressWarnings("unchecked")
6263 >                    MapReduceEntriesToIntTask<K,V>
6264 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6265 >                        s = t.rights;
6266 >                    while (s != null) {
6267 >                        t.result = reducer.applyAsInt(t.result, s.result);
6268 >                        s = t.rights = s.nextRight;
6269 >                    }
6270 >                }
6271 >            }
6272 >        }
6273 >    }
6274 >
6275 >    @SuppressWarnings("serial")
6276 >    static final class MapReduceMappingsToIntTask<K,V>
6277 >        extends BulkTask<K,V,Integer> {
6278 >        final ToIntBiFunction<? super K, ? super V> transformer;
6279 >        final IntBinaryOperator reducer;
6280 >        final int basis;
6281 >        int result;
6282 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6283 >        MapReduceMappingsToIntTask
6284 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6285 >             MapReduceMappingsToIntTask<K,V> nextRight,
6286 >             ToIntBiFunction<? super K, ? super V> transformer,
6287 >             int basis,
6288 >             IntBinaryOperator reducer) {
6289 >            super(p, b, i, f, t); this.nextRight = nextRight;
6290 >            this.transformer = transformer;
6291 >            this.basis = basis; this.reducer = reducer;
6292 >        }
6293 >        public final Integer getRawResult() { return result; }
6294 >        public final void compute() {
6295 >            final ToIntBiFunction<? super K, ? super V> transformer;
6296 >            final IntBinaryOperator reducer;
6297 >            if ((transformer = this.transformer) != null &&
6298 >                (reducer = this.reducer) != null) {
6299 >                int r = this.basis;
6300 >                for (int i = baseIndex, f, h; batch > 0 &&
6301 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6302 >                    addToPendingCount(1);
6303 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6304 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6305 >                      rights, transformer, r, reducer)).fork();
6306 >                }
6307 >                for (Node<K,V> p; (p = advance()) != null; )
6308 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6309 >                result = r;
6310 >                CountedCompleter<?> c;
6311 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6312 >                    @SuppressWarnings("unchecked")
6313 >                    MapReduceMappingsToIntTask<K,V>
6314 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6315 >                        s = t.rights;
6316 >                    while (s != null) {
6317 >                        t.result = reducer.applyAsInt(t.result, s.result);
6318 >                        s = t.rights = s.nextRight;
6319 >                    }
6320 >                }
6321 >            }
6322          }
6323      }
6324  
6325      // Unsafe mechanics
6326 <    private static final sun.misc.Unsafe UNSAFE;
6327 <    private static final long SBASE;
6328 <    private static final int SSHIFT;
6329 <    private static final long TBASE;
6330 <    private static final int TSHIFT;
6326 >    private static final Unsafe U = Unsafe.getUnsafe();
6327 >    private static final long SIZECTL
6328 >        = U.objectFieldOffset(ConcurrentHashMap.class, "sizeCtl");
6329 >    private static final long TRANSFERINDEX
6330 >        = U.objectFieldOffset(ConcurrentHashMap.class, "transferIndex");
6331 >    private static final long BASECOUNT
6332 >        = U.objectFieldOffset(ConcurrentHashMap.class, "baseCount");
6333 >    private static final long CELLSBUSY
6334 >        = U.objectFieldOffset(ConcurrentHashMap.class, "cellsBusy");
6335 >    private static final long CELLVALUE
6336 >        = U.objectFieldOffset(CounterCell.class, "value");
6337 >    private static final int ABASE = U.arrayBaseOffset(Node[].class);
6338 >    private static final int ASHIFT;
6339  
6340      static {
6341 <        int ss, ts;
6342 <        try {
6343 <            UNSAFE = sun.misc.Unsafe.getUnsafe();
6344 <            Class tc = HashEntry[].class;
6345 <            Class sc = Segment[].class;
6346 <            TBASE = UNSAFE.arrayBaseOffset(tc);
6347 <            SBASE = UNSAFE.arrayBaseOffset(sc);
6348 <            ts = UNSAFE.arrayIndexScale(tc);
1483 <            ss = UNSAFE.arrayIndexScale(sc);
1484 <        } catch (Exception e) {
1485 <            throw new Error(e);
1486 <        }
1487 <        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1488 <            throw new Error("data type scale not a power of two");
1489 <        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1490 <        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
1491 <    }
6341 >        int scale = U.arrayIndexScale(Node[].class);
6342 >        if ((scale & (scale - 1)) != 0)
6343 >            throw new ExceptionInInitializerError("array index scale not a power of two");
6344 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6345 >
6346 >        // Reduce the risk of rare disastrous classloading in first call to
6347 >        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6348 >        Class<?> ensureLoaded = LockSupport.class;
6349  
6350 +        // Eager class load observed to help JIT during startup
6351 +        ensureLoaded = ReservationNode.class;
6352 +    }
6353   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines