ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.211 by jsr166, Wed May 22 16:03:45 2013 UTC vs.
Revision 1.324 by dl, Fri Mar 18 16:01:41 2022 UTC

# Line 5 | Line 5
5   */
6  
7   package java.util.concurrent;
8 < import java.io.Serializable;
8 >
9   import java.io.ObjectStreamField;
10 + import java.io.Serializable;
11   import java.lang.reflect.ParameterizedType;
12   import java.lang.reflect.Type;
13 + import java.util.AbstractMap;
14   import java.util.Arrays;
15   import java.util.Collection;
14 import java.util.Comparator;
15 import java.util.ConcurrentModificationException;
16   import java.util.Enumeration;
17   import java.util.HashMap;
18   import java.util.Hashtable;
# Line 21 | Line 21 | import java.util.Map;
21   import java.util.NoSuchElementException;
22   import java.util.Set;
23   import java.util.Spliterator;
24 import java.util.concurrent.ConcurrentMap;
25 import java.util.concurrent.ForkJoinPool;
24   import java.util.concurrent.atomic.AtomicReference;
25 + import java.util.concurrent.locks.LockSupport;
26   import java.util.concurrent.locks.ReentrantLock;
28 import java.util.concurrent.locks.StampedLock;
27   import java.util.function.BiConsumer;
28   import java.util.function.BiFunction;
31 import java.util.function.BinaryOperator;
29   import java.util.function.Consumer;
30   import java.util.function.DoubleBinaryOperator;
31   import java.util.function.Function;
32   import java.util.function.IntBinaryOperator;
33   import java.util.function.LongBinaryOperator;
34 + import java.util.function.Predicate;
35   import java.util.function.ToDoubleBiFunction;
36   import java.util.function.ToDoubleFunction;
37   import java.util.function.ToIntBiFunction;
# Line 41 | Line 39 | import java.util.function.ToIntFunction;
39   import java.util.function.ToLongBiFunction;
40   import java.util.function.ToLongFunction;
41   import java.util.stream.Stream;
42 + import jdk.internal.misc.Unsafe;
43  
44   /**
45   * A hash table supporting full concurrency of retrievals and
# Line 63 | Line 62 | import java.util.stream.Stream;
62   * that key reporting the updated value.)  For aggregate operations
63   * such as {@code putAll} and {@code clear}, concurrent retrievals may
64   * reflect insertion or removal of only some entries.  Similarly,
65 < * Iterators and Enumerations return elements reflecting the state of
66 < * the hash table at some point at or since the creation of the
65 > * Iterators, Spliterators and Enumerations return elements reflecting the
66 > * state of the hash table at some point at or since the creation of the
67   * iterator/enumeration.  They do <em>not</em> throw {@link
68 < * ConcurrentModificationException}.  However, iterators are designed
69 < * to be used by only one thread at a time.  Bear in mind that the
70 < * results of aggregate status methods including {@code size}, {@code
71 < * isEmpty}, and {@code containsValue} are typically useful only when
72 < * a map is not undergoing concurrent updates in other threads.
68 > * java.util.ConcurrentModificationException ConcurrentModificationException}.
69 > * However, iterators are designed to be used by only one thread at a time.
70 > * Bear in mind that the results of aggregate status methods including
71 > * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 > * useful only when a map is not undergoing concurrent updates in other threads.
73   * Otherwise the results of these methods reflect transient states
74   * that may be adequate for monitoring or estimation purposes, but not
75   * for program control.
# Line 103 | Line 102 | import java.util.stream.Stream;
102   * mapped values are (perhaps transiently) not used or all take the
103   * same mapping value.
104   *
105 < * <p>A ConcurrentHashMap can be used as scalable frequency map (a
105 > * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106   * form of histogram or multiset) by using {@link
107   * java.util.concurrent.atomic.LongAdder} values and initializing via
108   * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109   * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 < * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
110 > * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111   *
112   * <p>This class and its views and iterators implement all of the
113   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
# Line 123 | Line 122 | import java.util.stream.Stream;
122   * being concurrently updated by other threads; for example, when
123   * computing a snapshot summary of the values in a shared registry.
124   * There are three kinds of operation, each with four forms, accepting
125 < * functions with Keys, Values, Entries, and (Key, Value) arguments
126 < * and/or return values. Because the elements of a ConcurrentHashMap
127 < * are not ordered in any particular way, and may be processed in
128 < * different orders in different parallel executions, the correctness
129 < * of supplied functions should not depend on any ordering, or on any
130 < * other objects or values that may transiently change while
131 < * computation is in progress; and except for forEach actions, should
132 < * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
133 < * objects do not support method {@code setValue}.
125 > * functions with keys, values, entries, and (key, value) pairs as
126 > * arguments and/or return values. Because the elements of a
127 > * ConcurrentHashMap are not ordered in any particular way, and may be
128 > * processed in different orders in different parallel executions, the
129 > * correctness of supplied functions should not depend on any
130 > * ordering, or on any other objects or values that may transiently
131 > * change while computation is in progress; and except for forEach
132 > * actions, should ideally be side-effect-free. Bulk operations on
133 > * {@link Map.Entry} objects do not support method {@code setValue}.
134   *
135   * <ul>
136 < * <li> forEach: Perform a given action on each element.
136 > * <li>forEach: Performs a given action on each element.
137   * A variant form applies a given transformation on each element
138 < * before performing the action.</li>
138 > * before performing the action.
139   *
140 < * <li> search: Return the first available non-null result of
140 > * <li>search: Returns the first available non-null result of
141   * applying a given function on each element; skipping further
142 < * search when a result is found.</li>
142 > * search when a result is found.
143   *
144 < * <li> reduce: Accumulate each element.  The supplied reduction
144 > * <li>reduce: Accumulates each element.  The supplied reduction
145   * function cannot rely on ordering (more formally, it should be
146   * both associative and commutative).  There are five variants:
147   *
148   * <ul>
149   *
150 < * <li> Plain reductions. (There is not a form of this method for
150 > * <li>Plain reductions. (There is not a form of this method for
151   * (key, value) function arguments since there is no corresponding
152 < * return type.)</li>
152 > * return type.)
153   *
154 < * <li> Mapped reductions that accumulate the results of a given
155 < * function applied to each element.</li>
154 > * <li>Mapped reductions that accumulate the results of a given
155 > * function applied to each element.
156   *
157 < * <li> Reductions to scalar doubles, longs, and ints, using a
158 < * given basis value.</li>
157 > * <li>Reductions to scalar doubles, longs, and ints, using a
158 > * given basis value.
159   *
160   * </ul>
162 * </li>
161   * </ul>
162   *
163   * <p>These bulk operations accept a {@code parallelismThreshold}
164   * argument. Methods proceed sequentially if the current map size is
165   * estimated to be less than the given threshold. Using a value of
166   * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
167 < * of {@code 1} results in maximal parallelism.  In-between values can
168 < * be used to trade off overhead versus throughput. Parallel forms use
169 < * the {@link ForkJoinPool#commonPool()}.
167 > * of {@code 1} results in maximal parallelism by partitioning into
168 > * enough subtasks to fully utilize the {@link
169 > * ForkJoinPool#commonPool()} that is used for all parallel
170 > * computations. Normally, you would initially choose one of these
171 > * extreme values, and then measure performance of using in-between
172 > * values that trade off overhead versus throughput.
173   *
174   * <p>The concurrency properties of bulk operations follow
175   * from those of ConcurrentHashMap: Any non-null result returned
# Line 223 | Line 224 | import java.util.stream.Stream;
224   * <p>All arguments to all task methods must be non-null.
225   *
226   * <p>This class is a member of the
227 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
227 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
228   * Java Collections Framework</a>.
229   *
230   * @since 1.5
# Line 231 | Line 232 | import java.util.stream.Stream;
232   * @param <K> the type of keys maintained by this map
233   * @param <V> the type of mapped values
234   */
235 < @SuppressWarnings({"unchecked", "rawtypes", "serial"})
236 < public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
235 > public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 >    implements ConcurrentMap<K,V>, Serializable {
237      private static final long serialVersionUID = 7249069246763182397L;
238  
239      /*
# Line 245 | Line 246 | public class ConcurrentHashMap<K,V> impl
246       * the same or better than java.util.HashMap, and to support high
247       * initial insertion rates on an empty table by many threads.
248       *
249 <     * Each key-value mapping is held in a Node.  Because Node key
250 <     * fields can contain special values, they are defined using plain
251 <     * Object types (not type "K"). This leads to a lot of explicit
252 <     * casting (and the use of class-wide warning suppressions).  It
253 <     * also allows some of the public methods to be factored into a
254 <     * smaller number of internal methods (although sadly not so for
255 <     * the five variants of put-related operations). The
256 <     * validation-based approach explained below leads to a lot of
257 <     * code sprawl because retry-control precludes factoring into
258 <     * smaller methods.
249 >     * This map usually acts as a binned (bucketed) hash table.  Each
250 >     * key-value mapping is held in a Node.  Most nodes are instances
251 >     * of the basic Node class with hash, key, value, and next
252 >     * fields. However, various subclasses exist: TreeNodes are
253 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
254 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 >     * of bins during resizing. ReservationNodes are used as
256 >     * placeholders while establishing values in computeIfAbsent and
257 >     * related methods.  The types TreeBin, ForwardingNode, and
258 >     * ReservationNode do not hold normal user keys, values, or
259 >     * hashes, and are readily distinguishable during search etc
260 >     * because they have negative hash fields and null key and value
261 >     * fields. (These special nodes are either uncommon or transient,
262 >     * so the impact of carrying around some unused fields is
263 >     * insignificant.)
264       *
265       * The table is lazily initialized to a power-of-two size upon the
266       * first insertion.  Each bin in the table normally contains a
# Line 262 | Line 268 | public class ConcurrentHashMap<K,V> impl
268       * Table accesses require volatile/atomic reads, writes, and
269       * CASes.  Because there is no other way to arrange this without
270       * adding further indirections, we use intrinsics
271 <     * (sun.misc.Unsafe) operations.
271 >     * (jdk.internal.misc.Unsafe) operations.
272       *
273       * We use the top (sign) bit of Node hash fields for control
274       * purposes -- it is available anyway because of addressing
275 <     * constraints.  Nodes with negative hash fields are forwarding
276 <     * nodes to either TreeBins or resized tables.  The lower 31 bits
271 <     * of each normal Node's hash field contain a transformation of
272 <     * the key's hash code.
275 >     * constraints.  Nodes with negative hash fields are specially
276 >     * handled or ignored in map methods.
277       *
278       * Insertion (via put or its variants) of the first node in an
279       * empty bin is performed by just CASing it to the bin.  This is
# Line 319 | Line 323 | public class ConcurrentHashMap<K,V> impl
323       * sometimes deviate significantly from uniform randomness.  This
324       * includes the case when N > (1<<30), so some keys MUST collide.
325       * Similarly for dumb or hostile usages in which multiple keys are
326 <     * designed to have identical hash codes. Also, although we guard
327 <     * against the worst effects of this (see method spread), sets of
328 <     * hashes may differ only in bits that do not impact their bin
329 <     * index for a given power-of-two mask.  So we use a secondary
330 <     * strategy that applies when the number of nodes in a bin exceeds
331 <     * a threshold, and at least one of the keys implements
328 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
329 <     * (a specialized form of red-black trees), bounding search time
330 <     * to O(log N).  Each search step in a TreeBin is at least twice as
326 >     * designed to have identical hash codes or ones that differs only
327 >     * in masked-out high bits. So we use a secondary strategy that
328 >     * applies when the number of nodes in a bin exceeds a
329 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
330 >     * specialized form of red-black trees), bounding search time to
331 >     * O(log N).  Each search step in a TreeBin is at least twice as
332       * slow as in a regular list, but given that N cannot exceed
333       * (1<<64) (before running out of addresses) this bounds search
334       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 340 | Line 341 | public class ConcurrentHashMap<K,V> impl
341       * The table is resized when occupancy exceeds a percentage
342       * threshold (nominally, 0.75, but see below).  Any thread
343       * noticing an overfull bin may assist in resizing after the
344 <     * initiating thread allocates and sets up the replacement
345 <     * array. However, rather than stalling, these other threads may
346 <     * proceed with insertions etc.  The use of TreeBins shields us
347 <     * from the worst case effects of overfilling while resizes are in
344 >     * initiating thread allocates and sets up the replacement array.
345 >     * However, rather than stalling, these other threads may proceed
346 >     * with insertions etc.  The use of TreeBins shields us from the
347 >     * worst case effects of overfilling while resizes are in
348       * progress.  Resizing proceeds by transferring bins, one by one,
349 <     * from the table to the next table. To enable concurrency, the
350 <     * next table must be (incrementally) prefilled with place-holders
351 <     * serving as reverse forwarders to the old table.  Because we are
349 >     * from the table to the next table. However, threads claim small
350 >     * blocks of indices to transfer (via field transferIndex) before
351 >     * doing so, reducing contention.  A generation stamp in field
352 >     * sizeCtl ensures that resizings do not overlap. Because we are
353       * using power-of-two expansion, the elements from each bin must
354       * either stay at same index, or move with a power of two
355       * offset. We eliminate unnecessary node creation by catching
356       * cases where old nodes can be reused because their next fields
357       * won't change.  On average, only about one-sixth of them need
358       * cloning when a table doubles. The nodes they replace will be
359 <     * garbage collectable as soon as they are no longer referenced by
359 >     * garbage collectible as soon as they are no longer referenced by
360       * any reader thread that may be in the midst of concurrently
361       * traversing table.  Upon transfer, the old table bin contains
362       * only a special forwarding node (with hash field "MOVED") that
# Line 368 | Line 370 | public class ConcurrentHashMap<K,V> impl
370       * locks, average aggregate waits become shorter as resizing
371       * progresses.  The transfer operation must also ensure that all
372       * accessible bins in both the old and new table are usable by any
373 <     * traversal.  This is arranged by proceeding from the last bin
374 <     * (table.length - 1) up towards the first.  Upon seeing a
375 <     * forwarding node, traversals (see class Traverser) arrange to
376 <     * move to the new table without revisiting nodes.  However, to
377 <     * ensure that no intervening nodes are skipped, bin splitting can
378 <     * only begin after the associated reverse-forwarders are in
379 <     * place.
373 >     * traversal.  This is arranged in part by proceeding from the
374 >     * last bin (table.length - 1) up towards the first.  Upon seeing
375 >     * a forwarding node, traversals (see class Traverser) arrange to
376 >     * move to the new table without revisiting nodes.  To ensure that
377 >     * no intervening nodes are skipped even when moved out of order,
378 >     * a stack (see class TableStack) is created on first encounter of
379 >     * a forwarding node during a traversal, to maintain its place if
380 >     * later processing the current table. The need for these
381 >     * save/restore mechanics is relatively rare, but when one
382 >     * forwarding node is encountered, typically many more will be.
383 >     * So Traversers use a simple caching scheme to avoid creating so
384 >     * many new TableStack nodes. (Thanks to Peter Levart for
385 >     * suggesting use of a stack here.)
386       *
387       * The traversal scheme also applies to partial traversals of
388       * ranges of bins (via an alternate Traverser constructor)
# Line 393 | Line 401 | public class ConcurrentHashMap<K,V> impl
401       * LongAdder. We need to incorporate a specialization rather than
402       * just use a LongAdder in order to access implicit
403       * contention-sensing that leads to creation of multiple
404 <     * Cells.  The counter mechanics avoid contention on
404 >     * CounterCells.  The counter mechanics avoid contention on
405       * updates but can encounter cache thrashing if read too
406       * frequently during concurrent access. To avoid reading so often,
407       * resizing under contention is attempted only upon adding to a
408       * bin already holding two or more nodes. Under uniform hash
409       * distributions, the probability of this occurring at threshold
410       * is around 13%, meaning that only about 1 in 8 puts check
411 <     * threshold (and after resizing, many fewer do so). The bulk
412 <     * putAll operation further reduces contention by only committing
413 <     * count updates upon these size checks.
411 >     * threshold (and after resizing, many fewer do so).
412 >     *
413 >     * TreeBins use a special form of comparison for search and
414 >     * related operations (which is the main reason we cannot use
415 >     * existing collections such as TreeMaps). TreeBins contain
416 >     * Comparable elements, but may contain others, as well as
417 >     * elements that are Comparable but not necessarily Comparable for
418 >     * the same T, so we cannot invoke compareTo among them. To handle
419 >     * this, the tree is ordered primarily by hash value, then by
420 >     * Comparable.compareTo order if applicable.  On lookup at a node,
421 >     * if elements are not comparable or compare as 0 then both left
422 >     * and right children may need to be searched in the case of tied
423 >     * hash values. (This corresponds to the full list search that
424 >     * would be necessary if all elements were non-Comparable and had
425 >     * tied hashes.) On insertion, to keep a total ordering (or as
426 >     * close as is required here) across rebalancings, we compare
427 >     * classes and identityHashCodes as tie-breakers. The red-black
428 >     * balancing code is updated from pre-jdk-collections
429 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 >     * Algorithms" (CLR).
432 >     *
433 >     * TreeBins also require an additional locking mechanism.  While
434 >     * list traversal is always possible by readers even during
435 >     * updates, tree traversal is not, mainly because of tree-rotations
436 >     * that may change the root node and/or its linkages.  TreeBins
437 >     * include a simple read-write lock mechanism parasitic on the
438 >     * main bin-synchronization strategy: Structural adjustments
439 >     * associated with an insertion or removal are already bin-locked
440 >     * (and so cannot conflict with other writers) but must wait for
441 >     * ongoing readers to finish. Since there can be only one such
442 >     * waiter, we use a simple scheme using a single "waiter" field to
443 >     * block writers.  However, readers need never block.  If the root
444 >     * lock is held, they proceed along the slow traversal path (via
445 >     * next-pointers) until the lock becomes available or the list is
446 >     * exhausted, whichever comes first. These cases are not fast, but
447 >     * maximize aggregate expected throughput.
448       *
449       * Maintaining API and serialization compatibility with previous
450       * versions of this class introduces several oddities. Mainly: We
451 <     * leave untouched but unused constructor arguments refering to
451 >     * leave untouched but unused constructor arguments referring to
452       * concurrencyLevel. We accept a loadFactor constructor argument,
453       * but apply it only to initial table capacity (which is the only
454       * time that we can guarantee to honor it.) We also declare an
455       * unused "Segment" class that is instantiated in minimal form
456       * only when serializing.
457 +     *
458 +     * Also, solely for compatibility with previous versions of this
459 +     * class, it extends AbstractMap, even though all of its methods
460 +     * are overridden, so it is just useless baggage.
461 +     *
462 +     * This file is organized to make things a little easier to follow
463 +     * while reading than they might otherwise: First the main static
464 +     * declarations and utilities, then fields, then main public
465 +     * methods (with a few factorings of multiple public methods into
466 +     * internal ones), then sizing methods, trees, traversers, and
467 +     * bulk operations.
468       */
469  
470      /* ---------------- Constants -------------- */
# Line 454 | Line 507 | public class ConcurrentHashMap<K,V> impl
507  
508      /**
509       * The bin count threshold for using a tree rather than list for a
510 <     * bin.  The value reflects the approximate break-even point for
511 <     * using tree-based operations.
510 >     * bin.  Bins are converted to trees when adding an element to a
511 >     * bin with at least this many nodes. The value must be greater
512 >     * than 2, and should be at least 8 to mesh with assumptions in
513 >     * tree removal about conversion back to plain bins upon
514 >     * shrinkage.
515 >     */
516 >    static final int TREEIFY_THRESHOLD = 8;
517 >
518 >    /**
519 >     * The bin count threshold for untreeifying a (split) bin during a
520 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 >     * most 6 to mesh with shrinkage detection under removal.
522 >     */
523 >    static final int UNTREEIFY_THRESHOLD = 6;
524 >
525 >    /**
526 >     * The smallest table capacity for which bins may be treeified.
527 >     * (Otherwise the table is resized if too many nodes in a bin.)
528 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 >     * conflicts between resizing and treeification thresholds.
530       */
531 <    private static final int TREE_THRESHOLD = 8;
531 >    static final int MIN_TREEIFY_CAPACITY = 64;
532  
533      /**
534       * Minimum number of rebinnings per transfer step. Ranges are
# Line 468 | Line 539 | public class ConcurrentHashMap<K,V> impl
539       */
540      private static final int MIN_TRANSFER_STRIDE = 16;
541  
542 +    /**
543 +     * The number of bits used for generation stamp in sizeCtl.
544 +     * Must be at least 6 for 32bit arrays.
545 +     */
546 +    private static final int RESIZE_STAMP_BITS = 16;
547 +
548 +    /**
549 +     * The maximum number of threads that can help resize.
550 +     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 +     */
552 +    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553 +
554 +    /**
555 +     * The bit shift for recording size stamp in sizeCtl.
556 +     */
557 +    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558 +
559      /*
560       * Encodings for Node hash fields. See above for explanation.
561       */
562 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
562 >    static final int MOVED     = -1; // hash for forwarding nodes
563 >    static final int TREEBIN   = -2; // hash for roots of trees
564 >    static final int RESERVED  = -3; // hash for transient reservations
565      static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566  
567      /** Number of CPUS, to place bounds on some sizings */
568      static final int NCPU = Runtime.getRuntime().availableProcessors();
569  
570 <    /** For serialization compatibility. */
570 >    /**
571 >     * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 >     * @serialField segments Segment[]
573 >     *   The segments, each of which is a specialized hash table.
574 >     * @serialField segmentMask int
575 >     *   Mask value for indexing into segments. The upper bits of a
576 >     *   key's hash code are used to choose the segment.
577 >     * @serialField segmentShift int
578 >     *   Shift value for indexing within segments.
579 >     */
580      private static final ObjectStreamField[] serialPersistentFields = {
581          new ObjectStreamField("segments", Segment[].class),
582          new ObjectStreamField("segmentMask", Integer.TYPE),
583 <        new ObjectStreamField("segmentShift", Integer.TYPE)
583 >        new ObjectStreamField("segmentShift", Integer.TYPE),
584      };
585  
586 +    /* ---------------- Nodes -------------- */
587 +
588      /**
589 <     * A padded cell for distributing counts.  Adapted from LongAdder
590 <     * and Striped64.  See their internal docs for explanation.
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595       */
596 <    @sun.misc.Contended static final class Cell {
597 <        volatile long value;
598 <        Cell(long x) { value = x; }
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597 >        final int hash;
598 >        final K key;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601 >
602 >        Node(int hash, K key, V val) {
603 >            this.hash = hash;
604 >            this.key = key;
605 >            this.val = val;
606 >        }
607 >
608 >        Node(int hash, K key, V val, Node<K,V> next) {
609 >            this(hash, key, val);
610 >            this.next = next;
611 >        }
612 >
613 >        public final K getKey()     { return key; }
614 >        public final V getValue()   { return val; }
615 >        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 >        public final String toString() {
617 >            return Helpers.mapEntryToString(key, val);
618 >        }
619 >        public final V setValue(V value) {
620 >            throw new UnsupportedOperationException();
621 >        }
622 >
623 >        public final boolean equals(Object o) {
624 >            Object k, v, u; Map.Entry<?,?> e;
625 >            return ((o instanceof Map.Entry) &&
626 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 >                    (v = e.getValue()) != null &&
628 >                    (k == key || k.equals(key)) &&
629 >                    (v == (u = val) || v.equals(u)));
630 >        }
631 >
632 >        /**
633 >         * Virtualized support for map.get(); overridden in subclasses.
634 >         */
635 >        Node<K,V> find(int h, Object k) {
636 >            Node<K,V> e = this;
637 >            if (k != null) {
638 >                do {
639 >                    K ek;
640 >                    if (e.hash == h &&
641 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 >                        return e;
643 >                } while ((e = e.next) != null);
644 >            }
645 >            return null;
646 >        }
647 >    }
648 >
649 >    /* ---------------- Static utilities -------------- */
650 >
651 >    /**
652 >     * Spreads (XORs) higher bits of hash to lower and also forces top
653 >     * bit to 0. Because the table uses power-of-two masking, sets of
654 >     * hashes that vary only in bits above the current mask will
655 >     * always collide. (Among known examples are sets of Float keys
656 >     * holding consecutive whole numbers in small tables.)  So we
657 >     * apply a transform that spreads the impact of higher bits
658 >     * downward. There is a tradeoff between speed, utility, and
659 >     * quality of bit-spreading. Because many common sets of hashes
660 >     * are already reasonably distributed (so don't benefit from
661 >     * spreading), and because we use trees to handle large sets of
662 >     * collisions in bins, we just XOR some shifted bits in the
663 >     * cheapest possible way to reduce systematic lossage, as well as
664 >     * to incorporate impact of the highest bits that would otherwise
665 >     * never be used in index calculations because of table bounds.
666 >     */
667 >    static final int spread(int h) {
668 >        return (h ^ (h >>> 16)) & HASH_BITS;
669 >    }
670 >
671 >    /**
672 >     * Returns a power of two table size for the given desired capacity.
673 >     * See Hackers Delight, sec 3.2
674 >     */
675 >    private static final int tableSizeFor(int c) {
676 >        int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678 >    }
679 >
680 >    /**
681 >     * Returns x's Class if it is of the form "class C implements
682 >     * Comparable<C>", else null.
683 >     */
684 >    static Class<?> comparableClassFor(Object x) {
685 >        if (x instanceof Comparable) {
686 >            Class<?> c; Type[] ts, as; ParameterizedType p;
687 >            if ((c = x.getClass()) == String.class) // bypass checks
688 >                return c;
689 >            if ((ts = c.getGenericInterfaces()) != null) {
690 >                for (Type t : ts) {
691 >                    if ((t instanceof ParameterizedType) &&
692 >                        ((p = (ParameterizedType)t).getRawType() ==
693 >                         Comparable.class) &&
694 >                        (as = p.getActualTypeArguments()) != null &&
695 >                        as.length == 1 && as[0] == c) // type arg is c
696 >                        return c;
697 >                }
698 >            }
699 >        }
700 >        return null;
701 >    }
702 >
703 >    /**
704 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 >     * class), else 0.
706 >     */
707 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 >    static int compareComparables(Class<?> kc, Object k, Object x) {
709 >        return (x == null || x.getClass() != kc ? 0 :
710 >                ((Comparable)k).compareTo(x));
711 >    }
712 >
713 >    /* ---------------- Table element access -------------- */
714 >
715 >    /*
716 >     * Atomic access methods are used for table elements as well as
717 >     * elements of in-progress next table while resizing.  All uses of
718 >     * the tab arguments must be null checked by callers.  All callers
719 >     * also paranoically precheck that tab's length is not zero (or an
720 >     * equivalent check), thus ensuring that any index argument taking
721 >     * the form of a hash value anded with (length - 1) is a valid
722 >     * index.  Note that, to be correct wrt arbitrary concurrency
723 >     * errors by users, these checks must operate on local variables,
724 >     * which accounts for some odd-looking inline assignments below.
725 >     * Note that calls to setTabAt always occur within locked regions,
726 >     * and so require only release ordering.
727 >     */
728 >
729 >    @SuppressWarnings("unchecked")
730 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 >        return (Node<K,V>)U.getReferenceAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 >    }
733 >
734 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 >                                        Node<K,V> c, Node<K,V> v) {
736 >        return U.compareAndSetReference(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 >    }
738 >
739 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 >        U.putReferenceRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741      }
742  
743      /* ---------------- Fields -------------- */
# Line 529 | Line 776 | public class ConcurrentHashMap<K,V> impl
776      private transient volatile int transferIndex;
777  
778      /**
779 <     * The least available table index to split while resizing.
533 <     */
534 <    private transient volatile int transferOrigin;
535 <
536 <    /**
537 <     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
779 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780       */
781      private transient volatile int cellsBusy;
782  
783      /**
784       * Table of counter cells. When non-null, size is a power of 2.
785       */
786 <    private transient volatile Cell[] counterCells;
786 >    private transient volatile CounterCell[] counterCells;
787  
788      // views
789      private transient KeySetView<K,V> keySet;
790      private transient ValuesView<K,V> values;
791      private transient EntrySetView<K,V> entrySet;
792  
551    /* ---------------- Table element access -------------- */
793  
794 <    /*
554 <     * Volatile access methods are used for table elements as well as
555 <     * elements of in-progress next table while resizing.  Uses are
556 <     * null checked by callers, and implicitly bounds-checked, relying
557 <     * on the invariants that tab arrays have non-zero size, and all
558 <     * indices are masked with (tab.length - 1) which is never
559 <     * negative and always less than length. Note that, to be correct
560 <     * wrt arbitrary concurrency errors by users, bounds checks must
561 <     * operate on local variables, which accounts for some odd-looking
562 <     * inline assignments below.
563 <     */
794 >    /* ---------------- Public operations -------------- */
795  
796 <    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
797 <        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
796 >    /**
797 >     * Creates a new, empty map with the default initial table size (16).
798 >     */
799 >    public ConcurrentHashMap() {
800      }
801  
802 <    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
803 <                                        Node<K,V> c, Node<K,V> v) {
804 <        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
802 >    /**
803 >     * Creates a new, empty map with an initial table size
804 >     * accommodating the specified number of elements without the need
805 >     * to dynamically resize.
806 >     *
807 >     * @param initialCapacity The implementation performs internal
808 >     * sizing to accommodate this many elements.
809 >     * @throws IllegalArgumentException if the initial capacity of
810 >     * elements is negative
811 >     */
812 >    public ConcurrentHashMap(int initialCapacity) {
813 >        this(initialCapacity, LOAD_FACTOR, 1);
814      }
815  
816 <    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
817 <        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
816 >    /**
817 >     * Creates a new map with the same mappings as the given map.
818 >     *
819 >     * @param m the map
820 >     */
821 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 >        this.sizeCtl = DEFAULT_CAPACITY;
823 >        putAll(m);
824      }
825  
578    /* ---------------- Nodes -------------- */
579
826      /**
827 <     * Key-value entry.  This class is never exported out as a
828 <     * user-mutable Map.Entry (i.e., one supporting setValue; see
829 <     * MapEntry below), but can be used for read-only traversals used
830 <     * in curom bulk tasks.  Nodes with a hash field of MOVED are
831 <     * special, and do not contain user keys or values (and are never
832 <     * exported).  Otherwise, keys and vals are never null.
827 >     * Creates a new, empty map with an initial table size based on
828 >     * the given number of elements ({@code initialCapacity}) and
829 >     * initial table density ({@code loadFactor}).
830 >     *
831 >     * @param initialCapacity the initial capacity. The implementation
832 >     * performs internal sizing to accommodate this many elements,
833 >     * given the specified load factor.
834 >     * @param loadFactor the load factor (table density) for
835 >     * establishing the initial table size
836 >     * @throws IllegalArgumentException if the initial capacity of
837 >     * elements is negative or the load factor is nonpositive
838 >     *
839 >     * @since 1.6
840       */
841 <    static class Node<K,V> implements Map.Entry<K,V> {
842 <        final int hash;
590 <        final Object key;
591 <        volatile V val;
592 <        Node<K,V> next;
593 <
594 <        Node(int hash, Object key, V val, Node<K,V> next) {
595 <            this.hash = hash;
596 <            this.key = key;
597 <            this.val = val;
598 <            this.next = next;
599 <        }
600 <
601 <        public final K getKey()       { return (K)key; }
602 <        public final V getValue()     { return val; }
603 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
604 <        public final String toString(){ return key + "=" + val; }
605 <        public final V setValue(V value) {
606 <            throw new UnsupportedOperationException();
607 <        }
608 <
609 <        public final boolean equals(Object o) {
610 <            Object k, v, u; Map.Entry<?,?> e;
611 <            return ((o instanceof Map.Entry) &&
612 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
613 <                    (v = e.getValue()) != null &&
614 <                    (k == key || k.equals(key)) &&
615 <                    (v == (u = val) || v.equals(u)));
616 <        }
841 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 >        this(initialCapacity, loadFactor, 1);
843      }
844  
845      /**
846 <     * Exported Entry for EntryIterator
846 >     * Creates a new, empty map with an initial table size based on
847 >     * the given number of elements ({@code initialCapacity}), initial
848 >     * table density ({@code loadFactor}), and number of concurrently
849 >     * updating threads ({@code concurrencyLevel}).
850 >     *
851 >     * @param initialCapacity the initial capacity. The implementation
852 >     * performs internal sizing to accommodate this many elements,
853 >     * given the specified load factor.
854 >     * @param loadFactor the load factor (table density) for
855 >     * establishing the initial table size
856 >     * @param concurrencyLevel the estimated number of concurrently
857 >     * updating threads. The implementation may use this value as
858 >     * a sizing hint.
859 >     * @throws IllegalArgumentException if the initial capacity is
860 >     * negative or the load factor or concurrencyLevel are
861 >     * nonpositive
862       */
863 <    static final class MapEntry<K,V> implements Map.Entry<K,V> {
864 <        final K key; // non-null
865 <        V val;       // non-null
866 <        final ConcurrentHashMap<K,V> map;
867 <        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
868 <            this.key = key;
869 <            this.val = val;
870 <            this.map = map;
871 <        }
872 <        public K getKey()        { return key; }
632 <        public V getValue()      { return val; }
633 <        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
634 <        public String toString() { return key + "=" + val; }
635 <
636 <        public boolean equals(Object o) {
637 <            Object k, v; Map.Entry<?,?> e;
638 <            return ((o instanceof Map.Entry) &&
639 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
640 <                    (v = e.getValue()) != null &&
641 <                    (k == key || k.equals(key)) &&
642 <                    (v == val || v.equals(val)));
643 <        }
644 <
645 <        /**
646 <         * Sets our entry's value and writes through to the map. The
647 <         * value to return is somewhat arbitrary here. Since we do not
648 <         * necessarily track asynchronous changes, the most recent
649 <         * "previous" value could be different from what we return (or
650 <         * could even have been removed in which case the put will
651 <         * re-establish). We do not and cannot guarantee more.
652 <         */
653 <        public V setValue(V value) {
654 <            if (value == null) throw new NullPointerException();
655 <            V v = val;
656 <            val = value;
657 <            map.put(key, value);
658 <            return v;
659 <        }
863 >    public ConcurrentHashMap(int initialCapacity,
864 >                             float loadFactor, int concurrencyLevel) {
865 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 >            throw new IllegalArgumentException();
867 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
868 >            initialCapacity = concurrencyLevel;   // as estimated threads
869 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 >        this.sizeCtl = cap;
873      }
874  
875 <
663 <    /* ---------------- TreeBins -------------- */
875 >    // Original (since JDK1.2) Map methods
876  
877      /**
878 <     * Nodes for use in TreeBins
878 >     * {@inheritDoc}
879       */
880 <    static final class TreeNode<K,V> extends Node<K,V> {
881 <        TreeNode<K,V> parent;  // red-black tree links
882 <        TreeNode<K,V> left;
883 <        TreeNode<K,V> right;
884 <        TreeNode<K,V> prev;    // needed to unlink next upon deletion
885 <        boolean red;
880 >    public int size() {
881 >        long n = sumCount();
882 >        return ((n < 0L) ? 0 :
883 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 >                (int)n);
885 >    }
886  
887 <        TreeNode(int hash, Object key, V val, Node<K,V> next,
888 <                 TreeNode<K,V> parent) {
889 <            super(hash, key, val, next);
890 <            this.parent = parent;
891 <        }
887 >    /**
888 >     * {@inheritDoc}
889 >     */
890 >    public boolean isEmpty() {
891 >        return sumCount() <= 0L; // ignore transient negative values
892      }
893  
894      /**
895 <     * Returns a Class for the given object of the form "class C
896 <     * implements Comparable<C>", if one exists, else null.  See below
897 <     * for explanation.
895 >     * Returns the value to which the specified key is mapped,
896 >     * or {@code null} if this map contains no mapping for the key.
897 >     *
898 >     * <p>More formally, if this map contains a mapping from a key
899 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 >     * then this method returns {@code v}; otherwise it returns
901 >     * {@code null}.  (There can be at most one such mapping.)
902 >     *
903 >     * @throws NullPointerException if the specified key is null
904       */
905 <    static Class<?> comparableClassFor(Object x) {
906 <        Class<?> c, s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
907 <        if ((c = x.getClass()) == String.class) // bypass checks
908 <            return c;
909 <        if ((cmpc = Comparable.class).isAssignableFrom(c)) {
910 <            while (cmpc.isAssignableFrom(s = c.getSuperclass()))
911 <                c = s; // find topmost comparable class
912 <            if ((ts = c.getGenericInterfaces()) != null) {
913 <                for (int i = 0; i < ts.length; ++i) {
914 <                    if (((t = ts[i]) instanceof ParameterizedType) &&
915 <                        ((p = (ParameterizedType)t).getRawType() == cmpc) &&
916 <                        (as = p.getActualTypeArguments()) != null &&
917 <                        as.length == 1 && as[0] == c) // type arg is c
918 <                        return c;
919 <                }
905 >    public V get(Object key) {
906 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 >        int h = spread(key.hashCode());
908 >        if ((tab = table) != null && (n = tab.length) > 0 &&
909 >            (e = tabAt(tab, (n - 1) & h)) != null) {
910 >            if ((eh = e.hash) == h) {
911 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 >                    return e.val;
913 >            }
914 >            else if (eh < 0)
915 >                return (p = e.find(h, key)) != null ? p.val : null;
916 >            while ((e = e.next) != null) {
917 >                if (e.hash == h &&
918 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 >                    return e.val;
920              }
921          }
922          return null;
923      }
924  
925      /**
926 <     * A specialized form of red-black tree for use in bins
709 <     * whose size exceeds a threshold.
710 <     *
711 <     * TreeBins use a special form of comparison for search and
712 <     * related operations (which is the main reason we cannot use
713 <     * existing collections such as TreeMaps). TreeBins contain
714 <     * Comparable elements, but may contain others, as well as
715 <     * elements that are Comparable but not necessarily Comparable
716 <     * for the same T, so we cannot invoke compareTo among them. To
717 <     * handle this, the tree is ordered primarily by hash value, then
718 <     * by Comparable.compareTo order if applicable.  On lookup at a
719 <     * node, if elements are not comparable or compare as 0 then both
720 <     * left and right children may need to be searched in the case of
721 <     * tied hash values. (This corresponds to the full list search
722 <     * that would be necessary if all elements were non-Comparable and
723 <     * had tied hashes.)  The red-black balancing code is updated from
724 <     * pre-jdk-collections
725 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 <     * Algorithms" (CLR).
926 >     * Tests if the specified object is a key in this table.
927       *
928 <     * TreeBins also maintain a separate locking discipline than
929 <     * regular bins. Because they are forwarded via special MOVED
930 <     * nodes at bin heads (which can never change once established),
931 <     * we cannot use those nodes as locks. Instead, TreeBin extends
932 <     * StampedLock to support a form of read-write lock. For update
734 <     * operations and table validation, the exclusive form of lock
735 <     * behaves in the same way as bin-head locks. However, lookups use
736 <     * shared read-lock mechanics to allow multiple readers in the
737 <     * absence of writers.  Additionally, these lookups do not ever
738 <     * block: While the lock is not available, they proceed along the
739 <     * slow traversal path (via next-pointers) until the lock becomes
740 <     * available or the list is exhausted, whichever comes
741 <     * first. These cases are not fast, but maximize aggregate
742 <     * expected throughput.
928 >     * @param  key possible key
929 >     * @return {@code true} if and only if the specified object
930 >     *         is a key in this table, as determined by the
931 >     *         {@code equals} method; {@code false} otherwise
932 >     * @throws NullPointerException if the specified key is null
933       */
934 <    static final class TreeBin<K,V> extends StampedLock {
935 <        private static final long serialVersionUID = 2249069246763182397L;
936 <        transient TreeNode<K,V> root;  // root of tree
747 <        transient TreeNode<K,V> first; // head of next-pointer list
934 >    public boolean containsKey(Object key) {
935 >        return get(key) != null;
936 >    }
937  
938 <        /** From CLR */
939 <        private void rotateLeft(TreeNode<K,V> p) {
940 <            if (p != null) {
941 <                TreeNode<K,V> r = p.right, pp, rl;
942 <                if ((rl = p.right = r.left) != null)
943 <                    rl.parent = p;
944 <                if ((pp = r.parent = p.parent) == null)
945 <                    root = r;
946 <                else if (pp.left == p)
947 <                    pp.left = r;
948 <                else
949 <                    pp.right = r;
950 <                r.left = p;
951 <                p.parent = r;
938 >    /**
939 >     * Returns {@code true} if this map maps one or more keys to the
940 >     * specified value. Note: This method may require a full traversal
941 >     * of the map, and is much slower than method {@code containsKey}.
942 >     *
943 >     * @param value value whose presence in this map is to be tested
944 >     * @return {@code true} if this map maps one or more keys to the
945 >     *         specified value
946 >     * @throws NullPointerException if the specified value is null
947 >     */
948 >    public boolean containsValue(Object value) {
949 >        if (value == null)
950 >            throw new NullPointerException();
951 >        Node<K,V>[] t;
952 >        if ((t = table) != null) {
953 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
955 >                V v;
956 >                if ((v = p.val) == value || (v != null && value.equals(v)))
957 >                    return true;
958              }
959          }
960 +        return false;
961 +    }
962  
963 <        /** From CLR */
964 <        private void rotateRight(TreeNode<K,V> p) {
965 <            if (p != null) {
966 <                TreeNode<K,V> l = p.left, pp, lr;
967 <                if ((lr = p.left = l.right) != null)
968 <                    lr.parent = p;
969 <                if ((pp = l.parent = p.parent) == null)
970 <                    root = l;
971 <                else if (pp.right == p)
972 <                    pp.right = l;
973 <                else
974 <                    pp.left = l;
975 <                l.right = p;
976 <                p.parent = l;
977 <            }
978 <        }
963 >    /**
964 >     * Maps the specified key to the specified value in this table.
965 >     * Neither the key nor the value can be null.
966 >     *
967 >     * <p>The value can be retrieved by calling the {@code get} method
968 >     * with a key that is equal to the original key.
969 >     *
970 >     * @param key key with which the specified value is to be associated
971 >     * @param value value to be associated with the specified key
972 >     * @return the previous value associated with {@code key}, or
973 >     *         {@code null} if there was no mapping for {@code key}
974 >     * @throws NullPointerException if the specified key or value is null
975 >     */
976 >    public V put(K key, V value) {
977 >        return putVal(key, value, false);
978 >    }
979  
980 <        /**
981 <         * Returns the TreeNode (or null if not found) for the given key
982 <         * starting at given root.
983 <         */
984 <        final TreeNode<K,V> getTreeNode(int h, Object k, TreeNode<K,V> p,
985 <                                        Class<?> cc) {
986 <            while (p != null) {
987 <                int dir, ph; Object pk;
988 <                if ((ph = p.hash) != h)
989 <                    dir = (h < ph) ? -1 : 1;
990 <                else if ((pk = p.key) == k || k.equals(pk))
991 <                    return p;
795 <                else if (cc == null || comparableClassFor(pk) != cc ||
796 <                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
797 <                    TreeNode<K,V> r, pr; // check both sides
798 <                    if ((pr = p.right) != null && h >= pr.hash &&
799 <                        (r = getTreeNode(h, k, pr, cc)) != null)
800 <                        return r;
801 <                    else // continue left
802 <                        dir = -1;
803 <                }
804 <                p = (dir > 0) ? p.right : p.left;
980 >    /** Implementation for put and putIfAbsent */
981 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
982 >        if (key == null || value == null) throw new NullPointerException();
983 >        int hash = spread(key.hashCode());
984 >        int binCount = 0;
985 >        for (Node<K,V>[] tab = table;;) {
986 >            Node<K,V> f; int n, i, fh; K fk; V fv;
987 >            if (tab == null || (n = tab.length) == 0)
988 >                tab = initTable();
989 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 >                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 >                    break;                   // no lock when adding to empty bin
992              }
993 <            return null;
994 <        }
995 <
996 <        /**
997 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
998 <         * read-lock to call getTreeNode, but during failure to get
999 <         * lock, searches along next links.
1000 <         */
1001 <        final V getValue(int h, Object k) {
1002 <            Class<?> cc = comparableClassFor(k);
1003 <            Node<K,V> r = null;
1004 <            for (Node<K,V> e = first; e != null; e = e.next) {
1005 <                long s;
1006 <                if ((s = tryReadLock()) != 0L) {
1007 <                    try {
1008 <                        r = getTreeNode(h, k, root, cc);
1009 <                    } finally {
1010 <                        unlockRead(s);
993 >            else if ((fh = f.hash) == MOVED)
994 >                tab = helpTransfer(tab, f);
995 >            else if (onlyIfAbsent // check first node without acquiring lock
996 >                     && fh == hash
997 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998 >                     && (fv = f.val) != null)
999 >                return fv;
1000 >            else {
1001 >                V oldVal = null;
1002 >                synchronized (f) {
1003 >                    if (tabAt(tab, i) == f) {
1004 >                        if (fh >= 0) {
1005 >                            binCount = 1;
1006 >                            for (Node<K,V> e = f;; ++binCount) {
1007 >                                K ek;
1008 >                                if (e.hash == hash &&
1009 >                                    ((ek = e.key) == key ||
1010 >                                     (ek != null && key.equals(ek)))) {
1011 >                                    oldVal = e.val;
1012 >                                    if (!onlyIfAbsent)
1013 >                                        e.val = value;
1014 >                                    break;
1015 >                                }
1016 >                                Node<K,V> pred = e;
1017 >                                if ((e = e.next) == null) {
1018 >                                    pred.next = new Node<K,V>(hash, key, value);
1019 >                                    break;
1020 >                                }
1021 >                            }
1022 >                        }
1023 >                        else if (f instanceof TreeBin) {
1024 >                            Node<K,V> p;
1025 >                            binCount = 2;
1026 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027 >                                                           value)) != null) {
1028 >                                oldVal = p.val;
1029 >                                if (!onlyIfAbsent)
1030 >                                    p.val = value;
1031 >                            }
1032 >                        }
1033 >                        else if (f instanceof ReservationNode)
1034 >                            throw new IllegalStateException("Recursive update");
1035                      }
825                    break;
1036                  }
1037 <                else if (e.hash == h && k.equals(e.key)) {
1038 <                    r = e;
1037 >                if (binCount != 0) {
1038 >                    if (binCount >= TREEIFY_THRESHOLD)
1039 >                        treeifyBin(tab, i);
1040 >                    if (oldVal != null)
1041 >                        return oldVal;
1042                      break;
1043                  }
1044              }
832            return r == null ? null : r.val;
1045          }
1046 +        addCount(1L, binCount);
1047 +        return null;
1048 +    }
1049  
1050 <        /**
1051 <         * Finds or adds a node.
1052 <         * @return null if added
1053 <         */
1054 <        final TreeNode<K,V> putTreeNode(int h, Object k, V v) {
1055 <            Class<?> cc = comparableClassFor(k);
1056 <            TreeNode<K,V> pp = root, p = null;
1057 <            int dir = 0;
1058 <            while (pp != null) { // find existing node or leaf to insert at
1059 <                int ph; Object pk;
1060 <                p = pp;
1061 <                if ((ph = p.hash) != h)
1062 <                    dir = (h < ph) ? -1 : 1;
1063 <                else if ((pk = p.key) == k || k.equals(pk))
1064 <                    return p;
1065 <                else if (cc == null || comparableClassFor(pk) != cc ||
1066 <                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
1067 <                    TreeNode<K,V> r, pr;
1068 <                    if ((pr = p.right) != null && h >= pr.hash &&
1069 <                        (r = getTreeNode(h, k, pr, cc)) != null)
1070 <                        return r;
1071 <                    else // continue left
1072 <                        dir = -1;
1073 <                }
1074 <                pp = (dir > 0) ? p.right : p.left;
1075 <            }
1076 <
1077 <            TreeNode<K,V> f = first;
1078 <            TreeNode<K,V> x = first = new TreeNode<K,V>(h, k, v, f, p);
1079 <            if (p == null)
1080 <                root = x;
1081 <            else { // attach and rebalance; adapted from CLR
1082 <                TreeNode<K,V> xp, xpp;
1083 <                if (f != null)
1084 <                    f.prev = x;
1085 <                if (dir <= 0)
1086 <                    p.left = x;
1087 <                else
1088 <                    p.right = x;
1089 <                x.red = true;
1090 <                while (x != null && (xp = x.parent) != null && xp.red &&
1091 <                       (xpp = xp.parent) != null) {
1092 <                    TreeNode<K,V> xppl = xpp.left;
1093 <                    if (xp == xppl) {
1094 <                        TreeNode<K,V> y = xpp.right;
1095 <                        if (y != null && y.red) {
1096 <                            y.red = false;
1097 <                            xp.red = false;
1098 <                            xpp.red = true;
1099 <                            x = xpp;
1100 <                        }
1101 <                        else {
1102 <                            if (x == xp.right) {
1103 <                                rotateLeft(x = xp);
1104 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1105 <                            }
1106 <                            if (xp != null) {
1107 <                                xp.red = false;
1108 <                                if (xpp != null) {
1109 <                                    xpp.red = true;
1110 <                                    rotateRight(xpp);
1050 >    /**
1051 >     * Copies all of the mappings from the specified map to this one.
1052 >     * These mappings replace any mappings that this map had for any of the
1053 >     * keys currently in the specified map.
1054 >     *
1055 >     * @param m mappings to be stored in this map
1056 >     */
1057 >    public void putAll(Map<? extends K, ? extends V> m) {
1058 >        tryPresize(m.size());
1059 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060 >            putVal(e.getKey(), e.getValue(), false);
1061 >    }
1062 >
1063 >    /**
1064 >     * Removes the key (and its corresponding value) from this map.
1065 >     * This method does nothing if the key is not in the map.
1066 >     *
1067 >     * @param  key the key that needs to be removed
1068 >     * @return the previous value associated with {@code key}, or
1069 >     *         {@code null} if there was no mapping for {@code key}
1070 >     * @throws NullPointerException if the specified key is null
1071 >     */
1072 >    public V remove(Object key) {
1073 >        return replaceNode(key, null, null);
1074 >    }
1075 >
1076 >    /**
1077 >     * Implementation for the four public remove/replace methods:
1078 >     * Replaces node value with v, conditional upon match of cv if
1079 >     * non-null.  If resulting value is null, delete.
1080 >     */
1081 >    final V replaceNode(Object key, V value, Object cv) {
1082 >        int hash = spread(key.hashCode());
1083 >        for (Node<K,V>[] tab = table;;) {
1084 >            Node<K,V> f; int n, i, fh;
1085 >            if (tab == null || (n = tab.length) == 0 ||
1086 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087 >                break;
1088 >            else if ((fh = f.hash) == MOVED)
1089 >                tab = helpTransfer(tab, f);
1090 >            else {
1091 >                V oldVal = null;
1092 >                boolean validated = false;
1093 >                synchronized (f) {
1094 >                    if (tabAt(tab, i) == f) {
1095 >                        if (fh >= 0) {
1096 >                            validated = true;
1097 >                            for (Node<K,V> e = f, pred = null;;) {
1098 >                                K ek;
1099 >                                if (e.hash == hash &&
1100 >                                    ((ek = e.key) == key ||
1101 >                                     (ek != null && key.equals(ek)))) {
1102 >                                    V ev = e.val;
1103 >                                    if (cv == null || cv == ev ||
1104 >                                        (ev != null && cv.equals(ev))) {
1105 >                                        oldVal = ev;
1106 >                                        if (value != null)
1107 >                                            e.val = value;
1108 >                                        else if (pred != null)
1109 >                                            pred.next = e.next;
1110 >                                        else
1111 >                                            setTabAt(tab, i, e.next);
1112 >                                    }
1113 >                                    break;
1114                                  }
1115 +                                pred = e;
1116 +                                if ((e = e.next) == null)
1117 +                                    break;
1118                              }
1119                          }
1120 <                    }
1121 <                    else {
1122 <                        TreeNode<K,V> y = xppl;
1123 <                        if (y != null && y.red) {
1124 <                            y.red = false;
1125 <                            xp.red = false;
1126 <                            xpp.red = true;
1127 <                            x = xpp;
1128 <                        }
1129 <                        else {
1130 <                            if (x == xp.left) {
1131 <                                rotateRight(x = xp);
1132 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1133 <                            }
913 <                            if (xp != null) {
914 <                                xp.red = false;
915 <                                if (xpp != null) {
916 <                                    xpp.red = true;
917 <                                    rotateLeft(xpp);
1120 >                        else if (f instanceof TreeBin) {
1121 >                            validated = true;
1122 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1123 >                            TreeNode<K,V> r, p;
1124 >                            if ((r = t.root) != null &&
1125 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1126 >                                V pv = p.val;
1127 >                                if (cv == null || cv == pv ||
1128 >                                    (pv != null && cv.equals(pv))) {
1129 >                                    oldVal = pv;
1130 >                                    if (value != null)
1131 >                                        p.val = value;
1132 >                                    else if (t.removeTreeNode(p))
1133 >                                        setTabAt(tab, i, untreeify(t.first));
1134                                  }
1135                              }
1136                          }
1137 +                        else if (f instanceof ReservationNode)
1138 +                            throw new IllegalStateException("Recursive update");
1139                      }
1140                  }
1141 <                TreeNode<K,V> r = root;
1142 <                if (r != null && r.red)
1143 <                    r.red = false;
1144 <            }
1145 <            return null;
928 <        }
929 <
930 <        /**
931 <         * Removes the given node, that must be present before this
932 <         * call.  This is messier than typical red-black deletion code
933 <         * because we cannot swap the contents of an interior node
934 <         * with a leaf successor that is pinned by "next" pointers
935 <         * that are accessible independently of lock. So instead we
936 <         * swap the tree linkages.
937 <         */
938 <        final void deleteTreeNode(TreeNode<K,V> p) {
939 <            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
940 <            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
941 <            if (pred == null)
942 <                first = next;
943 <            else
944 <                pred.next = next;
945 <            if (next != null)
946 <                next.prev = pred;
947 <            TreeNode<K,V> replacement;
948 <            TreeNode<K,V> pl = p.left;
949 <            TreeNode<K,V> pr = p.right;
950 <            if (pl != null && pr != null) {
951 <                TreeNode<K,V> s = pr, sl;
952 <                while ((sl = s.left) != null) // find successor
953 <                    s = sl;
954 <                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
955 <                TreeNode<K,V> sr = s.right;
956 <                TreeNode<K,V> pp = p.parent;
957 <                if (s == pr) { // p was s's direct parent
958 <                    p.parent = s;
959 <                    s.right = p;
960 <                }
961 <                else {
962 <                    TreeNode<K,V> sp = s.parent;
963 <                    if ((p.parent = sp) != null) {
964 <                        if (s == sp.left)
965 <                            sp.left = p;
966 <                        else
967 <                            sp.right = p;
1141 >                if (validated) {
1142 >                    if (oldVal != null) {
1143 >                        if (value == null)
1144 >                            addCount(-1L, -1);
1145 >                        return oldVal;
1146                      }
1147 <                    if ((s.right = pr) != null)
970 <                        pr.parent = s;
1147 >                    break;
1148                  }
972                p.left = null;
973                if ((p.right = sr) != null)
974                    sr.parent = p;
975                if ((s.left = pl) != null)
976                    pl.parent = s;
977                if ((s.parent = pp) == null)
978                    root = s;
979                else if (p == pp.left)
980                    pp.left = s;
981                else
982                    pp.right = s;
983                replacement = sr;
1149              }
1150 <            else
1151 <                replacement = (pl != null) ? pl : pr;
1152 <            TreeNode<K,V> pp = p.parent;
1153 <            if (replacement == null) {
1154 <                if (pp == null) {
1155 <                    root = null;
1156 <                    return;
1157 <                }
1158 <                replacement = p;
1150 >        }
1151 >        return null;
1152 >    }
1153 >
1154 >    /**
1155 >     * Removes all of the mappings from this map.
1156 >     */
1157 >    public void clear() {
1158 >        long delta = 0L; // negative number of deletions
1159 >        int i = 0;
1160 >        Node<K,V>[] tab = table;
1161 >        while (tab != null && i < tab.length) {
1162 >            int fh;
1163 >            Node<K,V> f = tabAt(tab, i);
1164 >            if (f == null)
1165 >                ++i;
1166 >            else if ((fh = f.hash) == MOVED) {
1167 >                tab = helpTransfer(tab, f);
1168 >                i = 0; // restart
1169              }
1170              else {
1171 <                replacement.parent = pp;
1172 <                if (pp == null)
1173 <                    root = replacement;
1174 <                else if (p == pp.left)
1175 <                    pp.left = replacement;
1176 <                else
1177 <                    pp.right = replacement;
1178 <                p.left = p.right = p.parent = null;
1004 <            }
1005 <            if (!p.red) { // rebalance, from CLR
1006 <                TreeNode<K,V> x = replacement;
1007 <                while (x != null) {
1008 <                    TreeNode<K,V> xp, xpl;
1009 <                    if (x.red || (xp = x.parent) == null) {
1010 <                        x.red = false;
1011 <                        break;
1012 <                    }
1013 <                    if (x == (xpl = xp.left)) {
1014 <                        TreeNode<K,V> sib = xp.right;
1015 <                        if (sib != null && sib.red) {
1016 <                            sib.red = false;
1017 <                            xp.red = true;
1018 <                            rotateLeft(xp);
1019 <                            sib = (xp = x.parent) == null ? null : xp.right;
1020 <                        }
1021 <                        if (sib == null)
1022 <                            x = xp;
1023 <                        else {
1024 <                            TreeNode<K,V> sl = sib.left, sr = sib.right;
1025 <                            if ((sr == null || !sr.red) &&
1026 <                                (sl == null || !sl.red)) {
1027 <                                sib.red = true;
1028 <                                x = xp;
1029 <                            }
1030 <                            else {
1031 <                                if (sr == null || !sr.red) {
1032 <                                    if (sl != null)
1033 <                                        sl.red = false;
1034 <                                    sib.red = true;
1035 <                                    rotateRight(sib);
1036 <                                    sib = (xp = x.parent) == null ?
1037 <                                        null : xp.right;
1038 <                                }
1039 <                                if (sib != null) {
1040 <                                    sib.red = (xp == null) ? false : xp.red;
1041 <                                    if ((sr = sib.right) != null)
1042 <                                        sr.red = false;
1043 <                                }
1044 <                                if (xp != null) {
1045 <                                    xp.red = false;
1046 <                                    rotateLeft(xp);
1047 <                                }
1048 <                                x = root;
1049 <                            }
1050 <                        }
1051 <                    }
1052 <                    else { // symmetric
1053 <                        TreeNode<K,V> sib = xpl;
1054 <                        if (sib != null && sib.red) {
1055 <                            sib.red = false;
1056 <                            xp.red = true;
1057 <                            rotateRight(xp);
1058 <                            sib = (xp = x.parent) == null ? null : xp.left;
1059 <                        }
1060 <                        if (sib == null)
1061 <                            x = xp;
1062 <                        else {
1063 <                            TreeNode<K,V> sl = sib.left, sr = sib.right;
1064 <                            if ((sl == null || !sl.red) &&
1065 <                                (sr == null || !sr.red)) {
1066 <                                sib.red = true;
1067 <                                x = xp;
1068 <                            }
1069 <                            else {
1070 <                                if (sl == null || !sl.red) {
1071 <                                    if (sr != null)
1072 <                                        sr.red = false;
1073 <                                    sib.red = true;
1074 <                                    rotateLeft(sib);
1075 <                                    sib = (xp = x.parent) == null ?
1076 <                                        null : xp.left;
1077 <                                }
1078 <                                if (sib != null) {
1079 <                                    sib.red = (xp == null) ? false : xp.red;
1080 <                                    if ((sl = sib.left) != null)
1081 <                                        sl.red = false;
1082 <                                }
1083 <                                if (xp != null) {
1084 <                                    xp.red = false;
1085 <                                    rotateRight(xp);
1086 <                                }
1087 <                                x = root;
1088 <                            }
1171 >                synchronized (f) {
1172 >                    if (tabAt(tab, i) == f) {
1173 >                        Node<K,V> p = (fh >= 0 ? f :
1174 >                                       (f instanceof TreeBin) ?
1175 >                                       ((TreeBin<K,V>)f).first : null);
1176 >                        while (p != null) {
1177 >                            --delta;
1178 >                            p = p.next;
1179                          }
1180 +                        setTabAt(tab, i++, null);
1181                      }
1182                  }
1183              }
1093            if (p == replacement && (pp = p.parent) != null) {
1094                if (p == pp.left) // detach pointers
1095                    pp.left = null;
1096                else if (p == pp.right)
1097                    pp.right = null;
1098                p.parent = null;
1099            }
1184          }
1185 +        if (delta != 0L)
1186 +            addCount(delta, -1);
1187      }
1188  
1189 <    /* ---------------- Collision reduction methods -------------- */
1189 >    /**
1190 >     * Returns a {@link Set} view of the keys contained in this map.
1191 >     * The set is backed by the map, so changes to the map are
1192 >     * reflected in the set, and vice-versa. The set supports element
1193 >     * removal, which removes the corresponding mapping from this map,
1194 >     * via the {@code Iterator.remove}, {@code Set.remove},
1195 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1196 >     * operations.  It does not support the {@code add} or
1197 >     * {@code addAll} operations.
1198 >     *
1199 >     * <p>The view's iterators and spliterators are
1200 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 >     *
1202 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204 >     *
1205 >     * @return the set view
1206 >     */
1207 >    public KeySetView<K,V> keySet() {
1208 >        KeySetView<K,V> ks;
1209 >        if ((ks = keySet) != null) return ks;
1210 >        return keySet = new KeySetView<K,V>(this, null);
1211 >    }
1212  
1213      /**
1214 <     * Spreads higher bits to lower, and also forces top bit to 0.
1215 <     * Because the table uses power-of-two masking, sets of hashes
1216 <     * that vary only in bits above the current mask will always
1217 <     * collide. (Among known examples are sets of Float keys holding
1218 <     * consecutive whole numbers in small tables.)  To counter this,
1219 <     * we apply a transform that spreads the impact of higher bits
1220 <     * downward. There is a tradeoff between speed, utility, and
1221 <     * quality of bit-spreading. Because many common sets of hashes
1222 <     * are already reasonably distributed across bits (so don't benefit
1223 <     * from spreading), and because we use trees to handle large sets
1224 <     * of collisions in bins, we don't need excessively high quality.
1214 >     * Returns a {@link Collection} view of the values contained in this map.
1215 >     * The collection is backed by the map, so changes to the map are
1216 >     * reflected in the collection, and vice-versa.  The collection
1217 >     * supports element removal, which removes the corresponding
1218 >     * mapping from this map, via the {@code Iterator.remove},
1219 >     * {@code Collection.remove}, {@code removeAll},
1220 >     * {@code retainAll}, and {@code clear} operations.  It does not
1221 >     * support the {@code add} or {@code addAll} operations.
1222 >     *
1223 >     * <p>The view's iterators and spliterators are
1224 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 >     *
1226 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227 >     * and {@link Spliterator#NONNULL}.
1228 >     *
1229 >     * @return the collection view
1230 >     */
1231 >    public Collection<V> values() {
1232 >        ValuesView<K,V> vs;
1233 >        if ((vs = values) != null) return vs;
1234 >        return values = new ValuesView<K,V>(this);
1235 >    }
1236 >
1237 >    /**
1238 >     * Returns a {@link Set} view of the mappings contained in this map.
1239 >     * The set is backed by the map, so changes to the map are
1240 >     * reflected in the set, and vice-versa.  The set supports element
1241 >     * removal, which removes the corresponding mapping from the map,
1242 >     * via the {@code Iterator.remove}, {@code Set.remove},
1243 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1244 >     * operations.
1245 >     *
1246 >     * <p>The view's iterators and spliterators are
1247 >     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 >     *
1249 >     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250 >     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251 >     *
1252 >     * @return the set view
1253       */
1254 <    private static final int spread(int h) {
1255 <        h ^= (h >>> 18) ^ (h >>> 12);
1256 <        return (h ^ (h >>> 10)) & HASH_BITS;
1254 >    public Set<Map.Entry<K,V>> entrySet() {
1255 >        EntrySetView<K,V> es;
1256 >        if ((es = entrySet) != null) return es;
1257 >        return entrySet = new EntrySetView<K,V>(this);
1258      }
1259  
1260      /**
1261 <     * Replaces a list bin with a tree bin if key is comparable.  Call
1262 <     * only when locked.
1261 >     * Returns the hash code value for this {@link Map}, i.e.,
1262 >     * the sum of, for each key-value pair in the map,
1263 >     * {@code key.hashCode() ^ value.hashCode()}.
1264 >     *
1265 >     * @return the hash code value for this map
1266       */
1267 <    private final void replaceWithTreeBin(Node<K,V>[] tab, int index, Object key) {
1268 <        if (tab != null && comparableClassFor(key) != null) {
1269 <            TreeBin<K,V> t = new TreeBin<K,V>();
1270 <            for (Node<K,V> e = tabAt(tab, index); e != null; e = e.next)
1271 <                t.putTreeNode(e.hash, e.key, e.val);
1272 <            setTabAt(tab, index, new Node<K,V>(MOVED, t, null, null));
1267 >    public int hashCode() {
1268 >        int h = 0;
1269 >        Node<K,V>[] t;
1270 >        if ((t = table) != null) {
1271 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 >            for (Node<K,V> p; (p = it.advance()) != null; )
1273 >                h += p.key.hashCode() ^ p.val.hashCode();
1274          }
1275 +        return h;
1276      }
1277  
1278 <    /* ---------------- Internal access and update methods -------------- */
1279 <
1280 <    /** Implementation for get and containsKey */
1281 <    private final V internalGet(Object k) {
1282 <        int h = spread(k.hashCode());
1283 <        V v = null;
1284 <        Node<K,V>[] tab; Node<K,V> e;
1285 <        if ((tab = table) != null &&
1286 <            (e = tabAt(tab, (tab.length - 1) & h)) != null) {
1278 >    /**
1279 >     * Returns a string representation of this map.  The string
1280 >     * representation consists of a list of key-value mappings (in no
1281 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1282 >     * mappings are separated by the characters {@code ", "} (comma
1283 >     * and space).  Each key-value mapping is rendered as the key
1284 >     * followed by an equals sign ("{@code =}") followed by the
1285 >     * associated value.
1286 >     *
1287 >     * @return a string representation of this map
1288 >     */
1289 >    public String toString() {
1290 >        Node<K,V>[] t;
1291 >        int f = (t = table) == null ? 0 : t.length;
1292 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 >        StringBuilder sb = new StringBuilder();
1294 >        sb.append('{');
1295 >        Node<K,V> p;
1296 >        if ((p = it.advance()) != null) {
1297              for (;;) {
1298 <                int eh; Object ek;
1299 <                if ((eh = e.hash) < 0) {
1300 <                    if ((ek = e.key) instanceof TreeBin) { // search TreeBin
1301 <                        v = ((TreeBin<K,V>)ek).getValue(h, k);
1302 <                        break;
1303 <                    }
1152 <                    else if (!(ek instanceof Node[]) ||    // try new table
1153 <                             (e = tabAt(tab = (Node<K,V>[])ek,
1154 <                                        (tab.length - 1) & h)) == null)
1155 <                        break;
1156 <                }
1157 <                else if (eh == h && ((ek = e.key) == k || k.equals(ek))) {
1158 <                    v = e.val;
1159 <                    break;
1160 <                }
1161 <                else if ((e = e.next) == null)
1298 >                K k = p.key;
1299 >                V v = p.val;
1300 >                sb.append(k == this ? "(this Map)" : k);
1301 >                sb.append('=');
1302 >                sb.append(v == this ? "(this Map)" : v);
1303 >                if ((p = it.advance()) == null)
1304                      break;
1305 +                sb.append(',').append(' ');
1306              }
1307          }
1308 <        return v;
1308 >        return sb.append('}').toString();
1309      }
1310  
1311      /**
1312 <     * Implementation for the four public remove/replace methods:
1313 <     * Replaces node value with v, conditional upon match of cv if
1314 <     * non-null.  If resulting value is null, delete.
1312 >     * Compares the specified object with this map for equality.
1313 >     * Returns {@code true} if the given object is a map with the same
1314 >     * mappings as this map.  This operation may return misleading
1315 >     * results if either map is concurrently modified during execution
1316 >     * of this method.
1317 >     *
1318 >     * @param o object to be compared for equality with this map
1319 >     * @return {@code true} if the specified object is equal to this map
1320       */
1321 <    private final V internalReplace(Object k, V v, Object cv) {
1322 <        int h = spread(k.hashCode());
1323 <        V oldVal = null;
1324 <        for (Node<K,V>[] tab = table;;) {
1325 <            Node<K,V> f; int i, fh; Object fk;
1326 <            if (tab == null ||
1327 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1321 >    public boolean equals(Object o) {
1322 >        if (o != this) {
1323 >            if (!(o instanceof Map))
1324 >                return false;
1325 >            Map<?,?> m = (Map<?,?>) o;
1326 >            Node<K,V>[] t;
1327 >            int f = (t = table) == null ? 0 : t.length;
1328 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 >                V val = p.val;
1331 >                Object v = m.get(p.key);
1332 >                if (v == null || (v != val && !v.equals(val)))
1333 >                    return false;
1334 >            }
1335 >            for (Map.Entry<?,?> e : m.entrySet()) {
1336 >                Object mk, mv, v;
1337 >                if ((mk = e.getKey()) == null ||
1338 >                    (mv = e.getValue()) == null ||
1339 >                    (v = get(mk)) == null ||
1340 >                    (mv != v && !mv.equals(v)))
1341 >                    return false;
1342 >            }
1343 >        }
1344 >        return true;
1345 >    }
1346 >
1347 >    /**
1348 >     * Stripped-down version of helper class used in previous version,
1349 >     * declared for the sake of serialization compatibility.
1350 >     */
1351 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 >        private static final long serialVersionUID = 2249069246763182397L;
1353 >        final float loadFactor;
1354 >        Segment(float lf) { this.loadFactor = lf; }
1355 >    }
1356 >
1357 >    /**
1358 >     * Saves this map to a stream (that is, serializes it).
1359 >     *
1360 >     * @param s the stream
1361 >     * @throws java.io.IOException if an I/O error occurs
1362 >     * @serialData
1363 >     * the serialized fields, followed by the key (Object) and value
1364 >     * (Object) for each key-value mapping, followed by a null pair.
1365 >     * The key-value mappings are emitted in no particular order.
1366 >     */
1367 >    private void writeObject(java.io.ObjectOutputStream s)
1368 >        throws java.io.IOException {
1369 >        // For serialization compatibility
1370 >        // Emulate segment calculation from previous version of this class
1371 >        int sshift = 0;
1372 >        int ssize = 1;
1373 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374 >            ++sshift;
1375 >            ssize <<= 1;
1376 >        }
1377 >        int segmentShift = 32 - sshift;
1378 >        int segmentMask = ssize - 1;
1379 >        @SuppressWarnings("unchecked")
1380 >        Segment<K,V>[] segments = (Segment<K,V>[])
1381 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382 >        for (int i = 0; i < segments.length; ++i)
1383 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 >        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385 >        streamFields.put("segments", segments);
1386 >        streamFields.put("segmentShift", segmentShift);
1387 >        streamFields.put("segmentMask", segmentMask);
1388 >        s.writeFields();
1389 >
1390 >        Node<K,V>[] t;
1391 >        if ((t = table) != null) {
1392 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1394 >                s.writeObject(p.key);
1395 >                s.writeObject(p.val);
1396 >            }
1397 >        }
1398 >        s.writeObject(null);
1399 >        s.writeObject(null);
1400 >    }
1401 >
1402 >    /**
1403 >     * Reconstitutes this map from a stream (that is, deserializes it).
1404 >     * @param s the stream
1405 >     * @throws ClassNotFoundException if the class of a serialized object
1406 >     *         could not be found
1407 >     * @throws java.io.IOException if an I/O error occurs
1408 >     */
1409 >    private void readObject(java.io.ObjectInputStream s)
1410 >        throws java.io.IOException, ClassNotFoundException {
1411 >        /*
1412 >         * To improve performance in typical cases, we create nodes
1413 >         * while reading, then place in table once size is known.
1414 >         * However, we must also validate uniqueness and deal with
1415 >         * overpopulated bins while doing so, which requires
1416 >         * specialized versions of putVal mechanics.
1417 >         */
1418 >        sizeCtl = -1; // force exclusion for table construction
1419 >        s.defaultReadObject();
1420 >        long size = 0L;
1421 >        Node<K,V> p = null;
1422 >        for (;;) {
1423 >            @SuppressWarnings("unchecked")
1424 >            K k = (K) s.readObject();
1425 >            @SuppressWarnings("unchecked")
1426 >            V v = (V) s.readObject();
1427 >            if (k != null && v != null) {
1428 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429 >                ++size;
1430 >            }
1431 >            else
1432                  break;
1433 <            else if ((fh = f.hash) < 0) {
1434 <                if ((fk = f.key) instanceof TreeBin) {
1435 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1436 <                    long stamp = t.writeLock();
1437 <                    boolean validated = false;
1438 <                    boolean deleted = false;
1439 <                    try {
1440 <                        if (tabAt(tab, i) == f) {
1441 <                            validated = true;
1442 <                            Class<?> cc = comparableClassFor(k);
1443 <                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1444 <                            if (p != null) {
1445 <                                V pv = p.val;
1446 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1447 <                                    oldVal = pv;
1448 <                                    if (v != null)
1449 <                                        p.val = v;
1450 <                                    else {
1451 <                                        deleted = true;
1452 <                                        t.deleteTreeNode(p);
1453 <                                    }
1454 <                                }
1455 <                            }
1456 <                        }
1205 <                    } finally {
1206 <                        t.unlockWrite(stamp);
1207 <                    }
1208 <                    if (validated) {
1209 <                        if (deleted)
1210 <                            addCount(-1L, -1);
1211 <                        break;
1433 >        }
1434 >        if (size == 0L)
1435 >            sizeCtl = 0;
1436 >        else {
1437 >            long ts = (long)(1.0 + size / LOAD_FACTOR);
1438 >            int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439 >                MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 >            @SuppressWarnings("unchecked")
1441 >            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 >            int mask = n - 1;
1443 >            long added = 0L;
1444 >            while (p != null) {
1445 >                boolean insertAtFront;
1446 >                Node<K,V> next = p.next, first;
1447 >                int h = p.hash, j = h & mask;
1448 >                if ((first = tabAt(tab, j)) == null)
1449 >                    insertAtFront = true;
1450 >                else {
1451 >                    K k = p.key;
1452 >                    if (first.hash < 0) {
1453 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1454 >                        if (t.putTreeVal(h, k, p.val) == null)
1455 >                            ++added;
1456 >                        insertAtFront = false;
1457                      }
1458 <                }
1459 <                else
1460 <                    tab = (Node<K,V>[])fk;
1461 <            }
1462 <            else {
1463 <                boolean validated = false;
1464 <                boolean deleted = false;
1465 <                synchronized (f) {
1466 <                    if (tabAt(tab, i) == f) {
1222 <                        validated = true;
1223 <                        for (Node<K,V> e = f, pred = null;;) {
1224 <                            Object ek;
1225 <                            if (e.hash == h &&
1226 <                                ((ek = e.key) == k || k.equals(ek))) {
1227 <                                V ev = e.val;
1228 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1229 <                                    oldVal = ev;
1230 <                                    if (v != null)
1231 <                                        e.val = v;
1232 <                                    else {
1233 <                                        deleted = true;
1234 <                                        Node<K,V> en = e.next;
1235 <                                        if (pred != null)
1236 <                                            pred.next = en;
1237 <                                        else
1238 <                                            setTabAt(tab, i, en);
1239 <                                    }
1240 <                                }
1458 >                    else {
1459 >                        int binCount = 0;
1460 >                        insertAtFront = true;
1461 >                        Node<K,V> q; K qk;
1462 >                        for (q = first; q != null; q = q.next) {
1463 >                            if (q.hash == h &&
1464 >                                ((qk = q.key) == k ||
1465 >                                 (qk != null && k.equals(qk)))) {
1466 >                                insertAtFront = false;
1467                                  break;
1468                              }
1469 <                            pred = e;
1470 <                            if ((e = e.next) == null)
1471 <                                break;
1469 >                            ++binCount;
1470 >                        }
1471 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472 >                            insertAtFront = false;
1473 >                            ++added;
1474 >                            p.next = first;
1475 >                            TreeNode<K,V> hd = null, tl = null;
1476 >                            for (q = p; q != null; q = q.next) {
1477 >                                TreeNode<K,V> t = new TreeNode<K,V>
1478 >                                    (q.hash, q.key, q.val, null, null);
1479 >                                if ((t.prev = tl) == null)
1480 >                                    hd = t;
1481 >                                else
1482 >                                    tl.next = t;
1483 >                                tl = t;
1484 >                            }
1485 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1486                          }
1487                      }
1488                  }
1489 <                if (validated) {
1490 <                    if (deleted)
1491 <                        addCount(-1L, -1);
1492 <                    break;
1489 >                if (insertAtFront) {
1490 >                    ++added;
1491 >                    p.next = first;
1492 >                    setTabAt(tab, j, p);
1493                  }
1494 +                p = next;
1495              }
1496 +            table = tab;
1497 +            sizeCtl = n - (n >>> 2);
1498 +            baseCount = added;
1499          }
1256        return oldVal;
1500      }
1501  
1502 <    /*
1503 <     * Internal versions of insertion methods
1504 <     * All have the same basic structure as the first (internalPut):
1505 <     *  1. If table uninitialized, create
1506 <     *  2. If bin empty, try to CAS new node
1507 <     *  3. If bin stale, use new table
1508 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1509 <     *  5. Lock and validate; if valid, scan and add or update
1267 <     *
1268 <     * The putAll method differs mainly in attempting to pre-allocate
1269 <     * enough table space, and also more lazily performs count updates
1270 <     * and checks.
1271 <     *
1272 <     * Most of the function-accepting methods can't be factored nicely
1273 <     * because they require different functional forms, so instead
1274 <     * sprawl out similar mechanics.
1502 >    // ConcurrentMap methods
1503 >
1504 >    /**
1505 >     * {@inheritDoc}
1506 >     *
1507 >     * @return the previous value associated with the specified key,
1508 >     *         or {@code null} if there was no mapping for the key
1509 >     * @throws NullPointerException if the specified key or value is null
1510       */
1511 +    public V putIfAbsent(K key, V value) {
1512 +        return putVal(key, value, true);
1513 +    }
1514  
1515 <    /** Implementation for put and putIfAbsent */
1516 <    private final V internalPut(K k, V v, boolean onlyIfAbsent) {
1517 <        if (k == null || v == null) throw new NullPointerException();
1518 <        int h = spread(k.hashCode());
1519 <        int len = 0;
1520 <        for (Node<K,V>[] tab = table;;) {
1521 <            int i, fh; Node<K,V> f; Object fk;
1522 <            if (tab == null)
1523 <                tab = initTable();
1524 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1525 <                if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null)))
1526 <                    break;                   // no lock when adding to empty bin
1515 >    /**
1516 >     * {@inheritDoc}
1517 >     *
1518 >     * @throws NullPointerException if the specified key is null
1519 >     */
1520 >    public boolean remove(Object key, Object value) {
1521 >        if (key == null)
1522 >            throw new NullPointerException();
1523 >        return value != null && replaceNode(key, null, value) != null;
1524 >    }
1525 >
1526 >    /**
1527 >     * {@inheritDoc}
1528 >     *
1529 >     * @throws NullPointerException if any of the arguments are null
1530 >     */
1531 >    public boolean replace(K key, V oldValue, V newValue) {
1532 >        if (key == null || oldValue == null || newValue == null)
1533 >            throw new NullPointerException();
1534 >        return replaceNode(key, newValue, oldValue) != null;
1535 >    }
1536 >
1537 >    /**
1538 >     * {@inheritDoc}
1539 >     *
1540 >     * @return the previous value associated with the specified key,
1541 >     *         or {@code null} if there was no mapping for the key
1542 >     * @throws NullPointerException if the specified key or value is null
1543 >     */
1544 >    public V replace(K key, V value) {
1545 >        if (key == null || value == null)
1546 >            throw new NullPointerException();
1547 >        return replaceNode(key, value, null);
1548 >    }
1549 >
1550 >    // Overrides of JDK8+ Map extension method defaults
1551 >
1552 >    /**
1553 >     * Returns the value to which the specified key is mapped, or the
1554 >     * given default value if this map contains no mapping for the
1555 >     * key.
1556 >     *
1557 >     * @param key the key whose associated value is to be returned
1558 >     * @param defaultValue the value to return if this map contains
1559 >     * no mapping for the given key
1560 >     * @return the mapping for the key, if present; else the default value
1561 >     * @throws NullPointerException if the specified key is null
1562 >     */
1563 >    public V getOrDefault(Object key, V defaultValue) {
1564 >        V v;
1565 >        return (v = get(key)) == null ? defaultValue : v;
1566 >    }
1567 >
1568 >    public void forEach(BiConsumer<? super K, ? super V> action) {
1569 >        if (action == null) throw new NullPointerException();
1570 >        Node<K,V>[] t;
1571 >        if ((t = table) != null) {
1572 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1574 >                action.accept(p.key, p.val);
1575              }
1576 <            else if ((fh = f.hash) < 0) {
1577 <                if ((fk = f.key) instanceof TreeBin) {
1578 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1579 <                    long stamp = t.writeLock();
1580 <                    V oldVal = null;
1581 <                    try {
1582 <                        if (tabAt(tab, i) == f) {
1583 <                            len = 2;
1584 <                            TreeNode<K,V> p = t.putTreeNode(h, k, v);
1585 <                            if (p != null) {
1586 <                                oldVal = p.val;
1587 <                                if (!onlyIfAbsent)
1588 <                                    p.val = v;
1589 <                            }
1590 <                        }
1591 <                    } finally {
1306 <                        t.unlockWrite(stamp);
1307 <                    }
1308 <                    if (len != 0) {
1309 <                        if (oldVal != null)
1310 <                            return oldVal;
1576 >        }
1577 >    }
1578 >
1579 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580 >        if (function == null) throw new NullPointerException();
1581 >        Node<K,V>[] t;
1582 >        if ((t = table) != null) {
1583 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 >                V oldValue = p.val;
1586 >                for (K key = p.key;;) {
1587 >                    V newValue = function.apply(key, oldValue);
1588 >                    if (newValue == null)
1589 >                        throw new NullPointerException();
1590 >                    if (replaceNode(key, newValue, oldValue) != null ||
1591 >                        (oldValue = get(key)) == null)
1592                          break;
1312                    }
1593                  }
1314                else
1315                    tab = (Node<K,V>[])fk;
1594              }
1595 <            else {
1596 <                V oldVal = null;
1597 <                synchronized (f) {
1598 <                    if (tabAt(tab, i) == f) {
1599 <                        len = 1;
1600 <                        for (Node<K,V> e = f;; ++len) {
1601 <                            Object ek;
1602 <                            if (e.hash == h &&
1603 <                                ((ek = e.key) == k || k.equals(ek))) {
1604 <                                oldVal = e.val;
1605 <                                if (!onlyIfAbsent)
1606 <                                    e.val = v;
1607 <                                break;
1608 <                            }
1609 <                            Node<K,V> last = e;
1610 <                            if ((e = e.next) == null) {
1611 <                                last.next = new Node<K,V>(h, k, v, null);
1612 <                                if (len > TREE_THRESHOLD)
1335 <                                    replaceWithTreeBin(tab, i, k);
1336 <                                break;
1337 <                            }
1338 <                        }
1339 <                    }
1340 <                }
1341 <                if (len != 0) {
1342 <                    if (oldVal != null)
1343 <                        return oldVal;
1344 <                    break;
1345 <                }
1595 >        }
1596 >    }
1597 >
1598 >    /**
1599 >     * Helper method for EntrySetView.removeIf.
1600 >     */
1601 >    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 >        if (function == null) throw new NullPointerException();
1603 >        Node<K,V>[] t;
1604 >        boolean removed = false;
1605 >        if ((t = table) != null) {
1606 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1608 >                K k = p.key;
1609 >                V v = p.val;
1610 >                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611 >                if (function.test(e) && replaceNode(k, null, v) != null)
1612 >                    removed = true;
1613              }
1614          }
1615 <        addCount(1L, len);
1616 <        return null;
1615 >        return removed;
1616 >    }
1617 >
1618 >    /**
1619 >     * Helper method for ValuesView.removeIf.
1620 >     */
1621 >    boolean removeValueIf(Predicate<? super V> function) {
1622 >        if (function == null) throw new NullPointerException();
1623 >        Node<K,V>[] t;
1624 >        boolean removed = false;
1625 >        if ((t = table) != null) {
1626 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1628 >                K k = p.key;
1629 >                V v = p.val;
1630 >                if (function.test(v) && replaceNode(k, null, v) != null)
1631 >                    removed = true;
1632 >            }
1633 >        }
1634 >        return removed;
1635      }
1636  
1637 <    /** Implementation for computeIfAbsent */
1638 <    private final V internalComputeIfAbsent(K k, Function<? super K, ? extends V> mf) {
1639 <        if (k == null || mf == null)
1637 >    /**
1638 >     * If the specified key is not already associated with a value,
1639 >     * attempts to compute its value using the given mapping function
1640 >     * and enters it into this map unless {@code null}.  The entire
1641 >     * method invocation is performed atomically.  The supplied
1642 >     * function is invoked exactly once per invocation of this method
1643 >     * if the key is absent, else not at all.  Some attempted update
1644 >     * operations on this map by other threads may be blocked while
1645 >     * computation is in progress, so the computation should be short
1646 >     * and simple.
1647 >     *
1648 >     * <p>The mapping function must not modify this map during computation.
1649 >     *
1650 >     * @param key key with which the specified value is to be associated
1651 >     * @param mappingFunction the function to compute a value
1652 >     * @return the current (existing or computed) value associated with
1653 >     *         the specified key, or null if the computed value is null
1654 >     * @throws NullPointerException if the specified key or mappingFunction
1655 >     *         is null
1656 >     * @throws IllegalStateException if the computation detectably
1657 >     *         attempts a recursive update to this map that would
1658 >     *         otherwise never complete
1659 >     * @throws RuntimeException or Error if the mappingFunction does so,
1660 >     *         in which case the mapping is left unestablished
1661 >     */
1662 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1663 >        if (key == null || mappingFunction == null)
1664              throw new NullPointerException();
1665 <        int h = spread(k.hashCode());
1665 >        int h = spread(key.hashCode());
1666          V val = null;
1667 <        int len = 0;
1667 >        int binCount = 0;
1668          for (Node<K,V>[] tab = table;;) {
1669 <            Node<K,V> f; int i; Object fk;
1670 <            if (tab == null)
1669 >            Node<K,V> f; int n, i, fh; K fk; V fv;
1670 >            if (tab == null || (n = tab.length) == 0)
1671                  tab = initTable();
1672 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1673 <                Node<K,V> node = new Node<K,V>(h, k, null, null);
1674 <                synchronized (node) {
1675 <                    if (casTabAt(tab, i, null, node)) {
1676 <                        len = 1;
1672 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1673 >                Node<K,V> r = new ReservationNode<K,V>();
1674 >                synchronized (r) {
1675 >                    if (casTabAt(tab, i, null, r)) {
1676 >                        binCount = 1;
1677 >                        Node<K,V> node = null;
1678                          try {
1679 <                            if ((val = mf.apply(k)) != null)
1680 <                                node.val = val;
1679 >                            if ((val = mappingFunction.apply(key)) != null)
1680 >                                node = new Node<K,V>(h, key, val);
1681                          } finally {
1682 <                            if (val == null)
1373 <                                setTabAt(tab, i, null);
1682 >                            setTabAt(tab, i, node);
1683                          }
1684                      }
1685                  }
1686 <                if (len != 0)
1686 >                if (binCount != 0)
1687                      break;
1688              }
1689 <            else if (f.hash < 0) {
1690 <                if ((fk = f.key) instanceof TreeBin) {
1691 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1692 <                    long stamp = t.writeLock();
1693 <                    boolean added = false;
1694 <                    try {
1386 <                        if (tabAt(tab, i) == f) {
1387 <                            len = 2;
1388 <                            Class<?> cc = comparableClassFor(k);
1389 <                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1390 <                            if (p != null)
1391 <                                val = p.val;
1392 <                            else if ((val = mf.apply(k)) != null) {
1393 <                                added = true;
1394 <                                t.putTreeNode(h, k, val);
1395 <                            }
1396 <                        }
1397 <                    } finally {
1398 <                        t.unlockWrite(stamp);
1399 <                    }
1400 <                    if (len != 0) {
1401 <                        if (!added)
1402 <                            return val;
1403 <                        break;
1404 <                    }
1405 <                }
1406 <                else
1407 <                    tab = (Node<K,V>[])fk;
1408 <            }
1689 >            else if ((fh = f.hash) == MOVED)
1690 >                tab = helpTransfer(tab, f);
1691 >            else if (fh == h    // check first node without acquiring lock
1692 >                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1693 >                     && (fv = f.val) != null)
1694 >                return fv;
1695              else {
1696                  boolean added = false;
1697                  synchronized (f) {
1698                      if (tabAt(tab, i) == f) {
1699 <                        len = 1;
1700 <                        for (Node<K,V> e = f;; ++len) {
1701 <                            Object ek; V ev;
1702 <                            if (e.hash == h &&
1703 <                                ((ek = e.key) == k || k.equals(ek))) {
1704 <                                val = e.val;
1705 <                                break;
1706 <                            }
1707 <                            Node<K,V> last = e;
1422 <                            if ((e = e.next) == null) {
1423 <                                if ((val = mf.apply(k)) != null) {
1424 <                                    added = true;
1425 <                                    last.next = new Node<K,V>(h, k, val, null);
1426 <                                    if (len > TREE_THRESHOLD)
1427 <                                        replaceWithTreeBin(tab, i, k);
1699 >                        if (fh >= 0) {
1700 >                            binCount = 1;
1701 >                            for (Node<K,V> e = f;; ++binCount) {
1702 >                                K ek;
1703 >                                if (e.hash == h &&
1704 >                                    ((ek = e.key) == key ||
1705 >                                     (ek != null && key.equals(ek)))) {
1706 >                                    val = e.val;
1707 >                                    break;
1708                                  }
1709 <                                break;
1709 >                                Node<K,V> pred = e;
1710 >                                if ((e = e.next) == null) {
1711 >                                    if ((val = mappingFunction.apply(key)) != null) {
1712 >                                        if (pred.next != null)
1713 >                                            throw new IllegalStateException("Recursive update");
1714 >                                        added = true;
1715 >                                        pred.next = new Node<K,V>(h, key, val);
1716 >                                    }
1717 >                                    break;
1718 >                                }
1719 >                            }
1720 >                        }
1721 >                        else if (f instanceof TreeBin) {
1722 >                            binCount = 2;
1723 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1724 >                            TreeNode<K,V> r, p;
1725 >                            if ((r = t.root) != null &&
1726 >                                (p = r.findTreeNode(h, key, null)) != null)
1727 >                                val = p.val;
1728 >                            else if ((val = mappingFunction.apply(key)) != null) {
1729 >                                added = true;
1730 >                                t.putTreeVal(h, key, val);
1731                              }
1732                          }
1733 +                        else if (f instanceof ReservationNode)
1734 +                            throw new IllegalStateException("Recursive update");
1735                      }
1736                  }
1737 <                if (len != 0) {
1737 >                if (binCount != 0) {
1738 >                    if (binCount >= TREEIFY_THRESHOLD)
1739 >                        treeifyBin(tab, i);
1740                      if (!added)
1741                          return val;
1742                      break;
# Line 1439 | Line 1744 | public class ConcurrentHashMap<K,V> impl
1744              }
1745          }
1746          if (val != null)
1747 <            addCount(1L, len);
1747 >            addCount(1L, binCount);
1748          return val;
1749      }
1750  
1751 <    /** Implementation for compute */
1752 <    private final V internalCompute(K k, boolean onlyIfPresent,
1753 <                                    BiFunction<? super K, ? super V, ? extends V> mf) {
1754 <        if (k == null || mf == null)
1751 >    /**
1752 >     * If the value for the specified key is present, attempts to
1753 >     * compute a new mapping given the key and its current mapped
1754 >     * value.  The entire method invocation is performed atomically.
1755 >     * The supplied function is invoked exactly once per invocation of
1756 >     * this method if the key is present, else not at all.  Some
1757 >     * attempted update operations on this map by other threads may be
1758 >     * blocked while computation is in progress, so the computation
1759 >     * should be short and simple.
1760 >     *
1761 >     * <p>The remapping function must not modify this map during computation.
1762 >     *
1763 >     * @param key key with which a value may be associated
1764 >     * @param remappingFunction the function to compute a value
1765 >     * @return the new value associated with the specified key, or null if none
1766 >     * @throws NullPointerException if the specified key or remappingFunction
1767 >     *         is null
1768 >     * @throws IllegalStateException if the computation detectably
1769 >     *         attempts a recursive update to this map that would
1770 >     *         otherwise never complete
1771 >     * @throws RuntimeException or Error if the remappingFunction does so,
1772 >     *         in which case the mapping is unchanged
1773 >     */
1774 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1775 >        if (key == null || remappingFunction == null)
1776              throw new NullPointerException();
1777 <        int h = spread(k.hashCode());
1777 >        int h = spread(key.hashCode());
1778          V val = null;
1779          int delta = 0;
1780 <        int len = 0;
1780 >        int binCount = 0;
1781          for (Node<K,V>[] tab = table;;) {
1782 <            Node<K,V> f; int i, fh; Object fk;
1783 <            if (tab == null)
1782 >            Node<K,V> f; int n, i, fh;
1783 >            if (tab == null || (n = tab.length) == 0)
1784                  tab = initTable();
1785 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1786 <                if (onlyIfPresent)
1787 <                    break;
1788 <                Node<K,V> node = new Node<K,V>(h, k, null, null);
1789 <                synchronized (node) {
1790 <                    if (casTabAt(tab, i, null, node)) {
1791 <                        try {
1792 <                            len = 1;
1793 <                            if ((val = mf.apply(k, null)) != null) {
1794 <                                node.val = val;
1795 <                                delta = 1;
1796 <                            }
1797 <                        } finally {
1798 <                            if (delta == 0)
1799 <                                setTabAt(tab, i, null);
1800 <                        }
1801 <                    }
1476 <                }
1477 <                if (len != 0)
1478 <                    break;
1479 <            }
1480 <            else if ((fh = f.hash) < 0) {
1481 <                if ((fk = f.key) instanceof TreeBin) {
1482 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1483 <                    long stamp = t.writeLock();
1484 <                    try {
1485 <                        if (tabAt(tab, i) == f) {
1486 <                            len = 2;
1487 <                            Class<?> cc = comparableClassFor(k);
1488 <                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1489 <                            if (p != null || !onlyIfPresent) {
1490 <                                V pv = (p == null) ? null : p.val;
1491 <                                if ((val = mf.apply(k, pv)) != null) {
1492 <                                    if (p != null)
1493 <                                        p.val = val;
1785 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1786 >                break;
1787 >            else if ((fh = f.hash) == MOVED)
1788 >                tab = helpTransfer(tab, f);
1789 >            else {
1790 >                synchronized (f) {
1791 >                    if (tabAt(tab, i) == f) {
1792 >                        if (fh >= 0) {
1793 >                            binCount = 1;
1794 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1795 >                                K ek;
1796 >                                if (e.hash == h &&
1797 >                                    ((ek = e.key) == key ||
1798 >                                     (ek != null && key.equals(ek)))) {
1799 >                                    val = remappingFunction.apply(key, e.val);
1800 >                                    if (val != null)
1801 >                                        e.val = val;
1802                                      else {
1803 <                                        delta = 1;
1804 <                                        t.putTreeNode(h, k, val);
1803 >                                        delta = -1;
1804 >                                        Node<K,V> en = e.next;
1805 >                                        if (pred != null)
1806 >                                            pred.next = en;
1807 >                                        else
1808 >                                            setTabAt(tab, i, en);
1809                                      }
1810 +                                    break;
1811                                  }
1812 <                                else if (p != null) {
1813 <                                    delta = -1;
1814 <                                    t.deleteTreeNode(p);
1502 <                                }
1812 >                                pred = e;
1813 >                                if ((e = e.next) == null)
1814 >                                    break;
1815                              }
1816                          }
1817 <                    } finally {
1818 <                        t.unlockWrite(stamp);
1819 <                    }
1820 <                    if (len != 0)
1821 <                        break;
1822 <                }
1823 <                else
1512 <                    tab = (Node<K,V>[])fk;
1513 <            }
1514 <            else {
1515 <                synchronized (f) {
1516 <                    if (tabAt(tab, i) == f) {
1517 <                        len = 1;
1518 <                        for (Node<K,V> e = f, pred = null;; ++len) {
1519 <                            Object ek;
1520 <                            if (e.hash == h &&
1521 <                                ((ek = e.key) == k || k.equals(ek))) {
1522 <                                val = mf.apply(k, e.val);
1817 >                        else if (f instanceof TreeBin) {
1818 >                            binCount = 2;
1819 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1820 >                            TreeNode<K,V> r, p;
1821 >                            if ((r = t.root) != null &&
1822 >                                (p = r.findTreeNode(h, key, null)) != null) {
1823 >                                val = remappingFunction.apply(key, p.val);
1824                                  if (val != null)
1825 <                                    e.val = val;
1825 >                                    p.val = val;
1826                                  else {
1827                                      delta = -1;
1828 <                                    Node<K,V> en = e.next;
1829 <                                    if (pred != null)
1529 <                                        pred.next = en;
1530 <                                    else
1531 <                                        setTabAt(tab, i, en);
1828 >                                    if (t.removeTreeNode(p))
1829 >                                        setTabAt(tab, i, untreeify(t.first));
1830                                  }
1533                                break;
1534                            }
1535                            pred = e;
1536                            if ((e = e.next) == null) {
1537                                if (!onlyIfPresent &&
1538                                    (val = mf.apply(k, null)) != null) {
1539                                    pred.next = new Node<K,V>(h, k, val, null);
1540                                    delta = 1;
1541                                    if (len > TREE_THRESHOLD)
1542                                        replaceWithTreeBin(tab, i, k);
1543                                }
1544                                break;
1831                              }
1832                          }
1833 +                        else if (f instanceof ReservationNode)
1834 +                            throw new IllegalStateException("Recursive update");
1835                      }
1836                  }
1837 <                if (len != 0)
1837 >                if (binCount != 0)
1838                      break;
1839              }
1840          }
1841          if (delta != 0)
1842 <            addCount((long)delta, len);
1842 >            addCount((long)delta, binCount);
1843          return val;
1844      }
1845  
1846 <    /** Implementation for merge */
1847 <    private final V internalMerge(K k, V v,
1848 <                                  BiFunction<? super V, ? super V, ? extends V> mf) {
1849 <        if (k == null || v == null || mf == null)
1846 >    /**
1847 >     * Attempts to compute a mapping for the specified key and its
1848 >     * current mapped value (or {@code null} if there is no current
1849 >     * mapping). The entire method invocation is performed atomically.
1850 >     * The supplied function is invoked exactly once per invocation of
1851 >     * this method.  Some attempted update operations on this map by
1852 >     * other threads may be blocked while computation is in progress,
1853 >     * so the computation should be short and simple.
1854 >     *
1855 >     * <p>The remapping function must not modify this map during computation.
1856 >     *
1857 >     * @param key key with which the specified value is to be associated
1858 >     * @param remappingFunction the function to compute a value
1859 >     * @return the new value associated with the specified key, or null if none
1860 >     * @throws NullPointerException if the specified key or remappingFunction
1861 >     *         is null
1862 >     * @throws IllegalStateException if the computation detectably
1863 >     *         attempts a recursive update to this map that would
1864 >     *         otherwise never complete
1865 >     * @throws RuntimeException or Error if the remappingFunction does so,
1866 >     *         in which case the mapping is unchanged
1867 >     */
1868 >    public V compute(K key,
1869 >                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1870 >        if (key == null || remappingFunction == null)
1871              throw new NullPointerException();
1872 <        int h = spread(k.hashCode());
1872 >        int h = spread(key.hashCode());
1873          V val = null;
1874          int delta = 0;
1875 <        int len = 0;
1875 >        int binCount = 0;
1876          for (Node<K,V>[] tab = table;;) {
1877 <            int i; Node<K,V> f; Object fk;
1878 <            if (tab == null)
1877 >            Node<K,V> f; int n, i, fh;
1878 >            if (tab == null || (n = tab.length) == 0)
1879                  tab = initTable();
1880 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1881 <                if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1882 <                    delta = 1;
1883 <                    val = v;
1884 <                    break;
1885 <                }
1886 <            }
1887 <            else if (f.hash < 0) {
1888 <                if ((fk = f.key) instanceof TreeBin) {
1889 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1581 <                    long stamp = t.writeLock();
1582 <                    try {
1583 <                        if (tabAt(tab, i) == f) {
1584 <                            len = 2;
1585 <                            Class<?> cc = comparableClassFor(k);
1586 <                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1587 <                            val = (p == null) ? v : mf.apply(p.val, v);
1588 <                            if (val != null) {
1589 <                                if (p != null)
1590 <                                    p.val = val;
1591 <                                else {
1592 <                                    delta = 1;
1593 <                                    t.putTreeNode(h, k, val);
1594 <                                }
1595 <                            }
1596 <                            else if (p != null) {
1597 <                                delta = -1;
1598 <                                t.deleteTreeNode(p);
1880 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1881 >                Node<K,V> r = new ReservationNode<K,V>();
1882 >                synchronized (r) {
1883 >                    if (casTabAt(tab, i, null, r)) {
1884 >                        binCount = 1;
1885 >                        Node<K,V> node = null;
1886 >                        try {
1887 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1888 >                                delta = 1;
1889 >                                node = new Node<K,V>(h, key, val);
1890                              }
1891 +                        } finally {
1892 +                            setTabAt(tab, i, node);
1893                          }
1601                    } finally {
1602                        t.unlockWrite(stamp);
1894                      }
1604                    if (len != 0)
1605                        break;
1895                  }
1896 <                else
1897 <                    tab = (Node<K,V>[])fk;
1896 >                if (binCount != 0)
1897 >                    break;
1898              }
1899 +            else if ((fh = f.hash) == MOVED)
1900 +                tab = helpTransfer(tab, f);
1901              else {
1902                  synchronized (f) {
1903                      if (tabAt(tab, i) == f) {
1904 <                        len = 1;
1905 <                        for (Node<K,V> e = f, pred = null;; ++len) {
1906 <                            Object ek;
1907 <                            if (e.hash == h &&
1908 <                                ((ek = e.key) == k || k.equals(ek))) {
1909 <                                val = mf.apply(e.val, v);
1910 <                                if (val != null)
1911 <                                    e.val = val;
1904 >                        if (fh >= 0) {
1905 >                            binCount = 1;
1906 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1907 >                                K ek;
1908 >                                if (e.hash == h &&
1909 >                                    ((ek = e.key) == key ||
1910 >                                     (ek != null && key.equals(ek)))) {
1911 >                                    val = remappingFunction.apply(key, e.val);
1912 >                                    if (val != null)
1913 >                                        e.val = val;
1914 >                                    else {
1915 >                                        delta = -1;
1916 >                                        Node<K,V> en = e.next;
1917 >                                        if (pred != null)
1918 >                                            pred.next = en;
1919 >                                        else
1920 >                                            setTabAt(tab, i, en);
1921 >                                    }
1922 >                                    break;
1923 >                                }
1924 >                                pred = e;
1925 >                                if ((e = e.next) == null) {
1926 >                                    val = remappingFunction.apply(key, null);
1927 >                                    if (val != null) {
1928 >                                        if (pred.next != null)
1929 >                                            throw new IllegalStateException("Recursive update");
1930 >                                        delta = 1;
1931 >                                        pred.next = new Node<K,V>(h, key, val);
1932 >                                    }
1933 >                                    break;
1934 >                                }
1935 >                            }
1936 >                        }
1937 >                        else if (f instanceof TreeBin) {
1938 >                            binCount = 1;
1939 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1940 >                            TreeNode<K,V> r, p;
1941 >                            if ((r = t.root) != null)
1942 >                                p = r.findTreeNode(h, key, null);
1943 >                            else
1944 >                                p = null;
1945 >                            V pv = (p == null) ? null : p.val;
1946 >                            val = remappingFunction.apply(key, pv);
1947 >                            if (val != null) {
1948 >                                if (p != null)
1949 >                                    p.val = val;
1950                                  else {
1951 <                                    delta = -1;
1952 <                                    Node<K,V> en = e.next;
1624 <                                    if (pred != null)
1625 <                                        pred.next = en;
1626 <                                    else
1627 <                                        setTabAt(tab, i, en);
1951 >                                    delta = 1;
1952 >                                    t.putTreeVal(h, key, val);
1953                                  }
1629                                break;
1954                              }
1955 <                            pred = e;
1956 <                            if ((e = e.next) == null) {
1957 <                                delta = 1;
1958 <                                val = v;
1635 <                                pred.next = new Node<K,V>(h, k, val, null);
1636 <                                if (len > TREE_THRESHOLD)
1637 <                                    replaceWithTreeBin(tab, i, k);
1638 <                                break;
1955 >                            else if (p != null) {
1956 >                                delta = -1;
1957 >                                if (t.removeTreeNode(p))
1958 >                                    setTabAt(tab, i, untreeify(t.first));
1959                              }
1960                          }
1961 +                        else if (f instanceof ReservationNode)
1962 +                            throw new IllegalStateException("Recursive update");
1963                      }
1964                  }
1965 <                if (len != 0)
1965 >                if (binCount != 0) {
1966 >                    if (binCount >= TREEIFY_THRESHOLD)
1967 >                        treeifyBin(tab, i);
1968                      break;
1969 +                }
1970              }
1971          }
1972          if (delta != 0)
1973 <            addCount((long)delta, len);
1973 >            addCount((long)delta, binCount);
1974          return val;
1975      }
1976  
1977 <    /** Implementation for putAll */
1978 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
1979 <        tryPresize(m.size());
1980 <        long delta = 0L;     // number of uncommitted additions
1981 <        boolean npe = false; // to throw exception on exit for nulls
1982 <        try {                // to clean up counts on other exceptions
1983 <            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1984 <                Object k; V v;
1985 <                if (entry == null || (k = entry.getKey()) == null ||
1986 <                    (v = entry.getValue()) == null) {
1987 <                    npe = true;
1977 >    /**
1978 >     * If the specified key is not already associated with a
1979 >     * (non-null) value, associates it with the given value.
1980 >     * Otherwise, replaces the value with the results of the given
1981 >     * remapping function, or removes if {@code null}. The entire
1982 >     * method invocation is performed atomically.  Some attempted
1983 >     * update operations on this map by other threads may be blocked
1984 >     * while computation is in progress, so the computation should be
1985 >     * short and simple, and must not attempt to update any other
1986 >     * mappings of this Map.
1987 >     *
1988 >     * @param key key with which the specified value is to be associated
1989 >     * @param value the value to use if absent
1990 >     * @param remappingFunction the function to recompute a value if present
1991 >     * @return the new value associated with the specified key, or null if none
1992 >     * @throws NullPointerException if the specified key or the
1993 >     *         remappingFunction is null
1994 >     * @throws RuntimeException or Error if the remappingFunction does so,
1995 >     *         in which case the mapping is unchanged
1996 >     */
1997 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1998 >        if (key == null || value == null || remappingFunction == null)
1999 >            throw new NullPointerException();
2000 >        int h = spread(key.hashCode());
2001 >        V val = null;
2002 >        int delta = 0;
2003 >        int binCount = 0;
2004 >        for (Node<K,V>[] tab = table;;) {
2005 >            Node<K,V> f; int n, i, fh;
2006 >            if (tab == null || (n = tab.length) == 0)
2007 >                tab = initTable();
2008 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2009 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2010 >                    delta = 1;
2011 >                    val = value;
2012                      break;
2013                  }
2014 <                int h = spread(k.hashCode());
2015 <                for (Node<K,V>[] tab = table;;) {
2016 <                    int i; Node<K,V> f; int fh; Object fk;
2017 <                    if (tab == null)
2018 <                        tab = initTable();
2019 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
2020 <                        if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
2021 <                            ++delta;
2022 <                            break;
2023 <                        }
2024 <                    }
2025 <                    else if ((fh = f.hash) < 0) {
2026 <                        if ((fk = f.key) instanceof TreeBin) {
2027 <                            TreeBin<K,V> t = (TreeBin<K,V>)fk;
2028 <                            long stamp = t.writeLock();
2029 <                            boolean validated = false;
1681 <                            try {
1682 <                                if (tabAt(tab, i) == f) {
1683 <                                    validated = true;
1684 <                                    Class<?> cc = comparableClassFor(k);
1685 <                                    TreeNode<K,V> p = t.getTreeNode(h, k,
1686 <                                                                    t.root, cc);
1687 <                                    if (p != null)
1688 <                                        p.val = v;
2014 >            }
2015 >            else if ((fh = f.hash) == MOVED)
2016 >                tab = helpTransfer(tab, f);
2017 >            else {
2018 >                synchronized (f) {
2019 >                    if (tabAt(tab, i) == f) {
2020 >                        if (fh >= 0) {
2021 >                            binCount = 1;
2022 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
2023 >                                K ek;
2024 >                                if (e.hash == h &&
2025 >                                    ((ek = e.key) == key ||
2026 >                                     (ek != null && key.equals(ek)))) {
2027 >                                    val = remappingFunction.apply(e.val, value);
2028 >                                    if (val != null)
2029 >                                        e.val = val;
2030                                      else {
2031 <                                        ++delta;
2032 <                                        t.putTreeNode(h, k, v);
2031 >                                        delta = -1;
2032 >                                        Node<K,V> en = e.next;
2033 >                                        if (pred != null)
2034 >                                            pred.next = en;
2035 >                                        else
2036 >                                            setTabAt(tab, i, en);
2037                                      }
2038 +                                    break;
2039 +                                }
2040 +                                pred = e;
2041 +                                if ((e = e.next) == null) {
2042 +                                    delta = 1;
2043 +                                    val = value;
2044 +                                    pred.next = new Node<K,V>(h, key, val);
2045 +                                    break;
2046                                  }
1694                            } finally {
1695                                t.unlockWrite(stamp);
2047                              }
1697                            if (validated)
1698                                break;
2048                          }
2049 <                        else
2050 <                            tab = (Node<K,V>[])fk;
2051 <                    }
2052 <                    else {
2053 <                        int len = 0;
2054 <                        synchronized (f) {
2055 <                            if (tabAt(tab, i) == f) {
2056 <                                len = 1;
2057 <                                for (Node<K,V> e = f;; ++len) {
2058 <                                    Object ek;
2059 <                                    if (e.hash == h &&
2060 <                                        ((ek = e.key) == k || k.equals(ek))) {
2061 <                                        e.val = v;
2062 <                                        break;
1714 <                                    }
1715 <                                    Node<K,V> last = e;
1716 <                                    if ((e = e.next) == null) {
1717 <                                        ++delta;
1718 <                                        last.next = new Node<K,V>(h, k, v, null);
1719 <                                        if (len > TREE_THRESHOLD)
1720 <                                            replaceWithTreeBin(tab, i, k);
1721 <                                        break;
1722 <                                    }
2049 >                        else if (f instanceof TreeBin) {
2050 >                            binCount = 2;
2051 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2052 >                            TreeNode<K,V> r = t.root;
2053 >                            TreeNode<K,V> p = (r == null) ? null :
2054 >                                r.findTreeNode(h, key, null);
2055 >                            val = (p == null) ? value :
2056 >                                remappingFunction.apply(p.val, value);
2057 >                            if (val != null) {
2058 >                                if (p != null)
2059 >                                    p.val = val;
2060 >                                else {
2061 >                                    delta = 1;
2062 >                                    t.putTreeVal(h, key, val);
2063                                  }
2064                              }
2065 <                        }
2066 <                        if (len != 0) {
2067 <                            if (len > 1) {
2068 <                                addCount(delta, len);
1729 <                                delta = 0L;
2065 >                            else if (p != null) {
2066 >                                delta = -1;
2067 >                                if (t.removeTreeNode(p))
2068 >                                    setTabAt(tab, i, untreeify(t.first));
2069                              }
1731                            break;
2070                          }
2071 +                        else if (f instanceof ReservationNode)
2072 +                            throw new IllegalStateException("Recursive update");
2073                      }
2074                  }
2075 +                if (binCount != 0) {
2076 +                    if (binCount >= TREEIFY_THRESHOLD)
2077 +                        treeifyBin(tab, i);
2078 +                    break;
2079 +                }
2080              }
1736        } finally {
1737            if (delta != 0L)
1738                addCount(delta, 2);
2081          }
2082 <        if (npe)
2082 >        if (delta != 0)
2083 >            addCount((long)delta, binCount);
2084 >        return val;
2085 >    }
2086 >
2087 >    // Hashtable legacy methods
2088 >
2089 >    /**
2090 >     * Tests if some key maps into the specified value in this table.
2091 >     *
2092 >     * <p>Note that this method is identical in functionality to
2093 >     * {@link #containsValue(Object)}, and exists solely to ensure
2094 >     * full compatibility with class {@link java.util.Hashtable},
2095 >     * which supported this method prior to introduction of the
2096 >     * Java Collections Framework.
2097 >     *
2098 >     * @param  value a value to search for
2099 >     * @return {@code true} if and only if some key maps to the
2100 >     *         {@code value} argument in this table as
2101 >     *         determined by the {@code equals} method;
2102 >     *         {@code false} otherwise
2103 >     * @throws NullPointerException if the specified value is null
2104 >     */
2105 >    public boolean contains(Object value) {
2106 >        return containsValue(value);
2107 >    }
2108 >
2109 >    /**
2110 >     * Returns an enumeration of the keys in this table.
2111 >     *
2112 >     * @return an enumeration of the keys in this table
2113 >     * @see #keySet()
2114 >     */
2115 >    public Enumeration<K> keys() {
2116 >        Node<K,V>[] t;
2117 >        int f = (t = table) == null ? 0 : t.length;
2118 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2119 >    }
2120 >
2121 >    /**
2122 >     * Returns an enumeration of the values in this table.
2123 >     *
2124 >     * @return an enumeration of the values in this table
2125 >     * @see #values()
2126 >     */
2127 >    public Enumeration<V> elements() {
2128 >        Node<K,V>[] t;
2129 >        int f = (t = table) == null ? 0 : t.length;
2130 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2131 >    }
2132 >
2133 >    // ConcurrentHashMap-only methods
2134 >
2135 >    /**
2136 >     * Returns the number of mappings. This method should be used
2137 >     * instead of {@link #size} because a ConcurrentHashMap may
2138 >     * contain more mappings than can be represented as an int. The
2139 >     * value returned is an estimate; the actual count may differ if
2140 >     * there are concurrent insertions or removals.
2141 >     *
2142 >     * @return the number of mappings
2143 >     * @since 1.8
2144 >     */
2145 >    public long mappingCount() {
2146 >        long n = sumCount();
2147 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2148 >    }
2149 >
2150 >    /**
2151 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2152 >     * from the given type to {@code Boolean.TRUE}.
2153 >     *
2154 >     * @param <K> the element type of the returned set
2155 >     * @return the new set
2156 >     * @since 1.8
2157 >     */
2158 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2159 >        return new KeySetView<K,Boolean>
2160 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2161 >    }
2162 >
2163 >    /**
2164 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2165 >     * from the given type to {@code Boolean.TRUE}.
2166 >     *
2167 >     * @param initialCapacity The implementation performs internal
2168 >     * sizing to accommodate this many elements.
2169 >     * @param <K> the element type of the returned set
2170 >     * @return the new set
2171 >     * @throws IllegalArgumentException if the initial capacity of
2172 >     * elements is negative
2173 >     * @since 1.8
2174 >     */
2175 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2176 >        return new KeySetView<K,Boolean>
2177 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2178 >    }
2179 >
2180 >    /**
2181 >     * Returns a {@link Set} view of the keys in this map, using the
2182 >     * given common mapped value for any additions (i.e., {@link
2183 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2184 >     * This is of course only appropriate if it is acceptable to use
2185 >     * the same value for all additions from this view.
2186 >     *
2187 >     * @param mappedValue the mapped value to use for any additions
2188 >     * @return the set view
2189 >     * @throws NullPointerException if the mappedValue is null
2190 >     */
2191 >    public KeySetView<K,V> keySet(V mappedValue) {
2192 >        if (mappedValue == null)
2193              throw new NullPointerException();
2194 +        return new KeySetView<K,V>(this, mappedValue);
2195      }
2196  
2197 +    /* ---------------- Special Nodes -------------- */
2198 +
2199      /**
2200 <     * Implementation for clear. Steps through each bin, removing all
1746 <     * nodes.
2200 >     * A node inserted at head of bins during transfer operations.
2201       */
2202 <    private final void internalClear() {
2203 <        long delta = 0L; // negative number of deletions
2204 <        int i = 0;
2205 <        Node<K,V>[] tab = table;
2206 <        while (tab != null && i < tab.length) {
2207 <            Node<K,V> f = tabAt(tab, i);
2208 <            if (f == null)
2209 <                ++i;
2210 <            else if (f.hash < 0) {
2211 <                Object fk;
2212 <                if ((fk = f.key) instanceof TreeBin) {
2213 <                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
2214 <                    long stamp = t.writeLock();
2215 <                    try {
2216 <                        if (tabAt(tab, i) == f) {
2217 <                            for (Node<K,V> p = t.first; p != null; p = p.next)
2218 <                                --delta;
2219 <                            t.first = null;
2220 <                            t.root = null;
2221 <                            ++i;
2202 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2203 >        final Node<K,V>[] nextTable;
2204 >        ForwardingNode(Node<K,V>[] tab) {
2205 >            super(MOVED, null, null);
2206 >            this.nextTable = tab;
2207 >        }
2208 >
2209 >        Node<K,V> find(int h, Object k) {
2210 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2211 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2212 >                Node<K,V> e; int n;
2213 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2214 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2215 >                    return null;
2216 >                for (;;) {
2217 >                    int eh; K ek;
2218 >                    if ((eh = e.hash) == h &&
2219 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2220 >                        return e;
2221 >                    if (eh < 0) {
2222 >                        if (e instanceof ForwardingNode) {
2223 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2224 >                            continue outer;
2225                          }
2226 <                    } finally {
2227 <                        t.unlockWrite(stamp);
1771 <                    }
1772 <                }
1773 <                else
1774 <                    tab = (Node<K,V>[])fk;
1775 <            }
1776 <            else {
1777 <                synchronized (f) {
1778 <                    if (tabAt(tab, i) == f) {
1779 <                        for (Node<K,V> e = f; e != null; e = e.next)
1780 <                            --delta;
1781 <                        setTabAt(tab, i, null);
1782 <                        ++i;
2226 >                        else
2227 >                            return e.find(h, k);
2228                      }
2229 +                    if ((e = e.next) == null)
2230 +                        return null;
2231                  }
2232              }
2233          }
2234 <        if (delta != 0L)
2235 <            addCount(delta, -1);
2234 >    }
2235 >
2236 >    /**
2237 >     * A place-holder node used in computeIfAbsent and compute.
2238 >     */
2239 >    static final class ReservationNode<K,V> extends Node<K,V> {
2240 >        ReservationNode() {
2241 >            super(RESERVED, null, null);
2242 >        }
2243 >
2244 >        Node<K,V> find(int h, Object k) {
2245 >            return null;
2246 >        }
2247      }
2248  
2249      /* ---------------- Table Initialization and Resizing -------------- */
2250  
2251      /**
2252 <     * Returns a power of two table size for the given desired capacity.
2253 <     * See Hackers Delight, sec 3.2
2252 >     * Returns the stamp bits for resizing a table of size n.
2253 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2254       */
2255 <    private static final int tableSizeFor(int c) {
2256 <        int n = c - 1;
1799 <        n |= n >>> 1;
1800 <        n |= n >>> 2;
1801 <        n |= n >>> 4;
1802 <        n |= n >>> 8;
1803 <        n |= n >>> 16;
1804 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2255 >    static final int resizeStamp(int n) {
2256 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2257      }
2258  
2259      /**
# Line 1809 | Line 2261 | public class ConcurrentHashMap<K,V> impl
2261       */
2262      private final Node<K,V>[] initTable() {
2263          Node<K,V>[] tab; int sc;
2264 <        while ((tab = table) == null) {
2264 >        while ((tab = table) == null || tab.length == 0) {
2265              if ((sc = sizeCtl) < 0)
2266                  Thread.yield(); // lost initialization race; just spin
2267 <            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2267 >            else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2268                  try {
2269 <                    if ((tab = table) == null) {
2269 >                    if ((tab = table) == null || tab.length == 0) {
2270                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2271 <                        table = tab = (Node<K,V>[])new Node[n];
2271 >                        @SuppressWarnings("unchecked")
2272 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2273 >                        table = tab = nt;
2274                          sc = n - (n >>> 2);
2275                      }
2276                  } finally {
# Line 1839 | Line 2293 | public class ConcurrentHashMap<K,V> impl
2293       * @param check if <0, don't check resize, if <= 1 only check if uncontended
2294       */
2295      private final void addCount(long x, int check) {
2296 <        Cell[] as; long b, s;
2297 <        if ((as = counterCells) != null ||
2298 <            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2299 <            Cell a; long v; int m;
2296 >        CounterCell[] cs; long b, s;
2297 >        if ((cs = counterCells) != null ||
2298 >            !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2299 >            CounterCell c; long v; int m;
2300              boolean uncontended = true;
2301 <            if (as == null || (m = as.length - 1) < 0 ||
2302 <                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2301 >            if (cs == null || (m = cs.length - 1) < 0 ||
2302 >                (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2303                  !(uncontended =
2304 <                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2304 >                  U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2305                  fullAddCount(x, uncontended);
2306                  return;
2307              }
# Line 1856 | Line 2310 | public class ConcurrentHashMap<K,V> impl
2310              s = sumCount();
2311          }
2312          if (check >= 0) {
2313 <            Node<K,V>[] tab, nt; int sc;
2313 >            Node<K,V>[] tab, nt; int n, sc;
2314              while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2315 <                   tab.length < MAXIMUM_CAPACITY) {
2315 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2316 >                int rs = resizeStamp(n) << RESIZE_STAMP_SHIFT;
2317                  if (sc < 0) {
2318 <                    if (sc == -1 || transferIndex <= transferOrigin ||
2319 <                        (nt = nextTable) == null)
2318 >                    if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2319 >                        (nt = nextTable) == null || transferIndex <= 0)
2320                          break;
2321 <                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2321 >                    if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2322                          transfer(tab, nt);
2323                  }
2324 <                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2324 >                else if (U.compareAndSetInt(this, SIZECTL, sc, rs + 2))
2325                      transfer(tab, null);
2326                  s = sumCount();
2327              }
# Line 1874 | Line 2329 | public class ConcurrentHashMap<K,V> impl
2329      }
2330  
2331      /**
2332 +     * Helps transfer if a resize is in progress.
2333 +     */
2334 +    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2335 +        Node<K,V>[] nextTab; int sc;
2336 +        if (tab != null && (f instanceof ForwardingNode) &&
2337 +            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2338 +            int rs = resizeStamp(tab.length) << RESIZE_STAMP_SHIFT;
2339 +            while (nextTab == nextTable && table == tab &&
2340 +                   (sc = sizeCtl) < 0) {
2341 +                if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2342 +                    transferIndex <= 0)
2343 +                    break;
2344 +                if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2345 +                    transfer(tab, nextTab);
2346 +                    break;
2347 +                }
2348 +            }
2349 +            return nextTab;
2350 +        }
2351 +        return table;
2352 +    }
2353 +
2354 +    /**
2355       * Tries to presize table to accommodate the given number of elements.
2356       *
2357       * @param size number of elements (doesn't need to be perfectly accurate)
# Line 1886 | Line 2364 | public class ConcurrentHashMap<K,V> impl
2364              Node<K,V>[] tab = table; int n;
2365              if (tab == null || (n = tab.length) == 0) {
2366                  n = (sc > c) ? sc : c;
2367 <                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2367 >                if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2368                      try {
2369                          if (table == tab) {
2370 <                            table = (Node<K,V>[])new Node[n];
2370 >                            @SuppressWarnings("unchecked")
2371 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2372 >                            table = nt;
2373                              sc = n - (n >>> 2);
2374                          }
2375                      } finally {
# Line 1899 | Line 2379 | public class ConcurrentHashMap<K,V> impl
2379              }
2380              else if (c <= sc || n >= MAXIMUM_CAPACITY)
2381                  break;
2382 <            else if (tab == table &&
2383 <                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2384 <                transfer(tab, null);
2382 >            else if (tab == table) {
2383 >                int rs = resizeStamp(n);
2384 >                if (U.compareAndSetInt(this, SIZECTL, sc,
2385 >                                        (rs << RESIZE_STAMP_SHIFT) + 2))
2386 >                    transfer(tab, null);
2387 >            }
2388          }
2389      }
2390  
# Line 1915 | Line 2398 | public class ConcurrentHashMap<K,V> impl
2398              stride = MIN_TRANSFER_STRIDE; // subdivide range
2399          if (nextTab == null) {            // initiating
2400              try {
2401 <                nextTab = (Node<K,V>[])new Node[n << 1];
2401 >                @SuppressWarnings("unchecked")
2402 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2403 >                nextTab = nt;
2404              } catch (Throwable ex) {      // try to cope with OOME
2405                  sizeCtl = Integer.MAX_VALUE;
2406                  return;
2407              }
2408              nextTable = nextTab;
1924            transferOrigin = n;
2409              transferIndex = n;
1926            Node<K,V> rev = new Node<K,V>(MOVED, tab, null, null);
1927            for (int k = n; k > 0;) {    // progressively reveal ready slots
1928                int nextk = (k > stride) ? k - stride : 0;
1929                for (int m = nextk; m < k; ++m)
1930                    nextTab[m] = rev;
1931                for (int m = n + nextk; m < n + k; ++m)
1932                    nextTab[m] = rev;
1933                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1934            }
2410          }
2411          int nextn = nextTab.length;
2412 <        Node<K,V> fwd = new Node<K,V>(MOVED, nextTab, null, null);
2412 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2413          boolean advance = true;
2414 +        boolean finishing = false; // to ensure sweep before committing nextTab
2415          for (int i = 0, bound = 0;;) {
2416 <            int nextIndex, nextBound; Node<K,V> f; Object fk;
2416 >            Node<K,V> f; int fh;
2417              while (advance) {
2418 <                if (--i >= bound)
2418 >                int nextIndex, nextBound;
2419 >                if (--i >= bound || finishing)
2420                      advance = false;
2421 <                else if ((nextIndex = transferIndex) <= transferOrigin) {
2421 >                else if ((nextIndex = transferIndex) <= 0) {
2422                      i = -1;
2423                      advance = false;
2424                  }
2425 <                else if (U.compareAndSwapInt
2425 >                else if (U.compareAndSetInt
2426                           (this, TRANSFERINDEX, nextIndex,
2427                            nextBound = (nextIndex > stride ?
2428                                         nextIndex - stride : 0))) {
# Line 1955 | Line 2432 | public class ConcurrentHashMap<K,V> impl
2432                  }
2433              }
2434              if (i < 0 || i >= n || i + n >= nextn) {
2435 <                for (int sc;;) {
2436 <                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2437 <                        if (sc == -1) {
2438 <                            nextTable = null;
2439 <                            table = nextTab;
2440 <                            sizeCtl = (n << 1) - (n >>> 1);
1964 <                        }
1965 <                        return;
1966 <                    }
2435 >                int sc;
2436 >                if (finishing) {
2437 >                    nextTable = null;
2438 >                    table = nextTab;
2439 >                    sizeCtl = (n << 1) - (n >>> 1);
2440 >                    return;
2441                  }
2442 <            }
2443 <            else if ((f = tabAt(tab, i)) == null) {
2444 <                if (casTabAt(tab, i, null, fwd)) {
2445 <                    setTabAt(nextTab, i, null);
2446 <                    setTabAt(nextTab, i + n, null);
1973 <                    advance = true;
2442 >                if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2443 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2444 >                        return;
2445 >                    finishing = advance = true;
2446 >                    i = n; // recheck before commit
2447                  }
2448              }
2449 <            else if (f.hash >= 0) {
2449 >            else if ((f = tabAt(tab, i)) == null)
2450 >                advance = casTabAt(tab, i, null, fwd);
2451 >            else if ((fh = f.hash) == MOVED)
2452 >                advance = true; // already processed
2453 >            else {
2454                  synchronized (f) {
2455                      if (tabAt(tab, i) == f) {
2456 <                        int runBit = f.hash & n;
2457 <                        Node<K,V> lastRun = f, lo = null, hi = null;
2458 <                        for (Node<K,V> p = f.next; p != null; p = p.next) {
2459 <                            int b = p.hash & n;
2460 <                            if (b != runBit) {
2461 <                                runBit = b;
2462 <                                lastRun = p;
2456 >                        Node<K,V> ln, hn;
2457 >                        if (fh >= 0) {
2458 >                            int runBit = fh & n;
2459 >                            Node<K,V> lastRun = f;
2460 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2461 >                                int b = p.hash & n;
2462 >                                if (b != runBit) {
2463 >                                    runBit = b;
2464 >                                    lastRun = p;
2465 >                                }
2466                              }
2467 <                        }
2468 <                        if (runBit == 0)
2469 <                            lo = lastRun;
1990 <                        else
1991 <                            hi = lastRun;
1992 <                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
1993 <                            int ph = p.hash; Object pk = p.key; V pv = p.val;
1994 <                            if ((ph & n) == 0)
1995 <                                lo = new Node<K,V>(ph, pk, pv, lo);
1996 <                            else
1997 <                                hi = new Node<K,V>(ph, pk, pv, hi);
1998 <                        }
1999 <                        setTabAt(nextTab, i, lo);
2000 <                        setTabAt(nextTab, i + n, hi);
2001 <                        setTabAt(tab, i, fwd);
2002 <                        advance = true;
2003 <                    }
2004 <                }
2005 <            }
2006 <            else if ((fk = f.key) instanceof TreeBin) {
2007 <                TreeBin<K,V> t = (TreeBin<K,V>)fk;
2008 <                long stamp = t.writeLock();
2009 <                try {
2010 <                    if (tabAt(tab, i) == f) {
2011 <                        TreeNode<K,V> root;
2012 <                        Node<K,V> ln = null, hn = null;
2013 <                        if ((root = t.root) != null) {
2014 <                            Node<K,V> e, p; TreeNode<K,V> lr, rr; int lh;
2015 <                            TreeBin<K,V> lt = null, ht = null;
2016 <                            for (lr = root; lr.left != null; lr = lr.left);
2017 <                            for (rr = root; rr.right != null; rr = rr.right);
2018 <                            if ((lh = lr.hash) == rr.hash) { // move entire tree
2019 <                                if ((lh & n) == 0)
2020 <                                    lt = t;
2021 <                                else
2022 <                                    ht = t;
2467 >                            if (runBit == 0) {
2468 >                                ln = lastRun;
2469 >                                hn = null;
2470                              }
2471                              else {
2472 <                                lt = new TreeBin<K,V>();
2473 <                                ht = new TreeBin<K,V>();
2474 <                                int lc = 0, hc = 0;
2475 <                                for (e = t.first; e != null; e = e.next) {
2476 <                                    int h = e.hash;
2477 <                                    Object k = e.key; V v = e.val;
2478 <                                    if ((h & n) == 0) {
2479 <                                        ++lc;
2480 <                                        lt.putTreeNode(h, k, v);
2481 <                                    }
2482 <                                    else {
2483 <                                        ++hc;
2484 <                                        ht.putTreeNode(h, k, v);
2485 <                                    }
2486 <                                }
2487 <                                if (lc < TREE_THRESHOLD) { // throw away
2488 <                                    for (p = lt.first; p != null; p = p.next)
2489 <                                        ln = new Node<K,V>(p.hash, p.key,
2490 <                                                           p.val, ln);
2491 <                                    lt = null;
2472 >                                hn = lastRun;
2473 >                                ln = null;
2474 >                            }
2475 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2476 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2477 >                                if ((ph & n) == 0)
2478 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2479 >                                else
2480 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2481 >                            }
2482 >                            setTabAt(nextTab, i, ln);
2483 >                            setTabAt(nextTab, i + n, hn);
2484 >                            setTabAt(tab, i, fwd);
2485 >                            advance = true;
2486 >                        }
2487 >                        else if (f instanceof TreeBin) {
2488 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2489 >                            TreeNode<K,V> lo = null, loTail = null;
2490 >                            TreeNode<K,V> hi = null, hiTail = null;
2491 >                            int lc = 0, hc = 0;
2492 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2493 >                                int h = e.hash;
2494 >                                TreeNode<K,V> p = new TreeNode<K,V>
2495 >                                    (h, e.key, e.val, null, null);
2496 >                                if ((h & n) == 0) {
2497 >                                    if ((p.prev = loTail) == null)
2498 >                                        lo = p;
2499 >                                    else
2500 >                                        loTail.next = p;
2501 >                                    loTail = p;
2502 >                                    ++lc;
2503                                  }
2504 <                                if (hc < TREE_THRESHOLD) {
2505 <                                    for (p = ht.first; p != null; p = p.next)
2506 <                                        hn = new Node<K,V>(p.hash, p.key,
2507 <                                                           p.val, hn);
2508 <                                    ht = null;
2504 >                                else {
2505 >                                    if ((p.prev = hiTail) == null)
2506 >                                        hi = p;
2507 >                                    else
2508 >                                        hiTail.next = p;
2509 >                                    hiTail = p;
2510 >                                    ++hc;
2511                                  }
2512                              }
2513 <                            if (ln == null && lt != null)
2514 <                                ln = new Node<K,V>(MOVED, lt, null, null);
2515 <                            if (hn == null && ht != null)
2516 <                                hn = new Node<K,V>(MOVED, ht, null, null);
2513 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2514 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2515 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2516 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2517 >                            setTabAt(nextTab, i, ln);
2518 >                            setTabAt(nextTab, i + n, hn);
2519 >                            setTabAt(tab, i, fwd);
2520 >                            advance = true;
2521                          }
2522 <                        setTabAt(nextTab, i, ln);
2523 <                        setTabAt(nextTab, i + n, hn);
2060 <                        setTabAt(tab, i, fwd);
2061 <                        advance = true;
2522 >                        else if (f instanceof ReservationNode)
2523 >                            throw new IllegalStateException("Recursive update");
2524                      }
2063                } finally {
2064                    t.unlockWrite(stamp);
2525                  }
2526              }
2067            else
2068                advance = true; // already processed
2527          }
2528      }
2529  
2530      /* ---------------- Counter support -------------- */
2531  
2532 +    /**
2533 +     * A padded cell for distributing counts.  Adapted from LongAdder
2534 +     * and Striped64.  See their internal docs for explanation.
2535 +     */
2536 +    @jdk.internal.vm.annotation.Contended static final class CounterCell {
2537 +        volatile long value;
2538 +        CounterCell(long x) { value = x; }
2539 +    }
2540 +
2541      final long sumCount() {
2542 <        Cell[] as = counterCells; Cell a;
2542 >        CounterCell[] cs = counterCells;
2543          long sum = baseCount;
2544 <        if (as != null) {
2545 <            for (int i = 0; i < as.length; ++i) {
2546 <                if ((a = as[i]) != null)
2547 <                    sum += a.value;
2081 <            }
2544 >        if (cs != null) {
2545 >            for (CounterCell c : cs)
2546 >                if (c != null)
2547 >                    sum += c.value;
2548          }
2549          return sum;
2550      }
# Line 2093 | Line 2559 | public class ConcurrentHashMap<K,V> impl
2559          }
2560          boolean collide = false;                // True if last slot nonempty
2561          for (;;) {
2562 <            Cell[] as; Cell a; int n; long v;
2563 <            if ((as = counterCells) != null && (n = as.length) > 0) {
2564 <                if ((a = as[(n - 1) & h]) == null) {
2562 >            CounterCell[] cs; CounterCell c; int n; long v;
2563 >            if ((cs = counterCells) != null && (n = cs.length) > 0) {
2564 >                if ((c = cs[(n - 1) & h]) == null) {
2565                      if (cellsBusy == 0) {            // Try to attach new Cell
2566 <                        Cell r = new Cell(x); // Optimistic create
2566 >                        CounterCell r = new CounterCell(x); // Optimistic create
2567                          if (cellsBusy == 0 &&
2568 <                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2568 >                            U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2569                              boolean created = false;
2570                              try {               // Recheck under lock
2571 <                                Cell[] rs; int m, j;
2571 >                                CounterCell[] rs; int m, j;
2572                                  if ((rs = counterCells) != null &&
2573                                      (m = rs.length) > 0 &&
2574                                      rs[j = (m - 1) & h] == null) {
# Line 2121 | Line 2587 | public class ConcurrentHashMap<K,V> impl
2587                  }
2588                  else if (!wasUncontended)       // CAS already known to fail
2589                      wasUncontended = true;      // Continue after rehash
2590 <                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2590 >                else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2591                      break;
2592 <                else if (counterCells != as || n >= NCPU)
2592 >                else if (counterCells != cs || n >= NCPU)
2593                      collide = false;            // At max size or stale
2594                  else if (!collide)
2595                      collide = true;
2596                  else if (cellsBusy == 0 &&
2597 <                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2597 >                         U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2598                      try {
2599 <                        if (counterCells == as) {// Expand table unless stale
2600 <                            Cell[] rs = new Cell[n << 1];
2135 <                            for (int i = 0; i < n; ++i)
2136 <                                rs[i] = as[i];
2137 <                            counterCells = rs;
2138 <                        }
2599 >                        if (counterCells == cs) // Expand table unless stale
2600 >                            counterCells = Arrays.copyOf(cs, n << 1);
2601                      } finally {
2602                          cellsBusy = 0;
2603                      }
# Line 2144 | Line 2606 | public class ConcurrentHashMap<K,V> impl
2606                  }
2607                  h = ThreadLocalRandom.advanceProbe(h);
2608              }
2609 <            else if (cellsBusy == 0 && counterCells == as &&
2610 <                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2609 >            else if (cellsBusy == 0 && counterCells == cs &&
2610 >                     U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2611                  boolean init = false;
2612                  try {                           // Initialize table
2613 <                    if (counterCells == as) {
2614 <                        Cell[] rs = new Cell[2];
2615 <                        rs[h & 1] = new Cell(x);
2613 >                    if (counterCells == cs) {
2614 >                        CounterCell[] rs = new CounterCell[2];
2615 >                        rs[h & 1] = new CounterCell(x);
2616                          counterCells = rs;
2617                          init = true;
2618                      }
# Line 2160 | Line 2622 | public class ConcurrentHashMap<K,V> impl
2622                  if (init)
2623                      break;
2624              }
2625 <            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2625 >            else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2626                  break;                          // Fall back on using base
2627          }
2628      }
2629  
2630 +    /* ---------------- Conversion from/to TreeBins -------------- */
2631 +
2632 +    /**
2633 +     * Replaces all linked nodes in bin at given index unless table is
2634 +     * too small, in which case resizes instead.
2635 +     */
2636 +    private final void treeifyBin(Node<K,V>[] tab, int index) {
2637 +        Node<K,V> b; int n;
2638 +        if (tab != null) {
2639 +            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2640 +                tryPresize(n << 1);
2641 +            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2642 +                synchronized (b) {
2643 +                    if (tabAt(tab, index) == b) {
2644 +                        TreeNode<K,V> hd = null, tl = null;
2645 +                        for (Node<K,V> e = b; e != null; e = e.next) {
2646 +                            TreeNode<K,V> p =
2647 +                                new TreeNode<K,V>(e.hash, e.key, e.val,
2648 +                                                  null, null);
2649 +                            if ((p.prev = tl) == null)
2650 +                                hd = p;
2651 +                            else
2652 +                                tl.next = p;
2653 +                            tl = p;
2654 +                        }
2655 +                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2656 +                    }
2657 +                }
2658 +            }
2659 +        }
2660 +    }
2661 +
2662 +    /**
2663 +     * Returns a list of non-TreeNodes replacing those in given list.
2664 +     */
2665 +    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2666 +        Node<K,V> hd = null, tl = null;
2667 +        for (Node<K,V> q = b; q != null; q = q.next) {
2668 +            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2669 +            if (tl == null)
2670 +                hd = p;
2671 +            else
2672 +                tl.next = p;
2673 +            tl = p;
2674 +        }
2675 +        return hd;
2676 +    }
2677 +
2678 +    /* ---------------- TreeNodes -------------- */
2679 +
2680 +    /**
2681 +     * Nodes for use in TreeBins.
2682 +     */
2683 +    static final class TreeNode<K,V> extends Node<K,V> {
2684 +        TreeNode<K,V> parent;  // red-black tree links
2685 +        TreeNode<K,V> left;
2686 +        TreeNode<K,V> right;
2687 +        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2688 +        boolean red;
2689 +
2690 +        TreeNode(int hash, K key, V val, Node<K,V> next,
2691 +                 TreeNode<K,V> parent) {
2692 +            super(hash, key, val, next);
2693 +            this.parent = parent;
2694 +        }
2695 +
2696 +        Node<K,V> find(int h, Object k) {
2697 +            return findTreeNode(h, k, null);
2698 +        }
2699 +
2700 +        /**
2701 +         * Returns the TreeNode (or null if not found) for the given key
2702 +         * starting at given root.
2703 +         */
2704 +        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2705 +            if (k != null) {
2706 +                TreeNode<K,V> p = this;
2707 +                do {
2708 +                    int ph, dir; K pk; TreeNode<K,V> q;
2709 +                    TreeNode<K,V> pl = p.left, pr = p.right;
2710 +                    if ((ph = p.hash) > h)
2711 +                        p = pl;
2712 +                    else if (ph < h)
2713 +                        p = pr;
2714 +                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2715 +                        return p;
2716 +                    else if (pl == null)
2717 +                        p = pr;
2718 +                    else if (pr == null)
2719 +                        p = pl;
2720 +                    else if ((kc != null ||
2721 +                              (kc = comparableClassFor(k)) != null) &&
2722 +                             (dir = compareComparables(kc, k, pk)) != 0)
2723 +                        p = (dir < 0) ? pl : pr;
2724 +                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2725 +                        return q;
2726 +                    else
2727 +                        p = pl;
2728 +                } while (p != null);
2729 +            }
2730 +            return null;
2731 +        }
2732 +    }
2733 +
2734 +    /* ---------------- TreeBins -------------- */
2735 +
2736 +    /**
2737 +     * TreeNodes used at the heads of bins. TreeBins do not hold user
2738 +     * keys or values, but instead point to list of TreeNodes and
2739 +     * their root. They also maintain a parasitic read-write lock
2740 +     * forcing writers (who hold bin lock) to wait for readers (who do
2741 +     * not) to complete before tree restructuring operations.
2742 +     */
2743 +    static final class TreeBin<K,V> extends Node<K,V> {
2744 +        TreeNode<K,V> root;
2745 +        volatile TreeNode<K,V> first;
2746 +        volatile Thread waiter;
2747 +        volatile int lockState;
2748 +        // values for lockState
2749 +        static final int WRITER = 1; // set while holding write lock
2750 +        static final int WAITER = 2; // set when waiting for write lock
2751 +        static final int READER = 4; // increment value for setting read lock
2752 +
2753 +        /**
2754 +         * Tie-breaking utility for ordering insertions when equal
2755 +         * hashCodes and non-comparable. We don't require a total
2756 +         * order, just a consistent insertion rule to maintain
2757 +         * equivalence across rebalancings. Tie-breaking further than
2758 +         * necessary simplifies testing a bit.
2759 +         */
2760 +        static int tieBreakOrder(Object a, Object b) {
2761 +            int d;
2762 +            if (a == null || b == null ||
2763 +                (d = a.getClass().getName().
2764 +                 compareTo(b.getClass().getName())) == 0)
2765 +                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2766 +                     -1 : 1);
2767 +            return d;
2768 +        }
2769 +
2770 +        /**
2771 +         * Creates bin with initial set of nodes headed by b.
2772 +         */
2773 +        TreeBin(TreeNode<K,V> b) {
2774 +            super(TREEBIN, null, null);
2775 +            this.first = b;
2776 +            TreeNode<K,V> r = null;
2777 +            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2778 +                next = (TreeNode<K,V>)x.next;
2779 +                x.left = x.right = null;
2780 +                if (r == null) {
2781 +                    x.parent = null;
2782 +                    x.red = false;
2783 +                    r = x;
2784 +                }
2785 +                else {
2786 +                    K k = x.key;
2787 +                    int h = x.hash;
2788 +                    Class<?> kc = null;
2789 +                    for (TreeNode<K,V> p = r;;) {
2790 +                        int dir, ph;
2791 +                        K pk = p.key;
2792 +                        if ((ph = p.hash) > h)
2793 +                            dir = -1;
2794 +                        else if (ph < h)
2795 +                            dir = 1;
2796 +                        else if ((kc == null &&
2797 +                                  (kc = comparableClassFor(k)) == null) ||
2798 +                                 (dir = compareComparables(kc, k, pk)) == 0)
2799 +                            dir = tieBreakOrder(k, pk);
2800 +                        TreeNode<K,V> xp = p;
2801 +                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2802 +                            x.parent = xp;
2803 +                            if (dir <= 0)
2804 +                                xp.left = x;
2805 +                            else
2806 +                                xp.right = x;
2807 +                            r = balanceInsertion(r, x);
2808 +                            break;
2809 +                        }
2810 +                    }
2811 +                }
2812 +            }
2813 +            this.root = r;
2814 +            assert checkInvariants(root);
2815 +        }
2816 +
2817 +        /**
2818 +         * Acquires write lock for tree restructuring.
2819 +         */
2820 +        private final void lockRoot() {
2821 +            if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2822 +                contendedLock(); // offload to separate method
2823 +        }
2824 +
2825 +        /**
2826 +         * Releases write lock for tree restructuring.
2827 +         */
2828 +        private final void unlockRoot() {
2829 +            lockState = 0;
2830 +        }
2831 +
2832 +        /**
2833 +         * Possibly blocks awaiting root lock.
2834 +         */
2835 +        private final void contendedLock() {
2836 +            boolean waiting = false;
2837 +            for (int s;;) {
2838 +                if (((s = lockState) & ~WAITER) == 0) {
2839 +                    if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2840 +                        if (waiting)
2841 +                            waiter = null;
2842 +                        return;
2843 +                    }
2844 +                }
2845 +                else if ((s & WAITER) == 0) {
2846 +                    if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2847 +                        waiting = true;
2848 +                        waiter = Thread.currentThread();
2849 +                    }
2850 +                }
2851 +                else if (waiting)
2852 +                    LockSupport.park(this);
2853 +            }
2854 +        }
2855 +
2856 +        /**
2857 +         * Returns matching node or null if none. Tries to search
2858 +         * using tree comparisons from root, but continues linear
2859 +         * search when lock not available.
2860 +         */
2861 +        final Node<K,V> find(int h, Object k) {
2862 +            if (k != null) {
2863 +                for (Node<K,V> e = first; e != null; ) {
2864 +                    int s; K ek;
2865 +                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2866 +                        if (e.hash == h &&
2867 +                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2868 +                            return e;
2869 +                        e = e.next;
2870 +                    }
2871 +                    else if (U.compareAndSetInt(this, LOCKSTATE, s,
2872 +                                                 s + READER)) {
2873 +                        TreeNode<K,V> r, p;
2874 +                        try {
2875 +                            p = ((r = root) == null ? null :
2876 +                                 r.findTreeNode(h, k, null));
2877 +                        } finally {
2878 +                            Thread w;
2879 +                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2880 +                                (READER|WAITER) && (w = waiter) != null)
2881 +                                LockSupport.unpark(w);
2882 +                        }
2883 +                        return p;
2884 +                    }
2885 +                }
2886 +            }
2887 +            return null;
2888 +        }
2889 +
2890 +        /**
2891 +         * Finds or adds a node.
2892 +         * @return null if added
2893 +         */
2894 +        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2895 +            Class<?> kc = null;
2896 +            boolean searched = false;
2897 +            for (TreeNode<K,V> p = root;;) {
2898 +                int dir, ph; K pk;
2899 +                if (p == null) {
2900 +                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2901 +                    break;
2902 +                }
2903 +                else if ((ph = p.hash) > h)
2904 +                    dir = -1;
2905 +                else if (ph < h)
2906 +                    dir = 1;
2907 +                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2908 +                    return p;
2909 +                else if ((kc == null &&
2910 +                          (kc = comparableClassFor(k)) == null) ||
2911 +                         (dir = compareComparables(kc, k, pk)) == 0) {
2912 +                    if (!searched) {
2913 +                        TreeNode<K,V> q, ch;
2914 +                        searched = true;
2915 +                        if (((ch = p.left) != null &&
2916 +                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2917 +                            ((ch = p.right) != null &&
2918 +                             (q = ch.findTreeNode(h, k, kc)) != null))
2919 +                            return q;
2920 +                    }
2921 +                    dir = tieBreakOrder(k, pk);
2922 +                }
2923 +
2924 +                TreeNode<K,V> xp = p;
2925 +                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2926 +                    TreeNode<K,V> x, f = first;
2927 +                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2928 +                    if (f != null)
2929 +                        f.prev = x;
2930 +                    if (dir <= 0)
2931 +                        xp.left = x;
2932 +                    else
2933 +                        xp.right = x;
2934 +                    if (!xp.red)
2935 +                        x.red = true;
2936 +                    else {
2937 +                        lockRoot();
2938 +                        try {
2939 +                            root = balanceInsertion(root, x);
2940 +                        } finally {
2941 +                            unlockRoot();
2942 +                        }
2943 +                    }
2944 +                    break;
2945 +                }
2946 +            }
2947 +            assert checkInvariants(root);
2948 +            return null;
2949 +        }
2950 +
2951 +        /**
2952 +         * Removes the given node, that must be present before this
2953 +         * call.  This is messier than typical red-black deletion code
2954 +         * because we cannot swap the contents of an interior node
2955 +         * with a leaf successor that is pinned by "next" pointers
2956 +         * that are accessible independently of lock. So instead we
2957 +         * swap the tree linkages.
2958 +         *
2959 +         * @return true if now too small, so should be untreeified
2960 +         */
2961 +        final boolean removeTreeNode(TreeNode<K,V> p) {
2962 +            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2963 +            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2964 +            TreeNode<K,V> r, rl;
2965 +            if (pred == null)
2966 +                first = next;
2967 +            else
2968 +                pred.next = next;
2969 +            if (next != null)
2970 +                next.prev = pred;
2971 +            if (first == null) {
2972 +                root = null;
2973 +                return true;
2974 +            }
2975 +            if ((r = root) == null || r.right == null || // too small
2976 +                (rl = r.left) == null || rl.left == null)
2977 +                return true;
2978 +            lockRoot();
2979 +            try {
2980 +                TreeNode<K,V> replacement;
2981 +                TreeNode<K,V> pl = p.left;
2982 +                TreeNode<K,V> pr = p.right;
2983 +                if (pl != null && pr != null) {
2984 +                    TreeNode<K,V> s = pr, sl;
2985 +                    while ((sl = s.left) != null) // find successor
2986 +                        s = sl;
2987 +                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2988 +                    TreeNode<K,V> sr = s.right;
2989 +                    TreeNode<K,V> pp = p.parent;
2990 +                    if (s == pr) { // p was s's direct parent
2991 +                        p.parent = s;
2992 +                        s.right = p;
2993 +                    }
2994 +                    else {
2995 +                        TreeNode<K,V> sp = s.parent;
2996 +                        if ((p.parent = sp) != null) {
2997 +                            if (s == sp.left)
2998 +                                sp.left = p;
2999 +                            else
3000 +                                sp.right = p;
3001 +                        }
3002 +                        if ((s.right = pr) != null)
3003 +                            pr.parent = s;
3004 +                    }
3005 +                    p.left = null;
3006 +                    if ((p.right = sr) != null)
3007 +                        sr.parent = p;
3008 +                    if ((s.left = pl) != null)
3009 +                        pl.parent = s;
3010 +                    if ((s.parent = pp) == null)
3011 +                        r = s;
3012 +                    else if (p == pp.left)
3013 +                        pp.left = s;
3014 +                    else
3015 +                        pp.right = s;
3016 +                    if (sr != null)
3017 +                        replacement = sr;
3018 +                    else
3019 +                        replacement = p;
3020 +                }
3021 +                else if (pl != null)
3022 +                    replacement = pl;
3023 +                else if (pr != null)
3024 +                    replacement = pr;
3025 +                else
3026 +                    replacement = p;
3027 +                if (replacement != p) {
3028 +                    TreeNode<K,V> pp = replacement.parent = p.parent;
3029 +                    if (pp == null)
3030 +                        r = replacement;
3031 +                    else if (p == pp.left)
3032 +                        pp.left = replacement;
3033 +                    else
3034 +                        pp.right = replacement;
3035 +                    p.left = p.right = p.parent = null;
3036 +                }
3037 +
3038 +                root = (p.red) ? r : balanceDeletion(r, replacement);
3039 +
3040 +                if (p == replacement) {  // detach pointers
3041 +                    TreeNode<K,V> pp;
3042 +                    if ((pp = p.parent) != null) {
3043 +                        if (p == pp.left)
3044 +                            pp.left = null;
3045 +                        else if (p == pp.right)
3046 +                            pp.right = null;
3047 +                        p.parent = null;
3048 +                    }
3049 +                }
3050 +            } finally {
3051 +                unlockRoot();
3052 +            }
3053 +            assert checkInvariants(root);
3054 +            return false;
3055 +        }
3056 +
3057 +        /* ------------------------------------------------------------ */
3058 +        // Red-black tree methods, all adapted from CLR
3059 +
3060 +        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3061 +                                              TreeNode<K,V> p) {
3062 +            TreeNode<K,V> r, pp, rl;
3063 +            if (p != null && (r = p.right) != null) {
3064 +                if ((rl = p.right = r.left) != null)
3065 +                    rl.parent = p;
3066 +                if ((pp = r.parent = p.parent) == null)
3067 +                    (root = r).red = false;
3068 +                else if (pp.left == p)
3069 +                    pp.left = r;
3070 +                else
3071 +                    pp.right = r;
3072 +                r.left = p;
3073 +                p.parent = r;
3074 +            }
3075 +            return root;
3076 +        }
3077 +
3078 +        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3079 +                                               TreeNode<K,V> p) {
3080 +            TreeNode<K,V> l, pp, lr;
3081 +            if (p != null && (l = p.left) != null) {
3082 +                if ((lr = p.left = l.right) != null)
3083 +                    lr.parent = p;
3084 +                if ((pp = l.parent = p.parent) == null)
3085 +                    (root = l).red = false;
3086 +                else if (pp.right == p)
3087 +                    pp.right = l;
3088 +                else
3089 +                    pp.left = l;
3090 +                l.right = p;
3091 +                p.parent = l;
3092 +            }
3093 +            return root;
3094 +        }
3095 +
3096 +        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3097 +                                                    TreeNode<K,V> x) {
3098 +            x.red = true;
3099 +            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3100 +                if ((xp = x.parent) == null) {
3101 +                    x.red = false;
3102 +                    return x;
3103 +                }
3104 +                else if (!xp.red || (xpp = xp.parent) == null)
3105 +                    return root;
3106 +                if (xp == (xppl = xpp.left)) {
3107 +                    if ((xppr = xpp.right) != null && xppr.red) {
3108 +                        xppr.red = false;
3109 +                        xp.red = false;
3110 +                        xpp.red = true;
3111 +                        x = xpp;
3112 +                    }
3113 +                    else {
3114 +                        if (x == xp.right) {
3115 +                            root = rotateLeft(root, x = xp);
3116 +                            xpp = (xp = x.parent) == null ? null : xp.parent;
3117 +                        }
3118 +                        if (xp != null) {
3119 +                            xp.red = false;
3120 +                            if (xpp != null) {
3121 +                                xpp.red = true;
3122 +                                root = rotateRight(root, xpp);
3123 +                            }
3124 +                        }
3125 +                    }
3126 +                }
3127 +                else {
3128 +                    if (xppl != null && xppl.red) {
3129 +                        xppl.red = false;
3130 +                        xp.red = false;
3131 +                        xpp.red = true;
3132 +                        x = xpp;
3133 +                    }
3134 +                    else {
3135 +                        if (x == xp.left) {
3136 +                            root = rotateRight(root, x = xp);
3137 +                            xpp = (xp = x.parent) == null ? null : xp.parent;
3138 +                        }
3139 +                        if (xp != null) {
3140 +                            xp.red = false;
3141 +                            if (xpp != null) {
3142 +                                xpp.red = true;
3143 +                                root = rotateLeft(root, xpp);
3144 +                            }
3145 +                        }
3146 +                    }
3147 +                }
3148 +            }
3149 +        }
3150 +
3151 +        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3152 +                                                   TreeNode<K,V> x) {
3153 +            for (TreeNode<K,V> xp, xpl, xpr;;) {
3154 +                if (x == null || x == root)
3155 +                    return root;
3156 +                else if ((xp = x.parent) == null) {
3157 +                    x.red = false;
3158 +                    return x;
3159 +                }
3160 +                else if (x.red) {
3161 +                    x.red = false;
3162 +                    return root;
3163 +                }
3164 +                else if ((xpl = xp.left) == x) {
3165 +                    if ((xpr = xp.right) != null && xpr.red) {
3166 +                        xpr.red = false;
3167 +                        xp.red = true;
3168 +                        root = rotateLeft(root, xp);
3169 +                        xpr = (xp = x.parent) == null ? null : xp.right;
3170 +                    }
3171 +                    if (xpr == null)
3172 +                        x = xp;
3173 +                    else {
3174 +                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3175 +                        if ((sr == null || !sr.red) &&
3176 +                            (sl == null || !sl.red)) {
3177 +                            xpr.red = true;
3178 +                            x = xp;
3179 +                        }
3180 +                        else {
3181 +                            if (sr == null || !sr.red) {
3182 +                                if (sl != null)
3183 +                                    sl.red = false;
3184 +                                xpr.red = true;
3185 +                                root = rotateRight(root, xpr);
3186 +                                xpr = (xp = x.parent) == null ?
3187 +                                    null : xp.right;
3188 +                            }
3189 +                            if (xpr != null) {
3190 +                                xpr.red = (xp == null) ? false : xp.red;
3191 +                                if ((sr = xpr.right) != null)
3192 +                                    sr.red = false;
3193 +                            }
3194 +                            if (xp != null) {
3195 +                                xp.red = false;
3196 +                                root = rotateLeft(root, xp);
3197 +                            }
3198 +                            x = root;
3199 +                        }
3200 +                    }
3201 +                }
3202 +                else { // symmetric
3203 +                    if (xpl != null && xpl.red) {
3204 +                        xpl.red = false;
3205 +                        xp.red = true;
3206 +                        root = rotateRight(root, xp);
3207 +                        xpl = (xp = x.parent) == null ? null : xp.left;
3208 +                    }
3209 +                    if (xpl == null)
3210 +                        x = xp;
3211 +                    else {
3212 +                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3213 +                        if ((sl == null || !sl.red) &&
3214 +                            (sr == null || !sr.red)) {
3215 +                            xpl.red = true;
3216 +                            x = xp;
3217 +                        }
3218 +                        else {
3219 +                            if (sl == null || !sl.red) {
3220 +                                if (sr != null)
3221 +                                    sr.red = false;
3222 +                                xpl.red = true;
3223 +                                root = rotateLeft(root, xpl);
3224 +                                xpl = (xp = x.parent) == null ?
3225 +                                    null : xp.left;
3226 +                            }
3227 +                            if (xpl != null) {
3228 +                                xpl.red = (xp == null) ? false : xp.red;
3229 +                                if ((sl = xpl.left) != null)
3230 +                                    sl.red = false;
3231 +                            }
3232 +                            if (xp != null) {
3233 +                                xp.red = false;
3234 +                                root = rotateRight(root, xp);
3235 +                            }
3236 +                            x = root;
3237 +                        }
3238 +                    }
3239 +                }
3240 +            }
3241 +        }
3242 +
3243 +        /**
3244 +         * Checks invariants recursively for the tree of Nodes rooted at t.
3245 +         */
3246 +        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3247 +            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3248 +                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3249 +            if (tb != null && tb.next != t)
3250 +                return false;
3251 +            if (tn != null && tn.prev != t)
3252 +                return false;
3253 +            if (tp != null && t != tp.left && t != tp.right)
3254 +                return false;
3255 +            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3256 +                return false;
3257 +            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3258 +                return false;
3259 +            if (t.red && tl != null && tl.red && tr != null && tr.red)
3260 +                return false;
3261 +            if (tl != null && !checkInvariants(tl))
3262 +                return false;
3263 +            if (tr != null && !checkInvariants(tr))
3264 +                return false;
3265 +            return true;
3266 +        }
3267 +
3268 +        private static final long LOCKSTATE
3269 +            = U.objectFieldOffset(TreeBin.class, "lockState");
3270 +    }
3271 +
3272      /* ----------------Table Traversal -------------- */
3273  
3274      /**
3275 +     * Records the table, its length, and current traversal index for a
3276 +     * traverser that must process a region of a forwarded table before
3277 +     * proceeding with current table.
3278 +     */
3279 +    static final class TableStack<K,V> {
3280 +        int length;
3281 +        int index;
3282 +        Node<K,V>[] tab;
3283 +        TableStack<K,V> next;
3284 +    }
3285 +
3286 +    /**
3287       * Encapsulates traversal for methods such as containsValue; also
3288       * serves as a base class for other iterators and spliterators.
3289       *
# Line 2191 | Line 3307 | public class ConcurrentHashMap<K,V> impl
3307      static class Traverser<K,V> {
3308          Node<K,V>[] tab;        // current table; updated if resized
3309          Node<K,V> next;         // the next entry to use
3310 +        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3311          int index;              // index of bin to use next
3312          int baseIndex;          // current index of initial table
3313          int baseLimit;          // index bound for initial table
# Line 2212 | Line 3329 | public class ConcurrentHashMap<K,V> impl
3329              if ((e = next) != null)
3330                  e = e.next;
3331              for (;;) {
3332 <                Node<K,V>[] t; int i, n; Object ek;  // must use locals in checks
3332 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3333                  if (e != null)
3334                      return next = e;
3335                  if (baseIndex >= baseLimit || (t = tab) == null ||
3336                      (n = t.length) <= (i = index) || i < 0)
3337                      return next = null;
3338 <                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3339 <                    if ((ek = e.key) instanceof TreeBin)
3340 <                        e = ((TreeBin<K,V>)ek).first;
2224 <                    else {
2225 <                        tab = (Node<K,V>[])ek;
3338 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3339 >                    if (e instanceof ForwardingNode) {
3340 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3341                          e = null;
3342 +                        pushState(t, i, n);
3343                          continue;
3344                      }
3345 +                    else if (e instanceof TreeBin)
3346 +                        e = ((TreeBin<K,V>)e).first;
3347 +                    else
3348 +                        e = null;
3349                  }
3350 <                if ((index += baseSize) >= n)
3351 <                    index = ++baseIndex;    // visit upper slots if present
3350 >                if (stack != null)
3351 >                    recoverState(n);
3352 >                else if ((index = i + baseSize) >= n)
3353 >                    index = ++baseIndex; // visit upper slots if present
3354              }
3355          }
3356 +
3357 +        /**
3358 +         * Saves traversal state upon encountering a forwarding node.
3359 +         */
3360 +        private void pushState(Node<K,V>[] t, int i, int n) {
3361 +            TableStack<K,V> s = spare;  // reuse if possible
3362 +            if (s != null)
3363 +                spare = s.next;
3364 +            else
3365 +                s = new TableStack<K,V>();
3366 +            s.tab = t;
3367 +            s.length = n;
3368 +            s.index = i;
3369 +            s.next = stack;
3370 +            stack = s;
3371 +        }
3372 +
3373 +        /**
3374 +         * Possibly pops traversal state.
3375 +         *
3376 +         * @param n length of current table
3377 +         */
3378 +        private void recoverState(int n) {
3379 +            TableStack<K,V> s; int len;
3380 +            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3381 +                n = len;
3382 +                index = s.index;
3383 +                tab = s.tab;
3384 +                s.tab = null;
3385 +                TableStack<K,V> next = s.next;
3386 +                s.next = spare; // save for reuse
3387 +                stack = next;
3388 +                spare = s;
3389 +            }
3390 +            if (s == null && (index += baseSize) >= n)
3391 +                index = ++baseIndex;
3392 +        }
3393      }
3394  
3395      /**
3396       * Base of key, value, and entry Iterators. Adds fields to
3397 <     * Traverser to support iterator.remove
3397 >     * Traverser to support iterator.remove.
3398       */
3399      static class BaseIterator<K,V> extends Traverser<K,V> {
3400          final ConcurrentHashMap<K,V> map;
# Line 2255 | Line 3414 | public class ConcurrentHashMap<K,V> impl
3414              if ((p = lastReturned) == null)
3415                  throw new IllegalStateException();
3416              lastReturned = null;
3417 <            map.internalReplace((K)p.key, null, null);
3417 >            map.replaceNode(p.key, null, null);
3418          }
3419      }
3420  
3421      static final class KeyIterator<K,V> extends BaseIterator<K,V>
3422          implements Iterator<K>, Enumeration<K> {
3423 <        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3423 >        KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3424                      ConcurrentHashMap<K,V> map) {
3425 <            super(tab, index, size, limit, map);
3425 >            super(tab, size, index, limit, map);
3426          }
3427  
3428          public final K next() {
3429              Node<K,V> p;
3430              if ((p = next) == null)
3431                  throw new NoSuchElementException();
3432 <            K k = (K)p.key;
3432 >            K k = p.key;
3433              lastReturned = p;
3434              advance();
3435              return k;
# Line 2281 | Line 3440 | public class ConcurrentHashMap<K,V> impl
3440  
3441      static final class ValueIterator<K,V> extends BaseIterator<K,V>
3442          implements Iterator<V>, Enumeration<V> {
3443 <        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3443 >        ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3444                        ConcurrentHashMap<K,V> map) {
3445 <            super(tab, index, size, limit, map);
3445 >            super(tab, size, index, limit, map);
3446          }
3447  
3448          public final V next() {
# Line 2301 | Line 3460 | public class ConcurrentHashMap<K,V> impl
3460  
3461      static final class EntryIterator<K,V> extends BaseIterator<K,V>
3462          implements Iterator<Map.Entry<K,V>> {
3463 <        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3463 >        EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3464                        ConcurrentHashMap<K,V> map) {
3465 <            super(tab, index, size, limit, map);
3465 >            super(tab, size, index, limit, map);
3466          }
3467  
3468          public final Map.Entry<K,V> next() {
3469              Node<K,V> p;
3470              if ((p = next) == null)
3471                  throw new NoSuchElementException();
3472 <            K k = (K)p.key;
3472 >            K k = p.key;
3473              V v = p.val;
3474              lastReturned = p;
3475              advance();
# Line 2318 | Line 3477 | public class ConcurrentHashMap<K,V> impl
3477          }
3478      }
3479  
3480 +    /**
3481 +     * Exported Entry for EntryIterator.
3482 +     */
3483 +    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3484 +        final K key; // non-null
3485 +        V val;       // non-null
3486 +        final ConcurrentHashMap<K,V> map;
3487 +        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3488 +            this.key = key;
3489 +            this.val = val;
3490 +            this.map = map;
3491 +        }
3492 +        public K getKey()        { return key; }
3493 +        public V getValue()      { return val; }
3494 +        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3495 +        public String toString() {
3496 +            return Helpers.mapEntryToString(key, val);
3497 +        }
3498 +
3499 +        public boolean equals(Object o) {
3500 +            Object k, v; Map.Entry<?,?> e;
3501 +            return ((o instanceof Map.Entry) &&
3502 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3503 +                    (v = e.getValue()) != null &&
3504 +                    (k == key || k.equals(key)) &&
3505 +                    (v == val || v.equals(val)));
3506 +        }
3507 +
3508 +        /**
3509 +         * Sets our entry's value and writes through to the map. The
3510 +         * value to return is somewhat arbitrary here. Since we do not
3511 +         * necessarily track asynchronous changes, the most recent
3512 +         * "previous" value could be different from what we return (or
3513 +         * could even have been removed, in which case the put will
3514 +         * re-establish). We do not and cannot guarantee more.
3515 +         */
3516 +        public V setValue(V value) {
3517 +            if (value == null) throw new NullPointerException();
3518 +            V v = val;
3519 +            val = value;
3520 +            map.put(key, value);
3521 +            return v;
3522 +        }
3523 +    }
3524 +
3525      static final class KeySpliterator<K,V> extends Traverser<K,V>
3526          implements Spliterator<K> {
3527          long est;               // size estimate
# Line 2327 | Line 3531 | public class ConcurrentHashMap<K,V> impl
3531              this.est = est;
3532          }
3533  
3534 <        public Spliterator<K> trySplit() {
3534 >        public KeySpliterator<K,V> trySplit() {
3535              int i, f, h;
3536              return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3537                  new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
# Line 2337 | Line 3541 | public class ConcurrentHashMap<K,V> impl
3541          public void forEachRemaining(Consumer<? super K> action) {
3542              if (action == null) throw new NullPointerException();
3543              for (Node<K,V> p; (p = advance()) != null;)
3544 <                action.accept((K)p.key);
3544 >                action.accept(p.key);
3545          }
3546  
3547          public boolean tryAdvance(Consumer<? super K> action) {
# Line 2345 | Line 3549 | public class ConcurrentHashMap<K,V> impl
3549              Node<K,V> p;
3550              if ((p = advance()) == null)
3551                  return false;
3552 <            action.accept((K)p.key);
3552 >            action.accept(p.key);
3553              return true;
3554          }
3555  
# Line 2366 | Line 3570 | public class ConcurrentHashMap<K,V> impl
3570              this.est = est;
3571          }
3572  
3573 <        public Spliterator<V> trySplit() {
3573 >        public ValueSpliterator<K,V> trySplit() {
3574              int i, f, h;
3575              return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3576                  new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
# Line 2406 | Line 3610 | public class ConcurrentHashMap<K,V> impl
3610              this.est = est;
3611          }
3612  
3613 <        public Spliterator<Map.Entry<K,V>> trySplit() {
3613 >        public EntrySpliterator<K,V> trySplit() {
3614              int i, f, h;
3615              return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3616                  new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
# Line 2416 | Line 3620 | public class ConcurrentHashMap<K,V> impl
3620          public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3621              if (action == null) throw new NullPointerException();
3622              for (Node<K,V> p; (p = advance()) != null; )
3623 <                action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
3623 >                action.accept(new MapEntry<K,V>(p.key, p.val, map));
3624          }
3625  
3626          public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
# Line 2424 | Line 3628 | public class ConcurrentHashMap<K,V> impl
3628              Node<K,V> p;
3629              if ((p = advance()) == null)
3630                  return false;
3631 <            action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
3631 >            action.accept(new MapEntry<K,V>(p.key, p.val, map));
3632              return true;
3633          }
3634  
# Line 2436 | Line 3640 | public class ConcurrentHashMap<K,V> impl
3640          }
3641      }
3642  
2439
2440    /* ---------------- Public operations -------------- */
2441
2442    /**
2443     * Creates a new, empty map with the default initial table size (16).
2444     */
2445    public ConcurrentHashMap() {
2446    }
2447
2448    /**
2449     * Creates a new, empty map with an initial table size
2450     * accommodating the specified number of elements without the need
2451     * to dynamically resize.
2452     *
2453     * @param initialCapacity The implementation performs internal
2454     * sizing to accommodate this many elements.
2455     * @throws IllegalArgumentException if the initial capacity of
2456     * elements is negative
2457     */
2458    public ConcurrentHashMap(int initialCapacity) {
2459        if (initialCapacity < 0)
2460            throw new IllegalArgumentException();
2461        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2462                   MAXIMUM_CAPACITY :
2463                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2464        this.sizeCtl = cap;
2465    }
2466
2467    /**
2468     * Creates a new map with the same mappings as the given map.
2469     *
2470     * @param m the map
2471     */
2472    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2473        this.sizeCtl = DEFAULT_CAPACITY;
2474        internalPutAll(m);
2475    }
2476
2477    /**
2478     * Creates a new, empty map with an initial table size based on
2479     * the given number of elements ({@code initialCapacity}) and
2480     * initial table density ({@code loadFactor}).
2481     *
2482     * @param initialCapacity the initial capacity. The implementation
2483     * performs internal sizing to accommodate this many elements,
2484     * given the specified load factor.
2485     * @param loadFactor the load factor (table density) for
2486     * establishing the initial table size
2487     * @throws IllegalArgumentException if the initial capacity of
2488     * elements is negative or the load factor is nonpositive
2489     *
2490     * @since 1.6
2491     */
2492    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2493        this(initialCapacity, loadFactor, 1);
2494    }
2495
2496    /**
2497     * Creates a new, empty map with an initial table size based on
2498     * the given number of elements ({@code initialCapacity}), table
2499     * density ({@code loadFactor}), and number of concurrently
2500     * updating threads ({@code concurrencyLevel}).
2501     *
2502     * @param initialCapacity the initial capacity. The implementation
2503     * performs internal sizing to accommodate this many elements,
2504     * given the specified load factor.
2505     * @param loadFactor the load factor (table density) for
2506     * establishing the initial table size
2507     * @param concurrencyLevel the estimated number of concurrently
2508     * updating threads. The implementation may use this value as
2509     * a sizing hint.
2510     * @throws IllegalArgumentException if the initial capacity is
2511     * negative or the load factor or concurrencyLevel are
2512     * nonpositive
2513     */
2514    public ConcurrentHashMap(int initialCapacity,
2515                             float loadFactor, int concurrencyLevel) {
2516        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2517            throw new IllegalArgumentException();
2518        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2519            initialCapacity = concurrencyLevel;   // as estimated threads
2520        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2521        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2522            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2523        this.sizeCtl = cap;
2524    }
2525
2526    /**
2527     * Creates a new {@link Set} backed by a ConcurrentHashMap
2528     * from the given type to {@code Boolean.TRUE}.
2529     *
2530     * @return the new set
2531     */
2532    public static <K> KeySetView<K,Boolean> newKeySet() {
2533        return new KeySetView<K,Boolean>
2534            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2535    }
2536
2537    /**
2538     * Creates a new {@link Set} backed by a ConcurrentHashMap
2539     * from the given type to {@code Boolean.TRUE}.
2540     *
2541     * @param initialCapacity The implementation performs internal
2542     * sizing to accommodate this many elements.
2543     * @throws IllegalArgumentException if the initial capacity of
2544     * elements is negative
2545     * @return the new set
2546     */
2547    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2548        return new KeySetView<K,Boolean>
2549            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2550    }
2551
2552    /**
2553     * {@inheritDoc}
2554     */
2555    public boolean isEmpty() {
2556        return sumCount() <= 0L; // ignore transient negative values
2557    }
2558
2559    /**
2560     * {@inheritDoc}
2561     */
2562    public int size() {
2563        long n = sumCount();
2564        return ((n < 0L) ? 0 :
2565                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2566                (int)n);
2567    }
2568
2569    /**
2570     * Returns the number of mappings. This method should be used
2571     * instead of {@link #size} because a ConcurrentHashMap may
2572     * contain more mappings than can be represented as an int. The
2573     * value returned is an estimate; the actual count may differ if
2574     * there are concurrent insertions or removals.
2575     *
2576     * @return the number of mappings
2577     */
2578    public long mappingCount() {
2579        long n = sumCount();
2580        return (n < 0L) ? 0L : n; // ignore transient negative values
2581    }
2582
2583    /**
2584     * Returns the value to which the specified key is mapped,
2585     * or {@code null} if this map contains no mapping for the key.
2586     *
2587     * <p>More formally, if this map contains a mapping from a key
2588     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2589     * then this method returns {@code v}; otherwise it returns
2590     * {@code null}.  (There can be at most one such mapping.)
2591     *
2592     * @throws NullPointerException if the specified key is null
2593     */
2594    public V get(Object key) {
2595        return internalGet(key);
2596    }
2597
2598    /**
2599     * Returns the value to which the specified key is mapped,
2600     * or the given defaultValue if this map contains no mapping for the key.
2601     *
2602     * @param key the key
2603     * @param defaultValue the value to return if this map contains
2604     * no mapping for the given key
2605     * @return the mapping for the key, if present; else the defaultValue
2606     * @throws NullPointerException if the specified key is null
2607     */
2608    public V getOrDefault(Object key, V defaultValue) {
2609        V v;
2610        return (v = internalGet(key)) == null ? defaultValue : v;
2611    }
2612
2613    /**
2614     * Tests if the specified object is a key in this table.
2615     *
2616     * @param  key possible key
2617     * @return {@code true} if and only if the specified object
2618     *         is a key in this table, as determined by the
2619     *         {@code equals} method; {@code false} otherwise
2620     * @throws NullPointerException if the specified key is null
2621     */
2622    public boolean containsKey(Object key) {
2623        return internalGet(key) != null;
2624    }
2625
2626    /**
2627     * Returns {@code true} if this map maps one or more keys to the
2628     * specified value. Note: This method may require a full traversal
2629     * of the map, and is much slower than method {@code containsKey}.
2630     *
2631     * @param value value whose presence in this map is to be tested
2632     * @return {@code true} if this map maps one or more keys to the
2633     *         specified value
2634     * @throws NullPointerException if the specified value is null
2635     */
2636    public boolean containsValue(Object value) {
2637        if (value == null)
2638            throw new NullPointerException();
2639        Node<K,V>[] t;
2640        if ((t = table) != null) {
2641            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2642            for (Node<K,V> p; (p = it.advance()) != null; ) {
2643                V v;
2644                if ((v = p.val) == value || value.equals(v))
2645                    return true;
2646            }
2647        }
2648        return false;
2649    }
2650
2651    /**
2652     * Legacy method testing if some key maps into the specified value
2653     * in this table.  This method is identical in functionality to
2654     * {@link #containsValue(Object)}, and exists solely to ensure
2655     * full compatibility with class {@link java.util.Hashtable},
2656     * which supported this method prior to introduction of the
2657     * Java Collections framework.
2658     *
2659     * @param  value a value to search for
2660     * @return {@code true} if and only if some key maps to the
2661     *         {@code value} argument in this table as
2662     *         determined by the {@code equals} method;
2663     *         {@code false} otherwise
2664     * @throws NullPointerException if the specified value is null
2665     */
2666    @Deprecated public boolean contains(Object value) {
2667        return containsValue(value);
2668    }
2669
2670    /**
2671     * Maps the specified key to the specified value in this table.
2672     * Neither the key nor the value can be null.
2673     *
2674     * <p>The value can be retrieved by calling the {@code get} method
2675     * with a key that is equal to the original key.
2676     *
2677     * @param key key with which the specified value is to be associated
2678     * @param value value to be associated with the specified key
2679     * @return the previous value associated with {@code key}, or
2680     *         {@code null} if there was no mapping for {@code key}
2681     * @throws NullPointerException if the specified key or value is null
2682     */
2683    public V put(K key, V value) {
2684        return internalPut(key, value, false);
2685    }
2686
2687    /**
2688     * {@inheritDoc}
2689     *
2690     * @return the previous value associated with the specified key,
2691     *         or {@code null} if there was no mapping for the key
2692     * @throws NullPointerException if the specified key or value is null
2693     */
2694    public V putIfAbsent(K key, V value) {
2695        return internalPut(key, value, true);
2696    }
2697
2698    /**
2699     * Copies all of the mappings from the specified map to this one.
2700     * These mappings replace any mappings that this map had for any of the
2701     * keys currently in the specified map.
2702     *
2703     * @param m mappings to be stored in this map
2704     */
2705    public void putAll(Map<? extends K, ? extends V> m) {
2706        internalPutAll(m);
2707    }
2708
2709    /**
2710     * If the specified key is not already associated with a value (or
2711     * is mapped to {@code null}), attempts to compute its value using
2712     * the given mapping function and enters it into this map unless
2713     * {@code null}. The entire method invocation is performed
2714     * atomically, so the function is applied at most once per key.
2715     * Some attempted update operations on this map by other threads
2716     * may be blocked while computation is in progress, so the
2717     * computation should be short and simple, and must not attempt to
2718     * update any other mappings of this Map.
2719     *
2720     * @param key key with which the specified value is to be associated
2721     * @param mappingFunction the function to compute a value
2722     * @return the current (existing or computed) value associated with
2723     *         the specified key, or null if the computed value is null
2724     * @throws NullPointerException if the specified key or mappingFunction
2725     *         is null
2726     * @throws IllegalStateException if the computation detectably
2727     *         attempts a recursive update to this map that would
2728     *         otherwise never complete
2729     * @throws RuntimeException or Error if the mappingFunction does so,
2730     *         in which case the mapping is left unestablished
2731     */
2732    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
2733        return internalComputeIfAbsent(key, mappingFunction);
2734    }
2735
2736    /**
2737     * If the value for the specified key is present and non-null,
2738     * attempts to compute a new mapping given the key and its current
2739     * mapped value.  The entire method invocation is performed
2740     * atomically.  Some attempted update operations on this map by
2741     * other threads may be blocked while computation is in progress,
2742     * so the computation should be short and simple, and must not
2743     * attempt to update any other mappings of this Map.
2744     *
2745     * @param key key with which a value may be associated
2746     * @param remappingFunction the function to compute a value
2747     * @return the new value associated with the specified key, or null if none
2748     * @throws NullPointerException if the specified key or remappingFunction
2749     *         is null
2750     * @throws IllegalStateException if the computation detectably
2751     *         attempts a recursive update to this map that would
2752     *         otherwise never complete
2753     * @throws RuntimeException or Error if the remappingFunction does so,
2754     *         in which case the mapping is unchanged
2755     */
2756    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2757        return internalCompute(key, true, remappingFunction);
2758    }
2759
2760    /**
2761     * Attempts to compute a mapping for the specified key and its
2762     * current mapped value (or {@code null} if there is no current
2763     * mapping). The entire method invocation is performed atomically.
2764     * Some attempted update operations on this map by other threads
2765     * may be blocked while computation is in progress, so the
2766     * computation should be short and simple, and must not attempt to
2767     * update any other mappings of this Map.
2768     *
2769     * @param key key with which the specified value is to be associated
2770     * @param remappingFunction the function to compute a value
2771     * @return the new value associated with the specified key, or null if none
2772     * @throws NullPointerException if the specified key or remappingFunction
2773     *         is null
2774     * @throws IllegalStateException if the computation detectably
2775     *         attempts a recursive update to this map that would
2776     *         otherwise never complete
2777     * @throws RuntimeException or Error if the remappingFunction does so,
2778     *         in which case the mapping is unchanged
2779     */
2780    public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2781        return internalCompute(key, false, remappingFunction);
2782    }
2783
2784    /**
2785     * If the specified key is not already associated with a
2786     * (non-null) value, associates it with the given value.
2787     * Otherwise, replaces the value with the results of the given
2788     * remapping function, or removes if {@code null}. The entire
2789     * method invocation is performed atomically.  Some attempted
2790     * update operations on this map by other threads may be blocked
2791     * while computation is in progress, so the computation should be
2792     * short and simple, and must not attempt to update any other
2793     * mappings of this Map.
2794     *
2795     * @param key key with which the specified value is to be associated
2796     * @param value the value to use if absent
2797     * @param remappingFunction the function to recompute a value if present
2798     * @return the new value associated with the specified key, or null if none
2799     * @throws NullPointerException if the specified key or the
2800     *         remappingFunction is null
2801     * @throws RuntimeException or Error if the remappingFunction does so,
2802     *         in which case the mapping is unchanged
2803     */
2804    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2805        return internalMerge(key, value, remappingFunction);
2806    }
2807
2808    /**
2809     * Removes the key (and its corresponding value) from this map.
2810     * This method does nothing if the key is not in the map.
2811     *
2812     * @param  key the key that needs to be removed
2813     * @return the previous value associated with {@code key}, or
2814     *         {@code null} if there was no mapping for {@code key}
2815     * @throws NullPointerException if the specified key is null
2816     */
2817    public V remove(Object key) {
2818        return internalReplace(key, null, null);
2819    }
2820
2821    /**
2822     * {@inheritDoc}
2823     *
2824     * @throws NullPointerException if the specified key is null
2825     */
2826    public boolean remove(Object key, Object value) {
2827        if (key == null)
2828            throw new NullPointerException();
2829        return value != null && internalReplace(key, null, value) != null;
2830    }
2831
2832    /**
2833     * {@inheritDoc}
2834     *
2835     * @throws NullPointerException if any of the arguments are null
2836     */
2837    public boolean replace(K key, V oldValue, V newValue) {
2838        if (key == null || oldValue == null || newValue == null)
2839            throw new NullPointerException();
2840        return internalReplace(key, newValue, oldValue) != null;
2841    }
2842
2843    /**
2844     * {@inheritDoc}
2845     *
2846     * @return the previous value associated with the specified key,
2847     *         or {@code null} if there was no mapping for the key
2848     * @throws NullPointerException if the specified key or value is null
2849     */
2850    public V replace(K key, V value) {
2851        if (key == null || value == null)
2852            throw new NullPointerException();
2853        return internalReplace(key, value, null);
2854    }
2855
2856    /**
2857     * Removes all of the mappings from this map.
2858     */
2859    public void clear() {
2860        internalClear();
2861    }
2862
2863    /**
2864     * Returns a {@link Set} view of the keys contained in this map.
2865     * The set is backed by the map, so changes to the map are
2866     * reflected in the set, and vice-versa. The set supports element
2867     * removal, which removes the corresponding mapping from this map,
2868     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
2869     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
2870     * operations.  It does not support the <tt>add</tt> or
2871     * <tt>addAll</tt> operations.
2872     *
2873     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2874     * that will never throw {@link ConcurrentModificationException},
2875     * and guarantees to traverse elements as they existed upon
2876     * construction of the iterator, and may (but is not guaranteed to)
2877     * reflect any modifications subsequent to construction.
2878     *
2879     * @return the set view
2880     */
2881    public KeySetView<K,V> keySet() {
2882        KeySetView<K,V> ks = keySet;
2883        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2884    }
2885
2886    /**
2887     * Returns a {@link Set} view of the keys in this map, using the
2888     * given common mapped value for any additions (i.e., {@link
2889     * Collection#add} and {@link Collection#addAll(Collection)}).
2890     * This is of course only appropriate if it is acceptable to use
2891     * the same value for all additions from this view.
2892     *
2893     * @param mappedValue the mapped value to use for any additions
2894     * @return the set view
2895     * @throws NullPointerException if the mappedValue is null
2896     */
2897    public KeySetView<K,V> keySet(V mappedValue) {
2898        if (mappedValue == null)
2899            throw new NullPointerException();
2900        return new KeySetView<K,V>(this, mappedValue);
2901    }
2902
2903    /**
2904     * Returns a {@link Collection} view of the values contained in this map.
2905     * The collection is backed by the map, so changes to the map are
2906     * reflected in the collection, and vice-versa.  The collection
2907     * supports element removal, which removes the corresponding
2908     * mapping from this map, via the <tt>Iterator.remove</tt>,
2909     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
2910     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
2911     * support the <tt>add</tt> or <tt>addAll</tt> operations.
2912     *
2913     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
2914     * that will never throw {@link ConcurrentModificationException},
2915     * and guarantees to traverse elements as they existed upon
2916     * construction of the iterator, and may (but is not guaranteed to)
2917     * reflect any modifications subsequent to construction.
2918     *
2919     * @return the collection view
2920     */
2921    public Collection<V> values() {
2922        ValuesView<K,V> vs = values;
2923        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2924    }
2925
2926    /**
2927     * Returns a {@link Set} view of the mappings contained in this map.
2928     * The set is backed by the map, so changes to the map are
2929     * reflected in the set, and vice-versa.  The set supports element
2930     * removal, which removes the corresponding mapping from the map,
2931     * via the {@code Iterator.remove}, {@code Set.remove},
2932     * {@code removeAll}, {@code retainAll}, and {@code clear}
2933     * operations.
2934     *
2935     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2936     * that will never throw {@link ConcurrentModificationException},
2937     * and guarantees to traverse elements as they existed upon
2938     * construction of the iterator, and may (but is not guaranteed to)
2939     * reflect any modifications subsequent to construction.
2940     *
2941     * @return the set view
2942     */
2943    public Set<Map.Entry<K,V>> entrySet() {
2944        EntrySetView<K,V> es = entrySet;
2945        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2946    }
2947
2948    /**
2949     * Returns an enumeration of the keys in this table.
2950     *
2951     * @return an enumeration of the keys in this table
2952     * @see #keySet()
2953     */
2954    public Enumeration<K> keys() {
2955        Node<K,V>[] t;
2956        int f = (t = table) == null ? 0 : t.length;
2957        return new KeyIterator<K,V>(t, f, 0, f, this);
2958    }
2959
2960    /**
2961     * Returns an enumeration of the values in this table.
2962     *
2963     * @return an enumeration of the values in this table
2964     * @see #values()
2965     */
2966    public Enumeration<V> elements() {
2967        Node<K,V>[] t;
2968        int f = (t = table) == null ? 0 : t.length;
2969        return new ValueIterator<K,V>(t, f, 0, f, this);
2970    }
2971
2972    /**
2973     * Returns the hash code value for this {@link Map}, i.e.,
2974     * the sum of, for each key-value pair in the map,
2975     * {@code key.hashCode() ^ value.hashCode()}.
2976     *
2977     * @return the hash code value for this map
2978     */
2979    public int hashCode() {
2980        int h = 0;
2981        Node<K,V>[] t;
2982        if ((t = table) != null) {
2983            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2984            for (Node<K,V> p; (p = it.advance()) != null; )
2985                h += p.key.hashCode() ^ p.val.hashCode();
2986        }
2987        return h;
2988    }
2989
2990    /**
2991     * Returns a string representation of this map.  The string
2992     * representation consists of a list of key-value mappings (in no
2993     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2994     * mappings are separated by the characters {@code ", "} (comma
2995     * and space).  Each key-value mapping is rendered as the key
2996     * followed by an equals sign ("{@code =}") followed by the
2997     * associated value.
2998     *
2999     * @return a string representation of this map
3000     */
3001    public String toString() {
3002        Node<K,V>[] t;
3003        int f = (t = table) == null ? 0 : t.length;
3004        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3005        StringBuilder sb = new StringBuilder();
3006        sb.append('{');
3007        Node<K,V> p;
3008        if ((p = it.advance()) != null) {
3009            for (;;) {
3010                K k = (K)p.key;
3011                V v = p.val;
3012                sb.append(k == this ? "(this Map)" : k);
3013                sb.append('=');
3014                sb.append(v == this ? "(this Map)" : v);
3015                if ((p = it.advance()) == null)
3016                    break;
3017                sb.append(',').append(' ');
3018            }
3019        }
3020        return sb.append('}').toString();
3021    }
3022
3023    /**
3024     * Compares the specified object with this map for equality.
3025     * Returns {@code true} if the given object is a map with the same
3026     * mappings as this map.  This operation may return misleading
3027     * results if either map is concurrently modified during execution
3028     * of this method.
3029     *
3030     * @param o object to be compared for equality with this map
3031     * @return {@code true} if the specified object is equal to this map
3032     */
3033    public boolean equals(Object o) {
3034        if (o != this) {
3035            if (!(o instanceof Map))
3036                return false;
3037            Map<?,?> m = (Map<?,?>) o;
3038            Node<K,V>[] t;
3039            int f = (t = table) == null ? 0 : t.length;
3040            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3041            for (Node<K,V> p; (p = it.advance()) != null; ) {
3042                V val = p.val;
3043                Object v = m.get(p.key);
3044                if (v == null || (v != val && !v.equals(val)))
3045                    return false;
3046            }
3047            for (Map.Entry<?,?> e : m.entrySet()) {
3048                Object mk, mv, v;
3049                if ((mk = e.getKey()) == null ||
3050                    (mv = e.getValue()) == null ||
3051                    (v = internalGet(mk)) == null ||
3052                    (mv != v && !mv.equals(v)))
3053                    return false;
3054            }
3055        }
3056        return true;
3057    }
3058
3059    /* ---------------- Serialization Support -------------- */
3060
3061    /**
3062     * Stripped-down version of helper class used in previous version,
3063     * declared for the sake of serialization compatibility
3064     */
3065    static class Segment<K,V> extends ReentrantLock implements Serializable {
3066        private static final long serialVersionUID = 2249069246763182397L;
3067        final float loadFactor;
3068        Segment(float lf) { this.loadFactor = lf; }
3069    }
3070
3071    /**
3072     * Saves the state of the {@code ConcurrentHashMap} instance to a
3073     * stream (i.e., serializes it).
3074     * @param s the stream
3075     * @serialData
3076     * the key (Object) and value (Object)
3077     * for each key-value mapping, followed by a null pair.
3078     * The key-value mappings are emitted in no particular order.
3079     */
3080    private void writeObject(java.io.ObjectOutputStream s)
3081        throws java.io.IOException {
3082        // For serialization compatibility
3083        // Emulate segment calculation from previous version of this class
3084        int sshift = 0;
3085        int ssize = 1;
3086        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
3087            ++sshift;
3088            ssize <<= 1;
3089        }
3090        int segmentShift = 32 - sshift;
3091        int segmentMask = ssize - 1;
3092        Segment<K,V>[] segments = (Segment<K,V>[])
3093            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3094        for (int i = 0; i < segments.length; ++i)
3095            segments[i] = new Segment<K,V>(LOAD_FACTOR);
3096        s.putFields().put("segments", segments);
3097        s.putFields().put("segmentShift", segmentShift);
3098        s.putFields().put("segmentMask", segmentMask);
3099        s.writeFields();
3100
3101        Node<K,V>[] t;
3102        if ((t = table) != null) {
3103            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3104            for (Node<K,V> p; (p = it.advance()) != null; ) {
3105                s.writeObject(p.key);
3106                s.writeObject(p.val);
3107            }
3108        }
3109        s.writeObject(null);
3110        s.writeObject(null);
3111        segments = null; // throw away
3112    }
3113
3114    /**
3115     * Reconstitutes the instance from a stream (that is, deserializes it).
3116     * @param s the stream
3117     */
3118    private void readObject(java.io.ObjectInputStream s)
3119        throws java.io.IOException, ClassNotFoundException {
3120        s.defaultReadObject();
3121
3122        // Create all nodes, then place in table once size is known
3123        long size = 0L;
3124        Node<K,V> p = null;
3125        for (;;) {
3126            K k = (K) s.readObject();
3127            V v = (V) s.readObject();
3128            if (k != null && v != null) {
3129                int h = spread(k.hashCode());
3130                p = new Node<K,V>(h, k, v, p);
3131                ++size;
3132            }
3133            else
3134                break;
3135        }
3136        if (p != null) {
3137            boolean init = false;
3138            int n;
3139            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3140                n = MAXIMUM_CAPACITY;
3141            else {
3142                int sz = (int)size;
3143                n = tableSizeFor(sz + (sz >>> 1) + 1);
3144            }
3145            int sc = sizeCtl;
3146            boolean collide = false;
3147            if (n > sc &&
3148                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3149                try {
3150                    if (table == null) {
3151                        init = true;
3152                        Node<K,V>[] tab = (Node<K,V>[])new Node[n];
3153                        int mask = n - 1;
3154                        while (p != null) {
3155                            int j = p.hash & mask;
3156                            Node<K,V> next = p.next;
3157                            Node<K,V> q = p.next = tabAt(tab, j);
3158                            setTabAt(tab, j, p);
3159                            if (!collide && q != null && q.hash == p.hash)
3160                                collide = true;
3161                            p = next;
3162                        }
3163                        table = tab;
3164                        addCount(size, -1);
3165                        sc = n - (n >>> 2);
3166                    }
3167                } finally {
3168                    sizeCtl = sc;
3169                }
3170                if (collide) { // rescan and convert to TreeBins
3171                    Node<K,V>[] tab = table;
3172                    for (int i = 0; i < tab.length; ++i) {
3173                        int c = 0;
3174                        for (Node<K,V> e = tabAt(tab, i); e != null; e = e.next) {
3175                            if (++c > TREE_THRESHOLD &&
3176                                (e.key instanceof Comparable)) {
3177                                replaceWithTreeBin(tab, i, e.key);
3178                                break;
3179                            }
3180                        }
3181                    }
3182                }
3183            }
3184            if (!init) { // Can only happen if unsafely published.
3185                while (p != null) {
3186                    internalPut((K)p.key, p.val, false);
3187                    p = p.next;
3188                }
3189            }
3190        }
3191    }
3192
3193    // -------------------------------------------------------
3194
3195    // Overrides of other default Map methods
3196
3197    public void forEach(BiConsumer<? super K, ? super V> action) {
3198        if (action == null) throw new NullPointerException();
3199        Node<K,V>[] t;
3200        if ((t = table) != null) {
3201            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3202            for (Node<K,V> p; (p = it.advance()) != null; ) {
3203                action.accept((K)p.key, p.val);
3204            }
3205        }
3206    }
3207
3208    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3209        if (function == null) throw new NullPointerException();
3210        Node<K,V>[] t;
3211        if ((t = table) != null) {
3212            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3213            for (Node<K,V> p; (p = it.advance()) != null; ) {
3214                K k = (K)p.key;
3215                internalPut(k, function.apply(k, p.val), false);
3216            }
3217        }
3218    }
3219
3220    // -------------------------------------------------------
3221
3643      // Parallel bulk operations
3644  
3645      /**
# Line 3241 | Line 3662 | public class ConcurrentHashMap<K,V> impl
3662       * Performs the given action for each (key, value).
3663       *
3664       * @param parallelismThreshold the (estimated) number of elements
3665 <     * needed for this operation to be executed in parallel.
3665 >     * needed for this operation to be executed in parallel
3666       * @param action the action
3667 +     * @since 1.8
3668       */
3669      public void forEach(long parallelismThreshold,
3670                          BiConsumer<? super K,? super V> action) {
# Line 3257 | Line 3679 | public class ConcurrentHashMap<K,V> impl
3679       * of each (key, value).
3680       *
3681       * @param parallelismThreshold the (estimated) number of elements
3682 <     * needed for this operation to be executed in parallel.
3682 >     * needed for this operation to be executed in parallel
3683       * @param transformer a function returning the transformation
3684       * for an element, or null if there is no transformation (in
3685       * which case the action is not applied)
3686       * @param action the action
3687 +     * @param <U> the return type of the transformer
3688 +     * @since 1.8
3689       */
3690      public <U> void forEach(long parallelismThreshold,
3691                              BiFunction<? super K, ? super V, ? extends U> transformer,
# Line 3281 | Line 3705 | public class ConcurrentHashMap<K,V> impl
3705       * function are ignored.
3706       *
3707       * @param parallelismThreshold the (estimated) number of elements
3708 <     * needed for this operation to be executed in parallel.
3708 >     * needed for this operation to be executed in parallel
3709       * @param searchFunction a function returning a non-null
3710       * result on success, else null
3711 +     * @param <U> the return type of the search function
3712       * @return a non-null result from applying the given search
3713       * function on each (key, value), or null if none
3714 +     * @since 1.8
3715       */
3716      public <U> U search(long parallelismThreshold,
3717                          BiFunction<? super K, ? super V, ? extends U> searchFunction) {
# Line 3301 | Line 3727 | public class ConcurrentHashMap<K,V> impl
3727       * combine values, or null if none.
3728       *
3729       * @param parallelismThreshold the (estimated) number of elements
3730 <     * needed for this operation to be executed in parallel.
3730 >     * needed for this operation to be executed in parallel
3731       * @param transformer a function returning the transformation
3732       * for an element, or null if there is no transformation (in
3733       * which case it is not combined)
3734       * @param reducer a commutative associative combining function
3735 +     * @param <U> the return type of the transformer
3736       * @return the result of accumulating the given transformation
3737       * of all (key, value) pairs
3738 +     * @since 1.8
3739       */
3740      public <U> U reduce(long parallelismThreshold,
3741                          BiFunction<? super K, ? super V, ? extends U> transformer,
# Line 3325 | Line 3753 | public class ConcurrentHashMap<K,V> impl
3753       * combine values, and the given basis as an identity value.
3754       *
3755       * @param parallelismThreshold the (estimated) number of elements
3756 <     * needed for this operation to be executed in parallel.
3756 >     * needed for this operation to be executed in parallel
3757       * @param transformer a function returning the transformation
3758       * for an element
3759       * @param basis the identity (initial default value) for the reduction
3760       * @param reducer a commutative associative combining function
3761       * @return the result of accumulating the given transformation
3762       * of all (key, value) pairs
3763 +     * @since 1.8
3764       */
3765 <    public double reduceToDoubleIn(long parallelismThreshold,
3766 <                                   ToDoubleBiFunction<? super K, ? super V> transformer,
3767 <                                   double basis,
3768 <                                   DoubleBinaryOperator reducer) {
3765 >    public double reduceToDouble(long parallelismThreshold,
3766 >                                 ToDoubleBiFunction<? super K, ? super V> transformer,
3767 >                                 double basis,
3768 >                                 DoubleBinaryOperator reducer) {
3769          if (transformer == null || reducer == null)
3770              throw new NullPointerException();
3771          return new MapReduceMappingsToDoubleTask<K,V>
# Line 3350 | Line 3779 | public class ConcurrentHashMap<K,V> impl
3779       * combine values, and the given basis as an identity value.
3780       *
3781       * @param parallelismThreshold the (estimated) number of elements
3782 <     * needed for this operation to be executed in parallel.
3782 >     * needed for this operation to be executed in parallel
3783       * @param transformer a function returning the transformation
3784       * for an element
3785       * @param basis the identity (initial default value) for the reduction
3786       * @param reducer a commutative associative combining function
3787       * @return the result of accumulating the given transformation
3788       * of all (key, value) pairs
3789 +     * @since 1.8
3790       */
3791      public long reduceToLong(long parallelismThreshold,
3792                               ToLongBiFunction<? super K, ? super V> transformer,
# Line 3375 | Line 3805 | public class ConcurrentHashMap<K,V> impl
3805       * combine values, and the given basis as an identity value.
3806       *
3807       * @param parallelismThreshold the (estimated) number of elements
3808 <     * needed for this operation to be executed in parallel.
3808 >     * needed for this operation to be executed in parallel
3809       * @param transformer a function returning the transformation
3810       * for an element
3811       * @param basis the identity (initial default value) for the reduction
3812       * @param reducer a commutative associative combining function
3813       * @return the result of accumulating the given transformation
3814       * of all (key, value) pairs
3815 +     * @since 1.8
3816       */
3817      public int reduceToInt(long parallelismThreshold,
3818                             ToIntBiFunction<? super K, ? super V> transformer,
# Line 3398 | Line 3829 | public class ConcurrentHashMap<K,V> impl
3829       * Performs the given action for each key.
3830       *
3831       * @param parallelismThreshold the (estimated) number of elements
3832 <     * needed for this operation to be executed in parallel.
3832 >     * needed for this operation to be executed in parallel
3833       * @param action the action
3834 +     * @since 1.8
3835       */
3836      public void forEachKey(long parallelismThreshold,
3837                             Consumer<? super K> action) {
# Line 3414 | Line 3846 | public class ConcurrentHashMap<K,V> impl
3846       * of each key.
3847       *
3848       * @param parallelismThreshold the (estimated) number of elements
3849 <     * needed for this operation to be executed in parallel.
3849 >     * needed for this operation to be executed in parallel
3850       * @param transformer a function returning the transformation
3851       * for an element, or null if there is no transformation (in
3852       * which case the action is not applied)
3853       * @param action the action
3854 +     * @param <U> the return type of the transformer
3855 +     * @since 1.8
3856       */
3857      public <U> void forEachKey(long parallelismThreshold,
3858                                 Function<? super K, ? extends U> transformer,
# Line 3438 | Line 3872 | public class ConcurrentHashMap<K,V> impl
3872       * ignored.
3873       *
3874       * @param parallelismThreshold the (estimated) number of elements
3875 <     * needed for this operation to be executed in parallel.
3875 >     * needed for this operation to be executed in parallel
3876       * @param searchFunction a function returning a non-null
3877       * result on success, else null
3878 +     * @param <U> the return type of the search function
3879       * @return a non-null result from applying the given search
3880       * function on each key, or null if none
3881 +     * @since 1.8
3882       */
3883      public <U> U searchKeys(long parallelismThreshold,
3884                              Function<? super K, ? extends U> searchFunction) {
# Line 3457 | Line 3893 | public class ConcurrentHashMap<K,V> impl
3893       * reducer to combine values, or null if none.
3894       *
3895       * @param parallelismThreshold the (estimated) number of elements
3896 <     * needed for this operation to be executed in parallel.
3896 >     * needed for this operation to be executed in parallel
3897       * @param reducer a commutative associative combining function
3898       * @return the result of accumulating all keys using the given
3899       * reducer to combine values, or null if none
3900 +     * @since 1.8
3901       */
3902      public K reduceKeys(long parallelismThreshold,
3903                          BiFunction<? super K, ? super K, ? extends K> reducer) {
# Line 3476 | Line 3913 | public class ConcurrentHashMap<K,V> impl
3913       * null if none.
3914       *
3915       * @param parallelismThreshold the (estimated) number of elements
3916 <     * needed for this operation to be executed in parallel.
3916 >     * needed for this operation to be executed in parallel
3917       * @param transformer a function returning the transformation
3918       * for an element, or null if there is no transformation (in
3919       * which case it is not combined)
3920       * @param reducer a commutative associative combining function
3921 +     * @param <U> the return type of the transformer
3922       * @return the result of accumulating the given transformation
3923       * of all keys
3924 +     * @since 1.8
3925       */
3926      public <U> U reduceKeys(long parallelismThreshold,
3927                              Function<? super K, ? extends U> transformer,
# Line 3500 | Line 3939 | public class ConcurrentHashMap<K,V> impl
3939       * the given basis as an identity value.
3940       *
3941       * @param parallelismThreshold the (estimated) number of elements
3942 <     * needed for this operation to be executed in parallel.
3942 >     * needed for this operation to be executed in parallel
3943       * @param transformer a function returning the transformation
3944       * for an element
3945       * @param basis the identity (initial default value) for the reduction
3946       * @param reducer a commutative associative combining function
3947       * @return the result of accumulating the given transformation
3948       * of all keys
3949 +     * @since 1.8
3950       */
3951      public double reduceKeysToDouble(long parallelismThreshold,
3952                                       ToDoubleFunction<? super K> transformer,
# Line 3525 | Line 3965 | public class ConcurrentHashMap<K,V> impl
3965       * the given basis as an identity value.
3966       *
3967       * @param parallelismThreshold the (estimated) number of elements
3968 <     * needed for this operation to be executed in parallel.
3968 >     * needed for this operation to be executed in parallel
3969       * @param transformer a function returning the transformation
3970       * for an element
3971       * @param basis the identity (initial default value) for the reduction
3972       * @param reducer a commutative associative combining function
3973       * @return the result of accumulating the given transformation
3974       * of all keys
3975 +     * @since 1.8
3976       */
3977      public long reduceKeysToLong(long parallelismThreshold,
3978                                   ToLongFunction<? super K> transformer,
# Line 3550 | Line 3991 | public class ConcurrentHashMap<K,V> impl
3991       * the given basis as an identity value.
3992       *
3993       * @param parallelismThreshold the (estimated) number of elements
3994 <     * needed for this operation to be executed in parallel.
3994 >     * needed for this operation to be executed in parallel
3995       * @param transformer a function returning the transformation
3996       * for an element
3997       * @param basis the identity (initial default value) for the reduction
3998       * @param reducer a commutative associative combining function
3999       * @return the result of accumulating the given transformation
4000       * of all keys
4001 +     * @since 1.8
4002       */
4003      public int reduceKeysToInt(long parallelismThreshold,
4004                                 ToIntFunction<? super K> transformer,
# Line 3573 | Line 4015 | public class ConcurrentHashMap<K,V> impl
4015       * Performs the given action for each value.
4016       *
4017       * @param parallelismThreshold the (estimated) number of elements
4018 <     * needed for this operation to be executed in parallel.
4018 >     * needed for this operation to be executed in parallel
4019       * @param action the action
4020 +     * @since 1.8
4021       */
4022      public void forEachValue(long parallelismThreshold,
4023                               Consumer<? super V> action) {
# Line 3590 | Line 4033 | public class ConcurrentHashMap<K,V> impl
4033       * of each value.
4034       *
4035       * @param parallelismThreshold the (estimated) number of elements
4036 <     * needed for this operation to be executed in parallel.
4036 >     * needed for this operation to be executed in parallel
4037       * @param transformer a function returning the transformation
4038       * for an element, or null if there is no transformation (in
4039       * which case the action is not applied)
4040       * @param action the action
4041 +     * @param <U> the return type of the transformer
4042 +     * @since 1.8
4043       */
4044      public <U> void forEachValue(long parallelismThreshold,
4045                                   Function<? super V, ? extends U> transformer,
# Line 3614 | Line 4059 | public class ConcurrentHashMap<K,V> impl
4059       * ignored.
4060       *
4061       * @param parallelismThreshold the (estimated) number of elements
4062 <     * needed for this operation to be executed in parallel.
4062 >     * needed for this operation to be executed in parallel
4063       * @param searchFunction a function returning a non-null
4064       * result on success, else null
4065 +     * @param <U> the return type of the search function
4066       * @return a non-null result from applying the given search
4067       * function on each value, or null if none
4068 +     * @since 1.8
4069       */
4070      public <U> U searchValues(long parallelismThreshold,
4071                                Function<? super V, ? extends U> searchFunction) {
# Line 3633 | Line 4080 | public class ConcurrentHashMap<K,V> impl
4080       * given reducer to combine values, or null if none.
4081       *
4082       * @param parallelismThreshold the (estimated) number of elements
4083 <     * needed for this operation to be executed in parallel.
4083 >     * needed for this operation to be executed in parallel
4084       * @param reducer a commutative associative combining function
4085       * @return the result of accumulating all values
4086 +     * @since 1.8
4087       */
4088      public V reduceValues(long parallelismThreshold,
4089                            BiFunction<? super V, ? super V, ? extends V> reducer) {
# Line 3651 | Line 4099 | public class ConcurrentHashMap<K,V> impl
4099       * null if none.
4100       *
4101       * @param parallelismThreshold the (estimated) number of elements
4102 <     * needed for this operation to be executed in parallel.
4102 >     * needed for this operation to be executed in parallel
4103       * @param transformer a function returning the transformation
4104       * for an element, or null if there is no transformation (in
4105       * which case it is not combined)
4106       * @param reducer a commutative associative combining function
4107 +     * @param <U> the return type of the transformer
4108       * @return the result of accumulating the given transformation
4109       * of all values
4110 +     * @since 1.8
4111       */
4112      public <U> U reduceValues(long parallelismThreshold,
4113                                Function<? super V, ? extends U> transformer,
# Line 3675 | Line 4125 | public class ConcurrentHashMap<K,V> impl
4125       * and the given basis as an identity value.
4126       *
4127       * @param parallelismThreshold the (estimated) number of elements
4128 <     * needed for this operation to be executed in parallel.
4128 >     * needed for this operation to be executed in parallel
4129       * @param transformer a function returning the transformation
4130       * for an element
4131       * @param basis the identity (initial default value) for the reduction
4132       * @param reducer a commutative associative combining function
4133       * @return the result of accumulating the given transformation
4134       * of all values
4135 +     * @since 1.8
4136       */
4137      public double reduceValuesToDouble(long parallelismThreshold,
4138                                         ToDoubleFunction<? super V> transformer,
# Line 3700 | Line 4151 | public class ConcurrentHashMap<K,V> impl
4151       * and the given basis as an identity value.
4152       *
4153       * @param parallelismThreshold the (estimated) number of elements
4154 <     * needed for this operation to be executed in parallel.
4154 >     * needed for this operation to be executed in parallel
4155       * @param transformer a function returning the transformation
4156       * for an element
4157       * @param basis the identity (initial default value) for the reduction
4158       * @param reducer a commutative associative combining function
4159       * @return the result of accumulating the given transformation
4160       * of all values
4161 +     * @since 1.8
4162       */
4163      public long reduceValuesToLong(long parallelismThreshold,
4164                                     ToLongFunction<? super V> transformer,
# Line 3725 | Line 4177 | public class ConcurrentHashMap<K,V> impl
4177       * and the given basis as an identity value.
4178       *
4179       * @param parallelismThreshold the (estimated) number of elements
4180 <     * needed for this operation to be executed in parallel.
4180 >     * needed for this operation to be executed in parallel
4181       * @param transformer a function returning the transformation
4182       * for an element
4183       * @param basis the identity (initial default value) for the reduction
4184       * @param reducer a commutative associative combining function
4185       * @return the result of accumulating the given transformation
4186       * of all values
4187 +     * @since 1.8
4188       */
4189      public int reduceValuesToInt(long parallelismThreshold,
4190                                   ToIntFunction<? super V> transformer,
# Line 3748 | Line 4201 | public class ConcurrentHashMap<K,V> impl
4201       * Performs the given action for each entry.
4202       *
4203       * @param parallelismThreshold the (estimated) number of elements
4204 <     * needed for this operation to be executed in parallel.
4204 >     * needed for this operation to be executed in parallel
4205       * @param action the action
4206 +     * @since 1.8
4207       */
4208      public void forEachEntry(long parallelismThreshold,
4209                               Consumer<? super Map.Entry<K,V>> action) {
# Line 3763 | Line 4217 | public class ConcurrentHashMap<K,V> impl
4217       * of each entry.
4218       *
4219       * @param parallelismThreshold the (estimated) number of elements
4220 <     * needed for this operation to be executed in parallel.
4220 >     * needed for this operation to be executed in parallel
4221       * @param transformer a function returning the transformation
4222       * for an element, or null if there is no transformation (in
4223       * which case the action is not applied)
4224       * @param action the action
4225 +     * @param <U> the return type of the transformer
4226 +     * @since 1.8
4227       */
4228      public <U> void forEachEntry(long parallelismThreshold,
4229                                   Function<Map.Entry<K,V>, ? extends U> transformer,
# Line 3787 | Line 4243 | public class ConcurrentHashMap<K,V> impl
4243       * ignored.
4244       *
4245       * @param parallelismThreshold the (estimated) number of elements
4246 <     * needed for this operation to be executed in parallel.
4246 >     * needed for this operation to be executed in parallel
4247       * @param searchFunction a function returning a non-null
4248       * result on success, else null
4249 +     * @param <U> the return type of the search function
4250       * @return a non-null result from applying the given search
4251       * function on each entry, or null if none
4252 +     * @since 1.8
4253       */
4254      public <U> U searchEntries(long parallelismThreshold,
4255                                 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
# Line 3806 | Line 4264 | public class ConcurrentHashMap<K,V> impl
4264       * given reducer to combine values, or null if none.
4265       *
4266       * @param parallelismThreshold the (estimated) number of elements
4267 <     * needed for this operation to be executed in parallel.
4267 >     * needed for this operation to be executed in parallel
4268       * @param reducer a commutative associative combining function
4269       * @return the result of accumulating all entries
4270 +     * @since 1.8
4271       */
4272      public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4273                                          BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
# Line 3824 | Line 4283 | public class ConcurrentHashMap<K,V> impl
4283       * or null if none.
4284       *
4285       * @param parallelismThreshold the (estimated) number of elements
4286 <     * needed for this operation to be executed in parallel.
4286 >     * needed for this operation to be executed in parallel
4287       * @param transformer a function returning the transformation
4288       * for an element, or null if there is no transformation (in
4289       * which case it is not combined)
4290       * @param reducer a commutative associative combining function
4291 +     * @param <U> the return type of the transformer
4292       * @return the result of accumulating the given transformation
4293       * of all entries
4294 +     * @since 1.8
4295       */
4296      public <U> U reduceEntries(long parallelismThreshold,
4297                                 Function<Map.Entry<K,V>, ? extends U> transformer,
# Line 3848 | Line 4309 | public class ConcurrentHashMap<K,V> impl
4309       * and the given basis as an identity value.
4310       *
4311       * @param parallelismThreshold the (estimated) number of elements
4312 <     * needed for this operation to be executed in parallel.
4312 >     * needed for this operation to be executed in parallel
4313       * @param transformer a function returning the transformation
4314       * for an element
4315       * @param basis the identity (initial default value) for the reduction
4316       * @param reducer a commutative associative combining function
4317       * @return the result of accumulating the given transformation
4318       * of all entries
4319 +     * @since 1.8
4320       */
4321      public double reduceEntriesToDouble(long parallelismThreshold,
4322                                          ToDoubleFunction<Map.Entry<K,V>> transformer,
# Line 3873 | Line 4335 | public class ConcurrentHashMap<K,V> impl
4335       * and the given basis as an identity value.
4336       *
4337       * @param parallelismThreshold the (estimated) number of elements
4338 <     * needed for this operation to be executed in parallel.
4338 >     * needed for this operation to be executed in parallel
4339       * @param transformer a function returning the transformation
4340       * for an element
4341       * @param basis the identity (initial default value) for the reduction
4342       * @param reducer a commutative associative combining function
4343       * @return the result of accumulating the given transformation
4344       * of all entries
4345 +     * @since 1.8
4346       */
4347      public long reduceEntriesToLong(long parallelismThreshold,
4348                                      ToLongFunction<Map.Entry<K,V>> transformer,
# Line 3898 | Line 4361 | public class ConcurrentHashMap<K,V> impl
4361       * and the given basis as an identity value.
4362       *
4363       * @param parallelismThreshold the (estimated) number of elements
4364 <     * needed for this operation to be executed in parallel.
4364 >     * needed for this operation to be executed in parallel
4365       * @param transformer a function returning the transformation
4366       * for an element
4367       * @param basis the identity (initial default value) for the reduction
4368       * @param reducer a commutative associative combining function
4369       * @return the result of accumulating the given transformation
4370       * of all entries
4371 +     * @since 1.8
4372       */
4373      public int reduceEntriesToInt(long parallelismThreshold,
4374                                    ToIntFunction<Map.Entry<K,V>> transformer,
# Line 3947 | Line 4411 | public class ConcurrentHashMap<K,V> impl
4411          // implementations below rely on concrete classes supplying these
4412          // abstract methods
4413          /**
4414 <         * Returns a "weakly consistent" iterator that will never
4415 <         * throw {@link ConcurrentModificationException}, and
4416 <         * guarantees to traverse elements as they existed upon
4417 <         * construction of the iterator, and may (but is not
4418 <         * guaranteed to) reflect any modifications subsequent to
4419 <         * construction.
4414 >         * Returns an iterator over the elements in this collection.
4415 >         *
4416 >         * <p>The returned iterator is
4417 >         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4418 >         *
4419 >         * @return an iterator over the elements in this collection
4420           */
4421          public abstract Iterator<E> iterator();
4422          public abstract boolean contains(Object o);
4423          public abstract boolean remove(Object o);
4424  
4425 <        private static final String oomeMsg = "Required array size too large";
4425 >        private static final String OOME_MSG = "Required array size too large";
4426  
4427          public final Object[] toArray() {
4428              long sz = map.mappingCount();
4429              if (sz > MAX_ARRAY_SIZE)
4430 <                throw new OutOfMemoryError(oomeMsg);
4430 >                throw new OutOfMemoryError(OOME_MSG);
4431              int n = (int)sz;
4432              Object[] r = new Object[n];
4433              int i = 0;
4434              for (E e : this) {
4435                  if (i == n) {
4436                      if (n >= MAX_ARRAY_SIZE)
4437 <                        throw new OutOfMemoryError(oomeMsg);
4437 >                        throw new OutOfMemoryError(OOME_MSG);
4438                      if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4439                          n = MAX_ARRAY_SIZE;
4440                      else
# Line 3982 | Line 4446 | public class ConcurrentHashMap<K,V> impl
4446              return (i == n) ? r : Arrays.copyOf(r, i);
4447          }
4448  
4449 +        @SuppressWarnings("unchecked")
4450          public final <T> T[] toArray(T[] a) {
4451              long sz = map.mappingCount();
4452              if (sz > MAX_ARRAY_SIZE)
4453 <                throw new OutOfMemoryError(oomeMsg);
4453 >                throw new OutOfMemoryError(OOME_MSG);
4454              int m = (int)sz;
4455              T[] r = (a.length >= m) ? a :
4456                  (T[])java.lang.reflect.Array
# Line 3995 | Line 4460 | public class ConcurrentHashMap<K,V> impl
4460              for (E e : this) {
4461                  if (i == n) {
4462                      if (n >= MAX_ARRAY_SIZE)
4463 <                        throw new OutOfMemoryError(oomeMsg);
4463 >                        throw new OutOfMemoryError(OOME_MSG);
4464                      if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4465                          n = MAX_ARRAY_SIZE;
4466                      else
# Line 4048 | Line 4513 | public class ConcurrentHashMap<K,V> impl
4513              return true;
4514          }
4515  
4516 <        public final boolean removeAll(Collection<?> c) {
4516 >        public boolean removeAll(Collection<?> c) {
4517 >            if (c == null) throw new NullPointerException();
4518              boolean modified = false;
4519 <            for (Iterator<E> it = iterator(); it.hasNext();) {
4520 <                if (c.contains(it.next())) {
4521 <                    it.remove();
4522 <                    modified = true;
4519 >            // Use (c instanceof Set) as a hint that lookup in c is as
4520 >            // efficient as this view
4521 >            Node<K,V>[] t;
4522 >            if ((t = map.table) == null) {
4523 >                return false;
4524 >            } else if (c instanceof Set<?> && c.size() > t.length) {
4525 >                for (Iterator<?> it = iterator(); it.hasNext(); ) {
4526 >                    if (c.contains(it.next())) {
4527 >                        it.remove();
4528 >                        modified = true;
4529 >                    }
4530                  }
4531 +            } else {
4532 +                for (Object e : c)
4533 +                    modified |= remove(e);
4534              }
4535              return modified;
4536          }
4537  
4538          public final boolean retainAll(Collection<?> c) {
4539 +            if (c == null) throw new NullPointerException();
4540              boolean modified = false;
4541              for (Iterator<E> it = iterator(); it.hasNext();) {
4542                  if (!c.contains(it.next())) {
# Line 4080 | Line 4557 | public class ConcurrentHashMap<K,V> impl
4557       * {@link #keySet(Object) keySet(V)},
4558       * {@link #newKeySet() newKeySet()},
4559       * {@link #newKeySet(int) newKeySet(int)}.
4560 +     *
4561 +     * @since 1.8
4562       */
4563      public static class KeySetView<K,V> extends CollectionView<K,V,K>
4564          implements Set<K>, java.io.Serializable {
4565          private static final long serialVersionUID = 7249069246763182397L;
4566 +        @SuppressWarnings("serial") // Conditionally serializable
4567          private final V value;
4568          KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4569              super(map);
# Line 4140 | Line 4620 | public class ConcurrentHashMap<K,V> impl
4620              V v;
4621              if ((v = value) == null)
4622                  throw new UnsupportedOperationException();
4623 <            return map.internalPut(e, v, true) == null;
4623 >            return map.putVal(e, v, true) == null;
4624          }
4625  
4626          /**
# Line 4160 | Line 4640 | public class ConcurrentHashMap<K,V> impl
4640              if ((v = value) == null)
4641                  throw new UnsupportedOperationException();
4642              for (K e : c) {
4643 <                if (map.internalPut(e, v, true) == null)
4643 >                if (map.putVal(e, v, true) == null)
4644                      added = true;
4645              }
4646              return added;
# Line 4194 | Line 4674 | public class ConcurrentHashMap<K,V> impl
4674              if ((t = map.table) != null) {
4675                  Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4676                  for (Node<K,V> p; (p = it.advance()) != null; )
4677 <                    action.accept((K)p.key);
4677 >                    action.accept(p.key);
4678              }
4679          }
4680      }
# Line 4238 | Line 4718 | public class ConcurrentHashMap<K,V> impl
4718              throw new UnsupportedOperationException();
4719          }
4720  
4721 +        @Override public boolean removeAll(Collection<?> c) {
4722 +            if (c == null) throw new NullPointerException();
4723 +            boolean modified = false;
4724 +            for (Iterator<V> it = iterator(); it.hasNext();) {
4725 +                if (c.contains(it.next())) {
4726 +                    it.remove();
4727 +                    modified = true;
4728 +                }
4729 +            }
4730 +            return modified;
4731 +        }
4732 +
4733 +        public boolean removeIf(Predicate<? super V> filter) {
4734 +            return map.removeValueIf(filter);
4735 +        }
4736 +
4737          public Spliterator<V> spliterator() {
4738              Node<K,V>[] t;
4739              ConcurrentHashMap<K,V> m = map;
# Line 4295 | Line 4791 | public class ConcurrentHashMap<K,V> impl
4791          }
4792  
4793          public boolean add(Entry<K,V> e) {
4794 <            return map.internalPut(e.getKey(), e.getValue(), false) == null;
4794 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4795          }
4796  
4797          public boolean addAll(Collection<? extends Entry<K,V>> c) {
# Line 4307 | Line 4803 | public class ConcurrentHashMap<K,V> impl
4803              return added;
4804          }
4805  
4806 +        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4807 +            return map.removeEntryIf(filter);
4808 +        }
4809 +
4810          public final int hashCode() {
4811              int h = 0;
4812              Node<K,V>[] t;
# Line 4340 | Line 4840 | public class ConcurrentHashMap<K,V> impl
4840              if ((t = map.table) != null) {
4841                  Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4842                  for (Node<K,V> p; (p = it.advance()) != null; )
4843 <                    action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
4843 >                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
4844              }
4845          }
4846  
# Line 4352 | Line 4852 | public class ConcurrentHashMap<K,V> impl
4852       * Base class for bulk tasks. Repeats some fields and code from
4853       * class Traverser, because we need to subclass CountedCompleter.
4854       */
4855 +    @SuppressWarnings("serial")
4856      abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4857          Node<K,V>[] tab;        // same as Traverser
4858          Node<K,V> next;
4859 +        TableStack<K,V> stack, spare;
4860          int index;
4861          int baseIndex;
4862          int baseLimit;
# Line 4376 | Line 4878 | public class ConcurrentHashMap<K,V> impl
4878          }
4879  
4880          /**
4881 <         * Same as Traverser version
4881 >         * Same as Traverser version.
4882           */
4883          final Node<K,V> advance() {
4884              Node<K,V> e;
4885              if ((e = next) != null)
4886                  e = e.next;
4887              for (;;) {
4888 <                Node<K,V>[] t; int i, n; Object ek;
4888 >                Node<K,V>[] t; int i, n;
4889                  if (e != null)
4890                      return next = e;
4891                  if (baseIndex >= baseLimit || (t = tab) == null ||
4892                      (n = t.length) <= (i = index) || i < 0)
4893                      return next = null;
4894 <                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4895 <                    if ((ek = e.key) instanceof TreeBin)
4896 <                        e = ((TreeBin<K,V>)ek).first;
4395 <                    else {
4396 <                        tab = (Node<K,V>[])ek;
4894 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
4895 >                    if (e instanceof ForwardingNode) {
4896 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4897                          e = null;
4898 +                        pushState(t, i, n);
4899                          continue;
4900                      }
4901 +                    else if (e instanceof TreeBin)
4902 +                        e = ((TreeBin<K,V>)e).first;
4903 +                    else
4904 +                        e = null;
4905                  }
4906 <                if ((index += baseSize) >= n)
4906 >                if (stack != null)
4907 >                    recoverState(n);
4908 >                else if ((index = i + baseSize) >= n)
4909                      index = ++baseIndex;
4910              }
4911          }
4912 +
4913 +        private void pushState(Node<K,V>[] t, int i, int n) {
4914 +            TableStack<K,V> s = spare;
4915 +            if (s != null)
4916 +                spare = s.next;
4917 +            else
4918 +                s = new TableStack<K,V>();
4919 +            s.tab = t;
4920 +            s.length = n;
4921 +            s.index = i;
4922 +            s.next = stack;
4923 +            stack = s;
4924 +        }
4925 +
4926 +        private void recoverState(int n) {
4927 +            TableStack<K,V> s; int len;
4928 +            while ((s = stack) != null && (index += (len = s.length)) >= n) {
4929 +                n = len;
4930 +                index = s.index;
4931 +                tab = s.tab;
4932 +                s.tab = null;
4933 +                TableStack<K,V> next = s.next;
4934 +                s.next = spare; // save for reuse
4935 +                stack = next;
4936 +                spare = s;
4937 +            }
4938 +            if (s == null && (index += baseSize) >= n)
4939 +                index = ++baseIndex;
4940 +        }
4941      }
4942  
4943      /*
# Line 4411 | Line 4947 | public class ConcurrentHashMap<K,V> impl
4947       * that we've already null-checked task arguments, so we force
4948       * simplest hoisted bypass to help avoid convoluted traps.
4949       */
4950 <
4950 >    @SuppressWarnings("serial")
4951      static final class ForEachKeyTask<K,V>
4952          extends BulkTask<K,V,Void> {
4953          final Consumer<? super K> action;
# Line 4432 | Line 4968 | public class ConcurrentHashMap<K,V> impl
4968                           action).fork();
4969                  }
4970                  for (Node<K,V> p; (p = advance()) != null;)
4971 <                    action.accept((K)p.key);
4971 >                    action.accept(p.key);
4972                  propagateCompletion();
4973              }
4974          }
4975      }
4976  
4977 +    @SuppressWarnings("serial")
4978      static final class ForEachValueTask<K,V>
4979          extends BulkTask<K,V,Void> {
4980          final Consumer<? super V> action;
# Line 4464 | Line 5001 | public class ConcurrentHashMap<K,V> impl
5001          }
5002      }
5003  
5004 +    @SuppressWarnings("serial")
5005      static final class ForEachEntryTask<K,V>
5006          extends BulkTask<K,V,Void> {
5007          final Consumer<? super Entry<K,V>> action;
# Line 4490 | Line 5028 | public class ConcurrentHashMap<K,V> impl
5028          }
5029      }
5030  
5031 +    @SuppressWarnings("serial")
5032      static final class ForEachMappingTask<K,V>
5033          extends BulkTask<K,V,Void> {
5034          final BiConsumer<? super K, ? super V> action;
# Line 4510 | Line 5049 | public class ConcurrentHashMap<K,V> impl
5049                           action).fork();
5050                  }
5051                  for (Node<K,V> p; (p = advance()) != null; )
5052 <                    action.accept((K)p.key, p.val);
5052 >                    action.accept(p.key, p.val);
5053                  propagateCompletion();
5054              }
5055          }
5056      }
5057  
5058 +    @SuppressWarnings("serial")
5059      static final class ForEachTransformedKeyTask<K,V,U>
5060          extends BulkTask<K,V,Void> {
5061          final Function<? super K, ? extends U> transformer;
# Line 4540 | Line 5080 | public class ConcurrentHashMap<K,V> impl
5080                  }
5081                  for (Node<K,V> p; (p = advance()) != null; ) {
5082                      U u;
5083 <                    if ((u = transformer.apply((K)p.key)) != null)
5083 >                    if ((u = transformer.apply(p.key)) != null)
5084                          action.accept(u);
5085                  }
5086                  propagateCompletion();
# Line 4548 | Line 5088 | public class ConcurrentHashMap<K,V> impl
5088          }
5089      }
5090  
5091 +    @SuppressWarnings("serial")
5092      static final class ForEachTransformedValueTask<K,V,U>
5093          extends BulkTask<K,V,Void> {
5094          final Function<? super V, ? extends U> transformer;
# Line 4580 | Line 5121 | public class ConcurrentHashMap<K,V> impl
5121          }
5122      }
5123  
5124 +    @SuppressWarnings("serial")
5125      static final class ForEachTransformedEntryTask<K,V,U>
5126          extends BulkTask<K,V,Void> {
5127          final Function<Map.Entry<K,V>, ? extends U> transformer;
# Line 4612 | Line 5154 | public class ConcurrentHashMap<K,V> impl
5154          }
5155      }
5156  
5157 +    @SuppressWarnings("serial")
5158      static final class ForEachTransformedMappingTask<K,V,U>
5159          extends BulkTask<K,V,Void> {
5160          final BiFunction<? super K, ? super V, ? extends U> transformer;
# Line 4637 | Line 5180 | public class ConcurrentHashMap<K,V> impl
5180                  }
5181                  for (Node<K,V> p; (p = advance()) != null; ) {
5182                      U u;
5183 <                    if ((u = transformer.apply((K)p.key, p.val)) != null)
5183 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5184                          action.accept(u);
5185                  }
5186                  propagateCompletion();
# Line 4645 | Line 5188 | public class ConcurrentHashMap<K,V> impl
5188          }
5189      }
5190  
5191 +    @SuppressWarnings("serial")
5192      static final class SearchKeysTask<K,V,U>
5193          extends BulkTask<K,V,U> {
5194          final Function<? super K, ? extends U> searchFunction;
# Line 4678 | Line 5222 | public class ConcurrentHashMap<K,V> impl
5222                          propagateCompletion();
5223                          break;
5224                      }
5225 <                    if ((u = searchFunction.apply((K)p.key)) != null) {
5225 >                    if ((u = searchFunction.apply(p.key)) != null) {
5226                          if (result.compareAndSet(null, u))
5227                              quietlyCompleteRoot();
5228                          break;
# Line 4688 | Line 5232 | public class ConcurrentHashMap<K,V> impl
5232          }
5233      }
5234  
5235 +    @SuppressWarnings("serial")
5236      static final class SearchValuesTask<K,V,U>
5237          extends BulkTask<K,V,U> {
5238          final Function<? super V, ? extends U> searchFunction;
# Line 4731 | Line 5276 | public class ConcurrentHashMap<K,V> impl
5276          }
5277      }
5278  
5279 +    @SuppressWarnings("serial")
5280      static final class SearchEntriesTask<K,V,U>
5281          extends BulkTask<K,V,U> {
5282          final Function<Entry<K,V>, ? extends U> searchFunction;
# Line 4774 | Line 5320 | public class ConcurrentHashMap<K,V> impl
5320          }
5321      }
5322  
5323 +    @SuppressWarnings("serial")
5324      static final class SearchMappingsTask<K,V,U>
5325          extends BulkTask<K,V,U> {
5326          final BiFunction<? super K, ? super V, ? extends U> searchFunction;
# Line 4807 | Line 5354 | public class ConcurrentHashMap<K,V> impl
5354                          propagateCompletion();
5355                          break;
5356                      }
5357 <                    if ((u = searchFunction.apply((K)p.key, p.val)) != null) {
5357 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5358                          if (result.compareAndSet(null, u))
5359                              quietlyCompleteRoot();
5360                          break;
# Line 4817 | Line 5364 | public class ConcurrentHashMap<K,V> impl
5364          }
5365      }
5366  
5367 +    @SuppressWarnings("serial")
5368      static final class ReduceKeysTask<K,V>
5369          extends BulkTask<K,V,K> {
5370          final BiFunction<? super K, ? super K, ? extends K> reducer;
# Line 4842 | Line 5390 | public class ConcurrentHashMap<K,V> impl
5390                  }
5391                  K r = null;
5392                  for (Node<K,V> p; (p = advance()) != null; ) {
5393 <                    K u = (K)p.key;
5393 >                    K u = p.key;
5394                      r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5395                  }
5396                  result = r;
5397                  CountedCompleter<?> c;
5398                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5399 +                    @SuppressWarnings("unchecked")
5400                      ReduceKeysTask<K,V>
5401                          t = (ReduceKeysTask<K,V>)c,
5402                          s = t.rights;
# Line 4863 | Line 5412 | public class ConcurrentHashMap<K,V> impl
5412          }
5413      }
5414  
5415 +    @SuppressWarnings("serial")
5416      static final class ReduceValuesTask<K,V>
5417          extends BulkTask<K,V,V> {
5418          final BiFunction<? super V, ? super V, ? extends V> reducer;
# Line 4894 | Line 5444 | public class ConcurrentHashMap<K,V> impl
5444                  result = r;
5445                  CountedCompleter<?> c;
5446                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5447 +                    @SuppressWarnings("unchecked")
5448                      ReduceValuesTask<K,V>
5449                          t = (ReduceValuesTask<K,V>)c,
5450                          s = t.rights;
# Line 4909 | Line 5460 | public class ConcurrentHashMap<K,V> impl
5460          }
5461      }
5462  
5463 +    @SuppressWarnings("serial")
5464      static final class ReduceEntriesTask<K,V>
5465          extends BulkTask<K,V,Map.Entry<K,V>> {
5466          final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
# Line 4938 | Line 5490 | public class ConcurrentHashMap<K,V> impl
5490                  result = r;
5491                  CountedCompleter<?> c;
5492                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5493 +                    @SuppressWarnings("unchecked")
5494                      ReduceEntriesTask<K,V>
5495                          t = (ReduceEntriesTask<K,V>)c,
5496                          s = t.rights;
# Line 4953 | Line 5506 | public class ConcurrentHashMap<K,V> impl
5506          }
5507      }
5508  
5509 +    @SuppressWarnings("serial")
5510      static final class MapReduceKeysTask<K,V,U>
5511          extends BulkTask<K,V,U> {
5512          final Function<? super K, ? extends U> transformer;
# Line 4984 | Line 5538 | public class ConcurrentHashMap<K,V> impl
5538                  U r = null;
5539                  for (Node<K,V> p; (p = advance()) != null; ) {
5540                      U u;
5541 <                    if ((u = transformer.apply((K)p.key)) != null)
5541 >                    if ((u = transformer.apply(p.key)) != null)
5542                          r = (r == null) ? u : reducer.apply(r, u);
5543                  }
5544                  result = r;
5545                  CountedCompleter<?> c;
5546                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5547 +                    @SuppressWarnings("unchecked")
5548                      MapReduceKeysTask<K,V,U>
5549                          t = (MapReduceKeysTask<K,V,U>)c,
5550                          s = t.rights;
# Line 5005 | Line 5560 | public class ConcurrentHashMap<K,V> impl
5560          }
5561      }
5562  
5563 +    @SuppressWarnings("serial")
5564      static final class MapReduceValuesTask<K,V,U>
5565          extends BulkTask<K,V,U> {
5566          final Function<? super V, ? extends U> transformer;
# Line 5042 | Line 5598 | public class ConcurrentHashMap<K,V> impl
5598                  result = r;
5599                  CountedCompleter<?> c;
5600                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5601 +                    @SuppressWarnings("unchecked")
5602                      MapReduceValuesTask<K,V,U>
5603                          t = (MapReduceValuesTask<K,V,U>)c,
5604                          s = t.rights;
# Line 5057 | Line 5614 | public class ConcurrentHashMap<K,V> impl
5614          }
5615      }
5616  
5617 +    @SuppressWarnings("serial")
5618      static final class MapReduceEntriesTask<K,V,U>
5619          extends BulkTask<K,V,U> {
5620          final Function<Map.Entry<K,V>, ? extends U> transformer;
# Line 5094 | Line 5652 | public class ConcurrentHashMap<K,V> impl
5652                  result = r;
5653                  CountedCompleter<?> c;
5654                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5655 +                    @SuppressWarnings("unchecked")
5656                      MapReduceEntriesTask<K,V,U>
5657                          t = (MapReduceEntriesTask<K,V,U>)c,
5658                          s = t.rights;
# Line 5109 | Line 5668 | public class ConcurrentHashMap<K,V> impl
5668          }
5669      }
5670  
5671 +    @SuppressWarnings("serial")
5672      static final class MapReduceMappingsTask<K,V,U>
5673          extends BulkTask<K,V,U> {
5674          final BiFunction<? super K, ? super V, ? extends U> transformer;
# Line 5140 | Line 5700 | public class ConcurrentHashMap<K,V> impl
5700                  U r = null;
5701                  for (Node<K,V> p; (p = advance()) != null; ) {
5702                      U u;
5703 <                    if ((u = transformer.apply((K)p.key, p.val)) != null)
5703 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5704                          r = (r == null) ? u : reducer.apply(r, u);
5705                  }
5706                  result = r;
5707                  CountedCompleter<?> c;
5708                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5709 +                    @SuppressWarnings("unchecked")
5710                      MapReduceMappingsTask<K,V,U>
5711                          t = (MapReduceMappingsTask<K,V,U>)c,
5712                          s = t.rights;
# Line 5161 | Line 5722 | public class ConcurrentHashMap<K,V> impl
5722          }
5723      }
5724  
5725 +    @SuppressWarnings("serial")
5726      static final class MapReduceKeysToDoubleTask<K,V>
5727          extends BulkTask<K,V,Double> {
5728          final ToDoubleFunction<? super K> transformer;
# Line 5193 | Line 5755 | public class ConcurrentHashMap<K,V> impl
5755                        rights, transformer, r, reducer)).fork();
5756                  }
5757                  for (Node<K,V> p; (p = advance()) != null; )
5758 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key));
5758 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5759                  result = r;
5760                  CountedCompleter<?> c;
5761                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5762 +                    @SuppressWarnings("unchecked")
5763                      MapReduceKeysToDoubleTask<K,V>
5764                          t = (MapReduceKeysToDoubleTask<K,V>)c,
5765                          s = t.rights;
# Line 5209 | Line 5772 | public class ConcurrentHashMap<K,V> impl
5772          }
5773      }
5774  
5775 +    @SuppressWarnings("serial")
5776      static final class MapReduceValuesToDoubleTask<K,V>
5777          extends BulkTask<K,V,Double> {
5778          final ToDoubleFunction<? super V> transformer;
# Line 5245 | Line 5809 | public class ConcurrentHashMap<K,V> impl
5809                  result = r;
5810                  CountedCompleter<?> c;
5811                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5812 +                    @SuppressWarnings("unchecked")
5813                      MapReduceValuesToDoubleTask<K,V>
5814                          t = (MapReduceValuesToDoubleTask<K,V>)c,
5815                          s = t.rights;
# Line 5257 | Line 5822 | public class ConcurrentHashMap<K,V> impl
5822          }
5823      }
5824  
5825 +    @SuppressWarnings("serial")
5826      static final class MapReduceEntriesToDoubleTask<K,V>
5827          extends BulkTask<K,V,Double> {
5828          final ToDoubleFunction<Map.Entry<K,V>> transformer;
# Line 5293 | Line 5859 | public class ConcurrentHashMap<K,V> impl
5859                  result = r;
5860                  CountedCompleter<?> c;
5861                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5862 +                    @SuppressWarnings("unchecked")
5863                      MapReduceEntriesToDoubleTask<K,V>
5864                          t = (MapReduceEntriesToDoubleTask<K,V>)c,
5865                          s = t.rights;
# Line 5305 | Line 5872 | public class ConcurrentHashMap<K,V> impl
5872          }
5873      }
5874  
5875 +    @SuppressWarnings("serial")
5876      static final class MapReduceMappingsToDoubleTask<K,V>
5877          extends BulkTask<K,V,Double> {
5878          final ToDoubleBiFunction<? super K, ? super V> transformer;
# Line 5337 | Line 5905 | public class ConcurrentHashMap<K,V> impl
5905                        rights, transformer, r, reducer)).fork();
5906                  }
5907                  for (Node<K,V> p; (p = advance()) != null; )
5908 <                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key, p.val));
5908 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5909                  result = r;
5910                  CountedCompleter<?> c;
5911                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5912 +                    @SuppressWarnings("unchecked")
5913                      MapReduceMappingsToDoubleTask<K,V>
5914                          t = (MapReduceMappingsToDoubleTask<K,V>)c,
5915                          s = t.rights;
# Line 5353 | Line 5922 | public class ConcurrentHashMap<K,V> impl
5922          }
5923      }
5924  
5925 +    @SuppressWarnings("serial")
5926      static final class MapReduceKeysToLongTask<K,V>
5927          extends BulkTask<K,V,Long> {
5928          final ToLongFunction<? super K> transformer;
# Line 5385 | Line 5955 | public class ConcurrentHashMap<K,V> impl
5955                        rights, transformer, r, reducer)).fork();
5956                  }
5957                  for (Node<K,V> p; (p = advance()) != null; )
5958 <                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key));
5958 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5959                  result = r;
5960                  CountedCompleter<?> c;
5961                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5962 +                    @SuppressWarnings("unchecked")
5963                      MapReduceKeysToLongTask<K,V>
5964                          t = (MapReduceKeysToLongTask<K,V>)c,
5965                          s = t.rights;
# Line 5401 | Line 5972 | public class ConcurrentHashMap<K,V> impl
5972          }
5973      }
5974  
5975 +    @SuppressWarnings("serial")
5976      static final class MapReduceValuesToLongTask<K,V>
5977          extends BulkTask<K,V,Long> {
5978          final ToLongFunction<? super V> transformer;
# Line 5437 | Line 6009 | public class ConcurrentHashMap<K,V> impl
6009                  result = r;
6010                  CountedCompleter<?> c;
6011                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6012 +                    @SuppressWarnings("unchecked")
6013                      MapReduceValuesToLongTask<K,V>
6014                          t = (MapReduceValuesToLongTask<K,V>)c,
6015                          s = t.rights;
# Line 5449 | Line 6022 | public class ConcurrentHashMap<K,V> impl
6022          }
6023      }
6024  
6025 +    @SuppressWarnings("serial")
6026      static final class MapReduceEntriesToLongTask<K,V>
6027          extends BulkTask<K,V,Long> {
6028          final ToLongFunction<Map.Entry<K,V>> transformer;
# Line 5485 | Line 6059 | public class ConcurrentHashMap<K,V> impl
6059                  result = r;
6060                  CountedCompleter<?> c;
6061                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6062 +                    @SuppressWarnings("unchecked")
6063                      MapReduceEntriesToLongTask<K,V>
6064                          t = (MapReduceEntriesToLongTask<K,V>)c,
6065                          s = t.rights;
# Line 5497 | Line 6072 | public class ConcurrentHashMap<K,V> impl
6072          }
6073      }
6074  
6075 +    @SuppressWarnings("serial")
6076      static final class MapReduceMappingsToLongTask<K,V>
6077          extends BulkTask<K,V,Long> {
6078          final ToLongBiFunction<? super K, ? super V> transformer;
# Line 5529 | Line 6105 | public class ConcurrentHashMap<K,V> impl
6105                        rights, transformer, r, reducer)).fork();
6106                  }
6107                  for (Node<K,V> p; (p = advance()) != null; )
6108 <                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key, p.val));
6108 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6109                  result = r;
6110                  CountedCompleter<?> c;
6111                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6112 +                    @SuppressWarnings("unchecked")
6113                      MapReduceMappingsToLongTask<K,V>
6114                          t = (MapReduceMappingsToLongTask<K,V>)c,
6115                          s = t.rights;
# Line 5545 | Line 6122 | public class ConcurrentHashMap<K,V> impl
6122          }
6123      }
6124  
6125 +    @SuppressWarnings("serial")
6126      static final class MapReduceKeysToIntTask<K,V>
6127          extends BulkTask<K,V,Integer> {
6128          final ToIntFunction<? super K> transformer;
# Line 5577 | Line 6155 | public class ConcurrentHashMap<K,V> impl
6155                        rights, transformer, r, reducer)).fork();
6156                  }
6157                  for (Node<K,V> p; (p = advance()) != null; )
6158 <                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key));
6158 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6159                  result = r;
6160                  CountedCompleter<?> c;
6161                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6162 +                    @SuppressWarnings("unchecked")
6163                      MapReduceKeysToIntTask<K,V>
6164                          t = (MapReduceKeysToIntTask<K,V>)c,
6165                          s = t.rights;
# Line 5593 | Line 6172 | public class ConcurrentHashMap<K,V> impl
6172          }
6173      }
6174  
6175 +    @SuppressWarnings("serial")
6176      static final class MapReduceValuesToIntTask<K,V>
6177          extends BulkTask<K,V,Integer> {
6178          final ToIntFunction<? super V> transformer;
# Line 5629 | Line 6209 | public class ConcurrentHashMap<K,V> impl
6209                  result = r;
6210                  CountedCompleter<?> c;
6211                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6212 +                    @SuppressWarnings("unchecked")
6213                      MapReduceValuesToIntTask<K,V>
6214                          t = (MapReduceValuesToIntTask<K,V>)c,
6215                          s = t.rights;
# Line 5641 | Line 6222 | public class ConcurrentHashMap<K,V> impl
6222          }
6223      }
6224  
6225 +    @SuppressWarnings("serial")
6226      static final class MapReduceEntriesToIntTask<K,V>
6227          extends BulkTask<K,V,Integer> {
6228          final ToIntFunction<Map.Entry<K,V>> transformer;
# Line 5677 | Line 6259 | public class ConcurrentHashMap<K,V> impl
6259                  result = r;
6260                  CountedCompleter<?> c;
6261                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6262 +                    @SuppressWarnings("unchecked")
6263                      MapReduceEntriesToIntTask<K,V>
6264                          t = (MapReduceEntriesToIntTask<K,V>)c,
6265                          s = t.rights;
# Line 5689 | Line 6272 | public class ConcurrentHashMap<K,V> impl
6272          }
6273      }
6274  
6275 +    @SuppressWarnings("serial")
6276      static final class MapReduceMappingsToIntTask<K,V>
6277          extends BulkTask<K,V,Integer> {
6278          final ToIntBiFunction<? super K, ? super V> transformer;
# Line 5721 | Line 6305 | public class ConcurrentHashMap<K,V> impl
6305                        rights, transformer, r, reducer)).fork();
6306                  }
6307                  for (Node<K,V> p; (p = advance()) != null; )
6308 <                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key, p.val));
6308 >                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6309                  result = r;
6310                  CountedCompleter<?> c;
6311                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6312 +                    @SuppressWarnings("unchecked")
6313                      MapReduceMappingsToIntTask<K,V>
6314                          t = (MapReduceMappingsToIntTask<K,V>)c,
6315                          s = t.rights;
# Line 5738 | Line 6323 | public class ConcurrentHashMap<K,V> impl
6323      }
6324  
6325      // Unsafe mechanics
6326 <    private static final sun.misc.Unsafe U;
6327 <    private static final long SIZECTL;
6328 <    private static final long TRANSFERINDEX;
6329 <    private static final long TRANSFERORIGIN;
6330 <    private static final long BASECOUNT;
6331 <    private static final long CELLSBUSY;
6332 <    private static final long CELLVALUE;
6333 <    private static final long ABASE;
6326 >    private static final Unsafe U = Unsafe.getUnsafe();
6327 >    private static final long SIZECTL
6328 >        = U.objectFieldOffset(ConcurrentHashMap.class, "sizeCtl");
6329 >    private static final long TRANSFERINDEX
6330 >        = U.objectFieldOffset(ConcurrentHashMap.class, "transferIndex");
6331 >    private static final long BASECOUNT
6332 >        = U.objectFieldOffset(ConcurrentHashMap.class, "baseCount");
6333 >    private static final long CELLSBUSY
6334 >        = U.objectFieldOffset(ConcurrentHashMap.class, "cellsBusy");
6335 >    private static final long CELLVALUE
6336 >        = U.objectFieldOffset(CounterCell.class, "value");
6337 >    private static final int ABASE = U.arrayBaseOffset(Node[].class);
6338      private static final int ASHIFT;
6339  
6340      static {
6341 <        try {
6342 <            U = sun.misc.Unsafe.getUnsafe();
6343 <            Class<?> k = ConcurrentHashMap.class;
6344 <            SIZECTL = U.objectFieldOffset
6345 <                (k.getDeclaredField("sizeCtl"));
6346 <            TRANSFERINDEX = U.objectFieldOffset
6347 <                (k.getDeclaredField("transferIndex"));
6348 <            TRANSFERORIGIN = U.objectFieldOffset
6349 <                (k.getDeclaredField("transferOrigin"));
6350 <            BASECOUNT = U.objectFieldOffset
6351 <                (k.getDeclaredField("baseCount"));
5763 <            CELLSBUSY = U.objectFieldOffset
5764 <                (k.getDeclaredField("cellsBusy"));
5765 <            Class<?> ck = Cell.class;
5766 <            CELLVALUE = U.objectFieldOffset
5767 <                (ck.getDeclaredField("value"));
5768 <            Class<?> sc = Node[].class;
5769 <            ABASE = U.arrayBaseOffset(sc);
5770 <            int scale = U.arrayIndexScale(sc);
5771 <            if ((scale & (scale - 1)) != 0)
5772 <                throw new Error("data type scale not a power of two");
5773 <            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
5774 <        } catch (Exception e) {
5775 <            throw new Error(e);
5776 <        }
6341 >        int scale = U.arrayIndexScale(Node[].class);
6342 >        if ((scale & (scale - 1)) != 0)
6343 >            throw new ExceptionInInitializerError("array index scale not a power of two");
6344 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6345 >
6346 >        // Reduce the risk of rare disastrous classloading in first call to
6347 >        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6348 >        Class<?> ensureLoaded = LockSupport.class;
6349 >
6350 >        // Eager class load observed to help JIT during startup
6351 >        ensureLoaded = ReservationNode.class;
6352      }
6353   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines