ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java (file contents):
Revision 1.52 by dl, Mon Jul 12 11:01:14 2004 UTC vs.
Revision 1.129 by dl, Fri Sep 21 18:41:35 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package java.util.concurrent;
8 < import java.util.concurrent.locks.*;
9 < import java.util.*;
8 > import java.util.concurrent.atomic.LongAdder;
9 > import java.util.concurrent.ForkJoinPool;
10 > import java.util.concurrent.ForkJoinTask;
11 >
12 > import java.util.Comparator;
13 > import java.util.Arrays;
14 > import java.util.Map;
15 > import java.util.Set;
16 > import java.util.Collection;
17 > import java.util.AbstractMap;
18 > import java.util.AbstractSet;
19 > import java.util.AbstractCollection;
20 > import java.util.Hashtable;
21 > import java.util.HashMap;
22 > import java.util.Iterator;
23 > import java.util.Enumeration;
24 > import java.util.ConcurrentModificationException;
25 > import java.util.NoSuchElementException;
26 > import java.util.concurrent.ConcurrentMap;
27 > import java.util.concurrent.ThreadLocalRandom;
28 > import java.util.concurrent.locks.LockSupport;
29 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 > import java.util.concurrent.atomic.AtomicReference;
31 >
32   import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
33  
34   /**
35   * A hash table supporting full concurrency of retrievals and
36 < * adjustable expected concurrency for updates. This class obeys the
36 > * high expected concurrency for updates. This class obeys the
37   * same functional specification as {@link java.util.Hashtable}, and
38   * includes versions of methods corresponding to each method of
39 < * <tt>Hashtable</tt>. However, even though all operations are
39 > * {@code Hashtable}. However, even though all operations are
40   * thread-safe, retrieval operations do <em>not</em> entail locking,
41   * and there is <em>not</em> any support for locking the entire table
42   * in a way that prevents all access.  This class is fully
43 < * interoperable with <tt>Hashtable</tt> in programs that rely on its
43 > * interoperable with {@code Hashtable} in programs that rely on its
44   * thread safety but not on its synchronization details.
45   *
46 < * <p> Retrieval operations (including <tt>get</tt>) generally do not
47 < * block, so may overlap with update operations (including
48 < * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
49 < * of the most recently <em>completed</em> update operations holding
50 < * upon their onset.  For aggregate operations such as <tt>putAll</tt>
51 < * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
52 < * removal of only some entries.  Similarly, Iterators and
53 < * Enumerations return elements reflecting the state of the hash table
54 < * at some point at or since the creation of the iterator/enumeration.
55 < * They do <em>not</em> throw
56 < * {@link ConcurrentModificationException}.  However, iterators are
57 < * designed to be used by only one thread at a time.
46 > * <p> Retrieval operations (including {@code get}) generally do not
47 > * block, so may overlap with update operations (including {@code put}
48 > * and {@code remove}). Retrievals reflect the results of the most
49 > * recently <em>completed</em> update operations holding upon their
50 > * onset. (More formally, an update operation for a given key bears a
51 > * <em>happens-before</em> relation with any (non-null) retrieval for
52 > * that key reporting the updated value.)  For aggregate operations
53 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
54 > * reflect insertion or removal of only some entries.  Similarly,
55 > * Iterators and Enumerations return elements reflecting the state of
56 > * the hash table at some point at or since the creation of the
57 > * iterator/enumeration.  They do <em>not</em> throw {@link
58 > * ConcurrentModificationException}.  However, iterators are designed
59 > * to be used by only one thread at a time.  Bear in mind that the
60 > * results of aggregate status methods including {@code size}, {@code
61 > * isEmpty}, and {@code containsValue} are typically useful only when
62 > * a map is not undergoing concurrent updates in other threads.
63 > * Otherwise the results of these methods reflect transient states
64 > * that may be adequate for monitoring or estimation purposes, but not
65 > * for program control.
66   *
67 < * <p> The allowed concurrency among update operations is guided by
68 < * the optional <tt>concurrencyLevel</tt> constructor argument
69 < * (default 16), which is used as a hint for internal sizing.  The
70 < * table is internally partitioned to try to permit the indicated
71 < * number of concurrent updates without contention. Because placement
72 < * in hash tables is essentially random, the actual concurrency will
73 < * vary.  Ideally, you should choose a value to accommodate as many
74 < * threads as will ever concurrently modify the table. Using a
75 < * significantly higher value than you need can waste space and time,
76 < * and a significantly lower value can lead to thread contention. But
77 < * overestimates and underestimates within an order of magnitude do
78 < * not usually have much noticeable impact. A value of one is
79 < * appropriate when it is known that only one thread will modify and
80 < * all others will only read. Also, resizing this or any other kind of
81 < * hash table is a relatively slow operation, so, when possible, it is
82 < * a good idea to provide estimates of expected table sizes in
83 < * constructors.
67 > * <p> The table is dynamically expanded when there are too many
68 > * collisions (i.e., keys that have distinct hash codes but fall into
69 > * the same slot modulo the table size), with the expected average
70 > * effect of maintaining roughly two bins per mapping (corresponding
71 > * to a 0.75 load factor threshold for resizing). There may be much
72 > * variance around this average as mappings are added and removed, but
73 > * overall, this maintains a commonly accepted time/space tradeoff for
74 > * hash tables.  However, resizing this or any other kind of hash
75 > * table may be a relatively slow operation. When possible, it is a
76 > * good idea to provide a size estimate as an optional {@code
77 > * initialCapacity} constructor argument. An additional optional
78 > * {@code loadFactor} constructor argument provides a further means of
79 > * customizing initial table capacity by specifying the table density
80 > * to be used in calculating the amount of space to allocate for the
81 > * given number of elements.  Also, for compatibility with previous
82 > * versions of this class, constructors may optionally specify an
83 > * expected {@code concurrencyLevel} as an additional hint for
84 > * internal sizing.  Note that using many keys with exactly the same
85 > * {@code hashCode()} is a sure way to slow down performance of any
86 > * hash table.
87   *
88   * <p>This class and its views and iterators implement all of the
89   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
90   * interfaces.
91   *
92 < * <p> Like {@link java.util.Hashtable} but unlike {@link
93 < * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
64 < * used as a key or value.
92 > * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
93 > * does <em>not</em> allow {@code null} to be used as a key or value.
94   *
95   * <p>This class is a member of the
96 < * <a href="{@docRoot}/../guide/collections/index.html">
96 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
97   * Java Collections Framework</a>.
98   *
99 + * <p><em>jsr166e note: This class is a candidate replacement for
100 + * java.util.concurrent.ConcurrentHashMap.  During transition, this
101 + * class declares and uses nested functional interfaces with different
102 + * names but the same forms as those expected for JDK8.<em>
103 + *
104   * @since 1.5
105   * @author Doug Lea
106   * @param <K> the type of keys maintained by this map
107 < * @param <V> the type of mapped values
107 > * @param <V> the type of mapped values
108   */
109 < public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
110 <        implements ConcurrentMap<K, V>, Serializable {
109 > public class ConcurrentHashMap<K, V>
110 >    implements ConcurrentMap<K, V>, Serializable {
111      private static final long serialVersionUID = 7249069246763182397L;
112  
113 +    /**
114 +     * A partitionable iterator. A Spliterator can be traversed
115 +     * directly, but can also be partitioned (before traversal) by
116 +     * creating another Spliterator that covers a non-overlapping
117 +     * portion of the elements, and so may be amenable to parallel
118 +     * execution.
119 +     *
120 +     * <p> This interface exports a subset of expected JDK8
121 +     * functionality.
122 +     *
123 +     * <p>Sample usage: Here is one (of the several) ways to compute
124 +     * the sum of the values held in a map using the ForkJoin
125 +     * framework. As illustrated here, Spliterators are well suited to
126 +     * designs in which a task repeatedly splits off half its work
127 +     * into forked subtasks until small enough to process directly,
128 +     * and then joins these subtasks. Variants of this style can also
129 +     * be used in completion-based designs.
130 +     *
131 +     * <pre>
132 +     * {@code ConcurrentHashMap<String, Long> m = ...
133 +     * // split as if have 8 * parallelism, for load balance
134 +     * int n = m.size();
135 +     * int p = aForkJoinPool.getParallelism() * 8;
136 +     * int split = (n < p)? n : p;
137 +     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
138 +     * // ...
139 +     * static class SumValues extends RecursiveTask<Long> {
140 +     *   final Spliterator<Long> s;
141 +     *   final int split;             // split while > 1
142 +     *   final SumValues nextJoin;    // records forked subtasks to join
143 +     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
144 +     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
145 +     *   }
146 +     *   public Long compute() {
147 +     *     long sum = 0;
148 +     *     SumValues subtasks = null; // fork subtasks
149 +     *     for (int s = split >>> 1; s > 0; s >>>= 1)
150 +     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
151 +     *     while (s.hasNext())        // directly process remaining elements
152 +     *       sum += s.next();
153 +     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
154 +     *       sum += t.join();         // collect subtask results
155 +     *     return sum;
156 +     *   }
157 +     * }
158 +     * }</pre>
159 +     */
160 +    public static interface Spliterator<T> extends Iterator<T> {
161 +        /**
162 +         * Returns a Spliterator covering approximately half of the
163 +         * elements, guaranteed not to overlap with those subsequently
164 +         * returned by this Spliterator.  After invoking this method,
165 +         * the current Spliterator will <em>not</em> produce any of
166 +         * the elements of the returned Spliterator, but the two
167 +         * Spliterators together will produce all of the elements that
168 +         * would have been produced by this Spliterator had this
169 +         * method not been called. The exact number of elements
170 +         * produced by the returned Spliterator is not guaranteed, and
171 +         * may be zero (i.e., with {@code hasNext()} reporting {@code
172 +         * false}) if this Spliterator cannot be further split.
173 +         *
174 +         * @return a Spliterator covering approximately half of the
175 +         * elements
176 +         * @throws IllegalStateException if this Spliterator has
177 +         * already commenced traversing elements
178 +         */
179 +        Spliterator<T> split();
180 +    }
181 +
182      /*
183 <     * The basic strategy is to subdivide the table among Segments,
184 <     * each of which itself is a concurrently readable hash table.
183 >     * Overview:
184 >     *
185 >     * The primary design goal of this hash table is to maintain
186 >     * concurrent readability (typically method get(), but also
187 >     * iterators and related methods) while minimizing update
188 >     * contention. Secondary goals are to keep space consumption about
189 >     * the same or better than java.util.HashMap, and to support high
190 >     * initial insertion rates on an empty table by many threads.
191 >     *
192 >     * Each key-value mapping is held in a Node.  Because Node fields
193 >     * can contain special values, they are defined using plain Object
194 >     * types. Similarly in turn, all internal methods that use them
195 >     * work off Object types. And similarly, so do the internal
196 >     * methods of auxiliary iterator and view classes.  All public
197 >     * generic typed methods relay in/out of these internal methods,
198 >     * supplying null-checks and casts as needed. This also allows
199 >     * many of the public methods to be factored into a smaller number
200 >     * of internal methods (although sadly not so for the five
201 >     * variants of put-related operations). The validation-based
202 >     * approach explained below leads to a lot of code sprawl because
203 >     * retry-control precludes factoring into smaller methods.
204 >     *
205 >     * The table is lazily initialized to a power-of-two size upon the
206 >     * first insertion.  Each bin in the table normally contains a
207 >     * list of Nodes (most often, the list has only zero or one Node).
208 >     * Table accesses require volatile/atomic reads, writes, and
209 >     * CASes.  Because there is no other way to arrange this without
210 >     * adding further indirections, we use intrinsics
211 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
212 >     * are always accurately traversable under volatile reads, so long
213 >     * as lookups check hash code and non-nullness of value before
214 >     * checking key equality.
215 >     *
216 >     * We use the top two bits of Node hash fields for control
217 >     * purposes -- they are available anyway because of addressing
218 >     * constraints.  As explained further below, these top bits are
219 >     * used as follows:
220 >     *  00 - Normal
221 >     *  01 - Locked
222 >     *  11 - Locked and may have a thread waiting for lock
223 >     *  10 - Node is a forwarding node
224 >     *
225 >     * The lower 30 bits of each Node's hash field contain a
226 >     * transformation of the key's hash code, except for forwarding
227 >     * nodes, for which the lower bits are zero (and so always have
228 >     * hash field == MOVED).
229 >     *
230 >     * Insertion (via put or its variants) of the first node in an
231 >     * empty bin is performed by just CASing it to the bin.  This is
232 >     * by far the most common case for put operations under most
233 >     * key/hash distributions.  Other update operations (insert,
234 >     * delete, and replace) require locks.  We do not want to waste
235 >     * the space required to associate a distinct lock object with
236 >     * each bin, so instead use the first node of a bin list itself as
237 >     * a lock. Blocking support for these locks relies on the builtin
238 >     * "synchronized" monitors.  However, we also need a tryLock
239 >     * construction, so we overlay these by using bits of the Node
240 >     * hash field for lock control (see above), and so normally use
241 >     * builtin monitors only for blocking and signalling using
242 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
243 >     *
244 >     * Using the first node of a list as a lock does not by itself
245 >     * suffice though: When a node is locked, any update must first
246 >     * validate that it is still the first node after locking it, and
247 >     * retry if not. Because new nodes are always appended to lists,
248 >     * once a node is first in a bin, it remains first until deleted
249 >     * or the bin becomes invalidated (upon resizing).  However,
250 >     * operations that only conditionally update may inspect nodes
251 >     * until the point of update. This is a converse of sorts to the
252 >     * lazy locking technique described by Herlihy & Shavit.
253 >     *
254 >     * The main disadvantage of per-bin locks is that other update
255 >     * operations on other nodes in a bin list protected by the same
256 >     * lock can stall, for example when user equals() or mapping
257 >     * functions take a long time.  However, statistically, under
258 >     * random hash codes, this is not a common problem.  Ideally, the
259 >     * frequency of nodes in bins follows a Poisson distribution
260 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
261 >     * parameter of about 0.5 on average, given the resizing threshold
262 >     * of 0.75, although with a large variance because of resizing
263 >     * granularity. Ignoring variance, the expected occurrences of
264 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
265 >     * first values are:
266 >     *
267 >     * 0:    0.60653066
268 >     * 1:    0.30326533
269 >     * 2:    0.07581633
270 >     * 3:    0.01263606
271 >     * 4:    0.00157952
272 >     * 5:    0.00015795
273 >     * 6:    0.00001316
274 >     * 7:    0.00000094
275 >     * 8:    0.00000006
276 >     * more: less than 1 in ten million
277 >     *
278 >     * Lock contention probability for two threads accessing distinct
279 >     * elements is roughly 1 / (8 * #elements) under random hashes.
280 >     *
281 >     * Actual hash code distributions encountered in practice
282 >     * sometimes deviate significantly from uniform randomness.  This
283 >     * includes the case when N > (1<<30), so some keys MUST collide.
284 >     * Similarly for dumb or hostile usages in which multiple keys are
285 >     * designed to have identical hash codes. Also, although we guard
286 >     * against the worst effects of this (see method spread), sets of
287 >     * hashes may differ only in bits that do not impact their bin
288 >     * index for a given power-of-two mask.  So we use a secondary
289 >     * strategy that applies when the number of nodes in a bin exceeds
290 >     * a threshold, and at least one of the keys implements
291 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
292 >     * (a specialized form of red-black trees), bounding search time
293 >     * to O(log N).  Each search step in a TreeBin is around twice as
294 >     * slow as in a regular list, but given that N cannot exceed
295 >     * (1<<64) (before running out of addresses) this bounds search
296 >     * steps, lock hold times, etc, to reasonable constants (roughly
297 >     * 100 nodes inspected per operation worst case) so long as keys
298 >     * are Comparable (which is very common -- String, Long, etc).
299 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
300 >     * traversal pointers as regular nodes, so can be traversed in
301 >     * iterators in the same way.
302 >     *
303 >     * The table is resized when occupancy exceeds a percentage
304 >     * threshold (nominally, 0.75, but see below).  Only a single
305 >     * thread performs the resize (using field "sizeCtl", to arrange
306 >     * exclusion), but the table otherwise remains usable for reads
307 >     * and updates. Resizing proceeds by transferring bins, one by
308 >     * one, from the table to the next table.  Because we are using
309 >     * power-of-two expansion, the elements from each bin must either
310 >     * stay at same index, or move with a power of two offset. We
311 >     * eliminate unnecessary node creation by catching cases where old
312 >     * nodes can be reused because their next fields won't change.  On
313 >     * average, only about one-sixth of them need cloning when a table
314 >     * doubles. The nodes they replace will be garbage collectable as
315 >     * soon as they are no longer referenced by any reader thread that
316 >     * may be in the midst of concurrently traversing table.  Upon
317 >     * transfer, the old table bin contains only a special forwarding
318 >     * node (with hash field "MOVED") that contains the next table as
319 >     * its key. On encountering a forwarding node, access and update
320 >     * operations restart, using the new table.
321 >     *
322 >     * Each bin transfer requires its bin lock. However, unlike other
323 >     * cases, a transfer can skip a bin if it fails to acquire its
324 >     * lock, and revisit it later (unless it is a TreeBin). Method
325 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
326 >     * have been skipped because of failure to acquire a lock, and
327 >     * blocks only if none are available (i.e., only very rarely).
328 >     * The transfer operation must also ensure that all accessible
329 >     * bins in both the old and new table are usable by any traversal.
330 >     * When there are no lock acquisition failures, this is arranged
331 >     * simply by proceeding from the last bin (table.length - 1) up
332 >     * towards the first.  Upon seeing a forwarding node, traversals
333 >     * (see class Iter) arrange to move to the new table
334 >     * without revisiting nodes.  However, when any node is skipped
335 >     * during a transfer, all earlier table bins may have become
336 >     * visible, so are initialized with a reverse-forwarding node back
337 >     * to the old table until the new ones are established. (This
338 >     * sometimes requires transiently locking a forwarding node, which
339 >     * is possible under the above encoding.) These more expensive
340 >     * mechanics trigger only when necessary.
341 >     *
342 >     * The traversal scheme also applies to partial traversals of
343 >     * ranges of bins (via an alternate Traverser constructor)
344 >     * to support partitioned aggregate operations.  Also, read-only
345 >     * operations give up if ever forwarded to a null table, which
346 >     * provides support for shutdown-style clearing, which is also not
347 >     * currently implemented.
348 >     *
349 >     * Lazy table initialization minimizes footprint until first use,
350 >     * and also avoids resizings when the first operation is from a
351 >     * putAll, constructor with map argument, or deserialization.
352 >     * These cases attempt to override the initial capacity settings,
353 >     * but harmlessly fail to take effect in cases of races.
354 >     *
355 >     * The element count is maintained using a LongAdder, which avoids
356 >     * contention on updates but can encounter cache thrashing if read
357 >     * too frequently during concurrent access. To avoid reading so
358 >     * often, resizing is attempted either when a bin lock is
359 >     * contended, or upon adding to a bin already holding two or more
360 >     * nodes (checked before adding in the xIfAbsent methods, after
361 >     * adding in others). Under uniform hash distributions, the
362 >     * probability of this occurring at threshold is around 13%,
363 >     * meaning that only about 1 in 8 puts check threshold (and after
364 >     * resizing, many fewer do so). But this approximation has high
365 >     * variance for small table sizes, so we check on any collision
366 >     * for sizes <= 64. The bulk putAll operation further reduces
367 >     * contention by only committing count updates upon these size
368 >     * checks.
369 >     *
370 >     * Maintaining API and serialization compatibility with previous
371 >     * versions of this class introduces several oddities. Mainly: We
372 >     * leave untouched but unused constructor arguments refering to
373 >     * concurrencyLevel. We accept a loadFactor constructor argument,
374 >     * but apply it only to initial table capacity (which is the only
375 >     * time that we can guarantee to honor it.) We also declare an
376 >     * unused "Segment" class that is instantiated in minimal form
377 >     * only when serializing.
378       */
379  
380      /* ---------------- Constants -------------- */
381  
382      /**
383 <     * The default initial number of table slots for this table.
384 <     * Used when not otherwise specified in constructor.
383 >     * The largest possible table capacity.  This value must be
384 >     * exactly 1<<30 to stay within Java array allocation and indexing
385 >     * bounds for power of two table sizes, and is further required
386 >     * because the top two bits of 32bit hash fields are used for
387 >     * control purposes.
388       */
389 <    static int DEFAULT_INITIAL_CAPACITY = 16;
389 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
390  
391      /**
392 <     * The maximum capacity, used if a higher value is implicitly
393 <     * specified by either of the constructors with arguments.  MUST
95 <     * be a power of two <= 1<<30 to ensure that entries are indexible
96 <     * using ints.
392 >     * The default initial table capacity.  Must be a power of 2
393 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
394       */
395 <    static final int MAXIMUM_CAPACITY = 1 << 30;
395 >    private static final int DEFAULT_CAPACITY = 16;
396  
397      /**
398 <     * The default load factor for this table.  Used when not
399 <     * otherwise specified in constructor.
398 >     * The largest possible (non-power of two) array size.
399 >     * Needed by toArray and related methods.
400       */
401 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
401 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
402  
403      /**
404 <     * The default number of concurrency control segments.
405 <     **/
406 <    static final int DEFAULT_SEGMENTS = 16;
404 >     * The default concurrency level for this table. Unused but
405 >     * defined for compatibility with previous versions of this class.
406 >     */
407 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
408 >
409 >    /**
410 >     * The load factor for this table. Overrides of this value in
411 >     * constructors affect only the initial table capacity.  The
412 >     * actual floating point value isn't normally used -- it is
413 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
414 >     * the associated resizing threshold.
415 >     */
416 >    private static final float LOAD_FACTOR = 0.75f;
417  
418      /**
419 <     * The maximum number of segments to allow; used to bound
420 <     * constructor arguments.
419 >     * The buffer size for skipped bins during transfers. The
420 >     * value is arbitrary but should be large enough to avoid
421 >     * most locking stalls during resizes.
422       */
423 <    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
423 >    private static final int TRANSFER_BUFFER_SIZE = 32;
424  
425      /**
426 <     * Number of unsynchronized retries in size and containsValue
427 <     * methods before resorting to locking. This is used to avoid
428 <     * unbounded retries if tables undergo continuous modification
121 <     * which would make it impossible to obtain an accurate result.
426 >     * The bin count threshold for using a tree rather than list for a
427 >     * bin.  The value reflects the approximate break-even point for
428 >     * using tree-based operations.
429       */
430 <    static final int RETRIES_BEFORE_LOCK = 2;
430 >    private static final int TREE_THRESHOLD = 8;
431 >
432 >    /*
433 >     * Encodings for special uses of Node hash fields. See above for
434 >     * explanation.
435 >     */
436 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
437 >    static final int LOCKED    = 0x40000000; // set/tested only as a bit
438 >    static final int WAITING   = 0xc0000000; // both bits set/tested together
439 >    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
440  
441      /* ---------------- Fields -------------- */
442  
443      /**
444 <     * Mask value for indexing into segments. The upper bits of a
445 <     * key's hash code are used to choose the segment.
446 <     **/
447 <    final int segmentMask;
444 >     * The array of bins. Lazily initialized upon first insertion.
445 >     * Size is always a power of two. Accessed directly by iterators.
446 >     */
447 >    transient volatile Node[] table;
448  
449      /**
450 <     * Shift value for indexing within segments.
451 <     **/
452 <    final int segmentShift;
450 >     * The counter maintaining number of elements.
451 >     */
452 >    private transient final LongAdder counter;
453  
454      /**
455 <     * The segments, each of which is a specialized hash table
455 >     * Table initialization and resizing control.  When negative, the
456 >     * table is being initialized or resized. Otherwise, when table is
457 >     * null, holds the initial table size to use upon creation, or 0
458 >     * for default. After initialization, holds the next element count
459 >     * value upon which to resize the table.
460       */
461 <    final Segment[] segments;
461 >    private transient volatile int sizeCtl;
462  
463 <    transient Set<K> keySet;
464 <    transient Set<Map.Entry<K,V>> entrySet;
465 <    transient Collection<V> values;
463 >    // views
464 >    private transient KeySet<K,V> keySet;
465 >    private transient Values<K,V> values;
466 >    private transient EntrySet<K,V> entrySet;
467  
468 <    /* ---------------- Small Utilities -------------- */
468 >    /** For serialization compatibility. Null unless serialized; see below */
469 >    private Segment<K,V>[] segments;
470  
471 <    /**
472 <     * Returns a hash code for non-null Object x.
473 <     * Uses the same hash code spreader as most other java.util hash tables.
474 <     * @param x the object serving as a key
475 <     * @return the hash code
471 >    /* ---------------- Table element access -------------- */
472 >
473 >    /*
474 >     * Volatile access methods are used for table elements as well as
475 >     * elements of in-progress next table while resizing.  Uses are
476 >     * null checked by callers, and implicitly bounds-checked, relying
477 >     * on the invariants that tab arrays have non-zero size, and all
478 >     * indices are masked with (tab.length - 1) which is never
479 >     * negative and always less than length. Note that, to be correct
480 >     * wrt arbitrary concurrency errors by users, bounds checks must
481 >     * operate on local variables, which accounts for some odd-looking
482 >     * inline assignments below.
483       */
484 <    static int hash(Object x) {
485 <        int h = x.hashCode();
486 <        h += ~(h << 9);
487 <        h ^=  (h >>> 14);
488 <        h +=  (h << 4);
489 <        h ^=  (h >>> 10);
490 <        return h;
484 >
485 >    static final Node tabAt(Node[] tab, int i) { // used by Iter
486 >        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
487 >    }
488 >
489 >    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
490 >        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
491 >    }
492 >
493 >    private static final void setTabAt(Node[] tab, int i, Node v) {
494 >        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
495      }
496  
497 +    /* ---------------- Nodes -------------- */
498 +
499      /**
500 <     * Returns the segment that should be used for key with given hash
501 <     * @param hash the hash code for the key
502 <     * @return the segment
503 <     */
504 <    final Segment<K,V> segmentFor(int hash) {
505 <        return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
506 <    }
507 <
508 <    /* ---------------- Inner Classes -------------- */
509 <
510 <    /**
511 <     * ConcurrentHashMap list entry. Note that this is never exported
512 <     * out as a user-visible Map.Entry.
513 <     *
179 <     * Because the value field is volatile, not final, it is legal wrt
180 <     * the Java Memory Model for an unsynchronized reader to see null
181 <     * instead of initial value when read via a data race.  Although a
182 <     * reordering leading to this is not likely to ever actually
183 <     * occur, the Segment.readValueUnderLock method is used as a
184 <     * backup in case a null (pre-initialized) value is ever seen in
185 <     * an unsynchronized access method.
186 <     */
187 <    static final class HashEntry<K,V> {
188 <        final K key;
189 <        final int hash;
190 <        volatile V value;
191 <        final HashEntry<K,V> next;
500 >     * Key-value entry. Note that this is never exported out as a
501 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
502 >     * field of MOVED are special, and do not contain user keys or
503 >     * values.  Otherwise, keys are never null, and null val fields
504 >     * indicate that a node is in the process of being deleted or
505 >     * created. For purposes of read-only access, a key may be read
506 >     * before a val, but can only be used after checking val to be
507 >     * non-null.
508 >     */
509 >    static class Node {
510 >        volatile int hash;
511 >        final Object key;
512 >        volatile Object val;
513 >        volatile Node next;
514  
515 <        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
194 <            this.key = key;
515 >        Node(int hash, Object key, Object val, Node next) {
516              this.hash = hash;
517 +            this.key = key;
518 +            this.val = val;
519              this.next = next;
197            this.value = value;
520          }
199    }
200
201    /**
202     * Segments are specialized versions of hash tables.  This
203     * subclasses from ReentrantLock opportunistically, just to
204     * simplify some locking and avoid separate construction.
205     **/
206    static final class Segment<K,V> extends ReentrantLock implements Serializable {
207        /*
208         * Segments maintain a table of entry lists that are ALWAYS
209         * kept in a consistent state, so can be read without locking.
210         * Next fields of nodes are immutable (final).  All list
211         * additions are performed at the front of each bin. This
212         * makes it easy to check changes, and also fast to traverse.
213         * When nodes would otherwise be changed, new nodes are
214         * created to replace them. This works well for hash tables
215         * since the bin lists tend to be short. (The average length
216         * is less than two for the default load factor threshold.)
217         *
218         * Read operations can thus proceed without locking, but rely
219         * on selected uses of volatiles to ensure that completed
220         * write operations performed by other threads are
221         * noticed. For most purposes, the "count" field, tracking the
222         * number of elements, serves as that volatile variable
223         * ensuring visibility.  This is convenient because this field
224         * needs to be read in many read operations anyway:
225         *
226         *   - All (unsynchronized) read operations must first read the
227         *     "count" field, and should not look at table entries if
228         *     it is 0.
229         *
230         *   - All (synchronized) write operations should write to
231         *     the "count" field after structurally changing any bin.
232         *     The operations must not take any action that could even
233         *     momentarily cause a concurrent read operation to see
234         *     inconsistent data. This is made easier by the nature of
235         *     the read operations in Map. For example, no operation
236         *     can reveal that the table has grown but the threshold
237         *     has not yet been updated, so there are no atomicity
238         *     requirements for this with respect to reads.
239         *
240         * As a guide, all critical volatile reads and writes to the
241         * count field are marked in code comments.
242         */
521  
522 <        private static final long serialVersionUID = 2249069246763182397L;
522 >        /** CompareAndSet the hash field */
523 >        final boolean casHash(int cmp, int val) {
524 >            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
525 >        }
526  
527 <        /**
528 <         * The number of elements in this segment's region.
529 <         **/
249 <        transient volatile int count;
527 >        /** The number of spins before blocking for a lock */
528 >        static final int MAX_SPINS =
529 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
530  
531          /**
532 <         * Number of updates that alter the size of the table. This is
533 <         * used during bulk-read methods to make sure they see a
534 <         * consistent snapshot: If modCounts change during a traversal
535 <         * of segments computing size or checking containsValue, then
536 <         * we might have an inconsistent view of state so (usually)
537 <         * must retry.
532 >         * Spins a while if LOCKED bit set and this node is the first
533 >         * of its bin, and then sets WAITING bits on hash field and
534 >         * blocks (once) if they are still set.  It is OK for this
535 >         * method to return even if lock is not available upon exit,
536 >         * which enables these simple single-wait mechanics.
537 >         *
538 >         * The corresponding signalling operation is performed within
539 >         * callers: Upon detecting that WAITING has been set when
540 >         * unlocking lock (via a failed CAS from non-waiting LOCKED
541 >         * state), unlockers acquire the sync lock and perform a
542 >         * notifyAll.
543 >         *
544 >         * The initial sanity check on tab and bounds is not currently
545 >         * necessary in the only usages of this method, but enables
546 >         * use in other future contexts.
547           */
548 <        transient int modCount;
548 >        final void tryAwaitLock(Node[] tab, int i) {
549 >            if (tab != null && i >= 0 && i < tab.length) { // sanity check
550 >                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
551 >                int spins = MAX_SPINS, h;
552 >                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
553 >                    if (spins >= 0) {
554 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
555 >                        if (r >= 0 && --spins == 0)
556 >                            Thread.yield();  // yield before block
557 >                    }
558 >                    else if (casHash(h, h | WAITING)) {
559 >                        synchronized (this) {
560 >                            if (tabAt(tab, i) == this &&
561 >                                (hash & WAITING) == WAITING) {
562 >                                try {
563 >                                    wait();
564 >                                } catch (InterruptedException ie) {
565 >                                    Thread.currentThread().interrupt();
566 >                                }
567 >                            }
568 >                            else
569 >                                notifyAll(); // possibly won race vs signaller
570 >                        }
571 >                        break;
572 >                    }
573 >                }
574 >            }
575 >        }
576  
577 <        /**
578 <         * The table is rehashed when its size exceeds this threshold.
579 <         * (The value of this field is always (int)(capacity *
264 <         * loadFactor).)
265 <         */
266 <        transient int threshold;
577 >        // Unsafe mechanics for casHash
578 >        private static final sun.misc.Unsafe UNSAFE;
579 >        private static final long hashOffset;
580  
581 <        /**
582 <         * The per-segment table. Declared as a raw type, casted
583 <         * to HashEntry<K,V> on each use.
584 <         */
585 <        transient volatile HashEntry[] table;
581 >        static {
582 >            try {
583 >                UNSAFE = sun.misc.Unsafe.getUnsafe();
584 >                Class<?> k = Node.class;
585 >                hashOffset = UNSAFE.objectFieldOffset
586 >                    (k.getDeclaredField("hash"));
587 >            } catch (Exception e) {
588 >                throw new Error(e);
589 >            }
590 >        }
591 >    }
592  
593 <        /**
275 <         * The load factor for the hash table.  Even though this value
276 <         * is same for all segments, it is replicated to avoid needing
277 <         * links to outer object.
278 <         * @serial
279 <         */
280 <        final float loadFactor;
593 >    /* ---------------- TreeBins -------------- */
594  
595 <        Segment(int initialCapacity, float lf) {
596 <            loadFactor = lf;
597 <            setTable(new HashEntry[initialCapacity]);
595 >    /**
596 >     * Nodes for use in TreeBins
597 >     */
598 >    static final class TreeNode extends Node {
599 >        TreeNode parent;  // red-black tree links
600 >        TreeNode left;
601 >        TreeNode right;
602 >        TreeNode prev;    // needed to unlink next upon deletion
603 >        boolean red;
604 >
605 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
606 >            super(hash, key, val, next);
607 >            this.parent = parent;
608          }
609 +    }
610  
611 <        /**
612 <         * Set table to new HashEntry array.
613 <         * Call only while holding lock or in constructor.
614 <         **/
615 <        void setTable(HashEntry[] newTable) {
616 <            threshold = (int)(newTable.length * loadFactor);
617 <            table = newTable;
611 >    /**
612 >     * A specialized form of red-black tree for use in bins
613 >     * whose size exceeds a threshold.
614 >     *
615 >     * TreeBins use a special form of comparison for search and
616 >     * related operations (which is the main reason we cannot use
617 >     * existing collections such as TreeMaps). TreeBins contain
618 >     * Comparable elements, but may contain others, as well as
619 >     * elements that are Comparable but not necessarily Comparable<T>
620 >     * for the same T, so we cannot invoke compareTo among them. To
621 >     * handle this, the tree is ordered primarily by hash value, then
622 >     * by getClass().getName() order, and then by Comparator order
623 >     * among elements of the same class.  On lookup at a node, if
624 >     * elements are not comparable or compare as 0, both left and
625 >     * right children may need to be searched in the case of tied hash
626 >     * values. (This corresponds to the full list search that would be
627 >     * necessary if all elements were non-Comparable and had tied
628 >     * hashes.)  The red-black balancing code is updated from
629 >     * pre-jdk-collections
630 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
631 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
632 >     * Algorithms" (CLR).
633 >     *
634 >     * TreeBins also maintain a separate locking discipline than
635 >     * regular bins. Because they are forwarded via special MOVED
636 >     * nodes at bin heads (which can never change once established),
637 >     * we cannot use those nodes as locks. Instead, TreeBin
638 >     * extends AbstractQueuedSynchronizer to support a simple form of
639 >     * read-write lock. For update operations and table validation,
640 >     * the exclusive form of lock behaves in the same way as bin-head
641 >     * locks. However, lookups use shared read-lock mechanics to allow
642 >     * multiple readers in the absence of writers.  Additionally,
643 >     * these lookups do not ever block: While the lock is not
644 >     * available, they proceed along the slow traversal path (via
645 >     * next-pointers) until the lock becomes available or the list is
646 >     * exhausted, whichever comes first. (These cases are not fast,
647 >     * but maximize aggregate expected throughput.)  The AQS mechanics
648 >     * for doing this are straightforward.  The lock state is held as
649 >     * AQS getState().  Read counts are negative; the write count (1)
650 >     * is positive.  There are no signalling preferences among readers
651 >     * and writers. Since we don't need to export full Lock API, we
652 >     * just override the minimal AQS methods and use them directly.
653 >     */
654 >    static final class TreeBin extends AbstractQueuedSynchronizer {
655 >        private static final long serialVersionUID = 2249069246763182397L;
656 >        transient TreeNode root;  // root of tree
657 >        transient TreeNode first; // head of next-pointer list
658 >
659 >        /* AQS overrides */
660 >        public final boolean isHeldExclusively() { return getState() > 0; }
661 >        public final boolean tryAcquire(int ignore) {
662 >            if (compareAndSetState(0, 1)) {
663 >                setExclusiveOwnerThread(Thread.currentThread());
664 >                return true;
665 >            }
666 >            return false;
667 >        }
668 >        public final boolean tryRelease(int ignore) {
669 >            setExclusiveOwnerThread(null);
670 >            setState(0);
671 >            return true;
672 >        }
673 >        public final int tryAcquireShared(int ignore) {
674 >            for (int c;;) {
675 >                if ((c = getState()) > 0)
676 >                    return -1;
677 >                if (compareAndSetState(c, c -1))
678 >                    return 1;
679 >            }
680 >        }
681 >        public final boolean tryReleaseShared(int ignore) {
682 >            int c;
683 >            do {} while (!compareAndSetState(c = getState(), c + 1));
684 >            return c == -1;
685 >        }
686 >
687 >        /** From CLR */
688 >        private void rotateLeft(TreeNode p) {
689 >            if (p != null) {
690 >                TreeNode r = p.right, pp, rl;
691 >                if ((rl = p.right = r.left) != null)
692 >                    rl.parent = p;
693 >                if ((pp = r.parent = p.parent) == null)
694 >                    root = r;
695 >                else if (pp.left == p)
696 >                    pp.left = r;
697 >                else
698 >                    pp.right = r;
699 >                r.left = p;
700 >                p.parent = r;
701 >            }
702 >        }
703 >
704 >        /** From CLR */
705 >        private void rotateRight(TreeNode p) {
706 >            if (p != null) {
707 >                TreeNode l = p.left, pp, lr;
708 >                if ((lr = p.left = l.right) != null)
709 >                    lr.parent = p;
710 >                if ((pp = l.parent = p.parent) == null)
711 >                    root = l;
712 >                else if (pp.right == p)
713 >                    pp.right = l;
714 >                else
715 >                    pp.left = l;
716 >                l.right = p;
717 >                p.parent = l;
718 >            }
719          }
720  
721          /**
722 <         * Return properly casted first entry of bin for given hash
722 >         * Returns the TreeNode (or null if not found) for the given key
723 >         * starting at given root.
724           */
725 <        HashEntry<K,V> getFirst(int hash) {
726 <            HashEntry[] tab = table;
727 <            return (HashEntry<K,V>) tab[hash & (tab.length - 1)];
725 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
726 >            (int h, Object k, TreeNode p) {
727 >            Class<?> c = k.getClass();
728 >            while (p != null) {
729 >                int dir, ph;  Object pk; Class<?> pc;
730 >                if ((ph = p.hash) == h) {
731 >                    if ((pk = p.key) == k || k.equals(pk))
732 >                        return p;
733 >                    if (c != (pc = pk.getClass()) ||
734 >                        !(k instanceof Comparable) ||
735 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
736 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
737 >                        TreeNode r = null, s = null, pl, pr;
738 >                        if (dir >= 0) {
739 >                            if ((pl = p.left) != null && h <= pl.hash)
740 >                                s = pl;
741 >                        }
742 >                        else if ((pr = p.right) != null && h >= pr.hash)
743 >                            s = pr;
744 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
745 >                            return r;
746 >                    }
747 >                }
748 >                else
749 >                    dir = (h < ph) ? -1 : 1;
750 >                p = (dir > 0) ? p.right : p.left;
751 >            }
752 >            return null;
753          }
754  
755          /**
756 <         * Read value field of an entry under lock. Called if value
757 <         * field ever appears to be null. This is possible only if a
758 <         * compiler happens to reorder a HashEntry initialization with
308 <         * its table assignment, which is legal under memory model
309 <         * but is not known to ever occur.
756 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
757 >         * read-lock to call getTreeNode, but during failure to get
758 >         * lock, searches along next links.
759           */
760 <        V readValueUnderLock(HashEntry<K,V> e) {
761 <            lock();
762 <            try {
763 <                return e.value;
764 <            } finally {
765 <                unlock();
760 >        final Object getValue(int h, Object k) {
761 >            Node r = null;
762 >            int c = getState(); // Must read lock state first
763 >            for (Node e = first; e != null; e = e.next) {
764 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
765 >                    try {
766 >                        r = getTreeNode(h, k, root);
767 >                    } finally {
768 >                        releaseShared(0);
769 >                    }
770 >                    break;
771 >                }
772 >                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
773 >                    r = e;
774 >                    break;
775 >                }
776 >                else
777 >                    c = getState();
778              }
779 +            return r == null ? null : r.val;
780          }
781  
782 <        /* Specialized implementations of map methods */
782 >        /**
783 >         * Finds or adds a node.
784 >         * @return null if added
785 >         */
786 >        @SuppressWarnings("unchecked") final TreeNode putTreeNode
787 >            (int h, Object k, Object v) {
788 >            Class<?> c = k.getClass();
789 >            TreeNode pp = root, p = null;
790 >            int dir = 0;
791 >            while (pp != null) { // find existing node or leaf to insert at
792 >                int ph;  Object pk; Class<?> pc;
793 >                p = pp;
794 >                if ((ph = p.hash) == h) {
795 >                    if ((pk = p.key) == k || k.equals(pk))
796 >                        return p;
797 >                    if (c != (pc = pk.getClass()) ||
798 >                        !(k instanceof Comparable) ||
799 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
800 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
801 >                        TreeNode r = null, s = null, pl, pr;
802 >                        if (dir >= 0) {
803 >                            if ((pl = p.left) != null && h <= pl.hash)
804 >                                s = pl;
805 >                        }
806 >                        else if ((pr = p.right) != null && h >= pr.hash)
807 >                            s = pr;
808 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
809 >                            return r;
810 >                    }
811 >                }
812 >                else
813 >                    dir = (h < ph) ? -1 : 1;
814 >                pp = (dir > 0) ? p.right : p.left;
815 >            }
816  
817 <        V get(Object key, int hash) {
818 <            if (count != 0) { // read-volatile
819 <                HashEntry<K,V> e = getFirst(hash);
820 <                while (e != null) {
821 <                    if (e.hash == hash && key.equals(e.key)) {
822 <                        V v = e.value;
823 <                        if (v != null)
824 <                            return v;
825 <                        return readValueUnderLock(e); // recheck
817 >            TreeNode f = first;
818 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
819 >            if (p == null)
820 >                root = x;
821 >            else { // attach and rebalance; adapted from CLR
822 >                TreeNode xp, xpp;
823 >                if (f != null)
824 >                    f.prev = x;
825 >                if (dir <= 0)
826 >                    p.left = x;
827 >                else
828 >                    p.right = x;
829 >                x.red = true;
830 >                while (x != null && (xp = x.parent) != null && xp.red &&
831 >                       (xpp = xp.parent) != null) {
832 >                    TreeNode xppl = xpp.left;
833 >                    if (xp == xppl) {
834 >                        TreeNode y = xpp.right;
835 >                        if (y != null && y.red) {
836 >                            y.red = false;
837 >                            xp.red = false;
838 >                            xpp.red = true;
839 >                            x = xpp;
840 >                        }
841 >                        else {
842 >                            if (x == xp.right) {
843 >                                rotateLeft(x = xp);
844 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
845 >                            }
846 >                            if (xp != null) {
847 >                                xp.red = false;
848 >                                if (xpp != null) {
849 >                                    xpp.red = true;
850 >                                    rotateRight(xpp);
851 >                                }
852 >                            }
853 >                        }
854 >                    }
855 >                    else {
856 >                        TreeNode y = xppl;
857 >                        if (y != null && y.red) {
858 >                            y.red = false;
859 >                            xp.red = false;
860 >                            xpp.red = true;
861 >                            x = xpp;
862 >                        }
863 >                        else {
864 >                            if (x == xp.left) {
865 >                                rotateRight(x = xp);
866 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
867 >                            }
868 >                            if (xp != null) {
869 >                                xp.red = false;
870 >                                if (xpp != null) {
871 >                                    xpp.red = true;
872 >                                    rotateLeft(xpp);
873 >                                }
874 >                            }
875 >                        }
876                      }
332                    e = e.next;
877                  }
878 +                TreeNode r = root;
879 +                if (r != null && r.red)
880 +                    r.red = false;
881              }
882              return null;
883          }
884  
885 <        boolean containsKey(Object key, int hash) {
886 <            if (count != 0) { // read-volatile
887 <                HashEntry<K,V> e = getFirst(hash);
888 <                while (e != null) {
889 <                    if (e.hash == hash && key.equals(e.key))
890 <                        return true;
891 <                    e = e.next;
885 >        /**
886 >         * Removes the given node, that must be present before this
887 >         * call.  This is messier than typical red-black deletion code
888 >         * because we cannot swap the contents of an interior node
889 >         * with a leaf successor that is pinned by "next" pointers
890 >         * that are accessible independently of lock. So instead we
891 >         * swap the tree linkages.
892 >         */
893 >        final void deleteTreeNode(TreeNode p) {
894 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
895 >            TreeNode pred = p.prev;
896 >            if (pred == null)
897 >                first = next;
898 >            else
899 >                pred.next = next;
900 >            if (next != null)
901 >                next.prev = pred;
902 >            TreeNode replacement;
903 >            TreeNode pl = p.left;
904 >            TreeNode pr = p.right;
905 >            if (pl != null && pr != null) {
906 >                TreeNode s = pr, sl;
907 >                while ((sl = s.left) != null) // find successor
908 >                    s = sl;
909 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
910 >                TreeNode sr = s.right;
911 >                TreeNode pp = p.parent;
912 >                if (s == pr) { // p was s's direct parent
913 >                    p.parent = s;
914 >                    s.right = p;
915                  }
916 +                else {
917 +                    TreeNode sp = s.parent;
918 +                    if ((p.parent = sp) != null) {
919 +                        if (s == sp.left)
920 +                            sp.left = p;
921 +                        else
922 +                            sp.right = p;
923 +                    }
924 +                    if ((s.right = pr) != null)
925 +                        pr.parent = s;
926 +                }
927 +                p.left = null;
928 +                if ((p.right = sr) != null)
929 +                    sr.parent = p;
930 +                if ((s.left = pl) != null)
931 +                    pl.parent = s;
932 +                if ((s.parent = pp) == null)
933 +                    root = s;
934 +                else if (p == pp.left)
935 +                    pp.left = s;
936 +                else
937 +                    pp.right = s;
938 +                replacement = sr;
939              }
940 <            return false;
940 >            else
941 >                replacement = (pl != null) ? pl : pr;
942 >            TreeNode pp = p.parent;
943 >            if (replacement == null) {
944 >                if (pp == null) {
945 >                    root = null;
946 >                    return;
947 >                }
948 >                replacement = p;
949 >            }
950 >            else {
951 >                replacement.parent = pp;
952 >                if (pp == null)
953 >                    root = replacement;
954 >                else if (p == pp.left)
955 >                    pp.left = replacement;
956 >                else
957 >                    pp.right = replacement;
958 >                p.left = p.right = p.parent = null;
959 >            }
960 >            if (!p.red) { // rebalance, from CLR
961 >                TreeNode x = replacement;
962 >                while (x != null) {
963 >                    TreeNode xp, xpl;
964 >                    if (x.red || (xp = x.parent) == null) {
965 >                        x.red = false;
966 >                        break;
967 >                    }
968 >                    if (x == (xpl = xp.left)) {
969 >                        TreeNode sib = xp.right;
970 >                        if (sib != null && sib.red) {
971 >                            sib.red = false;
972 >                            xp.red = true;
973 >                            rotateLeft(xp);
974 >                            sib = (xp = x.parent) == null ? null : xp.right;
975 >                        }
976 >                        if (sib == null)
977 >                            x = xp;
978 >                        else {
979 >                            TreeNode sl = sib.left, sr = sib.right;
980 >                            if ((sr == null || !sr.red) &&
981 >                                (sl == null || !sl.red)) {
982 >                                sib.red = true;
983 >                                x = xp;
984 >                            }
985 >                            else {
986 >                                if (sr == null || !sr.red) {
987 >                                    if (sl != null)
988 >                                        sl.red = false;
989 >                                    sib.red = true;
990 >                                    rotateRight(sib);
991 >                                    sib = (xp = x.parent) == null ? null : xp.right;
992 >                                }
993 >                                if (sib != null) {
994 >                                    sib.red = (xp == null) ? false : xp.red;
995 >                                    if ((sr = sib.right) != null)
996 >                                        sr.red = false;
997 >                                }
998 >                                if (xp != null) {
999 >                                    xp.red = false;
1000 >                                    rotateLeft(xp);
1001 >                                }
1002 >                                x = root;
1003 >                            }
1004 >                        }
1005 >                    }
1006 >                    else { // symmetric
1007 >                        TreeNode sib = xpl;
1008 >                        if (sib != null && sib.red) {
1009 >                            sib.red = false;
1010 >                            xp.red = true;
1011 >                            rotateRight(xp);
1012 >                            sib = (xp = x.parent) == null ? null : xp.left;
1013 >                        }
1014 >                        if (sib == null)
1015 >                            x = xp;
1016 >                        else {
1017 >                            TreeNode sl = sib.left, sr = sib.right;
1018 >                            if ((sl == null || !sl.red) &&
1019 >                                (sr == null || !sr.red)) {
1020 >                                sib.red = true;
1021 >                                x = xp;
1022 >                            }
1023 >                            else {
1024 >                                if (sl == null || !sl.red) {
1025 >                                    if (sr != null)
1026 >                                        sr.red = false;
1027 >                                    sib.red = true;
1028 >                                    rotateLeft(sib);
1029 >                                    sib = (xp = x.parent) == null ? null : xp.left;
1030 >                                }
1031 >                                if (sib != null) {
1032 >                                    sib.red = (xp == null) ? false : xp.red;
1033 >                                    if ((sl = sib.left) != null)
1034 >                                        sl.red = false;
1035 >                                }
1036 >                                if (xp != null) {
1037 >                                    xp.red = false;
1038 >                                    rotateRight(xp);
1039 >                                }
1040 >                                x = root;
1041 >                            }
1042 >                        }
1043 >                    }
1044 >                }
1045 >            }
1046 >            if (p == replacement && (pp = p.parent) != null) {
1047 >                if (p == pp.left) // detach pointers
1048 >                    pp.left = null;
1049 >                else if (p == pp.right)
1050 >                    pp.right = null;
1051 >                p.parent = null;
1052 >            }
1053 >        }
1054 >    }
1055 >
1056 >    /* ---------------- Collision reduction methods -------------- */
1057 >
1058 >    /**
1059 >     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1060 >     * Because the table uses power-of-two masking, sets of hashes
1061 >     * that vary only in bits above the current mask will always
1062 >     * collide. (Among known examples are sets of Float keys holding
1063 >     * consecutive whole numbers in small tables.)  To counter this,
1064 >     * we apply a transform that spreads the impact of higher bits
1065 >     * downward. There is a tradeoff between speed, utility, and
1066 >     * quality of bit-spreading. Because many common sets of hashes
1067 >     * are already reasonably distributed across bits (so don't benefit
1068 >     * from spreading), and because we use trees to handle large sets
1069 >     * of collisions in bins, we don't need excessively high quality.
1070 >     */
1071 >    private static final int spread(int h) {
1072 >        h ^= (h >>> 18) ^ (h >>> 12);
1073 >        return (h ^ (h >>> 10)) & HASH_BITS;
1074 >    }
1075 >
1076 >    /**
1077 >     * Replaces a list bin with a tree bin. Call only when locked.
1078 >     * Fails to replace if the given key is non-comparable or table
1079 >     * is, or needs, resizing.
1080 >     */
1081 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1082 >        if ((key instanceof Comparable) &&
1083 >            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1084 >            TreeBin t = new TreeBin();
1085 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1086 >                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1087 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1088          }
1089 +    }
1090 +
1091 +    /* ---------------- Internal access and update methods -------------- */
1092  
1093 <        boolean containsValue(Object value) {
1094 <            if (count != 0) { // read-volatile
1095 <                HashEntry[] tab = table;
1096 <                int len = tab.length;
1097 <                for (int i = 0 ; i < len; i++) {
1098 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i];
1099 <                         e != null ;
1100 <                         e = e.next) {
1101 <                        V v = e.value;
1102 <                        if (v == null) // recheck
1103 <                            v = readValueUnderLock(e);
1104 <                        if (value.equals(v))
362 <                            return true;
1093 >    /** Implementation for get and containsKey */
1094 >    private final Object internalGet(Object k) {
1095 >        int h = spread(k.hashCode());
1096 >        retry: for (Node[] tab = table; tab != null;) {
1097 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1098 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1099 >                if ((eh = e.hash) == MOVED) {
1100 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1101 >                        return ((TreeBin)ek).getValue(h, k);
1102 >                    else {                        // restart with new table
1103 >                        tab = (Node[])ek;
1104 >                        continue retry;
1105                      }
1106                  }
1107 +                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1108 +                         ((ek = e.key) == k || k.equals(ek)))
1109 +                    return ev;
1110              }
1111 <            return false;
1111 >            break;
1112          }
1113 +        return null;
1114 +    }
1115  
1116 <        boolean replace(K key, int hash, V oldValue, V newValue) {
1117 <            lock();
1118 <            try {
1119 <                HashEntry<K,V> e = getFirst(hash);
1120 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1121 <                    e = e.next;
1122 <
1123 <                boolean replaced = false;
1124 <                if (e != null && oldValue.equals(e.value)) {
1125 <                    replaced = true;
1126 <                    e.value = newValue;
1116 >    /**
1117 >     * Implementation for the four public remove/replace methods:
1118 >     * Replaces node value with v, conditional upon match of cv if
1119 >     * non-null.  If resulting value is null, delete.
1120 >     */
1121 >    private final Object internalReplace(Object k, Object v, Object cv) {
1122 >        int h = spread(k.hashCode());
1123 >        Object oldVal = null;
1124 >        for (Node[] tab = table;;) {
1125 >            Node f; int i, fh; Object fk;
1126 >            if (tab == null ||
1127 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1128 >                break;
1129 >            else if ((fh = f.hash) == MOVED) {
1130 >                if ((fk = f.key) instanceof TreeBin) {
1131 >                    TreeBin t = (TreeBin)fk;
1132 >                    boolean validated = false;
1133 >                    boolean deleted = false;
1134 >                    t.acquire(0);
1135 >                    try {
1136 >                        if (tabAt(tab, i) == f) {
1137 >                            validated = true;
1138 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1139 >                            if (p != null) {
1140 >                                Object pv = p.val;
1141 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1142 >                                    oldVal = pv;
1143 >                                    if ((p.val = v) == null) {
1144 >                                        deleted = true;
1145 >                                        t.deleteTreeNode(p);
1146 >                                    }
1147 >                                }
1148 >                            }
1149 >                        }
1150 >                    } finally {
1151 >                        t.release(0);
1152 >                    }
1153 >                    if (validated) {
1154 >                        if (deleted)
1155 >                            counter.add(-1L);
1156 >                        break;
1157 >                    }
1158 >                }
1159 >                else
1160 >                    tab = (Node[])fk;
1161 >            }
1162 >            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1163 >                break;                          // rules out possible existence
1164 >            else if ((fh & LOCKED) != 0) {
1165 >                checkForResize();               // try resizing if can't get lock
1166 >                f.tryAwaitLock(tab, i);
1167 >            }
1168 >            else if (f.casHash(fh, fh | LOCKED)) {
1169 >                boolean validated = false;
1170 >                boolean deleted = false;
1171 >                try {
1172 >                    if (tabAt(tab, i) == f) {
1173 >                        validated = true;
1174 >                        for (Node e = f, pred = null;;) {
1175 >                            Object ek, ev;
1176 >                            if ((e.hash & HASH_BITS) == h &&
1177 >                                ((ev = e.val) != null) &&
1178 >                                ((ek = e.key) == k || k.equals(ek))) {
1179 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1180 >                                    oldVal = ev;
1181 >                                    if ((e.val = v) == null) {
1182 >                                        deleted = true;
1183 >                                        Node en = e.next;
1184 >                                        if (pred != null)
1185 >                                            pred.next = en;
1186 >                                        else
1187 >                                            setTabAt(tab, i, en);
1188 >                                    }
1189 >                                }
1190 >                                break;
1191 >                            }
1192 >                            pred = e;
1193 >                            if ((e = e.next) == null)
1194 >                                break;
1195 >                        }
1196 >                    }
1197 >                } finally {
1198 >                    if (!f.casHash(fh | LOCKED, fh)) {
1199 >                        f.hash = fh;
1200 >                        synchronized (f) { f.notifyAll(); };
1201 >                    }
1202 >                }
1203 >                if (validated) {
1204 >                    if (deleted)
1205 >                        counter.add(-1L);
1206 >                    break;
1207                  }
381                return replaced;
382            } finally {
383                unlock();
1208              }
1209          }
1210 +        return oldVal;
1211 +    }
1212  
1213 <        V replace(K key, int hash, V newValue) {
1214 <            lock();
1215 <            try {
1216 <                HashEntry<K,V> e = getFirst(hash);
1217 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1218 <                    e = e.next;
1213 >    /*
1214 >     * Internal versions of the six insertion methods, each a
1215 >     * little more complicated than the last. All have
1216 >     * the same basic structure as the first (internalPut):
1217 >     *  1. If table uninitialized, create
1218 >     *  2. If bin empty, try to CAS new node
1219 >     *  3. If bin stale, use new table
1220 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1221 >     *  5. Lock and validate; if valid, scan and add or update
1222 >     *
1223 >     * The others interweave other checks and/or alternative actions:
1224 >     *  * Plain put checks for and performs resize after insertion.
1225 >     *  * putIfAbsent prescans for mapping without lock (and fails to add
1226 >     *    if present), which also makes pre-emptive resize checks worthwhile.
1227 >     *  * computeIfAbsent extends form used in putIfAbsent with additional
1228 >     *    mechanics to deal with, calls, potential exceptions and null
1229 >     *    returns from function call.
1230 >     *  * compute uses the same function-call mechanics, but without
1231 >     *    the prescans
1232 >     *  * merge acts as putIfAbsent in the absent case, but invokes the
1233 >     *    update function if present
1234 >     *  * putAll attempts to pre-allocate enough table space
1235 >     *    and more lazily performs count updates and checks.
1236 >     *
1237 >     * Someday when details settle down a bit more, it might be worth
1238 >     * some factoring to reduce sprawl.
1239 >     */
1240  
1241 <                V oldValue = null;
1242 <                if (e != null) {
1243 <                    oldValue = e.value;
1244 <                    e.value = newValue;
1241 >    /** Implementation for put */
1242 >    private final Object internalPut(Object k, Object v) {
1243 >        int h = spread(k.hashCode());
1244 >        int count = 0;
1245 >        for (Node[] tab = table;;) {
1246 >            int i; Node f; int fh; Object fk;
1247 >            if (tab == null)
1248 >                tab = initTable();
1249 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1250 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1251 >                    break;                   // no lock when adding to empty bin
1252 >            }
1253 >            else if ((fh = f.hash) == MOVED) {
1254 >                if ((fk = f.key) instanceof TreeBin) {
1255 >                    TreeBin t = (TreeBin)fk;
1256 >                    Object oldVal = null;
1257 >                    t.acquire(0);
1258 >                    try {
1259 >                        if (tabAt(tab, i) == f) {
1260 >                            count = 2;
1261 >                            TreeNode p = t.putTreeNode(h, k, v);
1262 >                            if (p != null) {
1263 >                                oldVal = p.val;
1264 >                                p.val = v;
1265 >                            }
1266 >                        }
1267 >                    } finally {
1268 >                        t.release(0);
1269 >                    }
1270 >                    if (count != 0) {
1271 >                        if (oldVal != null)
1272 >                            return oldVal;
1273 >                        break;
1274 >                    }
1275 >                }
1276 >                else
1277 >                    tab = (Node[])fk;
1278 >            }
1279 >            else if ((fh & LOCKED) != 0) {
1280 >                checkForResize();
1281 >                f.tryAwaitLock(tab, i);
1282 >            }
1283 >            else if (f.casHash(fh, fh | LOCKED)) {
1284 >                Object oldVal = null;
1285 >                try {                        // needed in case equals() throws
1286 >                    if (tabAt(tab, i) == f) {
1287 >                        count = 1;
1288 >                        for (Node e = f;; ++count) {
1289 >                            Object ek, ev;
1290 >                            if ((e.hash & HASH_BITS) == h &&
1291 >                                (ev = e.val) != null &&
1292 >                                ((ek = e.key) == k || k.equals(ek))) {
1293 >                                oldVal = ev;
1294 >                                e.val = v;
1295 >                                break;
1296 >                            }
1297 >                            Node last = e;
1298 >                            if ((e = e.next) == null) {
1299 >                                last.next = new Node(h, k, v, null);
1300 >                                if (count >= TREE_THRESHOLD)
1301 >                                    replaceWithTreeBin(tab, i, k);
1302 >                                break;
1303 >                            }
1304 >                        }
1305 >                    }
1306 >                } finally {                  // unlock and signal if needed
1307 >                    if (!f.casHash(fh | LOCKED, fh)) {
1308 >                        f.hash = fh;
1309 >                        synchronized (f) { f.notifyAll(); };
1310 >                    }
1311 >                }
1312 >                if (count != 0) {
1313 >                    if (oldVal != null)
1314 >                        return oldVal;
1315 >                    if (tab.length <= 64)
1316 >                        count = 2;
1317 >                    break;
1318                  }
399                return oldValue;
400            } finally {
401                unlock();
1319              }
1320          }
1321 +        counter.add(1L);
1322 +        if (count > 1)
1323 +            checkForResize();
1324 +        return null;
1325 +    }
1326  
1327 +    /** Implementation for putIfAbsent */
1328 +    private final Object internalPutIfAbsent(Object k, Object v) {
1329 +        int h = spread(k.hashCode());
1330 +        int count = 0;
1331 +        for (Node[] tab = table;;) {
1332 +            int i; Node f; int fh; Object fk, fv;
1333 +            if (tab == null)
1334 +                tab = initTable();
1335 +            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1336 +                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1337 +                    break;
1338 +            }
1339 +            else if ((fh = f.hash) == MOVED) {
1340 +                if ((fk = f.key) instanceof TreeBin) {
1341 +                    TreeBin t = (TreeBin)fk;
1342 +                    Object oldVal = null;
1343 +                    t.acquire(0);
1344 +                    try {
1345 +                        if (tabAt(tab, i) == f) {
1346 +                            count = 2;
1347 +                            TreeNode p = t.putTreeNode(h, k, v);
1348 +                            if (p != null)
1349 +                                oldVal = p.val;
1350 +                        }
1351 +                    } finally {
1352 +                        t.release(0);
1353 +                    }
1354 +                    if (count != 0) {
1355 +                        if (oldVal != null)
1356 +                            return oldVal;
1357 +                        break;
1358 +                    }
1359 +                }
1360 +                else
1361 +                    tab = (Node[])fk;
1362 +            }
1363 +            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1364 +                     ((fk = f.key) == k || k.equals(fk)))
1365 +                return fv;
1366 +            else {
1367 +                Node g = f.next;
1368 +                if (g != null) { // at least 2 nodes -- search and maybe resize
1369 +                    for (Node e = g;;) {
1370 +                        Object ek, ev;
1371 +                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1372 +                            ((ek = e.key) == k || k.equals(ek)))
1373 +                            return ev;
1374 +                        if ((e = e.next) == null) {
1375 +                            checkForResize();
1376 +                            break;
1377 +                        }
1378 +                    }
1379 +                }
1380 +                if (((fh = f.hash) & LOCKED) != 0) {
1381 +                    checkForResize();
1382 +                    f.tryAwaitLock(tab, i);
1383 +                }
1384 +                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1385 +                    Object oldVal = null;
1386 +                    try {
1387 +                        if (tabAt(tab, i) == f) {
1388 +                            count = 1;
1389 +                            for (Node e = f;; ++count) {
1390 +                                Object ek, ev;
1391 +                                if ((e.hash & HASH_BITS) == h &&
1392 +                                    (ev = e.val) != null &&
1393 +                                    ((ek = e.key) == k || k.equals(ek))) {
1394 +                                    oldVal = ev;
1395 +                                    break;
1396 +                                }
1397 +                                Node last = e;
1398 +                                if ((e = e.next) == null) {
1399 +                                    last.next = new Node(h, k, v, null);
1400 +                                    if (count >= TREE_THRESHOLD)
1401 +                                        replaceWithTreeBin(tab, i, k);
1402 +                                    break;
1403 +                                }
1404 +                            }
1405 +                        }
1406 +                    } finally {
1407 +                        if (!f.casHash(fh | LOCKED, fh)) {
1408 +                            f.hash = fh;
1409 +                            synchronized (f) { f.notifyAll(); };
1410 +                        }
1411 +                    }
1412 +                    if (count != 0) {
1413 +                        if (oldVal != null)
1414 +                            return oldVal;
1415 +                        if (tab.length <= 64)
1416 +                            count = 2;
1417 +                        break;
1418 +                    }
1419 +                }
1420 +            }
1421 +        }
1422 +        counter.add(1L);
1423 +        if (count > 1)
1424 +            checkForResize();
1425 +        return null;
1426 +    }
1427  
1428 <        V put(K key, int hash, V value, boolean onlyIfAbsent) {
1429 <            lock();
1430 <            try {
1431 <                int c = count;
1432 <                if (c++ > threshold) // ensure capacity
1433 <                    rehash();
1434 <                HashEntry[] tab = table;
1435 <                int index = hash & (tab.length - 1);
1436 <                HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
1437 <                HashEntry<K,V> e = first;
1438 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
1439 <                    e = e.next;
1440 <
1441 <                V oldValue;
1442 <                if (e != null) {
1443 <                    oldValue = e.value;
1444 <                    if (!onlyIfAbsent)
1445 <                        e.value = value;
1428 >    /** Implementation for computeIfAbsent */
1429 >    private final Object internalComputeIfAbsent(K k,
1430 >                                                 Fun<? super K, ?> mf) {
1431 >        int h = spread(k.hashCode());
1432 >        Object val = null;
1433 >        int count = 0;
1434 >        for (Node[] tab = table;;) {
1435 >            Node f; int i, fh; Object fk, fv;
1436 >            if (tab == null)
1437 >                tab = initTable();
1438 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1439 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1440 >                if (casTabAt(tab, i, null, node)) {
1441 >                    count = 1;
1442 >                    try {
1443 >                        if ((val = mf.apply(k)) != null)
1444 >                            node.val = val;
1445 >                    } finally {
1446 >                        if (val == null)
1447 >                            setTabAt(tab, i, null);
1448 >                        if (!node.casHash(fh, h)) {
1449 >                            node.hash = h;
1450 >                            synchronized (node) { node.notifyAll(); };
1451 >                        }
1452 >                    }
1453                  }
1454 <                else {
1455 <                    oldValue = null;
1456 <                    ++modCount;
1457 <                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
1458 <                    count = c; // write-volatile
1454 >                if (count != 0)
1455 >                    break;
1456 >            }
1457 >            else if ((fh = f.hash) == MOVED) {
1458 >                if ((fk = f.key) instanceof TreeBin) {
1459 >                    TreeBin t = (TreeBin)fk;
1460 >                    boolean added = false;
1461 >                    t.acquire(0);
1462 >                    try {
1463 >                        if (tabAt(tab, i) == f) {
1464 >                            count = 1;
1465 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1466 >                            if (p != null)
1467 >                                val = p.val;
1468 >                            else if ((val = mf.apply(k)) != null) {
1469 >                                added = true;
1470 >                                count = 2;
1471 >                                t.putTreeNode(h, k, val);
1472 >                            }
1473 >                        }
1474 >                    } finally {
1475 >                        t.release(0);
1476 >                    }
1477 >                    if (count != 0) {
1478 >                        if (!added)
1479 >                            return val;
1480 >                        break;
1481 >                    }
1482 >                }
1483 >                else
1484 >                    tab = (Node[])fk;
1485 >            }
1486 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1487 >                     ((fk = f.key) == k || k.equals(fk)))
1488 >                return fv;
1489 >            else {
1490 >                Node g = f.next;
1491 >                if (g != null) {
1492 >                    for (Node e = g;;) {
1493 >                        Object ek, ev;
1494 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1495 >                            ((ek = e.key) == k || k.equals(ek)))
1496 >                            return ev;
1497 >                        if ((e = e.next) == null) {
1498 >                            checkForResize();
1499 >                            break;
1500 >                        }
1501 >                    }
1502 >                }
1503 >                if (((fh = f.hash) & LOCKED) != 0) {
1504 >                    checkForResize();
1505 >                    f.tryAwaitLock(tab, i);
1506 >                }
1507 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1508 >                    boolean added = false;
1509 >                    try {
1510 >                        if (tabAt(tab, i) == f) {
1511 >                            count = 1;
1512 >                            for (Node e = f;; ++count) {
1513 >                                Object ek, ev;
1514 >                                if ((e.hash & HASH_BITS) == h &&
1515 >                                    (ev = e.val) != null &&
1516 >                                    ((ek = e.key) == k || k.equals(ek))) {
1517 >                                    val = ev;
1518 >                                    break;
1519 >                                }
1520 >                                Node last = e;
1521 >                                if ((e = e.next) == null) {
1522 >                                    if ((val = mf.apply(k)) != null) {
1523 >                                        added = true;
1524 >                                        last.next = new Node(h, k, val, null);
1525 >                                        if (count >= TREE_THRESHOLD)
1526 >                                            replaceWithTreeBin(tab, i, k);
1527 >                                    }
1528 >                                    break;
1529 >                                }
1530 >                            }
1531 >                        }
1532 >                    } finally {
1533 >                        if (!f.casHash(fh | LOCKED, fh)) {
1534 >                            f.hash = fh;
1535 >                            synchronized (f) { f.notifyAll(); };
1536 >                        }
1537 >                    }
1538 >                    if (count != 0) {
1539 >                        if (!added)
1540 >                            return val;
1541 >                        if (tab.length <= 64)
1542 >                            count = 2;
1543 >                        break;
1544 >                    }
1545                  }
431                return oldValue;
432            } finally {
433                unlock();
1546              }
1547          }
1548 +        if (val != null) {
1549 +            counter.add(1L);
1550 +            if (count > 1)
1551 +                checkForResize();
1552 +        }
1553 +        return val;
1554 +    }
1555  
1556 <        void rehash() {
1557 <            HashEntry[] oldTable = table;            
1558 <            int oldCapacity = oldTable.length;
1559 <            if (oldCapacity >= MAXIMUM_CAPACITY)
1560 <                return;
1561 <
1562 <            /*
1563 <             * Reclassify nodes in each list to new Map.  Because we are
1564 <             * using power-of-two expansion, the elements from each bin
1565 <             * must either stay at same index, or move with a power of two
1566 <             * offset. We eliminate unnecessary node creation by catching
1567 <             * cases where old nodes can be reused because their next
1568 <             * fields won't change. Statistically, at the default
1569 <             * threshold, only about one-sixth of them need cloning when
1570 <             * a table doubles. The nodes they replace will be garbage
1571 <             * collectable as soon as they are no longer referenced by any
1572 <             * reader thread that may be in the midst of traversing table
1573 <             * right now.
1574 <             */
1575 <
1576 <            HashEntry[] newTable = new HashEntry[oldCapacity << 1];
1577 <            threshold = (int)(newTable.length * loadFactor);
1578 <            int sizeMask = newTable.length - 1;
1579 <            for (int i = 0; i < oldCapacity ; i++) {
1580 <                // We need to guarantee that any existing reads of old Map can
1581 <                //  proceed. So we cannot yet null out each bin.
1582 <                HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
1583 <
1584 <                if (e != null) {
1585 <                    HashEntry<K,V> next = e.next;
1586 <                    int idx = e.hash & sizeMask;
1587 <
1588 <                    //  Single node on list
1589 <                    if (next == null)
1590 <                        newTable[idx] = e;
1556 >    /** Implementation for compute */
1557 >    @SuppressWarnings("unchecked") private final Object internalCompute
1558 >        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1559 >        int h = spread(k.hashCode());
1560 >        Object val = null;
1561 >        int delta = 0;
1562 >        int count = 0;
1563 >        for (Node[] tab = table;;) {
1564 >            Node f; int i, fh; Object fk;
1565 >            if (tab == null)
1566 >                tab = initTable();
1567 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1568 >                if (onlyIfPresent)
1569 >                    break;
1570 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1571 >                if (casTabAt(tab, i, null, node)) {
1572 >                    try {
1573 >                        count = 1;
1574 >                        if ((val = mf.apply(k, null)) != null) {
1575 >                            node.val = val;
1576 >                            delta = 1;
1577 >                        }
1578 >                    } finally {
1579 >                        if (delta == 0)
1580 >                            setTabAt(tab, i, null);
1581 >                        if (!node.casHash(fh, h)) {
1582 >                            node.hash = h;
1583 >                            synchronized (node) { node.notifyAll(); };
1584 >                        }
1585 >                    }
1586 >                }
1587 >                if (count != 0)
1588 >                    break;
1589 >            }
1590 >            else if ((fh = f.hash) == MOVED) {
1591 >                if ((fk = f.key) instanceof TreeBin) {
1592 >                    TreeBin t = (TreeBin)fk;
1593 >                    t.acquire(0);
1594 >                    try {
1595 >                        if (tabAt(tab, i) == f) {
1596 >                            count = 1;
1597 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1598 >                            Object pv = (p == null) ? null : p.val;
1599 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1600 >                                if (p != null)
1601 >                                    p.val = val;
1602 >                                else {
1603 >                                    count = 2;
1604 >                                    delta = 1;
1605 >                                    t.putTreeNode(h, k, val);
1606 >                                }
1607 >                            }
1608 >                            else if (p != null) {
1609 >                                delta = -1;
1610 >                                t.deleteTreeNode(p);
1611 >                            }
1612 >                        }
1613 >                    } finally {
1614 >                        t.release(0);
1615 >                    }
1616 >                    if (count != 0)
1617 >                        break;
1618 >                }
1619 >                else
1620 >                    tab = (Node[])fk;
1621 >            }
1622 >            else if ((fh & LOCKED) != 0) {
1623 >                checkForResize();
1624 >                f.tryAwaitLock(tab, i);
1625 >            }
1626 >            else if (f.casHash(fh, fh | LOCKED)) {
1627 >                try {
1628 >                    if (tabAt(tab, i) == f) {
1629 >                        count = 1;
1630 >                        for (Node e = f, pred = null;; ++count) {
1631 >                            Object ek, ev;
1632 >                            if ((e.hash & HASH_BITS) == h &&
1633 >                                (ev = e.val) != null &&
1634 >                                ((ek = e.key) == k || k.equals(ek))) {
1635 >                                val = mf.apply(k, (V)ev);
1636 >                                if (val != null)
1637 >                                    e.val = val;
1638 >                                else {
1639 >                                    delta = -1;
1640 >                                    Node en = e.next;
1641 >                                    if (pred != null)
1642 >                                        pred.next = en;
1643 >                                    else
1644 >                                        setTabAt(tab, i, en);
1645 >                                }
1646 >                                break;
1647 >                            }
1648 >                            pred = e;
1649 >                            if ((e = e.next) == null) {
1650 >                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1651 >                                    pred.next = new Node(h, k, val, null);
1652 >                                    delta = 1;
1653 >                                    if (count >= TREE_THRESHOLD)
1654 >                                        replaceWithTreeBin(tab, i, k);
1655 >                                }
1656 >                                break;
1657 >                            }
1658 >                        }
1659 >                    }
1660 >                } finally {
1661 >                    if (!f.casHash(fh | LOCKED, fh)) {
1662 >                        f.hash = fh;
1663 >                        synchronized (f) { f.notifyAll(); };
1664 >                    }
1665 >                }
1666 >                if (count != 0) {
1667 >                    if (tab.length <= 64)
1668 >                        count = 2;
1669 >                    break;
1670 >                }
1671 >            }
1672 >        }
1673 >        if (delta != 0) {
1674 >            counter.add((long)delta);
1675 >            if (count > 1)
1676 >                checkForResize();
1677 >        }
1678 >        return val;
1679 >    }
1680  
1681 <                    else {
1682 <                        // Reuse trailing consecutive sequence at same slot
1683 <                        HashEntry<K,V> lastRun = e;
1684 <                        int lastIdx = idx;
1685 <                        for (HashEntry<K,V> last = next;
1686 <                             last != null;
1687 <                             last = last.next) {
1688 <                            int k = last.hash & sizeMask;
1689 <                            if (k != lastIdx) {
1690 <                                lastIdx = k;
1691 <                                lastRun = last;
1681 >    /** Implementation for merge */
1682 >    @SuppressWarnings("unchecked") private final Object internalMerge
1683 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1684 >        int h = spread(k.hashCode());
1685 >        Object val = null;
1686 >        int delta = 0;
1687 >        int count = 0;
1688 >        for (Node[] tab = table;;) {
1689 >            int i; Node f; int fh; Object fk, fv;
1690 >            if (tab == null)
1691 >                tab = initTable();
1692 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1693 >                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1694 >                    delta = 1;
1695 >                    val = v;
1696 >                    break;
1697 >                }
1698 >            }
1699 >            else if ((fh = f.hash) == MOVED) {
1700 >                if ((fk = f.key) instanceof TreeBin) {
1701 >                    TreeBin t = (TreeBin)fk;
1702 >                    t.acquire(0);
1703 >                    try {
1704 >                        if (tabAt(tab, i) == f) {
1705 >                            count = 1;
1706 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1707 >                            val = (p == null) ? v : mf.apply((V)p.val, v);
1708 >                            if (val != null) {
1709 >                                if (p != null)
1710 >                                    p.val = val;
1711 >                                else {
1712 >                                    count = 2;
1713 >                                    delta = 1;
1714 >                                    t.putTreeNode(h, k, val);
1715 >                                }
1716 >                            }
1717 >                            else if (p != null) {
1718 >                                delta = -1;
1719 >                                t.deleteTreeNode(p);
1720                              }
1721                          }
1722 <                        newTable[lastIdx] = lastRun;
1722 >                    } finally {
1723 >                        t.release(0);
1724 >                    }
1725 >                    if (count != 0)
1726 >                        break;
1727 >                }
1728 >                else
1729 >                    tab = (Node[])fk;
1730 >            }
1731 >            else if ((fh & LOCKED) != 0) {
1732 >                checkForResize();
1733 >                f.tryAwaitLock(tab, i);
1734 >            }
1735 >            else if (f.casHash(fh, fh | LOCKED)) {
1736 >                try {
1737 >                    if (tabAt(tab, i) == f) {
1738 >                        count = 1;
1739 >                        for (Node e = f, pred = null;; ++count) {
1740 >                            Object ek, ev;
1741 >                            if ((e.hash & HASH_BITS) == h &&
1742 >                                (ev = e.val) != null &&
1743 >                                ((ek = e.key) == k || k.equals(ek))) {
1744 >                                val = mf.apply(v, (V)ev);
1745 >                                if (val != null)
1746 >                                    e.val = val;
1747 >                                else {
1748 >                                    delta = -1;
1749 >                                    Node en = e.next;
1750 >                                    if (pred != null)
1751 >                                        pred.next = en;
1752 >                                    else
1753 >                                        setTabAt(tab, i, en);
1754 >                                }
1755 >                                break;
1756 >                            }
1757 >                            pred = e;
1758 >                            if ((e = e.next) == null) {
1759 >                                val = v;
1760 >                                pred.next = new Node(h, k, val, null);
1761 >                                delta = 1;
1762 >                                if (count >= TREE_THRESHOLD)
1763 >                                    replaceWithTreeBin(tab, i, k);
1764 >                                break;
1765 >                            }
1766 >                        }
1767 >                    }
1768 >                } finally {
1769 >                    if (!f.casHash(fh | LOCKED, fh)) {
1770 >                        f.hash = fh;
1771 >                        synchronized (f) { f.notifyAll(); };
1772 >                    }
1773 >                }
1774 >                if (count != 0) {
1775 >                    if (tab.length <= 64)
1776 >                        count = 2;
1777 >                    break;
1778 >                }
1779 >            }
1780 >        }
1781 >        if (delta != 0) {
1782 >            counter.add((long)delta);
1783 >            if (count > 1)
1784 >                checkForResize();
1785 >        }
1786 >        return val;
1787 >    }
1788  
1789 <                        // Clone all remaining nodes
1790 <                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
1791 <                            int k = p.hash & sizeMask;
1792 <                            HashEntry<K,V> n = (HashEntry<K,V>)newTable[k];
1793 <                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
1794 <                                                             n, p.value);
1789 >    /** Implementation for putAll */
1790 >    private final void internalPutAll(Map<?, ?> m) {
1791 >        tryPresize(m.size());
1792 >        long delta = 0L;     // number of uncommitted additions
1793 >        boolean npe = false; // to throw exception on exit for nulls
1794 >        try {                // to clean up counts on other exceptions
1795 >            for (Map.Entry<?, ?> entry : m.entrySet()) {
1796 >                Object k, v;
1797 >                if (entry == null || (k = entry.getKey()) == null ||
1798 >                    (v = entry.getValue()) == null) {
1799 >                    npe = true;
1800 >                    break;
1801 >                }
1802 >                int h = spread(k.hashCode());
1803 >                for (Node[] tab = table;;) {
1804 >                    int i; Node f; int fh; Object fk;
1805 >                    if (tab == null)
1806 >                        tab = initTable();
1807 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1808 >                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1809 >                            ++delta;
1810 >                            break;
1811 >                        }
1812 >                    }
1813 >                    else if ((fh = f.hash) == MOVED) {
1814 >                        if ((fk = f.key) instanceof TreeBin) {
1815 >                            TreeBin t = (TreeBin)fk;
1816 >                            boolean validated = false;
1817 >                            t.acquire(0);
1818 >                            try {
1819 >                                if (tabAt(tab, i) == f) {
1820 >                                    validated = true;
1821 >                                    TreeNode p = t.getTreeNode(h, k, t.root);
1822 >                                    if (p != null)
1823 >                                        p.val = v;
1824 >                                    else {
1825 >                                        t.putTreeNode(h, k, v);
1826 >                                        ++delta;
1827 >                                    }
1828 >                                }
1829 >                            } finally {
1830 >                                t.release(0);
1831 >                            }
1832 >                            if (validated)
1833 >                                break;
1834 >                        }
1835 >                        else
1836 >                            tab = (Node[])fk;
1837 >                    }
1838 >                    else if ((fh & LOCKED) != 0) {
1839 >                        counter.add(delta);
1840 >                        delta = 0L;
1841 >                        checkForResize();
1842 >                        f.tryAwaitLock(tab, i);
1843 >                    }
1844 >                    else if (f.casHash(fh, fh | LOCKED)) {
1845 >                        int count = 0;
1846 >                        try {
1847 >                            if (tabAt(tab, i) == f) {
1848 >                                count = 1;
1849 >                                for (Node e = f;; ++count) {
1850 >                                    Object ek, ev;
1851 >                                    if ((e.hash & HASH_BITS) == h &&
1852 >                                        (ev = e.val) != null &&
1853 >                                        ((ek = e.key) == k || k.equals(ek))) {
1854 >                                        e.val = v;
1855 >                                        break;
1856 >                                    }
1857 >                                    Node last = e;
1858 >                                    if ((e = e.next) == null) {
1859 >                                        ++delta;
1860 >                                        last.next = new Node(h, k, v, null);
1861 >                                        if (count >= TREE_THRESHOLD)
1862 >                                            replaceWithTreeBin(tab, i, k);
1863 >                                        break;
1864 >                                    }
1865 >                                }
1866 >                            }
1867 >                        } finally {
1868 >                            if (!f.casHash(fh | LOCKED, fh)) {
1869 >                                f.hash = fh;
1870 >                                synchronized (f) { f.notifyAll(); };
1871 >                            }
1872 >                        }
1873 >                        if (count != 0) {
1874 >                            if (count > 1) {
1875 >                                counter.add(delta);
1876 >                                delta = 0L;
1877 >                                checkForResize();
1878 >                            }
1879 >                            break;
1880                          }
1881                      }
1882                  }
1883              }
1884 <            table = newTable;
1884 >        } finally {
1885 >            if (delta != 0)
1886 >                counter.add(delta);
1887          }
1888 +        if (npe)
1889 +            throw new NullPointerException();
1890 +    }
1891  
1892 <        /**
502 <         * Remove; match on key only if value null, else match both.
503 <         */
504 <        V remove(Object key, int hash, Object value) {
505 <            lock();
506 <            try {
507 <                int c = count - 1;
508 <                HashEntry[] tab = table;
509 <                int index = hash & (tab.length - 1);
510 <                HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
511 <                HashEntry<K,V> e = first;
512 <                while (e != null && (e.hash != hash || !key.equals(e.key)))
513 <                    e = e.next;
1892 >    /* ---------------- Table Initialization and Resizing -------------- */
1893  
1894 <                V oldValue = null;
1895 <                if (e != null) {
1896 <                    V v = e.value;
1897 <                    if (value == null || value.equals(v)) {
1898 <                        oldValue = v;
1899 <                        // All entries following removed node can stay
1900 <                        // in list, but all preceding ones need to be
1901 <                        // cloned.
1902 <                        ++modCount;
1903 <                        HashEntry<K,V> newFirst = e.next;
1904 <                        for (HashEntry<K,V> p = first; p != e; p = p.next)
1905 <                            newFirst = new HashEntry<K,V>(p.key, p.hash,  
1906 <                                                          newFirst, p.value);
1907 <                        tab[index] = newFirst;
1908 <                        count = c; // write-volatile
1894 >    /**
1895 >     * Returns a power of two table size for the given desired capacity.
1896 >     * See Hackers Delight, sec 3.2
1897 >     */
1898 >    private static final int tableSizeFor(int c) {
1899 >        int n = c - 1;
1900 >        n |= n >>> 1;
1901 >        n |= n >>> 2;
1902 >        n |= n >>> 4;
1903 >        n |= n >>> 8;
1904 >        n |= n >>> 16;
1905 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1906 >    }
1907 >
1908 >    /**
1909 >     * Initializes table, using the size recorded in sizeCtl.
1910 >     */
1911 >    private final Node[] initTable() {
1912 >        Node[] tab; int sc;
1913 >        while ((tab = table) == null) {
1914 >            if ((sc = sizeCtl) < 0)
1915 >                Thread.yield(); // lost initialization race; just spin
1916 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1917 >                try {
1918 >                    if ((tab = table) == null) {
1919 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1920 >                        tab = table = new Node[n];
1921 >                        sc = n - (n >>> 2);
1922                      }
1923 +                } finally {
1924 +                    sizeCtl = sc;
1925 +                }
1926 +                break;
1927 +            }
1928 +        }
1929 +        return tab;
1930 +    }
1931 +
1932 +    /**
1933 +     * If table is too small and not already resizing, creates next
1934 +     * table and transfers bins.  Rechecks occupancy after a transfer
1935 +     * to see if another resize is already needed because resizings
1936 +     * are lagging additions.
1937 +     */
1938 +    private final void checkForResize() {
1939 +        Node[] tab; int n, sc;
1940 +        while ((tab = table) != null &&
1941 +               (n = tab.length) < MAXIMUM_CAPACITY &&
1942 +               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1943 +               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1944 +            try {
1945 +                if (tab == table) {
1946 +                    table = rebuild(tab);
1947 +                    sc = (n << 1) - (n >>> 1);
1948                  }
532                return oldValue;
1949              } finally {
1950 <                unlock();
1950 >                sizeCtl = sc;
1951              }
1952          }
1953 +    }
1954  
1955 <        void clear() {
1956 <            if (count != 0) {
1957 <                lock();
1955 >    /**
1956 >     * Tries to presize table to accommodate the given number of elements.
1957 >     *
1958 >     * @param size number of elements (doesn't need to be perfectly accurate)
1959 >     */
1960 >    private final void tryPresize(int size) {
1961 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1962 >            tableSizeFor(size + (size >>> 1) + 1);
1963 >        int sc;
1964 >        while ((sc = sizeCtl) >= 0) {
1965 >            Node[] tab = table; int n;
1966 >            if (tab == null || (n = tab.length) == 0) {
1967 >                n = (sc > c) ? sc : c;
1968 >                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1969 >                    try {
1970 >                        if (table == tab) {
1971 >                            table = new Node[n];
1972 >                            sc = n - (n >>> 2);
1973 >                        }
1974 >                    } finally {
1975 >                        sizeCtl = sc;
1976 >                    }
1977 >                }
1978 >            }
1979 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1980 >                break;
1981 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1982                  try {
1983 <                    HashEntry[] tab = table;
1984 <                    for (int i = 0; i < tab.length ; i++)
1985 <                        tab[i] = null;
1986 <                    ++modCount;
546 <                    count = 0; // write-volatile
1983 >                    if (table == tab) {
1984 >                        table = rebuild(tab);
1985 >                        sc = (n << 1) - (n >>> 1);
1986 >                    }
1987                  } finally {
1988 <                    unlock();
1988 >                    sizeCtl = sc;
1989                  }
1990              }
1991          }
1992      }
1993  
1994 +    /*
1995 +     * Moves and/or copies the nodes in each bin to new table. See
1996 +     * above for explanation.
1997 +     *
1998 +     * @return the new table
1999 +     */
2000 +    private static final Node[] rebuild(Node[] tab) {
2001 +        int n = tab.length;
2002 +        Node[] nextTab = new Node[n << 1];
2003 +        Node fwd = new Node(MOVED, nextTab, null, null);
2004 +        int[] buffer = null;       // holds bins to revisit; null until needed
2005 +        Node rev = null;           // reverse forwarder; null until needed
2006 +        int nbuffered = 0;         // the number of bins in buffer list
2007 +        int bufferIndex = 0;       // buffer index of current buffered bin
2008 +        int bin = n - 1;           // current non-buffered bin or -1 if none
2009 +
2010 +        for (int i = bin;;) {      // start upwards sweep
2011 +            int fh; Node f;
2012 +            if ((f = tabAt(tab, i)) == null) {
2013 +                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
2014 +                    if (!casTabAt(tab, i, f, fwd))
2015 +                        continue;
2016 +                }
2017 +                else {             // transiently use a locked forwarding node
2018 +                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2019 +                    if (!casTabAt(tab, i, f, g))
2020 +                        continue;
2021 +                    setTabAt(nextTab, i, null);
2022 +                    setTabAt(nextTab, i + n, null);
2023 +                    setTabAt(tab, i, fwd);
2024 +                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2025 +                        g.hash = MOVED;
2026 +                        synchronized (g) { g.notifyAll(); }
2027 +                    }
2028 +                }
2029 +            }
2030 +            else if ((fh = f.hash) == MOVED) {
2031 +                Object fk = f.key;
2032 +                if (fk instanceof TreeBin) {
2033 +                    TreeBin t = (TreeBin)fk;
2034 +                    boolean validated = false;
2035 +                    t.acquire(0);
2036 +                    try {
2037 +                        if (tabAt(tab, i) == f) {
2038 +                            validated = true;
2039 +                            splitTreeBin(nextTab, i, t);
2040 +                            setTabAt(tab, i, fwd);
2041 +                        }
2042 +                    } finally {
2043 +                        t.release(0);
2044 +                    }
2045 +                    if (!validated)
2046 +                        continue;
2047 +                }
2048 +            }
2049 +            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2050 +                boolean validated = false;
2051 +                try {              // split to lo and hi lists; copying as needed
2052 +                    if (tabAt(tab, i) == f) {
2053 +                        validated = true;
2054 +                        splitBin(nextTab, i, f);
2055 +                        setTabAt(tab, i, fwd);
2056 +                    }
2057 +                } finally {
2058 +                    if (!f.casHash(fh | LOCKED, fh)) {
2059 +                        f.hash = fh;
2060 +                        synchronized (f) { f.notifyAll(); };
2061 +                    }
2062 +                }
2063 +                if (!validated)
2064 +                    continue;
2065 +            }
2066 +            else {
2067 +                if (buffer == null) // initialize buffer for revisits
2068 +                    buffer = new int[TRANSFER_BUFFER_SIZE];
2069 +                if (bin < 0 && bufferIndex > 0) {
2070 +                    int j = buffer[--bufferIndex];
2071 +                    buffer[bufferIndex] = i;
2072 +                    i = j;         // swap with another bin
2073 +                    continue;
2074 +                }
2075 +                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2076 +                    f.tryAwaitLock(tab, i);
2077 +                    continue;      // no other options -- block
2078 +                }
2079 +                if (rev == null)   // initialize reverse-forwarder
2080 +                    rev = new Node(MOVED, tab, null, null);
2081 +                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2082 +                    continue;      // recheck before adding to list
2083 +                buffer[nbuffered++] = i;
2084 +                setTabAt(nextTab, i, rev);     // install place-holders
2085 +                setTabAt(nextTab, i + n, rev);
2086 +            }
2087 +
2088 +            if (bin > 0)
2089 +                i = --bin;
2090 +            else if (buffer != null && nbuffered > 0) {
2091 +                bin = -1;
2092 +                i = buffer[bufferIndex = --nbuffered];
2093 +            }
2094 +            else
2095 +                return nextTab;
2096 +        }
2097 +    }
2098  
2099 +    /**
2100 +     * Splits a normal bin with list headed by e into lo and hi parts;
2101 +     * installs in given table.
2102 +     */
2103 +    private static void splitBin(Node[] nextTab, int i, Node e) {
2104 +        int bit = nextTab.length >>> 1; // bit to split on
2105 +        int runBit = e.hash & bit;
2106 +        Node lastRun = e, lo = null, hi = null;
2107 +        for (Node p = e.next; p != null; p = p.next) {
2108 +            int b = p.hash & bit;
2109 +            if (b != runBit) {
2110 +                runBit = b;
2111 +                lastRun = p;
2112 +            }
2113 +        }
2114 +        if (runBit == 0)
2115 +            lo = lastRun;
2116 +        else
2117 +            hi = lastRun;
2118 +        for (Node p = e; p != lastRun; p = p.next) {
2119 +            int ph = p.hash & HASH_BITS;
2120 +            Object pk = p.key, pv = p.val;
2121 +            if ((ph & bit) == 0)
2122 +                lo = new Node(ph, pk, pv, lo);
2123 +            else
2124 +                hi = new Node(ph, pk, pv, hi);
2125 +        }
2126 +        setTabAt(nextTab, i, lo);
2127 +        setTabAt(nextTab, i + bit, hi);
2128 +    }
2129  
2130 <    /* ---------------- Public operations -------------- */
2130 >    /**
2131 >     * Splits a tree bin into lo and hi parts; installs in given table.
2132 >     */
2133 >    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2134 >        int bit = nextTab.length >>> 1;
2135 >        TreeBin lt = new TreeBin();
2136 >        TreeBin ht = new TreeBin();
2137 >        int lc = 0, hc = 0;
2138 >        for (Node e = t.first; e != null; e = e.next) {
2139 >            int h = e.hash & HASH_BITS;
2140 >            Object k = e.key, v = e.val;
2141 >            if ((h & bit) == 0) {
2142 >                ++lc;
2143 >                lt.putTreeNode(h, k, v);
2144 >            }
2145 >            else {
2146 >                ++hc;
2147 >                ht.putTreeNode(h, k, v);
2148 >            }
2149 >        }
2150 >        Node ln, hn; // throw away trees if too small
2151 >        if (lc <= (TREE_THRESHOLD >>> 1)) {
2152 >            ln = null;
2153 >            for (Node p = lt.first; p != null; p = p.next)
2154 >                ln = new Node(p.hash, p.key, p.val, ln);
2155 >        }
2156 >        else
2157 >            ln = new Node(MOVED, lt, null, null);
2158 >        setTabAt(nextTab, i, ln);
2159 >        if (hc <= (TREE_THRESHOLD >>> 1)) {
2160 >            hn = null;
2161 >            for (Node p = ht.first; p != null; p = p.next)
2162 >                hn = new Node(p.hash, p.key, p.val, hn);
2163 >        }
2164 >        else
2165 >            hn = new Node(MOVED, ht, null, null);
2166 >        setTabAt(nextTab, i + bit, hn);
2167 >    }
2168  
2169      /**
2170 <     * Creates a new, empty map with the specified initial
2171 <     * capacity, load factor, and concurrency level.
2170 >     * Implementation for clear. Steps through each bin, removing all
2171 >     * nodes.
2172 >     */
2173 >    private final void internalClear() {
2174 >        long delta = 0L; // negative number of deletions
2175 >        int i = 0;
2176 >        Node[] tab = table;
2177 >        while (tab != null && i < tab.length) {
2178 >            int fh; Object fk;
2179 >            Node f = tabAt(tab, i);
2180 >            if (f == null)
2181 >                ++i;
2182 >            else if ((fh = f.hash) == MOVED) {
2183 >                if ((fk = f.key) instanceof TreeBin) {
2184 >                    TreeBin t = (TreeBin)fk;
2185 >                    t.acquire(0);
2186 >                    try {
2187 >                        if (tabAt(tab, i) == f) {
2188 >                            for (Node p = t.first; p != null; p = p.next) {
2189 >                                if (p.val != null) { // (currently always true)
2190 >                                    p.val = null;
2191 >                                    --delta;
2192 >                                }
2193 >                            }
2194 >                            t.first = null;
2195 >                            t.root = null;
2196 >                            ++i;
2197 >                        }
2198 >                    } finally {
2199 >                        t.release(0);
2200 >                    }
2201 >                }
2202 >                else
2203 >                    tab = (Node[])fk;
2204 >            }
2205 >            else if ((fh & LOCKED) != 0) {
2206 >                counter.add(delta); // opportunistically update count
2207 >                delta = 0L;
2208 >                f.tryAwaitLock(tab, i);
2209 >            }
2210 >            else if (f.casHash(fh, fh | LOCKED)) {
2211 >                try {
2212 >                    if (tabAt(tab, i) == f) {
2213 >                        for (Node e = f; e != null; e = e.next) {
2214 >                            if (e.val != null) {  // (currently always true)
2215 >                                e.val = null;
2216 >                                --delta;
2217 >                            }
2218 >                        }
2219 >                        setTabAt(tab, i, null);
2220 >                        ++i;
2221 >                    }
2222 >                } finally {
2223 >                    if (!f.casHash(fh | LOCKED, fh)) {
2224 >                        f.hash = fh;
2225 >                        synchronized (f) { f.notifyAll(); };
2226 >                    }
2227 >                }
2228 >            }
2229 >        }
2230 >        if (delta != 0)
2231 >            counter.add(delta);
2232 >    }
2233 >
2234 >    /* ----------------Table Traversal -------------- */
2235 >
2236 >    /**
2237 >     * Encapsulates traversal for methods such as containsValue; also
2238 >     * serves as a base class for other iterators and bulk tasks.
2239       *
2240 <     * @param initialCapacity the initial capacity. The implementation
2241 <     * performs internal sizing to accommodate this many elements.
2242 <     * @param loadFactor  the load factor threshold, used to control resizing.
2243 <     * Resizing may be performed when the average number of elements per
2244 <     * bin exceeds this threshold.
2245 <     * @param concurrencyLevel the estimated number of concurrently
2246 <     * updating threads. The implementation performs internal sizing
2247 <     * to try to accommodate this many threads.  
2248 <     * @throws IllegalArgumentException if the initial capacity is
2249 <     * negative or the load factor or concurrencyLevel are
2250 <     * nonpositive.
2240 >     * At each step, the iterator snapshots the key ("nextKey") and
2241 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2242 >     * snapshot, has a non-null user value). Because val fields can
2243 >     * change (including to null, indicating deletion), field nextVal
2244 >     * might not be accurate at point of use, but still maintains the
2245 >     * weak consistency property of holding a value that was once
2246 >     * valid.
2247 >     *
2248 >     * Internal traversals directly access these fields, as in:
2249 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2250 >     *
2251 >     * Exported iterators must track whether the iterator has advanced
2252 >     * (in hasNext vs next) (by setting/checking/nulling field
2253 >     * nextVal), and then extract key, value, or key-value pairs as
2254 >     * return values of next().
2255 >     *
2256 >     * The iterator visits once each still-valid node that was
2257 >     * reachable upon iterator construction. It might miss some that
2258 >     * were added to a bin after the bin was visited, which is OK wrt
2259 >     * consistency guarantees. Maintaining this property in the face
2260 >     * of possible ongoing resizes requires a fair amount of
2261 >     * bookkeeping state that is difficult to optimize away amidst
2262 >     * volatile accesses.  Even so, traversal maintains reasonable
2263 >     * throughput.
2264 >     *
2265 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2266 >     * However, if the table has been resized, then all future steps
2267 >     * must traverse both the bin at the current index as well as at
2268 >     * (index + baseSize); and so on for further resizings. To
2269 >     * paranoically cope with potential sharing by users of iterators
2270 >     * across threads, iteration terminates if a bounds checks fails
2271 >     * for a table read.
2272 >     *
2273 >     * This class extends ForkJoinTask to streamline parallel
2274 >     * iteration in bulk operations (see BulkTask). This adds only an
2275 >     * int of space overhead, which is close enough to negligible in
2276 >     * cases where it is not needed to not worry about it.  Because
2277 >     * ForkJoinTask is Serializable, but iterators need not be, we
2278 >     * need to add warning suppressions.
2279       */
2280 <    public ConcurrentHashMap(int initialCapacity,
2281 <                             float loadFactor, int concurrencyLevel) {
2282 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
2283 <            throw new IllegalArgumentException();
2280 >    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2281 >        final ConcurrentHashMap<K, V> map;
2282 >        Node next;           // the next entry to use
2283 >        Node last;           // the last entry used
2284 >        Object nextKey;      // cached key field of next
2285 >        Object nextVal;      // cached val field of next
2286 >        Node[] tab;          // current table; updated if resized
2287 >        int index;           // index of bin to use next
2288 >        int baseIndex;       // current index of initial table
2289 >        int baseLimit;       // index bound for initial table
2290 >        final int baseSize;  // initial table size
2291 >
2292 >        /** Creates iterator for all entries in the table. */
2293 >        Traverser(ConcurrentHashMap<K, V> map) {
2294 >            this.tab = (this.map = map).table;
2295 >            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2296 >        }
2297 >
2298 >        /** Creates iterator for split() methods */
2299 >        Traverser(Traverser<K,V,?> it) {
2300 >            this.map = it.map;
2301 >            this.tab = it.tab;
2302 >            this.baseSize = it.baseSize;
2303 >            it.baseLimit = this.index = this.baseIndex =
2304 >                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2305 >        }
2306  
2307 <        if (concurrencyLevel > MAX_SEGMENTS)
2308 <            concurrencyLevel = MAX_SEGMENTS;
2307 >        /**
2308 >         * Advances next; returns nextVal or null if terminated.
2309 >         * See above for explanation.
2310 >         */
2311 >        final Object advance() {
2312 >            Node e = last = next;
2313 >            Object ev = null;
2314 >            outer: do {
2315 >                if (e != null)                  // advance past used/skipped node
2316 >                    e = e.next;
2317 >                while (e == null) {             // get to next non-null bin
2318 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2319 >                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2320 >                        (t = tab) == null || i >= (n = t.length))
2321 >                        break outer;
2322 >                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2323 >                        if ((ek = e.key) instanceof TreeBin)
2324 >                            e = ((TreeBin)ek).first;
2325 >                        else {
2326 >                            tab = (Node[])ek;
2327 >                            continue;           // restarts due to null val
2328 >                        }
2329 >                    }                           // visit upper slots if present
2330 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2331 >                }
2332 >                nextKey = e.key;
2333 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2334 >            next = e;
2335 >            return nextVal = ev;
2336 >        }
2337 >
2338 >        public final void remove() {
2339 >            if (nextVal == null && last == null)
2340 >                advance();
2341 >            Node e = last;
2342 >            if (e == null)
2343 >                throw new IllegalStateException();
2344 >            last = null;
2345 >            map.remove(e.key);
2346 >        }
2347 >
2348 >        public final boolean hasNext() {
2349 >            return nextVal != null || advance() != null;
2350 >        }
2351  
2352 <        // Find power-of-two sizes best matching arguments
2353 <        int sshift = 0;
2354 <        int ssize = 1;
2355 <        while (ssize < concurrencyLevel) {
586 <            ++sshift;
587 <            ssize <<= 1;
588 <        }
589 <        segmentShift = 32 - sshift;
590 <        segmentMask = ssize - 1;
591 <        this.segments = new Segment[ssize];
592 <
593 <        if (initialCapacity > MAXIMUM_CAPACITY)
594 <            initialCapacity = MAXIMUM_CAPACITY;
595 <        int c = initialCapacity / ssize;
596 <        if (c * ssize < initialCapacity)
597 <            ++c;
598 <        int cap = 1;
599 <        while (cap < c)
600 <            cap <<= 1;
601 <
602 <        for (int i = 0; i < this.segments.length; ++i)
603 <            this.segments[i] = new Segment<K,V>(cap, loadFactor);
2352 >        public final boolean hasMoreElements() { return hasNext(); }
2353 >        public final void setRawResult(Object x) { }
2354 >        public R getRawResult() { return null; }
2355 >        public boolean exec() { return true; }
2356      }
2357  
2358 +    /* ---------------- Public operations -------------- */
2359 +
2360      /**
2361 <     * Creates a new, empty map with the specified initial
2362 <     * capacity,  and with default load factor (<tt>0.75f</tt>)
2363 <     * and concurrencyLevel (<tt>16</tt>).
2361 >     * Creates a new, empty map with the default initial table size (16).
2362 >     */
2363 >    public ConcurrentHashMap() {
2364 >        this.counter = new LongAdder();
2365 >    }
2366 >
2367 >    /**
2368 >     * Creates a new, empty map with an initial table size
2369 >     * accommodating the specified number of elements without the need
2370 >     * to dynamically resize.
2371       *
2372 <     * @param initialCapacity the initial capacity. The implementation
2373 <     * performs internal sizing to accommodate this many elements.
2372 >     * @param initialCapacity The implementation performs internal
2373 >     * sizing to accommodate this many elements.
2374       * @throws IllegalArgumentException if the initial capacity of
2375 <     * elements is negative.
2375 >     * elements is negative
2376       */
2377      public ConcurrentHashMap(int initialCapacity) {
2378 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2378 >        if (initialCapacity < 0)
2379 >            throw new IllegalArgumentException();
2380 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2381 >                   MAXIMUM_CAPACITY :
2382 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2383 >        this.counter = new LongAdder();
2384 >        this.sizeCtl = cap;
2385      }
2386  
2387      /**
2388 <     * Creates a new, empty map with a default initial capacity
2389 <     * (<tt>16</tt>), load factor (<tt>0.75f</tt>) and
2390 <     * concurrencyLevel (<tt>16</tt>).
2388 >     * Creates a new map with the same mappings as the given map.
2389 >     *
2390 >     * @param m the map
2391       */
2392 <    public ConcurrentHashMap() {
2393 <        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
2392 >    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2393 >        this.counter = new LongAdder();
2394 >        this.sizeCtl = DEFAULT_CAPACITY;
2395 >        internalPutAll(m);
2396      }
2397  
2398      /**
2399 <     * Creates a new map with the same mappings as the given map.  The
2400 <     * map is created with a capacity consistent with the default load
2401 <     * factor (<tt>0.75f</tt>) and uses the default concurrencyLevel
2402 <     * (<tt>16</tt>).
2403 <     * @param t the map
2399 >     * Creates a new, empty map with an initial table size based on
2400 >     * the given number of elements ({@code initialCapacity}) and
2401 >     * initial table density ({@code loadFactor}).
2402 >     *
2403 >     * @param initialCapacity the initial capacity. The implementation
2404 >     * performs internal sizing to accommodate this many elements,
2405 >     * given the specified load factor.
2406 >     * @param loadFactor the load factor (table density) for
2407 >     * establishing the initial table size
2408 >     * @throws IllegalArgumentException if the initial capacity of
2409 >     * elements is negative or the load factor is nonpositive
2410 >     *
2411 >     * @since 1.6
2412       */
2413 <    public ConcurrentHashMap(Map<? extends K, ? extends V> t) {
2414 <        this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
638 <                      DEFAULT_INITIAL_CAPACITY),
639 <             DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
640 <        putAll(t);
2413 >    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2414 >        this(initialCapacity, loadFactor, 1);
2415      }
2416  
2417 <    // inherit Map javadoc
2417 >    /**
2418 >     * Creates a new, empty map with an initial table size based on
2419 >     * the given number of elements ({@code initialCapacity}), table
2420 >     * density ({@code loadFactor}), and number of concurrently
2421 >     * updating threads ({@code concurrencyLevel}).
2422 >     *
2423 >     * @param initialCapacity the initial capacity. The implementation
2424 >     * performs internal sizing to accommodate this many elements,
2425 >     * given the specified load factor.
2426 >     * @param loadFactor the load factor (table density) for
2427 >     * establishing the initial table size
2428 >     * @param concurrencyLevel the estimated number of concurrently
2429 >     * updating threads. The implementation may use this value as
2430 >     * a sizing hint.
2431 >     * @throws IllegalArgumentException if the initial capacity is
2432 >     * negative or the load factor or concurrencyLevel are
2433 >     * nonpositive
2434 >     */
2435 >    public ConcurrentHashMap(int initialCapacity,
2436 >                               float loadFactor, int concurrencyLevel) {
2437 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2438 >            throw new IllegalArgumentException();
2439 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2440 >            initialCapacity = concurrencyLevel;   // as estimated threads
2441 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2442 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2443 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2444 >        this.counter = new LongAdder();
2445 >        this.sizeCtl = cap;
2446 >    }
2447 >
2448 >    /**
2449 >     * {@inheritDoc}
2450 >     */
2451      public boolean isEmpty() {
2452 <        final Segment[] segments = this.segments;
646 <        /*
647 <         * We keep track of per-segment modCounts to avoid ABA
648 <         * problems in which an element in one segment was added and
649 <         * in another removed during traversal, in which case the
650 <         * table was never actually empty at any point. Note the
651 <         * similar use of modCounts in the size() and containsValue()
652 <         * methods, which are the only other methods also susceptible
653 <         * to ABA problems.
654 <         */
655 <        int[] mc = new int[segments.length];
656 <        int mcsum = 0;
657 <        for (int i = 0; i < segments.length; ++i) {
658 <            if (segments[i].count != 0)
659 <                return false;
660 <            else
661 <                mcsum += mc[i] = segments[i].modCount;
662 <        }
663 <        // If mcsum happens to be zero, then we know we got a snapshot
664 <        // before any modifications at all were made.  This is
665 <        // probably common enough to bother tracking.
666 <        if (mcsum != 0) {
667 <            for (int i = 0; i < segments.length; ++i) {
668 <                if (segments[i].count != 0 ||
669 <                    mc[i] != segments[i].modCount)
670 <                    return false;
671 <            }
672 <        }
673 <        return true;
2452 >        return counter.sum() <= 0L; // ignore transient negative values
2453      }
2454  
2455 <    // inherit Map javadoc
2455 >    /**
2456 >     * {@inheritDoc}
2457 >     */
2458      public int size() {
2459 <        final Segment[] segments = this.segments;
2460 <        long sum = 0;
2461 <        long check = 0;
2462 <        int[] mc = new int[segments.length];
2463 <        // Try a few times to get accurate count. On failure due to
2464 <        // continuous async changes in table, resort to locking.
2465 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
2466 <            check = 0;
2467 <            sum = 0;
2468 <            int mcsum = 0;
2469 <            for (int i = 0; i < segments.length; ++i) {
2470 <                sum += segments[i].count;
2471 <                mcsum += mc[i] = segments[i].modCount;
2472 <            }
2473 <            if (mcsum != 0) {
2474 <                for (int i = 0; i < segments.length; ++i) {
2475 <                    check += segments[i].count;
2476 <                    if (mc[i] != segments[i].modCount) {
696 <                        check = -1; // force retry
697 <                        break;
698 <                    }
699 <                }
700 <            }
701 <            if (check == sum)
702 <                break;
703 <        }
704 <        if (check != sum) { // Resort to locking all segments
705 <            sum = 0;
706 <            for (int i = 0; i < segments.length; ++i)
707 <                segments[i].lock();
708 <            for (int i = 0; i < segments.length; ++i)
709 <                sum += segments[i].count;
710 <            for (int i = 0; i < segments.length; ++i)
711 <                segments[i].unlock();
712 <        }
713 <        if (sum > Integer.MAX_VALUE)
714 <            return Integer.MAX_VALUE;
715 <        else
716 <            return (int)sum;
2459 >        long n = counter.sum();
2460 >        return ((n < 0L) ? 0 :
2461 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2462 >                (int)n);
2463 >    }
2464 >
2465 >    /**
2466 >     * Returns the number of mappings. This method should be used
2467 >     * instead of {@link #size} because a ConcurrentHashMap may
2468 >     * contain more mappings than can be represented as an int. The
2469 >     * value returned is a snapshot; the actual count may differ if
2470 >     * there are ongoing concurrent insertions or removals.
2471 >     *
2472 >     * @return the number of mappings
2473 >     */
2474 >    public long mappingCount() {
2475 >        long n = counter.sum();
2476 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2477      }
2478  
2479 +    /**
2480 +     * Returns the value to which the specified key is mapped,
2481 +     * or {@code null} if this map contains no mapping for the key.
2482 +     *
2483 +     * <p>More formally, if this map contains a mapping from a key
2484 +     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2485 +     * then this method returns {@code v}; otherwise it returns
2486 +     * {@code null}.  (There can be at most one such mapping.)
2487 +     *
2488 +     * @throws NullPointerException if the specified key is null
2489 +     */
2490 +    @SuppressWarnings("unchecked") public V get(Object key) {
2491 +        if (key == null)
2492 +            throw new NullPointerException();
2493 +        return (V)internalGet(key);
2494 +    }
2495  
2496      /**
2497 <     * Returns the value to which the specified key is mapped in this table.
2497 >     * Returns the value to which the specified key is mapped,
2498 >     * or the gieven defaultValue if this map contains no mapping for the key.
2499       *
2500 <     * @param   key   a key in the table.
2501 <     * @return  the value to which the key is mapped in this table;
2502 <     *          <tt>null</tt> if the key is not mapped to any value in
2503 <     *          this table.
2504 <     * @throws  NullPointerException  if the key is
728 <     *               <tt>null</tt>.
2500 >     * @param key the key
2501 >     * @param defaultValue the value to return if this map contains
2502 >     * no mapping for the given key.
2503 >     * @return the mapping for the key, if present; else the defaultValue
2504 >     * @throws NullPointerException if the specified key is null
2505       */
2506 <    public V get(Object key) {
2507 <        int hash = hash(key); // throws NullPointerException if key null
2508 <        return segmentFor(hash).get(key, hash);
2506 >    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2507 >        if (key == null)
2508 >            throw new NullPointerException();
2509 >        V v = (V) internalGet(key);
2510 >        return v == null ? defaultValue : v;
2511      }
2512  
2513      /**
2514       * Tests if the specified object is a key in this table.
2515       *
2516 <     * @param   key   possible key.
2517 <     * @return  <tt>true</tt> if and only if the specified object
2518 <     *          is a key in this table, as determined by the
2519 <     *          <tt>equals</tt> method; <tt>false</tt> otherwise.
2520 <     * @throws  NullPointerException  if the key is
743 <     *               <tt>null</tt>.
2516 >     * @param  key   possible key
2517 >     * @return {@code true} if and only if the specified object
2518 >     *         is a key in this table, as determined by the
2519 >     *         {@code equals} method; {@code false} otherwise
2520 >     * @throws NullPointerException if the specified key is null
2521       */
2522      public boolean containsKey(Object key) {
2523 <        int hash = hash(key); // throws NullPointerException if key null
2524 <        return segmentFor(hash).containsKey(key, hash);
2523 >        if (key == null)
2524 >            throw new NullPointerException();
2525 >        return internalGet(key) != null;
2526      }
2527  
2528      /**
2529 <     * Returns <tt>true</tt> if this map maps one or more keys to the
2530 <     * specified value. Note: This method requires a full internal
2531 <     * traversal of the hash table, and so is much slower than
754 <     * method <tt>containsKey</tt>.
2529 >     * Returns {@code true} if this map maps one or more keys to the
2530 >     * specified value. Note: This method may require a full traversal
2531 >     * of the map, and is much slower than method {@code containsKey}.
2532       *
2533 <     * @param value value whose presence in this map is to be tested.
2534 <     * @return <tt>true</tt> if this map maps one or more keys to the
2535 <     * specified value.
2536 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
2533 >     * @param value value whose presence in this map is to be tested
2534 >     * @return {@code true} if this map maps one or more keys to the
2535 >     *         specified value
2536 >     * @throws NullPointerException if the specified value is null
2537       */
2538      public boolean containsValue(Object value) {
2539          if (value == null)
2540              throw new NullPointerException();
2541 <        
2542 <        // See explanation of modCount use above
2543 <
2544 <        final Segment[] segments = this.segments;
2545 <        int[] mc = new int[segments.length];
769 <
770 <        // Try a few times without locking
771 <        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
772 <            int sum = 0;
773 <            int mcsum = 0;
774 <            for (int i = 0; i < segments.length; ++i) {
775 <                int c = segments[i].count;
776 <                mcsum += mc[i] = segments[i].modCount;
777 <                if (segments[i].containsValue(value))
778 <                    return true;
779 <            }
780 <            boolean cleanSweep = true;
781 <            if (mcsum != 0) {
782 <                for (int i = 0; i < segments.length; ++i) {
783 <                    int c = segments[i].count;
784 <                    if (mc[i] != segments[i].modCount) {
785 <                        cleanSweep = false;
786 <                        break;
787 <                    }
788 <                }
789 <            }
790 <            if (cleanSweep)
791 <                return false;
792 <        }
793 <        // Resort to locking all segments
794 <        for (int i = 0; i < segments.length; ++i)
795 <            segments[i].lock();
796 <        boolean found = false;
797 <        try {
798 <            for (int i = 0; i < segments.length; ++i) {
799 <                if (segments[i].containsValue(value)) {
800 <                    found = true;
801 <                    break;
802 <                }
803 <            }
804 <        } finally {
805 <            for (int i = 0; i < segments.length; ++i)
806 <                segments[i].unlock();
2541 >        Object v;
2542 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2543 >        while ((v = it.advance()) != null) {
2544 >            if (v == value || value.equals(v))
2545 >                return true;
2546          }
2547 <        return found;
2547 >        return false;
2548      }
2549  
2550      /**
2551       * Legacy method testing if some key maps into the specified value
2552       * in this table.  This method is identical in functionality to
2553 <     * {@link #containsValue}, and  exists solely to ensure
2553 >     * {@link #containsValue}, and exists solely to ensure
2554       * full compatibility with class {@link java.util.Hashtable},
2555       * which supported this method prior to introduction of the
2556       * Java Collections framework.
2557 <
2558 <     * @param      value   a value to search for.
2559 <     * @return     <tt>true</tt> if and only if some key maps to the
2560 <     *             <tt>value</tt> argument in this table as
2561 <     *             determined by the <tt>equals</tt> method;
2562 <     *             <tt>false</tt> otherwise.
2563 <     * @throws  NullPointerException  if the value is <tt>null</tt>.
2557 >     *
2558 >     * @param  value a value to search for
2559 >     * @return {@code true} if and only if some key maps to the
2560 >     *         {@code value} argument in this table as
2561 >     *         determined by the {@code equals} method;
2562 >     *         {@code false} otherwise
2563 >     * @throws NullPointerException if the specified value is null
2564       */
2565      public boolean contains(Object value) {
2566          return containsValue(value);
2567      }
2568  
2569      /**
2570 <     * Maps the specified <tt>key</tt> to the specified
2571 <     * <tt>value</tt> in this table. Neither the key nor the
833 <     * value can be <tt>null</tt>.
2570 >     * Maps the specified key to the specified value in this table.
2571 >     * Neither the key nor the value can be null.
2572       *
2573 <     * <p> The value can be retrieved by calling the <tt>get</tt> method
2573 >     * <p> The value can be retrieved by calling the {@code get} method
2574       * with a key that is equal to the original key.
2575       *
2576 <     * @param      key     the table key.
2577 <     * @param      value   the value.
2578 <     * @return     the previous value of the specified key in this table,
2579 <     *             or <tt>null</tt> if it did not have one.
2580 <     * @throws  NullPointerException  if the key or value is
843 <     *               <tt>null</tt>.
2576 >     * @param key key with which the specified value is to be associated
2577 >     * @param value value to be associated with the specified key
2578 >     * @return the previous value associated with {@code key}, or
2579 >     *         {@code null} if there was no mapping for {@code key}
2580 >     * @throws NullPointerException if the specified key or value is null
2581       */
2582 <    public V put(K key, V value) {
2583 <        if (value == null)
2582 >    @SuppressWarnings("unchecked") public V put(K key, V value) {
2583 >        if (key == null || value == null)
2584              throw new NullPointerException();
2585 <        int hash = hash(key);
849 <        return segmentFor(hash).put(key, hash, value, false);
2585 >        return (V)internalPut(key, value);
2586      }
2587  
2588      /**
2589 <     * If the specified key is not already associated
2590 <     * with a value, associate it with the given value.
2591 <     * This is equivalent to
2592 <     * <pre>
2593 <     *   if (!map.containsKey(key))
858 <     *      return map.put(key, value);
859 <     *   else
860 <     *      return map.get(key);
861 <     * </pre>
862 <     * Except that the action is performed atomically.
863 <     * @param key key with which the specified value is to be associated.
864 <     * @param value value to be associated with the specified key.
865 <     * @return previous value associated with specified key, or <tt>null</tt>
866 <     *         if there was no mapping for key.
867 <     * @throws NullPointerException if the specified key or value is
868 <     *            <tt>null</tt>.
2589 >     * {@inheritDoc}
2590 >     *
2591 >     * @return the previous value associated with the specified key,
2592 >     *         or {@code null} if there was no mapping for the key
2593 >     * @throws NullPointerException if the specified key or value is null
2594       */
2595 <    public V putIfAbsent(K key, V value) {
2596 <        if (value == null)
2595 >    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2596 >        if (key == null || value == null)
2597              throw new NullPointerException();
2598 <        int hash = hash(key);
874 <        return segmentFor(hash).put(key, hash, value, true);
2598 >        return (V)internalPutIfAbsent(key, value);
2599      }
2600  
877
2601      /**
2602       * Copies all of the mappings from the specified map to this one.
880     *
2603       * These mappings replace any mappings that this map had for any of the
2604 <     * keys currently in the specified Map.
2604 >     * keys currently in the specified map.
2605       *
2606 <     * @param t Mappings to be stored in this map.
2606 >     * @param m mappings to be stored in this map
2607       */
2608 <    public void putAll(Map<? extends K, ? extends V> t) {
2609 <        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
2610 <            Entry<? extends K, ? extends V> e = it.next();
2611 <            put(e.getKey(), e.getValue());
2612 <        }
2608 >    public void putAll(Map<? extends K, ? extends V> m) {
2609 >        internalPutAll(m);
2610 >    }
2611 >
2612 >    /**
2613 >     * If the specified key is not already associated with a value,
2614 >     * computes its value using the given mappingFunction and enters
2615 >     * it into the map unless null.  This is equivalent to
2616 >     * <pre> {@code
2617 >     * if (map.containsKey(key))
2618 >     *   return map.get(key);
2619 >     * value = mappingFunction.apply(key);
2620 >     * if (value != null)
2621 >     *   map.put(key, value);
2622 >     * return value;}</pre>
2623 >     *
2624 >     * except that the action is performed atomically.  If the
2625 >     * function returns {@code null} no mapping is recorded. If the
2626 >     * function itself throws an (unchecked) exception, the exception
2627 >     * is rethrown to its caller, and no mapping is recorded.  Some
2628 >     * attempted update operations on this map by other threads may be
2629 >     * blocked while computation is in progress, so the computation
2630 >     * should be short and simple, and must not attempt to update any
2631 >     * other mappings of this Map. The most appropriate usage is to
2632 >     * construct a new object serving as an initial mapped value, or
2633 >     * memoized result, as in:
2634 >     *
2635 >     *  <pre> {@code
2636 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2637 >     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2638 >     *
2639 >     * @param key key with which the specified value is to be associated
2640 >     * @param mappingFunction the function to compute a value
2641 >     * @return the current (existing or computed) value associated with
2642 >     *         the specified key, or null if the computed value is null.
2643 >     * @throws NullPointerException if the specified key or mappingFunction
2644 >     *         is null
2645 >     * @throws IllegalStateException if the computation detectably
2646 >     *         attempts a recursive update to this map that would
2647 >     *         otherwise never complete
2648 >     * @throws RuntimeException or Error if the mappingFunction does so,
2649 >     *         in which case the mapping is left unestablished
2650 >     */
2651 >    @SuppressWarnings("unchecked") public V computeIfAbsent
2652 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2653 >        if (key == null || mappingFunction == null)
2654 >            throw new NullPointerException();
2655 >        return (V)internalComputeIfAbsent(key, mappingFunction);
2656      }
2657  
2658      /**
2659 <     * Removes the key (and its corresponding value) from this
2660 <     * table. This method does nothing if the key is not in the table.
2659 >     * If the given key is present, computes a new mapping value given a key and
2660 >     * its current mapped value. This is equivalent to
2661 >     *  <pre> {@code
2662 >     *   if (map.containsKey(key)) {
2663 >     *     value = remappingFunction.apply(key, map.get(key));
2664 >     *     if (value != null)
2665 >     *       map.put(key, value);
2666 >     *     else
2667 >     *       map.remove(key);
2668 >     *   }
2669 >     * }</pre>
2670       *
2671 <     * @param   key   the key that needs to be removed.
2672 <     * @return  the value to which the key had been mapped in this table,
2673 <     *          or <tt>null</tt> if the key did not have a mapping.
2674 <     * @throws  NullPointerException  if the key is
2675 <     *               <tt>null</tt>.
2671 >     * except that the action is performed atomically.  If the
2672 >     * function returns {@code null}, the mapping is removed.  If the
2673 >     * function itself throws an (unchecked) exception, the exception
2674 >     * is rethrown to its caller, and the current mapping is left
2675 >     * unchanged.  Some attempted update operations on this map by
2676 >     * other threads may be blocked while computation is in progress,
2677 >     * so the computation should be short and simple, and must not
2678 >     * attempt to update any other mappings of this Map. For example,
2679 >     * to either create or append new messages to a value mapping:
2680 >     *
2681 >     * @param key key with which the specified value is to be associated
2682 >     * @param remappingFunction the function to compute a value
2683 >     * @return the new value associated with the specified key, or null if none
2684 >     * @throws NullPointerException if the specified key or remappingFunction
2685 >     *         is null
2686 >     * @throws IllegalStateException if the computation detectably
2687 >     *         attempts a recursive update to this map that would
2688 >     *         otherwise never complete
2689 >     * @throws RuntimeException or Error if the remappingFunction does so,
2690 >     *         in which case the mapping is unchanged
2691       */
2692 <    public V remove(Object key) {
2693 <        int hash = hash(key);
2694 <        return segmentFor(hash).remove(key, hash, null);
2692 >    @SuppressWarnings("unchecked") public V computeIfPresent
2693 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2694 >        if (key == null || remappingFunction == null)
2695 >            throw new NullPointerException();
2696 >        return (V)internalCompute(key, true, remappingFunction);
2697      }
2698  
2699      /**
2700 <     * Remove entry for key only if currently mapped to given value.
2701 <     * Acts as
2702 <     * <pre>
2703 <     *  if (map.get(key).equals(value)) {
2700 >     * Computes a new mapping value given a key and
2701 >     * its current mapped value (or {@code null} if there is no current
2702 >     * mapping). This is equivalent to
2703 >     *  <pre> {@code
2704 >     *   value = remappingFunction.apply(key, map.get(key));
2705 >     *   if (value != null)
2706 >     *     map.put(key, value);
2707 >     *   else
2708       *     map.remove(key);
2709 <     *     return true;
2710 <     * } else return false;
2711 <     * </pre>
2712 <     * except that the action is performed atomically.
2713 <     * @param key key with which the specified value is associated.
2714 <     * @param value value associated with the specified key.
2715 <     * @return true if the value was removed
2716 <     * @throws NullPointerException if the specified key is
2717 <     *            <tt>null</tt>.
2709 >     * }</pre>
2710 >     *
2711 >     * except that the action is performed atomically.  If the
2712 >     * function returns {@code null}, the mapping is removed.  If the
2713 >     * function itself throws an (unchecked) exception, the exception
2714 >     * is rethrown to its caller, and the current mapping is left
2715 >     * unchanged.  Some attempted update operations on this map by
2716 >     * other threads may be blocked while computation is in progress,
2717 >     * so the computation should be short and simple, and must not
2718 >     * attempt to update any other mappings of this Map. For example,
2719 >     * to either create or append new messages to a value mapping:
2720 >     *
2721 >     * <pre> {@code
2722 >     * Map<Key, String> map = ...;
2723 >     * final String msg = ...;
2724 >     * map.compute(key, new BiFun<Key, String, String>() {
2725 >     *   public String apply(Key k, String v) {
2726 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2727 >     *
2728 >     * @param key key with which the specified value is to be associated
2729 >     * @param remappingFunction the function to compute a value
2730 >     * @return the new value associated with the specified key, or null if none
2731 >     * @throws NullPointerException if the specified key or remappingFunction
2732 >     *         is null
2733 >     * @throws IllegalStateException if the computation detectably
2734 >     *         attempts a recursive update to this map that would
2735 >     *         otherwise never complete
2736 >     * @throws RuntimeException or Error if the remappingFunction does so,
2737 >     *         in which case the mapping is unchanged
2738       */
2739 <    public boolean remove(Object key, Object value) {
2740 <        int hash = hash(key);
2741 <        return segmentFor(hash).remove(key, hash, value) != null;
2739 >    @SuppressWarnings("unchecked") public V compute
2740 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2741 >        if (key == null || remappingFunction == null)
2742 >            throw new NullPointerException();
2743 >        return (V)internalCompute(key, false, remappingFunction);
2744      }
2745  
2746 +    /**
2747 +     * If the specified key is not already associated
2748 +     * with a value, associate it with the given value.
2749 +     * Otherwise, replace the value with the results of
2750 +     * the given remapping function. This is equivalent to:
2751 +     *  <pre> {@code
2752 +     *   if (!map.containsKey(key))
2753 +     *     map.put(value);
2754 +     *   else {
2755 +     *     newValue = remappingFunction.apply(map.get(key), value);
2756 +     *     if (value != null)
2757 +     *       map.put(key, value);
2758 +     *     else
2759 +     *       map.remove(key);
2760 +     *   }
2761 +     * }</pre>
2762 +     * except that the action is performed atomically.  If the
2763 +     * function returns {@code null}, the mapping is removed.  If the
2764 +     * function itself throws an (unchecked) exception, the exception
2765 +     * is rethrown to its caller, and the current mapping is left
2766 +     * unchanged.  Some attempted update operations on this map by
2767 +     * other threads may be blocked while computation is in progress,
2768 +     * so the computation should be short and simple, and must not
2769 +     * attempt to update any other mappings of this Map.
2770 +     */
2771 +    @SuppressWarnings("unchecked") public V merge
2772 +        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2773 +        if (key == null || value == null || remappingFunction == null)
2774 +            throw new NullPointerException();
2775 +        return (V)internalMerge(key, value, remappingFunction);
2776 +    }
2777  
2778      /**
2779 <     * Replace entry for key only if currently mapped to given value.
2780 <     * Acts as
2781 <     * <pre>
2782 <     *  if (map.get(key).equals(oldValue)) {
2783 <     *     map.put(key, newValue);
2784 <     *     return true;
2785 <     * } else return false;
938 <     * </pre>
939 <     * except that the action is performed atomically.
940 <     * @param key key with which the specified value is associated.
941 <     * @param oldValue value expected to be associated with the specified key.
942 <     * @param newValue value to be associated with the specified key.
943 <     * @return true if the value was replaced
944 <     * @throws NullPointerException if the specified key or values are
945 <     * <tt>null</tt>.
2779 >     * Removes the key (and its corresponding value) from this map.
2780 >     * This method does nothing if the key is not in the map.
2781 >     *
2782 >     * @param  key the key that needs to be removed
2783 >     * @return the previous value associated with {@code key}, or
2784 >     *         {@code null} if there was no mapping for {@code key}
2785 >     * @throws NullPointerException if the specified key is null
2786       */
2787 <    public boolean replace(K key, V oldValue, V newValue) {
2788 <        if (oldValue == null || newValue == null)
2787 >    @SuppressWarnings("unchecked") public V remove(Object key) {
2788 >        if (key == null)
2789              throw new NullPointerException();
2790 <        int hash = hash(key);
951 <        return segmentFor(hash).replace(key, hash, oldValue, newValue);
2790 >        return (V)internalReplace(key, null, null);
2791      }
2792  
2793      /**
2794 <     * Replace entry for key only if currently mapped to some value.
2795 <     * Acts as
2796 <     * <pre>
958 <     *  if ((map.containsKey(key)) {
959 <     *     return map.put(key, value);
960 <     * } else return null;
961 <     * </pre>
962 <     * except that the action is performed atomically.
963 <     * @param key key with which the specified value is associated.
964 <     * @param value value to be associated with the specified key.
965 <     * @return previous value associated with specified key, or <tt>null</tt>
966 <     *         if there was no mapping for key.  
967 <     * @throws NullPointerException if the specified key or value is
968 <     *            <tt>null</tt>.
2794 >     * {@inheritDoc}
2795 >     *
2796 >     * @throws NullPointerException if the specified key is null
2797       */
2798 <    public V replace(K key, V value) {
2798 >    public boolean remove(Object key, Object value) {
2799 >        if (key == null)
2800 >            throw new NullPointerException();
2801          if (value == null)
2802 +            return false;
2803 +        return internalReplace(key, null, value) != null;
2804 +    }
2805 +
2806 +    /**
2807 +     * {@inheritDoc}
2808 +     *
2809 +     * @throws NullPointerException if any of the arguments are null
2810 +     */
2811 +    public boolean replace(K key, V oldValue, V newValue) {
2812 +        if (key == null || oldValue == null || newValue == null)
2813              throw new NullPointerException();
2814 <        int hash = hash(key);
974 <        return segmentFor(hash).replace(key, hash, value);
2814 >        return internalReplace(key, newValue, oldValue) != null;
2815      }
2816  
2817 +    /**
2818 +     * {@inheritDoc}
2819 +     *
2820 +     * @return the previous value associated with the specified key,
2821 +     *         or {@code null} if there was no mapping for the key
2822 +     * @throws NullPointerException if the specified key or value is null
2823 +     */
2824 +    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2825 +        if (key == null || value == null)
2826 +            throw new NullPointerException();
2827 +        return (V)internalReplace(key, value, null);
2828 +    }
2829  
2830      /**
2831 <     * Removes all mappings from this map.
2831 >     * Removes all of the mappings from this map.
2832       */
2833      public void clear() {
2834 <        for (int i = 0; i < segments.length; ++i)
983 <            segments[i].clear();
2834 >        internalClear();
2835      }
2836  
2837      /**
2838 <     * Returns a set view of the keys contained in this map.  The set is
2839 <     * backed by the map, so changes to the map are reflected in the set, and
2840 <     * vice-versa.  The set supports element removal, which removes the
2841 <     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
2842 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
2843 <     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
2844 <     * <tt>addAll</tt> operations.
2845 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
2846 <     * will never throw {@link java.util.ConcurrentModificationException},
2838 >     * Returns a {@link Set} view of the keys contained in this map.
2839 >     * The set is backed by the map, so changes to the map are
2840 >     * reflected in the set, and vice-versa.  The set supports element
2841 >     * removal, which removes the corresponding mapping from this map,
2842 >     * via the {@code Iterator.remove}, {@code Set.remove},
2843 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2844 >     * operations.  It does not support the {@code add} or
2845 >     * {@code addAll} operations.
2846 >     *
2847 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2848 >     * that will never throw {@link ConcurrentModificationException},
2849       * and guarantees to traverse elements as they existed upon
2850       * construction of the iterator, and may (but is not guaranteed to)
2851       * reflect any modifications subsequent to construction.
999     *
1000     * @return a set view of the keys contained in this map.
2852       */
2853      public Set<K> keySet() {
2854 <        Set<K> ks = keySet;
2855 <        return (ks != null) ? ks : (keySet = new KeySet());
2854 >        KeySet<K,V> ks = keySet;
2855 >        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2856      }
2857  
1007
2858      /**
2859 <     * Returns a collection view of the values contained in this map.  The
2860 <     * collection is backed by the map, so changes to the map are reflected in
2861 <     * the collection, and vice-versa.  The collection supports element
2862 <     * removal, which removes the corresponding mapping from this map, via the
2863 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
2864 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
2865 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
2866 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
2867 <     * will never throw {@link java.util.ConcurrentModificationException},
2859 >     * Returns a {@link Collection} view of the values contained in this map.
2860 >     * The collection is backed by the map, so changes to the map are
2861 >     * reflected in the collection, and vice-versa.  The collection
2862 >     * supports element removal, which removes the corresponding
2863 >     * mapping from this map, via the {@code Iterator.remove},
2864 >     * {@code Collection.remove}, {@code removeAll},
2865 >     * {@code retainAll}, and {@code clear} operations.  It does not
2866 >     * support the {@code add} or {@code addAll} operations.
2867 >     *
2868 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2869 >     * that will never throw {@link ConcurrentModificationException},
2870       * and guarantees to traverse elements as they existed upon
2871       * construction of the iterator, and may (but is not guaranteed to)
2872       * reflect any modifications subsequent to construction.
1021     *
1022     * @return a collection view of the values contained in this map.
2873       */
2874      public Collection<V> values() {
2875 <        Collection<V> vs = values;
2876 <        return (vs != null) ? vs : (values = new Values());
2875 >        Values<K,V> vs = values;
2876 >        return (vs != null) ? vs : (values = new Values<K,V>(this));
2877      }
2878  
1029
2879      /**
2880 <     * Returns a collection view of the mappings contained in this map.  Each
2881 <     * element in the returned collection is a <tt>Map.Entry</tt>.  The
2882 <     * collection is backed by the map, so changes to the map are reflected in
2883 <     * the collection, and vice-versa.  The collection supports element
2884 <     * removal, which removes the corresponding mapping from the map, via the
2885 <     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
2886 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
2887 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
2888 <     * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
2889 <     * will never throw {@link java.util.ConcurrentModificationException},
2880 >     * Returns a {@link Set} view of the mappings contained in this map.
2881 >     * The set is backed by the map, so changes to the map are
2882 >     * reflected in the set, and vice-versa.  The set supports element
2883 >     * removal, which removes the corresponding mapping from the map,
2884 >     * via the {@code Iterator.remove}, {@code Set.remove},
2885 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
2886 >     * operations.  It does not support the {@code add} or
2887 >     * {@code addAll} operations.
2888 >     *
2889 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2890 >     * that will never throw {@link ConcurrentModificationException},
2891       * and guarantees to traverse elements as they existed upon
2892       * construction of the iterator, and may (but is not guaranteed to)
2893       * reflect any modifications subsequent to construction.
1044     *
1045     * @return a collection view of the mappings contained in this map.
2894       */
2895      public Set<Map.Entry<K,V>> entrySet() {
2896 <        Set<Map.Entry<K,V>> es = entrySet;
2897 <        return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
2896 >        EntrySet<K,V> es = entrySet;
2897 >        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2898      }
2899  
1052
2900      /**
2901       * Returns an enumeration of the keys in this table.
2902       *
2903 <     * @return  an enumeration of the keys in this table.
2904 <     * @see     #keySet
2903 >     * @return an enumeration of the keys in this table
2904 >     * @see #keySet()
2905       */
2906      public Enumeration<K> keys() {
2907 <        return new KeyIterator();
2907 >        return new KeyIterator<K,V>(this);
2908      }
2909  
2910      /**
2911       * Returns an enumeration of the values in this table.
2912       *
2913 <     * @return  an enumeration of the values in this table.
2914 <     * @see     #values
2913 >     * @return an enumeration of the values in this table
2914 >     * @see #values()
2915       */
2916      public Enumeration<V> elements() {
2917 <        return new ValueIterator();
2917 >        return new ValueIterator<K,V>(this);
2918      }
2919  
2920 <    /* ---------------- Iterator Support -------------- */
2921 <
2922 <    abstract class HashIterator {
2923 <        int nextSegmentIndex;
2924 <        int nextTableIndex;
2925 <        HashEntry[] currentTable;
2926 <        HashEntry<K, V> nextEntry;
2927 <        HashEntry<K, V> lastReturned;
2920 >    /**
2921 >     * Returns a partitionable iterator of the keys in this map.
2922 >     *
2923 >     * @return a partitionable iterator of the keys in this map
2924 >     */
2925 >    public Spliterator<K> keySpliterator() {
2926 >        return new KeyIterator<K,V>(this);
2927 >    }
2928  
2929 <        HashIterator() {
2930 <            nextSegmentIndex = segments.length - 1;
2931 <            nextTableIndex = -1;
2932 <            advance();
2933 <        }
2929 >    /**
2930 >     * Returns a partitionable iterator of the values in this map.
2931 >     *
2932 >     * @return a partitionable iterator of the values in this map
2933 >     */
2934 >    public Spliterator<V> valueSpliterator() {
2935 >        return new ValueIterator<K,V>(this);
2936 >    }
2937  
2938 <        public boolean hasMoreElements() { return hasNext(); }
2938 >    /**
2939 >     * Returns a partitionable iterator of the entries in this map.
2940 >     *
2941 >     * @return a partitionable iterator of the entries in this map
2942 >     */
2943 >    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2944 >        return new EntryIterator<K,V>(this);
2945 >    }
2946  
2947 <        final void advance() {
2948 <            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
2949 <                return;
2947 >    /**
2948 >     * Returns the hash code value for this {@link Map}, i.e.,
2949 >     * the sum of, for each key-value pair in the map,
2950 >     * {@code key.hashCode() ^ value.hashCode()}.
2951 >     *
2952 >     * @return the hash code value for this map
2953 >     */
2954 >    public int hashCode() {
2955 >        int h = 0;
2956 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2957 >        Object v;
2958 >        while ((v = it.advance()) != null) {
2959 >            h += it.nextKey.hashCode() ^ v.hashCode();
2960 >        }
2961 >        return h;
2962 >    }
2963  
2964 <            while (nextTableIndex >= 0) {
2965 <                if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
2966 <                    return;
2964 >    /**
2965 >     * Returns a string representation of this map.  The string
2966 >     * representation consists of a list of key-value mappings (in no
2967 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2968 >     * mappings are separated by the characters {@code ", "} (comma
2969 >     * and space).  Each key-value mapping is rendered as the key
2970 >     * followed by an equals sign ("{@code =}") followed by the
2971 >     * associated value.
2972 >     *
2973 >     * @return a string representation of this map
2974 >     */
2975 >    public String toString() {
2976 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2977 >        StringBuilder sb = new StringBuilder();
2978 >        sb.append('{');
2979 >        Object v;
2980 >        if ((v = it.advance()) != null) {
2981 >            for (;;) {
2982 >                Object k = it.nextKey;
2983 >                sb.append(k == this ? "(this Map)" : k);
2984 >                sb.append('=');
2985 >                sb.append(v == this ? "(this Map)" : v);
2986 >                if ((v = it.advance()) == null)
2987 >                    break;
2988 >                sb.append(',').append(' ');
2989              }
2990 +        }
2991 +        return sb.append('}').toString();
2992 +    }
2993  
2994 <            while (nextSegmentIndex >= 0) {
2995 <                Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
2996 <                if (seg.count != 0) {
2997 <                    currentTable = seg.table;
2998 <                    for (int j = currentTable.length - 1; j >= 0; --j) {
2999 <                        if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
3000 <                            nextTableIndex = j - 1;
3001 <                            return;
3002 <                        }
3003 <                    }
3004 <                }
2994 >    /**
2995 >     * Compares the specified object with this map for equality.
2996 >     * Returns {@code true} if the given object is a map with the same
2997 >     * mappings as this map.  This operation may return misleading
2998 >     * results if either map is concurrently modified during execution
2999 >     * of this method.
3000 >     *
3001 >     * @param o object to be compared for equality with this map
3002 >     * @return {@code true} if the specified object is equal to this map
3003 >     */
3004 >    public boolean equals(Object o) {
3005 >        if (o != this) {
3006 >            if (!(o instanceof Map))
3007 >                return false;
3008 >            Map<?,?> m = (Map<?,?>) o;
3009 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3010 >            Object val;
3011 >            while ((val = it.advance()) != null) {
3012 >                Object v = m.get(it.nextKey);
3013 >                if (v == null || (v != val && !v.equals(val)))
3014 >                    return false;
3015 >            }
3016 >            for (Map.Entry<?,?> e : m.entrySet()) {
3017 >                Object mk, mv, v;
3018 >                if ((mk = e.getKey()) == null ||
3019 >                    (mv = e.getValue()) == null ||
3020 >                    (v = internalGet(mk)) == null ||
3021 >                    (mv != v && !mv.equals(v)))
3022 >                    return false;
3023              }
3024          }
3025 +        return true;
3026 +    }
3027  
3028 <        public boolean hasNext() { return nextEntry != null; }
3028 >    /* ----------------Iterators -------------- */
3029  
3030 <        HashEntry<K,V> nextEntry() {
3031 <            if (nextEntry == null)
3030 >    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3031 >        implements Spliterator<K>, Enumeration<K> {
3032 >        KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3033 >        KeyIterator(Traverser<K,V,Object> it) {
3034 >            super(it);
3035 >        }
3036 >        public KeyIterator<K,V> split() {
3037 >            if (last != null || (next != null && nextVal == null))
3038 >                throw new IllegalStateException();
3039 >            return new KeyIterator<K,V>(this);
3040 >        }
3041 >        @SuppressWarnings("unchecked") public final K next() {
3042 >            if (nextVal == null && advance() == null)
3043                  throw new NoSuchElementException();
3044 <            lastReturned = nextEntry;
3045 <            advance();
3046 <            return lastReturned;
3044 >            Object k = nextKey;
3045 >            nextVal = null;
3046 >            return (K) k;
3047          }
3048  
3049 <        public void remove() {
3050 <            if (lastReturned == null)
3049 >        public final K nextElement() { return next(); }
3050 >    }
3051 >
3052 >    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3053 >        implements Spliterator<V>, Enumeration<V> {
3054 >        ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3055 >        ValueIterator(Traverser<K,V,Object> it) {
3056 >            super(it);
3057 >        }
3058 >        public ValueIterator<K,V> split() {
3059 >            if (last != null || (next != null && nextVal == null))
3060                  throw new IllegalStateException();
3061 <            ConcurrentHashMap.this.remove(lastReturned.key);
3062 <            lastReturned = null;
3061 >            return new ValueIterator<K,V>(this);
3062 >        }
3063 >
3064 >        @SuppressWarnings("unchecked") public final V next() {
3065 >            Object v;
3066 >            if ((v = nextVal) == null && (v = advance()) == null)
3067 >                throw new NoSuchElementException();
3068 >            nextVal = null;
3069 >            return (V) v;
3070          }
3071 +
3072 +        public final V nextElement() { return next(); }
3073      }
3074  
3075 <    final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
3076 <        public K next() { return super.nextEntry().key; }
3077 <        public K nextElement() { return super.nextEntry().key; }
3075 >    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3076 >        implements Spliterator<Map.Entry<K,V>> {
3077 >        EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3078 >        EntryIterator(Traverser<K,V,Object> it) {
3079 >            super(it);
3080 >        }
3081 >        public EntryIterator<K,V> split() {
3082 >            if (last != null || (next != null && nextVal == null))
3083 >                throw new IllegalStateException();
3084 >            return new EntryIterator<K,V>(this);
3085 >        }
3086 >
3087 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3088 >            Object v;
3089 >            if ((v = nextVal) == null && (v = advance()) == null)
3090 >                throw new NoSuchElementException();
3091 >            Object k = nextKey;
3092 >            nextVal = null;
3093 >            return new MapEntry<K,V>((K)k, (V)v, map);
3094 >        }
3095      }
3096  
3097 <    final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
3098 <        public V next() { return super.nextEntry().value; }
3099 <        public V nextElement() { return super.nextEntry().value; }
3097 >    /**
3098 >     * Exported Entry for iterators
3099 >     */
3100 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3101 >        final K key; // non-null
3102 >        V val;       // non-null
3103 >        final ConcurrentHashMap<K, V> map;
3104 >        MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3105 >            this.key = key;
3106 >            this.val = val;
3107 >            this.map = map;
3108 >        }
3109 >        public final K getKey()       { return key; }
3110 >        public final V getValue()     { return val; }
3111 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3112 >        public final String toString(){ return key + "=" + val; }
3113 >
3114 >        public final boolean equals(Object o) {
3115 >            Object k, v; Map.Entry<?,?> e;
3116 >            return ((o instanceof Map.Entry) &&
3117 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3118 >                    (v = e.getValue()) != null &&
3119 >                    (k == key || k.equals(key)) &&
3120 >                    (v == val || v.equals(val)));
3121 >        }
3122 >
3123 >        /**
3124 >         * Sets our entry's value and writes through to the map. The
3125 >         * value to return is somewhat arbitrary here. Since we do not
3126 >         * necessarily track asynchronous changes, the most recent
3127 >         * "previous" value could be different from what we return (or
3128 >         * could even have been removed in which case the put will
3129 >         * re-establish). We do not and cannot guarantee more.
3130 >         */
3131 >        public final V setValue(V value) {
3132 >            if (value == null) throw new NullPointerException();
3133 >            V v = val;
3134 >            val = value;
3135 >            map.put(key, value);
3136 >            return v;
3137 >        }
3138      }
3139  
3140 <    
3140 >    /* ----------------Views -------------- */
3141  
3142      /**
3143 <     * Entry iterator. Exported Entry objects must write-through
1145 <     * changes in setValue, even if the nodes have been cloned. So we
1146 <     * cannot return internal HashEntry objects. Instead, the iterator
1147 <     * itself acts as a forwarding pseudo-entry.
3143 >     * Base class for views.
3144       */
3145 <    final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
3146 <        public Map.Entry<K,V> next() {
3147 <            nextEntry();
3148 <            return this;
3145 >    static abstract class CHMView<K, V> {
3146 >        final ConcurrentHashMap<K, V> map;
3147 >        CHMView(ConcurrentHashMap<K, V> map)  { this.map = map; }
3148 >        public final int size()                 { return map.size(); }
3149 >        public final boolean isEmpty()          { return map.isEmpty(); }
3150 >        public final void clear()               { map.clear(); }
3151 >
3152 >        // implementations below rely on concrete classes supplying these
3153 >        abstract public Iterator<?> iterator();
3154 >        abstract public boolean contains(Object o);
3155 >        abstract public boolean remove(Object o);
3156 >
3157 >        private static final String oomeMsg = "Required array size too large";
3158 >
3159 >        public final Object[] toArray() {
3160 >            long sz = map.mappingCount();
3161 >            if (sz > (long)(MAX_ARRAY_SIZE))
3162 >                throw new OutOfMemoryError(oomeMsg);
3163 >            int n = (int)sz;
3164 >            Object[] r = new Object[n];
3165 >            int i = 0;
3166 >            Iterator<?> it = iterator();
3167 >            while (it.hasNext()) {
3168 >                if (i == n) {
3169 >                    if (n >= MAX_ARRAY_SIZE)
3170 >                        throw new OutOfMemoryError(oomeMsg);
3171 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3172 >                        n = MAX_ARRAY_SIZE;
3173 >                    else
3174 >                        n += (n >>> 1) + 1;
3175 >                    r = Arrays.copyOf(r, n);
3176 >                }
3177 >                r[i++] = it.next();
3178 >            }
3179 >            return (i == n) ? r : Arrays.copyOf(r, i);
3180 >        }
3181 >
3182 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3183 >            long sz = map.mappingCount();
3184 >            if (sz > (long)(MAX_ARRAY_SIZE))
3185 >                throw new OutOfMemoryError(oomeMsg);
3186 >            int m = (int)sz;
3187 >            T[] r = (a.length >= m) ? a :
3188 >                (T[])java.lang.reflect.Array
3189 >                .newInstance(a.getClass().getComponentType(), m);
3190 >            int n = r.length;
3191 >            int i = 0;
3192 >            Iterator<?> it = iterator();
3193 >            while (it.hasNext()) {
3194 >                if (i == n) {
3195 >                    if (n >= MAX_ARRAY_SIZE)
3196 >                        throw new OutOfMemoryError(oomeMsg);
3197 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3198 >                        n = MAX_ARRAY_SIZE;
3199 >                    else
3200 >                        n += (n >>> 1) + 1;
3201 >                    r = Arrays.copyOf(r, n);
3202 >                }
3203 >                r[i++] = (T)it.next();
3204 >            }
3205 >            if (a == r && i < n) {
3206 >                r[i] = null; // null-terminate
3207 >                return r;
3208 >            }
3209 >            return (i == n) ? r : Arrays.copyOf(r, i);
3210 >        }
3211 >
3212 >        public final int hashCode() {
3213 >            int h = 0;
3214 >            for (Iterator<?> it = iterator(); it.hasNext();)
3215 >                h += it.next().hashCode();
3216 >            return h;
3217 >        }
3218 >
3219 >        public final String toString() {
3220 >            StringBuilder sb = new StringBuilder();
3221 >            sb.append('[');
3222 >            Iterator<?> it = iterator();
3223 >            if (it.hasNext()) {
3224 >                for (;;) {
3225 >                    Object e = it.next();
3226 >                    sb.append(e == this ? "(this Collection)" : e);
3227 >                    if (!it.hasNext())
3228 >                        break;
3229 >                    sb.append(',').append(' ');
3230 >                }
3231 >            }
3232 >            return sb.append(']').toString();
3233          }
3234  
3235 <        public K getKey() {
3236 <            if (lastReturned == null)
3237 <                throw new IllegalStateException("Entry was removed");
3238 <            return lastReturned.key;
3235 >        public final boolean containsAll(Collection<?> c) {
3236 >            if (c != this) {
3237 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3238 >                    Object e = it.next();
3239 >                    if (e == null || !contains(e))
3240 >                        return false;
3241 >                }
3242 >            }
3243 >            return true;
3244          }
3245  
3246 <        public V getValue() {
3247 <            if (lastReturned == null)
3248 <                throw new IllegalStateException("Entry was removed");
3249 <            return ConcurrentHashMap.this.get(lastReturned.key);
3246 >        public final boolean removeAll(Collection<?> c) {
3247 >            boolean modified = false;
3248 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3249 >                if (c.contains(it.next())) {
3250 >                    it.remove();
3251 >                    modified = true;
3252 >                }
3253 >            }
3254 >            return modified;
3255          }
3256  
3257 <        public V setValue(V value) {
3258 <            if (lastReturned == null)
3259 <                throw new IllegalStateException("Entry was removed");
3260 <            return ConcurrentHashMap.this.put(lastReturned.key, value);
3257 >        public final boolean retainAll(Collection<?> c) {
3258 >            boolean modified = false;
3259 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3260 >                if (!c.contains(it.next())) {
3261 >                    it.remove();
3262 >                    modified = true;
3263 >                }
3264 >            }
3265 >            return modified;
3266          }
3267  
3268 +    }
3269 +
3270 +    static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3271 +        KeySet(ConcurrentHashMap<K, V> map)  {
3272 +            super(map);
3273 +        }
3274 +        public final boolean contains(Object o) { return map.containsKey(o); }
3275 +        public final boolean remove(Object o)   { return map.remove(o) != null; }
3276 +        public final Iterator<K> iterator() {
3277 +            return new KeyIterator<K,V>(map);
3278 +        }
3279 +        public final boolean add(K e) {
3280 +            throw new UnsupportedOperationException();
3281 +        }
3282 +        public final boolean addAll(Collection<? extends K> c) {
3283 +            throw new UnsupportedOperationException();
3284 +        }
3285          public boolean equals(Object o) {
3286 <            // If not acting as entry, just use default.
3287 <            if (lastReturned == null)
3288 <                return super.equals(o);
3289 <            if (!(o instanceof Map.Entry))
1178 <                return false;
1179 <            Map.Entry e = (Map.Entry)o;
1180 <            return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
3286 >            Set<?> c;
3287 >            return ((o instanceof Set) &&
3288 >                    ((c = (Set<?>)o) == this ||
3289 >                     (containsAll(c) && c.containsAll(this))));
3290          }
3291 +    }
3292  
1183        public int hashCode() {
1184            // If not acting as entry, just use default.
1185            if (lastReturned == null)
1186                return super.hashCode();
3293  
3294 <            Object k = getKey();
3295 <            Object v = getValue();
3296 <            return ((k == null) ? 0 : k.hashCode()) ^
3297 <                   ((v == null) ? 0 : v.hashCode());
3294 >    static final class Values<K,V> extends CHMView<K,V>
3295 >        implements Collection<V> {
3296 >        Values(ConcurrentHashMap<K, V> map)   { super(map); }
3297 >        public final boolean contains(Object o) { return map.containsValue(o); }
3298 >        public final boolean remove(Object o) {
3299 >            if (o != null) {
3300 >                Iterator<V> it = new ValueIterator<K,V>(map);
3301 >                while (it.hasNext()) {
3302 >                    if (o.equals(it.next())) {
3303 >                        it.remove();
3304 >                        return true;
3305 >                    }
3306 >                }
3307 >            }
3308 >            return false;
3309 >        }
3310 >        public final Iterator<V> iterator() {
3311 >            return new ValueIterator<K,V>(map);
3312 >        }
3313 >        public final boolean add(V e) {
3314 >            throw new UnsupportedOperationException();
3315 >        }
3316 >        public final boolean addAll(Collection<? extends V> c) {
3317 >            throw new UnsupportedOperationException();
3318          }
3319  
3320 <        public String toString() {
3321 <            // If not acting as entry, just use default.
3322 <            if (lastReturned == null)
3323 <                return super.toString();
3324 <            else
3325 <                return getKey() + "=" + getValue();
3320 >    }
3321 >
3322 >    static final class EntrySet<K,V> extends CHMView<K,V>
3323 >        implements Set<Map.Entry<K,V>> {
3324 >        EntrySet(ConcurrentHashMap<K, V> map) { super(map); }
3325 >        public final boolean contains(Object o) {
3326 >            Object k, v, r; Map.Entry<?,?> e;
3327 >            return ((o instanceof Map.Entry) &&
3328 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3329 >                    (r = map.get(k)) != null &&
3330 >                    (v = e.getValue()) != null &&
3331 >                    (v == r || v.equals(r)));
3332 >        }
3333 >        public final boolean remove(Object o) {
3334 >            Object k, v; Map.Entry<?,?> e;
3335 >            return ((o instanceof Map.Entry) &&
3336 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3337 >                    (v = e.getValue()) != null &&
3338 >                    map.remove(k, v));
3339 >        }
3340 >        public final Iterator<Map.Entry<K,V>> iterator() {
3341 >            return new EntryIterator<K,V>(map);
3342 >        }
3343 >        public final boolean add(Entry<K,V> e) {
3344 >            throw new UnsupportedOperationException();
3345 >        }
3346 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3347 >            throw new UnsupportedOperationException();
3348 >        }
3349 >        public boolean equals(Object o) {
3350 >            Set<?> c;
3351 >            return ((o instanceof Set) &&
3352 >                    ((c = (Set<?>)o) == this ||
3353 >                     (containsAll(c) && c.containsAll(this))));
3354 >        }
3355 >    }
3356 >
3357 >    /* ---------------- Serialization Support -------------- */
3358 >
3359 >    /**
3360 >     * Stripped-down version of helper class used in previous version,
3361 >     * declared for the sake of serialization compatibility
3362 >     */
3363 >    static class Segment<K,V> implements Serializable {
3364 >        private static final long serialVersionUID = 2249069246763182397L;
3365 >        final float loadFactor;
3366 >        Segment(float lf) { this.loadFactor = lf; }
3367 >    }
3368 >
3369 >    /**
3370 >     * Saves the state of the {@code ConcurrentHashMap} instance to a
3371 >     * stream (i.e., serializes it).
3372 >     * @param s the stream
3373 >     * @serialData
3374 >     * the key (Object) and value (Object)
3375 >     * for each key-value mapping, followed by a null pair.
3376 >     * The key-value mappings are emitted in no particular order.
3377 >     */
3378 >    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3379 >        throws java.io.IOException {
3380 >        if (segments == null) { // for serialization compatibility
3381 >            segments = (Segment<K,V>[])
3382 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3383 >            for (int i = 0; i < segments.length; ++i)
3384 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3385          }
3386 +        s.defaultWriteObject();
3387 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3388 +        Object v;
3389 +        while ((v = it.advance()) != null) {
3390 +            s.writeObject(it.nextKey);
3391 +            s.writeObject(v);
3392 +        }
3393 +        s.writeObject(null);
3394 +        s.writeObject(null);
3395 +        segments = null; // throw away
3396 +    }
3397  
3398 <        boolean eq(Object o1, Object o2) {
3399 <            return (o1 == null ? o2 == null : o1.equals(o2));
3398 >    /**
3399 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3400 >     * @param s the stream
3401 >     */
3402 >    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3403 >        throws java.io.IOException, ClassNotFoundException {
3404 >        s.defaultReadObject();
3405 >        this.segments = null; // unneeded
3406 >        // initialize transient final field
3407 >        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3408 >
3409 >        // Create all nodes, then place in table once size is known
3410 >        long size = 0L;
3411 >        Node p = null;
3412 >        for (;;) {
3413 >            K k = (K) s.readObject();
3414 >            V v = (V) s.readObject();
3415 >            if (k != null && v != null) {
3416 >                int h = spread(k.hashCode());
3417 >                p = new Node(h, k, v, p);
3418 >                ++size;
3419 >            }
3420 >            else
3421 >                break;
3422          }
3423 +        if (p != null) {
3424 +            boolean init = false;
3425 +            int n;
3426 +            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3427 +                n = MAXIMUM_CAPACITY;
3428 +            else {
3429 +                int sz = (int)size;
3430 +                n = tableSizeFor(sz + (sz >>> 1) + 1);
3431 +            }
3432 +            int sc = sizeCtl;
3433 +            boolean collide = false;
3434 +            if (n > sc &&
3435 +                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3436 +                try {
3437 +                    if (table == null) {
3438 +                        init = true;
3439 +                        Node[] tab = new Node[n];
3440 +                        int mask = n - 1;
3441 +                        while (p != null) {
3442 +                            int j = p.hash & mask;
3443 +                            Node next = p.next;
3444 +                            Node q = p.next = tabAt(tab, j);
3445 +                            setTabAt(tab, j, p);
3446 +                            if (!collide && q != null && q.hash == p.hash)
3447 +                                collide = true;
3448 +                            p = next;
3449 +                        }
3450 +                        table = tab;
3451 +                        counter.add(size);
3452 +                        sc = n - (n >>> 2);
3453 +                    }
3454 +                } finally {
3455 +                    sizeCtl = sc;
3456 +                }
3457 +                if (collide) { // rescan and convert to TreeBins
3458 +                    Node[] tab = table;
3459 +                    for (int i = 0; i < tab.length; ++i) {
3460 +                        int c = 0;
3461 +                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3462 +                            if (++c > TREE_THRESHOLD &&
3463 +                                (e.key instanceof Comparable)) {
3464 +                                replaceWithTreeBin(tab, i, e.key);
3465 +                                break;
3466 +                            }
3467 +                        }
3468 +                    }
3469 +                }
3470 +            }
3471 +            if (!init) { // Can only happen if unsafely published.
3472 +                while (p != null) {
3473 +                    internalPut(p.key, p.val);
3474 +                    p = p.next;
3475 +                }
3476 +            }
3477 +        }
3478 +    }
3479 +
3480  
3481 +    // -------------------------------------------------------
3482 +
3483 +    // Sams
3484 +    /** Interface describing a void action of one argument */
3485 +    public interface Action<A> { void apply(A a); }
3486 +    /** Interface describing a void action of two arguments */
3487 +    public interface BiAction<A,B> { void apply(A a, B b); }
3488 +    /** Interface describing a function of one argument */
3489 +    public interface Fun<A,T> { T apply(A a); }
3490 +    /** Interface describing a function of two arguments */
3491 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
3492 +    /** Interface describing a function of no arguments */
3493 +    public interface Generator<T> { T apply(); }
3494 +    /** Interface describing a function mapping its argument to a double */
3495 +    public interface ObjectToDouble<A> { double apply(A a); }
3496 +    /** Interface describing a function mapping its argument to a long */
3497 +    public interface ObjectToLong<A> { long apply(A a); }
3498 +    /** Interface describing a function mapping its argument to an int */
3499 +    public interface ObjectToInt<A> {int apply(A a); }
3500 +    /** Interface describing a function mapping two arguments to a double */
3501 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3502 +    /** Interface describing a function mapping two arguments to a long */
3503 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3504 +    /** Interface describing a function mapping two arguments to an int */
3505 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3506 +    /** Interface describing a function mapping a double to a double */
3507 +    public interface DoubleToDouble { double apply(double a); }
3508 +    /** Interface describing a function mapping a long to a long */
3509 +    public interface LongToLong { long apply(long a); }
3510 +    /** Interface describing a function mapping an int to an int */
3511 +    public interface IntToInt { int apply(int a); }
3512 +    /** Interface describing a function mapping two doubles to a double */
3513 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3514 +    /** Interface describing a function mapping two longs to a long */
3515 +    public interface LongByLongToLong { long apply(long a, long b); }
3516 +    /** Interface describing a function mapping two ints to an int */
3517 +    public interface IntByIntToInt { int apply(int a, int b); }
3518 +
3519 +
3520 +    // -------------------------------------------------------
3521 +
3522 +    /**
3523 +     * Returns an extended {@link Parallel} view of this map using the
3524 +     * given executor for bulk parallel operations.
3525 +     *
3526 +     * @param executor the executor
3527 +     * @return a parallel view
3528 +     */
3529 +    public Parallel parallel(ForkJoinPool executor)  {
3530 +        return new Parallel(executor);
3531      }
3532  
3533 <    final class KeySet extends AbstractSet<K> {
3534 <        public Iterator<K> iterator() {
3535 <            return new KeyIterator();
3533 >    /**
3534 >     * An extended view of a ConcurrentHashMap supporting bulk
3535 >     * parallel operations. These operations are designed to be
3536 >     * safely, and often sensibly, applied even with maps that are
3537 >     * being concurrently updated by other threads; for example, when
3538 >     * computing a snapshot summary of the values in a shared
3539 >     * registry.  There are three kinds of operation, each with four
3540 >     * forms, accepting functions with Keys, Values, Entries, and
3541 >     * (Key, Value) arguments and/or return values. Because the
3542 >     * elements of a ConcurrentHashMap are not ordered in any
3543 >     * particular way, and may be processed in different orders in
3544 >     * different parallel executions, the correctness of supplied
3545 >     * functions should not depend on any ordering, or on any other
3546 >     * objects or values that may transiently change while computation
3547 >     * is in progress; and except for forEach actions, should ideally
3548 >     * be side-effect-free.
3549 >     *
3550 >     * <ul>
3551 >     * <li> forEach: Perform a given action on each element.
3552 >     * A variant form applies a given transformation on each element
3553 >     * before performing the action.</li>
3554 >     *
3555 >     * <li> search: Return the first available non-null result of
3556 >     * applying a given function on each element; skipping further
3557 >     * search when a result is found.</li>
3558 >     *
3559 >     * <li> reduce: Accumulate each element.  The supplied reduction
3560 >     * function cannot rely on ordering (more formally, it should be
3561 >     * both associative and commutative).  There are five variants:
3562 >     *
3563 >     * <ul>
3564 >     *
3565 >     * <li> Plain reductions. (There is not a form of this method for
3566 >     * (key, value) function arguments since there is no corresponding
3567 >     * return type.)</li>
3568 >     *
3569 >     * <li> Mapped reductions that accumulate the results of a given
3570 >     * function applied to each element.</li>
3571 >     *
3572 >     * <li> Reductions to scalar doubles, longs, and ints, using a
3573 >     * given basis value.</li>
3574 >     *
3575 >     * </li>
3576 >     * </ul>
3577 >     * </ul>
3578 >     *
3579 >     * <p>The concurrency properties of the bulk operations follow
3580 >     * from those of ConcurrentHashMap: Any non-null result returned
3581 >     * from {@code get(key)} and related access methods bears a
3582 >     * happens-before relation with the associated insertion or
3583 >     * update.  The result of any bulk operation reflects the
3584 >     * composition of these per-element relations (but is not
3585 >     * necessarily atomic with respect to the map as a whole unless it
3586 >     * is somehow known to be quiescent).  Conversely, because keys
3587 >     * and values in the map are never null, null serves as a reliable
3588 >     * atomic indicator of the current lack of any result.  To
3589 >     * maintain this property, null serves as an implicit basis for
3590 >     * all non-scalar reduction operations. For the double, long, and
3591 >     * int versions, the basis should be one that, when combined with
3592 >     * any other value, returns that other value (more formally, it
3593 >     * should be the identity element for the reduction). Most common
3594 >     * reductions have these properties; for example, computing a sum
3595 >     * with basis 0 or a minimum with basis MAX_VALUE.
3596 >     *
3597 >     * <p>Search and transformation functions provided as arguments
3598 >     * should similarly return null to indicate the lack of any result
3599 >     * (in which case it is not used). In the case of mapped
3600 >     * reductions, this also enables transformations to serve as
3601 >     * filters, returning null (or, in the case of primitive
3602 >     * specializations, the identity basis) if the element should not
3603 >     * be combined. You can create compound transformations and
3604 >     * filterings by composing them yourself under this "null means
3605 >     * there is nothing there now" rule before using them in search or
3606 >     * reduce operations.
3607 >     *
3608 >     * <p>Methods accepting and/or returning Entry arguments maintain
3609 >     * key-value associations. They may be useful for example when
3610 >     * finding the key for the greatest value. Note that "plain" Entry
3611 >     * arguments can be supplied using {@code new
3612 >     * AbstractMap.SimpleEntry(k,v)}.
3613 >     *
3614 >     * <p> Bulk operations may complete abruptly, throwing an
3615 >     * exception encountered in the application of a supplied
3616 >     * function. Bear in mind when handling such exceptions that other
3617 >     * concurrently executing functions could also have thrown
3618 >     * exceptions, or would have done so if the first exception had
3619 >     * not occurred.
3620 >     *
3621 >     * <p>Parallel speedups compared to sequential processing are
3622 >     * common but not guaranteed.  Operations involving brief
3623 >     * functions on small maps may execute more slowly than sequential
3624 >     * loops if the underlying work to parallelize the computation is
3625 >     * more expensive than the computation itself. Similarly,
3626 >     * parallelization may not lead to much actual parallelism if all
3627 >     * processors are busy performing unrelated tasks.
3628 >     *
3629 >     * <p> All arguments to all task methods must be non-null.
3630 >     *
3631 >     * <p><em>jsr166e note: During transition, this class
3632 >     * uses nested functional interfaces with different names but the
3633 >     * same forms as those expected for JDK8.<em>
3634 >     */
3635 >    public class Parallel {
3636 >        final ForkJoinPool fjp;
3637 >
3638 >        /**
3639 >         * Returns an extended view of this map using the given
3640 >         * executor for bulk parallel operations.
3641 >         *
3642 >         * @param executor the executor
3643 >         */
3644 >        public Parallel(ForkJoinPool executor)  {
3645 >            this.fjp = executor;
3646          }
3647 <        public int size() {
3648 <            return ConcurrentHashMap.this.size();
3647 >
3648 >        /**
3649 >         * Performs the given action for each (key, value).
3650 >         *
3651 >         * @param action the action
3652 >         */
3653 >        public void forEach(BiAction<K,V> action) {
3654 >            fjp.invoke(ForkJoinTasks.forEach
3655 >                       (ConcurrentHashMap.this, action));
3656          }
3657 <        public boolean contains(Object o) {
3658 <            return ConcurrentHashMap.this.containsKey(o);
3657 >
3658 >        /**
3659 >         * Performs the given action for each non-null transformation
3660 >         * of each (key, value).
3661 >         *
3662 >         * @param transformer a function returning the transformation
3663 >         * for an element, or null of there is no transformation (in
3664 >         * which case the action is not applied).
3665 >         * @param action the action
3666 >         */
3667 >        public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3668 >                                Action<U> action) {
3669 >            fjp.invoke(ForkJoinTasks.forEach
3670 >                       (ConcurrentHashMap.this, transformer, action));
3671          }
3672 <        public boolean remove(Object o) {
3673 <            return ConcurrentHashMap.this.remove(o) != null;
3672 >
3673 >        /**
3674 >         * Returns a non-null result from applying the given search
3675 >         * function on each (key, value), or null if none.  Upon
3676 >         * success, further element processing is suppressed and the
3677 >         * results of any other parallel invocations of the search
3678 >         * function are ignored.
3679 >         *
3680 >         * @param searchFunction a function returning a non-null
3681 >         * result on success, else null
3682 >         * @return a non-null result from applying the given search
3683 >         * function on each (key, value), or null if none
3684 >         */
3685 >        public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3686 >            return fjp.invoke(ForkJoinTasks.search
3687 >                              (ConcurrentHashMap.this, searchFunction));
3688          }
3689 <        public void clear() {
3690 <            ConcurrentHashMap.this.clear();
3689 >
3690 >        /**
3691 >         * Returns the result of accumulating the given transformation
3692 >         * of all (key, value) pairs using the given reducer to
3693 >         * combine values, or null if none.
3694 >         *
3695 >         * @param transformer a function returning the transformation
3696 >         * for an element, or null of there is no transformation (in
3697 >         * which case it is not combined).
3698 >         * @param reducer a commutative associative combining function
3699 >         * @return the result of accumulating the given transformation
3700 >         * of all (key, value) pairs
3701 >         */
3702 >        public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3703 >                            BiFun<? super U, ? super U, ? extends U> reducer) {
3704 >            return fjp.invoke(ForkJoinTasks.reduce
3705 >                              (ConcurrentHashMap.this, transformer, reducer));
3706          }
3707 <        public Object[] toArray() {
3708 <            Collection<K> c = new ArrayList<K>();
3709 <            for (Iterator<K> i = iterator(); i.hasNext(); )
3710 <                c.add(i.next());
3711 <            return c.toArray();
3707 >
3708 >        /**
3709 >         * Returns the result of accumulating the given transformation
3710 >         * of all (key, value) pairs using the given reducer to
3711 >         * combine values, and the given basis as an identity value.
3712 >         *
3713 >         * @param transformer a function returning the transformation
3714 >         * for an element
3715 >         * @param basis the identity (initial default value) for the reduction
3716 >         * @param reducer a commutative associative combining function
3717 >         * @return the result of accumulating the given transformation
3718 >         * of all (key, value) pairs
3719 >         */
3720 >        public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3721 >                                     double basis,
3722 >                                     DoubleByDoubleToDouble reducer) {
3723 >            return fjp.invoke(ForkJoinTasks.reduceToDouble
3724 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3725          }
3726 <        public <T> T[] toArray(T[] a) {
3727 <            Collection<K> c = new ArrayList<K>();
3728 <            for (Iterator<K> i = iterator(); i.hasNext(); )
3729 <                c.add(i.next());
3730 <            return c.toArray(a);
3726 >
3727 >        /**
3728 >         * Returns the result of accumulating the given transformation
3729 >         * of all (key, value) pairs using the given reducer to
3730 >         * combine values, and the given basis as an identity value.
3731 >         *
3732 >         * @param transformer a function returning the transformation
3733 >         * for an element
3734 >         * @param basis the identity (initial default value) for the reduction
3735 >         * @param reducer a commutative associative combining function
3736 >         * @return the result of accumulating the given transformation
3737 >         * of all (key, value) pairs
3738 >         */
3739 >        public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3740 >                                 long basis,
3741 >                                 LongByLongToLong reducer) {
3742 >            return fjp.invoke(ForkJoinTasks.reduceToLong
3743 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3744          }
1236    }
3745  
3746 <    final class Values extends AbstractCollection<V> {
3747 <        public Iterator<V> iterator() {
3748 <            return new ValueIterator();
3746 >        /**
3747 >         * Returns the result of accumulating the given transformation
3748 >         * of all (key, value) pairs using the given reducer to
3749 >         * combine values, and the given basis as an identity value.
3750 >         *
3751 >         * @param transformer a function returning the transformation
3752 >         * for an element
3753 >         * @param basis the identity (initial default value) for the reduction
3754 >         * @param reducer a commutative associative combining function
3755 >         * @return the result of accumulating the given transformation
3756 >         * of all (key, value) pairs
3757 >         */
3758 >        public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3759 >                               int basis,
3760 >                               IntByIntToInt reducer) {
3761 >            return fjp.invoke(ForkJoinTasks.reduceToInt
3762 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3763          }
3764 <        public int size() {
3765 <            return ConcurrentHashMap.this.size();
3764 >
3765 >        /**
3766 >         * Performs the given action for each key.
3767 >         *
3768 >         * @param action the action
3769 >         */
3770 >        public void forEachKey(Action<K> action) {
3771 >            fjp.invoke(ForkJoinTasks.forEachKey
3772 >                       (ConcurrentHashMap.this, action));
3773          }
3774 <        public boolean contains(Object o) {
3775 <            return ConcurrentHashMap.this.containsValue(o);
3774 >
3775 >        /**
3776 >         * Performs the given action for each non-null transformation
3777 >         * of each key.
3778 >         *
3779 >         * @param transformer a function returning the transformation
3780 >         * for an element, or null of there is no transformation (in
3781 >         * which case the action is not applied).
3782 >         * @param action the action
3783 >         */
3784 >        public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3785 >                                   Action<U> action) {
3786 >            fjp.invoke(ForkJoinTasks.forEachKey
3787 >                       (ConcurrentHashMap.this, transformer, action));
3788          }
3789 <        public void clear() {
3790 <            ConcurrentHashMap.this.clear();
3789 >
3790 >        /**
3791 >         * Returns a non-null result from applying the given search
3792 >         * function on each key, or null if none. Upon success,
3793 >         * further element processing is suppressed and the results of
3794 >         * any other parallel invocations of the search function are
3795 >         * ignored.
3796 >         *
3797 >         * @param searchFunction a function returning a non-null
3798 >         * result on success, else null
3799 >         * @return a non-null result from applying the given search
3800 >         * function on each key, or null if none
3801 >         */
3802 >        public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3803 >            return fjp.invoke(ForkJoinTasks.searchKeys
3804 >                              (ConcurrentHashMap.this, searchFunction));
3805          }
3806 <        public Object[] toArray() {
3807 <            Collection<V> c = new ArrayList<V>();
3808 <            for (Iterator<V> i = iterator(); i.hasNext(); )
3809 <                c.add(i.next());
3810 <            return c.toArray();
3806 >
3807 >        /**
3808 >         * Returns the result of accumulating all keys using the given
3809 >         * reducer to combine values, or null if none.
3810 >         *
3811 >         * @param reducer a commutative associative combining function
3812 >         * @return the result of accumulating all keys using the given
3813 >         * reducer to combine values, or null if none
3814 >         */
3815 >        public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3816 >            return fjp.invoke(ForkJoinTasks.reduceKeys
3817 >                              (ConcurrentHashMap.this, reducer));
3818          }
3819 <        public <T> T[] toArray(T[] a) {
3820 <            Collection<V> c = new ArrayList<V>();
3821 <            for (Iterator<V> i = iterator(); i.hasNext(); )
3822 <                c.add(i.next());
3823 <            return c.toArray(a);
3819 >
3820 >        /**
3821 >         * Returns the result of accumulating the given transformation
3822 >         * of all keys using the given reducer to combine values, or
3823 >         * null if none.
3824 >         *
3825 >         * @param transformer a function returning the transformation
3826 >         * for an element, or null of there is no transformation (in
3827 >         * which case it is not combined).
3828 >         * @param reducer a commutative associative combining function
3829 >         * @return the result of accumulating the given transformation
3830 >         * of all keys
3831 >         */
3832 >        public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3833 >                                BiFun<? super U, ? super U, ? extends U> reducer) {
3834 >            return fjp.invoke(ForkJoinTasks.reduceKeys
3835 >                              (ConcurrentHashMap.this, transformer, reducer));
3836          }
1263    }
3837  
3838 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3839 <        public Iterator<Map.Entry<K,V>> iterator() {
3840 <            return new EntryIterator();
3838 >        /**
3839 >         * Returns the result of accumulating the given transformation
3840 >         * of all keys using the given reducer to combine values, and
3841 >         * the given basis as an identity value.
3842 >         *
3843 >         * @param transformer a function returning the transformation
3844 >         * for an element
3845 >         * @param basis the identity (initial default value) for the reduction
3846 >         * @param reducer a commutative associative combining function
3847 >         * @return  the result of accumulating the given transformation
3848 >         * of all keys
3849 >         */
3850 >        public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3851 >                                         double basis,
3852 >                                         DoubleByDoubleToDouble reducer) {
3853 >            return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3854 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3855          }
3856 <        public boolean contains(Object o) {
3857 <            if (!(o instanceof Map.Entry))
3858 <                return false;
3859 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
3860 <            V v = ConcurrentHashMap.this.get(e.getKey());
3861 <            return v != null && v.equals(e.getValue());
3856 >
3857 >        /**
3858 >         * Returns the result of accumulating the given transformation
3859 >         * of all keys using the given reducer to combine values, and
3860 >         * the given basis as an identity value.
3861 >         *
3862 >         * @param transformer a function returning the transformation
3863 >         * for an element
3864 >         * @param basis the identity (initial default value) for the reduction
3865 >         * @param reducer a commutative associative combining function
3866 >         * @return the result of accumulating the given transformation
3867 >         * of all keys
3868 >         */
3869 >        public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3870 >                                     long basis,
3871 >                                     LongByLongToLong reducer) {
3872 >            return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3873 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3874          }
3875 <        public boolean remove(Object o) {
3876 <            if (!(o instanceof Map.Entry))
3877 <                return false;
3878 <            Map.Entry<K,V> e = (Map.Entry<K,V>)o;
3879 <            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
3875 >
3876 >        /**
3877 >         * Returns the result of accumulating the given transformation
3878 >         * of all keys using the given reducer to combine values, and
3879 >         * the given basis as an identity value.
3880 >         *
3881 >         * @param transformer a function returning the transformation
3882 >         * for an element
3883 >         * @param basis the identity (initial default value) for the reduction
3884 >         * @param reducer a commutative associative combining function
3885 >         * @return the result of accumulating the given transformation
3886 >         * of all keys
3887 >         */
3888 >        public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3889 >                                   int basis,
3890 >                                   IntByIntToInt reducer) {
3891 >            return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3892 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3893          }
3894 <        public int size() {
3895 <            return ConcurrentHashMap.this.size();
3894 >
3895 >        /**
3896 >         * Performs the given action for each value.
3897 >         *
3898 >         * @param action the action
3899 >         */
3900 >        public void forEachValue(Action<V> action) {
3901 >            fjp.invoke(ForkJoinTasks.forEachValue
3902 >                       (ConcurrentHashMap.this, action));
3903 >        }
3904 >
3905 >        /**
3906 >         * Performs the given action for each non-null transformation
3907 >         * of each value.
3908 >         *
3909 >         * @param transformer a function returning the transformation
3910 >         * for an element, or null of there is no transformation (in
3911 >         * which case the action is not applied).
3912 >         */
3913 >        public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3914 >                                     Action<U> action) {
3915 >            fjp.invoke(ForkJoinTasks.forEachValue
3916 >                       (ConcurrentHashMap.this, transformer, action));
3917 >        }
3918 >
3919 >        /**
3920 >         * Returns a non-null result from applying the given search
3921 >         * function on each value, or null if none.  Upon success,
3922 >         * further element processing is suppressed and the results of
3923 >         * any other parallel invocations of the search function are
3924 >         * ignored.
3925 >         *
3926 >         * @param searchFunction a function returning a non-null
3927 >         * result on success, else null
3928 >         * @return a non-null result from applying the given search
3929 >         * function on each value, or null if none
3930 >         *
3931 >         */
3932 >        public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3933 >            return fjp.invoke(ForkJoinTasks.searchValues
3934 >                              (ConcurrentHashMap.this, searchFunction));
3935          }
3936 <        public void clear() {
3937 <            ConcurrentHashMap.this.clear();
3936 >
3937 >        /**
3938 >         * Returns the result of accumulating all values using the
3939 >         * given reducer to combine values, or null if none.
3940 >         *
3941 >         * @param reducer a commutative associative combining function
3942 >         * @return  the result of accumulating all values
3943 >         */
3944 >        public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3945 >            return fjp.invoke(ForkJoinTasks.reduceValues
3946 >                              (ConcurrentHashMap.this, reducer));
3947          }
3948 <        public Object[] toArray() {
3949 <            // Since we don't ordinarily have distinct Entry objects, we
3950 <            // must pack elements using exportable SimpleEntry
3951 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
3952 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
3953 <                c.add(new SimpleEntry<K,V>(i.next()));
3954 <            return c.toArray();
3948 >
3949 >        /**
3950 >         * Returns the result of accumulating the given transformation
3951 >         * of all values using the given reducer to combine values, or
3952 >         * null if none.
3953 >         *
3954 >         * @param transformer a function returning the transformation
3955 >         * for an element, or null of there is no transformation (in
3956 >         * which case it is not combined).
3957 >         * @param reducer a commutative associative combining function
3958 >         * @return the result of accumulating the given transformation
3959 >         * of all values
3960 >         */
3961 >        public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3962 >                                  BiFun<? super U, ? super U, ? extends U> reducer) {
3963 >            return fjp.invoke(ForkJoinTasks.reduceValues
3964 >                              (ConcurrentHashMap.this, transformer, reducer));
3965 >        }
3966 >
3967 >        /**
3968 >         * Returns the result of accumulating the given transformation
3969 >         * of all values using the given reducer to combine values,
3970 >         * and the given basis as an identity value.
3971 >         *
3972 >         * @param transformer a function returning the transformation
3973 >         * for an element
3974 >         * @param basis the identity (initial default value) for the reduction
3975 >         * @param reducer a commutative associative combining function
3976 >         * @return the result of accumulating the given transformation
3977 >         * of all values
3978 >         */
3979 >        public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3980 >                                           double basis,
3981 >                                           DoubleByDoubleToDouble reducer) {
3982 >            return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3983 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
3984 >        }
3985 >
3986 >        /**
3987 >         * Returns the result of accumulating the given transformation
3988 >         * of all values using the given reducer to combine values,
3989 >         * and the given basis as an identity value.
3990 >         *
3991 >         * @param transformer a function returning the transformation
3992 >         * for an element
3993 >         * @param basis the identity (initial default value) for the reduction
3994 >         * @param reducer a commutative associative combining function
3995 >         * @return the result of accumulating the given transformation
3996 >         * of all values
3997 >         */
3998 >        public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3999 >                                       long basis,
4000 >                                       LongByLongToLong reducer) {
4001 >            return fjp.invoke(ForkJoinTasks.reduceValuesToLong
4002 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
4003 >        }
4004 >
4005 >        /**
4006 >         * Returns the result of accumulating the given transformation
4007 >         * of all values using the given reducer to combine values,
4008 >         * and the given basis as an identity value.
4009 >         *
4010 >         * @param transformer a function returning the transformation
4011 >         * for an element
4012 >         * @param basis the identity (initial default value) for the reduction
4013 >         * @param reducer a commutative associative combining function
4014 >         * @return the result of accumulating the given transformation
4015 >         * of all values
4016 >         */
4017 >        public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4018 >                                     int basis,
4019 >                                     IntByIntToInt reducer) {
4020 >            return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4021 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
4022 >        }
4023 >
4024 >        /**
4025 >         * Performs the given action for each entry.
4026 >         *
4027 >         * @param action the action
4028 >         */
4029 >        public void forEachEntry(Action<Map.Entry<K,V>> action) {
4030 >            fjp.invoke(ForkJoinTasks.forEachEntry
4031 >                       (ConcurrentHashMap.this, action));
4032 >        }
4033 >
4034 >        /**
4035 >         * Performs the given action for each non-null transformation
4036 >         * of each entry.
4037 >         *
4038 >         * @param transformer a function returning the transformation
4039 >         * for an element, or null of there is no transformation (in
4040 >         * which case the action is not applied).
4041 >         * @param action the action
4042 >         */
4043 >        public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4044 >                                     Action<U> action) {
4045 >            fjp.invoke(ForkJoinTasks.forEachEntry
4046 >                       (ConcurrentHashMap.this, transformer, action));
4047 >        }
4048 >
4049 >        /**
4050 >         * Returns a non-null result from applying the given search
4051 >         * function on each entry, or null if none.  Upon success,
4052 >         * further element processing is suppressed and the results of
4053 >         * any other parallel invocations of the search function are
4054 >         * ignored.
4055 >         *
4056 >         * @param searchFunction a function returning a non-null
4057 >         * result on success, else null
4058 >         * @return a non-null result from applying the given search
4059 >         * function on each entry, or null if none
4060 >         */
4061 >        public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4062 >            return fjp.invoke(ForkJoinTasks.searchEntries
4063 >                              (ConcurrentHashMap.this, searchFunction));
4064 >        }
4065 >
4066 >        /**
4067 >         * Returns the result of accumulating all entries using the
4068 >         * given reducer to combine values, or null if none.
4069 >         *
4070 >         * @param reducer a commutative associative combining function
4071 >         * @return the result of accumulating all entries
4072 >         */
4073 >        public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4074 >            return fjp.invoke(ForkJoinTasks.reduceEntries
4075 >                              (ConcurrentHashMap.this, reducer));
4076 >        }
4077 >
4078 >        /**
4079 >         * Returns the result of accumulating the given transformation
4080 >         * of all entries using the given reducer to combine values,
4081 >         * or null if none.
4082 >         *
4083 >         * @param transformer a function returning the transformation
4084 >         * for an element, or null of there is no transformation (in
4085 >         * which case it is not combined).
4086 >         * @param reducer a commutative associative combining function
4087 >         * @return the result of accumulating the given transformation
4088 >         * of all entries
4089 >         */
4090 >        public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4091 >                                   BiFun<? super U, ? super U, ? extends U> reducer) {
4092 >            return fjp.invoke(ForkJoinTasks.reduceEntries
4093 >                              (ConcurrentHashMap.this, transformer, reducer));
4094 >        }
4095 >
4096 >        /**
4097 >         * Returns the result of accumulating the given transformation
4098 >         * of all entries using the given reducer to combine values,
4099 >         * and the given basis as an identity value.
4100 >         *
4101 >         * @param transformer a function returning the transformation
4102 >         * for an element
4103 >         * @param basis the identity (initial default value) for the reduction
4104 >         * @param reducer a commutative associative combining function
4105 >         * @return the result of accumulating the given transformation
4106 >         * of all entries
4107 >         */
4108 >        public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4109 >                                            double basis,
4110 >                                            DoubleByDoubleToDouble reducer) {
4111 >            return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4112 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
4113          }
4114 <        public <T> T[] toArray(T[] a) {
4115 <            Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
4116 <            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
4117 <                c.add(new SimpleEntry<K,V>(i.next()));
4118 <            return c.toArray(a);
4114 >
4115 >        /**
4116 >         * Returns the result of accumulating the given transformation
4117 >         * of all entries using the given reducer to combine values,
4118 >         * and the given basis as an identity value.
4119 >         *
4120 >         * @param transformer a function returning the transformation
4121 >         * for an element
4122 >         * @param basis the identity (initial default value) for the reduction
4123 >         * @param reducer a commutative associative combining function
4124 >         * @return  the result of accumulating the given transformation
4125 >         * of all entries
4126 >         */
4127 >        public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4128 >                                        long basis,
4129 >                                        LongByLongToLong reducer) {
4130 >            return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4131 >                              (ConcurrentHashMap.this, transformer, basis, reducer));
4132          }
4133  
4134 +        /**
4135 +         * Returns the result of accumulating the given transformation
4136 +         * of all entries using the given reducer to combine values,
4137 +         * and the given basis as an identity value.
4138 +         *
4139 +         * @param transformer a function returning the transformation
4140 +         * for an element
4141 +         * @param basis the identity (initial default value) for the reduction
4142 +         * @param reducer a commutative associative combining function
4143 +         * @return the result of accumulating the given transformation
4144 +         * of all entries
4145 +         */
4146 +        public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4147 +                                      int basis,
4148 +                                      IntByIntToInt reducer) {
4149 +            return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4150 +                              (ConcurrentHashMap.this, transformer, basis, reducer));
4151 +        }
4152      }
4153  
4154 +    // ---------------------------------------------------------------------
4155 +
4156      /**
4157 <     * This duplicates java.util.AbstractMap.SimpleEntry until this class
4158 <     * is made accessible.
4157 >     * Predefined tasks for performing bulk parallel operations on
4158 >     * ConcurrentHashMaps. These tasks follow the forms and rules used
4159 >     * in class {@link Parallel}. Each method has the same name, but
4160 >     * returns a task rather than invoking it. These methods may be
4161 >     * useful in custom applications such as submitting a task without
4162 >     * waiting for completion, or combining with other tasks.
4163       */
4164 <    static final class SimpleEntry<K,V> implements Entry<K,V> {
4165 <        K key;
1311 <        V value;
4164 >    public static class ForkJoinTasks {
4165 >        private ForkJoinTasks() {}
4166  
4167 <        public SimpleEntry(K key, V value) {
4168 <            this.key   = key;
4169 <            this.value = value;
4167 >        /**
4168 >         * Returns a task that when invoked, performs the given
4169 >         * action for each (key, value)
4170 >         *
4171 >         * @param map the map
4172 >         * @param action the action
4173 >         * @return the task
4174 >         */
4175 >        public static <K,V> ForkJoinTask<Void> forEach
4176 >            (ConcurrentHashMap<K,V> map,
4177 >             BiAction<K,V> action) {
4178 >            if (action == null) throw new NullPointerException();
4179 >            return new ForEachMappingTask<K,V>(map, action);
4180          }
4181  
4182 <        public SimpleEntry(Entry<K,V> e) {
4183 <            this.key   = e.getKey();
4184 <            this.value = e.getValue();
4182 >        /**
4183 >         * Returns a task that when invoked, performs the given
4184 >         * action for each non-null transformation of each (key, value)
4185 >         *
4186 >         * @param map the map
4187 >         * @param transformer a function returning the transformation
4188 >         * for an element, or null of there is no transformation (in
4189 >         * which case the action is not applied).
4190 >         * @param action the action
4191 >         * @return the task
4192 >         */
4193 >        public static <K,V,U> ForkJoinTask<Void> forEach
4194 >            (ConcurrentHashMap<K,V> map,
4195 >             BiFun<? super K, ? super V, ? extends U> transformer,
4196 >             Action<U> action) {
4197 >            if (transformer == null || action == null)
4198 >                throw new NullPointerException();
4199 >            return new ForEachTransformedMappingTask<K,V,U>
4200 >                (map, transformer, action);
4201          }
4202  
4203 <        public K getKey() {
4204 <            return key;
4203 >        /**
4204 >         * Returns a task that when invoked, returns a non-null result
4205 >         * from applying the given search function on each (key,
4206 >         * value), or null if none. Upon success, further element
4207 >         * processing is suppressed and the results of any other
4208 >         * parallel invocations of the search function are ignored.
4209 >         *
4210 >         * @param map the map
4211 >         * @param searchFunction a function returning a non-null
4212 >         * result on success, else null
4213 >         * @return the task
4214 >         */
4215 >        public static <K,V,U> ForkJoinTask<U> search
4216 >            (ConcurrentHashMap<K,V> map,
4217 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4218 >            if (searchFunction == null) throw new NullPointerException();
4219 >            return new SearchMappingsTask<K,V,U>
4220 >                (map, searchFunction,
4221 >                 new AtomicReference<U>());
4222          }
4223  
4224 <        public V getValue() {
4225 <            return value;
4224 >        /**
4225 >         * Returns a task that when invoked, returns the result of
4226 >         * accumulating the given transformation of all (key, value) pairs
4227 >         * using the given reducer to combine values, or null if none.
4228 >         *
4229 >         * @param map the map
4230 >         * @param transformer a function returning the transformation
4231 >         * for an element, or null of there is no transformation (in
4232 >         * which case it is not combined).
4233 >         * @param reducer a commutative associative combining function
4234 >         * @return the task
4235 >         */
4236 >        public static <K,V,U> ForkJoinTask<U> reduce
4237 >            (ConcurrentHashMap<K,V> map,
4238 >             BiFun<? super K, ? super V, ? extends U> transformer,
4239 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4240 >            if (transformer == null || reducer == null)
4241 >                throw new NullPointerException();
4242 >            return new MapReduceMappingsTask<K,V,U>
4243 >                (map, transformer, reducer);
4244          }
4245  
4246 <        public V setValue(V value) {
4247 <            V oldValue = this.value;
4248 <            this.value = value;
4249 <            return oldValue;
4246 >        /**
4247 >         * Returns a task that when invoked, returns the result of
4248 >         * accumulating the given transformation of all (key, value) pairs
4249 >         * using the given reducer to combine values, and the given
4250 >         * basis as an identity value.
4251 >         *
4252 >         * @param map the map
4253 >         * @param transformer a function returning the transformation
4254 >         * for an element
4255 >         * @param basis the identity (initial default value) for the reduction
4256 >         * @param reducer a commutative associative combining function
4257 >         * @return the task
4258 >         */
4259 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4260 >            (ConcurrentHashMap<K,V> map,
4261 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
4262 >             double basis,
4263 >             DoubleByDoubleToDouble reducer) {
4264 >            if (transformer == null || reducer == null)
4265 >                throw new NullPointerException();
4266 >            return new MapReduceMappingsToDoubleTask<K,V>
4267 >                (map, transformer, basis, reducer);
4268          }
4269  
4270 <        public boolean equals(Object o) {
4271 <            if (!(o instanceof Map.Entry))
4272 <                return false;
4273 <            Map.Entry e = (Map.Entry)o;
4274 <            return eq(key, e.getKey()) && eq(value, e.getValue());
4270 >        /**
4271 >         * Returns a task that when invoked, returns the result of
4272 >         * accumulating the given transformation of all (key, value) pairs
4273 >         * using the given reducer to combine values, and the given
4274 >         * basis as an identity value.
4275 >         *
4276 >         * @param map the map
4277 >         * @param transformer a function returning the transformation
4278 >         * for an element
4279 >         * @param basis the identity (initial default value) for the reduction
4280 >         * @param reducer a commutative associative combining function
4281 >         * @return the task
4282 >         */
4283 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4284 >            (ConcurrentHashMap<K,V> map,
4285 >             ObjectByObjectToLong<? super K, ? super V> transformer,
4286 >             long basis,
4287 >             LongByLongToLong reducer) {
4288 >            if (transformer == null || reducer == null)
4289 >                throw new NullPointerException();
4290 >            return new MapReduceMappingsToLongTask<K,V>
4291 >                (map, transformer, basis, reducer);
4292 >        }
4293 >
4294 >        /**
4295 >         * Returns a task that when invoked, returns the result of
4296 >         * accumulating the given transformation of all (key, value) pairs
4297 >         * using the given reducer to combine values, and the given
4298 >         * basis as an identity value.
4299 >         *
4300 >         * @param transformer a function returning the transformation
4301 >         * for an element
4302 >         * @param basis the identity (initial default value) for the reduction
4303 >         * @param reducer a commutative associative combining function
4304 >         * @return the task
4305 >         */
4306 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4307 >            (ConcurrentHashMap<K,V> map,
4308 >             ObjectByObjectToInt<? super K, ? super V> transformer,
4309 >             int basis,
4310 >             IntByIntToInt reducer) {
4311 >            if (transformer == null || reducer == null)
4312 >                throw new NullPointerException();
4313 >            return new MapReduceMappingsToIntTask<K,V>
4314 >                (map, transformer, basis, reducer);
4315 >        }
4316 >
4317 >        /**
4318 >         * Returns a task that when invoked, performs the given action
4319 >         * for each key.
4320 >         *
4321 >         * @param map the map
4322 >         * @param action the action
4323 >         * @return the task
4324 >         */
4325 >        public static <K,V> ForkJoinTask<Void> forEachKey
4326 >            (ConcurrentHashMap<K,V> map,
4327 >             Action<K> action) {
4328 >            if (action == null) throw new NullPointerException();
4329 >            return new ForEachKeyTask<K,V>(map, action);
4330 >        }
4331 >
4332 >        /**
4333 >         * Returns a task that when invoked, performs the given action
4334 >         * for each non-null transformation of each key.
4335 >         *
4336 >         * @param map the map
4337 >         * @param transformer a function returning the transformation
4338 >         * for an element, or null of there is no transformation (in
4339 >         * which case the action is not applied).
4340 >         * @param action the action
4341 >         * @return the task
4342 >         */
4343 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4344 >            (ConcurrentHashMap<K,V> map,
4345 >             Fun<? super K, ? extends U> transformer,
4346 >             Action<U> action) {
4347 >            if (transformer == null || action == null)
4348 >                throw new NullPointerException();
4349 >            return new ForEachTransformedKeyTask<K,V,U>
4350 >                (map, transformer, action);
4351          }
4352  
4353 <        public int hashCode() {
4354 <            return ((key   == null)   ? 0 :   key.hashCode()) ^
4355 <                   ((value == null)   ? 0 : value.hashCode());
4353 >        /**
4354 >         * Returns a task that when invoked, returns a non-null result
4355 >         * from applying the given search function on each key, or
4356 >         * null if none.  Upon success, further element processing is
4357 >         * suppressed and the results of any other parallel
4358 >         * invocations of the search function are ignored.
4359 >         *
4360 >         * @param map the map
4361 >         * @param searchFunction a function returning a non-null
4362 >         * result on success, else null
4363 >         * @return the task
4364 >         */
4365 >        public static <K,V,U> ForkJoinTask<U> searchKeys
4366 >            (ConcurrentHashMap<K,V> map,
4367 >             Fun<? super K, ? extends U> searchFunction) {
4368 >            if (searchFunction == null) throw new NullPointerException();
4369 >            return new SearchKeysTask<K,V,U>
4370 >                (map, searchFunction,
4371 >                 new AtomicReference<U>());
4372          }
4373  
4374 <        public String toString() {
4375 <            return key + "=" + value;
4374 >        /**
4375 >         * Returns a task that when invoked, returns the result of
4376 >         * accumulating all keys using the given reducer to combine
4377 >         * values, or null if none.
4378 >         *
4379 >         * @param map the map
4380 >         * @param reducer a commutative associative combining function
4381 >         * @return the task
4382 >         */
4383 >        public static <K,V> ForkJoinTask<K> reduceKeys
4384 >            (ConcurrentHashMap<K,V> map,
4385 >             BiFun<? super K, ? super K, ? extends K> reducer) {
4386 >            if (reducer == null) throw new NullPointerException();
4387 >            return new ReduceKeysTask<K,V>
4388 >                (map, reducer);
4389          }
4390  
4391 <        static boolean eq(Object o1, Object o2) {
4392 <            return (o1 == null ? o2 == null : o1.equals(o2));
4391 >        /**
4392 >         * Returns a task that when invoked, returns the result of
4393 >         * accumulating the given transformation of all keys using the given
4394 >         * reducer to combine values, or null if none.
4395 >         *
4396 >         * @param map the map
4397 >         * @param transformer a function returning the transformation
4398 >         * for an element, or null of there is no transformation (in
4399 >         * which case it is not combined).
4400 >         * @param reducer a commutative associative combining function
4401 >         * @return the task
4402 >         */
4403 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
4404 >            (ConcurrentHashMap<K,V> map,
4405 >             Fun<? super K, ? extends U> transformer,
4406 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4407 >            if (transformer == null || reducer == null)
4408 >                throw new NullPointerException();
4409 >            return new MapReduceKeysTask<K,V,U>
4410 >                (map, transformer, reducer);
4411 >        }
4412 >
4413 >        /**
4414 >         * Returns a task that when invoked, returns the result of
4415 >         * accumulating the given transformation of all keys using the given
4416 >         * reducer to combine values, and the given basis as an
4417 >         * identity value.
4418 >         *
4419 >         * @param map the map
4420 >         * @param transformer a function returning the transformation
4421 >         * for an element
4422 >         * @param basis the identity (initial default value) for the reduction
4423 >         * @param reducer a commutative associative combining function
4424 >         * @return the task
4425 >         */
4426 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4427 >            (ConcurrentHashMap<K,V> map,
4428 >             ObjectToDouble<? super K> transformer,
4429 >             double basis,
4430 >             DoubleByDoubleToDouble reducer) {
4431 >            if (transformer == null || reducer == null)
4432 >                throw new NullPointerException();
4433 >            return new MapReduceKeysToDoubleTask<K,V>
4434 >                (map, transformer, basis, reducer);
4435 >        }
4436 >
4437 >        /**
4438 >         * Returns a task that when invoked, returns the result of
4439 >         * accumulating the given transformation of all keys using the given
4440 >         * reducer to combine values, and the given basis as an
4441 >         * identity value.
4442 >         *
4443 >         * @param map the map
4444 >         * @param transformer a function returning the transformation
4445 >         * for an element
4446 >         * @param basis the identity (initial default value) for the reduction
4447 >         * @param reducer a commutative associative combining function
4448 >         * @return the task
4449 >         */
4450 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4451 >            (ConcurrentHashMap<K,V> map,
4452 >             ObjectToLong<? super K> transformer,
4453 >             long basis,
4454 >             LongByLongToLong reducer) {
4455 >            if (transformer == null || reducer == null)
4456 >                throw new NullPointerException();
4457 >            return new MapReduceKeysToLongTask<K,V>
4458 >                (map, transformer, basis, reducer);
4459 >        }
4460 >
4461 >        /**
4462 >         * Returns a task that when invoked, returns the result of
4463 >         * accumulating the given transformation of all keys using the given
4464 >         * reducer to combine values, and the given basis as an
4465 >         * identity value.
4466 >         *
4467 >         * @param map the map
4468 >         * @param transformer a function returning the transformation
4469 >         * for an element
4470 >         * @param basis the identity (initial default value) for the reduction
4471 >         * @param reducer a commutative associative combining function
4472 >         * @return the task
4473 >         */
4474 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4475 >            (ConcurrentHashMap<K,V> map,
4476 >             ObjectToInt<? super K> transformer,
4477 >             int basis,
4478 >             IntByIntToInt reducer) {
4479 >            if (transformer == null || reducer == null)
4480 >                throw new NullPointerException();
4481 >            return new MapReduceKeysToIntTask<K,V>
4482 >                (map, transformer, basis, reducer);
4483 >        }
4484 >
4485 >        /**
4486 >         * Returns a task that when invoked, performs the given action
4487 >         * for each value.
4488 >         *
4489 >         * @param map the map
4490 >         * @param action the action
4491 >         */
4492 >        public static <K,V> ForkJoinTask<Void> forEachValue
4493 >            (ConcurrentHashMap<K,V> map,
4494 >             Action<V> action) {
4495 >            if (action == null) throw new NullPointerException();
4496 >            return new ForEachValueTask<K,V>(map, action);
4497 >        }
4498 >
4499 >        /**
4500 >         * Returns a task that when invoked, performs the given action
4501 >         * for each non-null transformation of each value.
4502 >         *
4503 >         * @param map the map
4504 >         * @param transformer a function returning the transformation
4505 >         * for an element, or null of there is no transformation (in
4506 >         * which case the action is not applied).
4507 >         * @param action the action
4508 >         */
4509 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
4510 >            (ConcurrentHashMap<K,V> map,
4511 >             Fun<? super V, ? extends U> transformer,
4512 >             Action<U> action) {
4513 >            if (transformer == null || action == null)
4514 >                throw new NullPointerException();
4515 >            return new ForEachTransformedValueTask<K,V,U>
4516 >                (map, transformer, action);
4517 >        }
4518 >
4519 >        /**
4520 >         * Returns a task that when invoked, returns a non-null result
4521 >         * from applying the given search function on each value, or
4522 >         * null if none.  Upon success, further element processing is
4523 >         * suppressed and the results of any other parallel
4524 >         * invocations of the search function are ignored.
4525 >         *
4526 >         * @param map the map
4527 >         * @param searchFunction a function returning a non-null
4528 >         * result on success, else null
4529 >         * @return the task
4530 >         *
4531 >         */
4532 >        public static <K,V,U> ForkJoinTask<U> searchValues
4533 >            (ConcurrentHashMap<K,V> map,
4534 >             Fun<? super V, ? extends U> searchFunction) {
4535 >            if (searchFunction == null) throw new NullPointerException();
4536 >            return new SearchValuesTask<K,V,U>
4537 >                (map, searchFunction,
4538 >                 new AtomicReference<U>());
4539 >        }
4540 >
4541 >        /**
4542 >         * Returns a task that when invoked, returns the result of
4543 >         * accumulating all values using the given reducer to combine
4544 >         * values, or null if none.
4545 >         *
4546 >         * @param map the map
4547 >         * @param reducer a commutative associative combining function
4548 >         * @return the task
4549 >         */
4550 >        public static <K,V> ForkJoinTask<V> reduceValues
4551 >            (ConcurrentHashMap<K,V> map,
4552 >             BiFun<? super V, ? super V, ? extends V> reducer) {
4553 >            if (reducer == null) throw new NullPointerException();
4554 >            return new ReduceValuesTask<K,V>
4555 >                (map, reducer);
4556 >        }
4557 >
4558 >        /**
4559 >         * Returns a task that when invoked, returns the result of
4560 >         * accumulating the given transformation of all values using the
4561 >         * given reducer to combine values, or null if none.
4562 >         *
4563 >         * @param map the map
4564 >         * @param transformer a function returning the transformation
4565 >         * for an element, or null of there is no transformation (in
4566 >         * which case it is not combined).
4567 >         * @param reducer a commutative associative combining function
4568 >         * @return the task
4569 >         */
4570 >        public static <K,V,U> ForkJoinTask<U> reduceValues
4571 >            (ConcurrentHashMap<K,V> map,
4572 >             Fun<? super V, ? extends U> transformer,
4573 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4574 >            if (transformer == null || reducer == null)
4575 >                throw new NullPointerException();
4576 >            return new MapReduceValuesTask<K,V,U>
4577 >                (map, transformer, reducer);
4578 >        }
4579 >
4580 >        /**
4581 >         * Returns a task that when invoked, returns the result of
4582 >         * accumulating the given transformation of all values using the
4583 >         * given reducer to combine values, and the given basis as an
4584 >         * identity value.
4585 >         *
4586 >         * @param map the map
4587 >         * @param transformer a function returning the transformation
4588 >         * for an element
4589 >         * @param basis the identity (initial default value) for the reduction
4590 >         * @param reducer a commutative associative combining function
4591 >         * @return the task
4592 >         */
4593 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4594 >            (ConcurrentHashMap<K,V> map,
4595 >             ObjectToDouble<? super V> transformer,
4596 >             double basis,
4597 >             DoubleByDoubleToDouble reducer) {
4598 >            if (transformer == null || reducer == null)
4599 >                throw new NullPointerException();
4600 >            return new MapReduceValuesToDoubleTask<K,V>
4601 >                (map, transformer, basis, reducer);
4602 >        }
4603 >
4604 >        /**
4605 >         * Returns a task that when invoked, returns the result of
4606 >         * accumulating the given transformation of all values using the
4607 >         * given reducer to combine values, and the given basis as an
4608 >         * identity value.
4609 >         *
4610 >         * @param map the map
4611 >         * @param transformer a function returning the transformation
4612 >         * for an element
4613 >         * @param basis the identity (initial default value) for the reduction
4614 >         * @param reducer a commutative associative combining function
4615 >         * @return the task
4616 >         */
4617 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4618 >            (ConcurrentHashMap<K,V> map,
4619 >             ObjectToLong<? super V> transformer,
4620 >             long basis,
4621 >             LongByLongToLong reducer) {
4622 >            if (transformer == null || reducer == null)
4623 >                throw new NullPointerException();
4624 >            return new MapReduceValuesToLongTask<K,V>
4625 >                (map, transformer, basis, reducer);
4626 >        }
4627 >
4628 >        /**
4629 >         * Returns a task that when invoked, returns the result of
4630 >         * accumulating the given transformation of all values using the
4631 >         * given reducer to combine values, and the given basis as an
4632 >         * identity value.
4633 >         *
4634 >         * @param map the map
4635 >         * @param transformer a function returning the transformation
4636 >         * for an element
4637 >         * @param basis the identity (initial default value) for the reduction
4638 >         * @param reducer a commutative associative combining function
4639 >         * @return the task
4640 >         */
4641 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4642 >            (ConcurrentHashMap<K,V> map,
4643 >             ObjectToInt<? super V> transformer,
4644 >             int basis,
4645 >             IntByIntToInt reducer) {
4646 >            if (transformer == null || reducer == null)
4647 >                throw new NullPointerException();
4648 >            return new MapReduceValuesToIntTask<K,V>
4649 >                (map, transformer, basis, reducer);
4650 >        }
4651 >
4652 >        /**
4653 >         * Returns a task that when invoked, perform the given action
4654 >         * for each entry.
4655 >         *
4656 >         * @param map the map
4657 >         * @param action the action
4658 >         */
4659 >        public static <K,V> ForkJoinTask<Void> forEachEntry
4660 >            (ConcurrentHashMap<K,V> map,
4661 >             Action<Map.Entry<K,V>> action) {
4662 >            if (action == null) throw new NullPointerException();
4663 >            return new ForEachEntryTask<K,V>(map, action);
4664 >        }
4665 >
4666 >        /**
4667 >         * Returns a task that when invoked, perform the given action
4668 >         * for each non-null transformation of each entry.
4669 >         *
4670 >         * @param map the map
4671 >         * @param transformer a function returning the transformation
4672 >         * for an element, or null of there is no transformation (in
4673 >         * which case the action is not applied).
4674 >         * @param action the action
4675 >         */
4676 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
4677 >            (ConcurrentHashMap<K,V> map,
4678 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
4679 >             Action<U> action) {
4680 >            if (transformer == null || action == null)
4681 >                throw new NullPointerException();
4682 >            return new ForEachTransformedEntryTask<K,V,U>
4683 >                (map, transformer, action);
4684 >        }
4685 >
4686 >        /**
4687 >         * Returns a task that when invoked, returns a non-null result
4688 >         * from applying the given search function on each entry, or
4689 >         * null if none.  Upon success, further element processing is
4690 >         * suppressed and the results of any other parallel
4691 >         * invocations of the search function are ignored.
4692 >         *
4693 >         * @param map the map
4694 >         * @param searchFunction a function returning a non-null
4695 >         * result on success, else null
4696 >         * @return the task
4697 >         *
4698 >         */
4699 >        public static <K,V,U> ForkJoinTask<U> searchEntries
4700 >            (ConcurrentHashMap<K,V> map,
4701 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4702 >            if (searchFunction == null) throw new NullPointerException();
4703 >            return new SearchEntriesTask<K,V,U>
4704 >                (map, searchFunction,
4705 >                 new AtomicReference<U>());
4706 >        }
4707 >
4708 >        /**
4709 >         * Returns a task that when invoked, returns the result of
4710 >         * accumulating all entries using the given reducer to combine
4711 >         * values, or null if none.
4712 >         *
4713 >         * @param map the map
4714 >         * @param reducer a commutative associative combining function
4715 >         * @return the task
4716 >         */
4717 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4718 >            (ConcurrentHashMap<K,V> map,
4719 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4720 >            if (reducer == null) throw new NullPointerException();
4721 >            return new ReduceEntriesTask<K,V>
4722 >                (map, reducer);
4723 >        }
4724 >
4725 >        /**
4726 >         * Returns a task that when invoked, returns the result of
4727 >         * accumulating the given transformation of all entries using the
4728 >         * given reducer to combine values, or null if none.
4729 >         *
4730 >         * @param map the map
4731 >         * @param transformer a function returning the transformation
4732 >         * for an element, or null of there is no transformation (in
4733 >         * which case it is not combined).
4734 >         * @param reducer a commutative associative combining function
4735 >         * @return the task
4736 >         */
4737 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
4738 >            (ConcurrentHashMap<K,V> map,
4739 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
4740 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4741 >            if (transformer == null || reducer == null)
4742 >                throw new NullPointerException();
4743 >            return new MapReduceEntriesTask<K,V,U>
4744 >                (map, transformer, reducer);
4745 >        }
4746 >
4747 >        /**
4748 >         * Returns a task that when invoked, returns the result of
4749 >         * accumulating the given transformation of all entries using the
4750 >         * given reducer to combine values, and the given basis as an
4751 >         * identity value.
4752 >         *
4753 >         * @param map the map
4754 >         * @param transformer a function returning the transformation
4755 >         * for an element
4756 >         * @param basis the identity (initial default value) for the reduction
4757 >         * @param reducer a commutative associative combining function
4758 >         * @return the task
4759 >         */
4760 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4761 >            (ConcurrentHashMap<K,V> map,
4762 >             ObjectToDouble<Map.Entry<K,V>> transformer,
4763 >             double basis,
4764 >             DoubleByDoubleToDouble reducer) {
4765 >            if (transformer == null || reducer == null)
4766 >                throw new NullPointerException();
4767 >            return new MapReduceEntriesToDoubleTask<K,V>
4768 >                (map, transformer, basis, reducer);
4769 >        }
4770 >
4771 >        /**
4772 >         * Returns a task that when invoked, returns the result of
4773 >         * accumulating the given transformation of all entries using the
4774 >         * given reducer to combine values, and the given basis as an
4775 >         * identity value.
4776 >         *
4777 >         * @param map the map
4778 >         * @param transformer a function returning the transformation
4779 >         * for an element
4780 >         * @param basis the identity (initial default value) for the reduction
4781 >         * @param reducer a commutative associative combining function
4782 >         * @return the task
4783 >         */
4784 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4785 >            (ConcurrentHashMap<K,V> map,
4786 >             ObjectToLong<Map.Entry<K,V>> transformer,
4787 >             long basis,
4788 >             LongByLongToLong reducer) {
4789 >            if (transformer == null || reducer == null)
4790 >                throw new NullPointerException();
4791 >            return new MapReduceEntriesToLongTask<K,V>
4792 >                (map, transformer, basis, reducer);
4793 >        }
4794 >
4795 >        /**
4796 >         * Returns a task that when invoked, returns the result of
4797 >         * accumulating the given transformation of all entries using the
4798 >         * given reducer to combine values, and the given basis as an
4799 >         * identity value.
4800 >         *
4801 >         * @param map the map
4802 >         * @param transformer a function returning the transformation
4803 >         * for an element
4804 >         * @param basis the identity (initial default value) for the reduction
4805 >         * @param reducer a commutative associative combining function
4806 >         * @return the task
4807 >         */
4808 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4809 >            (ConcurrentHashMap<K,V> map,
4810 >             ObjectToInt<Map.Entry<K,V>> transformer,
4811 >             int basis,
4812 >             IntByIntToInt reducer) {
4813 >            if (transformer == null || reducer == null)
4814 >                throw new NullPointerException();
4815 >            return new MapReduceEntriesToIntTask<K,V>
4816 >                (map, transformer, basis, reducer);
4817          }
4818      }
4819  
4820 <    /* ---------------- Serialization Support -------------- */
4820 >    // -------------------------------------------------------
4821  
4822      /**
4823 <     * Save the state of the <tt>ConcurrentHashMap</tt>
4824 <     * instance to a stream (i.e.,
4825 <     * serialize it).
4826 <     * @param s the stream
4827 <     * @serialData
4828 <     * the key (Object) and value (Object)
4829 <     * for each key-value mapping, followed by a null pair.
4830 <     * The key-value mappings are emitted in no particular order.
4823 >     * Base for FJ tasks for bulk operations. This adds a variant of
4824 >     * CountedCompleters and some split and merge bookkeeping to
4825 >     * iterator functionality. The forEach and reduce methods are
4826 >     * similar to those illustrated in CountedCompleter documentation,
4827 >     * except that bottom-up reduction completions perform them within
4828 >     * their compute methods. The search methods are like forEach
4829 >     * except they continually poll for success and exit early.  Also,
4830 >     * exceptions are handled in a simpler manner, by just trying to
4831 >     * complete root task exceptionally.
4832       */
4833 <    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
4834 <        s.defaultWriteObject();
4833 >    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4834 >        final BulkTask<K,V,?> parent;  // completion target
4835 >        int batch;                     // split control
4836 >        int pending;                   // completion control
4837 >
4838 >        /** Constructor for root tasks */
4839 >        BulkTask(ConcurrentHashMap<K,V> map) {
4840 >            super(map);
4841 >            this.parent = null;
4842 >            this.batch = -1; // force call to batch() on execution
4843 >        }
4844 >
4845 >        /** Constructor for subtasks */
4846 >        BulkTask(BulkTask<K,V,?> parent, int batch) {
4847 >            super(parent);
4848 >            this.parent = parent;
4849 >            this.batch = batch;
4850 >        }
4851  
4852 <        for (int k = 0; k < segments.length; ++k) {
4853 <            Segment<K,V> seg = (Segment<K,V>)segments[k];
4854 <            seg.lock();
4855 <            try {
4856 <                HashEntry[] tab = seg.table;
4857 <                for (int i = 0; i < tab.length; ++i) {
4858 <                    for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
4859 <                        s.writeObject(e.key);
4860 <                        s.writeObject(e.value);
4852 >        // FJ methods
4853 >
4854 >        /**
4855 >         * Propagates completion. Note that all reduce actions
4856 >         * bypass this method to combine while completing.
4857 >         */
4858 >        final void tryComplete() {
4859 >            BulkTask<K,V,?> a = this, s = a;
4860 >            for (int c;;) {
4861 >                if ((c = a.pending) == 0) {
4862 >                    if ((a = (s = a).parent) == null) {
4863 >                        s.quietlyComplete();
4864 >                        break;
4865                      }
4866                  }
4867 <            } finally {
4868 <                seg.unlock();
4867 >                else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4868 >                    break;
4869 >            }
4870 >        }
4871 >
4872 >        /**
4873 >         * Forces root task to complete.
4874 >         * @param ex if null, complete normally, else exceptionally
4875 >         * @return false to simplify use
4876 >         */
4877 >        final boolean tryCompleteComputation(Throwable ex) {
4878 >            for (BulkTask<K,V,?> a = this;;) {
4879 >                BulkTask<K,V,?> p = a.parent;
4880 >                if (p == null) {
4881 >                    if (ex != null)
4882 >                        a.completeExceptionally(ex);
4883 >                    else
4884 >                        a.quietlyComplete();
4885 >                    return false;
4886 >                }
4887 >                a = p;
4888 >            }
4889 >        }
4890 >
4891 >        /**
4892 >         * Version of tryCompleteComputation for function screening checks
4893 >         */
4894 >        final boolean abortOnNullFunction() {
4895 >            return tryCompleteComputation(new Error("Unexpected null function"));
4896 >        }
4897 >
4898 >        // utilities
4899 >
4900 >        /** CompareAndSet pending count */
4901 >        final boolean casPending(int cmp, int val) {
4902 >            return U.compareAndSwapInt(this, PENDING, cmp, val);
4903 >        }
4904 >
4905 >        /**
4906 >         * Returns approx exp2 of the number of times (minus one) to
4907 >         * split task by two before executing leaf action. This value
4908 >         * is faster to compute and more convenient to use as a guide
4909 >         * to splitting than is the depth, since it is used while
4910 >         * dividing by two anyway.
4911 >         */
4912 >        final int batch() {
4913 >            int b = batch;
4914 >            if (b < 0) {
4915 >                long n = map.counter.sum();
4916 >                int sp = getPool().getParallelism() << 3; // slack of 8
4917 >                b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4918 >            }
4919 >            return b;
4920 >        }
4921 >
4922 >        /**
4923 >         * Returns exportable snapshot entry.
4924 >         */
4925 >        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4926 >            return new AbstractMap.SimpleEntry<K,V>(k, v);
4927 >        }
4928 >
4929 >        // Unsafe mechanics
4930 >        private static final sun.misc.Unsafe U;
4931 >        private static final long PENDING;
4932 >        static {
4933 >            try {
4934 >                U = sun.misc.Unsafe.getUnsafe();
4935 >                PENDING = U.objectFieldOffset
4936 >                    (BulkTask.class.getDeclaredField("pending"));
4937 >            } catch (Exception e) {
4938 >                throw new Error(e);
4939              }
4940          }
1388        s.writeObject(null);
1389        s.writeObject(null);
4941      }
4942  
4943 <    /**
4944 <     * Reconstitute the <tt>ConcurrentHashMap</tt>
4945 <     * instance from a stream (i.e.,
4946 <     * deserialize it).
1396 <     * @param s the stream
4943 >    /*
4944 >     * Task classes. Coded in a regular but ugly format/style to
4945 >     * simplify checks that each variant differs in the right way from
4946 >     * others.
4947       */
1398    private void readObject(java.io.ObjectInputStream s)
1399        throws IOException, ClassNotFoundException  {
1400        s.defaultReadObject();
4948  
4949 <        // Initialize each segment to be minimally sized, and let grow.
4950 <        for (int i = 0; i < segments.length; ++i) {
4951 <            segments[i].setTable(new HashEntry[1]);
4949 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4950 >        extends BulkTask<K,V,Void> {
4951 >        final Action<K> action;
4952 >        ForEachKeyTask
4953 >            (ConcurrentHashMap<K,V> m,
4954 >             Action<K> action) {
4955 >            super(m);
4956 >            this.action = action;
4957 >        }
4958 >        ForEachKeyTask
4959 >            (BulkTask<K,V,?> p, int b,
4960 >             Action<K> action) {
4961 >            super(p, b);
4962 >            this.action = action;
4963 >        }
4964 >        @SuppressWarnings("unchecked") public final boolean exec() {
4965 >            final Action<K> action = this.action;
4966 >            if (action == null)
4967 >                return abortOnNullFunction();
4968 >            try {
4969 >                int b = batch(), c;
4970 >                while (b > 1 && baseIndex != baseLimit) {
4971 >                    do {} while (!casPending(c = pending, c+1));
4972 >                    new ForEachKeyTask<K,V>(this, b >>>= 1, action).fork();
4973 >                }
4974 >                while (advance() != null)
4975 >                    action.apply((K)nextKey);
4976 >                tryComplete();
4977 >            } catch (Throwable ex) {
4978 >                return tryCompleteComputation(ex);
4979 >            }
4980 >            return false;
4981          }
4982 +    }
4983  
4984 <        // Read the keys and values, and put the mappings in the table
4985 <        for (;;) {
4986 <            K key = (K) s.readObject();
4987 <            V value = (V) s.readObject();
4988 <            if (key == null)
4989 <                break;
4990 <            put(key, value);
4984 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4985 >        extends BulkTask<K,V,Void> {
4986 >        final Action<V> action;
4987 >        ForEachValueTask
4988 >            (ConcurrentHashMap<K,V> m,
4989 >             Action<V> action) {
4990 >            super(m);
4991 >            this.action = action;
4992 >        }
4993 >        ForEachValueTask
4994 >            (BulkTask<K,V,?> p, int b,
4995 >             Action<V> action) {
4996 >            super(p, b);
4997 >            this.action = action;
4998 >        }
4999 >        @SuppressWarnings("unchecked") public final boolean exec() {
5000 >            final Action<V> action = this.action;
5001 >            if (action == null)
5002 >                return abortOnNullFunction();
5003 >            try {
5004 >                int b = batch(), c;
5005 >                while (b > 1 && baseIndex != baseLimit) {
5006 >                    do {} while (!casPending(c = pending, c+1));
5007 >                    new ForEachValueTask<K,V>(this, b >>>= 1, action).fork();
5008 >                }
5009 >                Object v;
5010 >                while ((v = advance()) != null)
5011 >                    action.apply((V)v);
5012 >                tryComplete();
5013 >            } catch (Throwable ex) {
5014 >                return tryCompleteComputation(ex);
5015 >            }
5016 >            return false;
5017 >        }
5018 >    }
5019 >
5020 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5021 >        extends BulkTask<K,V,Void> {
5022 >        final Action<Entry<K,V>> action;
5023 >        ForEachEntryTask
5024 >            (ConcurrentHashMap<K,V> m,
5025 >             Action<Entry<K,V>> action) {
5026 >            super(m);
5027 >            this.action = action;
5028 >        }
5029 >        ForEachEntryTask
5030 >            (BulkTask<K,V,?> p, int b,
5031 >             Action<Entry<K,V>> action) {
5032 >            super(p, b);
5033 >            this.action = action;
5034 >        }
5035 >        @SuppressWarnings("unchecked") public final boolean exec() {
5036 >            final Action<Entry<K,V>> action = this.action;
5037 >            if (action == null)
5038 >                return abortOnNullFunction();
5039 >            try {
5040 >                int b = batch(), c;
5041 >                while (b > 1 && baseIndex != baseLimit) {
5042 >                    do {} while (!casPending(c = pending, c+1));
5043 >                    new ForEachEntryTask<K,V>(this, b >>>= 1, action).fork();
5044 >                }
5045 >                Object v;
5046 >                while ((v = advance()) != null)
5047 >                    action.apply(entryFor((K)nextKey, (V)v));
5048 >                tryComplete();
5049 >            } catch (Throwable ex) {
5050 >                return tryCompleteComputation(ex);
5051 >            }
5052 >            return false;
5053 >        }
5054 >    }
5055 >
5056 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5057 >        extends BulkTask<K,V,Void> {
5058 >        final BiAction<K,V> action;
5059 >        ForEachMappingTask
5060 >            (ConcurrentHashMap<K,V> m,
5061 >             BiAction<K,V> action) {
5062 >            super(m);
5063 >            this.action = action;
5064 >        }
5065 >        ForEachMappingTask
5066 >            (BulkTask<K,V,?> p, int b,
5067 >             BiAction<K,V> action) {
5068 >            super(p, b);
5069 >            this.action = action;
5070 >        }
5071 >
5072 >        @SuppressWarnings("unchecked") public final boolean exec() {
5073 >            final BiAction<K,V> action = this.action;
5074 >            if (action == null)
5075 >                return abortOnNullFunction();
5076 >            try {
5077 >                int b = batch(), c;
5078 >                while (b > 1 && baseIndex != baseLimit) {
5079 >                    do {} while (!casPending(c = pending, c+1));
5080 >                    new ForEachMappingTask<K,V>(this, b >>>= 1,
5081 >                                                action).fork();
5082 >                }
5083 >                Object v;
5084 >                while ((v = advance()) != null)
5085 >                    action.apply((K)nextKey, (V)v);
5086 >                tryComplete();
5087 >            } catch (Throwable ex) {
5088 >                return tryCompleteComputation(ex);
5089 >            }
5090 >            return false;
5091 >        }
5092 >    }
5093 >
5094 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5095 >        extends BulkTask<K,V,Void> {
5096 >        final Fun<? super K, ? extends U> transformer;
5097 >        final Action<U> action;
5098 >        ForEachTransformedKeyTask
5099 >            (ConcurrentHashMap<K,V> m,
5100 >             Fun<? super K, ? extends U> transformer,
5101 >             Action<U> action) {
5102 >            super(m);
5103 >            this.transformer = transformer;
5104 >            this.action = action;
5105 >
5106 >        }
5107 >        ForEachTransformedKeyTask
5108 >            (BulkTask<K,V,?> p, int b,
5109 >             Fun<? super K, ? extends U> transformer,
5110 >             Action<U> action) {
5111 >            super(p, b);
5112 >            this.transformer = transformer;
5113 >            this.action = action;
5114 >        }
5115 >        @SuppressWarnings("unchecked") public final boolean exec() {
5116 >            final Fun<? super K, ? extends U> transformer =
5117 >                this.transformer;
5118 >            final Action<U> action = this.action;
5119 >            if (transformer == null || action == null)
5120 >                return abortOnNullFunction();
5121 >            try {
5122 >                int b = batch(), c;
5123 >                while (b > 1 && baseIndex != baseLimit) {
5124 >                    do {} while (!casPending(c = pending, c+1));
5125 >                    new ForEachTransformedKeyTask<K,V,U>
5126 >                        (this, b >>>= 1, transformer, action).fork();
5127 >                }
5128 >                U u;
5129 >                while (advance() != null) {
5130 >                    if ((u = transformer.apply((K)nextKey)) != null)
5131 >                        action.apply(u);
5132 >                }
5133 >                tryComplete();
5134 >            } catch (Throwable ex) {
5135 >                return tryCompleteComputation(ex);
5136 >            }
5137 >            return false;
5138          }
5139      }
1416 }
5140  
5141 +    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5142 +        extends BulkTask<K,V,Void> {
5143 +        final Fun<? super V, ? extends U> transformer;
5144 +        final Action<U> action;
5145 +        ForEachTransformedValueTask
5146 +            (ConcurrentHashMap<K,V> m,
5147 +             Fun<? super V, ? extends U> transformer,
5148 +             Action<U> action) {
5149 +            super(m);
5150 +            this.transformer = transformer;
5151 +            this.action = action;
5152 +
5153 +        }
5154 +        ForEachTransformedValueTask
5155 +            (BulkTask<K,V,?> p, int b,
5156 +             Fun<? super V, ? extends U> transformer,
5157 +             Action<U> action) {
5158 +            super(p, b);
5159 +            this.transformer = transformer;
5160 +            this.action = action;
5161 +        }
5162 +        @SuppressWarnings("unchecked") public final boolean exec() {
5163 +            final Fun<? super V, ? extends U> transformer =
5164 +                this.transformer;
5165 +            final Action<U> action = this.action;
5166 +            if (transformer == null || action == null)
5167 +                return abortOnNullFunction();
5168 +            try {
5169 +                int b = batch(), c;
5170 +                while (b > 1 && baseIndex != baseLimit) {
5171 +                    do {} while (!casPending(c = pending, c+1));
5172 +                    new ForEachTransformedValueTask<K,V,U>
5173 +                        (this, b >>>= 1, transformer, action).fork();
5174 +                }
5175 +                Object v; U u;
5176 +                while ((v = advance()) != null) {
5177 +                    if ((u = transformer.apply((V)v)) != null)
5178 +                        action.apply(u);
5179 +                }
5180 +                tryComplete();
5181 +            } catch (Throwable ex) {
5182 +                return tryCompleteComputation(ex);
5183 +            }
5184 +            return false;
5185 +        }
5186 +    }
5187 +
5188 +    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5189 +        extends BulkTask<K,V,Void> {
5190 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5191 +        final Action<U> action;
5192 +        ForEachTransformedEntryTask
5193 +            (ConcurrentHashMap<K,V> m,
5194 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5195 +             Action<U> action) {
5196 +            super(m);
5197 +            this.transformer = transformer;
5198 +            this.action = action;
5199 +
5200 +        }
5201 +        ForEachTransformedEntryTask
5202 +            (BulkTask<K,V,?> p, int b,
5203 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5204 +             Action<U> action) {
5205 +            super(p, b);
5206 +            this.transformer = transformer;
5207 +            this.action = action;
5208 +        }
5209 +        @SuppressWarnings("unchecked") public final boolean exec() {
5210 +            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5211 +                this.transformer;
5212 +            final Action<U> action = this.action;
5213 +            if (transformer == null || action == null)
5214 +                return abortOnNullFunction();
5215 +            try {
5216 +                int b = batch(), c;
5217 +                while (b > 1 && baseIndex != baseLimit) {
5218 +                    do {} while (!casPending(c = pending, c+1));
5219 +                    new ForEachTransformedEntryTask<K,V,U>
5220 +                        (this, b >>>= 1, transformer, action).fork();
5221 +                }
5222 +                Object v; U u;
5223 +                while ((v = advance()) != null) {
5224 +                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5225 +                        action.apply(u);
5226 +                }
5227 +                tryComplete();
5228 +            } catch (Throwable ex) {
5229 +                return tryCompleteComputation(ex);
5230 +            }
5231 +            return false;
5232 +        }
5233 +    }
5234 +
5235 +    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5236 +        extends BulkTask<K,V,Void> {
5237 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5238 +        final Action<U> action;
5239 +        ForEachTransformedMappingTask
5240 +            (ConcurrentHashMap<K,V> m,
5241 +             BiFun<? super K, ? super V, ? extends U> transformer,
5242 +             Action<U> action) {
5243 +            super(m);
5244 +            this.transformer = transformer;
5245 +            this.action = action;
5246 +
5247 +        }
5248 +        ForEachTransformedMappingTask
5249 +            (BulkTask<K,V,?> p, int b,
5250 +             BiFun<? super K, ? super V, ? extends U> transformer,
5251 +             Action<U> action) {
5252 +            super(p, b);
5253 +            this.transformer = transformer;
5254 +            this.action = action;
5255 +        }
5256 +        @SuppressWarnings("unchecked") public final boolean exec() {
5257 +            final BiFun<? super K, ? super V, ? extends U> transformer =
5258 +                this.transformer;
5259 +            final Action<U> action = this.action;
5260 +            if (transformer == null || action == null)
5261 +                return abortOnNullFunction();
5262 +            try {
5263 +                int b = batch(), c;
5264 +                while (b > 1 && baseIndex != baseLimit) {
5265 +                    do {} while (!casPending(c = pending, c+1));
5266 +                    new ForEachTransformedMappingTask<K,V,U>
5267 +                        (this, b >>>= 1, transformer, action).fork();
5268 +                }
5269 +                Object v; U u;
5270 +                while ((v = advance()) != null) {
5271 +                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5272 +                        action.apply(u);
5273 +                }
5274 +                tryComplete();
5275 +            } catch (Throwable ex) {
5276 +                return tryCompleteComputation(ex);
5277 +            }
5278 +            return false;
5279 +        }
5280 +    }
5281 +
5282 +    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5283 +        extends BulkTask<K,V,U> {
5284 +        final Fun<? super K, ? extends U> searchFunction;
5285 +        final AtomicReference<U> result;
5286 +        SearchKeysTask
5287 +            (ConcurrentHashMap<K,V> m,
5288 +             Fun<? super K, ? extends U> searchFunction,
5289 +             AtomicReference<U> result) {
5290 +            super(m);
5291 +            this.searchFunction = searchFunction; this.result = result;
5292 +        }
5293 +        SearchKeysTask
5294 +            (BulkTask<K,V,?> p, int b,
5295 +             Fun<? super K, ? extends U> searchFunction,
5296 +             AtomicReference<U> result) {
5297 +            super(p, b);
5298 +            this.searchFunction = searchFunction; this.result = result;
5299 +        }
5300 +        @SuppressWarnings("unchecked") public final boolean exec() {
5301 +            AtomicReference<U> result = this.result;
5302 +            final Fun<? super K, ? extends U> searchFunction =
5303 +                this.searchFunction;
5304 +            if (searchFunction == null || result == null)
5305 +                return abortOnNullFunction();
5306 +            try {
5307 +                int b = batch(), c;
5308 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5309 +                    do {} while (!casPending(c = pending, c+1));
5310 +                    new SearchKeysTask<K,V,U>(this, b >>>= 1,
5311 +                                              searchFunction, result).fork();
5312 +                }
5313 +                U u;
5314 +                while (result.get() == null && advance() != null) {
5315 +                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5316 +                        if (result.compareAndSet(null, u))
5317 +                            tryCompleteComputation(null);
5318 +                        break;
5319 +                    }
5320 +                }
5321 +                tryComplete();
5322 +            } catch (Throwable ex) {
5323 +                return tryCompleteComputation(ex);
5324 +            }
5325 +            return false;
5326 +        }
5327 +        public final U getRawResult() { return result.get(); }
5328 +    }
5329 +
5330 +    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5331 +        extends BulkTask<K,V,U> {
5332 +        final Fun<? super V, ? extends U> searchFunction;
5333 +        final AtomicReference<U> result;
5334 +        SearchValuesTask
5335 +            (ConcurrentHashMap<K,V> m,
5336 +             Fun<? super V, ? extends U> searchFunction,
5337 +             AtomicReference<U> result) {
5338 +            super(m);
5339 +            this.searchFunction = searchFunction; this.result = result;
5340 +        }
5341 +        SearchValuesTask
5342 +            (BulkTask<K,V,?> p, int b,
5343 +             Fun<? super V, ? extends U> searchFunction,
5344 +             AtomicReference<U> result) {
5345 +            super(p, b);
5346 +            this.searchFunction = searchFunction; this.result = result;
5347 +        }
5348 +        @SuppressWarnings("unchecked") public final boolean exec() {
5349 +            AtomicReference<U> result = this.result;
5350 +            final Fun<? super V, ? extends U> searchFunction =
5351 +                this.searchFunction;
5352 +            if (searchFunction == null || result == null)
5353 +                return abortOnNullFunction();
5354 +            try {
5355 +                int b = batch(), c;
5356 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5357 +                    do {} while (!casPending(c = pending, c+1));
5358 +                    new SearchValuesTask<K,V,U>(this, b >>>= 1,
5359 +                                                searchFunction, result).fork();
5360 +                }
5361 +                Object v; U u;
5362 +                while (result.get() == null && (v = advance()) != null) {
5363 +                    if ((u = searchFunction.apply((V)v)) != null) {
5364 +                        if (result.compareAndSet(null, u))
5365 +                            tryCompleteComputation(null);
5366 +                        break;
5367 +                    }
5368 +                }
5369 +                tryComplete();
5370 +            } catch (Throwable ex) {
5371 +                return tryCompleteComputation(ex);
5372 +            }
5373 +            return false;
5374 +        }
5375 +        public final U getRawResult() { return result.get(); }
5376 +    }
5377 +
5378 +    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5379 +        extends BulkTask<K,V,U> {
5380 +        final Fun<Entry<K,V>, ? extends U> searchFunction;
5381 +        final AtomicReference<U> result;
5382 +        SearchEntriesTask
5383 +            (ConcurrentHashMap<K,V> m,
5384 +             Fun<Entry<K,V>, ? extends U> searchFunction,
5385 +             AtomicReference<U> result) {
5386 +            super(m);
5387 +            this.searchFunction = searchFunction; this.result = result;
5388 +        }
5389 +        SearchEntriesTask
5390 +            (BulkTask<K,V,?> p, int b,
5391 +             Fun<Entry<K,V>, ? extends U> searchFunction,
5392 +             AtomicReference<U> result) {
5393 +            super(p, b);
5394 +            this.searchFunction = searchFunction; this.result = result;
5395 +        }
5396 +        @SuppressWarnings("unchecked") public final boolean exec() {
5397 +            AtomicReference<U> result = this.result;
5398 +            final Fun<Entry<K,V>, ? extends U> searchFunction =
5399 +                this.searchFunction;
5400 +            if (searchFunction == null || result == null)
5401 +                return abortOnNullFunction();
5402 +            try {
5403 +                int b = batch(), c;
5404 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5405 +                    do {} while (!casPending(c = pending, c+1));
5406 +                    new SearchEntriesTask<K,V,U>(this, b >>>= 1,
5407 +                                                 searchFunction, result).fork();
5408 +                }
5409 +                Object v; U u;
5410 +                while (result.get() == null && (v = advance()) != null) {
5411 +                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5412 +                        if (result.compareAndSet(null, u))
5413 +                            tryCompleteComputation(null);
5414 +                        break;
5415 +                    }
5416 +                }
5417 +                tryComplete();
5418 +            } catch (Throwable ex) {
5419 +                return tryCompleteComputation(ex);
5420 +            }
5421 +            return false;
5422 +        }
5423 +        public final U getRawResult() { return result.get(); }
5424 +    }
5425 +
5426 +    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5427 +        extends BulkTask<K,V,U> {
5428 +        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5429 +        final AtomicReference<U> result;
5430 +        SearchMappingsTask
5431 +            (ConcurrentHashMap<K,V> m,
5432 +             BiFun<? super K, ? super V, ? extends U> searchFunction,
5433 +             AtomicReference<U> result) {
5434 +            super(m);
5435 +            this.searchFunction = searchFunction; this.result = result;
5436 +        }
5437 +        SearchMappingsTask
5438 +            (BulkTask<K,V,?> p, int b,
5439 +             BiFun<? super K, ? super V, ? extends U> searchFunction,
5440 +             AtomicReference<U> result) {
5441 +            super(p, b);
5442 +            this.searchFunction = searchFunction; this.result = result;
5443 +        }
5444 +        @SuppressWarnings("unchecked") public final boolean exec() {
5445 +            AtomicReference<U> result = this.result;
5446 +            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5447 +                this.searchFunction;
5448 +            if (searchFunction == null || result == null)
5449 +                return abortOnNullFunction();
5450 +            try {
5451 +                int b = batch(), c;
5452 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5453 +                    do {} while (!casPending(c = pending, c+1));
5454 +                    new SearchMappingsTask<K,V,U>(this, b >>>= 1,
5455 +                                                  searchFunction, result).fork();
5456 +                }
5457 +                Object v; U u;
5458 +                while (result.get() == null && (v = advance()) != null) {
5459 +                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5460 +                        if (result.compareAndSet(null, u))
5461 +                            tryCompleteComputation(null);
5462 +                        break;
5463 +                    }
5464 +                }
5465 +                tryComplete();
5466 +            } catch (Throwable ex) {
5467 +                return tryCompleteComputation(ex);
5468 +            }
5469 +            return false;
5470 +        }
5471 +        public final U getRawResult() { return result.get(); }
5472 +    }
5473 +
5474 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5475 +        extends BulkTask<K,V,K> {
5476 +        final BiFun<? super K, ? super K, ? extends K> reducer;
5477 +        K result;
5478 +        ReduceKeysTask<K,V> rights, nextRight;
5479 +        ReduceKeysTask
5480 +            (ConcurrentHashMap<K,V> m,
5481 +             BiFun<? super K, ? super K, ? extends K> reducer) {
5482 +            super(m);
5483 +            this.reducer = reducer;
5484 +        }
5485 +        ReduceKeysTask
5486 +            (BulkTask<K,V,?> p, int b,
5487 +             ReduceKeysTask<K,V> nextRight,
5488 +             BiFun<? super K, ? super K, ? extends K> reducer) {
5489 +            super(p, b); this.nextRight = nextRight;
5490 +            this.reducer = reducer;
5491 +        }
5492 +
5493 +        @SuppressWarnings("unchecked") public final boolean exec() {
5494 +            final BiFun<? super K, ? super K, ? extends K> reducer =
5495 +                this.reducer;
5496 +            if (reducer == null)
5497 +                return abortOnNullFunction();
5498 +            try {
5499 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5500 +                    do {} while (!casPending(c = pending, c+1));
5501 +                    (rights = new ReduceKeysTask<K,V>
5502 +                     (this, b >>>= 1, rights, reducer)).fork();
5503 +                }
5504 +                K r = null;
5505 +                while (advance() != null) {
5506 +                    K u = (K)nextKey;
5507 +                    r = (r == null) ? u : reducer.apply(r, u);
5508 +                }
5509 +                result = r;
5510 +                for (ReduceKeysTask<K,V> t = this, s;;) {
5511 +                    int c; BulkTask<K,V,?> par; K tr, sr;
5512 +                    if ((c = t.pending) == 0) {
5513 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5514 +                            if ((sr = s.result) != null)
5515 +                                t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5516 +                        }
5517 +                        if ((par = t.parent) == null ||
5518 +                            !(par instanceof ReduceKeysTask)) {
5519 +                            t.quietlyComplete();
5520 +                            break;
5521 +                        }
5522 +                        t = (ReduceKeysTask<K,V>)par;
5523 +                    }
5524 +                    else if (t.casPending(c, c - 1))
5525 +                        break;
5526 +                }
5527 +            } catch (Throwable ex) {
5528 +                return tryCompleteComputation(ex);
5529 +            }
5530 +            return false;
5531 +        }
5532 +        public final K getRawResult() { return result; }
5533 +    }
5534 +
5535 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5536 +        extends BulkTask<K,V,V> {
5537 +        final BiFun<? super V, ? super V, ? extends V> reducer;
5538 +        V result;
5539 +        ReduceValuesTask<K,V> rights, nextRight;
5540 +        ReduceValuesTask
5541 +            (ConcurrentHashMap<K,V> m,
5542 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5543 +            super(m);
5544 +            this.reducer = reducer;
5545 +        }
5546 +        ReduceValuesTask
5547 +            (BulkTask<K,V,?> p, int b,
5548 +             ReduceValuesTask<K,V> nextRight,
5549 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5550 +            super(p, b); this.nextRight = nextRight;
5551 +            this.reducer = reducer;
5552 +        }
5553 +
5554 +        @SuppressWarnings("unchecked") public final boolean exec() {
5555 +            final BiFun<? super V, ? super V, ? extends V> reducer =
5556 +                this.reducer;
5557 +            if (reducer == null)
5558 +                return abortOnNullFunction();
5559 +            try {
5560 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5561 +                    do {} while (!casPending(c = pending, c+1));
5562 +                    (rights = new ReduceValuesTask<K,V>
5563 +                     (this, b >>>= 1, rights, reducer)).fork();
5564 +                }
5565 +                V r = null;
5566 +                Object v;
5567 +                while ((v = advance()) != null) {
5568 +                    V u = (V)v;
5569 +                    r = (r == null) ? u : reducer.apply(r, u);
5570 +                }
5571 +                result = r;
5572 +                for (ReduceValuesTask<K,V> t = this, s;;) {
5573 +                    int c; BulkTask<K,V,?> par; V tr, sr;
5574 +                    if ((c = t.pending) == 0) {
5575 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5576 +                            if ((sr = s.result) != null)
5577 +                                t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5578 +                        }
5579 +                        if ((par = t.parent) == null ||
5580 +                            !(par instanceof ReduceValuesTask)) {
5581 +                            t.quietlyComplete();
5582 +                            break;
5583 +                        }
5584 +                        t = (ReduceValuesTask<K,V>)par;
5585 +                    }
5586 +                    else if (t.casPending(c, c - 1))
5587 +                        break;
5588 +                }
5589 +            } catch (Throwable ex) {
5590 +                return tryCompleteComputation(ex);
5591 +            }
5592 +            return false;
5593 +        }
5594 +        public final V getRawResult() { return result; }
5595 +    }
5596 +
5597 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5598 +        extends BulkTask<K,V,Map.Entry<K,V>> {
5599 +        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5600 +        Map.Entry<K,V> result;
5601 +        ReduceEntriesTask<K,V> rights, nextRight;
5602 +        ReduceEntriesTask
5603 +            (ConcurrentHashMap<K,V> m,
5604 +             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5605 +            super(m);
5606 +            this.reducer = reducer;
5607 +        }
5608 +        ReduceEntriesTask
5609 +            (BulkTask<K,V,?> p, int b,
5610 +             ReduceEntriesTask<K,V> nextRight,
5611 +             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5612 +            super(p, b); this.nextRight = nextRight;
5613 +            this.reducer = reducer;
5614 +        }
5615 +
5616 +        @SuppressWarnings("unchecked") public final boolean exec() {
5617 +            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5618 +                this.reducer;
5619 +            if (reducer == null)
5620 +                return abortOnNullFunction();
5621 +            try {
5622 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5623 +                    do {} while (!casPending(c = pending, c+1));
5624 +                    (rights = new ReduceEntriesTask<K,V>
5625 +                     (this, b >>>= 1, rights, reducer)).fork();
5626 +                }
5627 +                Map.Entry<K,V> r = null;
5628 +                Object v;
5629 +                while ((v = advance()) != null) {
5630 +                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5631 +                    r = (r == null) ? u : reducer.apply(r, u);
5632 +                }
5633 +                result = r;
5634 +                for (ReduceEntriesTask<K,V> t = this, s;;) {
5635 +                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5636 +                    if ((c = t.pending) == 0) {
5637 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5638 +                            if ((sr = s.result) != null)
5639 +                                t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5640 +                        }
5641 +                        if ((par = t.parent) == null ||
5642 +                            !(par instanceof ReduceEntriesTask)) {
5643 +                            t.quietlyComplete();
5644 +                            break;
5645 +                        }
5646 +                        t = (ReduceEntriesTask<K,V>)par;
5647 +                    }
5648 +                    else if (t.casPending(c, c - 1))
5649 +                        break;
5650 +                }
5651 +            } catch (Throwable ex) {
5652 +                return tryCompleteComputation(ex);
5653 +            }
5654 +            return false;
5655 +        }
5656 +        public final Map.Entry<K,V> getRawResult() { return result; }
5657 +    }
5658 +
5659 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5660 +        extends BulkTask<K,V,U> {
5661 +        final Fun<? super K, ? extends U> transformer;
5662 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5663 +        U result;
5664 +        MapReduceKeysTask<K,V,U> rights, nextRight;
5665 +        MapReduceKeysTask
5666 +            (ConcurrentHashMap<K,V> m,
5667 +             Fun<? super K, ? extends U> transformer,
5668 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5669 +            super(m);
5670 +            this.transformer = transformer;
5671 +            this.reducer = reducer;
5672 +        }
5673 +        MapReduceKeysTask
5674 +            (BulkTask<K,V,?> p, int b,
5675 +             MapReduceKeysTask<K,V,U> nextRight,
5676 +             Fun<? super K, ? extends U> transformer,
5677 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5678 +            super(p, b); this.nextRight = nextRight;
5679 +            this.transformer = transformer;
5680 +            this.reducer = reducer;
5681 +        }
5682 +        @SuppressWarnings("unchecked") public final boolean exec() {
5683 +            final Fun<? super K, ? extends U> transformer =
5684 +                this.transformer;
5685 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5686 +                this.reducer;
5687 +            if (transformer == null || reducer == null)
5688 +                return abortOnNullFunction();
5689 +            try {
5690 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5691 +                    do {} while (!casPending(c = pending, c+1));
5692 +                    (rights = new MapReduceKeysTask<K,V,U>
5693 +                     (this, b >>>= 1, rights, transformer, reducer)).fork();
5694 +                }
5695 +                U r = null, u;
5696 +                while (advance() != null) {
5697 +                    if ((u = transformer.apply((K)nextKey)) != null)
5698 +                        r = (r == null) ? u : reducer.apply(r, u);
5699 +                }
5700 +                result = r;
5701 +                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5702 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5703 +                    if ((c = t.pending) == 0) {
5704 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5705 +                            if ((sr = s.result) != null)
5706 +                                t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5707 +                        }
5708 +                        if ((par = t.parent) == null ||
5709 +                            !(par instanceof MapReduceKeysTask)) {
5710 +                            t.quietlyComplete();
5711 +                            break;
5712 +                        }
5713 +                        t = (MapReduceKeysTask<K,V,U>)par;
5714 +                    }
5715 +                    else if (t.casPending(c, c - 1))
5716 +                        break;
5717 +                }
5718 +            } catch (Throwable ex) {
5719 +                return tryCompleteComputation(ex);
5720 +            }
5721 +            return false;
5722 +        }
5723 +        public final U getRawResult() { return result; }
5724 +    }
5725 +
5726 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5727 +        extends BulkTask<K,V,U> {
5728 +        final Fun<? super V, ? extends U> transformer;
5729 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5730 +        U result;
5731 +        MapReduceValuesTask<K,V,U> rights, nextRight;
5732 +        MapReduceValuesTask
5733 +            (ConcurrentHashMap<K,V> m,
5734 +             Fun<? super V, ? extends U> transformer,
5735 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5736 +            super(m);
5737 +            this.transformer = transformer;
5738 +            this.reducer = reducer;
5739 +        }
5740 +        MapReduceValuesTask
5741 +            (BulkTask<K,V,?> p, int b,
5742 +             MapReduceValuesTask<K,V,U> nextRight,
5743 +             Fun<? super V, ? extends U> transformer,
5744 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5745 +            super(p, b); this.nextRight = nextRight;
5746 +            this.transformer = transformer;
5747 +            this.reducer = reducer;
5748 +        }
5749 +        @SuppressWarnings("unchecked") public final boolean exec() {
5750 +            final Fun<? super V, ? extends U> transformer =
5751 +                this.transformer;
5752 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5753 +                this.reducer;
5754 +            if (transformer == null || reducer == null)
5755 +                return abortOnNullFunction();
5756 +            try {
5757 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5758 +                    do {} while (!casPending(c = pending, c+1));
5759 +                    (rights = new MapReduceValuesTask<K,V,U>
5760 +                     (this, b >>>= 1, rights, transformer, reducer)).fork();
5761 +                }
5762 +                U r = null, u;
5763 +                Object v;
5764 +                while ((v = advance()) != null) {
5765 +                    if ((u = transformer.apply((V)v)) != null)
5766 +                        r = (r == null) ? u : reducer.apply(r, u);
5767 +                }
5768 +                result = r;
5769 +                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5770 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5771 +                    if ((c = t.pending) == 0) {
5772 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5773 +                            if ((sr = s.result) != null)
5774 +                                t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5775 +                        }
5776 +                        if ((par = t.parent) == null ||
5777 +                            !(par instanceof MapReduceValuesTask)) {
5778 +                            t.quietlyComplete();
5779 +                            break;
5780 +                        }
5781 +                        t = (MapReduceValuesTask<K,V,U>)par;
5782 +                    }
5783 +                    else if (t.casPending(c, c - 1))
5784 +                        break;
5785 +                }
5786 +            } catch (Throwable ex) {
5787 +                return tryCompleteComputation(ex);
5788 +            }
5789 +            return false;
5790 +        }
5791 +        public final U getRawResult() { return result; }
5792 +    }
5793 +
5794 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5795 +        extends BulkTask<K,V,U> {
5796 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5797 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5798 +        U result;
5799 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
5800 +        MapReduceEntriesTask
5801 +            (ConcurrentHashMap<K,V> m,
5802 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5803 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5804 +            super(m);
5805 +            this.transformer = transformer;
5806 +            this.reducer = reducer;
5807 +        }
5808 +        MapReduceEntriesTask
5809 +            (BulkTask<K,V,?> p, int b,
5810 +             MapReduceEntriesTask<K,V,U> nextRight,
5811 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5812 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5813 +            super(p, b); this.nextRight = nextRight;
5814 +            this.transformer = transformer;
5815 +            this.reducer = reducer;
5816 +        }
5817 +        @SuppressWarnings("unchecked") public final boolean exec() {
5818 +            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5819 +                this.transformer;
5820 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5821 +                this.reducer;
5822 +            if (transformer == null || reducer == null)
5823 +                return abortOnNullFunction();
5824 +            try {
5825 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5826 +                    do {} while (!casPending(c = pending, c+1));
5827 +                    (rights = new MapReduceEntriesTask<K,V,U>
5828 +                     (this, b >>>= 1, rights, transformer, reducer)).fork();
5829 +                }
5830 +                U r = null, u;
5831 +                Object v;
5832 +                while ((v = advance()) != null) {
5833 +                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5834 +                        r = (r == null) ? u : reducer.apply(r, u);
5835 +                }
5836 +                result = r;
5837 +                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5838 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5839 +                    if ((c = t.pending) == 0) {
5840 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5841 +                            if ((sr = s.result) != null)
5842 +                                t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5843 +                        }
5844 +                        if ((par = t.parent) == null ||
5845 +                            !(par instanceof MapReduceEntriesTask)) {
5846 +                            t.quietlyComplete();
5847 +                            break;
5848 +                        }
5849 +                        t = (MapReduceEntriesTask<K,V,U>)par;
5850 +                    }
5851 +                    else if (t.casPending(c, c - 1))
5852 +                        break;
5853 +                }
5854 +            } catch (Throwable ex) {
5855 +                return tryCompleteComputation(ex);
5856 +            }
5857 +            return false;
5858 +        }
5859 +        public final U getRawResult() { return result; }
5860 +    }
5861 +
5862 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5863 +        extends BulkTask<K,V,U> {
5864 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5865 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5866 +        U result;
5867 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
5868 +        MapReduceMappingsTask
5869 +            (ConcurrentHashMap<K,V> m,
5870 +             BiFun<? super K, ? super V, ? extends U> transformer,
5871 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5872 +            super(m);
5873 +            this.transformer = transformer;
5874 +            this.reducer = reducer;
5875 +        }
5876 +        MapReduceMappingsTask
5877 +            (BulkTask<K,V,?> p, int b,
5878 +             MapReduceMappingsTask<K,V,U> nextRight,
5879 +             BiFun<? super K, ? super V, ? extends U> transformer,
5880 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5881 +            super(p, b); this.nextRight = nextRight;
5882 +            this.transformer = transformer;
5883 +            this.reducer = reducer;
5884 +        }
5885 +        @SuppressWarnings("unchecked") public final boolean exec() {
5886 +            final BiFun<? super K, ? super V, ? extends U> transformer =
5887 +                this.transformer;
5888 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5889 +                this.reducer;
5890 +            if (transformer == null || reducer == null)
5891 +                return abortOnNullFunction();
5892 +            try {
5893 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5894 +                    do {} while (!casPending(c = pending, c+1));
5895 +                    (rights = new MapReduceMappingsTask<K,V,U>
5896 +                     (this, b >>>= 1, rights, transformer, reducer)).fork();
5897 +                }
5898 +                U r = null, u;
5899 +                Object v;
5900 +                while ((v = advance()) != null) {
5901 +                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5902 +                        r = (r == null) ? u : reducer.apply(r, u);
5903 +                }
5904 +                result = r;
5905 +                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5906 +                    int c; BulkTask<K,V,?> par; U tr, sr;
5907 +                    if ((c = t.pending) == 0) {
5908 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5909 +                            if ((sr = s.result) != null)
5910 +                                t.result = (tr = t.result) == null? sr : reducer.apply(tr, sr);
5911 +                        }
5912 +                        if ((par = t.parent) == null ||
5913 +                            !(par instanceof MapReduceMappingsTask)) {
5914 +                            t.quietlyComplete();
5915 +                            break;
5916 +                        }
5917 +                        t = (MapReduceMappingsTask<K,V,U>)par;
5918 +                    }
5919 +                    else if (t.casPending(c, c - 1))
5920 +                        break;
5921 +                }
5922 +            } catch (Throwable ex) {
5923 +                return tryCompleteComputation(ex);
5924 +            }
5925 +            return false;
5926 +        }
5927 +        public final U getRawResult() { return result; }
5928 +    }
5929 +
5930 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5931 +        extends BulkTask<K,V,Double> {
5932 +        final ObjectToDouble<? super K> transformer;
5933 +        final DoubleByDoubleToDouble reducer;
5934 +        final double basis;
5935 +        double result;
5936 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5937 +        MapReduceKeysToDoubleTask
5938 +            (ConcurrentHashMap<K,V> m,
5939 +             ObjectToDouble<? super K> transformer,
5940 +             double basis,
5941 +             DoubleByDoubleToDouble reducer) {
5942 +            super(m);
5943 +            this.transformer = transformer;
5944 +            this.basis = basis; this.reducer = reducer;
5945 +        }
5946 +        MapReduceKeysToDoubleTask
5947 +            (BulkTask<K,V,?> p, int b,
5948 +             MapReduceKeysToDoubleTask<K,V> nextRight,
5949 +             ObjectToDouble<? super K> transformer,
5950 +             double basis,
5951 +             DoubleByDoubleToDouble reducer) {
5952 +            super(p, b); this.nextRight = nextRight;
5953 +            this.transformer = transformer;
5954 +            this.basis = basis; this.reducer = reducer;
5955 +        }
5956 +        @SuppressWarnings("unchecked") public final boolean exec() {
5957 +            final ObjectToDouble<? super K> transformer =
5958 +                this.transformer;
5959 +            final DoubleByDoubleToDouble reducer = this.reducer;
5960 +            if (transformer == null || reducer == null)
5961 +                return abortOnNullFunction();
5962 +            try {
5963 +                final double id = this.basis;
5964 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5965 +                    do {} while (!casPending(c = pending, c+1));
5966 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
5967 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
5968 +                }
5969 +                double r = id;
5970 +                while (advance() != null)
5971 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
5972 +                result = r;
5973 +                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
5974 +                    int c; BulkTask<K,V,?> par;
5975 +                    if ((c = t.pending) == 0) {
5976 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5977 +                            t.result = reducer.apply(t.result, s.result);
5978 +                        }
5979 +                        if ((par = t.parent) == null ||
5980 +                            !(par instanceof MapReduceKeysToDoubleTask)) {
5981 +                            t.quietlyComplete();
5982 +                            break;
5983 +                        }
5984 +                        t = (MapReduceKeysToDoubleTask<K,V>)par;
5985 +                    }
5986 +                    else if (t.casPending(c, c - 1))
5987 +                        break;
5988 +                }
5989 +            } catch (Throwable ex) {
5990 +                return tryCompleteComputation(ex);
5991 +            }
5992 +            return false;
5993 +        }
5994 +        public final Double getRawResult() { return result; }
5995 +    }
5996 +
5997 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5998 +        extends BulkTask<K,V,Double> {
5999 +        final ObjectToDouble<? super V> transformer;
6000 +        final DoubleByDoubleToDouble reducer;
6001 +        final double basis;
6002 +        double result;
6003 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6004 +        MapReduceValuesToDoubleTask
6005 +            (ConcurrentHashMap<K,V> m,
6006 +             ObjectToDouble<? super V> transformer,
6007 +             double basis,
6008 +             DoubleByDoubleToDouble reducer) {
6009 +            super(m);
6010 +            this.transformer = transformer;
6011 +            this.basis = basis; this.reducer = reducer;
6012 +        }
6013 +        MapReduceValuesToDoubleTask
6014 +            (BulkTask<K,V,?> p, int b,
6015 +             MapReduceValuesToDoubleTask<K,V> nextRight,
6016 +             ObjectToDouble<? super V> transformer,
6017 +             double basis,
6018 +             DoubleByDoubleToDouble reducer) {
6019 +            super(p, b); this.nextRight = nextRight;
6020 +            this.transformer = transformer;
6021 +            this.basis = basis; this.reducer = reducer;
6022 +        }
6023 +        @SuppressWarnings("unchecked") public final boolean exec() {
6024 +            final ObjectToDouble<? super V> transformer =
6025 +                this.transformer;
6026 +            final DoubleByDoubleToDouble reducer = this.reducer;
6027 +            if (transformer == null || reducer == null)
6028 +                return abortOnNullFunction();
6029 +            try {
6030 +                final double id = this.basis;
6031 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6032 +                    do {} while (!casPending(c = pending, c+1));
6033 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
6034 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6035 +                }
6036 +                double r = id;
6037 +                Object v;
6038 +                while ((v = advance()) != null)
6039 +                    r = reducer.apply(r, transformer.apply((V)v));
6040 +                result = r;
6041 +                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6042 +                    int c; BulkTask<K,V,?> par;
6043 +                    if ((c = t.pending) == 0) {
6044 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6045 +                            t.result = reducer.apply(t.result, s.result);
6046 +                        }
6047 +                        if ((par = t.parent) == null ||
6048 +                            !(par instanceof MapReduceValuesToDoubleTask)) {
6049 +                            t.quietlyComplete();
6050 +                            break;
6051 +                        }
6052 +                        t = (MapReduceValuesToDoubleTask<K,V>)par;
6053 +                    }
6054 +                    else if (t.casPending(c, c - 1))
6055 +                        break;
6056 +                }
6057 +            } catch (Throwable ex) {
6058 +                return tryCompleteComputation(ex);
6059 +            }
6060 +            return false;
6061 +        }
6062 +        public final Double getRawResult() { return result; }
6063 +    }
6064 +
6065 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6066 +        extends BulkTask<K,V,Double> {
6067 +        final ObjectToDouble<Map.Entry<K,V>> transformer;
6068 +        final DoubleByDoubleToDouble reducer;
6069 +        final double basis;
6070 +        double result;
6071 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6072 +        MapReduceEntriesToDoubleTask
6073 +            (ConcurrentHashMap<K,V> m,
6074 +             ObjectToDouble<Map.Entry<K,V>> transformer,
6075 +             double basis,
6076 +             DoubleByDoubleToDouble reducer) {
6077 +            super(m);
6078 +            this.transformer = transformer;
6079 +            this.basis = basis; this.reducer = reducer;
6080 +        }
6081 +        MapReduceEntriesToDoubleTask
6082 +            (BulkTask<K,V,?> p, int b,
6083 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
6084 +             ObjectToDouble<Map.Entry<K,V>> transformer,
6085 +             double basis,
6086 +             DoubleByDoubleToDouble reducer) {
6087 +            super(p, b); this.nextRight = nextRight;
6088 +            this.transformer = transformer;
6089 +            this.basis = basis; this.reducer = reducer;
6090 +        }
6091 +        @SuppressWarnings("unchecked") public final boolean exec() {
6092 +            final ObjectToDouble<Map.Entry<K,V>> transformer =
6093 +                this.transformer;
6094 +            final DoubleByDoubleToDouble reducer = this.reducer;
6095 +            if (transformer == null || reducer == null)
6096 +                return abortOnNullFunction();
6097 +            try {
6098 +                final double id = this.basis;
6099 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6100 +                    do {} while (!casPending(c = pending, c+1));
6101 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6102 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6103 +                }
6104 +                double r = id;
6105 +                Object v;
6106 +                while ((v = advance()) != null)
6107 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6108 +                result = r;
6109 +                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6110 +                    int c; BulkTask<K,V,?> par;
6111 +                    if ((c = t.pending) == 0) {
6112 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6113 +                            t.result = reducer.apply(t.result, s.result);
6114 +                        }
6115 +                        if ((par = t.parent) == null ||
6116 +                            !(par instanceof MapReduceEntriesToDoubleTask)) {
6117 +                            t.quietlyComplete();
6118 +                            break;
6119 +                        }
6120 +                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
6121 +                    }
6122 +                    else if (t.casPending(c, c - 1))
6123 +                        break;
6124 +                }
6125 +            } catch (Throwable ex) {
6126 +                return tryCompleteComputation(ex);
6127 +            }
6128 +            return false;
6129 +        }
6130 +        public final Double getRawResult() { return result; }
6131 +    }
6132 +
6133 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6134 +        extends BulkTask<K,V,Double> {
6135 +        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6136 +        final DoubleByDoubleToDouble reducer;
6137 +        final double basis;
6138 +        double result;
6139 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6140 +        MapReduceMappingsToDoubleTask
6141 +            (ConcurrentHashMap<K,V> m,
6142 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
6143 +             double basis,
6144 +             DoubleByDoubleToDouble reducer) {
6145 +            super(m);
6146 +            this.transformer = transformer;
6147 +            this.basis = basis; this.reducer = reducer;
6148 +        }
6149 +        MapReduceMappingsToDoubleTask
6150 +            (BulkTask<K,V,?> p, int b,
6151 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
6152 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
6153 +             double basis,
6154 +             DoubleByDoubleToDouble reducer) {
6155 +            super(p, b); this.nextRight = nextRight;
6156 +            this.transformer = transformer;
6157 +            this.basis = basis; this.reducer = reducer;
6158 +        }
6159 +        @SuppressWarnings("unchecked") public final boolean exec() {
6160 +            final ObjectByObjectToDouble<? super K, ? super V> transformer =
6161 +                this.transformer;
6162 +            final DoubleByDoubleToDouble reducer = this.reducer;
6163 +            if (transformer == null || reducer == null)
6164 +                return abortOnNullFunction();
6165 +            try {
6166 +                final double id = this.basis;
6167 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6168 +                    do {} while (!casPending(c = pending, c+1));
6169 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6170 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6171 +                }
6172 +                double r = id;
6173 +                Object v;
6174 +                while ((v = advance()) != null)
6175 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6176 +                result = r;
6177 +                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6178 +                    int c; BulkTask<K,V,?> par;
6179 +                    if ((c = t.pending) == 0) {
6180 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6181 +                            t.result = reducer.apply(t.result, s.result);
6182 +                        }
6183 +                        if ((par = t.parent) == null ||
6184 +                            !(par instanceof MapReduceMappingsToDoubleTask)) {
6185 +                            t.quietlyComplete();
6186 +                            break;
6187 +                        }
6188 +                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
6189 +                    }
6190 +                    else if (t.casPending(c, c - 1))
6191 +                        break;
6192 +                }
6193 +            } catch (Throwable ex) {
6194 +                return tryCompleteComputation(ex);
6195 +            }
6196 +            return false;
6197 +        }
6198 +        public final Double getRawResult() { return result; }
6199 +    }
6200 +
6201 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6202 +        extends BulkTask<K,V,Long> {
6203 +        final ObjectToLong<? super K> transformer;
6204 +        final LongByLongToLong reducer;
6205 +        final long basis;
6206 +        long result;
6207 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6208 +        MapReduceKeysToLongTask
6209 +            (ConcurrentHashMap<K,V> m,
6210 +             ObjectToLong<? super K> transformer,
6211 +             long basis,
6212 +             LongByLongToLong reducer) {
6213 +            super(m);
6214 +            this.transformer = transformer;
6215 +            this.basis = basis; this.reducer = reducer;
6216 +        }
6217 +        MapReduceKeysToLongTask
6218 +            (BulkTask<K,V,?> p, int b,
6219 +             MapReduceKeysToLongTask<K,V> nextRight,
6220 +             ObjectToLong<? super K> transformer,
6221 +             long basis,
6222 +             LongByLongToLong reducer) {
6223 +            super(p, b); this.nextRight = nextRight;
6224 +            this.transformer = transformer;
6225 +            this.basis = basis; this.reducer = reducer;
6226 +        }
6227 +        @SuppressWarnings("unchecked") public final boolean exec() {
6228 +            final ObjectToLong<? super K> transformer =
6229 +                this.transformer;
6230 +            final LongByLongToLong reducer = this.reducer;
6231 +            if (transformer == null || reducer == null)
6232 +                return abortOnNullFunction();
6233 +            try {
6234 +                final long id = this.basis;
6235 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6236 +                    do {} while (!casPending(c = pending, c+1));
6237 +                    (rights = new MapReduceKeysToLongTask<K,V>
6238 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6239 +                }
6240 +                long r = id;
6241 +                while (advance() != null)
6242 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6243 +                result = r;
6244 +                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6245 +                    int c; BulkTask<K,V,?> par;
6246 +                    if ((c = t.pending) == 0) {
6247 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6248 +                            t.result = reducer.apply(t.result, s.result);
6249 +                        }
6250 +                        if ((par = t.parent) == null ||
6251 +                            !(par instanceof MapReduceKeysToLongTask)) {
6252 +                            t.quietlyComplete();
6253 +                            break;
6254 +                        }
6255 +                        t = (MapReduceKeysToLongTask<K,V>)par;
6256 +                    }
6257 +                    else if (t.casPending(c, c - 1))
6258 +                        break;
6259 +                }
6260 +            } catch (Throwable ex) {
6261 +                return tryCompleteComputation(ex);
6262 +            }
6263 +            return false;
6264 +        }
6265 +        public final Long getRawResult() { return result; }
6266 +    }
6267 +
6268 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6269 +        extends BulkTask<K,V,Long> {
6270 +        final ObjectToLong<? super V> transformer;
6271 +        final LongByLongToLong reducer;
6272 +        final long basis;
6273 +        long result;
6274 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6275 +        MapReduceValuesToLongTask
6276 +            (ConcurrentHashMap<K,V> m,
6277 +             ObjectToLong<? super V> transformer,
6278 +             long basis,
6279 +             LongByLongToLong reducer) {
6280 +            super(m);
6281 +            this.transformer = transformer;
6282 +            this.basis = basis; this.reducer = reducer;
6283 +        }
6284 +        MapReduceValuesToLongTask
6285 +            (BulkTask<K,V,?> p, int b,
6286 +             MapReduceValuesToLongTask<K,V> nextRight,
6287 +             ObjectToLong<? super V> transformer,
6288 +             long basis,
6289 +             LongByLongToLong reducer) {
6290 +            super(p, b); this.nextRight = nextRight;
6291 +            this.transformer = transformer;
6292 +            this.basis = basis; this.reducer = reducer;
6293 +        }
6294 +        @SuppressWarnings("unchecked") public final boolean exec() {
6295 +            final ObjectToLong<? super V> transformer =
6296 +                this.transformer;
6297 +            final LongByLongToLong reducer = this.reducer;
6298 +            if (transformer == null || reducer == null)
6299 +                return abortOnNullFunction();
6300 +            try {
6301 +                final long id = this.basis;
6302 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6303 +                    do {} while (!casPending(c = pending, c+1));
6304 +                    (rights = new MapReduceValuesToLongTask<K,V>
6305 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6306 +                }
6307 +                long r = id;
6308 +                Object v;
6309 +                while ((v = advance()) != null)
6310 +                    r = reducer.apply(r, transformer.apply((V)v));
6311 +                result = r;
6312 +                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6313 +                    int c; BulkTask<K,V,?> par;
6314 +                    if ((c = t.pending) == 0) {
6315 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6316 +                            t.result = reducer.apply(t.result, s.result);
6317 +                        }
6318 +                        if ((par = t.parent) == null ||
6319 +                            !(par instanceof MapReduceValuesToLongTask)) {
6320 +                            t.quietlyComplete();
6321 +                            break;
6322 +                        }
6323 +                        t = (MapReduceValuesToLongTask<K,V>)par;
6324 +                    }
6325 +                    else if (t.casPending(c, c - 1))
6326 +                        break;
6327 +                }
6328 +            } catch (Throwable ex) {
6329 +                return tryCompleteComputation(ex);
6330 +            }
6331 +            return false;
6332 +        }
6333 +        public final Long getRawResult() { return result; }
6334 +    }
6335 +
6336 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6337 +        extends BulkTask<K,V,Long> {
6338 +        final ObjectToLong<Map.Entry<K,V>> transformer;
6339 +        final LongByLongToLong reducer;
6340 +        final long basis;
6341 +        long result;
6342 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6343 +        MapReduceEntriesToLongTask
6344 +            (ConcurrentHashMap<K,V> m,
6345 +             ObjectToLong<Map.Entry<K,V>> transformer,
6346 +             long basis,
6347 +             LongByLongToLong reducer) {
6348 +            super(m);
6349 +            this.transformer = transformer;
6350 +            this.basis = basis; this.reducer = reducer;
6351 +        }
6352 +        MapReduceEntriesToLongTask
6353 +            (BulkTask<K,V,?> p, int b,
6354 +             MapReduceEntriesToLongTask<K,V> nextRight,
6355 +             ObjectToLong<Map.Entry<K,V>> transformer,
6356 +             long basis,
6357 +             LongByLongToLong reducer) {
6358 +            super(p, b); this.nextRight = nextRight;
6359 +            this.transformer = transformer;
6360 +            this.basis = basis; this.reducer = reducer;
6361 +        }
6362 +        @SuppressWarnings("unchecked") public final boolean exec() {
6363 +            final ObjectToLong<Map.Entry<K,V>> transformer =
6364 +                this.transformer;
6365 +            final LongByLongToLong reducer = this.reducer;
6366 +            if (transformer == null || reducer == null)
6367 +                return abortOnNullFunction();
6368 +            try {
6369 +                final long id = this.basis;
6370 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6371 +                    do {} while (!casPending(c = pending, c+1));
6372 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6373 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6374 +                }
6375 +                long r = id;
6376 +                Object v;
6377 +                while ((v = advance()) != null)
6378 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6379 +                result = r;
6380 +                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6381 +                    int c; BulkTask<K,V,?> par;
6382 +                    if ((c = t.pending) == 0) {
6383 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6384 +                            t.result = reducer.apply(t.result, s.result);
6385 +                        }
6386 +                        if ((par = t.parent) == null ||
6387 +                            !(par instanceof MapReduceEntriesToLongTask)) {
6388 +                            t.quietlyComplete();
6389 +                            break;
6390 +                        }
6391 +                        t = (MapReduceEntriesToLongTask<K,V>)par;
6392 +                    }
6393 +                    else if (t.casPending(c, c - 1))
6394 +                        break;
6395 +                }
6396 +            } catch (Throwable ex) {
6397 +                return tryCompleteComputation(ex);
6398 +            }
6399 +            return false;
6400 +        }
6401 +        public final Long getRawResult() { return result; }
6402 +    }
6403 +
6404 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6405 +        extends BulkTask<K,V,Long> {
6406 +        final ObjectByObjectToLong<? super K, ? super V> transformer;
6407 +        final LongByLongToLong reducer;
6408 +        final long basis;
6409 +        long result;
6410 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6411 +        MapReduceMappingsToLongTask
6412 +            (ConcurrentHashMap<K,V> m,
6413 +             ObjectByObjectToLong<? super K, ? super V> transformer,
6414 +             long basis,
6415 +             LongByLongToLong reducer) {
6416 +            super(m);
6417 +            this.transformer = transformer;
6418 +            this.basis = basis; this.reducer = reducer;
6419 +        }
6420 +        MapReduceMappingsToLongTask
6421 +            (BulkTask<K,V,?> p, int b,
6422 +             MapReduceMappingsToLongTask<K,V> nextRight,
6423 +             ObjectByObjectToLong<? super K, ? super V> transformer,
6424 +             long basis,
6425 +             LongByLongToLong reducer) {
6426 +            super(p, b); this.nextRight = nextRight;
6427 +            this.transformer = transformer;
6428 +            this.basis = basis; this.reducer = reducer;
6429 +        }
6430 +        @SuppressWarnings("unchecked") public final boolean exec() {
6431 +            final ObjectByObjectToLong<? super K, ? super V> transformer =
6432 +                this.transformer;
6433 +            final LongByLongToLong reducer = this.reducer;
6434 +            if (transformer == null || reducer == null)
6435 +                return abortOnNullFunction();
6436 +            try {
6437 +                final long id = this.basis;
6438 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6439 +                    do {} while (!casPending(c = pending, c+1));
6440 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6441 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6442 +                }
6443 +                long r = id;
6444 +                Object v;
6445 +                while ((v = advance()) != null)
6446 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6447 +                result = r;
6448 +                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6449 +                    int c; BulkTask<K,V,?> par;
6450 +                    if ((c = t.pending) == 0) {
6451 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6452 +                            t.result = reducer.apply(t.result, s.result);
6453 +                        }
6454 +                        if ((par = t.parent) == null ||
6455 +                            !(par instanceof MapReduceMappingsToLongTask)) {
6456 +                            t.quietlyComplete();
6457 +                            break;
6458 +                        }
6459 +                        t = (MapReduceMappingsToLongTask<K,V>)par;
6460 +                    }
6461 +                    else if (t.casPending(c, c - 1))
6462 +                        break;
6463 +                }
6464 +            } catch (Throwable ex) {
6465 +                return tryCompleteComputation(ex);
6466 +            }
6467 +            return false;
6468 +        }
6469 +        public final Long getRawResult() { return result; }
6470 +    }
6471 +
6472 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6473 +        extends BulkTask<K,V,Integer> {
6474 +        final ObjectToInt<? super K> transformer;
6475 +        final IntByIntToInt reducer;
6476 +        final int basis;
6477 +        int result;
6478 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6479 +        MapReduceKeysToIntTask
6480 +            (ConcurrentHashMap<K,V> m,
6481 +             ObjectToInt<? super K> transformer,
6482 +             int basis,
6483 +             IntByIntToInt reducer) {
6484 +            super(m);
6485 +            this.transformer = transformer;
6486 +            this.basis = basis; this.reducer = reducer;
6487 +        }
6488 +        MapReduceKeysToIntTask
6489 +            (BulkTask<K,V,?> p, int b,
6490 +             MapReduceKeysToIntTask<K,V> nextRight,
6491 +             ObjectToInt<? super K> transformer,
6492 +             int basis,
6493 +             IntByIntToInt reducer) {
6494 +            super(p, b); this.nextRight = nextRight;
6495 +            this.transformer = transformer;
6496 +            this.basis = basis; this.reducer = reducer;
6497 +        }
6498 +        @SuppressWarnings("unchecked") public final boolean exec() {
6499 +            final ObjectToInt<? super K> transformer =
6500 +                this.transformer;
6501 +            final IntByIntToInt reducer = this.reducer;
6502 +            if (transformer == null || reducer == null)
6503 +                return abortOnNullFunction();
6504 +            try {
6505 +                final int id = this.basis;
6506 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6507 +                    do {} while (!casPending(c = pending, c+1));
6508 +                    (rights = new MapReduceKeysToIntTask<K,V>
6509 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6510 +                }
6511 +                int r = id;
6512 +                while (advance() != null)
6513 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6514 +                result = r;
6515 +                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6516 +                    int c; BulkTask<K,V,?> par;
6517 +                    if ((c = t.pending) == 0) {
6518 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6519 +                            t.result = reducer.apply(t.result, s.result);
6520 +                        }
6521 +                        if ((par = t.parent) == null ||
6522 +                            !(par instanceof MapReduceKeysToIntTask)) {
6523 +                            t.quietlyComplete();
6524 +                            break;
6525 +                        }
6526 +                        t = (MapReduceKeysToIntTask<K,V>)par;
6527 +                    }
6528 +                    else if (t.casPending(c, c - 1))
6529 +                        break;
6530 +                }
6531 +            } catch (Throwable ex) {
6532 +                return tryCompleteComputation(ex);
6533 +            }
6534 +            return false;
6535 +        }
6536 +        public final Integer getRawResult() { return result; }
6537 +    }
6538 +
6539 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6540 +        extends BulkTask<K,V,Integer> {
6541 +        final ObjectToInt<? super V> transformer;
6542 +        final IntByIntToInt reducer;
6543 +        final int basis;
6544 +        int result;
6545 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6546 +        MapReduceValuesToIntTask
6547 +            (ConcurrentHashMap<K,V> m,
6548 +             ObjectToInt<? super V> transformer,
6549 +             int basis,
6550 +             IntByIntToInt reducer) {
6551 +            super(m);
6552 +            this.transformer = transformer;
6553 +            this.basis = basis; this.reducer = reducer;
6554 +        }
6555 +        MapReduceValuesToIntTask
6556 +            (BulkTask<K,V,?> p, int b,
6557 +             MapReduceValuesToIntTask<K,V> nextRight,
6558 +             ObjectToInt<? super V> transformer,
6559 +             int basis,
6560 +             IntByIntToInt reducer) {
6561 +            super(p, b); this.nextRight = nextRight;
6562 +            this.transformer = transformer;
6563 +            this.basis = basis; this.reducer = reducer;
6564 +        }
6565 +        @SuppressWarnings("unchecked") public final boolean exec() {
6566 +            final ObjectToInt<? super V> transformer =
6567 +                this.transformer;
6568 +            final IntByIntToInt reducer = this.reducer;
6569 +            if (transformer == null || reducer == null)
6570 +                return abortOnNullFunction();
6571 +            try {
6572 +                final int id = this.basis;
6573 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6574 +                    do {} while (!casPending(c = pending, c+1));
6575 +                    (rights = new MapReduceValuesToIntTask<K,V>
6576 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6577 +                }
6578 +                int r = id;
6579 +                Object v;
6580 +                while ((v = advance()) != null)
6581 +                    r = reducer.apply(r, transformer.apply((V)v));
6582 +                result = r;
6583 +                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
6584 +                    int c; BulkTask<K,V,?> par;
6585 +                    if ((c = t.pending) == 0) {
6586 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6587 +                            t.result = reducer.apply(t.result, s.result);
6588 +                        }
6589 +                        if ((par = t.parent) == null ||
6590 +                            !(par instanceof MapReduceValuesToIntTask)) {
6591 +                            t.quietlyComplete();
6592 +                            break;
6593 +                        }
6594 +                        t = (MapReduceValuesToIntTask<K,V>)par;
6595 +                    }
6596 +                    else if (t.casPending(c, c - 1))
6597 +                        break;
6598 +                }
6599 +            } catch (Throwable ex) {
6600 +                return tryCompleteComputation(ex);
6601 +            }
6602 +            return false;
6603 +        }
6604 +        public final Integer getRawResult() { return result; }
6605 +    }
6606 +
6607 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6608 +        extends BulkTask<K,V,Integer> {
6609 +        final ObjectToInt<Map.Entry<K,V>> transformer;
6610 +        final IntByIntToInt reducer;
6611 +        final int basis;
6612 +        int result;
6613 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6614 +        MapReduceEntriesToIntTask
6615 +            (ConcurrentHashMap<K,V> m,
6616 +             ObjectToInt<Map.Entry<K,V>> transformer,
6617 +             int basis,
6618 +             IntByIntToInt reducer) {
6619 +            super(m);
6620 +            this.transformer = transformer;
6621 +            this.basis = basis; this.reducer = reducer;
6622 +        }
6623 +        MapReduceEntriesToIntTask
6624 +            (BulkTask<K,V,?> p, int b,
6625 +             MapReduceEntriesToIntTask<K,V> nextRight,
6626 +             ObjectToInt<Map.Entry<K,V>> transformer,
6627 +             int basis,
6628 +             IntByIntToInt reducer) {
6629 +            super(p, b); this.nextRight = nextRight;
6630 +            this.transformer = transformer;
6631 +            this.basis = basis; this.reducer = reducer;
6632 +        }
6633 +        @SuppressWarnings("unchecked") public final boolean exec() {
6634 +            final ObjectToInt<Map.Entry<K,V>> transformer =
6635 +                this.transformer;
6636 +            final IntByIntToInt reducer = this.reducer;
6637 +            if (transformer == null || reducer == null)
6638 +                return abortOnNullFunction();
6639 +            try {
6640 +                final int id = this.basis;
6641 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6642 +                    do {} while (!casPending(c = pending, c+1));
6643 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6644 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6645 +                }
6646 +                int r = id;
6647 +                Object v;
6648 +                while ((v = advance()) != null)
6649 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6650 +                result = r;
6651 +                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6652 +                    int c; BulkTask<K,V,?> par;
6653 +                    if ((c = t.pending) == 0) {
6654 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6655 +                            t.result = reducer.apply(t.result, s.result);
6656 +                        }
6657 +                        if ((par = t.parent) == null ||
6658 +                            !(par instanceof MapReduceEntriesToIntTask)) {
6659 +                            t.quietlyComplete();
6660 +                            break;
6661 +                        }
6662 +                        t = (MapReduceEntriesToIntTask<K,V>)par;
6663 +                    }
6664 +                    else if (t.casPending(c, c - 1))
6665 +                        break;
6666 +                }
6667 +            } catch (Throwable ex) {
6668 +                return tryCompleteComputation(ex);
6669 +            }
6670 +            return false;
6671 +        }
6672 +        public final Integer getRawResult() { return result; }
6673 +    }
6674 +
6675 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6676 +        extends BulkTask<K,V,Integer> {
6677 +        final ObjectByObjectToInt<? super K, ? super V> transformer;
6678 +        final IntByIntToInt reducer;
6679 +        final int basis;
6680 +        int result;
6681 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6682 +        MapReduceMappingsToIntTask
6683 +            (ConcurrentHashMap<K,V> m,
6684 +             ObjectByObjectToInt<? super K, ? super V> transformer,
6685 +             int basis,
6686 +             IntByIntToInt reducer) {
6687 +            super(m);
6688 +            this.transformer = transformer;
6689 +            this.basis = basis; this.reducer = reducer;
6690 +        }
6691 +        MapReduceMappingsToIntTask
6692 +            (BulkTask<K,V,?> p, int b,
6693 +             MapReduceMappingsToIntTask<K,V> nextRight,
6694 +             ObjectByObjectToInt<? super K, ? super V> transformer,
6695 +             int basis,
6696 +             IntByIntToInt reducer) {
6697 +            super(p, b); this.nextRight = nextRight;
6698 +            this.transformer = transformer;
6699 +            this.basis = basis; this.reducer = reducer;
6700 +        }
6701 +        @SuppressWarnings("unchecked") public final boolean exec() {
6702 +            final ObjectByObjectToInt<? super K, ? super V> transformer =
6703 +                this.transformer;
6704 +            final IntByIntToInt reducer = this.reducer;
6705 +            if (transformer == null || reducer == null)
6706 +                return abortOnNullFunction();
6707 +            try {
6708 +                final int id = this.basis;
6709 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6710 +                    do {} while (!casPending(c = pending, c+1));
6711 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6712 +                     (this, b >>>= 1, rights, transformer, id, reducer)).fork();
6713 +                }
6714 +                int r = id;
6715 +                Object v;
6716 +                while ((v = advance()) != null)
6717 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6718 +                result = r;
6719 +                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6720 +                    int c; BulkTask<K,V,?> par;
6721 +                    if ((c = t.pending) == 0) {
6722 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6723 +                            t.result = reducer.apply(t.result, s.result);
6724 +                        }
6725 +                        if ((par = t.parent) == null ||
6726 +                            !(par instanceof MapReduceMappingsToIntTask)) {
6727 +                            t.quietlyComplete();
6728 +                            break;
6729 +                        }
6730 +                        t = (MapReduceMappingsToIntTask<K,V>)par;
6731 +                    }
6732 +                    else if (t.casPending(c, c - 1))
6733 +                        break;
6734 +                }
6735 +            } catch (Throwable ex) {
6736 +                return tryCompleteComputation(ex);
6737 +            }
6738 +            return false;
6739 +        }
6740 +        public final Integer getRawResult() { return result; }
6741 +    }
6742 +
6743 +    // Unsafe mechanics
6744 +    private static final sun.misc.Unsafe UNSAFE;
6745 +    private static final long counterOffset;
6746 +    private static final long sizeCtlOffset;
6747 +    private static final long ABASE;
6748 +    private static final int ASHIFT;
6749 +
6750 +    static {
6751 +        int ss;
6752 +        try {
6753 +            UNSAFE = sun.misc.Unsafe.getUnsafe();
6754 +            Class<?> k = ConcurrentHashMap.class;
6755 +            counterOffset = UNSAFE.objectFieldOffset
6756 +                (k.getDeclaredField("counter"));
6757 +            sizeCtlOffset = UNSAFE.objectFieldOffset
6758 +                (k.getDeclaredField("sizeCtl"));
6759 +            Class<?> sc = Node[].class;
6760 +            ABASE = UNSAFE.arrayBaseOffset(sc);
6761 +            ss = UNSAFE.arrayIndexScale(sc);
6762 +        } catch (Exception e) {
6763 +            throw new Error(e);
6764 +        }
6765 +        if ((ss & (ss-1)) != 0)
6766 +            throw new Error("data type scale not a power of two");
6767 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6768 +    }
6769 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines