ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.33 by dl, Sat Dec 6 00:16:20 2003 UTC vs.
Revision 1.73 by dl, Tue May 31 14:02:47 2005 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3 < * Expert Group and released to the public domain. Use, modify, and
4 < * redistribute this code in any way without acknowledgement.
3 > * Expert Group and released to the public domain, as explained at
4 > * http://creativecommons.org/licenses/publicdomain
5   */
6  
7   package java.util.concurrent;
# Line 33 | Line 33 | import java.io.ObjectOutputStream;
33   * removal of only some entries.  Similarly, Iterators and
34   * Enumerations return elements reflecting the state of the hash table
35   * at some point at or since the creation of the iterator/enumeration.
36 < * They do <em>not</em> throw
37 < * {@link ConcurrentModificationException}.  However, iterators are
38 < * designed to be used by only one thread at a time.
36 > * They do <em>not</em> throw {@link ConcurrentModificationException}.
37 > * However, iterators are designed to be used by only one thread at a time.
38   *
39   * <p> The allowed concurrency among update operations is guided by
40   * the optional <tt>concurrencyLevel</tt> constructor argument
41 < * (default 16), which is used as a hint for internal sizing.  The
41 > * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
42   * table is internally partitioned to try to permit the indicated
43   * number of concurrent updates without contention. Because placement
44   * in hash tables is essentially random, the actual concurrency will
# Line 49 | Line 48 | import java.io.ObjectOutputStream;
48   * and a significantly lower value can lead to thread contention. But
49   * overestimates and underestimates within an order of magnitude do
50   * not usually have much noticeable impact. A value of one is
51 < * appropriate when it is known that only one thread will modify
52 < * and all others will only read.
51 > * appropriate when it is known that only one thread will modify and
52 > * all others will only read. Also, resizing this or any other kind of
53 > * hash table is a relatively slow operation, so, when possible, it is
54 > * a good idea to provide estimates of expected table sizes in
55 > * constructors.
56   *
57 < * <p>This class implements all of the <em>optional</em> methods
58 < * of the {@link Map} and {@link Iterator} interfaces.
57 > * <p>This class and its views and iterators implement all of the
58 > * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59 > * interfaces.
60   *
61 < * <p> Like {@link java.util.Hashtable} but unlike {@link
62 < * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
63 < * used as a key or value.
61 > * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62 > * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63 > *
64 > * <p>This class is a member of the
65 > * <a href="{@docRoot}/../guide/collections/index.html">
66 > * Java Collections Framework</a>.
67   *
68   * @since 1.5
69   * @author Doug Lea
70   * @param <K> the type of keys maintained by this map
71 < * @param <V> the type of mapped values
71 > * @param <V> the type of mapped values
72   */
73   public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 <        implements ConcurrentMap<K, V>, Cloneable, Serializable {
74 >        implements ConcurrentMap<K, V>, Serializable {
75      private static final long serialVersionUID = 7249069246763182397L;
76  
77      /*
# Line 76 | Line 82 | public class ConcurrentHashMap<K, V> ext
82      /* ---------------- Constants -------------- */
83  
84      /**
85 <     * The default initial number of table slots for this table.
86 <     * Used when not otherwise specified in constructor.
85 >     * The default initial capacity for this table,
86 >     * used when not otherwise specified in a constructor.
87       */
88 <    private static int DEFAULT_INITIAL_CAPACITY = 16;
88 >    static final int DEFAULT_INITIAL_CAPACITY = 16;
89 >
90 >    /**
91 >     * The default load factor for this table, used when not
92 >     * otherwise specified in a constructor.
93 >     */
94 >    static final float DEFAULT_LOAD_FACTOR = 0.75f;
95 >
96 >    /**
97 >     * The default concurrency level for this table, used when not
98 >     * otherwise specified in a constructor.
99 >     */
100 >    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
101  
102      /**
103       * The maximum capacity, used if a higher value is implicitly
104       * specified by either of the constructors with arguments.  MUST
105 <     * be a power of two <= 1<<30 to ensure that entries are indexible
105 >     * be a power of two <= 1<<30 to ensure that entries are indexable
106       * using ints.
107       */
108 <    static final int MAXIMUM_CAPACITY = 1 << 30;
108 >    static final int MAXIMUM_CAPACITY = 1 << 30;
109  
110      /**
111 <     * The default load factor for this table.  Used when not
112 <     * otherwise specified in constructor.
111 >     * The maximum number of segments to allow; used to bound
112 >     * constructor arguments.
113       */
114 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
97 <
98 <    /**
99 <     * The default number of concurrency control segments.
100 <     **/
101 <    private static final int DEFAULT_SEGMENTS = 16;
114 >    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
115  
116      /**
117 <     * The maximum number of segments to allow; used to bound ctor arguments.
117 >     * Number of unsynchronized retries in size and containsValue
118 >     * methods before resorting to locking. This is used to avoid
119 >     * unbounded retries if tables undergo continuous modification
120 >     * which would make it impossible to obtain an accurate result.
121       */
122 <    private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
122 >    static final int RETRIES_BEFORE_LOCK = 2;
123  
124      /* ---------------- Fields -------------- */
125  
126      /**
127       * Mask value for indexing into segments. The upper bits of a
128       * key's hash code are used to choose the segment.
129 <     **/
130 <    private final int segmentMask;
129 >     */
130 >    final int segmentMask;
131  
132      /**
133       * Shift value for indexing within segments.
134 <     **/
135 <    private final int segmentShift;
134 >     */
135 >    final int segmentShift;
136  
137      /**
138       * The segments, each of which is a specialized hash table
139       */
140 <    private final Segment[] segments;
140 >    final Segment<K,V>[] segments;
141  
142 <    private transient Set<K> keySet;
143 <    private transient Set<Map.Entry<K,V>> entrySet;
144 <    private transient Collection<V> values;
142 >    transient Set<K> keySet;
143 >    transient Set<Map.Entry<K,V>> entrySet;
144 >    transient Collection<V> values;
145  
146      /* ---------------- Small Utilities -------------- */
147  
148      /**
149 <     * Return a hash code for non-null Object x.
150 <     * Uses the same hash code spreader as most other j.u hash tables.
149 >     * Returns a hash code for non-null Object x.
150 >     * Uses the same hash code spreader as most other java.util hash tables.
151       * @param x the object serving as a key
152       * @return the hash code
153       */
154 <    private static int hash(Object x) {
154 >    static int hash(Object x) {
155          int h = x.hashCode();
156          h += ~(h << 9);
157          h ^=  (h >>> 14);
# Line 145 | Line 161 | public class ConcurrentHashMap<K, V> ext
161      }
162  
163      /**
164 <     * Return the segment that should be used for key with given hash
164 >     * Returns the segment that should be used for key with given hash
165 >     * @param hash the hash code for the key
166 >     * @return the segment
167       */
168 <    private Segment<K,V> segmentFor(int hash) {
169 <        return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
168 >    final Segment<K,V> segmentFor(int hash) {
169 >        return segments[(hash >>> segmentShift) & segmentMask];
170      }
171  
172      /* ---------------- Inner Classes -------------- */
173  
174      /**
175 +     * ConcurrentHashMap list entry. Note that this is never exported
176 +     * out as a user-visible Map.Entry.
177 +     *
178 +     * Because the value field is volatile, not final, it is legal wrt
179 +     * the Java Memory Model for an unsynchronized reader to see null
180 +     * instead of initial value when read via a data race.  Although a
181 +     * reordering leading to this is not likely to ever actually
182 +     * occur, the Segment.readValueUnderLock method is used as a
183 +     * backup in case a null (pre-initialized) value is ever seen in
184 +     * an unsynchronized access method.
185 +     */
186 +    static final class HashEntry<K,V> {
187 +        final K key;
188 +        final int hash;
189 +        volatile V value;
190 +        final HashEntry<K,V> next;
191 +
192 +        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 +            this.key = key;
194 +            this.hash = hash;
195 +            this.next = next;
196 +            this.value = value;
197 +        }
198 +
199 +        @SuppressWarnings("unchecked")
200 +        static final <K,V> HashEntry<K,V>[] newArray(int i) {
201 +            return new HashEntry[i];
202 +        }
203 +    }
204 +
205 +    /**
206       * Segments are specialized versions of hash tables.  This
207       * subclasses from ReentrantLock opportunistically, just to
208       * simplify some locking and avoid separate construction.
209 <     **/
210 <    private static final class Segment<K,V> extends ReentrantLock implements Serializable {
209 >     */
210 >    static final class Segment<K,V> extends ReentrantLock implements Serializable {
211          /*
212           * Segments maintain a table of entry lists that are ALWAYS
213           * kept in a consistent state, so can be read without locking.
# Line 171 | Line 220 | public class ConcurrentHashMap<K, V> ext
220           * is less than two for the default load factor threshold.)
221           *
222           * Read operations can thus proceed without locking, but rely
223 <         * on a memory barrier to ensure that completed write
224 <         * operations performed by other threads are
225 <         * noticed. Conveniently, the "count" field, tracking the
226 <         * number of elements, can also serve as the volatile variable
227 <         * providing proper read/write barriers. This is convenient
228 <         * because this field needs to be read in many read operations
180 <         * anyway.
181 <         *
182 <         * Implementors note. The basic rules for all this are:
223 >         * on selected uses of volatiles to ensure that completed
224 >         * write operations performed by other threads are
225 >         * noticed. For most purposes, the "count" field, tracking the
226 >         * number of elements, serves as that volatile variable
227 >         * ensuring visibility.  This is convenient because this field
228 >         * needs to be read in many read operations anyway:
229           *
230 <         *   - All unsynchronized read operations must first read the
230 >         *   - All (unsynchronized) read operations must first read the
231           *     "count" field, and should not look at table entries if
232           *     it is 0.
233           *
234 <         *   - All synchronized write operations should write to
235 <         *     the "count" field after updating. The operations must not
236 <         *     take any action that could even momentarily cause
237 <         *     a concurrent read operation to see inconsistent
238 <         *     data. This is made easier by the nature of the read
239 <         *     operations in Map. For example, no operation
234 >         *   - All (synchronized) write operations should write to
235 >         *     the "count" field after structurally changing any bin.
236 >         *     The operations must not take any action that could even
237 >         *     momentarily cause a concurrent read operation to see
238 >         *     inconsistent data. This is made easier by the nature of
239 >         *     the read operations in Map. For example, no operation
240           *     can reveal that the table has grown but the threshold
241           *     has not yet been updated, so there are no atomicity
242           *     requirements for this with respect to reads.
243           *
244 <         * As a guide, all critical volatile reads and writes are marked
245 <         * in code comments.
244 >         * As a guide, all critical volatile reads and writes to the
245 >         * count field are marked in code comments.
246           */
247  
248          private static final long serialVersionUID = 2249069246763182397L;
249  
250          /**
251           * The number of elements in this segment's region.
252 <         **/
252 >         */
253          transient volatile int count;
254  
255          /**
256 <         * Number of updates; used for checking lack of modifications
257 <         * in bulk-read methods.
256 >         * Number of updates that alter the size of the table. This is
257 >         * used during bulk-read methods to make sure they see a
258 >         * consistent snapshot: If modCounts change during a traversal
259 >         * of segments computing size or checking containsValue, then
260 >         * we might have an inconsistent view of state so (usually)
261 >         * must retry.
262           */
263          transient int modCount;
264  
265          /**
266           * The table is rehashed when its size exceeds this threshold.
267 <         * (The value of this field is always (int)(capacity *
268 <         * loadFactor).)
267 >         * (The value of this field is always <tt>(int)(capacity *
268 >         * loadFactor)</tt>.)
269           */
270 <        private transient int threshold;
270 >        transient int threshold;
271  
272          /**
273 <         * The per-segment table
273 >         *  The per-segment table.
274           */
275 <        transient HashEntry[] table;
275 >        transient volatile HashEntry<K,V>[] table;
276  
277          /**
278           * The load factor for the hash table.  Even though this value
# Line 230 | Line 280 | public class ConcurrentHashMap<K, V> ext
280           * links to outer object.
281           * @serial
282           */
283 <        private final float loadFactor;
283 >        final float loadFactor;
284  
285          Segment(int initialCapacity, float lf) {
286              loadFactor = lf;
287 <            setTable(new HashEntry[initialCapacity]);
287 >            setTable(HashEntry.<K,V>newArray(initialCapacity));
288 >        }
289 >
290 >        @SuppressWarnings("unchecked")
291 >        static final <K,V> Segment<K,V>[] newArray(int i) {
292 >            return new Segment[i];
293          }
294  
295          /**
296 <         * Set table to new HashEntry array.
296 >         * Sets table to new HashEntry array.
297           * Call only while holding lock or in constructor.
298 <         **/
299 <        private void setTable(HashEntry[] newTable) {
245 <            table = newTable;
298 >         */
299 >        void setTable(HashEntry<K,V>[] newTable) {
300              threshold = (int)(newTable.length * loadFactor);
301 <            count = count; // write-volatile
301 >            table = newTable;
302 >        }
303 >
304 >        /**
305 >         * Returns properly casted first entry of bin for given hash.
306 >         */
307 >        HashEntry<K,V> getFirst(int hash) {
308 >            HashEntry<K,V>[] tab = table;
309 >            return tab[hash & (tab.length - 1)];
310 >        }
311 >
312 >        /**
313 >         * Reads value field of an entry under lock. Called if value
314 >         * field ever appears to be null. This is possible only if a
315 >         * compiler happens to reorder a HashEntry initialization with
316 >         * its table assignment, which is legal under memory model
317 >         * but is not known to ever occur.
318 >         */
319 >        V readValueUnderLock(HashEntry<K,V> e) {
320 >            lock();
321 >            try {
322 >                return e.value;
323 >            } finally {
324 >                unlock();
325 >            }
326          }
327  
328          /* Specialized implementations of map methods */
329  
330          V get(Object key, int hash) {
331              if (count != 0) { // read-volatile
332 <                HashEntry[] tab = table;
255 <                int index = hash & (tab.length - 1);
256 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
332 >                HashEntry<K,V> e = getFirst(hash);
333                  while (e != null) {
334 <                    if (e.hash == hash && key.equals(e.key))
335 <                        return e.value;
334 >                    if (e.hash == hash && key.equals(e.key)) {
335 >                        V v = e.value;
336 >                        if (v != null)
337 >                            return v;
338 >                        return readValueUnderLock(e); // recheck
339 >                    }
340                      e = e.next;
341                  }
342              }
# Line 265 | Line 345 | public class ConcurrentHashMap<K, V> ext
345  
346          boolean containsKey(Object key, int hash) {
347              if (count != 0) { // read-volatile
348 <                HashEntry[] tab = table;
269 <                int index = hash & (tab.length - 1);
270 <                HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
348 >                HashEntry<K,V> e = getFirst(hash);
349                  while (e != null) {
350                      if (e.hash == hash && key.equals(e.key))
351                          return true;
# Line 279 | Line 357 | public class ConcurrentHashMap<K, V> ext
357  
358          boolean containsValue(Object value) {
359              if (count != 0) { // read-volatile
360 <                HashEntry[] tab = table;
360 >                HashEntry<K,V>[] tab = table;
361                  int len = tab.length;
362 <                for (int i = 0 ; i < len; i++)
363 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
364 <                        if (value.equals(e.value))
362 >                for (int i = 0 ; i < len; i++) {
363 >                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
364 >                        V v = e.value;
365 >                        if (v == null) // recheck
366 >                            v = readValueUnderLock(e);
367 >                        if (value.equals(v))
368                              return true;
369 +                    }
370 +                }
371              }
372              return false;
373          }
# Line 292 | Line 375 | public class ConcurrentHashMap<K, V> ext
375          boolean replace(K key, int hash, V oldValue, V newValue) {
376              lock();
377              try {
378 <                int c = count;
379 <                HashEntry[] tab = table;
297 <                int index = hash & (tab.length - 1);
298 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
299 <                HashEntry<K,V> e = first;
300 <                for (;;) {
301 <                    if (e == null)
302 <                        return false;
303 <                    if (e.hash == hash && key.equals(e.key))
304 <                        break;
378 >                HashEntry<K,V> e = getFirst(hash);
379 >                while (e != null && (e.hash != hash || !key.equals(e.key)))
380                      e = e.next;
306                }
307
308                V v = e.value;
309                if (v == null || !oldValue.equals(v))
310                    return false;
381  
382 <                e.value = newValue;
383 <                count = c; // write-volatile
384 <                return true;
385 <                
382 >                boolean replaced = false;
383 >                if (e != null && oldValue.equals(e.value)) {
384 >                    replaced = true;
385 >                    e.value = newValue;
386 >                }
387 >                return replaced;
388              } finally {
389                  unlock();
390              }
# Line 321 | Line 393 | public class ConcurrentHashMap<K, V> ext
393          V replace(K key, int hash, V newValue) {
394              lock();
395              try {
396 <                int c = count;
397 <                HashEntry[] tab = table;
326 <                int index = hash & (tab.length - 1);
327 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
328 <                HashEntry<K,V> e = first;
329 <                for (;;) {
330 <                    if (e == null)
331 <                        return null;
332 <                    if (e.hash == hash && key.equals(e.key))
333 <                        break;
396 >                HashEntry<K,V> e = getFirst(hash);
397 >                while (e != null && (e.hash != hash || !key.equals(e.key)))
398                      e = e.next;
335                }
399  
400 <                V v = e.value;
401 <                e.value = newValue;
402 <                count = c; // write-volatile
403 <                return v;
404 <                
400 >                V oldValue = null;
401 >                if (e != null) {
402 >                    oldValue = e.value;
403 >                    e.value = newValue;
404 >                }
405 >                return oldValue;
406              } finally {
407                  unlock();
408              }
# Line 349 | Line 413 | public class ConcurrentHashMap<K, V> ext
413              lock();
414              try {
415                  int c = count;
416 <                HashEntry[] tab = table;
416 >                if (c++ > threshold) // ensure capacity
417 >                    rehash();
418 >                HashEntry<K,V>[] tab = table;
419                  int index = hash & (tab.length - 1);
420 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
420 >                HashEntry<K,V> first = tab[index];
421 >                HashEntry<K,V> e = first;
422 >                while (e != null && (e.hash != hash || !key.equals(e.key)))
423 >                    e = e.next;
424  
425 <                for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
426 <                    if (e.hash == hash && key.equals(e.key)) {
427 <                        V oldValue = e.value;
428 <                        if (!onlyIfAbsent)
429 <                            e.value = value;
361 <                        ++modCount;
362 <                        count = c; // write-volatile
363 <                        return oldValue;
364 <                    }
425 >                V oldValue;
426 >                if (e != null) {
427 >                    oldValue = e.value;
428 >                    if (!onlyIfAbsent)
429 >                        e.value = value;
430                  }
431 <
432 <                tab[index] = new HashEntry<K,V>(hash, key, value, first);
433 <                ++modCount;
434 <                ++c;
435 <                count = c; // write-volatile
436 <                if (c > threshold)
437 <                    setTable(rehash(tab));
373 <                return null;
431 >                else {
432 >                    oldValue = null;
433 >                    ++modCount;
434 >                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
435 >                    count = c; // write-volatile
436 >                }
437 >                return oldValue;
438              } finally {
439                  unlock();
440              }
441          }
442  
443 <        private HashEntry[] rehash(HashEntry[] oldTable) {
443 >        void rehash() {
444 >            HashEntry<K,V>[] oldTable = table;
445              int oldCapacity = oldTable.length;
446              if (oldCapacity >= MAXIMUM_CAPACITY)
447 <                return oldTable;
447 >                return;
448  
449              /*
450               * Reclassify nodes in each list to new Map.  Because we are
# Line 395 | Line 460 | public class ConcurrentHashMap<K, V> ext
460               * right now.
461               */
462  
463 <            HashEntry[] newTable = new HashEntry[oldCapacity << 1];
463 >            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
464 >            threshold = (int)(newTable.length * loadFactor);
465              int sizeMask = newTable.length - 1;
466              for (int i = 0; i < oldCapacity ; i++) {
467                  // We need to guarantee that any existing reads of old Map can
468                  //  proceed. So we cannot yet null out each bin.
469 <                HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
469 >                HashEntry<K,V> e = oldTable[i];
470  
471                  if (e != null) {
472                      HashEntry<K,V> next = e.next;
# Line 428 | Line 494 | public class ConcurrentHashMap<K, V> ext
494                          // Clone all remaining nodes
495                          for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
496                              int k = p.hash & sizeMask;
497 <                            newTable[k] = new HashEntry<K,V>(p.hash,
498 <                                                             p.key,
499 <                                                             p.value,
434 <                                                             (HashEntry<K,V>) newTable[k]);
497 >                            HashEntry<K,V> n = newTable[k];
498 >                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
499 >                                                             n, p.value);
500                          }
501                      }
502                  }
503              }
504 <            return newTable;
504 >            table = newTable;
505          }
506  
507          /**
# Line 445 | Line 510 | public class ConcurrentHashMap<K, V> ext
510          V remove(Object key, int hash, Object value) {
511              lock();
512              try {
513 <                int c = count;
514 <                HashEntry[] tab = table;
513 >                int c = count - 1;
514 >                HashEntry<K,V>[] tab = table;
515                  int index = hash & (tab.length - 1);
516 <                HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
452 <
516 >                HashEntry<K,V> first = tab[index];
517                  HashEntry<K,V> e = first;
518 <                for (;;) {
455 <                    if (e == null)
456 <                        return null;
457 <                    if (e.hash == hash && key.equals(e.key))
458 <                        break;
518 >                while (e != null && (e.hash != hash || !key.equals(e.key)))
519                      e = e.next;
460                }
520  
521 <                V oldValue = e.value;
522 <                if (value != null && !value.equals(oldValue))
523 <                    return null;
524 <
525 <                // All entries following removed node can stay in list, but
526 <                // all preceding ones need to be cloned.
527 <                HashEntry<K,V> newFirst = e.next;
528 <                for (HashEntry<K,V> p = first; p != e; p = p.next)
529 <                    newFirst = new HashEntry<K,V>(p.hash, p.key,
530 <                                                  p.value, newFirst);
531 <                tab[index] = newFirst;
532 <                ++modCount;
533 <                count = c-1; // write-volatile
521 >                V oldValue = null;
522 >                if (e != null) {
523 >                    V v = e.value;
524 >                    if (value == null || value.equals(v)) {
525 >                        oldValue = v;
526 >                        // All entries following removed node can stay
527 >                        // in list, but all preceding ones need to be
528 >                        // cloned.
529 >                        ++modCount;
530 >                        HashEntry<K,V> newFirst = e.next;
531 >                        for (HashEntry<K,V> p = first; p != e; p = p.next)
532 >                            newFirst = new HashEntry<K,V>(p.key, p.hash,
533 >                                                          newFirst, p.value);
534 >                        tab[index] = newFirst;
535 >                        count = c; // write-volatile
536 >                    }
537 >                }
538                  return oldValue;
539              } finally {
540                  unlock();
# Line 479 | Line 542 | public class ConcurrentHashMap<K, V> ext
542          }
543  
544          void clear() {
545 <            lock();
546 <            try {
547 <                HashEntry[] tab = table;
548 <                for (int i = 0; i < tab.length ; i++)
549 <                    tab[i] = null;
550 <                ++modCount;
551 <                count = 0; // write-volatile
552 <            } finally {
553 <                unlock();
545 >            if (count != 0) {
546 >                lock();
547 >                try {
548 >                    HashEntry<K,V>[] tab = table;
549 >                    for (int i = 0; i < tab.length ; i++)
550 >                        tab[i] = null;
551 >                    ++modCount;
552 >                    count = 0; // write-volatile
553 >                } finally {
554 >                    unlock();
555 >                }
556              }
557          }
558      }
559  
495    /**
496     * ConcurrentHashMap list entry. Note that this is never exported
497     * out as a user-visible Map.Entry
498     */
499    private static class HashEntry<K,V> {
500        private final K key;
501        private V value;
502        private final int hash;
503        private final HashEntry<K,V> next;
504
505        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
506            this.value = value;
507            this.hash = hash;
508            this.key = key;
509            this.next = next;
510        }
511    }
560  
561  
562      /* ---------------- Public operations -------------- */
563  
564      /**
565 <     * Constructs a new, empty map with the specified initial
566 <     * capacity and the specified load factor.
565 >     * Creates a new, empty map with the specified initial
566 >     * capacity, load factor and concurrency level.
567       *
568       * @param initialCapacity the initial capacity. The implementation
569       * performs internal sizing to accommodate this many elements.
570       * @param loadFactor  the load factor threshold, used to control resizing.
571 +     * Resizing may be performed when the average number of elements per
572 +     * bin exceeds this threshold.
573       * @param concurrencyLevel the estimated number of concurrently
574       * updating threads. The implementation performs internal sizing
575 <     * to try to accommodate this many threads.  
575 >     * to try to accommodate this many threads.
576       * @throws IllegalArgumentException if the initial capacity is
577       * negative or the load factor or concurrencyLevel are
578       * nonpositive.
# Line 544 | Line 594 | public class ConcurrentHashMap<K, V> ext
594          }
595          segmentShift = 32 - sshift;
596          segmentMask = ssize - 1;
597 <        this.segments = new Segment[ssize];
597 >        this.segments = Segment.newArray(ssize);
598  
599          if (initialCapacity > MAXIMUM_CAPACITY)
600              initialCapacity = MAXIMUM_CAPACITY;
# Line 560 | Line 610 | public class ConcurrentHashMap<K, V> ext
610      }
611  
612      /**
613 <     * Constructs a new, empty map with the specified initial
614 <     * capacity,  and with default load factor and concurrencyLevel.
613 >     * Creates a new, empty map with the specified initial capacity
614 >     * and load factor and with the default concurrencyLevel
615 >     * (<tt>16</tt>).
616       *
617       * @param initialCapacity The implementation performs internal
618       * sizing to accommodate this many elements.
619 +     * @param loadFactor  the load factor threshold, used to control resizing.
620 +     * Resizing may be performed when the average number of elements per
621 +     * bin exceeds this threshold.
622 +     * @throws IllegalArgumentException if the initial capacity of
623 +     * elements is negative or the load factor is nonpositive
624 +     */
625 +    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
626 +        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
627 +    }
628 +
629 +    /**
630 +     * Creates a new, empty map with the specified initial capacity,
631 +     * and with default load factor (<tt>0.75f</tt>)
632 +     * and concurrencyLevel (<tt>16</tt>).
633 +     *
634 +     * @param initialCapacity the initial capacity. The implementation
635 +     * performs internal sizing to accommodate this many elements.
636       * @throws IllegalArgumentException if the initial capacity of
637       * elements is negative.
638       */
639      public ConcurrentHashMap(int initialCapacity) {
640 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
640 >        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
641      }
642  
643      /**
644 <     * Constructs a new, empty map with a default initial capacity,
645 <     * load factor, and concurrencyLevel.
644 >     * Creates a new, empty map with a default initial capacity
645 >     * (<tt>16</tt>), load factor
646 >     * (<tt>0.75f</tt>), and concurrencyLevel
647 >     * (<tt>16</tt>).
648       */
649      public ConcurrentHashMap() {
650 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
650 >        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
651      }
652  
653      /**
654 <     * Constructs a new map with the same mappings as the given map.  The
655 <     * map is created with a capacity of twice the number of mappings in
656 <     * the given map or 11 (whichever is greater), and a default load factor.
654 >     * Creates a new map with the same mappings as the given map.  The
655 >     * map is created with a capacity of 1.5 times the number of
656 >     * mappings in the given map or <tt>16</tt>
657 >     * (whichever is greater), and a default load factor
658 >     * (<tt>0.75f</tt>) and concurrencyLevel
659 >     * (<tt>16</tt>).
660 >     * @param m the map
661       */
662 <    public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
663 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
664 <                      11),
665 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
666 <        putAll(t);
662 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
663 >        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
664 >                      DEFAULT_INITIAL_CAPACITY),
665 >             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
666 >        putAll(m);
667      }
668  
669 <    // inherit Map javadoc
669 >    /**
670 >     * Returns <tt>true</tt> if this map contains no key-value mappings.
671 >     *
672 >     * @return <tt>true</tt> if this map contains no key-value mappings
673 >     */
674      public boolean isEmpty() {
675 +        final Segment<K,V>[] segments = this.segments;
676          /*
677 <         * We need to keep track of per-segment modCounts to avoid ABA
677 >         * We keep track of per-segment modCounts to avoid ABA
678           * problems in which an element in one segment was added and
679           * in another removed during traversal, in which case the
680           * table was never actually empty at any point. Note the
# Line 608 | Line 687 | public class ConcurrentHashMap<K, V> ext
687          for (int i = 0; i < segments.length; ++i) {
688              if (segments[i].count != 0)
689                  return false;
690 <            else
690 >            else
691                  mcsum += mc[i] = segments[i].modCount;
692          }
693          // If mcsum happens to be zero, then we know we got a snapshot
# Line 617 | Line 696 | public class ConcurrentHashMap<K, V> ext
696          if (mcsum != 0) {
697              for (int i = 0; i < segments.length; ++i) {
698                  if (segments[i].count != 0 ||
699 <                    mc[i] != segments[i].modCount)
699 >                    mc[i] != segments[i].modCount)
700                      return false;
701              }
702          }
703          return true;
704      }
705  
706 <    // inherit Map javadoc
706 >    /**
707 >     * Returns the number of key-value mappings in this map.  If the
708 >     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
709 >     * <tt>Integer.MAX_VALUE</tt>.
710 >     *
711 >     * @return the number of key-value mappings in this map
712 >     */
713      public int size() {
714 +        final Segment<K,V>[] segments = this.segments;
715 +        long sum = 0;
716 +        long check = 0;
717          int[] mc = new int[segments.length];
718 <        for (;;) {
719 <            long sum = 0;
718 >        // Try a few times to get accurate count. On failure due to
719 >        // continuous async changes in table, resort to locking.
720 >        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
721 >            check = 0;
722 >            sum = 0;
723              int mcsum = 0;
724              for (int i = 0; i < segments.length; ++i) {
725                  sum += segments[i].count;
726                  mcsum += mc[i] = segments[i].modCount;
727              }
637            int check = 0;
728              if (mcsum != 0) {
729                  for (int i = 0; i < segments.length; ++i) {
730                      check += segments[i].count;
# Line 644 | Line 734 | public class ConcurrentHashMap<K, V> ext
734                      }
735                  }
736              }
737 <            if (check == sum) {
738 <                if (sum > Integer.MAX_VALUE)
739 <                    return Integer.MAX_VALUE;
740 <                else
741 <                    return (int)sum;
742 <            }
737 >            if (check == sum)
738 >                break;
739 >        }
740 >        if (check != sum) { // Resort to locking all segments
741 >            sum = 0;
742 >            for (int i = 0; i < segments.length; ++i)
743 >                segments[i].lock();
744 >            for (int i = 0; i < segments.length; ++i)
745 >                sum += segments[i].count;
746 >            for (int i = 0; i < segments.length; ++i)
747 >                segments[i].unlock();
748          }
749 +        if (sum > Integer.MAX_VALUE)
750 +            return Integer.MAX_VALUE;
751 +        else
752 +            return (int)sum;
753      }
754  
656
755      /**
756 <     * Returns the value to which the specified key is mapped in this table.
756 >     * Returns the value to which this map maps the specified key, or
757 >     * <tt>null</tt> if the map contains no mapping for the key.
758       *
759 <     * @param   key   a key in the table.
760 <     * @return  the value to which the key is mapped in this table;
761 <     *          <tt>null</tt> if the key is not mapped to any value in
762 <     *          this table.
664 <     * @throws  NullPointerException  if the key is
665 <     *               <tt>null</tt>.
759 >     * @param key key whose associated value is to be returned
760 >     * @return the value associated with <tt>key</tt> in this map, or
761 >     *         <tt>null</tt> if there is no mapping for <tt>key</tt>
762 >     * @throws NullPointerException if the specified key is null
763       */
764      public V get(Object key) {
765          int hash = hash(key); // throws NullPointerException if key null
# Line 672 | Line 769 | public class ConcurrentHashMap<K, V> ext
769      /**
770       * Tests if the specified object is a key in this table.
771       *
772 <     * @param   key   possible key.
773 <     * @return  <tt>true</tt> if and only if the specified object
774 <     *          is a key in this table, as determined by the
775 <     *          <tt>equals</tt> method; <tt>false</tt> otherwise.
776 <     * @throws  NullPointerException  if the key is
680 <     *               <tt>null</tt>.
772 >     * @param  key   possible key
773 >     * @return <tt>true</tt> if and only if the specified object
774 >     *         is a key in this table, as determined by the
775 >     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
776 >     * @throws NullPointerException if the specified key is null
777       */
778      public boolean containsKey(Object key) {
779          int hash = hash(key); // throws NullPointerException if key null
# Line 690 | Line 786 | public class ConcurrentHashMap<K, V> ext
786       * traversal of the hash table, and so is much slower than
787       * method <tt>containsKey</tt>.
788       *
789 <     * @param value value whose presence in this map is to be tested.
789 >     * @param value value whose presence in this map is to be tested
790       * @return <tt>true</tt> if this map maps one or more keys to the
791 <     * specified value.
792 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
791 >     *         specified value
792 >     * @throws NullPointerException if the specified value is null
793       */
794      public boolean containsValue(Object value) {
795          if (value == null)
796              throw new NullPointerException();
797  
798 +        // See explanation of modCount use above
799 +
800 +        final Segment<K,V>[] segments = this.segments;
801          int[] mc = new int[segments.length];
802 <        for (;;) {
802 >
803 >        // Try a few times without locking
804 >        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
805              int sum = 0;
806              int mcsum = 0;
807              for (int i = 0; i < segments.length; ++i) {
# Line 722 | Line 823 | public class ConcurrentHashMap<K, V> ext
823              if (cleanSweep)
824                  return false;
825          }
826 +        // Resort to locking all segments
827 +        for (int i = 0; i < segments.length; ++i)
828 +            segments[i].lock();
829 +        boolean found = false;
830 +        try {
831 +            for (int i = 0; i < segments.length; ++i) {
832 +                if (segments[i].containsValue(value)) {
833 +                    found = true;
834 +                    break;
835 +                }
836 +            }
837 +        } finally {
838 +            for (int i = 0; i < segments.length; ++i)
839 +                segments[i].unlock();
840 +        }
841 +        return found;
842      }
843  
844      /**
845       * Legacy method testing if some key maps into the specified value
846       * in this table.  This method is identical in functionality to
847 <     * {@link #containsValue}, and  exists solely to ensure
847 >     * {@link #containsValue}, and exists solely to ensure
848       * full compatibility with class {@link java.util.Hashtable},
849       * which supported this method prior to introduction of the
850       * Java Collections framework.
851  
852 <     * @param      value   a value to search for.
853 <     * @return     <tt>true</tt> if and only if some key maps to the
854 <     *             <tt>value</tt> argument in this table as
855 <     *             determined by the <tt>equals</tt> method;
856 <     *             <tt>false</tt> otherwise.
857 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
852 >     * @param  value a value to search for
853 >     * @return <tt>true</tt> if and only if some key maps to the
854 >     *         <tt>value</tt> argument in this table as
855 >     *         determined by the <tt>equals</tt> method;
856 >     *         <tt>false</tt> otherwise
857 >     * @throws NullPointerException if the specified value is null
858       */
859      public boolean contains(Object value) {
860          return containsValue(value);
# Line 746 | Line 863 | public class ConcurrentHashMap<K, V> ext
863      /**
864       * Maps the specified <tt>key</tt> to the specified
865       * <tt>value</tt> in this table. Neither the key nor the
866 <     * value can be <tt>null</tt>. <p>
866 >     * value can be <tt>null</tt>.
867       *
868 <     * The value can be retrieved by calling the <tt>get</tt> method
868 >     * <p> The value can be retrieved by calling the <tt>get</tt> method
869       * with a key that is equal to the original key.
870       *
871 <     * @param      key     the table key.
872 <     * @param      value   the value.
873 <     * @return     the previous value of the specified key in this table,
874 <     *             or <tt>null</tt> if it did not have one.
875 <     * @throws  NullPointerException  if the key or value is
759 <     *               <tt>null</tt>.
871 >     * @param key key with which the specified value is to be associated
872 >     * @param value value to be associated with the specified key
873 >     * @return the previous value associated with <tt>key</tt>, or
874 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
875 >     * @throws NullPointerException if the specified key or value is null
876       */
877      public V put(K key, V value) {
878          if (value == null)
# Line 766 | Line 882 | public class ConcurrentHashMap<K, V> ext
882      }
883  
884      /**
885 <     * If the specified key is not already associated
770 <     * with a value, associate it with the given value.
771 <     * This is equivalent to
772 <     * <pre>
773 <     *   if (!map.containsKey(key))
774 <     *      return map.put(key, value);
775 <     *   else
776 <     *      return map.get(key);
777 <     * </pre>
778 <     * Except that the action is performed atomically.
779 <     * @param key key with which the specified value is to be associated.
780 <     * @param value value to be associated with the specified key.
781 <     * @return previous value associated with specified key, or <tt>null</tt>
782 <     *         if there was no mapping for key.  A <tt>null</tt> return can
783 <     *         also indicate that the map previously associated <tt>null</tt>
784 <     *         with the specified key, if the implementation supports
785 <     *         <tt>null</tt> values.
786 <     *
787 <     * @throws UnsupportedOperationException if the <tt>put</tt> operation is
788 <     *            not supported by this map.
789 <     * @throws ClassCastException if the class of the specified key or value
790 <     *            prevents it from being stored in this map.
791 <     * @throws NullPointerException if the specified key or value is
792 <     *            <tt>null</tt>.
885 >     * {@inheritDoc}
886       *
887 <     **/
887 >     * @return the previous value associated with the specified key,
888 >     *         or <tt>null</tt> if there was no mapping for the key
889 >     * @throws NullPointerException if the specified key or value is null
890 >     */
891      public V putIfAbsent(K key, V value) {
892          if (value == null)
893              throw new NullPointerException();
# Line 799 | Line 895 | public class ConcurrentHashMap<K, V> ext
895          return segmentFor(hash).put(key, hash, value, true);
896      }
897  
802
898      /**
899       * Copies all of the mappings from the specified map to this one.
805     *
900       * These mappings replace any mappings that this map had for any of the
901 <     * keys currently in the specified Map.
901 >     * keys currently in the specified map.
902       *
903 <     * @param t Mappings to be stored in this map.
903 >     * @param m mappings to be stored in this map
904       */
905 <    public void putAll(Map<? extends K, ? extends V> t) {
906 <        for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
905 >    public void putAll(Map<? extends K, ? extends V> m) {
906 >        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) m.entrySet().iterator(); it.hasNext(); ) {
907              Entry<? extends K, ? extends V> e = it.next();
908              put(e.getKey(), e.getValue());
909          }
910      }
911  
912      /**
913 <     * Removes the key (and its corresponding value) from this
914 <     * table. This method does nothing if the key is not in the table.
913 >     * Removes the key (and its corresponding value) from this map.
914 >     * This method does nothing if the key is not in the map.
915       *
916 <     * @param   key   the key that needs to be removed.
917 <     * @return  the value to which the key had been mapped in this table,
918 <     *          or <tt>null</tt> if the key did not have a mapping.
919 <     * @throws  NullPointerException  if the key is
826 <     *               <tt>null</tt>.
916 >     * @param  key the key that needs to be removed
917 >     * @return the previous value associated with <tt>key</tt>, or
918 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
919 >     * @throws NullPointerException if the specified key is null
920       */
921      public V remove(Object key) {
922          int hash = hash(key);
# Line 831 | Line 924 | public class ConcurrentHashMap<K, V> ext
924      }
925  
926      /**
927 <     * Remove entry for key only if currently mapped to given value.
928 <     * Acts as
929 <     * <pre>
837 <     *  if (map.get(key).equals(value)) {
838 <     *     map.remove(key);
839 <     *     return true;
840 <     * } else return false;
841 <     * </pre>
842 <     * except that the action is performed atomically.
843 <     * @param key key with which the specified value is associated.
844 <     * @param value value associated with the specified key.
845 <     * @return true if the value was removed
846 <     * @throws NullPointerException if the specified key is
847 <     *            <tt>null</tt>.
927 >     * {@inheritDoc}
928 >     *
929 >     * @throws NullPointerException if the specified key is null
930       */
931      public boolean remove(Object key, Object value) {
932 +        if (value == null)
933 +            return false;
934          int hash = hash(key);
935          return segmentFor(hash).remove(key, hash, value) != null;
936      }
937  
854
938      /**
939 <     * Replace entry for key only if currently mapped to given value.
940 <     * Acts as
941 <     * <pre>
859 <     *  if (map.get(key).equals(oldValue)) {
860 <     *     map.put(key, newValue);
861 <     *     return true;
862 <     * } else return false;
863 <     * </pre>
864 <     * except that the action is performed atomically.
865 <     * @param key key with which the specified value is associated.
866 <     * @param oldValue value expected to be associated with the specified key.
867 <     * @param newValue value to be associated with the specified key.
868 <     * @return true if the value was replaced
869 <     * @throws NullPointerException if the specified key or values are
870 <     * <tt>null</tt>.
939 >     * {@inheritDoc}
940 >     *
941 >     * @throws NullPointerException if any of the arguments are null
942       */
943      public boolean replace(K key, V oldValue, V newValue) {
944          if (oldValue == null || newValue == null)
# Line 877 | Line 948 | public class ConcurrentHashMap<K, V> ext
948      }
949  
950      /**
951 <     * Replace entry for key only if currently mapped to some value.
952 <     * Acts as
953 <     * <pre>
954 <     *  if ((map.containsKey(key)) {
955 <     *     return map.put(key, value);
885 <     * } else return null;
886 <     * </pre>
887 <     * except that the action is performed atomically.
888 <     * @param key key with which the specified value is associated.
889 <     * @param value value to be associated with the specified key.
890 <     * @return previous value associated with specified key, or <tt>null</tt>
891 <     *         if there was no mapping for key.  
892 <     * @throws NullPointerException if the specified key or value is
893 <     *            <tt>null</tt>.
951 >     * {@inheritDoc}
952 >     *
953 >     * @return the previous value associated with the specified key,
954 >     *         or <tt>null</tt> if there was no mapping for the key
955 >     * @throws NullPointerException if the specified key or value is null
956       */
957      public V replace(K key, V value) {
958          if (value == null)
# Line 899 | Line 961 | public class ConcurrentHashMap<K, V> ext
961          return segmentFor(hash).replace(key, hash, value);
962      }
963  
902
964      /**
965 <     * Removes all mappings from this map.
965 >     * Removes all of the mappings from this map.
966       */
967      public void clear() {
968          for (int i = 0; i < segments.length; ++i)
969              segments[i].clear();
970      }
971  
911
972      /**
973 <     * Returns a shallow copy of this
974 <     * <tt>ConcurrentHashMap</tt> instance: the keys and
975 <     * values themselves are not cloned.
976 <     *
977 <     * @return a shallow copy of this map.
978 <     */
979 <    public Object clone() {
920 <        // We cannot call super.clone, since it would share final
921 <        // segments array, and there's no way to reassign finals.
922 <
923 <        float lf = segments[0].loadFactor;
924 <        int segs = segments.length;
925 <        int cap = (int)(size() / lf);
926 <        if (cap < segs) cap = segs;
927 <        ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
928 <        t.putAll(this);
929 <        return t;
930 <    }
931 <
932 <    /**
933 <     * Returns a set view of the keys contained in this map.  The set is
934 <     * backed by the map, so changes to the map are reflected in the set, and
935 <     * vice-versa.  The set supports element removal, which removes the
936 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
937 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
938 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
973 >     * Returns a {@link Set} view of the keys contained in this map.
974 >     * The set is backed by the map, so changes to the map are
975 >     * reflected in the set, and vice-versa.  The set supports element
976 >     * removal, which removes the corresponding mapping from this map,
977 >     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
978 >     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
979 >     * operations.  It does not support the <tt>add</tt> or
980       * <tt>addAll</tt> operations.
981 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
982 <     * will never throw {@link java.util.ConcurrentModificationException},
981 >     *
982 >     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
983 >     * that will never throw {@link ConcurrentModificationException},
984       * and guarantees to traverse elements as they existed upon
985       * construction of the iterator, and may (but is not guaranteed to)
986       * reflect any modifications subsequent to construction.
945     *
946     * @return a set view of the keys contained in this map.
987       */
988      public Set<K> keySet() {
989          Set<K> ks = keySet;
990          return (ks != null) ? ks : (keySet = new KeySet());
991      }
992  
953
993      /**
994 <     * Returns a collection view of the values contained in this map.  The
995 <     * collection is backed by the map, so changes to the map are reflected in
996 <     * the collection, and vice-versa.  The collection supports element
997 <     * removal, which removes the corresponding mapping from this map, via the
998 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
999 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1000 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1001 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
1002 <     * will never throw {@link java.util.ConcurrentModificationException},
994 >     * Returns a {@link Collection} view of the values contained in this map.
995 >     * The collection is backed by the map, so changes to the map are
996 >     * reflected in the collection, and vice-versa.  The collection
997 >     * supports element removal, which removes the corresponding
998 >     * mapping from this map, via the <tt>Iterator.remove</tt>,
999 >     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1000 >     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1001 >     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1002 >     *
1003 >     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1004 >     * that will never throw {@link ConcurrentModificationException},
1005       * and guarantees to traverse elements as they existed upon
1006       * construction of the iterator, and may (but is not guaranteed to)
1007       * reflect any modifications subsequent to construction.
967     *
968     * @return a collection view of the values contained in this map.
1008       */
1009      public Collection<V> values() {
1010          Collection<V> vs = values;
1011          return (vs != null) ? vs : (values = new Values());
1012      }
1013  
975
1014      /**
1015 <     * Returns a collection view of the mappings contained in this map.  Each
1016 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
1017 <     * collection is backed by the map, so changes to the map are reflected in
1018 <     * the collection, and vice-versa.  The collection supports element
1019 <     * removal, which removes the corresponding mapping from the map, via the
1020 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1021 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1022 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1023 <     * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
1024 <     * will never throw {@link java.util.ConcurrentModificationException},
1015 >     * Returns a {@link Set} view of the mappings contained in this map.
1016 >     * The set is backed by the map, so changes to the map are
1017 >     * reflected in the set, and vice-versa.  The set supports element
1018 >     * removal, which removes the corresponding mapping from the map,
1019 >     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1020 >     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1021 >     * operations.  It does not support the <tt>add</tt> or
1022 >     * <tt>addAll</tt> operations.
1023 >     *
1024 >     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1025 >     * that will never throw {@link ConcurrentModificationException},
1026       * and guarantees to traverse elements as they existed upon
1027       * construction of the iterator, and may (but is not guaranteed to)
1028       * reflect any modifications subsequent to construction.
990     *
991     * @return a collection view of the mappings contained in this map.
1029       */
1030      public Set<Map.Entry<K,V>> entrySet() {
1031          Set<Map.Entry<K,V>> es = entrySet;
1032 <        return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
1032 >        return (es != null) ? es : (entrySet = new EntrySet());
1033      }
1034  
998
1035      /**
1036       * Returns an enumeration of the keys in this table.
1037       *
1038 <     * @return  an enumeration of the keys in this table.
1039 <     * @see     #keySet
1038 >     * @return an enumeration of the keys in this table
1039 >     * @see #keySet
1040       */
1041      public Enumeration<K> keys() {
1042          return new KeyIterator();
# Line 1008 | Line 1044 | public class ConcurrentHashMap<K, V> ext
1044  
1045      /**
1046       * Returns an enumeration of the values in this table.
1011     * Use the Enumeration methods on the returned object to fetch the elements
1012     * sequentially.
1047       *
1048 <     * @return  an enumeration of the values in this table.
1049 <     * @see     #values
1048 >     * @return an enumeration of the values in this table
1049 >     * @see #values
1050       */
1051      public Enumeration<V> elements() {
1052          return new ValueIterator();
# Line 1020 | Line 1054 | public class ConcurrentHashMap<K, V> ext
1054  
1055      /* ---------------- Iterator Support -------------- */
1056  
1057 <    private abstract class HashIterator {
1058 <        private int nextSegmentIndex;
1059 <        private int nextTableIndex;
1060 <        private HashEntry[] currentTable;
1061 <        private HashEntry<K, V> nextEntry;
1057 >    abstract class HashIterator {
1058 >        int nextSegmentIndex;
1059 >        int nextTableIndex;
1060 >        HashEntry<K,V>[] currentTable;
1061 >        HashEntry<K, V> nextEntry;
1062          HashEntry<K, V> lastReturned;
1063  
1064 <        private HashIterator() {
1064 >        HashIterator() {
1065              nextSegmentIndex = segments.length - 1;
1066              nextTableIndex = -1;
1067              advance();
# Line 1035 | Line 1069 | public class ConcurrentHashMap<K, V> ext
1069  
1070          public boolean hasMoreElements() { return hasNext(); }
1071  
1072 <        private void advance() {
1072 >        final void advance() {
1073              if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1074                  return;
1075  
1076              while (nextTableIndex >= 0) {
1077 <                if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
1077 >                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1078                      return;
1079              }
1080  
1081              while (nextSegmentIndex >= 0) {
1082 <                Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
1082 >                Segment<K,V> seg = segments[nextSegmentIndex--];
1083                  if (seg.count != 0) {
1084                      currentTable = seg.table;
1085                      for (int j = currentTable.length - 1; j >= 0; --j) {
1086 <                        if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
1086 >                        if ( (nextEntry = currentTable[j]) != null) {
1087                              nextTableIndex = j - 1;
1088                              return;
1089                          }
# Line 1076 | Line 1110 | public class ConcurrentHashMap<K, V> ext
1110          }
1111      }
1112  
1113 <    private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1113 >    final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1114          public K next() { return super.nextEntry().key; }
1115          public K nextElement() { return super.nextEntry().key; }
1116      }
1117  
1118 <    private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1118 >    final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1119          public V next() { return super.nextEntry().value; }
1120          public V nextElement() { return super.nextEntry().value; }
1121      }
1122  
1123 <    
1123 >
1124  
1125      /**
1126 <     * Exported Entry objects must write-through changes in setValue,
1127 <     * even if the nodes have been cloned. So we cannot return
1128 <     * internal HashEntry objects. Instead, the iterator itself acts
1129 <     * as a forwarding pseudo-entry.
1126 >     * Entry iterator. Exported Entry objects must write-through
1127 >     * changes in setValue, even if the nodes have been cloned. So we
1128 >     * cannot return internal HashEntry objects. Instead, the iterator
1129 >     * itself acts as a forwarding pseudo-entry.
1130       */
1131 <    private class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1131 >    final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1132          public Map.Entry<K,V> next() {
1133              nextEntry();
1134              return this;
# Line 1119 | Line 1153 | public class ConcurrentHashMap<K, V> ext
1153          }
1154  
1155          public boolean equals(Object o) {
1156 +            // If not acting as entry, just use default.
1157 +            if (lastReturned == null)
1158 +                return super.equals(o);
1159              if (!(o instanceof Map.Entry))
1160                  return false;
1161 <            Map.Entry e = (Map.Entry)o;
1162 <            return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1163 <        }
1161 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1162 >            return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1163 >        }
1164  
1165          public int hashCode() {
1166 +            // If not acting as entry, just use default.
1167 +            if (lastReturned == null)
1168 +                return super.hashCode();
1169 +
1170              Object k = getKey();
1171              Object v = getValue();
1172              return ((k == null) ? 0 : k.hashCode()) ^
# Line 1133 | Line 1174 | public class ConcurrentHashMap<K, V> ext
1174          }
1175  
1176          public String toString() {
1177 <            return getKey() + "=" + getValue();
1177 >            // If not acting as entry, just use default.
1178 >            if (lastReturned == null)
1179 >                return super.toString();
1180 >            else
1181 >                return getKey() + "=" + getValue();
1182          }
1183  
1184 <        private boolean eq(Object o1, Object o2) {
1184 >        boolean eq(Object o1, Object o2) {
1185              return (o1 == null ? o2 == null : o1.equals(o2));
1186          }
1187  
1188      }
1189  
1190 <    private class KeySet extends AbstractSet<K> {
1190 >    final class KeySet extends AbstractSet<K> {
1191          public Iterator<K> iterator() {
1192              return new KeyIterator();
1193          }
# Line 1158 | Line 1203 | public class ConcurrentHashMap<K, V> ext
1203          public void clear() {
1204              ConcurrentHashMap.this.clear();
1205          }
1206 +        public Object[] toArray() {
1207 +            Collection<K> c = new ArrayList<K>();
1208 +            for (Iterator<K> i = iterator(); i.hasNext(); )
1209 +                c.add(i.next());
1210 +            return c.toArray();
1211 +        }
1212 +        public <T> T[] toArray(T[] a) {
1213 +            Collection<K> c = new ArrayList<K>();
1214 +            for (Iterator<K> i = iterator(); i.hasNext(); )
1215 +                c.add(i.next());
1216 +            return c.toArray(a);
1217 +        }
1218      }
1219  
1220 <    private class Values extends AbstractCollection<V> {
1220 >    final class Values extends AbstractCollection<V> {
1221          public Iterator<V> iterator() {
1222              return new ValueIterator();
1223          }
# Line 1173 | Line 1230 | public class ConcurrentHashMap<K, V> ext
1230          public void clear() {
1231              ConcurrentHashMap.this.clear();
1232          }
1233 +        public Object[] toArray() {
1234 +            Collection<V> c = new ArrayList<V>();
1235 +            for (Iterator<V> i = iterator(); i.hasNext(); )
1236 +                c.add(i.next());
1237 +            return c.toArray();
1238 +        }
1239 +        public <T> T[] toArray(T[] a) {
1240 +            Collection<V> c = new ArrayList<V>();
1241 +            for (Iterator<V> i = iterator(); i.hasNext(); )
1242 +                c.add(i.next());
1243 +            return c.toArray(a);
1244 +        }
1245      }
1246  
1247 <    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1247 >    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1248          public Iterator<Map.Entry<K,V>> iterator() {
1249              return new EntryIterator();
1250          }
1251          public boolean contains(Object o) {
1252              if (!(o instanceof Map.Entry))
1253                  return false;
1254 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1254 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1255              V v = ConcurrentHashMap.this.get(e.getKey());
1256              return v != null && v.equals(e.getValue());
1257          }
1258          public boolean remove(Object o) {
1259              if (!(o instanceof Map.Entry))
1260                  return false;
1261 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1261 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1262              return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1263          }
1264          public int size() {
# Line 1203 | Line 1272 | public class ConcurrentHashMap<K, V> ext
1272              // must pack elements using exportable SimpleEntry
1273              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1274              for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1275 <                c.add(new SimpleEntry<K,V>(i.next()));
1275 >                c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1276              return c.toArray();
1277          }
1278          public <T> T[] toArray(T[] a) {
1279              Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1280              for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1281 <                c.add(new SimpleEntry<K,V>(i.next()));
1281 >                c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1282              return c.toArray(a);
1283          }
1284  
1285      }
1286  
1218    /**
1219     * This duplicates java.util.AbstractMap.SimpleEntry until this class
1220     * is made accessible.
1221     */
1222    static class SimpleEntry<K,V> implements Entry<K,V> {
1223        K key;
1224        V value;
1225
1226        public SimpleEntry(K key, V value) {
1227            this.key   = key;
1228            this.value = value;
1229        }
1230
1231        public SimpleEntry(Entry<K,V> e) {
1232            this.key   = e.getKey();
1233            this.value = e.getValue();
1234        }
1235
1236        public K getKey() {
1237            return key;
1238        }
1239
1240        public V getValue() {
1241            return value;
1242        }
1243
1244        public V setValue(V value) {
1245            V oldValue = this.value;
1246            this.value = value;
1247            return oldValue;
1248        }
1249
1250        public boolean equals(Object o) {
1251            if (!(o instanceof Map.Entry))
1252                return false;
1253            Map.Entry e = (Map.Entry)o;
1254            return eq(key, e.getKey()) && eq(value, e.getValue());
1255        }
1256
1257        public int hashCode() {
1258            return ((key   == null)   ? 0 :   key.hashCode()) ^
1259                   ((value == null)   ? 0 : value.hashCode());
1260        }
1261
1262        public String toString() {
1263            return key + "=" + value;
1264        }
1265
1266        private static boolean eq(Object o1, Object o2) {
1267            return (o1 == null ? o2 == null : o1.equals(o2));
1268        }
1269    }
1270
1287      /* ---------------- Serialization Support -------------- */
1288  
1289      /**
1290 <     * Save the state of the <tt>ConcurrentHashMap</tt>
1291 <     * instance to a stream (i.e.,
1276 <     * serialize it).
1290 >     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1291 >     * stream (i.e., serialize it).
1292       * @param s the stream
1293       * @serialData
1294       * the key (Object) and value (Object)
# Line 1284 | Line 1299 | public class ConcurrentHashMap<K, V> ext
1299          s.defaultWriteObject();
1300  
1301          for (int k = 0; k < segments.length; ++k) {
1302 <            Segment<K,V> seg = (Segment<K,V>)segments[k];
1302 >            Segment<K,V> seg = segments[k];
1303              seg.lock();
1304              try {
1305 <                HashEntry[] tab = seg.table;
1305 >                HashEntry<K,V>[] tab = seg.table;
1306                  for (int i = 0; i < tab.length; ++i) {
1307 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1307 >                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1308                          s.writeObject(e.key);
1309                          s.writeObject(e.value);
1310                      }
# Line 1303 | Line 1318 | public class ConcurrentHashMap<K, V> ext
1318      }
1319  
1320      /**
1321 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
1322 <     * instance from a stream (i.e.,
1308 <     * deserialize it).
1321 >     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1322 >     * stream (i.e., deserialize it).
1323       * @param s the stream
1324       */
1325      private void readObject(java.io.ObjectInputStream s)
# Line 1327 | Line 1341 | public class ConcurrentHashMap<K, V> ext
1341          }
1342      }
1343   }
1330

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines