ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.33 by dl, Sat Dec 6 00:16:20 2003 UTC vs.
Revision 1.221 by jsr166, Wed Jun 5 16:00:55 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3 < * Expert Group and released to the public domain. Use, modify, and
4 < * redistribute this code in any way without acknowledgement.
3 > * Expert Group and released to the public domain, as explained at
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
8   import java.io.Serializable;
9 < import java.io.IOException;
10 < import java.io.ObjectInputStream;
11 < import java.io.ObjectOutputStream;
9 > import java.io.ObjectStreamField;
10 > import java.lang.reflect.ParameterizedType;
11 > import java.lang.reflect.Type;
12 > import java.util.Arrays;
13 > import java.util.Collection;
14 > import java.util.Comparator;
15 > import java.util.ConcurrentModificationException;
16 > import java.util.Enumeration;
17 > import java.util.HashMap;
18 > import java.util.Hashtable;
19 > import java.util.Iterator;
20 > import java.util.Map;
21 > import java.util.NoSuchElementException;
22 > import java.util.Set;
23 > import java.util.Spliterator;
24 > import java.util.concurrent.ConcurrentMap;
25 > import java.util.concurrent.ForkJoinPool;
26 > import java.util.concurrent.atomic.AtomicReference;
27 > import java.util.concurrent.locks.ReentrantLock;
28 > import java.util.concurrent.locks.StampedLock;
29 > import java.util.function.BiConsumer;
30 > import java.util.function.BiFunction;
31 > import java.util.function.BinaryOperator;
32 > import java.util.function.Consumer;
33 > import java.util.function.DoubleBinaryOperator;
34 > import java.util.function.Function;
35 > import java.util.function.IntBinaryOperator;
36 > import java.util.function.LongBinaryOperator;
37 > import java.util.function.ToDoubleBiFunction;
38 > import java.util.function.ToDoubleFunction;
39 > import java.util.function.ToIntBiFunction;
40 > import java.util.function.ToIntFunction;
41 > import java.util.function.ToLongBiFunction;
42 > import java.util.function.ToLongFunction;
43 > import java.util.stream.Stream;
44  
45   /**
46   * A hash table supporting full concurrency of retrievals and
47 < * adjustable expected concurrency for updates. This class obeys the
47 > * high expected concurrency for updates. This class obeys the
48   * same functional specification as {@link java.util.Hashtable}, and
49   * includes versions of methods corresponding to each method of
50 < * <tt>Hashtable</tt>. However, even though all operations are
50 > * {@code Hashtable}. However, even though all operations are
51   * thread-safe, retrieval operations do <em>not</em> entail locking,
52   * and there is <em>not</em> any support for locking the entire table
53   * in a way that prevents all access.  This class is fully
54 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
54 > * interoperable with {@code Hashtable} in programs that rely on its
55   * thread safety but not on its synchronization details.
56   *
57 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
58 < * block, so may overlap with update operations (including
59 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
60 < * of the most recently <em>completed</em> update operations holding
61 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
62 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
63 < * removal of only some entries.  Similarly, Iterators and
64 < * Enumerations return elements reflecting the state of the hash table
65 < * at some point at or since the creation of the iterator/enumeration.
66 < * They do <em>not</em> throw
67 < * {@link ConcurrentModificationException}.  However, iterators are
68 < * designed to be used by only one thread at a time.
69 < *
70 < * <p> The allowed concurrency among update operations is guided by
71 < * the optional <tt>concurrencyLevel</tt> constructor argument
72 < * (default 16), which is used as a hint for internal sizing.  The
73 < * table is internally partitioned to try to permit the indicated
74 < * number of concurrent updates without contention. Because placement
75 < * in hash tables is essentially random, the actual concurrency will
76 < * vary.  Ideally, you should choose a value to accommodate as many
77 < * threads as will ever concurrently modify the table. Using a
78 < * significantly higher value than you need can waste space and time,
79 < * and a significantly lower value can lead to thread contention. But
80 < * overestimates and underestimates within an order of magnitude do
81 < * not usually have much noticeable impact. A value of one is
82 < * appropriate when it is known that only one thread will modify
83 < * and all others will only read.
84 < *
85 < * <p>This class implements all of the <em>optional</em> methods
86 < * of the {@link Map} and {@link Iterator} interfaces.
87 < *
88 < * <p> Like {@link java.util.Hashtable} but unlike {@link
89 < * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
90 < * used as a key or value.
57 > * <p>Retrieval operations (including {@code get}) generally do not
58 > * block, so may overlap with update operations (including {@code put}
59 > * and {@code remove}). Retrievals reflect the results of the most
60 > * recently <em>completed</em> update operations holding upon their
61 > * onset. (More formally, an update operation for a given key bears a
62 > * <em>happens-before</em> relation with any (non-null) retrieval for
63 > * that key reporting the updated value.)  For aggregate operations
64 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
65 > * reflect insertion or removal of only some entries.  Similarly,
66 > * Iterators and Enumerations return elements reflecting the state of
67 > * the hash table at some point at or since the creation of the
68 > * iterator/enumeration.  They do <em>not</em> throw {@link
69 > * ConcurrentModificationException}.  However, iterators are designed
70 > * to be used by only one thread at a time.  Bear in mind that the
71 > * results of aggregate status methods including {@code size}, {@code
72 > * isEmpty}, and {@code containsValue} are typically useful only when
73 > * a map is not undergoing concurrent updates in other threads.
74 > * Otherwise the results of these methods reflect transient states
75 > * that may be adequate for monitoring or estimation purposes, but not
76 > * for program control.
77 > *
78 > * <p>The table is dynamically expanded when there are too many
79 > * collisions (i.e., keys that have distinct hash codes but fall into
80 > * the same slot modulo the table size), with the expected average
81 > * effect of maintaining roughly two bins per mapping (corresponding
82 > * to a 0.75 load factor threshold for resizing). There may be much
83 > * variance around this average as mappings are added and removed, but
84 > * overall, this maintains a commonly accepted time/space tradeoff for
85 > * hash tables.  However, resizing this or any other kind of hash
86 > * table may be a relatively slow operation. When possible, it is a
87 > * good idea to provide a size estimate as an optional {@code
88 > * initialCapacity} constructor argument. An additional optional
89 > * {@code loadFactor} constructor argument provides a further means of
90 > * customizing initial table capacity by specifying the table density
91 > * to be used in calculating the amount of space to allocate for the
92 > * given number of elements.  Also, for compatibility with previous
93 > * versions of this class, constructors may optionally specify an
94 > * expected {@code concurrencyLevel} as an additional hint for
95 > * internal sizing.  Note that using many keys with exactly the same
96 > * {@code hashCode()} is a sure way to slow down performance of any
97 > * hash table. To ameliorate impact, when keys are {@link Comparable},
98 > * this class may use comparison order among keys to help break ties.
99 > *
100 > * <p>A {@link Set} projection of a ConcurrentHashMap may be created
101 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
102 > * (using {@link #keySet(Object)} when only keys are of interest, and the
103 > * mapped values are (perhaps transiently) not used or all take the
104 > * same mapping value.
105 > *
106 > * <p>A ConcurrentHashMap can be used as scalable frequency map (a
107 > * form of histogram or multiset) by using {@link
108 > * java.util.concurrent.atomic.LongAdder} values and initializing via
109 > * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
110 > * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
111 > * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
112 > *
113 > * <p>This class and its views and iterators implement all of the
114 > * <em>optional</em> methods of the {@link Map} and {@link Iterator}
115 > * interfaces.
116 > *
117 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
118 > * does <em>not</em> allow {@code null} to be used as a key or value.
119 > *
120 > * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
121 > * operations that, unlike most {@link Stream} methods, are designed
122 > * to be safely, and often sensibly, applied even with maps that are
123 > * being concurrently updated by other threads; for example, when
124 > * computing a snapshot summary of the values in a shared registry.
125 > * There are three kinds of operation, each with four forms, accepting
126 > * functions with Keys, Values, Entries, and (Key, Value) arguments
127 > * and/or return values. Because the elements of a ConcurrentHashMap
128 > * are not ordered in any particular way, and may be processed in
129 > * different orders in different parallel executions, the correctness
130 > * of supplied functions should not depend on any ordering, or on any
131 > * other objects or values that may transiently change while
132 > * computation is in progress; and except for forEach actions, should
133 > * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
134 > * objects do not support method {@code setValue}.
135 > *
136 > * <ul>
137 > * <li> forEach: Perform a given action on each element.
138 > * A variant form applies a given transformation on each element
139 > * before performing the action.</li>
140 > *
141 > * <li> search: Return the first available non-null result of
142 > * applying a given function on each element; skipping further
143 > * search when a result is found.</li>
144 > *
145 > * <li> reduce: Accumulate each element.  The supplied reduction
146 > * function cannot rely on ordering (more formally, it should be
147 > * both associative and commutative).  There are five variants:
148 > *
149 > * <ul>
150 > *
151 > * <li> Plain reductions. (There is not a form of this method for
152 > * (key, value) function arguments since there is no corresponding
153 > * return type.)</li>
154 > *
155 > * <li> Mapped reductions that accumulate the results of a given
156 > * function applied to each element.</li>
157 > *
158 > * <li> Reductions to scalar doubles, longs, and ints, using a
159 > * given basis value.</li>
160 > *
161 > * </ul>
162 > * </li>
163 > * </ul>
164 > *
165 > * <p>These bulk operations accept a {@code parallelismThreshold}
166 > * argument. Methods proceed sequentially if the current map size is
167 > * estimated to be less than the given threshold. Using a value of
168 > * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
169 > * of {@code 1} results in maximal parallelism by partitioning into
170 > * enough subtasks to fully utilize the {@link
171 > * ForkJoinPool#commonPool()} that is used for all parallel
172 > * computations. Normally, you would initially choose one of these
173 > * extreme values, and then measure performance of using in-between
174 > * values that trade off overhead versus throughput.
175 > *
176 > * <p>The concurrency properties of bulk operations follow
177 > * from those of ConcurrentHashMap: Any non-null result returned
178 > * from {@code get(key)} and related access methods bears a
179 > * happens-before relation with the associated insertion or
180 > * update.  The result of any bulk operation reflects the
181 > * composition of these per-element relations (but is not
182 > * necessarily atomic with respect to the map as a whole unless it
183 > * is somehow known to be quiescent).  Conversely, because keys
184 > * and values in the map are never null, null serves as a reliable
185 > * atomic indicator of the current lack of any result.  To
186 > * maintain this property, null serves as an implicit basis for
187 > * all non-scalar reduction operations. For the double, long, and
188 > * int versions, the basis should be one that, when combined with
189 > * any other value, returns that other value (more formally, it
190 > * should be the identity element for the reduction). Most common
191 > * reductions have these properties; for example, computing a sum
192 > * with basis 0 or a minimum with basis MAX_VALUE.
193 > *
194 > * <p>Search and transformation functions provided as arguments
195 > * should similarly return null to indicate the lack of any result
196 > * (in which case it is not used). In the case of mapped
197 > * reductions, this also enables transformations to serve as
198 > * filters, returning null (or, in the case of primitive
199 > * specializations, the identity basis) if the element should not
200 > * be combined. You can create compound transformations and
201 > * filterings by composing them yourself under this "null means
202 > * there is nothing there now" rule before using them in search or
203 > * reduce operations.
204 > *
205 > * <p>Methods accepting and/or returning Entry arguments maintain
206 > * key-value associations. They may be useful for example when
207 > * finding the key for the greatest value. Note that "plain" Entry
208 > * arguments can be supplied using {@code new
209 > * AbstractMap.SimpleEntry(k,v)}.
210 > *
211 > * <p>Bulk operations may complete abruptly, throwing an
212 > * exception encountered in the application of a supplied
213 > * function. Bear in mind when handling such exceptions that other
214 > * concurrently executing functions could also have thrown
215 > * exceptions, or would have done so if the first exception had
216 > * not occurred.
217 > *
218 > * <p>Speedups for parallel compared to sequential forms are common
219 > * but not guaranteed.  Parallel operations involving brief functions
220 > * on small maps may execute more slowly than sequential forms if the
221 > * underlying work to parallelize the computation is more expensive
222 > * than the computation itself.  Similarly, parallelization may not
223 > * lead to much actual parallelism if all processors are busy
224 > * performing unrelated tasks.
225 > *
226 > * <p>All arguments to all task methods must be non-null.
227 > *
228 > * <p>This class is a member of the
229 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
230 > * Java Collections Framework</a>.
231   *
232   * @since 1.5
233   * @author Doug Lea
234   * @param <K> the type of keys maintained by this map
235 < * @param <V> the type of mapped values
235 > * @param <V> the type of mapped values
236   */
237 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
238 <        implements ConcurrentMap<K, V>, Cloneable, Serializable {
237 > @SuppressWarnings({"unchecked", "rawtypes", "serial"})
238 > public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239      private static final long serialVersionUID = 7249069246763182397L;
240  
241      /*
242 <     * The basic strategy is to subdivide the table among Segments,
243 <     * each of which itself is a concurrently readable hash table.
242 >     * Overview:
243 >     *
244 >     * The primary design goal of this hash table is to maintain
245 >     * concurrent readability (typically method get(), but also
246 >     * iterators and related methods) while minimizing update
247 >     * contention. Secondary goals are to keep space consumption about
248 >     * the same or better than java.util.HashMap, and to support high
249 >     * initial insertion rates on an empty table by many threads.
250 >     *
251 >     * Each key-value mapping is held in a Node.  Because Node key
252 >     * fields can contain special values, they are defined using plain
253 >     * Object types (not type "K"). This leads to a lot of explicit
254 >     * casting (and the use of class-wide warning suppressions).  It
255 >     * also allows some of the public methods to be factored into a
256 >     * smaller number of internal methods (although sadly not so for
257 >     * the five variants of put-related operations). The
258 >     * validation-based approach explained below leads to a lot of
259 >     * code sprawl because retry-control precludes factoring into
260 >     * smaller methods.
261 >     *
262 >     * The table is lazily initialized to a power-of-two size upon the
263 >     * first insertion.  Each bin in the table normally contains a
264 >     * list of Nodes (most often, the list has only zero or one Node).
265 >     * Table accesses require volatile/atomic reads, writes, and
266 >     * CASes.  Because there is no other way to arrange this without
267 >     * adding further indirections, we use intrinsics
268 >     * (sun.misc.Unsafe) operations.
269 >     *
270 >     * We use the top (sign) bit of Node hash fields for control
271 >     * purposes -- it is available anyway because of addressing
272 >     * constraints.  Nodes with negative hash fields are forwarding
273 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
274 >     * of each normal Node's hash field contain a transformation of
275 >     * the key's hash code.
276 >     *
277 >     * Insertion (via put or its variants) of the first node in an
278 >     * empty bin is performed by just CASing it to the bin.  This is
279 >     * by far the most common case for put operations under most
280 >     * key/hash distributions.  Other update operations (insert,
281 >     * delete, and replace) require locks.  We do not want to waste
282 >     * the space required to associate a distinct lock object with
283 >     * each bin, so instead use the first node of a bin list itself as
284 >     * a lock. Locking support for these locks relies on builtin
285 >     * "synchronized" monitors.
286 >     *
287 >     * Using the first node of a list as a lock does not by itself
288 >     * suffice though: When a node is locked, any update must first
289 >     * validate that it is still the first node after locking it, and
290 >     * retry if not. Because new nodes are always appended to lists,
291 >     * once a node is first in a bin, it remains first until deleted
292 >     * or the bin becomes invalidated (upon resizing).
293 >     *
294 >     * The main disadvantage of per-bin locks is that other update
295 >     * operations on other nodes in a bin list protected by the same
296 >     * lock can stall, for example when user equals() or mapping
297 >     * functions take a long time.  However, statistically, under
298 >     * random hash codes, this is not a common problem.  Ideally, the
299 >     * frequency of nodes in bins follows a Poisson distribution
300 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
301 >     * parameter of about 0.5 on average, given the resizing threshold
302 >     * of 0.75, although with a large variance because of resizing
303 >     * granularity. Ignoring variance, the expected occurrences of
304 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
305 >     * first values are:
306 >     *
307 >     * 0:    0.60653066
308 >     * 1:    0.30326533
309 >     * 2:    0.07581633
310 >     * 3:    0.01263606
311 >     * 4:    0.00157952
312 >     * 5:    0.00015795
313 >     * 6:    0.00001316
314 >     * 7:    0.00000094
315 >     * 8:    0.00000006
316 >     * more: less than 1 in ten million
317 >     *
318 >     * Lock contention probability for two threads accessing distinct
319 >     * elements is roughly 1 / (8 * #elements) under random hashes.
320 >     *
321 >     * Actual hash code distributions encountered in practice
322 >     * sometimes deviate significantly from uniform randomness.  This
323 >     * includes the case when N > (1<<30), so some keys MUST collide.
324 >     * Similarly for dumb or hostile usages in which multiple keys are
325 >     * designed to have identical hash codes. Also, although we guard
326 >     * against the worst effects of this (see method spread), sets of
327 >     * hashes may differ only in bits that do not impact their bin
328 >     * index for a given power-of-two mask.  So we use a secondary
329 >     * strategy that applies when the number of nodes in a bin exceeds
330 >     * a threshold, and at least one of the keys implements
331 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
332 >     * (a specialized form of red-black trees), bounding search time
333 >     * to O(log N).  Each search step in a TreeBin is at least twice as
334 >     * slow as in a regular list, but given that N cannot exceed
335 >     * (1<<64) (before running out of addresses) this bounds search
336 >     * steps, lock hold times, etc, to reasonable constants (roughly
337 >     * 100 nodes inspected per operation worst case) so long as keys
338 >     * are Comparable (which is very common -- String, Long, etc).
339 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
340 >     * traversal pointers as regular nodes, so can be traversed in
341 >     * iterators in the same way.
342 >     *
343 >     * The table is resized when occupancy exceeds a percentage
344 >     * threshold (nominally, 0.75, but see below).  Any thread
345 >     * noticing an overfull bin may assist in resizing after the
346 >     * initiating thread allocates and sets up the replacement
347 >     * array. However, rather than stalling, these other threads may
348 >     * proceed with insertions etc.  The use of TreeBins shields us
349 >     * from the worst case effects of overfilling while resizes are in
350 >     * progress.  Resizing proceeds by transferring bins, one by one,
351 >     * from the table to the next table. To enable concurrency, the
352 >     * next table must be (incrementally) prefilled with place-holders
353 >     * serving as reverse forwarders to the old table.  Because we are
354 >     * using power-of-two expansion, the elements from each bin must
355 >     * either stay at same index, or move with a power of two
356 >     * offset. We eliminate unnecessary node creation by catching
357 >     * cases where old nodes can be reused because their next fields
358 >     * won't change.  On average, only about one-sixth of them need
359 >     * cloning when a table doubles. The nodes they replace will be
360 >     * garbage collectable as soon as they are no longer referenced by
361 >     * any reader thread that may be in the midst of concurrently
362 >     * traversing table.  Upon transfer, the old table bin contains
363 >     * only a special forwarding node (with hash field "MOVED") that
364 >     * contains the next table as its key. On encountering a
365 >     * forwarding node, access and update operations restart, using
366 >     * the new table.
367 >     *
368 >     * Each bin transfer requires its bin lock, which can stall
369 >     * waiting for locks while resizing. However, because other
370 >     * threads can join in and help resize rather than contend for
371 >     * locks, average aggregate waits become shorter as resizing
372 >     * progresses.  The transfer operation must also ensure that all
373 >     * accessible bins in both the old and new table are usable by any
374 >     * traversal.  This is arranged by proceeding from the last bin
375 >     * (table.length - 1) up towards the first.  Upon seeing a
376 >     * forwarding node, traversals (see class Traverser) arrange to
377 >     * move to the new table without revisiting nodes.  However, to
378 >     * ensure that no intervening nodes are skipped, bin splitting can
379 >     * only begin after the associated reverse-forwarders are in
380 >     * place.
381 >     *
382 >     * The traversal scheme also applies to partial traversals of
383 >     * ranges of bins (via an alternate Traverser constructor)
384 >     * to support partitioned aggregate operations.  Also, read-only
385 >     * operations give up if ever forwarded to a null table, which
386 >     * provides support for shutdown-style clearing, which is also not
387 >     * currently implemented.
388 >     *
389 >     * Lazy table initialization minimizes footprint until first use,
390 >     * and also avoids resizings when the first operation is from a
391 >     * putAll, constructor with map argument, or deserialization.
392 >     * These cases attempt to override the initial capacity settings,
393 >     * but harmlessly fail to take effect in cases of races.
394 >     *
395 >     * The element count is maintained using a specialization of
396 >     * LongAdder. We need to incorporate a specialization rather than
397 >     * just use a LongAdder in order to access implicit
398 >     * contention-sensing that leads to creation of multiple
399 >     * Cells.  The counter mechanics avoid contention on
400 >     * updates but can encounter cache thrashing if read too
401 >     * frequently during concurrent access. To avoid reading so often,
402 >     * resizing under contention is attempted only upon adding to a
403 >     * bin already holding two or more nodes. Under uniform hash
404 >     * distributions, the probability of this occurring at threshold
405 >     * is around 13%, meaning that only about 1 in 8 puts check
406 >     * threshold (and after resizing, many fewer do so). The bulk
407 >     * putAll operation further reduces contention by only committing
408 >     * count updates upon these size checks.
409 >     *
410 >     * Maintaining API and serialization compatibility with previous
411 >     * versions of this class introduces several oddities. Mainly: We
412 >     * leave untouched but unused constructor arguments refering to
413 >     * concurrencyLevel. We accept a loadFactor constructor argument,
414 >     * but apply it only to initial table capacity (which is the only
415 >     * time that we can guarantee to honor it.) We also declare an
416 >     * unused "Segment" class that is instantiated in minimal form
417 >     * only when serializing.
418       */
419  
420      /* ---------------- Constants -------------- */
421  
422      /**
423 <     * The default initial number of table slots for this table.
424 <     * Used when not otherwise specified in constructor.
423 >     * The largest possible table capacity.  This value must be
424 >     * exactly 1<<30 to stay within Java array allocation and indexing
425 >     * bounds for power of two table sizes, and is further required
426 >     * because the top two bits of 32bit hash fields are used for
427 >     * control purposes.
428       */
429 <    private static int DEFAULT_INITIAL_CAPACITY = 16;
429 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
430  
431      /**
432 <     * The maximum capacity, used if a higher value is implicitly
433 <     * specified by either of the constructors with arguments.  MUST
87 <     * be a power of two <= 1<<30 to ensure that entries are indexible
88 <     * using ints.
432 >     * The default initial table capacity.  Must be a power of 2
433 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
434       */
435 <    static final int MAXIMUM_CAPACITY = 1 << 30;
435 >    private static final int DEFAULT_CAPACITY = 16;
436  
437      /**
438 <     * The default load factor for this table.  Used when not
439 <     * otherwise specified in constructor.
438 >     * The largest possible (non-power of two) array size.
439 >     * Needed by toArray and related methods.
440       */
441 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
441 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
442  
443      /**
444 <     * The default number of concurrency control segments.
445 <     **/
446 <    private static final int DEFAULT_SEGMENTS = 16;
444 >     * The default concurrency level for this table. Unused but
445 >     * defined for compatibility with previous versions of this class.
446 >     */
447 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
448  
449      /**
450 <     * The maximum number of segments to allow; used to bound ctor arguments.
450 >     * The load factor for this table. Overrides of this value in
451 >     * constructors affect only the initial table capacity.  The
452 >     * actual floating point value isn't normally used -- it is
453 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
454 >     * the associated resizing threshold.
455       */
456 <    private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
456 >    private static final float LOAD_FACTOR = 0.75f;
457 >
458 >    /**
459 >     * The bin count threshold for using a tree rather than list for a
460 >     * bin.  The value reflects the approximate break-even point for
461 >     * using tree-based operations.
462 >     */
463 >    private static final int TREE_THRESHOLD = 8;
464 >
465 >    /**
466 >     * Minimum number of rebinnings per transfer step. Ranges are
467 >     * subdivided to allow multiple resizer threads.  This value
468 >     * serves as a lower bound to avoid resizers encountering
469 >     * excessive memory contention.  The value should be at least
470 >     * DEFAULT_CAPACITY.
471 >     */
472 >    private static final int MIN_TRANSFER_STRIDE = 16;
473 >
474 >    /*
475 >     * Encodings for Node hash fields. See above for explanation.
476 >     */
477 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
478 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
479 >
480 >    /** Number of CPUS, to place bounds on some sizings */
481 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
482 >
483 >    /** For serialization compatibility. */
484 >    private static final ObjectStreamField[] serialPersistentFields = {
485 >        new ObjectStreamField("segments", Segment[].class),
486 >        new ObjectStreamField("segmentMask", Integer.TYPE),
487 >        new ObjectStreamField("segmentShift", Integer.TYPE)
488 >    };
489 >
490 >    /**
491 >     * A padded cell for distributing counts.  Adapted from LongAdder
492 >     * and Striped64.  See their internal docs for explanation.
493 >     */
494 >    @sun.misc.Contended static final class Cell {
495 >        volatile long value;
496 >        Cell(long x) { value = x; }
497 >    }
498  
499      /* ---------------- Fields -------------- */
500  
501      /**
502 <     * Mask value for indexing into segments. The upper bits of a
503 <     * key's hash code are used to choose the segment.
504 <     **/
505 <    private final int segmentMask;
502 >     * The array of bins. Lazily initialized upon first insertion.
503 >     * Size is always a power of two. Accessed directly by iterators.
504 >     */
505 >    transient volatile Node<K,V>[] table;
506 >
507 >    /**
508 >     * The next table to use; non-null only while resizing.
509 >     */
510 >    private transient volatile Node<K,V>[] nextTable;
511  
512      /**
513 <     * Shift value for indexing within segments.
514 <     **/
515 <    private final int segmentShift;
513 >     * Base counter value, used mainly when there is no contention,
514 >     * but also as a fallback during table initialization
515 >     * races. Updated via CAS.
516 >     */
517 >    private transient volatile long baseCount;
518  
519      /**
520 <     * The segments, each of which is a specialized hash table
520 >     * Table initialization and resizing control.  When negative, the
521 >     * table is being initialized or resized: -1 for initialization,
522 >     * else -(1 + the number of active resizing threads).  Otherwise,
523 >     * when table is null, holds the initial table size to use upon
524 >     * creation, or 0 for default. After initialization, holds the
525 >     * next element count value upon which to resize the table.
526       */
527 <    private final Segment[] segments;
527 >    private transient volatile int sizeCtl;
528  
529 <    private transient Set<K> keySet;
530 <    private transient Set<Map.Entry<K,V>> entrySet;
531 <    private transient Collection<V> values;
529 >    /**
530 >     * The next table index (plus one) to split while resizing.
531 >     */
532 >    private transient volatile int transferIndex;
533  
534 <    /* ---------------- Small Utilities -------------- */
534 >    /**
535 >     * The least available table index to split while resizing.
536 >     */
537 >    private transient volatile int transferOrigin;
538  
539      /**
540 <     * Return a hash code for non-null Object x.
134 <     * Uses the same hash code spreader as most other j.u hash tables.
135 <     * @param x the object serving as a key
136 <     * @return the hash code
540 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
541       */
542 <    private static int hash(Object x) {
139 <        int h = x.hashCode();
140 <        h += ~(h << 9);
141 <        h ^=  (h >>> 14);
142 <        h +=  (h << 4);
143 <        h ^=  (h >>> 10);
144 <        return h;
145 <    }
542 >    private transient volatile int cellsBusy;
543  
544      /**
545 <     * Return the segment that should be used for key with given hash
545 >     * Table of counter cells. When non-null, size is a power of 2.
546       */
547 <    private Segment<K,V> segmentFor(int hash) {
548 <        return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
547 >    private transient volatile Cell[] counterCells;
548 >
549 >    // views
550 >    private transient KeySetView<K,V> keySet;
551 >    private transient ValuesView<K,V> values;
552 >    private transient EntrySetView<K,V> entrySet;
553 >
554 >    /* ---------------- Table element access -------------- */
555 >
556 >    /*
557 >     * Volatile access methods are used for table elements as well as
558 >     * elements of in-progress next table while resizing.  Uses are
559 >     * null checked by callers, and implicitly bounds-checked, relying
560 >     * on the invariants that tab arrays have non-zero size, and all
561 >     * indices are masked with (tab.length - 1) which is never
562 >     * negative and always less than length. Note that, to be correct
563 >     * wrt arbitrary concurrency errors by users, bounds checks must
564 >     * operate on local variables, which accounts for some odd-looking
565 >     * inline assignments below.
566 >     */
567 >
568 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
569 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
570      }
571  
572 <    /* ---------------- Inner Classes -------------- */
572 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
573 >                                        Node<K,V> c, Node<K,V> v) {
574 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
575 >    }
576 >
577 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
578 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
579 >    }
580 >
581 >    /* ---------------- Nodes -------------- */
582  
583      /**
584 <     * Segments are specialized versions of hash tables.  This
585 <     * subclasses from ReentrantLock opportunistically, just to
586 <     * simplify some locking and avoid separate construction.
587 <     **/
588 <    private static final class Segment<K,V> extends ReentrantLock implements Serializable {
589 <        /*
590 <         * Segments maintain a table of entry lists that are ALWAYS
591 <         * kept in a consistent state, so can be read without locking.
592 <         * Next fields of nodes are immutable (final).  All list
593 <         * additions are performed at the front of each bin. This
594 <         * makes it easy to check changes, and also fast to traverse.
595 <         * When nodes would otherwise be changed, new nodes are
596 <         * created to replace them. This works well for hash tables
597 <         * since the bin lists tend to be short. (The average length
598 <         * is less than two for the default load factor threshold.)
599 <         *
600 <         * Read operations can thus proceed without locking, but rely
601 <         * on a memory barrier to ensure that completed write
602 <         * operations performed by other threads are
603 <         * noticed. Conveniently, the "count" field, tracking the
604 <         * number of elements, can also serve as the volatile variable
605 <         * providing proper read/write barriers. This is convenient
606 <         * because this field needs to be read in many read operations
607 <         * anyway.
608 <         *
609 <         * Implementors note. The basic rules for all this are:
610 <         *
611 <         *   - All unsynchronized read operations must first read the
612 <         *     "count" field, and should not look at table entries if
613 <         *     it is 0.
614 <         *
615 <         *   - All synchronized write operations should write to
616 <         *     the "count" field after updating. The operations must not
617 <         *     take any action that could even momentarily cause
618 <         *     a concurrent read operation to see inconsistent
619 <         *     data. This is made easier by the nature of the read
620 <         *     operations in Map. For example, no operation
621 <         *     can reveal that the table has grown but the threshold
622 <         *     has not yet been updated, so there are no atomicity
623 <         *     requirements for this with respect to reads.
624 <         *
625 <         * As a guide, all critical volatile reads and writes are marked
626 <         * in code comments.
584 >     * Key-value entry.  This class is never exported out as a
585 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
586 >     * MapEntry below), but can be used for read-only traversals used
587 >     * in bulk tasks.  Nodes with a hash field of MOVED are special,
588 >     * and do not contain user keys or values (and are never
589 >     * exported).  Otherwise, keys and vals are never null.
590 >     */
591 >    static class Node<K,V> implements Map.Entry<K,V> {
592 >        final int hash;
593 >        final Object key;
594 >        volatile V val;
595 >        Node<K,V> next;
596 >
597 >        Node(int hash, Object key, V val, Node<K,V> next) {
598 >            this.hash = hash;
599 >            this.key = key;
600 >            this.val = val;
601 >            this.next = next;
602 >        }
603 >
604 >        public final K getKey()       { return (K)key; }
605 >        public final V getValue()     { return val; }
606 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
607 >        public final String toString(){ return key + "=" + val; }
608 >        public final V setValue(V value) {
609 >            throw new UnsupportedOperationException();
610 >        }
611 >
612 >        public final boolean equals(Object o) {
613 >            Object k, v, u; Map.Entry<?,?> e;
614 >            return ((o instanceof Map.Entry) &&
615 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
616 >                    (v = e.getValue()) != null &&
617 >                    (k == key || k.equals(key)) &&
618 >                    (v == (u = val) || v.equals(u)));
619 >        }
620 >    }
621 >
622 >    /**
623 >     * Exported Entry for EntryIterator
624 >     */
625 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
626 >        final K key; // non-null
627 >        V val;       // non-null
628 >        final ConcurrentHashMap<K,V> map;
629 >        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
630 >            this.key = key;
631 >            this.val = val;
632 >            this.map = map;
633 >        }
634 >        public K getKey()        { return key; }
635 >        public V getValue()      { return val; }
636 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
637 >        public String toString() { return key + "=" + val; }
638 >
639 >        public boolean equals(Object o) {
640 >            Object k, v; Map.Entry<?,?> e;
641 >            return ((o instanceof Map.Entry) &&
642 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
643 >                    (v = e.getValue()) != null &&
644 >                    (k == key || k.equals(key)) &&
645 >                    (v == val || v.equals(val)));
646 >        }
647 >
648 >        /**
649 >         * Sets our entry's value and writes through to the map. The
650 >         * value to return is somewhat arbitrary here. Since we do not
651 >         * necessarily track asynchronous changes, the most recent
652 >         * "previous" value could be different from what we return (or
653 >         * could even have been removed, in which case the put will
654 >         * re-establish). We do not and cannot guarantee more.
655           */
656 +        public V setValue(V value) {
657 +            if (value == null) throw new NullPointerException();
658 +            V v = val;
659 +            val = value;
660 +            map.put(key, value);
661 +            return v;
662 +        }
663 +    }
664 +
665 +
666 +    /* ---------------- TreeBins -------------- */
667 +
668 +    /**
669 +     * Nodes for use in TreeBins
670 +     */
671 +    static final class TreeNode<K,V> extends Node<K,V> {
672 +        TreeNode<K,V> parent;  // red-black tree links
673 +        TreeNode<K,V> left;
674 +        TreeNode<K,V> right;
675 +        TreeNode<K,V> prev;    // needed to unlink next upon deletion
676 +        boolean red;
677 +
678 +        TreeNode(int hash, Object key, V val, Node<K,V> next,
679 +                 TreeNode<K,V> parent) {
680 +            super(hash, key, val, next);
681 +            this.parent = parent;
682 +        }
683 +    }
684 +
685 +    /**
686 +     * Returns a Class for the given type of the form "class C
687 +     * implements Comparable<C>", if one exists, else null.  See below
688 +     * for explanation.
689 +     */
690 +    static Class<?> comparableClassFor(Class<?> c) {
691 +        Class<?> s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
692 +        if (c == String.class) // bypass checks
693 +            return c;
694 +        if (c != null && (cmpc = Comparable.class).isAssignableFrom(c)) {
695 +            while (cmpc.isAssignableFrom(s = c.getSuperclass()))
696 +                c = s; // find topmost comparable class
697 +            if ((ts = c.getGenericInterfaces()) != null) {
698 +                for (int i = 0; i < ts.length; ++i) {
699 +                    if (((t = ts[i]) instanceof ParameterizedType) &&
700 +                        ((p = (ParameterizedType)t).getRawType() == cmpc) &&
701 +                        (as = p.getActualTypeArguments()) != null &&
702 +                        as.length == 1 && as[0] == c) // type arg is c
703 +                        return c;
704 +                }
705 +            }
706 +        }
707 +        return null;
708 +    }
709  
710 +    /**
711 +     * A specialized form of red-black tree for use in bins
712 +     * whose size exceeds a threshold.
713 +     *
714 +     * TreeBins use a special form of comparison for search and
715 +     * related operations (which is the main reason we cannot use
716 +     * existing collections such as TreeMaps). TreeBins contain
717 +     * Comparable elements, but may contain others, as well as
718 +     * elements that are Comparable but not necessarily Comparable
719 +     * for the same T, so we cannot invoke compareTo among them. To
720 +     * handle this, the tree is ordered primarily by hash value, then
721 +     * by Comparable.compareTo order if applicable.  On lookup at a
722 +     * node, if elements are not comparable or compare as 0 then both
723 +     * left and right children may need to be searched in the case of
724 +     * tied hash values. (This corresponds to the full list search
725 +     * that would be necessary if all elements were non-Comparable and
726 +     * had tied hashes.)  The red-black balancing code is updated from
727 +     * pre-jdk-collections
728 +     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
729 +     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
730 +     * Algorithms" (CLR).
731 +     *
732 +     * TreeBins also maintain a separate locking discipline than
733 +     * regular bins. Because they are forwarded via special MOVED
734 +     * nodes at bin heads (which can never change once established),
735 +     * we cannot use those nodes as locks. Instead, TreeBin extends
736 +     * StampedLock to support a form of read-write lock. For update
737 +     * operations and table validation, the exclusive form of lock
738 +     * behaves in the same way as bin-head locks. However, lookups use
739 +     * shared read-lock mechanics to allow multiple readers in the
740 +     * absence of writers.  Additionally, these lookups do not ever
741 +     * block: While the lock is not available, they proceed along the
742 +     * slow traversal path (via next-pointers) until the lock becomes
743 +     * available or the list is exhausted, whichever comes
744 +     * first. These cases are not fast, but maximize aggregate
745 +     * expected throughput.
746 +     */
747 +    static final class TreeBin<K,V> extends StampedLock {
748          private static final long serialVersionUID = 2249069246763182397L;
749 +        transient TreeNode<K,V> root;  // root of tree
750 +        transient TreeNode<K,V> first; // head of next-pointer list
751  
752 <        /**
753 <         * The number of elements in this segment's region.
754 <         **/
755 <        transient volatile int count;
752 >        /** From CLR */
753 >        private void rotateLeft(TreeNode<K,V> p) {
754 >            if (p != null) {
755 >                TreeNode<K,V> r = p.right, pp, rl;
756 >                if ((rl = p.right = r.left) != null)
757 >                    rl.parent = p;
758 >                if ((pp = r.parent = p.parent) == null)
759 >                    root = r;
760 >                else if (pp.left == p)
761 >                    pp.left = r;
762 >                else
763 >                    pp.right = r;
764 >                r.left = p;
765 >                p.parent = r;
766 >            }
767 >        }
768 >
769 >        /** From CLR */
770 >        private void rotateRight(TreeNode<K,V> p) {
771 >            if (p != null) {
772 >                TreeNode<K,V> l = p.left, pp, lr;
773 >                if ((lr = p.left = l.right) != null)
774 >                    lr.parent = p;
775 >                if ((pp = l.parent = p.parent) == null)
776 >                    root = l;
777 >                else if (pp.right == p)
778 >                    pp.right = l;
779 >                else
780 >                    pp.left = l;
781 >                l.right = p;
782 >                p.parent = l;
783 >            }
784 >        }
785  
786          /**
787 <         * Number of updates; used for checking lack of modifications
788 <         * in bulk-read methods.
787 >         * Returns the TreeNode (or null if not found) for the given key
788 >         * starting at given root.
789           */
790 <        transient int modCount;
790 >        final TreeNode<K,V> getTreeNode(int h, Object k, TreeNode<K,V> p,
791 >                                        Class<?> cc) {
792 >            while (p != null) {
793 >                int dir, ph; Object pk; Class<?> pc;
794 >                if ((ph = p.hash) != h)
795 >                    dir = (h < ph) ? -1 : 1;
796 >                else if ((pk = p.key) == k || k.equals(pk))
797 >                    return p;
798 >                else if (cc == null || pk == null ||
799 >                         ((pc = pk.getClass()) != cc &&
800 >                          comparableClassFor(pc) != cc) ||
801 >                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
802 >                    TreeNode<K,V> r, pr; // check both sides
803 >                    if ((pr = p.right) != null &&
804 >                        (r = getTreeNode(h, k, pr, cc)) != null)
805 >                        return r;
806 >                    else // continue left
807 >                        dir = -1;
808 >                }
809 >                p = (dir > 0) ? p.right : p.left;
810 >            }
811 >            return null;
812 >        }
813  
814          /**
815 <         * The table is rehashed when its size exceeds this threshold.
816 <         * (The value of this field is always (int)(capacity *
817 <         * loadFactor).)
815 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
816 >         * read-lock to call getTreeNode, but during failure to get
817 >         * lock, searches along next links.
818           */
819 <        private transient int threshold;
819 >        final V getValue(int h, Object k) {
820 >            Class<?> cc = comparableClassFor(k.getClass());
821 >            Node<K,V> r = null;
822 >            for (Node<K,V> e = first; e != null; e = e.next) {
823 >                long s;
824 >                if ((s = tryReadLock()) != 0L) {
825 >                    try {
826 >                        r = getTreeNode(h, k, root, cc);
827 >                    } finally {
828 >                        unlockRead(s);
829 >                    }
830 >                    break;
831 >                }
832 >                else if (e.hash == h && k.equals(e.key)) {
833 >                    r = e;
834 >                    break;
835 >                }
836 >            }
837 >            return r == null ? null : r.val;
838 >        }
839  
840          /**
841 <         * The per-segment table
841 >         * Finds or adds a node.
842 >         * @return null if added
843           */
844 <        transient HashEntry[] table;
844 >        final TreeNode<K,V> putTreeNode(int h, Object k, V v) {
845 >            Class<?> cc = comparableClassFor(k.getClass());
846 >            TreeNode<K,V> pp = root, p = null;
847 >            int dir = 0;
848 >            while (pp != null) { // find existing node or leaf to insert at
849 >                int ph; Object pk; Class<?> pc;
850 >                p = pp;
851 >                if ((ph = p.hash) != h)
852 >                    dir = (h < ph) ? -1 : 1;
853 >                else if ((pk = p.key) == k || k.equals(pk))
854 >                    return p;
855 >                else if (cc == null || pk == null ||
856 >                         ((pc = pk.getClass()) != cc &&
857 >                          comparableClassFor(pc) != cc) ||
858 >                         (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
859 >                    TreeNode<K,V> r, pr;
860 >                    if ((pr = p.right) != null &&
861 >                        (r = getTreeNode(h, k, pr, cc)) != null)
862 >                        return r;
863 >                    else // continue left
864 >                        dir = -1;
865 >                }
866 >                pp = (dir > 0) ? p.right : p.left;
867 >            }
868 >
869 >            TreeNode<K,V> f = first;
870 >            TreeNode<K,V> x = first = new TreeNode<K,V>(h, k, v, f, p);
871 >            if (p == null)
872 >                root = x;
873 >            else { // attach and rebalance; adapted from CLR
874 >                if (f != null)
875 >                    f.prev = x;
876 >                if (dir <= 0)
877 >                    p.left = x;
878 >                else
879 >                    p.right = x;
880 >                x.red = true;
881 >                for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
882 >                    if ((xp = x.parent) == null) {
883 >                        (root = x).red = false;
884 >                        break;
885 >                    }
886 >                    else if (!xp.red || (xpp = xp.parent) == null) {
887 >                        TreeNode<K,V> r = root;
888 >                        if (r != null && r.red)
889 >                            r.red = false;
890 >                        break;
891 >                    }
892 >                    else if ((xppl = xpp.left) == xp) {
893 >                        if ((xppr = xpp.right) != null && xppr.red) {
894 >                            xppr.red = false;
895 >                            xp.red = false;
896 >                            xpp.red = true;
897 >                            x = xpp;
898 >                        }
899 >                        else {
900 >                            if (x == xp.right) {
901 >                                rotateLeft(x = xp);
902 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
903 >                            }
904 >                            if (xp != null) {
905 >                                xp.red = false;
906 >                                if (xpp != null) {
907 >                                    xpp.red = true;
908 >                                    rotateRight(xpp);
909 >                                }
910 >                            }
911 >                        }
912 >                    }
913 >                    else {
914 >                        if (xppl != null && xppl.red) {
915 >                            xppl.red = false;
916 >                            xp.red = false;
917 >                            xpp.red = true;
918 >                            x = xpp;
919 >                        }
920 >                        else {
921 >                            if (x == xp.left) {
922 >                                rotateRight(x = xp);
923 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
924 >                            }
925 >                            if (xp != null) {
926 >                                xp.red = false;
927 >                                if (xpp != null) {
928 >                                    xpp.red = true;
929 >                                    rotateLeft(xpp);
930 >                                }
931 >                            }
932 >                        }
933 >                    }
934 >                }
935 >            }
936 >            assert checkInvariants();
937 >            return null;
938 >        }
939  
940          /**
941 <         * The load factor for the hash table.  Even though this value
942 <         * is same for all segments, it is replicated to avoid needing
943 <         * links to outer object.
944 <         * @serial
941 >         * Removes the given node, that must be present before this
942 >         * call.  This is messier than typical red-black deletion code
943 >         * because we cannot swap the contents of an interior node
944 >         * with a leaf successor that is pinned by "next" pointers
945 >         * that are accessible independently of lock. So instead we
946 >         * swap the tree linkages.
947           */
948 <        private final float loadFactor;
948 >        final void deleteTreeNode(TreeNode<K,V> p) {
949 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
950 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
951 >            if (pred == null)
952 >                first = next;
953 >            else
954 >                pred.next = next;
955 >            if (next != null)
956 >                next.prev = pred;
957 >            else if (pred == null) {
958 >                root = null;
959 >                return;
960 >            }
961 >            TreeNode<K,V> replacement;
962 >            TreeNode<K,V> pl = p.left;
963 >            TreeNode<K,V> pr = p.right;
964 >            if (pl != null && pr != null) {
965 >                TreeNode<K,V> s = pr, sl;
966 >                while ((sl = s.left) != null) // find successor
967 >                    s = sl;
968 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
969 >                TreeNode<K,V> sr = s.right;
970 >                TreeNode<K,V> pp = p.parent;
971 >                if (s == pr) { // p was s's direct parent
972 >                    p.parent = s;
973 >                    s.right = p;
974 >                }
975 >                else {
976 >                    TreeNode<K,V> sp = s.parent;
977 >                    if ((p.parent = sp) != null) {
978 >                        if (s == sp.left)
979 >                            sp.left = p;
980 >                        else
981 >                            sp.right = p;
982 >                    }
983 >                    if ((s.right = pr) != null)
984 >                        pr.parent = s;
985 >                }
986 >                p.left = null;
987 >                if ((p.right = sr) != null)
988 >                    sr.parent = p;
989 >                if ((s.left = pl) != null)
990 >                    pl.parent = s;
991 >                if ((s.parent = pp) == null)
992 >                    root = s;
993 >                else if (p == pp.left)
994 >                    pp.left = s;
995 >                else
996 >                    pp.right = s;
997 >                if (sr != null)
998 >                    replacement = sr;
999 >                else
1000 >                    replacement = p;
1001 >            }
1002 >            else if (pl != null)
1003 >                replacement = pl;
1004 >            else if (pr != null)
1005 >                replacement = pr;
1006 >            else
1007 >                replacement = p;
1008 >            if (replacement != p) {
1009 >                TreeNode<K,V> pp = replacement.parent = p.parent;
1010 >                if (pp == null)
1011 >                    root = replacement;
1012 >                else if (p == pp.left)
1013 >                    pp.left = replacement;
1014 >                else
1015 >                    pp.right = replacement;
1016 >                p.left = p.right = p.parent = null;
1017 >            }
1018 >            if (!p.red) { // rebalance, from CLR
1019 >                for (TreeNode<K,V> x = replacement; x != null; ) {
1020 >                    TreeNode<K,V> xp, xpl, xpr;
1021 >                    if (x.red || (xp = x.parent) == null) {
1022 >                        x.red = false;
1023 >                        break;
1024 >                    }
1025 >                    else if ((xpl = xp.left) == x) {
1026 >                        if ((xpr = xp.right) != null && xpr.red) {
1027 >                            xpr.red = false;
1028 >                            xp.red = true;
1029 >                            rotateLeft(xp);
1030 >                            xpr = (xp = x.parent) == null ? null : xp.right;
1031 >                        }
1032 >                        if (xpr == null)
1033 >                            x = xp;
1034 >                        else {
1035 >                            TreeNode<K,V> sl = xpr.left, sr = xpr.right;
1036 >                            if ((sr == null || !sr.red) &&
1037 >                                (sl == null || !sl.red)) {
1038 >                                xpr.red = true;
1039 >                                x = xp;
1040 >                            }
1041 >                            else {
1042 >                                if (sr == null || !sr.red) {
1043 >                                    if (sl != null)
1044 >                                        sl.red = false;
1045 >                                    xpr.red = true;
1046 >                                    rotateRight(xpr);
1047 >                                    xpr = (xp = x.parent) == null ?
1048 >                                        null : xp.right;
1049 >                                }
1050 >                                if (xpr != null) {
1051 >                                    xpr.red = (xp == null) ? false : xp.red;
1052 >                                    if ((sr = xpr.right) != null)
1053 >                                        sr.red = false;
1054 >                                }
1055 >                                if (xp != null) {
1056 >                                    xp.red = false;
1057 >                                    rotateLeft(xp);
1058 >                                }
1059 >                                x = root;
1060 >                            }
1061 >                        }
1062 >                    }
1063 >                    else { // symmetric
1064 >                        if (xpl != null && xpl.red) {
1065 >                            xpl.red = false;
1066 >                            xp.red = true;
1067 >                            rotateRight(xp);
1068 >                            xpl = (xp = x.parent) == null ? null : xp.left;
1069 >                        }
1070 >                        if (xpl == null)
1071 >                            x = xp;
1072 >                        else {
1073 >                            TreeNode<K,V> sl = xpl.left, sr = xpl.right;
1074 >                            if ((sl == null || !sl.red) &&
1075 >                                (sr == null || !sr.red)) {
1076 >                                xpl.red = true;
1077 >                                x = xp;
1078 >                            }
1079 >                            else {
1080 >                                if (sl == null || !sl.red) {
1081 >                                    if (sr != null)
1082 >                                        sr.red = false;
1083 >                                    xpl.red = true;
1084 >                                    rotateLeft(xpl);
1085 >                                    xpl = (xp = x.parent) == null ?
1086 >                                        null : xp.left;
1087 >                                }
1088 >                                if (xpl != null) {
1089 >                                    xpl.red = (xp == null) ? false : xp.red;
1090 >                                    if ((sl = xpl.left) != null)
1091 >                                        sl.red = false;
1092 >                                }
1093 >                                if (xp != null) {
1094 >                                    xp.red = false;
1095 >                                    rotateRight(xp);
1096 >                                }
1097 >                                x = root;
1098 >                            }
1099 >                        }
1100 >                    }
1101 >                }
1102 >            }
1103 >            if (p == replacement) {  // detach pointers
1104 >                TreeNode<K,V> pp;
1105 >                if ((pp = p.parent) != null) {
1106 >                    if (p == pp.left)
1107 >                        pp.left = null;
1108 >                    else if (p == pp.right)
1109 >                        pp.right = null;
1110 >                    p.parent = null;
1111 >                }
1112 >            }
1113 >            assert checkInvariants();
1114 >        }
1115  
1116 <        Segment(int initialCapacity, float lf) {
1117 <            loadFactor = lf;
1118 <            setTable(new HashEntry[initialCapacity]);
1116 >        /**
1117 >         * Checks linkage and balance invariants at root
1118 >         */
1119 >        final boolean checkInvariants() {
1120 >            TreeNode<K,V> r = root;
1121 >            if (r == null)
1122 >                return (first == null);
1123 >            else
1124 >                return (first != null) && checkTreeNode(r);
1125          }
1126  
1127          /**
1128 <         * Set table to new HashEntry array.
1129 <         * Call only while holding lock or in constructor.
1130 <         **/
1131 <        private void setTable(HashEntry[] newTable) {
1132 <            table = newTable;
1133 <            threshold = (int)(newTable.length * loadFactor);
1134 <            count = count; // write-volatile
1135 <        }
1136 <
1137 <        /* Specialized implementations of map methods */
1138 <
1139 <        V get(Object key, int hash) {
1140 <            if (count != 0) { // read-volatile
1141 <                HashEntry[] tab = table;
1142 <                int index = hash & (tab.length - 1);
1143 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
1144 <                while (e != null) {
1145 <                    if (e.hash == hash && key.equals(e.key))
1146 <                        return e.value;
1147 <                    e = e.next;
1128 >         * Recursive invariant check
1129 >         */
1130 >        final boolean checkTreeNode(TreeNode<K,V> t) {
1131 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
1132 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
1133 >            if (tb != null && tb.next != t)
1134 >                return false;
1135 >            if (tn != null && tn.prev != t)
1136 >                return false;
1137 >            if (tp != null && t != tp.left && t != tp.right)
1138 >                return false;
1139 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
1140 >                return false;
1141 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
1142 >                return false;
1143 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
1144 >                return false;
1145 >            if (tl != null && !checkTreeNode(tl))
1146 >                return false;
1147 >            if (tr != null && !checkTreeNode(tr))
1148 >                return false;
1149 >            return true;
1150 >        }
1151 >    }
1152 >
1153 >    /* ---------------- Collision reduction methods -------------- */
1154 >
1155 >    /**
1156 >     * Spreads higher bits to lower, and also forces top bit to 0.
1157 >     * Because the table uses power-of-two masking, sets of hashes
1158 >     * that vary only in bits above the current mask will always
1159 >     * collide. (Among known examples are sets of Float keys holding
1160 >     * consecutive whole numbers in small tables.)  To counter this,
1161 >     * we apply a transform that spreads the impact of higher bits
1162 >     * downward. There is a tradeoff between speed, utility, and
1163 >     * quality of bit-spreading. Because many common sets of hashes
1164 >     * are already reasonably distributed across bits (so don't benefit
1165 >     * from spreading), and because we use trees to handle large sets
1166 >     * of collisions in bins, we don't need excessively high quality.
1167 >     */
1168 >    private static final int spread(int h) {
1169 >        h ^= (h >>> 18) ^ (h >>> 12);
1170 >        return (h ^ (h >>> 10)) & HASH_BITS;
1171 >    }
1172 >
1173 >    /**
1174 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1175 >     * only when locked.
1176 >     */
1177 >    private final void replaceWithTreeBin(Node<K,V>[] tab, int index, Object key) {
1178 >        if (tab != null && comparableClassFor(key.getClass()) != null) {
1179 >            TreeBin<K,V> t = new TreeBin<K,V>();
1180 >            for (Node<K,V> e = tabAt(tab, index); e != null; e = e.next)
1181 >                t.putTreeNode(e.hash, e.key, e.val);
1182 >            setTabAt(tab, index, new Node<K,V>(MOVED, t, null, null));
1183 >        }
1184 >    }
1185 >
1186 >    /* ---------------- Internal access and update methods -------------- */
1187 >
1188 >    /** Implementation for get and containsKey */
1189 >    private final V internalGet(Object k) {
1190 >        int h = spread(k.hashCode());
1191 >        V v = null;
1192 >        Node<K,V>[] tab; Node<K,V> e;
1193 >        if ((tab = table) != null &&
1194 >            (e = tabAt(tab, (tab.length - 1) & h)) != null) {
1195 >            for (;;) {
1196 >                int eh; Object ek;
1197 >                if ((eh = e.hash) < 0) {
1198 >                    if ((ek = e.key) instanceof TreeBin) { // search TreeBin
1199 >                        v = ((TreeBin<K,V>)ek).getValue(h, k);
1200 >                        break;
1201 >                    }
1202 >                    else if (!(ek instanceof Node[]) ||    // try new table
1203 >                             (e = tabAt(tab = (Node<K,V>[])ek,
1204 >                                        (tab.length - 1) & h)) == null)
1205 >                        break;
1206 >                }
1207 >                else if (eh == h && ((ek = e.key) == k || k.equals(ek))) {
1208 >                    v = e.val;
1209 >                    break;
1210                  }
1211 +                else if ((e = e.next) == null)
1212 +                    break;
1213              }
263            return null;
1214          }
1215 +        return v;
1216 +    }
1217  
1218 <        boolean containsKey(Object key, int hash) {
1219 <            if (count != 0) { // read-volatile
1220 <                HashEntry[] tab = table;
1221 <                int index = hash & (tab.length - 1);
1222 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
1223 <                while (e != null) {
1224 <                    if (e.hash == hash && key.equals(e.key))
1225 <                        return true;
1226 <                    e = e.next;
1218 >    /**
1219 >     * Implementation for the four public remove/replace methods:
1220 >     * Replaces node value with v, conditional upon match of cv if
1221 >     * non-null.  If resulting value is null, delete.
1222 >     */
1223 >    private final V internalReplace(Object k, V v, Object cv) {
1224 >        int h = spread(k.hashCode());
1225 >        V oldVal = null;
1226 >        for (Node<K,V>[] tab = table;;) {
1227 >            Node<K,V> f; int i, fh; Object fk;
1228 >            if (tab == null ||
1229 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1230 >                break;
1231 >            else if ((fh = f.hash) < 0) {
1232 >                if ((fk = f.key) instanceof TreeBin) {
1233 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1234 >                    long stamp = t.writeLock();
1235 >                    boolean validated = false;
1236 >                    boolean deleted = false;
1237 >                    try {
1238 >                        if (tabAt(tab, i) == f) {
1239 >                            validated = true;
1240 >                            Class<?> cc = comparableClassFor(k.getClass());
1241 >                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1242 >                            if (p != null) {
1243 >                                V pv = p.val;
1244 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1245 >                                    oldVal = pv;
1246 >                                    if (v != null)
1247 >                                        p.val = v;
1248 >                                    else {
1249 >                                        deleted = true;
1250 >                                        t.deleteTreeNode(p);
1251 >                                    }
1252 >                                }
1253 >                            }
1254 >                        }
1255 >                    } finally {
1256 >                        t.unlockWrite(stamp);
1257 >                    }
1258 >                    if (validated) {
1259 >                        if (deleted)
1260 >                            addCount(-1L, -1);
1261 >                        break;
1262 >                    }
1263 >                }
1264 >                else
1265 >                    tab = (Node<K,V>[])fk;
1266 >            }
1267 >            else {
1268 >                boolean validated = false;
1269 >                boolean deleted = false;
1270 >                synchronized (f) {
1271 >                    if (tabAt(tab, i) == f) {
1272 >                        validated = true;
1273 >                        for (Node<K,V> e = f, pred = null;;) {
1274 >                            Object ek;
1275 >                            if (e.hash == h &&
1276 >                                ((ek = e.key) == k || k.equals(ek))) {
1277 >                                V ev = e.val;
1278 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1279 >                                    oldVal = ev;
1280 >                                    if (v != null)
1281 >                                        e.val = v;
1282 >                                    else {
1283 >                                        deleted = true;
1284 >                                        Node<K,V> en = e.next;
1285 >                                        if (pred != null)
1286 >                                            pred.next = en;
1287 >                                        else
1288 >                                            setTabAt(tab, i, en);
1289 >                                    }
1290 >                                }
1291 >                                break;
1292 >                            }
1293 >                            pred = e;
1294 >                            if ((e = e.next) == null)
1295 >                                break;
1296 >                        }
1297 >                    }
1298 >                }
1299 >                if (validated) {
1300 >                    if (deleted)
1301 >                        addCount(-1L, -1);
1302 >                    break;
1303                  }
1304              }
277            return false;
1305          }
1306 +        return oldVal;
1307 +    }
1308  
1309 <        boolean containsValue(Object value) {
1310 <            if (count != 0) { // read-volatile
1311 <                HashEntry[] tab = table;
1312 <                int len = tab.length;
1313 <                for (int i = 0 ; i < len; i++)
1314 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
1315 <                        if (value.equals(e.value))
1316 <                            return true;
1309 >    /*
1310 >     * Internal versions of insertion methods
1311 >     * All have the same basic structure as the first (internalPut):
1312 >     *  1. If table uninitialized, create
1313 >     *  2. If bin empty, try to CAS new node
1314 >     *  3. If bin stale, use new table
1315 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1316 >     *  5. Lock and validate; if valid, scan and add or update
1317 >     *
1318 >     * The putAll method differs mainly in attempting to pre-allocate
1319 >     * enough table space, and also more lazily performs count updates
1320 >     * and checks.
1321 >     *
1322 >     * Most of the function-accepting methods can't be factored nicely
1323 >     * because they require different functional forms, so instead
1324 >     * sprawl out similar mechanics.
1325 >     */
1326 >
1327 >    /** Implementation for put and putIfAbsent */
1328 >    private final V internalPut(K k, V v, boolean onlyIfAbsent) {
1329 >        if (k == null || v == null) throw new NullPointerException();
1330 >        int h = spread(k.hashCode());
1331 >        int len = 0;
1332 >        for (Node<K,V>[] tab = table;;) {
1333 >            int i, fh; Node<K,V> f; Object fk;
1334 >            if (tab == null)
1335 >                tab = initTable();
1336 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1337 >                if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null)))
1338 >                    break;                   // no lock when adding to empty bin
1339 >            }
1340 >            else if ((fh = f.hash) < 0) {
1341 >                if ((fk = f.key) instanceof TreeBin) {
1342 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1343 >                    long stamp = t.writeLock();
1344 >                    V oldVal = null;
1345 >                    try {
1346 >                        if (tabAt(tab, i) == f) {
1347 >                            len = 2;
1348 >                            TreeNode<K,V> p = t.putTreeNode(h, k, v);
1349 >                            if (p != null) {
1350 >                                oldVal = p.val;
1351 >                                if (!onlyIfAbsent)
1352 >                                    p.val = v;
1353 >                            }
1354 >                        }
1355 >                    } finally {
1356 >                        t.unlockWrite(stamp);
1357 >                    }
1358 >                    if (len != 0) {
1359 >                        if (oldVal != null)
1360 >                            return oldVal;
1361 >                        break;
1362 >                    }
1363 >                }
1364 >                else
1365 >                    tab = (Node<K,V>[])fk;
1366 >            }
1367 >            else {
1368 >                V oldVal = null;
1369 >                synchronized (f) {
1370 >                    if (tabAt(tab, i) == f) {
1371 >                        len = 1;
1372 >                        for (Node<K,V> e = f;; ++len) {
1373 >                            Object ek;
1374 >                            if (e.hash == h &&
1375 >                                ((ek = e.key) == k || k.equals(ek))) {
1376 >                                oldVal = e.val;
1377 >                                if (!onlyIfAbsent)
1378 >                                    e.val = v;
1379 >                                break;
1380 >                            }
1381 >                            Node<K,V> last = e;
1382 >                            if ((e = e.next) == null) {
1383 >                                last.next = new Node<K,V>(h, k, v, null);
1384 >                                if (len > TREE_THRESHOLD)
1385 >                                    replaceWithTreeBin(tab, i, k);
1386 >                                break;
1387 >                            }
1388 >                        }
1389 >                    }
1390 >                }
1391 >                if (len != 0) {
1392 >                    if (oldVal != null)
1393 >                        return oldVal;
1394 >                    break;
1395 >                }
1396              }
289            return false;
1397          }
1398 +        addCount(1L, len);
1399 +        return null;
1400 +    }
1401  
1402 <        boolean replace(K key, int hash, V oldValue, V newValue) {
1403 <            lock();
1404 <            try {
1405 <                int c = count;
1406 <                HashEntry[] tab = table;
1407 <                int index = hash & (tab.length - 1);
1408 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
1409 <                HashEntry<K,V> e = first;
1410 <                for (;;) {
1411 <                    if (e == null)
1412 <                        return false;
1413 <                    if (e.hash == hash && key.equals(e.key))
1402 >    /** Implementation for computeIfAbsent */
1403 >    private final V internalComputeIfAbsent(K k, Function<? super K, ? extends V> mf) {
1404 >        if (k == null || mf == null)
1405 >            throw new NullPointerException();
1406 >        int h = spread(k.hashCode());
1407 >        V val = null;
1408 >        int len = 0;
1409 >        for (Node<K,V>[] tab = table;;) {
1410 >            Node<K,V> f; int i; Object fk;
1411 >            if (tab == null)
1412 >                tab = initTable();
1413 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1414 >                Node<K,V> node = new Node<K,V>(h, k, null, null);
1415 >                synchronized (node) {
1416 >                    if (casTabAt(tab, i, null, node)) {
1417 >                        len = 1;
1418 >                        try {
1419 >                            if ((val = mf.apply(k)) != null)
1420 >                                node.val = val;
1421 >                        } finally {
1422 >                            if (val == null)
1423 >                                setTabAt(tab, i, null);
1424 >                        }
1425 >                    }
1426 >                }
1427 >                if (len != 0)
1428 >                    break;
1429 >            }
1430 >            else if (f.hash < 0) {
1431 >                if ((fk = f.key) instanceof TreeBin) {
1432 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1433 >                    long stamp = t.writeLock();
1434 >                    boolean added = false;
1435 >                    try {
1436 >                        if (tabAt(tab, i) == f) {
1437 >                            len = 2;
1438 >                            Class<?> cc = comparableClassFor(k.getClass());
1439 >                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1440 >                            if (p != null)
1441 >                                val = p.val;
1442 >                            else if ((val = mf.apply(k)) != null) {
1443 >                                added = true;
1444 >                                t.putTreeNode(h, k, val);
1445 >                            }
1446 >                        }
1447 >                    } finally {
1448 >                        t.unlockWrite(stamp);
1449 >                    }
1450 >                    if (len != 0) {
1451 >                        if (!added)
1452 >                            return val;
1453                          break;
1454 <                    e = e.next;
1454 >                    }
1455 >                }
1456 >                else
1457 >                    tab = (Node<K,V>[])fk;
1458 >            }
1459 >            else {
1460 >                boolean added = false;
1461 >                synchronized (f) {
1462 >                    if (tabAt(tab, i) == f) {
1463 >                        len = 1;
1464 >                        for (Node<K,V> e = f;; ++len) {
1465 >                            Object ek; V ev;
1466 >                            if (e.hash == h &&
1467 >                                ((ek = e.key) == k || k.equals(ek))) {
1468 >                                val = e.val;
1469 >                                break;
1470 >                            }
1471 >                            Node<K,V> last = e;
1472 >                            if ((e = e.next) == null) {
1473 >                                if ((val = mf.apply(k)) != null) {
1474 >                                    added = true;
1475 >                                    last.next = new Node<K,V>(h, k, val, null);
1476 >                                    if (len > TREE_THRESHOLD)
1477 >                                        replaceWithTreeBin(tab, i, k);
1478 >                                }
1479 >                                break;
1480 >                            }
1481 >                        }
1482 >                    }
1483 >                }
1484 >                if (len != 0) {
1485 >                    if (!added)
1486 >                        return val;
1487 >                    break;
1488                  }
307
308                V v = e.value;
309                if (v == null || !oldValue.equals(v))
310                    return false;
311
312                e.value = newValue;
313                count = c; // write-volatile
314                return true;
315                
316            } finally {
317                unlock();
1489              }
1490          }
1491 +        if (val != null)
1492 +            addCount(1L, len);
1493 +        return val;
1494 +    }
1495  
1496 <        V replace(K key, int hash, V newValue) {
1497 <            lock();
1498 <            try {
1499 <                int c = count;
1500 <                HashEntry[] tab = table;
1501 <                int index = hash & (tab.length - 1);
1502 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
1503 <                HashEntry<K,V> e = first;
1504 <                for (;;) {
1505 <                    if (e == null)
1506 <                        return null;
1507 <                    if (e.hash == hash && key.equals(e.key))
1496 >    /** Implementation for compute */
1497 >    private final V internalCompute(K k, boolean onlyIfPresent,
1498 >                                    BiFunction<? super K, ? super V, ? extends V> mf) {
1499 >        if (k == null || mf == null)
1500 >            throw new NullPointerException();
1501 >        int h = spread(k.hashCode());
1502 >        V val = null;
1503 >        int delta = 0;
1504 >        int len = 0;
1505 >        for (Node<K,V>[] tab = table;;) {
1506 >            Node<K,V> f; int i, fh; Object fk;
1507 >            if (tab == null)
1508 >                tab = initTable();
1509 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1510 >                if (onlyIfPresent)
1511 >                    break;
1512 >                Node<K,V> node = new Node<K,V>(h, k, null, null);
1513 >                synchronized (node) {
1514 >                    if (casTabAt(tab, i, null, node)) {
1515 >                        try {
1516 >                            len = 1;
1517 >                            if ((val = mf.apply(k, null)) != null) {
1518 >                                node.val = val;
1519 >                                delta = 1;
1520 >                            }
1521 >                        } finally {
1522 >                            if (delta == 0)
1523 >                                setTabAt(tab, i, null);
1524 >                        }
1525 >                    }
1526 >                }
1527 >                if (len != 0)
1528 >                    break;
1529 >            }
1530 >            else if ((fh = f.hash) < 0) {
1531 >                if ((fk = f.key) instanceof TreeBin) {
1532 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1533 >                    long stamp = t.writeLock();
1534 >                    try {
1535 >                        if (tabAt(tab, i) == f) {
1536 >                            len = 2;
1537 >                            Class<?> cc = comparableClassFor(k.getClass());
1538 >                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1539 >                            if (p != null || !onlyIfPresent) {
1540 >                                V pv = (p == null) ? null : p.val;
1541 >                                if ((val = mf.apply(k, pv)) != null) {
1542 >                                    if (p != null)
1543 >                                        p.val = val;
1544 >                                    else {
1545 >                                        delta = 1;
1546 >                                        t.putTreeNode(h, k, val);
1547 >                                    }
1548 >                                }
1549 >                                else if (p != null) {
1550 >                                    delta = -1;
1551 >                                    t.deleteTreeNode(p);
1552 >                                }
1553 >                            }
1554 >                        }
1555 >                    } finally {
1556 >                        t.unlockWrite(stamp);
1557 >                    }
1558 >                    if (len != 0)
1559                          break;
334                    e = e.next;
1560                  }
1561 <
1562 <                V v = e.value;
1563 <                e.value = newValue;
1564 <                count = c; // write-volatile
1565 <                return v;
1566 <                
1567 <            } finally {
1568 <                unlock();
1561 >                else
1562 >                    tab = (Node<K,V>[])fk;
1563 >            }
1564 >            else {
1565 >                synchronized (f) {
1566 >                    if (tabAt(tab, i) == f) {
1567 >                        len = 1;
1568 >                        for (Node<K,V> e = f, pred = null;; ++len) {
1569 >                            Object ek;
1570 >                            if (e.hash == h &&
1571 >                                ((ek = e.key) == k || k.equals(ek))) {
1572 >                                val = mf.apply(k, e.val);
1573 >                                if (val != null)
1574 >                                    e.val = val;
1575 >                                else {
1576 >                                    delta = -1;
1577 >                                    Node<K,V> en = e.next;
1578 >                                    if (pred != null)
1579 >                                        pred.next = en;
1580 >                                    else
1581 >                                        setTabAt(tab, i, en);
1582 >                                }
1583 >                                break;
1584 >                            }
1585 >                            pred = e;
1586 >                            if ((e = e.next) == null) {
1587 >                                if (!onlyIfPresent &&
1588 >                                    (val = mf.apply(k, null)) != null) {
1589 >                                    pred.next = new Node<K,V>(h, k, val, null);
1590 >                                    delta = 1;
1591 >                                    if (len > TREE_THRESHOLD)
1592 >                                        replaceWithTreeBin(tab, i, k);
1593 >                                }
1594 >                                break;
1595 >                            }
1596 >                        }
1597 >                    }
1598 >                }
1599 >                if (len != 0)
1600 >                    break;
1601              }
1602          }
1603 +        if (delta != 0)
1604 +            addCount((long)delta, len);
1605 +        return val;
1606 +    }
1607  
1608 <
1609 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
1610 <            lock();
1611 <            try {
1612 <                int c = count;
1613 <                HashEntry[] tab = table;
1614 <                int index = hash & (tab.length - 1);
1615 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
1616 <
1617 <                for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
1618 <                    if (e.hash == hash && key.equals(e.key)) {
1619 <                        V oldValue = e.value;
1620 <                        if (!onlyIfAbsent)
1621 <                            e.value = value;
1622 <                        ++modCount;
1623 <                        count = c; // write-volatile
1624 <                        return oldValue;
1608 >    /** Implementation for merge */
1609 >    private final V internalMerge(K k, V v,
1610 >                                  BiFunction<? super V, ? super V, ? extends V> mf) {
1611 >        if (k == null || v == null || mf == null)
1612 >            throw new NullPointerException();
1613 >        int h = spread(k.hashCode());
1614 >        V val = null;
1615 >        int delta = 0;
1616 >        int len = 0;
1617 >        for (Node<K,V>[] tab = table;;) {
1618 >            int i; Node<K,V> f; Object fk;
1619 >            if (tab == null)
1620 >                tab = initTable();
1621 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1622 >                if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1623 >                    delta = 1;
1624 >                    val = v;
1625 >                    break;
1626 >                }
1627 >            }
1628 >            else if (f.hash < 0) {
1629 >                if ((fk = f.key) instanceof TreeBin) {
1630 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1631 >                    long stamp = t.writeLock();
1632 >                    try {
1633 >                        if (tabAt(tab, i) == f) {
1634 >                            len = 2;
1635 >                            Class<?> cc = comparableClassFor(k.getClass());
1636 >                            TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1637 >                            val = (p == null) ? v : mf.apply(p.val, v);
1638 >                            if (val != null) {
1639 >                                if (p != null)
1640 >                                    p.val = val;
1641 >                                else {
1642 >                                    delta = 1;
1643 >                                    t.putTreeNode(h, k, val);
1644 >                                }
1645 >                            }
1646 >                            else if (p != null) {
1647 >                                delta = -1;
1648 >                                t.deleteTreeNode(p);
1649 >                            }
1650 >                        }
1651 >                    } finally {
1652 >                        t.unlockWrite(stamp);
1653                      }
1654 +                    if (len != 0)
1655 +                        break;
1656                  }
1657 <
1658 <                tab[index] = new HashEntry<K,V>(hash, key, value, first);
1659 <                ++modCount;
1660 <                ++c;
1661 <                count = c; // write-volatile
1662 <                if (c > threshold)
1663 <                    setTable(rehash(tab));
1664 <                return null;
1665 <            } finally {
1666 <                unlock();
1657 >                else
1658 >                    tab = (Node<K,V>[])fk;
1659 >            }
1660 >            else {
1661 >                synchronized (f) {
1662 >                    if (tabAt(tab, i) == f) {
1663 >                        len = 1;
1664 >                        for (Node<K,V> e = f, pred = null;; ++len) {
1665 >                            Object ek;
1666 >                            if (e.hash == h &&
1667 >                                ((ek = e.key) == k || k.equals(ek))) {
1668 >                                val = mf.apply(e.val, v);
1669 >                                if (val != null)
1670 >                                    e.val = val;
1671 >                                else {
1672 >                                    delta = -1;
1673 >                                    Node<K,V> en = e.next;
1674 >                                    if (pred != null)
1675 >                                        pred.next = en;
1676 >                                    else
1677 >                                        setTabAt(tab, i, en);
1678 >                                }
1679 >                                break;
1680 >                            }
1681 >                            pred = e;
1682 >                            if ((e = e.next) == null) {
1683 >                                delta = 1;
1684 >                                val = v;
1685 >                                pred.next = new Node<K,V>(h, k, val, null);
1686 >                                if (len > TREE_THRESHOLD)
1687 >                                    replaceWithTreeBin(tab, i, k);
1688 >                                break;
1689 >                            }
1690 >                        }
1691 >                    }
1692 >                }
1693 >                if (len != 0)
1694 >                    break;
1695              }
1696          }
1697 +        if (delta != 0)
1698 +            addCount((long)delta, len);
1699 +        return val;
1700 +    }
1701  
1702 <        private HashEntry[] rehash(HashEntry[] oldTable) {
1703 <            int oldCapacity = oldTable.length;
1704 <            if (oldCapacity >= MAXIMUM_CAPACITY)
1705 <                return oldTable;
1706 <
1707 <            /*
1708 <             * Reclassify nodes in each list to new Map.  Because we are
1709 <             * using power-of-two expansion, the elements from each bin
1710 <             * must either stay at same index, or move with a power of two
1711 <             * offset. We eliminate unnecessary node creation by catching
1712 <             * cases where old nodes can be reused because their next
1713 <             * fields won't change. Statistically, at the default
1714 <             * threshold, only about one-sixth of them need cloning when
1715 <             * a table doubles. The nodes they replace will be garbage
1716 <             * collectable as soon as they are no longer referenced by any
1717 <             * reader thread that may be in the midst of traversing table
1718 <             * right now.
1719 <             */
1720 <
1721 <            HashEntry[] newTable = new HashEntry[oldCapacity << 1];
1722 <            int sizeMask = newTable.length - 1;
1723 <            for (int i = 0; i < oldCapacity ; i++) {
1724 <                // We need to guarantee that any existing reads of old Map can
1725 <                //  proceed. So we cannot yet null out each bin.
1726 <                HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
1727 <
1728 <                if (e != null) {
1729 <                    HashEntry<K,V> next = e.next;
1730 <                    int idx = e.hash & sizeMask;
1731 <
1732 <                    //  Single node on list
1733 <                    if (next == null)
1734 <                        newTable[idx] = e;
1735 <
1702 >    /** Implementation for putAll */
1703 >    private final void internalPutAll(Map<? extends K, ? extends V> m) {
1704 >        tryPresize(m.size());
1705 >        long delta = 0L;     // number of uncommitted additions
1706 >        boolean npe = false; // to throw exception on exit for nulls
1707 >        try {                // to clean up counts on other exceptions
1708 >            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1709 >                Object k; V v;
1710 >                if (entry == null || (k = entry.getKey()) == null ||
1711 >                    (v = entry.getValue()) == null) {
1712 >                    npe = true;
1713 >                    break;
1714 >                }
1715 >                int h = spread(k.hashCode());
1716 >                for (Node<K,V>[] tab = table;;) {
1717 >                    int i; Node<K,V> f; int fh; Object fk;
1718 >                    if (tab == null)
1719 >                        tab = initTable();
1720 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1721 >                        if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1722 >                            ++delta;
1723 >                            break;
1724 >                        }
1725 >                    }
1726 >                    else if ((fh = f.hash) < 0) {
1727 >                        if ((fk = f.key) instanceof TreeBin) {
1728 >                            TreeBin<K,V> t = (TreeBin<K,V>)fk;
1729 >                            long stamp = t.writeLock();
1730 >                            boolean validated = false;
1731 >                            try {
1732 >                                if (tabAt(tab, i) == f) {
1733 >                                    validated = true;
1734 >                                    Class<?> cc = comparableClassFor(k.getClass());
1735 >                                    TreeNode<K,V> p = t.getTreeNode(h, k,
1736 >                                                                    t.root, cc);
1737 >                                    if (p != null)
1738 >                                        p.val = v;
1739 >                                    else {
1740 >                                        ++delta;
1741 >                                        t.putTreeNode(h, k, v);
1742 >                                    }
1743 >                                }
1744 >                            } finally {
1745 >                                t.unlockWrite(stamp);
1746 >                            }
1747 >                            if (validated)
1748 >                                break;
1749 >                        }
1750 >                        else
1751 >                            tab = (Node<K,V>[])fk;
1752 >                    }
1753                      else {
1754 <                        // Reuse trailing consecutive sequence at same slot
1755 <                        HashEntry<K,V> lastRun = e;
1756 <                        int lastIdx = idx;
1757 <                        for (HashEntry<K,V> last = next;
1758 <                             last != null;
1759 <                             last = last.next) {
1760 <                            int k = last.hash & sizeMask;
1761 <                            if (k != lastIdx) {
1762 <                                lastIdx = k;
1763 <                                lastRun = last;
1754 >                        int len = 0;
1755 >                        synchronized (f) {
1756 >                            if (tabAt(tab, i) == f) {
1757 >                                len = 1;
1758 >                                for (Node<K,V> e = f;; ++len) {
1759 >                                    Object ek;
1760 >                                    if (e.hash == h &&
1761 >                                        ((ek = e.key) == k || k.equals(ek))) {
1762 >                                        e.val = v;
1763 >                                        break;
1764 >                                    }
1765 >                                    Node<K,V> last = e;
1766 >                                    if ((e = e.next) == null) {
1767 >                                        ++delta;
1768 >                                        last.next = new Node<K,V>(h, k, v, null);
1769 >                                        if (len > TREE_THRESHOLD)
1770 >                                            replaceWithTreeBin(tab, i, k);
1771 >                                        break;
1772 >                                    }
1773 >                                }
1774 >                            }
1775 >                        }
1776 >                        if (len != 0) {
1777 >                            if (len > 1) {
1778 >                                addCount(delta, len);
1779 >                                delta = 0L;
1780                              }
1781 +                            break;
1782                          }
1783 <                        newTable[lastIdx] = lastRun;
1783 >                    }
1784 >                }
1785 >            }
1786 >        } finally {
1787 >            if (delta != 0L)
1788 >                addCount(delta, 2);
1789 >        }
1790 >        if (npe)
1791 >            throw new NullPointerException();
1792 >    }
1793  
1794 <                        // Clone all remaining nodes
1795 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1796 <                            int k = p.hash & sizeMask;
1797 <                            newTable[k] = new HashEntry<K,V>(p.hash,
1798 <                                                             p.key,
1799 <                                                             p.value,
1800 <                                                             (HashEntry<K,V>) newTable[k]);
1794 >    /**
1795 >     * Implementation for clear. Steps through each bin, removing all
1796 >     * nodes.
1797 >     */
1798 >    private final void internalClear() {
1799 >        long delta = 0L; // negative number of deletions
1800 >        int i = 0;
1801 >        Node<K,V>[] tab = table;
1802 >        while (tab != null && i < tab.length) {
1803 >            Node<K,V> f = tabAt(tab, i);
1804 >            if (f == null)
1805 >                ++i;
1806 >            else if (f.hash < 0) {
1807 >                Object fk;
1808 >                if ((fk = f.key) instanceof TreeBin) {
1809 >                    TreeBin<K,V> t = (TreeBin<K,V>)fk;
1810 >                    long stamp = t.writeLock();
1811 >                    try {
1812 >                        if (tabAt(tab, i) == f) {
1813 >                            for (Node<K,V> p = t.first; p != null; p = p.next)
1814 >                                --delta;
1815 >                            t.first = null;
1816 >                            t.root = null;
1817 >                            ++i;
1818                          }
1819 +                    } finally {
1820 +                        t.unlockWrite(stamp);
1821 +                    }
1822 +                }
1823 +                else
1824 +                    tab = (Node<K,V>[])fk;
1825 +            }
1826 +            else {
1827 +                synchronized (f) {
1828 +                    if (tabAt(tab, i) == f) {
1829 +                        for (Node<K,V> e = f; e != null; e = e.next)
1830 +                            --delta;
1831 +                        setTabAt(tab, i, null);
1832 +                        ++i;
1833                      }
1834                  }
1835              }
439            return newTable;
1836          }
1837 +        if (delta != 0L)
1838 +            addCount(delta, -1);
1839 +    }
1840  
1841 <        /**
443 <         * Remove; match on key only if value null, else match both.
444 <         */
445 <        V remove(Object key, int hash, Object value) {
446 <            lock();
447 <            try {
448 <                int c = count;
449 <                HashEntry[] tab = table;
450 <                int index = hash & (tab.length - 1);
451 <                HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
1841 >    /* ---------------- Table Initialization and Resizing -------------- */
1842  
1843 <                HashEntry<K,V> e = first;
1844 <                for (;;) {
1845 <                    if (e == null)
1846 <                        return null;
1847 <                    if (e.hash == hash && key.equals(e.key))
1843 >    /**
1844 >     * Returns a power of two table size for the given desired capacity.
1845 >     * See Hackers Delight, sec 3.2
1846 >     */
1847 >    private static final int tableSizeFor(int c) {
1848 >        int n = c - 1;
1849 >        n |= n >>> 1;
1850 >        n |= n >>> 2;
1851 >        n |= n >>> 4;
1852 >        n |= n >>> 8;
1853 >        n |= n >>> 16;
1854 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1855 >    }
1856 >
1857 >    /**
1858 >     * Initializes table, using the size recorded in sizeCtl.
1859 >     */
1860 >    private final Node<K,V>[] initTable() {
1861 >        Node<K,V>[] tab; int sc;
1862 >        while ((tab = table) == null) {
1863 >            if ((sc = sizeCtl) < 0)
1864 >                Thread.yield(); // lost initialization race; just spin
1865 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1866 >                try {
1867 >                    if ((tab = table) == null) {
1868 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1869 >                        table = tab = (Node<K,V>[])new Node[n];
1870 >                        sc = n - (n >>> 2);
1871 >                    }
1872 >                } finally {
1873 >                    sizeCtl = sc;
1874 >                }
1875 >                break;
1876 >            }
1877 >        }
1878 >        return tab;
1879 >    }
1880 >
1881 >    /**
1882 >     * Adds to count, and if table is too small and not already
1883 >     * resizing, initiates transfer. If already resizing, helps
1884 >     * perform transfer if work is available.  Rechecks occupancy
1885 >     * after a transfer to see if another resize is already needed
1886 >     * because resizings are lagging additions.
1887 >     *
1888 >     * @param x the count to add
1889 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1890 >     */
1891 >    private final void addCount(long x, int check) {
1892 >        Cell[] as; long b, s;
1893 >        if ((as = counterCells) != null ||
1894 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1895 >            Cell a; long v; int m;
1896 >            boolean uncontended = true;
1897 >            if (as == null || (m = as.length - 1) < 0 ||
1898 >                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1899 >                !(uncontended =
1900 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1901 >                fullAddCount(x, uncontended);
1902 >                return;
1903 >            }
1904 >            if (check <= 1)
1905 >                return;
1906 >            s = sumCount();
1907 >        }
1908 >        if (check >= 0) {
1909 >            Node<K,V>[] tab, nt; int sc;
1910 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1911 >                   tab.length < MAXIMUM_CAPACITY) {
1912 >                if (sc < 0) {
1913 >                    if (sc == -1 || transferIndex <= transferOrigin ||
1914 >                        (nt = nextTable) == null)
1915                          break;
1916 <                    e = e.next;
1916 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1917 >                        transfer(tab, nt);
1918                  }
1919 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1920 +                    transfer(tab, null);
1921 +                s = sumCount();
1922 +            }
1923 +        }
1924 +    }
1925  
1926 <                V oldValue = e.value;
1927 <                if (value != null && !value.equals(oldValue))
1928 <                    return null;
1929 <
1930 <                // All entries following removed node can stay in list, but
1931 <                // all preceding ones need to be cloned.
1932 <                HashEntry<K,V> newFirst = e.next;
1933 <                for (HashEntry<K,V> p = first; p != e; p = p.next)
1934 <                    newFirst = new HashEntry<K,V>(p.hash, p.key,
1935 <                                                  p.value, newFirst);
1936 <                tab[index] = newFirst;
1937 <                ++modCount;
1938 <                count = c-1; // write-volatile
1939 <                return oldValue;
1940 <            } finally {
1941 <                unlock();
1926 >    /**
1927 >     * Tries to presize table to accommodate the given number of elements.
1928 >     *
1929 >     * @param size number of elements (doesn't need to be perfectly accurate)
1930 >     */
1931 >    private final void tryPresize(int size) {
1932 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1933 >            tableSizeFor(size + (size >>> 1) + 1);
1934 >        int sc;
1935 >        while ((sc = sizeCtl) >= 0) {
1936 >            Node<K,V>[] tab = table; int n;
1937 >            if (tab == null || (n = tab.length) == 0) {
1938 >                n = (sc > c) ? sc : c;
1939 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1940 >                    try {
1941 >                        if (table == tab) {
1942 >                            table = (Node<K,V>[])new Node[n];
1943 >                            sc = n - (n >>> 2);
1944 >                        }
1945 >                    } finally {
1946 >                        sizeCtl = sc;
1947 >                    }
1948 >                }
1949              }
1950 +            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1951 +                break;
1952 +            else if (tab == table &&
1953 +                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1954 +                transfer(tab, null);
1955          }
1956 +    }
1957  
1958 <        void clear() {
1959 <            lock();
1958 >    /**
1959 >     * Moves and/or copies the nodes in each bin to new table. See
1960 >     * above for explanation.
1961 >     */
1962 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
1963 >        int n = tab.length, stride;
1964 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1965 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
1966 >        if (nextTab == null) {            // initiating
1967              try {
1968 <                HashEntry[] tab = table;
1969 <                for (int i = 0; i < tab.length ; i++)
1970 <                    tab[i] = null;
1971 <                ++modCount;
488 <                count = 0; // write-volatile
489 <            } finally {
490 <                unlock();
1968 >                nextTab = (Node<K,V>[])new Node[n << 1];
1969 >            } catch (Throwable ex) {      // try to cope with OOME
1970 >                sizeCtl = Integer.MAX_VALUE;
1971 >                return;
1972              }
1973 +            nextTable = nextTab;
1974 +            transferOrigin = n;
1975 +            transferIndex = n;
1976 +            Node<K,V> rev = new Node<K,V>(MOVED, tab, null, null);
1977 +            for (int k = n; k > 0;) {    // progressively reveal ready slots
1978 +                int nextk = (k > stride) ? k - stride : 0;
1979 +                for (int m = nextk; m < k; ++m)
1980 +                    nextTab[m] = rev;
1981 +                for (int m = n + nextk; m < n + k; ++m)
1982 +                    nextTab[m] = rev;
1983 +                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1984 +            }
1985 +        }
1986 +        int nextn = nextTab.length;
1987 +        Node<K,V> fwd = new Node<K,V>(MOVED, nextTab, null, null);
1988 +        boolean advance = true;
1989 +        for (int i = 0, bound = 0;;) {
1990 +            int nextIndex, nextBound; Node<K,V> f; Object fk;
1991 +            while (advance) {
1992 +                if (--i >= bound)
1993 +                    advance = false;
1994 +                else if ((nextIndex = transferIndex) <= transferOrigin) {
1995 +                    i = -1;
1996 +                    advance = false;
1997 +                }
1998 +                else if (U.compareAndSwapInt
1999 +                         (this, TRANSFERINDEX, nextIndex,
2000 +                          nextBound = (nextIndex > stride ?
2001 +                                       nextIndex - stride : 0))) {
2002 +                    bound = nextBound;
2003 +                    i = nextIndex - 1;
2004 +                    advance = false;
2005 +                }
2006 +            }
2007 +            if (i < 0 || i >= n || i + n >= nextn) {
2008 +                for (int sc;;) {
2009 +                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2010 +                        if (sc == -1) {
2011 +                            nextTable = null;
2012 +                            table = nextTab;
2013 +                            sizeCtl = (n << 1) - (n >>> 1);
2014 +                        }
2015 +                        return;
2016 +                    }
2017 +                }
2018 +            }
2019 +            else if ((f = tabAt(tab, i)) == null) {
2020 +                if (casTabAt(tab, i, null, fwd)) {
2021 +                    setTabAt(nextTab, i, null);
2022 +                    setTabAt(nextTab, i + n, null);
2023 +                    advance = true;
2024 +                }
2025 +            }
2026 +            else if (f.hash >= 0) {
2027 +                synchronized (f) {
2028 +                    if (tabAt(tab, i) == f) {
2029 +                        int runBit = f.hash & n;
2030 +                        Node<K,V> lastRun = f, lo = null, hi = null;
2031 +                        for (Node<K,V> p = f.next; p != null; p = p.next) {
2032 +                            int b = p.hash & n;
2033 +                            if (b != runBit) {
2034 +                                runBit = b;
2035 +                                lastRun = p;
2036 +                            }
2037 +                        }
2038 +                        if (runBit == 0)
2039 +                            lo = lastRun;
2040 +                        else
2041 +                            hi = lastRun;
2042 +                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
2043 +                            int ph = p.hash; Object pk = p.key; V pv = p.val;
2044 +                            if ((ph & n) == 0)
2045 +                                lo = new Node<K,V>(ph, pk, pv, lo);
2046 +                            else
2047 +                                hi = new Node<K,V>(ph, pk, pv, hi);
2048 +                        }
2049 +                        setTabAt(nextTab, i, lo);
2050 +                        setTabAt(nextTab, i + n, hi);
2051 +                        setTabAt(tab, i, fwd);
2052 +                        advance = true;
2053 +                    }
2054 +                }
2055 +            }
2056 +            else if ((fk = f.key) instanceof TreeBin) {
2057 +                TreeBin<K,V> t = (TreeBin<K,V>)fk;
2058 +                long stamp = t.writeLock();
2059 +                try {
2060 +                    if (tabAt(tab, i) == f) {
2061 +                        TreeNode<K,V> root;
2062 +                        Node<K,V> ln = null, hn = null;
2063 +                        if ((root = t.root) != null) {
2064 +                            Node<K,V> e, p; TreeNode<K,V> lr, rr; int lh;
2065 +                            TreeBin<K,V> lt = null, ht = null;
2066 +                            for (lr = root; lr.left != null; lr = lr.left);
2067 +                            for (rr = root; rr.right != null; rr = rr.right);
2068 +                            if ((lh = lr.hash) == rr.hash) { // move entire tree
2069 +                                if ((lh & n) == 0)
2070 +                                    lt = t;
2071 +                                else
2072 +                                    ht = t;
2073 +                            }
2074 +                            else {
2075 +                                lt = new TreeBin<K,V>();
2076 +                                ht = new TreeBin<K,V>();
2077 +                                int lc = 0, hc = 0;
2078 +                                for (e = t.first; e != null; e = e.next) {
2079 +                                    int h = e.hash;
2080 +                                    Object k = e.key; V v = e.val;
2081 +                                    if ((h & n) == 0) {
2082 +                                        ++lc;
2083 +                                        lt.putTreeNode(h, k, v);
2084 +                                    }
2085 +                                    else {
2086 +                                        ++hc;
2087 +                                        ht.putTreeNode(h, k, v);
2088 +                                    }
2089 +                                }
2090 +                                if (lc < TREE_THRESHOLD) { // throw away
2091 +                                    for (p = lt.first; p != null; p = p.next)
2092 +                                        ln = new Node<K,V>(p.hash, p.key,
2093 +                                                           p.val, ln);
2094 +                                    lt = null;
2095 +                                }
2096 +                                if (hc < TREE_THRESHOLD) {
2097 +                                    for (p = ht.first; p != null; p = p.next)
2098 +                                        hn = new Node<K,V>(p.hash, p.key,
2099 +                                                           p.val, hn);
2100 +                                    ht = null;
2101 +                                }
2102 +                            }
2103 +                            if (ln == null && lt != null)
2104 +                                ln = new Node<K,V>(MOVED, lt, null, null);
2105 +                            if (hn == null && ht != null)
2106 +                                hn = new Node<K,V>(MOVED, ht, null, null);
2107 +                        }
2108 +                        setTabAt(nextTab, i, ln);
2109 +                        setTabAt(nextTab, i + n, hn);
2110 +                        setTabAt(tab, i, fwd);
2111 +                        advance = true;
2112 +                    }
2113 +                } finally {
2114 +                    t.unlockWrite(stamp);
2115 +                }
2116 +            }
2117 +            else
2118 +                advance = true; // already processed
2119 +        }
2120 +    }
2121 +
2122 +    /* ---------------- Counter support -------------- */
2123 +
2124 +    final long sumCount() {
2125 +        Cell[] as = counterCells; Cell a;
2126 +        long sum = baseCount;
2127 +        if (as != null) {
2128 +            for (int i = 0; i < as.length; ++i) {
2129 +                if ((a = as[i]) != null)
2130 +                    sum += a.value;
2131 +            }
2132 +        }
2133 +        return sum;
2134 +    }
2135 +
2136 +    // See LongAdder version for explanation
2137 +    private final void fullAddCount(long x, boolean wasUncontended) {
2138 +        int h;
2139 +        if ((h = ThreadLocalRandom.getProbe()) == 0) {
2140 +            ThreadLocalRandom.localInit();      // force initialization
2141 +            h = ThreadLocalRandom.getProbe();
2142 +            wasUncontended = true;
2143 +        }
2144 +        boolean collide = false;                // True if last slot nonempty
2145 +        for (;;) {
2146 +            Cell[] as; Cell a; int n; long v;
2147 +            if ((as = counterCells) != null && (n = as.length) > 0) {
2148 +                if ((a = as[(n - 1) & h]) == null) {
2149 +                    if (cellsBusy == 0) {            // Try to attach new Cell
2150 +                        Cell r = new Cell(x); // Optimistic create
2151 +                        if (cellsBusy == 0 &&
2152 +                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2153 +                            boolean created = false;
2154 +                            try {               // Recheck under lock
2155 +                                Cell[] rs; int m, j;
2156 +                                if ((rs = counterCells) != null &&
2157 +                                    (m = rs.length) > 0 &&
2158 +                                    rs[j = (m - 1) & h] == null) {
2159 +                                    rs[j] = r;
2160 +                                    created = true;
2161 +                                }
2162 +                            } finally {
2163 +                                cellsBusy = 0;
2164 +                            }
2165 +                            if (created)
2166 +                                break;
2167 +                            continue;           // Slot is now non-empty
2168 +                        }
2169 +                    }
2170 +                    collide = false;
2171 +                }
2172 +                else if (!wasUncontended)       // CAS already known to fail
2173 +                    wasUncontended = true;      // Continue after rehash
2174 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2175 +                    break;
2176 +                else if (counterCells != as || n >= NCPU)
2177 +                    collide = false;            // At max size or stale
2178 +                else if (!collide)
2179 +                    collide = true;
2180 +                else if (cellsBusy == 0 &&
2181 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2182 +                    try {
2183 +                        if (counterCells == as) {// Expand table unless stale
2184 +                            Cell[] rs = new Cell[n << 1];
2185 +                            for (int i = 0; i < n; ++i)
2186 +                                rs[i] = as[i];
2187 +                            counterCells = rs;
2188 +                        }
2189 +                    } finally {
2190 +                        cellsBusy = 0;
2191 +                    }
2192 +                    collide = false;
2193 +                    continue;                   // Retry with expanded table
2194 +                }
2195 +                h = ThreadLocalRandom.advanceProbe(h);
2196 +            }
2197 +            else if (cellsBusy == 0 && counterCells == as &&
2198 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2199 +                boolean init = false;
2200 +                try {                           // Initialize table
2201 +                    if (counterCells == as) {
2202 +                        Cell[] rs = new Cell[2];
2203 +                        rs[h & 1] = new Cell(x);
2204 +                        counterCells = rs;
2205 +                        init = true;
2206 +                    }
2207 +                } finally {
2208 +                    cellsBusy = 0;
2209 +                }
2210 +                if (init)
2211 +                    break;
2212 +            }
2213 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2214 +                break;                          // Fall back on using base
2215          }
2216      }
2217  
2218 +    /* ----------------Table Traversal -------------- */
2219 +
2220      /**
2221 <     * ConcurrentHashMap list entry. Note that this is never exported
2222 <     * out as a user-visible Map.Entry
2221 >     * Encapsulates traversal for methods such as containsValue; also
2222 >     * serves as a base class for other iterators and spliterators.
2223 >     *
2224 >     * Method advance visits once each still-valid node that was
2225 >     * reachable upon iterator construction. It might miss some that
2226 >     * were added to a bin after the bin was visited, which is OK wrt
2227 >     * consistency guarantees. Maintaining this property in the face
2228 >     * of possible ongoing resizes requires a fair amount of
2229 >     * bookkeeping state that is difficult to optimize away amidst
2230 >     * volatile accesses.  Even so, traversal maintains reasonable
2231 >     * throughput.
2232 >     *
2233 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2234 >     * However, if the table has been resized, then all future steps
2235 >     * must traverse both the bin at the current index as well as at
2236 >     * (index + baseSize); and so on for further resizings. To
2237 >     * paranoically cope with potential sharing by users of iterators
2238 >     * across threads, iteration terminates if a bounds checks fails
2239 >     * for a table read.
2240       */
2241 <    private static class HashEntry<K,V> {
2242 <        private final K key;
2243 <        private V value;
2244 <        private final int hash;
2245 <        private final HashEntry<K,V> next;
2241 >    static class Traverser<K,V> {
2242 >        Node<K,V>[] tab;        // current table; updated if resized
2243 >        Node<K,V> next;         // the next entry to use
2244 >        int index;              // index of bin to use next
2245 >        int baseIndex;          // current index of initial table
2246 >        int baseLimit;          // index bound for initial table
2247 >        final int baseSize;     // initial table size
2248 >
2249 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
2250 >            this.tab = tab;
2251 >            this.baseSize = size;
2252 >            this.baseIndex = this.index = index;
2253 >            this.baseLimit = limit;
2254 >            this.next = null;
2255 >        }
2256  
2257 <        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
2258 <            this.value = value;
2259 <            this.hash = hash;
2260 <            this.key = key;
2261 <            this.next = next;
2257 >        /**
2258 >         * Advances if possible, returning next valid node, or null if none.
2259 >         */
2260 >        final Node<K,V> advance() {
2261 >            Node<K,V> e;
2262 >            if ((e = next) != null)
2263 >                e = e.next;
2264 >            for (;;) {
2265 >                Node<K,V>[] t; int i, n; Object ek;  // must use locals in checks
2266 >                if (e != null)
2267 >                    return next = e;
2268 >                if (baseIndex >= baseLimit || (t = tab) == null ||
2269 >                    (n = t.length) <= (i = index) || i < 0)
2270 >                    return next = null;
2271 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
2272 >                    if ((ek = e.key) instanceof TreeBin)
2273 >                        e = ((TreeBin<K,V>)ek).first;
2274 >                    else {
2275 >                        tab = (Node<K,V>[])ek;
2276 >                        e = null;
2277 >                        continue;
2278 >                    }
2279 >                }
2280 >                if ((index += baseSize) >= n)
2281 >                    index = ++baseIndex;    // visit upper slots if present
2282 >            }
2283 >        }
2284 >    }
2285 >
2286 >    /**
2287 >     * Base of key, value, and entry Iterators. Adds fields to
2288 >     * Traverser to support iterator.remove
2289 >     */
2290 >    static class BaseIterator<K,V> extends Traverser<K,V> {
2291 >        final ConcurrentHashMap<K,V> map;
2292 >        Node<K,V> lastReturned;
2293 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
2294 >                    ConcurrentHashMap<K,V> map) {
2295 >            super(tab, size, index, limit);
2296 >            this.map = map;
2297 >            advance();
2298 >        }
2299 >
2300 >        public final boolean hasNext() { return next != null; }
2301 >        public final boolean hasMoreElements() { return next != null; }
2302 >
2303 >        public final void remove() {
2304 >            Node<K,V> p;
2305 >            if ((p = lastReturned) == null)
2306 >                throw new IllegalStateException();
2307 >            lastReturned = null;
2308 >            map.internalReplace((K)p.key, null, null);
2309 >        }
2310 >    }
2311 >
2312 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
2313 >        implements Iterator<K>, Enumeration<K> {
2314 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
2315 >                    ConcurrentHashMap<K,V> map) {
2316 >            super(tab, index, size, limit, map);
2317 >        }
2318 >
2319 >        public final K next() {
2320 >            Node<K,V> p;
2321 >            if ((p = next) == null)
2322 >                throw new NoSuchElementException();
2323 >            K k = (K)p.key;
2324 >            lastReturned = p;
2325 >            advance();
2326 >            return k;
2327 >        }
2328 >
2329 >        public final K nextElement() { return next(); }
2330 >    }
2331 >
2332 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
2333 >        implements Iterator<V>, Enumeration<V> {
2334 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
2335 >                      ConcurrentHashMap<K,V> map) {
2336 >            super(tab, index, size, limit, map);
2337 >        }
2338 >
2339 >        public final V next() {
2340 >            Node<K,V> p;
2341 >            if ((p = next) == null)
2342 >                throw new NoSuchElementException();
2343 >            V v = p.val;
2344 >            lastReturned = p;
2345 >            advance();
2346 >            return v;
2347 >        }
2348 >
2349 >        public final V nextElement() { return next(); }
2350 >    }
2351 >
2352 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
2353 >        implements Iterator<Map.Entry<K,V>> {
2354 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
2355 >                      ConcurrentHashMap<K,V> map) {
2356 >            super(tab, index, size, limit, map);
2357 >        }
2358 >
2359 >        public final Map.Entry<K,V> next() {
2360 >            Node<K,V> p;
2361 >            if ((p = next) == null)
2362 >                throw new NoSuchElementException();
2363 >            K k = (K)p.key;
2364 >            V v = p.val;
2365 >            lastReturned = p;
2366 >            advance();
2367 >            return new MapEntry<K,V>(k, v, map);
2368 >        }
2369 >    }
2370 >
2371 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
2372 >        implements Spliterator<K> {
2373 >        long est;               // size estimate
2374 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2375 >                       long est) {
2376 >            super(tab, size, index, limit);
2377 >            this.est = est;
2378 >        }
2379 >
2380 >        public Spliterator<K> trySplit() {
2381 >            int i, f, h;
2382 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2383 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
2384 >                                        f, est >>>= 1);
2385 >        }
2386 >
2387 >        public void forEachRemaining(Consumer<? super K> action) {
2388 >            if (action == null) throw new NullPointerException();
2389 >            for (Node<K,V> p; (p = advance()) != null;)
2390 >                action.accept((K)p.key);
2391 >        }
2392 >
2393 >        public boolean tryAdvance(Consumer<? super K> action) {
2394 >            if (action == null) throw new NullPointerException();
2395 >            Node<K,V> p;
2396 >            if ((p = advance()) == null)
2397 >                return false;
2398 >            action.accept((K)p.key);
2399 >            return true;
2400 >        }
2401 >
2402 >        public long estimateSize() { return est; }
2403 >
2404 >        public int characteristics() {
2405 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2406 >                Spliterator.NONNULL;
2407 >        }
2408 >    }
2409 >
2410 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
2411 >        implements Spliterator<V> {
2412 >        long est;               // size estimate
2413 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
2414 >                         long est) {
2415 >            super(tab, size, index, limit);
2416 >            this.est = est;
2417 >        }
2418 >
2419 >        public Spliterator<V> trySplit() {
2420 >            int i, f, h;
2421 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2422 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
2423 >                                          f, est >>>= 1);
2424 >        }
2425 >
2426 >        public void forEachRemaining(Consumer<? super V> action) {
2427 >            if (action == null) throw new NullPointerException();
2428 >            for (Node<K,V> p; (p = advance()) != null;)
2429 >                action.accept(p.val);
2430 >        }
2431 >
2432 >        public boolean tryAdvance(Consumer<? super V> action) {
2433 >            if (action == null) throw new NullPointerException();
2434 >            Node<K,V> p;
2435 >            if ((p = advance()) == null)
2436 >                return false;
2437 >            action.accept(p.val);
2438 >            return true;
2439 >        }
2440 >
2441 >        public long estimateSize() { return est; }
2442 >
2443 >        public int characteristics() {
2444 >            return Spliterator.CONCURRENT | Spliterator.NONNULL;
2445 >        }
2446 >    }
2447 >
2448 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
2449 >        implements Spliterator<Map.Entry<K,V>> {
2450 >        final ConcurrentHashMap<K,V> map; // To export MapEntry
2451 >        long est;               // size estimate
2452 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2453 >                         long est, ConcurrentHashMap<K,V> map) {
2454 >            super(tab, size, index, limit);
2455 >            this.map = map;
2456 >            this.est = est;
2457 >        }
2458 >
2459 >        public Spliterator<Map.Entry<K,V>> trySplit() {
2460 >            int i, f, h;
2461 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2462 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
2463 >                                          f, est >>>= 1, map);
2464 >        }
2465 >
2466 >        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
2467 >            if (action == null) throw new NullPointerException();
2468 >            for (Node<K,V> p; (p = advance()) != null; )
2469 >                action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2470 >        }
2471 >
2472 >        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
2473 >            if (action == null) throw new NullPointerException();
2474 >            Node<K,V> p;
2475 >            if ((p = advance()) == null)
2476 >                return false;
2477 >            action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2478 >            return true;
2479 >        }
2480 >
2481 >        public long estimateSize() { return est; }
2482 >
2483 >        public int characteristics() {
2484 >            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2485 >                Spliterator.NONNULL;
2486          }
2487      }
2488  
# Line 514 | Line 2490 | public class ConcurrentHashMap<K, V> ext
2490      /* ---------------- Public operations -------------- */
2491  
2492      /**
2493 <     * Constructs a new, empty map with the specified initial
2494 <     * capacity and the specified load factor.
2493 >     * Creates a new, empty map with the default initial table size (16).
2494 >     */
2495 >    public ConcurrentHashMap() {
2496 >    }
2497 >
2498 >    /**
2499 >     * Creates a new, empty map with an initial table size
2500 >     * accommodating the specified number of elements without the need
2501 >     * to dynamically resize.
2502 >     *
2503 >     * @param initialCapacity The implementation performs internal
2504 >     * sizing to accommodate this many elements.
2505 >     * @throws IllegalArgumentException if the initial capacity of
2506 >     * elements is negative
2507 >     */
2508 >    public ConcurrentHashMap(int initialCapacity) {
2509 >        if (initialCapacity < 0)
2510 >            throw new IllegalArgumentException();
2511 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2512 >                   MAXIMUM_CAPACITY :
2513 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2514 >        this.sizeCtl = cap;
2515 >    }
2516 >
2517 >    /**
2518 >     * Creates a new map with the same mappings as the given map.
2519 >     *
2520 >     * @param m the map
2521 >     */
2522 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2523 >        this.sizeCtl = DEFAULT_CAPACITY;
2524 >        internalPutAll(m);
2525 >    }
2526 >
2527 >    /**
2528 >     * Creates a new, empty map with an initial table size based on
2529 >     * the given number of elements ({@code initialCapacity}) and
2530 >     * initial table density ({@code loadFactor}).
2531       *
2532       * @param initialCapacity the initial capacity. The implementation
2533 <     * performs internal sizing to accommodate this many elements.
2534 <     * @param loadFactor  the load factor threshold, used to control resizing.
2533 >     * performs internal sizing to accommodate this many elements,
2534 >     * given the specified load factor.
2535 >     * @param loadFactor the load factor (table density) for
2536 >     * establishing the initial table size
2537 >     * @throws IllegalArgumentException if the initial capacity of
2538 >     * elements is negative or the load factor is nonpositive
2539 >     *
2540 >     * @since 1.6
2541 >     */
2542 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2543 >        this(initialCapacity, loadFactor, 1);
2544 >    }
2545 >
2546 >    /**
2547 >     * Creates a new, empty map with an initial table size based on
2548 >     * the given number of elements ({@code initialCapacity}), table
2549 >     * density ({@code loadFactor}), and number of concurrently
2550 >     * updating threads ({@code concurrencyLevel}).
2551 >     *
2552 >     * @param initialCapacity the initial capacity. The implementation
2553 >     * performs internal sizing to accommodate this many elements,
2554 >     * given the specified load factor.
2555 >     * @param loadFactor the load factor (table density) for
2556 >     * establishing the initial table size
2557       * @param concurrencyLevel the estimated number of concurrently
2558 <     * updating threads. The implementation performs internal sizing
2559 <     * to try to accommodate this many threads.  
2558 >     * updating threads. The implementation may use this value as
2559 >     * a sizing hint.
2560       * @throws IllegalArgumentException if the initial capacity is
2561       * negative or the load factor or concurrencyLevel are
2562 <     * nonpositive.
2562 >     * nonpositive
2563       */
2564      public ConcurrentHashMap(int initialCapacity,
2565                               float loadFactor, int concurrencyLevel) {
2566 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
2566 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2567              throw new IllegalArgumentException();
2568 +        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2569 +            initialCapacity = concurrencyLevel;   // as estimated threads
2570 +        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2571 +        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2572 +            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2573 +        this.sizeCtl = cap;
2574 +    }
2575  
2576 <        if (concurrencyLevel > MAX_SEGMENTS)
2577 <            concurrencyLevel = MAX_SEGMENTS;
2578 <
2579 <        // Find power-of-two sizes best matching arguments
2580 <        int sshift = 0;
2581 <        int ssize = 1;
2582 <        while (ssize < concurrencyLevel) {
2583 <            ++sshift;
2584 <            ssize <<= 1;
2585 <        }
545 <        segmentShift = 32 - sshift;
546 <        segmentMask = ssize - 1;
547 <        this.segments = new Segment[ssize];
548 <
549 <        if (initialCapacity > MAXIMUM_CAPACITY)
550 <            initialCapacity = MAXIMUM_CAPACITY;
551 <        int c = initialCapacity / ssize;
552 <        if (c * ssize < initialCapacity)
553 <            ++c;
554 <        int cap = 1;
555 <        while (cap < c)
556 <            cap <<= 1;
557 <
558 <        for (int i = 0; i < this.segments.length; ++i)
559 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
2576 >    /**
2577 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2578 >     * from the given type to {@code Boolean.TRUE}.
2579 >     *
2580 >     * @return the new set
2581 >     * @since 1.8
2582 >     */
2583 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2584 >        return new KeySetView<K,Boolean>
2585 >            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2586      }
2587  
2588      /**
2589 <     * Constructs a new, empty map with the specified initial
2590 <     * capacity,  and with default load factor and concurrencyLevel.
2589 >     * Creates a new {@link Set} backed by a ConcurrentHashMap
2590 >     * from the given type to {@code Boolean.TRUE}.
2591       *
2592       * @param initialCapacity The implementation performs internal
2593       * sizing to accommodate this many elements.
2594       * @throws IllegalArgumentException if the initial capacity of
2595 <     * elements is negative.
2595 >     * elements is negative
2596 >     * @return the new set
2597 >     * @since 1.8
2598       */
2599 <    public ConcurrentHashMap(int initialCapacity) {
2600 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2599 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2600 >        return new KeySetView<K,Boolean>
2601 >            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2602      }
2603  
2604      /**
2605 <     * Constructs a new, empty map with a default initial capacity,
577 <     * load factor, and concurrencyLevel.
2605 >     * {@inheritDoc}
2606       */
2607 <    public ConcurrentHashMap() {
2608 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2607 >    public boolean isEmpty() {
2608 >        return sumCount() <= 0L; // ignore transient negative values
2609      }
2610  
2611      /**
2612 <     * Constructs a new map with the same mappings as the given map.  The
585 <     * map is created with a capacity of twice the number of mappings in
586 <     * the given map or 11 (whichever is greater), and a default load factor.
2612 >     * {@inheritDoc}
2613       */
2614 <    public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
2615 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
2616 <                      11),
2617 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2618 <        putAll(t);
2614 >    public int size() {
2615 >        long n = sumCount();
2616 >        return ((n < 0L) ? 0 :
2617 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2618 >                (int)n);
2619      }
2620  
2621 <    // inherit Map javadoc
2622 <    public boolean isEmpty() {
2623 <        /*
2624 <         * We need to keep track of per-segment modCounts to avoid ABA
2625 <         * problems in which an element in one segment was added and
2626 <         * in another removed during traversal, in which case the
2627 <         * table was never actually empty at any point. Note the
2628 <         * similar use of modCounts in the size() and containsValue()
2629 <         * methods, which are the only other methods also susceptible
2630 <         * to ABA problems.
2631 <         */
2632 <        int[] mc = new int[segments.length];
2633 <        int mcsum = 0;
608 <        for (int i = 0; i < segments.length; ++i) {
609 <            if (segments[i].count != 0)
610 <                return false;
611 <            else
612 <                mcsum += mc[i] = segments[i].modCount;
613 <        }
614 <        // If mcsum happens to be zero, then we know we got a snapshot
615 <        // before any modifications at all were made.  This is
616 <        // probably common enough to bother tracking.
617 <        if (mcsum != 0) {
618 <            for (int i = 0; i < segments.length; ++i) {
619 <                if (segments[i].count != 0 ||
620 <                    mc[i] != segments[i].modCount)
621 <                    return false;
622 <            }
623 <        }
624 <        return true;
2621 >    /**
2622 >     * Returns the number of mappings. This method should be used
2623 >     * instead of {@link #size} because a ConcurrentHashMap may
2624 >     * contain more mappings than can be represented as an int. The
2625 >     * value returned is an estimate; the actual count may differ if
2626 >     * there are concurrent insertions or removals.
2627 >     *
2628 >     * @return the number of mappings
2629 >     * @since 1.8
2630 >     */
2631 >    public long mappingCount() {
2632 >        long n = sumCount();
2633 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2634      }
2635  
2636 <    // inherit Map javadoc
2637 <    public int size() {
2638 <        int[] mc = new int[segments.length];
2639 <        for (;;) {
2640 <            long sum = 0;
2641 <            int mcsum = 0;
2642 <            for (int i = 0; i < segments.length; ++i) {
2643 <                sum += segments[i].count;
2644 <                mcsum += mc[i] = segments[i].modCount;
2645 <            }
2646 <            int check = 0;
2647 <            if (mcsum != 0) {
2648 <                for (int i = 0; i < segments.length; ++i) {
640 <                    check += segments[i].count;
641 <                    if (mc[i] != segments[i].modCount) {
642 <                        check = -1; // force retry
643 <                        break;
644 <                    }
645 <                }
646 <            }
647 <            if (check == sum) {
648 <                if (sum > Integer.MAX_VALUE)
649 <                    return Integer.MAX_VALUE;
650 <                else
651 <                    return (int)sum;
652 <            }
653 <        }
2636 >    /**
2637 >     * Returns the value to which the specified key is mapped,
2638 >     * or {@code null} if this map contains no mapping for the key.
2639 >     *
2640 >     * <p>More formally, if this map contains a mapping from a key
2641 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2642 >     * then this method returns {@code v}; otherwise it returns
2643 >     * {@code null}.  (There can be at most one such mapping.)
2644 >     *
2645 >     * @throws NullPointerException if the specified key is null
2646 >     */
2647 >    public V get(Object key) {
2648 >        return internalGet(key);
2649      }
2650  
656
2651      /**
2652 <     * Returns the value to which the specified key is mapped in this table.
2652 >     * Returns the value to which the specified key is mapped, or the
2653 >     * given default value if this map contains no mapping for the
2654 >     * key.
2655       *
2656 <     * @param   key   a key in the table.
2657 <     * @return  the value to which the key is mapped in this table;
2658 <     *          <tt>null</tt> if the key is not mapped to any value in
2659 <     *          this table.
2660 <     * @throws  NullPointerException  if the key is
665 <     *               <tt>null</tt>.
2656 >     * @param key the key whose associated value is to be returned
2657 >     * @param defaultValue the value to return if this map contains
2658 >     * no mapping for the given key
2659 >     * @return the mapping for the key, if present; else the default value
2660 >     * @throws NullPointerException if the specified key is null
2661       */
2662 <    public V get(Object key) {
2663 <        int hash = hash(key); // throws NullPointerException if key null
2664 <        return segmentFor(hash).get(key, hash);
2662 >    public V getOrDefault(Object key, V defaultValue) {
2663 >        V v;
2664 >        return (v = internalGet(key)) == null ? defaultValue : v;
2665      }
2666  
2667      /**
2668       * Tests if the specified object is a key in this table.
2669       *
2670 <     * @param   key   possible key.
2671 <     * @return  <tt>true</tt> if and only if the specified object
2672 <     *          is a key in this table, as determined by the
2673 <     *          <tt>equals</tt> method; <tt>false</tt> otherwise.
2674 <     * @throws  NullPointerException  if the key is
680 <     *               <tt>null</tt>.
2670 >     * @param  key possible key
2671 >     * @return {@code true} if and only if the specified object
2672 >     *         is a key in this table, as determined by the
2673 >     *         {@code equals} method; {@code false} otherwise
2674 >     * @throws NullPointerException if the specified key is null
2675       */
2676      public boolean containsKey(Object key) {
2677 <        int hash = hash(key); // throws NullPointerException if key null
684 <        return segmentFor(hash).containsKey(key, hash);
2677 >        return internalGet(key) != null;
2678      }
2679  
2680      /**
2681 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2682 <     * specified value. Note: This method requires a full internal
2683 <     * traversal of the hash table, and so is much slower than
691 <     * method <tt>containsKey</tt>.
2681 >     * Returns {@code true} if this map maps one or more keys to the
2682 >     * specified value. Note: This method may require a full traversal
2683 >     * of the map, and is much slower than method {@code containsKey}.
2684       *
2685 <     * @param value value whose presence in this map is to be tested.
2686 <     * @return <tt>true</tt> if this map maps one or more keys to the
2687 <     * specified value.
2688 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
2685 >     * @param value value whose presence in this map is to be tested
2686 >     * @return {@code true} if this map maps one or more keys to the
2687 >     *         specified value
2688 >     * @throws NullPointerException if the specified value is null
2689       */
2690      public boolean containsValue(Object value) {
2691          if (value == null)
2692              throw new NullPointerException();
2693 <
2694 <        int[] mc = new int[segments.length];
2695 <        for (;;) {
2696 <            int sum = 0;
2697 <            int mcsum = 0;
2698 <            for (int i = 0; i < segments.length; ++i) {
707 <                int c = segments[i].count;
708 <                mcsum += mc[i] = segments[i].modCount;
709 <                if (segments[i].containsValue(value))
2693 >        Node<K,V>[] t;
2694 >        if ((t = table) != null) {
2695 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2696 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
2697 >                V v;
2698 >                if ((v = p.val) == value || value.equals(v))
2699                      return true;
2700              }
712            boolean cleanSweep = true;
713            if (mcsum != 0) {
714                for (int i = 0; i < segments.length; ++i) {
715                    int c = segments[i].count;
716                    if (mc[i] != segments[i].modCount) {
717                        cleanSweep = false;
718                        break;
719                    }
720                }
721            }
722            if (cleanSweep)
723                return false;
2701          }
2702 +        return false;
2703      }
2704  
2705      /**
2706       * Legacy method testing if some key maps into the specified value
2707       * in this table.  This method is identical in functionality to
2708 <     * {@link #containsValue}, and  exists solely to ensure
2708 >     * {@link #containsValue(Object)}, and exists solely to ensure
2709       * full compatibility with class {@link java.util.Hashtable},
2710       * which supported this method prior to introduction of the
2711       * Java Collections framework.
2712 <
2713 <     * @param      value   a value to search for.
2714 <     * @return     <tt>true</tt> if and only if some key maps to the
2715 <     *             <tt>value</tt> argument in this table as
2716 <     *             determined by the <tt>equals</tt> method;
2717 <     *             <tt>false</tt> otherwise.
2718 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
2712 >     *
2713 >     * @param  value a value to search for
2714 >     * @return {@code true} if and only if some key maps to the
2715 >     *         {@code value} argument in this table as
2716 >     *         determined by the {@code equals} method;
2717 >     *         {@code false} otherwise
2718 >     * @throws NullPointerException if the specified value is null
2719       */
2720 <    public boolean contains(Object value) {
2720 >    @Deprecated public boolean contains(Object value) {
2721          return containsValue(value);
2722      }
2723  
2724      /**
2725 <     * Maps the specified <tt>key</tt> to the specified
2726 <     * <tt>value</tt> in this table. Neither the key nor the
749 <     * value can be <tt>null</tt>. <p>
2725 >     * Maps the specified key to the specified value in this table.
2726 >     * Neither the key nor the value can be null.
2727       *
2728 <     * The value can be retrieved by calling the <tt>get</tt> method
2728 >     * <p>The value can be retrieved by calling the {@code get} method
2729       * with a key that is equal to the original key.
2730       *
2731 <     * @param      key     the table key.
2732 <     * @param      value   the value.
2733 <     * @return     the previous value of the specified key in this table,
2734 <     *             or <tt>null</tt> if it did not have one.
2735 <     * @throws  NullPointerException  if the key or value is
759 <     *               <tt>null</tt>.
2731 >     * @param key key with which the specified value is to be associated
2732 >     * @param value value to be associated with the specified key
2733 >     * @return the previous value associated with {@code key}, or
2734 >     *         {@code null} if there was no mapping for {@code key}
2735 >     * @throws NullPointerException if the specified key or value is null
2736       */
2737      public V put(K key, V value) {
2738 <        if (value == null)
763 <            throw new NullPointerException();
764 <        int hash = hash(key);
765 <        return segmentFor(hash).put(key, hash, value, false);
2738 >        return internalPut(key, value, false);
2739      }
2740  
2741      /**
2742 <     * If the specified key is not already associated
770 <     * with a value, associate it with the given value.
771 <     * This is equivalent to
772 <     * <pre>
773 <     *   if (!map.containsKey(key))
774 <     *      return map.put(key, value);
775 <     *   else
776 <     *      return map.get(key);
777 <     * </pre>
778 <     * Except that the action is performed atomically.
779 <     * @param key key with which the specified value is to be associated.
780 <     * @param value value to be associated with the specified key.
781 <     * @return previous value associated with specified key, or <tt>null</tt>
782 <     *         if there was no mapping for key.  A <tt>null</tt> return can
783 <     *         also indicate that the map previously associated <tt>null</tt>
784 <     *         with the specified key, if the implementation supports
785 <     *         <tt>null</tt> values.
786 <     *
787 <     * @throws UnsupportedOperationException if the <tt>put</tt> operation is
788 <     *            not supported by this map.
789 <     * @throws ClassCastException if the class of the specified key or value
790 <     *            prevents it from being stored in this map.
791 <     * @throws NullPointerException if the specified key or value is
792 <     *            <tt>null</tt>.
2742 >     * {@inheritDoc}
2743       *
2744 <     **/
2744 >     * @return the previous value associated with the specified key,
2745 >     *         or {@code null} if there was no mapping for the key
2746 >     * @throws NullPointerException if the specified key or value is null
2747 >     */
2748      public V putIfAbsent(K key, V value) {
2749 <        if (value == null)
797 <            throw new NullPointerException();
798 <        int hash = hash(key);
799 <        return segmentFor(hash).put(key, hash, value, true);
2749 >        return internalPut(key, value, true);
2750      }
2751  
802
2752      /**
2753       * Copies all of the mappings from the specified map to this one.
805     *
2754       * These mappings replace any mappings that this map had for any of the
2755 <     * keys currently in the specified Map.
2755 >     * keys currently in the specified map.
2756       *
2757 <     * @param t Mappings to be stored in this map.
2757 >     * @param m mappings to be stored in this map
2758       */
2759 <    public void putAll(Map<? extends K, ? extends V> t) {
2760 <        for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
813 <            Entry<? extends K, ? extends V> e = it.next();
814 <            put(e.getKey(), e.getValue());
815 <        }
2759 >    public void putAll(Map<? extends K, ? extends V> m) {
2760 >        internalPutAll(m);
2761      }
2762  
2763      /**
2764 <     * Removes the key (and its corresponding value) from this
2765 <     * table. This method does nothing if the key is not in the table.
2764 >     * If the specified key is not already associated with a value,
2765 >     * attempts to compute its value using the given mapping function
2766 >     * and enters it into this map unless {@code null}.  The entire
2767 >     * method invocation is performed atomically, so the function is
2768 >     * applied at most once per key.  Some attempted update operations
2769 >     * on this map by other threads may be blocked while computation
2770 >     * is in progress, so the computation should be short and simple,
2771 >     * and must not attempt to update any other mappings of this map.
2772       *
2773 <     * @param   key   the key that needs to be removed.
2774 <     * @return  the value to which the key had been mapped in this table,
2775 <     *          or <tt>null</tt> if the key did not have a mapping.
2776 <     * @throws  NullPointerException  if the key is
2777 <     *               <tt>null</tt>.
2773 >     * @param key key with which the specified value is to be associated
2774 >     * @param mappingFunction the function to compute a value
2775 >     * @return the current (existing or computed) value associated with
2776 >     *         the specified key, or null if the computed value is null
2777 >     * @throws NullPointerException if the specified key or mappingFunction
2778 >     *         is null
2779 >     * @throws IllegalStateException if the computation detectably
2780 >     *         attempts a recursive update to this map that would
2781 >     *         otherwise never complete
2782 >     * @throws RuntimeException or Error if the mappingFunction does so,
2783 >     *         in which case the mapping is left unestablished
2784       */
2785 <    public V remove(Object key) {
2786 <        int hash = hash(key);
830 <        return segmentFor(hash).remove(key, hash, null);
2785 >    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
2786 >        return internalComputeIfAbsent(key, mappingFunction);
2787      }
2788  
2789      /**
2790 <     * Remove entry for key only if currently mapped to given value.
2791 <     * Acts as
2792 <     * <pre>
2793 <     *  if (map.get(key).equals(value)) {
2794 <     *     map.remove(key);
2795 <     *     return true;
2796 <     * } else return false;
2797 <     * </pre>
2798 <     * except that the action is performed atomically.
2799 <     * @param key key with which the specified value is associated.
2800 <     * @param value value associated with the specified key.
2801 <     * @return true if the value was removed
2802 <     * @throws NullPointerException if the specified key is
2803 <     *            <tt>null</tt>.
2790 >     * If the value for the specified key is present, attempts to
2791 >     * compute a new mapping given the key and its current mapped
2792 >     * value.  The entire method invocation is performed atomically.
2793 >     * Some attempted update operations on this map by other threads
2794 >     * may be blocked while computation is in progress, so the
2795 >     * computation should be short and simple, and must not attempt to
2796 >     * update any other mappings of this map.
2797 >     *
2798 >     * @param key key with which a value may be associated
2799 >     * @param remappingFunction the function to compute a value
2800 >     * @return the new value associated with the specified key, or null if none
2801 >     * @throws NullPointerException if the specified key or remappingFunction
2802 >     *         is null
2803 >     * @throws IllegalStateException if the computation detectably
2804 >     *         attempts a recursive update to this map that would
2805 >     *         otherwise never complete
2806 >     * @throws RuntimeException or Error if the remappingFunction does so,
2807 >     *         in which case the mapping is unchanged
2808       */
2809 <    public boolean remove(Object key, Object value) {
2810 <        int hash = hash(key);
851 <        return segmentFor(hash).remove(key, hash, value) != null;
2809 >    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2810 >        return internalCompute(key, true, remappingFunction);
2811      }
2812  
854
2813      /**
2814 <     * Replace entry for key only if currently mapped to given value.
2815 <     * Acts as
2816 <     * <pre>
2817 <     *  if (map.get(key).equals(oldValue)) {
2818 <     *     map.put(key, newValue);
2819 <     *     return true;
2820 <     * } else return false;
2821 <     * </pre>
2822 <     * except that the action is performed atomically.
2823 <     * @param key key with which the specified value is associated.
2824 <     * @param oldValue value expected to be associated with the specified key.
2825 <     * @param newValue value to be associated with the specified key.
2826 <     * @return true if the value was replaced
2827 <     * @throws NullPointerException if the specified key or values are
2828 <     * <tt>null</tt>.
2814 >     * Attempts to compute a mapping for the specified key and its
2815 >     * current mapped value (or {@code null} if there is no current
2816 >     * mapping). The entire method invocation is performed atomically.
2817 >     * Some attempted update operations on this map by other threads
2818 >     * may be blocked while computation is in progress, so the
2819 >     * computation should be short and simple, and must not attempt to
2820 >     * update any other mappings of this Map.
2821 >     *
2822 >     * @param key key with which the specified value is to be associated
2823 >     * @param remappingFunction the function to compute a value
2824 >     * @return the new value associated with the specified key, or null if none
2825 >     * @throws NullPointerException if the specified key or remappingFunction
2826 >     *         is null
2827 >     * @throws IllegalStateException if the computation detectably
2828 >     *         attempts a recursive update to this map that would
2829 >     *         otherwise never complete
2830 >     * @throws RuntimeException or Error if the remappingFunction does so,
2831 >     *         in which case the mapping is unchanged
2832       */
2833 <    public boolean replace(K key, V oldValue, V newValue) {
2834 <        if (oldValue == null || newValue == null)
874 <            throw new NullPointerException();
875 <        int hash = hash(key);
876 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
2833 >    public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2834 >        return internalCompute(key, false, remappingFunction);
2835      }
2836  
2837      /**
2838 <     * Replace entry for key only if currently mapped to some value.
2839 <     * Acts as
2840 <     * <pre>
2841 <     *  if ((map.containsKey(key)) {
2842 <     *     return map.put(key, value);
2843 <     * } else return null;
2844 <     * </pre>
2845 <     * except that the action is performed atomically.
2846 <     * @param key key with which the specified value is associated.
2847 <     * @param value value to be associated with the specified key.
2848 <     * @return previous value associated with specified key, or <tt>null</tt>
2849 <     *         if there was no mapping for key.  
2850 <     * @throws NullPointerException if the specified key or value is
2851 <     *            <tt>null</tt>.
2838 >     * If the specified key is not already associated with a
2839 >     * (non-null) value, associates it with the given value.
2840 >     * Otherwise, replaces the value with the results of the given
2841 >     * remapping function, or removes if {@code null}. The entire
2842 >     * method invocation is performed atomically.  Some attempted
2843 >     * update operations on this map by other threads may be blocked
2844 >     * while computation is in progress, so the computation should be
2845 >     * short and simple, and must not attempt to update any other
2846 >     * mappings of this Map.
2847 >     *
2848 >     * @param key key with which the specified value is to be associated
2849 >     * @param value the value to use if absent
2850 >     * @param remappingFunction the function to recompute a value if present
2851 >     * @return the new value associated with the specified key, or null if none
2852 >     * @throws NullPointerException if the specified key or the
2853 >     *         remappingFunction is null
2854 >     * @throws RuntimeException or Error if the remappingFunction does so,
2855 >     *         in which case the mapping is unchanged
2856       */
2857 <    public V replace(K key, V value) {
2858 <        if (value == null)
897 <            throw new NullPointerException();
898 <        int hash = hash(key);
899 <        return segmentFor(hash).replace(key, hash, value);
2857 >    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2858 >        return internalMerge(key, value, remappingFunction);
2859      }
2860  
2861 +    /**
2862 +     * Removes the key (and its corresponding value) from this map.
2863 +     * This method does nothing if the key is not in the map.
2864 +     *
2865 +     * @param  key the key that needs to be removed
2866 +     * @return the previous value associated with {@code key}, or
2867 +     *         {@code null} if there was no mapping for {@code key}
2868 +     * @throws NullPointerException if the specified key is null
2869 +     */
2870 +    public V remove(Object key) {
2871 +        return internalReplace(key, null, null);
2872 +    }
2873  
2874      /**
2875 <     * Removes all mappings from this map.
2875 >     * {@inheritDoc}
2876 >     *
2877 >     * @throws NullPointerException if the specified key is null
2878       */
2879 <    public void clear() {
2880 <        for (int i = 0; i < segments.length; ++i)
2881 <            segments[i].clear();
2879 >    public boolean remove(Object key, Object value) {
2880 >        if (key == null)
2881 >            throw new NullPointerException();
2882 >        return value != null && internalReplace(key, null, value) != null;
2883      }
2884  
2885 +    /**
2886 +     * {@inheritDoc}
2887 +     *
2888 +     * @throws NullPointerException if any of the arguments are null
2889 +     */
2890 +    public boolean replace(K key, V oldValue, V newValue) {
2891 +        if (key == null || oldValue == null || newValue == null)
2892 +            throw new NullPointerException();
2893 +        return internalReplace(key, newValue, oldValue) != null;
2894 +    }
2895  
2896      /**
2897 <     * Returns a shallow copy of this
914 <     * <tt>ConcurrentHashMap</tt> instance: the keys and
915 <     * values themselves are not cloned.
2897 >     * {@inheritDoc}
2898       *
2899 <     * @return a shallow copy of this map.
2899 >     * @return the previous value associated with the specified key,
2900 >     *         or {@code null} if there was no mapping for the key
2901 >     * @throws NullPointerException if the specified key or value is null
2902       */
2903 <    public Object clone() {
2904 <        // We cannot call super.clone, since it would share final
2905 <        // segments array, and there's no way to reassign finals.
2903 >    public V replace(K key, V value) {
2904 >        if (key == null || value == null)
2905 >            throw new NullPointerException();
2906 >        return internalReplace(key, value, null);
2907 >    }
2908  
2909 <        float lf = segments[0].loadFactor;
2910 <        int segs = segments.length;
2911 <        int cap = (int)(size() / lf);
2912 <        if (cap < segs) cap = segs;
2913 <        ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
928 <        t.putAll(this);
929 <        return t;
2909 >    /**
2910 >     * Removes all of the mappings from this map.
2911 >     */
2912 >    public void clear() {
2913 >        internalClear();
2914      }
2915  
2916      /**
2917 <     * Returns a set view of the keys contained in this map.  The set is
2918 <     * backed by the map, so changes to the map are reflected in the set, and
2919 <     * vice-versa.  The set supports element removal, which removes the
2920 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
2921 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
2922 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
2923 <     * <tt>addAll</tt> operations.
2924 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
2925 <     * will never throw {@link java.util.ConcurrentModificationException},
2917 >     * Returns a {@link Set} view of the keys contained in this map.
2918 >     * The set is backed by the map, so changes to the map are
2919 >     * reflected in the set, and vice-versa. The set supports element
2920 >     * removal, which removes the corresponding mapping from this map,
2921 >     * via the {@code Iterator.remove}, {@code Set.remove},
2922 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2923 >     * operations.  It does not support the {@code add} or
2924 >     * {@code addAll} operations.
2925 >     *
2926 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2927 >     * that will never throw {@link ConcurrentModificationException},
2928       * and guarantees to traverse elements as they existed upon
2929       * construction of the iterator, and may (but is not guaranteed to)
2930       * reflect any modifications subsequent to construction.
2931       *
2932 <     * @return a set view of the keys contained in this map.
2932 >     * @return the set view
2933       */
2934 <    public Set<K> keySet() {
2935 <        Set<K> ks = keySet;
2936 <        return (ks != null) ? ks : (keySet = new KeySet());
2934 >    public KeySetView<K,V> keySet() {
2935 >        KeySetView<K,V> ks = keySet;
2936 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2937      }
2938  
2939 +    /**
2940 +     * Returns a {@link Set} view of the keys in this map, using the
2941 +     * given common mapped value for any additions (i.e., {@link
2942 +     * Collection#add} and {@link Collection#addAll(Collection)}).
2943 +     * This is of course only appropriate if it is acceptable to use
2944 +     * the same value for all additions from this view.
2945 +     *
2946 +     * @param mappedValue the mapped value to use for any additions
2947 +     * @return the set view
2948 +     * @throws NullPointerException if the mappedValue is null
2949 +     */
2950 +    public KeySetView<K,V> keySet(V mappedValue) {
2951 +        if (mappedValue == null)
2952 +            throw new NullPointerException();
2953 +        return new KeySetView<K,V>(this, mappedValue);
2954 +    }
2955  
2956      /**
2957 <     * Returns a collection view of the values contained in this map.  The
2958 <     * collection is backed by the map, so changes to the map are reflected in
2959 <     * the collection, and vice-versa.  The collection supports element
2960 <     * removal, which removes the corresponding mapping from this map, via the
2961 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
2962 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
2963 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
2964 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
2965 <     * will never throw {@link java.util.ConcurrentModificationException},
2957 >     * Returns a {@link Collection} view of the values contained in this map.
2958 >     * The collection is backed by the map, so changes to the map are
2959 >     * reflected in the collection, and vice-versa.  The collection
2960 >     * supports element removal, which removes the corresponding
2961 >     * mapping from this map, via the {@code Iterator.remove},
2962 >     * {@code Collection.remove}, {@code removeAll},
2963 >     * {@code retainAll}, and {@code clear} operations.  It does not
2964 >     * support the {@code add} or {@code addAll} operations.
2965 >     *
2966 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2967 >     * that will never throw {@link ConcurrentModificationException},
2968       * and guarantees to traverse elements as they existed upon
2969       * construction of the iterator, and may (but is not guaranteed to)
2970       * reflect any modifications subsequent to construction.
2971       *
2972 <     * @return a collection view of the values contained in this map.
2972 >     * @return the collection view
2973       */
2974      public Collection<V> values() {
2975 <        Collection<V> vs = values;
2976 <        return (vs != null) ? vs : (values = new Values());
2975 >        ValuesView<K,V> vs = values;
2976 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2977      }
2978  
975
2979      /**
2980 <     * Returns a collection view of the mappings contained in this map.  Each
2981 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
2982 <     * collection is backed by the map, so changes to the map are reflected in
2983 <     * the collection, and vice-versa.  The collection supports element
2984 <     * removal, which removes the corresponding mapping from the map, via the
2985 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
2986 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
2987 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
2988 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
2989 <     * will never throw {@link java.util.ConcurrentModificationException},
2980 >     * Returns a {@link Set} view of the mappings contained in this map.
2981 >     * The set is backed by the map, so changes to the map are
2982 >     * reflected in the set, and vice-versa.  The set supports element
2983 >     * removal, which removes the corresponding mapping from the map,
2984 >     * via the {@code Iterator.remove}, {@code Set.remove},
2985 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2986 >     * operations.
2987 >     *
2988 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2989 >     * that will never throw {@link ConcurrentModificationException},
2990       * and guarantees to traverse elements as they existed upon
2991       * construction of the iterator, and may (but is not guaranteed to)
2992       * reflect any modifications subsequent to construction.
2993       *
2994 <     * @return a collection view of the mappings contained in this map.
2994 >     * @return the set view
2995       */
2996      public Set<Map.Entry<K,V>> entrySet() {
2997 <        Set<Map.Entry<K,V>> es = entrySet;
2998 <        return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
2997 >        EntrySetView<K,V> es = entrySet;
2998 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2999      }
3000  
998
3001      /**
3002       * Returns an enumeration of the keys in this table.
3003       *
3004 <     * @return  an enumeration of the keys in this table.
3005 <     * @see     #keySet
3004 >     * @return an enumeration of the keys in this table
3005 >     * @see #keySet()
3006       */
3007      public Enumeration<K> keys() {
3008 <        return new KeyIterator();
3008 >        Node<K,V>[] t;
3009 >        int f = (t = table) == null ? 0 : t.length;
3010 >        return new KeyIterator<K,V>(t, f, 0, f, this);
3011      }
3012  
3013      /**
3014       * Returns an enumeration of the values in this table.
1011     * Use the Enumeration methods on the returned object to fetch the elements
1012     * sequentially.
3015       *
3016 <     * @return  an enumeration of the values in this table.
3017 <     * @see     #values
3016 >     * @return an enumeration of the values in this table
3017 >     * @see #values()
3018       */
3019      public Enumeration<V> elements() {
3020 <        return new ValueIterator();
3020 >        Node<K,V>[] t;
3021 >        int f = (t = table) == null ? 0 : t.length;
3022 >        return new ValueIterator<K,V>(t, f, 0, f, this);
3023      }
3024  
3025 <    /* ---------------- Iterator Support -------------- */
3025 >    /**
3026 >     * Returns the hash code value for this {@link Map}, i.e.,
3027 >     * the sum of, for each key-value pair in the map,
3028 >     * {@code key.hashCode() ^ value.hashCode()}.
3029 >     *
3030 >     * @return the hash code value for this map
3031 >     */
3032 >    public int hashCode() {
3033 >        int h = 0;
3034 >        Node<K,V>[] t;
3035 >        if ((t = table) != null) {
3036 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3037 >            for (Node<K,V> p; (p = it.advance()) != null; )
3038 >                h += p.key.hashCode() ^ p.val.hashCode();
3039 >        }
3040 >        return h;
3041 >    }
3042  
3043 <    private abstract class HashIterator {
3044 <        private int nextSegmentIndex;
3045 <        private int nextTableIndex;
3046 <        private HashEntry[] currentTable;
3047 <        private HashEntry<K, V> nextEntry;
3048 <        HashEntry<K, V> lastReturned;
3043 >    /**
3044 >     * Returns a string representation of this map.  The string
3045 >     * representation consists of a list of key-value mappings (in no
3046 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3047 >     * mappings are separated by the characters {@code ", "} (comma
3048 >     * and space).  Each key-value mapping is rendered as the key
3049 >     * followed by an equals sign ("{@code =}") followed by the
3050 >     * associated value.
3051 >     *
3052 >     * @return a string representation of this map
3053 >     */
3054 >    public String toString() {
3055 >        Node<K,V>[] t;
3056 >        int f = (t = table) == null ? 0 : t.length;
3057 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3058 >        StringBuilder sb = new StringBuilder();
3059 >        sb.append('{');
3060 >        Node<K,V> p;
3061 >        if ((p = it.advance()) != null) {
3062 >            for (;;) {
3063 >                K k = (K)p.key;
3064 >                V v = p.val;
3065 >                sb.append(k == this ? "(this Map)" : k);
3066 >                sb.append('=');
3067 >                sb.append(v == this ? "(this Map)" : v);
3068 >                if ((p = it.advance()) == null)
3069 >                    break;
3070 >                sb.append(',').append(' ');
3071 >            }
3072 >        }
3073 >        return sb.append('}').toString();
3074 >    }
3075  
3076 <        private HashIterator() {
3077 <            nextSegmentIndex = segments.length - 1;
3078 <            nextTableIndex = -1;
3079 <            advance();
3076 >    /**
3077 >     * Compares the specified object with this map for equality.
3078 >     * Returns {@code true} if the given object is a map with the same
3079 >     * mappings as this map.  This operation may return misleading
3080 >     * results if either map is concurrently modified during execution
3081 >     * of this method.
3082 >     *
3083 >     * @param o object to be compared for equality with this map
3084 >     * @return {@code true} if the specified object is equal to this map
3085 >     */
3086 >    public boolean equals(Object o) {
3087 >        if (o != this) {
3088 >            if (!(o instanceof Map))
3089 >                return false;
3090 >            Map<?,?> m = (Map<?,?>) o;
3091 >            Node<K,V>[] t;
3092 >            int f = (t = table) == null ? 0 : t.length;
3093 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3094 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
3095 >                V val = p.val;
3096 >                Object v = m.get(p.key);
3097 >                if (v == null || (v != val && !v.equals(val)))
3098 >                    return false;
3099 >            }
3100 >            for (Map.Entry<?,?> e : m.entrySet()) {
3101 >                Object mk, mv, v;
3102 >                if ((mk = e.getKey()) == null ||
3103 >                    (mv = e.getValue()) == null ||
3104 >                    (v = internalGet(mk)) == null ||
3105 >                    (mv != v && !mv.equals(v)))
3106 >                    return false;
3107 >            }
3108          }
3109 +        return true;
3110 +    }
3111  
3112 <        public boolean hasMoreElements() { return hasNext(); }
3112 >    /* ---------------- Serialization Support -------------- */
3113  
3114 <        private void advance() {
3115 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
3116 <                return;
3114 >    /**
3115 >     * Stripped-down version of helper class used in previous version,
3116 >     * declared for the sake of serialization compatibility
3117 >     */
3118 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
3119 >        private static final long serialVersionUID = 2249069246763182397L;
3120 >        final float loadFactor;
3121 >        Segment(float lf) { this.loadFactor = lf; }
3122 >    }
3123  
3124 <            while (nextTableIndex >= 0) {
3125 <                if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
3126 <                    return;
3124 >    /**
3125 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3126 >     * stream (i.e., serializes it).
3127 >     * @param s the stream
3128 >     * @serialData
3129 >     * the key (Object) and value (Object)
3130 >     * for each key-value mapping, followed by a null pair.
3131 >     * The key-value mappings are emitted in no particular order.
3132 >     */
3133 >    private void writeObject(java.io.ObjectOutputStream s)
3134 >        throws java.io.IOException {
3135 >        // For serialization compatibility
3136 >        // Emulate segment calculation from previous version of this class
3137 >        int sshift = 0;
3138 >        int ssize = 1;
3139 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
3140 >            ++sshift;
3141 >            ssize <<= 1;
3142 >        }
3143 >        int segmentShift = 32 - sshift;
3144 >        int segmentMask = ssize - 1;
3145 >        Segment<K,V>[] segments = (Segment<K,V>[])
3146 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3147 >        for (int i = 0; i < segments.length; ++i)
3148 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
3149 >        s.putFields().put("segments", segments);
3150 >        s.putFields().put("segmentShift", segmentShift);
3151 >        s.putFields().put("segmentMask", segmentMask);
3152 >        s.writeFields();
3153 >
3154 >        Node<K,V>[] t;
3155 >        if ((t = table) != null) {
3156 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3157 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
3158 >                s.writeObject(p.key);
3159 >                s.writeObject(p.val);
3160              }
3161 +        }
3162 +        s.writeObject(null);
3163 +        s.writeObject(null);
3164 +        segments = null; // throw away
3165 +    }
3166 +
3167 +    /**
3168 +     * Reconstitutes the instance from a stream (that is, deserializes it).
3169 +     * @param s the stream
3170 +     */
3171 +    private void readObject(java.io.ObjectInputStream s)
3172 +        throws java.io.IOException, ClassNotFoundException {
3173 +        s.defaultReadObject();
3174  
3175 <            while (nextSegmentIndex >= 0) {
3176 <                Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
3177 <                if (seg.count != 0) {
3178 <                    currentTable = seg.table;
3179 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
3180 <                        if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
3181 <                            nextTableIndex = j - 1;
3182 <                            return;
3175 >        // Create all nodes, then place in table once size is known
3176 >        long size = 0L;
3177 >        Node<K,V> p = null;
3178 >        for (;;) {
3179 >            K k = (K) s.readObject();
3180 >            V v = (V) s.readObject();
3181 >            if (k != null && v != null) {
3182 >                int h = spread(k.hashCode());
3183 >                p = new Node<K,V>(h, k, v, p);
3184 >                ++size;
3185 >            }
3186 >            else
3187 >                break;
3188 >        }
3189 >        if (p != null) {
3190 >            boolean init = false;
3191 >            int n;
3192 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3193 >                n = MAXIMUM_CAPACITY;
3194 >            else {
3195 >                int sz = (int)size;
3196 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3197 >            }
3198 >            int sc = sizeCtl;
3199 >            boolean collide = false;
3200 >            if (n > sc &&
3201 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3202 >                try {
3203 >                    if (table == null) {
3204 >                        init = true;
3205 >                        Node<K,V>[] tab = (Node<K,V>[])new Node[n];
3206 >                        int mask = n - 1;
3207 >                        while (p != null) {
3208 >                            int j = p.hash & mask;
3209 >                            Node<K,V> next = p.next;
3210 >                            Node<K,V> q = p.next = tabAt(tab, j);
3211 >                            setTabAt(tab, j, p);
3212 >                            if (!collide && q != null && q.hash == p.hash)
3213 >                                collide = true;
3214 >                            p = next;
3215 >                        }
3216 >                        table = tab;
3217 >                        addCount(size, -1);
3218 >                        sc = n - (n >>> 2);
3219 >                    }
3220 >                } finally {
3221 >                    sizeCtl = sc;
3222 >                }
3223 >                if (collide) { // rescan and convert to TreeBins
3224 >                    Node<K,V>[] tab = table;
3225 >                    for (int i = 0; i < tab.length; ++i) {
3226 >                        int c = 0;
3227 >                        for (Node<K,V> e = tabAt(tab, i); e != null; e = e.next) {
3228 >                            if (++c > TREE_THRESHOLD &&
3229 >                                (e.key instanceof Comparable)) {
3230 >                                replaceWithTreeBin(tab, i, e.key);
3231 >                                break;
3232 >                            }
3233                          }
3234                      }
3235                  }
3236              }
3237 +            if (!init) { // Can only happen if unsafely published.
3238 +                while (p != null) {
3239 +                    internalPut((K)p.key, p.val, false);
3240 +                    p = p.next;
3241 +                }
3242 +            }
3243          }
3244 +    }
3245  
3246 <        public boolean hasNext() { return nextEntry != null; }
3246 >    // -------------------------------------------------------
3247  
3248 <        HashEntry<K,V> nextEntry() {
3249 <            if (nextEntry == null)
3250 <                throw new NoSuchElementException();
3251 <            lastReturned = nextEntry;
3252 <            advance();
3253 <            return lastReturned;
3248 >    // Overrides of other default Map methods
3249 >
3250 >    public void forEach(BiConsumer<? super K, ? super V> action) {
3251 >        if (action == null) throw new NullPointerException();
3252 >        Node<K,V>[] t;
3253 >        if ((t = table) != null) {
3254 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3255 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
3256 >                action.accept((K)p.key, p.val);
3257 >            }
3258          }
3259 +    }
3260  
3261 <        public void remove() {
3262 <            if (lastReturned == null)
3263 <                throw new IllegalStateException();
3264 <            ConcurrentHashMap.this.remove(lastReturned.key);
3265 <            lastReturned = null;
3261 >    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3262 >        if (function == null) throw new NullPointerException();
3263 >        Node<K,V>[] t;
3264 >        if ((t = table) != null) {
3265 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3266 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
3267 >                K k = (K)p.key;
3268 >                internalPut(k, function.apply(k, p.val), false);
3269 >            }
3270          }
3271      }
3272  
3273 <    private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
3274 <        public K next() { return super.nextEntry().key; }
3275 <        public K nextElement() { return super.nextEntry().key; }
3273 >    // -------------------------------------------------------
3274 >
3275 >    // Parallel bulk operations
3276 >
3277 >    /**
3278 >     * Computes initial batch value for bulk tasks. The returned value
3279 >     * is approximately exp2 of the number of times (minus one) to
3280 >     * split task by two before executing leaf action. This value is
3281 >     * faster to compute and more convenient to use as a guide to
3282 >     * splitting than is the depth, since it is used while dividing by
3283 >     * two anyway.
3284 >     */
3285 >    final int batchFor(long b) {
3286 >        long n;
3287 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3288 >            return 0;
3289 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3290 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3291 >    }
3292 >
3293 >    /**
3294 >     * Performs the given action for each (key, value).
3295 >     *
3296 >     * @param parallelismThreshold the (estimated) number of elements
3297 >     * needed for this operation to be executed in parallel
3298 >     * @param action the action
3299 >     * @since 1.8
3300 >     */
3301 >    public void forEach(long parallelismThreshold,
3302 >                        BiConsumer<? super K,? super V> action) {
3303 >        if (action == null) throw new NullPointerException();
3304 >        new ForEachMappingTask<K,V>
3305 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3306 >             action).invoke();
3307 >    }
3308 >
3309 >    /**
3310 >     * Performs the given action for each non-null transformation
3311 >     * of each (key, value).
3312 >     *
3313 >     * @param parallelismThreshold the (estimated) number of elements
3314 >     * needed for this operation to be executed in parallel
3315 >     * @param transformer a function returning the transformation
3316 >     * for an element, or null if there is no transformation (in
3317 >     * which case the action is not applied)
3318 >     * @param action the action
3319 >     * @since 1.8
3320 >     */
3321 >    public <U> void forEach(long parallelismThreshold,
3322 >                            BiFunction<? super K, ? super V, ? extends U> transformer,
3323 >                            Consumer<? super U> action) {
3324 >        if (transformer == null || action == null)
3325 >            throw new NullPointerException();
3326 >        new ForEachTransformedMappingTask<K,V,U>
3327 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3328 >             transformer, action).invoke();
3329 >    }
3330 >
3331 >    /**
3332 >     * Returns a non-null result from applying the given search
3333 >     * function on each (key, value), or null if none.  Upon
3334 >     * success, further element processing is suppressed and the
3335 >     * results of any other parallel invocations of the search
3336 >     * function are ignored.
3337 >     *
3338 >     * @param parallelismThreshold the (estimated) number of elements
3339 >     * needed for this operation to be executed in parallel
3340 >     * @param searchFunction a function returning a non-null
3341 >     * result on success, else null
3342 >     * @return a non-null result from applying the given search
3343 >     * function on each (key, value), or null if none
3344 >     * @since 1.8
3345 >     */
3346 >    public <U> U search(long parallelismThreshold,
3347 >                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3348 >        if (searchFunction == null) throw new NullPointerException();
3349 >        return new SearchMappingsTask<K,V,U>
3350 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3351 >             searchFunction, new AtomicReference<U>()).invoke();
3352 >    }
3353 >
3354 >    /**
3355 >     * Returns the result of accumulating the given transformation
3356 >     * of all (key, value) pairs using the given reducer to
3357 >     * combine values, or null if none.
3358 >     *
3359 >     * @param parallelismThreshold the (estimated) number of elements
3360 >     * needed for this operation to be executed in parallel
3361 >     * @param transformer a function returning the transformation
3362 >     * for an element, or null if there is no transformation (in
3363 >     * which case it is not combined)
3364 >     * @param reducer a commutative associative combining function
3365 >     * @return the result of accumulating the given transformation
3366 >     * of all (key, value) pairs
3367 >     * @since 1.8
3368 >     */
3369 >    public <U> U reduce(long parallelismThreshold,
3370 >                        BiFunction<? super K, ? super V, ? extends U> transformer,
3371 >                        BiFunction<? super U, ? super U, ? extends U> reducer) {
3372 >        if (transformer == null || reducer == null)
3373 >            throw new NullPointerException();
3374 >        return new MapReduceMappingsTask<K,V,U>
3375 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3376 >             null, transformer, reducer).invoke();
3377 >    }
3378 >
3379 >    /**
3380 >     * Returns the result of accumulating the given transformation
3381 >     * of all (key, value) pairs using the given reducer to
3382 >     * combine values, and the given basis as an identity value.
3383 >     *
3384 >     * @param parallelismThreshold the (estimated) number of elements
3385 >     * needed for this operation to be executed in parallel
3386 >     * @param transformer a function returning the transformation
3387 >     * for an element
3388 >     * @param basis the identity (initial default value) for the reduction
3389 >     * @param reducer a commutative associative combining function
3390 >     * @return the result of accumulating the given transformation
3391 >     * of all (key, value) pairs
3392 >     * @since 1.8
3393 >     */
3394 >    public double reduceToDoubleIn(long parallelismThreshold,
3395 >                                   ToDoubleBiFunction<? super K, ? super V> transformer,
3396 >                                   double basis,
3397 >                                   DoubleBinaryOperator reducer) {
3398 >        if (transformer == null || reducer == null)
3399 >            throw new NullPointerException();
3400 >        return new MapReduceMappingsToDoubleTask<K,V>
3401 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3402 >             null, transformer, basis, reducer).invoke();
3403 >    }
3404 >
3405 >    /**
3406 >     * Returns the result of accumulating the given transformation
3407 >     * of all (key, value) pairs using the given reducer to
3408 >     * combine values, and the given basis as an identity value.
3409 >     *
3410 >     * @param parallelismThreshold the (estimated) number of elements
3411 >     * needed for this operation to be executed in parallel
3412 >     * @param transformer a function returning the transformation
3413 >     * for an element
3414 >     * @param basis the identity (initial default value) for the reduction
3415 >     * @param reducer a commutative associative combining function
3416 >     * @return the result of accumulating the given transformation
3417 >     * of all (key, value) pairs
3418 >     * @since 1.8
3419 >     */
3420 >    public long reduceToLong(long parallelismThreshold,
3421 >                             ToLongBiFunction<? super K, ? super V> transformer,
3422 >                             long basis,
3423 >                             LongBinaryOperator reducer) {
3424 >        if (transformer == null || reducer == null)
3425 >            throw new NullPointerException();
3426 >        return new MapReduceMappingsToLongTask<K,V>
3427 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3428 >             null, transformer, basis, reducer).invoke();
3429 >    }
3430 >
3431 >    /**
3432 >     * Returns the result of accumulating the given transformation
3433 >     * of all (key, value) pairs using the given reducer to
3434 >     * combine values, and the given basis as an identity value.
3435 >     *
3436 >     * @param parallelismThreshold the (estimated) number of elements
3437 >     * needed for this operation to be executed in parallel
3438 >     * @param transformer a function returning the transformation
3439 >     * for an element
3440 >     * @param basis the identity (initial default value) for the reduction
3441 >     * @param reducer a commutative associative combining function
3442 >     * @return the result of accumulating the given transformation
3443 >     * of all (key, value) pairs
3444 >     * @since 1.8
3445 >     */
3446 >    public int reduceToInt(long parallelismThreshold,
3447 >                           ToIntBiFunction<? super K, ? super V> transformer,
3448 >                           int basis,
3449 >                           IntBinaryOperator reducer) {
3450 >        if (transformer == null || reducer == null)
3451 >            throw new NullPointerException();
3452 >        return new MapReduceMappingsToIntTask<K,V>
3453 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3454 >             null, transformer, basis, reducer).invoke();
3455 >    }
3456 >
3457 >    /**
3458 >     * Performs the given action for each key.
3459 >     *
3460 >     * @param parallelismThreshold the (estimated) number of elements
3461 >     * needed for this operation to be executed in parallel
3462 >     * @param action the action
3463 >     * @since 1.8
3464 >     */
3465 >    public void forEachKey(long parallelismThreshold,
3466 >                           Consumer<? super K> action) {
3467 >        if (action == null) throw new NullPointerException();
3468 >        new ForEachKeyTask<K,V>
3469 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3470 >             action).invoke();
3471      }
3472  
3473 <    private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
3474 <        public V next() { return super.nextEntry().value; }
3475 <        public V nextElement() { return super.nextEntry().value; }
3473 >    /**
3474 >     * Performs the given action for each non-null transformation
3475 >     * of each key.
3476 >     *
3477 >     * @param parallelismThreshold the (estimated) number of elements
3478 >     * needed for this operation to be executed in parallel
3479 >     * @param transformer a function returning the transformation
3480 >     * for an element, or null if there is no transformation (in
3481 >     * which case the action is not applied)
3482 >     * @param action the action
3483 >     * @since 1.8
3484 >     */
3485 >    public <U> void forEachKey(long parallelismThreshold,
3486 >                               Function<? super K, ? extends U> transformer,
3487 >                               Consumer<? super U> action) {
3488 >        if (transformer == null || action == null)
3489 >            throw new NullPointerException();
3490 >        new ForEachTransformedKeyTask<K,V,U>
3491 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3492 >             transformer, action).invoke();
3493      }
3494  
3495 <    
3495 >    /**
3496 >     * Returns a non-null result from applying the given search
3497 >     * function on each key, or null if none. Upon success,
3498 >     * further element processing is suppressed and the results of
3499 >     * any other parallel invocations of the search function are
3500 >     * ignored.
3501 >     *
3502 >     * @param parallelismThreshold the (estimated) number of elements
3503 >     * needed for this operation to be executed in parallel
3504 >     * @param searchFunction a function returning a non-null
3505 >     * result on success, else null
3506 >     * @return a non-null result from applying the given search
3507 >     * function on each key, or null if none
3508 >     * @since 1.8
3509 >     */
3510 >    public <U> U searchKeys(long parallelismThreshold,
3511 >                            Function<? super K, ? extends U> searchFunction) {
3512 >        if (searchFunction == null) throw new NullPointerException();
3513 >        return new SearchKeysTask<K,V,U>
3514 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3515 >             searchFunction, new AtomicReference<U>()).invoke();
3516 >    }
3517  
3518      /**
3519 <     * Exported Entry objects must write-through changes in setValue,
3520 <     * even if the nodes have been cloned. So we cannot return
3521 <     * internal HashEntry objects. Instead, the iterator itself acts
3522 <     * as a forwarding pseudo-entry.
3519 >     * Returns the result of accumulating all keys using the given
3520 >     * reducer to combine values, or null if none.
3521 >     *
3522 >     * @param parallelismThreshold the (estimated) number of elements
3523 >     * needed for this operation to be executed in parallel
3524 >     * @param reducer a commutative associative combining function
3525 >     * @return the result of accumulating all keys using the given
3526 >     * reducer to combine values, or null if none
3527 >     * @since 1.8
3528       */
3529 <    private class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
3530 <        public Map.Entry<K,V> next() {
3531 <            nextEntry();
3532 <            return this;
3529 >    public K reduceKeys(long parallelismThreshold,
3530 >                        BiFunction<? super K, ? super K, ? extends K> reducer) {
3531 >        if (reducer == null) throw new NullPointerException();
3532 >        return new ReduceKeysTask<K,V>
3533 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3534 >             null, reducer).invoke();
3535 >    }
3536 >
3537 >    /**
3538 >     * Returns the result of accumulating the given transformation
3539 >     * of all keys using the given reducer to combine values, or
3540 >     * null if none.
3541 >     *
3542 >     * @param parallelismThreshold the (estimated) number of elements
3543 >     * needed for this operation to be executed in parallel
3544 >     * @param transformer a function returning the transformation
3545 >     * for an element, or null if there is no transformation (in
3546 >     * which case it is not combined)
3547 >     * @param reducer a commutative associative combining function
3548 >     * @return the result of accumulating the given transformation
3549 >     * of all keys
3550 >     * @since 1.8
3551 >     */
3552 >    public <U> U reduceKeys(long parallelismThreshold,
3553 >                            Function<? super K, ? extends U> transformer,
3554 >         BiFunction<? super U, ? super U, ? extends U> reducer) {
3555 >        if (transformer == null || reducer == null)
3556 >            throw new NullPointerException();
3557 >        return new MapReduceKeysTask<K,V,U>
3558 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3559 >             null, transformer, reducer).invoke();
3560 >    }
3561 >
3562 >    /**
3563 >     * Returns the result of accumulating the given transformation
3564 >     * of all keys using the given reducer to combine values, and
3565 >     * the given basis as an identity value.
3566 >     *
3567 >     * @param parallelismThreshold the (estimated) number of elements
3568 >     * needed for this operation to be executed in parallel
3569 >     * @param transformer a function returning the transformation
3570 >     * for an element
3571 >     * @param basis the identity (initial default value) for the reduction
3572 >     * @param reducer a commutative associative combining function
3573 >     * @return the result of accumulating the given transformation
3574 >     * of all keys
3575 >     * @since 1.8
3576 >     */
3577 >    public double reduceKeysToDouble(long parallelismThreshold,
3578 >                                     ToDoubleFunction<? super K> transformer,
3579 >                                     double basis,
3580 >                                     DoubleBinaryOperator reducer) {
3581 >        if (transformer == null || reducer == null)
3582 >            throw new NullPointerException();
3583 >        return new MapReduceKeysToDoubleTask<K,V>
3584 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3585 >             null, transformer, basis, reducer).invoke();
3586 >    }
3587 >
3588 >    /**
3589 >     * Returns the result of accumulating the given transformation
3590 >     * of all keys using the given reducer to combine values, and
3591 >     * the given basis as an identity value.
3592 >     *
3593 >     * @param parallelismThreshold the (estimated) number of elements
3594 >     * needed for this operation to be executed in parallel
3595 >     * @param transformer a function returning the transformation
3596 >     * for an element
3597 >     * @param basis the identity (initial default value) for the reduction
3598 >     * @param reducer a commutative associative combining function
3599 >     * @return the result of accumulating the given transformation
3600 >     * of all keys
3601 >     * @since 1.8
3602 >     */
3603 >    public long reduceKeysToLong(long parallelismThreshold,
3604 >                                 ToLongFunction<? super K> transformer,
3605 >                                 long basis,
3606 >                                 LongBinaryOperator reducer) {
3607 >        if (transformer == null || reducer == null)
3608 >            throw new NullPointerException();
3609 >        return new MapReduceKeysToLongTask<K,V>
3610 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3611 >             null, transformer, basis, reducer).invoke();
3612 >    }
3613 >
3614 >    /**
3615 >     * Returns the result of accumulating the given transformation
3616 >     * of all keys using the given reducer to combine values, and
3617 >     * the given basis as an identity value.
3618 >     *
3619 >     * @param parallelismThreshold the (estimated) number of elements
3620 >     * needed for this operation to be executed in parallel
3621 >     * @param transformer a function returning the transformation
3622 >     * for an element
3623 >     * @param basis the identity (initial default value) for the reduction
3624 >     * @param reducer a commutative associative combining function
3625 >     * @return the result of accumulating the given transformation
3626 >     * of all keys
3627 >     * @since 1.8
3628 >     */
3629 >    public int reduceKeysToInt(long parallelismThreshold,
3630 >                               ToIntFunction<? super K> transformer,
3631 >                               int basis,
3632 >                               IntBinaryOperator reducer) {
3633 >        if (transformer == null || reducer == null)
3634 >            throw new NullPointerException();
3635 >        return new MapReduceKeysToIntTask<K,V>
3636 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3637 >             null, transformer, basis, reducer).invoke();
3638 >    }
3639 >
3640 >    /**
3641 >     * Performs the given action for each value.
3642 >     *
3643 >     * @param parallelismThreshold the (estimated) number of elements
3644 >     * needed for this operation to be executed in parallel
3645 >     * @param action the action
3646 >     * @since 1.8
3647 >     */
3648 >    public void forEachValue(long parallelismThreshold,
3649 >                             Consumer<? super V> action) {
3650 >        if (action == null)
3651 >            throw new NullPointerException();
3652 >        new ForEachValueTask<K,V>
3653 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3654 >             action).invoke();
3655 >    }
3656 >
3657 >    /**
3658 >     * Performs the given action for each non-null transformation
3659 >     * of each value.
3660 >     *
3661 >     * @param parallelismThreshold the (estimated) number of elements
3662 >     * needed for this operation to be executed in parallel
3663 >     * @param transformer a function returning the transformation
3664 >     * for an element, or null if there is no transformation (in
3665 >     * which case the action is not applied)
3666 >     * @param action the action
3667 >     * @since 1.8
3668 >     */
3669 >    public <U> void forEachValue(long parallelismThreshold,
3670 >                                 Function<? super V, ? extends U> transformer,
3671 >                                 Consumer<? super U> action) {
3672 >        if (transformer == null || action == null)
3673 >            throw new NullPointerException();
3674 >        new ForEachTransformedValueTask<K,V,U>
3675 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3676 >             transformer, action).invoke();
3677 >    }
3678 >
3679 >    /**
3680 >     * Returns a non-null result from applying the given search
3681 >     * function on each value, or null if none.  Upon success,
3682 >     * further element processing is suppressed and the results of
3683 >     * any other parallel invocations of the search function are
3684 >     * ignored.
3685 >     *
3686 >     * @param parallelismThreshold the (estimated) number of elements
3687 >     * needed for this operation to be executed in parallel
3688 >     * @param searchFunction a function returning a non-null
3689 >     * result on success, else null
3690 >     * @return a non-null result from applying the given search
3691 >     * function on each value, or null if none
3692 >     * @since 1.8
3693 >     */
3694 >    public <U> U searchValues(long parallelismThreshold,
3695 >                              Function<? super V, ? extends U> searchFunction) {
3696 >        if (searchFunction == null) throw new NullPointerException();
3697 >        return new SearchValuesTask<K,V,U>
3698 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3699 >             searchFunction, new AtomicReference<U>()).invoke();
3700 >    }
3701 >
3702 >    /**
3703 >     * Returns the result of accumulating all values using the
3704 >     * given reducer to combine values, or null if none.
3705 >     *
3706 >     * @param parallelismThreshold the (estimated) number of elements
3707 >     * needed for this operation to be executed in parallel
3708 >     * @param reducer a commutative associative combining function
3709 >     * @return the result of accumulating all values
3710 >     * @since 1.8
3711 >     */
3712 >    public V reduceValues(long parallelismThreshold,
3713 >                          BiFunction<? super V, ? super V, ? extends V> reducer) {
3714 >        if (reducer == null) throw new NullPointerException();
3715 >        return new ReduceValuesTask<K,V>
3716 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3717 >             null, reducer).invoke();
3718 >    }
3719 >
3720 >    /**
3721 >     * Returns the result of accumulating the given transformation
3722 >     * of all values using the given reducer to combine values, or
3723 >     * null if none.
3724 >     *
3725 >     * @param parallelismThreshold the (estimated) number of elements
3726 >     * needed for this operation to be executed in parallel
3727 >     * @param transformer a function returning the transformation
3728 >     * for an element, or null if there is no transformation (in
3729 >     * which case it is not combined)
3730 >     * @param reducer a commutative associative combining function
3731 >     * @return the result of accumulating the given transformation
3732 >     * of all values
3733 >     * @since 1.8
3734 >     */
3735 >    public <U> U reduceValues(long parallelismThreshold,
3736 >                              Function<? super V, ? extends U> transformer,
3737 >                              BiFunction<? super U, ? super U, ? extends U> reducer) {
3738 >        if (transformer == null || reducer == null)
3739 >            throw new NullPointerException();
3740 >        return new MapReduceValuesTask<K,V,U>
3741 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3742 >             null, transformer, reducer).invoke();
3743 >    }
3744 >
3745 >    /**
3746 >     * Returns the result of accumulating the given transformation
3747 >     * of all values using the given reducer to combine values,
3748 >     * and the given basis as an identity value.
3749 >     *
3750 >     * @param parallelismThreshold the (estimated) number of elements
3751 >     * needed for this operation to be executed in parallel
3752 >     * @param transformer a function returning the transformation
3753 >     * for an element
3754 >     * @param basis the identity (initial default value) for the reduction
3755 >     * @param reducer a commutative associative combining function
3756 >     * @return the result of accumulating the given transformation
3757 >     * of all values
3758 >     * @since 1.8
3759 >     */
3760 >    public double reduceValuesToDouble(long parallelismThreshold,
3761 >                                       ToDoubleFunction<? super V> transformer,
3762 >                                       double basis,
3763 >                                       DoubleBinaryOperator reducer) {
3764 >        if (transformer == null || reducer == null)
3765 >            throw new NullPointerException();
3766 >        return new MapReduceValuesToDoubleTask<K,V>
3767 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3768 >             null, transformer, basis, reducer).invoke();
3769 >    }
3770 >
3771 >    /**
3772 >     * Returns the result of accumulating the given transformation
3773 >     * of all values using the given reducer to combine values,
3774 >     * and the given basis as an identity value.
3775 >     *
3776 >     * @param parallelismThreshold the (estimated) number of elements
3777 >     * needed for this operation to be executed in parallel
3778 >     * @param transformer a function returning the transformation
3779 >     * for an element
3780 >     * @param basis the identity (initial default value) for the reduction
3781 >     * @param reducer a commutative associative combining function
3782 >     * @return the result of accumulating the given transformation
3783 >     * of all values
3784 >     * @since 1.8
3785 >     */
3786 >    public long reduceValuesToLong(long parallelismThreshold,
3787 >                                   ToLongFunction<? super V> transformer,
3788 >                                   long basis,
3789 >                                   LongBinaryOperator reducer) {
3790 >        if (transformer == null || reducer == null)
3791 >            throw new NullPointerException();
3792 >        return new MapReduceValuesToLongTask<K,V>
3793 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3794 >             null, transformer, basis, reducer).invoke();
3795 >    }
3796 >
3797 >    /**
3798 >     * Returns the result of accumulating the given transformation
3799 >     * of all values using the given reducer to combine values,
3800 >     * and the given basis as an identity value.
3801 >     *
3802 >     * @param parallelismThreshold the (estimated) number of elements
3803 >     * needed for this operation to be executed in parallel
3804 >     * @param transformer a function returning the transformation
3805 >     * for an element
3806 >     * @param basis the identity (initial default value) for the reduction
3807 >     * @param reducer a commutative associative combining function
3808 >     * @return the result of accumulating the given transformation
3809 >     * of all values
3810 >     * @since 1.8
3811 >     */
3812 >    public int reduceValuesToInt(long parallelismThreshold,
3813 >                                 ToIntFunction<? super V> transformer,
3814 >                                 int basis,
3815 >                                 IntBinaryOperator reducer) {
3816 >        if (transformer == null || reducer == null)
3817 >            throw new NullPointerException();
3818 >        return new MapReduceValuesToIntTask<K,V>
3819 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3820 >             null, transformer, basis, reducer).invoke();
3821 >    }
3822 >
3823 >    /**
3824 >     * Performs the given action for each entry.
3825 >     *
3826 >     * @param parallelismThreshold the (estimated) number of elements
3827 >     * needed for this operation to be executed in parallel
3828 >     * @param action the action
3829 >     * @since 1.8
3830 >     */
3831 >    public void forEachEntry(long parallelismThreshold,
3832 >                             Consumer<? super Map.Entry<K,V>> action) {
3833 >        if (action == null) throw new NullPointerException();
3834 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3835 >                                  action).invoke();
3836 >    }
3837 >
3838 >    /**
3839 >     * Performs the given action for each non-null transformation
3840 >     * of each entry.
3841 >     *
3842 >     * @param parallelismThreshold the (estimated) number of elements
3843 >     * needed for this operation to be executed in parallel
3844 >     * @param transformer a function returning the transformation
3845 >     * for an element, or null if there is no transformation (in
3846 >     * which case the action is not applied)
3847 >     * @param action the action
3848 >     * @since 1.8
3849 >     */
3850 >    public <U> void forEachEntry(long parallelismThreshold,
3851 >                                 Function<Map.Entry<K,V>, ? extends U> transformer,
3852 >                                 Consumer<? super U> action) {
3853 >        if (transformer == null || action == null)
3854 >            throw new NullPointerException();
3855 >        new ForEachTransformedEntryTask<K,V,U>
3856 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3857 >             transformer, action).invoke();
3858 >    }
3859 >
3860 >    /**
3861 >     * Returns a non-null result from applying the given search
3862 >     * function on each entry, or null if none.  Upon success,
3863 >     * further element processing is suppressed and the results of
3864 >     * any other parallel invocations of the search function are
3865 >     * ignored.
3866 >     *
3867 >     * @param parallelismThreshold the (estimated) number of elements
3868 >     * needed for this operation to be executed in parallel
3869 >     * @param searchFunction a function returning a non-null
3870 >     * result on success, else null
3871 >     * @return a non-null result from applying the given search
3872 >     * function on each entry, or null if none
3873 >     * @since 1.8
3874 >     */
3875 >    public <U> U searchEntries(long parallelismThreshold,
3876 >                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3877 >        if (searchFunction == null) throw new NullPointerException();
3878 >        return new SearchEntriesTask<K,V,U>
3879 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3880 >             searchFunction, new AtomicReference<U>()).invoke();
3881 >    }
3882 >
3883 >    /**
3884 >     * Returns the result of accumulating all entries using the
3885 >     * given reducer to combine values, or null if none.
3886 >     *
3887 >     * @param parallelismThreshold the (estimated) number of elements
3888 >     * needed for this operation to be executed in parallel
3889 >     * @param reducer a commutative associative combining function
3890 >     * @return the result of accumulating all entries
3891 >     * @since 1.8
3892 >     */
3893 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
3894 >                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3895 >        if (reducer == null) throw new NullPointerException();
3896 >        return new ReduceEntriesTask<K,V>
3897 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3898 >             null, reducer).invoke();
3899 >    }
3900 >
3901 >    /**
3902 >     * Returns the result of accumulating the given transformation
3903 >     * of all entries using the given reducer to combine values,
3904 >     * or null if none.
3905 >     *
3906 >     * @param parallelismThreshold the (estimated) number of elements
3907 >     * needed for this operation to be executed in parallel
3908 >     * @param transformer a function returning the transformation
3909 >     * for an element, or null if there is no transformation (in
3910 >     * which case it is not combined)
3911 >     * @param reducer a commutative associative combining function
3912 >     * @return the result of accumulating the given transformation
3913 >     * of all entries
3914 >     * @since 1.8
3915 >     */
3916 >    public <U> U reduceEntries(long parallelismThreshold,
3917 >                               Function<Map.Entry<K,V>, ? extends U> transformer,
3918 >                               BiFunction<? super U, ? super U, ? extends U> reducer) {
3919 >        if (transformer == null || reducer == null)
3920 >            throw new NullPointerException();
3921 >        return new MapReduceEntriesTask<K,V,U>
3922 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3923 >             null, transformer, reducer).invoke();
3924 >    }
3925 >
3926 >    /**
3927 >     * Returns the result of accumulating the given transformation
3928 >     * of all entries using the given reducer to combine values,
3929 >     * and the given basis as an identity value.
3930 >     *
3931 >     * @param parallelismThreshold the (estimated) number of elements
3932 >     * needed for this operation to be executed in parallel
3933 >     * @param transformer a function returning the transformation
3934 >     * for an element
3935 >     * @param basis the identity (initial default value) for the reduction
3936 >     * @param reducer a commutative associative combining function
3937 >     * @return the result of accumulating the given transformation
3938 >     * of all entries
3939 >     * @since 1.8
3940 >     */
3941 >    public double reduceEntriesToDouble(long parallelismThreshold,
3942 >                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
3943 >                                        double basis,
3944 >                                        DoubleBinaryOperator reducer) {
3945 >        if (transformer == null || reducer == null)
3946 >            throw new NullPointerException();
3947 >        return new MapReduceEntriesToDoubleTask<K,V>
3948 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3949 >             null, transformer, basis, reducer).invoke();
3950 >    }
3951 >
3952 >    /**
3953 >     * Returns the result of accumulating the given transformation
3954 >     * of all entries using the given reducer to combine values,
3955 >     * and the given basis as an identity value.
3956 >     *
3957 >     * @param parallelismThreshold the (estimated) number of elements
3958 >     * needed for this operation to be executed in parallel
3959 >     * @param transformer a function returning the transformation
3960 >     * for an element
3961 >     * @param basis the identity (initial default value) for the reduction
3962 >     * @param reducer a commutative associative combining function
3963 >     * @return the result of accumulating the given transformation
3964 >     * of all entries
3965 >     * @since 1.8
3966 >     */
3967 >    public long reduceEntriesToLong(long parallelismThreshold,
3968 >                                    ToLongFunction<Map.Entry<K,V>> transformer,
3969 >                                    long basis,
3970 >                                    LongBinaryOperator reducer) {
3971 >        if (transformer == null || reducer == null)
3972 >            throw new NullPointerException();
3973 >        return new MapReduceEntriesToLongTask<K,V>
3974 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3975 >             null, transformer, basis, reducer).invoke();
3976 >    }
3977 >
3978 >    /**
3979 >     * Returns the result of accumulating the given transformation
3980 >     * of all entries using the given reducer to combine values,
3981 >     * and the given basis as an identity value.
3982 >     *
3983 >     * @param parallelismThreshold the (estimated) number of elements
3984 >     * needed for this operation to be executed in parallel
3985 >     * @param transformer a function returning the transformation
3986 >     * for an element
3987 >     * @param basis the identity (initial default value) for the reduction
3988 >     * @param reducer a commutative associative combining function
3989 >     * @return the result of accumulating the given transformation
3990 >     * of all entries
3991 >     * @since 1.8
3992 >     */
3993 >    public int reduceEntriesToInt(long parallelismThreshold,
3994 >                                  ToIntFunction<Map.Entry<K,V>> transformer,
3995 >                                  int basis,
3996 >                                  IntBinaryOperator reducer) {
3997 >        if (transformer == null || reducer == null)
3998 >            throw new NullPointerException();
3999 >        return new MapReduceEntriesToIntTask<K,V>
4000 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4001 >             null, transformer, basis, reducer).invoke();
4002 >    }
4003 >
4004 >
4005 >    /* ----------------Views -------------- */
4006 >
4007 >    /**
4008 >     * Base class for views.
4009 >     */
4010 >    abstract static class CollectionView<K,V,E>
4011 >        implements Collection<E>, java.io.Serializable {
4012 >        private static final long serialVersionUID = 7249069246763182397L;
4013 >        final ConcurrentHashMap<K,V> map;
4014 >        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4015 >
4016 >        /**
4017 >         * Returns the map backing this view.
4018 >         *
4019 >         * @return the map backing this view
4020 >         */
4021 >        public ConcurrentHashMap<K,V> getMap() { return map; }
4022 >
4023 >        /**
4024 >         * Removes all of the elements from this view, by removing all
4025 >         * the mappings from the map backing this view.
4026 >         */
4027 >        public final void clear()      { map.clear(); }
4028 >        public final int size()        { return map.size(); }
4029 >        public final boolean isEmpty() { return map.isEmpty(); }
4030 >
4031 >        // implementations below rely on concrete classes supplying these
4032 >        // abstract methods
4033 >        /**
4034 >         * Returns a "weakly consistent" iterator that will never
4035 >         * throw {@link ConcurrentModificationException}, and
4036 >         * guarantees to traverse elements as they existed upon
4037 >         * construction of the iterator, and may (but is not
4038 >         * guaranteed to) reflect any modifications subsequent to
4039 >         * construction.
4040 >         */
4041 >        public abstract Iterator<E> iterator();
4042 >        public abstract boolean contains(Object o);
4043 >        public abstract boolean remove(Object o);
4044 >
4045 >        private static final String oomeMsg = "Required array size too large";
4046 >
4047 >        public final Object[] toArray() {
4048 >            long sz = map.mappingCount();
4049 >            if (sz > MAX_ARRAY_SIZE)
4050 >                throw new OutOfMemoryError(oomeMsg);
4051 >            int n = (int)sz;
4052 >            Object[] r = new Object[n];
4053 >            int i = 0;
4054 >            for (E e : this) {
4055 >                if (i == n) {
4056 >                    if (n >= MAX_ARRAY_SIZE)
4057 >                        throw new OutOfMemoryError(oomeMsg);
4058 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4059 >                        n = MAX_ARRAY_SIZE;
4060 >                    else
4061 >                        n += (n >>> 1) + 1;
4062 >                    r = Arrays.copyOf(r, n);
4063 >                }
4064 >                r[i++] = e;
4065 >            }
4066 >            return (i == n) ? r : Arrays.copyOf(r, i);
4067          }
4068  
4069 <        public K getKey() {
4070 <            if (lastReturned == null)
4071 <                throw new IllegalStateException("Entry was removed");
4072 <            return lastReturned.key;
4069 >        public final <T> T[] toArray(T[] a) {
4070 >            long sz = map.mappingCount();
4071 >            if (sz > MAX_ARRAY_SIZE)
4072 >                throw new OutOfMemoryError(oomeMsg);
4073 >            int m = (int)sz;
4074 >            T[] r = (a.length >= m) ? a :
4075 >                (T[])java.lang.reflect.Array
4076 >                .newInstance(a.getClass().getComponentType(), m);
4077 >            int n = r.length;
4078 >            int i = 0;
4079 >            for (E e : this) {
4080 >                if (i == n) {
4081 >                    if (n >= MAX_ARRAY_SIZE)
4082 >                        throw new OutOfMemoryError(oomeMsg);
4083 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4084 >                        n = MAX_ARRAY_SIZE;
4085 >                    else
4086 >                        n += (n >>> 1) + 1;
4087 >                    r = Arrays.copyOf(r, n);
4088 >                }
4089 >                r[i++] = (T)e;
4090 >            }
4091 >            if (a == r && i < n) {
4092 >                r[i] = null; // null-terminate
4093 >                return r;
4094 >            }
4095 >            return (i == n) ? r : Arrays.copyOf(r, i);
4096          }
4097  
4098 <        public V getValue() {
4099 <            if (lastReturned == null)
4100 <                throw new IllegalStateException("Entry was removed");
4101 <            return ConcurrentHashMap.this.get(lastReturned.key);
4098 >        /**
4099 >         * Returns a string representation of this collection.
4100 >         * The string representation consists of the string representations
4101 >         * of the collection's elements in the order they are returned by
4102 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4103 >         * Adjacent elements are separated by the characters {@code ", "}
4104 >         * (comma and space).  Elements are converted to strings as by
4105 >         * {@link String#valueOf(Object)}.
4106 >         *
4107 >         * @return a string representation of this collection
4108 >         */
4109 >        public final String toString() {
4110 >            StringBuilder sb = new StringBuilder();
4111 >            sb.append('[');
4112 >            Iterator<E> it = iterator();
4113 >            if (it.hasNext()) {
4114 >                for (;;) {
4115 >                    Object e = it.next();
4116 >                    sb.append(e == this ? "(this Collection)" : e);
4117 >                    if (!it.hasNext())
4118 >                        break;
4119 >                    sb.append(',').append(' ');
4120 >                }
4121 >            }
4122 >            return sb.append(']').toString();
4123          }
4124  
4125 <        public V setValue(V value) {
4126 <            if (lastReturned == null)
4127 <                throw new IllegalStateException("Entry was removed");
4128 <            return ConcurrentHashMap.this.put(lastReturned.key, value);
4125 >        public final boolean containsAll(Collection<?> c) {
4126 >            if (c != this) {
4127 >                for (Object e : c) {
4128 >                    if (e == null || !contains(e))
4129 >                        return false;
4130 >                }
4131 >            }
4132 >            return true;
4133          }
4134  
4135 <        public boolean equals(Object o) {
4136 <            if (!(o instanceof Map.Entry))
4137 <                return false;
4138 <            Map.Entry e = (Map.Entry)o;
4139 <            return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
4140 <        }
4135 >        public final boolean removeAll(Collection<?> c) {
4136 >            boolean modified = false;
4137 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4138 >                if (c.contains(it.next())) {
4139 >                    it.remove();
4140 >                    modified = true;
4141 >                }
4142 >            }
4143 >            return modified;
4144 >        }
4145  
4146 <        public int hashCode() {
4147 <            Object k = getKey();
4148 <            Object v = getValue();
4149 <            return ((k == null) ? 0 : k.hashCode()) ^
4150 <                   ((v == null) ? 0 : v.hashCode());
4146 >        public final boolean retainAll(Collection<?> c) {
4147 >            boolean modified = false;
4148 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4149 >                if (!c.contains(it.next())) {
4150 >                    it.remove();
4151 >                    modified = true;
4152 >                }
4153 >            }
4154 >            return modified;
4155          }
4156  
4157 <        public String toString() {
4158 <            return getKey() + "=" + getValue();
4157 >    }
4158 >
4159 >    /**
4160 >     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4161 >     * which additions may optionally be enabled by mapping to a
4162 >     * common value.  This class cannot be directly instantiated.
4163 >     * See {@link #keySet() keySet()},
4164 >     * {@link #keySet(Object) keySet(V)},
4165 >     * {@link #newKeySet() newKeySet()},
4166 >     * {@link #newKeySet(int) newKeySet(int)}.
4167 >     *
4168 >     * @since 1.8
4169 >     */
4170 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4171 >        implements Set<K>, java.io.Serializable {
4172 >        private static final long serialVersionUID = 7249069246763182397L;
4173 >        private final V value;
4174 >        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4175 >            super(map);
4176 >            this.value = value;
4177 >        }
4178 >
4179 >        /**
4180 >         * Returns the default mapped value for additions,
4181 >         * or {@code null} if additions are not supported.
4182 >         *
4183 >         * @return the default mapped value for additions, or {@code null}
4184 >         * if not supported
4185 >         */
4186 >        public V getMappedValue() { return value; }
4187 >
4188 >        /**
4189 >         * {@inheritDoc}
4190 >         * @throws NullPointerException if the specified key is null
4191 >         */
4192 >        public boolean contains(Object o) { return map.containsKey(o); }
4193 >
4194 >        /**
4195 >         * Removes the key from this map view, by removing the key (and its
4196 >         * corresponding value) from the backing map.  This method does
4197 >         * nothing if the key is not in the map.
4198 >         *
4199 >         * @param  o the key to be removed from the backing map
4200 >         * @return {@code true} if the backing map contained the specified key
4201 >         * @throws NullPointerException if the specified key is null
4202 >         */
4203 >        public boolean remove(Object o) { return map.remove(o) != null; }
4204 >
4205 >        /**
4206 >         * @return an iterator over the keys of the backing map
4207 >         */
4208 >        public Iterator<K> iterator() {
4209 >            Node<K,V>[] t;
4210 >            ConcurrentHashMap<K,V> m = map;
4211 >            int f = (t = m.table) == null ? 0 : t.length;
4212 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4213 >        }
4214 >
4215 >        /**
4216 >         * Adds the specified key to this set view by mapping the key to
4217 >         * the default mapped value in the backing map, if defined.
4218 >         *
4219 >         * @param e key to be added
4220 >         * @return {@code true} if this set changed as a result of the call
4221 >         * @throws NullPointerException if the specified key is null
4222 >         * @throws UnsupportedOperationException if no default mapped value
4223 >         * for additions was provided
4224 >         */
4225 >        public boolean add(K e) {
4226 >            V v;
4227 >            if ((v = value) == null)
4228 >                throw new UnsupportedOperationException();
4229 >            return map.internalPut(e, v, true) == null;
4230 >        }
4231 >
4232 >        /**
4233 >         * Adds all of the elements in the specified collection to this set,
4234 >         * as if by calling {@link #add} on each one.
4235 >         *
4236 >         * @param c the elements to be inserted into this set
4237 >         * @return {@code true} if this set changed as a result of the call
4238 >         * @throws NullPointerException if the collection or any of its
4239 >         * elements are {@code null}
4240 >         * @throws UnsupportedOperationException if no default mapped value
4241 >         * for additions was provided
4242 >         */
4243 >        public boolean addAll(Collection<? extends K> c) {
4244 >            boolean added = false;
4245 >            V v;
4246 >            if ((v = value) == null)
4247 >                throw new UnsupportedOperationException();
4248 >            for (K e : c) {
4249 >                if (map.internalPut(e, v, true) == null)
4250 >                    added = true;
4251 >            }
4252 >            return added;
4253          }
4254  
4255 <        private boolean eq(Object o1, Object o2) {
4256 <            return (o1 == null ? o2 == null : o1.equals(o2));
4255 >        public int hashCode() {
4256 >            int h = 0;
4257 >            for (K e : this)
4258 >                h += e.hashCode();
4259 >            return h;
4260          }
4261  
4262 +        public boolean equals(Object o) {
4263 +            Set<?> c;
4264 +            return ((o instanceof Set) &&
4265 +                    ((c = (Set<?>)o) == this ||
4266 +                     (containsAll(c) && c.containsAll(this))));
4267 +        }
4268 +
4269 +        public Spliterator<K> spliterator() {
4270 +            Node<K,V>[] t;
4271 +            ConcurrentHashMap<K,V> m = map;
4272 +            long n = m.sumCount();
4273 +            int f = (t = m.table) == null ? 0 : t.length;
4274 +            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4275 +        }
4276 +
4277 +        public void forEach(Consumer<? super K> action) {
4278 +            if (action == null) throw new NullPointerException();
4279 +            Node<K,V>[] t;
4280 +            if ((t = map.table) != null) {
4281 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4282 +                for (Node<K,V> p; (p = it.advance()) != null; )
4283 +                    action.accept((K)p.key);
4284 +            }
4285 +        }
4286      }
4287  
4288 <    private class KeySet extends AbstractSet<K> {
4289 <        public Iterator<K> iterator() {
4290 <            return new KeyIterator();
4288 >    /**
4289 >     * A view of a ConcurrentHashMap as a {@link Collection} of
4290 >     * values, in which additions are disabled. This class cannot be
4291 >     * directly instantiated. See {@link #values()}.
4292 >     */
4293 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4294 >        implements Collection<V>, java.io.Serializable {
4295 >        private static final long serialVersionUID = 2249069246763182397L;
4296 >        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4297 >        public final boolean contains(Object o) {
4298 >            return map.containsValue(o);
4299 >        }
4300 >
4301 >        public final boolean remove(Object o) {
4302 >            if (o != null) {
4303 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4304 >                    if (o.equals(it.next())) {
4305 >                        it.remove();
4306 >                        return true;
4307 >                    }
4308 >                }
4309 >            }
4310 >            return false;
4311          }
4312 <        public int size() {
4313 <            return ConcurrentHashMap.this.size();
4312 >
4313 >        public final Iterator<V> iterator() {
4314 >            ConcurrentHashMap<K,V> m = map;
4315 >            Node<K,V>[] t;
4316 >            int f = (t = m.table) == null ? 0 : t.length;
4317 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4318 >        }
4319 >
4320 >        public final boolean add(V e) {
4321 >            throw new UnsupportedOperationException();
4322 >        }
4323 >        public final boolean addAll(Collection<? extends V> c) {
4324 >            throw new UnsupportedOperationException();
4325 >        }
4326 >
4327 >        public Spliterator<V> spliterator() {
4328 >            Node<K,V>[] t;
4329 >            ConcurrentHashMap<K,V> m = map;
4330 >            long n = m.sumCount();
4331 >            int f = (t = m.table) == null ? 0 : t.length;
4332 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4333 >        }
4334 >
4335 >        public void forEach(Consumer<? super V> action) {
4336 >            if (action == null) throw new NullPointerException();
4337 >            Node<K,V>[] t;
4338 >            if ((t = map.table) != null) {
4339 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4340 >                for (Node<K,V> p; (p = it.advance()) != null; )
4341 >                    action.accept(p.val);
4342 >            }
4343          }
4344 +    }
4345 +
4346 +    /**
4347 +     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4348 +     * entries.  This class cannot be directly instantiated. See
4349 +     * {@link #entrySet()}.
4350 +     */
4351 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4352 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4353 +        private static final long serialVersionUID = 2249069246763182397L;
4354 +        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4355 +
4356          public boolean contains(Object o) {
4357 <            return ConcurrentHashMap.this.containsKey(o);
4357 >            Object k, v, r; Map.Entry<?,?> e;
4358 >            return ((o instanceof Map.Entry) &&
4359 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4360 >                    (r = map.get(k)) != null &&
4361 >                    (v = e.getValue()) != null &&
4362 >                    (v == r || v.equals(r)));
4363          }
4364 +
4365          public boolean remove(Object o) {
4366 <            return ConcurrentHashMap.this.remove(o) != null;
4366 >            Object k, v; Map.Entry<?,?> e;
4367 >            return ((o instanceof Map.Entry) &&
4368 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4369 >                    (v = e.getValue()) != null &&
4370 >                    map.remove(k, v));
4371 >        }
4372 >
4373 >        /**
4374 >         * @return an iterator over the entries of the backing map
4375 >         */
4376 >        public Iterator<Map.Entry<K,V>> iterator() {
4377 >            ConcurrentHashMap<K,V> m = map;
4378 >            Node<K,V>[] t;
4379 >            int f = (t = m.table) == null ? 0 : t.length;
4380 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4381          }
4382 <        public void clear() {
4383 <            ConcurrentHashMap.this.clear();
4382 >
4383 >        public boolean add(Entry<K,V> e) {
4384 >            return map.internalPut(e.getKey(), e.getValue(), false) == null;
4385 >        }
4386 >
4387 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4388 >            boolean added = false;
4389 >            for (Entry<K,V> e : c) {
4390 >                if (add(e))
4391 >                    added = true;
4392 >            }
4393 >            return added;
4394 >        }
4395 >
4396 >        public final int hashCode() {
4397 >            int h = 0;
4398 >            Node<K,V>[] t;
4399 >            if ((t = map.table) != null) {
4400 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4401 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4402 >                    h += p.hashCode();
4403 >                }
4404 >            }
4405 >            return h;
4406          }
4407 +
4408 +        public final boolean equals(Object o) {
4409 +            Set<?> c;
4410 +            return ((o instanceof Set) &&
4411 +                    ((c = (Set<?>)o) == this ||
4412 +                     (containsAll(c) && c.containsAll(this))));
4413 +        }
4414 +
4415 +        public Spliterator<Map.Entry<K,V>> spliterator() {
4416 +            Node<K,V>[] t;
4417 +            ConcurrentHashMap<K,V> m = map;
4418 +            long n = m.sumCount();
4419 +            int f = (t = m.table) == null ? 0 : t.length;
4420 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4421 +        }
4422 +
4423 +        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4424 +            if (action == null) throw new NullPointerException();
4425 +            Node<K,V>[] t;
4426 +            if ((t = map.table) != null) {
4427 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4428 +                for (Node<K,V> p; (p = it.advance()) != null; )
4429 +                    action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
4430 +            }
4431 +        }
4432 +
4433      }
4434  
4435 <    private class Values extends AbstractCollection<V> {
4436 <        public Iterator<V> iterator() {
4437 <            return new ValueIterator();
4435 >    // -------------------------------------------------------
4436 >
4437 >    /**
4438 >     * Base class for bulk tasks. Repeats some fields and code from
4439 >     * class Traverser, because we need to subclass CountedCompleter.
4440 >     */
4441 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4442 >        Node<K,V>[] tab;        // same as Traverser
4443 >        Node<K,V> next;
4444 >        int index;
4445 >        int baseIndex;
4446 >        int baseLimit;
4447 >        final int baseSize;
4448 >        int batch;              // split control
4449 >
4450 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4451 >            super(par);
4452 >            this.batch = b;
4453 >            this.index = this.baseIndex = i;
4454 >            if ((this.tab = t) == null)
4455 >                this.baseSize = this.baseLimit = 0;
4456 >            else if (par == null)
4457 >                this.baseSize = this.baseLimit = t.length;
4458 >            else {
4459 >                this.baseLimit = f;
4460 >                this.baseSize = par.baseSize;
4461 >            }
4462          }
4463 <        public int size() {
4464 <            return ConcurrentHashMap.this.size();
4463 >
4464 >        /**
4465 >         * Same as Traverser version
4466 >         */
4467 >        final Node<K,V> advance() {
4468 >            Node<K,V> e;
4469 >            if ((e = next) != null)
4470 >                e = e.next;
4471 >            for (;;) {
4472 >                Node<K,V>[] t; int i, n; Object ek;
4473 >                if (e != null)
4474 >                    return next = e;
4475 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4476 >                    (n = t.length) <= (i = index) || i < 0)
4477 >                    return next = null;
4478 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4479 >                    if ((ek = e.key) instanceof TreeBin)
4480 >                        e = ((TreeBin<K,V>)ek).first;
4481 >                    else {
4482 >                        tab = (Node<K,V>[])ek;
4483 >                        e = null;
4484 >                        continue;
4485 >                    }
4486 >                }
4487 >                if ((index += baseSize) >= n)
4488 >                    index = ++baseIndex;
4489 >            }
4490          }
4491 <        public boolean contains(Object o) {
4492 <            return ConcurrentHashMap.this.containsValue(o);
4491 >    }
4492 >
4493 >    /*
4494 >     * Task classes. Coded in a regular but ugly format/style to
4495 >     * simplify checks that each variant differs in the right way from
4496 >     * others. The null screenings exist because compilers cannot tell
4497 >     * that we've already null-checked task arguments, so we force
4498 >     * simplest hoisted bypass to help avoid convoluted traps.
4499 >     */
4500 >
4501 >    static final class ForEachKeyTask<K,V>
4502 >        extends BulkTask<K,V,Void> {
4503 >        final Consumer<? super K> action;
4504 >        ForEachKeyTask
4505 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4506 >             Consumer<? super K> action) {
4507 >            super(p, b, i, f, t);
4508 >            this.action = action;
4509 >        }
4510 >        public final void compute() {
4511 >            final Consumer<? super K> action;
4512 >            if ((action = this.action) != null) {
4513 >                for (int i = baseIndex, f, h; batch > 0 &&
4514 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4515 >                    addToPendingCount(1);
4516 >                    new ForEachKeyTask<K,V>
4517 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4518 >                         action).fork();
4519 >                }
4520 >                for (Node<K,V> p; (p = advance()) != null;)
4521 >                    action.accept((K)p.key);
4522 >                propagateCompletion();
4523 >            }
4524          }
4525 <        public void clear() {
4526 <            ConcurrentHashMap.this.clear();
4525 >    }
4526 >
4527 >    static final class ForEachValueTask<K,V>
4528 >        extends BulkTask<K,V,Void> {
4529 >        final Consumer<? super V> action;
4530 >        ForEachValueTask
4531 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4532 >             Consumer<? super V> action) {
4533 >            super(p, b, i, f, t);
4534 >            this.action = action;
4535 >        }
4536 >        public final void compute() {
4537 >            final Consumer<? super V> action;
4538 >            if ((action = this.action) != null) {
4539 >                for (int i = baseIndex, f, h; batch > 0 &&
4540 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4541 >                    addToPendingCount(1);
4542 >                    new ForEachValueTask<K,V>
4543 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4544 >                         action).fork();
4545 >                }
4546 >                for (Node<K,V> p; (p = advance()) != null;)
4547 >                    action.accept(p.val);
4548 >                propagateCompletion();
4549 >            }
4550          }
4551      }
4552  
4553 <    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
4554 <        public Iterator<Map.Entry<K,V>> iterator() {
4555 <            return new EntryIterator();
4553 >    static final class ForEachEntryTask<K,V>
4554 >        extends BulkTask<K,V,Void> {
4555 >        final Consumer<? super Entry<K,V>> action;
4556 >        ForEachEntryTask
4557 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4558 >             Consumer<? super Entry<K,V>> action) {
4559 >            super(p, b, i, f, t);
4560 >            this.action = action;
4561 >        }
4562 >        public final void compute() {
4563 >            final Consumer<? super Entry<K,V>> action;
4564 >            if ((action = this.action) != null) {
4565 >                for (int i = baseIndex, f, h; batch > 0 &&
4566 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4567 >                    addToPendingCount(1);
4568 >                    new ForEachEntryTask<K,V>
4569 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4570 >                         action).fork();
4571 >                }
4572 >                for (Node<K,V> p; (p = advance()) != null; )
4573 >                    action.accept(p);
4574 >                propagateCompletion();
4575 >            }
4576          }
4577 <        public boolean contains(Object o) {
4578 <            if (!(o instanceof Map.Entry))
4579 <                return false;
4580 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
4581 <            V v = ConcurrentHashMap.this.get(e.getKey());
4582 <            return v != null && v.equals(e.getValue());
4577 >    }
4578 >
4579 >    static final class ForEachMappingTask<K,V>
4580 >        extends BulkTask<K,V,Void> {
4581 >        final BiConsumer<? super K, ? super V> action;
4582 >        ForEachMappingTask
4583 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4584 >             BiConsumer<? super K,? super V> action) {
4585 >            super(p, b, i, f, t);
4586 >            this.action = action;
4587 >        }
4588 >        public final void compute() {
4589 >            final BiConsumer<? super K, ? super V> action;
4590 >            if ((action = this.action) != null) {
4591 >                for (int i = baseIndex, f, h; batch > 0 &&
4592 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4593 >                    addToPendingCount(1);
4594 >                    new ForEachMappingTask<K,V>
4595 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4596 >                         action).fork();
4597 >                }
4598 >                for (Node<K,V> p; (p = advance()) != null; )
4599 >                    action.accept((K)p.key, p.val);
4600 >                propagateCompletion();
4601 >            }
4602          }
4603 <        public boolean remove(Object o) {
4604 <            if (!(o instanceof Map.Entry))
4605 <                return false;
4606 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
4607 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
4603 >    }
4604 >
4605 >    static final class ForEachTransformedKeyTask<K,V,U>
4606 >        extends BulkTask<K,V,Void> {
4607 >        final Function<? super K, ? extends U> transformer;
4608 >        final Consumer<? super U> action;
4609 >        ForEachTransformedKeyTask
4610 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4611 >             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4612 >            super(p, b, i, f, t);
4613 >            this.transformer = transformer; this.action = action;
4614 >        }
4615 >        public final void compute() {
4616 >            final Function<? super K, ? extends U> transformer;
4617 >            final Consumer<? super U> action;
4618 >            if ((transformer = this.transformer) != null &&
4619 >                (action = this.action) != null) {
4620 >                for (int i = baseIndex, f, h; batch > 0 &&
4621 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4622 >                    addToPendingCount(1);
4623 >                    new ForEachTransformedKeyTask<K,V,U>
4624 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4625 >                         transformer, action).fork();
4626 >                }
4627 >                for (Node<K,V> p; (p = advance()) != null; ) {
4628 >                    U u;
4629 >                    if ((u = transformer.apply((K)p.key)) != null)
4630 >                        action.accept(u);
4631 >                }
4632 >                propagateCompletion();
4633 >            }
4634          }
4635 <        public int size() {
4636 <            return ConcurrentHashMap.this.size();
4635 >    }
4636 >
4637 >    static final class ForEachTransformedValueTask<K,V,U>
4638 >        extends BulkTask<K,V,Void> {
4639 >        final Function<? super V, ? extends U> transformer;
4640 >        final Consumer<? super U> action;
4641 >        ForEachTransformedValueTask
4642 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4643 >             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4644 >            super(p, b, i, f, t);
4645 >            this.transformer = transformer; this.action = action;
4646 >        }
4647 >        public final void compute() {
4648 >            final Function<? super V, ? extends U> transformer;
4649 >            final Consumer<? super U> action;
4650 >            if ((transformer = this.transformer) != null &&
4651 >                (action = this.action) != null) {
4652 >                for (int i = baseIndex, f, h; batch > 0 &&
4653 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4654 >                    addToPendingCount(1);
4655 >                    new ForEachTransformedValueTask<K,V,U>
4656 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4657 >                         transformer, action).fork();
4658 >                }
4659 >                for (Node<K,V> p; (p = advance()) != null; ) {
4660 >                    U u;
4661 >                    if ((u = transformer.apply(p.val)) != null)
4662 >                        action.accept(u);
4663 >                }
4664 >                propagateCompletion();
4665 >            }
4666          }
4667 <        public void clear() {
4668 <            ConcurrentHashMap.this.clear();
4667 >    }
4668 >
4669 >    static final class ForEachTransformedEntryTask<K,V,U>
4670 >        extends BulkTask<K,V,Void> {
4671 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
4672 >        final Consumer<? super U> action;
4673 >        ForEachTransformedEntryTask
4674 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4675 >             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4676 >            super(p, b, i, f, t);
4677 >            this.transformer = transformer; this.action = action;
4678 >        }
4679 >        public final void compute() {
4680 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
4681 >            final Consumer<? super U> action;
4682 >            if ((transformer = this.transformer) != null &&
4683 >                (action = this.action) != null) {
4684 >                for (int i = baseIndex, f, h; batch > 0 &&
4685 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4686 >                    addToPendingCount(1);
4687 >                    new ForEachTransformedEntryTask<K,V,U>
4688 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4689 >                         transformer, action).fork();
4690 >                }
4691 >                for (Node<K,V> p; (p = advance()) != null; ) {
4692 >                    U u;
4693 >                    if ((u = transformer.apply(p)) != null)
4694 >                        action.accept(u);
4695 >                }
4696 >                propagateCompletion();
4697 >            }
4698          }
4699 <        public Object[] toArray() {
4700 <            // Since we don't ordinarily have distinct Entry objects, we
4701 <            // must pack elements using exportable SimpleEntry
4702 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4703 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
4704 <                c.add(new SimpleEntry<K,V>(i.next()));
4705 <            return c.toArray();
4699 >    }
4700 >
4701 >    static final class ForEachTransformedMappingTask<K,V,U>
4702 >        extends BulkTask<K,V,Void> {
4703 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
4704 >        final Consumer<? super U> action;
4705 >        ForEachTransformedMappingTask
4706 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4707 >             BiFunction<? super K, ? super V, ? extends U> transformer,
4708 >             Consumer<? super U> action) {
4709 >            super(p, b, i, f, t);
4710 >            this.transformer = transformer; this.action = action;
4711 >        }
4712 >        public final void compute() {
4713 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
4714 >            final Consumer<? super U> action;
4715 >            if ((transformer = this.transformer) != null &&
4716 >                (action = this.action) != null) {
4717 >                for (int i = baseIndex, f, h; batch > 0 &&
4718 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4719 >                    addToPendingCount(1);
4720 >                    new ForEachTransformedMappingTask<K,V,U>
4721 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4722 >                         transformer, action).fork();
4723 >                }
4724 >                for (Node<K,V> p; (p = advance()) != null; ) {
4725 >                    U u;
4726 >                    if ((u = transformer.apply((K)p.key, p.val)) != null)
4727 >                        action.accept(u);
4728 >                }
4729 >                propagateCompletion();
4730 >            }
4731          }
4732 <        public <T> T[] toArray(T[] a) {
4733 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4734 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
4735 <                c.add(new SimpleEntry<K,V>(i.next()));
4736 <            return c.toArray(a);
4732 >    }
4733 >
4734 >    static final class SearchKeysTask<K,V,U>
4735 >        extends BulkTask<K,V,U> {
4736 >        final Function<? super K, ? extends U> searchFunction;
4737 >        final AtomicReference<U> result;
4738 >        SearchKeysTask
4739 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4740 >             Function<? super K, ? extends U> searchFunction,
4741 >             AtomicReference<U> result) {
4742 >            super(p, b, i, f, t);
4743 >            this.searchFunction = searchFunction; this.result = result;
4744 >        }
4745 >        public final U getRawResult() { return result.get(); }
4746 >        public final void compute() {
4747 >            final Function<? super K, ? extends U> searchFunction;
4748 >            final AtomicReference<U> result;
4749 >            if ((searchFunction = this.searchFunction) != null &&
4750 >                (result = this.result) != null) {
4751 >                for (int i = baseIndex, f, h; batch > 0 &&
4752 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4753 >                    if (result.get() != null)
4754 >                        return;
4755 >                    addToPendingCount(1);
4756 >                    new SearchKeysTask<K,V,U>
4757 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4758 >                         searchFunction, result).fork();
4759 >                }
4760 >                while (result.get() == null) {
4761 >                    U u;
4762 >                    Node<K,V> p;
4763 >                    if ((p = advance()) == null) {
4764 >                        propagateCompletion();
4765 >                        break;
4766 >                    }
4767 >                    if ((u = searchFunction.apply((K)p.key)) != null) {
4768 >                        if (result.compareAndSet(null, u))
4769 >                            quietlyCompleteRoot();
4770 >                        break;
4771 >                    }
4772 >                }
4773 >            }
4774          }
4775 +    }
4776  
4777 +    static final class SearchValuesTask<K,V,U>
4778 +        extends BulkTask<K,V,U> {
4779 +        final Function<? super V, ? extends U> searchFunction;
4780 +        final AtomicReference<U> result;
4781 +        SearchValuesTask
4782 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4783 +             Function<? super V, ? extends U> searchFunction,
4784 +             AtomicReference<U> result) {
4785 +            super(p, b, i, f, t);
4786 +            this.searchFunction = searchFunction; this.result = result;
4787 +        }
4788 +        public final U getRawResult() { return result.get(); }
4789 +        public final void compute() {
4790 +            final Function<? super V, ? extends U> searchFunction;
4791 +            final AtomicReference<U> result;
4792 +            if ((searchFunction = this.searchFunction) != null &&
4793 +                (result = this.result) != null) {
4794 +                for (int i = baseIndex, f, h; batch > 0 &&
4795 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4796 +                    if (result.get() != null)
4797 +                        return;
4798 +                    addToPendingCount(1);
4799 +                    new SearchValuesTask<K,V,U>
4800 +                        (this, batch >>>= 1, baseLimit = h, f, tab,
4801 +                         searchFunction, result).fork();
4802 +                }
4803 +                while (result.get() == null) {
4804 +                    U u;
4805 +                    Node<K,V> p;
4806 +                    if ((p = advance()) == null) {
4807 +                        propagateCompletion();
4808 +                        break;
4809 +                    }
4810 +                    if ((u = searchFunction.apply(p.val)) != null) {
4811 +                        if (result.compareAndSet(null, u))
4812 +                            quietlyCompleteRoot();
4813 +                        break;
4814 +                    }
4815 +                }
4816 +            }
4817 +        }
4818      }
4819  
4820 <    /**
4821 <     * This duplicates java.util.AbstractMap.SimpleEntry until this class
4822 <     * is made accessible.
4823 <     */
4824 <    static class SimpleEntry<K,V> implements Entry<K,V> {
4825 <        K key;
4826 <        V value;
4820 >    static final class SearchEntriesTask<K,V,U>
4821 >        extends BulkTask<K,V,U> {
4822 >        final Function<Entry<K,V>, ? extends U> searchFunction;
4823 >        final AtomicReference<U> result;
4824 >        SearchEntriesTask
4825 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4826 >             Function<Entry<K,V>, ? extends U> searchFunction,
4827 >             AtomicReference<U> result) {
4828 >            super(p, b, i, f, t);
4829 >            this.searchFunction = searchFunction; this.result = result;
4830 >        }
4831 >        public final U getRawResult() { return result.get(); }
4832 >        public final void compute() {
4833 >            final Function<Entry<K,V>, ? extends U> searchFunction;
4834 >            final AtomicReference<U> result;
4835 >            if ((searchFunction = this.searchFunction) != null &&
4836 >                (result = this.result) != null) {
4837 >                for (int i = baseIndex, f, h; batch > 0 &&
4838 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4839 >                    if (result.get() != null)
4840 >                        return;
4841 >                    addToPendingCount(1);
4842 >                    new SearchEntriesTask<K,V,U>
4843 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4844 >                         searchFunction, result).fork();
4845 >                }
4846 >                while (result.get() == null) {
4847 >                    U u;
4848 >                    Node<K,V> p;
4849 >                    if ((p = advance()) == null) {
4850 >                        propagateCompletion();
4851 >                        break;
4852 >                    }
4853 >                    if ((u = searchFunction.apply(p)) != null) {
4854 >                        if (result.compareAndSet(null, u))
4855 >                            quietlyCompleteRoot();
4856 >                        return;
4857 >                    }
4858 >                }
4859 >            }
4860 >        }
4861 >    }
4862  
4863 <        public SimpleEntry(K key, V value) {
4864 <            this.key   = key;
4865 <            this.value = value;
4866 <        }
4863 >    static final class SearchMappingsTask<K,V,U>
4864 >        extends BulkTask<K,V,U> {
4865 >        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4866 >        final AtomicReference<U> result;
4867 >        SearchMappingsTask
4868 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4869 >             BiFunction<? super K, ? super V, ? extends U> searchFunction,
4870 >             AtomicReference<U> result) {
4871 >            super(p, b, i, f, t);
4872 >            this.searchFunction = searchFunction; this.result = result;
4873 >        }
4874 >        public final U getRawResult() { return result.get(); }
4875 >        public final void compute() {
4876 >            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4877 >            final AtomicReference<U> result;
4878 >            if ((searchFunction = this.searchFunction) != null &&
4879 >                (result = this.result) != null) {
4880 >                for (int i = baseIndex, f, h; batch > 0 &&
4881 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4882 >                    if (result.get() != null)
4883 >                        return;
4884 >                    addToPendingCount(1);
4885 >                    new SearchMappingsTask<K,V,U>
4886 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4887 >                         searchFunction, result).fork();
4888 >                }
4889 >                while (result.get() == null) {
4890 >                    U u;
4891 >                    Node<K,V> p;
4892 >                    if ((p = advance()) == null) {
4893 >                        propagateCompletion();
4894 >                        break;
4895 >                    }
4896 >                    if ((u = searchFunction.apply((K)p.key, p.val)) != null) {
4897 >                        if (result.compareAndSet(null, u))
4898 >                            quietlyCompleteRoot();
4899 >                        break;
4900 >                    }
4901 >                }
4902 >            }
4903 >        }
4904 >    }
4905  
4906 <        public SimpleEntry(Entry<K,V> e) {
4907 <            this.key   = e.getKey();
4908 <            this.value = e.getValue();
4909 <        }
4910 <
4911 <        public K getKey() {
4912 <            return key;
4913 <        }
4914 <
4915 <        public V getValue() {
4916 <            return value;
4917 <        }
4918 <
4919 <        public V setValue(V value) {
4920 <            V oldValue = this.value;
4921 <            this.value = value;
4922 <            return oldValue;
4923 <        }
4924 <
4925 <        public boolean equals(Object o) {
4926 <            if (!(o instanceof Map.Entry))
4927 <                return false;
4928 <            Map.Entry e = (Map.Entry)o;
4929 <            return eq(key, e.getKey()) && eq(value, e.getValue());
4930 <        }
4931 <
4932 <        public int hashCode() {
4933 <            return ((key   == null)   ? 0 :   key.hashCode()) ^
4934 <                   ((value == null)   ? 0 : value.hashCode());
4935 <        }
4936 <
4937 <        public String toString() {
4938 <            return key + "=" + value;
4939 <        }
4906 >    static final class ReduceKeysTask<K,V>
4907 >        extends BulkTask<K,V,K> {
4908 >        final BiFunction<? super K, ? super K, ? extends K> reducer;
4909 >        K result;
4910 >        ReduceKeysTask<K,V> rights, nextRight;
4911 >        ReduceKeysTask
4912 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4913 >             ReduceKeysTask<K,V> nextRight,
4914 >             BiFunction<? super K, ? super K, ? extends K> reducer) {
4915 >            super(p, b, i, f, t); this.nextRight = nextRight;
4916 >            this.reducer = reducer;
4917 >        }
4918 >        public final K getRawResult() { return result; }
4919 >        public final void compute() {
4920 >            final BiFunction<? super K, ? super K, ? extends K> reducer;
4921 >            if ((reducer = this.reducer) != null) {
4922 >                for (int i = baseIndex, f, h; batch > 0 &&
4923 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4924 >                    addToPendingCount(1);
4925 >                    (rights = new ReduceKeysTask<K,V>
4926 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
4927 >                      rights, reducer)).fork();
4928 >                }
4929 >                K r = null;
4930 >                for (Node<K,V> p; (p = advance()) != null; ) {
4931 >                    K u = (K)p.key;
4932 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
4933 >                }
4934 >                result = r;
4935 >                CountedCompleter<?> c;
4936 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
4937 >                    ReduceKeysTask<K,V>
4938 >                        t = (ReduceKeysTask<K,V>)c,
4939 >                        s = t.rights;
4940 >                    while (s != null) {
4941 >                        K tr, sr;
4942 >                        if ((sr = s.result) != null)
4943 >                            t.result = (((tr = t.result) == null) ? sr :
4944 >                                        reducer.apply(tr, sr));
4945 >                        s = t.rights = s.nextRight;
4946 >                    }
4947 >                }
4948 >            }
4949 >        }
4950 >    }
4951  
4952 <        private static boolean eq(Object o1, Object o2) {
4953 <            return (o1 == null ? o2 == null : o1.equals(o2));
4952 >    static final class ReduceValuesTask<K,V>
4953 >        extends BulkTask<K,V,V> {
4954 >        final BiFunction<? super V, ? super V, ? extends V> reducer;
4955 >        V result;
4956 >        ReduceValuesTask<K,V> rights, nextRight;
4957 >        ReduceValuesTask
4958 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4959 >             ReduceValuesTask<K,V> nextRight,
4960 >             BiFunction<? super V, ? super V, ? extends V> reducer) {
4961 >            super(p, b, i, f, t); this.nextRight = nextRight;
4962 >            this.reducer = reducer;
4963 >        }
4964 >        public final V getRawResult() { return result; }
4965 >        public final void compute() {
4966 >            final BiFunction<? super V, ? super V, ? extends V> reducer;
4967 >            if ((reducer = this.reducer) != null) {
4968 >                for (int i = baseIndex, f, h; batch > 0 &&
4969 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4970 >                    addToPendingCount(1);
4971 >                    (rights = new ReduceValuesTask<K,V>
4972 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
4973 >                      rights, reducer)).fork();
4974 >                }
4975 >                V r = null;
4976 >                for (Node<K,V> p; (p = advance()) != null; ) {
4977 >                    V v = p.val;
4978 >                    r = (r == null) ? v : reducer.apply(r, v);
4979 >                }
4980 >                result = r;
4981 >                CountedCompleter<?> c;
4982 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
4983 >                    ReduceValuesTask<K,V>
4984 >                        t = (ReduceValuesTask<K,V>)c,
4985 >                        s = t.rights;
4986 >                    while (s != null) {
4987 >                        V tr, sr;
4988 >                        if ((sr = s.result) != null)
4989 >                            t.result = (((tr = t.result) == null) ? sr :
4990 >                                        reducer.apply(tr, sr));
4991 >                        s = t.rights = s.nextRight;
4992 >                    }
4993 >                }
4994 >            }
4995          }
4996      }
4997  
4998 <    /* ---------------- Serialization Support -------------- */
4998 >    static final class ReduceEntriesTask<K,V>
4999 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5000 >        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5001 >        Map.Entry<K,V> result;
5002 >        ReduceEntriesTask<K,V> rights, nextRight;
5003 >        ReduceEntriesTask
5004 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5005 >             ReduceEntriesTask<K,V> nextRight,
5006 >             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5007 >            super(p, b, i, f, t); this.nextRight = nextRight;
5008 >            this.reducer = reducer;
5009 >        }
5010 >        public final Map.Entry<K,V> getRawResult() { return result; }
5011 >        public final void compute() {
5012 >            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5013 >            if ((reducer = this.reducer) != null) {
5014 >                for (int i = baseIndex, f, h; batch > 0 &&
5015 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5016 >                    addToPendingCount(1);
5017 >                    (rights = new ReduceEntriesTask<K,V>
5018 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5019 >                      rights, reducer)).fork();
5020 >                }
5021 >                Map.Entry<K,V> r = null;
5022 >                for (Node<K,V> p; (p = advance()) != null; )
5023 >                    r = (r == null) ? p : reducer.apply(r, p);
5024 >                result = r;
5025 >                CountedCompleter<?> c;
5026 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5027 >                    ReduceEntriesTask<K,V>
5028 >                        t = (ReduceEntriesTask<K,V>)c,
5029 >                        s = t.rights;
5030 >                    while (s != null) {
5031 >                        Map.Entry<K,V> tr, sr;
5032 >                        if ((sr = s.result) != null)
5033 >                            t.result = (((tr = t.result) == null) ? sr :
5034 >                                        reducer.apply(tr, sr));
5035 >                        s = t.rights = s.nextRight;
5036 >                    }
5037 >                }
5038 >            }
5039 >        }
5040 >    }
5041  
5042 <    /**
5043 <     * Save the state of the <tt>ConcurrentHashMap</tt>
5044 <     * instance to a stream (i.e.,
5045 <     * serialize it).
5046 <     * @param s the stream
5047 <     * @serialData
5048 <     * the key (Object) and value (Object)
5049 <     * for each key-value mapping, followed by a null pair.
5050 <     * The key-value mappings are emitted in no particular order.
5051 <     */
5052 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
5053 <        s.defaultWriteObject();
5042 >    static final class MapReduceKeysTask<K,V,U>
5043 >        extends BulkTask<K,V,U> {
5044 >        final Function<? super K, ? extends U> transformer;
5045 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5046 >        U result;
5047 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5048 >        MapReduceKeysTask
5049 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5050 >             MapReduceKeysTask<K,V,U> nextRight,
5051 >             Function<? super K, ? extends U> transformer,
5052 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5053 >            super(p, b, i, f, t); this.nextRight = nextRight;
5054 >            this.transformer = transformer;
5055 >            this.reducer = reducer;
5056 >        }
5057 >        public final U getRawResult() { return result; }
5058 >        public final void compute() {
5059 >            final Function<? super K, ? extends U> transformer;
5060 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5061 >            if ((transformer = this.transformer) != null &&
5062 >                (reducer = this.reducer) != null) {
5063 >                for (int i = baseIndex, f, h; batch > 0 &&
5064 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5065 >                    addToPendingCount(1);
5066 >                    (rights = new MapReduceKeysTask<K,V,U>
5067 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5068 >                      rights, transformer, reducer)).fork();
5069 >                }
5070 >                U r = null;
5071 >                for (Node<K,V> p; (p = advance()) != null; ) {
5072 >                    U u;
5073 >                    if ((u = transformer.apply((K)p.key)) != null)
5074 >                        r = (r == null) ? u : reducer.apply(r, u);
5075 >                }
5076 >                result = r;
5077 >                CountedCompleter<?> c;
5078 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5079 >                    MapReduceKeysTask<K,V,U>
5080 >                        t = (MapReduceKeysTask<K,V,U>)c,
5081 >                        s = t.rights;
5082 >                    while (s != null) {
5083 >                        U tr, sr;
5084 >                        if ((sr = s.result) != null)
5085 >                            t.result = (((tr = t.result) == null) ? sr :
5086 >                                        reducer.apply(tr, sr));
5087 >                        s = t.rights = s.nextRight;
5088 >                    }
5089 >                }
5090 >            }
5091 >        }
5092 >    }
5093  
5094 <        for (int k = 0; k < segments.length; ++k) {
5095 <            Segment<K,V> seg = (Segment<K,V>)segments[k];
5096 <            seg.lock();
5097 <            try {
5098 <                HashEntry[] tab = seg.table;
5099 <                for (int i = 0; i < tab.length; ++i) {
5100 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
5101 <                        s.writeObject(e.key);
5102 <                        s.writeObject(e.value);
5094 >    static final class MapReduceValuesTask<K,V,U>
5095 >        extends BulkTask<K,V,U> {
5096 >        final Function<? super V, ? extends U> transformer;
5097 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5098 >        U result;
5099 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5100 >        MapReduceValuesTask
5101 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5102 >             MapReduceValuesTask<K,V,U> nextRight,
5103 >             Function<? super V, ? extends U> transformer,
5104 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5105 >            super(p, b, i, f, t); this.nextRight = nextRight;
5106 >            this.transformer = transformer;
5107 >            this.reducer = reducer;
5108 >        }
5109 >        public final U getRawResult() { return result; }
5110 >        public final void compute() {
5111 >            final Function<? super V, ? extends U> transformer;
5112 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5113 >            if ((transformer = this.transformer) != null &&
5114 >                (reducer = this.reducer) != null) {
5115 >                for (int i = baseIndex, f, h; batch > 0 &&
5116 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5117 >                    addToPendingCount(1);
5118 >                    (rights = new MapReduceValuesTask<K,V,U>
5119 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5120 >                      rights, transformer, reducer)).fork();
5121 >                }
5122 >                U r = null;
5123 >                for (Node<K,V> p; (p = advance()) != null; ) {
5124 >                    U u;
5125 >                    if ((u = transformer.apply(p.val)) != null)
5126 >                        r = (r == null) ? u : reducer.apply(r, u);
5127 >                }
5128 >                result = r;
5129 >                CountedCompleter<?> c;
5130 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5131 >                    MapReduceValuesTask<K,V,U>
5132 >                        t = (MapReduceValuesTask<K,V,U>)c,
5133 >                        s = t.rights;
5134 >                    while (s != null) {
5135 >                        U tr, sr;
5136 >                        if ((sr = s.result) != null)
5137 >                            t.result = (((tr = t.result) == null) ? sr :
5138 >                                        reducer.apply(tr, sr));
5139 >                        s = t.rights = s.nextRight;
5140                      }
5141                  }
1297            } finally {
1298                seg.unlock();
5142              }
5143          }
1301        s.writeObject(null);
1302        s.writeObject(null);
5144      }
5145  
5146 <    /**
5147 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
5148 <     * instance from a stream (i.e.,
5149 <     * deserialize it).
5150 <     * @param s the stream
5151 <     */
5152 <    private void readObject(java.io.ObjectInputStream s)
5153 <        throws IOException, ClassNotFoundException  {
5154 <        s.defaultReadObject();
5146 >    static final class MapReduceEntriesTask<K,V,U>
5147 >        extends BulkTask<K,V,U> {
5148 >        final Function<Map.Entry<K,V>, ? extends U> transformer;
5149 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5150 >        U result;
5151 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5152 >        MapReduceEntriesTask
5153 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5154 >             MapReduceEntriesTask<K,V,U> nextRight,
5155 >             Function<Map.Entry<K,V>, ? extends U> transformer,
5156 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5157 >            super(p, b, i, f, t); this.nextRight = nextRight;
5158 >            this.transformer = transformer;
5159 >            this.reducer = reducer;
5160 >        }
5161 >        public final U getRawResult() { return result; }
5162 >        public final void compute() {
5163 >            final Function<Map.Entry<K,V>, ? extends U> transformer;
5164 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5165 >            if ((transformer = this.transformer) != null &&
5166 >                (reducer = this.reducer) != null) {
5167 >                for (int i = baseIndex, f, h; batch > 0 &&
5168 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5169 >                    addToPendingCount(1);
5170 >                    (rights = new MapReduceEntriesTask<K,V,U>
5171 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5172 >                      rights, transformer, reducer)).fork();
5173 >                }
5174 >                U r = null;
5175 >                for (Node<K,V> p; (p = advance()) != null; ) {
5176 >                    U u;
5177 >                    if ((u = transformer.apply(p)) != null)
5178 >                        r = (r == null) ? u : reducer.apply(r, u);
5179 >                }
5180 >                result = r;
5181 >                CountedCompleter<?> c;
5182 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5183 >                    MapReduceEntriesTask<K,V,U>
5184 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5185 >                        s = t.rights;
5186 >                    while (s != null) {
5187 >                        U tr, sr;
5188 >                        if ((sr = s.result) != null)
5189 >                            t.result = (((tr = t.result) == null) ? sr :
5190 >                                        reducer.apply(tr, sr));
5191 >                        s = t.rights = s.nextRight;
5192 >                    }
5193 >                }
5194 >            }
5195 >        }
5196 >    }
5197  
5198 <        // Initialize each segment to be minimally sized, and let grow.
5199 <        for (int i = 0; i < segments.length; ++i) {
5200 <            segments[i].setTable(new HashEntry[1]);
5198 >    static final class MapReduceMappingsTask<K,V,U>
5199 >        extends BulkTask<K,V,U> {
5200 >        final BiFunction<? super K, ? super V, ? extends U> transformer;
5201 >        final BiFunction<? super U, ? super U, ? extends U> reducer;
5202 >        U result;
5203 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5204 >        MapReduceMappingsTask
5205 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5206 >             MapReduceMappingsTask<K,V,U> nextRight,
5207 >             BiFunction<? super K, ? super V, ? extends U> transformer,
5208 >             BiFunction<? super U, ? super U, ? extends U> reducer) {
5209 >            super(p, b, i, f, t); this.nextRight = nextRight;
5210 >            this.transformer = transformer;
5211 >            this.reducer = reducer;
5212 >        }
5213 >        public final U getRawResult() { return result; }
5214 >        public final void compute() {
5215 >            final BiFunction<? super K, ? super V, ? extends U> transformer;
5216 >            final BiFunction<? super U, ? super U, ? extends U> reducer;
5217 >            if ((transformer = this.transformer) != null &&
5218 >                (reducer = this.reducer) != null) {
5219 >                for (int i = baseIndex, f, h; batch > 0 &&
5220 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5221 >                    addToPendingCount(1);
5222 >                    (rights = new MapReduceMappingsTask<K,V,U>
5223 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5224 >                      rights, transformer, reducer)).fork();
5225 >                }
5226 >                U r = null;
5227 >                for (Node<K,V> p; (p = advance()) != null; ) {
5228 >                    U u;
5229 >                    if ((u = transformer.apply((K)p.key, p.val)) != null)
5230 >                        r = (r == null) ? u : reducer.apply(r, u);
5231 >                }
5232 >                result = r;
5233 >                CountedCompleter<?> c;
5234 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5235 >                    MapReduceMappingsTask<K,V,U>
5236 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5237 >                        s = t.rights;
5238 >                    while (s != null) {
5239 >                        U tr, sr;
5240 >                        if ((sr = s.result) != null)
5241 >                            t.result = (((tr = t.result) == null) ? sr :
5242 >                                        reducer.apply(tr, sr));
5243 >                        s = t.rights = s.nextRight;
5244 >                    }
5245 >                }
5246 >            }
5247          }
5248 +    }
5249  
5250 <        // Read the keys and values, and put the mappings in the table
5251 <        for (;;) {
5252 <            K key = (K) s.readObject();
5253 <            V value = (V) s.readObject();
5254 <            if (key == null)
5255 <                break;
5256 <            put(key, value);
5250 >    static final class MapReduceKeysToDoubleTask<K,V>
5251 >        extends BulkTask<K,V,Double> {
5252 >        final ToDoubleFunction<? super K> transformer;
5253 >        final DoubleBinaryOperator reducer;
5254 >        final double basis;
5255 >        double result;
5256 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5257 >        MapReduceKeysToDoubleTask
5258 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5259 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5260 >             ToDoubleFunction<? super K> transformer,
5261 >             double basis,
5262 >             DoubleBinaryOperator reducer) {
5263 >            super(p, b, i, f, t); this.nextRight = nextRight;
5264 >            this.transformer = transformer;
5265 >            this.basis = basis; this.reducer = reducer;
5266 >        }
5267 >        public final Double getRawResult() { return result; }
5268 >        public final void compute() {
5269 >            final ToDoubleFunction<? super K> transformer;
5270 >            final DoubleBinaryOperator reducer;
5271 >            if ((transformer = this.transformer) != null &&
5272 >                (reducer = this.reducer) != null) {
5273 >                double r = this.basis;
5274 >                for (int i = baseIndex, f, h; batch > 0 &&
5275 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5276 >                    addToPendingCount(1);
5277 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5278 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5279 >                      rights, transformer, r, reducer)).fork();
5280 >                }
5281 >                for (Node<K,V> p; (p = advance()) != null; )
5282 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key));
5283 >                result = r;
5284 >                CountedCompleter<?> c;
5285 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5286 >                    MapReduceKeysToDoubleTask<K,V>
5287 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5288 >                        s = t.rights;
5289 >                    while (s != null) {
5290 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5291 >                        s = t.rights = s.nextRight;
5292 >                    }
5293 >                }
5294 >            }
5295 >        }
5296 >    }
5297 >
5298 >    static final class MapReduceValuesToDoubleTask<K,V>
5299 >        extends BulkTask<K,V,Double> {
5300 >        final ToDoubleFunction<? super V> transformer;
5301 >        final DoubleBinaryOperator reducer;
5302 >        final double basis;
5303 >        double result;
5304 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5305 >        MapReduceValuesToDoubleTask
5306 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5307 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5308 >             ToDoubleFunction<? super V> transformer,
5309 >             double basis,
5310 >             DoubleBinaryOperator reducer) {
5311 >            super(p, b, i, f, t); this.nextRight = nextRight;
5312 >            this.transformer = transformer;
5313 >            this.basis = basis; this.reducer = reducer;
5314 >        }
5315 >        public final Double getRawResult() { return result; }
5316 >        public final void compute() {
5317 >            final ToDoubleFunction<? super V> transformer;
5318 >            final DoubleBinaryOperator reducer;
5319 >            if ((transformer = this.transformer) != null &&
5320 >                (reducer = this.reducer) != null) {
5321 >                double r = this.basis;
5322 >                for (int i = baseIndex, f, h; batch > 0 &&
5323 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5324 >                    addToPendingCount(1);
5325 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5326 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5327 >                      rights, transformer, r, reducer)).fork();
5328 >                }
5329 >                for (Node<K,V> p; (p = advance()) != null; )
5330 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5331 >                result = r;
5332 >                CountedCompleter<?> c;
5333 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5334 >                    MapReduceValuesToDoubleTask<K,V>
5335 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5336 >                        s = t.rights;
5337 >                    while (s != null) {
5338 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5339 >                        s = t.rights = s.nextRight;
5340 >                    }
5341 >                }
5342 >            }
5343 >        }
5344 >    }
5345 >
5346 >    static final class MapReduceEntriesToDoubleTask<K,V>
5347 >        extends BulkTask<K,V,Double> {
5348 >        final ToDoubleFunction<Map.Entry<K,V>> transformer;
5349 >        final DoubleBinaryOperator reducer;
5350 >        final double basis;
5351 >        double result;
5352 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5353 >        MapReduceEntriesToDoubleTask
5354 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5355 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5356 >             ToDoubleFunction<Map.Entry<K,V>> transformer,
5357 >             double basis,
5358 >             DoubleBinaryOperator reducer) {
5359 >            super(p, b, i, f, t); this.nextRight = nextRight;
5360 >            this.transformer = transformer;
5361 >            this.basis = basis; this.reducer = reducer;
5362 >        }
5363 >        public final Double getRawResult() { return result; }
5364 >        public final void compute() {
5365 >            final ToDoubleFunction<Map.Entry<K,V>> transformer;
5366 >            final DoubleBinaryOperator reducer;
5367 >            if ((transformer = this.transformer) != null &&
5368 >                (reducer = this.reducer) != null) {
5369 >                double r = this.basis;
5370 >                for (int i = baseIndex, f, h; batch > 0 &&
5371 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5372 >                    addToPendingCount(1);
5373 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5374 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5375 >                      rights, transformer, r, reducer)).fork();
5376 >                }
5377 >                for (Node<K,V> p; (p = advance()) != null; )
5378 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5379 >                result = r;
5380 >                CountedCompleter<?> c;
5381 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5382 >                    MapReduceEntriesToDoubleTask<K,V>
5383 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5384 >                        s = t.rights;
5385 >                    while (s != null) {
5386 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5387 >                        s = t.rights = s.nextRight;
5388 >                    }
5389 >                }
5390 >            }
5391 >        }
5392 >    }
5393 >
5394 >    static final class MapReduceMappingsToDoubleTask<K,V>
5395 >        extends BulkTask<K,V,Double> {
5396 >        final ToDoubleBiFunction<? super K, ? super V> transformer;
5397 >        final DoubleBinaryOperator reducer;
5398 >        final double basis;
5399 >        double result;
5400 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5401 >        MapReduceMappingsToDoubleTask
5402 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5403 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5404 >             ToDoubleBiFunction<? super K, ? super V> transformer,
5405 >             double basis,
5406 >             DoubleBinaryOperator reducer) {
5407 >            super(p, b, i, f, t); this.nextRight = nextRight;
5408 >            this.transformer = transformer;
5409 >            this.basis = basis; this.reducer = reducer;
5410 >        }
5411 >        public final Double getRawResult() { return result; }
5412 >        public final void compute() {
5413 >            final ToDoubleBiFunction<? super K, ? super V> transformer;
5414 >            final DoubleBinaryOperator reducer;
5415 >            if ((transformer = this.transformer) != null &&
5416 >                (reducer = this.reducer) != null) {
5417 >                double r = this.basis;
5418 >                for (int i = baseIndex, f, h; batch > 0 &&
5419 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5420 >                    addToPendingCount(1);
5421 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5422 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5423 >                      rights, transformer, r, reducer)).fork();
5424 >                }
5425 >                for (Node<K,V> p; (p = advance()) != null; )
5426 >                    r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key, p.val));
5427 >                result = r;
5428 >                CountedCompleter<?> c;
5429 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5430 >                    MapReduceMappingsToDoubleTask<K,V>
5431 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5432 >                        s = t.rights;
5433 >                    while (s != null) {
5434 >                        t.result = reducer.applyAsDouble(t.result, s.result);
5435 >                        s = t.rights = s.nextRight;
5436 >                    }
5437 >                }
5438 >            }
5439 >        }
5440 >    }
5441 >
5442 >    static final class MapReduceKeysToLongTask<K,V>
5443 >        extends BulkTask<K,V,Long> {
5444 >        final ToLongFunction<? super K> transformer;
5445 >        final LongBinaryOperator reducer;
5446 >        final long basis;
5447 >        long result;
5448 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5449 >        MapReduceKeysToLongTask
5450 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5451 >             MapReduceKeysToLongTask<K,V> nextRight,
5452 >             ToLongFunction<? super K> transformer,
5453 >             long basis,
5454 >             LongBinaryOperator reducer) {
5455 >            super(p, b, i, f, t); this.nextRight = nextRight;
5456 >            this.transformer = transformer;
5457 >            this.basis = basis; this.reducer = reducer;
5458 >        }
5459 >        public final Long getRawResult() { return result; }
5460 >        public final void compute() {
5461 >            final ToLongFunction<? super K> transformer;
5462 >            final LongBinaryOperator reducer;
5463 >            if ((transformer = this.transformer) != null &&
5464 >                (reducer = this.reducer) != null) {
5465 >                long r = this.basis;
5466 >                for (int i = baseIndex, f, h; batch > 0 &&
5467 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5468 >                    addToPendingCount(1);
5469 >                    (rights = new MapReduceKeysToLongTask<K,V>
5470 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5471 >                      rights, transformer, r, reducer)).fork();
5472 >                }
5473 >                for (Node<K,V> p; (p = advance()) != null; )
5474 >                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key));
5475 >                result = r;
5476 >                CountedCompleter<?> c;
5477 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5478 >                    MapReduceKeysToLongTask<K,V>
5479 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5480 >                        s = t.rights;
5481 >                    while (s != null) {
5482 >                        t.result = reducer.applyAsLong(t.result, s.result);
5483 >                        s = t.rights = s.nextRight;
5484 >                    }
5485 >                }
5486 >            }
5487 >        }
5488 >    }
5489 >
5490 >    static final class MapReduceValuesToLongTask<K,V>
5491 >        extends BulkTask<K,V,Long> {
5492 >        final ToLongFunction<? super V> transformer;
5493 >        final LongBinaryOperator reducer;
5494 >        final long basis;
5495 >        long result;
5496 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5497 >        MapReduceValuesToLongTask
5498 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5499 >             MapReduceValuesToLongTask<K,V> nextRight,
5500 >             ToLongFunction<? super V> transformer,
5501 >             long basis,
5502 >             LongBinaryOperator reducer) {
5503 >            super(p, b, i, f, t); this.nextRight = nextRight;
5504 >            this.transformer = transformer;
5505 >            this.basis = basis; this.reducer = reducer;
5506 >        }
5507 >        public final Long getRawResult() { return result; }
5508 >        public final void compute() {
5509 >            final ToLongFunction<? super V> transformer;
5510 >            final LongBinaryOperator reducer;
5511 >            if ((transformer = this.transformer) != null &&
5512 >                (reducer = this.reducer) != null) {
5513 >                long r = this.basis;
5514 >                for (int i = baseIndex, f, h; batch > 0 &&
5515 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5516 >                    addToPendingCount(1);
5517 >                    (rights = new MapReduceValuesToLongTask<K,V>
5518 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5519 >                      rights, transformer, r, reducer)).fork();
5520 >                }
5521 >                for (Node<K,V> p; (p = advance()) != null; )
5522 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5523 >                result = r;
5524 >                CountedCompleter<?> c;
5525 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5526 >                    MapReduceValuesToLongTask<K,V>
5527 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5528 >                        s = t.rights;
5529 >                    while (s != null) {
5530 >                        t.result = reducer.applyAsLong(t.result, s.result);
5531 >                        s = t.rights = s.nextRight;
5532 >                    }
5533 >                }
5534 >            }
5535 >        }
5536 >    }
5537 >
5538 >    static final class MapReduceEntriesToLongTask<K,V>
5539 >        extends BulkTask<K,V,Long> {
5540 >        final ToLongFunction<Map.Entry<K,V>> transformer;
5541 >        final LongBinaryOperator reducer;
5542 >        final long basis;
5543 >        long result;
5544 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5545 >        MapReduceEntriesToLongTask
5546 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5547 >             MapReduceEntriesToLongTask<K,V> nextRight,
5548 >             ToLongFunction<Map.Entry<K,V>> transformer,
5549 >             long basis,
5550 >             LongBinaryOperator reducer) {
5551 >            super(p, b, i, f, t); this.nextRight = nextRight;
5552 >            this.transformer = transformer;
5553 >            this.basis = basis; this.reducer = reducer;
5554 >        }
5555 >        public final Long getRawResult() { return result; }
5556 >        public final void compute() {
5557 >            final ToLongFunction<Map.Entry<K,V>> transformer;
5558 >            final LongBinaryOperator reducer;
5559 >            if ((transformer = this.transformer) != null &&
5560 >                (reducer = this.reducer) != null) {
5561 >                long r = this.basis;
5562 >                for (int i = baseIndex, f, h; batch > 0 &&
5563 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5564 >                    addToPendingCount(1);
5565 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5566 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5567 >                      rights, transformer, r, reducer)).fork();
5568 >                }
5569 >                for (Node<K,V> p; (p = advance()) != null; )
5570 >                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5571 >                result = r;
5572 >                CountedCompleter<?> c;
5573 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5574 >                    MapReduceEntriesToLongTask<K,V>
5575 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5576 >                        s = t.rights;
5577 >                    while (s != null) {
5578 >                        t.result = reducer.applyAsLong(t.result, s.result);
5579 >                        s = t.rights = s.nextRight;
5580 >                    }
5581 >                }
5582 >            }
5583          }
5584      }
1329 }
5585  
5586 +    static final class MapReduceMappingsToLongTask<K,V>
5587 +        extends BulkTask<K,V,Long> {
5588 +        final ToLongBiFunction<? super K, ? super V> transformer;
5589 +        final LongBinaryOperator reducer;
5590 +        final long basis;
5591 +        long result;
5592 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5593 +        MapReduceMappingsToLongTask
5594 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5595 +             MapReduceMappingsToLongTask<K,V> nextRight,
5596 +             ToLongBiFunction<? super K, ? super V> transformer,
5597 +             long basis,
5598 +             LongBinaryOperator reducer) {
5599 +            super(p, b, i, f, t); this.nextRight = nextRight;
5600 +            this.transformer = transformer;
5601 +            this.basis = basis; this.reducer = reducer;
5602 +        }
5603 +        public final Long getRawResult() { return result; }
5604 +        public final void compute() {
5605 +            final ToLongBiFunction<? super K, ? super V> transformer;
5606 +            final LongBinaryOperator reducer;
5607 +            if ((transformer = this.transformer) != null &&
5608 +                (reducer = this.reducer) != null) {
5609 +                long r = this.basis;
5610 +                for (int i = baseIndex, f, h; batch > 0 &&
5611 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5612 +                    addToPendingCount(1);
5613 +                    (rights = new MapReduceMappingsToLongTask<K,V>
5614 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5615 +                      rights, transformer, r, reducer)).fork();
5616 +                }
5617 +                for (Node<K,V> p; (p = advance()) != null; )
5618 +                    r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key, p.val));
5619 +                result = r;
5620 +                CountedCompleter<?> c;
5621 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5622 +                    MapReduceMappingsToLongTask<K,V>
5623 +                        t = (MapReduceMappingsToLongTask<K,V>)c,
5624 +                        s = t.rights;
5625 +                    while (s != null) {
5626 +                        t.result = reducer.applyAsLong(t.result, s.result);
5627 +                        s = t.rights = s.nextRight;
5628 +                    }
5629 +                }
5630 +            }
5631 +        }
5632 +    }
5633 +
5634 +    static final class MapReduceKeysToIntTask<K,V>
5635 +        extends BulkTask<K,V,Integer> {
5636 +        final ToIntFunction<? super K> transformer;
5637 +        final IntBinaryOperator reducer;
5638 +        final int basis;
5639 +        int result;
5640 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
5641 +        MapReduceKeysToIntTask
5642 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5643 +             MapReduceKeysToIntTask<K,V> nextRight,
5644 +             ToIntFunction<? super K> transformer,
5645 +             int basis,
5646 +             IntBinaryOperator reducer) {
5647 +            super(p, b, i, f, t); this.nextRight = nextRight;
5648 +            this.transformer = transformer;
5649 +            this.basis = basis; this.reducer = reducer;
5650 +        }
5651 +        public final Integer getRawResult() { return result; }
5652 +        public final void compute() {
5653 +            final ToIntFunction<? super K> transformer;
5654 +            final IntBinaryOperator reducer;
5655 +            if ((transformer = this.transformer) != null &&
5656 +                (reducer = this.reducer) != null) {
5657 +                int r = this.basis;
5658 +                for (int i = baseIndex, f, h; batch > 0 &&
5659 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5660 +                    addToPendingCount(1);
5661 +                    (rights = new MapReduceKeysToIntTask<K,V>
5662 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5663 +                      rights, transformer, r, reducer)).fork();
5664 +                }
5665 +                for (Node<K,V> p; (p = advance()) != null; )
5666 +                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key));
5667 +                result = r;
5668 +                CountedCompleter<?> c;
5669 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5670 +                    MapReduceKeysToIntTask<K,V>
5671 +                        t = (MapReduceKeysToIntTask<K,V>)c,
5672 +                        s = t.rights;
5673 +                    while (s != null) {
5674 +                        t.result = reducer.applyAsInt(t.result, s.result);
5675 +                        s = t.rights = s.nextRight;
5676 +                    }
5677 +                }
5678 +            }
5679 +        }
5680 +    }
5681 +
5682 +    static final class MapReduceValuesToIntTask<K,V>
5683 +        extends BulkTask<K,V,Integer> {
5684 +        final ToIntFunction<? super V> transformer;
5685 +        final IntBinaryOperator reducer;
5686 +        final int basis;
5687 +        int result;
5688 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
5689 +        MapReduceValuesToIntTask
5690 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5691 +             MapReduceValuesToIntTask<K,V> nextRight,
5692 +             ToIntFunction<? super V> transformer,
5693 +             int basis,
5694 +             IntBinaryOperator reducer) {
5695 +            super(p, b, i, f, t); this.nextRight = nextRight;
5696 +            this.transformer = transformer;
5697 +            this.basis = basis; this.reducer = reducer;
5698 +        }
5699 +        public final Integer getRawResult() { return result; }
5700 +        public final void compute() {
5701 +            final ToIntFunction<? super V> transformer;
5702 +            final IntBinaryOperator reducer;
5703 +            if ((transformer = this.transformer) != null &&
5704 +                (reducer = this.reducer) != null) {
5705 +                int r = this.basis;
5706 +                for (int i = baseIndex, f, h; batch > 0 &&
5707 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5708 +                    addToPendingCount(1);
5709 +                    (rights = new MapReduceValuesToIntTask<K,V>
5710 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5711 +                      rights, transformer, r, reducer)).fork();
5712 +                }
5713 +                for (Node<K,V> p; (p = advance()) != null; )
5714 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5715 +                result = r;
5716 +                CountedCompleter<?> c;
5717 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5718 +                    MapReduceValuesToIntTask<K,V>
5719 +                        t = (MapReduceValuesToIntTask<K,V>)c,
5720 +                        s = t.rights;
5721 +                    while (s != null) {
5722 +                        t.result = reducer.applyAsInt(t.result, s.result);
5723 +                        s = t.rights = s.nextRight;
5724 +                    }
5725 +                }
5726 +            }
5727 +        }
5728 +    }
5729 +
5730 +    static final class MapReduceEntriesToIntTask<K,V>
5731 +        extends BulkTask<K,V,Integer> {
5732 +        final ToIntFunction<Map.Entry<K,V>> transformer;
5733 +        final IntBinaryOperator reducer;
5734 +        final int basis;
5735 +        int result;
5736 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5737 +        MapReduceEntriesToIntTask
5738 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5739 +             MapReduceEntriesToIntTask<K,V> nextRight,
5740 +             ToIntFunction<Map.Entry<K,V>> transformer,
5741 +             int basis,
5742 +             IntBinaryOperator reducer) {
5743 +            super(p, b, i, f, t); this.nextRight = nextRight;
5744 +            this.transformer = transformer;
5745 +            this.basis = basis; this.reducer = reducer;
5746 +        }
5747 +        public final Integer getRawResult() { return result; }
5748 +        public final void compute() {
5749 +            final ToIntFunction<Map.Entry<K,V>> transformer;
5750 +            final IntBinaryOperator reducer;
5751 +            if ((transformer = this.transformer) != null &&
5752 +                (reducer = this.reducer) != null) {
5753 +                int r = this.basis;
5754 +                for (int i = baseIndex, f, h; batch > 0 &&
5755 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5756 +                    addToPendingCount(1);
5757 +                    (rights = new MapReduceEntriesToIntTask<K,V>
5758 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5759 +                      rights, transformer, r, reducer)).fork();
5760 +                }
5761 +                for (Node<K,V> p; (p = advance()) != null; )
5762 +                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5763 +                result = r;
5764 +                CountedCompleter<?> c;
5765 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5766 +                    MapReduceEntriesToIntTask<K,V>
5767 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
5768 +                        s = t.rights;
5769 +                    while (s != null) {
5770 +                        t.result = reducer.applyAsInt(t.result, s.result);
5771 +                        s = t.rights = s.nextRight;
5772 +                    }
5773 +                }
5774 +            }
5775 +        }
5776 +    }
5777 +
5778 +    static final class MapReduceMappingsToIntTask<K,V>
5779 +        extends BulkTask<K,V,Integer> {
5780 +        final ToIntBiFunction<? super K, ? super V> transformer;
5781 +        final IntBinaryOperator reducer;
5782 +        final int basis;
5783 +        int result;
5784 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
5785 +        MapReduceMappingsToIntTask
5786 +            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5787 +             MapReduceMappingsToIntTask<K,V> nextRight,
5788 +             ToIntBiFunction<? super K, ? super V> transformer,
5789 +             int basis,
5790 +             IntBinaryOperator reducer) {
5791 +            super(p, b, i, f, t); this.nextRight = nextRight;
5792 +            this.transformer = transformer;
5793 +            this.basis = basis; this.reducer = reducer;
5794 +        }
5795 +        public final Integer getRawResult() { return result; }
5796 +        public final void compute() {
5797 +            final ToIntBiFunction<? super K, ? super V> transformer;
5798 +            final IntBinaryOperator reducer;
5799 +            if ((transformer = this.transformer) != null &&
5800 +                (reducer = this.reducer) != null) {
5801 +                int r = this.basis;
5802 +                for (int i = baseIndex, f, h; batch > 0 &&
5803 +                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5804 +                    addToPendingCount(1);
5805 +                    (rights = new MapReduceMappingsToIntTask<K,V>
5806 +                     (this, batch >>>= 1, baseLimit = h, f, tab,
5807 +                      rights, transformer, r, reducer)).fork();
5808 +                }
5809 +                for (Node<K,V> p; (p = advance()) != null; )
5810 +                    r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key, p.val));
5811 +                result = r;
5812 +                CountedCompleter<?> c;
5813 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5814 +                    MapReduceMappingsToIntTask<K,V>
5815 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
5816 +                        s = t.rights;
5817 +                    while (s != null) {
5818 +                        t.result = reducer.applyAsInt(t.result, s.result);
5819 +                        s = t.rights = s.nextRight;
5820 +                    }
5821 +                }
5822 +            }
5823 +        }
5824 +    }
5825 +
5826 +    // Unsafe mechanics
5827 +    private static final sun.misc.Unsafe U;
5828 +    private static final long SIZECTL;
5829 +    private static final long TRANSFERINDEX;
5830 +    private static final long TRANSFERORIGIN;
5831 +    private static final long BASECOUNT;
5832 +    private static final long CELLSBUSY;
5833 +    private static final long CELLVALUE;
5834 +    private static final long ABASE;
5835 +    private static final int ASHIFT;
5836 +
5837 +    static {
5838 +        try {
5839 +            U = sun.misc.Unsafe.getUnsafe();
5840 +            Class<?> k = ConcurrentHashMap.class;
5841 +            SIZECTL = U.objectFieldOffset
5842 +                (k.getDeclaredField("sizeCtl"));
5843 +            TRANSFERINDEX = U.objectFieldOffset
5844 +                (k.getDeclaredField("transferIndex"));
5845 +            TRANSFERORIGIN = U.objectFieldOffset
5846 +                (k.getDeclaredField("transferOrigin"));
5847 +            BASECOUNT = U.objectFieldOffset
5848 +                (k.getDeclaredField("baseCount"));
5849 +            CELLSBUSY = U.objectFieldOffset
5850 +                (k.getDeclaredField("cellsBusy"));
5851 +            Class<?> ck = Cell.class;
5852 +            CELLVALUE = U.objectFieldOffset
5853 +                (ck.getDeclaredField("value"));
5854 +            Class<?> sc = Node[].class;
5855 +            ABASE = U.arrayBaseOffset(sc);
5856 +            int scale = U.arrayIndexScale(sc);
5857 +            if ((scale & (scale - 1)) != 0)
5858 +                throw new Error("data type scale not a power of two");
5859 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
5860 +        } catch (Exception e) {
5861 +            throw new Error(e);
5862 +        }
5863 +    }
5864 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines